A04320, Rev 0 to CA04320, 5,000 Gal 35% Hydrochloric Acid CR Chemical Habitability

From kanterella
(Redirected from ML20210V177)
Jump to navigation Jump to search
Rev 0 to CA04320, 5,000 Gal 35% Hydrochloric Acid CR Chemical Habitability
ML20210V177
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 09/30/1998
From: Gryczkowski G, Mihalcik J, Sommerville I
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20210V122 List:
References
CA04320, CA04320-R00, NUDOCS 9908230069
Download: ML20210V177 (44)


Text

l A1 - -- * , .

L .

Engineering Services Process Overview EN-1-100 f Revision 10

Page 105 of153 ATTACHMENT 19, CALCULATION COVER SHEET INITIATION (Control Doc Type - DCALC))

$ CALC No.: Mg f)2d Page _ ./ of%

Revision No.: g) l Vendor Calculation (Check one):

ESP _ [g/f f[4b/d 0 Yes )( 'No- -

Supp No.: O Rev. No.: 6 Responsible Group: g[4f l

Responsible Engineer:, [ M [ h fcg/,v.f/> ,

i CALCULATION ENGINEERING O Civil O Instr & Controls # Nuc Engrg DIscm -

, O Electrical O Mechanical O DieselGen Project l-O Life Cycle Mngmt O IGliabilityEngrg O Nuc Fuel Mngmt l

0 Othcr; ,

Title:

{ijvo 6$(. J& hy g)knc ke./l Unit Gbd b- G~W M4Wh O UNIT 1 O UNrr2 Al COMMON -

Proprietary or Safeguards Calculation O YES JrNO Comments:

k Vendor Calc No.: g/). REVISION No.:

  • VendorName:

f/)

//)

Safety Class (Check one): jll(SR O AQ ONSR

'Ihere are assumptions that require Verification during walkdown:

AIT # YM This calculation SUPERSEDES: g/) _

l REVIEW AND APPROVAL: -

Responsible Engineer: [,f,[rydfM/ [ Date: 7 p/g Independent Reviewer: .f,A/,f w y;/f /~ 83 Date:

Approval: ((///97  !

\ , A myM M Date:

J3%

l 9908230069 990817 i

PDR ADOCK 05000317 l p PDR c at. -

J

CA04320 Rev.0 Page 2

2. LIST OF EFFECTIVB PAGES Page Latest Page Latest Page Latest Page Latest Page Latest Rev Rev Rev Rev Rev 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 0 010 0 011 0 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 022 0 023 0 024 0 025 0 026 0 027 0 028 0 029 0 030 0 031 0 032 0 033 0 034 0 035 0 036 0 037 0 038 0 039 0 040 0 041 0 042 0 043 0 044 0 4

l 0 >

e CA04320 Rev.0 Page 3

) 3. REVIEWER COMMENTS l

l l

i w

i r

v ,

CA04320 Rev.0 Page 4 -

4. TABLE OF CONTENTS 01.COVERSHEET...................................................................................................................I
02. LI ST OF EFFECTIVE PAG ES .......... ... ............'. ......... ........ .... . .. ................. ................. . .. . ... 2
03. REVI EWER COMM ENTS.... ..... ... . .... ............ .. . .. ....... ...... ........ ......... .. ..... .. ......... .... ...... ..... 3
04. TAB LE OF CONTENTS . .............. . ...... ....... ...... .. ..... . . ......... .. . .. ... .. ... . ..... ..... ....... ... .. .. ... ..... . 4
05. PURPOSE...........................................................................................................................5 06.INPUTDATA....................................................................................................................6

' 07. TECHNICAL A S S UMPTION S ..... .... . ....... . . ........ .. ........ .... . .... . ..... . ... ... . .............. ....... . . . . 10 0 8. REF E REN C E S . . . . . . . . .. .. .. . . . . . . . . .. . . . . . .. . . . . . . ... . . .. . . . . . . . . ... . . . . .. . . . . . . . . . ... . . . . . . .. . . . . . . . . . . . . .

09. M ETH OD S OF AN ALYS I S .. . ..... ......... ...... ....... .... ............. . .... . . . .. ... .... .. ... . ........ ... .... . .. . . . 13 1 0. CA L C U LATI ON S . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1. DOCUMENTATION OF COMPUTER CODES........... ........................................ .........19 12.RESULTS........................................................................................................................20 1 3 . C ON C LU S I ON S . ... . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..

1 4. ATTA C H M ENTS . . . . . . . . . .. .. . . . . . . . . . . . . .. . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . .

ATTACHMENT A: MSDS FOR HYDROCHLORIC ACID.................................. .......... 22 ATTACHMENT B: ARCON96 RUN FOR AUX BLDG ROOF INLET........................... 28 ATTACHMENT C: ARCON96 RUN FOR WEST ROAD INLET PLENUM.................. 31 ATTACHMENT D: EXCEL SPREADSHEET HYDROCHLORIC ACID - AUX BLDG ROOF INLET............. ... 34 i

ATTACHMENT E: EXCEL SPREADSHEET HYDROCHLORIC ACID - WEST ROAD INLET.......................... 38  ;

ATTACHMENT F: TELEPHONE CONFERENCE MEMORANDUM.. ........................ 42 ATTACHMENT G: CROSS SECTIONAL AREAS.......................... . .... .... .. ................ 43 LA ST PAG E OF REPORT...... .............. .. .... .. .... . .. . ... .. ..... ..... . ....... . .... .. . . . .... ... .. ... .... . . .. .. . . ... .. . . . 44 J

CA04320 Rev.0 i Page 5 l

5. PURPOSE 10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess the habitability of the control room during and after a postulated external release of hazardous chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric dispersion coefficients (Ref.2). The explosion and flammability hazard of these chemicals must also be addressed (Ref.2).

CCNPP proposes to use a 35% hydrochloric acid solution, which will be stored in a 500 gal tank at the tank farm; however, the hydrochloric acid will be transported to the tank farm in a 5000 gal truck. The chemical habitability of the control room after a chemical release involving hydrochloric acid was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room config~u ration with the 1 inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that this solution can  !

be transported to the tank farm in a 5000 gal truck without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 35% hydrochloric acid solution are as follows Peak Concentration  !

Current Configuration No Recirculation 16.1 ppm With Recirculation 16.1 ppm Modified Configuration With Recirculation 10.9 ppm Toxicity Limit (IDLH) , 100.0 ppm  ;

Note that under the current configuration with the control room in the recirculation mode within 20 minutes post-accident and under the modified configuration with the control room in a perpetual rectreulation mode, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects.

The current calculation incorporates many assumptions which make these results conservative.

(1) A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes without physical incapacitation of an average human. The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human. IDLH denotes immediately Dangerous to Life and Health and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5). (2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8). (3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512. (4) The most conservative methodology is utilized: turbulent evaporation.

CA04320 Rev.0 Page 6

6. INPUT DATA The following input data is incorporated into this work:

(01) Chemical data for hydrochloric acid:

CAS number 7647-01-0 Refs.5,10 >

Chemical formula hcl-H2O Refs.5,10 Toxicity Limit IDLH (ppm) 100. Ref.5 Odor threshold (ppm) 1. Ref.5 Volume fraction 0.35 Att.F Volume (gal) 5000' Att.F Specific gravity (gm/cc) 1.19 Refs.5.10 Vapor pressure (mm Hg) VP 25.8 Ref.10 Boiling point (Degrees C) TB - 50.5@20 C Ref.5 Molecular weight (gm/ mole) MB 36.46 . Ref.5 Flash Point (Degrees F) Non-fiammable Ref.5

~

Lower explosion limit (Vol%) Non-flammable Ref.5 (02) Physical p,roperties of air per Refs.13,14:

Molecular weight (gm/ mole) MA 28.97 Characteristic length in air (Angstroms) SIGA 3.711 Molecular energy of attraction / Boltzmann constant (K) E/KA 78.6 Mass density of air (gm/cc) RHOA 1.204E-03 Viscosity of Air (gm/cm-sec) MU 1.83E-04 Universal Gas Constant (torr-cm3/gmole-K) R 6.24E+04 (03) The updated control room volume of 234157 ff was extracted from Ref.18.

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is defined as 8300 cfm or twice the maximum flowrate.

- (05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm.

(06) The Tank Farm-Control Room ARCON96 X/Q inputs were derived as follows (Att.B):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 l

(c) Height oflower wind instrument (m): 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 l (e) Wind speed units type (l=m/s,2= mph,3= knots): 1 Refs.B2,B10 1

(f) Release type (l= ground,2= vent,3= elevated): 1

p;:

'f

CA04320 Rev.0 Page 7 (g) Release height (m): 0. J (h) Building area (m2 ): 1155. . Att.G The cross sectional area calculations ap analyzed in Att.G. The calculation of containment

. cross sectional area yields 12435.63 A above the rooftop level of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 A2. For a west-to-east wind o

directiog the total cross-sectional area of the auxiliary building and the two containments is 26810 A . For an cap-to-west wind direction, the total cross sectional area of the turbine building is 27167 A . For a north-to-south and south-to-north wind firection, the total cross sectional area of the containment and the tpine baildipg is 21016 A . The cross-sectional area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

(i) Effluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0 (k) Stabk or vent radius (m): 24.54 r = SQRT(A/n) - 2

= SQRT[(5000 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m 7c,2))

= 24.54 m

(1) Direction to source (deg)
333 Refs.B12,B14 (m) Source window (deg): 90 Refs.B13-B14

' (n) Dis'.rm m source to receptor (m): 135 Refs.B12,B14 (o) Intake height (m): 15.62

' 91.5' + 4.75' - 45' = 51.25' = 15.62 m where 91.5' is the height of the Auxiliary Building roof (Ref.B6),4.75' is the control room exhaust heirht (Ref.B 13), and 45' is ground level (Ref.B8).

J(p) Grade elevation difference (m):' 0 Ref.Bl (q) Primary output file name: CHTFCR.OUT (r) JFT file name: CHTFCR.JFD (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s): 0.5 Ref.B1 (u) Sector averaging constant: 4 Ref.B1 (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number ofhours: 1 2 4 8 11 22 87 152 324 648 Ref.B1 (x) Horizontal diffusion coefficient (m): 14.88 o y=r/2.15=24.54/2.15=11.41 m (Ref.B1)

CA04320 Rev.0 Page 8 (y) Vertical diffusion coefficient (m) 0. /  !

(z) Flag for expanded output: n Ref.B1 (07) Atmospheric dispersion coefficients from the Tenk Farm to the Control Room:

0- 2 hrs 3.07E-04 sec/m3 2- 8 hrs 2.52E-04 sec/m3 8- 24 hrs 1.13E-04 sec/m3 24- 96 hrs 7.77E-05 sec/m3 96-720 hrs 6.37E-05 sec/m3 (Attachment B, Refs.B1, BIO, B15)

(08) The Tank Farm-West Road Inlet ARCON96 X/Q inputs were derived as follows (Att.C):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET 'Refs.B2,B10 CC1992. MET Refs.B2,B10 l CC1993. MET Refs.B2,B 10  !

(c) Height oflower wind instrument (m): 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 l (e) Wind speed units type (l=m/s,2= mph,3= knots): 1 Refs.B2,B10 l i

(f) Release type (1= ground, 2= vent,3= elevated): 1 (g) Release height (m): 0.

2 (h) Building area (m ): 1155. Att.G I

The cross sectional area calculations a[e analyzed in Att.G. The calculation of containment cross sectional area yields 12435.63 ft above the rooftop level,of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 fl . For a west-to-east wind directiog, the total cross-sectional area of the auxiliary building and the two containments is

. 26810 fl . For an capt-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft . For a north-to-south and south-to-north wind girection, the total cross sectional area of the containment and the tgrbine buildipg is 21016 ft . The cross-sectional area of a single containment of12435.63 ft or 1155 m will conservatively be used.

(i) Effluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0 (k) Stack.or vent radius (m): 24.54 r = SQRT(A/n) 2 2

= SQRT[(5000 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m /cm ))

= 24.54 m f

! (1) Direction to source (deg): 354 Refs.B12,B14 1

t CA04320 Rev.0 Page 9 (m) Source window (deg): / 90 Refs.B13-B14 (n) Distance from source to receptor (m): 172 Refs.B12,B14 (o) Intake height (m): 9.14 The Auxiliary Building roof above the control room and above A512 will be sealed tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the west road side (ES199702144). Per Ref.Bl1, the inlet plenum is 54'x10' with a bottom elevation of 70'. Thus the intake height is 75'-45'=30'=9.14 m (p) Grade elevation difference (m): 0 Ref.Bl (q) Primary output file name: CHTFWR.OUT (r) JFT file name: CHTFWR.JFD (s) Surface roughness length (m): 0.1 'Ref.B 1 (t) Minimum wind speed (m/s): 0.5 Ref.Bl (u) Sector averaging constant: 4 Ref.B1 (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.B1 (x) Horizontal difTusion coefficient (m): 11.41 o y=r/2.15=24.54/2.15=11.41 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.Bl (09) Atmospheric dispersion coefficients from the Tank Farm to the West Road Inlet:

0- 2 hrs 2.07E-04 sec/m3 2- 8 hrs 1.67E-04 sec/m3 1 8- 24 hrs 7.78E-05 sec/m3 24- 96 hrs 5.70E-05 sec/m3 96-720 hrs 4.56E-05 sec/m3 (Attachment C, Refs.B1, BIO, B15) l k

, I l

t L  !

CA04320 Rev.0 Page 10

/

7.TECIINICAL ASSUMPTIONS l'

The following technical assumptions were utilized in this work:

(01) Per Attachment F, a 35% Hydrochloric Acid Solution is stored in a storage tank of 500 gals capacity in the tank farm; however, the hydrochloric acid will be transported to the tank farm in a 5000 gal truck.

(02) Per Ref.15 in a postulated accident, it is assumed that the entire container of the toxic substance ruptures.

(03) An average ambient atmospheric temperature of 30 C and pressure of 760 torr will be used in this calculation. Variation in these parameters shows insignificant impact on the results (Ref.16). TA=30 PA=1 (04) The chemical spill will be assumed to spread in a circular shape with the maximum radius determined by a spill thickness of I cm per Ref.15.

(05) Based on the characteristics of the chemicals, the following release mechanisms will be assumed: For the hydrochloric acid solution, the mass transfer is the worst of three methodologies: diffusion in still air, laminar mass transfer, and turbulent mass transfer.

(06) For laminar and turbulent mass flow, a wind speed of one meter /sec is assumed. This is consistent with the wind tunnel methodology and the CCNPP data of Ref.B3, Note that per Ref.17 (p.265), a flow with Reynold's Number less than 5E+05 is laminar.

(07) The vapor pressure of the spilled material will be adjusted to the ambient conditions via the ideal gas law: .

VP(@T ) = VP(@T yp )

  • T,/ Typ  !

l

. CA04320 Rev.0 -

.Page11

8. REFERENCES -

~ (01)" Control Room",10CFR50, Appendix A, General Design Criterion 19.

_ (02) " Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78,6/74.

(03)"Res mnse to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FF A, and CEAEE", NRC-98-044.

(04)" Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC 018.

(03) " Hazardous Chemicals Data Book", Second Edition, Edited by G. Weiss, Noyes Data Corporation.-

(06) "Offsite and Control Room Doses Following a LOCA", Bechtel Calculation M-89-33 Rev.3,7/9/91.

(07) " Fan Performance Curve", BGE DWG 12782-35, Rev.0.

(08)" Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24,11/9/92.

(09)" SAX's Dangerous Properties ofIndustrial Materials", Ninth Edition, Richard J. Lewis Sr.

(10) MSDS for Hydrochloric Acid, Attachment A. i l

(11) "The Merck Index", Eleventh Edition,1989.

(12)" CRC Handbook of Physics and Chemistry",66th Edition,1985-1986.

(13) " Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic )

Compounds", W.Lyman, W.Rechl, and D.Rosenblatt, McGraw Hill 1982.

(14) " Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410,1988. 1

-l

[

(15) " Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental I Release", NUREG-0570,6/79.

(16)"CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine",

Bechtel Calculation M-94-16 Rev.0,11/10/94.

(17) " Heat Transfer", Seventh Edition, J.P.Holman.  !

l (18)"Modeling of the Control Room / Cable Spreading Room HVAC System Using GOTHIC l l

' Software", CA02725,1/8/97. j i

l i

L

r-- .

CA04320 Rev.0 Page 12 (B1)" Atmospheric Relative Concentrations in Building Wokes", NUREG/CR-6331 Rev.1,5/97.

' (B2) CCMAIL from Mark Abrams at PLG to G.E.Gryczkowski,3/5/97.

i (B3)" Wind Flows and Dispersion Conditions at Calvert Cliffs". Maria Gavrilas and Melissa u Wieland, BG&E-EP1,9/85.

(B4)" Atmospheric Dispersion Coefficient Calculations from the MSG and ADV to the Control Room", CA03533,1/17/97.

(BS)" Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE l Drawing 62-047-E, Rev.6 1

(B6) " Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(B7) " Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19.

(B8)" General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9)" Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10)"ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940, 8/21/97.

(B11)" Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details",

BGE Drawing 60-330-E, Rev.14.

1

- (B12) " Wind Tunnel Modeling of CCNPP", CA00748 Rev.0,1005/95 l

l

- (B13)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0,5/8/97.

. (B14)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0,7/1/97.

(B15) " Analytical Software Installation Test of ARCON96", CA03941, 8/21/97.

i

CA04320 Rev.0 Page 13 9.. METHOD OF ANALYSIS

. This work utilizes three separate methodologies to calculate mass transfer from the spill site to the control room.

(1) The first methodology is diffusion in still air for spills in closed areas and for liquids with high boiling points. The method of analysis utilizes the algorithms of Ref.15 to denve the toxic gas concentration inside the control room.

(la) Calculation of the Diffusion Coefficient of an air / toxic gas system for dilute gases at low pressures per Ref.13 by the method of Wilke and Lee:

2 DAB = B'*TA"*MR"/(PA*SIGAB

  • OMEGA) where 2

DAB = Diffusion coefficient (cm /sec)

B' = 0.00217 - 0.00050 * (1/MA + 1/MB)"

MA= Molecular weight of air (gm/ mole) l MB= Molecular weight of toxic gas (gm/ mole)  ;

MR= (MA+MB)/(MA*MB) = Molecular weight of binary gas (gm/ mole)

TA = Air temperature (K) l PA = Air pressure (atm)

SIGAB = Characteristic length of molecule A interacting with molecule B (A)

=

(SIGA+SIGB)/2 SIGA = Characteristic length of molecule A (A)

SIGB = Characteristic length of molecule B (A) = 1.18*VB" VB= Lebas molal volume (cc/mol)

OMEGA = Collision integral The Lebas molal volume VB can be calculated as follows per Ref.13:

VB= 14.8*(C) + 3.7*(H) + 7.4*(O) + 9.l *(O in Methyl Esters or Ethers) i

+ 9.9'(O in Ethyl Esters or Ethers) + 11 *(O in Higher Esters or Ethers)

+ 12*(O in Acids) + 8.3*(O Joined to S, P, N) + 15.6*(N Double Bonded) l

+ 10.5'(N in Primary Amines) + 12*(N in Secondary Amines) + 27'(Br) l

+ 24.6*(Cl) + 8.7*(F) + 37*(I) + 25.6*(S)- 6.0*(3-Membered Ring)

- 8.5*(4-Membered Ring)- 11.5*(5-Membered Ring)- 15*(6-Membered Ring)

- 30* Naphthalene - 47.5' Anthracene + (Molecular weight / density)*(Element)

The collision OMEGA = integrq+0 A/TS C/emfg +can E/e bg9pleulatQ,p

+ G/e follows per Ref.13:

A= 1.06036 B= 0.15610 C= 0.19300 D= 0.47635 E= 1.03587 F= 1.52996 G= 1.76474 H= 3.89411 TS = TA/(E/KAB)

E/KAB = SQRT(E/KA

  • E/KB)

E/KB = 1.15*(TB+273.15)

CA04320 Rev.0 Page 14 (Ib) Surface' Area of a Spill Per Ref.15 /

)

The rate of mass transfer of a liquid imo the atmosphere is directly proportional to the surface area of the spill. Ref.15 approximates the initial shape of the liquid body by a cylinder, with the height equal to the radius of the base.

V0(m') = Q*QF*(0.003785422 m'/ gal)

R0(m) = (V0/n)"'

2 2 A0(m ) = n*R0 The liquid s reads c uickly by gravity to a thin pancake on the ground. Its surface area may be estimated b the fol;owing equation: '

2 2 A(m ) = ' n*(R0 +2*t*(g*V0*(SG-RHOA)/(n*SG))")

where SG = Density of the liquid (gm/cc) 2 g= Gravitational constant = 9.81 m/sec t= Time (sec)

The surface area, however, does not expand indefinitely as the above equation indicates. The maximum area of the spill in an unconfmed space is estimated from the initial volume by assuming a spill thickness ofI cm. .

2 AF(m ) = V0/0.01 1

tA(sec) = Time to maximum area  !

= (AF-AO)/SQRT(4

  • x
  • g* V0 *(SG-RHO A)/SG)

The total mass of the liquid can be calculated as follows:

j M0 = Q*QF*SG*3785.422 gm I where -

'Q= Storage quantity (gal)

QF = Volume fraction ofliquid or weight fraction of solid SG = Specific gravity (gm/cc)

(1c) Vaporization Rate in Still Air:

When exposed to the atmosphere, liquids with boiling points above the ambient temperature will evaporate by diffusion into the air. The main driving force is the vapor pressure difference, i.e.,

concentration gradient, between the lic uid phase and the air. The rate of a vapor diffusing into still air is computed from the Fickian c.iffusion equation in Ref.15 2

VR(gm/m -sec) = VP

  • RHOV
  • 10000. / p
  • SQRT(DAB /(n*t))

where '

F i.

u .,; .

L, 1 L

,. s i ,  : CA04320 Rev.0 -

. Page 15 ?

VP(torr) = - ' Vapor pressure of the liquid ' )

Xtorr) = ' = Ambient atmospheric pressure (760 torr)

GOV (gm/cc) = Vapor density of the hquid '

E Time .

t(sec)= 2
l. DAB (cm /sec) = Diffusion coefficient E

1The vapor density of the liquid RHOV is derived from Ref.14 as follows:

. RHOV(lbm/cf) = 144*P'(psia)/(R*T(R)) l RHOV(gm/cc) = 144*14.696!(1545/MB*T(R))*(.01601846 gm/cc/lbm/cf)

L = MB(gm/ mole)

  • 14.696*.01601846/(10.7292*T(R))

l  : (Id) The vapor density outside the control room can be calculated via VD(gm/m') = VR(gm/m2-sec)*AF(m2)*X/Q(sec/m')

. The correspondmg vapor density outside the control room in ppm is (Ref.13)

PPM = (24500/MB)

  • VD(gm/m')

(le) The vapor concentration inside the control room at time t can be calculated via the following: dCen/dt = A

  • Crxr- A
  • Cea _

l ;for t<ta Ccni = C tx7 *.. (1. - exp(-A

  • t))

i .

l for tg<t<t . Ccn2 = Ct xy * {l. - exp[-A * (t-ta)]} + Ccni

  • cxp[-A * (t-ta)]

l .

for t>t , - ~ Cen3 = Cn2

  • exp[-A * (t-t m .)]

l .where'-

l Ccg=: /

l Control room concentration in gpt m' or ppm l -CE xt= External concentration in gm/m or ppm A= Fca / Vca = Turnover constant in 1/ min at time t Fca = Control room ingress and egress flow rate at time t Vcn= Control room volume t=- Time (min).

tg .= - ' . Time at which recirculation starts (min) t,= (mi

-=. Time at which SG(gm/cc) * (l.cm)evaporation

/ {VR(gm/mof toxje

-sec) substance

  • (0.0001 m ceaseg/cm,n) l ) * (60.sec/ min)}

l (if) The spill area, vaporization rate, and vapor density are time-dependent quantities for

' diffusion m still air for spills in closed areas. The peak vapar density occurs at the time to L- maximum area (tA), which should be used under these conditions.

1

- (2) The second methodology is mass transfer to forced convection for laminar flow per Ref.15. l

_ VD(gm/m3) = VFL *ADC*AF (1. - exp(-X

  • t))

f PPM = ' (24500/MB)*VD l

l

[. -

r I

. . 1

. CA04320 Rev.0 Page 16 where i ADC= Atmospheric dispersion coefficient (sec/m3) .

AF ' = Final spill area (m2) See 1b.

MB = . Toxic gas molecular weight (gm/ mole)

VFL = Laminar evaporation rate (gm/m2-sec) .

==

HDL*MB*VP* 10000/(R*(T(C)+273.15))

.T(C)== ' Temperature in 'C at which VP is determined VP Toxic gas vapor pressure (mmHg)

TA - = Ambient air temperature (C)

R= Universal gas constant = 62400 torr-cm3/gmole-K HDL = Laminar mass transfg*coegjent (cm/sec)

=

0.664*(DAB /L)*Re Sc .

DAB = Diffusion coefficient (cm2/sec) See Ia.

L == Characteristic i

= (4*V0*l.E6/x)gggth (cm)

V0= Initial volume (m3)-See Ib.

Re= . Reynolds number

=

L*VW*RHOA/MU VW = Wind velocity (cm/sec)

RHOA = Mass density of air MU = Viscosity of air Sc = - Schmidt number

=

MU/(DAB *RHOA)

.A= Fca / Vca = Turnover constant in 1/ min .

Fca = Control room ingress and egress flow rate

. Vca = Control room volume t= Time to maximum concentration = 10000.*SG/ VFL (3) The third methodology is mass transfer to forced convection for turbulent flow per Ref.15.

VD(gm/m3) = VFT*ADC*AF (1. - exp(-A

  • t))

PPM = (24500/MB)*VD where -

ADC = Atmospheric dispersion coefYicient (sec/m3)

AF = Final spill area (m2) See Ib.

MB = Toxic gas molecular weight (gm/ mole)

' VFT = Turbulent evaporation rate (gm/m2-sec)

=-

HDT*MB*VP*10000./ R*

- VP = Toxic gas vapor pressur(e mHg) .(m(T(C)+273.15))*

TA: = Ambient air temperature (C)

R= Universal gas constant = 62400 torr-cm3/gmole-K HDT =

= Turbulent mass trangfgSccgient(cm/sec) 0.037*(DAB /L)*Re

- DAB = Diffusion coefficient (cm2/sec) See 1a.

L= Characteristic Ig9gth (cm)

=

(4*V0*1.E6/x) _

VO ~ = Initial volume (m3)-See 1b.

Re= Reynolds number

-=- L*VW*RHOA/MU VW = Wind velocity (cm/sec) -

1

n. ,

CA04320 Rev.0 Page 17 RHOA = Mass density of air MU.= Viscosity of air Sc = Schmidt number

=

MU/(DAB *RHOA)-

A, =

Fca / Vcn = Tumover constant in 1/ min Fca = Control room ingress and egress flow rate Vcn= Control room volume t= Time to maximum concentration = 10000.*SG/VFT (04) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the explosion and flammability limits.

l

F CA04320 Rev.0 Page 18

10. CALCULATIONS The chemical concentration of 35% hydrochloric acid inside the control room for a chemical spill of 5000 gal in the tank farm is calculated via EXCEL spreadsheets captured in the following attachments using the methodologies of Section 9:

Attachment D: 35% Hydrochloric Acid Solution for Current Control Room Configuration Attachment E: 35% Hydrochloric Acid Solution I ,

for Modified Control Room Configuration l

l l

l

?

l l

r>

CA04320 Rev.0 Page 19

11. DOCUMENTATION OF COMPUTER CODES /

This work'employhd the ARCON% computer code, which was verified, benchmarked, and documented in Ref.B10. The installation is documented in Ref.B15. ARCON96 implements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in the vicinity ofbuildings.

l l

i I

l

CA04320 Rev.0 Page 20

12. RESULTS /

The results of the toxicity calculations for a 35% hydrochloric acid solution are as follows:

Peak Concentration Current Configuration No Recirculation 16.1 ppm With Recirculation 16.1 ppm Modified Configuration With Recirculation 10.9 ppm Toxicity Limit (IDLH) 100.0 ppm Note that under the current configuration with the control room in the recirculation mode within 20 minutes post-accident and under the modified configuration with the control room in a wrpetual recirculation mode, the peak control room concentration under worst case conditions is

..ess than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects.

i l l 1

1 l

l i

. . l l

CA04320 Rev.0 Page 21

13. CONCLUSIONS Based on the spreadsheet results presented in Attachments D and E, use and storage of a 35%

Hydrochloric Acid Solution at the tank farm in a 5000 gallon truck does not present any control room habitability concerns at CCNPP.

The current chemical habitability calculation incorporates many assumptions which make these results conservative.

(1)thout wi physical incapacitation of an average human. The regulatoryA maxim dictate a maximum concentration limit that could be tolerated for 2without mutes m, requirements physical of Ref.2 i incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health I and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5).

(2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value. (Refs.6-8)

(3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume ofroom A512. '

(4) The most conservative methodology is utilized: turbulent evaporation.

l l

Hydrochloric Acid Solution will not pose a flammability or explosion hazard, since the solution is non-flammable and non-explosive per Refs.5 and 10.

I l

i l

l l

l l

l l

e ,

I-CA04320 Rev.0 Page 22 '

) 14. ATTACHMENTS ATTACHMENT A MSDS FOR HYDROCHLORIC ACID 1

l l

l 1

i I

i l

l l

l

s. . . . . . : ;:: . : .' - - ......

10/15'88 25:or e7sr sso uoi' parttiNin supp. """" .*2g.; l

~'

i MATERIAL SAFETY DATA SHEET j,p- g ._. o 7 (/

C A0(320 REV 0 PRILLAMAN CHEMICAL C O R P O R A T 10 N- _

. gg g. Q P.O. BOX 1606

  • SUFFOLK,VA 23434-1606 .

sEcTIoM L NAME (, RA1ARD sWOOJtY l

Material names Rydrochloric Acid I

Razard su= mary (as defined by ossa mazard comm. sta., 29 cra 191o.1200): ~

physical hazards: Wone Health hasards: corrosive (skin, eye, respiratory passages),

inhalation (TLV), harmful (lung injury) l Read the entire MSDS for a more thorouwh evaluation of the har_ards.

sECTIoM 2~ INGREDIENTS 4 osEA PEL

      • Iydrogen chloride (CAS 7647.01-0) l 20-35 l 5 ppa, ceiling Water. -

l 70-80 [ Not listed >

, g l i 1 1 Ingredients not precisely identified are proprietary or nenhazardous.

I Values are not product' specifications. ca - approximately.

SEcTroN 3 PHYSICAL DA'[A l

Boiling: point About 230*F, 1108C Vapor pressure (ma ng at 20 c): 8 25.4 at 70*r l

Vapor density (air = 1): No data i solubility in wate're solubis l

PE: ( 1 ,

specific gravity 't.1 - 1.2 4 volatile by volume: No data .

l Appearance and odors clear liquid with sharp, irritating oder.*

~SECTIoM 4 FIRE AND EXPLOSION KASARD DATA l Flash point (and method): Does not flash No data Autoignition temperatures F1memable limits (sTP): Not applicable s

ratinguishing medias, ,

Not applicable. Use media suitable for surrounding fire, special fire fighting protective equipmant:

8 elf-contaiand breathi.ng apparatus with full facopiece and protective clothing if involved in a fire of other materials.

Unusual fire and explosion hazards:

Reacts with many metals producing flammable hydrogen gas.

E 9

I .

a E

/

10/[$/gf 'iSic7 9757 539 1805 PRIlliMAN SUFF.

CA0020 REY 0

. annu =* pggg g . L. 2 003 **

. WhtERIAL sarart an2A staET (coatinued)

. . Eydrochlo'rio Acid, .

si, m v. s samuhym ==

s a stability , ,

atable'mader normal conditione. . . .

Zacompatibility: ,, s. ... , -. - s e -

Alkaline materials. 1* acts with many. metals to produce flammable er "

bydrogen gas. nilution wit'.a water is esothermio. + .: .

Essardous decomposition products:

l Eydrogen . .

Easardous polymerisation

  • Will not moeur.

secTxon 5 mem's wman m_.ar_me:=,

Generals . s No tosiaity information is available on this specific preparations this health hasard assessment is based on information that is available from the manufacturers and other sometercial sources.

Ingestion:

The acute oral LD50 in rat is probably above 5 g/kg. Relative to other materials, a single dose of this product is practically neatomic by ingestion. ' Irritation or chemical burns of the south, pharyaz, esophagus and steameh can develop following ingestion. Injury may be severe and cause death.

l Eye contacts This material can Laduce ehemical burne .on contact with human eyes.

, skin contacts ,

this material will probably induce chemical burns following contant with human skin.

skin absorptions This product will probably not be absorbed through human skin. .

Inhalation --

Vapers and aerosols can irritate eyes, nose and respiratory passages and say cause ulcerations of nose, throat and laryaz.

Other offsets of overeuposuras Exposare to hydrooklorio acid can also cause erosion of the teeth and deraatitis. Eigh concentrations saa induce pulmonary, edema and laryngeal spass.

s First aid procedures:

sklas niipe material off the skin with a dry cloth. Then immediately wash I material off of the skin with soap and plenty of water while removing l contaminated olothing and footwear, nisoard contaminated clothing and footwear. ,

---continued--- .

. tonsm tsin erst sse isos pan.uuin supp. C A 04' 3 2 0 . REY. 0 ... _.g ..o ....

o,,

. rigo 3

, manzaz. sArmwr sama sass, co.atianad)

PAGE 6 -

e Eydrochletic Acid aEMT5cN 's " " 4W uneman _m_. -gg._i (coa *9=pedt

. First aid procedures (eeatinued):

Era.m.: zamediatel'y flush with plaaty of water. 'htter initi=1 flushing, remove any contant leases and. contiane flushing for at least 15 minutes!

Eeld eyalida apart during the flushing ,to ensure stasing of the, entire '

surface of the eye and lids with water. ~ De not attempt. to neutralize with chemical agents. obtain medios1' attention as soom 'as possible.

Oils or eintments should met be used at this time, contiane the flushing for an additieaal it minutes if a physioina is not immediately available.

Bave eyes esamined and treated by medical perseasel. , ,

Essesttoas no not induce vaniting. 'sive 1 or 2 glasses of water to drink. If vomittag enours, give fluids again. Refer person to medical possessel. (Never give anything by mouth to an unconscious er eenvuleing persea.) . .

Xahalation: Remove viatim to fresh air. If not breathing, clear airway and start south-to-south artificial respiration. If breathing is labored, give osygen and get medical attention. If a cough or other respiratory symptoms develop, comault medical pessoamel.

. Wete to shwsician Itacosal injury following ingesties of this potentially corrosive material may contratadicate the industion of vomiting'in the

~

treatment of possible intonication. similarly, if gastrie lavage is performed, intubation should be done with great care. In cases of l severe esophageal ehemical oorrosion, the use of therapeutic doses of steroids should be considered. seaeral supportive measures with scrupulous monitoring of gas eschange,..cid. base balance, electrolytes, and fluid intake are also of high imporr.ance. pre-ezisting lung disease may be aggravated by exposure, sacrzou 7 SPILL .ca "M. PaoCaDUREs steps to be taken La case material is released or spilled:

Wear, skin, eye, and respiratory protection during cleanup. Contain spip. Keep out of sewers and drains. soak up material with absorbent  !

such as sodium bicarbonate, soda ash or lime, if available, and shovel into a chemient waste container. Cover container and remove from work area. Wash residue from spill area with water and flush to a sever servir M by a wastewater treatment famility.

Disposal a$thods

  • seeauna its PE is 2 or below, discarded material is a basardous vaste, number D002, 40 crt 261.22. Dispose of in a facility permitted for hasardous wasta.

Centainer dispemals Empty container retains basardous residue, observe all hazard .

precautions. Do not distribute, make available, furnish or reuse empty container except, for storage and shipment of original product. menove all hasardous residue and puanture or otherwise destroy empty container before disposal.

sacTrow a syzerar,PaoTacTxon rwroaxaTrow _

TLV9 er suggested sentrol values ,

The AcoIE TLV and osaa FEL for hydrogen chloride is 5 ppm ceiling. .

l

, 10/15/96 -

15:08 @ 757 539 1806 PRILIAMAN SUFF. C A0(320 -REV 0 i erg' * @003' METERIAL sAraTY DhTA 853ET (continued) PAGE M ,

~*

Rydrochloric Acid ' *

  • sacTZQN 8 sFECIAL PROTECT 20W TNFoRMkTIoM (continued) . - fcf*;'-

l Ventilation: ' ~ ' "

If moedad, use loaal eahaust .to minimise exposures.

  • j .

Respiratory protections ,

', .g If seeded, use MSEA/FIOSE respira'toi-* approved for acid gases.

1 Protestive clothingi l Take all precautions to prevent skin contact. Use gloves, are covers ama apron determined to be impervious under the condittens of use. ,

l

' Additiemal protection, such as full body suit and boots, may be required depea41ag on conditions.

Eye protection: .

chemical hight goggles and full faceshield.

s other protective equipments 1 Eyewash station and safety shower la work area.

k Si;CiloN 9 sPECIAL PRECAUTZoNS oR oT= @ coHHird75 special precautions er other comments:

Frevent skin and eye contact. observe TLV limitations. Avoid breathing vapors or aerosols.

SECTION 10 REGUIATORY INFoRMkTIoN TSCA (Tesic substances Control Aett Regulations, 40 cr1710:

All ingredients are en the TSCA chemical substance Zaventory.

cracIA and sana Regulations (40 crR 355, 370,* and 372):

Section 313 supplier Notification. This product contains the following toxic.ohanimals subject to the reporting requirements of section 313 of the Energency Planning and community Right-To-Know Act of 1986 and of 46 CFR 372:

20-35% Nydrochloric acid (cAs 7647-01-0)

The information herein is givbn in good faith but no warranty, orpressed or implied, is made.

t Prepared / Reviewed: 03/08/88

      • This line or section contains revisions or new statemaats since the last issue date.

s 9

HYDROCHLORIC ACID C A0fl320 REV 0 Het D A f5 C 1 e n.-

Comnen synonyme weiery toes Cemrmee share, unteams eds 5. FIRE NAZARDS , it NAZAAD A11ES$ MENT C00(

tesses Ace ai Fioeh Peet Nel eenunaus Su Messrd ^ ' Handbeet) j ,

/ SJ Flamment Lanns in Air: Nos esmmoces A.p Este and senes siih eter meetng weem a resuces ag yw, gelmguieNag Agente Nas partnent 44 Fire Estinguishing Agonie het le be weet sem partneni GB Special Mesores se Camhuemen AVotD CONTACT WITM L40VID AND VAPOR Keep peoine away it NA2ARD CLAl$WICAfl0NS et#ees ehemes poischee tus enn sem 4emamed poemng products: Tous and peakg vapore are generened won hesies iL t Cees of Federei megwouses eassre,h*

g,% ie end see seie, more, is weca soon veces SA Behavier si Fire ami perensni Cenessee eieions sie, se sessage end esseue escharged mesores gy ign Men T. ,

_ elas Seemshie ttJ NAS Memord Reeng est Duk Weter

""*888 ***m one sesumen sees egences ,,, , , , , , , , , , , , , , , , , , , , , , , , , , 3, . _ _ _ _

4.0 Suming Reis:Nes asemasse . Category fiening

&16 AdeuHe Flame Tempymure Fee 6

",,"v*,,*,s"."",*se ,,,,, no , es en e,es,i 1, MeWm weer ehenetW Pe che sus e@ seegemened We*#tne Deu as needene aspero es e it sesicNemowns As to Fuel Aeum Weser essent 3 Den LgederSohdbasarg_ _ 3 Fire , , , ,,,,,, , nee evedse,

,,,,e,,,,,,,,,,,,,,,,,, ,oes, ,

wow pouen Human Teocey 3 Ameet teacey i Aeement Enoct. 3 CALL 80m MEDICAL A3D L CHEMICAL REACTIVITY necess,e, Omer Chemcat 3 7.9 meeseve ee s.n e.u,, . .,,.ue ..sourg n .- r we,wate ere.mmen em.ecten i.is.  ;; _ .

~ . e.sh . - .e e.e. a en ttJ NFpA Menard Caseelficettom 1

m weemsg nos mesose :p e estecisi wepeesen e, w p ,,,,,e ,,, ,,,,,

8 trumme e omsid. gas any9'" ,, , Cenegory Cineelfisemen

. pies,,e ,,g, 7J Sienety Dunne Traneeert 8:ame *** M*'8'8 88h*3 8 unwnobsey (Reg ,_ _ g

(%,iw ma d ,,eso.,ed

'7.4 emueransme.:Agenu Cusas ri.h e. .ew.See oi,Asses and aace=er ivao=> e Exposure me,si .no .dow.g.nd

'W,Uio,"

"'* ** e'e"e"n'e"."'* oner s . , **"***8^ ***'8'"""a*

. ..mo.c o ene . ore . Co~sciou.. e em er.o ier e* . e mi .-une.

  • nem FA Polysiertsetiost Not postnant 00 NOT INDUCE V0hefesG 7 ) WWWher of PWysswtmma hol partneni f.F MWer Reue pimetens to

,3 ,"' 11 PHYSICAL AND CHEMICAL P90Pitfit$

13 e Physical siew se ts C and 1 ete: .

Censensus as somme me e hgh eencemamens- tused Water **v**- ~88e******"*h*' 1J asmecuter weght ss es ac a '" * * " " ' ' * ' " ' ' * "

Pollution **r enoldy a8 * * * * * * *

' ope *rew"s*a*nea*tryr wow'onemes strF = 60 0*C = 323 0'E 13.4 Freeaing Paint teos partnant

8. RESP 0 Nit T0 015 CHARGE 1 (ASIL & WATtt POLM101 ,,,,,,

(See Reepense Methese Handboet) 8.9 Category:Cerfeefwe $t Agunos Tesicey: 13.7 specine Gravey:

assue marrangeerriesve SJ Cm 8 282 ppm /95 hrra.semie i tg al 30'C lloodl Roemet access beh/TL./eesh eeler 12 3 Laguld Surface Tenelem Noi pertnent Deperse and Ausn 100 330 ppmres Iwrannny/LCesteen it t Laguld water intertecisi tenaism ,

weier Nos postnant I u ae.,t ramar osa nm e eden = is a V== cn=> sp.enn erunr  !

SJ Bioengsces Osygen Domend (BODY Noi pennent I alone 12.11 Rano et Spes.Rs Meau of Vapor (Gee) 1 CHEMICAL D($1GNAfl0N$ 4 Ot$tilVASLE CHAAAC11A15 TICS g a poed Chain Ceneenerenen Potonnel: ese perwwn None 13.13 Lesens aiset et Waperiaenen:

Et Ce competmeny Cees Noneenimeg swiers 4. 9 Physsei state (se empped) Laiug 4J Celer: Cotences le nlim yeaow 170 Sts@ e to 6 ss/g =

sais 4.8 Oder: Puneent eheep, pungent, smanne 413 K 10* J/kg SJ Fernoulo:HCE Ms0 13 13 M*ei of Cambustlem hos portmen.

SJ me0/UN Designeuest 8 0/1789 12 14 Mesi of 1 ,..

Nos partnent 14 Olyt 30 iena 17es 8318 heel of ashesen eee 81u/t, 8.5 CAS Regnoiry assi 7e47444

. -ee0 es/g -80 I t08 J/k0 f t le Heat e. Petynieresenes east periment 12Js Meet et pumes 13 e calig

$. H[ALTH MAZAR05 8. $ NIPPING lilFORMAfl0N 1126 Lam ung Wesus: Dale not evadetdo -

El Persons. Protoceve f , . les .  : Weseung e,apment et4rie meek, y hahatnel 31 igJy neig ye,e, p,eeeure- 8 0 pee l

-.,pe . e e e. . n .oeled - apron, eseL e e= ,.es eraees isc,- of Purier. Food posesong er 1.- e ,7.%w31.%.

$7 Se.3$ $%, ReggenL ACS. and j SJ Spelotems Feeewing tapeewe Inhetenon of names seedte e cougr.g and choewg senesho%

and enlohen et nose arW hegt Lget senses hume USP F3' ge 37 I% .Pferud repeshe epWy op $7 % i LS Treenmens of tapenurs piHALAfiON serneut person te been er, keep hun eerm and goes e8W gj Sterege Temperstwo. Antsent souson get medsel oesneen esweedecesy. elast arteceal seepreton d breathmg slope .NGESTION hows gJ inerg A- _ _ _ ses engsement sa venons Open ]

person Winh *Wer o souk. es NOT subse womeme EVES.r.ew enmeesiser tush ** piensy o.f 4 w . .s.1. and ,e, - - - .i g t. m.i phyestaan does noi eveue prerrylly luet enmeestely Guan ehm neute remousng _ _Ied alouwg; gel meecei aeonten prenipsy. ame soap and esesi see iy ei sessi SS mm.

$J Tsiresheid Limit value 5 ppm SA $siert Tenn hennemen Leades 8 ppm ter $ em

$J Tosh 81y by ^ . Dune met evedenes

$_F Late Toeieny:None SJ veper fess} hvasse Cherwiertouca Waps a moderatWy sientes such sisi presennel we not usueer Islerene moderate e ingh oaper concermetene 64 uged er osed menant Cherwiewme. seny u e ano e,ane, may e pen end escent NOTts j I

esta tun. ener a es. mnmaw sommet LIS Oper Threshold 0-l som

&i9 IDLM Vehse' le0 ppm I

567 JUNE 1985 t

l

r

- .CA04320 Rev.0

. Page 28 .

1 .,,

'ARCON96 Fir 59 OR A DG W g g I

L

g ..

4 ... .,

Program

Title:

ARCON96, CAO(320 REV0 Developed Pors _U.S. Nuclear Regulatory Commission

' Office of Nuclear Reactor Regulation.

PASE W Division of Reactor P g ram Management Dates' . ) June 25,1997 11:00 a.m.

Inc Contacts: .J. Y. Lea Phones (301) 415 1080 e-mails jyllenre. gov J. J. Hayes Phones (301) 415 3167 e-mail jjhenrc. gov L. A Brown Phones (301) 415 1232 -

e-mails lab 2enre. gov Code Developer J. V. Ramsdell Phones (509) 372 6316 e-mails j ramsdellopnl. gov Code Documentation NUREG/CR-6331 Rev. 1

~ ~

The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, maires any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such u33 .of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

ProgrteRb 7/21/1998 at 08:50:14 eeee*** ARCON INPUT **********

Number of Meteorological Data Files =3

. Meteorological Data rile Names CC1991. NET- '

CC1992. MET CC1993. NET Height of lower wind instrument (m) = 10.0 l Height.cf upper wind instrument (m) = 60.0 j Tind speeds entered as meters /second j i

.. Ground-level release RJ1 ease height (m) = .0 Building Area (m'2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vint or stack flow -(m*3/s) = .00 V:nt or stack radius (m) = 24.$4 l ' Direction ..' intake to source (deg) = 333

'~ '

Uind direction sector width (deg) -- 90

. Wind direction window (deg) = 288 - 018 Distance to intake (m) = 135.0 Intake height (m) =- 15.6

! Tarrain elevation difference (m) = .0 i

Output file names

'CHTFCR.out

'CHTFCR.jfd l

j Minimum Wind Speed (m/s) = .5 surface roughness length (m) = .10 Sector averaging constant- = 4.0

}.

f

! Initial value of sigma y = 11.41 l- Initial value of sigma = .00 Expanded output for code testing not selected Total number of hours of data processed =_. 26307

+

Hours of missing data = 416 Hours direction in window = 7167 j

Hours elevated plume w/ dir, in window = 0 '

Hours of calm winds = 495

(- Hours direction not in window or calm = 18229 l t.

DISTRIBUTION StMERY DATA BY AVERAGING INTERVAL l 8' 12 24 96 168 360 720

. AVER..PER. 1 2 4 UPPER LIM. '1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03

. LOW LIM. 1.00E-07 1.001-07 1.00E-07_ -1.00E 07 1.00E-07. 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07

e .. ..

4 ABOYB R%hGE- O. - 0. O. 0 .. .

O. O. O. O. O. c.

IN RANGE 7662. 9147. 11079. 13554. 15606. 19559. 25004. 25103. 25169. 24910.

CEIAN RANGE 0. O. O. C. O. O. 0 .- O. O. O.

EERO 18229. 16674. 14628. 11932. 10062. 6025. 201. 1. O. O.

TOTAL X/Qs 25891. 25825. 25707. 25406. 25668 25584. 25205. 25104. 25169. 24910.

t NON EERO 29,59 35.42 43.10 53.1s 60.00 76.45 99.20 100.00 100.00. 100.00 95th PERCENTILE X/Q VALUES 3.07E-04 2.99E-04 2.88E-04 2.65E-04 2.19E-04 1.63E-04 9.925-05 0.82E-05 -7.61E-05 6.84E-05 95% X/Q for standard averaging intervals O to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.07E-0*

2.52E-04 _.

3H EV0 S to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.13E-04 gggg Q 1 to 4 days --7.77E-05 s MwL 4 to 30 days 6.37E-05 NOURLY VALUE RAN3E MAE X/Q MIN X/Q CENTERLINE .4.14E-04 3.66E-05 SECTOR-AVERAGE 2.59E-04 2.30E-05 NORMAL PROGRAM COMPLETION P

l l

)

i I

l

- CA04320 Rev.0 Page 31 ATTACHMENT C ARCON96 FILFR FOR WEST ROAD INLET PI ENUM 4

l l

i

Program Titles ARCON96.

Developed Fors U.S. Nuclear Regulatory cossaission Office of Nuclear Reactor Regulati =

Division of Reactor Program Management cA0(310 RE't0 Datas. ~ June 25, 1997 11:00 a.m.

PA8E b J

NRC Contactet J. Y. Lee Phone (301) 415 1080 e-maili jyllenre. gov J. J. Hayes' Phone (301) 415 3167 e-mails jjhenrc. gov Phone (301) 415 1232 L. A Brown e-mails lab 2enrc. gov Code Developers J. V. Ramsdes11 Phones (509) 372 6316 e-maili j_ransdellepnl. gov Code Documentation: NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal li:bility or responsibilities for any third party's use, or the results of such us2, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run = 7/21/1998 at 08:50i34

  • ee***** ARCON INPtTF **********

Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. NET CC1993. MET Height of lower wind instrument (m) = 10.0.

Height of upper wind'instrumert (m) = 60.0 Wind speeds entered as meters /second Ground-level release Release height (m) = .0 Building Area (m*2) = 1155.0-.

Effluent vertical velocity (m/s) = .00 Vent or stack flow (m*3/s) = .00 Vent or stack radius. (m) = 24.54 Direction .. intake to source (deg) = 354 Kind direction sector width (deg) = 90 Kind direction window (degl = 309 - 039 Distance to intake (m) = 172.0 Intake height (m) = 9.1 Terrain elevation difference (m) = .0 output file names CirrFWR.out CHTFWR.j f d Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 Sector averaging constant = - 4. 0 Initial value of sigma y = 11.41 Initial value of sigma s- = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 7470 Hours elevated ph.me w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 17926 DISTRIBUTICN 'StP94ARY DM A BY AVERAGING INTERVAL 720 2 4 '8 12 24 96 168 360 AVER. PER. 1 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 E-03 UPPER LIM. 1.00E-03 '1.00E-03 ..)E-07 1.00E-07, 1.002-01 1.00E-07 1.00E-07' 1.00E-07 1.00E-07 1 00E-07 1.00E-07 1.00E-07 100 LIM.

g' g 4 s ABOVE SIANGE ; .

O. O. O. S. O. .

O. O. C. O. O.

IN RANGE. 7965. 9453. 11343. 13855. 15936. 19755. 25017. 25101. 25169. 24910.

SEldNf RANGE 0. O. C. O. D. O. C. C. D. G.

EBRO 17926. 16372. 14364. 11631. 9732. 5829. 188. 3. D. O.

'!UTAL X/Qs 25891. 25825. 25707 25486. 25668. 25584. 25205. 25104. 25169. 24910.

4 NON EDt0 - 30.16 36.60 44.12 54.36 .62.09 77.22 99.25 99.99 100.00 100.00 95th PERCENTILE X/Q VALUES-

2.075-04' 1.99E-04 1.90E-04 1.77E-04 1.47E-04 1.11E-04 7. E-05 6.22E-05 5.42E-05 4.89E-05 /

95% X/0 for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2.07E-04 2 to 8 bours 1.67E-04 ... C A 04< 3 20 REV 0 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 7.785-05 1 to 4 days 5.705-05 P A 6E 3.3 4 to 30 days 4.565-05 MOURLY VALUE RANGE MAX X/Q MIN X/Q CENTERLINE 2.18E-04 2.56E-05 SECTOR-AVERAGE 1.74E-04 1.60E-05 NORMAL PROGRAM COMPLETION 4

1

)

l

CA04320 Rev.0 Page 34 ATTACHMENT D EXCEL SPREADSHEET HYDROCHLORIC ACID - AUX BLDG ROOF INLET

Q()Q &D HCL-5000-CR h J[

A B C D E F G 1 HYDROCHLORIC ACID 2 ,

3 CHEMICAL HCL-H2O 4 IDLH (PPM) IDLH 100 5 ODOR THRESHOLD (PPM) OT 1 6 STORAGE QTY (GAL) O 5000 7 STORAGE PURITY (FRACTION) OF 0.35 l 8 SPECIFIC GRAVITY (GM/CC) SG 1.19 9 VAPOR PRESSURE (TORR-C-R-K) VP 2.58E+01 20 527.67 293.15 10 BOILING POINT (C-K-R) TB 50.5 323.65 582.57 11 MOLECULAR WT (GM/ MOLE) MB 36.46 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 l 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 l 16 CHAR LENGTH AIR (A) SIGA 3.711 l 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 l 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 8300 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 1686.534 1686.534 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1 -exp(-FCR*Tmax./VCR) 28 l 29 LEBAS MOLAL VOLUME )

30 C 14.8 0 0 l 31 H 3.7 1 3.7 32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 i 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 )

38 N DOUBLE BONDED 15.6 0 0 .

39 N IN PRIMARY AMINES 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 1 24.6 43 F 8.7 0 0 44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Page1

' ~'

  • gjj)/[gflD HCL-5000-CR 5

A B C D E F G 49 6-MEMBERED RING -15.0 0 0 j 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 28.3 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 3.5959 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 3.6535 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 372.1975 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 171.0401 60 TSTAR T* TA/(E/KAB)= 1.7724 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 _

B 0.15610 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T* ^ B + Cle^(T*D)+ Ele ^(T*F)+ Gle^(T *H ) 1.1233E+00 70 B-PRIME B' O.00217-G.63050gORT(1/MA+1/MB) = 2.0456E-03 71 MOLECULAR WEIGHT MR (MA+MG)/(MA*MB) l 6.1946E-02 l

72 DIFFUSION COEFF (CM2/SEC) D B'*TA* .5*MR^0.5/(PA*SIGAB^2* OMEGA)= 1.7923E-01 73 l l l 1.7923E-01 74 VAPOR DENSITY (GM/CC) RHOV M B

  • 14.696 *0.01601846/( 10.72*TVP) 1.5173E-03 75 l l 76 INITIAL MASS (GM) MO Q*QF*SG'(3785.422 CC/ GAL) 7.8831 E+06 77 VOLUME (M3) VO Q*QF'(3.785422E-3 M3/ GAL) = 6.6245E+00 78 SPILL RADIUS INITIAL (M) RO (V0/Pl)^0.33333 = 1.2823E+00 79 SPILL AREA INITIAL (M2) AO . Pl*RO^2 = 5.1660E+00 80 SPILL AREA FINAL (M2) AF VO/0.01 = 6.6245E+02 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4
  • Pl*9. 81 *VO *(S G-R H OA)/S G)) 2.8562E+01 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 2.3012E+01 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 2.9042E+03 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 TANK 87 ADC (S/M3) ADC 3.07E-04 88 TIME (SEC) T 1 10 23.0121 40 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 94 CASES T ADC A VR VD PPM 95 1 3.07E-04 3.37E+01 1.23E-01 1.27E-03 8.56E-01 96 10 3.07E-04 2.91 E+02 3.89E-02 3.47E-03 2.33E+00 Page 2

HCL-5000-CR Oy37 A B C D E F G 97 23.0121 3.07E-04 6.62E+02 2.56E-02 5.22E-03 3.50E+00 98 40.0000 3.07E-04 6.62E+02 1.95E-02 3.96E-03 2.66E+00 99 100 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 101 REYNOLD NUMBER RE L*VW*RHOA/MU 1.9066E+06 102 SCHMIDT NUMBER SC MU/(D*RHOA) 8.4990E-01 103 l 104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 2.2869E-01 105 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*1VP) 1.1760E-01 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 107 PPM INSIDE CR PPM (24500/MB)*VD 108 CASES ADC VD PPM l 109 3.07E-04 2.39E-02 1.61 E+01 l 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 5.3595E-02 112 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP; 2.7561 E-02 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 114 PPM INSIDE CR PPM (24500/MB)*VD l 115 CASES ADC VD PPM '

116 3.07E 04 5.61 E-03 3.77E+00 117 laminar turbulent j 118 Time to peak (sec) = t=1/ER/.0001*SG 431775.0 101192.03 l 119 Time to peak (min) = 7196.25 1686.53 l 120 Time to peak (br) = 119.94 28.11 121 122 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 123 Time (min) 20 1686.53 1750.00 1800 3.07E-04 124 PPM 8.16 16.07 1.69 0 ,

125 l

126 Turbulent Evaporation with Recirc intow(cfm) 8300 3000 3000 3000 ADC 127 Time (min) 20 1686.53 1750 1800 3.07E-04 128 PPM 8.16 16.07 7.13 3.76 l

Page 3

CA04320 Rev.0 Page 38 ATTACHMENT E EXCEL SPREADSHEET HYDROCHLORIC ACID - WEST ROAD INLET f

e4 4

i

.a eo Qg}LG HCL-5000-WR y

A B C D E F G 1 HYDROCHLORIC ACID 2

3 CHEMICAL HCL-H2O 4 IDLH (PPM) IDLH 100 8 ODOR THRESHOLD (PPM) OT 1 8 STORAGE QTY (GAL) Q 5000 7 STORAGE PURITY (FRACTION) QF 0.35 8 SPECIFIC GRAVITY (GM/CC) SG 1.19 9 VAPOR PRESSURE (TORR 4-R-K) VP 2.58E+01 20 527.67 293.15 10 BOILING POINT (C-K-R) - TB- 50.5 323.65 582.57 11 MOLECULAR WT (GM/ MOLE) - MB 36.46 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 18 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 it CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S)- MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 3000 28 WIND VELOCITY (CM/SEC) VW 100 28 MAXIMUM TIME (MIN) Tmax 1686.534 1686.534 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*TmaxWCR) 28 29 LEBAS MOLAL VOLUME 30 C -14.8 0 0 31 H 3.7 1 3.7 32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 38 O IN HIGHER ESTERS & ETHERS 11 0 0 34 O IN ACIDS 12 0 0 37 O JOINED TO S, P N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES - 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 1 24.6 43 F 8.7 0 0 44 1 37 0 0 48 S 25.6 0 0 44 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Pagei

a - > ,

HCL-5000-WR QOOLO YD A So A B C D E F G 49 6-MEMBERED RING -15.0 0 0 50 NAPHTHALENE -30.0 0 0 ,

51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 28.3 )

54 l 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE ,

56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 3.5959 l 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 3.6535 l 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 372.1975 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 171.0401 60 TSTAR T* TA/(E/KAB)= 1,7724 l

61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300  :

64 D l 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^ B + C/e^(T*D)+ Ele ^(T* F)+ Gle^(T*H ) 1.1233E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0456E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l l 6.1946E-02 l 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^1.5*MR^0.5/(PA*SIG AB^2*OM EGA)= 1.7923E-01 73 l l l 1.7923E-01 74 VAPOR DENSITY (GM/CC) RHOV MB*14.696*0.01601846/(10.72*1VP) 1.5173E-03 75 l l 76 INITIAL MASS (GM) M0 Q*QF*SG*(3785.422 CC/ GAL) 7.8831 E+06 77 VOLUME (M3) VO Q*QF*(3.785422E-3 M3/ GAL) = 6.6245E+00 78 SPlLL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 1.2823E+00 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 5.1660E+00 80 SPILL AREA FINAL (M2) AF VO/0.01 = 6.6245E+02 81 DELTA SPILL AREA (M2/SEC) DA SQRT(4*Pl*9.81 *VO*(SG-RHOA)/SG)) 2.8562E+01 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 2.3012E+01 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 2.9042E+03 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 TANK 87 ADC (S/M3) ADC 2.07E-04 88 TIME (SEC) T 1 10 23.0121 40 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 94 CASES T ADC A VR VD PPM 95 1 2.07E-04 3.37E+01 1.23E-01 8.59E-04 5.77E-01 96 10 2.07E-04 2.91 E+02 3.89E-02 2.34E-03 1.57E+00 Page 2

r l (A d W h O HCL-5000-WR Ay w 1

A l B C D E F G 97 23.0121 2.07E-04 6.62E+02 2.56E-02 3.52E-03 2.36E+00 98 40.0000 2.07E-04 6 2E+02 1.95E-02 2.67E-03 1.79E+00 99 100 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 101 REYNOLD NUMBER RE L*VW*RHOA/MU 1.9066E+06 102 SCHMIDT NUMBER SC MUl(D*RHOA) 8.4990E-01 103 l 104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 2.2869E-01 105 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 1.1760E-01 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF i 107 PPM INSIDE CR PPM (24500/MB)*VD 108 CASES ADC VD PPM 109 2.07E-04 1.61E-02 1.08E+01 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 5.3595E-02 112 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.7561 E-02 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 114 PPM INSIDE CR PPM (24500/MB)*VD 3I5 CASES ADC VD PPM 116 2.07E-04 3.78E-03 2.54E+00 117 laminar turbulent 118 Time to peak (sec) = t=1/ER/.0001*SG 431775.0 101192.03 119 Time to peak (min) = 7196.25 1686.53 120 Time to peak (br) = 119.94 28.11 121 122 Turbulent Evaporation with Recirc inlow(cfm) 3000 3000 3000 3000 ADC 123 Time (min) 20 1686.53 1750.00 1800 2.07E-04 124 PPM 2.45 10.84 4.81 3 125 126 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 127 Time (min) 20 1686.53 1750 1800 2.07E-04 l

128 PPM 2.45 10.84 4.81 2.53 l

l l

Page 3

E CA04320 Rev.0 Page 42 ATTACHMENT F /

BALTIMORE GAS & ELECTRIC COMPANY TELEPHONE AND CONFERENCE MEMORANDUM DATE 04/01/98 -'

BY: Gerard E Grvezkowski PURCHASE ORDER NO REQN NO.

TELEPHONE CALL g CONFERENCE O SORNO _

WITH: Brian Klimt (Chemical Environment Services)

COMPANY: BGE

SUBJECT:

35% 5000 Gal Hydrochloric Acid Chemical lhbitability Analysis Hydrochloric Acid was previously evaluated in CA02242 for a 500 gal tank. This tank is filled from a 5000 gal truck. Does it need to be re-evabated for this transient evolution? Call me at 2429 ifyou have any questions. Brian

)

i

.. i CA04320 Rev.0 Page 43 J

ATTACHMENT G '

LROSS SECTIONAL AREAS 4

' ~ ' ' - CA0(320 REV 0 y.yg 3 5342 - P AGE TY axse

%,, b '79C667' sanjy

(

[ hyy *

$), j,

) C = 157S~' ilsF87 o<:'=htcesfug/gy)

Al?6 4 -=Uf9?f a =l? lott = 2,3zyn L=i'?6167' At, el " 29 2 '

S=/5 =fst.sgy/

-- - .- - t" gi g. l acQG e Ai = tGis-cd)= 571rds N'

~

Ai = Osv r)(tmc- ri.s)= 77.s2x-dt' b gm = J L Y3 C C 3 N ~

du= Gis'A9t'c")

I V.! ) = t138,9s 4' uar uns w.y brg = 2*8tre- 0s4 = 2GB/A/9ff' N U /14 J W C D// G : E*-2w s7 krg =Arth(($8,51533-11f)"

atts .[gry) ')= 27/G7,of, /f'~ -

Co&MatrJ~ /~ PAG /l' A/LM16.' N-95 L 5 94, Ari,= GnRcfp es.s-11.<) Ort.2c') = rs 95 jet trtsc Acr.M Acrm = /Lt.1S'C.5 If' s . , ._ Apr.at = 2PI&i%N' l *Y'*.*.I-

{.