ML20214R197
| ML20214R197 | |
| Person / Time | |
|---|---|
| Site: | Seabrook |
| Issue date: | 08/28/1986 |
| From: | NRC |
| To: | |
| Shared Package | |
| ML20214R127 | List: |
| References | |
| FOIA-86-678 NUDOCS 8609290105 | |
| Download: ML20214R197 (126) | |
Text
$ !L'/I, a-P^-
fr Al/11
- 8/28/86 Seabrook EPZ Sensitvity Study Revi ews P)on reals of Review:
i 1.
To provide a technical assessment of the adequacy of the Seab r o,o k Station Emergency Planning Sensitivity Study to support its conclusion t hp t, the degree of public protection afforded by a 1 mile 0 N dhty planning radius around the Feabroot Station is equivalent to the degree ot protection that was perceived for a 10 niile emercency planning rad a nt
.it the time the 10 mile generic planning radius v:as establithed in NilREG-0396.
2.
In the event it is concluded that the Study does not adequately support its conclusion at the 1 mile raditis. to determine the radius at which the storiy can suppor t a conclusion of equivalent protection.
Scope o f Review Effort:
T. Establish Technical Criteria for Cocparing the Deoron of Protection to the Public A. N'IREG -0396 bases 1.
DBA-LOCA considerations as PAG dose levels I
1.
whole body I
2.
thyroid b.
early fatalitises c.
early injuries ri. latent hea l th ef f r>c t s
- 2. WASH-1400 considerattons a.
PAG dose levels 1.
whole body 8609290105 860924 _
pgg po{A 2.
thyroid twenn W W @b. early fatalities i
l c.
e-arly i n.i u r a ns i
d.
latent health effects
B. NRC Safety Goal basis.
1.
individual rist: "
II. Determine Regulatory and Policy Limitations A.
Source term modifications 1.
physical phenomena
- 5. chemical phenomena B. Relationship of 10CFR100 Calculations to Emergency Plannino Requirements C. Relationship of PAGs to Emergency Planning Requirements III. Review Plant Model A.
Event Trees 1.
review completeness of initiating event list 2.
review completeness of faults and phenomena considered in developing event trees (with special attention to containment bypass and interfacing LCCA sequences) 3.
tabulate significant differences between Seabrook model and WASH-1400 model 4.
tabulate any significant deficiencies discovered in the scope of the event trees 5.
estin ate the effect of'the deficiencies on the probabilities of the appropriate damage states R.
Probability Estimates 1.
review probabilities of faults-and phenomena 2.
tabulate significant differences between Seabrook model and WASH-1400 model 3.
audit procedure used in study to estimate probabilities for items that are significantly different from LIASH-1400 4.
tabulate any disputed probability estimates 5.
estimate the effect of the disputed probabilities of the appropriate damage states
i t
i 4
J IV. Review Containment Model
~
A. Evaluate Co,ntainment Tehavior 1.
review containment structural analyses contained in' i
the study 1
f" 2.
conduct site tour to assess containmentfeatures with respect to various phenomena (eg, direct heating phenomena) 1 3.
develop a model and use BNL NFAP code to evaluate continment performance l
- a. evaluate large deformation and post cracking
~
behavior j
b.
evaluate overall pressure capacity.of containment
{
4.
evaluate behavior of critical containment penetrations j
- a. minimum failure pressure j
- b. maximum failure pressure l
c.
effects of penetration failure on further pressurination of the containment i
B.
Event Trees j
1.
review damage state list for adequacy of j
representation 2.
j
~
review comp'leteness of faults and phenomena considerdd" i
in developing event trees, with special attention to phenomena that can produce gross containment failures I
and containment bypass paths i
3.
tabulate significant differences between Seabrook model and WASH-1400 model f*
1
- 4. tabulate any' deficiencies discovered in the scope of the event trees (ie, significant safety functions or response phenomena neglected) 5.
estimate the effect of the deficiencies on the probabilities of the appropriate release catagories 1
i I
4 4
=-
s i
C. Probability Estimates _
1.
review probabili~ ties of faults and phenomena 2.
tabulate significant> differences between Seabrook model and WASH-1400 model
- 3. audit procedure used in the EPZ study to estimate probabilities for items that are significant1v l
different from WASH-1400 4
tabulate any disputed probability estimates i
1
- 5. estimate the effect of the disputed probabilities o f the appropriate release catagories i
V.
Review the Consequenses Model 4
A. Review the Source Terms 1.
tabulate any differences from the WASH-1400 source term methodology i
- 2. review the grouping of event sequences into release catagori.es R. Review the Meteorological Database for appropriateness to the model y
j C. Review the Demographic Database for proper representation o f. seasonal population D.
Produre benchmark runs for comparison of Brookhaven 6:ork with Seabrook study.
7 VI. Review Conclusions of EPZ Study
'A. Produce thyroid dose versus distance curves for the release catagories, modified as necessary to account for findings in the review of the plant and containment models 4
B. Produce whole body dose versus distance curves for any modified release catagories as needed to account for results of the plant mndel and containment model revists C. Develop risk versus distance curves as appropriate for i
comparison with criteria developed under task I t
D. Estimate radius at which comparability criteria are j
satisfied 1
4 VII. Document Results of Review 1
i A.
Report on contractual tasks at BNI.
4 R.
Safety Evaluation Report covering entire review I
t
MEETING OBJ3CTIVES PROVIDE OVERVIEW OF SEABROOK STATION PSA h
DESCRIBE PSA UPDATES i
l PRESENT RESULTS OF RISK EVALUATIONS WITH EMERGENCY PLANNING OPTIONS i
P DETERMINE REQUIREMENTS TO SUPPORT REVIEW 3
l O
e r
a
.l PRESENTATION OUTLINE J
eBACKGROUND e SEABROOK STATION RISK MODEL AND RESULTS (1983) e RMEPS OVERVIEW AND RESULTS (1985) o PEER REVIEW GROUP i
w e EMERGENCY PLANNING SENSITIVITY STUDY-(1986)
- SSPSA PLANT MODEL UPDATE
- CONTAINMENT MODEL e SOURCE TERMS e SITE MODEL e DISCUSSION
-2 O
e D
e
~
e 8 e 0e Oe e
9 WD OO G
P 8
9 w
QZDO.
cc0M O
<C In O
e 3
e e
O 9
e e
0 0
e
h l
6 PROBABILISTIC SAFETY ASSESSMENT
- FULL-SCOPE LEVEL. 3 PSA l
PUBLISHED DECEMBER 1983
~
e PRINCIPAL CONTRIBUTORS
~
- YAEC - UTILITY PROJECT MANAGEMENT AND REVIEW
-- PICKARD, LOWE AND GARRICK, INC. - PRA CONSULTANT e NRC REVIEW
- LAWRENCE LIVERMORE - PLANT MODEL - (RESPONDED MAY 1986)
- BROOKHAVEN - CONTAINMENT CAPABILITY NUREG/CR-4540 (FEBRUARY 1986) t
~
l e
SSPSA KEY DATES l
4/82 SSPSA STARTED 12/83 SSPSA PUBLISHED l
4/84
'sSPSA ACTIVITIES ON HOLD i
3/85 SSPSA ACTIVITIES RESTART (RMEPS) 6/85 TECHNICAL SPECIFICATION OPTIMlZATION EFFORT STARTS 10/85 PEER REVIEW OF RMEPS 11/85 PEER REVIEW GROUP RESPONSE TO RMEPS 12/85 FINAL RMEPS PUBLISHED 4/86 FINAL SENSITIVITY STUDY PUBLISHED 4/86 PEER REVIEW GROUP RESPONSE TO SENSITIVITY STUDY 6/86 RISK AND RELIABILITY ACTION PLAN ESTABLISHED
1 CURRENT RISK MANAGEMENT ACTIVITIES I
e RISK BASIS FOR TECHNICAL SPECIFICATIONS
- CONTINUAL REASSESSMENT' OF PUBLIC HEALTH RISK
- RMEPS
- SENSITIVITY STUDY
- SEISMIC CAPACITY UPDATE e ESTABLISHED RELIABILITY AND SAFETY ENGINEERING GROUP
- MAINTAIN CURRENT RISK MODEL
- PART OF CHANGE REVIEW PROCESS
- EVALUATE IMPACT OF REGULATORY CHANGES
- PLANT RELIABILITY RESPONSIBILITIES
SEABROOK STATION PSA UPDATE SUBMITTAL DOCUMENTS PLG-0432 SEABROOK STATION RISK MANAGEMENT AND EMERGENCY PLANNING STUDY, DECEMBER 1985 PLG-0465 SEABROOK STATION EMERGENCY i
PLANNING SENSITIVITY STUDY, APRIL 1986 SMA 12911.01 SEISMIC FRAGILITIES OF STRUCTURES REV.1/NTS AND COMPONENTS AT THE SEABROOK i
1589.01 GENERATING STATION, UNITS 1 AND 2, iluNE 1986 l
e I
SUPPORTING DOCUMENTS PLG-0300 SEABROOK STATION PROBABILISTIC SAFETY ASSESSMENT, DECEMBER 1983 NUREG/CR-4540 NRC/BNL REVIEW OF SSPSA CORE AND CONTAINMENT ANALYSIS, FEBRUARY 1986 NRC/LLNL DRAFT REVIEW OF SSPSA PLANT AND SYSTEMS ANALYSIS, APRIL 1985 SBN-1053 NHY RESPONSE TO NRC/LLNL DRAFT REVIEW, MAY 1986 PLG-0223 PLG QUALITY ASSURANCE MANUAL, JULY 1983
e---
a-l I
i SEABROOK STATION RISK MODEL AND RESULTS-(1983) 9 e
e
't 9
e l
e
]
SSPSA SCOPE AND COVERAGE OF l
ACCIDENT SEQUENCES e COMPREHENSIVE COVERAGE OF ACCIDENT SEQUENCES
- 58 DISTINCT INITIATING EVENT CATEGORIES
- 39 PLANT DAMAGE STATES (" BINS")
- 14 RELEASE CATEGORIES
- 16 MODULARIZED EVENT TREES e FULL TREATMENT OF DEPENDENT EVENTS
- COMMON CAUSE FAILURES (SYSTEM LEV.EL)
- EXTERNAL EVENTS
- INTERNAL PLANT HAZARDS
- EXPLICIT MODELING OF FUNCTIONAL DEPENDENCIES i
e PI ANT-SPECIFIC AND ENHANCED CONTAINMENT MODEL
- ASSESSMENT OF CONTAINMENT FAILURE MODES
- QUANTIFICATION OF SOURCE TERM UNCERTAINTIES
- ENHANCED METHODOLOGY e SITE-SPECIFIC CONSEQUENCE MODEL
- MULTIPUFF RELEASE TREATMENT.
- ACTUAL SITE CHARACTERISTICS
- QUANTIFICATION OF UNCERTAINTY j
BLOCK DIAGRAM STRUCTURE OF SEABROOK RISK MODEL r
m r
8
?lllllllllb cont AsNuiNs S'88 C0g" 'ENCE5
's we N NCs';
8viNLS,a co
+
Nce 4
~
+-
///////////.
s d
/,,,,,,,
ADO M G L CONI AGNMS NI ACC60dNI G CONOMGC TOPOGR APety
,,=ge,,
DM 8M AN GRISANag
- g o;g,$g,g Sv5ff M5
.Nig,A,C,i, gin;;
< Ag,ig<
5 y AiyN
- l,y.,n, i-ooi.5 Oo.,s
'iii-PL ANI l
eq D,AIA t>Nuw ><
, et AruAas ANo
,sg IiAIDAls EVACUATIOps PI Ape 3[
///////////4 CONTAINMENT MODEL j
(
SITE MODEL PLANT MODEL y
(
j
(
LEGEND OHIGINAL SSPSA MODEL RMEPS UPDATED MODEL e
op
SUMMARY
OF PRINCIPAL CONTRIBUTORS TO RISK IN TERMS OF ACCIDENT SEQUENCE GROUPS AND INITIATING EVENTS FROM TILE SSPSA Containment Response -
Group Group Fraction of Accident Contributing Contribution Frequency Total Release Sequence Group initiating Events Percent (mean vald }
Frequency Group 1 Early Containment Failure 2.4 x 10-' per "
01 Early llealth
- Interfacing LOCA 76 Reactor Year or' E f f ec.t s
- Seismic 24 Once in 410,000 TU6 Reactor Years 1.7 x 10-4 per
.73 Group 11 Delayed Containment Failure
. 40 Reactor Year or Loss of Offsite Power Latent llealth Effects.
- Transients 19 Once in 6,000 Fires 15 Reactor Years Seismic 15 Others 11 T06 Group Ill Containment intact 110 llealth
- Transients 57 6.0 x 10-5 per
.26 Effects
- SLOCA 29 Reactor Year or
- Others 14 Once in 17,000 T06 Reactor Years Total 2.3 x 10-4 per 1.00 Reactor Year or Once in 4,300 Reactor Years
e e
e I
t 4 *
)5 8
b 1(
.0 LU S
9 E
R DN A
W E
IVREVO SPE M
R 9
e 0
O O
l l
l PRINCIPAL INVESTIGATORS 4
KARL N. FLEMING PLG ALFRED TORRI PLG i
ROBERT J. LUTZ WESTINGHOUSE ROBERT E. HENRY FAI i
R. KENNETH DEREMER PLG KEITH WOODARD' PLG
?
BACKGROUND e EMERGENCY PLANNING BASIS (NUREG-0396)
- TEN YEAR OLD PRA ON SURRY
- OBSOLETE SOURCE TERM TECHNOLOGY
- RISK ACCEPTANCE CRITERIA PRESENTS h DEFACTO LIMIT OF RISK ACCEPTABILITY FOR EMERGENCY PLANNING e SEABROOK SAFETY ASSESSMENT (PRA)
- CONTAINMENT EFFECTIVEN$SS
- ADVANCED PRA TECHNOLOGY e ADVANCES IN SOURCE TERM TECHNOLOGY
- IDCOR PROGRAM
- NRC PROGRAM t
1
OBJECTIVES i
o REEXAMINE TECHNICAL BASIS OF THE 10-MILE EPZ (NUREG-0396) ON A PLANT-SPECIFIC BASIS e DEVELOP AN ENHANCED PRA METHODOLOGY FOR ESTABLISHING A PLANT AND SITE-SPECIFIC EPZ 1
e APPLY THIS METHODOLOGY TO SEABROOK STATION
- UPDATE SSPSA RISK MODEL (1983 - 1985) l
-- DETERMINE RISK IMPACT OF EMERGENCY PLAN OPTIONS l
e ADDRESS UNCERTAINTIES AND' SENSITIVITIES e PROVIDE DOCUMENTATION AND PEER REVIEW I
e e
4 e
e
ENHANCED METHODOLOGY FOR EPZ DETERMINATION e DEVELOP NUREG-0396 RISK OF DOSE VERSUS DISTANCE CURVES BASED ON PLANT / SITE-SPECIFIC RISK MODEL e CHARACTERIZE TOTAL POTENTIAL FOR RISK REDUCTION
.e QUANTIFY SPATIAL DISTRIBUTION OF NONEVACbATION RISK e CALCULATE ACTUAL RISK REDUCTION FOR PROTECTIVE ACTION STRATEGIES
' MILE EVACUATION MILE EVACUATION MILE EVACUATION MILE EVACUATION AND SHELTERING OUT TO 10 MILES.-
e EVALUATE UNCERTAINTIES AND SENSITIVITIES
- COMPARE RESULTS WITH ALL AVAILABLE RISK
' ' ~ ACCEPTANCE CRITERIA
UPDATE OF SSPSA RISK MODEL e UPDATED SSPSA PLANT MODEL
- ENHANCED V-SEQUENCE MODEL
- ENHANCED SElSMIC ANALYSIS
- CONTAINMENT RECOVERY MODEL
- ENHANCED TREATMENT OF COMMON CAUSE FAILURES e UPDATED SSPSA SOURCE TERMS
- EXISTING SSPSA SOURCE TERMS
- INCORPORATED SOME ZION IDCOR RESULTS
- PERFORMED SEABROOK/ ZION DESIGN COMPARISON
- DEVELOPED _SOME SEABROOK RESULTS WITH MAAP
- REASSESSED UNCERTAINTIES
- EXAMINED SENSITIVITIES
(
1 o
RISK ACCEPTANCE CRITERIA UTILIZED e NUREG-0396 DOSE VERSUS DISTANCE CURVES FOR 1,5, 50, AND 200-REM WHOLE-BODY DOSES I
e WASH-1400 RISK CURVES FOR EARLY FATALITIES AND LATENT CANCER FATALITIES (MEAN AND M.EDIAN RESULTS) l
- NRC INDIVIDUAL AND SOCIETAL RISK SAFETY GOALS
- SPATIAL DISTRIBUTION OF RESIDUAL RISK 1
S e
KEY RESULTS
- EARLY HEALTH RISK WITH NO EVACUATION IS:
- LESS THAN WASH-1400 WITH 25-MILE EVACUATION
- MEETS NRC SAFETY GOAL WITH WlDE MARGIN '-
- CONFINED TO AREA CLOSE TO THE SITE e VERY SMALL RISK REDUCTION BY ANY EVACUATION e ALL NUREG-0396 D'OSE VERSOS DISTANCE CRITERIA SATISFIED AT 1 MILE OR LESS I
e LATENT HEALTH RISK INSENSITIVE TO ASSUMPTIONS REGARDING EVACUATION I
O 4
1
RESULTS FOR NO EVACUATION EARLY HEALTH RISK AT SEABROOK STATION IS:
e MORE THAN FACTOR OF 10 LESS THAN WASH-1400 WITH 2'5-MILE EVACUATION ie->
e 90 4
3 n
8 wAsse. lese est Ass gastTH00Il g
,e..
i r
O g,e.e
/ssr1A gast Ass:
i y
[
WASH. 8480 tot A80 lastTH00 91 w
t e'
n te*I
" *
- 8'l
!2 to-8 i
i e
t
,,.e
,e*
. se' i8 se
[
8 taselv f Af attfits 9
O e
RESULTS FOR NO EVACUATION EARLY HEALTH RISK AT SEABROOK STATION IS:
. e MORE THAN FACTOR OF 10 LESS THAN WASH-1400 WITH 25-MILE EVACUATION i
i i
i g
t,.
k E
y
,,4 s
I g
9,,
l r--
$3="/5EFN
,. /
i i
i i_
io
,,i
,,a
,,,2
,,a'
,,e n
E ARLY F ATALRK S O
e o
e UPDATED RESULTS FOR NO IMMEDIATE PROTECTIVE ACTIONS EARLY HEALTH RISK AT SEABROOK STATION IS:
e ABOUTTWO ORDERS OF MAGNITUDE LESS THAN NRC SAFETY GOAL 10-2 N
S BACKGROUND ACCIDENTAL FATALITY RISK 5 10-3
! (5 F ATALITIES PER 10,000 POPULATION PER YEAR) 9
/
4 10
- io-5 E9 SAFETY GOAL (.001 TIMES DACKGROUND RISK)
-6 O
h 10-7
/'
2 THIS STUDY FOR o
f SE ABROOK STATION (NO IMMEDIATE
.J
$ 10~8 PROTECTIVE ACTION) e 0
1 l
l UPDATED RESULTS FOR NO IMMEDIATE PROTECTIVE ACTIONS EARLY HEALTH RISK AT SEABROOK STATION IS:
e SPATIALLY LOCATED VERY CLOSE TO THE PLANT SITE I"
l I
I I
I I
I 0.9 h
0.8
$5 0.7 5
h 0.6 e
{
0.5 g
0.4 Ui 4
0.3 g
E g
0.2 m
0.1 I
I I
I I
0.00 0 00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 DISTANCE l MILES)
THE BENEFITS OF RISK REDUCTION BY EVACUATION OR SHELTERING ARE:
e VERY SMALL DUE TO VERY LOW INHERENT PLANT RISK e FULLY REALIZED BY CLOSE-IN EVACUATION e NOT NEEDED TO MEET NRC SAFETY GOALS
.s
""*%'L*!PJ,Lt.
~
- 00'2*,.;'""" ' "
3 i is i
3 -
E; 1
p L'".', sri',
l' ism.tNCs 7010 pet ES SaiE LIE a
l i
I I
t gy O
3 4
0 0
W tvAcuatess otsf asoce gesettto I
i 1
l l
i C/)
W I
_g O
g e p.
g 2s m'==
o
>g l$
2 e
8_
c e<
g bE 5 !
P i i O
r nz h
-3 S
y IS 3
5 g
I$
3 d
e 2
12 E
2 e
4, o
h E
y a
g 4
m
=
o
~
'o ' '
(t)
F o',o-
,o g
/e'
=
f
- ,O' O
0 o'
s a
o O'
f
~
t,o o
a p
/
/
!,,i mI.,,.,
I,,,
1,.
,m O
E 5
g'
~
o O
o IN3Cf30V 173W 3WC3 Y N3 AID *$3500 g
ACCG-31 CHM CNIC333X3 40 ADN3nC3W d IVNC11tCNC3 0
W CC O
Z e
6 l
1
G e
1 e
- O O
e O
e o
(D LLI J
E
_H.
p.....,
p.....
i.......
2....
O 9
I E7 g
.g g
O e
s 97 c
Y EU C_
o o
l-li
- a
<C I
!"5 li I-S o
o O
E M
~
~
W R
s C
summus CD E
55].i
=s,5.
R58 l===
2 h
^
m
,.- Oz'" ~ O
~
e
\\:2\\/
lN -
ce>
t,,,,,,M i,, A,
Q t,
8 a
l o
O I
IN3C100Y 173Yf 3W03 Y N3 AID '53300 ACCG 31 CHM ONIC330x3 dO A3N3003Wd lvN0111CNO3 W
C D
z e
e S
RESULTS FOR NO EVACUATION LATENT HEALTH RISK AT SEABROOK STATION IS:
e MORE THAN A FACTOR OF 250 LESS THAN NRC SAFETY GOAL e COMPARABLE TO WASH-1400 o INSENSITIVE TO ASSUMPTIONS ABOUT EVACUATION I
I I
l e
x ADO _ 0B ME AM tesETM00 El g,,.
'N N
e g
y\\
5 I,g4
\\
8FSA 88EAN T
t I
0F i
yg c3
\\
\\\\
\\\\
i\\\\
i \\\\ I,
,,.,e
.g
,s LATElff CA8 ectr P AT ALITY RATE (VEAR'It
- Teat tunvE ls0T NesSITevt 10 EVACUATE 0sd Assuesrf s0N$
p 1
SENSITI.VITY ANALYSIS OF EARLY FATALITY RISK / SAFETY GOAL RATIO FOR NO.
IMMEDIATE PROTEOTIVE ACTIONS e
an S te
", f
'f,*rnn Exc5ued All Releases Include.d Model Uncertainties BEST ESTIMATE AND CONSERVATIVE SOURCE TERMS Probabilistically 0043
.0048 Weighted (mean)*
Probability [B,M] = 1 0002
.0002 All Weight Placed on Best Estimate Source c
Term and Site Model Assumptions Probability [C,H] = 1 062 092 All Weight Placed on Conservative Source Term and Site Model Assumptions ENVELOPING SOURCE TERMS SUBSTITUTED Probabilistically 0074 0079 Weighted (mean)*
Probability [C,H] = 1 15
.18 All Weight Placed on Conservative Source Term and Site Model l
Assumptions
- Weights of.9 and.1 placed on the best estimate (B) and conservative (C) source terms, respectively; weights of.8 and.2 placed on the best estimate (M) and conservative (H) site model assumptions, respectively.
4 e
e 4
FAVORABLE RESULTS DUE TO
=
e CONTAINMENT EFFECTIVENESS
~
- ENHANCED V-SEQUENCE MODEL e SOURCE TERMS e
e 9
\\
9 e
e e a 6
a
Safety Study Results:
CONTAINMENT EFFECTIVENESS (Percent of Accident Scenarios)
-.2 L
66 %
99 %
99 9 %
l c
,f.s l
l t,
h'
'k 1
34 %
1%.
- 1 %
WAS!!-1400 (1975)
SEABROOK STATION (1983)
SEABROOK STATION IMPROVED LOCA OUTSIDE CONTAINMENT MODEL(1985) t
~~
i EARLY DEGRADED
' CONTAINMENT CONTAINMENT OR
' FAILURE CONTAINMENT INTACT I
e 9
e 4
e e
e e
G 8
e b -
O I
9 I
e DO C
G 5
w W
C C
LLI W
Q.
I i
l 1
t e
e 8
i e
j i
9 e
O O
4 4
6 l
rr
PEER REVIEW GROUP e ROBERT BUDNITZ, CHAIRMAN, FUTURE RESOURCES ASSOCIATES, lNC.
e DAVID ALDRICH, SCIENCE APPLICATIONS INCORPORATED e JOSEPH HENDRIE, CONSULTANT j
e NORMAN RASMUSSEN, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
)
j e ROBERT RITZMAN, ELECTRIC POWER RESEARCH INSTITUTE i
)
e WILLIAM STRATTON, CONSULTANT
+
e RICHARD WILSON, HARVARD UNIVERSUTY 1
1 I.
e
OBJECTIVES FOR PEER REVIEW l
e PROVIDE REVIEW OF PROJECT DOCUMENTS I
e ACQUIRE BASIC UNDERSTANDING OF APPROACH, ASSUMPTIONS, AND MODELS
)
I e PROVIDE INDEPENDENT ASSESSMENT OF PRINCIPAL I
RESULTS AND CONCLUSIONS
/
e CONSIDER SENSITIVITY OF CONCLUSIONS TO UNDERLYING UNCERTAINTIES i
)
i i
~
PEER REVIEW FINDINGS o CONCURRED WITH PRINCIPAL STUDY FINDINGS
- OVERALL OFFSITE RISKS VERY SMALL
- EARLY HEALTH RISK LOWER THAN THOUGHT TO EXIST WHEN GENERAL EPZ ESTABLISHED
- EARLY HEALTH RISK CONFINED TO AREAS.VERY CLOSE TO REACTOR' i
o CONCLUSION ROBUST EVEN IN LIGHT OF UNCERTAINTIES i
e BELIEVE THE "BEST ESTIMATE" PROBABLY OVER-ESTIMATES ACTUAL CONSEQUENCES
- SEABROOK CONTAINMENT MAJOR FACTOR I
l l
EMERGENCY PLANNING SENSITIVIT;Y STUDY (1986) i e
i i
\\
t e
y l
I EMERGENCY PLANNING SENSITIVITY STUDY METHODOLOGY i
e PURPOSE:
DETERMINE IMPORTANCE OF SOURCE TERMS I
VERSUS PLANT-SPECIFIC FEATURES AND ENHANCED PRA TECHNOLOGY j
e APPROACH:
RMEPS CALCULATIONS REDONE USING:
i l
- WASH-1400 SOURCE TERM METHODOLOGY I
- BEST ESTIMATE ASSUMPTIONS ON ALL OTHER UNCERTAIN i
RISK PARAMETERS l
)
e e
I
RESULTS AND CONCLUSIONS OF SENSITIVITY STUDY e WASH-1400 EARLY FATALITY RISK APPROXIMATELY MET WITH 1-MILE EVACUATION e NRCs PROPOSED INDIVIDUAL RISK SAFETY GOAL MET WITH NO IMMEDIATE PROTECTIVE ACTIONS e CONDITIONAL FREQUENCY OF EXCEEDING WHOLE-BODY DOSE VERSUS DISTANCE LOWER FOR ALL CASES SEABROOK NUREG-O'396 STATION
~
10 MILES 1 MILE
.02 200 REM
.03 i
50 REM
.12
.03 l
1 REM
.30
.06 e 1-MILE EPZ JUSTIFIED EVEN ASSUMING WASH-1400 SOURCE TERM METHODOLOGY l
t 1
t l
1
COMPARISON OF MEDIAN RISK OF EARLY FATALITIES AT SEABROOK STATION FOR DIFFERENT EMERGENCY-PLANNING OPTIONS 10-3 m
'410
--- SEABRCOK STATION PER RMEPS AND WASH-1400 SOURCE k
TERM METHOCOLOGY -
y (MEDIAN RESULTS)
WASH-1400
$~ 10 (MEDIAN RESULTS) 0 e
E y NO IMMEDIATE PROTECTIVE y
Ng ACTICNS 4
N N
g 10 C
\\
1 - MILE N
d EVACUATION
\\
W N
N 5
\\
10-7
\\
s
\\
\\
a
\\
\\
x
\\
\\
10~8 2 - MILE
\\
\\
EVACUATION
\\
{
\\
RMEPS RESULTS N
/CFF SCALE \\
N i
e i I
i to-9 0
1 2
3 4
5 10 10 10 10 10 10 EARLY FATALITIES m
4 5
6
,_---._---.m
t COMPARISON OF SEABROOK STATION SENSITIVITY RESULTS USING WASH-1400 SOURCE TERM METHODOLOGY WITH BACKGROUND, SAFETY GOAL INDIVIDUAL AND RMEPS RISK LEVELS 10'2 o
' B ACKGROUND ACCIDENTAL FATALITY RISK 10-3 (5 FATALITIES PER 10,000 POPULATION PER YEAR)
~
h
, h 10
\\
.s 4
f 10-5 5
SAFETY GOAL (.001 TIMES 9
BACKGROUND RISK) 8 THIS STUDY FOR 4 10'O SEABROOK STATION u.
WITH NO IMMEDI ATE l
[
j PHOTECTIVE ACTIONS 5
k 10-7
/
8
/ WITH 1 MILE EVACUATION g
l N
. RMEPS RESULTS g 10'8 WITil NO IMMEDIATE E
PROTECTIVE ACTIO;4S 4
N l
10'9 g
f a
G 6
1
)
6 9
3 0
O G
0 E N 0
0
- - - - ~
7' 0,
- . [
1 RR0 s
UO 4 N
O 1
I NF RT SK
-H OA T HS FT LO Y
U O S
S 6
TT 9
3 O K S H A
0 U O E8 I
O G T O RAN WLWY EO SR S
R S D P SI E
T S P G
I A ER A U HE MOT DO N T S.
RFS TENL g
00 L
~
1 U O D
~
M S
N
~
D M
E
\\ll S
)
E O O,,
~
R N
E E
L RYI H
~
\\
1 R
1 I
D T T 1
\\
M N
\\g\\
(
E O
C g
N O
A M-g B
\\
A g
ITE
}lg T
A E M
h I (M I
S V
D LI R N
1 1
T I
E M
S OT E s
\\
R E
0 I
\\
HC T i
S R
1 T
,\\ '
K WE E
- L i* *.
1 O
T OMOC RE R R 5.*.
i '*.,*-
BR P U M
AE O i'*s*
...1.%.
E R
5 5
S
.\\.i
.~~~.5 E
T i
SDA 7,..**
F NI O A D
- - - - ~ - -.
-,~
I E
1 1
1 1
0 0
0 NMM 0
0 O
OEM oy psy E0u 4 3$ dit5 3-Oh<giso s
SRI U
$oThjE3a20 0x[ h5 aE$s6pBEo I
R1 A
P M
O C
O l
- i
COMPARISON OF SEABROOK STATION RESULTS IN THIS STUDY AND RMEPS WITH NUREG-0396 - 200-REM AND 50-REM WHOLE-BODY DOSE PLOTS FOR NO IMMEDIATE PROTECTIVE ACTIONS
..,iiii
.,,...i NUREG-0396
THIS STUDY FOR gg SEABROOK STATION
]
................ RMEPS RESULTS FOR o<
SEABROOK STATION 83 1
(200 REM CURVE OF F SCALE)
J,,m
_ :s 0.1
~..
g
=<
gz ll s
~d
\\
og g
\\
s0 REM 200
>i M i'!
_ \\ REM i
\\
\\
0.0i
\\
\\
"; S i
I o
1
\\
s<
1 I
EE I
ei!
l I
o>
.'N lI /L.l 200 REM
\\
50 REM
'[i ii!ie:I i
i i ieinst i
e i.e g,,
i 10 100 1.000 DISTANCE (MILES)
W
Safety Study Results:
CONTAINMENT EFFECTIVENESS l
(Percent of Accident Scenarios)
-~
66%
99 %
99.9 %
y qJ j
- h..
?q' F
=
34 %
1%.
- i%
~J p[t
)
)
,)
~
y WASH-1400 (1975)
SEABROOK STATION (1983)
SEABROOK STATION i
IMPROVED LOCA OUTSIDE i
CONTAINMENT MODE,L(1985) i EARLY DEGRADED CONTAINMENT CONTAINMENT OR i
FAILURE CONTAINMENT INTACT f
e e
a--
A m
I i
O e 9
9 9
8 e
9
- O 9
I l
b-
~
Q O.
D I
LLI O
O E
l Z<
_.1 Q.
(n D.
Cf)
CD 1
e e
O O
e 4
4
,_.-_.,,..-_,_m,._.
. -. _ -. ~ -.. - _,.., _,. ___
m... - _..
..-y
SSPSA PLANT MODEL UPDATE e REASSESSED INTERFACING SYSTEM LOCA MODEL e REASSESSED BEHAVIOR OF AOVs DURING SEISMid
. SEQUENCES e INCORPORATED CONTAINMENT RECOVERY OF STATION BLACKOUT e ENHANCED TREATMENT OF COMMON CAUSE FAILURES
~
t
t INTERFACING SYSTEMS LOCA i
BACKGROUND l
e WASH-1400 AND SSPSA l
- FAILURE OF TWO SERIES VALVES
- RHR FAILURE AND CONTAINMENT BYPASS
- LEADS DIRECTLY TO CORE MELT l
- NO CREDIT FOR THE OPERATOR l
i e LOW FREQUENCY BUT DOMINANT CONTRIBUTOR TO EARLY HEALTH RISK 1
e ANALYSIS BELIEVED TO BE CDNSERVATIVE
- RHR PIPING FAILURE NOT GUARANTEED
- RHR RELIEF VALVES MAY MITIGATE SOME SEQUENCES
[
- RHR PUMP SEALS MOST PROBABLE POINT OF FAILURE
- RHR VAULT FLOODING LIKELY l
- OPERATOR CAN ISOLATE AND RECOVER MANY SEQUENCES.
i e POTENTIAL NONCONSERVATISMS i
- NEED TO REDEFINE INITIATING EVENT AS ANY VALVE FAILURES THAT LEAD TO RHR SYSTEM PRESSURIZATION
- LEADS TO INCREASE IN INITIATING EVENT FREQUENCY e
6 e
i
i i,
i ENHANCED TREATMENT OF INTERFACING I
SYSTEMS LOCA j
e MORE COMPLETE MODELING OF VALVE FAILURE MODES i
e NEW DATA ON CHECK VALVE FAILURES VERSUS LEAK SIZE I.
e MORE REALISTIC TREATMENT OF DYNAMIC PRESSURE PULSE l
e EXPLICIT MODELING OF RHR RELIEF VALVES i
e QUANTIFICATION OF RHR PIPING FRAGILITIES TO I
OVERPRESSURE i
t e MODELING OF RHR PUMP SEAL LEAKAGE l
e OPERATOR ACTIONS TO PREVENT MELT CONSIDERED 4
l e THERMAL HYDRAULIC AND SOURCE TERM FACTORS MODELED USING MAAP i
e UNCERTAINTIES QUANTIFIED I
i 1
l
i COLD LEG INJECTION PATH ARRANGEMENT ACC L
\\SIV21 l
7 tilGil LOW PRESSURE PRESSURE ",
h SI-V17
- y4 dW
'/,
M A
SI-V20 Ril-VG1 Ril-V31 C
a LPI SYSTEM T
ACC TRAIN A l
AllV14 O
l f
St V5 Ril-59 RilV15 ACC V 4 M
E M
SI-V50 Ril-V65 Ril V30
- LPI SYSTEM S
ACC l
TRAIN B E
.a l x
.g l
Ril.v2a t
4 SIV35 RilV63 All-29 I
INSIDE CONTAINMENT PIPE TUNNEL RilR VAULT h
(
e I
Ge-.
54 h
- e 9 e 8 e
- e O O e
S ee O O b
g 2
2 Z
b 2
W
=
=
=
z E
g or, o.
y n
a g
EE k%
b o >
o >
s 2
r o ri o tw z
[
.. ?
.,vf 3E gI g
^
A gg g
n -- -.
Y Y h '
ct m"
Z zii O
E N
CW' H
@I:
@I:
52 O
u.I u)
S S
a a
H H
C 9
9 m w < u,- o e > womma t
O e
O e
t 9
O e
SIMPLIFIED MODEL Leakage Leakage RHR RHR Plant
> 15_0_gpm
< RV Can.
Pjpjng Seals Operator Impact LOCA l
i 1,
LOCA i
I I
I l
LOCA/
l l
BYPASS I
I e
I i
MELT I
I l
MELT r
e e
e e i
m y
^
INTERFACING SYSTEMS LOCA KEY RESULTS 9
=
FREQUENCY (PER REACTOR-YEAR)
EVENT UPDATED SSPSA ANALYSIS
-6
-6 VALVE RUPTURES. LOCA 1.8 x.10 7.8 x 10
-6 x 10-7 VALVE RUPTURES. LOCA.
1.8 x 10 7.3 CONTAINHEHT 8YPASS VALVE RUPTURES. LOCA.
1.8 x 10 4.r; x 10-8
-6 CoHTAINHENT BYPASS.
MELT t
G e
e
=
l EMERGENCYPLANNINdSTUDY FOR SEABROOK STATION d
CONTAINMENT RESPONSE AND SOURCE TERMS BY ALFRED TORRI PICKARD, LOWE AND GARRICK, INC.
-PRESENTED TO THE U. S. NUCLEAR REGULATORY COMMISSION AUGUST 6, 1986 I
1
.i CONTAINMENT RESPONSE, SOURCE TERMS, CONSEQUENCES OVERVIEW e
CONTAINMENT MODELING e
CONTAINMENT TRANSIENT RESPONSE AND UNCERTAINTIES h
CONTAINMENT FAILURE AND ONCERTAINTIES e
J e
SOURCE TERMS AND UNCERTAINTIES l
}
I i
t
'l Pickard, Lowe and Garrick Inc.
UNCERTAINTY DISTRIBUTIONS FOR DECISION PARAMETERS AND EVENT PROBABILITY u
PEAK y PRESSURE i
N R
E a
g r%
/
\\
s
/
\\ r P'RESSURE CAPACITY o
}
/
(
\\
/
\\
/
N
~
N
/
N
\\
/
N I
1 10 15 5
0 PHYSTCAL PARAMETER, X-(E.G., PRESSURE)
Pickard, Lowe and Garrick, Inc.
O
KEY PARAMETER PAIRS FOR CONTAINMENT EVENT TREE UNCERTAINTY ANALYSIS 4
l
. t 1.a Containment Failure Pressure 1.b Peak Containment Pressure 2.a flydrogen Concentration (flame temperature) 2.b Flamability Limit Contain' ent Failure Time (late overpress'ure) 3.a m
3.b Basemat Penetration Time i
4.a Debris Fragment Size 4.b Coolable Debris Particle Size 5.a Water Supply Rate 5.b Water Cooling Requirement i
j
(
Pickard, t. owe and Garrick, Inc.
1 DECISION TREE FOR DEDRIS COOLING IN Tile CONTAINMENT s
Debris Cooled in Containment i
De':rls in Debris on Reactor Cavity Containment Cooled floor (coled s
Debris dispersed Debris Debris from Cavity tb, Fragmented cooled and Quenched Containment Floor Radiation and Convection Cooling is Sufficient i
i I
2 Debris Debris Fragmented Cooled and Quenched by Debris Water Layer Thickness
)
l' d
I
< b *ry 2
Debris sufficient Removed from Level Reactor Containment Cavity floor Area Pickard Lowe and Garrick Inc.
)
DEFINITION OF RELEASE CATEGORY SETS BASED 00 CONTAINMENT FAILURE MODES Release Ca tegory Description Set 51 Airborne release due to early containment failure.
l Includes oxidation release from 50% of core inventory.
1 S2 Early increase in airborne leak rate (from 0.1% per day to 40% per day).
S3 Airborne release due to. late overpressure failure.
54 Ground release due to concrete basemat melt-through prior to aboveground containment shell failure.
SS Containment integrity is maintained.
56 Containment not isolated or bypassed.
Pickard, Lowe and Garrick, Inc.
1
I l
FOURRELEASECATEGORIESINEACiiRELEASECATEGORYSET EXAMPLE: LATE OVERPRESSURE FAILURE RELEASE ACTIVE FISSION CORE DEBRIS CATEGORY PRODUCT REMOVAL COOLED i
S3 YES YES
~
S3 NO YES l
S3V YES NO S5Y NO NO I
Pickard, Lowe and Garrick, Inc.
i
~
l i
e l
OBJaCTIVE FOR CONTAINMENT FAILURE ANALYSIS:
4
- DETERMINE THE FAILURE MODE AND FAILURE'
- PRESSURE WHERE THE CONTAINMENT IS REALLY i
EXPECTED TO Fall
- QUANTIFY THE UNCERTAINTIES IN THE FAILURE MODE i
AND FAILURE PRESSURE, UTILIZING THE BAYESIAN INTERPRETATION OF PROBABILITY i
1
+
i i
I l
Plckard. Imwe and Garrick. Inc.
f
~
]
1
REACTOR BUILDulG vo e
"o u
'T o
th c.
s I'.
.1,
{
.c
(
'[
f 1
1 t
m m
u f,
?..
i.e n
3 1_,(
- a..b{ i nh a ~-
1 f.,9. -w<.1, a
-s n
2:
t e
L n
a
'G(
~...
.c
'o:
A.
Y 6 O c
i f}
?
i,y
- f
> w-(
h f.
s v
7 :p:,w.
V.9.! E.c 1.
Q
- .
- &sii.?id. ; e7::
6e 1 7/
. o :. a.:.=. :n a
.:- o.
o..
/
Gr
.Wh 4 -1 IN CORE I NREACTOR CAVITY INSTHUMENT TUNNEt.
.J e_ U ' c, r.,~ s x j'.
(
Pickard, Lowe and Garrick, Inc.
e
CONTAINMENT FAILURE TYPES l
-l I
A.
SMALL LEAK (0.02 SO. INCHES TO 6 SQ. INCHES)
I PRESSURE RISE CONTINUES i
LOCAL FAILURE (6 SO. INCHES TO 60 SO'. IhCHES) i B.
PRESSURE RISE CONTINUES LEAK RATE INCREASES UNTIL PRESSURE RISE STOPS 4
l C.
GROSS FAILURE ( > 60 SO'. INCHES)
RAPID CONTAINMENT BLOWDOWN ( < 1 HOUR) i J
l
]
Pickard, t. owe and Garrick, Inc, j
n
~_
4
+
e 1
i l
e e
e e
U ZH M
U Hm e.
ER*.
as:
O C
2 4
gi W
3 O
J 1
e 1
e e
O aW:
1 L.aJ w
l c
i W
w C
gL H
i Cn Z
~
z O
O H
Z U
H O 2 2
< H C O 1
Cf3
& H H H LaJ H <
F--
H C
W e W < <
M M
O Z H C=
c c C/3 2
2 W
u.1 D H H l
O O
~
W W
Z Z W
'O M - H H
C 2 H W' W
- C C
H H
4 1'
Cr
- CO CL C 1.LJ L.aJ CC H O <
O O R
E W CL CL
< O C Z bJ l
a W :>-
u.
W I J H H t A-H H Q Cn J t.sJ t.aJ
& CC CC Cr Z
<C Z
! H
! 2
- C LaJ u.
>- W < U H <= 2 uJ W LJ CL CC Z C H
! > W Z CL H E
=
H W H CC Z
H z
C H
L.!
W C C C
I W
H
= J Q C C H w W W C
=
c W W Cr cc a c::
z 8
r J
H
=
C
.C C W H H bJ
- I H
u.
=
u.
W CL CL W Q-O 3 3 1
1 D
C C
C C
C C
C C
o o
C O
i O
J
<C U
C I
i e
i O
e S
O O
O
+
e
-.r..y_-
o~-.--~
.------,.------.-.e.,..-y,,~w
i a
2
.t m
o m
O i
-b 3
<C i
i E
e w
si 00 l
I O
P
)
=
z m
i i
i 4
U UNp O
TIE av 5
nt a
F--
EG co
/d b\\
U
~ ~ .tge::i?C,%%.~'.'g.%Rj8st$.
- o=Ob*o,:s.ti.'.o*.gy;ong.'ob2 Hc; s%y.4.P.&.p;n..w.y.
H e :n-o.. g.cge s
ap ee.
.:::s?.S a
w s.
n-
- o:eo&f
>.?deigo.
m e.og
- 06 2
[f.)f:fh.08hk!.E \\
!0*. o tC.*o
? O = _*
\\
)
n m
6 5
4 3
O 1599 it z
- ['ai
~
t,,
r
<C S
r-o 01 U
gw 6
y 9
9 e
a b
l I
=
b 1,E G
a d
k t
s 1
I
\\
o e
2:
5 5
m O
E E
r C
W G
B W
8
=
1 M
s 0
a m
ce w
c E
i I
~
\\
S
+
k D
e 9
O 9
9 Y
t a
E
=
,1
.a
\\
b 3
\\!
l
\\
=
=;
k
=
y N
m I
b C5 E
t, E
5 5
c.
g e
E w
e W
5 d
8a E
g
\\
s cSBd 5$E*
' 252 5
w 9
O O
A
9ee t
6 0
6 6
- O dc
.M t
O E.
W
'a e
o e
E
=<wy?
m' c
a i,
- $h 4
b q
N
- o6yg.
.llc
~
. sus
- 3 2t
.N
.$m$gO e
A
-. d*
Ude
<we.$
c.o..
3
..om<
h<W 3$5M
.v.
Nw a' s
=a
=
w@
CEES
$8 c
5h!
!e'a 55 -
Q )J i.
E 3E0$3 s,$e!
o>
e s s $_scEs.s o
a-
- a-e o.
-z E
500 muu"W hwC o.
E_
s.
bushums ee 5
I w<
36 c:
ag cc Z Ei O
a:
O-s=
- t. "
6 g
.s t<
E ce s s
W <[
Nh E
E6 5
=.
s 8:
- <3.f Ev8 W g
- L8 y
et g;
- iS-35 bee
<a
"[E.
WJ EE55 lEE5 H gj e
J n
s Q
15-sE8 O
s S.9
" =0dr e--<
-s$
a o
e e
- b-e s <5 e 5
e o
n g4 e
o6 g
1 h5 h
e
.c m m m" em e
b 6
O O
8 0
0 e
l 1
CONDITIONAL CUMULATIVE PROBADILITY DISTRIBUTIONS FOR FEEDWATER PENETRATION FAILURE (FLUEHEAD OR PIPE CRUSHING) BEFORE HOOP FAILURE AS A FUNCTION OF FAILURE PRESSURE i
i._
ff((
[
~
~
l 4
]
l
! " :=
.- ;:., 1,.=.=,
!3
!U.
!3 l':
n.
a.
.r a
8.2 r
[
er T
~
j 1
1 f
i
,,4 7 l
flut Part i
~
II7t$me I E I
n s
i i
f w ',,,
u.
2e in aa 8a
~
)
Pickard, Lowe and Garrick, Inc.
o, i
o
(
COMPOSITE CONTAINMENT FAILURE PROBABILITY DISTRIBUTIONS FOR TYPE B (LEAK) FAILURE, TYPE C l
(GROSS) FAILURE, AND TOTAL FAILURE
....... 4 --- - -
~
,TOTALFatLOWS R u...
l
-:: N-Tm e. A.,
,'; n..
fx /
/
/
l
/
a' y
/
N f
/
fvet C IGR0115 I
f
/
'JI" Iou. css
/
/
l i
~
/
/
r a' -- :
/
3 1
3
/
5 I
E I
I
- ee g
I
?
I
'm2 -- :
I I
3
?
-l 1
- as I
i i
i I
g l
,1
- es j a* r f
9 E
I E
I f
- as 2
1
\\
I i
e i
e i
,a m
a m
m m
PR.$2JRt IPSIAI Pickard, t. owe and Garrick, Inc.
CONTAINMENT FAILURE MODES AND TYPE Lognorinal Hedlan
"'dI'"
Failure Failure Failure Standard lI Type Deviation Hode Pressure A'
8 (psfal Strisetural Failure Itodes Cyltader Wall Ito'oo 231 Larges C
.12 Dome Hoon or Meridfonal 238 Largea C
.32 Wall Herldtonal 2g5 Larges C
.12 Base Slab shear 338 Larges C
.23 Base Slab Flesure 415 Larges C
.25 Wall Shear at Base 423 Larges C
.30 incal Failure Modes Feedwater Penetration 194 Self-Regulatingh 8
0.5 Flue Head Feed,ater Pipe Crushing 231 Self-Regulatingh 8
.12 h
8 d
Fuel Transfer Tube
> 260C 5el f-Regulating sellows Penetrations Y-25. Y-26, 181 0.5 Square Inch A
0.16 X-21 Each All Otherse
> 231 C 5 elf-Regulatingb a
d nuch Isrger than 0.5 square foot.
a bleak area is self-adjusting to stop pressure rise.
cProbability of failure.f s less than 50% at uitteate wall hoop capacity.
dFallure cressure model not legnormal.
' Composite estfeate of Ifner adhesion, alcrocracks, weld faults.
equtonent hatch, other mechanical penetrations, and electrical penetrations.
Pickard, Lowe and Garrick, Inc.
~'
9 9
1 9
I o
Z H
O M
U M
Q:
Ct:
O c
Z<
W.
1 i 3
=.
C J
.c W.<
M U
M Ld O
E H
Cz<
LLJ C
OZ e +
e CE DJ H
~
La H
2 Z
H<
2CU O
e 0
e O
I CONTAINMENT PRESSURE VS TIME FOR A TOTAL l
STATION BLACKOUT WITH NO EMERGENCY FEED WATER AT SEdBROOK STATION i
CONTAINMENT PRESSURE (PSIA) 200 MEDIAN CONTAINMENT FAfLURE PRESSilRE I
175 CONTAINMENT FLOOR DRYOUT 125 j;
t REACTOR CAVITY
'p.
100
. FLOOR DRYOUT-75 CORE UNCOVERS l
VESSEL
~
50 MELTTHnouoH
\\
f 25 STEAM GENERATOR c
UNCOVERS. PORV OPENS j
I O
O 5
10 15 20
.25 i
f TIME (HRS)
~
Pickard, Lowe and Garrick, Inc.
J
)'
Seabrook Station'Probabilistic Risk Assessment t
i
)-
LATE OVERPRESSURE FAILURE T!!4E VARIATIO!! FOR ACCIDEllT SEQUEllCE TE (DRY)
~
Structural Uncertainty Thermal liydraulic Uncertainty (110%)
P ressure PercenWe 10 50 90 Percentile Probability P all (psla)
P robability
.2
.6
.2 f
3 1.0
.01 163 17.6.'
19.6 21.6 10
.19 179 Eallure 20.0 22.2 24.4
- Time 50
.6 211 (hours) 24.5 27.2 30.0 90
.2 245 29.2 32.5 35.8 1
I Pickard, Lowe and Gar'rfck, Inc.
e
- e
q CUMULATIVE PROBABILITY DISTRIBUTIONS FOR LATE OVERPRESSURE FAILURE TIME Ill DRY SEQUENCES I.
t i
10 If e.s
'"I TEA w l
1 et d
j g
e.t e
eEST ESTIM ATE E
TE g
ST ATION OLACKOUT i
i o
TEA - ST ATION 8LACKOUT WITH CONM HVATIVE CONCHET E t
f gg
- PENETRATBON AND j) 2 WATE R CONIENT Q
SAF E TY INKCTION l
e j
AE - L A RGE'LOCA. NO
$Af ETY'tNJECTION
.j p
u eet i
i een
-{
t l
m 1
e
,D02 I
~
__j) i i
e i
i 40.
l e
20 40 to 80 100 120 les TIME OF RELE ASE eHOURS)
I i
1 Pickard, Lowe and Garrick, Inc.
l 1
l l
UNCERTAINTIES IN THE TIME OF BASEMAT MELT-THROUGH FOR PLANT STATE 3Dl7D Accident Sequence: AE TEA TE tleight:
0.1 0.3 0.6 Concrete Penetration Itodel Time (hours) of Basemat I-felt-Through Rapid Penetration (weight = 0.2)
!!inimum Tine Pr = 0.2 15 31 62 Expected Time Pr = 0.6 20 38 76 Itaximum Time Pr = 0.2 29 52 104 Expected Penetration (weight = 0.6) liinimum Time Pr = 0.2 32' 62 124 Expected Time Pr = 0.6 51 90 180 Itaximum Time Pr = 0.2 86 141 282 Slow Penetration (weight = 0.2) liinimum Time Pr = 0.2 60 90 180 Expected Time Pr = 0.6 79 110 236 Maximum Time Pr = 0.2 114 169 338 Pickard, Lowe and Garrick, Inc.
e
PROBABILITY DISTRIBUTIONS FOR CONTAINMENT FAILURE TIME DUE TO LATE OVERPRESSURE AND BASEMAT PENETRATION i
PROBABILITY CUMULATIVE l
~
O.5
- PRODABILITY g, amas'v~ """"
pu
- "#~**,#8**
DISTRIBUTION FOR:.
LATE OVERPRESSURE n
r se O.2
- Prit o,4 ti
,yr gg y t
"" " ^ " ' ' ' "
O1 er#
0iSTRiouTION FOR
,/:/
D ASEM AT MELT-THROUGH O.05
.s#
'M' PROBABILITY DISTRIBUTION O*02 I
FOR LATE j[
VERPRESSURE O.01 Pr(t o,= t)(hr- )
t O.005 f-
/
Pr(t u,< t op) = 0.22, t
O.OO2
(
O.001 O
20 40 60 80 100 120 140 FAILURE TIME t(HOURS)
Pickard, Lowe and Garrick, Inc.
Seabrook Station Probabil{stic Risk Assessment -
O e
e
~
SEABROOK PLANT-SPECIFIC RELEASE CATEGORIES I
Category Definition 51 Early Coa.tainraent Failure with Oxidation Release, spray Operating
$2 Early Increase in Containment Leak Rate, No Caldation Release, sprays Operating 53 Late Overpressure Failure, Sprays operating 55 Containment Intact, sprays operating, Enclosure Dullding Fans Operating 56 failure to Isolate Containment, Sprays Operating IT
[arly Containnent ratture, with Dafdation Release, Sprays Hot Operating
$2 Early Increase in Containment Leak Rate, No Osidation Release, Sprays not Operating No Vaporization Release Tlv Stellar to 37 but with a Vaporization Release U
Late Overpressure Failure, Sprays Not Operating, Vaporization Release T7f 5fallar to U but with a Vaporization Release ITV Basemat Penetration Failure, Sprays Hot Operating, with a Vaporization Release 55 Containment Intact. Sprays Operatingi Enclosure Building Fans not Operating 5It Failure to Isolate Containment, Sprays Not Operating, with a vaporization Release f
Pickard, Lowe and Garrick, Inc.
l 4
METil0DS FOR ACCIDENT PROGRESSION AND. SOURCE TERM ANALYSIS i
0 i
e 19711 - 198t1 l
MARCH AND CORRAL 1
e 1984 l
BMI-2104 CODES (STCP)
MAAP i
e FUTURE I
EPRI CODE MELCOR r
MAAP, EPRI CODE AND MELCORE INTEGRATE ANALYSIS I
0F ACCIDENT PROGRESSION AND RADIONUCLIDE SOURCE TERM ALL CODES ARE DETERMINISTIC AND PROVIDE POINT ESTIMATE I
ANSWERS 1
I Pickard, Lowe and Garrick, Inc.
o i
i
r
,u SOURCE TERM UNCERTAINTIES
~
RELEASE TIME CONTAINMENT FAILURE PRESSURE ACCIDENT SEQUENCES l
PRESSURE INCREASE WITH TIME l
l RELEASE DURATION CONTAINMENT FAILURE MODE RELEASE HISTORY FROM RCS WARNING TIME GENERAL EMERGENCY DECLARATION RELEASE TIME ENERGY RELEASE CONTAINMENT FAILURE MODE RELEASE HEIGHT LOCATION OF CONTAINMENT FAILURE RADIONUCLIDE RELEASE FRACTION I
ACCIDENT SEQUENCE RELEASE TIME c ar,
we an a rick, Inc.
RADIONUCLIDE TRANSPORT n,
.. - _ _. ~. _ -. _ -
t l
1 ACCIDENT SEQUENCE CONTRIBUTIONS TO DCli!NANT RELEASE CATEGORIES Approximate Plant Reicase Accident Sequence State Percent Category Contribution IF 56V 40 Y Sequence, Cold Leg RilR Break IF 40 V Sequence, llot Leg RilR Dreak 20 Transients or Small LOCA, 8-Inch Vent Line Open', No EFW, No HPI 3F/7F 57V 60 Station Diackout Transient, with EFW, Seal Return Open 7FP 3FP
- 35 Station Blackout Transient, no EFW, Seal Re, turn Open 70 STV,T4V 80 Station Blackout Transient, with EFW 30 20 Station ~ Blackout Transient, no EFW 8O 3Df 95 Transient, No llPI, Spray Falls at Switchover, with EFW 40 S
Transient, No HPI, Spray Falls at Switchover, No EFW l
l l
Pickard, Lowe and Garrick, Inc.
e S
6
_.~, _
UllCERTAINTIES Ill RADI0flUCLIDE TRANSPORT l
l l
REACTOR SYSTEM TRANSPORT l
l LARGE LOCA
- Il0T/ COLD LEG BREAK V - SEQUENCE - II0T/ COLD LEG BREAK SMALL LOCA
- Il0T/ COLD LEG BREAK l
TRAflSIENTS
- PUMP SEAL FAILURE
- FORV VENTING l
CONTAINMENT TRAtlSPORT EARLY C0flTAINMENT FAILURE LATE CONTAINMENT FAILURE CONTAINMEllT ISOLATION FAILURE AUXILIARY BUILDING RETEllTION i
I 1
Pickard, Lowe and Garrick, Inc.
e 0
m.
CU!iULATIVE PROBABILITY DISTRIBUTION FOR PARTICULATE RELEASE FACTOR
.o e
i o.70 4
o.s I
o.2s "2
sav-2 s2 s2v t
E 8
=
o.:
2 7,
?
on B
nos 4
e.o2 l
I
' I I
I I
o oi o co2 a nos con o.or o os o.io 0 20 0.50 8.0 MULTIPLIER FOR PARTICULATE RELEASE FftOM CORfi At Pickard, Lowe and Garrick, Inc.
O 9
SEABROOK RELEASE CATEGORIES 33V AND 37 WITH UNCERTAINTY i
j Release Warning Release Energy Release Fractions Release Probability Time Time Height Release Category (hours)*
(hours)
(meters) 106 cal /sec Xe.
Cs Te Ba Ru La i
lEIV-a
.02 28 18 10
< 10 1.0
.015
.019 1.6-3 1.5-3 2.5-4 SlV-b
.08 36 24 10 210
.9 5.3-3 6.6-3 5.7-4 5.1-4 8.6-5 Siv-c
.30 54 42 10
< 10 -
.8 1.6-3 2.0-3 1.7-4 1.5-4 2.5-5 ITV-d
.60 89 74 10 210
.7 S.0-4 6.3-4 5.5-5 4.8-5 8.2-6
~
33-a
.02 22 19 10
< 10 1.0
.026 4.9-3 3.3-3 9.7-4 9.7-5 33-b
.08 28 24 10 219
.9 8.5-3 1.6-3 1.1-3 3.i-4 3.1-5 IT-c
.30 34 30 10
< 10
.8 2.9-3 5.3-4 3.6-4 1.1-4 1.1-5 33-d
.60 53 40 10 210
.7 8.5-4 1.6-4 1.1-4 3.1-5 3.1-6
- All release durations are less than 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.
j Exponential notation is shown in abbreviated form; i.e.,1.6-3 = 1.6 x 10-3, I:0TE:
l Pickard, Lowe and Garrick,' Inc.
l
~
NEW SOURCE TERM INFORMATION
=
1 1
e IDCOR REFERENCE PLANTS:
ZION, SEQUOYAH, GRAND GULF, PEACH BOTTOM e NRC SOURCE TERM RESEARCH PROGRAM:
BMI-2104, NUREG-0956
- SEABRObK STATION PRA:
ACCOUNTED FOR SOURCE TERM UNCERTAINTIES Pickard, Lowe and Garrick, Inc.
i e
SEABROOK - ZION COMPARIS0N TABLES (EXAMPLE)
Seabrook Station Zion Station Source Value c.
Containment interspace (annulus) width (f t).
FT 6.2-82 4.5 to 5.5 Not Applicable c.
Containment interspace volume (f t ).
FS 6.2.3.1 524,344 Not Applicable 3
e.
Containment interspace pressure FS 6.2.3.1
-0.25 Not Appl f cable (psid or inches of water),
f.
Containment enclosure emergency exhaust flitration system:
Status during normal operation 50 No. 53 Standby Not Appifcable (1)
(2) Maximum exhaust flow rate (cfm}.
$n No. 53 2x2000 ffot Applicable (3) Exhaust filtration.
SD No. 53 ffEPA Hofsture Not Applicable See FSAR See FSAR
- 15. Containment Penetrations Table 6.2-83 Table 6.6.5-1 8
10 Containment atmospheric purge If ne diameter (inches).
- 16. Auxfif ary Buf1 ding Data a.
RHR cubicle volume (f t ).
133,208 1,465,400 3
b.
Elevation of lowest opening (feet).
(-) 31 feet 342 feet 10 inches 3
Water fill volume to elevation in (b) (f t ).
49,860 0
c.
d.
Water level af ter RCS f njection (feet).
6.7
-O Water level af ter RCS and RWST Injection (feet).
31 feet
-0 e.
10 inches f.
Elevation of RilR pumps (feet).
(-) 56 feet 342 feet 4 inches g.
Elevation of pressure reifef valve (s) (feet).
(-) 18 feet Not Available 5 inches I
NOTE: FT = FSAR table; FS = FSAR section; SD = system description; FF = FSAR figure; 580 = intercompany memorandum from UE&C to Seabrook; N/C = not calculated; Ng = not available.
Pickard, Lowe and Garrick. Inc.
e
CONCLUSION FROM SEABROOK-ZION DESIGN COMPARISON o SEVERAL DESIGN DIFFERENCES AFFECT FREQUENCY OF ACCIDENT SEQUENCES
~
e ONLY DIFFERENCES IMPORTANT FOR THE V-SEQUENCE ARE SIGNIFICANT FOR SOURCE TERMS e PERFORM SEABROOK-SPgCIFIC SOURCE TERM ANALYSIS PIckard, Lowe and Garrick, Inc.
O 9
0 c
u - LJu m p -
SEABROOK STATION SOURCE TERMS o SIX MAJOR SOURCE TERM CATEGORIES:
FREQUENCY ACCIDENT SEQUENCE CONTAINMENT FAILURE (PER YEAR)
~
LATE OVERPRESSURE (LOP) 1.6 x 10 4 S3 STATION BLACKOUT w
7.7 x 10 5 SS SMALL LOCA, NO ECCS INTACT (INT)
INCRSASED LEAKAGE (IL)'
2.0 x 10 5 S2 STATION BLACKOUT S7 V. SEQUENCE, SEAL FAILURE BYPASSED (BYP) 3.1 x 10 8 S6 TRANSIENT, NO AFW, NO ECCS UNISOLATED PURGE (UP) 3.2 x 10 7 S1 V. SEQUENCE, PIPE FAILURE LARGE BYPASS 3.9 x 10 9 o TWO SOURCE TERMS FOR EACH CATEGORY:
- BEST ESTIMATE
- CONSERVATIVE ESTIMATE Pickard, Lowe and Garrick, Inc.
SEABROOK V-SEQUENCE ANALYSIS l
e INITIAL CONDITION:
100% FULL POWER e INITIATING EVENT:
SIMULTANEOUS FAILURE OF BOTH MOVs IN RHR SUCTION PATH LEAK RATE EXCEEDS CAPACITY OF RELIEF, VALVES AT l
DESIGN PRESSURE e ACCIDENT PROGRESSION:
- RELIEF VALVES OPEN TO PRT
- PUMP SEALS Fall ON BOTH RHR PUMPS
- ECCS AND CONTAINMENT SYSTEMS AVAILABLE AFW AVAILABLE 4
NO OPERATOR ACTION TO DEPRESSURIZE SECONDARY SIDE RHR PUMPS Fall (NO RECIRCULATION COOLING)
(
Pickard, Lowe and Garrick, Inc.
V ERTICAL'SECTION
~
TH ROUGF ER.yAU _TS
....., :.v _ _
g.-
i G.
l 8
I m.u-a e
1 8
[.. m 8
w s.
8
...r...
m f
1
[z _ 3 s.. r.tr.s,e
[D.
~~?.
,,,, *--~~n l
re,,. :
e Moy n.
r.:.s e.,..s i i i 5
! / '_'/ 1 _ _
- p,,
- g-gC_. _j)3_
_..., b___ _ _ __ _ _ ___
utM
_ - =__
1._.
"_}
= y 7,-
a
=
. %_==:
i
.f i.
-a in %
1 f...;
i@ s.
l. i ".' l';" N s
/
i eie 6
, :,a.-
p=
ir\\
v ifEEl r
,1 r,.
e 6 i.i
-I--(3,,,. g 4
e =:
- 4
.I.L,q /
l EE!!
,e
- i 5s2 c._.:..v i
( ~,
i l,
=i
=
M Z
k
,e i
I en
=
es...-
Tl i
.m i
-m,-i p
63"'$
't I,/
C::=.
=::
5.; i.ii
, jm
=
,...... m 3
/,\\
=
a V
=
[,{-ll-uuu.--
. c. =gg=g i
j c
t
=:
1
-+$.Y**if E;
~
M 35t f ".
EE!
eo.-
f.
I -lwI 'W;W-
_%.,,,e,,.,.,.
- f. t=::s..
a
,7
\\5522 i
- i.......
I N%
i.c
.n,
==
l,.....
a. > = =
i 2-1 1
1 1,L
\\
EEE
~.;
y.J
=
~. -
=
==:
ys
=
-,...r z#. h 7
=;
- ai N
t..
-y ss,
.t
=
..2,.-
2..... ;
M as
.C:.;'
i
- J:- - _
r~" ;
/.s
=
..v
. <.. su
- "1 i 4
., =.
=:
--- l ' 's s=.5.
e w
l 1
.1....i d I
=
en n.
i a--
fi'.: \\
EEE
, :.~~_~ <
g Wm., wr - -Pi,$'A I-hm A._,.
y
. c
,1
~
9-s.,,
a
,.s e
R-Pickard, Lowe and Garrick, Inc..
ri rvatiny
'4_t*
p c 9 o. r.e.- s o
~
SEABROOK V-SEQUENCE CHRONOLOGY EVEilT 3 1E 0.0 RilR Pump Seal Failure 0.0 RilR Safety Valves Lift 5 Seconds llPI On l
Pressurizer Relief Tank Rupture Of:k Fails 27 Seconds 29 Seconds Reactor Coolant System Solid 7.6 Minutes Accumulator Discharge Begins
[
12.2 Minutes RilR Safety Valves Begin to Modulate
< 30 Minutes Spray Pumps Flood
< 1.0 llour RilR Pumps Fl'ood Accumulator Water Depleted 1.0 llour llPI Flooded in Equipm.'ent Vault 2.8 Ilours 6.4 llours RWST Water Depleted ECCS Recirculation Fails 6.4 llours 7.4 -Ilours Break Uncovered 8.1 llours Core Uncovery Begins Zircalloy-Water Reaction Begins' 8.5 llours 10.0 llours Core Melting Begins 11.5 llours Reac' tor Core Support Plate Fails 11.5 llours Reactor Vessel Fails Reactor Cavity' Dries Out; CorelConcrete Interaction Begins 11.5 llours 24 llours End of Analysis
(
Plckard, Lowe and Garrick, Inc.
e
SEABROOK V-SEQUENCE RADIONUCLIDES
~
RELEASED TO RHR VAULT 9
GROUP FISSION PRODUCT RELEASE (PERCENT)*
.93 1
NOBLE GASES 2
CESIUM IODIDE 33 f
'3 TELLURIUM c 20 4
STRONTIUM 1.5 5
RUTHENIUM 2.9 6
CESIUM HYDROXIDE 28
- OF CORE INVENTORY
(
Pickard, Lowe and Garrick, Inc.
~
i
SEABROOK V-SEQUENCE SOURCE TERMS o BEST ESTIMATE:
RHR SEALS SUBMERGED j
DEEP SUPPRESSION POOL DECONTAMINATION FACTOR o CONSERVATIVE ESTIMATE:
RHR SEAL' LEAK
= SUMP PUMP CAPACITY
- NO RWST MAKEUP l
- RI-IR SEALS NOT FLOODED
- DEPOSITION IN RHR VAULT I
Pickard, Lowe and Garrick, Inc.
i t
EARLY CONTAINMENT FAILURE e ease & actions Release Time (hours)
Energy Release Source 6
Category Start Duration Warning 10 cal /sec XE I
,TE SR RU LA This Study
. SIB 2
12 1
< 10 1
.052 052
.0I3 0062 005 2".-4 This Study SIC 1
14
.S
< 10 1
135' 135 032 016 0056 6.-4 r(UREG-0956 THLB'6 2.5 10 5
< 10 85
.07,
.058
.055 01
.0013 2.-4 UASit-1400 PWR-2 2.5 5
1 12
.9
.7
.5
.3 06-02 004 l
Pickard, Lowe and Garrick, Inc.
e
CONTAINMENT PURGE ISOLATION FAILURE I
e cas acdons Release Time (hours)
Energy Release Category Start Duration Warning 10 cal /sec XE I
Source Thi's' Study 56B 4
16 3
< 10 1
.01
.01 3.-4 6.-4 6.-5 64-5
'.052 033
.0062
.005 2.-4 This Study S6C 2
12 1
< 10 1
052 3.5
< 10 1
.01 01 3.-4 6.-4 6.-5 6.-5 IDCOR-Zion 10-IMP 4
.tiUREG-0956 TMLB's 2
10 0
< 10 1
022 013
.11 058 0053 2.-4 WASit-1400 PWR-4 2
3 2
< 10 6
09 04 03 005 003 4.: 4 f
Pickard, Lowe and Garrick, Inc.
9 e
1, UNCERTAINTIES SOURCE PROBABILITY o SOURCE TERMS:
I BEST ESTIMATE (B) 0.9 CONSERVATIVE ESTIMATE (C)
O.1
- METEOROLOGICAL MODEL:-
MEDIUM ESTIMATE (M)
O.8 HIGH ESTIMATE (H) 0.2 j
i Pickard, Lowe and Garrick, Inc.
SENSITIVITY STUDY:
ENVELOPING SOURCE TERMS s
CONSTRUCT ENVELOPING SOURCE TERMS FROM ALL SOURCE TEFMS EVALUATED 1.DCOR NUREG-0956 BEST ESTIMATE SOURCE TERMS CONSERVATIVE ESTIMATE SOURCE TERMS e
REANALYZE EPZ STRATEGIES s
COMPARE / EVALUATE EFFECT ON CONCLUSIONS 1
Pickard, Lowe and Garrick, Inc. '
I g
E O
WASH-1400 METHODOLOGY BASED SOURCE TERMS e
TEST ROBUSTNESS OF CONCLUSIONS e
USE MARCH / CORRAL METHODOLOGY e
MODEL SEABROOK SPECIFIC DESIGN. FEATURES
~
e MODEL 24-HOUR ACUTE ACCIDENT TIME MODELDOMINANTACCIDENTSEDUENCEFOR e
EACH SOURCE TERM Pickard, Lowe and Garrick, Inc.
I t
9
~
CONSEQUENCE ANALYSIS OBJECTIVES i
e PROVIDE A REALISTIC ASSESSMENT OF CONSEQUENCES e ACCOUNT FOR PLANT AND SITE SPECIFIC CHARACTERISTICS e ADJUST ACCIDENT RELEASE CHARACTERISTICS TO ACCOUNT FOR RESULTS OF PLANT-CONTAINMENT ANALYSIS o PRODUCE CONDITIONAL RISK CURVES FOR EACH O'F FIVE HEALTH EFFECTS o ESTIMATE UNCERTAINTIES TOOLS e USED REACTOR SAFETY STUDY METHODS WHERE APPLICABLE e MODIFIED CRACIT COMPUTER PROGRAM FOR SITE SPECIFIC ANALYSIS
~
e COLLECT PLANT-SITE SPECIFIC DATA BASES FOR INPUT TO CRACIT t
Pickard, Lowe and Garrick, Inc.
O
I CONSEC!UENCE METHODOLOGY
. USE THE CRAC PROGRAM WHERE APPROPRIATE
._FOR SITE SPECIFIC CALCULATIONS, DEVELOPED CRACIT - MODIFIED VERSION OF THE CRAC PROGRAM e MUST ACCOUNT FOR ACTUAL SITE CHARACTERISTICS i
- METEOROLOGY '
i
- POPULATION
- EVACUATION ROUTES AND TIMES
- POTENTIAL MITIGATIVE FEATU' RES e SPECIAL EFFECTS
- TERRAIN INDUCED FLOW PATTERNS
- LAKE EFFECTS
- MULTIPHASED RELEASES e AP. PLICATION'TO. EMERGENCY PLANNING
- UNDERSTAND PLUME BEHAVIOR IN EMERGENCY PLANNING htI ZONES
- POSSIBLE INCORPORATION OF MODEL;RESULTS INTO EMERGENCY PLANS l
Pickard, Lowe and Garrick,Inc.
4
~.
f
~.
WEATHER OATA I
'V RELEASE ATMOSPHERIC 4
CATEGOR ES DISPERSION I
l l
HE^
"IETiOn
+
oosmEm oe FECTS
+
y NUuTION NT INATION A1 AGE 4k EVACUATION
~
i FIGURE 6'- 1. SCHEMATIC DIAGRAM OF CONSEQUENCE PROGRAM i
t
l l
CASE A - CRAC "
STRAIGHT LINE HR NO.1 HR NO.2 HR NO. 3 HR NO.4 HR NO. 5 j
i l
'i i
I 1
i i
i i
I I
1 i
i I
g g
1 2
3 4
l g
i I
I I
I g
5 I
- i 6
l l
y 10
['.
I.
9 yy I
12 13 14 CASE B - CRACIT STBAIGHT U"
\\
gR gg H0.4 8R 140. 5 gR NO. t ga NO. 2 HO. 3
)
}
{
4
{
g g
g
, i ii i.
i s
g I
g
.l.. l.
I.
g 11
- n t 2 34 5 6 g
i i st l' '
1 I'
t t.
i 7 8 Stogg t2 ' 13 is I
g 1
i g
i L
g i
14 I
g g
4 t
.1516' 19
-e 20 21 22
. 23 24
~
17 18 spATlAL INTERVA' gygBER PLANT CASE C - CRACIT TRAJECTORY HR NO.1 I
j HR NO.2 METEOROLOGICAL SEQUENCE HR NO. 5
~~
HR U
STABILITY
- DIR s
1 1.0 6
8 g'
\\
- 2 15 2
7
\\
'~
3 0.9 2
9 HR NO.3 4
1.9 2
4
\\
H R NO. 4 10 MILES 2.C 4
1 I
5 AREA OF OVERLAP SCALE FIGURE 6-6.
EXAMPLE OF SPATIAL INTERVAL DISTANCES FOR TYPICAL WEKI'HER SEQUENCE
~
l i
ILLUSTRATION OF PLUME AND EVACUATION PATHS ON
)
FINE GRID (DOSE CALCULATIONS MADE IN SHADED FINE GRID AREAS)
PLANT FINE GRID ELEMENTS 1
/
/
i
~ ': :
-l)
.. lj l
s
--~
_,[
1 i.
}
l
.j i
~
,.I
- c,
~
~,
/
e V
i
/
1
- 3' $
A,
/
,7
/
./
EVACUATION PATH THROUGH
~ ~~~
/
s Z-POPULATION GHID
-~- ~ ~ ~ '
,/
l r C
//
/
52
/,
/
PLUME PATH g
K &_.
//N
' '..Eb.N....i i.
2.25MI Pickanf, Lowe and Garrick, Inc.
~.
~
....- p.l
.x.,e.,. e s
]
,,6,a
-s
- ~~". >y.
.a.,
- j., ' y. 3.
- 'n,.
.r.V.,.*
. E.-
G--e c,,.....-
'I.
.;,7:
s ;..,. ;
._____c..,....-,
.f s
~1,', yy -.. j.
3
/.i2' -.
. '. '.* 2. ':_>:... *.
,. -. ;.,, 31.!
I s..... e...* ~.?
00 J, i. 5..f..~; ?...D%\\2' \\,fyW,, '.;.
-., n.;.e.-* N{#,$..
~ *,. ; y' ~ 4.,, ;,
- ~ ~ *
..,.n:b f.
'r-a.e, e.......
- n. *.a ="~ m.
oo p
~
pc /..
4
-(.,,,, /
\\ g.., y... d M.. l.,..
- .f.,, /,j;. y,/
. R..
/'.
.t w
g
/..
- --). -. j."...j.:.t ' %./.'\\. t,,..
[..,%Ql$.-:..:,.....g-:@:..,,.G W $' N.
.; -e.,.
.u 2,
~~ ?.Y,0.-pn,glW, y,!-5
- o...,..
.s..,
~
+..
ghIM
,ha
%.. *\\
V-%.1.
2ey -k K.y'.v... CQ...h
'G.W$ f
^
$ft l
N N
.t.
.ts.. m..,.~ s. i. h.
k
,'2
., l, u-.
.g
. b5 3-'.
Ne n..- :. f.:~ L.Q,.._ ~D>i*/rs*..J.e.[-,r/,'s.Q,i(
~)
\\'
',%.d>
^t'
.1.q L..,: 9e...',.s 5.,/
s 3s.,.,.
3.
.q
%.a4 2e
~
~.
. x ~,.,.. r
\\
~
.Kj' e-
.k' Yi
.+
~ '-NEl l-Yy.$.T.TMl' % d k:.<,.Mi[-7).h'&w i
5
. l.., w
. - ;~lh M.~
~jg,@i: i
?
7 1sve: u.m,s q,~p: s.:.-. +i.4j
, -C',.
l '.q, L.'e..=yxy
- ct '4.? y s
\\
4 a
e
=.w r,M :.,,,
pi.L __K:
.-_--- t..-.y.1. h1..r,!
i
_.c;4. &,c.. a 1;.
i \\
e t i 1.'.
q
.nP.T.m.-
.i. _-l
- i.,
lj
,m., g.
.. s, (
~; *- l ls1 a~
D.' l.,. ;.-.~ -.,,,a.,n.=='t\\ g.F;i.1 q-M.'q-+. \\-:t \\,
__. (.
9
.J.
7 -- p w '
- .'N...
4,,, 5. 8p 24
,. e, g,,;
g",s,,,,,
2... 4'p. _bg,y'r,_y '6::q j,,
...,,.%g.c.'W.
...w
^
,.- -r= *,
Q 41
/
/
%.. I'; \\..f.?,h'..c:. 4 t. n..
. P. ~..a
/sN... np
..../,/'..
c%.
f
-)\\ %
y / ~ 9 -
s, 7..f,',#
- s" ! Q',
.l e,
,t-m, e.
N/
/11 A
y,,, s
.v 2,,3, *, c.. ' ~.~*.' - "'K *
'b'S.. r.Q.Q.,,, k'* l3'r.l_.
.i. /.'.,.,.==, y *','.;.'Y.
e'
-'12
.'. r in v.
a
~!
.W.
v
.y.,
7 1
- m.., e ~.{.,s. c.x.. y,,,,<-%p&.. ~.,~~.;.
-- - w - -.
,,\\
- 4.,g9. A '
w 7...,
a r.2 2
/
p.. < y,F -~~c -..p.h'<i.d. ky...'jk
,.4 p.
=='s,,
g--
r
\\
.f. W:... M.i p,.N - y. % y ' K. ;3.-../J.g ~
._:da. -N g
- v%.
T. ?.4 9
p:..
.s f,.,..g
- u.. g
,3
.h..'.. ~ A s.
-x., -
/
14',g t
'p I w a e 3, i t w i s i M
...a s
..\\. \\..
L*
@.%y?;,21 '.
2.b,h Vf. _&. Q.. / x /:T --- '--=&,~q.!:7\\-
N.
~V
's y. w
.,..$.YNh: L..k-. ',q!Y5': h' $. w,;.i!?, t
.-://d-
, -\\
y
- L;..Q w
\\'
. %. :.,;,a0
-o t0 u,LSs k
., l I
\\n.j'...
. s..
14
$.5 r
e=- %=. '.g.
h
,:...:...?.
g1 m-o m
l 4o._n...a.
g5
.l.
(i./..
rs t
17 16 FI:;tt 12.3 6.
FE:K 1;.* E8 n!Er.!3 CASE: E'la ATIO: C0tt!CCR BO'."i: ARIES Ai3 01:0 El.[: ENT DACUAT C". a;;T.'i35 s
~
~.
l DIFFERENCES BETWEEN CONSEQUENCE 1
ASSUMPTIONS IN PHASE II VS SSPSA J
e UNCERTAINTY TREATMENT 2 SITE CATEGORIES "MED" AND "HIGH" (SSPSA HAD 3) 2 SOURCE TERM CATEGORIES "BEST ESTIMATE" AND l
" CONSERVATIVE" (SSPSA HAD I4) e MORE MULTI-PHASE RELEASES 4
80 PERCENT VS 50 PE.RCENT OF CASES i
e REM 6 VAL OF 2000 ON-SITE WORKERS FROM POPULATION TABLES
's EVACUATION AND SHELTER ZONES VARIED l
ASSUMED NORMAL ACTIVITIES BEYOND EVACUATION ZONE EXCEPTIONS WERE SHELTER 2-10 MILE CASES e
OUTPUT ROUTINES CHANGED TO PROVIDE DOSE VS DISTANCE PLOTS RISK VS DISTANCE PLOTS 1
l
~
i 1
.\\
{
l t
m m
v om
'm
'e
'e
'em
-e x
6:
4 6
y e
/
oww W<v wW
<e W@
d.N
=.e w
i W
mM
/
w e m J
e oE r
/
mp i
a z
t m
w w
>z a
~
d E!E o r
vm t
l w
W Z a
ww 5d o m
,/
e
<H 4
+
m m m.
=y e-J a
o e f
m >w W
D e
m o m-w>eo gm 8
2, v v ~~ =
wwww
==
e w
we
. C CG g
W
- T.T.
D we w
www-x+<e w
W t.
t.
~.
e.
e
. e e
=
=
e.
A003 310F0 01 3' 'l 8MID DilIG33?x3 30 A1I1ISU30 tid l
e n,
l, 1ll E
S O
E E D
S S O O Y
D D H
S D E S
E 0 S Y Y C
E I
8 O D D 6
ST D O O I
S T
EI E
B B I
I-L L E L
RA O L E E Y
U T H O L L
R J:% U H O O O
AT A
NF U H H G
t U U E
F I-t 1
- T E f
T t
t E
EN R E t
t A
T E
E E TT C
U-6 R R U
A 6 6 C CL E
A-2 5 5 1
6 A
S 0
A 6
E)
L 1
6 E
7 R
N 1
0
- 0 O
R R
s
~
l 4
F E B
'1
~
S M
~
\\
U E
8 V N N
8 R
N U
U
~
N 2
C
'l R
~
~ -
E(
C
~ s' E
8 N
S 8
A A
T N
-'8)
S C
~
1 I
S l
E Dt
~.
0
~s L
S1
\\
8!
- 6. (!
~'
R U
%~
8 E
E C s
l V A C
\\
V t
A KE 6T S
~ 0. I 0
9 S
I 1
\\'
\\
6D Rt
\\
\\
l R iO T
F 8
L N
0 A
E d
I N
I 6 '
.' \\.
. \\.'.,'.
\\
i%
\\
\\
6 1
\\
\\
tn\\
8
,6 \\
g\\)ji,5 d n {l t. y'i 1
S
'2 B
i
) ! n'l3 j ( $
1
}-
g k
n a' \\
I tg E
R 0
t U
6 G
I d
F 8
e 8
T 3
9 1
8 e.
T.
s.
4 2
8 1
0 1
8 e
8 0
8 e:Hs {*
g $S 5" 55p{w
,b" i;%
1 i
,1
i8' " '..; m m,t'.'.;..;...:.m. A...... w,.!
- e.f * *
- ml'5
.N, w
N i
ACUTE FATALITIES c
\\
m g=
'g ACUTE IrlJURIES I
$0fA hE E)F o " gg*I,,
N,N
..I s' 2
a 0g
'\\
M
\\
uO g5
\\.
u',
E 18
\\.
I u=3 g
yo g=
n L
wy f4
,, o E>
3
-3 S 5 18..
- 7' 1
gw a
a
=
O U
-4
-4 18 18 1 1 102
- .l 63.
- l 04.
- +44; 05 1g6 gg6
- +::l 0.
. :l
- un4 1
1 1
fluf1EER OF HEALTH EFFECTS FIGURE C-11.
COMPLEMENTARY CUMULATIVE DISTRIBUTION FullCTIONS FOR llEALTil EFFECTS RISK FOR RELEASE CATEGORY 56-011 FOR NO EVACUATION (Rull NUMBER 176) 6 0
l CONSEQUENCE ANALYSIS l
j i
I OBJECTIVES i
j e PROVIDE A REALISTIC ASSESSMENT OF CONSEQUENCES e ACCOUNT FOR PLANT AND SITE-SPECIFIC CHARACTERISTICS i
e ADJUST ACCIDENT RELEASE CHARACTERISTICS TO ACCOUNT FOR l
RESULTS OF PLANT-CONTAINMENT ANALYSIS e PRODUCE CONDITIONAL RISK CURVES FOR EACH CF FIVE HEALTH l
-EFFECTS e ESTIMATE UNCERTAINTIES i
TOOLS
- l 1
e USED REACTOR SAFETY STUDY METHODS WHERE APPLICABLE
~
e MODIFIED CRACIT COMPUTER' PROG' RAM FOR SITE-SPECIFIC ANALYSIS e COLLECT PLANT-SITE SPECIFIC DATA BASES FOR INPUT TO CRACIT
\\
l
.,.,, =
Pickard, Lowe and Garrick, Inc.
i y
1
i l
CONSEQUENCE METHODOLOGY e USE THE CRAC PROGRAM W.HERE APPROPRIATE e EOR SITE SPECIFIC CALCULATIONS, DEVELOPED CRACIT - MODIFIED VERSION OF THE CRAC I
PROGRAM e MUST. ACCOUNT FOR ACTUAL SITE CHARACTERISTICS r
4
- METEOROLOGY
'- POPULATION l
EVACUATION ROUTES AND TIMES
- POTENTIAL MITIGATIVE FEATURES e SPECIAl EFFECTS l
- TERRAIN INDUCED FLOW PATTERNS
- LAKE EFFECTS
- MULTIPHASED RELEASES e AP. PLICATION'TO EMERGENCY PLANNING UNDERSTAND PLUME BEHAVIOR IN EMERGENCY PLANNING
" ZONES l
- POSSIBLE INCORPORATION OF MODEL f)ESULTS INTO
~~
EMERGENCY PLANS Pickard, Lowe and Garrick, Inc.
\\
I
,r
~.
WEATHER DATA is V
ATMOSPHERIC RELEASE 4
CATEGORIES DISPERSION 1
V l
HEALTH CLOUD OOS! METRY
~ EFFECTS DEPLETION I
+
V GROUND POPULATION DAMAGE CONTAMINATION
^
EVACUATION
~
\\
1 FIGURE 6-1. SCHEMATIC DIAGRAM OF ~
CONSEQUENCE PROGRAM 4
~
~
w.
USING THE CONDITIONAL RISK CURVES 1.0
~
10'l s.
\\
\\
e
\\
$ 10-2
\\
e E
\\
\\
_ 3 ASH -1400 CUT 10-3
\\ TAILS k (SEARCH)
NO EFFECT (THRESHOLD EFFECT)
\\
I I
I 10-4 NUMBER OF EFFECTS I
Pickard, Lowe and Garrick, Inc.
0
DIFFERENCES BETWEEN CONSEQUENCE ASSUMPTIONS IN PHASE Il VS SSPSA e
UNCERTAINTY TREATMENT 2 SITE CATEGORIES MED" AND "HIGH" (SSPSA HAD 3) 2 SOURCE TERM CATEGORIES "EEST ESTIMATE" AND
" CONSERVATIVE" (SSPSA HAD f4) e MORE MULTI-PHASE RELEASES 80 PERCENT VS 50 PERCENT OF CASES e
REMOVAL OF 2000 ON-SITE WORKERS FROM POPULATION TABLES e
EVACUATION AND SHELTER ZONES VARIED p
ASSUMED NORMAL ACTIVITIES BEYOND EVACUATION ZONE EXCEPTIONS WERE SHELTER 2-10 MILE CASES e
OUTPUT ROUTINES CHANGED TO PROVIDE
~
DOSE VS DISTANCE PLOTS RISK VS DISTANCE PLOTS I
b
,.a
. w. M...r.
.1
=...
mm x
,,,,...,..,7
, f./ 2
=..,-e
.;.;,,...-... d.. Y.h.,:n, v, '
O--e e,..
., u
. I.-
1 ik
.----c...,.......,
..i..
4..
m........,a..,
.g,..p..
i,
,g, -
j OO
'. 'e. 3.,2..;'.
....,e........~).o.-*
..i 2 ~ -b '"' ~. 't
/
g,.
eo
- n.:,.
,A -
9 'e,'s8%
':-r-I,,-.<
3,
,.e.
M Y ' O. $.,.';;, 0.s? W 'g -\\ ' &,, h. 3 -
'?.
/
-/9 K,Wl
'E * / ' ll
'~
- -1..g~.,=-:::.
. t,.......
~ ~-. v.
.l, g i t.
y,, /J. i
/
v.
',e
.. 6 i
%.. s.
O.. -.
\\,~.1
~.
- a w.
s.
s~..
~.
t a
. s.,. f. v 2 0 s..... %..,s' e..
\\.
.. ~r..
r r
.s>,a..
o.
,u,.,....
. i,,y 's,. o j t,
4 tw..N(I.V,EJf(.,;r.../,, N - /.. s,..',% ; -. h.,:2.-
1,.....
i
. l;;.,i.Wp - F-,.
. ~ ;.,, j
.7 r
. 4-/
2 D.(&{h\\g$f:p, a
\\-
.,.s,.
...gj'
&.~,Y6' 4
NY $:!$',N$>,1 i r,
4
$'r h&k ' ?. **
- y &' h- ;.-1/.N'&,:,.'
'c S.W.
yf.'
W%.
- k.Nk'--'
.'..i. 0 s X %l*
'.'-V :. *
'**.'k-A-4,.9 %.%),R= wy1. W,,'.W ~s [. y{r g?
,/
1.;.1 e+m.
- s. 2 c.
- k. - e...%.,,,s%,r/. %
.,.o
- q '.
- k. g f..s.xc.-/
..w
..'ly A
s
,3^
W.,.-- N
.u-
-S y
.' s. -.,#
's.
w1 s >.,..
s.
-?
,a s
s
~
b 1
[..
./.,.*g
/7' 25*5f f.
...u ~.,-. g ) \\.l,v l:.,p w.pgif.~ w*,y -gu.,.nsg'i A'/ ' w;,. g l
- v '," \\
J.
c,
.%<.s.t
. N.r
_s._
g 7
\\".pI.. e 5.'=t
&,.:c._ l. l ;' M } f., o.t. w..a-QP ?$..s.,p w,.p
- j i f
U k.
o-l
~ u;
! "'s
.DS
. z.->\\
a y,,,.L s
t.
.. w. y,L_. *~ +_., o.-
[ s.u__ i.. p e 1. P.
4
(
.),'
s.rW""*.
.**;r. t pJ" J.w. ~\\'. j }
.1 -
a.-
8 g
ass
'/
/
.z
-1'-'
num M.. ~.~_N' s' Sd e. g;.Q'. p'"s.T P. 4 a; ;.s.fk.- /
is
- hN(\\\\'-M ' V'h.s s
N s
^?' '- - #y7' -,N /
w,=; ~..,.:a ;,;.fn%s *...yy.
-fII
'~
. \\
a
,e
.. e 2,,,3, V'.',. *'s"' pM ',,
'^i e
~~~4- ", p \\. 8
~
p 7,,pp~.'.Gs
.r.
'(
x-
'.,,* e r li:.
1 e12 (s! ;, = $,p-s;y.$ Y" N"@. V,,,$,./ lgfd. *,,s.4 7_
j ;.
S--
t w
ys
,fl j
/......,.',s.
- u...
-< ;s
/.
i..s s
'-. %s
_ im. l n '..,1
,; 4
<j - / g/'N..
.Y.
i r ;, ~ ~,,y-
~ y --
- a.. 2 2.../..
.w
- l.} l
. o I
1-
.s
,n..,
t :.a,s.<+s e
V..
., % q. ~ ya s
,g y..'l..,.d;'r,'b ~~.%'. N /.'. 5 h. i..
r g 0'\\\\
)2
,.,,.h m,, l,.,s8-
.'., ;.,;s* x % v. t j
\\-
/
fJ,'"q,j..
c.
s.
- r \\, N'.l,- % 7.. ' ' j.(y...j..Q.g.
- 7.:., \\
g a
-\\
~.
g #.
,,e
.s.,
j w. g.g
.Q
,g y
s.u yE e., i ts.l.. m x
~ *2.. _.';. ' -- ;;. 21
(,o. -
fQ 'f.; QO. L'.N. q.N
'.. l
,4.s.
u3
,.s
- w. A -(...._.._J y;.
g s / N,e g.
wj st s
\\
\\.
. t, QhyGP'/:]/.,;f['....,.
. p -
-.hq 4 \\h.~- "g-
- l.;.j),f.
g}'
,, \\
s u
i.
.m,','.cd /. fi
.O vif- $..,,,<)20 -
3/
k;.
- . V, f. J is
,i.jp' - -
I e/
./,,,,,,.. - ' M.t e, q;.
, y i
.M g '} V'.. -
Q.
'.- ~w S
..?
f-s,,1
..#.) ; :g.
T. W^'"' y.fr l -[.h (,
/
['
' [o
.> j" *. *
- p )414.8$
a N N --.
- s.
j r
"4., y 1
i.!.e",s Y:
S
,/l1o g
3 i G ~s. h." e'..-. " *~15 17 16 FI:;;t 12.3 6.
Fi:( 1:J' Tc.!!it'.: CASE:
C'! * **.'AT IO?: C:t% 002 80;;'.: ARIES M3 G4:3 E'.I'I' T EVAC';AT:0!i t;UT;.'."$
l l
s b
7
~
- ' ~ CASE A '-CRAC STRAIGHT LINE I
HR NO.1 HR NO.2 HR NO.3 HR NO. 4 HR NO.5 i
l I
l l
'l I
i i
PtANT g
I I
I I
)
l i
lI i
i I
g i
I I
l 1
1 t
1 2
I i
3 g'5 I
I I
I' r
a i
1.
I 6
1.
to g
l 12 13 14 CASE B - CRACIT WRAIGHT UNE es es m
- BRt40.5 gB HO.
ga110.2 t40.3 i
g
\\
t g
g I
g t
g i
- g 6 j
t g
1, g
.1 I.
I g a
';O i.
1 I'
t
{.
I n
g 2 3 4.5 6 I
t 1
I i
n 7 8 sg0gg12
(
1 i
1 13,14.1516 1
g
\\
19 20 21 22 73 I
g7 tB 1
ggi. it4TERVAL gut 4BEB PLANT CASE C - CRACIT TRAJECTO RY HR NO.1 f
HR NO.2 METEOROLOGICAL SECUENCE HR NO. 5 HR U
STABILITY 03
-~~
1 1.0 6
8 g'
\\
"2 2.5 2
~
7
\\
'~~
3 0.9 2
9 HR NO. 3
\\
HR NO.4 10 hilLES 4
1.9 2
4 I
5 2.0 4
1 SCALE AREA CF OVERLAP FIGURE 6-6.
EXAMPLE OF SPATI.AL INTERVAL DISTANCES FOR TYPICAL _EEATHER SEQUENCE s
L A
O l_
3 4
l
~
o c
._x 3
l
[
bh N<Ng
, s,
=
m l
l si,*
i 1
~
y a
c..~
'I' S
3 N
Fl l
g
- ~
4.
x r
e N &
e d
h,,
c' y eNN e\\s\\\\ss\\\\xs s
s S
\\\\\\\\\\\\\\
\\
\\\\ \\\\\\
D G
\\\\\\
\\\\\\\\\\\\\\\\0 hb
\\\\\\ \\
N e;p, 'I ', \\ \\ \\
.,,, w ut m
niiallii o glq
,,,,iii g
up GE5 B;se sG82 mmma 9
O c'
l
o J
/pe* " E C g'o, c,
UNITED STATES
! y,,. c j
NUCLEAR REGULATORY COMMISSION E
WASHINGTON, D. C. 20555 g
o., +
a G4 SEi' %
Cocket No. 50-443 APPLICANT:
Public Service Company of New Hampshire FACILITY:
Seabrook Station, Unit 1
SUBJECT:
SUMMARY
OF MEETING WITH PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE TO DISCUSS SEABROOK RISK MANAGEMENT AND EMERGENCY PLANNING STUDY A meeting was held with Public Service Company of New Hampshire on August 6, 1986 at NRC Headquarters in Bethesda, Maryland. The NRC staff was represented by members of the Office of Nuclear Reactor Regulation; Divison of PWR Licensing-A, Division of PWR Licensing-B, Division of Safety Review and Oversite, Office of Inspection and Enforcement; Division of Emergency Preparedness and Engineering Response, Office of Nuclear Regulatory Research; Division of Risk Analysis and Operations and Division of Radiation Programs and Earth Sciences, Office of the General Counsel and Executive Director for Operations, Regional Operations and Generic Requirements. The applicant was represented by members of Public Service Company of New Hampshire, New Hampshire Yankee Division and Pickard, Lowe and Garrick. Also, staff representing Baltimore Gas & Electric were present.
A list of attendees is included as Enclosure 1.
The purpose of this meeting was for the NRC staff to hear a presentation by Public Service Company of New Hampshire and discuss the Seabrook Risk Management and Emergency Planning Study. A copy of the meeting notice is included as Enclosure 2.
Mr. W. Derrickson, Senior Vice President, New Hampshire Yankee began the applicant's presentation by reviewing the objectives of the meeting. Their intention, he stated, was to first provide an overview of the Seabrook Station PSA, describe its updates, present results of risk evaluations with emergency planning options and finally determine the requirements to support the review. A copy of the slides used during the presentation is included as.
1 Mr. Jim Moody continued the applicant's presentation with a review of the Seabrook Station Risk Mo el contained in the original probabilistic safety analysis submitted in January 1984, then discussed the Risk Management and i
Emergency Planning study (RMEPS) and the emergency planning sensitivity study. Mr. Moody noted that new.information contained in the RMEPS concerns a more effective containment building and updated information on interfacing systems LOCA.
In response to a question from Mr. Len Soffer of the NRC staff, Mr. Moody stated that the objective of the applicant's work was to obtain an enhanced methodology for site specific emergency planning as they are examining the risk impact of different options.
'05Q O'Q &
b f/.
P L'
I 4
Mr. Moody also addressed treatment of interfacing systems LOCA.
Mr. Fred Torri frcm Pickard Lowe and Garrick (PL&G) continued the applicant's presentation with a discussion of the updated Containment Response and Source Term Analysis. Mr. Torri's discussion included information on containment modeling, containment transient response and uncertainties, containment failure and uncertainties and source-terms and uncertainties. He mentioned that his work on the Seabrook Station Emergency Planning Sensitivity Study included reevaluati.on of the seismic capacity of key components. He said that although new fragility work had been submitted with the report the new submittal did not take this work into account.
Mr. Keith Woodard (PL&G) finished the presentation with a discussion of consequence analyses. He addressed differences in the consequence analysis in the original SSPA and the updated study.
Mr. Derrickson concluded the applicant's presentation by saying that PSNH is requesting the staff to review this study to determine its technical merit:
does the staff believe the methodology, assumptions, and are they supportive of the risk profile.
Since' th'ere are existing problems with emergency planning efforts near the Seabrook site, the utility is in the process of investigating some options.
Mr. Derrickson stated that if, based on the results of the staff's review of their submittal, there exists a basis for requesting a change in the Seabrook emergency planning process, they may pursue this option at that time.
The meeting was adjourned at 5:00 p.m.
[A f
r j
n.
2 Elizabet Doolittle, Project Manager PWR Project Directorate #5 Division of PWR Licensing-A Enclosures i
O e
a o
Mr. Robert J. Parrison Public Service Company of New Fampshire Seabrook Nuclear Power Station cc:
Thomas Dignan, Esq.
E. Tupper Kinder, Esq.
John A. Ritscher, Esq.
G. Dana Bisbee, Esq.
Ropes and Gray Assistant Attorney General 225 Franklin Street Office of Attorney General Boston, Massachusetts 02110 208 State Posue Annex Concord, New Fampshire 03301 Mr. Bruce 8. Beckley, Project Manager Public Service Company of New Hampshire Resident Inspector Post Office Box 330 Seabrook Nuclear Power Station Manchester, New Hampshire 03105 c/o US Nuclear. Regulatory Commission Post Office Box 700 Dr. Mauray Tye, President Seabrook, New Fampshire 03874 Sun Valley Association 209 Summer Street Mr. John DeVincentis, Ofrector Paverhill, Massachusetts 01839 Engineering and 1.icensing Yankee Atomic Electric Company Robert A. Backus, Esq.
1671 Worchester Road O'Neil, Backus and Spielman Framingham, Massachusetts 01701 116 lowell Street Manchester, New Hampshire 03105 Mr. A. M. Ebner, Project Manager United Engineers & Constructors William S. Jordan, III 30 South 17th Street t
Diane Curran Post Office Box 8223 Parmon, Weiss & Jordan Philadelphia, Pennsylvania 19101 20001 S Street, NW Suite 430 Washington, D.C.
20009 Mr. Philip Ahrens, Esq.
Assistant Attorney General State House, Station #6 Augusta, Maine 04333 Jo Ann Shotwell, Esq.
Office of the Assistant Attorney General Environmental Protection Division Mr. Warren Fall One Ashburton Place Public Service Company of Boston, Massachusetts 02108 New Hampshire Post Office Box 330 D. Pierre G. Cameron, Jr., Esq.
Seabrook, New Hampshire 03874 General Counsel Public Service Company of New Fampshire Seacoast Anti-Pollution League Post Office Box 330 Ms. Jane Doughty Manchester, New Fampshire 03105 i
5 Market Street Portsmouth, New Hampshire 03801 Regional Administrator, Region I U.S. Nuclear Regulatory Commission Mr. Diana P. Randall 631 Park Avenue 70 Collins Street King of Prussia, Pennsylvania 19406 Seabrook, New Hampshire 03874 Richard Hampe Esq.
New Hampshire Civil Defense Agency 107 Pleasant Street Concord, New Hampshire 03301
i
}..L '
Public Service Company of Seabrook Nuclear Power Station New Hampshire i
cc:
j Mr. Calvin A. Canney, City Manager Mr. Alfred V. Sargent.
City Hall Chairman l
126 Daniel Street Board of Selectmen 1
Portsmouth, New Hampshire 03801 Town of Salisbury, MA 01950 Ms". I.etty Pett Senator Gordon J. Humphrey Town of Brentwood ATTN: Tom Burack 4
RFD Dalton Road U.S. Senate Brentwood, New Hampshire 03833 Washington, D.C.
20510 Ms. Roberta C. Pevear Mr. Owen B. Durgin, Chairman j
Town of Pampton Falls, New Hampshire Durham Board of Selectmen Drinkwater Road Town of Durham Pampton Falls, New Hampshire 03844 Durham, New Hampshire 03824 Ms. Sandra Gavutis Charles Cross, Esq.
4 i
Town of Kensington, New Hampshire Shaines, Mardrigan and i
RDF 1 McEaschern East Kingston, New Hampshire 03827 25 Maplewood Avenue Post Office Box 366 Portsmouth, New Hampshire 03801 l
Chairman, Board of Selectmen RFD 2 j
South Pampton, New Hampshire 03827 Mr. Guy Chichester, Chaiman Rye Nuclear Intervention Mr. Angie Machiros, Chairman Committee l
Board of Selectmen c/o Rye Town Pall i
for the Town of Newbury 10 Central Road i
Newbury, Massachusetts 01950 Rye, New Hampshire 03870 i
Ms. Cashman, Chairman Jane Spector Board of Selectmen Federal Energy Regulatory Town of Amesbury Commission Town Fall 825 North Capital Street, NE Amesbury, Massachusetts 01913 Room 8105 Washington, D. C.
20426 Ponorable Peter J. Matthews
~
Mayor, City of Newburyport Mr. R. Sweeney l
Office of the Mayor New Hampshire Yankee Division l
City Hall Public Service of New Hampshire Newburyport, Massachusetts 01950 Company 7910 Woodmont Avenue Mr. Donald E. Chick, Town Manager Bethesda, Maryland 20814 Town of Exeter
~
Mr. William B. Derrickson 10 Front Street Exeter, New Hampshire 03823 Senior Vice President l
Public Service Company of
{
New Hampshire Post Office Box 700, Route 1 Seabrook, New Pampshire 03874 I
l
._._.-__m_
_....,,. -, -, ~.. - ~ _.,
_ _.... ~..
-y.._,...y...._,.,_.,_-__.m.,.
e w
4 p
b I
ATTENDANCE I
SEABROOK PSA MEETING 8/6/86 I
E. Doolittle NRC/PWEA Steve Long NRC/PWRA i
Harmon & Weiss
)
Don Hew Karl R. Goller NRC/RES/DRA l
Len Soffer NRC/NRR/DSRO f
Warren C. Lyon NRC/NRR/PWRA T. M. Novak NRC/NRR/PWR-A j
Vincent S. Noonan NRC/NRR/PWR-A j
Ernie Rossi NRC/NRR/PWR-A Themis P. Speis NRC/NRR/DSRO Zoltan R. Rosztoczy NRC/NRR/DSRO f
Trevor Pratt BNL j
Charles Hofmayer BNL j
Goutam Bagchi NRC/NRR/PWR-A/EB t
Victor Bonaroya NRC/NRR/PAFO Falk Kantor NRC/IE/EPB Ed Jordan NRC/IE Robert E. $weeney NHY - Bethesda Office John DeVincentis NHY Keith Woodard PLG PLG j
Alfred Torri Sr. V.P. New Hampshire Yankee William B. Derrickson l
David A. Maidrand Asst. Proj. Mngr. YNSD j
Peter S. Littlefield Yankee Atomic
- Stephen P. Schult:
Yankee Atomic I
Frank Schroedor NRC/NRR/DPL-B l
M. S. Ernst NRC/RES Bob Perlis NRC/OGC Sherwin Turk NRC/OGC REA Jay White j
Brent Clayton NRC/NRR Ed Podolak IE John Stewart NRC/RES J. A. Norberg NRC/RES J
Bruce B. Beckley
.PSNH' Edwin J. Reis NRC/OGC Joe Scinto NRC/OGC j
William McCaughey BG&E
-I M. Taylor NRC/ROGR Staff, EDO-l 1
ll i
1 i
-,,~-,n c,~--
,-,-.-.-,---,nn---,-,----
,----,,,---------,.~.-r,.
--.,~---,-J
--,n,-~ - - -
-n.,,
2 9 JOL 1986
~
c.
Meeting Notice Distribution Docket Files NRC Participants NRC POR T. Novak Local POR V. Noonan PD#5 R/F E. Doolittle ORAS S. l.ong P. Denton R. Bernero T. Novak D. Ross
, Project Manager E. Jordan OEl0 T. Speis E. Jordan J. Myers
- 8. Grimes S. Israel J. Partlow T. Murley Peceptionist (Phillips Building)
ACRS (10)
OPA PPAS/TOS8 Resident Inspector
~
Regional Administrator MRushbrook cc: Licensee / applicant 8 Service f.ist
+
l
/
UNITED STATES
['
>#(
i NUCLEAR REGULATORY COMMISSION j
W ASHINGTON, D. C. 20555
\\, v /
~
2 9 JUL 1986 4
Docket No.:
50-443 MEMORANDUM FOR:
Vincent S. Noonan, Director PWR Project Directorate #5 Division of PWR I.icensing-A i
FROM:
Elizabeth I., Doolittle. Project Manager PWR Project Directorate #5 Division of PWR I.icensing-A i
SUBJECT:
FORTFCOMING MEETING WITH PUBl.IC SERVICE COMPANY OF NEW PAMPSHIRE TO DISCUSS SEABROOK RISK MANAGEMENT AND EMERGENCY PLANNING STUDY DATE & TIME:
Wednesday, August 6, 1986 - 1:00 - 5:00 pm
1.0 CATION
Phillips Building Room P-118 7920 Norfolk Avenue Bethesda, Maryland PURPOSE:
To hear presentation by.Public Service Company of New Hampshire on information contained in Seabrook Station l
. Risk Management and Emergency Planning Study and Emergency Planning Sensitivity Study.
PARTICIPANTS:
NRC PSNP T. Novak W. Derrickson V. Noonan J. DeVincentis and other t
E. Doolittle representatives of the S. l.ong applicant S. Israel i
R. Bernero D. Ross E. Jordan T. Speis J. Myers T. Murley p
3 J.
Q Elizabeth I., Doolittl'e, Project Manager PWR Profect Directorate #5 l
Division of PWR I.icensing-A b-N Y
p JV '
Mr. Robert J. Harrison Public Ser.vice Company of New Hampshire Seabrook Nuclear Power Station cc:
Thomas Dignan, Esc.
E. Tupper Kinder. Esq.
John A. Ritscher, Esq.
G. Dana Bisbee, Esq.
Ropes and Gray Ass *istant Attorney General 225 Franklin Street Office of Attorney General Boston, Massachusetts 02110 208 State Posue Annex Concord, New Hampshire 03301 Mr. Bruce B. Beckley, Project Manager Public Service Company of New Hampshire Resident Inspector Post Office Box 330 Seabrook Nuclear Power Station Manchester, New Hampshire 03105 c/o US Nuclear. Regulatory Commission Post Office Box 700 Dr. Mauray Tye, President Seabrook, New Hampshire 03874 Sun Valley Association 209 Summer Street Mr. John DeVincentis, Director Paverhill, Massachusetts 01839 Engineering and I.icensing Yankee Atomic Electric Company Robert A. Backus, Esq.
1671 Worchester Road O'Neil, Backus and Spielman Framingham, Massachusetts 01701 116 Lowell Street 1
Manchester, New Hampshire 03105 Mr. A. M. Ebner, Project Manager United Engineers & Constructors William S. Jordan, III 30 South 17th Street Diane Curran Post Office Box 8223 Parmon, Weiss & Jordan Philadelphia, Pennsylvania 19101 20001 S Street, NW Suite 430 Washington, D.C.
20009 Mr. Philip Ahrens, Esq.
Assistant Attorney General State House, Station #6 Augusta, Maine 04333 Jo Ann Shotwell, Esq.
Office of the Assistant Attorney General Environmental Protection Division Mr. Warren Hall One Ashburton Place Public Service Company of Boston, Massachusetts 02108 New Hampshire Post Office Box 330 D. Pierre G. Cameron, Jr., Esq.
Seabrook, New Hampshire 03874 General Counsel Public Service Company of New Hampshire Seacoast Anti-Pollution League Post Office Box 330 Ms. Jane Doughty
- Manchester, New Hampshire 03105 5 Market Street Portsmouth, New Hampshire 0380}
Regional Administrator, Region I U.S. Nuclear Regulatory Commission Mr. Diana P. Randall 631 Park Avenue 70 Collins Street King of Prussia, Pennsylvania 19406 Seabrook, New Hampshire 03874 Richard Hampe Esq.
New Hampshire Civil Defense Agency 107 Pleasant Street Concord, New Hampshire 03301 i
.o Y'
Public Service Company of Seabrook Nuclear Power Station New Hamps_ hire d
'CC:
Mr. Calvin A. Canney, City Manager Mr. Alfred V. Sargent, City Fall Chairman 126 Daniel Street Board of Selectmen Portsmouth, New Pampshire, 03801 Town of Salisbury, MA 01950 Ms. I.etty Pett Senator Gordon J. Pumphrey Town of Brentwood ATTN: Tom Burack RF0 Dalton Road U.S. Senate Brentwood, New Hampshire 03833 Washington, D.C.
20510 Ms. Roberta C. Pevear Mr. Owen 8. Durgin, Chairman Town of Pampton Falls, New Hampshire Durham Board of Selectmen Drinkwater Road Town of Durham Fampton Falls, New Hampshire 03844 Durham, New Hampshire 03824 Ms. Sandra Gavutis Charles Cross, Esq.
~
Town of Kensington, New Hampshire Shaines, Mardrigan and RDF 1 McEaschern East Kinoston, New Pampshire 03827 25 Maplewood Avenue Post Office Box 366 Portsmouth, New Hampshire 03801 Chairman, Board of Selectmen RF0 2 South Fampton, New Hampshire 03827 Mr. Guy Chichester, Chaiman Rye Nuclear Intervention Mr. Angie Machiros, Chairman Comittee Board of Selectmen c/o Rye Town Hall D
for the Town of Newbury 10 Central Road Newbury, Massachusetts 01950 Rye, New Hampshire 03870 Ms. Cashman, Chairman Jane Spector Board of Selectmen Federal Energy Regulatory Town of Amesbury Comission Town Hall 825 North Capital Street, NE Amesbury, Massachusetts 01913 Room 8105 Washington, D. C.
20426 Ponorable Peter J. Matthews Mayor, City of Newburyport Mr. R. Sweeney Office of the Mayor New Hampshire Yankee Division City Hall Public Service of New Hampshire Newburyport, Massachusetts 01950 Company 7910 Woodmont Avenue Mr. Donald E. Chick, Town Manager Bethesda, Maryland 20814 Town of Exeter Mr. William 8. Derrickson 10 Front Street Exeter, New Hampshire 03823 Senior Vice President Public Service Company of New Hampshire Post Office Box 700, Route 1 Seabrook, New Hampshire 03874 1