ML20199J636

From kanterella
Jump to navigation Jump to search

Summary of 860312 Meeting W/Util Re Second Progress Report Meeting on Whipjet Program.Viewgraphs,Attendee List,Agenda & Summary of Questions Raised by NRC Encl
ML20199J636
Person / Time
Site: Beaver Valley
Issue date: 03/31/1986
From: Tam P
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
TAC-62883, NUDOCS 8604090545
Download: ML20199J636 (34)


Text

i March 31, 1986 Docket No.: 50-412 DISTRIBUTION

. Docket File > P. Tam NRC POR OELD Local PDR E. Jordan APPLICANT: Duquesne Light Company PAD #2 Rdg B. Grimes J. Partlow ACRS (101 FACILITY: Beaver Valley l' nit 2 L. Rubenstein NRC Participants SU1 JECT:

SUMMARY

OF MEETING ON MARCH 12, 1986: SECOND PROGRESS REPORT MEETIN3 ON WHIPJET The sub.iect meeting was held to discuss with Duquesne Light Company (DLC) its progress in the WHIPJET program (use of leak-before-break assumption on balance-of-plant piping). The first meeting was held on March 4, 1986 is the meeting attendee list. Enclosure 2 is the agenda of the meeting.

DLC's presentation on the present status of WHIPJET is summarized in the viewgraphs (Enclosure 3). Questions raised by NRC staff members are sunmarized in Enclosure 4. Duquesne Light personnel were requested to respond to these questions in the next meetirg, which is scheduled for April 10, 1986.

DLC tentatively proposed that future meeting dates be June 1. September 1 and December 1,1986. The WHIPJET program would be completed in December of this year. DLC would like the staff to issue its safety evaluation in February, 1987 (in time to support the currently planned fuel load date of April 1987).

DLC agreed to submit reports to document matters presented in these progress report n.eetings. The first report will be submitted in early April.

/s/ l Peter S. Tan, Project Manager PWR Project Directorate #2 Division of PWR Licensing-A Office of Nuclear Reactor Regulation

Enclosure:

As stated cc. See next page l

l PM::he(/

Pia PAD #22-(r 3 /86 0604090545 060331 PDR ADOCK 05000412 h PDR

4.- .=.. 4-a _ _ ,u,. -_p a J-m. %, M6 m -

-..--.-aA,._ahss&+, .. y_,p,&,u _a,a, .A,.g.g-__am ,_ 4 4.#JM A4_ a s.mst f2, 3-..._g2u I m_#A@*- 1,4,-y -..2 et. aR4 & -- 4 m_,

4 4

l l

1 1

i I

1 l

t i

d 4

1 1

l h

i  !

)

1 i {

E l 1

/

/

- i.

t I

l I I;

  • 5 l i -

J i

f I

2 I

i b

l i l

i

)

a J I

t 1

A 1

i 1

Gaelosure (

^' '

Scavec % tley lao't 2. , Ul41 PET t'IC G -

Ard II, IM j

[] jut 2n ko 1

,vg c f,eder la m Gce.a,'}, l'<g w i Ala~ry er Sinh Chend b '"

D o,w g La.,a G "1 fgg t N.< Wve F 7_, 7. 07~ ~' & N, ^Y^ ^f'V 5 } S L 5 s' Q .t w L . G r<

  • z Wace.v L. bn Anoesm A)o p pt w A b t057 8 V Cw r( M nae GNd6 Cate

&as- 4 /dM4

jp,pa , balu(Joim

t. ' fos en d. Goua 1135" "' " 5 L u a.a e . cr, n ,u ,, wac/osu/ era Hwk fleck Br6C Ton kmMc A)ovc7Ec8 bw Eu er Pw

&.Bl& W NRc/q,u/E6 p/2 2yag/sg 3W L Gd Nuf% e o,/esa doolx)f'A , Cae W/M /b390/'e/p

  1. Ag[/iWL-//EB w(t-G 6 C.} lee-p'sm MAK, a i.. amma wec /nc-s/gs

/R't. Baaont gett Ohm'~9/Ela 4t %k, w N22/bsno/

k. tALm #I /*

l >

t ,

i BEA'VER VALLE Y POWER STATION , U'4IT 2 WHIPJET -

~

Progress Report ifeeting, No. 2 l March 13, 1986 1:00 p.m.

Part A - Opening Statements (NRC, Duquesne Light)

Part B - Presentations _ 7g

,x - . a ..

. . w > ; 4 . , a. ..

1) Austentic Weld Data Base f' f fS.);- \ was. * '

/( C7

2) J-R Curve Computational TecMique ~7
3) Crack Growth Analysis Example  ?>

,_ 4) Water Hammer ,

j 5) Leakage 1/2 (Critical Cracx 1.ength) Outside Containment Example

6) PICEP Experimental Verification j 7) Corrosion

,8) Non-Nuc1ter Saftey Piping

9) Cast Stainless Fittings I
10) Flow Stratification l 11) Doctmentation Review 4 12) Longitudinal Flaws
13) OtherQuestions

, Part C - NRC Caucus I

Part 0 - Summary o Results of NRC caucus .

o Date for next progress report meeting .

O

& c O. Cur'e Q BEAVER VALLEY POWER STATION, UNIT 2 WHI PJET -

Progress Report Meeting, No. 2 -

March 13,1986 1:00 p.m.

Part A - Opening Statements (NRC, Duquesne Light)

Part B - Presentations

) Austentic Wald Data Base (V. Sher 3

2) J-R Curve Computational Technique 6 0.5e nt,)

!3) Crack Growth Analysis, Example (U. A"crJ

4) Water Hammer

-5) Leakage 1/2 (Critical Crack Length) Outside Containment Example M h 'ed

-6) PICEP Experimental Verification C Bind; Chm / ; EPRI)

7) Corrosion
8) Non-Nuclear Saftey Piping
9) Cast Stainless Fittings
10) Flow Stratification
11) Documentation Review
12) Longitudinal Flaws
13) Other Questions Part C - NRC Caucus Part 0 - Summary o Results of NRC caucus i

o Date for next progress report meeting .

S c[o.ssre b 1

PREDICTION OF LEAK RATES THROUGH CRACKS B. CHEXAL ELECTRIC POWER RESEARCH INSTITUTE BETHESDA, MARYLAND MARCH 13, 1986 e e .- <

^

D=

P Fbw fills crack Choking x \%%%%%%%%%%\'sD%Nwsssw\%%\%wwwws o o =, y n_., .

p 4.*

\%%%\%%*WW\%%%%%%%%\\%%%\%\%%\

Subcooled Jet

" liquid jet

" breaking up '

Two-phase mixture -

L=3D L =12 D Figure 1. Two-Phase Flow Through a long, Narrow Crack Length 2C r Width 6

,-c />. -

l /

[, b Exit Plane

/

v /

@ s, / *

,/ Ag (Area of L/D h= 12)

/

/ .

/ f l' / AaIntet Pione -

Direction of Flow Figure 2. Geometry of a Convergent Crack

PREUMINARY I

t

GI NEll Al FEAlltRFS OF f HE CRillCAl. Fl.0W fl00El.

.I . 1. ltilli n A01) V Al'Ull I11 AVLL A I Enll AL VI l.llE I I II;S 2 ND llF AI Ol! (1 ASS 1 RANSFER l AlfES Pl.ACF BETWFEtl STAGNAll0N At!!)

L- ! ?ll 3.o F0li I. s I71) A NON-E0llit.1BRlilti PROCESS' TAl(ES l'I. ACE ANil ll!E RAIE OF hASS IRANSFER IS CALCllLAlED FRuti oX _

g oxE n i' nP

~

= 'O L x b~

S,-S c g M = 20 xp F O R-xE

< 0 05 N =1 FOR xE

> 0 05 II . Tile DilALITY APPROACHES THE LONG TllBE OllALITY, xLT, Ill AN LXi'UNENT I Al. f1ANNER x = xt,1 1 - EXP -B ( L/D - 12)

=

xt) N xt-PRELIM!N R Y

p o, c a rs a

'i . !! SIN (, val'OR ANil LlDillli flASS Alli) it ! XlllRI CONSFRVAl10H 3 I:.nI! A l lnHS I!!!. I nl.l.0lll flG Clll l lCal fl ASS Fl.IIX REl.Al llit! I S Ill'I A1 NI 11 _

2 .ilg.

G , _ D {g,

, (y r,

_y) c gp L pp

'C l 'r. - I ', , Al' =

F (b) g 6 LO?lPONI.lJIS 01 10TAL PRESSURE 11 ROP ARE:

AP = AP F + AP3 + APAR + APF l N I R AHf.!- - AP g =c .

c= l =

2 69

( 0 63 )2 .

ACCE LI:RAIInti g (y)

(gP.)g nZ = ~nZ 2 31 V

n

=

() -x) V t +xV o 2

AREA CllANGE - = y n G

n 3

,F 2 FRICTIIlh - InP) _

g y"

\nZ/p 2D Al'i InP T nZ

\nZ/;

PRELIMINARY

/. AVERAGli VAlill 5 ARE IJSEl) AS DEFINEll itEl.(1W 2

I'2l

  • E'2c b

(; -

= c

-] + f fc.

? 2 \A i V

oc

+V oi v"

7 x =

x) --

3. ( b - ] ? )

11 11 k

i PPG,?idlNARY

4 PREDICTED LEAK RATE (KG/S) w w w e' O O O O i i i i e CO M '*

i i i s i i iii i i s i n isi i i sensis i i s i i s ii i i r4rii 4 -

5> -

_I O :

4 E rn

> _L -

&+

C + -

zn _

CO.

i_ C -

z A) _ + -

CD rr1 i_. ; +  ;

2 oo i

+ + ., +++

=

=

w ca r- .,.

c; rn i_. > -

4 +

i-ri x _

m m~ - -

O >o

-1 5

?

I rn M m +

z - - -

x X

cn s ,_, _ -

(n  :

v O, := =

" + +w

i i i i  :

0 t__t__ gat i il i e i e i iiil i e i i e i e il i e e i e s il i iii )

l l

1 i

l PRELIMINARY l

f l

1 t

. STATUS l

i 1 0 EPRI COMPUTER CODE PICEP INCLUDES ALL FEATURES 0F LEAK FLOW RATE, CRACK OPENING DISPLACEMENT, AND CRITICAL CRACK SIZE CALCULATIONS.

O LEAK FLOW RATE CALCULATION LOGIC IS VALID AT PRESENT-FOR SATURATED LIQUID OR SUBC00 LED LIQUID AT THE CRACK INLET. MODIFICATIONS ARE UNDERWAY TO THE CODE'TO i

j HANDLE WET STEAM OR DRY SUPERHEATED STEAM CONDITIONS.

PREllMINARY

l l

l l

CHARGING AND VOLUME CONTROL SYSTEM LINE OUTSIDE CONTAINMENT o 3', SCH 160, 316 SS o PRESSURE = 2635 psig, TEMPERATURE = 14O F o NORMAL LOADS DEADWEIGHT THERMAL PRESSURE o SSE INERTIA

s. o EPRI PICEP COMPUTER PROGRAM o CRITICAL CRACK LENGTH =

4.07 INCHES o CRIT CRACK LEN


= 2 03 IN.

2 o LEAK RATE FOR A 2 03 INCH CRACK IS 13 GPM l

l PRELIMINARY 1

- - - ~

CHS LINE OUTSIDE CONTAINMENT u CK = 4.0703 IN.

18 17 -

iS-15 -

14 w ,

13 -

12 -

11 -

g 10 -

9-S-

.j 7-S-

5--

4-3-

2-1d O a , , , ' ' '

O 1 2 $. 1 CRACK LENGTH, INCHES I

1 l

PRELIMINARY

I l

i l

l CHS LINE OUTSIDE CONTAINMENT 4 0703 IN-CRITICAL CRaC1' =

16 q 17 -

1s ,

15 d 14 E ..

13 -

l 3

Safety Margin = 1.13 S

10 N. 9

  • e4 2

7d i E~ Safety Margin = 1.38 s --- -- - -- - l 4- [

3 l 2 --, I Safety Margin = 2.26 l l --

1 8

O i ,

1 4

O CRACK LENGTH, INCH 5 S PRELIMINARY

I STAINLESS STEEL SMAW DATA o CHECKED SOURCES =

BATTELLE LLNL DAVID TAYLOR W

GE EPRI HEDL o FOR 550 F ., THREE VALID J-R CURVES EXIST l

l i

i PRELIMINARY

3 10 1 W 75 Fr , 1T-CT 2 W 55O F. 1T-CT j 3 GE 550 fr , 1T-CT 4 GE 550 F, 1T-CT

% ,$ h< 5 64 E D t_ 000 Fr , 1T-CT I : p.,

g ..

_g 4

E l

t 2.15-3 I

H I

E 1,23<

2 1

0.00 - i i i i . i

. i i i e i i . i i ;

0.00 0;35 0;71

. 1.07 1.13 GACK EXIEHi10N (INCHEi)

I l

l l

1 l

l PRELIMINARY  !

l

[

l l

l I

l l

J-R CURVE DETERMINATION FROM PIPE BEND TESTS

= J + J p 3 e EP d, + A G J

P

= 2 J P cl[P

+ 2

( f }p ca r d 6 2.

d.e "

k E

K I

= tr F (Rh , e) J # a WHERE F IS DETERMINED FOR BOTH TENSION AND BENDING DERIVED FROM SANDER'S SOLUTIONS DISPLACEMENTS MUST BE PLASTIC ONLY DUE TO THE CRACK THEREFORE., NO GENERAL YIELDING USING 35-40/- CIRCUMFERENTIAL STARTING CRACKS PRCLIMINARY

l l

l l

l j

l SAFETY INJECTION SYSTEM LINE CRACK GROWTH ANALYSIS o 12", SCH 160, 316 SS o PRESSURE = 2537 psig TEMPERATURE = 636 F o CUF = O.77 o FOUR LOAD PAIRINGS 280 TOTAL CYCLES o THROUGH-WALL STRESS DISTRIBUTION ESTIMATED FROM NUPIPE ANALYSIS o SECTION XI INITIAL CRACK SIZE (TABLE IWB-3514-2) ,

o RAJU-NEWMAN METHOD OF DETERMINING STRESS INTENSITY FACTORS (K >

PREllMINARY

9 l

i Y

Z et TABLE IWB-3514-2 3 s ALLOWABLE PLANAR INDICATIONS  :

Material; Austenitic steeis'that meet the requirements for the specified minimum yield strength of 35 ksi er less at 100'F Volumetric Examination Method, Nominal Wall Thickness,t.: t, in. Surface 0 Examination 0.312 1.0 2.0 3.0 Method Aspect Su-face Subsurface Surface Subsurface Surface Subsurface Surface Subsurface Nom. Wall Indication Ratio,' Indication, Indication" Indication, Indication" Indication, Indication" Indication, Indication" Thickness, Length, o // o /t, % alt, % alt, % a/t, % a /t, % e /r, % e /t, % alt, % e, in. /, in.

Preservice Examinatic,n 0.00 9.4 9.4 Y 8.5 8.5Y 8.0 8.0 Y - 7.6 7.6Y 0.312 or less  %

0.05 9.6 9 6Y 8.6 8.6Y 82 8.2 Y 7.7 7.7 Y m M

g 0.10 9.8 9.8 Y 8.8 8.8 Y 8.3 8.3 Y 7.8 7.8Y 1.0 3.

/

N 0.15 9.9 9.9Y 8.9 8.9Y 8.4 8.4 Y 7.9 7.9 Y h r) 0.20 10.0 10.0Y 9.1 9.1 Y 8.6 8.6Y 8.1 8.1 Y 2.0  % O 0.25 10.0 10.0Y 9.2 9.2 Y 8.7 8.7 Y 8.2 8.2Y Z T-*

~

0.30 10.0 10.0Y 9.4 9.4 Y 8.9 8.9 Y 8.3 8.3Y 3.0 and cwer  % X 0.35 10.0 10.0Y 9.5 9.5Y 9.0 9.0Y 8.5 8.5Y

[p

-8 0.*0 0.45 10.0 10.0 10.0Y 10.0Y 9.7 9.8 9.7 Y 9.8Y 9.1 9.3 9.1Y 9.3 Y 8.6 8.7 8.6Y 8.7Y M

-') 0.50 10.0 10.0Y 10.0 10.0Y 9.4 9.4 Y 8.9 8.9Y $

< inservice Examination 0.00 11.7 11.7 Y 10.6 In 6Y 10.0 10.0Y 9.5 9.5 Y 0.312 or less 0.2 Z 0.05 12.0 12.0Y 10.7 10.7Y 10.2 10.2 Y 9.6 9.6Y 0.10 12.2 12.2Y 11.0 11.0Y 10.4 10.4 Y 9.7 9.7 f 1.0 0.25 0.15 12.4 12.4Y 11.1 11.1Y 10.5 10.5Y 9.9 9.9 Y O.20 12.5 12.5Y 11.4 11.4 Y 10.7 10.7 Y 10.1 10.1Y 2.0 0.45

_ .-g 0.25 12.5 12.5Y 11.5 11.5Y 10.9 10.9 Y 10.2 10.2 Y 0.30 12.5 12.5Y 11.7 11.7 Y 11.1 11.1Y 10.4 10.4Y 3.0 and over 0.65 0.35 12.5 12.5Y 11.9 11.9Y 11.2 11.2 Y 10.6 10.6Y 0.40 12.5 12.5Y 12.1 12.1Y 11.4 11.4 Y 10.7 10.7 Y 0.45 12.5 12.5Y 12.2 12.2 Y 11.6 11.6Y 10.9 10.9Y 0 50 12.5 12.5Y 12.5 12.5Y 11.7 11.7 Y 11.1 11.1Y NOTES:

(1) For intermediate flaw aspect ratios o // and thickness r, linear interpolation is permissible. Refer to IWA-3200(b) and (c).

(2) t is nominal wall thickness of actual wall thickness as determined by UT examination. ~

(3) The total depth of a subsurface indication is 20. g (4) Y = (S /r)/(o /r) = S /o. If Y < 0.4, the flaw indication is classified as i surface ind cation. If Y s 1.0, use Y = 1.0. w E -

E

3 N

PIPE WRLL RXIRL STRESS "o q 78 TRflNSIENT 8 L

R W

LEGEND

. a - 3 SECONOS o o - 27 SECONDS de A - 70 SECONDS

+ - 100 SECONOS x - 700 SECONDS 0"

a 0

xR M n'

- c c o o a

^

9yg- C C C C C C 0

- ~ ,

R S'

o' E . . .. . l 14.5 15.0 15.5 16.0 16.5 37.0 RADIUS (IN)

PRELIMINARY

Fig. A-3200-1 SECTION XI - DIVISION I 1983 Edition Actual nonlinear Actual nonlinear f stress dis-tribution "b stress dis-tribution ob

'm i

l NQ N ,

N N

\

Equivalent 8m I

Ml l N

\

U l I l

-/ linear representation

{

Y  :

l I

/

Equivalent linear representation I of stress l of stress l

I distribution

  • distribution l
  • t/2 -->4-- t/2 % *~ t/2 : t/2 %

e 1 3

1 1

' l I I

)I'* , 2a Flaw --> M i I^* / aw Fl l l 'I l t = wall thickness l l t y f I t -

l l I I I I i '! l 1

i I l ~l j g I / 1 l

' ,# l /

l A'

l //

/ / \

\

/

/

/ I N

/l /v (a) Surface Flaws (b) Subsurface Flaws FIG. A-3200-1 LINEARIZED REPRESENTATION OF STRESSES PREllMFlY 268

PIPE WRLL RXIRL STRESS 76,151 - t Load Range 32-33 -

29,171 -

C E_

m g 0-- - -

d M -

-17,797 l

l I

1 l l 5.1 5.7 6.4 l RA0105(IN)

PREllMINARY

l e 39453. 232862. 33311. 3262. 30162. 17804, 3.33 380103. 0.7715 (33-35) (33-37) (19-23) (33-35)

- .- __ _ _ . . _ __ . . . +

s ST0 tie & HEBSTER EtiGINEERIllG CORPORATI0tl 2/10/83 PAGE1767 .

TOR COOLANT LOOP 22 12241-NP(B)-X70B HARY UNITS - HIN HALL (IN) H0ffENTS(FT-LBF). AND STRESS (PSI)~

EQUATION 11 EQUATION 12 EQUA ION 13 EQUATION 14f CYCLES USAGE S H0llENT STRESS HollENT STRESS H0HENT STRESS HE STRESS ACTUAL ALLOH FACTOR 39453. 232862. 29398. 2879. 30162. 5659. 3.33 388103.* 20 31 0.6427 42280. 121798. 28200. 2762. 30162. 15018. 1.70 103672.* 30 1195 0.0251 28200. 119316. 28200. 2762. 30162. 15018. 1.61 96250. 50 1528 0.0327 18800.-135485. 18800. 1841. 30162. 3748. 1.37 93068. 120 1711 0.0701 28388. 76152. 28388. 2780. 30162. 13160. 1.00 38076. 60 72198 0.0008

)

i PRELIMINARY h

. l 1

)

1 EQUATION 11 PO HI DEL Tl TA-TB DEL T2 HAXIHUM 1700. 6955. 173756. 4383. 46069.

5182.

(33-35) 1700. 6955. 173756. 4303. 46069.

(34-37) 13706. 7453. 77661. 2184. 20793.

(34-37) 4971.

(34-37) 13706. 4971. 77661. 2184. 20793.

(33-34) 0. 3314, 105342. 2700. 24130.

(32-33) 12103. 5004. 46974. 410. 11660.

1 f

PRCLIMIfJ:GY

1 i

l l

i l

l l

1 1

CRACK GROWTH A N A L_ Y S I S da s.3

--- -= F C S AK dN F -

FREQUENCY FACTOR C -

TEMPERATURE FACTOR S -

RATIO FACTOR = K MIN K

MAX 1

PR LIMi: ~;Y

U.S. NUCLEAR kEGULATORY COMMISSION

  • DOCUMENTS RELATED TO FLUID TRANSIENTS' NUREG - 0582, " Water Hamer in Nuclear Power Plants," published in July 1979.

NUREG/CR - 2059, " Compilation of Data Concerning Known and Suspected Water Hamer Events in Nuclear Power Plants," published in May 1982.

NUREG/CR - 2781, " Evaluation of Water Hamer Events in Light Water Reactor Plants," published in July 1982.

NUREG-0918 " Prevention and Mitigation of Steam Generator Water Hamer Events in PWR Plants," published in November 1982.

NUREG - 0927 " Evaluation of Water Hamer Occurrence in Nuclear Power Plants,"

published in March 1984.

NUREG - 0993, " Regulatory Analysis for USI A-1, ' Water Hamer'," published in March 1984.

L I

t PRELIMINAP'

FLOW TRANSIENT EVALUATION IDENTIFY POTENTIAL TRANSIENTS o POWER DIVISION TECHNICAL PROCEDURE (PTP - 26.1.15-1) o ENGINEERING MECHANICS DIVISION TECHNICAL GUIDELINE (EMTP - 9.12) o APPLICABLE NUREGS (0582, CR - 2059, CR - 2781, 0918, 0927, 0993)

REVIEW FOR APPLICABILITY TO BVPS - 2 o REVIEW SYSTEM DESIGN AND OPERATING MODES o ISSUE TABLE OF APPLICABLE TRANSIENTS FOR COMMENT o FINAL TRANSIENTS ISSUED IN PROJECT PROCEDURE (2BVM - 45)

DEVELOP FLUID FORCING FUNCTIONS o DETAIL TRANSIENT INFO IN STRESS DATA PACKAGES o EMD PERFORM FLOW TRANSIENT ANALYSIS / TRANSMIT INPUT TO STRESS ANALYSIS GROUP DESIGN PIPE / SUPPORTS FOR TRANSIENTS o APPLY TRANSIENT LOADS TO STRESS ANALYSIS o DESIGN PIPE SUPPORTS ACCORDINGLY figgy ; ... ..

FLOW TRANSIENT EVALUATION MAIN STEAM SYSTEM DESIGN P GAMETERS

  • PLACEMENT OF DRAIN LINFS TO REMOVE CONDENSATE
  • SLOPING PIPE TO FACILITATE DRAINAGE
  • CONTROLLED HEAT-UP (BEYOND MSIV) USING 2" BYPASS OPERATING PARAMETERS
  • USE OF THE 2" BYPASS LINE AROUND THE MSIV DURING PLANT HEAT-UP '

DRIVES OUT ANY RESIDUAL CONDENSATE l

ANALYSIS PARAMETERS

( FIVE IDENTIFIED )

  • ANALYZE PIPE AND SUPPORTS FOR ADDITIONAL TRANSIENTS

( ONE IDENTIFIED )

l l

l l \

l

\

l l

PREllMINARY

l M ATERI AL i

. CONDITION i l

(SUSCEPTIB ILITY)

TENSILE CORROSlVE

, STRESS E_NVIRONMENT .

V

! MATERIAL i

CONDITION CORROSIVE

SUSCEPTIBILITY ENVIRONMENT i

PRELIMINARY

I COR ROSIO N SCREE NING FERRITIC AUST E NITIC TYPICAL CORRODANTS TYPICAL CORRODANTS

-HYDROX1 DES -OXYGEN

-CA UST I C S CHIGH pH) -FLOURIDES

- NI T RAT ES -C LORI DES '"^

- C ARBO N DIOXIDE -S U LPHER ( REDUCED FOR MS)

-OXYGEN -HYDROXIDES

~

ABSENT ? ASSENT < THRESHOLD j/. \ f \NO .

YES NO YES

\.

/ \

PASS FAIL PAS S REVIEW ASS NONE RCS TEMPERATURE BDG . CHS FWS RHS < THRESHOLD FWE DGS '/

NSS BDG /

GNS YES O I l PASS Fall S NONE BRS NOT INCLUDED 1

PRELIMINARY I

g jurc = - " * 'I* C - __ V lC U ..:.-...<-. 5, c ce F c a T o n uo . AS. 'H.i / ' % G.1. .. 1. . . .

w e ar in c 4 T 4 e.u v _ !_lorm-0.i h. / tio *t.18.r rolM' d

- * 4M E H O H O E st N O 3638-1212 OUR ORDER NO.

1061455

  • i _ . . . . . . - - . _ . . . . .

l

~

e *CNING LIST 880 ._ .. . . . . . . . . . . . .

Raw Material: A3TH A$35 Gr. 70

v.:.--==.=_.=._---_--- -

P H r ss c a L e st o P E st T s E s CNEufCAL a n a t. Y S e S

(" a a " " 's a m e e t e a *- a<a or l n e s c ,. . , , o u

.o. svu aot

.... "<t a sista.i. sista.tu i = 6__ *. anca C MH P S Se Ma Ca No

__li l ,,,,

l ._ _T P._J.tm '" '" ' ' '

i l ' O - 29.687"JD x 1.156"Ilom Wall 601 E0E0 96150.:!3 .25 .71 a16 .027 .27  ;  !

l Pipe " "

h!4600 77900 29 0 l l

ll;rirostatic Test: 2100 PSI E00W 86020-23 .22 7h .016 .03 .27  ;

l c.ial: 198 o 1/8" "

h7200 77100 29 0 i'

! *r

. t ' g t.h- Pc . EGGF G5926'!3 .23 .79 .011 .026 .30 l -h v l'o , flo. IIcat Length h6h00 01700 2h.7 .

~

' 7.JPM_'6dl~ T-'- D niIII W 1'8 " Pipa.d.ualificatir n Tes ta Por ASm A155, i

g 6 Jj 19 9 7/gn  !

A " - 6 "

19'11 7/8. Trans rarao Hold y, cf Che r*,k ^ n a yni,a - Panent I c lo.1  !

Th O Er.GM 19 ' 1 1 7/8" FMEG 2080 3 /8" EGB.1 ECEO a 75900

  • 76390

.25 .75 .020 .031 .26 j t " 16 "

20'0" E00f .2h 72 .020 .025 .2h

~2' " 18 Er,GF 2081 1 /h" EOGF .30 .76 .013 .020 .20 2h 26 EfEG 2080 1 /2" 19'10 3/8"

  • Tuo aide bond tents o.1 weld frorn eachhpeciren fc uryl to be natisfact.or;. per i.1 :

20 18 ',1"  !

l L .___ .___..._.!

a c" m s: Plate u. sod in parta covered by thin report has been 100% ultrasonic exmined por TF hl.2293td 7-6-72 an<1 c.u:

l '.,ani to 1 c satisfac to y. Parts covered,by thin report havo beon hydrostatic tested to the pressure indient,cd and trove fr.uc.! to be natisfactcr y. Longitudinal wold coams of parts have been 100% radiographed por TF hl.122 Dti.i 7-10-7h cr.it ocer.

T-x..d to be satisfactory. .

...=.=.-a.---_.:._.w_--.---- --_--_.,._=.:_=.::=.=..

SUBSCRIDEo AND SWORN TO DEFORE ME

  • Tuts __ 2hth DAY OF Feb. is 75 It"$ - RY 4 T PUDLIC_ f)- U. ., " .G .

mt s si cm.~h liv Carraission Expires Doc. 10, 1975 l r . . ... i m ,

a .

PIPE FITTING MATERIAL USED FOR UNIPJET SYSTEMS PIPE FITTING i

SYSTEM CLASS SPEC.

ASS 151, 601 A105, A234WPB BDG 1502, 601, 901 A105, A234WPB, A182F316 CHS 1502, 602 A182F316, A182F304, A403MP304 FUE 601 A234WPB

  • FWS 601, 901 A234WPB, A105 GNS 151, 601 A105, A234WPB MSS 601 A234WPB RCS 1502, 2501R# A182F316, A403WP316 SIS 1502, 602 A182F304, A403WP304, A182F316.A403WP316 BRS 153 A182F304, A403NP304/WP304U DGS 153, 151 A105, A234WPB, A182F304, A403RP304/WP304U 1 RHS 1502 A182F316, A403NP316 1

A105 - Carbon steel forged or rolled fittings A234WPB - Carbon steel wrought fittings A182F316,304 - Stainless steel forged or rolled fittings A403WP316,304 - Stainless steel wrought fittings

)

i l

PRellMINARY L___ - _- -- --

i

. . b etC M 4rg

SUMMARY

OF MARCH 13, 1086, MEETING WITH DLC ON WHIPJET

1. PICEP Code. DLC needs to indicate the extent to which experimental data, used for verification of this program, addresses the concern over reduced flow due to plugging of the cracks with corrosion products. This information is needed for both austenitic and ferritic piping. The staff would also like to see data that more closely reflects the leak rates of interest.

l l

2. Leak Detection. The staff needs to see a discussion of typical scenarios for leak detection and operator action for various leak rates. The point was made that this discussion should take place at

]

the site. We pointed out that we are skeptical about being able to

.iustify accepting this program for pipes with calculated leak rates through cracks in the 1 to 5 gpm range.

3. Waterhamer. The staff will fomulate an approach for reviewing and evaluating this area and will be discussing this with DLC in the near future.
4. Austenitic Weld Data Base. DLC needs to obtain and present information to demonstrate that the materials used in the toughness testing of weldments are representative of the materials and fabrication techniques used in BV-2.

2 i

5. J-R Curve Computational Techniques. DLC needs to verify the
assumption that the plastic dicplacements in the pipe bend test are only due to the crack. The applicant agreed to verify this assumption by performing a pipe bend test on an uncracked pipe.

l

6. Crack Growth Analysis Example. The methods presented by DLC appear to be conservative but the results to date are inconclusive. DLC will be working to develop the approach that will be followed.
7. Corrosion. DLC needs to put together a discussion of whether any significant corrosion of PWR high energy piping can be expected based upon service experience. DLC needs to document the sources of the conclusions in this discussion. DLC also needs to specify thresholds for corrodants and temperature in the austenitic materials review for corrosion screening.
8. Non-Nuclear Piping. DLC needs to do more work to define the material properties, fabrication techniques, and construction inspection requirements for the non-nuclear piping proposed for this program.

4 This will also have to include information on the longitudinal weld seam. The ob,iective of this work is to demonstrate that the materials in the testing program adequately represent the materials in the i

plant.

_.--e. ,- , -.e-_, o - _. - - - , . . - . , _ .-r-._ , --w i - - - - -w-- r

9. Flow Stratification. DLC needs to provide information to indicate how this concern was reviewed and why it is not a problem.
10. Positive Displacement Pumps. DLC will determine the systems still in the WHIPJET program that have positive, displacement pumps and will indicate for those pumps how vibration fatigue has been accounted for.
11. Post Weld Heat Treatment. DLC will determine where there are welds in the program scope that have not been post weld heat treated. DLC will either heat treat the welds or develop the information needed to assure that the test program will be representative of these welds.
12. Ferritic Pipe Behavior Below the Upper Shelf Energy (USE) Temperature.

DLC will determine whether there are any ferritic piping systems in the program that will be below USE temperatures when a failure from postulated loading (such as SSE) could result in a safety concern. If this is possible DLC will have to use appropriate fracture mechanics methods and material properties.

- . - - - - , , - , , , - , . , - . - - , -