ML20199B993

From kanterella
Jump to navigation Jump to search

Forwards Addl Info Re Failure of a 12 Wt% Triga Fuel Element in Air,In USGS Facility Reactor Bay,Per 970909 Request.Info Being Executed IAW 10CFR50.30(b) as Signed Original Under Oath or Affirmation & Is Reanalysis of Info in
ML20199B993
Person / Time
Site: U.S. Geological Survey
Issue date: 11/04/1997
From: Fouch T
INTERIOR, DEPT. OF, GEOLOGICAL SURVEY
To: Alexander Adams
NRC (Affiliation Not Assigned)
References
TAC-M87035, NUDOCS 9711190177
Download: ML20199B993 (38)


Text

7

~

l' 37)?D W SUnitediStates:Dehartm$1t of the Interior 1 g

l GEDI.OGICA1 Slig' '.Y O X 25016; - M.S -

-j Il DENVER FEDERAL CENTER A-DENVER, COLORADO 80225:

j w.m..... m :

~

November A 1997-1 4-

- ; U.S. Nuclear Regulatory Commission :

ATTN: Mr. Alexander Adams, Jr -

Non-Power Reactors and Decommissioning Directorate ORice of Nuclear Reactor Regulation -

+

Washington DC 20555-000'

. i

SUBJECT:

ADDITIONAL INFORMATION (TAC M87035)

,n 7~

De7rMr. Adams:

Attached is additional information that we believe will address your request dated i

-September 9,11397.- Thlt inicrmation has been reviewed by the facility's safety and is bWieved to form a complete and committee (Reactor Operations Committee)This response is being executed in acceptable response to r request.

accordance with 10 CFR

.30(b) as a signed origina: under oath or aNirmation.

- The information provided herein is a reanalysis of the informaiion provided to you in

- our -July-16,:1997 response. A new sc$were p;ooram J.,HOTSPOT) was used to L

address your Leoncerns about the use of the CAP 88-P-model and to evaluate thyroid doses. These new data are presented in this ses,sonse.

H

' Further clarification or additional information may be received by contacting Mr.- Tim DeBey at (303) 236-4726.

kN Sincerely,

,n-NY$c4'

?Dr. Thomas Fouch

)

l 4

0 Reactor Administrator

Subscribed and sworn to before me this Jf/u. day of ~/2cMm/G1997.

fhe~ pumW ser gJane L. Conniff No Mry Public a

j f O,.

My commission expires 10-15-00 i

t aun -

M[ ~.

^

MMWI

.s e

w

1.

EVALUATION OF FAILURE OF A 12 WT% TRIGA FUEL ELEMENT IN AIR. IN THE USGS FACILITY REACTOR BAY.

The Denver Federal Center (DFC) is a 690 acre U.S. federal office and laboratory complex that is located approximately 3 miles west of the Denver, CO city limits. (See F!gure 1) Building 15 houses the reactor facility and is located in the northeastern quadrant of the Federal Center. The nearest DFC fersce is approximately 1000 feet (305 meters) east of the TRIGA reactor facility, near Gate 2. There are no occupied buildings located between Building 15 and the east fence of the Federal Center.

Access to the Federal Center is canalled by security personnel at the entrance gates; however, Gate 2 is only manns d ? i opened for several hours daily during normal employee commute periods.

The nearest residence to the reactor is north of the facility at a distance of approximately 640 m.

The intervening distance is comprised of about 310 m of Federal Center property,100 m of right-of-way for G"' Avenue, and 230 m of commercial property.

Table 1 below lists the isotopes and calculated release activities for the worst case failure of a 12 wt% fuel element in air, in the reactor bay. These data are derived from analysis results submitted to your office in previous documents concerning this amendment iaquest.

TABLE 1. RADIOlSOTOPE RELEASE DATA FOR 12 wt% FUEL FAILURE lsotope Release (Ci)

Isotope Release (Ci)

Kr-83M 3.15 X 10-2 Kr-85M 5.85 X 10-2 Kr-85 3.15 X 10-3 Kr-87 1.60 X 10-1 Kr-88 2.54 X 10-1 Kr-89 3.18 X 10-1 Xe 131M 1.73 X 10-3 Xe-133M 9.12 X 10-3 Xc =133 3.84 X 10-1 Xe-135M 1.06 X 10-1 Xe-135 3.65 X 10-1 Xe-137 3.59 X 10-1 Xe-138 3.18 X 10-1 Br-82 7.24 X 10-3 Br-83 2.96 X 10-2 Br-84 5.22 X 10-2 Br-85 6.39 X 10-2 1-129 3.49 X 10-2 1-130 2.96 X 10-2 1-131 1.80 X 10-1 1-132 2.54 X 10-1 1-133 4.00 X 10-1 1-134 4.53 X 10-1 1-135 3.52 X 10-1 With the exception of Br-85, the release data above were input to the HOTSPOT computer program to calculate resultant TEDE and thyroid doses. HOTSPOT is a DOE-developed code that uses a Gaussian plume model to evaluate accidents involving radioactive materials.

Appendix A provides details about HOTSPOT, includinc; code basis, verification, and accuracy of results. HOTSPOT performs dose assessments at distances greater than 100 m from the release point. The program computes radionuclide concentrations in air, deposition on ground surfaces and doses at any point >100m along the centerline of the plume. The calculations performed herein conservatively assumed that no precipitation existed to remove airborne contamination and that the wind was blowing at 3.87 m/s (8.6 mph), the mean annual velocity for Denver.

1

FIGURE 1 khh bibh Ibl 9the e Ave w

m r

M E

k /

k

'4

=

% 0,,.v.

~ ~ - um 3

e m

u W 9th As N'

tv

' Jf! JJ a> y,

/

~

r,-

b

_cw/

(

/

v q

/r

{ 4Vj c e ril e f A V8 e

1 N

\\f' W#

h v

s e

b DENVER s

?

s Fecenz

. u.W"'

CsNTEP a

W Al n4 UZA W M *1 W c,,,,,

-.., - e e,.1 e be,..

e

..,2

~,.

g y

3

/

  • 1 G

m a

m a

E

=

h I \\

/

E r

4 :

i

in IJ m -

M M

M Q

{

D M

M M

e j

W VJrc.r n f a Ave.

I w W filenn In Or

\\

f y

M

/

./

e W Cente Ave

$ Q

  • g

/r

~y y

e m

W Expc s_st[0.

.se 4 Erpostt on nye g

0 O3itio n

\\

' A 4 '2 V da 7 L 4 !*

Osm C2 04' 00

Input data for the HOTSPOT calculations are provided as Appendix B. These data contain the dose conversion factors for the 23 evaluated isotopes. The data were provided by Lawrence Livermore National Labs and the DOE publication, ' Internal Dose Conversion Factors for Calculation of Dose to the Public", DE88-014297.

Br-85 was not evaluated in the HOTSPOT runs because the required dose conversion data were not available in the specified OOE publication. This omission is of very little consequence because Br-85 has a very short half-life (2.87 minutes) and the quantity released is 63.9 MCI (1.5%) out of a total release of 4224 mci.

The resultant doses for the maximally exposed individual are given in Table 2 below. The data provide both TEDE and thyroid values for individuals at 305 m and 640 m, along the centerline of the plume. Two atmospheric conditions were evaluated at both distances, one for clear (sunny) skies and another for cloudy skies. Dose values are given in mrom. Output reports from HOTSPOT are provided as Appendix C.

==

Conclusion:==

The doses ere the highest for cloudy conditions, with a maximum of 0.28 mrom TEDE and 14.0 mrem thyroid dose. These are well below the 10CFR20 limits for the general public from routine licensed operations.

TABLE 2. DOSES AFTER 12 wt% FUEL FAILURE IN AIR Release conditions 12 wt% fuel, 12 vd% fuel, 12 wt% fuel, 12 wt% fuel, sunny daytime, sunny daytime, doudy daytime, cloudy daytime, TEDE (mrem) thyroid (mrem)

TEDE (mrom) thyroid (mrom)

Locaton Nearest fence (305m) 0.130 6.500 0.280 14.000 Nearest house (640m) 0 030 1.500 0 065 3.200

2. EVALUATION OF FAILURE OF AN 8.5 WT% TRIGA FUEL ELEMENT IN AIR. IN THE USGS FACILITY REACTOR BAY.

General Atomics data for 8.5 wt% 'uel indicates a maximum radial power peaking factor of 1.45 and a maximum axial power peaking factor of 1.75. Radial peaking describes the change in power production from element-to-element, while axial peaking describes the power variation within the vertical fuel section of the element. At the licensed maximum power of 1000 kW in a nominal 100 element core, the result is a maximum power density of 14.5 kW in the hottest element. If more than 100 elements were in the core, the maximum power density would be less. The 100 element core is used for this analysis because it was the standard ovre used for the original hazards summary report. The 14.5 kW peak element power for the 8.5 wt% fuel is 65.9% of the 22 kW peak element power for the 12 wt% fuel. The fission rate and fission product inventory will char.ge accordingly.

2

Table 3'gives the list of the gaseous fission product releases that would occur in the event of a catastrophic rupture in air of an 8.5 wt% element that was operated for an infinite time at 14.5 kW. The reactor room airborne activity concentrations (in uCi/ml) were calculated using a fuel fission p'oduct release fraction of 3.146 > 10,, a reactor room volume of 3.48 x 10' cc and assuming complete mixing with no dilution from the ventilation system. Resulting air concentrations conservatively represent the highest peak levels possible in the reactor room.

TABLE 3. RADIOISOTOPE RELEASE DATA FOR 8.5 wt% FUEL FAILURE lootope Release (Ci)

Isotope Release (Cl)

Kr-83M 2.08 X 10-2 Kr-85M 3.87 X 10-2 Kr-85 2.11 X 10-3 Kr-87 1.05 X 10-1 Kr-88 1.67 X 10-1 Kr-89 2.09 X 10-1 Xe-131M 1.13 X 10-3 Xe-133M 5.98 X 10-3 Xe-133 2.53 X 10-1 Xe-135M 6.98 X 10-2 Xe-135 2.41 X 10-1 Xe-137 1.36 X 10-1 Xe-138 2.10 X 10-1 Br-82 4.72 X 10-3 Br-83 1.95 X 10-2 Br-84 3.43 X 10-2 Br 4.22 X 10-2 1-129 2.30 X 10-2 1-130 1.95 X 10-2 1-131 1.19 X 10-1 1-132 1.67 X 10-1 1-133 2.64 X 10-1 1-134 2.98 X 10-1 1-135 2.33 X 10-1 At one hour after the fuel rupture, most of the airborne isotopic concentrations in the reactor room are below the occupational limits for airborne activity, and after six hours the reactor room would no longer be an airborne radioactivity area.

Doses for personnel in the reactor room and personnel outside (but in close proximity to) the building were calculated by using Reg. Guide 1.109 and Appendix B of 10 CFR 20 conversion factors. Both submersion and inhalation doses were calculated.

Data from Reg. Guide 1.109 were used only to supply data for isotopes not listed in 10 CFR 20 Appendix B. The isotopes not found in 10 CFR 20 were Kr-89, Xe-137, and Br-85. Dose conversions from the 10 CFR 20 data (DAC and ALI) were performed using the following equations:

1 DAC-hr = 2.5 mrem, 2000 DAC-hr = 1 All, 1 ALI = CEDE of 5 rems or 50 rems to critical organ / tissue, Table 2, Col.1 air concentrations = 50 mrem in 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> of exposure.

Table 4 lists facility and nearby personnel exposures that result from a catastrophic failure of the postulated 8.5 wt% fuel element in air. This table provides data only for personnel who are on the Denver Federal Center, in close proximity to the reactor facility. Exposures from 10 CFR 20 data were calculated in DAC-hrs (for external exposure) and All's (for internal exposure) by continuous integration of the exposure rate, using a reactor room ventilation decay constant of 0.022 per minute and isotopic decay constant based on the respective half lives. Calculations from Reg. Guide 1.109 data used Table B-1 or E-7 and the average concentration over the time period stated in Table 4.

3

TABLE 4. PERSONNEL DOSES FROM 8.5 wt% FUEL CLAD FAILURE IN AIR Occupational doses-mrom Non-occupational doses-mrem lootope

-stay time in reactor bay

-stay time near building i min S min i hr 6 hr 1 min S min. 1 hr 6 hr Kr-83m 0

0 0

0 0

0 0

0 Kr-85m

<1 1

7 9

0 0

<1:

<1 Kr-85 0

0

<1

<1 0

0 0

0 Kr-87.

3 12 69 81

<1

<1

<1 1

Kr-88 10 47 304 384

<1

<1 1

1 Kr-89

<1

<1

<1

<1

<1

<1

<1

<1 Xe-131m 0

0

<1

<1 0

0 0

0 Xe-133m

<1

<1

<1

<1 0

0 0

0 Xe-133

<1 1

10 14 0

<1

<1

<1 Xe-135m 1

4 13 14 0

<1

<1

<1 Xe-135 3

13 89 118

<1

<1

<1

<1 Xe-137

<1

<1 1

1

<1

<1

<1

<1

, Xe-138 6

26 87 88

<1

<1

<1

<1 Br-82

<1 2

11 16 0

0

<1

<1 Br-83

<1 1

3 3

0 0

<1

<1 Br-84

<1 1

5 5

0

<1

<1

<1 Br-85

<1

<1

<1

<1 0

0 0

0 1-129 218 1040 7319 9983 1

7 52 71

-thyroid 7243 34645 243949 332755 51 255 1730 2360 1-130 3

13 92 122 0

<1

<1 1

-th roid 79 378 2610 3487 1

3 18 25 l-1b1 169 811 5701 7764 1

6 40 I 55

-fnyroid 6789 32427 228045 310432 48 230 1614 2201 1-132 5

22 143 178

<1

<1 1

1

-thyroid 60 281 1786 2221

<1 2

13 16 l-133 80 381 2650 3572

<1 3

20 25

-thyroid 2393 11402 79750 107432 17 81 SG4 758 l-134 2

8 45 51

<1

<1

<1 1

-thyroid I-135 16 78 527 692

<1

<1 4

75

-thyroid 326 1555 10545 13841 3

11 75 98 The exposures in Table 4 were then totaled over all isotopes to give the sums for both occupational workers and non-occupational workers in the immediate vicinity of the reactor.

These sums are provided in Table 6. The conditions required to achieve the doses listed in Table 7 are: (1) maximum power peaking in a 8.5 wt% element to achieve 14.5 kW per element, (2) reactor operated continuously at full power for at least 40 days, 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> a day, (3) the 8.5 wt% element removed from the reactor tank instantly after shutdown and (5) a large cladding failure occurs in the element immediately after being removed from the

water, Reactor room submersion doses from krypton and xenon isotopes were adjusted for the room finite dimensions. A hemisphere of 550 cm radius was used to simulate 4

the rcom.

The e uation for evaluating the dose reduction factor due to finite

- dimensions is (1-e"q". The air density used (5000 ft. altitude) was 0.001116. These

)

results are given in Table 5.

4

r
m TABLE 5. DOSE REDUCTION FACTORS FOR FINITE ROOM DIMENSIONS.

Enerav (MeV)

Dose reduction fah 0.01 1.0.

0.05 8.3 -

0.1 -

11.9-0.2 15.7

0.4 17.6 0.6

-20.7 0.8 -

23.6 1.0 -

26.1-2.0 -

37.1

- TABLE 6. TOTAL DOSES RECEIVED BY PERSONS IN IMMEDIATE VICINITY FISSION PRODUCT RELEASE EXPOSURE DATA Occupational dose (mrem) in reactor room 1 1 minute 5 minute i 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 6 hour i Annual I

stav stav i-stav stav I CFR L mit TM1F !

514 e

2dA9 s

17074 9'4n95 AnM thyroid! 16889

l. 80720 l.

566686 l770168 50000 Non-occupational dose (mrom) near building 1 minute 5 minute -

1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> 6 hour ;

Annual stav-stav stav stav i CFR Lirait TFnF G

70 123 8

934 i

itXF thyroidj 121 j

573 l 4014 l 5458 l

1600 Experier:ce at the GSTR from many high radiation alarm evacuation tests shows that the reector facility would be evacuated within one minute and the building would be evacuated within 5 minutes. Facility security personnel would arrive within 5 minutes to evacuate as much of the surrounding area em is necessary. Under these conditions, the 10 CFR limits for occupational and non-occupational workers on the Denyt.f Federal Center would not be exceeded. The simultaneous occurrence of the postulated conditions is not considered credibla, but represents a verst case scenario.

in summary, historical experience at other research reactor facilities has shown that cores fueled with 8.5 wt% TRIGA fuel can be operated safely in both steady state and sulsing reactors. Facility-specific analyses for the GSTR show that it is not credible for a c: adding rupture b cause personnel to receive radiation doses above the dose limitations of 10CFR20.

Resultant dose to a member of the public from an 8.5 wt% fuel failure in air:

Evaluation of distant doses that would be received from the 8.5 wt% fuel failure in air were performed in the same manner as for the -12 wt% fuel in section 1.a. Table 3 data

.(less Br-85) were input to the HOTSPOT code to calculate resulting'able 7 below. Out doses at the nearest DFC fence (305 meters frr.ui the reactor). These doses are given in reports from HOTSPOT for the 8.5 wt% fuel analyses are provided as Appendix D.

j L

5

L I

l TABLE 7.< DOSES AFTER 8.5 vn% FUEL FAILURE IN AIR

+

. Release conditions i 8.5 wt% fuel, 8.5 wt% fuel, 8.5 wt% fuel, 8.5 wt% fuel, sunny daytime, sunny daytime,. cloudy daytime, cloudy daytirn,.

TEDE (mrom)- thyroid (mrom) TEDE (mrem)--. thyroid (mrom)-

.... Location Nearest fence 0.087 4.300 0.180 8.900 (305m) ~

Nearest house 0.020 0.980 0.043 2.100 (640m)

==

Conclusion:==

The doses are the highest for cloudy conditions, with a maximum TEDE of 0.18 mrom and a maximum thyroid dose of 8.9 mrom. These are well below the 10CFR20-limits for the general public from routine operations.-

3. DISCUSSIO M OS DIF :ERENCES 14 DOSES BETWEEN THE FAILURE IN AIR -

OF 8.5 W '% AHD12 Wl% miGA :0EL ELEMENT 1 The primary difference in the dose consequences between failure of 8.5 wt% and 12 wt% fuel elements is due to the difference in fi% ion product inventory. This difference is directly related to'the power density, or fission density of the elements..The proposed amendment would restret the 12 wt% power density to 22 kW/ element, while the calculated maximum for the 8.5 wt% fuel currently in use is 14.5 kW/ element. The use of 12 wt% fuel -

therefore gives an increase of 51.7% in the fission product inventory of the maximum power element in the reactor core.

Doses to the public, both at the nearest DFC fence and at the nearest residence are i

well below 100 mrom TEDE for the failure of either 8.5 wt% or 12 wt% fuel elements. At the

- nearest fence, the calculated maximum TEDE is 0.18 mrem for an 8.5 wt% element and 0.28 mrom for a 12 wt% element. ' At the nearest residence, the calculated maximum TEDE l

is 0.043 mrom for an 8.5 wt% ele.nent and 0.065 mrem for a 12 wt% element.

Although the use of 17. wt% fuel elements in the USGS reactor will increase the i

potential consequences of a fuel failure in air, the incras-as are of minor signif' ance. The j

c maximally exaosed member of the public could receive ai, additional 0.1 mrem at the nearest DFC 9ence or an additional 0.022 ;nrem at the nearest roidence. These increases are a small fraction of normal backgrou".d radiation exposure and are orders of magnitude below the NRC allowed radiation doser, to me,mbers of the public fn m licensed operations.

j 6

'f 4

1:>

- - *mm.-

,,,,.7

,..r m,

p

--r-=

n 4

m

~

m m

as w

m

,..L w

APPENDIX A HOTSPOT CODE INFORMATION l

4 t

e

l UCRL-MA 106315

~

]

l L

1

't HOTSPOT I

Health Physics Codes for the PC I

j Steven G. Homann Hazards Control Department and the Emergency Preparedness and g

Response Program, Honproliferation, Arms Control, and International Security Directorate L

March 1994 Lawrence Livermore National Laboratory University of California, Livermore, California 94551 l

A-1

4 Summarv of HOTSPOT 8.0 Health Physics Codes

SUMMARY

INTRODUCTION The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials.

HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmcspheric release of radioactive

' materials. HOTSPOT programs are reasonably accurate for a timely initial assessment.

More importantly, HOTSPOT codes produce a consistent output for the same input assumptions, and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency.

The HOTSPOT codes are designed for short-term (less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />) release durations.

Users requiring radiological release consequences for release scenarios over a longer time period, e.g.,

annual wind-roso data, are directed to such long-term models as CAPP88-PC (Parks,1992).

Use s requiring more sophisticated modeling capabilities, e.g.,

complex terrain, multi-location real-time wind field data, etc., are directed to such capabilities as the Department of Energy's ARAC ccmputer codes (Sullivan, 1993).

Four general programs, Plume, Explosion, Fire, and resuspension, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event.

Other programs deal with the release of plutonium, l

uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons.

Additional programs estimate the dose commitment from inhalation of any one of the radionuclides listed in the database of radionuclides, calibrate a radiation survey instrument for ground survey measurements, and screening of plutonium otake in the Lung.

EQUIPMENT HOTSPOT will run on an IBM PC, XT, AT, or compatible, with a minimum of 512 kbytes of RAM and a single floppy disk drive.

i I

However, the programs run more efficiently when they reside on a hard disk. The software-supports either monochrome or color monitors (CGA, EGA, VGA, SVGA). HOTSPOT also runs on the HP 100 LX Palmtop computer. The only operating system required is l

MS-DOS version 3.0 or later. HOTSPOT also supports high-resolution (300 dpi) output to printers, and also to graphics files (.PCX and.BMP Files). The latter allow incorporation of HOTSPOT graphics into word processing files.

A-2

4 1

4 CCDE BASIS HOTSPOT uses the well-establ!shed Gaussian Plume Model, widely used for an initial emergency assessment or safety analysis' planning of a radionuclide releass. The HOTSPOT Documentation

-(Appendix B) describes the HOTSPOT a gorithms in detail.

The l

dosimetric methods of ICRP Publication 30 were used throughout the HOTSPOT programs.

Individual doses (unweighted) are produced, along with the 50-year committed cffective dose equivalent (CEDE).

HOTSPOT supports both CLASSIC units such as rem, rad, curie, and SI units.

The HOTSPOT dose values are due solely to the inhalation of released material during the passage of the plume.

In tMe specific case of noble gases, e.g., K;-85, the submersion dose is output.

The specific dose conversion factors for all of the radionuclides in the HOTSPOT Library can be viewed in the "HOTSPOT Library" program, (DOE 1988).

The ground shine dose is not included because the effective dose equivalent (per hour of stay time in the contaminated area), due to ground shine is typically several orders of magnitude less than the CEDE due to t

plume passage.

For alpha-emitting radionuclides e.g.,

Pu-239, Am-241, the hourly ground-shine component is at least 7 orders of magnitude less than the inhalation component.

Emergency preparedness requires a fast and adequate means of l

generating an initial assessment of an actual or scheduled atmospheric release.

Just as important, is the need for consistency in the assessment methodology, e.g.,

well documented, consistent output for a particular set of input assumptions, etc.

Actual source terms,the substances involved, meteorological conditions, etc., are seldom accurately known.

Overly sophisticated and data intensive models seldom provide t

l useful and timely information in emergencies involving the release or potential release of raf.ioactive material into the atmosphere.

In the specific case of emergency planning and response, we are usually-interested in worst-case scenarios, i.e.,

if the plume of radioactive material does reach a target community, what are the projected committed effective dose equivalent values.

- Unless specific accident scenarios are accurately detailed and proven to be reliable, large modeling errors are possible.

Such errors render the use of large, complex, and i m:0 consuming models no more accurate than using a simple Gaussian model.

The i

starting place for Gaussian model should be recognized as analyses and in many cases the only necessary tool due to the l

l large uncertainty associated with the release scenario.

l l

c_

i

!~

A-3

VERIFICATION HOTSPOT codes involving the dtonersal of radioactive material use the Gausjian modsl.

The Gaussian model is still the basic workhorse for atmospheric dispersion calculations and has found its way into most governmental guidebooks.

The Gaussian model r

has alan bran used and accepted by the Environmental Protection Agency.

The adequacy of this model for making initial dispersion estimates or worst-case safety analyses has been tested and verified for many years.

HOTSPOT strictly'follows the well-established Gaussian model.

HOTSPOT usca no " black-box" techniques.

All algorithms are presented r.nd fully referenced in the HOTSPOT Documentation.

ACCURACY Iarge errorc'in concentration estimates can reault when using a straight lino Gaussian model in situations involving complex terrain am*/or wind conditions.

Should the plume abruptly change direction by 90, because of a change in wind direction or terrain geometry, the straight line model will predict a cor.contration at a specific downwind location, that is offset to a new locatiar.

Even though the spatial information is now it. valid, the concentrar. ion estimato is still valid, albeit offset to another locatior..'

So what prevents the wind from abruptly changing direction once again, perhaps even returning to its original direction?

Even in the case of a radioactivematerial release monitored by a grid of meteorological towers and accurate terrain data, ovacuation decisions should not depend on a predicted plume dogleg to circumvent a community.

Rather, the pordibility of evacuation should be based on the potential conpentration as a function of straight-line distance.

Ir fact, it is not uncommon to evacuate communities based on a 36,0 potential hazard zone, effectively eliminating the wind d!.rection variability problem.

This is particularly common in low wind speed conditions, i.e., < 2 meters per second, in which the wind direction is frequently changing.

The many uncertainties associated with the variables in the Gaussian model, such as fluctuations in the meteorological cont'itions,or type of terrain, result in a degree of imprecision l

in the calculated concentrations and radiation dose values.

If inappropriate meteorological data, source term assumptions, effective stack height, etc., are input into the programs, large arrors are possible in the HOTSPOT estimates.

A-4

i i

APPENDIX B INPUT DATA FOR 12 wt% FUEL 1

l l

l t

o'HOTSPOT MIXTURE DATABASE j:

o orTHE-FOLLOWING' RELEASE INVENTORY IS' ASSOCIATED WITH THE J

o IN-AIR CLADDING: FAILURE OF A 12 WT% FUEL ELEMENT: AT THE

.o GSTR.

WOR $7 CASE ASSUMPTIONS ARE MADE CONCERNING THE LOADING 3

v c AND POWER HISTORY OF ThE ELEMENT.

o o NOTE: A PRECEDING-"*" IS INTERPRETED AS A COMMENT o

o NuCLIDE NunsER 1 c===============================================

~RADICNUCLIDE

KR-83M PARTICLE CLASS
N HALFLIFE (YEARS) 2.0880E-04 l

SUBMERSION (REM-M3)/(CI-3EC) l j

50-YR CEDE

-1.1000E-05 SKIN 0.0000E+00 e

0.0000E+00 j

LUN3 THYROID -

0.0000E+00 t

SUnrACE-BONE 0.0000E+00

-RED MARROW-0.0000E+00.

i LIVER 0.0000E+00 j

- SPLEEN 0.0000E+00 4

! -GONADS 0.0000E+00 -

BREAST 0.0000E+00 l CURIES RELEASED

~3.1500E-02 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NUMBER 2

====================================

RADIGNUCLIr E

KR-85M PARTICLE L ASS
N HALFLIFE (YEARS) 5.1140E-04 SUBMERSION (REM-M3)/(CI-SEC) 50-YR CEDE
-3,0000E_02 SKIN-0.0000E+00 LUN3 0.0000E+00 THYR 2ID 0.0000E+00 SURFACE BONE 0.0000E+00 l' RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN
- 0.0000E+00 GONADS 0.0000E+00

-BREAST 0.0000E+00 CURIES RELEASED 5 d500E-02 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY-(CM/SEC) :

0.0000E+00 1

NuCLIoE NUMBER 3 B '

,'h'-,

u

. caer m==.-:::::===========s===n= a====n===

RADIONUCLIDE'

KR-85' PARTICLE class ~
N

.. HatrLIrt:

(YEAns) 1.0720E+01

=,

50-Ya CEDE 4.7000E-04 SKIN 0.0000E+00 LUN3-0.0000E+00 THYt010-0.0000E+00-

- SunrACE BONE 0.0000E+00 RED MAnnow 0.0000E+00' i

LIVER 0.0000E+00 SPLEEN-0.0000 M O~

GONADS-0.00C L 00' BREAST-0.0000E+00 t

CURIES RELEASED 3.1500E-03 RELEASE-FRACTION 1.0000E+00 i

. - DEP0sITION WELOCITY (CM/SEC) :

0.0000E+00 i

NUCLIDE NuMsEn 4

====================================

! RADIONUCLIDE

KR-87 PARTICLE class
N

. HALFLIFE (YEARS) 1.4510r 04 SKIN 0.0000E+00 LUN2 0.0000E+00

, THYRDID 0.0000E+00 SURFACE BONE 0.0000E+00

. RED MARR0w 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONASS' 0.0000E+00 BREAST-0.0000E+00 4

g ---

g-- -- ---------------- g g g ------

g gg 4 - RELEASE FaACT:0N 1.0000E+00

- DEP3SITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NUMBER 5

====================================

'RA91CNUCLIDE

KR-88 PARTICLE _ CLASS
N HALFLIFE
(YEARS!

3.2400E-04 SUBMERSION (REM-M3)/(CI-SEC) 50-Ya CEDE ~

3.7000E-01 SKIN 0.0000E+00 LUN3 0.0000E+00 THYROID.

0.0000E+00 B-2

i SURrACE BONE 0.0000E+00 1

-RED MARROW 0.0000E+00.

' LIVER-0.0000E+00 L

SPLEEN

= 0.0000E+00 f

GONADS 0.0000E+00 0

BREAST 0.0000E+00-h CURIES RELEASED 2.5400E-01 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NuMsER 6

c===========================================

RADIONUCLIDE

KR-89 PARTICLE class
N HAtrLIFE-(YEARS)
- 5.9900E-06

......__-_-_s.........__.___......__.___..__....

50-YR CEDE 3.0000E-01 SKIN 0.0000E+00 LUNG 0.0000E+00

-THYRDID 0.0000E+00 SURFACE BONE 0.0000E+00 L

RED MARROW 0.0000E+00 LIVER 0.0000E+00 i

-SPLEEN 0.0000E+00

. GONADS 0.0000E+00 BREAST 0.0000E+00

-CURIES RELEASED 3.1800E-01 RELEAst: FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NuMsER 7 4

====================================

RADIONUCLIDE

XE-131M PARTICLE CLASS
N HAtrLIFE (YEARS) 3.2580E-02

)

SUBMERSION (REM-M3) / (CI-SEC) 50-YR CEDE.

1.3000E-03 SKIN 0.0000E+00 LUN3 0.0000E+00 THYROID' 0.0000E+00 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 CuhIk$RhthIkD I U 3bbE bb RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 b

B-3

I NUCLIDE NUMBER 8

====================================

RA310NUCLIDE

XE-133M PARTICLE CLASS
N HAtrLIFs (YEARS) 5.9900E-03 SKIN 0.0000E+00 LUNG 0.0000E+00 THYR 3ID 0.0000E+00 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GNADS 0.0000E+00 BREAS1 0.0000E+00 CURIES _ RELEASED 9.1200E-03 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NUMBER 9

===================================

RADIONUCLIDE

XE-133 PARTICLE CLASS
N HALFLIFE (YEARS) 1.4360E-02 50-YR CEDE 6.3000E-03 SKIN 0.0000E+00 LUNG 0.0000E+00 THYROID 0.0000F.+00 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 G3NADS 0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 3.8400E-01 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 NuCLIDE NUMBER 10

===============================______===mm____

RADIONUCLIDE

XE-135M PARTICLE CLASS
N HALFLIFE (YEARS) 2.9070E-05 SKIN 0.0000E+00 LUNG 0.0000E+00 B-4

THYRJID 0.0000E+00 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 1.0600E-01 RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NUMBER 11 c===============================================

RADICNUCLIDE

XE-135 PARTICLE CLASS
N HALFLIFE (YEARS) 1.0370E-03

____3.__________________________________

SUBMERSION (REM-M3)/(CI-SEC) 50-YR CEDE 4.7000E-02 SKIN 0.0000E+00 LUNG 0.0000E+00

THYRSID 0.0000E+00
SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 0.0000E+00 G:NADS BREAST 0.0000E+00 l CURIES RELEASED 3.6500E-01 RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEC) :

0.0000E+00 NUCLIDE NUMBER 12 l

l

___=================================

RADICNUCLIDE

XE-137 PARTICLE CLASS
N HALFL7.FE (YEARS) 7.2250E-06 SUBMERSION (REM-M3)/(CI-SEC)

SKIN 0.0000E+00 LUNG 0.0000E+00 THYROID 0.0000E+00 SURFACE BONE 0.0000E+00 l

RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GoNAoS 0.0000E+00 BREAST 0.0000E+00 l

CURIES RELEASED 3.5900E-01 RELEASE FRACTION 1.0000E+00

-DEPOSITION VELOCITY (CM/SEC) :

0.0000E+00 B-5

NuCLIDE-NuMsEn 13

-c==============================================

RADICNUCLIDE

XE-138 PARTICLE class
N HAtrLIFE (YEARS) 2.7000E-05 SUBMERSION (nEM-M3)/(CI-SEC)

. SKIN 0.0000E+00 LUNG 0.0000E+00 THYR 3ID 0.0000E+00 SURFACE BONE 0.0000E+00 REa MAnnow 0.0000E+00 liven 0.0000E+00 4

SPLEEN 0.0000E+00 GONADS-0.0000E+00 BREAST 0.0000E+00 2................_......._-__...___.

3.1800E-01 CURIES" RELEASED RELEASE FRACTION 1.0000E+00 DEPOSITION: VELOCITY (CM/SEC) :

0.0000E+00 L

NuCLIDE NuMsER 14

====================================

RADIONUCLIDE

I-129 PARTICLE CLASS
D HALFLIFE (YEARS) 1.5700E+07 50-YR CEDE 1.8000E+04 SKIN 0.0000E+00 LUNG 0.0000E+00 THYROID 5.9000E+06 SURFACE BONE 0.0000E+00 RED MAnnow 0.0000E+00 Liven 0.0000E+00

. SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0;0000E+00 CunIES RELEASED 3.4900E-02 RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEC) :

2.0000E+00 NUCLIDE NuMsER 15

===================================

RADIONUCLIDE~

I-130 PARTICLE CLASS
D HALFLIFE (YEARS) 1.4100E-03 1

50-Ya CEDE 2.5000E+03 SKIN 0.0000E+00 LUNG 0.0000E+00 B-6 Y

+v

l l

l THYR 3ID 7.4000E+04 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 bbk$h$Rh~L 96bbk2bi~~~~~~

~

~

~~~

D RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEC) :

2.0000E+00 NUCLIDE NUMBER 16

====================================

RADIONUCLIDE

I-131 PARTICLE CLASS
D HALFLIFE (YEARS) 2.2010E-02 50-YR CEDE 3.2000E+04 SKIN 0.0000E+00 LUNG 0.0000E+00 THfROID 1.1000E+06 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS-0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 1.8000E-01 RELEASE FRACTION 1.0000E+00 DEPO $1 TION VELOCITY (CM/SEC) :

2.0000E+00 NuCLIDE NuMsER 17

___=================================

RADIONUCLIDE

I-132 PARTICLE CLASS
D HALFLIFE (YEARS) 2.6240E-04 50-YR CEDE 3.3000E+02 SKIN 0.0000E+00 LUNG 1.0000E+03 THYROID 6.3000E+03 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 buk$bSRE~h$$hb'~~~'~~

~~[~~5$54bbi.61 L

RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

2.0000E+00 B-7

NUClIDE NuMsER 18 c==:===========================================

RADICNUCLIDE

I-133

. PARTICLE CLASS

D

! HALFLIFE (YEARS) 2.3730E-03 INHALATION REM /CI 50-YR CEDE 5.4000E+03 SKIN 0.0000E+00 LUNG

. 0.0000E+00 THYROID 1.8000E+05 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIvEk 0.0000E+00 SPLEEN 0.0000E+00 GoNA05 0.0000E400 BREAST 0.0000E+00 CURIES RELEASED.

4.0000E_01 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

2.0000E+00 i:

NUCLIDE NUMsER 19

====================================

p Rt.DICNUCLIDE

I-134 PARTICLE CLASS
D HALFLIFE (YEARS) 1.0000E-04

-INHALATION REM /CI 50-YR CEDE 1.1000E+02 SKIN 0.0000E+00 LUNG 5.2000E+02 THYROID 1.1000E+03 4 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GoNA95 0.0000E+00 BREAST 0.0000E+00

..__..___e._________

CURIES RELEASED 4.5300E-01 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

2.0000E+00 NUCLIDE NUMsER 20

====================================

RADIONUCLIDE

I-135 PARTICLE' CLASS
'D HALFLIFE (YEARS)
- 7.5400E-04 50-YR CEDE 1.1000E+03 SKIN 0.0000E+00 LUNG 1.6000E+03-B-8

I THYROID 3.1000E+04 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONA S 0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 3.5200E-01 RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEC) :

2.0000E+00 NuCLIDE NUMBER 21

====================================

RADIONUCLIDE

BR-82 PARTICLE CLASS
W HALFLIFt (YEARS)
4.0270E-03 CEDE RATE 1.3000E+03 SKIN 0.0000E+00 LUNG 6.3000E+03 THYROID 0.0000E+00

'"RFACE BONE 0.0000E+00 REo MARROW 8.1000E+02 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 6.1000E+02 BREAST 7.8000E+02

.__..______..._____.m______._

CURIES RELEASED 7.2400E-03 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

1.0000E+00 NUCLIDE NUMBER 22

====================================

RADIONUCLIDE

BR-83 PART1CLE CLASS W

HALFLIFE (YEARS) 2.7300E-04 CEDE RATE 8.0000E+01 SKIN 0.0000E+00 LUNG 6.7000E+02 THYROID 0.0000E+00 SURFACE BONE 0.0000E+00 RED HARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 2.9600E-02 RELEASE FRACTION 1.0000E+00 DEPOSITION VELOCITY (CM/SEC) :

1.0000E+00 B-9

NUCLIDE NuMsEn 23 c= =

==============================

RADI;NUCLIDE

BR-84 PARTICLE class
D HALFLIFE (YEARS) 6.0460E-05 CEDE RATE 8.7000E+01 SKIN 0.0000E+00 LUNG 5.9000E+02 THYROID 0.0000E+00 SURFACE BONE 0.0000E+00 RED MARROW 0.0000E+00 LIVER 0.0000E+00 SPLEEN 0.0000E+00 GONADS 0.0000E+00 BREAST 0.0000E+00 CURIES RELEASED 5.2200E-02 RELEASE FRACTION 1.0000E+00 DEP3SITION VELOCITY (CM/SEc) :

1.0000E+00 B-10

?'

APPENDIX C OUTPUT GRAPHS AND DATA FOR 12 wt% FUEL r

/

9 h

i 5~,

J 0

1 h

X x

I x

M L

E-J N

t F0 1

N E

x R

m U

T X

s' I

1 M

q R

m E

\\

k S

\\

U 0

5 E

5 N

i 1

I L

i 7'

R 9

E N

9 T

1 N

m E

9 C

m k3 0

0 E

Oss 0-

.//

1E 0

1 M U

7mm 1

1 lif s

0 L mEO.

s P

72 N1 82 OO E

M

.N U

w 34B O <>

L A

P T

L H

A iI G)

T R

f I F HE N

E)P GC E

s Hme IN f

EA E

E2H HT G

S S

I1 A 1 A =S TRI

/

1

[

0

/

E S HED i

1 LhhA GY f

/

,aI 0

IAEE d

/

,II R C ELSD l

T

'sI Id OD H OE O

ECEY NDC P

VEET RO S

3 d

5 6

7 IPPI OIMM 0

TSSL TSUU

~0 0

0 T

C I PRMM O

0 N

1 1

1 1

1 EDDB EEII "FNNA CVXx e

F ENAA

' ItT joyg EWwS RIMM gLl i

L e

?e-

IM i

i O

HOTSPOI G.01 GENERAt. PLUME 10-09-1997 lo: 19 2:

1 I

B

.--.Q

/-

~

i u

o

_____________...__2_..._______________.;__________

z

~

0 v'

~

i Je u,i

-i v

o i

Of i

i c;

1 i

I 2

8 2

0.5 0

DOWNWIND - km n.

N Committec Errective Oose Eculvelent CONTOUR LEGEND :

INNER Ar en :

1.SE-03 tem *O INNER:

1.OE-03 r-em OUTER:

1.CE-04 rem OUTER pr ee :

2.4E-CC 8em^C EFFECTIVE R LEASE H IGHT:

7.0 m 2 m 3.87 m/s WINO SPEED h==

WINO SPEED h = H-e 7) 4.20 m/s USER M I X T*JRE

10 FUEL _ MIX S T ABIL.I T Y C ASS
B RECEPTOR HEIGHT O.O m INVERSION LAYCi' HEIGHT NONE O.10 I< m MAXIMUM DOSE OASTANCE 1_1E-03 MAXIMUM CEDE l

l i

(

J

l..

JJOTSPOT 8.01 GENERAL PLUME 10-29-1997.16:20 USER MIXTURE :il2 FUEL. MIX EFFECTIVE RELEASE HEIGHT :

-7.00 m WIND SPEED (h=2 m): 3.9 m/s WIND SPEED (h=H-eff): 4.2 m/s STABILITY CLASS

B RECEPTOR HEIGHT
0.0 m INVERSION LAYER' HEIGHT
NONE SAMPLE TIME 10.000 min MAXIMUM DOSE DISTANCE 0.10 km MAXIMUM C HOTSPOT 8.01 GENERAL PLUME USER MIXWRE : 12 FUEL. MIX EFFECTIVE RELEASE HEIGHT :

7.00 m-WIND SPEED (h=2 m): 3.9 m/s WIND SPEED (h=H-ef f) : 4.2 m/s STABILITY CLASS

B RECEPTOR HEIGHT
0.0 m INVERSION LAYER HEIGHT
NONE SAMPLE TIME 10.000 min MAXIMUM DOGE DIST?ECE 0.10 km MAXIMUM CEDE
>- 1.1E-03 rem D=

0.305 km DEP =

1.4E+00 uCi/m"2 CHI =

1.6E-04 (Ci-s) /m* 3 50-YR DOSE COMMITMENT:

e THYROID 6.5E-03 rem LUNG 1.5E-05 rem EFFECTIVE DOSE EQUIVALENT 1.3E-04 rem D=

0.640 km DEP =

3.1E-01 uCi/m'2 CHI =

3.6E-05 (Ci-s)/m'3 50-YR DOSE COMMITMENT:

THYROID 1.5E-03 rem LUNG 3.4E-06 rem EFFECTIVE DOSE EQUIVALENT 3.0E-05 rem C-3

i:

l'

{

r t

i9 l1l +i1I 4 #

.l A!

l mi!.

a 1

1 i.

ia.ll%N:i!

l

=

Ii

.il ti.

u tIl.

tt.

1i1

l 1

_ i T

1i l

i.

X I

!i; 1I I

I 1Ij

i.

M w

iI

'L 1

ti i

ii

.I L

I l:

i.

E N

i O

I1 iii

.i

!I-a!

t ii.

N s

x 1

,i I1

.!I*1'

.i 1l; t

i l

it1 C

R U

T X

A 4

iil t.

I

_iil-

t.

R ii, t

.g i

t.

M

=
i I !7 I1i i

.a xt i*~

.Il-

.ii l

r

. ?l..

4i l

5 l yx L

.i aI it.

o li m

E J

e l

.i l

.I l

a ii l

c 1

ne I

1 S

U 3

t l-

.i1 l

ii.

0 1i, i

.i lN

=

N i.

E 1

nl l

i 2,j

Y

.iI'L

=

fl i

iir I

N 1

L 7

=

R 9

0 x

E 2

4 i,

l r

>}l z

I'

i l

.ilj

I.

T N

E m

3 C

m k3 0

1 t,N

.!I

.if I

.il-i

.~sIj-i t.

P 79 N1 0

E Oss 0-3 M

.//

1E 1

i t

U 7mm

.M i w=-

=

.21 M

ai

[

i L

mEO _

E IE}ml. :iII:

1 i

i.

83 OO 1

t t

M aI

.N U

A i

.! !s

.i

.iil 1i.

34C O <>

P a-i

.I I.

iil it.

L

+

=1 iIj-

.i l;

ii.

H T

A

.1 leg i

fi L

fiIi1' ii.

E )'t GC G)

T 9

i HE F

I f E

I

=

Hme IN N

[ /

E CA I

1 G

g i4ti-i l

.6li I_ '!

!j

,1iIl; if.

S S

E;H HT

?

f1 I

f 1

!1If A==S TR1 l,

0 I

f, E S ME0 LhhA GY O

E((L IAEC R C ELSO V

iI DD H OE O

CEEY NDG P

VEET PO T.

3 4

5 6

7 IPPI OIMM T

TSSL wSUU O

g 0

0 0

0 C

I PRMM H

1 1

,1 1

CDOS EEII FNNA CVXX FI1r ENAA wa

, g L.

EWWs PIMM Ok

i

(

, i' 5

-m Li 0

i 1: -

m X

N-q I

9 M.

L E

N-U w

~

5

-w 0

y

..w' 1

..:L i 5.

4 -

z, E

-w R

U T

y OO X

^ ^

I mm M

t a

k k R

r e

3O E

l 0C S

a U

0

,l; v

r

.a

i.

4 EE i

O5 u

0 q

O3 1

E 7

e 9

s m

9 o

1 k

D e

n m

e ee 3

e m

k3 0

r r D

AA 0

v i

Oss 0-i-

, ' J:

1 N

t

.//

1E I

1 7_>

~ mm

/

9 c

RR W

N e

mEO _

EE r

79 N1 W

NT E

O NU 83 OO r

M

.N D

E I O U

34C O <>

L d P e

6 t

T L

t H

er A

i G)

T p

R e

2i m

I r 4E e

E m

m E)r GC N

o me Hme IN E

C er

~

CA G

Lwt:

E0H HT e

r 4

S S

1 1

30 A= S TRI 0

D 0-C.

S HED

  • hhA GY 5

N C

f E

E O.

E((L IAEE G

O R C ELSD T

E 1

DD H OE O

O L

1 EEEY NOC F

1 s : a.

.e:ee..'

4.,.s.

VEET RO S

R IPPI OIMM T

U TSSL TSUU O

O RR C

I PRMM H

T EC CUDB CEII 0

N NT fFNA CVXX J

O U

IIT ENAA Jr f

c3 3Z 3n EM i c

a oc C

I O CWWS PIMM lr s.

n5

'HOTSPOT 8i01 CENERAL' PLUME 11-03-1997 10:50 USER MIXTURE 1: 12 FUEL. MIX EFFECTIVE RELEASE HEIGHT :

7.00 m WIND SPEED-(h=2 m)-: 3.9-m/s.

WIND SPEED (h=H-of f) : 4.4 m/s STABILITY CLASS '
C RECEP1DR HEIGHT
0.0 m INVERSION-'IAYER. HEIGHT NONE SAMPLE TIME 10.000 min

. MAXIMUM DOSE DISTANCE 0.10 km MAXIMUM CEDE.

1.95-03 rem

.- n j

1 D' =

0.305 km

+-

L DEP =

2.9E+00 uCi/m'2 1-CHI =. 3.4E-04 (Ci-s)/m'3-YR DOSE COMMI'INENT:

t THYROID 1.4E-02 rem LUNG 3.25-05 rem EFFECTIVE DOSE EQUIVALENT.

2.BR-04 rem-i L'

f I

1 D=

0;640 km j.

DEP = '6.8E-01 uCi/m*2 CHI =

8.0E (Ci-s) /m*3

.J-YR DOSE COMMITMENT:

THYROID 3.28-03 rem LUNG 7.4E-06 rem EFFECTIVE DOSE EQUIW62NT 6.5E-05 rem.

l..

.? t '

r.4 i 4

3; ~

=C-6'

-*-4

-h..

OMD.4 J

-4 a,e=

J-

._.-i--4*a--4, A--..t2aM-w--M, A

A.

-4 Am


M

~ -

me.

AJ-y

]

l l

l APPENDIX D OUTPUT GRAPHS AND DATA FOR 8.6wt% FUEL t

S.

i i

--, -.. - -..~,-. - - -.-.

1 Jf

{

l i

, 0 a

i' I!

II

! 1 s

.A

~

x x

~

i3sJ

_i N

ii~

N s'

x

- *iiT 1

i t.I L

- iI l

m l

,X

ioi k

I

.x O

I!

x v

,t I

C N

0 I

1 I.

L N

R E

9 f.

T 9

N 1

niN m

~

E C

m k4 A

0

~

~

E OsS 0-

.//

1E U

1 M U

7mm

.O A

- 1!i:

mEO a ii 0 L

,tl i,I P

7C N7 E

- ti1n 0C 0O

- tim =-

G)

T

.N 34O 0 <>

U 6

e f L

R T

L ii i H

A E

iir I F HE R

~

E)F GC N

HmD IN EE CA

~

E COH HT G

l f

S S

_p 4 !

1

/r A =S TRI C S HED O

/

f 1

LhhA GY

/

0 E L IACE j

0

/

g

'O DD H OE r

R C ELSD

1 i

l I

1 Y

PDC J

EEE.T 3

VEE RO t

P 7

IPRI OIMM 3

4 5

e_

TSSL TSUU T

O 0

0 0

0 0

C I

PRMM H

1 1

1 1

1 EOOO EEII FNNA CVXX FIET CJAA P

jOa" EWWS PIMM GyL i i

a L t g.-

m

+

.o s

t

..j 4,

a,.

2 i

i i

i w

1 Pt_uME..10-09-les7'le: 1.0 -

-s" m r s e o r. a. o 1. s e N epe nt._

~

fg...

-. i J

t

- 4

- }.

- 1 L

i.

g i

.1

~.

i E

se.

i l'.

f.

1-O..

'I t

1-

. l 1

i-p._

7 7

p zgg p.

2-i--

i-j i

-3 i-

)

i i

u).

i i

i i

i-00 -

o m

i i:

t..

. g.

3 o

g g

1 4

s

-i 4

13

,e 3

U 0-T.

DOWNWIND --km c

as 1

,co i

f<

1 CONTOUR LEGEND' : Committed Errective Oose Equivalent' q

I

- l

. r'em 1.OE-04 rem Ar ee

1. 6E -Oc ac m ^:lL*

4 j"

EFFECTIVC R t_ EASE H IGHT:

7.O m 1

WINO SP EO h = 0 m 3.87 m/s W NO SP EO h== H-e r)

4.cc m/s s

S ABILI Y C ASS

B USER MIXTURE : 65FtJEt. MIM j

RECEPTOR HEIGHT O.O m IPJVERSION LAYER HE*1GHT NONE MAXIMUM DOSE DISTANCE O.10 km MAXIMUM CEDE 7_2E-04 3

s 5

r i

9

-e.

+, w e

+,ww-e

~w m

e

.s k.- - + * *

=.--ew r.ew.,

.a

-e c..w--

--mmc== =

w w wwww=w.rw

-ww-e.n..ev.

.-w---,-.r

-.wwww--*--mw+ws

-=-u------w-m-

i

HOTSPOT 8.01 GENERAL PLUME 10-29-1997-16t14' USER MIXTURE : 85 FUEL. MIX EFFECTIVE RELEASE HEIGHT 7.00 m il

'CIND SPEED (h=2 m): 3.9.m/s

.NIND' SPEED (h=H-eff) J4.2 m/s

. STABILITY = CIASS B

RECEPTOR HEIGHT

0.0 m INVERSION LAYER HEIGHT
NONE
SAMPLE. TIME
L 10.000 min 0.10 km MAXIMUM CEDE
:=

7.2E-04 rem' (MAXIMUMDOSEDISTANCE t

e i

i D=

0.305 km DEP =

9.1E-01 uCi/m'2_

CHI =

1.0E-04 (Ci-s)/m*3 50-YR DOSE COMMIM ENT:

i l'

THYROID 4.3E-03 rem LUNG

-9.9E-06 rem EFFECTIVE DOSE EQUIVALENT 8.72-05 rem

'D=

0.640 a

r DEP =

2.1E-01-uCi/m"2 CHI =

2.3E-05 (Ci-s)/m*3 50-Y'R DOSE COMMITMENT:

i THYROID 9.8E-04 rem LUNG 2.3E-06 rem EFFECTIVE DOSE EQUIVALENT 2.0E-05 rem

..g.

'r i

. D4 3 --

=

.+ -

-m_,....._~,1..

,,e

_,-..~,,-,,..,..i-4

{

l t

wi l

i I.

1

?i

)il

+

i 4

1 2I l i.

X I.

I l

R t

.k 1N 1l il.

M.

(

I L

ii.

E Af a

U F

,. N si.

S l

S x

x x

Iil i.

.iii

.ii l

E R

U T

a t1

. tA il.

I M

l

.iik

.jX 1

I li.

M l

i1 l

I!.

R iI N

Ii l

i.

m E

I

.e l

I i.

k S

~

U 3

~

I.

5 i

iiI$

i l.

E

.b li.

I e

N L

N 7

R 9

E 9

N iil Ii.

T 1

N

~

t i

N m

EC m

k3 03 x

0 E

Oss 0-

.//

1E_

0 M

4.

.1i n

i$

U 7mm 1

iI i il

$s L

m E0 _

1 t 1

.IIl ii.

P 79 N1 M

t t

. 1 i

Iil

$i.

03 OO E

.N U

1 ui I

.l ii1 34C O <>

L P

II t ii.

T

$i.

H L

G)

T A

. : /

I r HE R

E

.I ii.

/

Elr GC N

[

Hmw L' N E

/

EA

/

G

/

ECH HT 4i!

.,I#p S

S

,I A= S TRI 1

I

/,

0 E S HED I

LhhA GY e

E IAEE R C ELSD DD H OE T

O EEEV NDC "M

VEET RO 7-5 6

IPPI OIMM

~

TGSL TSUU T

G 0

0 0

0 0

C I PRMM H

1 1

1 1

EOOf3 EEII FNNA CVXM FfIT ENAA eJL I

woyg EWWS RIMM G

O1

HOTSPOT e.01 GENERAL PLUP*E 10-30-1997 0:51 e

a x

i i

j I

+

s a

- - - - =.

O

=

& ----- b

.z. 0 W

u ac u) i u) i o

j Of i

u l

4 i.

0.5 0

DCWNWIND - km o

aw CONTOUR LEGENO : Committec Errective Oose Eculvelent INNER:

1.OE-03 rem INNER Areen Q.9E-04 km*O OUTER:

1.OE-04 rem OUTER Aree :

0. 3C--OO ' k m^O CFFEC11VE RELEASE HEIGHT:

7.0 m 2 m) 3.87 m/s WINO SPEED h =

H-err) 4.39 m/s WIND SPEEO h -

STABILITY C ASS

C USER MIXTURE :

BSFUEL. MIX PECEPTOP HEIGHT O.O m INVERSION LAYER HEIGHT NONE MAXIMUM DOSE DISTANCE O 10 km I

MAXIMUM CEDE 1_CE-03

[.

/,

9

'HOTSPOT 8.01l GENERAL PLUME 10-30-1997 8:54 USER MIXTUREL -85 FUEL. MIX EFFECTIVE RELEASE HEIGHT :

7.00 m WIND SPEED - (h=2. m) : 3.9 m/s

-WIND. SPEED'(h=H.eff):-4.4 m/c.

STABILITY CLASS

-C RECEPTOR HEIGHT
0.0 m INVERSION IAYER HEIGHT
NONE SAMPLE TIME s'

10.000 min-MAXIMUM DOSE DISTANCE 0.10 km MAXIMUM CEDE

.1.2E-03 rem i.'

D=

-0.305 km DEP =

1.9E+00 uCi/m*2 CHI =

2.2E-04 (Ci-s) /m* 3 i

50-YR DOSE COMMITMENT:-

THYROID 8.9E-03 rem-LUNG 2.1E-05 rem EFFECTIVE DOSE EQUIVALENT 1.8E-04 rem t-i D=

0.640 km DEP m-4.5E-01 uCi/m*2 CHI =

5.1E-05 (Ci-s) /m* 3 50-YR DOSE COMMITMENT:

-THYROID 2.1E-03 rem LUNG 4.9E-06 rem EFFECTIVE DOSE EQUIVALENT 4.3E-05 rem

+

/

CI.6

.-..~.

.2.

.