ML20207P511
ML20207P511 | |
Person / Time | |
---|---|
Site: | Cook |
Issue date: | 01/06/1987 |
From: | Burdick T, Parkinson K, Victor F NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III) |
To: | |
Shared Package | |
ML20207P470 | List: |
References | |
50-315-OL-86-03, 50-315-OL-86-3, NUDOCS 8701160205 | |
Download: ML20207P511 (144) | |
Text
. . = . -.
c A
U.S. NUCLEAR REGULATORY COMMISSION REGION III Report No. 50-315/0L 86-03 Docket Nos. 50-315; 50-316 Licenses Nos. DPR 58; DPR 74 Licensee: Indiana & Michigan Electric Company Post Office Box 458
! Bridgeman, MI _49106 Facility Name: D. C. Cook Nuclear Power Plant Examination Administered At: Bridgeman MI Town Hall and D. C. Cook Examination Conducted: December 2-4, 1986 Examiners: (~b' D Date L 4
. F. W. Victor i f-b-77 Date
)
j-
'AfprovedBy:
i T. . Burdick, Chief Operator Licensing Section Date f' b N
_ Examination Summary Examination adminis_tered c'n December 2-4,1986(ReportNo.50-315/0L_86-031 Examinations were adiiiinistered to 3 senior reactor operators and 3 retake reactor operators.
Resul ts: 2 senior operators passed; 2 retake reactor operators passed.
P 8701160205 870112 G PDR ADOCK 05000315
'. V PDR
. _ . . . _ _ _ ~ . , - _ . - _ _ _ _ - - . _ - . . .-- . _
REPORT DETAI_LS,
- 1. Examiners
- K. L. Parkinson, Sonalysts, Inc.
F. W. Victor, Sonalysts Inc.
i
- Chief Examiner
- 2. Examination Review Meeting Utility coments and their resolutions are attached to this report.
- 3. Exit Meeting
- a. On December 4, 1986, an exit meeting was held. The following personnel were present at this meeting:
W. G. Smith,.Jr., Donald C. Cook Plant Manager Bill Nichols, Donald C. Cook Training -
John Stubblefield, Donald C. Cook Training W. J. Davidson, Donald C. Cook Training Lewis Matthias, Donald C. Cook Staff Jack Rutkouski, Donald C. Cook Staff Paul Marley, Donald C. Cook Staff A. A. Blind, Donald C. Cook Staff B. L. Jorgensen, NRC Senior Resident Timothy Reidinger, NRC Region III Darrel Damon, NRC Region III Paul Sunderland, NRC Region III Francis W. Victor, NRC Operator Licensing Examiner Neith L. Parkinson, NRC Operator Licensing-Examiner
- b. The chief examiner discussed that in general the candidates exhibitedgoodtrainingandknowledgeinprocedures(operating, abnormal and emergency) and in technical specifications (action statements, surveillances and bases). No generic weakness could be discerned with the small number of candidates taking the examination.
-c. Although it_was not discussed at the exit meeting, the D. C. Cook Nuclear Station Training staff is requested to provide a copy of their plant specific irodification of the Knowledges and Abilities Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122) to the region. This will facilitate the region with the development of site specific examinations for the D. C. Cook Nuclear Plant. It is requested prior to the next scheduled examination.
.. p QUESTION 1.02 With the-reactor suberitical at a shutdown margin of 2.5% delta-k/k, the stable count rate is 135 cps.
- a. How much reactivity is required to be added to increase the stable count rate to 405 cps? SHOW ALL WORK.
ANSWER 1.02
- a. Rhol = -2.5% delta-k/k Kaffl = 1/(1-rho) = 1/ (1-( .025)) = .9756 +/ .002 CR1/CR2 = (1-Keff2)/(1-Keff1) 135/405 or 1/3 = (1-Keff2)/(1 .9756) Keff2.= .992 +/ .002
~
Rho 2 = (Keff2-1)/Keff2) = -0.8% delta-k/k .
Reactivity added - -0.81% - (-2.5%) = 1.69% delta-k/k +/ .1%
i COMMENT 1.02 a.
For this question, we ask that the following equations also be allowed in calculating the required answer. The percentage of difference between the two answers is approximately 2 percent.
K=1-p K = 1 .025 K = .975 = Keff g CRg (1-Keffg ) = CR3 (1-Keff2) 135(1 .975) = 405(1-Keff2)
.00833 = 1-Keff 2
.99166 - Keff 2 Keff2 ~ K*f 1 (Keff2 )(Keffy ) " E
,f9 g 7 = .01724 = 1724 PCM NRC RESOLUTION 1.02 There is no basis for accepting K=1-Rho. Fundamental of Nuclear Reactor Physics defines Reactivity (Rho) as the fractional change I of the effective multiplication factor (Keff or K) from criticality i .
(Rho =[K-1}/K). Formula was also provided with the examination.
Therefore, no change to Answer Key.
/RT9 k
~ r i
L QUESTION 1.05 With the plant stable at 80% power near BOL, (Unit 1, Fuel Cycle 9) which way will the. Axial Flux Difference initially change (MORE NEGATIVE or LESS NEGATIVE) for the following occurrences? EXPLAIN.
CONSIDER EACH OCCURRENCE SEPARATELY
- c. A momentary large feed flow increase occurs with rods in manual.
ANSWER 1.05
- c. More negative because more moderation will occur in the bottom of the core due to sudden insurge of colder coolant.
COMMENT 1.05 c.
/
Theoretically, the answer provided by the key would be correct. Under actual operating conditions the more negative effect that the answer key requires would most likely never be observed by an operator. High core flow velocity (> 22 feet /second) alone would be enough to negate a noticeable change in AFD. Any change in power level would be negated because AFD 100% target band was 0% at beginning of cycle nine. Another complication in this problem is that MTC is at its least negative value at BOC. Lastly, a feedwater excursion of the magnitude required to show a noticeable effect would be more than enough to cause a reactor trip due to low-low level in one or more steam generators. This is a result of the higher than average shrink characteristic of the steam generator design that D. C. Cook utilizes.
We ask that you give consideration to accepting NO CHANGE as an alternate answer.
NRC RESOLUTION 1;05 The theoretical answer was retained. No change to answer key.
/RT9
=
o QUESTION 1.06 State TWO reasons why equilibrium Xenon has significantly more negative worth than does equilibrium Samarium when operating at full power and starting with a clean reactor core.
ANSWER 1.06 The amount of Xe produced from fission and decay of I-135 is greater.
The absorption cross section of Xe is much higher.
COMMENT 1.06 The phrase "and starting with a clean reactor core" may (and has) caused a candidate to attempt to formulate an answer based on the explanation of why Xenon is worth more when starting from a clean core. The addition of this phrase has added confusion to a proven NRC question that had a very high reliab'ility factor. We ask that this potential for misunderstanding the question be taken into consideration when grading.
NRC RESOLUTION 1.06 The comment was considered when the examinations were graded.
1 1
/RT9
..- o QUESTION 1.08 After operating in natural circulation for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, a complete loss of natural circulation flow occurs due to inoperable steam dumps.
Initially, how will the following parameters be affected (INCREASE, DECREASE, or NO CHANGE)? Briefly explain you answer. (Assume no further operator action.)
- c. Steam generator pressure ANSWER 1.08
- c. Decrease or no change less primary to secondary heat transfer.
COMMENT 1.08 c.
Unile in steady state natural circulation cooling, if dumping steam to the condensers is abruptly halted, natural circulation will not cease.
The steam generator will remain a heat sink until its temperature is equal to the RCS. A decrease in S/G pressure would cause natural circulation to increase because of a corresponding decrease in the heat sink temperature. The only probable cause of a S/G pressure reduction under these conditions would be for the operator to increase AFW flow to the S/G shortly after losing steam dump capability. We request that " increase or remains the same" be acceptable answers when a reasonable explanation is provided to support that answer.
i NRC RESOLUTION 1.08 The question stated that natural circulation flow had stopped, l
No change to answer key.
l l
l /RT9
QUESTION 1.09
- a. Describe the relationship between discharge flow rate and the following, for a centrifugal pump.
- 2. Pump dircharge head.
ANSWER 1.09
- s. 2. As pump discharge head increases, discharge flow decreases (according to the pumps characteristic curve). Will also accept discussion of v, N, and Hp if discussion is complete.
COMMENT 1.09 a. 2.
We request that the relationship between discharge flow rate and pump '
discharge head be properly described by the following relationships illustrated in addition to that in the keyed answer.
v a hp gmaW ,
(Either of these relationships will correctly solve question 5.09 of the SRO exam)
NRC RESOLUTION 1.09 The comment was considered when the examinations were graded.
/RT9
QUESTION 2.01
- d. List the conditions that will automatically close and automatically reopen the centrifugal charging pumps minimum flow isolation valves (QMO-225 &'226). (1.5)
ANSWER 2.01
- d. Mini-flow valve will close on a safety injection signal (.25) and will cycle open (.25) if RCS pressure is above 2000 psig (for 2 sec.) (.25) then reclose when pressure decreases below 2000 psig
(.25) until the SI signal is reset (.25) and the control switch placed in pulled out position (.25).
COMMENT 2.01 d.
The question addresses the asco functions associated with QMO-225 &
226 but the answer addresses two manual actions required to re-establish operator control, Reset SI and pull out control switch position. Suggest reducing question "d." point value by .5. (The header value of the question is 3.00 points and the answer key value is 3.50 points).
2 NRC RESOLUTION 2.01 The answer key was changed. That portion of the answer dealing with manual operation is not required for full credit. (3.00).
4 1
) .
i
/RT9 i
e i QUESTION 2.04
- a. The main steam safety valves for UNIT ONE have a total capacity of % Reactor Power.
- b. Two of the main steam safety valves are set at 1075 psig, two are set at psig and one set at psig.
- c. By Technical Specifications the maximum number of INOPERABLE safety valves allowed on any operating steam generator is .
ANSWER 2.04 4
- a. 120 +/- 1%
- b. 1065, 1085 (+/- 2 psig)
- c. Three COMMENT 2.04 T.S. 3.7.1.1 states "All main steam line code safety valve associated i
with each steam generator shall be OPERABLE". If one or more Safeties are not operable, the action statement (4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> limit) identifies requirements to continue operation (PRNIS trip setpoint reduction).
Since continued operation requires entry into an action statement, either "NONE" or "THREE" would be correct depending on your interpretation of the question. We request that either "NONE" or
'THREE" be accepted for full credit.
4 NRC RESOLUTION 2.04 The question stated that power limitations (i.e. PR NIS trip setpoint reduction) should be disregarded.
No change to answer key.
1 t
e
/RT9
i ,
QUESTION 2.11
- b. List the power supplies for all' of .the pumps (Pegging, Low Demand, High Demand) used in the Water Fire Protection system for UNITS 1 & 2.
- ANSWER 2.11
- b. (Pegging Pump) MCC-1-TBC-CS (Low Demand) MCC-1-TBP-BW (High Demand) Unit 1 Bus llc Unit 2 Bus 21C Diesel Generator (280 HP)
COMMENT 2.11 Training is provided on the fire pump power supplies for familiarization purposes as part of detailed instruction on the fire protection system. Due to the redundancy of equipment and auto sequencing in response to logic signals and decreasing header pressure starts, the Reactor Operator does not normally have an immediate knowledge of the power supply without time-to reference the electrical distribution prints. We request deletion of part b of question 2.11.
If retained, please change " Diesel Generator" in the answer to " Diesel firepump" with reference to the shaft driven generator associated with the battery chargers.
NRC RESOLUTION 2.11 The comments were considered when grading the question. Credit was allowed for general descriptions of power supplies. Diesel Generator was changed to Diesel Fire Pump on the examination key.
/RT9
4 4.
QUESTION 2.13
- a. List the Intermediate Range isolation amplifier INPUT..
- c. What is the purpose of Source Range Channel N-23?-
ANSWER -2.13
- a. Log current Amplifier output signal. :
c.. To provide Source Range indication at the Alternate Hot Shutdown Panel.
COMMENT 2.13
- a. The question does not ask for the specific circuitry component that inputs to the IR isolation amplifier. We request that-
" detector output current" be acceptable for at least partial credit, if not full credit.
- c. The " Alternate Hot Shutdown Panel" may also be correctly referred.
to as panel "LSI-4".
'NRC RESOLUTION 2.13 The comment is accepted. Examinations were graded accordingly.
/RT9
e .
QUESTION 3.03
- b. List THREE Control functions (Permissive / Protection) provided by the Intermediate Range NI as power increases from 10E-8.
(Include setpoints and logics.)
ANSWER 3.03
- b. -
Input to P-6 10E-10 amps 1/2 High flux rod stop Ieq 20% 1/2 High flux Rx trip Ieq 25% 1/2 COMMENT 3.30 b. _
The question references control / protective functions provided as power is increased from 10E-8. Knowing that three functions are required in the answer may lead some respondents to include the P-6 input but trying to state three functions start "from 10E-8" will probably exclude this from their answer. I would recommend consideration of this possible point of confusion when grading.
NRC RESOLUTION 3.03 Part b of the question was changed to require on TWO functions.
That part of the answer concerning input to P-6 was deleted.
1
/RT9
QUESTION 3.05
- b. What is.the location of the low point tap for RLVIS?
ANSWER 3.05
- b. Seal table Thimble (J-7) .
COMMENT 3.05 b.
The question does not request both a location and component of connection for the low point tap. We request that either " seal
~
table", " thimble", or the combination of the two be acceptable for full credit.
NRC RESOLUTION 3.05 Either seal table or thimble were accepted for full credit.
/RT9
e ..
QUESTION 3.06 & 6,03
- a. State the PURPOSE of the INTERLOCK on the breakers supplying the pressurizer variable hearers.
ANSWER 3.06
- a. To prevent tying the "A" and "B" trains together.
COMMENT 3.06 a.
The question asks for "one PURPOSE of the INTERLOCK on the breakers".
, The question as stated is misleading because the keyed answer describes an interlock BETWEEN the breakers. Pressurizer heaters are also interlocked on low pressurizer level and air flow for SCR cooling. These interlocks are ON each pressurizer SCR supply breaker. We request that " prevent damage to pressurizar heaters due to operation with heaters uncovered" (PZR level low) and " prevent damage to the heater SCR's" (SCR air flow low) as alternate correct answers.
Reference R0-C-NS03 page 24.
NRC RESOLUTION 3.06 & 6.03 The comments were incorporated into the answer key.
1 i
?
/RT9
- e. ,
QUESTION 3.10 Match the proper Steam Dump Controller (s) in Column B to each statement in Column A. More than one in Column B may apply to each in Column A. Place answers on your answer page.
COLUMN A COLUMN B
- a. Operates Steam Dumps based 1. Turbine trip controller.
on a temperature deviation (Tavg-Tref). 2. Steam pressure controller.
- 3. Load rejection controller.
ANSWER 3.10
- a. 1,3 COMMENT 3.10 a.
Tref is the signal generally referred to as that signal generated by turbine impulse pressure at D. C. Cook. A candidate would need to assume that Tref also included the Tno load (547'F) parameter before answering the question per the answer key. We request that consideration be given to not requiring answer "3" in part "a" for full credit.
NRC RESOLUTION 3.10 The original question and answer were retained. Including Tavg-Tref in parenthesis is not intended to limit the scope of the answer.
/RT9
. c.
I h
QUESTION 3.12 L Match the following symptoms or causes in Column "B" to the specific l Rod Control System failure or error in Column "A".
"A" "B" l- a. Power Cabinet Urgent Failure 1. Caused by simultaneous zero current to stationary and moveable grippers.
- b. Regulation failure 2. Unselected rod (s) having current flow in movable or lift coils.
I c. Phase failure 3. Caused by failure of redundant
- i.
- power supply modules.
)
t l d. Logic error. 4. Caused by pulser or slave cycler failure.
- e. Multiplex error. 5. Caused by full current being applied for excessive time.
(Three is only 1 correct numerical 6. Can be caused by regulation or answer for each lettered error on phase failure as well as logic failure @.0.5 each) or multiplex errors.
- 7. Occurs when voltage to coils has excessive ripple.
l ANSWER 3.12
- a. 6..
- b. 5.
- c. 7.
- d. 1.
- e. 2. (0.5 EA.] (2.5)
COMMENT 3.12 Though this question / answer is technically correct, we feel that it is not appropriate to a reactor operatcra job position. We do not expect
- retention of this type of knowledge from the lessons that we teach.
l The particular reference used in this question is a student handout l attached to the lesson plan. The following excerpt from NUREG 1021 ES-202, page 2 of 6 would support our philosophy.
"A candidate is not expected to have the knowledge of an instrument technician, but answers should indicate the ability to recognize the indications and consequences of improper instrument performance (e.g.,
overcompensation, power failure, air supply failure, and signal
. failure), including the traces that recorders would show."
We would request that consideration be given to either a major reduction in question point value from the 2.5 points (10% of Section
- 3) it now carries or to delete the question from the examination entirely.
/RT9 l
- - - - -- -. , ,, -+., _ .. ,,,,,~n.. . - - - -
e.. .
Coneent 3.12(cont.)
The knowledges and Abilities Catalog for Nuclear Power Plant Operators: Pressurized Water Reactor requires the following:
Knowledge of CRDS design features (K4.03 with importance factor of 3.5) p 3.1-1 system; col task reode 000.
Knowledge of the applicable performance and design attributes of the CRDS components K6.04 with importance factor of 2.9; Ability to predict the in1 pact of raalfunctions or operations on the CRDS, urgent failure alarm, including rod-out-of sequence and motion-inhibit alarm with importance factor of 3.7.
There are several other exan.ples relating to the significance of understanding this specific question.
HRC RESOLUTION 3.12 i This question was retained. The facility consents are inconsistent i with cbjective 9 of Lesson Plan R0-C-NSO4, which states, " List the l urgent /nonurgent failure detectors and what each detector senses."
l l
[
l I
t l
I t
QUESTION 4.03
- b. List FOUR parameters that must be verified hourly per procedure 1-OHP 4022.012.004 after the dropped rod has been recovered.
ANSWER 4.03
- b. 1. Rod Position Indicators
- 2. Thermocouples
- 3. Axial Flux Difference
- 4. Quadrant Power Tilt Ratio COMMENT 4.03 b.
Though technically correct, the reference for this answer is step 24 of the subsequent action of the dropped rod procedure. We would expect a candidate to explain the reasoning or basis for these verifications but not to recall them on a written exam. We request that this question be deleted because it la a subsequent action.
NRC RESOLUTION 4.03 Question and answer retained as originally stated. The parameters that an operator would be expected to verify after reccvery of a dropped rod are those that an operator should be familiar with.
/RT9
a .
QUESTION 4.06 Several COOK Emergency Procedures have an immediate action step to verify Turbine / Generator tripped. What FOUR indications on the Turbine / Generator panel must be verified to ensure that the Turbine / Generator had tripped?
ANSWER 4.06 The following are indication of a Turbine / Generator trip:
- 1. All Turbine steam stop valves closed.
- 2. Gen Output Bkrs (Al and A2): open
- 3. Exc Field Bkr: open
, 4. Aux Pwr transferred from MAIN to Reserve feed.
COMMENT 4.06
- 1. The turbine stop valves are verified, by procedure, by observation of status lights. These are located on the reactor control panel (Channels I through IV RPS input status lights) adjacent to the turbine control panel. This may cause a candidate to omit them from the answer because of the question wording.
- 2. Answer #2 is correct if Unit 2 is assumed, for Unit #1, breakers "K and K1" would be appropriate.
Refer to previously supplied reference (01-OHP 4023.E-0 Item 2. a.
and b. on page 4 of 23) for these comments.
NRC RESOLUTION 4.06 K and K1 were included as additional correct answers.
(If the candidate assumed Unit 1 turbine generator output breakers) No change to answer #1.
/RT9
QUESTION 4.07 Per 02-OHP-4022.002.002 " Excessive Reactor Coolant Leakage" match the RCS leakage Technical Specification rate limit in. Column B to the type of leakage in Column A.
COLUMN A COLUNN B
- 1. Identified a. O gpm
- 2. Unidentified b. I spm
- 3. Pressure.Boundry c. 10 gpm
- 4. Controlled d. 20 gpm
- 5. Total Primary to Secondary (for all S.G.) e. 40 gpm
- f. 52 gpm ANSWER 4.07
- 1. a.
- 2. c.
- 3. b.
- 4. e.
- 5. b.
COMMENT 4.07 The answer key is incorrect. The correct answer should be as follows:
- 1. c.
- 2. b.
- 3. a.
- 4. f.
- 5. b.
NRC RESOLUTION 4.07 Answer key was corrected accordingly.
/RT9
I QUESTION 4.08 Answer the following per Units 1&2 Technical Specification.
- a. . If the plant is being maintained in Hot Standby (Mode 3):
- 3. If the shutdown _ margin is less than the specified limit, list the required actions. INCLUDE numerical values if applicable and time limits.
ANSWER 4.08
- a. 3. Immediately initiate and continue boration at >/= 10 gpm of solution at 20,000 ppm until shutdown margin limit is met.
COMMENT 4.08 a. 3.
The operator would be expected to " Emergency Borate" to meet these required actions in accordance with the previously supplied reference-Emergency Boration (01-OHP 4022.005.002, page 2 of 5). This action ensures the action required by Technical Specifications is completed. We request that " emergency borate" also be accepted for full credit.
NRC RESOLUTION 4.08 The question referred to Technical Specifications, however, EMERG BORATE at 75 GPM for 5 MIN is an acceptable answer. Reference 1-OHP 4022.005.002.
i I
i
/RT9
-- enn .-n--ry,.nn-,,4 -, - ~- - -a-r- + ,e . ,,- r -y., -, ,- - , - ~ - - , , ~ - - , - , - , - ,
QUESTION 4.11 Cook's Radiation Protection Manual based on 10CFR20 provides policy and guidance for the control of radiation exposure for plant personnel. Answer the following questions in accordance with the
-Radiation Protection Manual.
- a. What is the QUARTERLY Whole Body exposure limit?
ANSWER 4.11
- a. 1.25 Rem /Qtr.
~
COMMENT 4.11 a.
The referenced RP Manual provides two possible answers for the question, either of which would be correct. The " Radiation Protection Limit" is 1.25 Rem / Quarter and the " Administrative Limit" would be 1.00 Rem / Quarter. (Highlighted reference attached.)
NRC RESOLUTION 4.11 1.00 Rem / quarter was accepted as a correct answer.
s
{
.p -
\
/RT9 i _m
-= .-
QUESTION '5.01 How~does DNBR change { INCREASE, DECREASE, NO CHANGE] for the following:
- c. Unit 1 is at 60% power and Steam Generator No. 3 stop valve MRV-230, goes shut { control rods are in auto].
ANSWER 5.01
- c. increases COMMENT 5. 01 c .
If the candidates answer how DNBR changes and assumes the instant the SG stop valve goes closed (i.e., before the rod control system begins te compensate for t RCS temp.) The answer would be DNBR + because RCS temp is increasing due to loss of 1/4 of the heat sink and RCS pressure will be held relatively constant by PZR Pressure control system.
In addition, with the loss of one S/G, the enthalpy consideration of the RCS on DNB would tend to decrease the Actual Heat Flux to cause DNB and therefore the ratio would tend to decrease (same reference).
Based on these factors, we request that special consideration be given to answers outside the Key if supported by appropriate assumptions.
NRC RESOLUTION 5.01 The question stated that rod control was in automatic. Loop 3 Tavg will become the auctioneered high Tavg and rods will be driven in to lower Tavg. DNBR increases. The answer key remained unchanged.
1 f
/RT9
QUESTION 5.02 Unit 2 is operating at 67" power at BOL when one [1] steam dump valve OPENS {all controls are in manual, no operator action]. State what happens [ INCREASES, DECREASES or REMAINS THE SAME] to the following parameters.
- b. Moderator temperature coefficient
-ANSWER 5.02
- b. Decreases (less negative]
COMMENT 5.02 b.
It should be noted that even though MTC decreases for the temperature transient described, it decreases very slightly with respect to attention required for reactor operation, and may be considered negligible or " REMAINS THE SAME" by a candidate. We request that consideration be given to accepting for "REHAINS THE SAME" as an acceptable answer.
NRC RESOLUTION 5.02 The facility comments acknowledge that the answer key was correct.
The answer key remained unchanged.
/RT9
QUESTION 5.04
- b. How does Quadrant Power tilt Ratio change (INCREASES, DECREASES, NO CHANGE] for the following conditions?
- 1. An up power transient
- 2. If steam generator No. 2 divider plate fails ANSWER 5.04
- b. 1. No change
- 2. Increases COMMENT 5.04 b.
An assumption of a AFD target band must be assumed prior to answering this question. A " classic" ARO BOL to EOL target band would be negative at BOL. Recent D. C. Cook target bands have varied from negative to positive at BOC in recent years and the Unit 1 BOC for Cycle 9 was in fact, "0%" at full power. Typical D. C. Cook target bands also may have AFD target bands that are " programs" instead of naturally occurring flux profiles. Some small adjustments are sometimes necessary to control core axial burnup for maximum performance.
If the candidate does not assume a " classic" target band, they may also correctly answer "N0 CHANGE" (for a 0% target band @ full power) or 'HORE NEGATIVE" (for a positive target band @ full power).
NRC RESOLUTION 5.04 The facility comments discuss AFD. The question was on Quandrant Power Tilt Ratio QPTR. The answer key remained unchanged.
/RT9
1 ,
QUESTION 5.10 Explain why you DISAGREE with the following statement.
" Xenon reactivity in the core is always greater than Samarius reactivity."
[your explanation should include the characteristics of Xenon and Samarium and the combined reactivity effect of these characteristics]
ANSWER 5.10 Xenon is removed from the core by burnout and by radioactive decay
[ Xenon is radioactive]
Samarium is removed from the core by burnout only
[ Samarium is stable]
Following a shutdown, Xenon reactivity will peak and then decay to zero, but Samarium reactivity will build up to a maximum.
[ reasonable wording will be accepted]
COMMENT 5.10 In order to defend disagreement with the statement, it should not be necessary to provide all of the information contains in the answer.
For the condition of extended shutdown, the mention of Xenon removal by burnout should not be necessary to support the answer because significant neutron flux would not be present.
To solicit the entire answer as keyed, it may be more appropriate to first ask for the production and removal mechanisms of Xe and Sm and subsequently ask a TRUE-FALSE question concerning the statement made.
NRC RESOLUTION 5.10
- I The answer key stated that " reasonable wording will be accepted."
The examinations were graded accordingly.
e
/RT9
QUESTION 5.12 Two equivalent positive reactivity additions are made to a. critical reactor at BOL and EOL. EXPLAIN /GIVE THREE [3] REASONS why the SUR at EOL will be greater than 301. [ assume Tavg = 547'F]
ANSWER 5.12 Over core life Pu-239 builds up Over core life beta - bar - effective decreases as the Pu-239 concentration builds up SUR is inversely proportional to beta - bar - effective COMMENT 5.12 The statement " EXPLAIN /GIVE THREE [3] REASONS" implies that there are three distinctly different reasons required to explain why SUR is greater at EOL for equal reactivity insertions. The answer key provides a three faceted explanation of what is normally considered the single reason to explain this change in startup rate over core life.
Because a candidate may attempt to formulate a second and third reason, based on compliance with statement #15 of "NRC RULES AND GUIDELINES FOR LICENSING EXAMINATIONS", we request that considerations be given to not penalizing additional information supplied by the candidate, whether correct or incorrect, and give full credit if the keyed answer or equivalent is provided any where in the candidates response.
NRC RESOLUTION 5.12 The question asked the candidates to EXPLAIN /CIVE [3] REASONS. The answer key provides an explanation as asked in the question. The facility comments were considered when the examinations were graded.
/RT9
QUESTION 6.01
- a. List TWO FUNCTIONS of the Reactor Vessel Level Indicating System
- b. List [ BUS NAME/ NUMBER] the POWER SUPPLIES for both trains of the Reactor Vessel Level Indicating System ANSWER 6.01
- a. 1. Assist in detecting the presence of a gas bubble or void in the vessel.
- 2. Assist in detecting the approach to ICC.
. 3. Indicate the formation of a void in RCS during forced flow conditions,
- b. AFW and ELSC buses
[obtain/ verify bus numbers at facility]
COMMENT- 6.01 The statement " Vital 600V MCCC located in D/G room through a 120V stepdown transformer" is also stated in the reference R0-C-NS2A at the same point of answer on key. In addition, the RVLIS power supplies are 600V vital busses (ELSC-11B bus and AFW 11C bus). (See reference print.)
Operators are not required to commit power supplies to memory and NUREG 1122 does not have a knowledge requirement for power supplies.
Apparently some candidates were directed to answer power supply questions to bus and breaker detail. This may have caused an educated guess to actual panel as apposed to a word description allowed by first paragraph. Request that this information be considered in grading this question to Key.
Reference DWG OP 12015, OP 12035 (partials).
NRC RESOLUTION 6.01 The facility comments were considered when grading the examinations.
Nureg 1122 does require a knowledge requirement for power supplies.
(see page 3.1-1 Nureg 112) as opposed to the facilities contention that its not listed in Nureg 1122.
i I
/RT9 i
QUESTION 6.02 The following questions pertain to the reactor coolant pump seals:
- c. _During power operations, what is the LEAKAGE FLOWPATH for:
- 3. #3 seal ANSWER '6.02
- c. 3. RCDT outlet
. COMMENT 6.02 c. 3.
Request that water column pressure to RCDT or Vent Header also be accepted for answer c. 3.
Reference is indicated on attached drawing which is a part of R0-C-NS2P.
'NRC RESOLUTION 6.02 The answer key was changed to include Vent Header as an acceptable answer.
/RT9
e QUESTION 6.05 List all the SETPOINTS and ASSOCIATED AUTOMATIC FUNCTIONS / ALARMS provided for the VCT Level Control System by level transmitters LT112 and LT 185.
ANSWER 6.05 87% "hi level" alarm trip to divert 78% begin auto divert 24% stop auto makeup 14% "not in auto" alarm 7% "VCT low low" alarm 1% refueling water sequence COMMENT 6.05 Request that an additional item be placed on keyed list.
- "17% start auto make-up" Reference R0-C-NS06 page 10.
Additionally request that a band of 11% be provided as acceptable range for setpoints.
NRC RESOLUTION 6.05 Answer key changed accordingly.
I l
27 - /RT9 I
QUESTION 6.06 LIST and STATE the FUNCTIONS of the THREE [3] INTERLOCKS that must be satisfied for IMO-310/320 [RHR pump suction from RWST and RCS Hot Leg
- 2] to open.
ANSWER 6.06
closed to prevent RWST draining to recirc sump
- b. RHR pump discharge to containment spray [IMO-340/331] closed to prevent RHR spray during injection phase
- c. RHR pump discharge to SIS and CCP suctions [IMO-340/350] closed to prevent a single failure from creating multiple trains or ;
multiple systems inoperable during injection phase COMMENT 6.06 i
Request that the followint, 'a an acceptable function for interlock on
, IMO-340/350.
" Prevent cross-tising safety trains during injection phase."
4 No references.
This interlock actually exists in accordance with our electrical diagrams. However, no clear direction is given, in our FSAR or supporting documents, for providing the interlocks. As this is one i interpretation of the function, we request that Keyed answer be
- expanded to include separation during injection phase only.
NRC RESOLUTION 6.06
, The answer key was obtained from the facility reference material I
(DC COOK Lesson Plan, R0-C-NS08) provided for examination development.
The facility comment is not based upon a reference. The examination 1 key remains unchanged.
l v .
28 - /RT9 1
. . - - . , - - . - - - , , , . , , - . , , . . . , - . - - - . , , . , ~ , . , - , , . - - , -,-
- - - . --e. , - , - - - - - - - ---- ,-- --,,.-~~--
O O QUESTION 6.07
- c. State the PURPOSE of Source Range Channel N-23 ANSWER 6.07
- c. To provide source range indication at the Alternate Hot Shutdown Panel.
COMMENT 6.07 c.
Request that the following Purpose be accepted as correct answer:
" Provide indication of vessel voiding during accident conditions."
This panel is also known as LSI-4.
Reference RO-C-NSO9 page 9.
NRC RESOLUTION 6.07 Answer key was changed accordingly.
n
~O- /RT9
1 QUESTION 6.08 State the ALARM SETPOINTS for the following Emergency Core Cooling System Instrumentation:
-a. Unit i Accumulator Tank 1 pressure instruments IPA-110, 111
- b. Unit 2 Accumulator Tank 1 pressure instruments IPA-110, 111
- c. Unit 1&2 Accumulator Tank 1 level instruments ILA-110, 111 ANSWER 6.08
- a. high 644 psig [643 -'645]
low 599 psig [598 - 600]
- b. high 630 psig [629 - 631] ,
low 613 psig [612 - 614]
- c. high 63.5% [63 - 64]
low 36.6% [36 - 37]
COMMENT 6.08 Operators are not required to commit alarm setpoints to memory. There are not knowledge requirements in NUREG 1122 concerning accumulator level or pressure alarms. These setpoints do not result in any control or safeguards actuations or entry into a Tech. Spec. action statement. We request this question be deleted from the exam.
Refer also to NUREG 1021 attached reference.
NRC RESOLUTION 6.08 Technical Specification 3.5.1 Limiting condition for Operation specifies accumulator pressures and levels required for an accumulator to be operable. The alarms are set to alarm before the LCO is reached. The question was retained in the examination.
The answer key was revised to accept a broader range of pressures and levels that included the Technical Specification LCO values.
Nureg 1122 does require " knowledge of the performance and design attributes of the accumulators." K 6.02 pg 3.2-11 also A 1.07
- Monitor accumulator measure level and boron concentration also K 5 pg 3.2 knowledge of Technical Specifications to limiting conditions.
U - /RT9
.NRCRESOLUTION6.08(cont.)
' Also the ability to recognize indications for system operating parameters which are entry level conditions for technical
- specifications with importance factcr of 3.5, ability to verify system alarm setpoints and operate controls identified in the alarm response manual with importance factor of 3.8.
t r
l i
i I
I J
QUESTION 6.11 Emergency Diesel Generator IDGCD is loaded to 1750KW while performing Technical Specification 4.8.1.1.2.a surveillance. State what happens to IDGCD breakers and loads if a BLACKOUT occurs.
ANSWER 6.11
- a. Diesel output breakers trip on undervoltage
- b. Load shed occurs
, and breakers reclose
- c. Load sequence timers start COMMENT 6.11 The test to satisfy the 1750KW requirement in T.S. 4.8.1.1.2.a is normally conducted by placing a resistive test bank on the D.G. The load test bank is energized through breaker 1-DCTCD. (The bus may be used if the~ test load bank is unavailable). The load test bank breaker will open on a BLACKOUT and the DG output breakers to T11C and T11D will then close. We request that a discussion of the test bank breaker be accepted as an alternate correct answer for keyed answer (a).
Reference **1-OHP 4030.STP.027CD (attached pages 6, 7, 14, and 15).
DWG OP-98044 (partial).
NRC RESOLUTION 6.11 The e.xamination was graded accordingly.
.31 - /RT9
. . _ , _ ....m_ -- ..-
QUESTION .6.12 List FIVE [5] of the CONDITIONS that must exist to are all 21 steam '
dump valves.
i ANSWER 6.12
- a. Tavs mode must be selected
- b. Condenser vacuum must be greater than 10.6" Hg and i
CRID II has power (C-9]
- c. At least on circulating water pump operating i d. Tavg above 541'F
- e. No turbine trip i f. Greater than 50% load rejection .
j 3 Circulating water pump breaker closed COMMENT 6.12 Request that CRID II interlock for C-9 be accepted as a separated .
i answer. CRID II power is a requirement for Steam Dump Actuation and '
3 the vacuum interlock is where the RFC tied it to steam dump operation. ;
- In addition, item c. and g. are the same interlock. Actual interlock is cire pump breaker closed. *
- Reference 98509.
n NRC RESOLUTION 6.12 j The answer key was developed directly from the facility training i materials provided for examination development. Answer key revised i accordingly.
4 1
l 11 i
/RT9 F
~ -
QUESTION 6.13 On October 29, 1985, the DC Cook Unit 2 "A" reactor trip breaker failed to open on receipt of a valid trip signal from the Reactor Protection System. What were the THREE [3] plant design changes that were innta11ed in response to this event?
ANSWER 6.13
- a. The reactor trip breaker control circuit was modified to energize the shunt trip coil on receipt of a Reactor Protection System trip signal. [ reasonable wording accepted]
- b. " Reactor Breaker Undervoltage Trip "A/B" Initiated" annunciator l
- installed,
- c. "ACB RTB Control Bus Volt failure" annunciator installed.
I COMMENT 6.13 Even though the failure of the reactor trip breaker to open was a I
significant operating event at the plant, we feel it is unreasonable to expect an operator to identify the addition of two annunciators (in a plant with over 1400 annunciators per unit) in response to the l
question. We request that part "a" of the keyed answer be accepted for full credit.
l l
NRC RESOLUTION 6.13 The facility comments acknowledge the significance of the question event. The referenced facility training material provided training to the candidates on the event and subsequent plant design changes.
The annunciators are important to safe operation of the plant.
The answer key remains unchanged.
1 i
. 33 - /RT9 1
o , o QUESTION 7.09 1/2-OHP 4022.016.003 High Activity In CCW System, specifies automatic and manual immediate actions for a High Activity Alarm on Monitor R-17-A [CCW System].
- a. List the AUTOMATIC ACTION for a High Activity Alarm on Monitor R-17-A.
- b. List FOUR [4] MANUAL IMMEDIATE ACTIONS for a High Activity Alarm on Monitor R-17-A.
ANSWER 7.09
- a. Closure of CCW Surge tank vent and Overflow Valve [2-CRV-412]
- b. If a component served by the CCW System has just had CCW flow cut in, isolate that component record the time and date of the alarm start recording the count rate on both CCW monitors [R17A and R17B] and CCW Surge tank Level every 10 minutes COMMENT 7.09 Start trend block for R-17A and R-17B should also be accepted as a response.
Reference 1-OHP 4022.016.003, Rev. 3 (new revision, issued 11-26-86).
NRC RESOLUTION 7.09 The answer key was revised accordingly.
o
/RT9
o o a QUESTION 7.10 State the REASON [S] for the following steps in the Plant Heatup From Cold Shutdown to Hot Standby,1/2-OHP 4021.001.001.
- a. Remove the mixed bed demineralizer from service prior to the addition of hydrazine,
- b. Verify all RCS cold leg temperatures greater than 170*F, then place the overpressure protection switches on the PZR FORVs in the blocked position. [ include setpoints]
ANSWER 7.10
- a. Hydrazine will cause Chloride ejection from the mixed beds.
- b. Low pressure lift setpoint on 1/2-NRV-152 and 1/2-NRV-153 is 385
+ 22 psig.
COMMENT 7.10 The question asks candidates to state REASON [S]. The Keyed answer for (b) provides no reason. Request that the following reason be accepted and points adjusted accordingly.
The " reason" for this step is that Tech. Specs. require that two PORV's with lif t setpoints of less than or equal to 400 psig be operable when one or more cold leg temps are at or below 170'F (152 on Unit 2). The switches are placed in block above that temp to prevent lifting if and when RCS pressure is raised above 385 psig. Above 170'F low temperature overpressure protection is not required.
Additionally, the setpoints in the respective Units are:
Unit 1 385 2 22 Unit 2 420 2 15 NRC RESOLUTION 7.10 The question asks the reason for the step to place the overpressure protection switches on the PZR PORVs in the blocked position, not when Technical Specifications require 400 psig overpressure protection. The answer key was revised to include the Unit 2 setpoint.
35 - /RT9
4.h>
QUESTION 8.02
- c. List FOUR [4] Technical Specification BASES for the Minimum Temperature for Criticality limit?
ANSWER 8.02
- c. ensure the moderator temperature coefficient is within its analyzed temperature range ensure the protective instrumentation is within its normal operating range ensure the pressurize is capable of being in a OPERABLE status with a steam bubble ensure the reactor vessel is above its minimum RT NDT temperature COMMENT 8.02 Since neither Units Technical Specifications are referenced, we request that "Tave is above P-12 interlock setpoint" be accepted as satisfactory answer for part c. of Keyed question.
Reference Unit 1 Technical Specification Bases.
NRC RESOLUTION 8.02 Answer key was revised accordingly.
36 - /RT9
'p . U. S. NUCLEAR REGULATORY COMMISSION 0 * '
SENIOR REACTOR OPERATOR LICENSE EXAMINATION
, FACILITY: COOK 1&2
" s~. rt ?* a .
f;?
c t'
- i 5 , *- REACTOR TYPE: PWR-WEC4 L t'u:q .H s, s $
,y DATE ADMINISTERED: 86/12/02
, i r t,I k (q,g,,y
> s/ L a EXAMINER: PARKINSON.K.
CANDIDATE:
INSTRUCTIONS TO CANDIDATE:
Uce separate paper for the answers. Write answers on one side only.
Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at 10ast 80%. Examination papers will be picked up six (6) hours after the examination starts.
% OF CATEGORY % OF CANDIDATE'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY 25.00 25.00 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND
~
THERMODYNAMICS 25.00 25.00 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION 25.00 25.00 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL 25.00 25.00 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS 100.00 . Totals Final Grade -
All work done on this examination is my own. I have neither given nor received aid.
Candidate's Signature
Lt NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply:
'# Cheating on the examination means an automatic denial of your application 1.
and could result in more severe penalties.
- 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to a' void even the appearance or possibility of cheating.
- 3. Use black ink or dark pencil only to facilitate legible reproductions. 1
- 4. Print your name in the blank provided on the cover sheet of the examination.
- 5. Fill in the date on the cover sheet of the examination (if necessary).
- 6. Use only the paper provided for answers.
- 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
- 8. Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a n1w Page, write 2D11 SH 2aa Elda of the paper, and write "Last Page" on the last answer sheet.
- 9. Number each answer as to category and number, for example, 1.4, 6.3.
- 10. Skip at least three lines between each answer.
- 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
12..Use abbreviations only if they are commonly used in facility literature.
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
- 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
- 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE .
QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
- 16. If parts of the examination are not clear as to intent, ask questions of the AXAminar only.
- 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.
N . ,
- 18. When you complete your examinaticn, ycu ch211:
N a. Assemble your examination as follows:
(1) Exam questions on top.
(2) Exam aids - figures, tables, etc.
(3) Answer pages including figures which are part of the answer,
- b. Turn in your copy of the examination and all pages used to answer the examination questions.
. c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions,
- d. Leave the examination area, as defined by the examiner. If after leaving, you are'found in this area while the examination is still in progress, your license may be denied or revoked.
6 9
e D
D
, .g ,5. THEORY OF NUCfMAR POWER PLANT OPERATION. FLUIDS. AND PAGE 2 THERMODYNAMICS QUESTICH 5.01 (2.40)
How does DNBR change (INCREASE, DECREASE, NO CHANGE] for the following?
- a. Controlling rod bank is inserted 30 steps with reactor power maintained constant at 100% [0.6)
- b. Reactor coolant boron concentration is reduced with control rods in manual (no operator action) ,
[0.6)
- c. Unit 1 is at 60% power and Steam Generator No.3 stop valve MRV-230, goes, shut (control rods are in auto) (0.6)
- d. Power decreases (0.6)
QUESTION 5.02 (2.00)
Unit 2 is operating at 67% power at BOL when one [1] steam dump valve OPENS (all controls are in manual, no operator action). State what happens (INCREASES, DECREASES or REMAINS THE SAME) to the following parameters,
- a. Power defect (0.5)
- b. Moderator temperature coefficient (0.5)
- c. Steam generator level (answer for initial short term effect) [0.53
- d. Pressurizer level (0.5)
QUESTION 5.03 (1.50)
Unit 1 is operating at 50% power (steady state) with all systems in manual. If no operator action is taken, what effect (INCREASE, DECREASE, NO CHANGE] will a 10 degree F increase in Circulating Water temperature have on the following: .,
- a. Circulating Water Pump NPSH7 (0.53
- b. Condenser vacuum? (0.5) ,
- c. Condensate temperature? [0.5) ,
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
r-
- 5. "HEORY OF NUCf.KAR POWER PLANT OPERATION. FLUIDS. AND PAGE 3 "HERMODYNAMICS QUESTION 5.04 (2.40) .
- c. How does Axial Flux Difference change [MORE POSITIVE, MORE NEGATIVE NO CHANGE] for the following conditions?
- 1. From BOL to EOL (0.6]
- 2. Down power transient with no rod motion (0.6]
- b. How does Quadrant Power tilt Ratio change (INCREASES, DECREASES, NO CHANGE] for the following conditions?
- 1. An up power transicnt (0.6) l 2. If steam generator No. 2 divider plate fails (0.6]
QUESTION 5.05 (3.00)
- o. How !.s critical rod position (actual critical position] affected
> [ HIGHER, LOWER, No EFFECT) by the following? (assume EOL)
- 1. Initial source range level indication (CPS) is higher due to source magnitude (0.5]
- 2. Initial source range level indication [ CPS] is higher due to l
suberitical multiplication (0.5]
- 3. Rod speed in increased (0.5)
- 4. Steam generator pressure increased . [0,5)
- b. Answer TRUE or FALSE for the following statement: .
" Increasing rod speed will increase the source range count rate
[ CPS] at criticality." (1.0) l l
! (***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
L
PAGE 4
,,, 5. THEORY OF NUCfFAR POWER PLANT OPERATION. FLUIDS. AND THERtiODYNAMICS QUESTION 5.06 (1.60)
How does moderator temperature coefficient change [MORE NEGATIVE, LESS NEGATIVE, NO CHANGE] for each parameter change listed below?
[ consider each parameter change separately)
- a. Reactor coolant boron concentration diluted [0.6)
- b. Xenon concentration increases (control rods in manual, boron concentration unchanged] (0.8)
- c. Power defect. increases (0.6)
QUESTION 5.07 (1.20)
The following statements concern reactor vessel stress. Complete the Otatements by selecting the correct response from the following possible answers. (answers may be used more than once) (assume heatup and cooldown
> rates are maintained within the limits specified by 1/2-OHP 4021.001.001 Cnd 1/2-OHP 4021.001.004)
POSSIBLE ANSWERS
- 1. tensile
- 2. compressive
- 3. heat-up
- 4. cool-down
- o. During heatup the INSIDE WALL of the reactor vessel experiences stress due to the temperature gradient across the vessel wall. . (0.3)
- b. During cooldown the OUTSIDE WALL of the reactor vessel experiences stress due to the temperature gradient across the vessel wall. [0.3] ,
- c. The pressure differential between the inside and outside of the reactor vessel causes the vessel OUTSI,DE WALL to experience stress.
(0.3)
- d. The OUTSIDE WALL of the reactor vessel experiences maximum stress i during .
(0.3] '
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
.. 5. "HEORY OF NUCM AR POWER PLANT OPERATION. FLUIDS. AND PAGE 5
- " HERMODYNAMICS QUESTION 5.08 (1.00)
Which of the following statements define ENTHALPY RISE HOT CHANNEL FACTOR 7
- a. The ratio of actual maximum linear power density in the core to measured maximum integrated power density in the core.
- b. The ratio of maximum linear power density in the core to average integrated power density in the core.
- c. The ratio of maximum integrated power density in the core to average integrated rod power.
- d. The ratio of maximum integrated rod power to average integrated rod power.
[1.0)
QUESTION 5.09 (1,10)
A centrifugal pump is delivering 10 spm at a pump head of 25 pais. What is the PUMP HEAD at 8 spm? (show all work) (1.1)
QUESTION 5.10 (2.10)
Explain why you DISAGREE with the following statement. [2.1)
" Xenon reactivity in the core is always greater than Samarium reactivity."
_(your explaination should include the characteristics of Xenon and .
Samarium and the combined reactivity effect of these characteristics)
(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)
PAGE 6
- 5. THEORY OF NUCf. WAR POWER PLANT OPERATION. FLUIDS. AND THERMODYNAMICS QUESTION 5.11 (2.00)
Preparations for a reactor startup are in progress with the following parameters existing:
Tavs = 540F Keff = 0.95 Bocon concentration = 600 ppm moderator temperature coefficient = -18.4 pcm/F differential Boron worth = -11.2 pcm/ ppm source range level = 10 cps Tavg is increased to 547F and Boron concentration is adjusted to 500 ppm. What will the SOURCE RANGE LEVEL indication be following the changes? [SHOW ALL WORK] [2.0]
3 QUESTION 5.12 (3.00)
Two equivalent positive reactivity additions are made to a critical reactor at BOL and EOL. EXPLAIN /GIVE THREE [3] REASONS why the SUR at EOL will be greater than BOL. [ assume Tavs = 547 F] [3.0]
QUESTION 5.13 (1.50)
How do the following steam parameters change [ INCREASE, DECREASE, REHAIN THE SAME] between the inlet and outlet of a real (not ideal] -
turbine?
- a. Enthalpy [0.5]
- b. Entropy . [0.5]
- c. Quality [0.5]
(***** END OF CATEGORY 05 *****)
PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 7-
- . 6.
QUESTION 6.01 (1.50)
- o. List TWO FUNCTIONS of the Reactor Vessel Level Indicating System [1.0]
- b. List [ BUS NAME/ NUMBER] the POWER SUPPLIES for both trains of the Reactor Vessel Level Indicating System [0.5]
CUESTION 6.02 (2.00)
The following questions pertain to the reactor coolant pump seals:
- c. During power operations, what SYSTEM PRESSURE DIFFERENCES DETERMINE the PRESSURE DROP across:
- 1. #1 seal [0.2]
- 2. #2 seal [0.2)
- 3. #3 seal [0.2]
- b. During power operations, what is the LEAKAGE RATE through:
S
[0,1]
- 1. #1 seal
- 2. #2 seal
[0.1]
[0,1]
- 3. #3 seal
- c. During power operations, what is the LEAKAGE FLOWPATH for: -
- 1. #1 seal [0.2]
- 2. #2 seal [0.2)
- 3. #3 seal ,
[0.2]
- d. If normal seal injection is lost during power operations, how is SEAL FLOW PROVIDED7 [ describe / draw flowpath) [0.5]
QUESTION 6.03 (3.00)
State one PURPOSE of the INTERLOCK on the breakers supplying a.
the pressurizer variable heaters. ,
.[0.5]
1
- b. The Pressurizer Relief Tank [PRT] collects, condenses and cools.
the discharge from the PORVs and Safeties. List FIVE [5] othe'r s RELIEF VALVES that discharge to the PRT [ include SETPOINTS). .[2.5]
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 8 4
, ;; QUESTION 6.04 (3.00)
- c. List FIVE [5] CONDITIONS that will cause a Rod Control URGENT FAILURE ALARM. [1.5]
- b. List FIVE [5] EQUIPMENTS / COMPONENTS RESET by the Step Counter Reset Switch. [1.5]
QUESTION 6.05 (2'.00)
List all the SETPOINTS and ASSOCIATED AUTOMATIC FUNCTIONS / ALARMS provided for the VCT Level Control System by level transmitters LT112 and LT185 [2.0]
4 QUESTION 6.06 (3.00)
LIST and STATE the FUNCTIONS of the THREE [3] INTERLOCKS that must be satisfied for IMO-310/320 [RHR pump suction from RWST and RCS Hot Leg #2] to open. [3.0]
s QUESTION 6.07 (1.50)
- a. What is the intermediate range isolation amplifier INPUT SIGNAL 7 [ output signal of what component] [0.2]
- b. ListFOUR [4] components that use the intermediate range isolation amplifier output signal
[0.8)
- c. State the PURPOSE of Source Range Channel N-23 [0.5]
4 s
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 9 QUESTION 6.08 (1.50)
State the ALARM SETPOINTS for the following Emergency Core Cooling System Instrumentation:
- a. Unit 1 Accumulator Tank 1 pressure instruments IPA-110,111 [0.5]
- b. Unit 2 Accumulator Tank 1 pressure instruments IPA-110,111 [0.5]
- c. Unit 1&2 Accumulator Tank i level instruments ILA-110,111 [0.5]
QUESTION 6.09 (l'.00)
List FOUR [4] components / systems cooled by Non-Essential Service Water that are isolated on receipt of a Phase B Containment Isolation Signal. [1.0)
B QUESTION 6.10 (1.50)
List'SIX [6] components that discharge [are connected] to the waste gas vent header. [1.5]
QUESTION 6.11 (1.50)
Emergency Diesel Generator 1DGCD is loaded to 1750KW while performing Technical Specification 4.8.1.1.2.a surveillance. State what happens
[1.5]
l to 1DGCD breakers and loads if a BLACKOUT occurs.
l l .
QUESTION 6.12 (2.00)
List FIVE [5] of the CONDITIONS that must exist to arm all 21 [1.5]
steam dump valves.
(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)
l t -. -.
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 10 i
QUESTION 6.13 (1.50)
On October 29, 1985, the DC Cook Unit 2 "A" reactor trip breaker failed to open on receipt of a valid trip signal from the Reactor Protection System. What were the THREE [3] plant design changes that were installed in response to this event? [1.5]
s
(***** END OF CATEGORY 06 *****)
PAGE 11
. 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY A E RADIOLOGICAL CONTROL QUESTION 7.01 (2.00)
State FOUR [4] IMMEDIATE MANUAL ACTIONS required on receipt of a
" POWER RG LOSS OF DETECTOR VOLTAGE" annunciator on annunciator panel 10, Flux Rod Annunciator. [do not include referral to power range malfunction procedure] [2.0]
QUESTION 7.02 (1.50)
Boration has been initiated to Unit 1 is in Mode 3 with Tavs = 547 F. EXPLAIN how reactor coolant system borate for cold shutdown conditions.
cnd pressurizer boron concentration differential is minimized in cccordance with 1-OHP 4021.002.007, Pressurizer Pressure And Spray Control Operation. [ include operator actions, conditions observed for, how pressure is controlled, and time requirements] [1.5]
QUESTION 7.03 (2.00)
State the ACTION REQUIRED [ include required time] in accordance with 1/2-OHP 4021.001.003, Reactor Coolant Pump Operation, and REASON FOR THE ACTION, on a loss of all AC power if CCW and seal injection is off to a reactor coolant putp for five minutes or more. [2.0]
QUESTION 7.04 (2.00)
List the IMMEDIATE MANUAL ACTIONS for large load rejection on Unit 2.
[2-OHP 4022.001.002, Loss Of Load refers] [ assume all automatic actions are functioning normally] [2.0)
QUESTION 7.05 (2.00)
List FIVE [5] IMMEDIATE MANUAL ACTIONS to be taken in the Control Room if the Refueling Cavity Water Level is lost while in the Refueling Mode. [2-OHP 4022.002.006, Loss Of Refueling Water Level During Refueling Operations refers] [2.0]
(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
~7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 12 RADIOLOGICAL CONTROL QUESTION 7.06 (2.50)
List the FIVE [5] CONDITIONS specified in 01-OHP 4023.E.0, Reactor Trip Or Safety Injection, that require a reactor trip and safety injection, if one has not occurred. [ include COINCIDENCE and SETPOINTS] [2.5]
QUESTION 7.07 (1.50)
. Loss Of All AC Power procedure, 01-OHP 4023.ECA-0.0, includes the
~
immediate action step to " Check If RCS Is Isolated:". List the COMPONENTS and CONDITIONS / STATUS checked in performing this step.
[ component names or numbers will be accepted] [1.5]
QUESTION 7.08 (1.00)
A. Radiation Work Permit is required for maintenance or inspection of equipment EXCEEDING which of the following conditions? [1.0]
- a. 1 mrem /hr at 1 inch
- b. 10 mrem /hr at 1 inch
- c. 100 mrem /hr at 1 inch
- d. 1000 arem/hr at 1 inch QUESTION 7.09 (2.00) 1/2-OHP 4022.016.003, High Activity In CCW System, specifies automatic and manual immediate actions for a High Activity Alarm on Monitor R-17-A [CCW System).
- a. List the AUTOMATIC ACTION for" 'a High Activity Alarm on Monitor R-17-A. [0.4]
- b. List FOUR [4] MANUAL IMMEDIATE ACTIONS for a High Activity Alarm on Monitor R-17-A. [1.6]
i l
(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
l.
. 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 13 RADIOLOGICAL CONTROL QUESTION 7.10 (1.50)
State the REASON [s] for the following steps in the Plant Heatup From Cold Shutdown To Hot Standby, 1/2-OHP 4021.001.001.
- a. Remove the mixed bed demineralizer from service prior to the addition of hydrazine [0.75]
- b. Verify all RCS cold leg temperatures greater than 170 F, then place the overpressure protection switches on the PZR FORVs in the blocked position. [ include setpoints] [0.75]
QUESTION 7.11 (1.00)
TRUE or FALSE The calculation performed in accordance with 1/2-OHP 4021.001.011, Determination Of Critical Conditions, must be checked by a licensed reactor operator and verified by a licensed senior reactor operator. [1.0]
QUESTION 7.12 (3.00)
- a. State the 10 CFR 20 QUARTERLY LIMIT and the local ADMINISTRATIVE QUARTERLY LIMIT for whole body radiation exposure. [1.0]
- b. State the CRITERIA that must be met in order to increase the 10 CFR 20 QUARTERLY LIMIT on whole body exposure. [2.0]
(2.00)
QUESTION 7.13 Turbine Generator Normal Startup and Operation, 1-OHP 4021.050.001, includes the step " Increase generator load to approximately 30-50Mw by using the SPEED AND LOAD ADJUSTMENT OR LOAD LIMITER". EXPLAIN how this step is performed if the LOAD LIMI.TER is used. [your explanation should include the controls that are manipulated, how the controls are manipulated and observed indications on indicating lights) ,
[2.0)
(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)
. 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 14 RADIOLOGICAL CONTROL QUESTION 7.14 (1.00)
EXPLAIN how the IDGAB Emergency Diesel Generator controls are adjusted to minimize circulating current when paralleled with the T21A bus. [1.0) s l
l (***** END OF CATEGORY 07 *****)
l !
i
- 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 15 s,
QUESTION 8.01 (1.00)
Answer TRUE or FALSE for the following sthtements pertaining to PMI-4010, Maintaining Licensed Maximum Power Level.
- a. The average power over any four hour period will not exceed the maximum licensed power level [0.5]
- b. " Excursions" where power level may exceed the maximum by 2%
are permissible for up to one hour duration [0.5]
QUESTION 8.02 (2.50)
- a. Technical Specification 3.1.1.5, Minimum Temperature For Criticality, requires the lowest operating loop temperature
[Tavg] to be when operating in Modes 1 and-2. [ FILL IN THE BLANK] [0.5]
- b. What ACTIONS are required by Technical Specification 3.1.1.5 if the Minimum Temperature For Criticality limit is exceeded? [1.03 c, List.FOUR [4] Technical Specification BASES for the Minimum Temperature For Criticality limit? [1.03 QUESTION 8.03 (1.75)
- a. List the Technical specification DNB PARAMETERS applicable during MODE 1 op'erations. [ values not required] [0.75]
- b. List the TWO [2] ACTIONS required by Technical Specifications if a DNB PARAMETER is exceeded during MODE 1 operation. [1.0]
! (***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
., 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 16 QUESTION 8.04 (1.75)
- o. Plant staff who perform safety related functions are restricted to working no more than the following hours. [ FILL IN THE BLANKS]
- 1. An individual shall not be permitted to work more than hours straight [not including shift turnover time). [0.25]
- 2. An individual shall not be permitted to work more than hours in any 24-hour period [not including shift turnover time). [0.25]
An individual shall not work more than hours in any 3.
48-hour period [not including shift turnover time]. [0.25]
An individual shall not work more than hours in any 4.
seven-day period [not including shift turnover time]. [0.25]
- 5. A break of at least hours shall be allowed between work periods. [0.25]
- b. Who [ TITLE / POSITION] may approve deviations from the station
[0.5]
3 working hour limitations?
QUESTION 8.05 (1.00)
Job orders are initiated to perform / accomplish specific tasks / functions.
List four [4] REASONS [ types of tasks] FOR INITIATING job orders.
[ Note that listing more than one task that comes under the same task type will only be credited for the type of task once] [1.0]
I I
l
(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
PAGE 17
- 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS QUESTION 8.06 (1.50)
Technical Specifications para 6.9 specifies the types of reports to be submitted to the NRC for various plant conditions / events. What type of report [SPECIAL, ANNUAL, STARTUP] is submitted for the following?
- a. Modification that may have significantly altered the nuclear, thermal or hydraulic performance of the plant. [0.5]
- b. Challenges to the pressurizer power operated relief valves
[FORVs] or safety valves. [0.5]
- c. ECCS actuation [0.5]
QUESTION 8.07 (2.00)
List the SIX [6] OPERATIONAL MODES [ number and name) with their respective AVERAGE COOLANT TEMPERATURE LIMITS as defined by a Technical Specifications. [2.0]
QUESTION 8.08 (1.00)
What is the FUNCTION of the Plant Nuclear Safety Review Committee
[FNSRC)? [1.0]
QUESTION 8.09 (2.00)
For the following buildings, what ACTIONS are REQUIRED by Technical Specifications if the number of OPERABLE fire detection instruments -
is less than the minimum number OPERABLE requirement? [ include TIME REQUIREMENTS, reporting requirements are not required]
- a. New Fuel Storage Room [TWO actions] [1.0]
- b. Inside Unit 1 Containment [ consider containment entry not feasible] [1.03
(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
- 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 18 QUESTION 8.10 (2.00)
- c. Who [ POSITION / TITLE] must approve any interlock bypass on fuel handling equipment? [0.5]
- b. Who [ POSITION / TITLE] approves a Striped Tag Permission slip? [0.5]
- c. Who [ POSITION / TITLE] may authorize removal of a Caution Tag? [0.5]
- d. Who [ POSITION / TITLE] initially reviews all Condition Reports [0.5]
QUESTION 8.11 (2.50)
- n. Technical Specification 6.12, High Radiation Area, specifies requirements for posting [ identifying] and controlling entrance to high radiation areas.
- 1. What are the Technical Specification POSTING and ENTRANCE CONTROLS for high radiation areas in which the intensity of
' radiation is GREATER THAN 1000 MREM /HR? [0.75]
What are the Technical specification ADDITIONAL CONTROLS for
~
2.
high radiation areas in which the intensity of radiation is GREATER THAN 1000 MREM /HR7 [0.75]
- b. PMP-6010. RAD.OO2 specifies the procedures / requirements for entry into Extreme High Radiation Areas *[EHRs].
- 1. Who [ POSITIONS / TITLES] are authorized to approve entry into an EHR? [0.75]
- 2. When may RWP 9999 be used for entry into an EHR? [0.25]
QUESTION 8.12 (3.00)
Technical Specification 3.5.2, ECCS Subsystems with Tavg > 350, limiting condition for operation requires two independent ECCS subsystems to be OPERABLE in Modes 1, 2, and 3. List the SIX [6] components / capabilities Technical Specifications require an OPERABLE ECCS SUBSYSTEM to be
! COMPRISED OF.
[3.0)
(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)
l
- 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 19 1
QUESTION 8.13 (2.00)
Name and describe the DC Cook CLASSES OF EMERGENCIES [2.0]
QUESTION 8.14 (1.00)
The following questions pertain to OHI-4014, Conduct of Operations:
Valve Lineups,
- a. As the " initial positioner" during a valve lineup, you find a valve out~of position. Under what CONDITION would you realign the valve to its proper position? [0.5]
- b. As the " independent verifier" during a valve lineup, you find a valve out of position. Under what CONDITION would you realign the valve to its proper position? [0.5]
e
(***** END OF CATEGORY 08 *****)
(************* END OF EXAMINATION ***************)
^- . .. .,
?
sqUATION SHEET l
f = ma y = s/t w = as a=yyt+ %et , Cycle efficiency = * ")
E = aC a = (vg - y )/t KE = 3psy vg A = AN
~
= v, + a A = A,e' " .
FE = agh a = 6/t , A = In 2/tg = 0.693/tg W = v&P
~ (t )(t s)
AE = 931Am h* *
(tg+t) b
. 6 = M pAT y 7,,-Zx ,
4=uAAT 1=Ie-ax Fwr = W g a ~
I = I, 10
- F=P 10 5UR(t) yyt . g,37, y=P o
et /T EVL = 0.693/u ,
SUR = 26.06/T T = 1.44 DT SCR = S/(1 - K,gg)-
fA*gro)
SUR = 26 g, CR,= S/(1 - K,gfg)
~
T = D*/o ) + [(s- 'p)/A,gg ] o 1 eff 1 " -
eff 2 y g*/ (, _ y; M = 1/(1 - K,gg) = CR g/CR0 T = (3 - p)/ A,gg p M = (1 - K eff)0/(1 - Keff)1 p = (K,gg-1)/K,gg = R ,gg/Kaff SDN = (1 - K,gg)/K,gg p= [1*/TKygg] + [5/(1 + A,ggT )]
~
, 1* = 1 x 10 ' seconds F = I(V/(3 x 10 0) gaff = 0.1 seconds~I E = N7 -
Idgg=Id22 WATER PARAMETERS Id =1022 g
1 gal. = 8.345 lba R/hr = (0.5 CE)/d (meters)
I gal. = 3.78 liters
- R/hr = 6 CE/d (feet) 1 ft = 7.48 gal.
_M_ISCELLANEOUS CONVERSIONS .
3 Density = 62.4 lbs/ft 1 Curie = 3.7 x 1010dps Density = 1 gm/cm 1 kg = 2.21 lba Heat of varorizations = 970 Etu/lba 1 hp = 2.54 x 103 BIU/hr
, Heat of fusica = 144 Beu/lba 1 & = 3.41 x 100Btu /hr k 1 Ata = 14.7 psi = 29.9 in. I'g-1 Btu = 778 ft-Ibf I ft. H O = 0,4335 lbf/in 2 1 inch = 2.54 c:s F = 9/5 C + 32 0,._,,,, ,o_ ...
wehee.ft*/tt Eseholpy, Ch/It Esere,y, gi. fin , y loop genom g, I'7' weser Esop steem Opetse a,
w esee g,,,, 7e7,
, ., . a., a. 4, 4,, .,
33 SASS 59 601802 3305 3305 -0A2 ,1075.5 1075.5 0.0000 2.1873 2.1873 32 35 0.09991 E0 lect fees 2943 320 1073A 10762 0.tD61 2.1706 2.1767 35 de 0.12163 0.01602 2446 2446 8.03 1071.0 1079 0 0.0162 2.1432 2.1594 40 45 R14744 SA1402 2037.7 20373 13.04 1068.1 1081.2 00262 2.1164 2.1426 45 50 0.17796 0A1602 17042 17042 18.05 1065.3 1081.4 OA361 2A901 2.1262 50 30 0.2561 0.01603 1207A 1207.6 28.06 1959.7 1067.7 OA545 2.0391 2.0946 40 70 E3629 E01605 064.3 368.4 38.05 1054.0 1092.1 OA745 1.9900 2.0645 70 to 0.5063 E01607 633J 633J 48.04 1048.4 1036.4 0.0932 1.9426 2.0359 30 to 06081 E01610 465.1 46&1 55.02 1042.7 1100.3 0.1115 1A970 2.0046 to 100 E5492 &C1613 350.4 350.4 68 00 1937.1 1105.1 0.1295 1A530 1.9825 100 !
Ele 1J750 601617 206.4 265.4 77.98 1931.4 1109J 0.1472 12105 1.9577 110 130 1A927 E01620 203.25 203.26 8737 1025.4 1113.6 0.1646 1.7693 1.9339 120 330 2.2230 SA1625 157.32 157J3 97.M 1019A 1117A 0.1817 1.7295 1.9112 130 140 2.3392 0.01629 122.98 123.00 107.95 1014.0 1122A 0.1985 1A910 1As95 140 150 3.713 OA1634 97.05 SFA7 117.95 1005.2 1126.1 02150 1.6536 1.3686 150 180 4.741 SA1640 77J7 77.29 127.96 10022 1130.2 02313 1A174 1A487 3ee 370 E993 SA1445 82.04 G2.06 137A7 9962 1134.2 E2473 1.5822 1A295 170""
130 7.511 E01611 30.21 30.22 148.00 990.2 1134.2 0.2631 1.5480 1A111 3a0 130 SJ40 0A1657 40.94 40.M 158.04 904.1 1142.1 0.2787 1.5148 1.7934 130 300 11.526 0.01664 33.M 33.64 168.09 977.9 114E0 02940 1.4824 1.7764 300 230 14.133 0A1671 27AO 27A2 178.15 971.6 1149.7 0.3091 1.4509 1.7600 210 212 14.696 E01672 2&78 2630 100.17 970J 1150.5 SJ121 1A447 1.7584 212 320 17.184 'O.01678 23.13 23.15 188.23 965.2 1153.4 0.3241 1A201 1.7442 220
> 130 20.779 0.01685 19J64 19J81 19023 M S.7 1157.1 02388 1J902 1.7290 230 340 24.968 OA!693 16.304 16.321 208.45 952.1 1160.6 SJ533 IJGot IJ142 Sto '
250 29225 SA1701 13A02 13A19 218.59 94L4 1164A E3677 IJ323 1.7000 350 260 35.427 E01709 11.745 11.762 223.76 938.6 11674 0.M19 1.3043 1.3862 360 270 41.SSG 001718 10.042 10.060 23&95 931.7 1170 6 0J960 1.2769 1A729 270 380 49.200 SA1726 8427 E644 249.17 924.6 1173.8 OA098 1.2501 1.6599 230 390 57.550 041736 7.443 7A80 259A 917.4 1176.8 0.4236 1.2238 1.8473 290 300 57.005 E01745 6.448 4A66 269.7 910.0 1179.7 0A372 1.1979 1.E351 300 310 77.67 OA1755 5.409 E626 280.0 902.5 1182.5 E4506 1.1726 1.6232 310 ' ,
i 320 39.64 0.01766 4A96 4.914 290.4 894 3 1185.2 OA440 1.1477 1.6116 320 340 117.99 0.01787 3.770 3.788 311J 878A 1190.1 E4902 1A990 1.5892 340 ,
360 153.01 OA1811 3.339 2.957 332J 862.1 1194.4 0.5161 1A517 1.5678 360 3a0 195.73 OA1836 3.317 3J35 353.6 044.5 1198.0 0.5416 1A057 *1A473 330 :
\
l l 400 247.26 0A1864 1A444 1J630 375.1 825.9 1201.0 0.5447 0.9607 1.5274 400 l 420 305.78 0.01894 1.4308 1A997 396.9 80&2 1203.1 E5915 0.9165 1.5080 420 !
440 381.54 0.01926 1.1976 IJ1Ge 419.0 785.4 1204.4 0.6161 E3729 1A890 440 1 460 466.9 OA196 E9746 0.9942 441.5 763.2 12043 0A405 02299 1.47c4 asO 480 544.2 0.0200 0.7972 0.8172 464.5 7mA 1204.1 0.4648 0.7871 1.4515 As0 500 680.9 m 0.0204 0.6545 0.4749 487.9 714J 1202.2 0.3 90 &7443 IA333 500
. 520 812.5 OA209 0.5336 0.5596 512.0 6874 1199.0 0.7133 0.7013 1A146 520 540 942.8 E0215 0.4437 0.4651 536.8 657.5 1194J 0.7378 0.6577 1.3954 540 560 1133.4 0.0221 0.3651 0.3871 562.4 625.3 1187.7 0.7625 0.6132 1.3757 550 580 1326.2 0.0225 0.2994 0.3222 589.1 589.9 1179.0 0.7876 0.5473 1.3550 580 0.0236 0.2423 0.2675 617.1 550.6 1167.7 02134 0.5196 1.3330 goe 600 1543.2 620 1786.9 C.0247 E1962 0.2208 646A 506.3 1153.2 02403 0.4689 IJos2 620 640 2059 9 0.0260 0.1543 0.1802 679.1 454.6 1133.7 OA666 OA134 1.2821 640 440 2365.7 g 0A277 0.1166 0.1443 714.9 392.1 1107.0 &8995 &3502 1.2498 660 660 2709.6 0.0304 0.0006 R1112 758.5 310.1 1968.5 &9306 42730 1.2056 600 7CO' 30943 0.0366 R0386 0.0752 322.4 172.7 995.2 A9901 E1490 1.2390 700 705.5 3208.2 0.0508 0 0.0508 90f C 0 906.0 1.0612 0 1.0612 705.5
. TABLE A.2 PROPERTIES OF SATURATED STEAM AllD SATURATED WATER (TEMPERATURE)
A.3
-- - - - _ _ _ __ . - - - - - - - - - . - . - - -. ~ -- -- -
.- _ . . _ - - .~_ - - - - - -. . . _ _ _ _ _ _ _ .
l l
9sewne.Qefe e a, si,,jin g ,,,,, gi.f. g y g,,,,,, [3f,,
Water Eves gesene Weese Saeem P**-
8 I* Wster Esse Gesem Weset tums Saeem
, sis i.
F8's*e pe - F Af A A s, s,, e, e, ,,
't 't 's t s 3302 4 OAO 107L1 1975 S O 2.1872 2.1872 0 1021.3 S. eses geen 32.018 0.01602 3302.4 041802 2945.S 2945.5 3 03 19738 '1076.B 00061 2.1705 2.1M6 BAR 1022.3 e le sic 36.023 13.50 1067.9 1Mle 00271 2.1140 2.1411 1340 1025.7 s.ll atl 4$.453 OA1602 3GM.7 21247 1526.3 21.27 1063 S 3084 7 0 0422 2.0778 2.1160 2122 10283 E20 EPO S3.160 0.01403 1926.3 0 0641 2.0168 2A309 32.54 1032 0 1 30 44 464 001404 1039.7 1039.7 32.54 10b7.1 1089 7 E30 792.1 40.92 8052.4 1093J 0.0799 1.9762 2A562 40.92 1034.7 Eso goo 72A69 OA1406 792.0 W1.3 47A2 18484 10M.3 00925 1.9444 2A370 4742 1034.9 &S ES 79.546 A01607 M t.S 0.1028 1.9186 2.0215 S3.24 1038.7 S.6 0.01609 540.0 MC.1 E3.25 1945 5 1098.7 E6 55.218 466 M 98 10 1042 7 11005 0.3 IJt44 22003 98.10 1040.3 E7 67 90 09 0.01410 466.93 OA 94JB OA1611 41147 411A9 62.39 10403 1102.6 0.1117 1A775 13970 86.24 1038.1 1104.3 &l2M 1A606 1.9570 8229 1041.7 6624 1042.9 as as I 9E24 E01612 368.41 3E8 43 49 333.80 09.73 1034.1 110SA 0.1326 1A4SS L9731 00J3 1044.1 3A Le 101.74 401614 333.59 9L03 1022.1 1116.2 0.1750 1.7450 13200 MA3 10SIA SA SA 126.07 401423 373.74 173.76 118.73 109.42 1013.2 1122 4 0.2009 1 ASS 4 1AS64 109.41 10$L7 Es 3.0 141 47 0.01630 118.71 120A0 1060J as 4.0 l'AM 0.01434 90 63 90 64 120.92 100L4 1127J 0.2199 1.M28 1A624 130.20 1000.9 1131.1 02349 1ADM 1AM3 130.18 1963.1 SA SA 16224 601641 73.319 73A3 St.M7 St.98 las 03 996.2 11342 0.2474 1.5s20 13294 last 10H.4 as SA 17&OS 0 AIMS 14431 1067.4 FA 7A 176 44 OAIM9 S3.4M SSAS 144.83 992.1 11M 9 02581 LS587 1A148 47JS 150A7 905.5 1139J 0.2676 13384 1A060 15034 10892 SA ES 182.84 0.01653 47.323 42J85 42A0 1M.30 985.1 1841.4 0.2760 1A234 L7964 15429 1070A S.L E0 188.27 0.01654 161J3 10722 34 se 193.21 0.016S9 3SA04 R et 16L26 M2.1 1143.3 42836 LSO43 L M79 14.ess 212.00 DA1672 26.752 3630 1E.17 97&3 1890.5 03121 1A447 L7585 1m12 1877A 14 Ass 26.274 SEJ9 181.21 908.7 1150.9 OJ137 lA415 SJSS2 ISLIS 10773 33 213A3 0.01473 se SS 30 227.96 &01483 20.070 20257 3M.27 980.1 1156J 03358 IJ962 1.7320 19621 SWIA 30 I 001701 13.72M 13.744 218.9 945.2 11M.1 0.3642 L3313 IJ995 2183 IS7J as 250.34 236.1 933A 1169A OJ921 1.2844 1A745 236 4 1882.1 de de 267.25 0.01715 10.4794 10.497 4
SA14 250.2 923.9 1174.1 S4112 1J474 JJ684 25&1 ISL3 30 30 381.02 441727 SAM 7 7.174 242 2 915.4 1177A 0.4273 IJ187 1AMS ista 10388 m 00 292.71 0.01738 7.1M2 302.93 0.01748 4.1575 4.205 272.7 907A 1180.6 0 4411 1.1905 1Allt 272A 1100.2 10 70 232.1 900.9 1183.1 0.4534 1.1675 1A20s 281.9 1102.1 30 80 312 04 0.01767 5 4534 SA71 4A95 290.7 0944 1185.3 0 46.a3 1.1470 1A113 290.4 1103.7 90 to 320.29 0017M 4.8777 300 327A2 0.01774 4.4133 4A31 258.3 GE6 1187J 0.4743 L1384 IA027 295.2 110SJ 100 3.7397 3.728 312.4 877 2 1193 4 0.4919 1A960 LSS79 3122 1107A 320 120 34127 0.01799 324.5 1109.6 14e 3S3 04 0.01803 3.2010 3 219 32SA 368.0 1193 0 0.5071 1.0651 1.5752 340 859.0 1195.1 0.5205 1.0435 1.5641 335.5 1111.2 180 360 343 SS 0.0;815 2.8155 2A34 336.1 0 01827 2.5129 2.531 344,2 850.7 11M.9 0.5328 IA215 LSS43 345A 1112.5 130 180 373 08 ES438 I A016 1.5454 3S4A 1113.7 300 300 31130 001829 3.2489 RJS7 366.5 442A 11 M.3 825.0 1201.1 0.5479 E9585 1A264 3753 31152 330 290 40037 0.01865 1A245 13432 375.1 300 411.35 0 01869 1.S239 1.9427 394 0 808.9 1202.9 0.5882 #1.9223 LS105 392.9 1117.2 300 350 421.73 c.01913 1.3064 1.325S 409A 7942 120a 0 040n te909 1Atta 40sA tilat 33a ago doo 444A0 0.0193 1.14142 1.1610 424.2 780 1 1204 4 04217 OA630 L4847 422.7 1112 7 ago 450 4 %.28 0.0195 1A1224 1A318 437J MF.S 1304A 0 4360 & S378 1AFM 43L7 3118.9 49274 449.5 75$.1 12041 0.6490 S. Stas 1A439 447J 1118 3 Soo SCO 44F01 0 0198 090787 455.9 11186 300 SSJ 47498 00199 082183 0A418 480.9 743J 1204.3 0.Mll O.7936 1AS47 '
48523 ,%C201 17898 471.7 732.0 1203 7 0.4723 0 7738 1A461 409.5 111L2 mo 403 0.74962 4819 111E9 Too 702 . HI OS 0.0205 0 43505 0.4556 4914 710.2 1201A 0.6928 0.7377 1A304 age 833 Sta 21 02209 S.S4809 0.5690 509A 809 4 1199.4 0J111 0J061 1A163 SQL7 31152 900 SiSAS 0.0217 0.47968 0$039 SM 7 6697 11M 4 0 7279 4 6753 1A032 523 2 Il13.0 900 2000 S*4.19 0.0216 0.42436 0 4460 542.6 650.4 1192.9 0.7434 06476 1.3910 S3::A 1110.4 1000 i S!!,2e 0.0220 037M3 04006 557.5 431,5 list 1 0 7573 0 6216 1J794 553 1 1107.5 3100 i 1100 1200 l 323J S67.19 0 0223 034013 0.3626 571.9 613.0 1164 8 0.7714 0.5969 1.3653 SMS 1104.3 5044 1180 2 0.7843 0.5733 L3577 Sao.1 1100.9 13o0 1 3503 577.42 00227 030722 0.3299 585.6 3400 S!7,07N00231 0 778/1 0 3018 598.8 $76 5 1175.3 0.7966 0 5507 1.3474 692.9 1037.1 3400 ILCO 5%,20 0.02JS 026372 E2772 Ell.7 SS8 4 1170.1 0A01S 0f243 1.3373 6052 1093.1 1500 2002 g 635.40 0.02L 7 0 167 % 0.1883 472.1 466.2 1135.3 0BC1 042S4 1.7551 M26 10GS6 2000 361.6 1093.3 C.9139 03206 1J345 7115 1032.9 2500 2500 65 $.11 0 02M 010209 01307 731.7 3000 3000 MSJ3 0.0343 0 050/3 E0850 mlA 218.4 1070 3 0 9723 0.1898 L1419 782J 973.1 0 906 0 1.0612 0 SA612 SFSA 375.9 320s.:
3208.2 70BJ7 0 0508 0 00505 9060 TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE)
A.4
l l
.. . %. s Temperature.F j Abe poem.
g5N,1 100 300 300 a00 300 e00 300 800 900 1000 1100 3200 1300 3400 1900
, 8e161 392 5 452.3 SI1.9 S71.5 631.1 000 7 3 a es M 1350 2 8195.7 1241.8 1285 6 1336 1 late 5 (101.74) e al2WS 20609 3.1152 2.1722 3.3237 32703 22144 e SA161 7814 90.74 102.24 31421 IM 15 13508 150 01 16194 173 86 1st 7e 197.70 2m 62 221.53 233 45 '
6 6 GS 01 1148.6 1194 8 1241.3 1788 2 13359 1384 3 1433 6 1833 7 1534.7 15867 1639 6 1893 3 1744 0 1801 S (16224) s 0.1796 1A786 1A369 1.9943 2 0460 2.0932 2.8363 2.1776 2 2159 2 2S21 2 Jeu 3.3194 3J508 2.3818 3A101 e 00161 33 84 44 93 $1.03 57.04 43 03 09 00 74 98 to 94 M 91 92 SF 94 34 104 30 110FE Ils 72 30 m 65 02 1146 6 1193 7 1240 6 12s7A 133S.S 1540 1433 4 1443 5 15344 ISM 6 14395 IN3.3 1747.9 1s03 4 (197J1) s 0.1296 L7928 1AS93 1.9173 3.9692 2 AIM 2At03 2.1011 2.1394 2.1757 22101 22430 22744 2.3046 3.3337 1 e OA161 SalM 29999 33.M3 37Att 41.984 e6.978 40964 S3 944 S7.926 61905 M.SS2 etals 73233 77 307 I 3s e es.04 les 09 1892A 1229.9 1287J 1335 2 13834 1433.2 1483 4 1834.S ISS6 5 1639 4 1st3J 1747A 1303 4 Ol3ABI a R1296 42940 1A134 13720 1.9242 L9787 2AISS IAM3 IA046 3.130B 11653 3.1982 32297 IJS99 32390 l
, 40161 RelM 22.354 25.428 38.457 31.444 34.4&S 37.458 40 447 43 43S 46420 49.40S WJER SSJ70 SSJS2 se a es.0S les Il 1193.4 1239.2 1286.9 1334.9 1333S 1432 9 1483.2 IS34J 1506J 1439 3 setti 1747A 1803J S27.95) s 0.1296 42940 1.7505 last? IJBIl LS397 1J836 3A244 3.0623 3AD91 3.1336 3.1MS 3.1979 SJ282 3.2572
~
0A161 SelM 11.036 12A24 14.16S IS 40S 37.195 ISA99 30199 21.007 23.194 34.839 386133 27Afs 30.13 e
as e 88.30 148.19 lies 6 12MA 12SSA 13334 132.5 1432.1 5482.5 1833.7 ISSSA 1435.8 1992 7 1747A 1803.0 g6725) s 0.1296 462940 1 ADD 2 IJeOS 1A143 14624 LEDE6 1A474 1J300 SAtte 3289 BARB 9 18324 3.1516 11807 '
e SA161 E0154 72S7 ESS4 9A00 10.425 1143B 11444 13A50 14.482 SSA52 1&dSO 17A48 1&446 19.441 go a es tl 148 20 3181 6 1233.5 1283.2 1332.3 1381.5 14313 1481A IS332 198SJ 1435.4 1824 1747.1 1602A 1 9 92.73) s 0 1295 82939 IA492 kJ134 1.7641 RALES 1A412 1.9024 1.9410 L9774 2Al20 34450 SAFM 3.105 3.1399
- e 0.01'61 0.0lM &Ol75 5 218 fAls 7.794 SAGO SJIS S&OFS 30229 11.581 12J31 13ABI 13A2B 14.577 as e 48.21 348.24 M9Je 12315 1291J 1330.9 1330.5 100.5 1401.1 15324 1964.9 1638 4 lee 2A SMSA 1802.5 012A4) s 0.1296 S2939 E4371 1.6790 1J349 IJB42 1A239 3R02 L939 L9454 LM00 SA131 Basse 3A750 3.1041 i e 40161 R0l64 00175 4.935 S.SAS 6216 4333 7.443 0.0S0 S.695 9298 9AdB 38480 31A m 31469 f see a 48.24 14829 26977 1227.4 1279.3 1323.6 1379A 1429.7 1430.4 1932.0 1554.4 1637A 151A 174&S 1802.2 E1296 R2939 0.4371 1A616 EJO3B L717A 14036 1A451 RA339 1.920S L9662 1ASES 3A199 3,m02 3A794 i
(B27A2) e e 00161 S.c1M 00175 40786 4.8341 S.1637 SA331 S.1929 &7006 7J090 7J096 82119 83130 9J134 9.7130 12e a esJ1 3eeJ3 M951 1224.1 1277.4 1323.1 1378.4 1428.8 14798 1931.4 1983.9 1G7.1 18DlJ 17442 18c2A g4127) s 0.1295 R2939 0.4371 IA246 L4872 IJ374 L7529 1A244 12435 1.5001 LS849 1J000 1AD96 2A30B 3.0432 e 0.0141 0.0144 0.017S 3.4461 3.9826 4.4119 4 8535 S 2999 S.7364 E1709 E8036 FA349 FASS2 Fates 8J233 See a 58.37 148 38 26985 12203 1275J 13268 1377.4 1428 0 1479.1 1830.8 1883 4 1834.7 1830.9 1745.9 1301.7 053 04) e E129S 0.2939 04370 1A085 1.M86 1.71M 1.7652 1A071 1A441 1AB28 1J176 LDSOS LSEtt 3Al29 3.0421 e 0.0161 00lM 00175 3.0000 3A413 3A480 4.2420 4629S SA132 S.3945 S7741 E1522 &S293 ~4.9058 72s11 See a 68 42 les42 209A9 1217.4 3273J 1325.4 1375.4 1427J 1478.4 IS30.3 1982.9 1634 3 130.5 1745A 1301.4 (963.SS)s 0.1294 R2538 0.437C 1.3906 IA522 RJID9 IJe99 L7919 1A310 1A478 L9027 LSatt Lgs 76,..L93EO 3.0273 i
e 0 0161 S olu 0 0174 2 M74 3.0433 3A093 3.7621 4.1054 A4 SOS 4.7907 S.1289 SAGS 7 Sa014 &lss3 a.4704 S80 a 48 47 16847 269 92 1213 8 32712 3324 0 137SJ 1426.3 1477.7 IS29 7 3552.4 te5.9 18002 17453 1301.2 '
073AE1 s C.1294 OJS38 0.4370 1A743 14374 L8000 L7362 1J784 IAl?6 I M 48 3ABB4 L9227 L954S Laes IA142 e 00161 RolM 00174 2 3998 3.7247 3.M83 3$3733 3.491S 4000s 4.3077 4Al28 &9165 L2191 18200 SA219 ,
aos a 6842 164 51 269 N 1210 1 1209.0 1322 4 1374.3 1425.5 1477A 15291 1581.9 I S S.4 1439 8 174SA 1300.9 051A01 e 0.1294 02938 043S9 1.S$93 1A242 14776 RJ239 RJ663 L3057 1A426 1A776 L9109 IJ427 L9732 2A025 '
e 00141 041H 00174 00lu 2.1904 2 AGE 2 2.6872 3.9410 3.1509 3A382 3.6337 19278 1835 41709 44131 &6S46 9 17442 1800.2 250 e es.H I44 63 270 05 3/S.10 1263.5 1319.0 1371A 1423 4 1475.3 IS274 1980.6 1634.4 IJsSS 1AIFF 1.94a2 1.97 (400 97) s 01294 S.2937 04364 0.S M 7 1A951 IA502 Le976 IJ405 IJB01 1Alr3 IAS24 i e 0 0141 0016S 03174 0.0lM 1.7666 2.0064 2.2263 2A407 2ASD9 2 8585 10643 3J688 3.4721 3A746 32764 300 a 48 79 IM 74 27u 14 375.15 1257 7 13152 13449 1421.3 1473 4 1526.2 1579 4 1U3.3 8888 0 1743 4 17996 (417.3S) o 0.1294 0J937 04737 OSMS 1.5703 1A274 14758 :1J192 1.7591 IJ964 1A317 IJ652 13972 LS778 1AS72 e 0.0161 00166 0 0174 00105 1.4913 1.7023 12971 2.0332 22452 2 444S 2A219 2.79B0 2.T730 3.1471 3J2CS 350 a 6818t 148 85 27024 375.21 1251.5 3311.4 IM6.2 1419.2 14712 1924.7 1S78 2 1632J le7.1 1742A 17959 (431J31 a 01293 0.29M 0.4347 ES664 1.5483 1A077 14571 L7009 1.7411 1.7787 1A141 1A477 3J798 1 Alm L9400 i
e 0 0161 001E& 00174 0 0162 1 2941 1A761 1A499 1AISI 1.9759 2.1339 22908 2A450 2.9987 2.751S 2.9037 age a 69 05 368 97 270 33 37S.27 124h 1 1307.4 1363 4 1417.0 14701 1523.3 IS76.9 1631.2 18A6.2 17419 179a3 (444.001 s 51293 8J935 0.43M 0%G3 3.S782 LS901. 1.6406 1ASSO 1.72Sb 1.7632 kJ55 LS325 late? 1ABSS L9250 I e 00161 00156 00174 0 0lM 09919 1.1984 13037 1.4397 1.5700 1 9992 1A2S6 L9507 32744 2.1977 2.320C
. 800 a 69 32 159 le 270 SI 375 38 1831J 1299.1 13SF.7 1412 7 1466 6 Ib20 3 1974 4 1629.1 less 4 1740 3 1794.S (467.013 s 0 12 w 0J934 04364 04t40 149n LSS9m.1.6'23 16Sie le990 1J371 1.7730 1A0st la393 IA7a2 u vas TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)
A.5 1
>* . . g .
Ate trose.
Teenteriwe, F sh 300 300 300 400 SCO 400 700 800 SCO 1000 1100 3300 lago 3400 3500
'n , 0.0161 0 0lu 00174 0 0186 0 7944 0 94 % 1 9726 1.1992 1.300s 14093 1.5160 l ull 3.7252 l arm 3.930, ese a 69 55 169 42 270 70 375 49 1215 9 1290 3 3351 8 I4C3 3 1463 0 1517 4 1571 9 107.0 8842 6 173s s 1795 6 4406:0)s 0.1292 02933 04M2 SMS7 14590 3.1379 15444 1.63hl 16769 1.7155 3.7517 l.Fest 12134 IA494 13792 e 0A161 Reise 90ln 00 s6 00704 E797s 09072 11*i02 1.107s 12023 utes 1.3sta 1 A757 1SM7 1.6
- yee 6 et 84 let 65 270 39 37561 at? 93 1781 0 134S 6 1803 7 1499 4 1514 4 IM94 1674 s IMO 7 37373 gyp 3 pa3.cs) s El291 62932 0.4MO O MSS 86849 1.5090 3M73 16154 lAbEO 14970 17335 8.7679 la02b 1 8318 1 8617 e 60161 00l u 90174 0 0186 0 0704 OAM4 0 7:25 0.8759 O M31 10870 1.1289 1J093 IJeal 13669 1.4446 gee a 70.11 169 as 271.07 375 73 447As 1273.1 1339 2 1399.1 leSS A IllI 4 IM69 IU27 16759 17150 1792.9 p182.) e S.1290 E2930 E43SS SMS2 E6BSS 1A869 1.S484 13580 I4413 16&37 1.717S 37522 1.7553 88164 144&
, 02141 RelM 00174 00lse Octue 0 5a59 Desta 0.nla 00504 &9262 09ms 10M0 1.1430 1.2131 3.2s7s gas a 70.37 370 10 271.26 379A4 487.83 1260 6 1332 7 13M 4 1452 2 ISCO S 3544 4 1906 ISM I 1M41 1791 6 g31.93) s &1290 62929 E4357 0.M49 0 4881 1A469 1A311 1.9422 3.H63 1.M62 3.7033 1.7382 3.N33 1A028 IA329 e Ecl61 telu &Ol74 00l M E0204 05137 08050 0.4575 S.7603 08295 02966 ASE2 1.0Pe6 1.0901 1.1529 asse 6 70.63 370 33 273A4 375.96 487J9 1249.3 3325.9 1339 4 1445.S ISO 4A IMI.9 1618 4 14753 1732.5 1790 3 g44.h8)e &I280 82928 E43&S E M47 8.8476 1A4S7 1.5149 1.M77 3A126 34630 3.0005 1.72M 3.7589 1.7905 1A207
~
v 0.0161 ROIM OA174 ESISS ELO203 04$31 0 5440 E61 5 08465 47505 0A121 08723 Emis 09sM 1.044s lage 4 70.90 170.56 271A3 376 0s 487.75 1237.3 1338A 3334 7 1444 7 1502.4 IM9A 1634 3 1673.5 1731A IF89 C ,
366233 s 0.159 82327 04333 GLSM4 EGS72 1A2$9 3A996 3.5H2 3A000 1A430 1A787 IJ141 1J475 IJF93 IA097 ,
e 00181 ROIM Sal?4 0A135 E0203 E4016 04905 OSS15 8950 06845 07418 0.7974 0 3519 0.9035 & 9984 33e 4 71.16 370.75 271 22 376.20 437.72 12242 1311A 1379.7 1440.9 1449 4 15S4 9 1614 2 16714 1729A 1787.6 gs7.19)e E120s 829N E4351 SA M2 hates 1A061 3A351 3.S415 3Atta IA29s IA679 IJ036 IJ371 1.7601 1J986 e 601(1 00lM 00174 E0185 0.0203 0.3176 OAOS9 OA712 ES232 ES409 GL6311 06798 6.7272 EM37 E8195 game a 73.es 371.24 272.19 376 44 487 6S 1104.1 12M I 11M 3 1433 2 14932 15983 1809 9 344 & O 17MA 1735.0 gt7AF) e 0,1257 SJS23 &4348 S.3434 ESB$9 3.3852 1AS75 13142 1.S470 1.4096 1A484 1AS45 IJ18S IJEM .1J515
, OA161 SAIM E0173 0.0185 60202 S.0226 0J415 E4032 44SSS ES031 0.9482 AS915 REIBS &574 &71u
> 3038 4 72.21 371.60 272.57 3M 69 48740 416.H 1279.4 13SS.S 1425.2 14!4.9 1546.6 3805.4 1684 3 3723.2 17E2J WGAAF) e E1234 02921 0 4344 OM31 SARS1 88129 1A312 1A968 1.S473 13916 1A312 1A678 IJett IJ344 1JtS7 e 0.0100 E0165 00173 60185 00202 &G235 02306 03900 &3938 044M 04S36 ES229 RStat EStee 9620 3888 e 72.73 372.15 272.95 3M.93 44736 615.13 1261.1 1347.2 3417.1 1C04 1541.1 3401.2 184R7 1720.1 Ing.7 En.*J2) s E1284 42918 E4341 0.M26 8.84*3 SA103 1AOM 1A780 12302 1.5753 1A196 IA&2S 1AE76 IJ204 IJS16 e 0 0100 Roles 40173 0A184 0201 0233 0.2488 E3072 0.3534 R3942 04320 04430 ES027 0.S36S RS895 M00 t 73.26 172.00 273.32 3D.19 487.53 614 48 1240.9 13S3.4 loot 7 1447.1 1534.2 ISM.9 MS7.0 1717A 3777.1 53SA14 s 0.1253 02916 E4337 S.5621 66834 83091 1.3794 1AS75 1.S138 1.5403 3A014 1A391 1A743 IJ07S 1.7339
. e 0A160 OA165 0.0173 0.0lp 40200 40230 Ele 81 0.2293 SJ712 0.3068 &3390 43892 E350 SA299 R4529 3 00 a 74 57 173.74 274.27 2nA2 487.50 412.08 llM.7 1303 4 1386 7 1457.9 1822.9 1885.9 16472 17092 IMod c 98&ll) s 0.1230 82910 0.4329 RS609 ESSIS 62044 1.:076 1A129 1AM6 1.SNS 1.S703 1A004 1A4H ,14796 1J116 e 00100 0.014S 40372 00183 00200 E0225 00932 0.1759 0.2181 E2484 42770 63033 83132 43522 0.37S3 Sees a 75 53 17s.88 275 22 378.47 487.12 410.03 1000.5 1247.0 1333.2 1440.2 1509A 1574A 3H8.5 1701.4 IM1.s R99.33) a &1277 &2h4 0.4320 ESS97 &6796 SJ009 1.1984 3.M92 1A429 1.49M 13434 13841 1A214 14:41 1Asas e 00100 E0165 0.0172 60183 OA199 E0227 til335 0.158B R1D87 82301 62SM S2327 430BS E3391 0.3510 3500 & M.4 175.3 275 6 378.7 457.5 803.4 000A 1250 9 13S3.4 1433.1 2503A 18743 3834A 169&3 3761.2 005 t01 s C12M 0.2902 E4317 OAS92 E4708 E7994 A970B 1.3915 1A300 1Asu 1.5335 1A749 1 AIM 1A477 IJE06 e 8.0100301M S.0172 &O183 OA199 3.0225 0.0307 0.1364 0.1704 0.2066 E2326 82583 42704 02999 8319P.
l 390s a 77.2 176.0 2MJ 379.1 487.6 40 Ewe 779.4 1224 6 3333.2 1422 2 1495.5 1M3J 16292 3093.6 1757J s 0.1274 E2399 SA312 0 SSBS 0.6777 E7973 83508 1.3242 1A112 3.4709 1.SIM 1.9418 1J002 3A3ts 1 Ass)
( e 3 0190 40164 OA172 &0182 OA198 E0223 E0287 E1052 0.1463 0.1712 Elt94 02210 82811 0.2001 82783 l 4000 4 75.5 177.2 277 1 379.8 487.7 eM.S 763.0 1174.3 1311.6 1403 G 1481.3 1552.2 14192 1885.7 1750 6 s 3.1271 82893 & 4304 ESS73 OAMO O 7940 E9343 4.2M4 3.0807 3.4461 1.4976 1.S437 1.S812 141U 1A514 e 00159 0.01M 03171 0 0181 telM 00219 EONE CAS91 &l033 0.1312 EIS29 0.1718 010PO 0.2050 02203 9008 a eI 1. 179S 2791 301.2 488.1 804 6 746 0 1042.9 7.212.9 1364 6 14S2.1 3329.1 34629 1870.0 1737.4 s &126DO.2561 04287 &SSSO 04726 E7080 Stata 1.1993 1.3207 3A001 1Atat 3.5061 1A481 1.5463 14216 e 90169 0.0163 00170 CA160 00195 0.0216 OA2S4 SA397 0.0757 0.1020 E1221 &l391 EIS44 0.1884 &1817 8888 & 43.7 181.7 231.0 342.7 488 6 402.9 736 1 945.1 13832 1323 6 1422J 1905.9 1942 0 1664.2 1724J l e S.1258 E3E70 &4271 RS$28 EMS 3 SJ826,0L9024 3A!M IJ615 1.3574 1A229 1A743 13194 1At93 18062 e 0.0158 S.0163 0 0170 0.0100 00193 OAFIS 0.0248 0.0334 00S73 0 0SI A &l004 41180 0.12W E1424 11542 38BB 4 MJ 184 4 283 0 354.2 489 3 801.7 729.3 901A 1324.9 1281.7 IM2.2 1882 4 IS&11 M38 6 1711.1 '
l - e ft.12S2 0.2059 0.42$6 O S's07 O M43 0.7/77 83924 8.03S0 1.2055 IJDI l.3904 144u6 3.493B 1.S3 S 1.673S l
TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINULD)
A.6
e
. n, s a s - -- ,,,n
'a ,
. A1I rl / li,
- fsn' ifMs m." h I*1 L1 i i17%'T ' A nPt I "
- kwr ._Q9( , eQ _^ %
Alfj ?tn y 1
,** q
'av T rii ?w ,; , ,
> q II h"'Y 1A s.7 . mE f s Liz) J M .1: m al ,
g .
- . FT ladIHAi A~! .
I N hof m, , ;
.'M 11 *F'd ./'.! T v'h5V b,,#FJ . 9Ni ,
w n u. ~. ,>>s r N [1 a 1 '
n e&y ,.
- f. .
s y ri - A x i s av .i- se, wr w im in .n, x , .
11 iL WAlb W Ii FMV I %f_ a yr
. , . ... - Om(,.R.f# vs wM IX
- M *,'*'g g sti f f r/r n s g g _
g' **
- em a,,. ~,
_n
- ~a- - ~~ ,
wrixf c 'M $1 rv m ,
w
-i 'x s-e, -
- All .27.1 " 1 Lib Ijf f)A' . f%, . x' ~ ,. , , ,
, .. * ** 1;/_.w.
fp)Vo n Ps f{ L 24W ,i 4.',' /5; i
-
- 1/F t 't ,F r r JJ"5EE- l " s l RK p 3_, , x EW T2 ' R T L anVT V a
'l MT V I t T #2's M iv si -rr r e .ic i F.? ,bfr/ n ->L n-WAIi fV . 6L WA
. 'N f x, ,,,
mr in inoir f iv i m i I er. < <
im i V -
. n . .% i ., xv x
- ~ *
, :i 1, w r: we , ,r r.
- *%e* ' , Wh.' he 'mxn N
- Al . n iI ff,. --
z rad-f
- * '79 %L' * .n UgsInr -)crrg{
P f a l/L A M }IPB"
} 2%n Pu v n'AI
- v q rj .h g pys jnp a r,,3 FR EA V
,, ,' : 4.V,
^g
- J'%
yys r , t -L,1 [ ' '
w n,_ 9's .3.nIj
't 6 Ax I N1 < %., w .Ge
.: . . ,te r. - . , m KJ ai s 1 s.
'i I' "m
, .f I " I f ,T ,' > J 7k r rs, h s g s,
, ,w i., s ., x,. ~
vse %+e , f f , v, c
ain . ry :v i s .. I < i
,,'v.< <
H as or , I , - ,1, ' .u f..: . , ,1, ,x, ,w nf ni -s.~ %
n,
.e c
g ifw:t/a s a,e r w1.
n f . ,y k,.
. , %r,., a ,
a- -
t rsi .f wl, . s f ,-a , < 'd 1-..
ii 1
'.{
. . <&.*s{ . , , , f*
, . .* e
- y f>I 14} / A ff i t/' i V ts I! < .ric f frin V,'is 1 s i
'x.~11 r Pw L -r%' 1 Ex%'M4s
,_x
. x
~
"R * * .
s
. . . x x1: rr o . >i z. e v s - m Lv
,aas L
Pw -
ur, a*
%) *IA . '.wr 1%_# E N Ew Py'~'N
- ,,qam' r.
e y {. e 1912V ll hV f Al a f [f/' s' f nf d i w r, I s > xi ~
e- ;%. :. f. . .;ga*. , !.- *
= y.
- ff*
- . ..;p :
v I:a obVi l'A f e
'cf M r1.
in n/T esp p /p r$y_ j j %,M K n , .. .
ifri v1' -
<r rw
-,wf wei vy ' %
r u me t n.. s =% v j.: N = %
~,-
f 3 .m . .'ti .I 1 w -> f . v ,~ -- , an, f% - % "
t.,;*,:.p.h* n- as g i,izirs1ss . s , f ir i c es-:, se-e v r ,. i 1. ,
f..
-~s
~ .r.. m1 . ,x i 1 1 / M wi , .w,. _
~ .
,% ,s
' * . k ., . . '. es .
w , t ..n .m, 117 (1,e' r r f a >>/ / p ' rm,) In 1 . nr
,A**** r .x,.
- f. (A'a N nI nr,) W,e % ,, % fw y
, . s ; . ,.s 1 4,,-
.'.z",.., p f-r I,1 L de
. xsix
~n Vif. '.fi -* I t I! - *i 'Ws.,
- iz wa m L ~. wrn .1 f%
- j , 'L( *,1 5p y f r my%
,,3c n .%
l l %s
(%
x
- ,* g, **. ; ,% e * .
.','*e .
. u , w, 1 :7 w , ,. .rx 111s w> % /- w*' w> x %r
- q. a.4 .A ,rg m.
12 i ' i 17 f W A.}'*T -11 .1 1'nd, in
- ni % 1/ n.x . .%- ,% m
, ,p. ,e, ,* ' - *5 6 \
.n 11 M. I A <T fl o'rI > - z=---et 1 : *ti %> 'wP r% f. * . .! at . 4 TAJ '
lr'W 'n 'W ~ '< >
if 1 l'a' / Lr
- inf ' I ' T' E 'F94, %n t J 1 % i % *
- 1 %L r%' I s % > F I x! " A 17%. e r% %
{}1 1:'I V ai 91F *x1 fJI .;f }f/" fW fuk ~s.1 s ' W. / .% 1 *\ '>_
.e
- d,~ nsm
%fJ /t K 1 s 4 m X -
If E KY.' I %/ V W
- 1 7%c
- ] A rps. T f '1,71 2 au W13syw/ ?N 1- I'% ' / 'k. ' x
) 'L yeK/ %f r V . ? w, n %
- r.ifn r,'
Is. m u . r,- n r rsu s zu i <rc r rn fv% .
f
,; r%
- x
' AFJ /*F E lJ*--- . i~M e /W t. f H . 4
%, , , 'u x r3 ex n ex i ,1. 1. !xn,~ 1 L '% e
- u in n vi s , o f - i w Pt A 6 h/
- i i n
, *"* < =,r /*% / '
,q, b) ( Vf MW 3*I.
1l1 < / f b L's A a . 1
- n '"r d,5 1 ' J ' %s I 13[ /.o%f
'%I N
,, u x r %. .x, ' '%
~
/
- K }%e 21s1 L* Kr, ' a%' e 't i ; %'/ ,,'%
, [1 f l'/ // /, ' s ( A 'N .f .%' N
- 11) 4 'sF* IA *K N rw ~ !
r 1 ;_- o fu v n f%. lf , {f s', j %p JN /'12r
, *. % [" 11 is'L 4 o / 'af. 'N . tK / W f .% '
- i I of% / s' y e N i i l '/ f on'9"~ ~ f s L t M' f A f R' 1 sh ? %e . ; % %
n u f. 11 s n s ' i,'1"Fh
.4" 1 , %
1, > v f. /~K ^ l % x- ^ . /
, e ., h .i x ,i /. wn rusiv e
s%. s I %
/
- M i ff * ' - I f ' Nn le Pw I ) / r4/ /K-n x 2 ns rx a - 7, %
- ,,,, n a . fi , 3 ,
Mer 1 1 : h
> 1 v i Av'rv u n%m [/ % % * . '% % \
. . 'K'in f 1'ai i u a,y$1 x 7, g -n n i>,'% .
n.
A. 1 hi 'Js I.
v si N
/*A A.1 mf }% }N l'% /
i~ s fy J .' %
,x- i ~<
A /7 2 'A b . v7de af. "\ I , IV
- o m r x , _. . r% f , rni ! - o %
- ry / In //) A l' +
( vi//' I L 1 I8 N'7f . 4 A- f' s
'. z% s . .iss
- l s T% f.> n Mi i (*M 's / ~ 4 /% ' /%,./
rs f- <
,, ,1
,1 ici,.1-n z w $i %,I V i,, . . . f,:
I '
f e, , :T - ,w, r'pL / It . J^w r /
/ N-
'~ *a n n u, ,r. ~ , e N. n ,s'%x.s %r 9~~
n,/
I su a v , , i ~
,, ,m,r . .,f.., x1 f w. , - ,nfr; ru i m , rs - i ms s- ,- ar. i%, 1 N . s .x O~
.- #- rz , o i
>f 1. ,
.ru 1, 1 a m <nr si f. - u f.
. \
r ti g. v i suye r , v i w, i , n, n .sw i, u n
.i % x-i- -
9 ti f f. .I 12 E4 11 * \V e m us uA n rx
~ . 1 mr - v
, % .x- ,i nRL /%*2;Ar I'hrEE .' I '.%W 1 h ?'l In * / ~ ,
. m)f, Ja'17- ( f I Tst I / I s' n?%f 'el
- Y* .
Iks'I J ,'s /%' f x ' # >2%*
- 'I WA .- % \/ N o ' ' % l i ( " s/ V 9
11, in
%fiA Asnf W T 'FF . ' 'M , %
f %s -FW.> + 'o
' -,f 'U I A/ 9 "A /Y
.V 1 I * 's ;f X J .F /
\ff. 9 % / r 17%
~
Iff#1 Ye d ' FE - A FM ' T 1.> k.R. f PW ' ./ / ' > . N _.
. I \ 1 '. J f'%/ - f.
e . * *
[]r H. f \ El a ei
- L ' 4 K.=8 /s 1 T / .I - XIt / /
?% > ' A % .'
Jrn% . A1 if N y* '%" . i ie % /* 7 g el ef Nfn t tI' ar r o-a , . a . >si - u, e la V" ' 1tf f >R h Ja' 1A I 3.
a
' $l n / %! 'f
- A 't ' 'f ' re j '
'%' V, W
- s s u av,n ,sa ,a ia 4:.
1/ 'I '. f .1 Ie f % ' Is, j' / % "
g .
di I ,1 % 1. 1 '1xl'\s 'I. A. s'
, ,% r i fu <- 1I l 11A v w a s. s r x-
= ..- *
-Esim omf .i,r.:1. n xi. s.v
.m y s. nf s.. > .\ r wi%
n o s v is ,
A,.
,' ,u 1,w,,< 2 n Mr - ts) a e V *%'
y v
,'i el os ar *V
--r %s:
Y.
1-
.' />h >I J *)
7
'N
',S m g'EL fa 's f f f ' f. '? .'l % B AJ J < 'Jf i 8.. Or s. % >
s in .. s . ,1 in r u as
,r ,o.
s 7 -
,' I R . Es ' f a wfml1I!) T Kf ,1r k '
1 D 'N l ef' r % / %f f's! J , fA W, f - - -
GEL 1A f L - M "l'11 i'E 'M NA 1 o %'e 1 f f ,n *6 1 ** - t t4 a 'Y. Y Y n'f E~ J fu s\ 0 ,V %, 'l 6/5 ./"M' Z 1
. I 1
- 1/' .' \W W 4 A E 1111 1n,.("e s"%*.'
2
me 1 i s e1
- 1 m) G I 11 1%J .* V
%r ' l f \1l . A * ' '1 ,7% - Jo 1
nal n,x.Af 11 r%E bl a 1 *'x .'
O rr.z : 1- a.,,
1 11 1 1 nro n.< ns*sz u x. rs < x i f
i fn,J w ,n A f:
y%EAEli ' _
- f vs s '
."r 8 i s e ru . 'n r f r .w : r> N en,,na, ..
i , ,c .v ..
., .-x, . f , , . s .* ua rs sf .r > rm )
,,e,s v m n- r sm s
/
f ff. a a n . '/,113: n. , ,1 ,
- s. i : .. -
g, ey 11
- Ae 2 f, %1' n "I' i n- a. i, , , . v. r u < ,E, n ,./11:
s/ m. 1n . . n .i .:>
x , ,/ t g
s-a sf i 1" El f J e 'A s tIW Bs *\' f TJV i s Ai I i
1\
J r% tis l '
ih/ / n { P 'f' hi - Ja ./ 4 r
~ fm r ,1, I 'h1 En i af% sE l 11 '/,j a /
- . m,1n, u u n < , ,d ' - \)"
LJ /*A ?I f s * ' ;%( f 4 > 's f > fpL 'I d' f l r. / < f a / O v.s u, n. . >s rv - s v r s 1 1, f x, e
/ a '(
,Sf1'br_ 1 6 f?s%' /<
vfftr%)n
.a; a n r. , 1,1 1. r, <
Y ,pA11f ,1 ml e n I 4.' r' ,\J . "A ~ A
. - . > r, 1. xs, I >
/s v
f ,-
n ir . r 8
.E 4 h' / _r r ns s , , x-e Y gsgir,gj je un a v'
1 f. , / 1 1,*
i vi 1 *avs. si 4 > f>s Ji t!
v<rr
.a ' Lf %. ' '
i s.
A
/fk't. / f f/f * ~
'1' i%7 fn a'l >a ' /.* B > Y r in f B ,s/ //N r rs 1.' %I < ,: 7V Ng fg p173 ,'
I ArI e1 3,
'rf' . ') 1 f. ' ' f 1 ~ 'n ' f A'\ . A~A rt' I r
' '\W ' A -)
ff\f A f'w EPL//' I K -/n s ! /. ' % - /
.%' 'f 17.1 \ff'\' f ' *\
' Y' '
>t 's/ f f);'d'i e /nk n I f: I' X / A f %f ' - ' n ' h/
S gg,e fg ni
- a
,__F AI IT .k1~ / }J -'7/ */ fI i Al '11 LII - ' A Y JJ' .% / r* ! ! /
p wy q, nF' Ia ' *ff f'.4 '
/ AN Ik V fM) '
-' fAV a i f . Jh g j v, 2 'a' ^I ' ' - ' n L / /
r;r : > r. / t l r a
- A '
/ / f f fAf I 't~ />
p_ 731 ' 21; 1 - . s f fu 'f: .' % f /
's n a n'fv7'. n # ' fr K 'A' A s .1 vs/siv s vz a s s '
gip'sTl g g ./ '..J.
. f , 'J f ' ux/
W 2 W4.O ' ~LJ / ' I . 4 Y 'fr/ / 1 f. <
./ rr L/1 br j \ j, gy 1 '] R r,' } f / )i f) P
- fan :r or,
$*1 1 I rb r ' ns s b /
'I
' f a
!* v
- f. ' *
- t LJ A
f
'Y I. } L' V
f r f. > d /// a i >
'J ' f2 ' <
f-'
- )
P.,
/tr1wn i s- .C **
r rwa vr f ) m' 'f K 'u'
gzu uz,,-1 .u ff.r,-r 1 ' ^ .'V n v f
- w. . 1 , . . , n n
- ^ / f ' u . L11 x,2 w u / > <
. - > - i n si ra rs <> m v~ -
r) nv v,
> < l '
> '\ / J '
1 , - ~
g .1 E E J.1 Jf m a
ff afn>
n f, m, u
,- ) J
,o Jr. a f F '.,1 T/ J> E -
( l '
II- k I > I f
< m > .
n ari sv/cs o , A r ^ '
\// s. 7/ F \'- r / l 'W- /
y In .
iv i -
I i EA si v il. it ! ' . a n' I .'.'~1 , o sE ', ) . } G } K '
' /\ }
}x 'z,3r ;r v J j
s .1 ,
J T El'i i * * 'I - , f.' m I, A Tr ' } JYJ J / TC '
7 n ir
\ .R A / ' > / 'k A I y f , A 71 '
1, s yv f _1 ' !
Ai I L F
} } >
i'P.J' J' f f 'W 4e is, , av
.ni ->r
,V >WV ins' r i f, f v !, r
) V ') ^ w.
) =
q 1
- L ' In I r i ff * * /s .A s~&a J u l l[
i f
rx mi fe. ,e e n r o, .11 .r s <
<a1n. 11 f ' f d f R f I 1 : I"f f' )
'na4 , 21 i ! L
- f F n f>- r t rs
.n nr #
l' 12 F. ' r>
L.
'11 3 n I f 7 L / /% / ) \ Affa/ / , ~'
' A L li l / J T Ab 1 i Yi *% a :/
. I .' n% > l ') '!\ } ne'\ } e
.'} A'*' N ') .V AfL.
g ru u V .nY A 2 I I a,
J m. s b 's a1 k w/ .t -' f a \
4
' WJ f
'? f) . f\/ ,
.-, u v
Y 1 ?I l .* I ' I. a ' ra'W '
, f nrn a f v / .' s ~s x s - m'- ,a '
mfA t l
- f. .'l s y' 't j') { f /
T
'11 *1 r. k. ,
m's a - n ?\ A w f.' l' f LP. > f A / " M l' /
l b 'N $ ' (, - (
Y',) ] A'E./ } hf. f ' A' O / J' i ( 'fI E%.~ d nia I 21 1F II).
I
) ,Y =f b af
'IJ s' st- ;s.) f.,
A .
Y ft *
-- . - - r <-- -
j jpE jfss t'.1 all 1 s 1;f f I i
- 5. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND PAGE 20
- THERMODYNAMICS ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
't ANSWER 5.01 (2.40)
- n. decreases [0.6]
- b. decreases [0.6]
- c. increases [0.6]
- d. increases [0.6]
REFERENCE Thermal-Hydraulic Principles and Applications To The Pressurized Water Reactor II pages 13-17 through 13-24 ANSWER 5.02 (2.00)
- a. Increases [0.5]
s b, Decreases [less negative] [0.5]
- c. Increases [0.5]
- d. Decreases [0.5]
REFERENCE Reactor Core Control For Large Pressurized Water Reactors pages 3-12 through 3-43 Thermal-Hydraulic Principles And Applications to the Pressurized Water Reactor I pages 4-69 through 4-70 and 6-30 l
ANSWER 5.03 (1.50) -
- a. Decrease [0.5]
Decrease [0.5]
f b.
- c. Increase 2
[0.5]
REFERENCE Thermal-Hydraulic Principles And Applications to The Pressurized Water Reactor II pages 10-54 and 12-4 through 12-9 Reactor Core Control For Large Pressurized Water Reactors pages 6-29 through 6-31 l
~
THEORY OF NUC U AR POWER PLANT OPERATION. FLUIDS. AND ~PAGE 21
~ 5.
4 THERMODYNAMICS ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
1 ANSWER 5.04 (2.40)
- c. 1. More positive [0.6]
- 2. More positive [0.63
- b. 1. No change [0.6]
- 2. Increases [0.6]
REFERENCE .
Reactor Core Control For Large Fressurized Water Reactors, pages 8-23 through 8-33 ANSWER 5.05 (3.00)
- a. 1. No effect [0.5]
'2. Lower [0.5]
- 3. No effect [0.5]
- 4. Higher [0.5]
- b. FALSE [1.0)
REFERENCE '
Reactor Core Control For Large Pressurized Water Reactors pages 7-24 through 7-34 -
Fundamentals of Nuclear Reactor Physics pages 8-48 through 8-60 l
l l
..- . . . . _ . , . . _ _ . . ~ . . . . _ . _ , - _ _ . _ _ _ _ . _ . . , _ _ - . . . _ _ . -
PAGE 22
'..* . 5. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND THERMODYNAMICE ANSWERS -- COOK 1&2 86/12/02-PARKINSON,K.
- ANSWER 5.06 (1.80)
- a. More negative [0.6]
- b. Less negative [0.6]
- c. More negative [0.6]
REFERENCE Reactor Core Control For Large Pressurized Water Reactors pages 3-12 through 3-41 ANSWER 5.07 (1.20) a '. 2. or compressive
[0.3]
- b. 2. or compressive [0.3]
c.
~
- 1. or tensile [0.3]
- d. 3. or heat-up [0.3]
REFERENCE 1hermal-Hydraulic Principles and Applications To The Pressurized Water Reactor II pages 13-62 through 13-68 ANSWER 5.08 (1.00) .
, .d.
. [1.0]
REFERENCE Thermal-Hydraulic Principles And Applications To The Pressurized Water Reactor II 4
,g -w,.,----,,n-m-,,, , - - -,,,,myw- v n ,m ---.w~ .-
n., , - - ,-, , - - - -- , , - --- , - - ----._..---n------ - - --n--- - ,--- -- -
- 5. THEORY OF NUCf5AR POWER PLANT OPERATION. FLUIDS. AND PAGE 23 l
' THERMODYNAMICS !
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
o ANSWER 5.09 (1.10)
H2/H1 = [N2/N132 = [V2/V1]2 [0.5]
H2 = 25 psig [8 gpm/10 gpm]2 [0.3]
H2 = 16 psig [0.3]
REFERENCE Thermal-Hydraulic Principles And Applications To The Pressurized Water reactor II page 10-36 ANSWER 5.10 (2.10)
Xenon is removed from the core by burnout and by radioactive decay
- [ Xenon is radioactive] [0.7]
Samarium is removed from the core by burnout only
[ Samarium is stable] [0.7)
Following a shutdown, Xenon reactivity will peak and then decay to zero, but Samarium reactivity will build up to a maximum. [0.7)
[ reasonable wording will be accepted]
REFERENCE Reactor Core Control For Large Pressurized Water Reactors pages 4-11 through 4-34
- 5. THFORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND PAGE 24 i THERMODYNAMICS ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
i ANSWER 5.11 (2.00)
Tavg reactivity change: 7F X [-18.4 pcm/F] = -128.8 pem [127-130] [0.4]
Boron reactivity change: 100 ppm X [-11.2 pcm/ ppm]
= 1120 pcm [1118 - 1122] [0.4]
Total reactivity change = 991.2 pcm [990-9933 [0.23 Keff2 = 0.95 + 991.2 pcm = 0.95 + 0.01 = 0.96 [0.5)
CR2/CR1 = [1-Keff1]/[1-Keff2]
CR2 = 10 cps X [1 - 0.95]/[1 - 0.96] = 10 cps X [0.05/0.04]
=12.5 cps [12 - 13] [0.5)
REFERENCE L Reactor Core Control for Large Pressurized Water Reactors pages 3-4, 5-13 and 9-10 ANSWER 5.12 (3.00)
Over core life Pu-239 builds up [1.0]
Over core life beta - bar - effective decreases as the Pu-239 concentration builds up [1.0]
~
SUR is inversely proportional to beta bar - effective [1.0)
[ reasonable wording accepted] -
REFERENCE Fundamentals Of Nuclear Reactor Physics pages 7-33 and 7-88 through 7-90 I
t I
1
PAGE 25
.. 5. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS. AND THERMODYNAMICS ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
.\
ANSWER 5.13 (1.50)
- a. Decreases ,
[0.5]
- b. Increases (0.5]
- c. Decreases [0.5]
REFERENCE .
. Thermal-Hydraulic Principles And Applications To The Pressurized Water Reactor II pages 7-102 through 7-108 t
,8. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 26 ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 6.01 (1.50)
- a. 1. Assist in detecting the presence of a gas bubble or void in the vessel.
- 2. Assist in detecting the approach to ICC.
- 3. Indicate the formation of a void in RCS during forced flow conditions.
[any 2, 0.5 ecch]
- b. AFW and [AFW 11C bus] [ Train A CRID II] [0.$5]
ELSC buses [ELSC-11B bus] [ Train B CRID III] [0.25]
REFERENCE DC Cook Lesson Plan, RO-C-NS2A, Reactor Coolant System pages 8 and 10 ANSWER 6.02 (2.00)
- a. 1. Charging pump discharge pressure to VCT pressure [0.2]
[0.2]
- 2. VCT pressure to pressure in the water column [ stand pipe]
- 3. Water column pressure to atmospheric [2-3 psig] [0.2) i b. 1. 3gpm [0.1]
- 2. 3gph [0.1]
- 3. 100cc/hr [0.1]
- c. 1. VCT via isolation valves [0.23
[0.2]
- 2. RCDT via reactor coolant standpipe
- 3. RCDT outlet [ vent header] . [0.2]
- d. Reactor coolant flowing up across the thermal barrier / heat exchanger [0.25]
through the pump radial bearing to the seal assembly. ,
[0.25]
REFERENCE DC Cook lesson plan, RO-C-NS2P, Reactor Coolant Pumps, pages 10-15
- - , . - , - - , , - . - . , , - - - ,,. ,--,-- ,. ,- - ,,,,.a ,, --.--.,.n,-. . , . , - , ,
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 27 ANSWERS'-- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 6.03 (3.00)
- c. To prevent tying the "A" and "B" trains together [0.5]
[ prevent damage to pressurizer heaters due to operation with heaters uncovered ] [PZR level low)
[ prevent damage to the heater SCR's] [SCR air flow low]
- b. 1. SI suction relief 220 psig [210 - 230]
- 2. SI discharge' talief 1750 ps'ig [1730 - 1770]
- 3. RHR heat exchanger outlet relief 600 psig [590 - 610]
- 4. Charging pump suction relief 220 psig [210 - 230]
- 5. RHR suction from loop 450 psig [440 - 460]
- 6. RCP seal relief 150 psig [140 - 160]
- 7. Letdown relief 600 psig [590 - 610] [any five. 0.35 name, 0.15 setpoint]
REFERENCE DC Cook lesson plan, RO-C-NSO3, PZR and Pressure Relief, pages 14,19,24 O
G l.
i j
- - . , ~ , . . , , ~, ,._.c,- r - - ., - . . , _ . - , ,
- , - , - . . -s __
. , , , _ _ , ., ., ,--..-_..,_m_,__,,w_m3 ,_ ,
_,,_,y,,
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 28 ANSWERS -- COOK 1&2 86/12/02-PARKINSON,K.
ANSWER 6.04 (3.00)
- a. 1. Logic failure in the Logic Cabinet
- 2. Voltage Regulator Failure
- 3. Phase Voltage Failure <
- 4. Logic Failure in Power Cabinet
- 5. Multiplexing error Removal of printed circuit card [any 5, 0.3 each]
6.
- b. 1. All group step counters on rod control panel i 2. Master cycler reversible counter
-3. All slave cycle counters
- 4. Bank overlap counter
- 5. All internal memory and alarm circuits All pulse-to-analog converters [any 5, 0.3 each]
6.
REFERENCE DC Cook lesson plan, RO-C-NSO4, Rod Control, pages 17 and 18 e
i
.,m . _ _ . _ - - -, r -_,______.- _ - - - - - -- ,-- , ,-.-m__ - . _ _ _ _ . . _ - . . - . - , - - . , - , - - . - -
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 29, e w
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K. 'i
- s
~'s ANSWER 6.05 (2.00) 87% "hi level" alarm trip to divert 78% begin auto divert 24% stop auto makeup 17% start auto makeup '
14% "not in auto" alarm
~7% "VCT low low" alarm 1% refueling water sequence [0.1 each setpoint. 0.16each function /aldrm)
REFERENCE DC Cook lesson plan, RO-C-NSO6, Chemical and Volume control System I,s a page 10 .2rr ANSWER 6.06 (3.00)
closed ,
[0.5]
to prevent RWST draining to recire sump .[0.5]
- b. RHR pump discharge to containment spray [IMO-340/331] closed [0.5]
to prevent RHR spray during injecti'no phase [0.5]
~
to prevent a single failure from creating multiple trains or multiple systems inoperable during injection phase [0.5]
REFERENCE DC Cook lesson plan, RO-C-NSOB, Residual Heat Removal [RHR), pages 16 & 17 I
i l
e -,-. -._2,
- 6. ' PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 30
,"- -;L -
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
dA_ .
+
5 3.
ANSWER 6.07, (1.50)
- c. Log curre[nt amplifier output signal [0.2]
>b. Startup Rate Crate channel, N37] [0.2]
_ Level indicator [ control board) [0.2]
Level Recorder [0.2]
Computer [0.2]
- c. To' provide source range indication at the Alternate Hot Shutdown Panel [LSI-4] [0.5]
[ Provide indication of vessel voiding during accident conditions]
REFERENCE DC Cook lesson plan, RO-C-NSO9, Excore Nuclear Instrumentation, page 9 cnd TP-14 4 ..
ANSWER 6.08 (1.50)
- n. high 644 psig [640 - 6tSt 6523 [0.25]
low 599 psig [585 - 613] [0.25]
m.
~-
- b. high 630 psig [616 - 644] [0.25]
low 613 psig [599 - 627] [0.25]
high 63.5% [63 -64] [961 -971 Ft3] [0.25]
q.
low 36.6% [36 - 37] [929 - 9'9 3 Ft3] [0.25]
REFERENCE DC Cook lesson plan, RO-C-NS12, Emergency Core Cooling System Table NS-12-II k
It i
s
\
4 2
. - . , - - i-,.-,..-----....-._,..,-, . . - . . , _ _ , - vr--- - - , --m---.----- r-- - - , - -.
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 31
~.
ANSWERS - COOK 1&2 -86/12/02-PARKINSON,K.
~.
ANSWER 6.09 (1.00)
- c. Upper Containment Ventilation Units
- b. Lower Containment Ventilation Units
- c. Instrument room Ventilation
'f. Containment Aux. Charcoal Filter System Clean-up Units.
[any 4, 0.25 each]
REFERENCE DC Cook lesson Plan, RO-C-ASO3, Non-Essential Service Water System, pages 1-3 ANSWER 6.10 (1.50)
- a. Reactor Coolant Drain Tanks
- b. Boric Acid Evaporator vent condenser
- c. CVCS Holdup Tanks
- d. Volume Control Tanks
- o. Spent Resin Storage Tank
- f. Automatic Gas Analyzer
- g. Waste Gas Compressor Recycle Lines
- h. Pressurizer Relief Tanks
- 1. VCT Gas Sampler [any 6, 0.25 each]
REFERENCE DC Cook lesson plan, RO-C-ASO7, Gaseous Waste disposal, page 10
~
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 32 ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 6.11 (1.50)
- a. Diesel output breakers trip [0.25]
on undervoltage [0.25]
- b. Load shed occurs [0.25]
[0.25]
and breakers reclose
- c. Load sequence timers start . [0.5]
REFERENCE DC Cook lesson plan, RO-C-ASIO, Diesel Generator and Auxiliaries TF-27 ANSWER 6.12 (2.00)
- Tavg mode must be selected a.
b'. ' Condenser vacuum must be greater than 10.6" Hg and circulating water pump breaker closed
- c. At least one circulating water pump operating
- d. Tavg above 541 F
- e. No turbine trip
- f. Greater than 50% load rejection
- g. CRID II has power [C-9]
[any 5, 0.4 each] ,
REFERENCE DC Cook lesson plan, RO-C-PG12, Steam Dump System, page 14
%e
- 6. PLANT SYSTEMS DESIGN. CONTROL. AND INSTRUMENTATION PAGE 33 ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 6.13 (1.50)
- n. The reactor trip breaker control circuit was modified to energize the shunt trip coil on receipt of a Reactor Protection System trip signal. [ reasonable wording accepted] [0.5]
- b. " Reactor Breaker Undervoltage Trip "A/B" Initiated" annunciator installed. [0.5]
- c. "ACB RTB Control Bus Volt failure" annunciator installed. [0.5]
REFERENCE DC Cook Operating Memo 85-175(T)
~
G
- 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 34
. RADIOLOGICAL CONTEQL ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 7.01 ( 2. 00 )-
- c. bypass affected channel power mismatch bypass [0.5]
- b. bypass affected channel rod stop bypass [0.5]
- c. bypass affected channel comparator [0.5]
- d. bypass affected channel upper and lower detector current
- comparators [0.5]
REFERENCE DC Cook 2-OHP 4024.210.012 and '-OHP 4024.110.012, para 2.2 ANSWER 7.02 (1.50) 4 place backup heaters on (0.25]
when pressure increases by about 50 psig the pressurizer spray valves begin to open and control pressure [0.25]
onsure RCS pressure is maintained at desired value [0.25]
after approximately three [3] hours of spray operation with boration completed [0.5]
return the backup heaters to auto [0.25]
[ reasonable wording accepted]
REFERENCE DC Cook, PRESSURIZER PRESSURE AND SPRAY CONTROL SYSTEM OPERATION, _
~
1-OHP 4021.002.007, para 6.3.1
- 7. PROCEDURES -NORMAL. ABNORMAL. EMERGENCY AND PAGE 35
~- RADIOLOGICAL CONTROL ANSWERS -- COOK.1&2 -86/12/02-PARKINSON,K.
ANSWER 7.03 (2.00)
ACTION: The #1 seal leakoff valve is closed [0.5) immediately [0.5]
REASON: To prevent thermal shock and [0.5]
bowing of the pump shaft [0.5]
' REFERENCE DC Cook 1/2-OHP 4021.002.003, REACTOR COOLANT PUMP OPERATION, para 4.20 ANSWER 7.04 (2.00) 3 a. verify steam dump controls have functioned to limit Tave and pressurizer pressure transients [0.5]
- b. monitor reactor power to ensure the rods are moving inward to reduce power level. [0.5]
f'
- c. adjust turbine speed to maintain frquency at 60 Hz [0.5]
- d. monitor Tave to ensure the Steam Dump System is performing properly [0.5)
REFERENCE -
DC Cook 2-OHP 4022.001.002, Loss Of Load, para 4.2 I.
PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 36 7.
RADIOLOGICAL CONTROL j ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 7.05 (2.00)
- c. notify shift supervisor [0.4]
- b. notify SRO-CA- [0.4]
- c. sound containment evacuation alarm [0.4]
- d. have sump pumps turned off [0.4]
- o. have spent fuel p'it cooling and skimmer system turned off [0.4]
REFERENCE DC Cook 2-OHP 4022.002.006, Loss Of Refueling Water Level During Refueling Operations, para 4.2.1
- ANSWER 7.06 (2.50) pressurizer low pressure 2/3 1837 psig high steam flow with 1/2 on 2/4 loops 0-20%: 1.42E6 20-100%: 1.42E6 to 3.88E6 low low Tavg 2/4 541 F or low steamline pressure 2/4 600 psig 2/3 channels on 100 psig steamline differential pressure one SG lower than one channel on 2/3 other'SGs ~
lower containment 1.1 psig pressure high 2/3
[0.2 each condition, 0.1 each coincidence, 0.1 each setpoint]
REFERENCE DC Cook 01-OHP 4023.E-0, REACTOR TRIP OR SAFETY INJECTION, para B.3)
- 7. PROCEDURES - NORMAL.' ABNORMAL. EMERGENCY AND PAGE 37 RADIOLOGICAL CONTROL ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 7.07 (1.50)
- c. PRZ PORVs (0.4]
closed [0.1]
- b. RC letdown to regen HX valves [1-QRV-111 and 1-QRV-112] [0.4]
closed [0.1]
- c. Excess letdown to HX valves [1-QRV-113 and 1-QRV-114] [0.4]
closed [0.1]
REFERENCE DC Cook, 01-OHP 4023.ECA-0.0, LOSS OF ALL AC POWER, step 3.
s ANSWER 7.08 (1.00)
- d. [1.0)
REFERENCE DC Cook Radiation Protection Manual, PMP 6010. RAD.OO1, page 122 ANSWER 7.09 (2.00)
- a. closure of CCW Surge tank vent and Overflow Valve
[2-CRV-412] [0.4]
4 b. if a component served by the CCW System has just -
had CCW flow cut in, isolate that component [0.4]
record the time and date of the alarm [0.4]
start recording the count rate on both CCW monitors
[R17A AND R17B] [ start trend block [R17A and R17B)) [0.4]
CCW Surge tank Level every 10 minutes [ start trend [0.4]
block [R17A and R17B))
s REFERENCE DC Cook High Activity In CCW System, 1/2-OHP 4022.016.003, para 4.0 i
. 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 38
~ RADIOLOGICAL CONTROL ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 7.10 (1.60)
- a. Hydrazine will cause Chloride ejection from the mixed beds. [0.75]
- b. Low pressure lift setpoint on 1/2-NRV-152 and 1/2-NRV-153 is !
385 +-22 psig [ Unit 1] and 420 :-15 psig [ Unit 2] [0.75]
~
REFERENCE DC Cook Plant Heatup From cold Shutdown To Hot Standby, 1-OHP 4021.001.001, steps 6.10 and 6.20 and 2-OHP 4021.001.001, steps 6.10 and 6.22 ANSWER 7.11 (1.00)
FALSE [1.0]
REFERENCE DC Cook, Determination Of Critical Conditions, 1-OHP 4021.001.011, step 6.9 and 2-OHP 4021.001.011, step 6.7 ANSWER 7.12 (3.00)
ADMINISTRATIVE LIMIT 1.0 Rem / Quarter [0.5]
[0.5)
- b. 1. not to exceed 3 Rem per calendar quarter
- 2. not to exceed 5 [N-18] Rems total accumulated dose [0.5)
- 3. accumulated dose recorded on Form NRC-4 or equivalent [0.5]
4, written permission received [from Technical-P.S.
Superintendent and sponsoring department superintendent] [0.5]
REFERENCE DC Cook Radiation Protection Manual, PMP 6010. RAD.OO1, pages 36 and 37
- 7. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 39
~.- ' RADIOLOGICAL CONTROL ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
l ANSWER 7.13 (2.00) the rheostat must be run down counter-clockwise [0.5]
until the yellow LOAD LIMIT light is lit [0.5]
then the SPEED AND LOAD ADJUST must be run up [0.5] !
slightly above the load limiter [0.5]
REFERENCE DC Cook Turbine Generator Normal Startup And Operation, 1-OHP 4021.050.001, steps 6.22.7 and'6.23.7 ANSWER 7.14 (1.00) adjust 1DGAB auto voltage control down and up gradually [0.5]
e until a minimum amperage has been established [0.5]
REFERENCE DC Cook Starting, Paralleling, Loading, and Shutting Down the Emergency Diesel Generators, 1-OHP 4021.032.001, step 6.2.6 I
1 l
1
,--.-r, - -
, - - - - - , , , . _ - --- r ,. . -_ . . -.
,8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 40 i s
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
5 ANSWER 8.01 (1.00) l
- a. false [0.5] l
- b. false [0.5]
REFERENCE DC Cook PMI-4010, para 3.9.1 ANSWER 8.02 (2.50)
- a. > 541 F [0.5]
- b. restore Tavg to within its limit [0.25]
within 15 minutes or [0.25]
s be in HOT STANDBY [0.25]
. within the next 15 minutes [0.25]
- c. ensure the moderator temperature coefficient is within its analyzed temperature range ensure the protective instrumentation is within its normal operating range ensure the pressurizer is capable of being in a OPERABLE status with a steam bubble ensure the reactor vessel is above its minimum RT NDT temperature Tavg is above F-12 interlock setpoint [any 4, 0.25 each]-
REFERENCE DC Cook Technical Specifications 3.1.1.5 and B3.1.1.5
- w
,y -w - - - - e - w - - ,um+ +m-n w --w>-----,--wm-+- p--w--me ---w e-w -m-,. - ------- e
ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 41
- 8. ,
. ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 8.03 .(1.75)
- c. reactor coolant system Tavg [0.25]
pressurizer pressure [0.25]
reactor coolant systen total flow rate [0.25]
- b. restore the parameter within its limit [0.25]
within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> ,
[0.25]
or reduce thermal power to less than 5% of rated thermal power [0.25]
within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> -[0.25]
REFERENCE DC Cook Technical Specifications 3.2.5 [ Unit 1] and 3.2.5.1 [ Unit 2]
+
ANSWER 8.04 (1.75)
- c. 1. 16 [0.25]
- 2. 16 [0.25]
- 3. 24 [0.25]
- 4. 72 [0.25]
- 5. 8 [0.25]
- b. plant manager (0.5]
REFERENCE DC Cook PMI-4010, para 3.2 A
,8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 42 ANSWERS -- COOK 102 -86/12/02-PARKINSON,K.
ANSWER 8.05 (1.00)
O. to initiate corrective maintenance
- b. for implementation of a design change
- c. to initiate preventive maintenance
- d. to initiate surveillance tests or inspections
[either surveillance tests or inspections accepted, but credit will given only for one] ,
- o. to request miscellaneous work [ housekeeping, furniture moving, etc.]
[ credit will be given for only one example from this category]
[any 4, 0.25 each]
REFERENCE DC Cook PMI-2290, Job Orders DC Cook Lesson Plan SR- C-0201 para II.
ANSWER 8.06 (1.50)
- a. Startup report [0.5]
- b. Annual report [0.5]
- c. Special report [0.5]
REFERENCE DC Cook Technical specification 6.9
- 8. , ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 43 ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 8.07 (2.00)
MODE TEMPERATURE
- 1. Power Operation' [0.1) 2 350 F [0.2]
- 2. Startup [0.1] 2 350 F [0.2]
- 3. Hot Standby [0.1] 2 350 F [0.2]
- 4. Hot Shutdown [0.1] 350 F > Tavs [0.2]
^
> 200 F [0.2]
- 5. Cold Shutdown [0.1] S 200 F [0.2]
- 6. Refueling [0.1] $ 140 F [0.2]
REFERENCE DC Cook Technical Specification Table 1.1 3
ANSWER 8.08 (1.00)
- a. to advise the Plant Manager [0.5]
cn all matters related to nuclear safety [0.5]
REFERENCE DC Cooh Technical specifications 6.5.1.1, 6.5.1.4, and 6.5.1.5 ANSWER 8.09 (2.00)
- a. within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> establish a fire wa'tch patrol [0.5]
- to inspect the zone [a] with inoperable instruments at least once per hour [0.5]
- b. monitor the containment air temperature [0.5]
at least once per hour [0.5]
PAGE 44
,8. , ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
REFERENCE
.DC Cook Technical Specifications 3.3.3.7 [ Unit 1] and 3.3.3.8 [ Unit 2]
ANSWER 8.10 (2.00)
- c. Senior Reactor Operator - Core Alterations [SRO-CA) [0.5]
- b. Shift Supervisor [S.S.] [0, *.]
- c. Shift Supervisor / Assistant Shift Supervisor [S.S./A.S.S.] [0.5)
- d. On-shift Shift Technical Advisor (STA) [0.5]
3 REFERENCE DC Cook PMI-4050 para 3.6.2.8 DC Cook PMI-2110 para 3.2.2.3 and 3.7.3 DC Cook FMI-7030 para 5.4 ANSWER 8.11 (2.50)
- a. 1. barricaded [0.25]
Posted as high radiation area [0.25]
entrance controlled by Radiation Work Permit [RWP] [0.25]
- 2. locked doors [0.25]
keys maintained under the administrative control of the Shift Supervisor on duty [0.25]
and/or the Plant Health Physicist [ Plant Radiation Protection Supervisor) [0.25]
- b. 1. an R. P. Supervisior, [0.25]
the Plant R. P. Supervisor, or [0.25]
the Shift Supervisor
[0.25]
- 2. only in emergency conditions [0.25]
REFERENCE DC Cook Technical Specification 6.12 PMP-6010. RAD.OO2 para 3.3.4
ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 45
,8 . ,
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 8.12 (3.00)
- a. one OPERABLE centrifugal charging Pump, [0.5]
- b. one OPERABLE safety injection pump, [0.5]
- c. one OPERABLE residual heat removal heat exchanger, [0.5]
- d. one OPERABLE residual heat removal pump, and [0.5]
- e. an OPERABLE flow path capable of taking suction from the refueling water storage tank on a safety injection signal and [0.5]
transferring' suction to the containment sump during the recirculation phase of operation [0.5]
REFERENCE DC Cook Technical specification 3.5.2 f
, --r-,e-, - ~ - - - , ~ , - - - , - - r - - --- - - - - - -- , - - - - ---.-n. , , - e--e , . - - , - ,-e- ----- - ,v- - --
ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 46
,, ,8 .
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
o i
ANSWER 8.13 (2.00)
- c. Unusual Event [0.1]
Events are in process or have occurred which indicate a potential degradation of the level of safety of the plant. [0.2]
No releases of radioactive material requiring off-site response or monitoring are expected. [0.2]
b.- Alert [0.1]
Events are in process or have occurred which involve an actual or potential substantial degradation of the level of plant safety. [0.2]
Any releases are expected to result in small fractions of the EPA Protective Action Guideline exposure levels. [0.2]
- c. Site Area Emergency [0.1]
Events are in process or have occurred which involve actual or likely major failures of plant functions needed for protection of the public. [0.2]
Any releases of radioactive material are not expected to exceed EPA Protective Action Guideline exposure levels. [0.2]
- d. General Emergency [0.1]
Events are in process or have occurred which involve actual or imminent core degradation or melting with potential for loss of containment integrity. [0.2]
Releases can be reasonably expected to exceed EPA Protective Action Guideline exposure levels off-site for more than the -
immediate site area. [0.2]
[ reasonable wording will be accepted for the descriptions]
REFERENCE DC Cook Emergency Plan Procedure PMP-2080 EPP.015 Exhibits A, B, C, and D i
4 i
i i
i
PAGE 47
,8. , ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS l
ANSWERS -- COOK 1&2 -86/12/02-PARKINSON,K.
ANSWER 8.14 (1.00)
- c. If directed by the supervisor during the pre-lineup brief [0.5]
- b. With the applicable Unit Supervisor's permission [0.5]
REFERENCE DC, Cook'OHI-4014 para 3.3 and 3.7 a
TEST CROSS REFERENCE PAGE 1
~
QUESTION VALUE REFERENCE -
05.01 2.40 KLP0000643 05.02 2.00 KLP0000644 05.03 1.50 KLP0000645 05.04 2.40 KLP0000646 05.05 3.00 KLP0000647 05.06 1.80 KLP0000648 05.07 1.20 KLP0000649 05.08 1.00 KLP0000650 05.09 1.10 KLP0000651 05.10 2.10 KLP0000652 05.11 2.00 KLP0000653 05.12 3.00 KLP0000654 05.13 1.50 KLP0000655 25.00 -
06.01 1.50 KLP0000656 06.02 2.00 KLP0000657 06.03 3.00 KLP0000658 06.04 3.00 KLP0000659 06.05 2.00 KLP0000660 06.06 3.00 KLP0000661 06.07 1.50 KLP0000662
) 06.08 1.50 KLP0000663 06.09 1.00 KLP0000664 06:10- 1.50 KLP0000665 06.11 1.50 KLP0000666 06.12 2.00 KLP0000667 06.13 1.50 KLP0000682 25.00 07.01 2.00 KLP0000668 07.02 1.50 KLP0000669 07.03 2.00 KLP0000670 07.04 2.00 KLP0000671 07.05 2.00 KLP0000672 .
07.06 2.50 KLP0000673 07.07 1.50 KLP0000674 .
07.08 1.00 KLP0000675 07.09 2.00 KLP0000676-07.10 1.50 KLP0000677 07.11 1.00 KLP0000678 3.00 07.12 KLP0000679 07.13 2.00 KLP0000680 07.14 1.00 KLP0000681 25.00 08.01 1.00 KLP0000683
I TEST CROSS REFERENCE PAGE 2 QUESTION VALUE REFERENCE
- , 08.02 2.50 KLP0000684 08.03 1.75 KLP0000685 08.04 1.75 KLP0000686 08.05 1.00 KLP0000687 08.06 1.50 KLP0000688 08.07 2.00 KLP0000689 08.08 1.00 KLP0000690 08.09 2.00 KLP0000691 08.10 2.00 KLP0000692 08.11 2.50 KLP0000693 08.12 3.00 KLP0000694 08.13 2.00 KLP0000695 08.14 1.00 KLP0000696 25.00 -
100.00
'e
~ " 6
(
s COEf ""
U. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION FACILITY: COOK 1&2 '
REACTOR TYPE: PWR-WEC4 DATE ADMINISTERED: 86/12/02 EXAMINER: VICTOR. F.
- CANDIDATE:
~
INSTRUCTIONS TO CANDIDATE:
U00 separate paper for the answers. Write answers on Points one side only.
for each, Stcple question sheet on top of the answer sheets.
gusstion are indicated in parentheses after the question. The passing crede requires at least 70% in each category and a final grade of at locst 80%. Examination papers will be picked up six (6) hours after tha examination starts.
% OF CATEGORY % OF CANDIDATE'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY 25.00 25.00 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW 25.00 25.00 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS
, 25.00 25.00 3. INSTRUMENTS AND CONTROLS 25.00 25.00 4. PROCEDURES - NORMAL, ABNORMAL, ~
EMERGENCY AND RADIOLOGICAL CONTROL i
- 100.00 Totals l Final Grade l
All work done on this examination is my own. I have neither given !
nor received aid. l l
Candidate's Signature l
l
l NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply: l l
- 1. Cheating on the examination means an automatic denial of your application cnd could result in more severe penalties.
- 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
- 3. Une black ink or dark pencil Enir to facilitate legible reproductions.
- 4. Print your name in the. blank provided on the cover sheet of the 4xamination.
- 5. Fill in the date on the cover sheet of the examination (if necessary).
- 6. Use only the paper provided for answers.
- 7. Print your name in the upper right-hand corner of the first page of each '
cection of the answer sheet.
- 8. Consecutively number each answer sheet, write "End of Category __" as cppropriate, start each category on a nan page, write onlY En Ena side
- of the paper, and write "Last Page" on the last answer sheet.
1
- 9. Number each answer as to category and number, for example, 1.4, 6.3.
- 10. Skip at least three lines between each answer.
- 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
! 12. Use abbreviations only if they are commonly used in facility literature.
l
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required. ,
1 14. Show all calculations, methods, or assumptions used to obtain an answer
! to mathematical problems whether indicated in the question or not.
j 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE l QUESTION AND DO NOT LEAVE ANY ANSWER BLANK..
3
- 16. If parts of the examination are not clear as to intent, ask questions of the examiner only.
! 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.
i t
4
--e---- ,,-e.n.---e,n,--, a, , - , - , - - - - - - - - - , - w. , .,.,--,_mn.,
- ,--n .,wm-,w,,me,-
'O ,
p
- 18. When you complete your examination, you shall:
- o. Assemble your examination as follows:
(1) Exam questions on top.
(2) Exam aids - figures, tables, etc.
(3) Answer pages including figures which are part of the answer.
- b. Turn in your copy of the examination and all pages used to answer the examination questions.
- c. Turn in all scrap paper and the balance of the paper that you did not une for ahswering the questions,
- d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.
2 l
l 1
l f
- - - _-- _. = _ _ _ _ . - ._.
- \ .
- 1. PRINCIPLES OF NUCLRAR POWER PLANT OPERATION. PAGE 2 N CS. HRAT TRANSFER AND FLUID FLOW QUESTION 1.01 (2.00)
- n. If steam goes through a throttling process, as in a leak from the main steam'high pressure header to atmosphere, HOW will the following parameters change? (INCREASE, DECREASE, REMAIN THE l SAME) CONSIDER EACH SEPARATELY. (1.5) l
- 1. Enthalpy (h)
~2. Pressure _
- 3. Entropy (s)
- 4. Specific volume (v)
- 5. Temperature
- b. With the plant operating at 90% power, state whether the steam will be subcooled, saturated or superheated immediately after it exits the pipe. (0,5)
QUESTION 1.02 (3.00)
With the reactor suberitical at a shutdown margin of 2.5% delta-k/k, the stable count rate is 135 cys.
- c. How much reactivity is required to be added to increase the stable count rate to 405 cps? SHOW ALL WORK. (2.25)
- b. When the reactivity of part a is inserted in small, equal-reactivity steps with the rods, will it take longer for the suberitical reactor to attain a stable count rate of 150 cps or a stable count rate of 400 cys? WHY?
(0.75)
QUESTION 1.03 (1.00)
TRUE or FALSE .
- c. During startup, a higher initial count ra'te will result in a higher count rate at criticality. (0.5)
- b. When the control rods are used to insert equal reactivity additions to a subcritical reactor, the changes in neutron population are smaller as Keff sets closer to one. (0.5)
(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
t e i
- 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 3
.',. THFRMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUESTION 1.04 (1.50)
- c. List three (3) factors, other than RCS boron concentration, which effect Shutdown Margin (SDM) and are used in the SDM calculation. (.75)
- b. While maintaining 50% power with all control systems in automatic a 25 ppm boron addition is made. State the effect on Shutdown Margin (INCREASES, DECREASES, or NO CHANGE) and explain why. (.75)
QUESTION 1.05 (3.00)
With the plant stable at 80% power near BOL, (Unit 3, Fuel Cycle 9) which way will the Axial Flux Difference initially change (MORE NEGATIVE or LESS NEGATIVE) for the following occurrences? EXPLAIN.
l CONSIDER EACH OCCURRENCE SEPARATELY
- 0. ' Xenon starts to increase in the bottom of the core. (1.0) b..A 3 second OTdelta-T runback occurs with rods in automatic. (1.0)
- c. A momentary large feed flow increase occurs with rods in manual. (1.0)
QUESTION 1.06 (1.50)
State TWO reasons why equilibrium Xenon has significantly more negative worth than does equilibrium Samarium when operating at full power and ctarting with a clean reactor core.
QUESTION 1.07 (1.50)
- o. State the relationship between Reactor Power, RCS Delta T, and i RCS Delta enthalpy (h) under normal operating conditions. (0.5)
- b. Discuss the validity of this relationship when the RCS Hot Leg temperature reaches saturation.
(1.0)
(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
- 1. PRINCIPr.rR OF NUCr.rAR POWER PLANT OPERATION. PAGE 4 THERMODYNAMICS. HEAT TRANS m AND FLUID FLOW QUESTION 1.08 (3.00)
After operating in natural circulation for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, a complete loss cf natural circulation flow occurs due to inoperable steam dumps.
Initially, how will the following parameters be affected (INCREASE, DECREASE, or NO CHANGE )? Briefly explain your answer. (Assume no further operator action.)
- o. Core delta T (Actual not indicated) (1.0)
- b. Core thermocouple temperature (1.0)
- c. Steam generator pressure (1.0) j CUESTION 1.09 (2.00)
- a. Describe the relationship between discharge flow rate and the
-following, for a centrifugal pump.
- 1. Pump speed. (0.5)
- 2. Pump discharge head. (0.5)
I b. Define the following terms.
- 1. Pump Runout (0.5)
- 2. Shutoff head. (0.5) t CUESTION 1.10 (2.00)
Explain HOW each of the following parameters change (LESS NEGATIVE, or
- MORE NEGATIVE) as reactor power level increases at MOL and WHY.
i (Assume no rod motion.) l
! c. Fuel Temperature Coefficient (delta pcm/ 7) (1.0)
I
- b. Moderator Temperature Coefficient (1,0)
I l
(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
1 l
- 1. PRINCIPLFR OF NUCLEAR POWER PLANT OPERATION. PAGE 5 i s THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW i*
I QUESTION 1.11 (2.00)
Compare the Estimated Critical Position (ECP) calculated for a ctartup to be performed 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after a trip from 100% power, to the Actual Critical Position (ACP) if the following events /
cenditions occured. Consider each independently. Limit your answer to ACP is (HIGHER, LOWER, or THE SAME AS) the estimated critical position.
- c. 1&un startup is delayed until 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after the trip. (0.5)
(0,5)
- b. The startup is delayed until 2 days after the trip. ,
- c. The PORY and steam dump pressure setpoint is increased to a value just below the Main Steam Safety Valve setpoint. (0.5) a
- d. All Steam Generator levels were raised by 5% just prior
- to criticality. (0.5) a QUESTION 1.12 (1.50)
Describe how the pressurizer thermo hydraulically attempts to maintain RCS
- pressure during the following transient conditions. Ignore the operation of heaters and spray in your explanation.
- a. Insurge (0.75)
- b. Outsurge (0.75) l l _
! QUESTION 1.13 (1.00)
! The reactor is critical at 10,000 cps when a Steam Generator PORV fails )
i open. Assuming BOL conditions, no rod motion, and no reactor trip, choose i the answer below that best describes the values of Tavg and nuclear Power for the resulting new steady state. (POAH = point of adding
! heat).
- o. Final Tava greater than initial Tavg, Final power above POAH.
- b. Final Tava greater than initial Tavg, Final power at:POAH. i 1
s O. Final Tava less than initial Tavs, Final power at POAH.
- d. Final Tava less than initial Tava, Final power above POAH.
(***** END OF CATEGORY 01 *****)
.' ? '
- 2. PLANT M IGN INCLUDING SAFETY AND EMERGENCY SYSTEMS s PAGE 6 E, ,
-QUESTION 2.01 (3.00)
- c. List TWO conditions that will automatically close the LETDOWN '
isolation valves (QRV-111 & 112)? (0.5) do
- b. List FOUR conditions that will cause automatic closure of the ORIFICE isolation valves ? -
(1.0) s.,
- c. During normal operations at power, what is the function of the Low Pressure Letdown Valve (QRV-301)? (0.5)
- d. List the conditions that will automatically close and automatically reopen the centrifugal charging pumps minimum flow isolation valves (QHO-225 & 226). (1.0)
, QUESTION 2.02 (2.00)
- c. What indication (s) is/are available to alert the operator that minimum spray flow is not being maintained? List TWO. (1.0)
- b. Describe the operation of the Pressurizer Heater Control Switch -
interlock with Pressurizer low level. How is the interlock cleared?'
(1.0)
QUESTION 2.03 (3.00)
- o. State the rated flow of each type of auxiliary feedwater pump listed below: (Assume normal discharge pressure.) .
- 1. Motor driven i 2. Turbine driven (1.0)
- b. List TWO signals that will automatically start the TURBINE driven auxiliary feedwater pump. (Include coinpidences) (0.5)
- c. List FOUR signals that will automatically start the MOTOR driven auxiliary feedwater pump. (Include coincidences) (1.0)
- d. What is the function of the Emergency Leak-off Valve.(2-FRV-258) 1 ,
for the Turbine-Driven Auxiliary Feedpump? (0.5)
- (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
I
- 2. PLANT MRIGN INCLUDING EAFETY AND IMrnnRNCY SYSTEMS PAGE 7 QUESTION 2.04 (1.50)
- o. The main steam safety valves for UNIT ONE have a total capacity of X Reactor Power. (0.5)
- b. Two of the main steam safety valves are set at 1075 psig, two are set at psig and one is set at psig. (0.5)
- c. By Technical Specifications the maximum number of INOPERABLE safety valves allowed on any operating steam generator is .
(Disregard power limitations.) (0.5) i r
, CUESTION 2.05 (2.00)
The failure criteria listed in RO-C-NS 12 (Cook Lesson Plan) for the Emergency Core Cooling System specifies that only one active failure cnd no passive failures can occur during the injection phase.
- a. What is an active failure? (0.7)
- b. What is a passive failure? (0.7)
- c. List THREE considerations used in the design of the ECCS to ensure these criteria can be met. (0.6) i i
CUESTION 2.06 (1.50)
Are the following statements concerning the Emergency Diesel Generator for Unit One TRUE or FALSE.
s
- b. If the Inverter mode selector switch is changed from the " INVERTER to l
LOAD" position to the " ALTERNATE to LOAD" position, then the Diesel
- Generator becomes the source of power for the Electronic Governor. (0.5) i l c. Equipment removed from service during LOAD SHED may be manually
- restarted any time after the Diesel Gener'ator reenergizes the bus. (0.5) 1 i
- I i
(***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
= _ . .. ..
I
. )
l
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 8 l
QUESTION 2.07 (2.50)
- n. With the Component Cooling Water System in NORMAL operating lineup, what are THREE conditions that will automatically start the standby pump? (Setpoints not required.) (.75)
- b. What condition (s) will automatically isolate component cooling water to the RCP's? (0.5) ,
- c. What signal will automatically isolate CCW returning from the Excess Letdown Heat Exchanger? (Setpoints not required.) (0.5)
- d. List THREE alarms from the CCW system that will warn the operator that an RCP thermal barrier heat exchanger may have ruptured? (.75)
, QUESTION 2.08 (2.50)
O. What is the purpose of the RCP No. 1 seal bypass line? (0.5)
- b. List FOUR conditions that must be satisfied in order to open the RCP No. 1 seal bypass valve (QRV-150). (2.0)
EUESTION 2.09 (1.50)
State the INPUT / OUTPUT voltages and primary function (s) of the following electrical equipment used in UNIT 1:
- a. Auxiliary Transformers 1AB and 1CD. (0.5)
- b. Reserve Transformers 101AB and 101CD. (0.5)
- c. Main Transformer (0.5)
QUESTION 2.10 (1.00) .
How does the PLANT AIR SYSTEM automatically respond as system pressure d2 creases from Normal system pressure to 81 Pzig? Include setpoints.
4
(***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)
i: .
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTFM PAGE 9 QUESTION 2.11 (1.50)
- c. What type of fire protection system is provided (i.e, what medium is used) for the Emergency Diesel Generators? (0.5)
- b. List the power supplies for all of the pumps (Pegging, Low Demand, High Demand) used in the Water Fire Protection system for UNITS 1&2.
(1.0)
QUESTION 2.12 (1.50)
List SIX components that discharge (are connected) to the waste gas vsnt header.
~
QUESTION 2.13 (1.50) c.' List the Intermediate Range isolation amplifier INPUT. (0.2)
- b. List FOUR components which use an OUTPUT signal from the Intermediate Range isolation amplifier. (0.8)
- c. What is the purpose of Source Range Channel N-237 (0.5) i
,(***** END OF CATEGORY 02 *****)
..- - . - .. ~. __ - . - _ _
t PAGE 10
- 3. INSTRUMENTS AND CONTROLS QUESTION 3.01 (1.75) i
- o. List the FOUR plant parameter input signals to the Overtemperature Delta-T (OTdT) protection bistable circuit. (1.0)
- b. What core protection is provided by the OTdT protective circuit? (.25)
- c. State TWO additional functions (control / protection) other than reactor trip that the OTdT protection channel providss. (0.5) i QUESTION 3.02 (2.50)
For UNIT 2, describe the automatic interlocks associated with opening the following valves. Include setpoints and state the purpose of each interlock.
. 1. RCS Hot Les Suction (ICM-129) to RHR Pump. (1.0)
CUESTION 3.03 (2.50)
- o. What operator action will be required while performing plant shutdown when an Intermediate Range Nuclear Instrumentation channel was noted to be undercompensated? Why? (1.0)
- b. List TWO Control functions (Permissive / Protection)provided by the l Intermediate Range NI as power increases from 10E-8. (Include setpoints and logics.) - (1. 5 ) !
l 1
QUESTION 3.04 (1.50) .
State the automatic actions associated with a high radition alarm rsceived, at power, for each of the following Westinghouse Radiation Monitors: (0.5)
- a. R1 Control Room Area Monitor (.25)
- b. R5 SFP Area Monitor (.25)
- c. R17 CCW Loop Liquid Monitor
- d. R19 S.G. Blowdown Treatment (0.5)
(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
m . . _ _ _ _ _ _ _ _ _ _ _ _ _
- 3. INSTRUMENTS AND CONTROLS PAGE 11 QUESTION 3.05 (1.00)
- c. What are the input signals for the RVLIS? (0.5)
- b. What is the location of the low point tap for RVLIS? (0.5)
QUESTION 3.06 (2.00)
O. What in the normal programmed pressuriser level at NO load and FULL load for each UNIT 7 (1.0)
- b. During an RCS cooldown, will INDICATED pressurizer level be LESS THAN, GREATER THAN, OR SAME AS actual level? Assume hot channel calibration.
(0,5)
- c. State the interlock associated with 11PHA6 and 11PHC6 (Power Supply to heaters) and the purpose of having the interlock. (0.5)
QUESTION 3.07 (2.50)
- c. State THREE conditions with coincidences, that will cause Feedwater Isolation. For each of the three conditions associated with Feed-water Isolation state the reason for isolating the feed system. (1.5)
- b. State the automatic actions that occur upon receipt of a feedwater isolation signal. (1.0)
(1.50)
CUESTION 3.08
- c. State all of the input signals (auto / manual) which would actuate Containment Ventilation Isolation. (1.0)
- b. In addition to Containment Ventilation Isolation list TWO conditions that will automatically trip the Containa'ent Pressure Relief Exhaust Fan. (0.5) l
(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)
- 3. INSTRIMENTS AND COWinOLS PAGE 12 QUESTION 3.09 (2.50)
- o. Describe the Unit 1 instrument logic and setpoints that will insert 1 and 2 loop loss of flow trips into the protection system. (1.0) <
- b. Describe how the RCP undervoltage AND underfrequency low flow reactor trips provide reactor protection. (.75)
- c. Why are undervoltage and underfrequency low flow reactor trips .
necessary? .
(.75)
QUESTION 3.10 (2.25)
Hatch the proper Steam Dump Controller (s) in Column B to each statement in Column A. More than one in Column B may apply to each in column A.
Place answers on your answer page.
COLUMN A COLUMN B a.. Operates Steam Dumps based on a 1. Turbine trip controller.
temperature deviation (Tavg-Tref).
- 2. Steam pressure controller.
- b. Contains no trip open features.
- 3. Load rejection controller.
- c. Uses auctioneere- high Tavg.
- d. Compares the actt,al parameter to that of a pre-set value for operation
- e. Uses quick open bistables for rapid transients. .
QUESTION 3.11 (1.00)
The THREE input signals to the Steam Generator Feedwater Controller are:
- a. Tava, compensated feed flow, uncompensated steam flow.
- b. Feed flow, compensated steam flow, water level error.
- c. Compensated feed flow, water level, compensated steam flow.
- d. Uncompensated feed flow, compensated steam flow, water level.
(*****. CATEGORY 03 CONTINUED ON NEXT PAGE *****)
- 3. INSTRUMENTS AND CONTROLS PAGE 13 QUESTION 3.12 (2.50)
Match the following symptoms or causes in column "B" to the specific Rod Ccntrol System failure or error in column "A".
"A" "B"
- o. Power Cabinet Urgent Failure 1. Caused by simultaneous zero current to stationary and movable grippers.
- b. Regulation failure 2. Unselected rod (s) having current flow in movable or lift coils.
- c. Phase failure 3. Caused by failure of redundant power supply modules.
- d. Logic error 4. Caused by pulser or slave cycler failure.
e.. Multiplex error 5. Caused by full current being applied for excessive time.
(There is only 1 correct numerical 6. Can be caused by regulation or enswer for each lettered error or phase failure as well as logic failure G 0.5 each) or multiplex errors.
- 7. Occurs when voltage to coils has excessive ripple.
(1.50)
QUESTION 3.13 Indicate whether the following statements concerning operation of the<
reactor trip (RT) and bypass (BY) breakers are TRUE or FALSE.
- c. If one train is placed in test while the other train's bypass breaker is closed, then both reactor trip breakers and both bypass breakers will trip. ,. (0.5)
- b. If an attempt is made to close both bypass breakers at the same time, then both bypass breakers will trip but the reactor trip breakers will remain closed. (0.5) l c. A solid state protection system (SSPS) train A reactor trip signal will trip RTA and BYA breakers. (0.5)
(***** END OF CATEGORY 03 *****)
_ _ _ _ . . _ ~ _ _ _ _ _ . , _ _ . . _ . _ _ . . . . _ _ _ _ _ _ _ _
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 14 BADIOLOGICAL CONTROL CUESTION 4.01 (2.50)
- o. List THREE actions that must be performed if, while conducting a Reactor Startup per procedure 1-OHP 4021.001.002 " Plant Startup" criticality is achieved below the Control Bank Low-Low insertion limit? (1.0)
- b. What are THREE reasons for maintaining Control Banks above the Low-Low insertion limits?
(1.5)
QUESTION 4.02 (2.00)
The following concern 1-ORP 4023 ES-0.2 " Natural Circulation Cooldown".
- c. Under what conditions is switchover of AFW pump supply to an alternate water sources required? (0.5)
- b. While maintaining a cooldown rate of <25 F/hr, what specific RCS temperature indication is utilized to monitor the cooldown rate? (0.5)
- c. List the methods used to lower RCS pressure. (0.5)
- d. While maintaining RCS subcooling >80 F, what RCS temperature indication is utilized to monitor the subcooling? (0.5)
QUESTION 4.03 (2.50)
- c. Name SIX of the nine symptoms of a dropped control rod per procedure 1-OHP 4022.012.004, " Dropped Rod". (Assume no Reactor trip.) (1.5)
- b. List FOUR parameters that must be verified hourly per procedure 1-OHP 4022.012.004 after the dropped rod has been recovered. (1.0)
QUESTION 4.04 (1.50)
List FIVE symptoms for a failed number one RCP seal at power.
(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
)
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 15
~
RADIOLOGICAL CONTROL i
l QUESTION 4.05 (3.50)
Answer the following according to 01-OHP 4023.E-3, " Steam Generator Tube Rupture":
- a. The affected S/G has been identified as No.2 S/G. The No.2 S/G steam
. relief controller setpoint is adjusted to 1040 psig; MSIV and bypass valves; blowdown isolation valves; relief valves; safety valves; sample isolation valves; main and auxiliary feed valves; and Main Steam drain valves are all closed. Is the No.2 S/G isolated? EXPLAIN. (0.5)
- b. What TWO operator actions are required to be performed if the faulted S/G MSIV failed to shut? (1.0)
QUESTION 4.06 (1.00)
Ssveral COOK Emergency Procedures have an immediate action step to verify Turbine / Generator tripped. What FOUR indications on the Turbine / Generator panel must be verified to ensure that the Turbine / Generator had tripped?
f QUESTION 4.07 (1.50) .
Par 02-OHP-4022.002.004, " Excessive Reactor Coolant Leakage" match the RCS leakage Technical Specification rate limit in Column B to the type of leakage in Column A.
COLUMN A COLUMN B
- 1. Identified , a. O gym
- 2. Uaidentified b. 1 gym
- 3. Pressure Boundry c. 10 gym
- 4. Controlled d. 20 gpm
- 5. Total Primary to Secondary (for all S.G.) e. 40 spm f, 62 gym i
t I
(*****. CATEGORY 04 CONTINUED ON NEKT PAGE *****)
~
~
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 16
". RADIOLOGICAL CONTROL l
QUESTION 4.08 (2.50)
Answer the following per Units 1&2 Technical Specification.
- o. If the plant is being maintained in Hot Standby (Mode 3):
i
- 1. What is the shutdown margin limit? (0.25)
- 2. How often must the shutdown margin be checked? (0.25)
- 3. If the shutdown margin is less than the specified limit, list the required actions. INCLUDE numerical values if applicable and time limits. (1.0)
- b. What are the shutdown margin limits for Units 1 & 2 when the plant is being maintained in Hot Shutdown (Mode 4) using the RHR system?
(1.0)
-3 QUESTION 4.09 (1.00)
- n. List TWO individuals, by title, who may fill the role of On-Site Emergency Coordinator? (0.5)
- b. Per PMP 2082 EPP.001, " Emergency Exposure Guidelines", who authorizes plant personnel to receive doses in excess of 10CFR20 limits? (0.5)
, QUESTION 4.10 (1.00) l During blackout conditions you are able to start an Emergency Diesel Generator for Unit 2: ~
- c. Why should Safety Injection signal be reset? (Safety Injection no longer required.) (0.5)
[ b. Why is an Essential Service Water Pump one of the first loads placed on the bus? (0.5)
(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 17
. RADIOLOGICAL CONTROL QUESTION 4.11 (2.50)
Csok's Radiation Protection Manual based on 10CFR20 provides policy and guidance for the control of radiation exposure for plant personnel. Answer the following questions in accordance with the Radiation Protection Manual.
- c. What is your QUARTERLY Whole Body exposure limit? (0.5)
- b. 10aat FOUR criteria must be satisfied in order to exceed this limit under NON-EMERGENCY conditions? (2.0)
QUESTION 4.12 (1.00)
Which of the following radiation exposures would inflict the greatest
, biological damage?
- c. - 1 Rem of ALPHA.
- b. 1 Rad of NEUTRON
- c. 1 Roentgen of BETA t
l d. 1 Rad of GAMMA QUESTION 4.13 (1.50)
Par Unit 1 Technical Specification, with:the plant at 2% reactor power, cnd Tavg drops to 539 deg.F due to excessive warmup of the steam lines:
l 1. List time limit and corrective action which must be accomplished?
(.75) l 2. If corrective action is not accomplished, list the time limit l and action that must be taken. (.75) l l
l (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)
_ .__ _ __. _ ~ _ _ _ _ . , . . _ _
- _ ~ - -_
e PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 18 4.
. RADIOLOGICAL CONTROL QUESTION 4.14 (1.00)
If a void exists in the Unit 2 reactor vessel, which approach below rspresents the preferred actions taken to collapse the void using procedure 02-OHP-4023 FR-1.3, " Response to Void in Reactor Vessel"?
- o. Decrease temperature while maintaining system pressure.
- b. Start a SI pump to increase system pressure while keeping temperature constant.
- c. Increase systen pressure using pressurizer heaters while maintaining pressurizer level.
- d. Fill pressurizer solid and vent the reactor vessel head.
O
'I
(***** END OF CATEGORY 04 *****)
r********. *** run nw evautuamTnu *** .......... s
s'
. EQUATION SHEET
.s f = ne y = s/g
. = m., . = ,t . s.t> .
C,.1..m.ie..,=~;;;*y K = aC a = (vg - v,)/t KE = hay1 vg A = AN -A"
= v, + at A = A,e .
PE = agh a = 6/t , A = In 2/tg = 0.693/tg h* } " (tq)(t )
l s
AE = 931Am -
(g+g)
Q = pC,AT y , y ,-h k=UAAT y,Ie 'm Pur = Ug a y,y 10 -x/TYL P = P,108 " I*) TYL = 1.3/g tT EVL = 0.693/g P = P, e ,
SUR = 26.06/T T = 1.44 DT SCR = S/(1 - K,gg)'
IA *ff 0I I
CR , = S/(1 - K,g,,)
. SUR=26i-3,,j \
T=lt*/p)+ [(f.Jp)/1 eff}l "
~
p] 1( 2 II ~ Ieff)2 T = 1*/ (p - D M = 1/(1 - K,gg) = CR g/CR0
- #}! eff' M = (1 - K eff)0 /(1 - Kaff)1 8 " ( eff- )! eff " #eff aff K SDM = (1 - K,gg)/K,gg
~
p= [1*/TK,'gg ] + [E/(1 + A,ggT )] 1* = 1 x 10 seconds
~
P = I(V/(3 x 1010) gaff = 0.1 seconds I=k 4 Id33=Id22 -
WATER PARAMETERS Idg =1d2 1 gal. = 8.345 lba R/hr = (0.5 CE)/d (meters)
I gal. = 3.78 liters R/hr = 6 CE/d (feet)
I ft = 7.48 gal. MISCELLANEOUS CONVERSIONS .
Density = 62.4 lbm/ft 1 Curia = 3.7 x 10 dps 10 Density = 1 gm/cm 3 1 kg = 2.21 1hm Heat of varorizatiot = 970 Etu/lba I hp = 2.54 x 10 3BTU /hr Heat of fusica = 144 Btu /lba 6 1 W = 3.41 x 10 Btu /hr k 1 Atm = 14.7 psi - 29.9 in, l's- 1 Btu = 778 ft-lbf 2
I ft. H o y = 0.4335 lbf/in 1 inch = 2.54 cm F = 9/5 C + 32 i
- C = 5/9 (*F - 32)
(
- - - - . . . . - , , - , ~ , , , , , , -.,.-__,,-,--,,,,,-.-,,,.---_y -
y-- , , , - . -.----._,_,.,.,,,y.,-,,,,,m,, m. _ _ , . . ., , _ _ , , , . - - , - , - .
E88helpr.St*/It E8*epy. Senedin a F l Votems ft'/tt WWet Evey '
Steam Seeem y 8- weise Coop Steam Water Af Ever A A s er s, e a,
't 'as 's es 3305 -0.02 , 1075.5 1075.5 0.0000 2.1873 2.1873 32 OAS459 401602 3305 32 0.0061 3.00 1073.8 1076A 2.1706 2.1767 35
&01602 2948 2948 35 0.09991 2446 8 03 1071.0 1079.0 0.0162 2.1432 2.15M 40 30 0.12163 001402 2444 0 0262 2.1164 2.1426 45 2037.8 13.04 1068.1 1081.2 45 0.14744 0.01602 2037.7 0.0361 2.0901 2.1262 50 1704A 18 05 1065.3 1083.4 0.17796 001602 1704A OAM5 2.0391 2.0H6 50 1207.6 28.06 1059.7 1067.7 Go 60 0.2561 401603 1207A 865.4 3845 1054.0 1092.1 OA745 1.9900 2.0645 To 0.3629 041605 868.3 OA932 1.9426 2 0359 80 30 433J 633J 4844 1048.4 1096.4 to 0.5068 841607 1100A 0.1115 1A970 2.0086 to 448.1 468.1 58.02 1042.7 30 0.6981 041610 1037.1 1105.1 0.1295 13530 1.9325 10cs 0.01613 350A 350A es 00 100 SA492 77.98 1031.4 1109J 0.1472 1A106 1.9577 110 1.2750 LOl617 366.4 365.4 130 1.933, 87A7 1025.6 1113.6 0.1644 1.7993 130 1.0927 E01620 203.25 303.26 130 97.M 1019A 1117A 0.1817 1.7295 1.9112 130 2.2230 0.01625 157.32 157J3 130 107.95 1014.0 1122.0 0.1985 1.6510 1Ae95 340 041629 122.95 123.00 140 2.8892 97.05 97A7 117.95 1008.2 1126.1 E2150 1.6636 1.0666 150 150 3.718 0A1634 11302 &2313 1A174 13487 160 77JT 77.29 127.96 100L2 age 4.741 SA1640 Eur3 3.5.m sA2. 1,r tw s. m &Oim s2.= mm m.w m.2 uu.2 0.2631 1.54W 1A111 130 50.21 90.22 148A0 990.2 11382 180 7.511 SA1651 1142.1 02787 1.5145 1.7934 190 0.01657 40.N 40.M 158.04 984.1 ISO 9.340 33A2 3344 16&OS 977.9 11460 0J940 1.4824 1.7764 300 300 11.526 OA1664 E3001 1A500 1.7600 210 27AO 2732 178.15 971.6 1149.7 230 14.183 OA1671 180.17 970J 1150.5 03121 1A447 1.796s 212 0.01672 26.73 26.30 212 14.696 965.2 1153.4 OJ241 1A201 1.7442 320
'041678 23.13 23.15 188.23 320 17.186 19.364 19.381 198.33 958.7 1157.1 OJ388 1.3902 1.7290 230 230 20.779 0.01645 0J533 1.3809 1.7142 340 16.304 16.321 208.45 952.1 1160A 240 24.968 0A1693 &3477 1.3323 IJ000 250 CA1701 13A02 13A19 218.59 9464 1164.0 250 29A25 228.76 038.5 1167A 0.3819 1.3043 1.6062 360 o 35A27 401709 11.745 11.762 240 238.95 931.7 1170.6 0.3960 L2760 1.4729 270 0 01718 10.042 10.060 270 41.856 0.644 249.17 924.6 1173A SA098 1.2501 1A599 Iso 49.200 0.01726 8.627 290 4 200 7.443 7A60 259.4 917.4 11768 OA236 1.2238 1A473 290 57.550 CA1736 1179.7 E4372 1.1979 1.6351 300 6.448 4.466 369.7 910.0 300 47.005 0.01745 902.5 1182.5 E4506 1.1726 1.6232 310 0.01755 5.609 5.626 280.0 310 77.67 394.8 1185.2 0.4440 1.1477 1.6116 320 0.01766 439G 4.914 290.4 320 39.64 37BA 1190.1 0.4902 1A990 1.5892 340 041787 3.770 3.748 311J '
340 117.99 2.957 332J 062.1 11M.4 &5161 1.0517 1.5678 360 360 153.01 041811 2.939 0.5416 1A057 *1.5473 3e0 2.317 2.335 353.6 864.5 1196 4 380 195.73 041834 IJE30 375.1 825.9 12014 0.5667 0.9607 1.5274 400 400 247.26 0.01864 1A444 0.5915 OA165 1.5080 430 1A997 396.9 806.2 1203.1 420 303.78 0.01694 1.4808 0.6161 02729 1A890 440 1.2160 419.0 785.4 1204.4 440 381.54 0.01926 1.1976 0.6405 SA299 1.4704 440 0.9942 441.5 763.2 1204 8 440 464.9 04196 0.9746 0.6648 OJS71 1.4516 480 0A172 464.5 739.6 1204.1 480 566.2 0.0200 0.7972 0.6749 487.9 714J 1202.2 0.8390 0.7443 1A333 900 500 680.9 m - 0.02G4 0.6545 0.7133 0.7013 1.4144 520 0.5306 0.55M 512.0 687.0 1199.0 520 812.5 OA209 536.3 657.5 11MJ 0.7378 0.6677 1.3954 540 !
962.8 0.0215 OA437 44451 1.3757 560 540 0.M51 0.3871 562.4 625.3 1187.7 0.7625 0.6132 t 560 11334 0.0221 0.3222 589.1 509.9 1179.0 0.7876 0.5673 IJ550 580 550 13262 0A228 0.2994 42675 417.1 550.6 1167.7 0A134 0.5196 13330 dies 0.0236 0.2428 1.3092 Sto 400 1543.2 0.1962 0.2208 646.9 506.3 1153.2 OA403 0.4689 620 1786.9 0.0247
- 02666 0.4134 '1.2821 640 04260 0.1543 0.1802 679.1 4544 1133.7 640 2059 9 714.9 392.1 1107.0 02995 0.3502 1.2458 460 l 04277 0.1166 0.1443 1.2086 680 1 640 230.7 g 0.0008 E1112 758.5 310.1 1066.5 SA346 &2730 See 2700 6 0.0304 s22.4 172.7 995.2 E9901 0.1490 1.1390 700 l 3094J 00366 E03e6 E0752 0 1.0612 705.5 7c0 906.0 0 906.0 1.0612 705.5 320s.2 0.050s 0 &050s TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE) f A.3
~" Len,. Statie tapeer Dis /e a F tasser.SeWie
- geheme, estin 8*oe*-
press. 1*** 9,ses, gas, tesem trete' Line Steam Ctter toes tiene essent senem 9 ele pela F A s, og 8, e, e, 88 A t s
'e 'e 's Om 10MA 1975 5 0 2.1s72 2.ls72 e 3021.3 EasH ROl602 3302.4 3302 4 ma4H 32.01a 9945.5 3 03 1073 8 '1076 5 00061 2.1705 2.1766 323 1022.3 tic !
35.023 SAIM2 9981.5 a10 2me7 13.50 1067.9 1M t .4 0 0271 2.1140 2.1411 1330 1025.7 R15 43.453 0.01602 2 m 4.7 I 8.33 21.27 1063 5 10M 7 00422 2 07M 2.1140 2122 1028 3 S.20 53.160 0.01603 ISM 3 16M 3 R0641 2.016s 231s09 32.54 1032 0 & 30 E20 la39.7 32.54 1057.1 lese 7 Es0 e4 as4 001604 1039 7 40.92 1052.4 1093J 0.0799 1.9762 2A M2 40.92 1034.7 See I 72.869 0.014 % 792.0 792.1 6 40 47.62 1048 6 1996.3 0 0925 1.M44 2A370 47A2 10 M.9 8.5 79.586 0.01607 641.5 641A S.S 13.25 10455 1098.7 0.1028 1.9186 2A215 S324 1033.7 S.6 55.218 0.01609 540 4 M0.1 SA AM M SS 10 1042 7 1100 5 0.3 1A966 2A003 38.10 1040.3 a.7 E7 90 09 0.01610 466 93 62.39 3040.3 1102.6 0.1117 1A775 1.9970 62J9 1M1.7 &S MJS 0.01611 411.67 411A9 GA 364.43 e6.24 1033.1 1804.3 0.1264 14805 LM70 46J4 1042.9 ts e.9 98.24 CA1612 364 41 33340 89.73 1036.1 11MA 0.1326 13451 12781 W.73 1044.1 IJ. l 1.0 101.74 0.01614 333.59 MA3 1022.1 111L2 0.1750 1.7450 1.9200 9423 1051A 2A 1 126.07 401623 173.74 173.M a.s 3.0 14147 041630 318.71 114.73 109.42 1013.2 1122 6 OJ009 1A854 13864 199 41 10M.7 as 3.0 152.96 0.01436 90 63 90 64 120.92 10064 1127J 0.2199 1A428 1A626 12490 1060.2 4.0 130.20 1000.9 1131.1 02349 1A094 13443 130.18 1063.1 EA 162.24 OA1H1 73.515 7333 S.O
- 33B 03 9982 1134J 0.2474 1.9820 1A296 15 81 10H 4 SA '
OAIMS 61.967 81.9B 7A I SA 170.05 S3AS 144 83 992.1 11M 9 0.2581 1.b147 13164 14431 1067.4 7A 174A4 OAIMS E3634 Re !
47.328 47.35 15027 988.5 1139J 02676 13384 13080 150A4 1089.2 l GA 142.86 las 27 0.016S3 0.016M d2Js5 4240 IMJO mS.1 1841.4 0.2760 1.s234 1.79M IMa 1070A ss.
E0 N 42 16L26 982.1 1143J SJB36 13043 L7579 161J3 10722 30 38 193.21 &01689 38.404 130.17 970 3 1190.5 43121 1A447 8J548 1mL12 1077A te m s 212A0 0.01472 N.732 MAD 14.006 181.16 1077.9 15 21343 0.01673 N.274 3GJ9 181.21 989.7 tilat OJ137 1A415 1.75S2 19&21 les2A 30 IM 27 980.1 1156J R33SS 1J962 L7320 l
il 0.01683 20.070 SOABF 30 227.96 13.744 218.9 MS.2 1164.1 0.3642 L3313 IJ995 214A 1M7.9 30 250 34 0 01701 13.7266 2368 1002.1 40 30 0 01715 10 47M 10.497 236.1 933.6 1169A OJ921 L2844 1A765 to de 247.25 8.514 250.2 923.9 1174.1 R4112 1J474 JA686 250.1 1mL3 30 281.02 OA1727 8.4M7 7.174 262.2 915.4 1177.6 0.4273 L2167 1Ade5 282A IMas a
.es 292.71 S01738 7.1M2 0 4411 1.1905 LS316 272.5 1103.2 70 302.93 0.01748 4.1875 6205 272.7 907A 1180A se 70 BA71 232.1 900.9 3183.1 0.4534 1.1675 1A208 281.9 1102.1 80 312 04 0.01757 54136 290L4 1103.7 90 0 01766 4.8777 4A95 290.7 894 6 1185.3 0.4643 1.1470 1A113 to 320.29 4.431 258.5 GA&E 11872 OA743 L1284 1AE17 29E2 110LJ 100 100 327A2 0.01774 4A133 3.728 312.6 877A 1193 4 0 4919 1A960 1.5879 3122 1107.6 120 120 341.27 0.01789 3.7097 3243 1109.6 140 0 01503 3 2010 3 219 325A 368.0 1193 0 0.5071 1A641 1.5752 140 353 04 336.1 859.0 1195.1 0.5205 1.0435 1A641 135 3 1111.2 180 363 SS Ottil 2.5155 2A34 341A 1112.5 180 160 0 01827 2.5129 2.531 346.2 850.7 31M.9 0 5328 1215 1.M43 300 380 373 08 2.257 365.5 M23 1198.3 0.5438 1A016 1.5454 364A 1113.7 300 3LI A0 0 01529 2.2689 .
3753 11153 350 l 1324S 1A432 376.1 825.0 1203.1 0.M79 E95SS 1AMA 250 40 %97 0.01865 1.5427 394 0 808.9 1202.9 0.5882 fl.9223 LS105 3922 11172 300 !
300 411.35 0 01849 1.523S 408A 311E1 330 l 0.01913 1.30M L3255 409A 794 2 1204 0 0 5015 0.0900 1AMS 400 3SO 421J3 780 4 12046 06217 OA430 1.4847 422.7 1112 7 l 0.0193 1.14162 1.1610 424.2 30 400 444A0 4R28 0 0195 1A1224 1A318 437J M73 1304.8 0A360 02378 1A75 43L7 1113.9 450 0.6490 0A148 1A839 447.7 liteA 900 0 0198 090787 RS276 449.5 755.1 1204.7 500 46701 743J 1204.3 0 6611 0.7936 IAS47 4SSA 1118A 350 47494 ,,0 0199 0 82183 03418 460 9 853 EM90 471.7 732.0 1203 7 0.6723 07738 1A461 4893 IllL2 800 603 48523 .,1 0201 0.74 M 2 710.2 1201A 0.H28 0.7377 1A304 48E9 111& 9 300 703 .502 3B 0A205 043505 OASM 491.5 000 OA209 RS4809 0.5690 S09 3 489 6 1199 4 0.7111 E7051 1A163 SQL7 11152 833 614 21 OS212 047968 05039 SM 7 569 7 11M 4 0 7279 0.4753 lA032 S232 1113.0 900 900 5's BAS f 50 4 1392.9 0.7434 0.6476 1.3910 13:a 1110.4 1000 f
1000 ' 544J,5 0.0216 042436 0 4463 542.6 e 0.37M 3 04006 557.5 631.5 1189 1 0 7573 0.6216 1J794 S13.1 1107.5 1100 i 1100 Sit,2d 0.0220 613.0 1154 8 0.7714 0.5969 1.3683 546 9 1104.3 1300 1230 357.19 00223 0 34013 0.362h 573.9 030722 OJ299 585.6 994 4 '1180 2 0.7843 0.5733 1.3677 580.1 1100.9 1300 1903 57742 0 0227 0.7966 05507 1.3474 502.9 1037.1 1400 1400 117p7d BC0231 0 778/l 03018 $98 8 576 5 1875.3 1%0 5%20 00235 0 2h372 OJ772 611.7 550 4 Il701 0.8035 0f2&B 1.3373 6052 1093.1 1500 1
0.1883 672.1 466.2 1138 3 0SC1 042M 1.7581 462 4 100,5 6 2000 f l 2000 g 431.40 0.02:,7 0 167 %
0 1307 731.7 363A 1093 3 C.9139 03206 1.2345 7ILS 3032.9 3500 2500 65 $.11 0 02d 010209 973.1 3000 l
3000 6MJB 0 0343 0 050/3 E0850 001.5 218.4 1070 3 0 9728 0.1891 L1419 7523 0 906 0 1.0612 0 3A612 875A 875.9 370s 2 320e 2 70847 0OSOS 0 0 0505 906 0 l
TABLE A 3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE)
A.4 i
,r--e -,-w- - - , - - , , , , , , - , _ - - - - , - - - , . - - - , - , - - - - - - - - - - - , - , - - - - , ,
.r
- - Tem 9sese Aho peon.
300 We tem to TM 20 000 1000 1100 1200 130 1400 3500 a 3 300 300 392 5 4S2.3 Sil.9 571.5 433.1 990 7 e 90161 3 & GS 00 lite 2 8195 7 1241.B 1288 6 1336 1 1984 5 (101.74) e 4139S 3.ch09 3.1162 31722 32237 3270s 3J144
, 0.0161 75 14 to 24 102.24 314Jl IM ll 135 08 150 01 161.M 173 06 185 78 197 70 30s62 32Lu 233 g 1241J 1208.2 1335 9 1364 3 1433 6 1843 7 1534.7 1536 7 lut6 1483 3 1743 0 1g01 S 6 6 84 01 18484 lied 8 (16224) e 0.1796 1A716 LS369 1.9943 2A440 3.0932 3.lM3 3.1776 3 2159 2 2521 SJ8M IJIM 2250s 3 Jell 34103 e 00161 3B to 44 98 S1 03 97A4 63 03 89 00 M 98 80 W M 91 92 BF 98 34 les 30 110 76 116 72 30 4 68 02 1146 6 119l 1 12406 12W7A 3335.5 1384 0 1433 4 1443 S 1534 4 1SM 6 1639 S 14e33 17 (19: 2 1) s 0.1295 1J924 13593 1A173 1.9692 IAIM 2A603 3.1011 2.13M 2.1757 IJ101 3.2430 32744 3Jos6
, 0A141 SalM 29 899 33 M3 37.get al.9e6 46.978 eM4 53946 SF.926 61.905 84.882 tessa 73213 77A0y 1892.5 1229.9 12s7J 1335.2 13833 1433.2 IM34 1534.$ 1586 5 1639 4 lap 3J 1747A geo3 4 18 6 88.04 les 09 Ol3A3) e 41295 02940 1A134 13720 Lt242 13717 SAISS SAB63 IAD46 3.1303 3.1653 3.1982 32297 3 2939 3.2890
, E0141 0 OlH 22JS4 25 428 SB457 31 M6 M 465 37.458 40 447 43 435 46420 49 40$ Stat 95J70 18J52 3e a es.05 tes 11 1191.4 1239.2 12M.9 1334.9 1383 S 1432 9 1483.2 ISMJ ltMJ 1639.3 lee 3.1 17474 18033 IJ005 1A397 1A021 1.9397 1As36 2A244 3.0MB RApli 2.1336 3.1065 3.8979 322s2 32S72 327.M) s 0.1296 82940 e OA161 0.0164 Il 0M 12A24 141H $l 485 17.19S ISA99 30199 21A57 23.lM Mme 3&1s3 3747s 39.13 as a 48 10 16s.15 1136 6 12MA 12tSA 1333 4 1232.S 1432 1 1482.S 15333 1945A MasA 3302 7 17473 1a01.0 1A092 RJtGB RA143 La&24 8.BOM LM76 L9860 SA224 2AMD 3 met 3.1224 3.1316 3. leg 7 (367JS) e 0.1396 E2940
, OA181 RolM 1181 7.257 8.3S4 9 400 10 425 11438 13.446 13ASO 14.492 ISAS2 1&400 17A48 11445 19A4 go e815 168 20 1.6492 6 1233.5 1253.2 1332J 1381.S 1431J 1481A IS33.2 190$J 1638 4 leste 1747.1 Igg 2A a 1.7134 1.7641 lalES LA612 1.9024 LMle L9774 2A120 SA480 3m66 3.las 3,1393 gt2.71) s 0.1296 82939 e OAl61 0 0166 0.0175 1218 7 Alt 7.794 SAGO 9J19 1&o75 30A29 11581 12.331 1851 13A29 14.577 30 & GS 21 168.24 M9.74 1220.5 1231.3 1320 9 1330.5 1430.5 1481.1 1532 6 IBM.9 1638A l ets 17448 1902.5 OlIA4) s 0.12M S2939 04371 L6190 L7349 L7942 12289 1A702 LOl39 LMS4 1200 34131 3A546 3590
- 3.1041 4.935 S.SAB & 214 4233 7.443 0A50 S.6SS 9258 9300 $$A00 11Am glAgt e 00161 0.0lM 00175 See n 48.M 168.29 M977 1227.4 1279J 1329.6 13793 1429 7 1430A 1832.0 1984.4 1O74 leBIA 17453 1802.2 1AS16 1JON 1JSM 13036 12451 4539 12205 LSM2 LSEEE 3A15D 3am 3A794 (32722) e E12DS OJ939 4A371 40784 4.4341 S.1637 3.s331 11929 &7006 7J000 7J006 82119 17130 92134 g7130 e 0 0161 0 etM 00175 320 a 4a.31 168 33 M9 81 1224.1 1277.4 1328.1 1378 4 14238 14798 IS31A 1943.9 1637.1 1891J 17462 nac2A 142M LaS72 IJ376 L7829 1A246 1A635 1.9001 12849 1A000 13596 3500 3Atat (34127) s 0.1295 0.2939 04371
, 0 0161 00lM 0 0175 3A461 3.99M 44119 4AS85 SJ995 S.7364 11799 44036 73349 7Apl2 73946 82233 140 a 48.37 184 38 M9 85 1.6085 1.Ge8613268 12204 1275.3 1377A 1428 0 1479.1 1530 8 1983 4 1436 7 1sto.9 1745.9 1801.7 1.71M 1.7652 13071 1A461 1AR28 1A176 1Ae05 152S SA129 3.0421 OS3 04) e 0.1295 0.2939 04170 e 0.0161 0.01M O.0175 3 0000 3 4413 3A400 4.2420 A U9S SA132 SJMS 5.7741 &lS22 4.5293 6.9088 7Jett too a 54 42 168 42 M9 89 1217.4 1273 3 1325 4 1376 4 1427J 1478.4 1930.3 1982.9 1 0 6.3 1880.5 174SA 1801 L5006 1AS22 L7039 IJa99 L7919 L8310 13678 L9027 L9359 1576,1A300 3.0273 0 63.95) s 0.1294 S.2938 0437C e 00161 0 0lH 0 0174 2 6474 3.0433 3A093 3J621 4.1084 4.4S0$ 4.7907 S.1399 sad 67 58014 183E3 6.470 Sao 6 48 47 164 47 26* 92 12138 1.S74312712 1324 1 4376 0 1375J 1Ae00 1JM2 1426.3 1477.7 1J754 1Al?61929 7 1982.4 Imol IBM Lg227 1635.9 ISB0Jimes 1354$ 17893 1801.2 3A142 !
l 073A41 s C.12M OJ6M 04370 e 0 0181 0 01H 0 0174 2 3998 IJ247 3A583 33783 3.051S 4.0000 4.3077 4Al28 4916S 32192 SA208 S2219 1210 1 1200.0 1322.6 1374.3 N25.S 3477A 152' l 1981.9 1835.4 lee 8 1745A 3300.9 , i 300 a 68 12 168 51 M9 M 13593 1AM2 1.6776 1.7239 L7643 LB057 13426 13776 L9809 13427 L9732 3A02S 051 A0) s Ol2 M==. 02938 04359 e 00141 0 0lM 0 0174 O ctM 2.1904 2 4682 2.8872 2.M10 11909 3A382 36E37 19275 &1700 44131 tes44 250 6 es.H 144 63 2700$ 3/S.10 IN3.5 1A951 1319.0 1371.6 1423 4 1475.3 1527A 1500.5 1634.4 158.9 17442 13002 IA602 L6976 1.7405 1.7501 1A173 1A624 LesS8 1A177 13482 1.9776 (400 97) s 04294 0.2937 04368 0.S M F e i0 0161 00ln 03174 0.olM 1.7645 2.0044 2.2263 2A407 2.6509 2 5555 10643 32008 14721 SA746 32764 300 4 3 68 79 196 74 27u 14 37L.15 1257.7 1315 2 13M 9 1421.3 14734 1526.2 1579 4 1U3.3 1880 17434 1790 6 (417.3S) s 0.1294 02937 04737 CSMS 1.S703 14274 14758 IJ192 IJS91 IJ964 1A317 1AM2 1A972 LS775 13672 e 0 0161 0 C164 0 0 74 00186 1.4913 1.7028 1A97') 2 0132 226S2 2 4445 2A219 f.7930 2.9730 3.1471 322CS 350 a 48 98 168 85 270 24 37S.21 1251.5 1311 4 IM62 1419.2 1471.5 1524 7 1S78.2 IG2.3 5487.1 1742 4 1795 9 (431.731 a 01293 029M 04367 0.5464 1.S443 14077 L H71 1J009 1.7441 1.7787 LS141 1A477 1A795 1A105 L9400 e 0 0181 0 01E6 0 0174 0 0162 12S41 1.4763 1.6490 1A151 1.9759 2.1339 2J901 2A450 2.9087 23515 2.9037
! 400 a 69 05 IG4 97 270 33 375.27 124S1 1337.4 1363 4 1417.0 3470 1 1523 3 1976 9 1631.2 less.2 1741 9 1798.2 (444.60) s $ 1293 0J935 0 4M4 0 %G3 1.S782 1.9901 1.6406 1.4450 1.72Sb I.7G2 RJSEB 1A325 1Ae47 1 JOSS L92SO e 00161 00166 0 0174 0 0186 0 9019 1.1984 13037 1A397 1.5705 1 6992 1 A294 3.9907 2A746 2.1977 2.3200 900 a 69 32 119 19 27051 3?$ 38 1231.2 1299I 1357.7 1412 7 late 6 lb20 3 IS74 4 1629.1 1884 4 1740 3 1794 9 (467.011 s 0 1292 0 2934 04M4 01160 14971 1 M9t. 1.6'23 1 65/8 1.9990 13371 IJ7M) lA009 1A393 LATE lA994 l l
TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED NATER (TEMPERATURE AND PRESSURE)
A.5 .
l
Teen 9ermee, F g', ,u Clee 8*
ISO 300 300 400 600 600 7CO E00 600 10C0 1100 1300 33g0 1400 M00
. pet.essnel
., , 00161 00lu 00174 00:36 07944 123S 9 0 94 % 107M 18892 1.300s 14093 1 5160 16733 l.7252 137s4 1930, 1290 3 1361 3 14C3 3 84630 ISl? 4 1571 9 1627 0 1687 6 gas a 89 58 169 42 270 70 375 49 1734 g gggs gg 379,S,6, pg20l s 0.1292 02933 04362 0.MS7 14590 1.5329 15444 143bt 16769 1 71 % 1.7517 3.7s59 133se 07978 OT072 1[0102 1.1078 120J3 12948 13BSA 1Ar$7 I ga7 ggyo e 0.0161 0 0144 0 0174 00106 00204 1731 0 13th6 1403.7 lebt4 1S14 4 IM94 16748 tuo7 173; 2 1794 3
- yes a 80 84 let 65 270 39 375 61 447 93 1.$090 1M73 1 6154 iAb80 1.6970 1733% 1.7679 3 30h 1 3318 89617 903 CS) e 01291 0 3 32 04 MO O M M 06889 e 90161 0 0166 00174 S olos 0 0704 0.6774 0 7:2s 0.stw OM31 1.0470 1.12a9 IJO93 1.7 sat 13M9 t44M gas a 70.11 169 88 278.07 375 73 447A8 1271.1 1339 2 1399 1 14% A 1511 4 IM69 1622 7 167t9 1735 0 1792 9 518.2.)o 0.1290 0293C 4.43be &MS2 &&a8S 1.4&H LS434 3MSO I4413 16437 1.7175 37522 1.75bI IS1M 13464 e 00141 E0lu e0174 0OlM eCrue O5549 064S8 0.7713 04504 0.9262 09 MS I 2720 1.1430 1.2131 3Js2S gas a 7037 170 30 271.26 37S 34 48733 1200 6 1332 7 1394 4 14S2 2 ISM S IS64 4 16206 1677 1 17341 1791 6 1A659 14311 1.5822 1AM3 3.M62 1.7033 3.752 3.7713 13024 33329 3 31.95) s 0.1290 42929 0.4357 0.M49 04881 e 60161 0.0lu 8.OlM 0.0!N E0204 0S137 04080 0.6875 &7M3 0 8295 OA966 09422 1966 1.0001 1.nP9 gene 4 7043 170.33 271A4 375.M 487.79 1249.3 1325.9 1339 4 1448.5 ISO 4.4 1M1.9 1618 4 1675 3 1732.5 17903 344.ht) s EIMS 42928 R43SS E M47 0.8876 1A4S7 1.S149 1.8677 14126 1.6630 3.0006 1.72M 31$89 1.7906 1A207 g e 0 0161 40lM 00174 OAltS 60203 04531 05440 0.618B 16865 07535 Salt! 03723 19313 09094 1.0448 lige & 70.90 170.M 278A3 376.08 487.75 1237.3 1318 2 1334 7 1444 7 1502 4 1M9.4 1636 3 1673.5 1731A 17e9 0 1A2S9 1A996 33442 1A000 1A410 14737 IJ141 IJ475 1.n93 3A0g7 SW23) e E13SS 6J927 E4353 &S M4 &4472
- e 6 0141 00186 OA174 10186 0.0203 64016 04905 ES616 0.6250 0.4845 07418 0.7974 0519 0.9455 E9584 153 a Fl.M 37&78 27832 376.20 487.72 1223J 1311.5 1373.7 14439 3449 4 1556 9 1614 2 1671.6 1729.4 17374 5 67.19) s 0.125 029M 0.4351 SAM 2 SAS44 1A061 IAall 1.M15 34883 14298 1A479 L703S L7371 1.7683 1.7906 e 0.01(I 00lu 00174 E01sS 9 0203 0.3176 040S9 0.4712 ES232 0.9809 64331 04798 67272 R7737 44195 gego a yl.as 171.24 272.19 3M 44 487 65 1124.1 1206 3 1369 3 1433 2 14932 ISSIA 1409 9 1848 0 1736 3 1786.0
- ge7J7) e 41287 02923 &G48 0.M16 SGM9 1.3&S2 IANS 14182 LS670 1A096 1A484 IJ045 1.71&S L75 3 .L M15 e 0.0M1 0.0lM 00173 R0lel &O202 0.02:S 0341S 04032 adSSS E6031 ES482 altil 48336 RE74B E7tS3 lege a 72.21 171 69 272.57 3M 69 487.40 616.H 1279.4 1355.5 1425.2 1406.9 1644A 1606 4 14643 3721J 17E22 i gcts7) e 0.1396 02921 0.4344 SM31 SAall 48129 1A312 3.4MB 14478 14316 14312 1A678 SJett IJ344 L76S7 I
e 9 0100 OA165 00173 OAltS 0 0202 0.C235 02306 03900 E3988 14426 OA036 RS229 RSASB RS900 Sets
! 3 ace a 7213 !?2.15 272.95 370'93 487M 616.13 1231.1 1347.2 1417.1 14:04 1Mt.1 1801.2 188 & 7 1720.1 1779.7 gifL*J2) s <ad OJ918 0.4341 RM24 0.85'3 E31C3 14064 1A760 14302 1.S763 1A154 3 ASIS 1AE76 IJ204 L7516 e 0 0100 0 0145 0.0173 0.0184 0.0201 0.0233 0.2433 0.0072 0.3534 SJ942 04320 0.4800 E9027 RS365 45095 1240.9 1353.4 1408 7 1447.1 1536.2 ISM.9 1657A 37873 lyn.1 3500 4 73.26 172 50 273 32 377.19 487 53 614 48 IJ794 1.4618 1.S138 1.MC3 1.6014 1A391 14743 IJ075 1.73g9 53530)s 0.1283 02916 0.4337 65621 0A434 02091 e 0.0160 C.0165 0.0173 0.0184 E0200 40230 0.1681 0.2293 0.M12 E3068 &3390 &9892 SJtID S4259 &4S25 l 3000 a 74.57 373.74 274 27 377 52 487.50 612.CS 1176.7 1303.4 1386.7 1457.9 1522.9 1985.9 1647A 1709J 1770.4*
i 988.11) s 0.1230 0.2910 0.4329 0 MOD Reall SJ044 1.3074 1A129 IA7M 1.52M 1.S703 LA004 1A4M .14796 1.7116 e 0 0160 00165 00172 00183 00200 SA223 0.0 % 2 0 1755 0.2181 0.2484 42770 43033 SJM2 43522 OJ753 3000 a 75 83 17# 88 273.22 378.47 487.12 610.03 1060.5 1267.0 1353.2 14402 IS03A 1574.8 1635.5 1701.4 17tl.8 999.33)a 0.1277 129.4 0.4320 0.M97 &6796 SJ000 1.19M IJ69 1A429 L49M LS434 L8641 1A214 1 3 :61 1A888 e 00100 G 0145 0.0172 40183 OA199 40227 E0335 0.158B eld 97 SJ301 E2SM 92827 0J055 E3291 ESS10 3200 A M.4 175.3 275 6 375J 487.5 403.4 0003 1250 9 1953.4 1433.1 ISO 3A 3S70.3 1944 1898.3 1761J (706.M 1 s C1276 0.2902 0.4317 03592 SAFSB E7994 R9703 L3515 1A300 1A M6 1A335 1A MS 1AIN 1A477 I m 06 e 0018030164 00172 &O181 SA*SB SA225 E0307 0.1364 0.1764 0.2064 0.23M 12983 R2754 R2999 0315E 3800 a 77.2 176.0 276 2 379 3 407A 808 4 779.4 12246 1333 2 1422.2 14M.S IM3J 1629.2 1993 4 1757.2 s 0.1274 42899 C4312 SSMS 0.6M7 0.7973 &950S 3.3242 1A112 1.4709 14194 1.5418 1AOD2 IA3SS LEASI e 3 0159 0.0164 0:172 E0182 OA198 60223 0.0287 0.1052 0.1463 0.1712 R1994 02210 62411 0.2001 027E3 asso a 73.5 177.2 217 3 379 8 4873 606.S 743.0 1174 3 1311.6 1403 6 1481.3 IS$2.2 1619A 1885.7 17506 s 3.1271 42*t3 0.4304 0.S573 0.6760 0 7940 & 9343 L2M4 33807 1A461 1.4976 LS417 1.9812 14177 1AS16 e 0 0199 0.0164 03171 0 0181 0.0lM 0 0219 60268 0. tis 91 0.1033 0.1312 0.1529 &l718 OlSPS R2050 02203 S300 a al L 179 $ 2793 381J 488.1 804 6 746 0 1C42.9 1252.9 13(4 6 1452.1 1S29.1 16039 1470.0 1737.4 a 0126f M 2561 04287 ESHQ 04726 0.7080 49153 1.1593 1J207 3.4001 14442 1.8061 14481 1.5463 1A214
- 00159 OA3M 00170 SA160 0 0195 0 0216 40256 OA397 00757 0.1020 al221 &l391 &lS44 R1884 11817 4000 a 33 3 3slJ r31.0 362 7 og6 402.9 7361 945.1 1188 2 13236 1422.3 1905.9 1942 0 1 M d.2 1724 2 s 0.1295 OJ670 04271 0.5528 Rusa &7826,0.9024 1 AIM IJ615 1.3574 $A229 1A743 14194 1.SM3 19862 e 0.01:0 SA163 0 0170 0.0100 0.0193 0 0713 0.0248 0.0334 00573 0 03tA &l004 0.1180 &l29B 01424 &lS42 7000 a MJ 184 4 283 0 3ea.2 489 3 501 7 729.3 SotA 1824.9 1281 7 1362.2 1482 6 19411 1639 6 1711 1 a fil2S2 0 2859 04254 05%07 06063 0.7/77 0.8926 1.03SO 12055 IJnil 1 3904 1.44u6 3.4938 1.53-5 1.S735 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED ,
WATER (TEMPERATURE AND PRESSURE) (CONTINUED)
A.6
~. _ . ~ . . .. .- . . _. - _ . .. _ _ _ _ _ - _
noff 1E n o - * ' '
f ' V *PJ rw r Erff MS 5% '*r M ' i eiL . n '% % e ?'.
IID'aT I 'lh t , D" i A3GA V A%lLM I M . I L M"V VP - I M br % m j x q g , (: sr 'ar I TIN /f
- ,, . . g'Y a ra f
1.,sp ; r Is ry-cr A,m .' A /N u r. : s: an ii ~
A ry .i 51 ,, , _ _ _ .
i .
- ' ,, ~ c 1 % ,
- 11: A MI I d 2- 's, f < 1 a en& w Kris M*'T' s 1 R*L r r%-
g Kg 't I ari Ii1/r A 1 2. .,n Tw'Ja I?% ' 1%'1.h f d *W1 1%d a
- , Ch I#< ' 'd v E '1 Iv" Ti ,9 ? , /"Ed ' I .3#" MI 'N ! L 1 '
n
=
1 .r - =
ur' / /IJ r 4 J' t' t r'% mL' 'Ii'IO* fA 6 IAf 5~ r- 1' - A r 't e =%
- i!J' 21.' > If1 n ir.1WI F> K 1,' 'i '\La in : dira f t n 't r 3.v, m o'*'*
LLv' /6; 1 #F 1 I r F V 5 F7 Xf F% n A f
'I L'E 'l 7* "rJ %
r ,q; f gg S )r rA s'rr s r wwi rm%Lfr/o
% i>L'Ae'Asi rv i si 71 -
M Ii br"y ,r # 'In - ;f f.' I ,r%lin ur 3%
' ' ,' ,fR / V~ a r - % fi %1 ',%
If ' Td PtT 1/T A ?JA J a !/ I73: T Is '34 tW'" "O' f 'L L' ' 'L Ef ']k* .1%,,e '%
~. II.Fl ff (/\-V es A-_V.'i'r F I'%U* 6r r'a rs 'N A 2%' I-6 f LW 4 rJa J^ A' k I/I A I X /THLFl . IV"% A i 'Y Y M II 'L'f F'iEk' '
V n' n.1 ' r 'k I 'N t i 1hr! 'Iff i .' D'
- 1
- Br
- V,W IV'%.s
* / ~'L! I ^^ ' J%
- 9% W/ '% A-srwn c =::- . siwfw' s i n ? -
. . . u ,,
off m9 L't .J 'f JJ .' 'L' f , ) f, I3"'1C / !: T%[ f I <^L %! ". M AIIlv'* LV' ' / II I V,'f ! ILs 1 .k anj -b r=-- a My, ?TtIn p gm_ m A iF4'.1' i GrJ 27e s' VJad'VI.'Y !/ J' %L/1 EL/"I ?J 1 2 III " 'ea' !\ I/L 3V' ' }%. I ' FM ke 'ii s - . ^ v t 'd IPW f% e ~4_ K 4 1[l #An hl', //*I fe' VOF I t i'X'II
'Fw . ' .o=9' Ps' I '%I / f%@ ,
111RJIIfW i UI I A' { /(J M '. nfaVi '- 1% - a >~. %f
- I 'lk % _ %1
,41. E/
I 'Es . E "% " Ps M o_
, ' F)I 1 , } nEJ"' V A* 'F%d r i&J D"'w V
n E l'%: A %1 'M El>V ff AV 1 sl s fTKIA' n' .f V' *%,M - '"df "M st. '% %
' * **
- T ffr in ! !I I' l' o'/T / 77 N A. L'WV-J: N
- 4/'l e '1 A - 3" F1 L' Inm s s ') 7 2 .
'% \
- Yk- 3t" fl Ihk l '
I , r 1 21 ri / A hry vnimm 1 f, a s w y. ,r'L , r%f r h- *
'y e g' r ur w I II 1711 %f LV m
1 ,'. vr ,i n L/ 11 , m'i n , .-w . .~ ., ,x ~ .
, 1 , r%.E A 1n $FM*r. ' W P .' . '
T%
,') n e P% maa,,u_
y Ifr r' Ism ','% .x i i r r> < t f 'P,.s a I %> nr
*F'a*: l t ri . v > -n - V i,nw - 2n m sgir r za rn ,JM ml %n r% = ,%
O , s. JAK E w1 m - 1=4, ). I- 'W ' A 2 '%L /i ?k,,, f 1 PnR 1 - n% ' n I % 's ff 1 'A1,1/1x * !r a xxen,r 'c%. I I r% . IN
's,' VIP 11'. A TM i '% 1i N a r%= 1A xse~
W 'IM l A7.l.E L' I 17'T/' /E wJ s ' sc oi 1. Pm,.) 4 A %,' F It 7%.1
- Jw i d 'i'% ! ;,7Y, ' n s'k - - - - ~ % n ~s FKf 2% f A I'% T '% f^w * %
F f. ' f / Ja ' e M' ' F 3 7- I 7h, ' r %{ 1 ,x'y,N_ r y'psy s iN r , , ' 'Nf ', -
.If r4 917 fuk 1 n 21k / a% 17%
atirnr. F I/' f A>-' , > > w a r%f'] rK ' e %E a 'W "_ - I f v'%wV.'I k./ i ',L ' A P, . ' A }%E /- IX / %' 11 .4 fis Tf %*'I ' Ar '9w ." If w I ) 'O Y r X/ .'% n h1
*4 'V'w. r l'al . ! 'u ' % 'N '15 . [1] A ff* W ' E e 'F,- %. ! . %J) 1%[ / 'N f I .
A,,:p i A./.'j d 'pif f if %.t I '%1 K r,' grj /' r J IA fi i k i her s
..;-yq' ) fM. , f Ni I n or ! '%' I'4 1 1 %i 'L ',,1 ) ' I r'(
i t f 5. N
' ' N 'neD.
rY f n f% ; ' 'mL ' I , 1 > '., s 11' vi'f w ' E
- r . ' *. . I. s < J, 's.a I r1Lu-4% 11 '"%.a %r 1% t - rs a x EV I AA 'at ; '% 'I h N D 'f / 3 L-1 A' ' n '"F LH J.
- 1% ! )%r A WI . 3L ' f f 'w f A %. . J e %,' 9 I" ' f 1 */ ff' f. oIs am%Fs qpv s r K Pw' ! N ymf, J '% /'Nr 'h: , 'p,, A f x j "
I i /n'L4 I VI ' ' s f or rn /% V , ,% - '%g , v r' *fh: / '%" I 7% f;f%' / % - A72 U '/ 1 I '/ / f/, 'T b 1 .L e *d ~ / A i 1.'shf l'K 4 1 % 'k ff 3 . I r% i 2
'% i N s '%
fr if F. II I 14 1'ir/r n K'I , I Tb' r'l s in %) YAJI 2%'< l'c 1 I fi 1% ,e . /% l ' A I // * " I ' /u n ' P.T ) A I
# a%,> /i ) T%f /N' - h % f/ '% l's A s . // . > 7 in f I'6/ 2 g,,,,,hl a % er r 'I. ;
A MI /W r r i i ; v r 'n < % / iM fu / 7 e ,N r j N
] w s ,o . \
l 1 oi} ifX I: ' i la }% h
,' %t 1' . > .- / J ?N N y) w-T-oi w Ji as 1 fr ,%I x V % , Bw f .I'% z% , f% o 17 1 'll e WW4' Af % f ,'IV' fY/ /th /fe l If r. s . ~ i - x.'
I f r u. 1 r s - r s_wv.a x ,en; h <, s a si 1 f./ r%s .i% / /% 'm ' ' o I" ' 17,o1' 1 le h I I'p'h". ;'% / . jw ' N r x- 't i .
% IV fr:
A I yrf If: 1 0 .I~ 1( $1 71 b %. le V o'Lif I1 . A*w -1*K/ J'% / f %' '
'e a rC 6ff.' At t ' tY. Nl ' 1% f 1 o
k ai 11 ' ~- 1 ht m i Fr l' e *f ' e TN/ t L / 2 .E . f r. ' 'l v' 't / - v'% a'% ' / %d o m. g" %,
,/fI of 1 'M > % .N N;11, A hr "I
- is Ws M/\'
W.I ^1 * . I Es. ' h . 5 IM i .V 'l FM J
<A' h/ l .! J %fi a V%.'*/ % 'n ~ *r n ,f i r>1: .7% nf f.
I, ' \1 ' ' < n 'l n
.1 21. 'N # > .sy )As . ' 'f%
IJs ' & %' ! '- . r 'k 11 v %.a s N x- 1 i A f f f. I 1 12 E4 />
. r n > e1 - >%.n r %- r1 -e l \f a /% f e' U ' hF tI l /'t ..
s w, "
- V I h / I w' /%' / X y ar. Er rsu ! I>2%* 9 .N 2
n s */ = . > a 3. - ' r'vAwe s i . I v' V ' v - / %> tr r r v i i r i It' 2' v'L14A he,9 ' h .i . n / - i M Y wr . ' 'N , . AJt * */ n\1 J ' / s % ffir% > Ir INws / . Al s 'R d ') 1 11. ITWTii r y Y , ( rt ' .# . 1 r%f - f. .N s' a %~ (
'fI ## 'Y*3 ' F*L - A ,I \1 : E ft ' 4 M i i/ 13. / .I KIe . _%
[2 h,0=% /\ El e I f / / mr . * ' e / ' 7% r ,' N' Jo1%. A' '% 5 7 /V = (* 3. 'M e /%! *1 -' A '% ' ~! N .1 e r Nyn'\I~ ' r, *i e >s N 'to JN I A ' ' E f fe%y s
't r; 1s t , 'ws u 1/ m.s.1 xr /% v /s, >" / 's
- e N avn1,sm I't .A%. . 'D%L I E [n 1 Y', i % i r \s 's ,'119 k fu , l ' '. )V i .9%. / /. f%f f* l1 %/ r s. s' f
'1x A. n r c\ .w ' is. / \ ' .'
i m ~ re.1, :/ Mi ' 'uss c n si , 't af '%f v. / > 'M is s *) "N' XI n IY I II ' ' It s l ' t\ , - 1 z s n ! y V J ' 1 e JI i . F.m JE
'.M a hf ' 'l NJ: f " s' 1%J */ !
5 g r >w 1, ',1 j r ~ ' s:s .'s \ l'2 Af f% i yr '-'
' Vh 1 f %,a S'/' fr%.'t) / / L' ./ .' s 'I J hj f ' N
- R g' i 1, su r.wf,1varr t I,v , % b a Ru i p ./. r . / %) f'J s in W, '- 1 1 . 'w n
/ '
h gtL 1.L , r t .' M 'n15 , 'v. v v n:r x> /u u\
' M f
b \ A l o x >
% *1 .v sv ' i e, V T%'l f %1 1 / l 7'M'f > */n yk r />
f v2 a 1
/
2V' 1 Yn", /I'IlI ,, Asies f.1 />> 'T I In> .11 a r : \r E
- I x ri s 1na s J T4 f ft%J \ %)
f Y'% 'A /24 3 r %u 1 '
.' /
I l S air 1 fr ) fa s; r , .%I
/1 , f .ilrs1y ( a f I fx f f fg,,s if ;gfi 'K r I . T # 7/V
- I A rf'.1 ". I ' are ' I ' ri e % A \
- c '\1 s T ' r%
e M I 'I a ir n 's I A'.
- f/ ' ' % f. I J\ r Ilf
- 11 ) V J %# 1 1 l frh 1 1 /* / : -- ' . / M Yg ' ,r1 ft fr 1 f't 'I e : I %' /1 r n' '%' A ' / / :// ' A 12 ': ' - - N /
5g s erel ' 3f1ri' af
- 11. s 'A1 *i. n r . 1
- An .R F1 AE~ n 'E' ,'A
? /\ f r '
A2 I
\n /, 1w I a vs V% % s v6 r i't 'rff.mscfMs > ' ' A / 'Y 4 f" R e 'A s I / 10 'Br *m' f f rJY '
_ . sr, f >
\f,' If ,
w'/'?_'E Ks f f, ./ , . er a / f Y h..' ns d ' )l r J' f si e T f. g .ir in t' af' . . /
. iatr _ i / ', A t II .I af 3 1 i '.%'
- r ; \/ f F
'L/ J /* 1? f 1 /
f s X J ' ,'N1 , q > 't / 12'FX 'r s' I t f ' _Q'= l 'Y 'hY 16 ffh n f a y 1:, ) : ~,1 o t s .= n 1's si r i s f,11- /\ . - .
\
t r~r p. r f Xf 's, PA .rf,'4'f nPt/r-['hY l ( . ' . .1 # . 3 'A
. r f% e r > l mf tr</1 1: /n > y ,Jff ,1 m/ra f '. s ! < 'I g jr, f s A f . A f1 *
- l' 1 r 101 t rf \ c s!s' 's/
/ fn 11 ' N's"F1* (3o T'! .
4 i- a y,y /
., s/ Nfs / N.
2
, fFVr- 1 I tff - //.//rs' r // , f ,%',c'/'
v 7 j 70[ l W 'I? ' f- ' 's '
'l A ' %d A / 'i s
- r. -> sv ('. I f f. /f'I B g n im t Ti 'n f '/-'
, '% - /
Wg gry ,1 i, L' r nf 1 , rf. ' F ' *V
~ s2 'T' t' s s'
A (
/
A vv fV;
,r v/m er w'/ * * .;1: s- ,m z un a. I AT .tr** rs .r" / /s >1 WI .'PJ fI //' .% f l .' /
O.' .) i ff Y ( J f or'l I, rvy gx-( , 17 ',Is 'Es r L 'r T r' t. 1 t I '. \ 4 5 E',4
- 'n 'I A' if- L F II 'N II i \ * , v / / ss '
fM) af f W/'CI />
-a' I - > 1 -%i' 'f f ? t Y1 I /
I s A \ . n /
.. '] /ss 'I J 91
- 2. V11 1/L '6 EA a' J ' ' T' ' - n Ifr l(
.. < - t r 5 / / 's '/%. e - "J' Ai f f - f' a 'ffVJ f FI n sur .rn s A.! . 1 ' a jy, nrsus.r> '
y, - s y/ , s'f'
- J -
t >
/ ' .\ ', . l , /
1Y u'
) /
r
/
Jn,
/ Ji e) ,') ,,oc ,r%v s 1 e s. '.' n 1
g -s s,r, y ; gy N rF
- s. s=
Lil V
, 3) 7 , _s y v 7, ,a , f I ( fn 1 7 L.r f LV rj f j r, '
g s l J WfL F t Elf 'A 7" 9 'f f M '1 r gf ,; , y y I J A r ,I I f * . I*. > ^ 't f ) '/ 2 .')f_ J,, F U 2 ), ' ' ' 1w / .i : , af gr, A trm wi 's .71 L .k I,'/ 2 . ) 1r 17 t' > x If > > f,r fA 1 w/r s, 'y
- r n rf ' vA :> <> v' r ,
r s urir < l '
> m / J . . r > m /f Ism . < f% v y ., I lA! JF ;1A I In 'ff, 41. .f"Er V v ' ' / A , K '
f \ ' kf- L f A '3/ .' / \/.!,t_7f f %V r , l'. I'\,d. i
/
e an . f)el/ JY.'4AL,V ' M ? A f A . f\f / JX fJ,f hf , , rEn 1 rm. ni 'l )." ,) ,7 m'1, V 2T > s E ,') ) ) 't,V if *
- e. '.A K ) f\ }
12 1 T ElIk J E v '1
> > JYJ J f A /
s /) f
.R /
VIN W_VEA 1'1 s
. 'J.'
v il ,r_ ' A tr \
\'
a f '. A J }'.
/ A J / AL > > J'Pf7' /. f s'ut ' 4 U
- tw , .'h s' ->r ,V_ R IT / Y , V ^ '
/= . sn i . fx v't ' , J. / . I L' r l y 1 v.% s fs 'y N 'o g A' L'IA I > >
rn r *n, rf ' E fr .A g l , t j \ l / W f f r f / R-f1 N_F3{ f)
,'s.
l 'nihn21' II . E l' ) f r. ' 1 'a r 1.
' ,f f " m ni . ?, / / /\
f f
}
f // rs '
#'w i n s ' 1 r "/*ir) )U r
- 1. 'n i n u . i >
n
\Jffa!/ I L*'s Q
\ f. , r .a I. r(\ > + > > J'> > n o v m'It 1, y ir1 a as M g ru u r 1,1 31 1: 5 r , s s f .,a I
> a / A , f A .
v1 .f ' ' Ts sa , >./
, f, ,izr
' in I f v / /, n '
..xs i, eu w, M p W*E' '
Le n'n.. 'un, '.
f'AV f. '\' s y 'r , s V f / (,' . 'I J. , 7 I f,' \ . 3' f . /
\ , r v, wnre n , ,,, M
. r ,\y1a . _ ) > ,r af i o / ,,r g WIA*uW I'J I / t ' la ,r y t . fs s // t .pr 1 fa f. ,r g e n iv ' u rs r1 ' 'd J s , 11v ,1 .) r.2 / J nl' jf;.2 , n' f /,' f , ax r* f '"
S
=* ,N, ,_ '
, .. rze ,s. :, 1,g ,rn yy 1, I A ,jjz s 1.a f,> AN q, _ ", g ,r - a
,M i * , =* - e a , ... g. ew- set W H*? n**'= M, .'s - - -
I m . . - . _ . - --,.,-er-- , , . _ _ _ _ . _ _ --'
(4 .
- 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 19
'i THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. /-
ANSWER 1.01 (2.00)
- c. 1. REMAIN THE SAME
- 2. DECREASE
- 3. INCREASE -
4.. INCREASE
- 5. DECREASE [0.3 each) (1.5)
- b. Superheated (0.5)
REFERENCE Westinghouse T-H Principles p.10-67 to 10-72; Steam Tables (3.00) ANSWER 1.02
- c. Rho'1 = -2.5% delta-k/k Keffl = 1/(1-rho) = 1/ (1-( .025)) = .9756 +/ .002 (0.75)
CR1/CR2 = (1-Keff2)/(1-Keff1) (0.75) 135/405 or 1/3 = (1-Keff2)/(1 .9756) Keff2 = .992 +/ .002 Rho 2 = (Keff2-1)/Keff2 = -0.81% delta -k/k Reactivity added = -0.81% - (-2.5%) = 1.69% delta-k/k +/ .1% (0.75)
- b. Near 400 cps (0.25), because as Keff approaches 1, more neutron generations are required to stablize the neutron level (0.5). (0.75)
REFERENCE l Wsstinghouse Nuclear Reactor Physics p.5-21, p.8-39, p.8-54 ~ \ f ANSWER 1.03 (1.00)
- c. True .
- b. False REFERENCE Westinghouse Nuclear Reactor Physics p.8-14,8-54
+
- 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 20 THFRMODYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 1.04 (1.50)
- c. 1. Control rod position. 4. Xenon concentration.
- 2. RCS average temperature. (Time since shutdown.)
- 3. Fuel burnup. 5. Power level.
- 6. Samarium [3 0 .25 each)
- b. SDM is increased [.25), since power remains constant, rod position will be higher (and boron concentration will increase)
[0.5]. (Since SDM is the instantaneous amount of reactivity by which the reactor is, or would be suberitical from its present condition.) (.75) REFERENCE Wastinghouse Reactor Core Control (PWR) p.7-13,7-23 ANSWER 1.05 (3.00)
- c. Less negative (0.25) because Xe inserts negative reactivity in the bottom of the core and flux moves to the top of the core (0.75).
- b. More negative (.25) because rods are inserted and push the flux to the bottom of the core (0.75).
- c. More negative (.25) because more moderation will occur in the bottom of the core due to sudden insurge of colder coolant (0.75)
REFERENCE Wastinghouse Reactor Core Control (PWR) p. 8-20, p.8-21 ANSWER 1.06 (1.50) The amount of Xe produced from fission and decay of I-135 is greater.(0.75) The absorption cross section for Xe is much higher. (0.75) REFERENCE Westinghouse Reactor Core Control (PWR) p.4-11, p.4-30
t 4 .
- 1. PRINCIP m OF NUCLEAR POWER PLANT OPERATION.' PAGE 21 TERMODYNAMICS. M AT TRANS m AND FLUID FLOW ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 1.07 (1.50)
- a. Q = m c Delta T.= m Delta h (or equivalent) (0.5)
- b. If the hot leg reaches saturation, the latent heat of vaporization would not be accounted for and reactor power could increase with no
~
corresponding increase in core Delta T. (1.0) i REFERENCE Wastinghouse T-H Principles p.4-64 to p.4-66 ANSWER 1.08 (3.00)
- o. Increase (0.5]. Th will increase while Tc remains relatively
- constant [0. 5] .
- b. Increase [0.5]. Heat is no longer being removed at the same rate. [0.5].
- c. Decrease or no change [0.5] less primary to secondary heat transfer
[0.5]. REFERENCE Wastinghouse T-H Principles p.14-27 ANSWER 1.09 (2.00) ..
- c. 1. As pump speed increases, discharge flow rate increases proportionally. [0.5]
- 2. As pump discharge head increases, discharge flow decreases (according to the pumps characteristic curve). [0.5]
Will also accept discussion of v. N, and Hp if discussion is complete;
- b. 1. Pump runout is the condition when a centrifugal pump is pumping at its maximum capacity. (Greater than the design flow rate; no pump back pressure.) (0.5)
- 2. When a pump is pumping against a shut discharge valve.(Max.
head the pump can deliver) or Will also accept " system pressure which reduces the pump flow rate to zero" (0.5)
i i PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. THRRMODYNAMICS. MFAT TRANSFER AND FLUID FLOW PAGE 22 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. REFERENCE Wastinghouse T-H Principles p.10-37, p.10-41, p.10-43, p.10-44 ANSWER 1.10 (2.00)
- c. The Fuel Temperature Coefficient becomes less negative as power increases [0.5]. Doppler broadening of resonance peaks diminishes as fuel temperature increases and self shielding also decreases.[0.5]
- b. The MTC becomes more negative as power increases because Tave increases.[0.5] Since the MTC is principally a function of moderator density change per F, at higher temperatures the change in density per F is greater.[0.5] (Mathematical explanation involving resonance escape terms and thermal utilization terms will be considered.)
REFERENCE Wastinghouse Reactor Core Control (PWR) p.2-39, p.3-28 ANSWER 1.11 (2.00)
- c. ACP HIGHER THAN ECP (0.5)
- b. ACP LOWER THAN ECP (0.5)
- c. ACP HIGHER THAN ECP (0.5)
- d. ACP LOWER THAN ECP (0.5)
' REFERENCE Wastinghouse Reactor Core Control (PWR) p.7-24 to p.7-26 .
ANSWER 1.12 (1.50)
- c. When reactor coolant expands into the pressurizer the vapor volume is compressed (.25) and the pressure of the steam increases.(.25) This causes steam to condense until the new set of equilibrium conditions
! is reached.(.25) (.75) i b. During an outsurge the level decreases and the steam volume increases (.25) resulting in Psat and Tsat conditions which increases boiling, (.25) thereby generating more steam to stop the pressure decrease and establish new equilibrium conditions. (.25) (.75) REFERENCE Westinghouse T-H Principles p.4-70
- 1. PRINCIPLES OF NUC M AR POWER PLANT OPERATION. PAGE 23 TRERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 1.13 (1.00) d. REFERENCE Wastinghouse T-H Principles p.12-45 e 9 m e 9
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 24 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 2.01 (3.00)
- a. Pressurizer low level (less than 17%)
Safety injection activation (.25 each) (0.5)
- b. Low pressurizer level Closing letdown isolation valves (QRV-111 & 112)
L'oss of all charging- pumps Containment isolation (.25 each) (1.0)
- c. Maintains sufficient upstream pressure to prevent liquid in the letdown line from flashing (upon exiting orifices). (0.5)
- d. Mini-flow isolation valves will close on a safety injection signal (.25) and will cycle open(.25) if RCS pressure is above 2000 psig (for 2 secs)
(.25) then reclose when pressure decreases below 2000 psig(.25) [until the SI signal is reset (.25) and the control switch placed in pulled out (1.0) position.( 25)] Portion in [ ] optional. REFERENCE Cook Lesson Plans RO-C-NS06 p.7,8,19,28; RO-C-NS12 p.11 ANSWER 2.02 (2.00)
- c. Spray line low temperature alarms.
Surge line low temperature alarms. (0.5 each) (1.0) l
- b. All pressurizer backup and variable heaters are locked out when level decreases to 17%.(0.5) The interlock is cleared when level increases above 17% AND the control switch is placed in the TRIP l position.(0.5) (1.0) l l
REFERENCE Cook Lesson Plans RO-C-NS03 p.11,12,33 ,
b.
- h. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 25 ANSWERS --' COOK 1&2 -
86/12/02-VICTOR, F. 1 ANSWER 2.03 (3.00)
- c. Motor Driven - 450 spa Turbine Driven- 900 gym (0.5 ea.] (1.0)
- b. 2/3 low-low levels in 2/4 S/G's 2/4 low voltage on RCP busses [0.25 ea.] (0.5)
- c. 2/3 low-low levels'in 1/4 S/G's Safety in.iection signal [0.25 ea.]
Blackout signal Both main feed pumps tripped (Control switch in auto) (1.0)
- d. To ensure that minimum flow (100 spm) is maintained during operation (0.5) of the Turbine-Driven Auxiliary Feedpump.
REFERENCE Cook Lesson Plans RO-C-AS11 p.6,13,14,20 ANSWER 2.04 (1.50) (0.5)
- c. 120 +/- it
- b. 1065, 1085 (+/- 2psig) (.25 each) (0.5)
- c. Three (0.5)
REFERENCE Cook Lesson Plans RO-C-PG2B p.20; TS 3/4 7-2 .\ l T a f f
,y-.-,..-,,-,.
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 26 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 2.05 (2.00)
- c. Active failure- The inability of any single dynamic component or instrument to perform its design function when required by the proper actuation signal. (Similar wording acceptable.) (0.7)
- b. Passive failure- Limits the effectiveness of a device to accomplish its design function. It usually involves the transport of fluid. (Similar wording acceptable.) (0.7)
- c. Parallel valves used when flow is required.
Series valves used when isolation is required. Redundant power supplies used. Redundant components used. (any-3 at .20 each) (0.6) REFERENCE 3 Cook Lesson Plans RO-C-NS12 p.8; RO-C-NS12-TP-1 ANSWER 2.06 (1.50)
- c. True
- b. True
- c. True REFERENCE Cook Lesson Plans RO-C-ASIO p.23; RO-C-AS10-SHO4 p.18; RO-C-AS10-TP31 Attachnent 3 .
o l
r M . l
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 27 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
l l ANSWER 2.07 (2.50)
- c. Low pump discharge pressure (80 psig)
Blackout Sequence SI Sequence (.75)
- b. _
Phase "B" isolation. (0.5)
- c. Phase "A" isolation. (SI) (0.5)
- d. RCP Thermal Barrier high dp (50 psid)
RCP Thermal Barrier Outlet high temperature RCP Thermal Barrier flow mismatch High Surge Tank level High CCW radiation (any 3 at .25 each) (.75) REFERENCE Cook Lesson Plans RO-C-AS01 p.10,11 & Table AS-1-II; 1-OHP 4022.002.001 p.6 ANSWER 2.08 (2.50)
- c. To provide cooling to the lower radial bearing [.25] during startup
, (low pressure) operation.[.25] (0,5)
- b. The RCS is between 100 and 1000 psig.
The gi seal leakoff valves are open.' (0.5 ea.) The #1 seal leakoff flow rate is less than 1 gym. Seal injection flow to each RCP is greater than 6 gym. (2.0) REFERENCE Ccok Lesson Plans RO-C-NS2 p.16 1
- 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 28 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 2.09 (1.50)
- c. Transforms 26 KV(.20) into 4160 V(.20) for RCP busses.(.10) (0.5)
- b. Transforms 34.5 KV(.20) into 4160 V(.20) for RCP busses.(.10) (0.5)
- c. Transforms 26 KV(.20) into 345 KV(.20) for the grid. (.10)
OR Transforms 345 KV(.20) into 26 KV(.20) for input to Auxiliary Transformer.(.10) (accept either answer) (0.5 REFERENCE Cook Lesson Plans RO-C-PG14 p.9 to 12 ANSWER 2.10 (1.00) 95 psig +/-2 psig [.25] Alarm actuates and the Standby Compressor sta~rts.[.25] (0.5) 85 psig +/-2 psig [.25] Supply ring header isolates.[.25] (0.5) REFERENCE Cook Lesson Plans RO-C-AS12 p.7,15 ANSWER 2.11 (1.50)
- o. CO2 (Trade name acceptable.) '
(0.5)
- b. (Pegging Pumps) MCC-1-TBC-CS (Low Demand) MCC-1-TBP-BW l
(High Demand) Unit i Bus 11C ! Unit 2 Bus 21C l Diesel Fire Pump (280 HP) (any 4 at .25 each) (1.0) REFERENCE Cook Lesson Plans RO-C-AS18 p.17,18; RO-C-AS17 p.8,9 l l l l l l l l l i _ _ _ _ _ . _ _ _ _ . _ . _ _ _ _ . - . _ . _ _ _ _ . . _ . . _ _ . . _ _ _ _ _ . . . . , _ _ _
PLANT' DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 29 2. ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. ANSWER 2.12 (1.50)
- 1. Reactor Coolant Drain Tanks
- 2. Boric Acid Evaporator Vent Condenser
- 3. CVCS Holdup Tanks
- 4. Volume Control Tank
- 5. Spent Resin Storage Tank ,
)
- 6. Automatic Gas Analyzer l
- 7. Waste Gas Compressor Recycle Lines '
- 8. Pressurizer Relief Tank (Any 6 0 0.25 ea.) (1.5)
- 9. VCT Gas Sampler REFERENCE Cook Lesson Plans R0-C-AS07 p.10 ANSWER 2.13 (1.50)
- o. Log current Amplifier output signal, or Detector Output Current. (0.2)
- b. 1. Startup Rate (Rate Channel,N37). (0.2)
- 2. Level Indication (Control Board) (0.2)
- 3. Level Recorder (0.2)
- 4. Computer (0.2) (0.8)
- c. To provide Source Range indication at the Alternate Hot Shutdown Panel (LSI-4). (0.5)
I - REFERENCE Cook Lesson Plans RO-C-NSO9 p.9 and TP-14 l o i
d
- 3. INSTRUMENTS AND CONTROLS PAGE 30 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
' ANSWER 3.01 (1.75)
- c. Tavs, dt, Pressure, dI [.25 each] (1.0)
- b. Prevent exceeding DNB (.25)
- c. _ Turbine runback Blocks automatic and manual rod withdrawal [.25 each] (0.5)
REFERENCE ' C:ok Lesson Plans RO-C-NS11-SHO3 p.2,9 I ANSWER -3.02 (2.50) a
- 1. Can not open valve (ICM-129) when RCS pressure > 425 psig.(0.5)
Protect the RHR system downstream of the RHR Pumps from over pressure.(0.5) (1.0)
- 2. Recirculation sump suction valves (ICM-305/306) can be opened if RHR pump suction valves (IMO-310/320) are closed (0.5) and Containment Spray Pump suction valves (IMO-215/225) are closed.
.(0.5) Prevents the RWST from draining to the recire sump.(0.5) (1.5)
REFERENCE Cook. Lesson Plans RO-C-NS08 p.17,to 19 i - ANSWER 3.03 (2.50)
- c. Operator would be required to rnnu,y ly reinstate power to the Source Range instruments. (0.5 T; v Gamma current would add to the noutron current producing an erroneously high flux which would hold the IR channel'above P-6.(0.5) , (1.0)
, b. - High flux rod stop [0.5] Ieq 20% [0.15] 1/2 [0.1] r
- High flex Rx trip [0.5] Ieq 25% [0.15] 1/2 [0.1] (1.5)
. REFERENCE ! Cook Lesson Plans RO-C-NSO9-SHO3 p.7,8
- 3. INSTRUMENTS AND CONTROLS PAGE 31 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F ._
ANSWER 3.04 (1.50)
- c. Shifts C.R. Ventilation to'Recire Mode. (.25 each) (0.5)
Starts the C.R. Pressurization Fans.
- b. Trips SFP Supply fans.
Aligns exhaust thru charcoal filters. (either at .25) (.25)
- c. Shuts CCW Surge Tank vent. (.25)
- d. Shuts S.G. blowdown isolation valves.
Shuts S.G. blowdown sample isolation valves. Shuts S.G. blowdown Flash Tank to Turbine Room sump isolation valves. (any 2 at .25) (0.5) REFERENCE Cook Lesson Plans RO-C-AS21 p.2 and RMS Table a ANSWER- 3.05 (1.00)
- c. Wide range hot leg temperature [.25]
Reactor vessel differential pressure [.25] (0.5)
- b. Seal table [.25] Thimble (J-7).[.25] er W N $ (0.5)
REFERENCE Cook Lesson Plans RO-C-NS2A p.8,to 10 ANSWER 3.06 (2.00)
- o. UNIT 1---- 22% (+/ .5%); 46% (+/- .5%)
UNIT 2---- 22% (+/ .5%); 55% (+/ .5%) (.25 each ans.) (1.0)
- b. GREATER THAN (0.5)
- c. Only one breaker can be closed at a time.(.25) Prevents paralleling the D.G. during blackout.(.25)'or Prevent damage to pressurizer heaters if uncovered by low pressurizer level,(0.5) or Prevent damage to heater SCR's on low air flow.(0.5) (0.5)
REFERENCE Cook Lesson Plans RO-C-NS03 p.24; p.29; Fig 12.6; PG14 p.34; Tech Data Book Fig 2.1.4 & 2.2
. l
- b. INSTRUMENTS AND CONTROLS PAGE 32 ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
i I ANSWER 3.07 (2.50)
- c. 1. Bi-Hi levels (.20) 2/3 detectors on 1/4 S.G.(.20) Prevents S.G.
overfill.(.10) (0.5)
- 2. Safety Injection ( .30) Prevents feeding S.G. during steam line break.(.20) (0.5)
- 3. Reactor trip (.20) in coincidence with a low Tavg in 2/4(.20) loops.
Prevents excessive cooldown.(.10) (0.5)
- b. 1. Feed Reg vhlves closes (FRV-210;220;230;240).
- 2. Feed Header Isolation valves close (FMO-201;202;203;204)
(0.5 ea.) (1.0) REFERENCE Cook Lesson Plans RO-C-PG10 p.18 ANSWER 3.08 (1.50)
- c. 1. Manual operation of the Phase A Containment Isolation Switches.
- 2. Manual operation of the Spray Actuation Phase B Containment Isolation Switch.
- 3. Automatic operation of Safety Injection.
- 4. High alarms on RMS channels. (Specific channels not required.)
(.25 for each) (1.0)
- b. 1. Load Conservation signal.
- 2. High temperature in Containment Pressure Relief Exhaust Unit charcoal filter. (.25 for each) (0.5)
REFERENCE Cook Lesson Plans RO-C-AS08 p.2G,27; DR. No. OP-1-98512-5 t l 1
- 3. INSTRUMENTS AND CONTROLS PAGE 33
~.
ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. ANSWER 3.09 (2.50) O. 1. Single loop loss of flow will insert if 2/4 power ranges are equal to or above 50% (P-8). (0.4)
- 2. Two loop loss of flow will insert if 2/4 power ranges =/>10% (P-10)
[0.2] OR; [0.23 1/2 impulse pressures =/> 10% [0.2] (P-13) (0.6)
- b. An undervoltage cond'ition will trip the reactor in anticipation of
-loss of flow while an underfrequency condition will trip the reactor and the RCP breakers. (.75)
- c. The undervoltage trip allows the RCP to continue to provide forced flow for a short time. The underfrequency trip prevents dynamic pump braking or ensures that the pump flywheel provides coastdown flow. (.75)
REFERENCE Cook Lesson Plans RO-C-NS11-SHO3 p.3,6,7; Dwr # OP-1-98512-5 ANSWER 3.10 (2.25)
- c. 1,3
- b. 2
- c. 1,3
- d. 1,2
- e. 1,3 [.25 each response] (2.25)
REFERENCE -
- Cook Lesson Plans RO-C-PG12 p.6 to 16 and Fig 4 4
3 i ANSWER 3.11 (1.00) b. REFERENCE Cook RO-C-PG11 p.7; Fig PGS-11-3 i
-.. - - , , , , - . . . - - _ , - - - - . - - . . , . - , , _ , ~ - . . , , . , . _ - . , , - - , . . . _ - - . , _ - _ . - . , . . . - . . - . . . . - , - - , . - , .
- 3. INST-"*ENTS AND CONTROLS PAGE 34 ANSWERS -- r WK 1&2 -86/12/02-VICTOR, F.
ANSWER 3.12 (2.50)
.o.-----------------6.
b.-----------------5. c.-----------------7. d.-----------------1. e.-----------------2. [0.5 EA.] (2.5) REFERENCE Ccok Lesson Plans RO-C-NSO4-SHOO 3- p.1 & NSO4 p.20 ANSWER ~ 3.13 (1.50)
- n. TRUE
- b. FALSE
- c. FALSE [0.5 each] (1.5)
REFERENCE Cook Lesson Plans RO-C-NS11 p.14, Dwr # OP-2-98512-6 _ - - . . _ _ _ . _ , - _ _ _ . _ _ _ _,.__._y ..y,,m_- , , . - . ,_-,...y__,. . _-, , _-- , ,--,_ y-- ,,..- - , _ - , . . - - - - . - - - .
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 35 RADIOLOGICAL CONTROL -
ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. ANSWER 4.01 (2.50)
- a. - Emergency borate (10 rpm of 20,000 ppm solution)
- Reinsert all control banks - Recalculate ECC (and adjust boron if necessary) [0.33 each) (1.0)
- b. - Ensure adequate SDM
- Ensure ejected rod reactivity limits maintained - Ensure accepthble core power distribution limits [0.5 each] (1.5)
(Axial Power Distribution, Hot Channel Factor, Quadrant Power Tilt Ratio, Axial Flux Difference) REFERENCE Cook 1-OHP 4021.001.002 p.10,11; TS p.B 3/4 1-3 o ANSWER. 4.02 (2.00)
- c. When CST level decreases to less than 13% (0.5)
- b. RCS cold leg temperature. (0.5)
I
- c. Letdown (or Pzr PORV) and aux. spray. (0.5)
- d. Core exit T/Cs. (0.5)
REFERENCE ' Cook 1-ORP 4023 ES-0.2 p.4 to 7
^
e
- 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 36
'. RADIOLOGICAL CONTROL ' ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 4.03 (2.50)
- o. 1. Individual rod bottom light and alarm.
- 2. Rod sequence violation alarm.
- 3. PR Nuclear Instrumentation flux deviation alarm.
- 4. Rapid drop in Tavg. .
~5. Rapid drop in presaurizer pressure. -
- 6. Tavg-Tref deviation low alarm.
- 7. Rapid drop in pressurizer level.
- 8. Individual Negative rate trip.
- 9. Computer alarm NIS tilt. (any six at .25 each) (1.5)
- b. 1. Rod Position Indicators
- 2. Thermocouples
- 3. Axial Flux Difference
, 4. Quadrant Power Tilt Ratio (.25 each) (1.0)
REFERE'NCE Cook 1-OHP 4022.012.004 p.1,2,5 ANSWER 4.04 (1.50)
- c. #1 seal leakoff flow high
- b. #1 seal outlet temperature high
- c. CCW thermal barrier discharge temperature high alarm
- d. #1 seal leakoff flow low '
- o. #1 seal DP low
- f. High vibration
- 6. #2 seal leakoff tank high level alarm (any 5 at .3 each) -(1.5)
REFERENCE Csok 1-ORP 4022.002.001 p.1,2 2 i
s l
- d. PROuroGRES -- NORMAL. ABNORMAL. EMERMNCY AND PAGE 37 RADIOLOGICAL CONTROL x ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 4.05 (3.50) I
- c. NO -Steam supply to TDAFW pump (valve 1-MCM-221) is not closed. (0.5) b._Close remaining MSIV's and bypass valves.
Use intact SG steam relief valve for steam dump. (1.0)
- c. If no high head pump is running (CCP or SI).
If RCS pressure is less than 1250 pais. (1.0)
- d. - PRZR level cannot be maintained >4% (30% adverse containment)
- RCS subcooling less than 30-F. (1.0)
REFERENCE Cook 1-OHP 4023.E-3 p.3,5,18; 1-OHP 4023.E-2 p.3,4 ANSWER 4.06 (1.00) The following are indication of a Turbine / Generator trip:
- 1. All Turbine steam stop valves closed.
- 2. Gen Output Bkra (Al and A2), (K and K1 for Unit 2): open
- 3. Exc Field Bkr: open
- 4. Aux Pwr transferred from MAIN to Reserve feed. (.25 each) (1.0)
REFERENCE Coot 2-OHP-4023.E-0 p.5 . ANSWER 4.07 (1.50)
- 1. c.
- 2. b.
- 3. a. J
- 4. f. l
- 5. b. (0.3 each) (1.5)
REFERENCE Cook 2-OHP-4022.002.004 p.1
s
. 4. PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 38 RADIOLOGICAL CONTROL ^
ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F. ANSWER 4.08 (2.50)
- c. 1. 1.6% delta-k/h (0.25)
- 2. Once per 24 hours (0.25)
)
- 3. Immediately initiate and continue boration(.25) at >/= 10 rpm (.25) of solution at 20,000 ppm (.25) until shutdown margin limit is met.(.25) (1.0)
- b. Unit 1 is 1.6% ' delta-k/k.(.25)
Unit 2 values obtained from table.(.25) (0.5 for knowing the limits are different) (1.0) REFERENCE Cook Unit 2 TS 3/4 1-1; Unit 1 TS 3/4 1-1 ANSWER 4.09 (1.00)
- c. Station Manager, Shift Supervisor, Asst. P.M.-Operations, Asst. P.M.-Maintenance, Operations Superintendent, Operations Prod.
Sup. of affected unit. (any 2 at .25 each) (0.5)
- b. The On-Site Emergency Coordinator (OSEC), or the Plant Manager.
(.25 each) (0.5) REFERENCE Cook PMP 2082 EPP.001 p.1; PMP 2080 EPP'.015 p.2 ANSWER 4.10 (1.00)
- c. Allow manual loading of equipment onto the Emergency Bus. (0.5)
- b. To supply cooling for the Diesel Generator. (0.5)
REFERENCE Cook 2-OHP 4023.ECA-0.0 p.6
t 5
. 4. ' PROCEDURES - NORMAL. ABNORMAL. EMERGENCY AND PAGE 39 RADIOLOGICAL CONTROL ANSWERS -- COOK 1&2 -86/12/02-VICTOR, F.
ANSWER 4.11 (2.50)
- o. 1.25 Rem /Qtr. or 1.0 Rem /Qtr. Admin Limit. (0.5)
- b. Three (3) REM /Qtr is not exceeded (0.5)
Total accumulated lifetime dose does not exceed 5(N-18) (0.5) Accumulated Exposure on record (NRC-4). (0.5) Written permission received from Technical P.S. Superintendent and Department Superintendent.(0.5) , (2.0) REFERENCE Csok PMP 6010. RAD.001 p.36,37 ANSWER 4.12 (1.00)
--b.--
REFERENCE 10CFR20 p.238 ANSWER 4.13 (1.50)
- c. 1. Restore Tava >/= 541F(0.5) within 15 minutes (.25). (0.75)
- 2. Be in Hot Standby (0.5) within next,15 minutes (.25). (0.75)
REFERENCE Cook Unit 1 TS 3/4 1-6 ANSWER 4.14 (1.00) , c. REFERENCE Cook 2-OHP-4023.FR1.3 p.8 to 10}}