ML20203K861
ML20203K861 | |
Person / Time | |
---|---|
Site: | Vogtle |
Issue date: | 05/05/1985 |
From: | Brigdon R, Scukanec D GEORGIA POWER CO. |
To: | |
Shared Package | |
ML20203K798 | List: |
References | |
LO-LP-36105-, LO-LP-36105-00, NUDOCS 8608210385 | |
Download: ML20203K861 (13) | |
Text
_ _ - _ _ _ . - _ -
?
TRAINING MATERIAL ROUTENG IN N -
NEW MATERIAL /REVIS D MATERIAL s #[ [
AUTHOR / REVISOR P.. Be m Oc4 O /
PJAss Re~ r % 4 Q C
(.y a g REASON FOR REVISION:
MAJOR REVISION DUE TO ERRORS OR OMISSIONS.
REVISION DUE TO CHANGES IN EQUIPMENT.
x REVISION DUE TO CHANGES IN PROCEURES/0PERATING INSTRUCTIONS OR POLICT. l DESIRE ADDITIONAL GRAPHICS / HANDOUTS FOR THIS TRAINING MATERIAL l
OTHER COMMITTMENTS: TES Y NO DRAFT UG REQUEST FILLE OUT. TES NO k DATE SUBMITTE FOR SUPERVISOR'S REVIEW NW
- REVIEW SAT UNSAT APPROVAL SIGNATURE I Jhh+,9 DATE M[
- DATE NEEDE FOR EW FRCH TTF DG [7 ***** l
' ~
LIBRARY CLERK: M l DATE TO TYFING 7b/
. DATE TO DEAFTING M/ / N I
DATE FROM TTFING DATE FROM DRAFTING NlM I CONFILED MATERYALB TO INSTEDCTOR FOR REVIEN. DATE MSTEDCTOR REVIENs TTFING SAT UNSAT DRAFTING SAT UNSAT REIRME1 1ETI. 2.cas.
,,;
- Q'y .
< mATENuma at
. . L,. ,,
S 6 TTFDG- SAT UNSAT
- r. [C.,' DRAFTING SAT UNSAT REWORK: WRYT DATE NEED E BY
' SUPERVISOR SIGNATURE DATE LIBRARIAN RECEIFT FOR DCLUSION/0UTDATING OF FILES. DATE 1
FILE WORK DONE DATE 9609210385 960914
. PDR ADOCK 03000424 .
l V PDR l._ _ _ . _ _ - - _ _ .__ _ _ _ __ _.__ _ . __ _ _
i l
Georgia Power ,
wt ao a- M
, Powt3 GENERATION DEPARTMENT
. . VOGTLE ELECTRIC GENERATING TRAINING LESSON PLAN %# %# gp l l l
TITLE: POST ACCIDENT PRIMARY RADI0 CHEMISTRY NUMBER: c 3,q q ,cc_
PROGRAM: N ** REVISION: yo l i
AUTHOR: RICHARD D. BRIGDON DATE. . . . , .
APPROVED:
MM DATE:
S~/f/J[
REFERENCES:
l l
- l. NUREG 0737, ITEM II.B.4 I J. "MCD TRAINING," VEGP FSAR CHAPTER 13, ITEM 13.2.1.1.6 '
3 MITIGATING CORE DAMAGE, " POST ACCIDENT PRIMARY RA'DIOCHEMISTRY," WESTINGHOUSE '
ELECTRIC CORPORATION q, MITIGATING CORE DAMAGE, " REACTOR CHEMISTRY," GENERAL PHYSICS CORPORATION INSTRUCT 0P. GUIDELINES: i Lo -vio -Ica e f- oo -c - oo t a
j HANDOUT: " POST ACCIDENT PRIMARY RAD 10 CHEMISTRY,".S&-He-06& '
TRANSPARENCIES: .
ooi N"f*M W M Mo c,w o* e6 m m
'O~Tg g gg,,,o c 44-TP-684-+oog,FLANT PARAMETERS GR-33-464-G 805 REACTOR COOLANT CHEMISTRY SR-D-444-4ooat NORMAL PLANT OPERATION SOURCE TERMS AND INVENTORY OF RADIONDCLIDES FOR HYPOTHETICAL ACCIDENT SS "" ^**. 5 r:SSAMPLING SCHEDULE SR-TP-664=6eod. OPERATING PLANT FISSION PRODUCT DATA
-SR-9P-684-foo? CAP mmE COMPONENT VALUES S& m et REACTOR CORE DESIGN PARAMETERS SR-TPyg4-9ee9 EQUATION - COOLANT ACTIVITY RELEASE 65-sp-484-40oseTMI-2 FISSION FRODUCT SAMPLE RESULTS 9t=TP=684-Hoss ZIRCONIUM WATER REACTION S m ir. MELTDOWN o ESCAPE FRACTIONS
?? "" ^"' !"cesACTIVITY RELEASE CALCULATION FOR MELTDOWN Y,e . W' NTMI-2 FISSION PRODUCTS ss"ACTIVITT AND DOSE RELEASE FROM SAMPLE J.
- H. DOSE FACTORS FOR SEMI-INFINITE CLOUD
$ 87 EXTERNAL DOSE FACTORS y' ~ g(/. i osSINEALATION DOSE FACTORS FOR ADULTS 4
l MXiER COPY 1
.e
1 -
g - P - 3( . os- co-c
.a -ee- m
- 1. PURPOSE STATEMENT:
THIS LESSON PROVIDES THE OPERATOR WITH AN UNDERSTANDING OF THE VARIOUS RELEASE MECHANISMS OF RADIONUCLIDES FROM THE REACTOR CORE DURING AND AFTER A MAJOR ACCIDENT AND THE RADIOLOGICAL HAZARDS ASSOCIATED WITH IT.
II. LIST OF OBJECTIVES:
,.. . ., n,., _ - e.;
a- e ...: .i swi. i...... <ne acu ent m u .... . a...... 2% f e: -u.et.-of-a
_-::- ---u- c ;e w :.. sa.. 1. .g .
.EnahlinLSh. tact.isee
- 1. Explain the incore release mechanisms of fuel and cladding failure and their effects on primary radiochemistry.
- 2. Describe the differences between a rod burst and a fuel melt including their effects on coolant activity levels. ~ -
- 3. Compute the increase in coolant activity level for various nuclides following an accident given appropriate background information.
- 4. Describe the radiological hasards of sampling following a major core release and how the hazard varies with time.
Er ---*a
- - . - -- .'.. i or w,4 , . ---- . ::1. .i--
sua. 1- ---. ;ill t. . . ' f _ ::f 5- - = != 4--
--i_
- ... of 86 s
4- 4 M s-~1 -
-v con .
2
w _ a- w. . s _. e . m
u-
lli. LESSON OUTLINE: NOTES I. INTRODUCTION A. Subject u t-P- h c s - ca c - cc. ,
- 1. Change in primary wate radiochemistry following a core damage accident. *
- 2. Radiological consequences of:
- a. Drawing and
- b. Handling of primary coolant sample following an accident.
B. Two levels of core damage to be considered *
- Considered 10% fuel failure
- 1. Crack or rupture of fuel rod cladding (rod burst)
- 2. Partial fuel meltdown due to
- a. Hi.gh core temperatures
- b. Catastrophic failure following core voiding II. BASELINE PLANT AND ASSUMPTIONS A. Calculation Assumptions N
- 1. Core Power (MWt) 2900
- 2. Specific Thermal Power (MW/MIU) 40
- 3. No. of Coolant Loops 3
- 4. Primary Water Volume (ft ) 8910
- 5. Ncrual Operating Pressure (peia) 2250
- 6. Average Core Temperature 590*F
- 7. -Core _T MOL
- 8. T-- 1ed Fuel Fraction .01 B. Prima ifications 4R=TP-tM4=t
-re. o o s
- 1. Normal RCS activity levels for assumed plant. SR-9P-684 a. Represent failed fuel fraction of 1/10 design basis (.001)
- b. Total core radionuclides inventory 6R-TP-684 'TP- cuH 3
--,,w..,.,------,-.-,,,---,,,,,,7,,._,-, , , , , - - - , . . , , . - . - , - - - , - . - - , , - - - - --.--,,,.,,--..---.,y. - _ y,,_- -, ,
LC- i [- I b s C Y - CC - C er u =
111. LESSON OUTLINE: NOTES
- 2. a and b above vill vary with
- a. Core rated power
- b. Time in core life III. NORMAL PLANT CHEMISTRY A. Normal Samples and Frequency O T7-G69-5
- 1. Daily samples include TP-o 05~~
- a. Degassed gross beta - gamma activity
- b. Radioiodines
- c. Tritium
- 2. Will discuss effects of core damage on
- a. Beta - gsama activity
- b. Radioiodine
- c. Noble gasses B. Principle Contributors to Beta - Gamma Activity
. 1. Iodineandpsium e
- 2. Approximately 1 f'/gn. May vary as much as 10 times due to: *
- a. Cladding defects
- b. Crud bursts
- 3. Noble gasses contribute approx. 1 pcV3m of activity to coolant.
IV. IN-CORE MECHANISMS
-/ gpg e, A. Fiss coolant by:
1.
, [ l to gap (release fraction)
- 2. Escape via clad defects (escape fraction) 4R-99-084-6 vf-co b B. Escape rate coefficients for several important nuclide en gn naa a categories Tf-co S
- 1. Magnitude of release varies with nuclide volatility Sa r = -
- a. Noble gasses volatile at room temp.
Tt- co7 4
to-J- %icf co-(
On '." 004 lil. LESSON OUTLINE:- NOTES
- 1) Oxide form taken after rehetion
- 2) Type of fuel rod failure c.
Cesium will vaporize at fuel temps but has a lower escape fraction than iodides.
- d. Strontium
- a. Exists in metallic or oxide form
- b. Not readily released from fuel unless meltdown takes place.
- c. Increase in coolant activity can be SR-38-084 estimated by: Sp,oog.
- 1) CA = (NI)(EF)(FF) ,,
V where: CA = activity (pci/al) oo 4 NI = core nuclide inventory SS "" 00! 4-EF = Escape fraction for SS "" " i
nuclide class Y'007 Y = coolant volume (ft ) S" "'" ^ ^ ; i FF = failed fuel fraction Tf-c o ?
- 2) Best guess estimate of EF V. ROD BURST EFFECTS ON RADI0 CHEMISTRY A. Accident description
- 1. High inte ressure causes cladding rupture
- 2. maintained
- .y jeg q.;
- 3. Stumes ivalent to failure of 10 percent
.q : k',
B. Exsaple calculations
- 1. Noble gasses (Kr Ie)
- a. Factors
- 1) EF = .03 _-u-vo -,
TP-oc7 7
- 2) NI = 30.85 x 10 Ci e"
- " Oai 4 TP-ooy 5
l
t o-cP- % os .cc -c_
C D _T D _ A O f.
lli. LESSON OUTLINE: NOTES 3 8
- 3) V RCS
= 8.91 x 10 ft3 (1.82 x 10 g) Conversiog factgr 2.04 x 10 g/ft
- b. Calculation results . ?"-T"MS'; 9 7 6
- 1) CA = (30.85x10 C1) ( .03) (*.10) 10 uc h 8 A(; al 1.82 x 10 g
- 2) 5 x 10 pc'/m (noble gasses)
- c. Short lived isotopes will decay quickly
- 1) Atsamplinglevegvillhavedecreasedto l approx. 2.5 x 10 pc/ml l
- 2) Normal noble gas concentration approx.
.3 pd/ml
- d. Cogclusion: Noble gasses increase approx. !
10 times l
- 2. Beta - gamma grosa activity
- a. Iodinen ~
- 1) EF = .017
- 2) NI = 6.5 x 10 Ci 0".""J 000 0
- 3) CA = 6 x 103 ue/al
- b. Cesium *
- 1) EF = .05 ?" *" 00? P re- co i 0
- 2) NI = 13.8 x 10 Ci SR-GF-484 CA = 4 x 102 ,,f,1 *M 3) l c. contributions negligible due to:
l 1)f low escape fraction and low i ~ sq ~ ory (i.e. SR = .1 uc/ml) beta - gasma activity .1 ue/al -
- d.
Conclusion:
beta - gasma ingresses approx. 700( f p o, f, w t
times (CA7 + CACs = 6.4 x 10 uc/ol) ,
g gy C. Conclusions and Observations ,
- 1. Effect of varying sample times
[/ - 9/04 + AM'M**
- a. Calculations based on immediate sample 7aa d/
6
. w o J- w oS-uc -c 02 R-U64 lli. LESSON OUTLINE: NOTES
- b. One day later
- 1) Noble gas decrease by factor of 2
- 2) Iodine decrease by factor of 3
- 3) Cs relatively constant
- c. .i.e.: time of sampling has a significant effect on activity (Sample must be corrected for time)
- 2. Comparison with TMI .SR ZB-084-44
- a. Even though more extensive core damage than T-oeo rupture results compare well VI. MECHANISMS FOR EXTENSIVE CORE DAMAGE: RADI0 CHEMISTRY EFFECTS A. Cladding Characteristics o4 TEN t.
t 1. Zirconium alloy - high strength and heat transfer characteristics
- 2. At high temperatures reacts with H O
. 2
- a. :: ; 00' ;;
Zr + 2H20 4 Zr02 + 2H2 + w a ar-
- b. Produces heat (exothermic) and embrittlement of Zr.
- 3. Prevented by limiting: '
- a. Peak clad temp. to less than 2200*F
- b. Clad oxidation less than 17 percent of thick-
- ness during DBA.
I
- At operating conditions, does not
.p o-if ; .
1 percent of limit over core life
- 4. Assions (core uncovered) w . ., 3 -
l a.9 Cladi more than or equal to 2000*F.
s b. ',,^,%^%.* " embrittlement and failure within r
- b. Cisd temps greater than or equal to 3450*P.
/
w
- 1) Oxidised sitconium melts .
- 2) Evidence shows UO 2 can dissolve in Zr ./
melt 4
7 l
l
....A ,_ _.-_.m . . _ - . - . - . _
L.e_c?-3uof-co- c 02 LT 000 Ill. LESSON OUTLINE: NOTES
- 3) 1.e.: fuel becomes liquid below melting
temp of 5200*F -
+1 - ' s '
- c. Conclusion
- 1) Fuel melt characteristics' release may occur well below 5200*F B. Calculations
- 1. Conditions considered
- a. Same equation used for rod burst rN oos
- b. Escape fractions S" '" 09' ? (compare with S" '" 004 7)-
- c. 10 percent partial meltdown 79-ocry
- 2. Noble Gasses (Xe, Kr) SA-9P-684-4='
rf- oo 9
- a. Higher escape fraction (.9) sa m
~t1-olt
- b. C1=1.53x10 ve/a1 ,: sa.3s=084 43 Tf--o t2
- 3. Beta - gasma activity
- a. Iodine ** -" 0"i ? -
TP - 0 0 4
- 1) EF = .9 48 4P-684-1-2 Tr-oa7
- 2) CA = 3.2 x 105 ,,j,1 ,,_,,gg,_33_
rt'- o s3
- b. Cesium
- 1) IF = .8 3
- 2) CA = 6 x 10 uc/ml
- c. Str 7/. - cape fraction = .1 x
[ h 4c._ W .7[ uc/ml
.. - gamma activity increases by more than 300,000 times.
C. Conclusions (Comparison to Rod Burst) gms c. 3
- 1. Amount of activity increases significantly due to larger escape fractions.
- a. Primarily due to the melting and homogeneous mixing with reactor coolant.
8 1
I
, e q.wes - co - c,
=== '
III.
LESSON OUTLINE: NOTES
- b. Fission products released to coolant due to fuel pellet breakdown - diffusion through pellet unnecessary.
- 2. Type of nuclides released
- b. Serious melting accident will also release U-235 and Pu-239.
- 3. Keep in mind that analysis does not include i
nuclide ts's.
- a. Activity at onset of damage may be significantly different than at time of sampling.
- 1) Kr/Xe decrease by factor of 2
- Assuming one day delay in sampling
- 2) I (short lived) decrease by factor of 4
- 3') Sr decreases by 25% i
' 2: l D. Comparison with TMI-2 .
4R-fr=004=tt-11-o84
- 1. Fairly significant beta - gamma activity
- a. Indicates fuel amit
- b. Due to presence of Sr-90 (approx. 5% released)
- c. Iodine, Cs, Rb 65% core inventory released
- d. H2 - 60% release
- 2. Noble gasses '
- a. Appros. 50 percent released VII. HAZARDS OF m q ds.. .
A. Eigh 'ereste problems associated with i
- F h:,
~
- 1. sample
. 2. Inhalation of activity B. l 4
Estimation of consequences of accident sampling 1 i
- 1. Assumptions
- a. 100 mi sample collected 9
i.e- J- N cs-co -c.
ll1. LESSON OUTLINE: NOTES
- b. 10% of fuel rods ruptured
- c. Total noble gas concentration - 5 0x 10 W ' ,
(previously determined) ,
ts .
- .gg 2.
Q' f' ' ,
Asampleonedayafteraccgdentwillcontain primarily Xe-133 (2.5 x 10 uc/ml) -
(, "
- a. 3 Total Activity - (2.5 x Ig uc/ml)(100 ml) = ,
= 2.5 x 10 uc or .25 C1 ,,
b.
y, ,
If this ses escapgs the coolant and fills the >
sample room (36 m ) e
,ja Room noble gas concentration =
.25 Ci =
.007 Ci/m 36 a
- c. DR calculated using conversion to ares /hr. GR=TP=004-M-DR' = 7x10 -3 C1 10 uuc 2.94x10 aree-10 3
,3 1 Ci uuci-yr ,.
= 21 x 10 aram/yr Assuming 15 minutes in sample area.
DR = 21x10 mram yr day hr 15 min yr 365 days ~24 hrs 60 min 1
= 60 aren '
- d. Direct radiation dose from sample may be estimated using the curie-enter-rem thumbrule.
- 1) I curie at 1 meter = 1 Ram /hr
- 2) Cesium activity one day after accident
-3p
] . ,
ins has only low energy beta's f hrisBetaemitter At'one meter = .6 Rem /hr //
r
- 4) If operator only 1 foot from bottle
')(b a) Dg = D, = .6 = 5.4 Ram /hr bU i
or 1.4 Ren for 15 minute exposure 10
, _,..----,..-y-m,, . _ , - . - - , , , _ . , ~ . _ , - , - - - - - - . - _ , _ _ . . . _ - - . , , - , - - - - . - - - - +
2 s
e s-O-La~ keCC-CC~c S". '.7-034
+
lil. LESSON OUTLINE: NOTES l
- 3. Conclusions w s
/ ;
- a. Very high dose therefore extreme care must be taken during sampling . ). !
i: l
- b. Requires special shielding to reduce operator exposure. '
C. Contamination Levels for Spill of Sample
- 1. Assumptions
- a. Bottle dgopped and spills half of contents over 4 m i
- b. 10% sap release I
- c. Sample one day after accident
- 2. Primary nuclides are I-131 and 133, Cs-134, 136, 137
- a. I-131 activity TA = V ,x CA
" ~
7
= 7.7x10 Ci .017 .1 (100g) 1.82 x 10 g
= .07 C1 Coitamination Level 12 9 2 Is(.07) 1x10 une 1 = 9x10 uuc/m Ci g 2 2
DR = 9x10' mec 2.8x10'I ar-m = 25 ares /hr
,2 unc-kr 15 minste exposure = 6 aren
~ ^~
- 1. 'ty Spilled x Fraction Airborne i Ny$l.5k@ " '*2 =
where fraction airborne = .001
- 2. For Iodine-131: '
3 AA = (.035 Ci)(.001)( 1 )( Im )(106 ,,)
3 6 C1 36m 10 ml
= 1 x 10 -0 ue/mi
. 11
, , - - , , - - - - - , - , - , , - - - - - - - , , , ,,--,,-,--,e ,--nr _ _ , , ,, ---,--,,,----,,n,-,---.,,,,------,-.--e w
e ue -L.# - %t c f - c 0 - (_
C" '." 0"'
Ill. LESSON OUTLINE: NOTES
- 3. Keep in mind critical organs vary with nuclide
- a. I-131 - thyroid
~
- b. Annual dose = 1.5 x 10 ares /uuCi inhaled S"-T" 0"' 13 4 066
- c. Adult breathing rate = 1.5 x 10 al/ min.
- d. Total inhaled
(* *
)( * "*)(15 min) = 23 uCi
- e. Dose to thyroid 3
(.23 uc)(1.5x10 mr) 10 uuc) = 345 aren VIII.
SUMMARY
A. Estimates of the extent and nature of a fuel damage accident can'be made from the results of radiochemical samples following the accident.
B. Various mechanisms exist for fission product radio-nuclides to reach the coolant.
- 1. Diffusion through cracks or pinhole leaks in cladding during normal ops.
- 2. Release through ruptured cladding
- 3. Release through oxidized or melted fuel elements and cladding.
- 4. Leaching from broken and oxidized fuel rods.
C. Extensive hasards are associated with the sampling l operation. These hasards must be minimized by using l spec at and procedures which contain j the f shield the operator from dire sample.
. y. . e 1
I dh -
...L5 R .
12 i
- _ __ ._ _ _ _ . . . _ _ _ . . _ _ _ . . _ _ _ ___ _ _ . . . . _ ____. . _ . _ . . _ _ _ . . _ . . _ _ . _ . . _ . _ _ . . . _ . _ _ . _ _ _