A04556, Rev 0 to CA04556, 1,100 Tons 100% Toluene CR Chemical Habitability

From kanterella
(Redirected from ML20210V267)
Jump to navigation Jump to search
Rev 0 to CA04556, 1,100 Tons 100% Toluene CR Chemical Habitability
ML20210V267
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 09/30/1998
From: Gryczkowski G, Mihalcik J, Sommerville I
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20210V122 List:
References
CA04556, CA04556-R00, NUDOCS 9908230085
Download: ML20210V267 (40)


Text

_

Y. '_a hjering Services Process Overview EN-1-100 Revision 10 Page 105 of153 ATTACHMENT 19, CALCULATION COVER SHEET INITIATION (Control Doc Type .DCALC)

/ Page_/ of_ YD bCALC No.: QDy((( Revision No.: C Vendor Calculation (Check one): 0 Yes y No ESP J"f/p/gp/gp Supp No.: O Rev. No.: C Responsible Group: p Responsible Engmeer: 6 1 E, f+ 4 7 4;

/

CALCULATION ENGINEERING O Civil O Instr & Controls DEm: -

Jif Nuc Engrg

. O Electrical O Mechanical O DieselGenProject O Life Cycle Mngmt O IfeliabilityEngrg O Nuc Fuel Mngmt O Other: ,

Title:

fjw $45 /g'), plygg Unit 0FMC( /1)en OfnicM lhhVA9W/

O UNIT I O UNTT2 A COhM ON 2 Proprietary or Safeguards Calculation O YES

)rNO Comments: /l[4, Vendor Calc No.: gg

  • VendorName: gg REVISIONNo.:

f/)/

Safety Class (Check one):

)(SR O AQ ONSR There are assumptions that require Verification during walkdown:

AIT # ##

This calculation SUPERSEDES: 'g/)

REVIEW AND APPROVAL:

Responsible Engineer: [,. [hg

  • Date: f[p Independent Reviewer: r#/_,6w,,[u, /4 //M/ e/J Date: 9- 1-9#

Approval:

), A ,@ d g / ,/4j _ M _

Date: gs j 93g e

s

ri O a CA04556 Rev.0 Page 2

2. LIST OF EFFECTIVE PAGES Page Latest Page Latest Page Latest- Page Latest Page Latest Rev Rev Rev Rev Rev 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 0 010 0 011 0 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 022 0 023 0 024 0 025 0 026 0 027 0 028 0 029 0 030 0 031 0 032 0 033 0 034 0 035 0 036 0 037 0 038 0- 039 0 040 0 l

l l

l E.

r CA04556 Rev.0 Page 3

/

3. REVIEWER COMMENTS J.A.Mihalcik inquired as to the toluene concentration at the intake structure. 1

- An ARCON96 execution was performed for a ground level release 938.38 m from a ground I level geceptor at the intake structure. The 0-2 hr atmospheric dispersion coefficient wag 1.60E-5 !

sec/m . The control room 0-2 hr atmospheric dispersion coefficient was 1.35E-5 sec/m . Thus l the toluene concentration at the intake structure can be calculated to be  ;

116 PPM = 98 PPM * (1.60E-5)/(1.35E-5)

This is much less than the IDLH toxicity limit of 2000 PPM and much less than the lower explosion limit of12700 PPM.

I l

i l

i l

l

. e .. s-ProgrLa

Title:

ARCOH96.

Developed Fort..U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulat. ion Division of Reactor Program Management CA045E6 REV0

- Dates June 25,'1997' NRC Contacts: J; Y. Ime

.11:00 a.m.

Phones (301) 415 2000 fkl['[/)

.e-mails jyllenre. gov J. J. Hayes Phones (301) 415 3167 e-mails jjhenre. gov -

L. A Brown Phones (301) 415 1232 e-mails lab 2enre. gov Code Developer J. V. Ramsdell' Phones'(509) 372 6316 e-mail j_ransdellopnl. gov Code Documentation: ~ NUR8G/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither

. the United States Government nor any agency thereof, nor any of their l

employees, makes any warranty, expressed or implied, or assumes any legal '

litbility or responsibilities for any third party's use, or the results of such  ;

u23, cf any portion of this program or represents that its use by such third '

party would not infringe privately owned rights.

Progrr.m Run 10/ 2/1998 at 10:03:47

- eeeee*

  • ARCON INPUT * * * * * * * * *
  • Number of Meteorological Data Piles =3 Meteorological Data File Names CC1991. MET CC1992. MET

. CC1993. MET HJight of lower wind instrument (m) = 10.0

. Height of upper wind instrument (m) = 60.0

' wind speeds entered as meters /second Ground-level release R31 ease height (m) = .0 fMilding Area (m*2)- = 1.0 Effluent vertical velocity (m/s) = .00 vant or stack flow (m*3/s) = .00 V;nt or stack radium (m) = 190.05 Direction . intake to source (deg) = 045 Kind direction sector width (deg) = 90 Wind direction window (deg) = 000 + 090 Distance to intake (m) = 938.4 Intake height (m) = 40 Tsrrain elevation difference (m) = .0 Output filt names CHBAYIN.out ChBAYIN,jfd Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10

.S=ctor averaging constant = 4.0 Initial value of sigma y = 88.39 Initial value of sigma a = .00 j Expanded output for code testing not selected Tttal number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window =- 6223

0 Mours Hours of elevated plume w/ 411r. in window '

calm winds- 495 Hours direction not in wfndow or calm = 19173

! DISTRIBUTION St.994ARY DATA BY AVERAGING IFTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-04 1.00E-04 1.00E-04 1.005-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 IDI' LIM. 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 t

E a a ABOVE RANGE 0. C. O. O. O. O. C. D. O. O.

IN RANGE 6718. 7948. 9612. 11972. 14005. 17887. 24615. 25063. 25169. 24910.

BELOW RANGE 0. O. O. O. O. O. 63. 41. O, C.

EERO 19173. 17877. 16095. 13514. 11663. 1697. 527. O. O, C.

TOTAL X/Qa 25891. 25825. 25707. 25486. 25668, 25584. 25205. 25104. 25169. 24910.

% NON EERO 25.95 30.78 37.39 46.97 54.56 69.91 97.91 100.00 100.00 100.00 95th PERCENTILE X/O VALUES 1.60E-05 1.49E-05 1.36E-05 1.22E-05 1.02E-05 7.76E-06 4.78E-06 4.18E-06 3.87E-06 3.23E-06 954 X/C for standard averaging intervals 3 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.60E-05 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.098-05 C A04556 REV 0 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 5.54E-06 1 to 4 days 3.798-06 (B A 6 E <d!

4 to 30 days 2.99E-06 HOURLY VALUE RANGE MAX X/Q MIN X/Q CENTERLINE 3.26E-05 3.30E-07 SECTOR AVERAGE 2.04E-05 y 2.07E.07 NORMAL PROGRAM COMPLETION

m CA04556 Rev.0 Page 4

4. TABLE OF CONTENTS 01.COVERSHEET...................................................................................................................I
02. LI ST OF EFFECTI VE PAG ES.... ............ ............. ........ ...... .... ......... .... .. .... .. ....... .... . ... . ... . . .. . 2
03. REVI EWER COMM ENTS..... ......... ............ ........ ............................ .................................. .. 3
04. TAB LE OF CONTENTS.. ........ ...... ...... ...... .... . . .. ....... ...... ......... . . . .... .. .. ... .. .. ............ .. ........... 4
05. PURPOSE............................................................................................................................5 06.INPUTDATA......................................................................................................................6
07. TECHNICA L AS S UM PTION S . . .. . .. ...... .. . . . .. . ... . . ... . . .. ........ .... .. .. . .. . . .... . .. .... . .. . . ..... ..... ... . ... . . 10 0 8. REF E REN C E S . .. . . . . . . . . . . . .. . . . . .. . . . . . . .. .. . . . . .. . . . . . ... .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
09. METHODS O F AN A LYSI S.. . ...... ....... . . ... .... . .. . ........... . ........ . .. .... ..... . . ....... .... .... .. ......... .... . . I 3 1 0. C AL C U L ATI ON S . . .. .. .. . . . . .. . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . .

1 1. DOCUMENTATION OF COMPUTER CODES............................................................... I 9

-12.RESULTS........................................................................................................................20 1 3. C ON C L U S I ON S . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 4. ATTA C H M ENTS . . . . . . . . . . . . .. . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATTACHMENT A: CHEMICAL DATA FOR TOLUENE............................................... 22 ATIMHMENT B: ARCON96 RUN FOR AUX BLDG ROOF INLET.......................... 25 ATTACHMENT C: ARCON96 RUN FOR WEST ROAD INLET PLENUM.................. 28 ATTACHMENT D: EXCEL SPREADSHEET TOLUENE - AUX BLDG ROOF INLET......................................... 31 ATTACHMENT E: EXCEL SPREADSHEET TOLUENE - WEST ROAD INLET....................... ................. ........ 3 5 ATTACHMENT F: CROSS SECTIONAL AREAS........................................................... 39 LAST PAG E OF REPORT.. ..... ... .. .. .. . .... ........ ... . .... ... . . .. .................... .. .. .. .... .. . ... . . . . .... ..... .. . . . . . . . 4 0

CA04556 Rev.0 Page 5

5. PURPOSE 10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess ,

the habitability of the control room during and after a postulated external release of hazardous  !

chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric dispersion coefficients (Ref.2). The explosion and flammability hazard of these chemicals must also be addressed (Ref.2).

The control room concentration caused by the accidental release of toluene from a waterway cargo on the Chesapeake Bay is analyzed in this work. The vessel load is assumed to be 1100 tons ofliquified toluene per Ref.10. The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1. The chemical habitability of the control room after a chemical release involving toluene was determined based on in-house dispersion calculations and toxicity determinations for the cunent control room config~ u ration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that toluene can be transported m 1100 ton quantities in the major shipping channels of the Chesapeake Bay without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 100% toluene cargo are as follows:

Peak Concentration Current Configuration No Recirculation 98 ppm With Recirculation 98 ppm Modified Configuration With Recirculation 91 ppm Toxicity Limit (IDLH) 2000 ppm Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects. Toluene will not pose a fiammability or explosion hazard, since the control room concentration is much less than the lower explosion limit of 1.27 v/v% (12700 ppm) per Refs.5,9.

The current calculation incorporates many assumptions which make these results conservative.

(1) A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes without physical incapacitation of an average human. The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5). (2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8). (3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512. (4) The most conservative methodology is utilized: turbulent evaporation.

o CA04556 Rev.0 Page 6 i

6. INPUT DATA /

The following input data is incorporated into this work:

(01) Chemical data for Toluene:

CAS number =. 108-88-3 Refs.5,9

)

Chemical formula C7He Refs.5,9 i Toxicity Limit IDLH (ppm) 2000. Ref.5 Odor threshold (ppm) 0.17 Ref.5

' Volume fraction 1.00 Ref.10 Volume (gal) . 305000 Ref.10 Specific gravity (gm/cc) 0.866 Ref.15 Vaporpressure(mm Hg) VP 55.@30*C Ref.15 Boiling point (Degrees C) TB 110 Ref.15 e)MB 92.1 Ref.15 Molecular weight,(gm/mo}/sec)

Diffusion Coefficient (cm 0.0924 Ref.15 1

l Lowerexplosionlimit(Vol%) ~ 1.27 % Refs.5,9 l l

(02) Physical properties of air per Refs.13,14:

Molecular weight (gm/ mole) MA 28.97 ,

Characteristic length in air (Angstroms) SIGA 3.711  !

Molecular energy of attraction / Boltzmann constant (K) E/KA 78.6 Mass density of air (gm/cc) RHOA 1.204E-03 Viscosity of Air (gm/cm-sec) MU l.83E-04 Universal Gas Constant (torr-cm3/gmole-K) R 6.24E+04 (03) The updated control room volume of 23415719 was extracted from Ref.18. -

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is

. defined as 8300 cfm or twice the maximum flowrate.

(05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm. 1 (06) The Chesapeake Bay-Control Room ARCON96 X/Q inputs were derived as follows (Att.B). l (a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 I

(c) Height oflower wind instrument (m): 10. Ref.B3 i (d) Height of upper wind instrument (m): 60. Ref.B3 (e) Wind speed units type (1=m/s,2= mph,3= knots): 1 Refs.B2,B10 (f) Release type (l= ground,2= vent, 3= elevated): 1

p L

i l CA04556 Rev.0 1

Page 7

!' ' (g) Release height (m): 0. J (h) Building area (m2 ): .

I155. Att.F The cross sectional area calculations a[e analyzed in Att.F. The calculation of containment l

cross sectional area yields 12435.63 A above the rooftop level 2 of 91'6". The auxiliary

- building cross sectional area can be calculated to be 1938.93 ft . For a west-to-cast wind directiog the total cross-sectional area of the auxiliary building and the two containments is 26810 A . For an eagt-to-west wind direction, the total cross sectional area of the turbine building is 27167 A . For a north-to-south and south-to-north wind girection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

. (i) Efiluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0 (k) Stack or vent radius (m): 190.05 r = SQRT(A/n) 2 2

= SQRT[(300000 gal)*(3785.422cc/ gal)/(1.cm)/x*(1.E-4m /cm )) '

- = 190.05 m ~

(1) Direction to source (deg): 045 Refs.B12,B14 L (m) Source window (deg): 090 Refs.B13-B14 (n) Distance from source to receptor (m): 1066.8 UFSAR 2.8.1 L Per UFSAR 2.8.1, the major shipping channel is a minimum of 3500'=1066.80 m from the

' Calvert Cliffs site.

. (o) Intake height (m): 29.33 l . 91.5' + 4.75' = 96.25' = 29.33 m

where 91.5' is the height of the Auxiliary Building roof (Ref.B6) and 4.75' is the control
room exhaust height (Ref.B13).

_ (p) Grade elevation difference (m): 0 Ref.B1 l

(q) Primary output file name: CHBAYCR.OUT (r) JFT file name: CHBAYCR.JFD (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s): 0.5 Ref.B1 (u) Sector averaging constant: 4 Ref.B1 (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.Bl i

g L .- .

CA04556 Rev.0 Page 8 l (x) Horizontal diffusion coefficient (m)/ 88.39 o y=r/2.15=190.05/2.15=88.39 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.B1 (07) Atmospheric dispersion coefficients from the Chesapeake Bay to the Control Room:

0- 2 hrs 1.35E-05 sec/m3 2- 8 hrs 9.35E-06 sec/m3 8- 24 hrs 4.59E-06 sec/m3 24- 96 hrs 3.19E-06 sec/m3 96-720 hrs 2.50E-06 sec/m3 (Attachment B, Refs.B1, BIO, B15)

(08) The Chesapeake Bay - West Road Inlet ARCON96 X/Q inputs were derived as follows (Att.C):

- (a) Number of meteorological data files: 3 Refs.B',810 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 (c) Height oflower wind instrument (m): 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 -

(e) Wind speed units type (1=m/s,2= mph,3= knots): 1 Refs.B2,B10 (f) Release type (1= ground,2= vent,3= elevated): 1 (g) Release height (m): 0.

2 (h) Building area (m ): 1155. Att.F

, The cross sectional area calculations age analyzed in Att.F. The calculation of containment

! cross sectional area yields 12435.63 ft above the rooftop level of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 ftz For a west-to-east wind directiog the total cross-sectional area of the auxiliary building and the two containments is 26810 ft . For an capt-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft . For a north-to-south and south-to-north wind firection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional area of a single containment of12435.63 ft or 1155 m will conservatively be used.

l l (i) Efiluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0 l

)

l I

L

~ CA04556 Rev.0 Page 9

-(k) Stack or vent radius (m): 190.05 ,

r = SQRT(A/x) 2 2

= SQRT[(300000 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m /cm ))

= 190.05 m

- (1) Direction to source (deg): 045 Refs.B12,B14 -

(m) Source window (deg): 090 Refs.B13-B14 (n) Distance from arce to receptor (m): 1136.5 UFSAR 2.8.1 Per UFSAR 2.8m the major shipping channel is a minimum of 3500'=1066.80 m from the i Calvert Cliffs site. Per Ref.B12, the distance from the control room inlet to the west road

~ inlet is 69.7 m.

(o) Intake height (m): .

. . 22.86 The Auxiliary Bmiding roof above the control room and above A512 will b'e sealed tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the west road side (ES199702144). Per Ref.B11, the inlet plenum is 54'x10' with a bottom elevation of 70'. Thus the intake height is 75'=22.86 m.

(p) Grade elevation difference (m): 0 Ref.B1 (q) Primary output file name: CHBAYWR.OUT

. (r)JFT file name: CHBAYWR.JFD (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s):- 0.5 Ref.B1 (u) Sector averaging constant: 4 Ref.B1 (v) Hoursin average: 1248122496168360720 Ref.Bl

~ (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.B1

_ (x) Horizontal diffusion coefficient (m): 88.39 l o y=r/2.15=190.05/2.15=88.39 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

J (z) Flag for expanded output: n Ref.B1 (09) Atmospheric dispersion coefficients from the Chesapeake Bay to the West Road Inlet: l 0- 2 hrs - 1.26E-05 sec/m3 2- 8 hrs - 8.75E-06 sec/m3 '

8- 24 hrs 4.31E-06 sec/m3 24-' 96 hrs 3.00E-% sec/m3 96-720 hrs 2.32E-06 sec/m3

- (Attachment C, Refs.B1, BIO, B15)

CA04556 Rev.0 j

Page 10 i

/

7. TECHNICAL ASSUMPTIONS The following technical assumptions were utilized in this work:

(01) Per Ref.10, the vessel load is assumed to be 1100 tons ofliquified toluene.

Vol = (1100 tons)*(2000lbm/ ton)*(453.592379 gm/lbm)/(0.866 gm/cc)

= 1.152313E+09 cc Vol = (1.152313E+09 cc)/(3785.422 cc/ gal)

= 304408.1 gal ~ 305000 gal (02) The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1.

(03) Per Ref.15 in a postulated accident, it is assumed that the entire container of the toxic substance ruptures.

(04) An average ambient atmospheric temperature of 30 C and pressure of 760 torr will be used in this calculation. Variation in these parameters shows insignificant impact on the results (Ref.16).TA=30 PA=1 (05) The chemical spill will be assumed to spread in a circular shape with the maximum radius determined by a spill thickness of I cm per Ref.15.

(06) Based on the characteristics of the chemicals, the following release mechanisms will be assumed: For liquified toluene, turbulent mass transfer is the worst of three methodologies:

diffusion in still air, laminar mass transfer, and turbulent mass transfer.

(07) For laminar and turbulent mass flow, a wind speed of one meter /sec is assumed. This is consistent with the wind tunnel methodology and the CCNPP data of Ref.B3. Note that per Ref.17 (p.265), a flow with Reynold's Number less than SE+05 is laminar.

(08) The vapor pressure of the spilled material will be adjusted to the ambient conditions via the ideal gas law:

VP(@T ) = VP(@T,)

  • T, / Typ t

>w~

4 t

CA04556 Rev.0 Page 11
8. REFERENCES (01)" Control Room",10CFR50, Appendix A, General Design Criterion 19.

(02) " Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78,6/74.

(03)"Res mnse to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FEA, and CEAEE", NRC-98-044.

l (04)" Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC 018.

(05) " Hazardous Chemicals Data Book", Second Edition, Edited by G. Weiss, Noyes Data Corporation.

(06) "Offsite and Control Room Doses Following a LOCA", Bechtel Calculatiori M-89-33 Rev.3,7/9/91.

(07)" Fan Performance Curve", BGE DWG 12782-35, 'Rev.0.

(08) " Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24,11/9/92.

(09) " SAX's Dangerous Properties ofIndustrial Materials", Ninth Edition, Richard J. Lewis Sr.

(10)"Offsite Ac:idental Release of Toluene", Bechtel Calculation M-80-38,1/19/81.

(11)"The Merck Index", Eleventh Edition,1989.

(12)" CRC Handbook of Physics and Chemistry",66th Edition,1985-1986.

(13) " Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds", W.Lyman, W.Rechl, and D.Rosenblatt, McGraw Hill 1982.

(14) " Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410,1988.

(15)" Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release", NUREG-0570,6/79.

. (16)"CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine",

Bechtel Calculation M-94-16 Rev.0,11/10/94.

- (17) " Heat Transfer", Seventh Edition, J.P.Holman.

(18)"Modeling of the Control Room / Cable Spreading Room HVAC System Using GOTillC Software", CA02725,1/8/97.

'C'A04556 Rev.0 Page 12 (BI) " Atmospheric Relative Concentrations in Building Wakes", NUREG/CR-6331 Rev.1, 5/97.

(B2) CCMAIL from Mark Abrams at PLO to G.E.Gryczkowski,3/5/97.

(B3) " Wind Flows and Dispersion Conditions et Calvert Cliffs", Maria Gavrilas and Melissa 1 Wieland, BG&E-EP1,9/85. '

(B4)"

Room",Atmospheric CA03533,1/17Disp /97.ersion Coefficient Calculations from the MSG and ADV to the C (BS)" Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE ,

Drawing 62-047-E, Rev.6 l (B6) " Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(117) " Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19.

(B8) " General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9)" Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10)"ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940, 8/21/97.

(B11) " Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details",

BGE Drawing 60-330-E, Rev.14.

(B12) " Wind Tunnel Modeling of CCNPP", CA00748 Rev.0,10/25/95 j i (B13) "ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0,5/8/97.

(B14)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0,7/1/97. i

' (B 15) " Analytical Software Installation Test of ARCON96", CA03941, 8/21/97.

i l

l

CA04556 Rev.0 Page 13

9. METIlOD OF ANALYSIS This work utilizes three separate methodologies to calculate mass transfer from the spill site to the control room.

(1) The first methodology is diffusion in still air for spills in closed areas and for liquids with high boiling points. The method of analysis utilizes the algorithms of Ref.15 to derive the toxic gas concentration inside the control room.

(1a) Calculation of the Diffusion Coefficient of an air / toxic gas system for dilute gases at low pressures per Ref.13 by the method of Wilke and Lee:

2 DAB = B'*TA"*MR"/(PA*SIGAB

  • OMEGA) where 2

DAB = Diffusion coefficient (cm /sec)

B' = 0.00217 - 0.00050 * (1/MA + 1/MB)"

MA= Molecular weight of air (gm/ mole)

MB= Molecular weight of toxic gas (gm/ mole)

MR= (MA+MB)/(MA*MB) = Molecular weight of binary gas (gm/ mole)

TA = Air temperature (K)

PA = Air pressure (atm)

SIGAB = Characteristic length of molecule A interacting with molecule B (A)

=

(SIGA+SIGB)/2 SIGA = Characteristic length of molecule A (A)

SIGB = Characteristic length of molecule B (A) = 1.18* VB" VB= Lebas molal volume (cc/mol)

OMEGA = Collision integral The Lebas molal volume VB can be calculated as follows per Ref.13:

VB= 14.8*(C) + 3.7*(H) + 7.4*(O) + 9.1 *(O in Methyl Esters or Ethers)

+ 9.9'(O in Ethyl Esters or Ethers) + 11 *(O in Ifigher Esters or Ethers)

+ 12*(O in Acids) + 8.3*(O Joined to S, P, N) + 15.6*(N Double Bonded)

+ 10.5*(N in Primary Amines) + 12*(N in Secondary Amines) + 27*(Br)

+ 24.6*(Cl) + 8.7*(F) + 37*(I) + 25.6*(S)- 6.0*(3-Membered Ring)

- 8.5*(4-Membered Ring)- 11.5'(5-Membered Ring) - 15*(6-Membered Ring)

- 30* Naphthalene - 47.5* Anthracene + (Molecular weight / density)*(Element)

The collision= integraf+OMFg OMEGA AffS C/c +can E/e by,9plculatglg

+ Gle follows per Ref.13:

A= 1.06036 B= 0.15610 C= 0.19300 D= 0.47635 E= 1.03587 F= 1.52996 G= 1.76474 11= 3.89411 TS = TA/(E/KAB)

E/KAB = SQRT(E/KA

  • E/KB)

E/KB = 1.15*(TB+273.15)

n:-

1. . .:

L

. CA04556 Rev.0 Page 14 (1b) Surface' Area of a Spill Per Ref.15 The rate of mass transfer of a liguid into the atmosphere is directly proportional to the surface area of the spill. Ref.15 approximates the initial shape of the liquid body by a cylinder, with the

. height equal to the radius of the base.

V0(m') = - Q*QF'(0.003785422 m'/ gal)

R0(m) = - (V0/n)"'

2 2 A0(m ) = - n*R0

- The liquid spreads quickly by gravity to a thin pancake on the ground. Its surface area may be estimated by the following equation:

2

' A(m ) = n*(R02+2*t*(g*V0*(SG-RHOA)/(n*SG)) 5)

' where SG = Density of the liquid (gm/cc) 2 .

g= ' Gravitational constant = 9.81 m/sec t= Time (sec)

The surface area, however, does not expand indefinitely as the above equation indicates. The maximum area of the spill in an unconfined space is estimated from the initial volume by assuming a spill thickness ofI cm.

2 AF(m ) = V0/0.01 tA(sec) = Time to maximum area i

= (AF-AO)/SQRT(4

  • n* g* V0 *(SG-RHOA)/SG) {

i

, The total mass of the liquid can be calculated as follows:

.M0 = Q*QF*SG'3785.422 gm where Q= Storage quantity (gal)

' QF ~ = Volume fraction ofliquid or weight fraction of solid SO = Specific gravity (gm/cc)

(Ic) Vaporization Rate in Still Air: .

When exposed to the atmosphere, liquids with boiling points above the ambient temperature will evaporate by diffusion into the air. The main driving force is the vapor pressure difference, i.e.,

concentration gradient, between the liquid phase and the air. The rate of a vapor diffusing into i still air is computed from the Fickian diffusion equation in Ref.15 l VR(gnt /m2-sec) = VP

  • RHOV
  • 10000. / p
  • SQRT(DAB /(n't))

where l

L l-I

]

m

. c CA04556 Rev.0 Page 15 VP(torr) = Vapor pressure of the liquid p(torr) = Ambient atmospheric pressure (760 torr)

RHOV(gm/cc) = Vapor density of the hquid t(sec) = 2 Time DAB (cm /sec) = Diffusion coefficient The vapor density of the liquid RHOV is derived from Ref.14 as follows:

RHOV(Ibm /cf) = 144*P'(psia)/(R*T(R))

RHOV(gm/cc) = 144*14.696/(1545/MB*T(R))*(.01601846 gm/cc/lbm/cf)

= MB(gm/ mole)

  • 14.696*.01601846/(10.7292*T(R))

(1d) The vapor density outside the control room can be calculated via VR(gmim -sec)*AF(m2 )*X/Q(sec/m')

2 VD(gm/m') =

The corresponding vapor density outside the control room ir. ppm is (Ref.13)

PPM = (24500/MB)

  • VD(gm/m')

(le) The vapor concentration inside the control roo.m at '.ine t can be calculated via the following: dCcn/dt = A

  • C ExT- A
  • Cca for t<tg Ccni = Ccx7 * (1. - exp(-A
  • t))

for tg<t<t ,x Cen2 = Ct x7 * {l. - exp[-A * (t-ta)]) + Ccni

  • exp[-A * (t-ta)]

for t>tm , Cen3 = Ca2

  • exp[-A * (t-tmo)]

i where

]

Ccn= Control room concentration in g,m/m' or ppm Cgx7 = External concentration in gm/m or ppm A= Fca / Vca = Turnover constant in 1/ min at time t Fca = Control room ingress and egress flow rate at time t Vca= Control room volume t= Time (min) ta = Time at which recirculation starts (min) tmo = (mip)

= Time SG(gm/cc) at which

  • (1.cm)evaporation

/ {VR(gm/m -sec)of* toxjc (0.0001substance m ceaseg/cm ) * (60.sec/ m (1 f) The spill area, vaporization rate, and vapor density are time-dependent quantities for diffusion m still air for spills in closed areas. The peak vapor density occurs at the time to maximum area (tA), which should be used under these conditions.

(2) The second methodology is mass transfer to forced convection for laminar flow per Ref.15. i i

VD(gm/m3) = VFL

  • ADC*AF (1. - exp(-A
  • t))

PPM =

)

(24500/MB)*VD  ;

1 l

)

CA04556 Rev.0 Page 16 where ADC = Atmospheric dispersion coefficient (sec/m3)

AF .= Final spill area (m2) See Ib.

MB.= Toxic gas molecular weight (gm/ mole) .

VFL = . Laminar evaporation rate (gm/m2-sec)

=

HDL*MB*VP* 100001(R*(T(C)+273.15))

T(C Temperature in C at which VP is determined VP )= = . Toxic gas vapor pressure (mmHg)

TA =

Ambient air temperature (C)

R= Universal gas constant = 62400 torr-cm3/gmole-K

' HDL =

=

0.664*(DAB /L)*Re Sc4 Laminar mass transf coegent (cm/sec)

DAB = Diffusion coefficient (cm2/sec) See la.

L= Characteristicigggth(cm) i

=-

(4*V0* 1.E6/x)

, V0= Initial volume (m3)-See Ib. -

Re= Reynolds number

= L*VW*RHOA/MU VW = . Wind velocity (cm/sec)

RHOA = Mass density of air MU = Viscosity of air -

Sc = . Schmidt number

=

-MU/(DAB *RHOA)

A= Fca / Vca = Turnover constant in 1/ min Fca = Control room ingress and egress flow rate Vca = Control room volume t= Time to maximum concentration = 10000.*SG/ VFL (3) The third methodology is mass transfer to forced convection for turbulent flow per Ref.15.

- VD(gm/m3) = VFT*ADC*AF (1. .exp(-A

  • t))

, PPM = _( 24500/MB)*VD where ADC = . Atmospheric dispersion coefficient (sec/m3)

AF = Final spill area (m2) See Ib.

MB = Toxic gas molecular weight (gm/ mole)

VFT = . Turbulent evaporation rate (gm/m2-sec)

=

HDT* MB

  • VP' 10000./(R*(T(C)+273.15))
T(C)= Temperature in C at which VP is determined VP *  ; Toxic gas vapor pressure (mmHg)

-TA = Ambient air temperature (C)

R= Universal gas constant = 62400 torr-cm3/gmole-K HDT =

=. Turbulent mass trangp*Sccgeient(cm/sec) 0.037*(DAB /L)*Re ~

DAB = Diffusion coefficient (cm2/sec) See la.

L= Characteristic Igggth (cm).

=

(4*V0* l.E6/n)

VO =

Initial volume (m3)-See Ib.

F CA04556 Rev.0

. Page 17 Re= Reynolds number

=

L*VW'RHOA/MU VW = Wind velocity (cm/sec)

RHOA = Mass density of air MU = Viscosity of air Sc = Schmidt number

=

MU/(DAB *RHOA) 1= Fca / Vcn = Turnover constant in 1/ min Fca = Control room ingress and egress flow rate Vca= Control room volume t=. Time to maximum concentration = 10000.*SG/VFT (04) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the. explosion and '

flammability limits.

L-

CA04556 Rev.0 Page 18

10. CALCULATIONS  ;

The chemical concentration of 100% toluene inside the control room for a chemical spill of 305000 gal in the shipping channel of the Chesapeake Bay is calculated via EXCEL spreadsheets captured in the followmg attachments using the methodologies of Section 9:

Attachment D: 100% Toluene for Current Control Room Configuration Attachment E: 100% Toluene for Modified Control Room Configuration i

g CA04556 Rev.0 Page 19

11. DOCUMENTATION OF COMPUTER CODES i This work employed the ARCON96 computer code, which was verified, benchmarked, and documented in Ref.B10. The installation is documented in Ref.B15. ARCON96 imalements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in t ae vicinity ofbuildings.

CA04556 Rev.0 Page 20 l 12.RESULTS /

The control room concentration caused by the accidental release of toluene from a waterway cargo on the Chesapake Bay is analyzed in this work. The vessel load is assumed to be 1100 tons ofliquified toluene per Ref.10. The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1. The chemical habitability of the control room after a chemical release involving toluene was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that toluene can be transported in 1100 ton quantities in t1e major shipping channels of the Chesapeake Bay without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 100% toluene cargo are as follows:

Peak Concentration Current Configuration No Recirculation 98 ppm With Recirculation 98 ppm Modified Configuration With Recirculation 91 ppm Toxicity Limit (IDLH) 2000 ppm i

i i

i l

l j

CA04556 Rev.0 Page 21

/ 13. CONCLUSIONS Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects. Toluene will not pose a flanunabil!!y or explosion hazard, since the control room concentration is much less than the lower explosion limit of 1.27 v/v% (12700 PPM) per Refs.5,9.

The current chemical habitability calculation incorporates many assumptions which make these results conservative.

A maximum concentration limit (IDLH) was utiU-J that could be tolerated for 30 minutes (1)thout physical incapacitation of an average hur a. The regulatory requireme wi dictate a maximum concentration limit that could e tolerated for 2 minutes without physical incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health and is defined as the maximum level from which one could esespe within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5).

(2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized.

(3) This The control roomvalue volumeis twice theneglects conservatively normal deadoperating spaces in t value. (Refs.6-8) he control the volume ofroom A512.

. (4) The most conservative methodology is utilized: turbulent evaporation.

l l

F. .

I i

CA04556 Rev.0 i Page 22

  1. 14. ATTACHMENTS ATTACHMENT A CHEMICAL DATA FOR TOLUENE l

I l

I l

i l

f l

l l

o .

1 re.

TOLUENE m CA04556 REV 0 rant y \

Comm- er enr= =e=, e.a Caa= ea-1 t ter menos easetemum a mm 0 AsstssMEnt come El Ph.Pomt 401 CC 867 0C.

i '*mie en esas F_ -, tesame cepe a presumes SJ Planunsbes 4Ause

  • Air. 4J7%.7% Inne Mamare Assessment scenemen) e,$ g.py ,

e

. ,, fee asensesnais

..,,-m== w mes.As.enem

.r , Cossa.mus Base a pensam Esep peesse eney inom is large has en seween we ses he esserement S.4 PM taengidadeq Apenn Inse to k ens use esser apey le h esen* veper unse way me, ne messamme 18. hAlAA0 CLA$$,1CAfl048

.ime.ye g3 gposus gesagge og gesegege.

11.1 Code of Feeeral hesdamens es . m sween.s e - Freesee Feensnabt head u .ss eer .nn Net

, peMpiere Wape, . n e, su =As .=m e ame, * .sier en mer uve e enes-emen esennesa Tsunsperisees i l -

EF lysmon e towee W Onfman ye tash bedst Csespery hemig

.e .e ":"f.e,s s .,.,.e.,m .,n,.,,e,. mas. .e. Fee mer mW esp <pensamos apparehn u i-e na Tesapeestwa esfy am.m = t orm. o = 3 Fire ce, e,,e,,, ( - e.h'e'eu.8"8 8 SA Swains flote: 5 F auswast tts Amaksets Pomme Tenperches.

Waper Wen--s Lamas or Seed meant

_t on. e P--

t a

Weeer Pehsten Hwnen Teamy 1

~C Asses. Toscay i C= ,o i ueou Am 9

  • Apes 1. CasulCu m m m Aeushoac Emmet

.se.e.e, 3 )

u nemme, wen we  ;

om= o='=a '

n. e.as
""C.ie-se adme # Dean e'

.s' "n":" " a m.ie. i.es. u ase-a, en Cem~n as-== =

.am:een sesenen

  • -- * )

IJ Sannety Dertig Tswusert Sialdo '"A '""'8 C""*88"" ,

    • emme MW '"**'*"8 A

Exposure _

e .s

.. ars , e.e. ,.as. .en ene er i.es as - ,, -

was,,e tene -

no.en- e e es.n.on gere me 14 w , .fsePesymeraseem A#W E88I O

.,si ,e,ene,e Wilti"s'..,

. mo o er.o,e::"epe.n .i.em w . e".,=tl" woe.. n se

.no.ri,, s ee

-- u me- asse ene-e= =

(10 b pdDLKI WOneflNG. Pro. set, one. not -

U 11 PHY5iCAL AND CN(M4 CAL PROPLfffE8 ese a hgh amenweeners it t anyennes eines sa ts C ene i amm *

Water us, se ", , e e,,,e,e e., e se Lamad pg g tu amassen wasnt si u many now insen Heesy aparature we se,n=

er amare emeen mots maahes is.8 asems Pune a i see:

taiiv.einc.Essea

1. M570ss! TO DalCHANif gg4 p,,,,,, p,,g E LABEL sp.n - ,s.nes , E WARR POLMION ~

u C r ,- a. tu man oeW Rommenery u A e. T.-

SJ Chas 3 ...m..

gi,esumes was 1100 fig /l/se is/esept/TL,iteen esser 13.0 Csessel Presses les 1 pee e 40 Se sem o a 108 SJ Watertoes Testse rDais not eveenne eAN/m*

L3 amenesseel Osygen Demais fBopp 117 Syssels tower 9%. 4 enyt ae% fruark 8 esys 04 Feed Cham Consonpemen Potenant 6 887 et FC them0 13J Lasies gentsee Tenenom

3. CNEMICAL DESIG4Afl0fts essee
4. Otttava4LE CHARAcuttSTICS 39 0 synes/en = 0 0700 N/m a 30 C u ce Compasamty cases Aransac u pi ymem essen ese esupped% Lasag ta.s Laems waist aneersesens venesem U Ceter:Comness 361 synen/am = SA361 N/m et as C SJ Posenda CeNeQh 4J Osse:PwgenL wem tens **he, 11 00 Weyer feas) Specsdie erover 33 as0#Uli Desspismem 3J/t394 888' P'W"'8 eewiat panesent 84 DOT W tow 17D4 ,

1111 Ases of SpeeIIIs Moses et Waper fesak SA CAS feegssey stea 10646J i Age 13.13 Laesne Hess of V-154 Sts/h e 06 9 es/g e L h(ALip NAZAgg$ 8 09 5108 J/eg

$ P'IPPlflG INFORMAfl0N

.. Peres. .reene e mm. m e. og, ass . <L ,an se. 9 1118 eens of Commiassen M7.430 sw%

. -se

$J e u - P e asse r ve ,. e.,. . . , i, si.,

Speyesen Passesme Esponere Wapare smase syne and super seepreesry me.t, segue e.uneen. til. ,,en . .sess.o headadhe, enseeiset sempresary eriest Lasso evemase eyes pel semes eryog 'If shst il amenos es to3 e %.susuomme e,.

es -

9118 Deem et teWoom ha perance espreted, ensees souffeng payg esseet yd sepsey assessysg pienmisry edens N sentens to e %. e. 8% sytere end preg amowies ed basere Mut gggg geog og pesygmatusmust fem Prerem eiesstes enusse eenusng. posg seymet espassed suspretort 52J5 9eest of fossem 1717 eeltg 64 mereremsec tireecersora 00/130 liesennent et Espeeps INHALATION somewe es Dean er, yve weicial sumuseson and anyyen e tgJs geaseme Wease Dess act evadamse nuesed ens e enceur INGESTKipt ce NOT steune eenusng est a esceer EYES hah enth me, pwe pen panss's 112F fhas upu h.11 pas eener w a teens il met SKpt eye eft mesh assi soap and near tJ anwega Tengereert Amtsmet

$4 ftweensed Leeft Wasst te0 ppm DJ biert Agnesphest Ode Messment SJ Sitert Tone t.atseen Lause eeD pensi ter 3D mes s4 Wessemy Open finne orieenart er 64 Testsely by bgesmos Omes 2. LDee e 0.5 le $ gehg ---_

SJ Lee Teemer asser ens ever emmaan may hoew egeesun.

BA Waper gans) arnent " -

Vappe asume a espa smartig e, ein eyes er suesreepy eyesse R premare a hgh _ The spies e amigomry 43 uses er tend knennt " _ herenum teamra N speed en ensewg WW eBoued em somma suur eaune amareg ens seesong er De shot

& le gear flyempeste 9 SF ppm ut Elul Webst $ ADD erm gig ^-

E IIM UAZANOs M

_ As og pues hema Does met eucashes S.18 PWas Tenspereewe Den no evessede 967 Just isas

7..

j 3190 TGK500 TOLUALDEHYDE GLYCERYL ACETAL CA04556 E5Y 0

\

PAGE 2 TGK500 CAS:73987-518 HR: 2 OSHA PEL: TWA 100 ppm; S EL 150 ppm TOLUALDEHYDE GLYCERYL ACETAL ACGlH TLV: TWA 50 ppm (skin); BEI: 1 mg(toluene)/L mf: CnHuO, mwr 176.23 in venous blood at end of shift; 20 ppm toluene in end.

" " ^" #

Tol LDE YDE G YCE CE' L DF MA : 50 ppm (10 mg/m'); BAT: 340 pg/dL in blood at end of shift TOXICITY DATA WITH REFERENCE NIOSH REL: (Toluene) TWA 100 ppm; CL 200 skn-rbt 500 mg/24H MOD rcTxAv 24.887, 6 ppm /10M ort rat LD50:3400 mg/kg rcTxAV 14,887,76 DOT CLASSIFICATION: 3; Label: Flammable Liquid SAFETY PROFILE: Moderately toxic by ingestion. A skin irritant. When heated to decomposition it emits acrid SAFETY PROFILE: Poison by intraperitoneal route.

smoke and irritating fumes. See also ALDEHYDES. Moderately toxic by intravenous and subcutaneous routes. Mildly toxic by inhalation. An experimental TGK750 teratogen. Human systemic effects by inhalation: CNS CAS:108-88-3 HR: 3 TOLUENE recording changes, hallucinations or distorted percep-l DOT: UN 1294 tions, motor activity changes, antipsychotic, psychophy-

! mf: C,H. mw: 92.15 siological test changes, and bone marrow changes, Experimental reproductive effects. Mutation data repon-PROP: Colorless liquid; benzol like odor. Mp: -95 to ed. A human eye irritant. An experimental skin and

-94.5', fp: -95', bp: 110.4', flash p: 40*F (CC), ULC: severe eye irritant.

75-80, tel: 1.27%, uel: 7%, d: 0.866 @ 20'/4', autoign Toluene is derived from coal tar, and commercial temp: 996*F, vap press: 36.7 mm @ 30', vap d: 3.14. grades usually contain small amounts of benzene as an Insol in water; sol in acetone; misc in abs alc, ether, impurity. Inhalation of 200 ppm of toluene for 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> chloroform. may cause impairment of coordination and reaction time; with higher concentrations (up to 800 ppm) these SYNS: ANT: SAL la D BENZENE. METHYL O METHACIDE D METHANE, PHENYL. O METHYLBENZENE D METHYtBENzot O effects are increased and are observed in a shorter time.

NCI Co7272 D PHENYLMETHANE D RCRA TASTE NUMBER U220 0 In the few cases of acute toluene poisoning reported, the effect has been that of a narcotic, the workman ToLUEr.N (DUTCH) O ToLUEN (CZECH) D ToLUot (dot) O To-passing through a stage of intoxication into one of coma.

LUoLo UTAMAN) D TOLU sol Recovery following removal from exposure has been TOXICITY DATA WITH REFERENCE the rule. An occasional report of chronic poisoning l eye hmn 300 ppm JIHTAB 25,282,43 describes an anemia and leukopenia, with biopsy show-

) ... skn-rbt 435 mg MLD UcDsa 7/23/70 ing a bone marrow hypoplasia. These effects, however, l skn rbt 500 MOD rcroD7 20,563.s2 are less common in people working with toluene, and

! eye rbt P70 pg MLD Ucos" 7/23/70 they are not as severe. At 200-500 ppm, headache, eye rbt 2 mg/24H SEV 28zPAK ,23,72 nausea, eye irritation, loss of appetite, a bad taste, eye-rbt 100 mg/30S rns MLD rcToD7 20.5 3,82 lassitude, impairment of coordination, and reaction time oms-gth lhl 562 mg/L MUREAv sis,467s3 are reported, but are not usually accompanied by any cyt rat scu 12 g/kg/12D I GTPzAB 17(3),24,*3 laboratory or physical findings of significance. With ihl mus TCLo:400 ppm /7H (female 7-16D higher concentrations, the above complaints are in-post): REP rAAror 6,145.86 creased and in addition, anemia, leukopenia, and en-orl mus TDLo:9 g/kg (female 6-15D post):TER Tjr. larged liver may be found in rare cases. A common air DAB 19.41A,79 Contaminant, emitted from modern building materials ort hmn LDLo:50 mg/kg YAKUD$ 22,883.80 (CENEAR 69,22,91). Used in production of drugs of ihl hmn TCLo:200 ppm:BRN,CNS,BLD JAAtMP abuse.

123.1106,43 Flammable liquid. A very dangerous fire hazard when ihl man TClo:100 ppm:CNS WEHRBJ 9,131,*2 exposed to heat, flame, or oxidizers. Explosive in the ort-rat LD50:5000 mg/kg AMlHAB 19,403,59 form of vapor when exposed to heat or flame. Explosive ihl rat LClo:4000 ppm /4H AiHAAP 30.470.69 reaction with 1,3-dichloro 5,5 dimethyl 2,4 imidazolidi-ipr rat LD50:1332 mg/kg ENVRAL 40,411.86 dione; dinitrogen tetraoxide; concentrated nitric acid; ivn-rat LD50:1960 mg/kg MEtuD 54.486.63 H,50, + IINO,; N,0,; AgCIO,; BrF,; UF.; sulfur dichlo-unt rat LD50:6900 mg/kg G!s4AA 4502),64 so ride. Forms an explosive mixture with tetranitrometh-ihl mus LC50:400 ppm /24H NRTxDN 2.567,s ane. Can react vigorously with oxidizing materials. To ipr-mus LD50:59 mg/kg NRTxDN 2.567.81 fight fire, use foam, CO,, dry chemical. When heated to scu mus LD50:2250 mg/kg NRTxDN 8,237,8' unt mus LD50:2 g/kg GisAAA 450 2).64.80 decomposition it emits acrid smoke and irritating fumes, ipr mus LD50:640 mg/kg ANYAA9 243.104,75 ihl-rbt LClo:55,000 ppm /40M J!mtAN 26.69.44 skn-rbt LD50:12,124 mg/kg AlHAAP 30,470,69 For occupational chemical analysis use NIOSH: Hydro-carbons, aromatic,1501; Hydrocarbons. Up: 36-126*C, CONSENSUS REPORTS: Community Right To Know 1500.

List. Reported in EPA TSCA Inventory. EPA Genetic Toxicology Program.

CA04556 Rev.0 Page 25 -

ATTACHMENT B ARCON96 FILFR FOR AUX BLDG ROOF INLET i

l l

l

a

  • d Program Tit 13: ARCON96.

Developed For: U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation CA04556 REV 0

. Division of Reactor Program Management Dato: June 25,1997 11:00 a.m.

NRC Contacts: J. Y. Lee Phones (301) 415 1080 )

e-malli jyllenrc. gov J. J. Rayes Phone (301) 415 3167 e-mails jjhenre. gov L. A Brown Phones (301) 415 1232 e-mails lab 2enre. gov Code Developers J. V. Ramsdell Phonei (509) 372 6316 e-maili j_ramsdellopnl. gov Code Documentation: NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their cmployees, makes any warranty, expressed or implied, or assumes any legal litbility or responsibilities for any third party's use, or the results of such urs, of any portion of this program or represents that.its use by such third party would not infringe privately owned rights.

Progr:m Run 8/21/1998 at 13:52:46

              • ARCON INPUT **********

Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC3992. MET CC1993. MET HJight of lower wind instrument (m) = 10.0 H31ght of upper wind instrument (m) = 60.0 Eind speeds entered as meters /second Ground-level release R11 ease height (m) = .0 Building Area (m'2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vint or stack flow (m*3/s) = .00 V:nt or stack radius (m) = 190.05 Direction intake to source (deg) = 045 M!nd direction sector width (deg) = 90 Nind direction window (deg) = 000 - 090 Distance to intake (m) = 1066.8 Intake height (m) = 29.3 TIrrain elevation difference (m) = .0 Dutput file names CHBAYCR.out CHBAYCR.jfd Minimum Nind Speed (m/s) = .5 Surface roughness length (m) = .10 Sletor averaging constant = 4.0 Initial value of signe y = 88.39 Initial value of sigma = .00 Expanded cutput for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 6223 Hours elevated plume w/ dir. in window = 0 ,

Hours of calm winds = 495 Hours direction not in window or calm = 19173 DISTRIBUTION SUb94ARY DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 160 360 720 UPPER LIM. 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.0CE-04 1.00E-04 LOW LIM. 1.00E-08 1.00E-08 1.00E 08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08

t e e ABOVE RANGE 0. O. O. D. O. O. C. O. D. D.

IN RANGE 6718. 7C48. 9653. 11978, 14005. 17868. 34610. 85063. 35169. 24910.

BE!Di RANGE 0. O. O. O. O. 19. 68. 41. O. O.

EERO 19173. 17877. 16095. 13514. 11663. 7697, 527. O. O. O.

TOTAL X/Qs 25891. 25825, 25707. 25486. 25668. 25584. 25205. 2$104. 25169. 24910.

% NON EERO 25.95 30.78 37.39 46.97 54.56 69.91 97.91 100.00 100.00 100.00 95th PERCENTILE X/O VALUES

/ 1.35E-05 1.30E-05 1.16E-05 1. 04 E-05 8.61E-06 6.52E-06 4.02E-06 3.50E-06 3.26E-06 2.70E-06 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.35E-05 8 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 9.35E-06 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4.59E-06 1 to 4 days 3.19E-06 CA04556 REV0 4 to 30 days 2.50E-06 HOURLY VALUE RANGE P A6E L1 MAX X/Q MIN X/Q CENTERLINE 3.04E-05 2.27E-07 SECTOR-AVERAGE 1.91E-05 1.42E-07 NORMAL PROGRAM COMPLETION 1

i i

l l

l

CA04556 Rev.0 Page 28 AJTACHMENT C '

ARCON96 FII ES FOR WEST ROAD INLET PI FNUM l

l l

.e 4 *

.- 4 Program Titles ARC 08f96.

. Developed Fors U.84 Nuclear Regulatory Commission [ .CA04556 REV0 Of fice of Feclear Reactor Regulatim Division of Reactor Program Management . P A6E L1 Dets: . June 25, 1937 11:00 a.m.

' NRC Contacts: ' -

J, Y.14e Phones (301) 415 1080 e-mails jyllenrc. gov J. J. Hayes . Phones (301) 415 3'.67 e-mail jjhenrc. gov

~ L.. A Brown Phones (301) 415 1232 e-mails lab 2enrc. gov Code Developer J. V. Etendell 1 Phones (509) 372 6316 e-mails'j ramsdellopnl. gov Code Documentation: NUREG/CR 6131 Rev. 1

% e program was' prepared for an agency of the United States Government, Heither th3 United States Government nor .any agency thereof, nor any of their employees, makes any warranty, ex; pressed or inplied, or assumes any legal litbility or responsibilities for any third party's use, or the resalts of such uts, of any portion of this program or represents that its use by such third party would not infringe privately. owned rights.

Progrim Run 8/21/1998 at 13:53:05 eeeee** ARCON INPUT **********

Number of Meteorological' Data Files = 3 Meteorological Data rile Names CC1991. MET CC1992. NET.

CC1993. MET Height of lower wind instrument (m) = 10.0 H2ight of upper wind instrument (m) ' = 60.0 tind speeds entered as meters /second

' Ground-level release R21 ease height (m)- = .0 Building Area (m*2) = 1155.0 Etfluent vertical velocity (m/s) . .00 Vtnt or stack flow (m*3/s) = .00 Vant or stack radius (m) = 190.05 Direction . ' intake to source (deg) = 045 Wind direction sector width (deg) = 90 Wind direction window (deg) = 000 - 090 Distance to intake (m) = 1136.5 Intake height (m) = 22.9 T:rrain elevation difference (m) = .0 Outpue, file names CHBAYWR.out ,

CHBAYWR.jfd Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 J sector averaging constant = 4.0 Initial value of sigma y = 88.39 Initial value of sigma a = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direct.on in window = 6223 Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 19173-DISTRIBUTION SIN 94ARY DATA BY AVERAGING INTERVAL

-AVER. PER. 1 2 4 8 13 24 96 160 360 720 UPPER LIM. 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1. 00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 14W LIM 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1,00E-08 1.00E-08 1 00E-08

1 ABOVE RANGE 0. O. O. O. O. C. O. O.

12 RANGE O. O.

6718. 1948. (612. 11972. 14005. 17863. 24595. 25063. 25169.

BEIDW RANGE 24910. I

0. O. D. D. O. 24. 83. 41. O. O.

EERO 19173. 17877. 16095. 13514. 11663. 7697. 527.

TOTAL X/Os O. O. c.

25891. 25825. 25707. 25486. 25668. 26584. 25205. 25104. 25169. 24910.

% NON ZERO 25.95 30.78 37.39 46.97 54.56 69.91 97.91 100.00 100.00 100.00 95th PERCENTILE X/Q VALUES 1.26E-05 1.20E-05 1.08E-05 9.71E 06 8.03E-06 6.11E-06 3.78E-06 3.27E-06 3.05E-06 2.52E-06 95% X/O for standard averaging intervata 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.26E-05 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8.75E-06 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4.31E-06 1 to 4 days 3.005-06 CA0455B REV0 4 to 30 days 2.328-06 g{ p HOURLY VALUE RANGE MAX X/Q MIN X/O CENTERLINE 2.95E-05 1.91E-07 SECTOR-AVERADE 1.85E-05 1.19E-07 NCD4AL PROGRAM COMPLETION l

t .

. CA04;36 Rev.0 Page 31 ATTACHMENT D /

EXCEL SPREADSHFFT

. TOLUENE - AUX BLDG ROOF INLET l

i

TOLUENE-BAY-CR CA04556 REVO l P ASE 3t A B C D E F G 1 TOLUENE 2 .

3 CHEMICAL C7H8 4 IDLH (PPM) IDLH 2000 5 ODOR THRESHOLD (PPM) OT 0.17 6 STORAGE QTY (GAL) Q 305000 7 STORAGE PURITY (FRACTION) QF 1.00 l l

8 SPECIFIC GRAVITY (GM/CC) SG 0.866 9 VAPOR PRESSURE (TORR-C-R-K) VP 5.50E+01 30 545.67 303.15 10 BOILING POINT (C-K-R) TB 110 383.15 689.67 11 MOLECULAR WT (GM/ MOLE) MB 92.1 12 DIFFUSION COEFF (CM2/SEC) D 0.0924 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 8300 ,

l 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 614.182 614.182 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*TmaxWCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 7 103.6  ;

31 H 3.7 8 29.6 __

32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 l

i 39 N IN PRIMARY AMINES 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 _

41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Page1 L

TOLUENE-BAY-CR C A04556 REV 0 PAGE.6 A B C D E F G 1 49 6-MEMBERED RING -15.0 1 -15 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 'O O j

$2 OTHER 0.0 0 0 53 LEBAS MOI.AL VOL VB'(CC/MOL) VB' 118.2 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 66_ CHAR LENGTH B (A) StGB 1.18*VB'^1/3= 5.7910 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.7510 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 440.6225 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 186.0992 60 TSTAR T* TA/(E/KAB)= 1.6290 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996  !

67 G 1.76474 i 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^ B +Cle^(T*D)+ Ele ^(T*F)+ Gle^(T*H) 1.1602E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0635E-03 71 MOLECULAR WEIGHT MR (MA+MB)/(MA*MB) l l 4.5376E-02 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5*M R^0. 5/(PA*SI G AB ^2 *O M EGA)= 8.8592E-02 73 l l l 9.2400E-02 74 VAPOR DENSITY (GM/CC) RHOV M B* 14.696*0.01601846/(10.72 *TVP) 3.7064E-03 75 l l 76 INITIAL MASS (GM) MO Q*QF*SG*(3785.422 CC/ GAL) 9.9984E+08 j 77 VOLUME (M3) VO Q*QF'(3.785422E-3 M3/ GAL) = 1.1546E+03 l 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.1629E+00 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.6119E+02 80 SPILL AREA FINAL (M2) AF VO/0.01 = 1.1546E+05 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4 *Pl*9.81 *VO *(SG-R H OA)/S G )) 3.7700E+02 l 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 3.0582E+02  ;

83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 3.8341 E+04 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 BAY 87 ADC (S/M3) ADC 1.35E-05 88 TIME (SEC) T 1 10 305.8181 320 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) ,

91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 BAY 94 CASES T ADC A VR VD PPM 95 1 1.35E-05 5.38E+02 4.60E-01 3.34E-03 8.89E-01 96 10 1.35E-05 3.93E+03 1.45E-01 7.72E-03 2.05E+00 Page 2

TOLUENE-BAY-CR CA04556 REVO P AGE S/

A B C D E F G 97 305.8181 1.35E-05 1.15E+05 2.63E-02 4.10E-02 1.09E+01 98 , 320.0000 1.35E-05 1.15E+05 2.57E-02 4.01E-02 1.07E+01 99 100 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 101 REYNOLD NUMBER RE L*VW'RHOA/MU 2.5170E+07 102 SCHMIDT NUMBER SC MU/(D*RHOA) 1.6485E+00 103 l 104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 8.7758E-02 106 TURS EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 2.3500E-01 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF l 107 PPM INSIDE CR PPM (24500/MB)*VD 108 CASES _ADC VD PPM 109 __

BAY 1.35E-05 3.66E-01 9.74E+01 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 9.4839E-03 112 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.5396E-02 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 114 PPM INSIDE CR PPM (24500/MB)*VD 1 116 CASES ADC VD PPM j 116 BAY 1.35E-05 3.96E-02 1.05E+01 117 laminar turbulent l

i 118 Time to peak (sec) = t=1/ER/.0001*SG 340995.8 36850.94 119 Time to peak (min) = 5683.26 614.18 l.

l 120 Time to peak (hr) = 94.72 10.24 121 g Turbulent Evaporation without Recire Inlow(cfm) 8300 8300 8300 8300 ADC 123 BAY Time (min) 20 614.18 644.18 674.18 1.35E-05 PPM' 97.44 33.64 11.62 l 124 49.48 l

126 126 Turbulent Evaporation with Recirc Inlow(cfm) 8300 3000 3000 3000 ADC 127 BAY Time (min) 20 614.18 644.18 674.18 1.35E-05 128 PPM 49.48 97.44 33.64 11.62 Page 3

7

CA04556 Rev.0 Page 35

) ATTACHMENT E EXCEL SPREADSHFFT TOLUENE - WEST ROAD INLET l

C A045ES REV U TOLUENE-BAY-WR PABE.g6 A B C D E F G 1 TOLUENE 2  ;

3 CHEMICAL C7H8 4 IDLH (PPM) IDLH 2000 5 ODOR THRESHOLD (PPM) OT 0.17 6 STORAGE QTY (GAL) Q 305000 7 STORAGE PURITY (FRACTION) QF 1.00 ,

8 SPECIFIC GRAVITY (GM/CC) SG 0.866 I 9 VAPOR PRESSURE (TORR-C-R-K) VP 5.50E+01 30 545.67 303.15 10 BOILING POINT (C-K-R) TB 110 383.15 689.67 11 MOLECULAR WT (GM/ MOLE) MB 92.1 12 DIFFUSION COEFF (CM2/SEC) D 0.0924 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 i 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 )

18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 l 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 3000 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 614.182 614.182 27 CONTROL ROOM FACTOR CRF 0.99962 CRF = 1.-expt-FCR*TmaxWCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 7 103.6 31 H 3.7 8 29.6 l 32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N ,

8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 ,

43 F 8.7 0 0 44 1 37 0 0 .

45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Page 1 l

l

a s> ,

TOLUENE-BAY-WR CA04556 REV 0 L 1

PA6E 37 A B C D E F G 49 6-MEMBERED RING -15.0 1 -15 60 NAPHTHALENE -30.0 0 0 61 ANTHRACENE -47.5 0 0 6 OTHER 0.0 0 0 63 LEBAS MOLAL VOL VB'(CC/MOL) VB' 118.2 64 Y DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 66 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 5.7910 67 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.7510 68 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 440.6225 69 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB): 186.0992 60 TSTAR T* TA/(E/KAB)= 1.6290 61 COLUSION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300 64 D 0.47635 66 E 1.03587 66 F 1.52996 67 G 1.76474 68 _

H 3.89411 69 C_OLLISION INTEGRAL OMEGA A/T*^B + Cle^(T* D)+ E/e^(T *F)+ Gle^(T*H ) 1.1602E+00 70 B-PRIME B' O.00217 0 00050* SORT (1/MA+1/MB) = 2.0635E-03 71 MOLECULAR WEIGHT MR (MA+MB)/(MA*MB) l l 4.5376E-02 l 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1.5*M R ^0. 5/( PA* S I G AB ^2*O M EGA)= 8.8592E-02 73 l l l 9.2400E-02 '

74 VAPOR DENSITY (GM/CC) RHOV M B* 14.696*0.01601846/( 10.72 *TVP ) 3.7064E-03 76 l l 76 INITIAL MASS (GM) MO Q*QF*SG*(3785.422 CC/ GAL) 9.9984E+08 77 VOLUME ("A3) VO Q*OF'(3.785422E-3 M3/ GAL) = 1.1546E+03 i 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.1629E+00 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.6119E+02 80 SPILL AREA FINAL (M2) AF VO/0.01 = 1.1546E+05 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4

  • Pl
  • 9.81 *VO *( S G-R H OA)/S G)) 3.7700E+02 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 3.0582E+02 83 CHARACTERISTIC LENGTH (CM) 1. SORT (4*VO*1.E6/PI) 3.8341 E+04 84 l 86 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 BAY 87 ADC (S/M3) ADC 1.26E-05 88 TIME (SEC) T 1 10 305.8181 320 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 BAY 94 CASES T ADC A VR VD PPM 96 1 1.26E-05 5.38E+02 4.60E-01 3.12E-03 8.30E-01 96 10 1.26E-05 3.93E+03 1.45E-01 7.21E-03 1.92E+00 Page 2 l

l

f 4 ' 6 TOLUENE-BAY-WR CA04556 REV0 PAGE gy A B C D E F G 97 305.8181 1.26E-05 1.15E+05 2.63E-02 3.83E-02 1.02E+01 98 320.0000 1.26E-05 1.15E+05 2.57E-02 3.74 E-02 9.95E &00 99 l 100 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 101 REYNOLD NUMBER RE L*VW*RHOA/MU 2.5170E+07 l

102 SCHMIDT NUMBER SC MU/(D*RHOA) 1.6485E+00 l 103 l l 104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 8.7758E-02 l 105 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 2.3500E-01 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF i 107 PPM INSIDE CR PPM (24500/MB)*VD l 108 CASES ADC VD PPM l 109 BAY 1.26E-05 3.42E-01 9.09E+01 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 9.4839E-03 112 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.5396E-02 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 114 PPM INSIDE CR PPM (24500/MB)*VD 115 CASES ADC VD PPM 116 BAY 1.26E-05 3.69E-02 9.83E+00 117 laminar turbulent 118 Time to peak (sec) = t=1/ER/.0001*SG 340995.8 36850.94 119 Time to peak (min) = 5683.26 614.18 l 120 Time to peak (br) = 94.72 10.24 l 121 122 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 ,

3000 3000 ADC 123 BAY Time (min) 20 614.18 644.18 674.18 1.26E-05 124 PPM 20.56 90.91 61.90 42.14 l 125 l 126 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 127 BAY Time (min) 20 614.18 644.18 674.18 1.26E-05 l

l 128 PPM 20.56 90.91 61.90 42.14 i

i 1

l l

l l

Page 3 I

I a , . .

CA04556 Rev.0 Page 39 ATTACHMENT F /

CROSS SECTIONAL AREAS i

l l

l l

l i

l

(

.,., i

'~~~ CA04556 REVO g-pg j y3 y -- PASE 90

. . u' BBB

%g(

g h '7&CG47' scsgy

- - - . - . . h7T? > = /57S~' 22fgy i

  • y(r i

~R w;6i oc'=Mcesfug/ey)

  • &6 .
  • 23-lW 4 =IJ3,loit = 2,susn l = f96/67 '

bu '

cl' 2175' '

Scle =pt.9gyj 4, tg.<'

scqs l' Ai = tGts-cJ)= 571rJ3 }f' L= On.c) Ort.c- uc)= 7znc)('

b oar * /L Y3 C C 3 N ~

du= 020k'-1t)Js) war w g(CG./ ) = (13M5 4' e.pt Apr = 2*8tre- Up = 2GBlo,Hff'

~

$ U M L ./ W L D// G : E'-2w Au = 018aa. rs>3-ri.r)~

e .are (r77 )= 27tcy,or, ./t<- .

CD&Nasr.1~ h T%4Wl' h/L&t6: H95 a. S my Au = Gssess axy -ri.<) Orz.ir') = rseo.95 pt woe w.m Ar.rg= ltt.snC.5 lf' s ,,, , Apsk=2401GiTLN'

y. . . :

.