ML20195C693

From kanterella
Jump to navigation Jump to search
Rev 1 to, Technical Guidelines for Seismic Category I Electrical Conduit Isometic Validation
ML20195C693
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/16/1987
From: Chiou C, Kuo T, Odar E
EBASCO SERVICES, INC.
To:
Shared Package
ML20195C398 List:
References
SAG.CP25, NUDOCS 8806220261
Download: ML20195C693 (141)


Text

Project' Identification

~

~

No. SAG.CP25 EBASCO SERVICES, INCORPORATED TEXAS UTILITIES ELECTRIC COMANCHE PEAK STEAM ELECTRIC STATION UNIT NO. 1 AND CO MON AREAS TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I ELECTRICAL CONDUIT ISOMETRIC VALIDATION Revision Prepared By Reviewed By Approved By Date Pages Affected R0 T. Kuo C. Y. Chiou E. Odar

/ h 3

J. R. Patel

/3jf g7 w-g R1 T. Ku C. Y. CHIOU E. Odar General Revision CyW gggg is/r7 EBASCO SERVICES INCORPORATED h!R Db O

45 A

PDR

\\

PROJECT IDENTIFICATION NO. SAG.CP25 REV. 1 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I ELECTRICAL CONDUIT ISO VALIDATION TABLE OF CONTENTS SEPTION DESCRIPTION PAGE 1.0 PURPOSE 1

2.0 SCOPE 1

3.0 INTRODUCTION

2 4.0 DEFINITIONS 2

4.1 CONDUIT SPAN 4.2 GENERIC SUPPORT 4.3 MODIFIED SUPPORT 4.4 "IN" SUPPORT 4.5 RECLINE DRAWINGS 4.6 NON-IDENTIFIED SUPPORT (NONIS) 4.7 SRF SUPPORT 4.8 COMMON SUPPORT 4.9 UNIT NO. 1 SUPPORTS (2X CONDUITS ONLY) 4.10 JUNCTION BOX SUPPORT 4.11 UNISTRUT SUPPORTS 4.12 TRANSVERSE SUPPORTS 4.13 BISCO SEALS 4.14 INACCESSIBLE ATTRIBUTES (I.A.)

4.15 ECSA 4.16 CONCRETE PENETRATIONS 5.0 FIREWRAP (THERMOBLANKET) 7 5.1 THERMOLAG 5.2 MINIMUM CONDUIT SYSTEM FREQUENCY REQUIREMENT 5.3 THERMAL LOAD CONSIDERATIONS l

5.4 ELALUATION METHODOLOGY OF OVERSIZED BOLT I

HOLE EFFECTS S.0 DESIGN CHANGE DOCUMENTS (CMC's, DCA's AND NCR's) 11 i

i

l

.b PROJECT IDENTIFICATION i

o NO. SAG.CP25 REV. 1 TECHNICAL GUIDELINES FOR SECSMIC CATEGORY I ELECTRICAL CONDl'IT ISO VAI.IDATION TABLE OF CONTENTS SECTION DESCRIPTION PAGE 7.0 EVALUATION OF CONDUIT SPAN 11 7.1 SELECTION OF CONDUIT SPAN CONFIGURATION

7. 2 -

COMPARISON OF ACTUAL TO ALLOWABLE CONDUIT SPANS 7.3 LOAD FACTORS 8.0 CALCULATION OF CONDUIT LOADS, Lt & Lt AND 13 EVALUATION OF CLAMPS 8.1 CONDUIT LOADS 8.2 CLAMP EVALUATION 8.3 CONDUIT LOAD AT CONCRETE PENETRATION 9.0 EVALUATION OF SUPPORTS 16 9.1 SUPPORT DESIGN LOADS 9.2 GENERIC SUPPORTS 9.3 MODIFIED AND IN SUPPORTS 9.4 COMMON SUPPORTS 9.5 CALCULATION OF SUPPORT FREQUENCY 9.6 ROTATION OF "C" VAL','E 9.7 VERIFICATION OF LONGITUDINAL LOAD DISTRIBUTION 10.0 EVALUATION OF JUNCTION BOX CAPACITY AND 21 JUNCTION BOX SUPPORTS

- 11.0 EVALUATION OF PROBLEM CONDUIT ISOMETRIC 23 DRAWINGS 11.1 K-FACTOR VIOLATION 11.2 SPAN VIOLATION 11.3 SUPPORT CAPACITY VIOLATION 11.4 CONDUITS ATTACHED TO OTHER DISCIPLINE SUPPORTS 11

PROJECT IDENTIFICATION NO. SAG.CP25 REV. 1 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I ELECTRICAL CONDUIT ISO VALIDATION TABLE OF CONTENTS SECTIQN DESCRIPTION PAGE 12.0 INTERFACE REQUIREMENT 28 12.1 CONDUITS ATTACHED TO CTHS & HVAC SUPPORTS 12.2 CONDUITS ATTACHED TO PIPE SUPPORTS 12.3 SMALLER THAN 2" DIAMETER TRAIN "C" CONDUITS 12.4 FOOTPRINT LOADS TO WEB PROGRAM 12.5 FOOTPRINT LOADS ON SRF 12.6 ENGINEERING EVALUATION OF SEPARATION VIOLATION

13.0 REFERENCES

31 l

111 F

5

' TECHNICAL' GUIDELINES.

PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I TABLE.0F CONTENTS (CONT'D)

. ATTACHMENTS A.

LIST OF MEMOS-(INTERIM GUIDELINES) INCORPORATED IN THIS GUIIDELINE B

LIST OF RIGID GENERIC SUPPORTS C

ALLOWABLE NORMAL WELD FORCES FOR TS STEPPED CONNECTIONS D

ROTATIONAL SPRING CONSTANTS FOR GENERIC BASE PLATES AND CUT-OFF FREQUENCIES FOR GENERIC CONDUIT Y.:oPORTS E

. ROLLING OFFSET CALCULATION EXAMPLE AND MEMBER PROPERTIES OF A SFRING MEMBER' F

PRETENSION LOADS OF THE CONDUIT CLAMP G.

STANDARD AND OVERSIZE BOLT / STUD DIAMETER (IN.) FOR VARIOUS TYPES OF CLAMPS H

HILTI BOLT DIAMETER (IN.) FOR VARIOUS TYPES OF CLAMPS I

SEPARATION VIOLATIONS'TO BE DOCUMENTED J

DEFINITION OF SEISMIC INPUTS K

INACCESSIBLE ATTRIBUTES (IA) EVALUATION PROCEDURE 1,

UNIT I BUILDING AREAS WITH 2" FLOOR TOPPING ON FLOOR SLAB M

ADDITIONAL WEIGHT DUE TO 45* "LEX CONNECTOR N

RIGID CONDUIT SPANS O

1.5 PEAK "G" VALUES FOR 4% (GBE) AND 7% (SSE) DAMPING FOR A' YACHMENTS TO SRF IN ELECTRICAL CONTROL BUILDING l

l

\\

Iv i

[

TECHWICAL GUIDELINES PROJECT IDENTIFICATION

-FORLBEISMIC CATEGORY I NO. SAG.CP25

ELECTRICAL CONDOIT ISOMETRIC VALIDATION REV. 1

.i TABLE OF CONTENTS (CONT'D)

ATTACHMENTS P

HILTI ANCHOR BOLT LENGTH AND NUT THICKNESS Q-MINIMUM CONDUIT SYSTEM FREQUENCY REQUIREMENT R

COMPONENT WEIGHTS AND PEAK

'u " VALUES FOR WHICH ECSA'S ARE QUALIFIED S

LOAD FACTORS T

MATRIX TO CONVERT REDLINE DRAWINGS TO S-0910 SHEET NUMBER U

ULTIMATE ALLOWABLE BOND STRESS BETWEEN CONCRETE AND CONDUIT AT PENETRATION V

FILLER PLATE AND SHIM PLATE WEIGHTS W

CONDUIT RUN TRIBUTARY LENGTH FOR LONGITUDINAL LOAD DISTRIBUTION VERIFICATION APPENDIX I

PROCEDURE FOR RESPONSE SPECTRA MODAL ANALYSIS OF CONDUIT ISOMETRICS l,

L l

V l

w_ :

TECHNICAL GUIDELINES 1

PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 1.0 PURPOSE The purpose of this document is to provide technical guidelines for the structural adequacy validation of Unit 1 and 2X conduits and their supports in accordance with the Ehasco Specification No. SAG.CP10 (Reference 1); to provide instructions / procedures for the preparation, review and filing of isometric validation package; and 'to outline interface requirements among various organizations.

The 2X conduits are Unit 2 conduits run in the common areas.

t? nit I conduits consist of condu!ts unique to Unit No. I and Common.

2.0 SCOPE This document is applicable to the design validation effort of Unit I and 2X conduit isometric drawings (including support drawings) to assess their conformance to the "design validated"

(

S-0910 package (Re ference 2 ).

When conduit spans and/or supports cannot meet the S-0910 requirements, the isometric drawing shall be validated in accordance with Reference 1 and this document.

I Isometric validation packages, as a minimum, shall be prepared per Appendix Q of Ebasco Manual of Procedures (Reference 3).

Footprint loads shall be transmitted to other disciplines via Procedure ECE 5.11-04 (Reference 4) and Task Description TE-TD-EB-033 (Reference 8).

Conduit system wrapped with thermolag and/or thermoblanket (also known as "B & B blanket") shall be evaluated in accordance with this document.

Modification to conduit run shall be accomplished by issuing DCA per Procedure ECE 5.01-13 (Reference 5).

All outstanding CMCs, DCAs and NCRs shall be reviewed and incorporated in the new DCA.

l 1

L

TECHNICAL' GUIDELINES PROJECT IDENTIFICATION TOR SEISMIC CATEGORY I NO. SAG.CP25

-ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1

-2.0-SCOPE (Continued)

Any missing information on ISO, which are required for ISO validation, shall be requested by issuing RFIC or interoffice memo to the walkdown group.

All ISO drawings shall be signed out by DV engineer and checker to ensure conformance with ISO validation package.

3.0 INTPODUCTION The isometric package (ISO and support drawings) is prepared in accordance with field veri fication procedures (References 6 and

7) and shall consist of the followins items:

a.

Isometric Drawing / Sketch b.

Redline Drawings for Supports c.

Inspection Reports (IR) (Optional) d.

Component Modification Cards (CMC) for helds The design validation of a conduit isometric drawing (ISO) involves the.following distinct tasks:

a.

Evaluation of conduit spans.

b.

Calculation of conduit loads, Lt and Lt, and evaluation of

clamps, c.

Evaluation of supports based on "as-built" conditions and calculations of footprint loads, d.

Modification, if required.

Generic calculations prepared during the design validation of the drawing no. 2323-S-0910 document, can be referenced in isometric validation.

In addition, Unit 2 calculation book *127 can be referenced to determine the K-factors.

4.0 DEFIyrTIONS 4.1 CONDUIT SPAN A span is. defined as the distance measured along the centerline of the conduit from one attribute to another.

The attributes used in estabiishing of spans are as follows:

2

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

.FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 4.1 CONDUTT SPAN (Continued) a.

Clamp - measured from centerline of clamp.

b.

Junction Box or Equipment - measured from face of hov or equipment.

c.

Conduit Overhang measurea to end of rigid conduit.

d.

Embedded Conduit - measured to face of concrete.

e.

LBD or Pull Sleeve - measured to face of fitting.

f.

BC and Union - measured to face of fitting.

If the conduit is embedded in concrete, it is so marked on ISO.

4.2-GENERIC SUPPORT A generic support is a support which conforms to a S-0910 package typical detail in all respects, l.3 MODIFIED SUPPORT A modified' support is a support which has deviation (s) from S-0910 package typical details.

4.4 "IN" SUPPORT Individually engineered (IN) support does not conform to S-0910 package typical details and is analyzed on a case-by-case basis.

It is identified with a unique number with a prefix IN, e.g..

IN-CSM-101 or IN-C12K12345-01 on ISO.

~4.5 REDLINE DRAWINGS Redline drawings reflect the "as-built" conditions and exist for e ve r;r support shown on ISO, except for 2X conduits, redline drawings exist for modified and "IN" supports only.

Matrix as per Attachment T can be used as a guideline to convert redline sheet number to S-0910 sheet number to facilitate

. redline drawing review.

3 L

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25

-ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 4.5 REDLINE DRAWINGS (Continued)

The-design validation engineer may apply veri fication tolerances (to the field recorded datal to conduit isometric (and not supports) as reo tred to resolve dimensional conflicts on rolling off-set. by using one or any combination of the following methods:

1.

Add or subtract So to angle.

2.

Add or subtract 3" to the field recorded dimensions.

3.

Calculate the actual side of triangle using (TL) true length (measured form center line of are to center line of are).

If a conflict cannot be resolved using these methods a copy of the ISO will be returned via RFIC to the walkdown group for reveri fication.

Redline drawings for raodi fied and IN supports shall be CADed.

The CADed modified support drawings shall be checked against redline drawings and design validated by the Conduit Design Verification Group (CDVG;.

4.6 NON-IDENTIFIED SUPPORT (NONIS) a "NONIS" support is a "dead load" hanger and is not listed on the inspection report.

This applies only when the conduit is seismically restrained with CSR supports.

Any isometric drawing containing a NONIS support shall be placed on hold.

4.7 SRF SUPPORT This applies to conduit runs which are attached to the Spread Room Frame (SRF).

On as-built tsometric drawing, the support is identified by SP or IN-SP drawing number accompanied by "SRF".

4

[

l

\\

r

-TECHNICAL GUIDELINES PROJECT IDENTIFICATION

.i?OR SETSMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 4.8 CO'1MO N SUPPORT' A common support is utilized to carry the load of more than one conduit run.. Example:

A support type CSM-14a-I is carrying CND's C20K10000,-C21K10001 and C22K10002, where C20K10000 is a primary ISO and other ISO's are secondary.

Therefore, on primary isometric drawings, the common support is identified as

-05, CSM-14a-I while on all the secondary isometric drawings, the common support is identified as "10000-05" where -05 is a support number on the primary ISO.

THe design validation of a common support is part of the primary ISO validation calculat'on package.

For an IN common support, the identification method is similar, except on the imary ISO a support is identi fied wi th a t.nique IN support er (e.g.,

IN-CSM-101).

4.9 UNIT NO. 1 SUPPORTS (2X CONDUITS ONLY)

Support labeled as "Unit No.

1" on 2X conduit ISO, is used to support both Unit No. I and Unit No. 2 conduits.

Support qualification will be performed by Unit No. 1 CDVG, and 2X conduit CDVG shall furnish reactions to Unit No. 1 CDVG for support evaluation.

Since walkdown information for these supports cannot be obtained, only the determination of loads from Ur.it No. 2 c o r.d u l t (which is secondary to Unit No. I conduit) is required at this time.

Since the support frequency is unknown, the ISO package shall be p inchlisted with assumption that the support will meet the minimum frequency requirement.

5 1

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 4'.10 JUNCTION BOX SUPPORT It~ is a support carrying load due to the dead weight of junction box (or neoweld, welding plug or terminal box) including its contents and the conduits connected to the junction box.

In addition, other conduits not connected with the junction box may be attached directly to the support.

This can be any one of the generic, modified or IN supports.

The identification of support number is done in the same manner as for a. conduit support in the case of an unnumbered terminal or pull box.

For numbered junction boxes, the support number is the same as the junction box number.

Junction boxes will be shown on primary ISO with solid lines and support type call out and all conduits existing at the junction box.

On the secondary ISO's where the same junction box appears, it will be shown with dashed lines.

A reference to the ISO that has the support type call out will be included.

4.11 l'NISTRUT SUPPORTS UNISTRUT support type CA-1, CA-2, CA-8, JA-1, JA-2 and JA-3, are quali fied b;. tests or analyses.

These supports shall be evaluated in accordance with appropriate drawing of S-0910 package (Ref. 2) using the calculated L,

and Lr and appropriate design "g" values.

Other UNISTRUT supports, mark'd as "FAIL UNISTRUT SUPPORT" on ISO, shall be replaced or eliminated.

The replacement / elimination effort is considered as part of ISO validation.

4.12 TRANSVERSE SUPPORTS All transverse supports, marked as"CST" or "CHT" on ISO, shall be eliminated or design verified as multi-directional supports with modification to supports and clamps.

6

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 4.13 BISCO SEALS A bisco-seal is a "foam rubber type" fireproof substance.

It is used to fill a block out in a concrete slab or wall.

The conduit is not supported by the bisco seal and the bisco seal does !.o t contribute any load to the conduit.

4.14 INACCESSIBLE ATTRIBUTES (I.A.)

Inaccessible attributes are marked as "I.A."

on isometric drawings.

All I.A. items shall be resolved in accordance with Attachment K of this document.

4.15 ECSA (ELECTRICAL CONDUCTOR SEAL ASSEMBLY)

ECSA is mounted in the conduit system to protect the cables from the environment.

ECSA itself is qualified by Impell Corporation (Reference 13).

The peak "g*

values used for the qualification of ECSA's and the component weights of ECSA's are given in Attachment R.

4.16 CON' CRETE PENETRATIONS Conduit system may be continued from one room to another room tv penetrating through concrete walls or slabs.

If the conduit is embedded in the concrete, the ISO will be terminated at the concrete' wall or slab.

For veri fication of condui t embedded in concrete see Section 8.0.

5.0 FIREWRAP (THERMOBLANKET)

Firewrap or thermoblanket is marked on ISO as "FW".

For thermoblanket, the dry weight only shall be considered in load combinations having OBE or SSE effects.

The wet weight shall be considered for daad load without OBE and SSE effects.

7 I

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 5.0 FIREWRAP (THERMOBLANKET) (Continued)

The Unit Weight of Thermoblanket is as Follows:

NOMINAL CONDUIT DIAMETER (IN)

WEIGHT OF THERMOBLANKET (LBS/ LINEAR FT.)

DRY WET 3/4 1.0 7.3 1

1.1 7.8 1-1/2 1.2 8.9 2

1.4 9.8 2-1/2 1.6 10.8 3

1.7 I?.0 4

1.9 13.8 5

2.2 15.9 The unit weights given above do not include the conduit and cable weights, l

If the exact dimensions on the extent of firewrap coverage are I

not given on the ISO, extend the firewrap to the adjacent i

support on either end of firewrap shown.

If airdrop is partially or fully covered with firewrap, use 3'

- 6 length to j

determine the firewrap weights.

l Firewrap (thermoblanket) may be serving the function of L

separation barrier and/or radiation energy shield for the conduit (Reference 15).

Any conduit run covered by firewrap shall be custom evaluated per Appendix I of this document, using as-built information.

5.1 THERMOLAG Thermolag is marked on ISO as "TL".

The unit weight of thermolag is equal to 0.0491 LBS/IN.8 The unit weight given above does not include the conduit and cable weights.

8

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 5.1 THERMOLAG (Continued)

If the exact dimensions on the extent of thermolag coverage are not given on the ISO, extend the thermolag to the adiacent support on either end of thermolag shown.

If airdrop is partially of fully covered with thermolag, use 3' 6 length to determine the thermolag weight.

Thermolag may be serving the function of separation barrier and/or radiation energy shield for the conduit (Reference 15).

Any conduit run covered by thermolag shall be custom evaluated per Appendix I of this document, using as-built information.

5.2 MINIMUM CONDUIT SYSTEM FREQUENCY REQUIREMENT Using the minimum required conduit support frequency in RSM evaluation may not always be conservative because it may result in a soft system with first fundamental frequency on the left side of the floor spectra peak acceleration frequency.

To avoid this issue, the floor response input for the analysis of the conduit systems has been revised such that the response spectra accelerations on the left side of peak acceleration frequency are equal to the peak acceleration, for both Ol'E and l

SSE conditions.

For the analyses which were performed prior to Rev. 1 of these guidelines, the first fundamental frequency from'the computer analysis shall be checked against the minimum conduit system

(

frequency requirement for each floor elevation as shown on the Attachment Q to determine system softness.

This minimum frequency requirement is derived from all six response spectra curves (3 OBE and 3 SSE) and corresponds to the maximum of the left side peak acceleration frequency among all six curves.

l Should the fundamental system frequency from the computer analysis be greater than the minimum frequency requirement, i

these analyses are considered adequate.

Otherwise, these l

analyses shall be backfitted.

l l

l l

9

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 5.3 THERMAL LOAD CONSIDERATIONS Following thermal load considerations shall be given during ISO Validation.

a.

Thermal loads due to normal operating temperature need not be considered if-the conduit system meets all the conduit span and conduit support capacity requirements of S-0910 package for LS-Series, and the total length of the conduit is 75 feet or less between expansion joints in Safeguard, Auxiliary, Electrical Control and Fuel Handling Buildings.

This is also applicable to Reactor Building if the total length of the conduit is 45 feet or less between expansion

joints, b.

In Reactor Building accident temperature loads shall be considered for conduit runs exceeding 45 feet and as per 5.3c and 5.3d.

c.

In Reactor Building, unistrut type supports CA-la, CA-lb.

CA-2a, CA-2b, JA-1, JA-2, JA-3a and JA-3b shall be validated for accident thermal loads for conduit runs exceeding 15 feet and CA-8 for all conduit runs.

d.

In Reactor Building, conduit supports CSM-18h, CMS-181, CSM-18J and all other supports (including modified and "IN" supports) with similar anchorage with conduit support length less than 12 inches (along the cantilever length of support) and a total conduit run exceeding 10 feet shall be validated for accident thermal loads.

5.4 EVALUATION METHODOLOGY OF OVE". SIZED BOLT HOLE EFFECTS See Section 6.3 of SAG.CP29 (Reference 11).

10

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 6.0 DESIGJ CHANGE DOCUMENTS (CMC's, DCA's AND NCR's)

Previously generated design change documents shall be revi eu d if they are associated with the weld size and the adequacy of the welds only, and they shall be made an attachment to ISO package.

These documents shall not be referenced on ISO or on support drawing.

For conduit runs with modifications after ISO evaluation, all CMCs and DCAs shall be voided per Reference 5, prior to issuing new DCA or drawing.

All NCRs shall be resolved.

7.0 EVALUATION OF CONDUIT SPAN The span evaluation process can be divided into the following steps:

Selection of generic LS-drawing (s) that show a configuration a.

similar to the span being evaluated.

b.

Comparison of actual spans with the allowable spans given in LS-drawing (s).

7.1 SELECTION OF CONDUIT SPAN CONFIGURATION The following shall be considered in the selection of conduit span configuration:

l l

11 l'

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 7.1 SELECTION OF CONDUIT SPAN CONFIGURATION (Continued)

I a.

A bend less than or equal to I5o may be treated as a straight span.

b.

Spans associated with T-conduit shall be treated the same as spans associated with LBD.

c.

If an attachment using flex to cable tray is shown on ISO, the engineer shall obtain approval from Cable Tray Hangers (CTH) group.

d.

Use allowable spans with BCs for the allowable spans with unions.

7.2 COMPARISON OF ACTUAL TO ALLOWABLE CONDUIT SPANS Span tolerance of + 3" need not be considered for validating spans, supports loads and/or conduit frequency validation.

For LS series drawings, bends shown for conduit runs are schematic only (unless otherwise noted); bends may vary from 15e to 90s.

The maximum spacing between supports for suspended runs shall not exceed the Si maximum dimension as shown on LS-5 series.

For multiple conduit runs of different diameters on common supports the conduit (s) with the most stringent criteria shall govern the span spacing of the supports and spans shall be compared accordingly.

The minimum number of supports on a run of conduit which enters or exits a supported or unsupported Jun'etion box, shall be in

.accordance with drawing no. 2323-S-0910 (Reference 2).

Use the minimum allowable span length among all elevations for conduit runs which may be supported at more than one elevation.

If as-built span exceeds allowable, custom ISO evaluation shall be made per Section 7.0 of Appendi:s I to this document.

12

'r)

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

-FOR SEISMIC CATEGOEY I NO. SAG.CP25 ELECTRICAL CONDUIT-ISOMETRIC VALIDATION REV. 1 7.3 LOAD FACTORS The load factors for various configurations and buildings and elevations are listed in Attachment S.

Unless RSM analysis (Appendix I) is performed or conditions described below are met, these load factors shall be used to multiply the conduit loads (Lt and Lr) obtained in Section 8.0 to design verify the adequacy of the conduit support.

Under the following condition, the Load Factor need not be applied:

If the conduit system which includes conduit, and conduit supports and Junction box supports, is validated by the seismic acceleration of 1.5 times the peak "g"

values, from response spectrum curves.

8.0 CALCULATION OF CONDUIT LOADS ( Lt AND tr) AND EVALUATION OF C L A>f PS 8.1 CONDUIT LOADS The determination of Conduit Loads, Lt and Lr, for all the supports sna11 be done as per "LS" series of the generic S-0910 package.

If conduit configuration is not contaired in S-0910 package but is covered by LS-series of S2-0910 package (Reference 9), the equations to compute Lt and Lr from S2-0910 package can be used.

In these instances, the LS-series drawing of S2-0910 package shall be referenced in the ISO calculation package.

For double bend configurations, the calculated Lt and Lr loads shall not be considered to be less than contributary weight of 1/2 span plus all fittings in the entire span.

When Lt and Lr can not be determined, static analysis of the conduit run shall be performed to determine the conduit loads.

I h

13 l

l

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

/OR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 8.1 CONDUTT LOADS (Continued)

Conduit losds for the first two supports from the supported

' junction box shall be calculated assuming the conduit between Junction box and the adjacent support as an overhang.

For unsupported Junction box, the weight of junction box shall be lumped at the tip of overhang.

The term L4os used in the Lr formula for a support represents the conduit load from the adjacent span to the support evaluated.

Conduit load imposed on Junction box is equal to half the span to the first support times the weight of conduit (s) entering the box.

8.2 CLAMP EVALUATION Clamps shall be evaluated in accordance with Section 6.2 of Reference 1 using the calculated Lt and LT and appropriate "g" values.

The appropriate "g" values are defined as following:

a.

In the vertical direction idead load direction), appropriate "g"

value 1 +

g..:

l b.

In the other directions, appropriate "g" value

=g, The g..:

is the maximum "g" value of three component "g" values obtained from RSM analysis or from design "g" value table specified in Appendix 7 of Reference 1.

Attachments G and H of this document specify sizes of studs and bolts to be used in conjunction with the clamp allowables contained in Reference 1.

If clamp is not adequate, the ISO shall be punchlisted.

1 Use of A307 bolts in clamp connections is no longer permissible l

per revised S-0910 package.

Clamps with A307 bolts shall be punchlisted.

1 14

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

?OR SETSMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 8.2.

CLAMP EVALUATION (Continued)

. Clamps in_ secondary ISO may not be evaluated in secondary ISO calculation packa8e.

These clamps shall be evaluated during the design validation of common supports and included in the primary ISO calculation package.

In secondary ISO calculation package, reference shall be made to the primary ISO calculation package for clamp evaluation.

Clamp allowables using UNISTRUT bolts are applicable to clamps with UNISTRUT type member.

Clamp allowables using HILTI bolts are applicable to both HKB and HSKB.

Clamp allowables using Nelson studs are also applicable to clamps with A325 and/or A449 bolts.

d.3 CONDUIT LOAD AT CONCRETE PENENTRATION The concrete wall or slab thickness shall be verified when conduit is embedded in concrete.

Allowable bond stresses and load combinations shall be as per Attachment U.

-Should the actual concrete wall or slab thickitess be less than the required, RSM analysis shall be performed to design verify the adequacy of the conduit embedment.

In performing the calculation for checking the penetration adequacy, the conduit shall be assumed to be fixed at the penetration.

If slab or wall thickness is not sufficient, the embedment shall not be considered as multiple directional support.

!~

l 1

15 l

l

l

' TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.Cp25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 9.0 EVALUATION OF SUPPORTS All redline drawings are to be reviewed for deviations from generic support drawings contained in S-0910 package.

In ISO's calculation package, evaluation of redline drawing shall follow the support capacity calculation of each support.

If the redline drawing conforms to the corresponding typical detail in S-0910 package, the support shall be treated as a generic support.

Otherwise, the support shall be classified as either modified or IN support.

Redline drawings shall be made as an attachment to the ISO validation package.

When ISO validation package is prepared by New York Office (NYO), only the copy of redline drawings shall be made as an attachment to the ISO validation package, site will then replace this attachment with the original redline drawings.

Redline drawings show anchor bolt embedment length in Unit No.

1, but show only projected length in 2X conduits.

For areas with a 2 inch floor topping, embedment length of bolt as measured / calculated from the top of the topping, shall be reduced by 2 inches in design validating the support.

Those nreas with their room numbers which have 2" floor topping are given in Attachment L.

To calculate the "Embedment Length" of bolt, the following formula shall be used:

Embedment length = length of bolt - bolt projection length + nut thickness.

"Embedment length" is the length of Hilti-Kwik bolt extending below the surface of structural concrete prior to setting (tightening).

For length of bolt and nut thickness, see Attachment p.

16

I TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 9.0 EVALUATION OF SUPPORTS (Continued)

If the support frequency does not meet minimum frequency requirement or if support is not adequate using design "g" values, custom ISO evaluation for all the pertinent secondary and primary ISO's shall be performed.

9.1 SUPPORT DESIGN LOADS Support design loads shall consist of calculated conduit loads Lt and Lr and weight of shim and/or filler plates.

Use 2323-s-0910 CSD series drawings, or Attachment V to calculate weights of standard shim and filler plates when as-built dimensions are l

not available.

Oversize shim and filler plate weights must be calculated per as-built conditions.

Use the smaller support capacity from the top and bottom elevations when the support is located between two different elevation groups.

For additional clarification, see Attachment J.

9.2 GENERIC SUPPORTS For generic supports, support design loads must be compared directly with the capacity of the particular generic support for appropriate building and elevation.

If support loads are within the capacity given in S-0910 package, a statement shall be made that "calculated loads are less than the support capacity, therefore, support is adequate".

If cA'culated loads are larger than the support capacity, custom ISO validation as per Appendix I of this document sha)1 be made.

17

-TECHNICAL GUIDELINES PROJECT IDENTIFIrATION l

?OR SEISMIC CATEGORY I NO. SAG.CP25 1

ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 9.3 MODIFIED OR IN SUPPORTS Modified and IN supports shall be analyzed for support design i

loads in accordance wit.h SAG.CP29 (Reference 11).

If the support is net adequate, custom ISO evaluation shall bo made.

The following i t e n.9, as a minimum, shall be considered before accepting the support adequate:

as a-All welds shall be checked.

An undersize of 1/32" shall be considered for fillet welds.

Punching shear shall be checked for TS connections and for allowable normal weld force, see Attachment C.

b.

All member stresses shall be evaluated including 1/32" undercut at fillet weld locations.

c.

Code check by computer does not include checking the member for shear stresses due to torsion.

Therefore, member shear stress shall be computed by hand calculation, d.

For open sections bending stresses due to torsion shall be considered in evaluating member stresses, e.

Support frequency shall be computed with the consideration of base plate flexibility.

f.

Base plate and anchor bolts shall be checked for adequacy.

g.

Support shall be checked for all load combinations.

jf h.

The support capacity shall be reduced by 10% for any I'

rotation of TS with respect to embedded plate or base plate from So to 85*.

l i.

A325 bolts may be used instead of Nelson studs on clamps I

provided the torque applied is not less than that required for Nelson studs.

18 l

L

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 9.4 COMMON SUPPORTS When verifying a common support (generic, modified or IN support), loads must be taken from all the conduits supported.

Only primary ISO verification will contain calculations for the common support.

Secondary ISO's will contain computation for span adequacy and conduit loads Lt and Lt and shall refer to the specific support number and the primary ISO calculation for the structural adequacy of the clamp and common support.

For a problem common support, RSM analysis does not have to be performed for all conduits supported by the common support.

RSM analysis may be done for the selected conduit or conduits as required.

The support must also satisfy the minimum frequency requirement if all conduits are not analyzed by RSM analysis, 9.5 CALCULATION OF SUPPORT FREQUENCY The following methods shall be considered to validate support frequency with consideration of base plate flexibility.

a.

Modified Supports If the base plate used in modified support does not match the generic support base plates, then a base plate computer analysis shall be run to establish base plate spring constants.

This spring constant shall then be used in evaluating support frequency.

If the base plate matches the generic base plate listed in Attachment D, use the rotational spring constant of base plate to compute actual support frequency.

When the deviations to generic supports is such that it does not affect the support frequency, then frequency of support meets the minimum frequency requirement.

19

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

'OR-SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 9.5 CALCULATION OF SUPPORT FREQUENCY (Continued) b.

"IN" Supports Consider fixed connections for frame evaluation and use pin connections at base plate to check support frequency.

If frequency does not meet the minimum frequency requirement, then use actual spring constants at base plate connections to calculate actual support frequency.

Care should be exercised to assess that the minimum frequency is global or in the components of interest and not localized for complicated supports.

9.6 ROTATION'OF DESIGN "G"

VALUES Unless the RSM analysis is performed to determine the actual "g" values and the support orientation is known, the support has to be design validated in accordance with Paragraph (Y) Section 7.0 of Peference 1.

9.7 VERIFICATION OF LONGITUDINAL LOAD DISTRIBUTION The conduit load along the axial direction of the conduit run.

Lt, is affected by the relative support stiffness distribution.

Therefore, it has to be verified by the following procedure.

a.

Horizontal Conduit Run I

l 9R 1

x W

x l

=

E X) 937 Where Lt : conduit tributary weight' calculated based on S-0910 package or by static analysis K3 = summation of conduit support stiffnesses along conduit run in the tributary length as per Attachment W.

20 k

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 9.7 VERIFICATION OF LONGITUDIN..L LOAD DISTRIBUTION (Continued)

K.

conduit support s t i f fness at support i.

U

= total conduit load (lbs), including electrical fittings for conduit run in the tributary length, f

1 x

j x 386.4

=

27T y

ga = maximum floor response spectra acceleration at frequency f between N-S and E-W responses, minimum design "g" values.

gar :

b.

Vertical or Skewed Conduit Run on Vertical Plane L' L X

g x

(1+9)

R x

=(

(1 + 93F) floor response spectra acceleration at frequency ga =

f in vertical direction.

For definition of other symbols, see paragraph (a) above.

If L't is less than the support capacity, the isometric is adequate.

10.0 EVALUATION OF JUNCTION BOX CAPACITY AND JUNCTION BOX SUPPORTS a.

All redline drawings shall be reviewed for deviations from generic drawings.

Junction Box shall be considered adequate if the conduit load on the Junction Box does not exceed capacity as shown in JA-14 and JA-15 Series drawings.

Junction Box support shall be considered adequate if the total load on the support (conduit load, and Junction Box weight including contents) does not exceed support capacity of JA and JS Series drawings.

In other situations conduit capacity for smaller Junction Box for SJpport validation may be obtained as per 10.0b.

Further analysis shall be performed when load capacities are exceeded or the redline drawings do not meet the generic drawing requirements.

21

C

' TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 i

10.0 EVALUATION OF JUNCTION BOX CAPACITY AND JUNCTION BOX SUPPORTE (Continued) b.

Conduit capacity for the support validation of smaller Junction Box can be obtained as follows (smaller junction box has each of its dimensions (L, W and D) equal to or smaller than the corresponding dimension of the junction box from which the conduit capeity of smaller junction box is derived):

1.

When the anchor bolt location of the junction box support is not effected by Junction Box size, such as single cantilever type for JS Series:

New conduit capacity for the smaller Junction Box size can be obtained conservatively by adding the difference of weight between max Junction Box size and smaller Junction Box size to the conduit capacity corresponding to the max Junction Box size.

2.

When the anchor bolt location of the junction box support is effected by Junction Box size, such as distance between 2 MC3 channels shown on JA-12, the conduit capacity for the smaller Junction Box size can be calculated conservatively as follows:

a)

Add conduit capacity to the corresponding max Junction Box weight to get total weight (Wr).

d SML b)

Calculate adjusted Wt.

(W )

d MAX Where d SML and d MAX are distance between two anchor points for smaller and max Junction Box respectively.

c)

The conduit capacity corresponding to the smaller Junction Box size can be obtained by subtracting the smaller Junction Box weight from adjusted weight.

22

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 10.0 EVALUATION OF JUNCTION BOX CAPACITY AND JUNCTION BOX SUPPORTS (Continued)

EXAMPLE:

JA-12 Maximum Junction Box Size 30 X 12 X 12, wt 67 lbs.

Smaller Junction Box Size 24 X 12 X 12, wt 55 lbs.

d MAX = 30" - 2"

= 28" d SML = 24" - 2"

= 22" For group III conduit capacity (Corresponding to Maximum Junction Box Size) = 437 lbs.

Total wt : 437 + 67

= S04 lbs.

Adjusted total wt = 504 x 22 = 396 lbs.

28 Conduit capacity for 24 X 12 X 12 Box = 396 - 55 : 341 lbs.

11.0 EVALUATION OF PROBLEM CONDUIT ISOMETRIC DRAWINGS

. Typical problems encountered dur.ng conduit ISO verification are categorized as follows:

a.

K-factor violations b.

Span violations c.

Support capacity violations d.

Conduits attached to other discipline supports The procedure to resolve these problems is discussed below.

11.1 K-FACTOR VIOLATIONS K-factor violations occur when Lt and Lr can not be determined in accordance with Section 8.0 of these guidelines.

l 23

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I' NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 11.1 K-FACTOR VIOLATIONS (Continued)

In these cases, Lt and Lr shall be determined by performing stat.ic analysis.

The following method shsold be used when STRUDL static analysis-is employed to determinu Lt and Lr for a conduit support.

a.

One "g" uniform load shall be applied in the system global coordinates X, Y and Z independently.

b.

The support reactions should be listed for each directional load separataly.

When comparing with the support capacity, c.

use the maximum reaction from the nine values obtained in the static run for that-support.

Weight of_ filler plate and shim plate shall be included.

d.

When calculating the spring constants, use the maximum longitudinal and the maximum transve.se reactions respectively.

The isometric with K-factor violations shall be verified by performing RSM analysis in accordance with Appendix I.

Purpose of this analysis is to confirm that the actual "g" values at support with K-factor violation are less than the design "g" values.

11.2 SPAN VIOLATIONS Span violations occur when actual spans are greater than the allowable spans specified in S-0910 drawings.

The following procedure applies to the case when span violations occur but support design loads are adequate:

a.

Run response spectra modal analysis.

b.

Verify the following items:

24

TECilNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. I 11.2 SPAN VIOLATIONS (Continued) 1.

Support reactions versus clamp allowables.

2.

Actual "g" values versus design "g" values for supports.

3.

Conduit stresses versus allowables.

4.

Maximum resultant displauement (Dead load + Seismic) a t.

tip of rigid overhang shall be limited to one inch (l").

c.

If Item b.1 through b.4 pass, the ISO is adequate.

The following procedure applies when span violations occur and support design loads exceed the support capacity:

a.

Calculate the actual support frequency for failed supports.

b.

Determine support stiffnesses.

c.

Run response spectra modal analysis, d.

Verify the following items:

1.

Support reactions versus clamp allowables.

2.

Conduit stresses versus allowables.

3.

Evaluate the support for actual "g" values.

4.

Maximum resultant displacement (Dead load + Seismic) at tip of rigid overhang conduit, shall be limited to one inch (1").

11.3 SL*PPORT CAPACITY VIOLATIONS These violations occur when the actual calculated support design loads are greater than the conduit support capacity.

The following procedure applies to the cases when the support capacity violations occur but spans are adequate.

Verify the problem support with as-built condition for the a.

the following items:

1.

Support frequency to meet the minimum frequency requirement.

2.

Support adequacy with design "g" values.

25

-TECHNICAL GUIDELINES PROJECT IDENTIFICATION

.FOR SEISMIC-CATEGORY I NO. SAG.CP25 ELECTRICAL.CO!!DUIT ISOMETRIC VALIDATION REV. I 11.3 SUPPORT CAPACITY VIOLATIONS (Continued) b.

If item a.1 and a.2 pass, the' ISO is adequate, otherwise, follow the procedure in Section 11.2.

When the support capacity violations and span violations occur together, see Section 11.2.

11.4 CONDUITS ATTACHED TO OTHER DISCIPLINE SUPPORTS When a' portion of the ISO is supported by a support of other dtscipline, proceed as follows:

a.

Pipe Supports Two supports and two spans on both sides of the pipe support should be qualified for 1.5 times peak "g".

The remainder of the ISO could be qualified, as outlined in these guidelines.

This approach is also applicable to the cases s: hen there are less than two supports and two spans on either side of the pipe support.

b.

For the cases when there is a junction box on the ISO:

1.

When the support by other discipline is the third support from the junction box, then the junction box shall be qualified according to normal process defined in these guidelines.

2.

When the support by other discipline is first or secorid support from the Junction box, then the junction box itself including content of box and tributary conduit loads should be quali fied for 1.5 times peak "g".

26

+

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

'FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 11.4 CONDUITS ATTACHED TO OTHER DISCIPLINE SUPPORTS (Continued) c.

For the cases when the conduit support is attached to steel platform, bring the fact to' Supervisor's attention in order to obtain steel platform response spectra.

If these repsonse spectra are not available, the su' port shall be p

removed and ISO shall be design validated accordingly.

d.

.When the entire conduit run is attached to SRF through SP-series or IN-SP-series supports, the conduit span frequency shall be equal to or greater than 28 He and the conduit and its supports she'.1 be gaalified by hand calculations or

computer for enveloped 1.5 times peak "g" from floor elevation above and below the framing.

For conduit run partially supported by SRF, the conduit span frequency requirement mentioned above is applicable to tae portion of conduit run supported by SRF only.

In lieu cf performing the frequency analysis for the entire conduit run, the rigid spans given in Attan'. ment N may be used to t

validate the condait span frequency requirement.

Since the SPF frame has been analyzed using damping value of 4%'for OBE and 7% for SSF, the conduit system mey be design validated using 1.5 x peak "g" values from 4% OBE and 7% SSE finor response spectra curves (Attachment 0) if the entire conduit run is supported by Sre.

e.

Cable Tray and rl"AC Surnorts For conduit system which utilizes Cable Tray or HVAC supports, RSM analysis shall be performed for a representative segrent of the isometric which includes ="ch Ca' ole Tray or HVAC supports.

Representative segment sh 1

'nelude two supports and two spans on both sides of the

.ble tray or HVAC support.

The remaining pertion of the 3SO shall be "slified in accordance with these guideliries.

27

k TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP2C ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 11.4 CONDUITS ATTACHED TO OTHER DISCIPLINE SUPPORTS (Continued)

For the RSM analysis, the actual cable tray or HVAC support configuration (etiffnens and mass distribution) shall be included in the model.

Thia approach is also applicable to the cases when there are less than two supports on either or both sides c f the Cable Tray or HVAC support.

12.0 INTERFACE REQUIREMENTS Conduits in our scope of trork are sometimes connected / attached to the supports of subsystems / systems which are in the scope of other disciplines such as Cable Tray Hangers (CTH) and pipe supports.

In addition, conduits not in our acope of work may be supported by cenduit supports within our scope

-f work.

Interface requirements with Ebasco CTH group, SWEC and Impell shall be in accordance with Thak Description TU-TD-EB-033 (Reference 8), as clarified below.

12.1 CONDUITS ATTACHED TO CTl** & HVAC SUPPORTS CTH or HVAC group will not provide CDVG the support stiffnesses at the conduit location.

The stiffnesses will be calculated by the CDVG engineers during the conduit ISO's verification.

However, the CTH cr HVAC group shall provide the STRUDL" model of the affected CTH or HVAC support to CDVG upon request.

r'or Unit 1, the CTHs for Reactor and Safeguards building are in Impell corporation's scope, while all other CTHs are in Ebasco scope.

FPLs shall be prepr. red by CDVG and provided to CTH or HVAC group for their approval.

28

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I 12.2 CCNDL'ITS ATTACHED TO PIPE SUPPORTS For conduits attached to pipe supports, footprint loads (FPL) shall be provided by CDVG to SWEC for interdisciplinary review (IDR) and acceptance via an EB-T letter.

FPla shall be calcula'.ed using 1.5 times peak "g" values on conduit tributary weight.

If the FPLs are not acceptable to SWEC, the actual reactions at support location from RSM analysis shall be obtained and re-submitted to SWEC for IDR.

The pipe support stiffness shall be obtained from SWEC.

12.3 SMALLER THAN 2" DIAMETER TRAIN "C" CONDUITS Train "C" conduits less than 2" in, diameter cannot attach to seismically designed conduit supports without Ebasco engineering approval.

Impell, who is responsible for the design verification of Train "C" conduits less than 2" in diameter, shall provide FPLs and displacement at tip of rigid conduit to Ebasco for acceptance.

12.4 FOOTPRINT LOADS TO WEB PROGRAM Footprint load. at conduit support anchorage location shall be calculated and made as an attachment to ISO calculation package using standard form in accordance with Reference 4.

12.5 FOOTPRINT LOADS ON SPF When conduit support is attached to SRF to be analyzed by SWEC, footprint loads at the conduit support to SRF attachment locations shall be transferred to SWEC.

29

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC: CATEGORY I NO. SAG.Cp25 ELECTRICAL CONDUIT ISOMETRIC VALIDATICN REV. I 12;6 ENGINEERING EVALUATION OF SEPARATION VIOLATION a.

The following guidelines apply:

1.

DCA shall be issued as per Ref. 10, whenever separation violations exist, per 2323-SS-30 or TNE Procedure DBD-CS-15 as shown on Attachment 1.

7.

page 1 and 2 of Attachment I show methods to be used in evaluating the separation violation, and dimensions to be,shown on conduit support drawing, b.

1.

DCA that states the violation shall be prepared by the origine. tor of calculations and sent out to affected discipline / organization by the checker for interdiscipline review.

If a support is released pending approval of the DCA, the copies of the transmittal letter and DCA shall be made an attachment to the calculation package.

2.

When response from affected discipline / organization is received, the date shall be entered in the log book and a copy of the DCA shall be made an attachment to the calculation package.

3.

If approval of DCA is received after releasing the support drawing, it vill then be irrorporated into calculation package during next revisiva or ISO evaluation phase.

In the interim, A copy o f the approved DCA or letter will be left in the calcalation package.

1 c.

Whenever separation violation exists between two conduit /

junction box supports, both drawings shall be identical in showing the violation.

If both support Jeawings are not identical or one drawing does not show the violation at all, the inconsistency shall be rectified, r

30 L

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1

13.0 REFERENCES

1.

Ebasco Specification No. SAG.CPIO. design criteria for Seismic Category I Electrical Conduit System, Unit No.

1.

2.

Drawing No. 2323-S-0910 Package.

3.

Ebasco Manual of Procedure Appendix Q, instruction for Unit No. I conduit calculation package preparation.

4.

Procedure ECE 5.11-04, reporting attachment loads information to Civil Engineering.

5.

Procedure ECE 5.01-I3, Design Change Authorization.

6.

CPE-FVM-CS-033, Design Control of Electrical Conduit Raceways for Unit No. 1 Installation in Unit 1 and Common Areas.

7.

CPE-FVM-CS-014, Design Control of Electrical Conduit Raceways for Unit 2 Installation in Unit 1 and Common Areas.

8.

Task Description TE-TD-EB-033, Interface Control Guideline.

9.

Drawing No4 2323-S2-0910 Package.

10.

Procedure ECE 3.06-05, Evaluation and Documentation of Concrete Attachment Separation Violations.

II, EBASCO Specification No. SAO.CP29, General Instructions for Design Verification of Electrical Conduit and Box Supports.

12.

EBASCO Specification No. SAG.CP2, Design Criteria for Seismic Category I Electrical Conduit System, Unit No. 2.

IJ.

Electrical Conductor Seal Assemblies (ECSA's), Specification l

No. EC-28 (IMT-2445, Dated July 9, 1987 form Impell Corporation to R.

Iotti, EBASCO).

14.

TU Electric conduit supports tra.ns A and B and train C > 2" diameter Project Status Report (PSR).

15.

Specification 2323-MS-38H, Cable Raceway Fire Larricts.

31 1

1

TECHNTCAL GUIDELINES PROJECT IDENTIFTCAT80N FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT "A" SH. 1 of 1 The following memos, which contain interim instructions, guidelines, and procedures for ISO evaluations.

The content of the listed memo has been incorporated in this guideline.

1.

2X-CP/C-019 Dated 02/24/87 2.

2X-EB-9-87-026 Dated 02/12/87 3.

2X-CP/C-022 Dated 03/10/87 4.

2X-CP/C-015 Dated 02/10/87 5.

SAG. TUG 1.8012 Dated 10/20/86 6.

SAG. TUG 2.4175 Dated 10/02/86 7.

2X-CP/C-012 Dated 02/04/87 8.

SAG. TUG 1.8053 Dated 02/20/87 9.

2-CP/C-845 Dated 10/17/86 10.

SAG. TUG 2.4129 Dated 09/29/86 11.

SAG. TUG 2.4221 Dated 10/14/86 12, 2-CP/C-1286 Dated 02/07/87

13. SAG. TUG 1.8063 Dated 03/06/87
14. SAG. TUG 2.4220 Dated 10/13/86
15. SAG. TUG 2.4127 Dated 09/29/86
16. SAG. TUG 1.8051 Dated 02/19/87 17.

2-CP/C-932 Dated 11/05/06 18.

SAG. TUG 1.8033 Dated 11/20/86

19. SAG.TUGl.8020 Dated 11/06/86
20. SAG. TUG 2.4449 Dated 11/26/86 21.

2-CP/C-515 Dated 07/18/86

22. SAG. TUG 2.4677 Dated 01/22/87 l

23.

2-CP/C-1110 Dated 12/15/8G i

24, 2-CP/C-1903 Dated 08/19/87 25, 2-CP/C-1523 Dated 04/14/87 26, 2-CP/C-1550 Dated 04/24/87 27.

2-CP/C-1625 Dated 05/12/87 l

28.

2-CP/C-1626 Dated 05/14/87 1

29, 2-CP/C-1650 Dated 05/21/87 30.

2-CP/C-1737 Dated 06/19/87

31. 2-CP/C-1738 Dated 06/19/87 l

32.

2-CP/C-1762 Dated 06/25/87 l

33, 2-CP/C-1760 Dated 06/26/87

34. 2-CP/C-1825 Dated 07/16/87 35.

2-CP/C-1864 Dated 08/03/87 1

u

TECHNICT.L GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT B SH. 1 of 5 LIST OF RIGID GENERIC SUPPORTS SUPPORT SUPPORT TYPE LENGTH FREQUENCY CORRESPOND'C CAPACITY RE.vAPK IM LBS.

CSM 18a 2'-0 34 42 1.

Type 17 a a c 3'-0 34 42 Det. 2 4'-0 35 18 CSM 18b 1'-6 33 359 2*

Type 17b 2'-0 33 46 2'-6 33 33 CSM 18c l'-0 35 465 3*

Type 17d-1 l'-6 33 265 2'-0 34 205 CSM 18c l'-0 33 314 Type 17d-1 l'-6 33 237 g*

Det. 1 2'-0 33 95 CSM 18c l'-0 34 60 Type 17d-1 l'-6 34 47 J'

Det. 2 2'-0 CSM 18c l'-0 34 493 6.

Type 17d-2 l'-6 33 282 2'-0 35 92 CSM 18c l'-0 33 327 l

Type 17d-2 l'-6 33 211 7*

Det. 1 2'-0 33 92

~

CSM 18c l' 34 60 l

Type 17d-2 l'-6 34 47 l

8.

Det. 2 2'-0 l

l l

CSM 18c l'-0 33 30i o

Type 17e-1 l'-6 33 197 2'-0 33 57 CSM 18c l'-0 33 235 Type 17e-1 l'-6 33 173 10*

Det. 1 2'-0 l

CSM 18c l'-0 33 57 11*

Type 17e-1 l'-6 Det. 2 2'-0

TECHNICAL GUIDELINES PROJECT ICENTIFICATICN FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATIOft REv. 1 ATTACHMENT B SH. 2 of 5 LIST OF RIGID GENERIC SUPPORTS SUPPORT SUPPORT TYPE LENGTH FREQUENCY CORRESPOND' C CAPACITY REMAPK IM LBS.

CSM 18c l'-0 33 365 12.

Type 17e-2 l'-6 33 120 2'-0 CSM 18c l'-0 34 274 13.

Type 17e-2 l'-6 33 98 Det. 1 CSM 18d l'-6 33 47 14*

Type 17f 2'-0 2'-6 CSM 18e O'-6" 45 700 Type 17h O'-9" 38 563 15.

l'-0" 33 462 CSM 18f l'-0 34 226 16.

Type 17di-1 2'-0 34 144 (L2= 1'-0")

CSM 18f l'-0 34 180 Type 17d2-1 17.

(L2 = 1'-6)

CSM 18f l'-0 33 203 18.

Type 17dl-5 2'-0 34 138 (L2 = 1'-0)

CSM 18f l'-0 38 164 Type 17d2-5 19.

(L2= l'-6)

CEM 18f l'-0 36 160 20.

Type 17el-6 (L2 = 1'-0)

CSM 18g l'-0 33 151 Type 17j l'-6 36 82 21.

CSM 18h l'-0 33 42 22.

Type 17k h

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I i

NO. SAG.CP25

)

ELECTRfCAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT B SH. 3 of 5 LIST OF RIGID GENERIC SUPPORTS SUPPORT SUPPORT TYPE LENGTH FREQUENCY CORRESPOND'C CAPACITY RE.MAPK IM LBS.

CSM 18j l'-0 33 105 23.

Type 17m CSM 38 l'-0 40 317 24.

Type 36 l'-6 36 237 2'-0 36 180 CSM 39a 2'-0 33 1519 25.

Type 37a CSM 39b 2'-0 57 1755 26.

Type 37b 2'-6 56 1492 3'-0 61 1097 CSM 42a 2'-0 33 234 27.

Type 40 28.

CSM-27 3'-6" 30.4 760 4'-0 36.7 468 4'-6 54.3 180 9

m

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I

/:A.JCi IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATirH

ggy, 1

ATTACHMENT B SH.

4 of 5 LIST OF RIGID GENERIC SUPPORTS SUPPORT SUPPORT FREQUENCY TYPE LENGTH AP REMARK IN LBS.

CA la 33 96 29.

30.

CA 3a & 3b C8X11.5. 36"L 33 6

3/8"0HKB.1/4"B. PL 33 29 Detail 1.

31' CA-Sa 3/8"0HKB 1"B.PI

> 33 158 3/8HKB 1/4 B PI 33 28 CA-Sa 3/8HKB 11/4 B F L 33 150 ATT. DETAIL 1 1/2HKB 13/16 B PL 33 528 1/2HKB 13/4 B F L 33 t

807 1/4HKB 3/4"A CF D

> 33 28 1

1"O 38 DETAIL 2 CA-Sa 1-1/20 32 3/CHKB 3/40CND 81 1"

73 34.

1-1/2 48 2

97 2 1/2 107 3

105 3*'

4 o

93 5

73 CA-5b 1/2"0HK6 BR 3/4 33 1410 SECT. A-A 36.

3/8"0HKBY4"B PI, 33 29 ALT. DET. lA CA-5b 37.

3/8"0HKB 1"B PI, 33 158 CASE Ia 33 119 CA-SC Ib 33 235 38.

iia 33 470 iib 33 560 C 4X7.25 L=10" 33 155 1 CONDUIT

^^

C 4X7.25 L=2'-0 33 100 2 CONDUIT l

TECHNICAL GUIDELINES PROvc.C'A 10 tu i' A FICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT B SH. 5 of 5 LIST OF RIGID GENERIC SUPPORTS SUPPORT SUPPORT FREQUENCY (He)

CORRESPCND"G TYPE LENGTH CAPACITY REMARK IN LBS.

40*

L p1=4"-O,

33 192 3/4"O HKB CA-11a L pl=4"-O 33 249 1"O HKB

X6 w 3/8"p1 33 375 CA-11b 41.

Lpl=13f2" 42.

C 10X15.3 w/1"p1 CA-13 33 18 L pl=34 - 3/4 SECT. B-B 43.

CA-14a 33 41 TABLE A L 8X8X1 l

SECT. B-B 44' L 8X8X3/4 33 30 TABLE B SECT. A-A &

AB E 45.

SECT, B-B 33 30 l

L 8X8X3/4 or CND or l

L B x b x 3/4 SMALLER)

SECT. B-B CA 14C L 8X8X1 or 46*

L g, g, pg 33 15 TABLE A 1

CASE I 33 138 47.

CA-16a For CND 5"O to G

48.

CA-16b CASE III 33 138 For CND 5"O to CASE IV 33 55 1

I i

=

TECHNICAL GUIDELINES PROJECT ICENTIF'.CATICN FOR SEISMIC CATEGORY Z NO. SAG.CP25 ELECTRICAL CONDUZT ISOMETRIC VALIDATION REV.

1 1

ATTACH >ENT "C" SH. 1 of 1 ALLOWABLE NORMAL FORCE FOR STEPPED TUBULAR SECTION CONN.

MIN B:

ALLOWA8LE MIN B:

AL.L OWASLE MIN 8:

AL LOWABL E 1

WEbbF 1

WE$hF.CE 1

WE$DF CE c0 D

c0 O

lbs/*

CE O

ins /*

O lbs /

.5 792

.4 4507

.43 1257

{x4

.625 845 jX5

.5 4507

{X7

.57 1282

.75 1055

.6 4695

. 71 1527

.875 1811

.7 5366

.86 2611

~

.5 1408

.8 7042

.43 1811

{X4

.625 1502

.33 528 l X7

.57 1847

.75 1878

{X6

.5 528

.71 2199

.875 3219

.67 597

.86 3760

.5 2200

.43 935

.375 396

{X4

.625 2347

.33 939

{X4

.5 396

.75 2935

{X6

.5 939

.625 422

.875 5030

.47 1061

.475 905

.4 634

.43 1864

.375 704 1

{X5

.5 634

.33 1467

{XS

.5 704

.6 660

{X6

.5 1467

. 625 751

.7 754

.67 1659

.475 1609

.8 990

.83 2600

.375' 1100

.4 1127

.33 2112

{X8

.5 1100

{X5

.5 1127 jXS

.5 2112

.625 1173

.6 1173

.67

??.89

.475 2515

.7 13/5

.83 3743

.375 1584 j,v

.43 452 lX8

.5 1584

.8 J

.4 1TSO

{X7

.57 462

.625 1690

)X5

.5 1760

.71 549

.875 3622

.6 1833

.44 940

.375 2817

.7 2095

.43 804 lX8

.5 2817 i

.8 2751

{ X7

.57 820

.625 3004

~

.4 2535

.71 977

.875 6438 lX5

.5 2535

.84 1671

.4 2641 l

.7 3018 y

.4 3961

Ap pe r.:i:.x 3 SH. 1 of 19 R::2 ::: r.31 5,tring COnstar.ts For Generi Base Plates Ar.d L:.if Frequency For Generic Conduit Supports.

Support Anchor Base Plate Rotation Cut-Off Type Bolt Size f.

Spring Constant Frequency Remad Size Attachment (In-lb/ Rad).

3 cA -3 ct

' lit *8 L 6 s 39,kg KMX=

9g, *7z,90 x% *ks n y s' n a 1

l (Case 1)

Y'!V'MI C 8 n 115 KMY,1627 89,go (a = 12")

KM2s 491.81 e ed

'fk;hl(

e :;

..- p 79,g7st) ec 4

,s CA-3a fz,$Hk8 f,, 4, 3 Vz,379 KMX =

(Cafe 2)

WS956MB.

C8x11.9 KMY: 690. t3 s 10 L f l

'1 ' "" '

(a s 6")

KM2 = 537.66,to) w......

3 XMX =

88.27s10 1[$gg

[ g, jfg y /g CA -3a

/

KM'(

1570.13,to)

P (Case 3)

"/d2 fMS.

C6 x 8,%

M %

(a s 11*)

KME a 31%. 9 7.to'

% a-m'=%

3,;;}M:.,, p 3

CA - 3a

'ti+ ws L s s 3t2 n%s XMX s 7 1 3 8,10 s

K M Y s Io t 2,g 9,to) c.

L ( % " ne a.a W/S$ EMI.

C4 = g. Z (Case 4) 2 (a

  • G")

KME = 3 80.03, ss' KMX =

gg, tg,go) y

! "p yg L 6 s j!/2 s 33 Q

CA -3s KMY = 1596 94.so' 9', g,, a (Cage 3; 959M8.

C e a it.s (a a tz)

KM2 s 491.L)sfl

~~

Lt i,5lnj c A - J a-

%"ews L G x Jtzsh xMX =

79 10,1)

(Case 6) 2./! S! (*'8 Ce s 115 KMY s 693. 25,so) g j W 's' G-- ! " ~ '

3 r

(a = s ~)

xn a. 537.0910

_ sk*:

cA-3a

'ti$nt L s = 3ff=3 s KMX =

76 o fsto' hn,

st&;.g... y

/

r m

u/rh tng, cs, g,z KMY = 9 96. 7fsto g

(w,,,

z fa, s ")

KM2 = 3 79 44 e 1.i.,,,:24 w' T&' ', 's

.e i.

~

  1. MS L 6 s 3Y18 Vg KMx = 139 7 t, go)

CA - 3a

'/'NE'"'

c5 s y KMY =2097 91 10 L ; ' k ;!,v

((,,,g; l

(a. a s ")

xnz = 355 38 to u

c,g. 3a, Vi$ nB L 6 p JVz s h KHX= 131.4110)

_, _,f a q

'Y'h"E"8.

Ce s 7,25 KMY s 27 6 7.98,lo' y'$ f h j (Case 9)

(

(a = 6 ')

kMEs 2 9 s. 92 =to

}

e., m 3

t 3_

a y

a. :.2s

$w' L

N I

(

per.
x 0 SH. 2 of 19 R2
1:nal Spring Constants For Generi: Base Plates A..d
.:: - : f i Frequency For Generic Conduit Supports.

Subport Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency Remark Size Attachment (In-lb/ Rad).

CA - Ja l'2 t.txe L 6 12'!z x 34 XMX =

162 73,,l

_, _ y a a, xMY tsas.n.f

Q.
T@V %3 (caseto)

"I'h *' *

"e ) # 1. '

m%.

'~

ca a")

Kni.

a c 3. u,10 1 :, t -m s - ud CA-3a W9 xx8 I6'%$*/s' KMX e t 97 18 0

N ! ^

,,, i ^ $

' ^

(Case 11) 45h*t4 MC 3

  • 7.1 KMf. I2 644.21od T*

(a s 12")

KM2 a 317.55eth Q"n Y

g ite e.s tlp nes LGx39 nyg KMX=

89.tz,r/

7 i

t cA 3a

/

KMYa 793 56sIO Dm"<d o' q s1's'itns.

Cf x 115 (Case 12)

EM2: 112).20st/

h kJN,P g+ ~y.....

se s.,

3 lHx8

$ f4'x 2"x 31' KMX s 32.gagg g

s,.

g4.g,

"/nMs. amenneur: a. A. RM Y = u. A.

'p Corr 1) 47. coni l

  1. 1

/4,n r i (a. m.os=)

xMe -

    • k!

CA.Sa W93ra 2 4..r 2 x.3t" xMX =

92.1910 3

  • p O

C OST.1)

U/2"Eno arracxMeur. n.a. KM Y =

u.A.

3 g{N' i

(a e f.5*)

KMt n 47 0 onto l

CA-Sa

&"$HES $ !* s %" a 3('

KMX w.3927 57 slo)

~-

(pg,.,,;

uf2 ' ens, arraenneur:u.a. xn y, u.A.

3 (A = 10.ef')

KM2. 290 6f"\\0 ft y

f (N</g i c:

l c.

I W9ms, t '4*s z

  • aoy '

KMX =

91 77sto' cs.ya (gir, pgy, ;)

lu/2 '!MB. nrracerur;ua kM1' n u.A.

'z 3

KMt =

A 6. 4 9 =10 (1 '

l.

/'/s; ~.

y. ga Jg*pyg3

& I!4"n 2E 17' KMX m Sp 78 48,t0 3

    1. "#'I ' "' #
  1. M 1' *

"'A' ptr. OEr.1)

Y2"GMo.

3 RM2a 2 fJ. 2.3= I0 l

CA - Sa

'l#MLB & I!f(x 2%17" KMX s ?4:i7.!)sgol m, c,,.,y qsYens macuncur: a.> uur. us.

KM2 s 740.4hro,

A ent:x 0 SH. 3 of 19 "O53 10n31 3.cring Constants For Gener: 0 Base o'a:e-

-4

~

Frequency for Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Type Bolt Size ';

Spring Constant Frequency emark Size Attachment (In-lb/ Rad).

CA-Sa

'it*f NES. $ (Ws 2"n ly' KMX s 18844.24 x1o3

(.st.r. ogy j) p/'5W!:18. ATTAMENT: N.A. MM Y s y. s,

3 MME = 81?.13 n to

.R f

e' s *,.

CA - S'b k"pts 8 $fs'nl4"n 20 '

K MX

  • 5192.0S n103 (SEc. A.A)

Vr$' 1nt. ATThe mstvr. u.A KMY M A-3 rMa s 4758.13 s to

'A ljN hj-v U

<+

CA - 11n 1"q ygg

$ l'9 < 7 "n W XMXa g34.69,1o3 (noptz oj) w/7"tes.

cc 19.1 XMY. 99791 25 s to, MMie 1398 03 *

4 4' '. 7's 48 '

KMXs 734,$4 n to)

.jY

  • 4[,,

C A - 11 a U$' NES g

I (M00EL *2)

Wl$'lgg.

c6,82 MMY slif 22T.60 s 10

' ^^

KM2 1388 2f m to s F s"

m, CA - 1(w I'fHKB k,1*p7",4$"

KMXs I??I.76 n 10)

KMY s I10521.44 s to)

W/7' ENS.

C 6 s 8.2 (gnpyg ey; KM a f439.16 s10 CA - 11 b

$$ NL'8 $.i$5 6"* 13W kPIX e y1. 09 s 10

\\<

,g 3

a (rooft, *Q u/5d' IMt.

C3s6 KMYn 7 143.79,to

,T,_;g

{

w

'v

^

KM2 = A07.55 s to a

3 a

o l

cA. t t b h.*f*3 43/554'n6.5' KMX s 487 2%=to)

, a.

[i. w::::.wA M=

(mcet *2) "/A't"*.

c3as x n r a s24g.49,to }

J l

uMr. 3o. 3,,,o It b

a o C A - 10 3/4 /#r$.

2 l. 6 x 4 m h gMx. 17 f s,ot s to3 (MODEL *l) v/6 *2MS.

mcg,gg,3 gM1 s 4+f 49 11.s 10 s'g f

  • a

_. Q.

6:M 2 a 630 01x10

'l'o hC. a r.-.- d ut

(

j l

L

A.: : =.. I 1 x SH. 4 of 19

? 03:10nal 5. ring Constants for Generic Base Pl.ates A:.d Cu:-:::

Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency E***#N Size Attachment (In-lb/ Rad).

Jg"pygg 2L Gsts%

KMX e I2$7.0) = f0#

h, C A * '*

K"Y ' 21733 d *,s

'T

^

%~

ys"ms.

Mcsns.3 (nocu *1) eHa.

767.SIcI*

  • - a^

"r t.

%"pux8 & h"s14"a]&l KMX=

926.!!stl

    1. ' 'b y

KMY a 32475 79'If

'Q l'"" ' 9 ujg"gny' c g, gn, g m.4sn 8s3 s2i; xM2= ** 39 ' *

&? s,

(, _ g3 h" MK$

& 3/g"Al)*x3h4 kMX =

968.97s10 5

v/g'gna c g s 10.5 M M Y = 31 0 00'30 3 ra.37r,"b.3.izi) xM2 =

361'*

q

\\ h l'*" * *)

m 1

I i

s CA - 13 Y4fMC8 $ b"*'0#0#

KMx ' 35 'B2'I#

~

Cios173 KMY = 440'53

~

""'0 f,)y s

(a yg,23,* b e),425') 4M& =

205'70'I

$ 3/g's1+s34f4' JCMX=

t)2).43 slo' 3 'f HK8 R th C A - 13

/4 3

4 s.k MC 6 s I%

(Case 4)

W/5"fMB.

KMY s 32087 16 *lo 3

, y" y,g y, 339,2o,ro N

gj, fy g"pg & h"x f 4"*3d4' fMX z If67 044to

c. "

3 McG s 15 3 KMY: 3083185*l0 (Case -5) y,, ggy-3 (a,4.27, b,3.47j, ggy, ygg,gy,go C A - 13 3/4 fMt3& h"'16 s34f4' KMXs 323.20mto (case g)

W/S 'EMB.

C 0 * S KMY = 37732.61*IO 3

(a.S.25,*b=3.6tS) KME s ISS o)4sto cA

'3

/4 $NKS & ("s /t'n 34h' KMX =

380.60sI0' KMY = 46723.25'If

((,

_y v/S"tMB.

C 10 s 15. 3 ca.s.21,'s.y1s) KMi. zos.sS t0 c.1 14 a 1"f WSko L 8x8x1 KMX =

517.21s\\0' y+

2 T

\\

(Casei) "l0 l'

  1. HY
  • 3 C 6 t 1)

MMZ =

92 0.56 slo g

~

1"$ x L 8 x8 x3/4 KMX =

338.mso)

Ch 14 %

U/0b,sts

, v' '

MS.

c 6 s t]

KMY =

M l' y

(Case ()

kMT '

6 52.f7st/

p/

3 01.gos to)

  1. x L

Ch-14 %

WfNKB L 4 x 6 s3/4 MHi

=

(Case AI)

LJ/hjEM KH1 =

u.A.

)

ggg 93 xMr =

ss2.its ee

A:F:n:..x 0 SH. 5 of 19

?::ationa' Spring Constants For Gener:

Base Pla:Es A:.d N -:ff 0

Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rots. tion Cut-Off Type Bolt Size &

Spring Constant. Frequency Remark Size Attachment (In-lb/ Rad).

& l'x 6"s tF" yMy. qg gg,g3, go l C A - 14 c l'qHSxs uj' (pg, K M Y " H'h' (Casef) g 3

C6s13 KMta s185.29,10 2

Y C A 14 C I"$HSK8 4 1 ** 6 's IS "

KMX = 6 33. 32. t0' (Casef)

W/d{tM) M 9stsh gmy.

u,s.

3 4,

g,,

A c 6 x 13 KM2. to f 0 69 sto f.

k T

CA.14 c

%'+$ g t

  • u g a rg*

MMg. g49. 33, to) u 2 g v/t. 9 x 6s k gMY =

u.A.

' /ci' *tn (Case d )

3 a

ce s t3 KMZ

  • Glo.23*l0 A

r i

+.

3 "$ Hts g t. 4 x ts

  • KMX = 609 60 z 103 V

CA-14C 4

(Case '2 )

W/d1me. u/ l. Fu e r k gMY,

H.A.

546.04 10, cd s s3 ess.

C A -s4 c 1*p 21 l 1"n 6"a IS*

x Mx e 46733an)

(Cate O)

U/L9w8u3/4 fcMy' s

u. A.

3 C 6 s t3 KME = 146f.8ht0 CHM-tw Ife"hste !.Ss5mJA KMX s+ 20011 = to}

z K.MY s 9sss $7,',l3

\\

(Case 2)

Vi$tEMB c6 s10.5 4

  1. "l.'h)

KMc z15137 55 to)

). n,(

c CHM-1a

!!4'f.Mtl ! S * !"'A MMX * + 2'00*'s' '. *ro$

'h

- 123.r r

NM Y

  • 93?6 18
  • to'3

%. \\

(Case. 4)

Y,,4,*

C 6

  • 10 5 $

o att;,Q, K.M2 = 16182,0s a to c

CHH-Za IV+ 9hv8 2Lg>egs.}4' KM)c a 40239 44 sto l 0

(CaSC-2)

W/tWLA.,47,,gg gy,(, 32194,y1 a1o f gin Y

(s.53'b s.s,'c.y') MM2 = 19313109 s1l g*

CHM-2%

1&*f)stj g L, g>r 5, 3/4 MMX a $1764.0).&

\\l (Calt-4) w/$'j,'fM8. gyqtoy25 KMY s 29933.65 *10 3 (a o15, ben,'Ce4s') E D E' " I'0I4 9 ' 4 " to CHM-2a IVe}Hito.2 f.f<Cs.V4 xMx = 4440234 *M K

(Calt-6) uj'h[ EMS,.2 We # af KMY n 30739 57a10 e

1 KMa.133302.tr "3

(

(..,,, s,,; c.);>

l A::end x :

)

'~

SH.

6 of 19 Rc ational 3;;r;n; Constants For Generi: Base Plates And.';;-;;;

Frequency For Generic Conduit Supports.

Support Anchor Base Plate Rotation Cut-Of!

Type Bolt Size &

Spring Constant Frequency Remark Size Attachment (In-lb/ Rad).

CHM-3a s4 IW9MstS L 5s5=h KHX : 1383,70, 103

_ a

-c o o=53 KMY 103fd f 7. to#

f, Y'3 "I

(a s 3.%' b = 8.75)

KM E.n 28264.78 = to

=

~ ' '1.d CHM-3u 44 sV4m8 LSnin34 KMX= 1439.S S s to' k =i#

( L ' '7' f *)

KMY = s 03g3,52. to)

G ujidg*!ra.(a,g ll<, [f.gy KPlE

  • 29877 48 =lo L 5 = 5m h Kmxs 1350.69, t0 3

'g_c,o CHH-3a *4 I"p 21.

v

( L = !$")

3 Y

  1. P'Y * '3 S 3 0'4b * '0 cto 15.3 3

(a,3 ~, y, 7 "y KM2 x 447 5.08 xIO CHM-3@

I!4"9 Hits L 5s SF 3/4 VMX=

1?1 G.16 =I0' 3

t./t)!y"fMS L e 2.Y) guy, q99 qg.41 sso

/

C 10 n !!.3 (a r t2 *, b e r2') KM2 s 67562 5f slo)

CHM - 3w

!?4')pyg L 5

  • 5 = 3/+

KHXs is 62.28 s rol l 1.$' EMS MMYsIS41?.72nl0 l

c,

,y (a = 72" b ut6.9') KMt n GSI43 61 n10 CHM-Ja,44 1"pgl L 5 ' S' 4 KHy: 2g49 33 a90 3 KYY ' ' 73'l ' 35 ' '*

c lo n ls.

(s. 6.25", b e c,25) KMl164848 90sI CHH-Ja, 94 I"$MLB L S s S x 3/s kMxs f356 7sato.)

ul "fMB.

f,"o,,,"3 K M1 x 7$4 5 70 x10

?

<,.a.2eu. mee.n m.n d l

I w

MD

t.pp2ndix D SH. 7 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports, Support Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency Remark Size Attachment (In-lb/ Rad).

\\ll Ti t a t s '4 "

17 g"4gg & P[c 5"a $'[

C sM - t O i.

un2=l.wto) gu y : 4.142 x lo z_J 4,,,y; j+

\\d-I T6 4 3 4 A 4 gy

  1. ~

CSM-ISC 7

/ "M HX8 ftIAlll*ll.

g g y'

  • i. 617 x 10, d '7 M I6 C ~ I

+

2 t

2 W - IM W C'?M - I G C H.

W 5p;

++

x!

l 1d 2.

T5 4 A4 A'4 C5M-ibC CSM-IBC - 9

/ "1 HW k8 \\

1 ll 'll 1

<"Y*57"I 2

C SM-16C - Yl 9 g"g K g Z r 1. 5 M alo7 17c-1 T S 3 A t m'4 C5M-lBC C SM-lBc - g l[d H;6 g /..2 sj#g sq/ e xmy,l.ilt < to7 t

7 y

CSM IBC. X W/ r '; 6 WMZ = 1.116 s \\0 y

17 e - 2.

T 5 34 3a'4 CSM 16C n

7 C9M-l 6C Xill 'IfNO Q,#g"s{ 1 x 1 KMY ).089 = 10 C SH - lBC XLV w/ g/ "M'

K #1* \\'#59' iD 2

O #^4*I C 5M-iBd

g. 3 "A 12'A 12' KMY = 1.'072. a to' 3 '1 H%

c9M-IBd I 4

4 7

csM I&d-0 W./ 5%

Kkz 2 1.o72.sto 17M T S 2 A t A '4 y

I ) M6

['

4,I "A I" O '2 KMY:l399xto

.z-2 CSM-ISj 2

W/ 3'g'Hl.

K AZ :'5.079s io"

/

l

'N TS 1 s t s '4 3"pH6e gg",cf,gf"

    • T* 07^10 CSM 18h s

2 6

t!'

p/ g*a;,

RRta\\.b>>sto I 4^4* 6 fY CsM 1Bb 7

C S M-IS b-I l 4 H66 tl"wl{xth" kuy = t.$39 a 10

+l+

d P 5 M -186 I.

w/ p g-KMZ = 2.tS9 s 10 7,

7

  • r b b^ b* 4 C5M. IS a R)# " 29924" <KMT*7641*10'7 C S M - t ha. I l'4 Mb 4<

" *'

  • l4 '
  • 10 c5M Ik u W/ 6'im.n "b

g m x : 9.19 5 lo' y

csH $7b i "pga d

S" ~ 6"

, gay = t.19.lo' t

,+--4 (dA W 1 0 w/. 5'M z#

Append x D SH. 8 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic' Conduit Supports, Support Anchor Base. Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency Remark Size Attachment (In-lb/ Rad).

Mb k " "* " '\\0*

1*

C 5M. 37 6 d Ss$'

5 i

(CASE @,6'J ggy = 4.17 a g o

%/g Ts up '4

,+- ---

z/

Mb m at.06Sclo*

/"

v CSM 57 6 Id 56 d=72 slo KmY = 4.25 4 to9 y

pse 9,qi,qp) 11.' 5%

79 9 b=/4 40 U

C W A2R 2/ p l)s",5O KMX = 6.292 m io s

'2 '4 H6AB u

C SM.4 2 a-I s cSM 42.b

$ s'2 4 T'; 2 x tx '4 K9Y =. 9 241 a to' ze g

cdM 42A t.3x2$3g KMX : 7. 616 00, esM - 41 A.tN '2'# hh 6 7

<5M-4tb w/g/j'g;, T6 k b A '4 K mY : 1.%2 n 10 40 C5M 42a c54 424.yg I"4H6X8 K Mt. = l. 69 < l o

/

7

</

C54 4fb w/ gif y,

T5 4x4 X 4 KMY=4.431s1o l3A M N2 NS ggx ; e,i72,3 io7 c 5 M. (4 a.

jaj g gp, 7

u C SM-I4 a-I 4 g.g,g g3

< gy. e.tT4 v, to 13 &

7 C'> M 14 b l"d56XS 2494M1534 guz e 4,gog,io, KMY= B.69f(10

//

T's 6 x4(Sig c5v1 146-1 l'wf.f=u n l7]

T41 x t w'4 6

IT KMY= S. Sot a t o z~

+;+

' ( H8e ff./,,d l0,,4 0

' 94 - l BS N/ 6..

2 6

KMZ : 3.303 a, lo 4,

we i S.fo MClasl a@' K MY = t.7 8 m I O, CSM 36 I"$H%

I I

7 M xlO 2 slo Z KM7 1.297At0 4

w/yy;n 39 a I44 8-ku 3 462 to' 4Y CSM.b7A

>>p ggge d = lo"~l g u RMY = 4.09) to?
  1. 4, J gig.

/L i+

KNX; 2,.%65, gO M -*.

e m 25g.I KMT.3 52.7 a io'.

l,; 'i l

Appendix D Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports, Suoport Anchor Base Plate Rotation Cut-Off Typ'e Bolt Size &

Spring Constant Frequency E"*3#N Size Attachment (In-lb/ Rad).

csu-tbd 17 9 a

cg,g.h.ii V'dw6s D Y,4 KH y =. 9.776 x io" t

+

z.

ft. 34 x 12 x t'2',

ga z = 9. n6 x io 7+

6 c s u.It,d. ix s..

  • 1 E Er c4 M.i8d.x 266 tx 7

csM.296 14 n AG kk A 4.M4 x (0

+

+

Z

  • I'* I*

kV '4 M4 ' 80 y[

c5M 19 b I W/ g'g.n 29 T6 4A4dB 7

CSM.30 I"p H6 6 g m x = 3.M2 5 t o 11,,x ld'l4 kM z = 3.38 Z = to' y

g.4

/

'b7A TS W36 C '>M. 3 9 0-14(gge g ;,.-qg-Km Y = 6 77 r.10

[,hY c 5m. "$9 5 g gp,,

ga z = g.ooi x io 32.

9iH68 KMX:l'O'B*10 Y

CSM -33

+, -%

4 d ' O,s l 2."

6 gg i lkM(=l.676Aio zp 24 5 41 C5M 26b KM Ku 3.56 x 10 j x 7

I

< sM.25b-I KMY= 3.3tt x to e

i+- *i '

CSM-39a 37A

'n l

c5M-39b l'40 4 O KM Y = 6.77A t o '

++

y I

Jel'(24t.x141 xM Z - i.ot9x io8 W

lw/g'g'h 4

x' 17 f r3 weto ro c

gg COMT, CIME A I

nd 7

47-b 4x45,4 m.I.60 sto xl+;+

. I.M6 C5M-lbf I

f 7

ft. l,,* l l 2tll 2.

KMZ = i.6n ( to

+

gig t

y, bM KM X - 1. lll x t o tsM tbf

'tfH66 gI "M v9't KM u l lll 510' I

2 w/s zm IM T 4 4

  • d ' '4 xa g e ).om t o' CSM-IBf

)( M

~

w/ sw $ 3 ot rl2. km u t.07t s to' 4

t l

Append x D SH. 10 of 19 Rotational Spring Constants For Generic base Plates And Cut-Cff Frequency For Generic Conduit Supports, Suoport Anchor Base Plate Rotation Cut-Off Ty'e Bolt size &

Spring Constant Frequency p

Remark Size Attachment (In-lb/ Rad)4 I

d T5 3xp 4 C SK. lSf Q&NKG KMK: 1.07Z A LO L

+

  • 3,,m,, a l l,.

Kaz,i.07t aio' 4

+

y y.g, yp 9

4 l

4 4

s 9

l 4

e

Appendu'. D SH. 11 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Ge'neric Conduit Supports, Suoport Anchor Base Plate Rotation Cut-Off Typ'6 Bolt Size &

Spring Constant Frequency emark Size Attachment (In-lb/ Rad).

ggg t' M x : '2 Il =10 t*

C SM. \\% o.

E'MY e to 2.'s < 10 x

++ +

(c A SE - 1)

I+d K M "Z = 7 'A 56 a, t o' V

L6x6Ax4* 9 csM_ t%

e 6. m aio' g 7, KMY r 216.9 a to,6 (g..g) l"4 LG r 6 x*4 t 4'- 9 KMI:263.3 a io csM. ISR WSK6 g M A = 2. 2'51 s l o lV "@

  • [gn (C ASE. ~b) 4 6

L 6 x 6 t'4 A 3, i g.g

,, o, Sou' SP = W O

6 c g y, g g a, KH X e 6.0'22 = t o (c AW. 4)

I"@

KMY e 114.3 x 100

//

L6 A 6 A'4 ( 3 -1 KM2. = to2.9 a io6 go4.T 'I-68!r i

  • g HsK6 KM t = 26.95x l o

CSM-lGb TS4:4m%

Kuy. 39. gs. g o*

E. _ _ _ _]

L(,, g 4 x 4 x t ' 6 EM1 " 7 0 #)

  • 3 0

\\Y 3

RI W s n 61xto*

CSM 16 6 T54x4th

  • 'f' ' M' '

a L*4

( 4 x 4,44 g g '- 6

  • i Re KG, MM A s % 07' c' a

C SM. \\ 6 f) g'4 T54t&A1

[g

'lg 6

//

3 L6x4x4t'2'S

@c Me 24 KM a c $6.72 < to' C SM.16 6 T54 t 4-A &

KMT = 313.6 s 100 i

I l,4 L6

  • 4 AM x '2' 5 KMt= 39 4.3s I o

(

'HSKB 6

P I

C SM Fla.

C 6 Al$

K M X = 621.7 =, (0 p------

.I M' L 6v 8sl*= o' 4 *1: 937 4 Kid LI ~

+

Y s.

Z.

16K6 KMK: 1.24~1 = t o ig ggy,5.979(io g.

c 5M - l'T c, 6

i.6= 4 5 25.I'-3 EM7.f o70 n g o' NY 5

1 M5 klb KM A - B 40. 0 10 CSM L'IC.

9 gMy 1385,106 g

8-

KM7 2.126 6106

{

W Sfs 6 I

Appendix D SH, 12 of 19 Rotational Spring Constants For Generic Base Plates And Cut-off

{

Frequency For Generic Conduit Supports.

Suppor.t Anchor Base Plate Rotation Cut-off Type Bolt Size &

Spring Constant Frequency Remark Size Attachment (In-lb/ Rad).

gg4 T54x4<is KM A - 597.6 x l0 C S M-24 h----

(cM,e.l) i,p l.6x d, xY4 A0-4 (KMy = 6.c35 = IO M 2 s 26 9. 4 a.1 0 '

b Y

k ng T5 4 x 4 x *l6 MMA**'9'694,io 9'I CSM. 2 4 KMy : 5.9 u

(cAsg.2.)

I0 L643N"'450-4 KMI = M6.3 x 103 Tb6t6t*ts VM x : 5. 260 < g o

CSM.17 2

LD4 S'Z x'2xd-6 Mt -i (F.RST gr;g) 6 HKB 3

k M X = 6.1 4) x 1 0 c 5 M - 2.7 T56x6x#6, guy,g,.,79,io'c I,

($EcceJD htQ L9x b'2 s'2 x0 6 KMI: 2 26Sn to F

HKS VMt=1.63xto Css.2%

I.

ts,,4 % e o tsy = u.m io6 r

L

+

+

K M Z : 20.25 4106 12

,L * %Y HtC6 X M x = t.3 4 0 x to' CSM.264 t'4 L5x5^'dxl'-6 EMT = 6.967 < 10 '

6

,e t'A41311.74 4 to O = 10 6: 1 l

6 9w TS 6x6 x%

KMX = 45.23 x go C54.'t.29ct KMY* 27 30sio'

  • O' l

I,[

fi!.I'mISY413'/t t

6 y,4

. _z i

('c A SE. l }

KMT.= 45.2L gg s

S K M A =30.9 slo' BkK6 T16x6A 6 c

KMT :25.56 = to6 6

C6M.29q I

^

  • I, (c AsE.1)

KMZ = 30 9f. to' Y*

g l

KMX = 49.26 slo' "X

CMd 2.9 q N

6 TS 6 x 6 4 3, 3

4*O

"'O U

(CA5E.3).

l'd (R *,13'4,i3 /2 KM2 = 49 265 io6

+ _t

/y

+

C $ M 31 a.

HSKS KMX = 2.72 6 410 I

e C SM Sic KMY r W7 510 x

Ie @ L6e 6 <34 s t'- 6 KM 2 = 2 0.02 4 to6 y l,,,, J

+ ll

+l 4

(c AsE I)

\\y l

CSM.StA gsgg Cball.5 KMx = hM6 s t o" C SM.3t c 5:.MT = 7.4 t5 a to6 x

+

(CASE 5)

I L4 a 6th x t'.6 KMt stb.46x to6

~ il3 NY l

i

Appendix D SH.13 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports.

Support Anchor Base Plate Rotation Cut-Off Type Bolt Size &

! Spring Constant Frequency

  • *# N Size Attachment (In-lb/ Rad).

MKS C 4 t i. 2.5 gg X = MB.9 <l03 t

i.f

~

CSM.# 1 KMY s MA

',, 6 L645s h o,.6 ggz = 1247x to" g

g X.

lY 4

g 3pp i

Hsge, M C 6 x 16 3 kMX
  • l 236 ^ 'O CS M-34 0.

4aI4,1 KMY w9 Ob75106 l' h L6s6:

KM2. = t b.B t a 100 1+

+

4 3

a%

\\y 6

C5M-344.

65KB NC 6 = 16 3 KMx=l.o M 4106 l'44 L6 = 6 x'4 x\\-4't tMy = 11.62 x t o KM2 e15.23 tC6 a ch.

H5KS MC 6x (6.S KMx : n.2 4.4 = to CSM.M a e

(I L646s34 x l'4't.[M

6 3 s lo a > g'4 6

g5 gg, MC(oa16.)

kMA=Ib9"IO C 5M-34 R 6

K gt4f L5x6m,hxl4't 6

g i 3 io g g,4 6

KM K = t.216 5 iO a

2.95*

R$K.6 C 6 a 6.2 (c'4P.)

fQ h

c5M-34b KMY

  • 6.646a io L6x6?/4tI'2 K M '7 = t 4. 2') A \\ ob i

4 4

+

gY

.3 C6x..w.un uMx = > *w o,'

c5M-34b i

^

14p L6s5=34g l. 4:2 6

gg g, e,79 x 10 d,9 MSKB.

C fox %.7.(<WP.) KM X e 1.2% 410 c5M-34 b KMY = 6.6 5 10 ga 4 L6 x 6 x'4 x t' 4't (Mt.

  • iS. 65 ='lo6 a

, _ g,4 g gy.1.071 = to' gux NSK6 C6 x B.7.(ccMP.D 6

i

. g,3:4 s io

~

l'44 L'5 x 544 < l 4't. KM4 r15.81<to*

a = 6 '4 l

3 rtu H5KG C 10 x 15.3 kM X = 917.6 x to '

T u

3 g3 KMy.g.405 A to

'lI jI CSM.W Je w f. f, K M Z. n.12. 46, I o(=

+l y

  • K t oeos x I

n HS t:0, CIO: 15 3 XMJr 3 124.6 aio'

+1 i+1 g,j g g,g 4,g 3 KMY 27.tbsto

-yp*,

C DM D 6

mz < t716, io*

9 E _:.

Jom s t

j Av

Appendix D ggg Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequehcy

,emark Size Attachment (In-lb/ Rad).

csM 40 d*"6 8 II 10 'l' Z

<"Y * '9 6'# O 0+

M C 6 al6.3 G1Y = 9.372 *10

+

cAdf. 1 li4.#

(T. 5sx7 rM2 10 72 4io' g

A,7 z

a.A 6

cSM.40 Hsx6 2 (*^ 10 4' Z KMx = 2l.99 s t o Mc 6 a t 6.'3 KHY r 9.736 A lob AN* p lg4p g 1,6 x 7 K M 7.

10. 13 A 1 o 6

5,g MSK6 C 6 a B.f-KM X e 867.s a t o l

[

fE g,4g c4g I t g6 L5as< h t't KMY : 4.699 5 'O'

~

x

+

+

KM I = 10.7 7 = t o,

~

2_;i 'w

-x 3

C S M. 4-l HSKS C6x 9 2 KM X 8 0'*7 ' 'O C ASE 5 l'd 1 54 S m*4 x l' L M'

  • *s y

KMt: LO.71sto' c 5M. 41 HSK6 C 6 x 6.2.

kM x e 617. 0 = i o' g g z,to. % cto,

c A sq. iig KMY =

N 3

I'44 L5= s4 +4 t-S 3,g9,g,6 WS KM x = 8t3 6 (lo c s g. 4.t gg, g,g cam - fy l'44 L % 5 24 4 t'-s

,'[g'9,' o6 JA-G H5K6 (E4xs KMr = 724,8x to c=l%.... ~

i f

ik4 L 6 x 6 a'+x 2fl0 gg.t [ '

+]

g

. T'

_= W s

JA-6 95 4 (E 4 x 't.

  • A
  • S'i'2 = lo a

TMPE 7A gi p L6A6 d A2'lO [,, '

4

  • N o

,in (p, 4 s wM x : 7 2(. 9 = t o' JA ro HSKS

//

TY(415 l"@

6&4M et = t O, b ; # 2.

3 F# Y: I 8 2 0 ' i KM Z. : 1.'2615%O C : l'4. d - 1 6 3

JAG HSCB

@ 4 x 't.

kMX T56 a 10

//

  1. " 'T'* 3 ' 3 ' '

=i

, 6= o T Y P t. 9

\\"Y L 6 A 6x'4 x t' 4 KMt, t. 2 41. t o C = 14,. d =.1 2.

(TN0 Got.7 5 04 t.M )

Appandix D SH.15 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports',.

Suoport Anchor Base Plate Rotation Cut-Off Typ'e Bolt Size &

Remark Spring Constant Frequency Size Attachment (In-lb/ Rad).

6 aan, t A.s. g g JA 6 HK6 SOK3ia3(42.C M =222.9 to TYPE l'5 1 #

L 5 x3'2 dex2'3 K M Y ~ 4 7 ') ^10 2

"ip

q l

g KM2.: Zb.6h to as g j J A. $

9Ko gox iS id'a,24'

" X*'"*l#

3 K M Y z % l.o s to Pt PE. I'b

'2. 4' L 6 4 b,1"\\ ' l l Kut" 6.0995 t0 JA. N u<G Gcs 6o( 36 <24 KM x = 2 l9.4. io 4*y.nJh*Ii 2

L 5 = 3'2 < 3 d.3 N

  • 5 3 ' " 50 6

'~

i a i-TYF6 11 7@

K M 2 = 19. % t o' J21 *

    • I I

',1 Y\\ i

_K JA.S WK6 g 3', g', g' a. 24. i M I.*

L S 4 # 2 % x t'.it kMY = 5o 2.5 = to a

f TY96 - (2.

K 42.m 45.\\~1a10 E9 LZ 3

,)A.9 M6 id 5'2x4: 18 tM(, No.4sto CASE 1 4

L 6 s6a#4 r, t '. (,,

  • f,',

gy 3

JA.C) p K g, g

x16 b

KMX s 390. B 4 to t

KMY: 13 5 4. = to NI

  1. Y L 6 x 6 x 4 s 2.., o 4

KM2 :. i. 7.ol s io6 J A. 9 HKB Rit z 4, 3(,

gpx=436.9ato c ASE ft 34p L 6 4 6 s'4 4 I-O N y= 32.o 6=to a

KMz L.O sto J A.17 MKb KMx3 O t. 2, i go

} 7.

3 b

c A SE. I 14 C MC 3 57.I s, l' 4 1

,2st.3v,to i'r i L e j_s j gy J S-ll HKB L5a5='4 g y x. Es2.'? " '

'[ L 1 3

l"g.

L S x5x 4xt'.S't 6

L+

+I KMZ.s 19. 34 s to j y\\"~}

L i6 J 5. I '2.

HKS Lgx 3 4 KM A - 869.'l a to c 3 c ASE. 3

("4 L5 a 85 <*4 a 2' 0 "K M*Z :. 2'o.9t a to" KNA 8%'4*Id 3 5. \\ ?.

HQ L s 5 s,34 KMY : 7. 49 io4 c MC.'s I,p L5 x5J4 xf.o 6

, KM2 wo.t2 <io

1 APPandix D SH. 16 of 19 i

Rotational Spring Constants For Gnneric Base Plates And Cut-off Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency Remark size Attachment (In-lb/ Rad).

J 5 l'b MSKf6 L 4 x 4. < 3s kM ' l 309 " lo 1

D i

(,MY - 4 544 s 10 j,

.-d x

L 646[4 ^ ~b' o gMt s44.14sto' 3i i al I d'g }

Y KMX=l.3444(O J5 is 4 35.i4 "*

L4x +<%

tsy =4..eo u ic6 l'44 L 6 x 6 24 ( 3'-O Krez.= 64.s9 io 6

- 3,z.

6$gS KM K = l. 3 64 A lo

's j

TWE. I 1l4 8 g g,4 [3 KMY = 3 5. 0 a no"

.l; _4 +

+4

~

KM 2 : 14.16

  • t o6 L 15,12L,\\ y s

J S l'b 4sKG L 4x 4 x'8 7 ygg. Q xxx: ). S t i n. i o" ig4g J d i '>

BSd4 14,4x%

KM x = I. toi < t o' L

)

w ec.in-pg t s. 6 A x i-e, K M Y = 5 + 'S ^ i o' LI+

+ @Qy KMz =ts.46*io o L e't J5.13 DK6 L4444 %

gun. < t.loi uo6 l' 4 L 6 r 6 4.4 = I'- 6 KM: = 16.94 00 TY @ v31 6

4 u

J5 i4 D<E L4x4xg gMr st.45xto TYPE 1.

I4p lgs 624 x i' 6 + <My = 3. 9 2 6 m lo i

KMt. = 27.s9m ios J 5.14-M<G L4(4 dt k"**4 "O

TvPG E I4. 4 L M ?411 6'4 K42 = 27 7p to' J5 15 HK6 c e, s t

<M c = 16.W o'

,[. l.[Y" (g,

cup,2', ae'e.

<M2 = ie.79 io:

(H1 = t ' '* ' ' o y, %r,_

. g

^ f['

3, l $

HKG K M 7, 1 6. 5 5 < l o c,

%,1,,,,

= =4o. s lo, r.+h, KMZ: 14.7+v to y gg yr

  • +g%

He6 C6482 KM K = 13.79 a io" J 5 -(S gwr,47g3,,g sea +g g,,,9 KMz = 14.o = io 3j ggr

App @ndix D SH. 17 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency emark Size Attachment (In-lb/ Rad).

  • i 4

4 'E(m JS.16 4K@

C6

6. 2.

K M A

  • 29.33 A Io

@34 a,19s l 9 KMY r 2 4.0 0 L 10 fr 2.1,.

]

VH1 = ll.o] g gn Y

(r;e sT Z m

6 e

O 23.5.0 10 RK6 2C.4v125 kMx= l.781afo*

f g*p L 6 4 (. M 2' I kMY = 6.167 4 ID Xii-

+}

~I b

K4 2 = 41.70 a t o 3.,j g3., Ay M %)

W6x26

<HA*

'*6 u

I*

g g ')

JS_2l W: K6 6

TYFE 19 l'44 24 x is'2 < l o't.

x uv = u 6.t to '

2 gu t - 33,ie, S t o g;yy

. ~ 7-KM x, = 6 64 < f o' 4

N~

JS %-

gxc3 T.s. 4 x4. 3,s

+ i m4 gyy, 3,g,,,5 3, 4-C

  • I 5 d' 2 L 6 x 3'Ls,hdb K41. r24 Al s 100 4

5(

  • g 2

J S _ f.2 b gg x. u,77<ie' a z '+

HKG TS 6 = 6 die gmy,41.25 ios b=y4 3.4

2. L 6 (4 s'2. =l'-5'2 KM 7 : 30.20 a io C ASE t 4

b

.3 5. 2 2. b.

45K6 T5 6 x 6 A 5 KM K

  • l~i 4 = n d n 3 2'4 16 CAhE 2 I4 2 (. 6 : 4 d7s, l! 't
  • M'7D
  • 30 b:3 5

K4'Z.

'54.6 8 s 10' J S. '2.3 HSCS TS444 '4 grqg = c 3.2 3 a l o'

[., i g-6

--j

\\

c A sE. 2.

(p 2L in.3'En,h d h KMY a 40 4280

^L[. I,,21 L 1

6WF(d% m KMt = Sb. r6 a, io' i +i a !-1 1

vt, AT JS '2 7 H5e g e, x. 7o 0 7. io' F $,

L4 =J = h k M Y = 35. c 4.. i o6 L4 Qi 814 4

( US.yQ 6

KM 2- = B. 5,, i o N

21 a L 4 4, h g z o'.4 guz,i,'oso =io,

(- g! a' C

" *f*5435I

,)S _ 2 )

H KG, T54 < 4 = 3,4 i-K'1Ts3.s&9A100 b.4 q

i i

r s

7j AYr KMM-2.49o(io' 6

'3 d5.30 T6 6 4 4 5, c.

a 3'1

" 'T - 0 4p EL5a 3.

,, o'.6 KMT*' ','0*'0' b=5

)

EMZ :. 4 t t ; s i.

I J5.3o 64KS Ts c a 4 < 'i6 EMASS 5 2*'0 a : 3,:

6

<M y - 7. 4 M a i o ff l

3 y

TV6.g 24 2L5=h bco-6 EM t s t.12 4 x t o.*

b=5 f

L

Appen 6 D SH. 18 of 19 Rotational Spring Constants For Generic Base Plates And Cut-Off Frequency For' Generic Conduit Supports.

Suoport Anc. hor Base Plate Rotation Cut-Off Type Bolt Size &

Spring Constant Frequency Remark size Attachment (In-lb/ Rad).

JS.2.B HKG

  • I

+

y,4, g (M g = 2 a. %, t o' g-%,. 6' *w

. TYPE-1 I"p 4

KMY =L2.o3ato q g,geg 9rg xMT = 21 18 s io4 g g

- z.

4 b26 TM L 6

hts T5 4 x 4 r,16 gqg, y 3,ej9, g o mY - 12. osoo6 a.= 'b d b'M l'4 I?. l'al'5 413 6

//

b.3 TWE '19 ggz 2 23 994 lo 6

J5. W Ktb v 5 4 a % *i6 gm = 23.22 sto att TYN '29cs

("4

@ l'Elb 5 4'b'

'S.22 6

b: 3 J S

'b i 6 H5KS 'T56x6J+

W = 4. 60 < l o' a s it f

J t. 'b l c.

I"cp t? l'a i $ t I c)

KMY = 23.M < io 6 - 4't c Ase. I KM1 = 46. 6 0

  • io Js. Sib 6
gggg, g

g m x,4t.Bh io h 2 ' t.

J 5 - SL 6 CMT = '33.36< to6

~

c Asg H l@

@ l ~^ 19 ^ l 9 KM2. = 4(.S( x t o'

, 4,7 ff J 5, '3 9 A HSkG 6

J5.59b Ts,6= h i6 KM * * ' ' ' ' * * ' ' s a - 3'+

cuy = 56.12 4 t o a

  • * * ''*0' bW C ASE 3.

6 3 5 3.h 6

WSKB TS 6 ( 6 x 4*,

gMx:$6.(O5lo l

JS.39b tuv 66.Mxto

,, q _ g 4 I

i c ASE E K41: 56.iG(io6 6q J5 396 HtO Ts 4 44a'+

  1. "[y ", $,),'io d5-*

g

344, 3.3+n959 er S

i t.

c Ass. I e s Z = 6.791*to' M

6 Ts 4 x 4.g'4 KM X = 7. 96 6 5 0 o, - i

6 344 lE 4x9t y ggy, ig,,,, io e

c b-L't.

6% 'E K M 7 =. 1 9 t.< ic6 j d, W 484 TS 4 : 4. a '+

K4g: 16.29 = t o 3

ct - 1 4 KMY = 23 67 sto c A56 1 I<4 k34(l'jtg l 3'2.

b ba#4 gyq,, g g g g, g e J5. M e.

RE, T s.4 = 4 t '+

r. u x = ts *> 6 a i o a:lN Cm. t e u,s.mie ~M2.c15.5t m

= 2 s.*

~ '+

k.

to

A;.:endix 0 sH. 19 of 19 Rotational 5,cring Constants For Generic Base Plates And Cut-:ff Frequency For Generic Conduit Supports.

Suoport Anchor Base Plate Rotation Cut-Off Typ'e Bolt Size &

Spring Constant Frequency Size Attachment (In-lb/ Rad).

h-bid 6

at X"

TYPE Z"A:.

H5K6 rs s: 3 x '4 h tt--(1 I 'N 6

J5-Ste K MY= 5. %0tio (n $

_AR T"Pe 29d

'2. 4 2'2Aloxio VM2-= 9 67o xio' J Sl*

c Abf. I STtf F. f~d g b

s Js-Sid 6

i TM(Y 2 9c HskS 1

J S-Ste 73 3,3x 4 KM g - 6.506 = t o b

lp iP. 't r 10 t to g gy - 7,399,j o

//

TM M.29d g

c A5 6 2.

svgp (2 Se KM2 9 941

  • loc p

J5 'b 7.

'WKB 75 4 < 4. x 16 KM T * #'# 3 4 ' '

' $h*.

2 346 f t 5435 1 o'. 6 Y s5.M2=10 3

3

(

K42 ssi.4 a to g

132 3. Ws ku r = 1. 0 0 5 t io'

  1. 1C b f~

5H.J5-33 N6 Lgx s?+

5 i-t A W 'h l'44 LSm 54 4 m.2' o

}

, 3

,5 1

J S. 3'3*

NK6 L6A8bA 4-

_7 6

y c AS(.4 l'4 L546'181'-0 6

KM2 = 2o.92 cio 3

a=+

KNx = 297 3 = to f bait IL 3,34 gge L 553,2. #$

ggy, 9.7 g 7, io b

x 1

4 %

.j 6

K4 z = 6.olssio gg,e jj\\yi g u r 7 68.6 *lo'

$,d'4 J 5. 36, WEB gg,g ggy;io,ig,iec f

l*p (M 2 = 6. 097 a i e6 3

t1. b 35.37 RK6 (4,442.

K u x - 668 6 vio e, 04 5

KMY * \\o 2 4 n, \\o$

\\+

/f K4Z - 8.47G.sto' I

i

'j.

A l

s-(

(I s

r HK6 L3,3x3s

< M < w S56

  • lo J 6 36 NY - 3. 32 6 m io' 4

<l4 L 5 = 6 '+ c 2,- 4 Kg 2.s l6 90 ale' 8'e % >.[

7 e

f/y' 1

1 I

i

TECHNICAL GUIDELINES PROJECT IDENTIFICATIO!!

FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETP.IC VALIDAT10N REV.1 ATTACl# EIT "E"

N\\

l I

~ * **x TL 77 s N.

-s x

s

,=

ses y

sy s

/

a C.ady,1 t

s 9

- s s

l'," o

\\,,y s

\\

s l' '

l

-l-l.l.'Yi..N; f' (

d.

p, ---

~

s.

N.

Ny e

G Xs Verlor Olhols ds c.001 ces o

,,, am(4) b*

0 001( 5 )

s K I.

t..,. was 183

  1. ANI At 3 $HIFT sy a MAN X

Jj Yg 1 (

e

TECHNICAL GUIDEL2MES PROJECT IDENTIFICATION FOR SEISM 2C CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ATTACHIENT 'E' g HtER PCPERTIES OF A SPRING W M ER Y

Y o

i L

lT 2

D'l

-zg

-z 4

A l

CLOBAL AX5S LOCAL AXES 1

YC

'f

,., O g,s% %

s.-

t ss's.s.s:..-

-(

$'h',-

4 g,4 su

$*ss s 0

i l8 f o,@

8 p"

- - - --I, z. L T 5'"

C 1

T,, T, t, ge%5 4,.

7 I

i 4

yo

.,f

- - I o, 2. L 7

(

)

'. IG '.,I' k L w,

CRIENTATION OF SPRING MMERS NOTES-(1) 1.2.3 ARE N00AL POIN(S (NOT SUPPORT JOINTS 3 AT SUPPORTS.

( l 1) 101.102.103. ARE FICTITIQUS FIXED SUPPORT JOINTS

( l. a. N0 JOINT RELEASES 3

( 111) @.

. @ ARE VERT SHORT FICTITIONOUS EMERS WIT TIE 3 EXPRESSED IN APPROPRIATE STIFFNESS g

( Ivi STIFFNESS OF SPRINC WMERS ARE GIVEM IN LOCAL AXIS OF M MER.

( v) IN TNIS EXAWt.E. LOCAL AXES OF MMEA ARE PAAALLEL 70 GLOSAL AXES.

DERIV 4 TION OF STIFFNESS OF SPRING MMERS MMER QC,p QCD GOD L L WILL GIVE Kx Ky 1 2 L Tg WILLGIVEl K Z KZ K X L T,wILLGIVEj Ky Ex Ky

TECHNICAL GUIDELINES PROJECT IDENT!FICATION 1

FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ATTAC M "F" SH. 1 of 1 CONDUIT SIZE PRETENSION LOAD ON EACH STUO.

IN (TWO STUDS PER CLAMP)

KIPS 5

6.7 4

6.7 3

6.7 2 1/2 6.0 2

6.0 1 1/2 3.04 1 1/4 3.04 1

3.04 3/4 3.04 PRETENSION LOADS OF THE CONDUIT CLAMP

TECHMICAL GUIDELINES PROJECT IDENTIFICATIOS FOR SEISPIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ZSOMETRIC VALIDATION REV. 1-ATTACHMENT G SH. 1 of 1 STANDARD AND OVERSIZE BOLT / STUD DIAMETER (IN)

FOR VARIOUS TYPES OF CLAMPS CLAMP TYPE CLAMP P-2558 SIZE or P-2558 C-708N-U C-708-S (IN)

C-708-U STANDARD OVERSIZED STANDARD OVERSIZED STANDARD OVERSIZED BOLT / STUD BOLT / STUD BOLT / STUD BOLT / STUD BOLT / STUD BOLT / STUD 3/4 1/4 3/8 3/8 1/2 x

x 1

1/4 3/8 3/8 1/2 x

x 1 1/4 1/4 3/8 3/8 1/2 x

x I 1/2 1/4 3/8 3/8 1/2 x

x 2

3/8 1/2 1/2 5/e 1/2 5/8 2 1/2 3/8 1/2 1/2 5/8 1/2 5/8 3

3/8 1/2 1/2 5/8 1/2 5/8 l

4 3/8 1/2 1/2 5/8 1/2 5/8 l

5 3/8 1/2 1/2 5/8 1/2 5/8 l

1 l

TECHNICAL GUIDEL2NES FOR SEISMIC CATEGORY Z PROJcCT IDENTIFICA^~ce

~'

NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VAL!DATION any, 3 ATTACHMENT H SH. 1 of 1 HILTI BOLT 9 (IN) FOR VARIOUS TYPES OF CLAMPS (REF:

SAG.CP-10 TABLES 1.7 THRU 1.9)

CLAMP TYPE CLAMP P-2558 SIZE or P-2558 C-708N-U C-708-S REMARKS (IN)

C-708-U STANDARD OVERSIZED STANDARD OVERSIZED JTANDARD HILTI HILTI HILTI HILTI HILTI 3/4 1/4 3/8 3/8 1/2 x

1 1/4 3/8 3/8 1/2 x

1 1/4 1/4 3/8 3/8 1/2 x

1 1/2 1/4 3/8 3/8 1/2 x

2 3/8 1/2 1/2 5/8 1/2 2 1/2 3/8 1/2 1/2 5/8 1/2 3

3/8, 1/2 1/2 5/8 1/2 4

3/8 1/2 1/2 5/8 1/2 5

3/8 1/2 1/2 5/8 1/2

)

TECHNICAL CU! DEL!NES

,oe FOR SEISMIC CATECCF'; I P P C ~* ~r ~ ~ '"r"--

  • -.* r ELECTRICAL CONDUIT ISOMETPIO VALIDATION e c, S

g{,,fG.CP22 ATTACHMENT I SH,1 of 2 SEPARATION VIOLATIONS TO BE DOCUMENTED CASE I

1. USE PROCEDURE 080-C5-15.

4 N

2.0!K 4 OR 8 4 C Shout 3

(

>- MIL T2 SMCW ON DW. OIn a

~

iJr 8 PAff f RAGLL o

r

> CCMOUIT SLPPORT, 4

- E MED0f.D R N

i EXIsTINC WLQ(o ATTAcNp Mt i PIPE SUPPQRT 0A OTMR (02SC2PL3MJ r STUD ( f YPf I

l CASE II 1.i A CR S & C SMOULO I

9W ON OW. 0ZM A N

O s

y f

tn 2.g"g,yg'"^a[*4;,ggiggg, MI L 'I M ts!J E M on

- (4800E0 4 N

CONDUIT SPPCRT r STLD(TTM W

CASE III EXISTIMO PIPt SLpPCRT CA

/QTMA DISCIPLIM SUPPORT e

e I. din a sH0uto at sHow ON OW.

/

2.FOR VIOLATION BETWEEN TWO HILTI

)

BOLTS OR BETWEEN HILTI AND (hD n

RICHMOND INSERT USE PROCEDURE

]

INSERT 080-C5-15.

CONOUIT SUPPC3,T - o'- MILTI

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I Ph0JECTIDENTIFICATIO ELECTRICAL CONDUIT ISOMETRIC VALIDATION

'10. SAG.CP25 iEV. 1 ATTACEMENT I SH. 2 of 2 GUIDE LINES FOR DCA AND FPL FORMS

_l h

f Ihh DCA M"

IM ISDW

OV4, DWG/DCA OR FPL FORM.

HILTI 1.

30. SJP T. MIL TI i

1.

MILTI g

MOUIMO MW[MD I'

7 8 IL I 0F 3.

C,ST TM WPPT.

[If MOUIMO MW[40 2.

MILTI MWIMD 1.

7 GIIM LIM S OF

'~

@il MILTI 4W140 3.

KIT TM R! PPT.

2.

h!

kk 42 h.

DW /0 OR FPL FORM.

4WIMO kTl N

Mg/M.

i.

MWIMO N

HILTI MW[M9 Tj8 T SHOULO M k%

6.

7 rLTI aitTI 4:24. Mg/MO d" d>F "'"

MWIM.

hl !

I' PAAATom M

MO OLATION

EchPJLG c-FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO.

SAG. CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REv.1 ATTACHMENT J SH. 1 of 1 DEFINITION OF SEISMIC INPUT

\\

Case When the conduit Applicable 'g' values support is attached to For hand calculations or For response spectra static analysis analys's A

Floor Floor g's Floor g's j

B Ceiling Ceiling g's Ceiling g's C

Floor & Wall enveloped g's from floor g's from the floor elevation above and be-elevation above the low the support support D

Wall

- do -

- do E

Wall & Ceiling

- do -

- do -

4 F

Spread Room Framing enveloped 1.5 x g peak not applicable from floor elevation above & below the framing G

Steel Platform.

Obtain steel platform response spectra and design Steel Stair, etc.

In accordance with SAG.CP.10.

If these response spectra are not available, assume the support non-existent and evaluate the Iso.

H Pipe Support.

Use 1.5 x g peak of applicable Floor response cable tray support spectra

& similar structures i

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

.FOR SEISMIC CATEGORY I NO. SAG.Cp25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 SH. 1 of 12

. ATTACHMENT K - INACCESSIBLE ATTRIBUTES (IA) EVAL,UATION PROCEDURE

1.0 INTRODUCTION

These instructions summarize the method of resolution for Inaccessible Attributes (IA) shown on the Unit al Engineering Walkdown "Redline" drawings and ISO's.

It also applies to Unit 32 "IA" cases.

Resolution method is comprised of one or more of the following

steps, Historical Record Search a.

b.

Use of methodology and/or specified value for inaccessible attribute given in section 4.0 c.

Making the attribute accessible for as-builting by removing thermolag/thermoblanket, nondestructive examinations, different measuring tools or any other means at walkdown group's option.

2.0 DEFINITIONS IA Inaccessible Attribute IR Inspection Report AD As Designed attribute information obtained from Gibbs

& Hill design drawings and/or historical record search EA Engineering Accepted HR Historical Record Search of IR, CMC's and DCA's NDE Non-Destructive Examination CMC Component Modification Card DCA Design Change Authoriz'ation WC Worst case: Bounding arsumptions based on worst' condition that can occur in attribute population

s

'R:

^;

TECHNILAL GUIDELINES PROJ EC T IDENTIFtrATION FOR SEISMIC CATEGORY I-NO. S AG. r. P2 5 El.ECTRICAL CONDt:IT ISOMETRIC VALIDATION ret. 1 4H. 2 of 12 ATTACHMENT h - (Continuedi 3.0 Il EVALLATION/ RESOLUTION PROCEDURE 3.1 '

GENERAL The approach to resolve "IA" cases, including pre w ntation on the final as-built drawing, is summariced below.

Lases of attributes not covered here will be disposed of when and tf tb y arise based on methodology similar to that used in this procedure.

3.2 GENERAL IA EVALUATION PROCEDURE AND PRESENTATION

  • ON DRAWIN Following is the step by step procedure to be used for IA resolution and documentation of resolution on drautn(s.

These as-designed information for IA attributes will be validated in the Post Construction Hardware Validation Program (Reference 14).

STEP BY STEP PROCEDURE PRESENTATION ON FINAL AS-BUILT & ISO DRAWINGS Step 1: Obtain as-designed IA data through historical record search.

If sufficient as-designed records exist use the value determined in evaluation.

If this values is used:

Show (IA) (AD) (HR) nest to the attribute evaluat-ed.

If information is not sufficient go to step 2.

i TECHNICAL GUIDELINES PROJECT IDENTIFICATION

' FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT-ISOMETRIC VALIDATION REV. 1 SH. 3 of 12 ATVACHMENT K - (Continued)

STEP BY STEP PROCEDURE PRESENTATION ON FINAL

~

AS-BUILT & ISO DRAWINGS Step 2: Evaluate the IA based upon disposition methods specified in Section 4.0 of this attachment.

If the IA passes:

(i) When "as-designed" i

information is used, show (IA) (EA) (AD) next to the as-designed information.

I (ii) When "worst case assumption" with a specific value is used, show (IA) (EA)

(WC).

(iii) When "worst case 4

assumption" is to consider the attribute non-existent, show (IA) only.

If the IA falls per i

Section 4.0, or Section 4.0 does not apply, go to Step 3.

I h

w-TECHNICAL GUIDELINES PROJECT IDENTIFICATION

'.OR SEISMIC CATEGORY 1 NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC vat.EDATION REV. 1 SH. 4 of 12 ATTACHMENT K - IContinued)

STEP BY STEP PROCEDURE PRESENTATION ON FINAL AS-BUILT & ISO DRAWINGS Step 3: Request the IA information be made accessible by walkdown group.

The walk.own will provide the IA data and will identify the method and references used to obtain the IA information.

The walkdown will also main-tain all back-up reference for the IA information requested.

Step 4: Evaluate the new as-b'ullt information provided by the walkdown group in Step 3.

If the IA passes, revise the drawing as follows:

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP05 ELECTRICAL CONDUIT ISOMETRIC VALEDATION REV. 1 SH. 5 of 12 ATTACHMENT K - (Continued)

STEP BY STEP PROCEDURE PRESENTATION ON FINAL AS-BUILT & ISO DRAWINGS ti) If the walkdown obtained Delete (IA) from the the as-built information drawing and add the by using a non-destructive new attribute informa-Examination Method (NDE).

tion to the drawing such as Ultrasonic Test with (NDE) next to for Hilti and Super Hilti this information.

Kwik Bolts:

(11) If the walkdown group Delete (IA) from the obtained the as-built drawing and add the information by removing new attribute informa-thermolag, firewrap, tion to the drawing.

Bisco seal or using different measuring tools:

4 7

e i

f L

s

t L

i' TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I No. SAG.CP25-ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 SH. 6 of 12 ATTACHMENT K'- (Continued) 4. 0.

SPECIFIC IA ATTRIBUTE DISPOSITION METHODOLOGY The following table speci fies the as-desi gned information to he used in the resolution of IA.

These values specified in Tabla 4.1 generally represent the worst case design conditions that can be determined from as-designed drawings.

These as-designed information for IA attributes will be validated in the Post Construction Hardware Validation Program (leference 14).

Table 4.1 INACCESSIBLE ATTRIBUTES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY I.

Conduits Configuration, span Conduit configuration which segments, unions, consists of bend angle, location expansion joints.

of fitting, length of segments etc. shall always be made accessible for verification.

II. Conduit a) Type of clamp Use clamp type and fastener with Clamps and Fasteners smallest clamp allowable for that size conduit.

b) Filler and/or Use standard size filler and shim plates shim plates allowed for standar.1 details shown on CSD series drawings of drawing no. 2323-S-0910 to calculate weight.

t I

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 S9. 7 of 12 ATTACHMENT K - (Continued) 4.0 SPECIFIC IA A TT R I B t.'T E DISPOSITION METHODOLOGY (Continued)

Table 4.1 (Continued:

INACCESSIBLE ATTRIBUTES DISPOSITION METHODOLOGY C&T_EGORY SUB-CATEGORY c) Clamp gap Currently clamp gap attribute is not being documented during ISO walkdown.

EBASCO position paper on quality construction conclud-ed that its effect on the clamp allowables have been included in tests.

(See Page 7 of CCL Report :A-699-85).

III. Junction a) Number, size &

Currently, these attributes are Box type of fasteners not being documented during ISO for junction box walkdown.

ISAP VII-C program attachment genera 11y concluded that as-riesigned information shall be

used, b) Fastener locatiot for junction box attachment c) Size of spacer plates for junction box attachment di Lock nuts Lock nuts are to be tightened in PCHVP.

1

TECHNICAL GUIDELINES PROJECT IDENTIFICATION T)R SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 SH. 8 of 12 ATTACHMENT K - (Continued) 4.0 SPECIFIC IA ATTRIBUTE DISPOSITION METHODOLOGY (Continued)

Table 4.1 (Continued!

INACCESSIBLE ATTRIBUTES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY IV. Conduit &

a) Bisco Seals Use Inspection Report (IR) to Junction verify the existence & type of Box (1) Existence of support.

Mark the additional Supports CND Support support on the copy of isometric with red pencil.

This marked-up copy will be an attachment to the ISO calculation package.

The IR shall be made an attachment to the ISO calcula-tion package.

The additional support shall be incorporated into the final design validated ISO.

If there is no support inside the bisco seal from IR, a note that states "the IR has been reviewed and no support is found in bisco seal area" shall be added to ISO calculation package.

(2) Location of Evaluate the support as located Support in the middle of slab or wall thickness.

I

TECHNICAL Ct'IDELINES PROJECT IDENTIFIC ATION

/OR SEISMIC ~ATEGORY I NO. SAG.CP25 ELECTRICAL CO' JIT ISOMETRIC VALIDATION REV. 1 SH. 9 o t' 12 ATTACHMENT K - (Continuedi 1.0 SPECIFIC IA ATTRIBUTE DISPOSITION NETHODOLOGY (Continued)

Table 4.1 (Continued)

INACCESSIBLE ATTRIBUTES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY IV. Conduit &

a) Bisco Seals Junction (Cont'd)

Box Supports (Cont'd)

(3) Length of CND Thickness of wall or slab uay thru Bisco Seal be found from the as-built civil-scructural drawing.

(4) CND going to Assume the conduit to be flush equipment over with the top of the slab with the Bisco Seal air-drop (W ) at the tip of the

conduit, b) Member Size All member sizes will be as-built except the thickness of TS member.

c) Tube Steel (1) For simple cantilever type Thickness generic supports and i

modified & IN supports which are design veri fied by comparison to a generic support, use as-designed i

member size.

(Refer to Unit 1 Calculation Book s Span - 11991.

i

it :

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL TONDUIT ISOMETRIC VALIDATION REV. I SH. 10 o f 12 ATTACHMENT K - (Continued) 4.0 SPECIFIC IA ATTRIBUTE DISPOSITION METHODOLOGY (Continued)

Table 4.1 (Continued)

INACCESSIBLE ATTRIBt'TES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY IV. Conduit &

c) Tube Steel (2) For L shape cantilver type Junction Thickness supports reduce the capacity Bov (Cont'd) by 40% of the differential Supports weight between as-designed (Cont'd) and the next heavier member.

(Refer to Unit 1 Calculation Book e Span - 11891.

(3) For any other type including modified & IN supports, use the member properties of the as-designed member size and the mass density of nest heavier member in computer analysis.

This is worst case design, d) Welds: length, ta) Curren+.ly weld attributes size and type are not being documented during ISO walkdown ISAP VIT.C program generally concluded as-designed weld size information shall be used, unless there are weld related CMC's issued against the support.

TECHNICAL GUIDELINES PROJECT IDENTIFIC AT!c N

-FOR SEISMIC CATEGORY I No. S AG.C P2 5 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. I i

SH. 11 of 12 t

i ATTACH $ LENT K - ( Co n t i _n ued )

4.0 SPErIFIC IA ATTRIBUTE DISPOSITION METHODOLOGY (Continued)

Table 4.1 (Continued)

INACCr5sIBLE ATTRIBUTES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY IV. Conduit &

d) Welds: length, (b) Through historical record Lunction Size and type search, all weld related Box (Cont'd)

CMC's will be considered in Susuorts the design validation of (Cont'd) the affected supports.

l

\\

e) Bolt Type Use the size of the bolt as the others on the same connection.

Otherwise, use 1/2" 9 A307 bolts with threads included in shear l

plane.

V.

Anchorare al Fastener size Treat the fastener with the same o

and embedment size as the other fasteners on length the same anchorage and use the minimum length permitted by Table 1 of the Appendix 2 to Design Criteria (SAG.CPIO or SAG.CP28.

Otherwise, use allowab,les for 1/4" Q HKB X 1 1/8" embedment length.

.-r d; TECHNICAL. GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. S AG. C P2 5 Fl.ECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 SH. 12 of 12 ATTACHMENT K - (Continuedi 1.0 SPECIFIC IA ATTRIBUTE DISPOSITION METHODOLOGY (Continued)

Table 4.1 (Continued)

INACCESSIBLE ATTRIBUTES DISPOSITION METHODOLOGY CATEGORY SUB-CATEGORY V.

Anchorage b) Bolt location Use the maximum "as-designed (Cont'd) w.r.t.

center specified on drawing to locate lines of the bolt such that the bolt is attachment closest to the center of grasity of the attachment.

c) Base plate size Use "as-designed" information shown on drawings.

d) Number of Always make it accessible.

Fasteners I

6 TECHNICAL GUIDELINES PROJECT DEiii FICATION FOR SEISMIC CATEGORY I NO. SAG.C725 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 SH. 1 of 2 ATTACHMENT L UNIT 1 BUILDING AREAS W/2" FLOOR TOPPING ON FLOOR SLABS BUILO!NG ELEVAT:0N ROOMNUM8ER/C0lyMNLINE Reactor 808'-0 All 832'-6 From AZ 100'2 to 205'2 851'-6 From AZ 308' to 20**

853'-6 161A 860'-0 From AZ 127't to 196't Safeguard 773'-0 All 790'-6 All 800'-6

75. 16 810'-6
77. 78. 79. 80. 81. 82 83 821'-0 86 873'-6 From A-S to E-S From 8 S to 4.5-S 882'-10 None 896*-4 111, 112 905'-9 From 7.5-S to 8-5 Westward from 23'-0 West of D-S 907'-5 None 907'-11 None 918'-4 None

^ TECHN!ChlGUIDELINES S

LFOR SEfSMIC CATEGORY I PROJECT fDENTfFICATION NO. SAG.CP25 ELECTRfCAL CONOUIT ISOMETRIC VALIDAT80N' REV. 1 SH, 2 of 2 ATTACHMENT L UNIT 1 BUI:. DING AREAS W/2" FLOOR TOPPING ON FLOOR SLABS BUILDING.

ELEVATION ROOM NUMBER Auxiliary 790'-6 162 thru 185 810'-6 188 thru 207 831'-6 210 thru 226 873'-6 244 thru 246 896'-4 Roof Electrical 778'-0 113 thru 115, 118 A thru D 792'-0 116 thru 131 807'-0 133,134,134 A/B 830'-0 135 thru 147 Fuel Handling 899'-6 Roof 918'-6 Roof Diesel NA NA I.

l l

l l

l 1

w KMM re 2 6/# M 8 7 ATTAC NT M

.., d,,

/

c== w N b=ve -

J M cus:,

~7~LJ ELEC74IC

_ * *g;, -

e,.

C MES IJAll T A/d I b I-X

  • nos e c, suesecs AMI TIMAL wcity y nhC Yn A c
  • Ci cf / nuun s nnt ? At f AMlGR.LQ.1g pg p-gl 0

.t s.' rL Ex 1

C A.SE Z

_l rP

.S PAA/, f, I,5.S /EfIP/EC T O

}

m

' /

P OINT C*

v

/~

l

~,C

'f

.tTat /- 06 n+1N C022E4 POND /N4 A6ClT1CHAl.

/

wslJH r, ' P ', FR.0H T.46L E I sets;u

/

.579.2 APPt Y 'f

  • A r PC/N T l',

.s7cp 3 - C OMN TE' 4.'., A L'_ A4.svHiv4 r is,

g NADE UA

% dlS/D COWQUIT f oL 1'.

unTH f ~ AffLIEC AT (.

4 AffLICA~r/0//

Of" F7.E/ c oNOJt ~

%lSt6 d 7 L EMAINS L AMS,

45' et.Ex A

C 1.S E H C

/

Zf

.S P AA/, f, l.S JPEd.lf!EC It g

70 PC/N*r r1,*

=

f s TED /

08 7A/Al C CAR E 'f0ND/NG I']

Y N SC TCA l[NdTH;

r. d C M h

b

~

T AAI E z e Et.c w h,.+ h s ro 2 C OHPur5

('=

u TA*LE W z

.57EP3

&0 70

.5769

/

Oc

& JJE

.W Y2.

.P fvcMINAl.

!.5 30/T/0%

CON 00IT CC%VECM WEldHTM cinera L E&'6 72 c owarot INcHEL INCHG.S L 8.$

3/4 3

I 3

/6 4

/

2 s'

/

b ll 3

(k) NO T A PPLIC A8L E v> t ra

. o v S AMt.i!

k I3 b

PLEX C. 04NGC 7 0 A L.

5

/8 17 as t/941 ed*

ATTACHMENT N h *'CP/c 0 M/

~

ESA5CO SERYlG5 INCORPORATED

/cf3,

,, / Na

.3M7/87 U V- 'B T C h D T.5/8/ U

,,..., / o, / 3 ut, cu,,, d 2.3 o- #7 0/

OfK F N E T.f_Lt.1 er o,,,,,,

      • p cusar 7 d d'

,,,,,, e, c p s & S ~ UNIT 7J EL E c. CourROL ec o G.

suniscs _ FIG 10 CONOUIT SPANS CA L.C.

  • 26 -c Sc 2x oa Rs / C: \\
f. uk g h@ $@.

e GG ea G

@ O O 9

.9 a

3 V

  • g

'm-pe. r-i,,

W-Q

,, - -4 q Q s

t,

w m-m-w s

m

=-,r

=

w w

~

s.

s.

m

_._. Q y

9 4

i D

=

=

e i

L e

1 4

la u

D m

D

)

se'

[b

[

'O

[

3 d'

q

'k N

4 9

A,--%

4-g j

F-4 l

e

'^

_q -.-

m 7

't:

is, g L

4

'Y 9

4 "6-r. v9

.9

=

  • s

,s

-8 m

A i:.

W. j %

R.

G

+

'e s

16 4 Q

s,

... g g

\\

=a u

4 e

=

t e

8 *

-1 4

e e

b W

IV h

)

.7

.)

.h

,.i 3

N

- b

- t w

w e

N 4

+

m m

mIm -w;m 3

m n

b s

e r

o

~

b b

Y h

og N

o

=

4 w.. tim

+

m w

N w

m o

s3 o

2 9

-D i

Q

,S

.k.. k, ! 4

.k,,l f.,

b, Q

k b,

w o

.ml4 o'4 e

s,

.., Q

+

m N

4 N

N N

O

+'

~

'?

A R

h h

L k

k hhh

'? ' 4 k -

An 6

(

j 'd

'4 5

Ns mlN o

+ ' ' ' '

u i t b

.. f [,.h h 4

o.

u

4. e,,

. -g,,

-~

~

i m.

6.-

w s

' p o@ x.+ pl y\\. ng " ';'

' q

/"

-g

-o1 Jf l

i,,e i[

'y g

9 "L,t 7

er-T Q

..ola g"4 %

y Igjy {1 4{t(Q 4... gi. 0' f

w,.

_ e_ @

._4 2 1 4 4Q

.)

l 6

=

i

}- 4 L-}-4 br hit j f

I$3 i

2 4l}>fN l

i., s 2

y er

- e!

4 i

E u

d-

-3

,1

-H:

a 4

g3

=

g

.?

a a

n

=

aa 4

3

- u

'3 P

t a

P dr* d 1

e at 4

4

. o lo lia e

4 l.

A 4

%o i

t, y

g q..

4

.h

.g

.P.,,..p-g.

.Q..

--]

v W 1/ M,

WW

- " '. y m p T

i

./%

,,.5/o / rw. n 2 #, m. o f

,,,,,, a,ff3 g

z 3

e,,,,,Kd -

,,_3 3o-81 o/

ODti<1 /.J17T, r1ein 768

_ osg _ -

y,..

7 cus=,

,,,,,e, CPsiJ U rlt 7 2 X e t. e c.

C o d -rg o t

eLoG, R/6l0 CONOU!T SPANS wasser _

CALC.A E6 C s C-2 x -o8 fe v, o o f.yh -8.- 9.- @6

@b@

l h

l

. u e

ee i

N-z Eg-y q

o

--m i

t i

s.

v i

i si

.i 1

-.g g

g

. *g --h,

'o

's b

  • !.*.(

'h c*o.'y

-.g s.

y l'

q o--

Q Gr 9

%rW

-i a

s.

q s

s ao m

e i

=

w

=

= \\

- ~

b O-i q Q

Ri :m e

o S

s.

s i%

g-4 Or

[

M i

si g6 4 4

4 Q

9 N

A 9

N N

y 4

d u.

z b ',o, O ',o 0}=(

a

=

l le e

,9;

'O ! O, ' *

=

'O N

s

.i i, o..

si g

QQ

% lQ I

N 4

N6 %

N

~

.. ~

w i

I s

' h -lt y

p g

b l

  • I q

07 f tty 9

8 t

t I

=g s

N N

y g

,,,s.

i

'2' f%

7

,i

.i 1

i

.i O

y

'O m

M i

.i

Lp,, us8 A LLOW A BLE 6 PAN 6 FRot4 ; g *mm

1 M

'1373 o180 $H. L4 - :5E R l6 5 FoR 4ROUP I, I[, M. 9 E cl Fic M O -f E s '- L D l 1 '1 ca FOR U N I O N IN TH6 $ PAN R E Puce TA BLE VAtuEs BY Q

N@

3 G" F OR h" t To l /' z" t $ 8" FOR 2.* f To S* f C ON PUIT6 IF UNION 16 WITHau (," OF 60FFOR f No RE PucTION lu TASLC A K y i VAL u G 5 16 NEcE65ARY. IF B.C. 16 WITHIN 4' OF $UPPORT No REPUCTION IN TABLE Z <4 -g. VALUE9 16 NE 4 E 65AF.Y. j M FOR 6. c. IN -f HE 6 PAM R E PU C C TA BL E VAL UE$ DY M B* f~oR 3/4 " f TO lP " t p I?," FOR 2f TO 4'f CNp. ~ 2 $fA N L E N(.T H N6xT TO O V'E R H AM(a 6 HALL BE l'- L M lW. FOR 2*f fo Sf cnat QR .g FOR O VE R H AN 46 ou 80TH 5 t pE S OF 6IN A LE SPAM TABLE VALUES E' f: -4 3 o A R. E N OT AP PLi c A E> L E. 'u { j d' NOT A PPLi c A6 L E FOR 3"+ fo 5 "# con oui 15. gg ~ K[4 jm.. l'- 3 Fo R Y $ To S 'M c o d D ut T g. = A$ b. NEEP NOT DE 6T R Al(= HT RuN g Rg Q' ALLowADLE 6 PAN LEN(.TH6 sl4AL L BE' PE TERtilNEP DY coNpulf Rus4 Eh 2 c n ARAC-TE.Ris-Ts c. (it. 61 FoK 6 T R Al(. H T R U N S, Sa' FOR BE N D5 ETf-) l _N TAbtE VALUE 5 ARE Af'PLi c ADL E FOR ALL CASES on PW4. 2323-5-09 o 6H L6 ite. =w

e I

n s '. FOR 5 f CNP. IF (4 t b) j $ (, " TO ~ I (, ~- F IR $ f SPA M 33 4*-ot1AM.fH $TRA14Hf KUN. (I f Ric.i p con pun SPA N MEANS FREQUENCY l$ AREATER THAN '33 H E. .a , <. -. -...,.-.....- n...-.. g TECHNICAL GUIDELINES FOR SEISHIC CATEGORY I PROJECT IDENTIFICATION ELECTRICAL CONDUIT ISOMETRIC /AL10AT!0N NO. SAG.CP25 REV. 1 ATTACHMENT 0 SH. 1 of 1 1,5 PEAK 'G' VALUES ELECTRICAL CONTROL BUILDING ATTACHMENTS TO SPREAD ROOM FRAMING 4 SSE-4% DAMPING HORIZONTAL VERTICAL N-S E-W 1.5 1.66 1.89 SSE-7% DAMPING HORIZONTAL VERTICAL N-S E-W 1,74 1.74 2.55 TECHNfCAL GUIDELINES FOR SEISMIC CATEGORY f PROJECT fDENTIFICATION N0. SAG.CP25 ELECTR2 CAL CONDUIT ISOMETRfC VALIDAT80N REV. 1 ATTACHMENT P SH.1 of 2 RILTI ANCHOR DESICNATION AND SETTING RIQUIREMENTS Minimum Embedment (Before Torque) Stamp on Actual Length Nut __ Ancho r Bolts Sizes KVIK Super Kvik o f Threads Thickness A. 1/4 x 1 5/8 1 1/8 i 3/4 7/32 s. 1/4 x 2 1/4 1 1/8 3/4 7/32 3/8 x 2 1/8 1 $/8 7/8 11/32 c. 3/8 x 2 3/4 1 5/8 7/8 11/32 1/2 x 2 3/4 2 1/4 1 1/4 7/16 D. 1/4 x 3 1 1/8 3/4 7/32 E. 1/4 x 3 1/2 1 1/8 3/4 7/32 3/8 x 3 1/2 1 5/8 1 1/8 11/32 1/2 x 3 3/4 2 1/4 1 1/4 7/16 5/8 x 3 1/2 2 3/4 1 1/2 17/32 F. 3/4 x 4 1/4 3 1/4 1 1/2 5/8 c. 5/8 x 4 1/2 2 3/4 1 1/2 17/32 3/4 x 4 1/2 3 1/4 1 1/2 5/8 H. 3/8 x 5 1 5/8 1 1/8 11/32 I. 1/2 x 5 1/2 2 1/4 1 1/4 7/16 3/4 x 5 1/2 3 1/4 1 1/2 5/8 J. 5/8 x 6 2 3/4 1 1/2 17/32 1x6 4 1/2 2 1/4 27/32 K. L. 1/2 x 7 2 1/4 3 1/4 1 1/4 7/16 3/4 x 7 3 1/4 1 1/2 5/8 1x7 4 1/2 2 1/4 27/32 M. N. 0. 5/8 x 8 1/2 2 3/4 1 1/2 17/32 3/4 x 8 1/2 3 1/4 1 1/2 5/8 F. 1/2 x 9 3 1/4 1 t/4 7/16 1x9 4 1/2 6 1/2 2 1/4 27/32 1 1/4 x 9 5 1/2 3 1/4 1 1/32 q. TECHNICAL GUIDELINES FOR SElSMlC CATEGORY Z PROJECT IDENTIFICATION N0. SAG.CP25 ELECTRICAL CONDU87 ISOMETRfC VALIDAT!ON REV. 1 ATTACHMENT P SH. 2 of 2 HILTI ANCHOR DESIGNATION AND SETTING REQUIREMENTS Minimus Embedment (Before Torque) Stamp on Actual Length Nut Anchor Boles Sites KVIK Sueer Kwik of Threads Thickness R. 1/2 x 10 2 1/4 1 1/4 3/4 x 10 3 1/4 7/16 1 1/2 5/8 S. T. 1/2 x 12 3 1/4 1 1/4 7/16 1 x 12 4 1/2 6 1/2 2 1/4 27/32 1 1/4 x 12 5 1/2 8 1/8 3 1/4 1 1/32 U. I x 13 1/2 4 1/2 6 1/2 2 1/4 27/32 1 1/4 x 13 1/2 5 1/2 8 1/8 3 1/4 1 1/32 v. W. I x 15 6 1/2 2 1/4 27/32 1 1/4 x 15 5 1/2 8 1/8 3 1/4 t 1/32 x. I 1/4 x 16 1/2 5 1/2 8 1/8 3 1/4 1 1/32 y, Z. I 1/4 x 18 5 1/2 8 1/8 3 1/4 1 1/32 DD. I 1/4 x 22 8 1/8 3 1/4 1 1/32 EE. I 1/4 a 23 8 1/8 3 1/4 1 1/32

  • Solta of 19-inch length and greater may be stamped with number corresponding to the bolt len8th in inches in the same manner instead of the stamped letters as listed below.

i-g __, ATTACHENT Q EGASCO S E R V I C ELJ INCORPORATED Q V. g CAL. BOOK iSPAI-1918 34 M M DATE _I: d y_N., SNEE7)f.-30F_dh BY CHED. 3Y :__ DATE__., 0FS 20. 3396.873 DEPT Wo. 550 CLIENT TEXAS UTILITIES GENERATING CO. PROJECT : COMANCRE PEAR UNIT 1 (SUBJECT'S-9910 CONDUIT DESIGN VERIFICATI M I e NININUN CODUIT SYSTEN FREQUENCLREQUIMIDr? ____.. _ i (LEFT SIDE OF RESPONSE SPECTRA PEAES) BLDG ELEY. MIN. COND. SYS. FRE9. BLDG. ELEY. MIN. COND. SYS FREQ. 896*-G' 14,8 1980'-4'

7. t 473'-6'
8. 4 950'-7'
7. 9 852'-6'
8. 3 C. B.

905'-9'

7. t S. G.

831'-6'

4. 0 860 ' - t' '
5. 3 810'-6'
7. 8 845'-6'
5. 3 794*-6'
8. 5 743'-7'
5. 3 l

785*-6'

8. 5 8

I 773' 6' 8.1 905'-9'

6. 2 I

f 885'-6'

6. 2 1

899'-4' 12.5 I. S. 464'-4' G. 2 $86'-6' 12.2 832* 6'

6. 2 i

873' 6'

6. 3 844'-4
5. 4

' A. R. 852'-6'

6. 5 i
9. 6 l

783'-7'I 831'-6'

5. 4 810'-6'
5. 7 473' 6'
5. 9 794'-6'
7. 2 454'-4'
5. 8 E. 3.

830'-0'

5. 8 918'-t'
8. 5 847'-8'
7. 2 F. B.

899'-6*

8. 5 774*-4'
7. 3 864*-4*
7. 5 841'-t'
7. 6 825 * - C '
7. 5 810'-6'
7. 2 T4 (neET sameT is n.)

TECHNICAL GUIDELINES ~ FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION ELECTRICAL CONDUIT IS0r!ETRIC VALIDATION NO. SAG.CP25 REV. 1 IMT 2445 ATTACitt1ENT "R" SH.1 of 1 IESA CONAX CO MBCTED 'IO SEAIECDY BCSA Au?N90 RIES PART NGGER END NPr WT. Wr. (2 00UPLINGS OBE(G's) SSE(C's) G VAllJE Am I CIDSE NIPPLE) Ax Ay Az Ax AY Az ASOO SOV's N-11122-Il 3/4" 2.25# O.45# 5.5 3.45 6.45 6.45 4.8 7.5 034AX RID's N-11097-17 3/4" 2.508 0.458 5.$ 3.45 6.45 6.45 4.8 7.5 NAM 00 LIMIT N-11222-01 1" 4.50# 0.804 SWI'IDIES 5.5 3.45 6.45 6.45 4.8 7.5 MAmhm IEVEL N-11067-11 3/4' 3.50# 0.45# SWI*II:HES, VAIOCR 5.5 3.45 6.45 6.45 4.8 7.5 SOV's, TARGET 90m SOV's ,T 4 TECliflICAL GUIDELIflES FOR SEISMIC CATEGORY I PROJECT IDEilTIFICATION ELECTRICAL C0flDUIT ISOMETRIC VALIDATI0tl RE. ATTACilllEHT "S" Sil. I of I - --~ t ESA5CO SERVICE 5 INCORPORATED TE X AS utet:Ilf S GENInAllNG CO' ~ (,,,, COMANCHE PEAK LINIT 1 na-n1 --.ni , =.=== otsrunvomnai,Ou 1Cl4i AasG

9. 30. M u.~u.

ea-n TA6L E - LOAD FACTORS (L.FJ ron VARious CONFIGURATIENs woTe.5.

l. LOAD FACTosts (L F.WetJLATED NCopFIA C ALC. Bocal SPAu - t ti5 RE F.. (atc. soo( spans. lie s on Ta'6 *asser is roa. Two Ls-REF \\- cons 6;W/LbO Doomt aum sWtsp OOuente. t&D5 SeqGLt. StuO SWAIGen EUN mmh 2 FT'

[g. 'g*g$ ^PP [,,f ^" g g l(Og g 5-09:0 ts-s ta tg. n e e ts.2-6 LS-st.-A ls-it.. A Lg <,.6 esof Ses**.*e. CASE E Tseed Ell C A% VM N'8 L S ~2 C L S-lc - C LS-t c.- C 4 R E. y* LS-14 ,L S-li c. LS-tO LS-80 LS-ba 4

2. {F A cahaOosf 1$oMi12.C - CoMPItost!

LS.gg j t$.gg g C AST. K LS-1 0 Lt.Sa-A L S-34-A AW M M1#1 W 4 N W 6 LS - to - A LS-to. A 15-30, g $.g D A Listeo,tise.a vue L5. Goat, tiiq. coms-PlGuitATIOst 984ALL 60 APPLIED AT ' 9 ^ ~ '"~ ^ " - T***"'**"*'"" (ON TAIN MEu T B66 o( A60vt

i. : G, g.og 12S 1.00 5

'G I'I 2' I'21 ~ ~ ^ ~ 3 iu co po.r iso.=Taic comrins. /[ MIMUARDS (( ~ ~ OM I" 0"I O#E*II '0 _~ "riconAi o",. 5, ts."eu vu e Larr.e"ST - gt _, _OL - _ IIS t.2 5 114 _ _ _ _ _t. 0 -) L.s:. StinLs, #5c ArrLic o. DnstL GEuf aATot 352'-(o l.88 l.42 l.I 3 1.09 I +. ,1 iso >,eupscAtes L.F. = 1.0 83 *-c. ( sin t.0 5 { '8 8 (.'-6 (Exiw ~~ i'6F~ 1 1 (, ~TO'1 ~ 'l U5 ~ NV REbEASED 673-G.- lt3 141

1. G 00 9 e

AUXI LI ART BS 2*- G lZO 139 l-31 119 1.88 _e a t '- <, 4 65 14p

1. D o 183
8. t 'I'-

o i o - <, i.oq INTLR4t_ STR0ct 905'-9 1.18 l-35 1.3 z I.34 110 lZs ""E'"'"'" 885*G l.25 1 39 108 l20 105 105 B GO' o 1.28 1.70

1. (,
110, 108 1.13:

CO" " ' ~B54*-4( A60K bl8 f.33 1 12 1 41 ELECTRsCAL I l"7 - 8 30-o I. I t 1.08 lt5 1.o 5 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT "T" SH. 1 of 14 F V >f 11 ALL REVS. & F V >l 33 R.O FV'l 3 3 R.1 EBASCO S-0919_ CA-13-1 CA-la CA-la-II CA-la CA-la-III CA-la-IV CA-la-Y CA-la-VI CA-lb-I CA-la CA-lb-II CA-lb CA-lb-III CA-lb-IV CA-lb-V CA-2a-I CA-la CA-2a-II CA-2a CA-2a-III CA-2a-IV CA-2a-V CA-2a-VI CA-2b-I CA-2b-I CA-2b-II CA-2b CA-2b-II CA-2b-III CA-2b-III CA-2b-IV CA-2b-IV l CA-2b-Y l CA-2b-V l l CA-3a-I CA-3a CA-3a j CA-3a-II CA-3a-III DELETED CA-3a-IV CA-3a-A l CA-3a-V CA-3a-B CA-3a-C l l CA-3b-I CA-3b CA-3b l CA-36-II DELETED CA-3b-III CA-3b-IV CA-3b-A CA-3b-V CA-3b-B CA-3b-C l t1) 1 r.- TECHfilCAL GUIDELINES. FOR SEISMfC CATEGORY I PROJECT IDENTIFICATION ELECTRICAL CONOUIT ISOMETRIC VALIDATION NO. SAG.CP25 l REV. 1 ATTACHMENT "T" SH. 2 of 14 ) FV>l 14 ALL REUS. & F V.'l 33 R.O F U't 33 R.1 EB\\SUO s-oy le C A - S a'- I CA-51-I CA-ia CA-Sa-II CA-5a-II CA-5a-a CA-5a-III CA-5a-III CA-5a-B CA-5b CA-5b' CA-5b CA-5b-A CA-Se-I CA-Se-I CA-Se CA-Se-II CA-Se-II CA-5e-A CA-Se-III CA-Se-III CA-Se-B CA-Se-IV CA-Sc-IV CA-Se-C CA-5d-I CA-5d-I CA-5d CA-5d-II CA-5d-II CA-5d-A CA-5d-III CA-5d-III CA-5d-B CA-8 CA-8 CA-8 CA-10 CA-10 CA-10 CA-11a CA-11a CA-11a CA-lib-I CA-116-I CA-11b CA-11b-II CA-11b-II CA-11b-A CA-12 CA-12 CA-12 CA-13a-I CA-13a-I CA-13 CA-13a-II CA-13a-II CA-13-A CA-13a-III CA-13a-III CA-13-B CA-13a-IV CA-13a-IV CA-13-C CA-13a-V CA-13a-Y CA-13-D (2) 4 -,-,e. e,- TECHNICA1.'GUIDEL8NES FOR SEISMIC CATEGORY I PROJECT fDENTIFICATION ELECTRICAL CONDUIT ISOMETRIC VALIDATION N0. SAG.CP25 REV. 1 ATTACHMENT "T" SH. 3 of 14 FOI 11 ALL REYS. & FDl_ 31 R.O FD1 3 '.4 R.) E 9 s s C.~. g. o u l, CA-1la-I CA-11a-1 CA-lia-II CA,tja CA-lia-II CA-1Ja-C CA-14a-III CA-14a-III CA-1 la-B CA-11b CA-14b CA-14c CA-14c-A CA-15 CA-15 CA-15 CA-16a-I CA-16a-I CA-16a CA-16a-II CA-16a-II DELETED CA-16a-III CA-16a-III CA-16a-A CA-16a-IV CA-16a-IV CA-16a-B CA-16a-IV CA-16a-IV CA-16a-G CA-16a-V CA-16a-V CA-16a-VI CA-16a-C CA-16a-VI CA-16a-D CA-16a-VII CA-16a-VII CA-16a-E CA-16a-VIII CA-163-VIII CA-16a-F CA-16b-I CA-16b-I CA-16b CA-16b-II CA-166-II DELETED CA-166-III CA-16b-III CA-16b-A CA-16b-IV CA-16b-IV CA-166-E CA-16b-IV CA-16b-IV CA-1Sb-G CA-16b-V CA-16b-Y CA-1Cb-VI CA-I ti b-C CA-16b-VI CA-16L-D CA-16b-VII CA-16b-VII CA-16b-E CA-166-VIII CA-16v-VIII CA-166-F f31 TECHNICAL GUIDELINES ...e.. q - m FOR SEISMIC CATEGORY I PROJECl tvun f FICAT10N NO. SAG.CP25 ELECTRICAL CONDUfT ISOMETRIC VALIDATION REV. 1 ATTACHMENT "T" SH. 4 of 14 FVM 14 ALL REVS. & FY'I'33 R.O FDf 33 R.1 EBASCO S '29.* CSM-1.la CSM-42a CSM-!la S>l-lib CSM-l'a CSM-1lb J CSM-16a CSM-lUa DELETED CS}!-16b CSM-16b DELETED CSM-lia CSM-17s CSM-17a CSM-17a-A CSM-17b CSM-17b DELETED CSM-17c CSM-17c CSM-17e CSM-18a-I CSM-18e CSM-18a CSM-18a-II CSM-18a-A CSM-18b-I CSM-18e CSM-18b CS.Y-18 b-I I CSM-186-A CSM-18e-I CSM-18e CSM-18e CSM-18c-II CSM-18c-A CSM-18c-III CSM-18c-3 CSM-18c-IY CSM-18c-C CSM-18d-I CSM-18e CSM-1Yd CSM-18d-II CSM-18d-A CSM-18d-III CSM-18d-B CSM-18d-IV CSM-18d-C CSM-18e-I CSM-18e-I CSM-18e CSM-18e-II CSM-18e-II CSM-lhe-A (41 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENT!FICAli0ri NO. SAG.CP25 ELECTRICAL.CONOUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT "T" SH. 5 of 14 FVM 11 ALL REVS. & FY'I 33 R.O F V'l 13 R.1 EBASCO s-091#, CSM-18f-I CSM '.8r CSM-18f-II CsM-lyr CSM-18f-III CSM-!Br-B CSM-18f-IV csy.Igr_p CSM-18f-V Cs*!.lgr.y DELETED CSM-18h CSM-18 CSM-1Bh CSM-18i CSM-18 CSM-181 CSM-18.1 CSM-18 CSM-18.1 CSM-24 CSM-24 DELETED CSM-25a CSM-42 CSM-25a CSM-25b CSM-42 CSM-25b CSM-27 CSM-27 CSM-27 CSM-28a CSM-28a CSM-28a CSM-28b CSM-28b DELETED CSM-29a-I CSM-18e DELETED CSM-29a-II CSM-29b-I CSM-18e CSM-296 CSM-29b-II CSM-29b-A f5) TECHNICAL GUfDELINES PROJECT fDENTIFlCATf0N -'FOR SEISMIC CATEGORY I NO. SAG. CP 25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ATTACHMENT "T" SH. 6 of 14 FDI 11 ALL REVS. & FO! 33 R.O FY'l 33 R.1 EBASCO S-0910 CSM-29c CSM-18e DELETED CSM-30 CSM-18e cSM-30 CSM-31a-I CSM-31a-I CSM-31a CSM-31a-Il CSM-31a-II CSM-31a-A CSM-31a-III CSM-31a-III CSM-31e CSM-31b CSM-31b DELETED CSM-32a-I CSM-32a-I CSM-32s CSM-32a-A CSM-32a-B CSM-32a-C CSM-33 CSM-33 CSM-33 i I l CSM-37a CSM-37a CSM-37a CSM-37b-I CSM-37b-I CSM-37b CSM-376-II CSM-37b-II CSM-37b-A CSM-38 CSM-38 CSM-38 CSM-39a CSM-39a CSM-39a CSM-39b CSM-396 CSM-39b i (61 l s ' TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFfCATION NO. SAG.CP25 ELECTRICAL CONOVIT TS0 METRIC VALIDATION REV. 1 ATTACHMENT "T" SH. 7 of 14 FvM 14 ALL REYS. & FVM 33 R.O FVM 33 R.1 EBASCO S-0910 CSM-40a-I CSM-40a-I CSM-10 CSM-11 CSM-41 CS $!- I l CSM-11-A CSM-11-B CSM-41-C CSM-42a-1 CSM-42 CSM-42a CSM-42a-II DELETED CSM-42a-III CSM-42a-A CSM-42a-IV DELETED CSM-42a-V CSM-42a-B CSM-42a-VI CSM-42a-C CSM-43 CSM-43 CSM-43 CSM-44a CSM-44a DELETED CSM-44b CSM-44b CSM-44e CSM-44c 1 TECHNICAL GUIDELINES ~ FOR SEISMIC CATEGORY I PROJECT IDENT8FICATION ELECTRfCAL CONDUfT ISOMETRIC VALIDATION NO. SAG.CP25 REV. 1 ATTACHMENT "T" SH. 8 of 14 F_YM 14 \\LL REYS.& FVN 33 R.O FVM 33 R.1 EB \\SCO S-0910 JA-la-I JA-la-I JA-la-II JA-1 JA-la-II JA-2 JA-2 J \\-2 JA-4a JA-4a JA-la JA-4b JA-4b JA-lb JA-4b-A JA-5 JA-5 JA-5 JA-5-A JA-6 JA-6 JA-6 JA-6-A JA-6-B JA-7a-I JA-7a-I JA-7 JA-Ta-II JA-7a-II JA-7a-III JA-7-A JA-ia-III JA-7-B JA-8 JA-8 JA-8 JA-8-A JA-9 JA-9 JA-9 JA-9-A JA-10 JA-10 JA-10 JA-10-A JA-12 JA-12 JA-12 JA-12-A JA-13a JA-13a JA-13s JA-13b JA-13b JA-13b f8) TEChi41 CAL G010ELINES PROJECT 10ENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ATTACHMENT "T" SH. 9 of 14 FD! 14 ALL REUS. & FDI 33 R.O FD1 33 R.1 EB\\SCO S 'n1<- 15-11 JS-11 DELETED JS-12 JS-12 JS-12 JS-18 JS-18 DELETED I JS-19 JS-19 DELETED JS-21a-I JS-21a-I DE! TED JS-22a JS-22a JS-22a JS-22a-B JS-22b JS-22b JS-22b JS-23 JS-23 DELETED JS-25 JS-25 DELETED JS-2B JS-28 DELETED JS-30 JS-30 DELETED JS-31a-I JS-31a-I JS-312 JS-31a-A JS-31b-I JS-31b-I JS-31b I i JS-31d JS-31d JS-31d (9) TECHNICAL GUIDELINES', FOR SEfSMIC CATEGORY I PROJECT IDENTIFICATI0tl NO. SAG.CP25 ELECTRICAL CONDUIT IS0t1ETRfC VALIDATION REV. 1 ATTACHMENT "T" SH.10 of 14 FO! 14 ALL REVS.& FD1 33 R.O FD1 33 R.1 EBAsro S-09:e JS-31e-I JS-31e-I JS-Jte JS-J1e-A J S -:l l e - B JS-J1e-C JS-32 JS-32 DELETED JS-32a-I JS-32a-1 JS-32a-II JS-32a-II JS-33a-I JS-33a-I JS-33 JS-33A-II JS-33a-II JS-33-A JS-34 JS-34 JS-34 JS-35 JS-35 DELETED JS-39a-I JS-39a-I JS-39a-II JS-39a-II JS-39a JS-39a-III JS-39a-III JS-39c JS-39c JS-39c JS-39e-I JS-39e-I JS-39e JS-39e-II JS-39e-II JS-39e-A JS-39e-III JS-39e-III DELETED JS-40a-1 JS-40a-I JS-40 JS-40a-II JS-40a-II JS-40-A JS-40a-III JS-40a-III JS-40-B i101 ~J TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT 8DENTfFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDAT80N REV. 1 ATTACHMENT "T" SH. 11 of 14 F \\'M 14 A L L R E \\'S. & F\\?! 3 3 R.O F\\'M 33 R.1 EB\\SCO S t>91t> CSD-10 DELETED CSD-10 CSD-Ila-I DELETED CSD-lia CSD-Ila-II CSD-11a-A CSD-14b-I DELETED CSD-lib-I CSD-14b-II CSD-14b-I-A CSD-146-III CSD-14b-II CSD-14b-II-A CSD-14e CSD-14e DELETED CSD-14c-A CSD-14d-I DELETED CSD-14d CSD-14d-II CSD-14d-A CSD-14d-III CSD-14d-B CSD-14e-I DELETED DELETED CSD-14e-II (111 1 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRfC VALIDATION REV. 1 ATTACHMENT "T" SH. 12 of 14 . FV>l 11 \\LL REUS.& FDI 33 R.0 FOl 33 R.1 EB\\SCO S r>91t.' SP-Za SP-2a SP-2 SP-2b i P b SP-2c SP-2-A SP-2e SP-2d SP-2-2 SP-2d SP-2-C SP-2e SP-2e SP-2-D SP-3a SP-3a DE L E TEl-SP-36 SP-3b LATER SP-4a-I SP-4a-I SP-4a SP-4a-II SP-4a-II SP-4a-A SP-4a-III SP-4a-III SP-4a-B SP-4a-IV SP-4a-IV SP-4a-C SP-4b-I SP-4b-I SP-4b SP-4b-II SP-4b-II SP-4b-A SP-4b-III SP-4b-III SP-4b-B SP-4b-IV SP-4b-IV SP-46-C SP-4c-I SP-4c-I SP-4c SP-4c-II SP-4c-II SP-4c-A SP-4d SP-4d SP-4d SP-Sa-I SP-Sa-I SP-5a SP-Sa-II SP-Sa-II SP-Sa-A SP-Sa-III SP-5a-III SP-5a-B SP-Sb-I SP-5b-I DELETED SP-5b-II SP-5b-II SP-6a SP-6a SP-6a SP-66 SP-66 SP-66 (121 ~ TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ATTACHMENT "T" SH.13 of 14 FD! II ALL REVS.& FVS1 3 3 R.O FO! 33 R.1 EBASCO S-0910 SP-7a-I SP-73-I DELETED SP-7a-II SP-7a-II SP-Ta-III SP-Ta-III SP-7b-I SP-7b-I DELETED SP-7b-II SP-7b-II SP-76-III SP-7b-III SP-Tc SP-7c DELETED SP-8a-I SP-Ba-I SP-8a SP-8a-II SP-Ba-II SP-Ba-A SP-86 SP-8b DELETED SP-8c-I SP-8c-I LATER SP-8c-II SP-8c-II SP-9 SP-9 LATER SP-10a SP-10a SP-10 SP-lob SP-10b LATER SP-10c SP-10e LATER SP-11 SP-11 DELETED SP-12 SP-12 DELETED SP-13a SP-13a LATER SP-13b SP-13b LATER (13) TECHNICAL GUl0ELINES FCR SEISMIC CATEGORY I FROJECT fDEtiTIFfCATI0tl NO. SAG.CP25 ELECTRfCAL CONDUIT ISOMETRfC VALIDATION REV. 1 ATTACHNENT "T" SH. 14 of 14 FVS! 14 ALL REYS.& FYS! 33 R.O FDI 33 R.1 EB\\SCO S-0910 SP-13c-I SP-13c-I LATER SP-13c-II SP-13c-II SP-13d SP-13d LATER SP-14a SP-14a LATER SP-14b SP-11b LATER SP-15a SP-15a DELETED SP-156 SP-15b SP-15e SP-15e SP-15d SP-15d SP-16a SP-16a LATER SP-16b SP-16b LATER SP-16d SP-16d LATER (141 7 TECHNaCAL GUIDEllNES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION ELECTRfCAL CONDUIT ISOMETRlC VALIDATION ATTACHMENT U SH. 1 of 1 U LTJ MATE.__. A L.LoWABLE. _ _. .16o34 D.. ST R E 55 FS E T w e c W ^^N c AELTE.._.AN D __c oriDUIT AI...P_Er4 EIRATlo tu..__. coggioj y _U_.L. TI M ATE.._ LL o W A P2 L E__., bond STR E55 ( PS O A ~ ' ~ 61LE. ~~ " ~ ' 334., gg ~6 lab: ' W ALL ~ ~ ~' 34 115-p1 _ L_ .q g.. .g i, g ..__.. q g. . _g _. q 1 ' ~~ ~ ~D' ~~ ~~ ' ~ ~ ~ ~ ~ ~ ~ 2 'N' _q, 4 3.._.. _ 4 5 g) g.... g,7 g ..h3 3, J 4-S4 '14 9 p . g SEE LoAC c oM ee t N AmoN S ', FM coNbviTS c A5T IN Pt. A CE IH coH CRETE sLArss & whLt.s (REfeREHCE t). e p-6. 6g W l/ H 1 T 'HICAL GUIDEll?iES h SEISt11C CATEGORY I PROJECT IDENTIFICATI ) ELECTRICAL CONDUIT IS0ftETRIC VALIDATION NO. SAG.CP25 I REV. 1 ') l { ATTACHMENT V Sil. I of 2 y { q j i ) l P255%)t-7os4C L% M P e ci z' 5 a C i g ~ pa ra n s/4gs e > Nsc r/ MJ l I cn Ar<o WE,G H T %' FnLLER NEccesor l*ftLLtA WEIGoIT /* Sol /M WEIGHT i Q sma dTEf?f I O l's} l s n. e its) k isU n. (as) k t/M Argo o A o c*o k rs n ,t v i1I wca..m r ~<us.m e-acusac.; o-on (ia e d z !(( 3 f 4 .2G 35 7,#c, t. 53 377 's

4. ll Ja lifc 9 SI ll.31 15.8 9 f [kO O p

c iq I > r-1 = = 1-5 s5 's { f )NY - Si 73 i'n 1.59 sv 73t (. 3 S 35 Ilst 9A I I. t.c. 16.42 i jh-is is is 1 D l- { 1 3s 3,7, u /.G c. 5 *7 su 4.r.s SSlieu 10 05

z. o c. 17.o5 m

i Z a i It 39 3ys$r /. 7/ s v.633 c.s3 3=sasz 16.23 17 33 g 7A5 z 2 ,9a 33 3',{ f.ss 3,9 a$ e.37 3*/SN //. 7 f 14 74 2o.98 Nk i m J'I m 2 '2 1.14 3110$2 2. \\ 9 3 +Ioss 8., s 3* I4 st I t. IS is.46 22.oq D l.l$ Q e. i 3' [ 1 9 /.33 35fo3z 2.3 ? Sylo 3s 9.es 3 vid

12. G6 I t. 33 23,79

~ E $ p-e 3 O i b o

1. ] G 3 yll z
2. S 0 B$llgz I O.i 3

$$l$31 l3.$3 l 2. 67. 25.02 l i 9 m = W

f. 96 3sif3z 2.2 Co 31l2 t Il.03 3*Ii=33 IA AA
13. I t>

27.A S* I $ W I I l Tr 11 CAL GUIDEllWES Ft aEISMIC CATEGORY I PROJECT IDENTIFICATION ELECTRICAL C0riDUIT IS0t1ETRIC VALIDATION NO. SAG.CP25 REV. 1 l I[.. { ATTACilMENfV SH. 2 of 2 3 .i { .q j C - 70 8 - S C L AM P. l{s . n c ga .f, l-g ~ k k j CLAM P &lEtGM) '4* FaLLCll\\ 6460G80 T $* Fit.ltA WCIGHT /* $H/od Wi/GHT p Q i satc (16) 4. (80 /t. (t&) d (16). Aegs.O I k Q -Ih{j nik ~A~ w(te.}oQ

  • B~

w(n )otk

  • C~

w(en)*l(*3

  • D" (lb)'-

1 * *lle) A f C#O ' g {l(( h, l l c. Z A q I?fy >O O I i'll g n a r'" I /,. i (s k r m C M /h~ a k c t h t 3 I S 3 S m E d z l 't o 3Q Q 2~ 1.4 i Se 10 4 2.25 31lo o 8.99 3v 14,'u z ip,33 / G.05 22.7) ~ 2 *2 1.59 J r //f c. 25% 35111L 9.q l 3p is ts I ?.. B'l /(. 75 23.b l J

  • if IU s

3 e Wt f f ggp Z 3-

  1. t :*

O /.8 / 3 * ///w 2.91 3188su 994 3ylSf6 13.3 5

11. 4 5 2 5.f o Q'

s ,g *, O g 4~ 3.37 3 k '/M 3W 3'4 Sid f i s.~ls 34,2o1 l8.g3 7s.99 37,3 5 II T 1 2 (/) S~ 3.90 J'ovl7d 4.09 34*174 16 3 3'q82/4 20.o4-i8'o 99 30 ff (m I t t) , 1 's TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV, 1 ATTACHMENT W SH, 1 of 1 CONDUIT RUN TRIBUTARY LENGTH FOR LONGITUDINAL LOAD h STRAmHT Rus = e >-e NUMBER op sueroRT : ALL TRtPauTARY luqTH = TOTAL LENATH PLus piTTmos Bewos 8 4eeso / (rYP) F- ^ :$/t t k? s$ e ( Qe 23-j vi .3 1 x { + g u v . ms b [b [h 0 ~ M 97, ( g a /$ u Nou of.. suppotts. 2 IRISt.A6AY LEN4TNM f., _ SUPPORTS

t. / 2 t TOTAL WEMHT.

F0&. LEN ATH C,

i..

S uPPORTS_.. S h i _TDTAL_ WEL6HT_.f4A-MtMTF. D.... 4_.. ~,. SUPPORT 5 S M G: TCTAL Wel4HT FoA LeN4TH0-. s j i .t I i I i l I mum i \\ TECHNICAL GUIDELINES-FOR. SEISMIC CATEGORY I PROJECT-IDENTIFICATION NO. SAG.CP25 ELECTRICAL-CONDUIT ISOMETRIC VALIDATION

REV, 1-

~ APPENDIX-I APPENDIX I PROCEDURE-FOR RESPONSE SPECTRA MODAL ANALYSIS OF CONDUIT ISOMETRICS S i B h l r i t [ --~- - -, 6 TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDI\\'-I PROCEDURE FOR RESPONSE SPECTRA MODAL ANALYSIS OF CONDUIT ISOMETRICS TABLE OF CONTENTS SECTION DESCRIPTION PAGE 1.0 GENERAL 1

2.0 REFERENCES

1 3.0 DESIGN INPUTS 1

3.1 CONDUIT SUPPORT FREQUENCIES 3.2 CONDUIT ROUTING 3.3 DIGITIZED FLOOR RESPONSE SPECTRA 3.4 TRIBUTARY CONDUIT WEIGHTS 3.5 CONDUIT SECTIONAL PROPERTIES 4.0 COMPUTER PROGRAM 5

5.0 MODELING 5

5.1 GLOBAL COORDINATE AXES 5.2 LOCATION OF CONDUIT NODAL POINTS 5.3 BOUNDARY CONDITIONS FOR COMPUTER INPUT 5.4 PREPARATION OF COMPUTER MODEL FOR STRUDL 5.5 DATA INPUT FOR COMPUTER SKELETONS 5.6 OUTPUT REQUIREMENTS 6.0 ACCEPTANCE CRITERIA 13 7.0 CALCULATION METHOD 14 7.1 EVALUATION OF SUPPORT LOADS FROM RSM ANALYSIS 7.2 EVALUATION OF CONDUIT (Lt & Lt ) LOADS FROM STATIC ANALYSIS 7.3 EVALUATION OF CONDUIT FORCES AND MOMENTS FROM RSM FOR SPANS

.4 COMMON SUPPORT il

I TECHNICAL GUIDELINES.

PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I-PROCEDURE FOR RESPONSE SPECTRA MODAL ANALYSIS OF CONDUIT ISOMETRICS TABLE OF CONTENTS (Continued)

SECTION DESCRIFTION PAGE TABLE I.1 IDENTIFICATION NUMBERS OF BUILDINGS AND FLOOR ELEVATIONS 21 I.2 ORIENTATION OF BUILDING GLOBAL COORDINATES 22 I.3 UNBRACED LENGTH AND K-VALUES FOR INPUT IN STRUDL SKELETON 23 r

b b

i iii

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 1.0 GENERAL This document provides guidelines for the Response Spectra Modal analysis (RSM) of conduit and support assemblies for the Comanche Peak SES, Unit No. I and 2X conduits.

The RSM analysis is used to evaluate the conduit isometrics which do not satisfy the acceptance criteria specified in the S-0910 package ~and is consistent with the intent of Ebasco Specification No. SAG.CP10 (Reference 1).

The objective of utilizing this approach in ISO validation is to keep construction backfit to a minimum.

2.0 REFERENCES

1.

Design Criteria SAG.CP-10.

2.

Calculation Book No. Span-1002, Seismic Spectrum Loading Database 2% and 3% Damping.

3.0 DESIGN INPUTS The following design inputs are required to perform the RSM analysis:

1.

Conduit Support Frequencies 2.

Conduit Routing 3.

Digitized Floor Response Spectra 4.

Tributary Conduit Weights on Conduit Support 5.

Conduit Sectional Properties 1

' TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDTX I 3.1 CONDUIT SUPPORT FREQUENCIES Conduit support frequencies in three directions are used to calculate support stiffness.

For conservatism, the following minimum frequency in each direction shall be used in RSM analysis if supports meet the minimum frequency requirement:

Electrical Control Building. - Minimum conduit support o

frequency for this building is 11 Hz with the exception at elevation 807.00', 778.00' to be li Hz, 16 Hz, respectively, o

Fuel Building - Minimum conduit support frequency for this building is 16 Ha..

o Safeguards Building & Diesel Generator Building - Minimum conduit support frequency for this building i s 16 Hz.

o Auxiliarv Building - Minimum conduit support frequency for this building is 12 Hz with the exception at elevation 790.50' to be 11 Hz.

o Containment Building Minimum conduit support frequency for this building is 11 Hz.

o Internal Structure of Reactor Building - Minimum conduit support frequency for this building is 11 Hz.

If conduit support frequency does not meet the minimum frequency requirement, the actual calculated support frequencies flowest in each direction) shall be used.

2

l-TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 3.2 CONDUIT ROUTING Conduit routing shall be that shown on the isometric drawing of the Conduit System.

3.3 DIGITI 2ED PLOOR RESPONSE SPECTRA For the isometric drawing, enveloped digitized floor response spectra for all elevations of all conduit support locations shall be utilized for seismic inputs.

In the design validation, damping values of 2% for OBE and 3% for SSE shall be used.

When a conduit system is supported by Containment Building and internal structures of Reactor Building, the isometric shall be validated using enveloped response spectra of Containment Building and internal structures of Reactor Building.

3.4 TRIBUTARY CONDUIT WEIGHTS Conduit tributary weights (Lt and Lt) shall be calculated as per section B.O of SAG.CP25.

3.5 CONDUIT SECTIONAL PROPERTIES For frequency and response spectra modal analysis, the full sectional propertina of conduits as listed in Table 4 of Reference 1 shall be used.

However, the threaded conduit sectional properties as listed in Table 6 of Reference 1 shall be used in the conduit stress evaluation based on the results obtained from RSM analysis.

For cases when the stress check fails, the exact location of the threads should be identified.

For spans where there are no fittings, non-threaded section properties can be used.

3

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUlT ISOMETRIC VALIDATION REV. 1 APPENDIX I 3.5 CONDUIT SECTION PROPERTIES IContinued)

The conduit including the cable weight shall be represented by the density as shown on the following table:

DENSITY TABLE FOR STRUDL INPUT Conduit Size Wt. per Ft.

Density (Rigid Stl)

(Including (LB/IN8)

Cable Wt.)

3/4 1.5

.375 1

2.0

.337 1 1/2 4.0

.417 2

5.0

.389 3

13.0

.486 4

19.0

.499 5

23.0

.446 Weight of pull sleeve shall be considered as uniformly distributed mass.

Weight of coupling shall not be considered.

Airdrop weight (WE) and total weight of flex conduit from end of rigid conduit to electrical equipment or Junction Box shall be lumped as concentrated mass at the tip of conduit overhang.

4

TECHNICAL GUIDELINES FOR ' SEIS' TIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 4.0 COMPUTER PROGRAM STRUDL computer program shall be utilized in performing the analysis.

Approved STRUDL Skeletons for static, frequency and response spectra modal analyses shall be used.

STRUDL computer program has been upgraded to include the following features:

Ten percent combination method for closely spaced modes.

a.

b.

Missing mass correction for rigid modes (Modal Frequency larger than or equal to 33 Hz).

Comparison of Design g-values to actual g values from c.

response spectra analysis.

d.

Computation of support spring constants using user-input support frequency and conduit tributar; weight for Lt or Lt.

(See section 8.0 of SAG.CP25) e.

Threaded conduit sectional properties available on STRUDL dataset for AISC code checking conduit stresses.

SAG-NYO is responsible for the adequacy of the STRUDL skeletons.

No change in skeleton is allowed without oupervising engineer's approval.

5.0 MODELING The following guidelines in Modelins the conduit system shall be followed:

5.1 GLOBAL COORDINATE AXES In set up of the global coordinates of the model, the Y axis shall be vertical, X & 2 axis shall be oriented in N-S on E-W direction according to Table I.2.

5

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.Cp25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.2 LOCATION OF CONDUIT NODAL POINTS For overhang segment, two nodal points shall be specified, a.

the tip of the overhang and the other at the midspan, one at b.

Any segment shall have preferably three equally spaced nodal points between the end points.

A segment is defined as straight portion of the conduit run without turns.

A single bend has two segments and a double-bend has three segments.

The nodal spacing shall not exceed the S. : when modeling the ISO:

CND SIZE Sary (INCH) s 4-3/4 26.2 1

30.2 1.5 34.8 2

39.7 2.5 43.6 3

45.8 4

51.9 5

59.6 The maximum nodal spacing, S....

is calculated by the following formula:

1x 7I X

4 EI388.4 S

=

MAX 2

2F W

Where F = cut-off frequency = 33.0 Hz W = unit weight of conduit s/ inch E = modulus of elasticity s/incha I: moment of inertia of conduit (inii If Additional weights, such as BC or LBD are imposed, c.

additional nodal points should be added.

d.

Conduit with a bend less than or equal to 15 degrees is considered a straight run.

6

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.3 BOUNDARl_ CONDITIONS FOR COMPUTER INPUT a.

Three (3) translational spring constants shall be used to simulate the conduit support stiffness.

The spring constant shall be calculated by the following equation.

Ki (2 Kfi)8 XWi

=

0.10217 f, 8 xW 386.4 Where:

Ki :

spring constants (#/in.)

fi : support frequency (HZ)

We : actual conduit weight (#) from LS series drawings for Lt or Lt (excluding the filler plate or shim plate and filler plate) i

= (X, Y, 2) b.

Additional weights of BC, union, flexible conduits and LBD shall be lumped as concentrated mass or distributed weights as required.

In order to remove the computer analysis singularity, c.

torsional restraint may be used.

The torsional value obtained from analysis shall be less than 4% of the maximum allowable clamp torsion capacity shown below:

Conduit Torsional Capacity G

(Ft lb)

(in.)

3/4 179 1

219 1 1/2 291 2

747 3

990 4

933 5

726 7

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.3 BOUNDARY CONDITIONS FOR COMPUTER INPUT (Continued) d.

Conduit Embedded in Concrete Assume threeway hinge support at the face of concrete.

If the conduit system does not pass, fixed end support with torsional moment release at the face of concrete may be assumed.

Also see section 8.3 of SAG.CP25.

Conduit Attached to a Supported Junction Box e.

1.

The conduit connecting to Junction Box shall be assumed free in all directions for computer analysis purposes, provided the system is acable and the conduit system passes.

If the system is unstable or the conduit system does not pass, assume the following boundary conditions at the point of connection between Junction box and the rigid conduit.

Free to rotate about the three coordinate axes Elastically supported in three directions, two transverse and one longitudinal to conduit axis.

2.

In the absence of any exact data about the junction box '

system, use the following genoric spring constants:

For junction boxes attached to steel supports k = 523 lbs/in in three orthogonal direction to junction box.

For junction boxes attached directly to concrete k = 742 lbs/in in three orthogonal directions.

8 b

m TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.3 BOUNDARY CONDITIONS FOR COMPUTER INPUT (Continued) 3.

The junction box itself need not be design validated, when the generic JS-Series drawings for the junction box are used to qualify the box.

When there is a non-generic Junction box and it is necessary to include an elastic support in the RSM analysis model, then the box shall be analyzed, f.

Conduit Attached to Unsupported Junction Box The conduit shall be assumed free (in all directions) at the end connecting to the Junction Box with a concentrated mass equal to the weight of the Junction Box divided by number of conduits.

g.

Pull Sleeve It shall be assumed to be continuous at the end with a threaded coupling and two-way hinge joint (not support) resisting shears transverse to longitudinal axis of conduit at the other end with or without set screws.

h.

Conduit Supports All conduit supports shall be assumed to be threeway hinge trigid) supports for static analysis.

For RSM analysis, the conduit support shall be assumed to be threeway spring support.

A very short member with properties expressed in appropriate stiffness matrix format shall be utilized for computer analysis.

All conduit supports will be modeled as springs aligned parallel or perpendicular to the conduit axis.

9

r-TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.4 PREPARATION OF COMPUTER MODEL FOR STRUDL ISO computer model shall be a.

essy to read - not too crowded or empty.

b.

Joint and Member Designations 1.

The starting point may be assigned as point no.

1.

The remaining node points should be numbered in sequence.

2.

The member designation number between (2) nodal points shall be circled.

The member number shall be the same as the preceding point number of the two points where possible.

3.

A fictitious member and a fictitious support joint shall be added to represent the stiffnesses of a conduit support.

4.

Fictitious support joint number shall equal to its associated conduit joint number plus 100 so as to make it readily identifiable.

5.

The member designation number for the fictitious member connected to the support joint shall be same as fictitious support joint number.

5.5 DATA INPUT FOR COMPUTER SKELETONS Mesh coordinates can be used along with joint coordinates.

a.

b.

Joint coordinates 1.

Fill in coordinates of the conduit routing following the sequence from computer model.

2.

Fill in the offset support joints and the corresponding node points on the conduit line.

10

F l

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

/OR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.5 DATA INPUT FOR COMPUTER SKELETONS (Continued) c.

Support joint Input support Joints from computer model.

d.

Support Joint Releases 1.

Do not release torsional moment if this will cause instability such as in straight conduit run.

2.

Do not release any moments or forces of support Joints where springs are attached.

3.

Fill in the number of the applicable conduit support joints.

e.

Constants 1.

Input modulus of elasticity E of 29.0E6.

This value is fixed in the skeletons.

The user should change this value in the input if it is different from 23.0E6.

2.

Input density Equivalent density of conduit to be used, may be calculated by the following equation:

re =

We Ib/in3 12 X A We :

Conduit weight including cable (1b/ft)

A:

Cross sectional area of conduit (int) equivalent density of conduit (ib/in8 )

re : :

(Reference to Section 3.5) 11

r TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 5.5 DATA INPUT FOR COMPUTER SKELETONS (Continued) f.

Mesh incidences can be used along with member incidences, g.

Member incidences are as indicated below:

STARTING AT ENDING AT MEMBER NODE POINT NODE POINT 1

1 2

2 2

3 3

3 4

h.

Mesh incidences are as shown:

105 113s/5 -- 13/105 -- 113 105 & 113 are fictitious support joints.

5& 13 are corresponding nodal points.

  • Fictitious members, i.

Member Properties

- Member Properties are expressed with respect to local axes Include additional weight at joints from union, LBD,

cable, etc.

J.

Digitized floor response spectra are contained in Reference 2.

The file for shock spectrum loading shall be called out as follows:

12 m.

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25

. ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1

. APPENDIX I S.5 DATA INPUT FOR COMPUTER SKELETONS (Continued)

BIELIXXX = File name for spectral curves saved in spectrum input data disc of Reference 2.

BI

Building I.D. - See Table I.1 for identification number for different buildings.

ELI

Elevation I.D.

See Table I.1 for identification for different elevations in a specific building.

XXX

Loading case; For example, 02M for OBE & S3M for SSE Example Input file name for spectra curves at elevation 790.50' in Safeguards Building.

File Name for OBE case : "SG79002M" File Name for SSE case : "SG790S3M" 5.6 OUTPUT REQt'IREMENTS In order to complete the ISO validation, the following outputs are required as a minimum.

A.

Support reactions in three directions.

B.

Seismic displacements at tip of rigid overhang conduit.

C.

Conduit member forces and conduit stresses.

6.0 ACCEPTANCE CRITERIA Acceptance criteria shall be in accordance with Ebasco Specification No. SAG.CP-10 "Design Criteria for Seismic Category I Electric Conduit System" and S-0910 package.

13

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX 1 6.0 ACCEPTANCE CRITERIA (Continued!

In addition, for structural member with open section, the warping stresses due to torsional moment and the reduction of flexural allowable due to lateral torsional buckling shall be considered by hand calculations.

7.0 CALCULATION METHOD 7.1 EVALUATION OF SUPPORT LOADS FROM RSM ANALYSIS To calculate the actual "g" values, the following steps shall a.

be followed:

1.

Read the computer output of the support reactions.

2.

Divide the seismic support reactions in three directions by the tributary weight of the conduits to obtain the three actual "g" values.

When the support capacity violation occurs, the actual "a" value shall be obtained by dividing the support reactions by the support capacities.

b.

The actual "g" values shall be compared with design "g" values included in the Appendix 7 of Reference 1.

In the comparison, the maximum actual "g" value shall be compared with the maximum design "g" value, the medium actual "g" value shall be compared with medium design "g" value, and th'e minimum actual "g" value shall be compared with the minimum design "g" value regardless of the direction.

This is performed based on the fset that in the support design validation for both OBE and SSE cases, the maximum design 'g" value was applied in the weakest direction, the medium design "g" value was applied in the second weakest direction and the minimum design "g" value was applied in the strongest direction of conduit supports.

This is accomplished by rotating conduit support in all possible orientations.

In tn case that the comparison fails, a simple calculation shall bu made as follows (Refer to SAG.CP20):

14

o TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX !

7.1 EVALUATION OF SUPPORT LOADS FROM RSM_ ANALYSIS (Continued) 91A IF 91A >

(L.F.)1 910

=

910 9 1A + 9 2A IF 92A > 920, & 93A < 9 1A + 9 2A (L.F.)2

=

$ 9'1D + 9'20 93F 9'1D + 9'2D and (L.F.)3 =Ag+ 1f (83-A)

IF 8 3#

1*9

>(L.F.)2 C

g 3F g-g (L.F.)2 A

=

9 10 +

9 20 C

=

930 Where 91A, 92A, 93A Maximum, Medium and Minimum "s" from

=

Analysis respectively.

910, 920, 930 Maximum, Medium and Minimum "s" are Design

=

"g" from Appendix 7 of Reference 1.

If (L.F.li, ( L.F. ): and (L.F.): are less than one, then the support is adequate based on the Conduit generic capacity from S-0910 package.

Otherwise, select the largest from (L.F.)i, ( L. F. ): and (L.F.): as the Load Factor and design validate the support.

c.

If conduit tributary weight exceeds the support capacity and the actual "g" values are less that the design "g"

values, then support capacity can be increased based on the minimum multiplying factor (MMF) provided the support frequency requirement can be met.

The (MMF) shall be the lowest value of the following multiplying factor (MrI.

15

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 7.1 EVALUATION OF SUPPORT LOADS _FROM RSM ANALYSIS (Continued) 91D or 1+910 H

=

p 91A 1*9 1A 920 or 1+920 M

=

92A 1*9 2A or 930 or 1+930 M

=

y 93A 1*93A 1.

Revised support capacity = (support capacity of Generic, Modified or IN support) x MMF.

2.

If revised support capacity is greater than support design loads, support is acceptable.

d.

If the support capacity is unknown such as for IN or Modified support, the design of the support shall use actual "g" values.

If the support orientation is known, the actual "g" values need not be rotated.

Otherwise, the actual "g" values shall be rotated in support design.

7.2 EVALUATION OF CONDUIT LOADS (Lt AND tr) FROM STATIC ANALYSIS _

In static computer analysis, the reactions at support locations are used to determine the conduit loads.

For the evaluation of support adequacy, the conduit loads in the conduit local coordinate system are required.

7.3 EVALUATION OF CONDUIT FORCES AND MOMENTS FROM RSM FOR SPANS The threaded conduit sectional properties as listed in Table a.

6 of Reference I shall be used.

16

TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 7.3 EVALUATION OF CONDUIT FORCES AND MOMENTS FROM RSM FROM SPANS (Continued) b.

The actual section properties may be used if there are fittings in the span in question.

no c.

In computing the allowable axial compressive stress, the radius of gyration of conduit full section may be used.

d.

Find envelope forces and moments of OBE and SSE cases from RSM analysis output.

Evaluate conduit stresses by using formulas elaborated in e.

Part 5. Section 1.5 and 1.6 of AISC Manual of Steel Construction, 7th Edition.

f.

Axial Comoression and Bending fa + fb

+ fbZ < 1.0 (When (fa/Fa) < 0.15), otherwise follow N

Y N

AISC, 7th ed.

or F

i 2

(bz 32 7

~

/ fb i

fa +

\\ TN j

[ M )i

+

Ti l'0

\\

(OBE) 1 - (kl/r):

2C 3 c

When k1/r i C Fa e

(Fy)

(S/3) + 3 (kl/r)

_(kl/r)3 BCe 8C 3 c

17

r TECHNICAL GUIDELINES FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAC.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX !

7.3 EVALUATION OF CONDUIT FORCES AND MOMENTS FROM RSM FROM SPAN (Continued)

Alternatively, Fa may be computed using Table 1-A, Appendix A AISC 7th ed.

When k1/r > Cc Fa 12 g E

=

23(k1/r)'

Fb

0. 6 Fy C

=

e 24'E

=

p (SSE)

Fa:

the lesser of following (2) values shall be used A.

1.6 (Ott) allowable stresses, but less than 0.9 Fy 8.

0.9 48E Ultimate Buckling Strength

( Kl/r) 8 Fb:

0.9 Fy

=

g.

Shear St ess (OBE)

~

(force / shear) 2

[ shear z

I y

f

+

\\ force /

+

Mt < 0.4 Fy 1/2 A E

(SSE)

~

i fyshear) 2 I

f8 shear) 2 (force)}

{(force)l

+

f

=

-+

Mt < 0.5 Fy I/Z A H

18

PPEPAPED BY O. s. vn,.

N B,Ya.

H. S. YU APPICVED BY:

C. Y. 01100 bi/bh H/Z 5! 7 IME

)%

g, TECHNICAL GUIDELINES _

_..l _ ___ - - - - -

jd FOR SEISMIC ~ CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25

)

ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 AEDE:NDUM NO.1 3

. APPENDIX I i.J

~~

7.3 EVALUATION OF CONDUIT FORCES AND MOMENTS FROM RSM FROM (Continued)

.f

)

h.

Effective Length Factor in Slenderness Ratios

?

.For overhang, single and, double bends, the unbraced length 3

?

and its respective X value is given in Table I.3.

3 3

The slenderness ratio of the conduit in the STauDL printout need not he checked except for overhang. For Overhang, traxinun slenderness ratio d}

(KI/r) for conduits nay be taken as _240 khen fa/Fa ( 0.15 (not applicable for conduit support members).

f Where fa

=

computed axial stress F a.,.=

e.1 l owa bl e a:d al.2 tr.e s s._

l

}

When fa/Fa > 0.15, maximum slenderness ratio (KL/r) shall not 1

y exceed 200.

i l

The SSE allowable shall be used for SSE loads and OBE f.

allowables shall be utilized for OBE loads and if necessary each conduit span shall be evaluated for corresponding member forces.

7.4 COMMON SUPPORT a.

Conduit Stresses i

l t

Each individual conduit has j

to satisfy the design i

requirements stated in the procedure described in Section 7.3.

I, I

b.

Support Capacity l

l For Vertical Direction I

m 7:g jI + D II + U Actual)a

.1 (1 + G0esign}

Il 0F l

'T) f f

.;l 19 j

=,_

-. sn

TECHNICAL CUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25

' ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 APPENDIX I 7.4 COMMON SUPPORT (Continued)

For Horizontal Direction

  • D I0 Actual)

I IODesign)

IL or L)

L T

Ri:

Reaction force form RSM.

  • Actual:

From RSM.

  • Design:

Design "g" value (Appendix 7, Reference 1) used in support design.

Lt or L,: Per generic support capacity tables or per modified support capacity calculation (includes weight of filler and shim plate).

W:

Weight of filler plate or shin plate.

The above equations are applicable to both OBE and SSE cases.

I 20

Tr;T703:;7,E tiUIDEL2SES TOR SEISMIC CATEGORY I P POJECT IDE' 7 II- -..:

NO.

3AG.CP25 ELECTPICAL CONDUIT ISOMETRIC EVALUATION APPENDIX I REV. 1 Table I.1 IDENTIFICATION NUMBERS OF BUILDINGS AND FLOOR ELE SUILDING 3L:0 ELI'/ATION ELY SUILDING SLOG ELi'/ATICN EL7 (SLOG) 10 NO

(!L'/)

!D NO (5 LOG) 10 NO

( EL'/ )

!: 1 Reactor R8 905.75 905 Auxiliary A8 899.50 sig Building 885.30 885 Building 386.50

!!s Internal 860.00 860 Structure 832.50 832 873.50 372-852.50

!!Zi 808.00 808 831.50 82:

783.58 783 810.50 8:0 Safe-SG 898.50 898 Guards 873.50 873 Fuel FM 918.00 9:3 790.50 790 luilding 852.50 852 899.50 899 831.50 831 luilding 860.00 850 810.50 810 841.00 84; 790.50 790 825.00 8:5 785.50 785 810.50 778.50 778 Contain.

C8 1000.!O 10 Electrical Building

~ E3 873.33 873 ment 950.58 552 854.33 854 luilding 905.75 i;E 830.00 830 860.00 850 807.00 807 805.50 805 778.00 778 783.58 733

-21

)

TECHNICAL GCI::ELINES FOR SEISMIC CATEGORY I PROJECT l0E::::r::A;; ;:,

FO. SAG. CP25 ELECTRICAL CONDUIT ISOMETPIC EVAULATION APPENDIX I REV. 1 TABLE I.2 ORIENTATION OF BUILDINC GLOBAL COORDINATES I

50ILJ IflG VERTICAL N.5 I g.w Reactor nui1dfng Internal structures Y

X Z

!afeguards lutidfag Y

Z x

Electrical Buf1dfag Y

Z t

Auxfif ary Building Y

I X

Fuel lufiding Y

Z X

Containment lufiding Y

X Z

l

Table !.3 ESA5C0 SERYlCES INCORPORATED Po4.

,,,, _4 /i 4 /67

.,_3 case.o, T N o.,

444 /I 7 os[p

cuss, TU EL807fl0 p ao,s e, c.P$te UWIT I y1 AWO 12 swe, c, TH E UN BRAcao LE WG TH A K-VALUE6 FOR IWPUT 14 97RUOL SCELEToi h

s:,

b ?

CAbt.l (g

FOR MEM862 A 6 :

C 2.10 g

KY

=

L N

14 Kig 1 10

=

1 LT L1 a U

=

4 kIl FOR WEM6ER $C :

CA6f 1 Y

KY( a,7.10 a

1 10

( g, g LT

=

Lt Lt

=

O 6

6 cA6E 7 No i

Fot MEM6tf A6 :

A L

g J

KTL =

Kit

=

1.10 i

LY Li

=

=

L1 ep

'l l

FOR MEM6ER BC :

CASE 2 KTt

=

Ki t 11

=

L1 Li s

Lt

=

1

'I FOR MfM6f t CD :

Kig KY(

2.10

=

=

LY

=

Li L$

=

i l t

Table 1.3 ESA$CO $ERYlCES INCORPORATED FOd4-4/84 /07 ev o.,,-

w.., _ 7 caso,ev T b 4//447 eat,-

U: _

e rs me.-

cus,

TU P.l f. _d 1 G I C c 9e E 9 UNIT I.1 AWD 12 THe OH8 Raced LEuGTH t k v^ Lues, FOR IWPUT e6J etRUDC stELETod, we,se,

' TG 16

\\x/

0.

~

4 L1 6

CA S E 3 - CA TILEV ER S Pa kj ) A 6 :

o n nL 3

XY,t

=

Ki

=

t 7.10 tg LT

=

L1

=

Lt

~~~

cA *s E 3 & C A S E 4 CASE 4 - SPAN SETWEtd SUPPORT 5 Se :

3 XYt U,

c t

1 10

=

LY

=

1,1

=

L2 01 C

E SEWEEW$u N eW/6Edp:

J SE E. C AG E 7

(

.A T(

A b

96 i

W Chb 6 h i

24 l

l

Table !.3 o

ESA5CO $ERYlCES INCORPORATED M

4/Id/07 ev oat:

e no.ev ? + _..,, MAN 4 7

...,1

  • < g-
cuse,

'U SLECTillO

  • aosse, CPS 16 uMIT 1,

1 A40 GX

svesse, THE UWBRAcED LEWGTH d K VALUE9 FOR IM PUT Id 6T R UO L S(E t.gfoL'!

,k I8 Y#

oc,.yf.6 o.

to V

/

C

. y.3-g$

/

/

l h

p l

....o,,.......

As surnee rueen was nous on..

t

\\

x m eo su rroar.

CA6E G SEE CASE 2 von < eseroes s uo i.eaa,rus.

\\

l l

- - - - - - -