ML20195C547

From kanterella
Jump to navigation Jump to search
Rev 1 to, Bldg & Secondary Wall Displacements
ML20195C547
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 03/18/1987
From: Wiesel R
STONE & WEBSTER ENGINEERING CORP.
To:
Shared Package
ML20195C398 List:
References
DBD-CS-19, DBD-CS-19-R01, DBD-CS-19-R1, NUDOCS 8806220226
Download: ML20195C547 (81)


Text

-

t

-(

j DESIGN BASIS DOC 12 TDT W UTILITIES CINERATING Co.

CO.%NCHE FEAK STT.AM E!.ZCTRIC STATION UNITS 1 AND 2 BUILDING AND BECONDARY WAI.I, DIAFIACIMETS DAD-CS 19 REVISION 1 March 18, 1987 t.

~L N

-.Y b'

Y s

RespibleEngineer 0

A ItMT]

and Diec liaGagLater

_I - Z C *8'I w

Assist t Freject gineer 3-/8-87 ff2)/d F...,-.

8806220226 googgs STONE & VERSTIR UGINIIRING CORFCAATION PDR ADOCK 0500044S PDR 50570N, MASSACIUSATT5

,--,-.---..,,..--r,,

TU ELECTRIC DBD CS 19 CPSES UNITS I AFD 2 RIV 1 s

SU121NG AND SECONDARY WALL DISPLACEtE.NTS PAGE 3 of 29 TABLE OT C0hTIhTS k

SECTION TITLE PACE

~

3.0 CENERAL,

4 2.0 DISCUSSION g

3.0 DESIGN CONSIDIAA7JON 5

4.0 IMPLLT.hT'ATION g

5.0 BUIGING DISPLACEMENTS 3 12 6.0 SECCNDARY WALL DISPLACLT.NTS 13 29 APPENDIX - A Building Location Plan 3

APPENDIX - 3 Tecondary Wall Location Plan 1 27

\\ C i

4 e

t 7798-1634503-32

TU ELECTRIC DBD CS-19 CPSES UNITS 1 AND 2 REV 1 SUILDING AND SECONDARY WALL DISPLACEMENTS PACE 4 of 29 1.0 CE.hTRAL

(.

This design basis document (DBD) provides displacement data that s'upport the design of equipeest, supports and are required to associated components. This DBD provides two sets of displacement data; the first set contains relative building displacements and required minimum building-to-building gaps and the second set contains displacements of secondary walls with respect to the ceiling just above the secondary walls.

2.0 DISCUSSION It is common practice in the industry to physically separate

[

(

buildings for a variety of reasons.

Besides providing separate l-functional identifications to the buildings, the separate building design allows simplification in st uctural modeling for static and dynamic analyses. During a seis sie event, e'ach of the buildings undergoes independent seismic motions. The physical space provid-ed between the various buildings, also called the air gap, allows b' ildings to move without impacting one another.

u Systems such as piping, electrical raceways, instrumentations eie.

may be installed and supported La such a manner that relative building displacements due to seismic and other motions may affect the systes and introduce additional stress into the systes or its supports.

7798-1634503-32

70 ELECTRIC DBD-CS 19 CPSES UNITS 1 AND 2 ggy g Sull. DING AND SECONDARY WALL DISP 1.ACEMENTS Pact 5 of 29 In addition to addressing relative building displacemente, another

'(

concern has been identified that deals with displacements between

  • secondary walls" and adjacent structural elements.

t Secondary walls 'are mainly designed as son-load bearing interior partitions that are not required to maintain the overall integrity of the structure.

A physical gap exists between the tops of secondary walls and the ceilings above, thus permitting relative displaceserats to occur during seismic and other loading condi-tions.

Commodities such as conduit, EVAC duct, piping, etc.,

which bridge the gaps, may be affected by the relative displace-eat of the secondary walls.

SIGN CONSIDERATION 3.0 g

(

The design basis consolidation program (DbCF) will' validate building-to-building displacements as well' as seconda ry wall motions.

These displacements, listed im Sections 5 and 6, are maximum values at specific locations which are to be used as design inputs to analyze selected commodities which bridge the seismic gaps, particularly the secondary wall gaps.

New design must also include these displacemente as design input.

~.

L Also these maximum displacements, listed in Sections 5 and 6, are to be used to establish gap requirements shows en applicable design drawings in 6 dar to avoid, seismic interactio'n of

[

structures.

DBD CS-19

'70 ELECTRIC REV )

CTSES UNITS 1 AND 2 Bull. DING AND SECONDARY k'ALL DISPLACEMENTS PACE 6 of 29 Displacements may be interpolated fur any arbitrary location

(

to reduce inherent conservatism.

The method for inte rpola tion of building displacements and secondary wall displacements, is outlined below:

a)

Building.tisplacement for any arbitrary location say be obtained by linear interpolation of the two values at adjacent elevations.

b)

Secondary wall displacements shown in Table 6-1 are l

anaximum seismic displacements at the top of wall.

I Depending upon the geometry and boundary conditions of the wall, interpolation of values for any arbitrary k

location along the height and length of the wall say be t

obtained.

Horizontal displacements say be interpolated for certain configurations of the secondary walls as shown in Table 3-1.

Vertical displacements provided ' in Table 6-1 apply n

~

I to all locations on the wall.

Interpolation is not applicable to vertical displacements.

J 1

k l

l TABLE Q P

'~

  • l~

TABLE FOR INTERPOLATIOh!

of-SECO N DARY WALL HORIZONTAL DISPLACEMENTS l

I L

E DESCRIPTION AND MATH. MODEL VERTICAL DISTRIBUTION HORIZONTAL DISTRIBUTION REMARKS 1
  • L y

AB 6-l) fixed AT BOTTOM, vs DisPL. AT I

, FREE ON VERT.

CONSTANT TOP OF H

H LINEAR EDGES.

y, L

ZERO

~

4= DIS PL. AT (SEE TABLE 6-1)

FlxED AT BOTTOM ;

w L/ > 2, CENTER.

FIXED OR PINNED AT OF WALL

,V_i,j g,1 NEAR 4

BOTH VERT. EDGES.

H ZERO L/g ) l/2 L L/2 i

Me Ol5PL.

4 AT THE l-I,,

=!

/H & '2 Eoc]o y

( SEE TABLE 6-1)

L i

H/

WAR-2

+

y w Sin f3 l FIXED EDGE H

H H

a_

ry,...,,,,,, E ' $ -

VH < '/2 l

RO PINNED EDGE 4

1-l FREE E TABLE 6-Q v

FlxED AT SoTTOM)

EDGE FIXED OR PINNED LINEAR L[g (l AT ONE VERT. EDGE' H

LinJEAR AND FREE' AT THE OTHER.

lYu 4P2 ZEpo

\\

I55

"~

m J,5EE TABLE-6-l)

L/H 7 i v

g t

t

.w e

I i

i gI W REE (IJ ACI 318-71,SEC.13 3 2

-)t

'~

--j N

(2) REINE CONCRETE' E

/g < 2 rut 1 DAME NTALS. 3** ED.

runGo3ON R M P 359. ' t Ra

TU ELECTRIC DBD CS 19 CPSES UNITS 1 AND 2 REV 1 BUILDING AND SECONDARY WALL DISPIACEMENTS FACE of 29 4.0 3 MPLEMDf7AT10N k

The information contained in this D8D shall be maed by each con-responsibke for qualification of esisting seismic

tractor, Category I and II systems and supports. Where these displacements affect such systems, an evaluation shall be performed for the r,

7 existing system in accordance with applicable design criteria. If e---

a specific system or support cannot satisfy design criteria using _

the displacement data provided herein, then a specific calculation can be generated by SVEC to radara d'=a1=e==aa'=. when warranted, ea a case-by-esse basis.

This will be done at the contractor's written request.

SWEC will document the revised displacements in

,a revi sion to this DBD.

J

(

b For new cosanodity installations bridging secondary wall gaps, the displacements given in this DBD will be included in the design input for evaluation in accordance with applicable design c rit e ria..

j e

5.0 30!LDING DISPLACEMENTS The building displacements, used to establish the minimum required gaps, are given in Table 5-1.

Actual relative displacements were rounded up to nearest 1/8 is. to obtain the minimum building-to-building gap requirements. Appendix A shows a building location I

plan.

I i

7795-1634503-82..

DBD-CS 19 RIV 1 PAGE 9 of 29 1-TA81.E 5-1 k

BU121NG-70 8011.D1NG GAPS CAP LOCATION ELEVATIONS MIN. CAP RIQUIREMENTS (!NCMIS)

WITHOUT SEALS WITH INTERNAL (RET. DWGS.)

SEALS MON.

ACT.

NON.

ACT.

AUX. 820. 70 893'-5 7/8 1"

0.898 1-1/2" 1.497 SATE CUARD BLDG.

886'-6" 1"

0.888 1-1/2" 1.48 S-0721 873'-6" 7/8" 0.867 1-1/2" 1.445 51-0625 860'-0" 7/8 0.838 1-1/2" 1.397 (SECT. 17-17) 852'-s" 7/8" 0.820 1-3/8" 1.367 S-0745 832'-0" 7/8" 0.762 1-3/8" 1.27 (SECT. 4-4) 824'-6" 3/4" 0.740 1-1/4" 1.234 5-0702 810'-6" 3/4" 0.697*

1-1/4" 3.162 (SECT. 105-105) 800'-0" 3/4" 0.670 1-1/8" 1.117 51-0602 790'-6" 3/4" 9.645 1-1/8" 1.075 51-0608 SW1TCH CEAR ROOM 833'-10" 1-1/8" 1.094 N/A TO SATE CUARD 821'-8" 1"

0.919 1-5/8" 1.532 31.DO.

810'-6" 7/8" 0.759 1-3/8 1.265 51-0416 51-0458 51-0456 51-0605 s

51-0457 51-0621 Al-0403 Al-0409 Al-0411 l

A2-0403 AUX. BLDG. 70 833'-10" 1"

0.941 N/A SWITCH CEAR ROOM 821"-8" 7/8" 0.770 1-3/8" 1.283

$1-0457 810'-6"*

3/4" 0.637 1-1/8" 1.062 51-0416 S1-0456 S1-0458 j

Al-0403 Al-040%.

Al-0411 SVITCH CEAR ROOM 833'-10" 3/4" 0.631 N/A TO ELECTRICAL 821'-8" 1/2" 0.462 7/8" 0.77 C0hTROL BLDO._

810'-6"*

3/8" 0.330 5/8" 0.55 l

$1-0416.

778'-0" 3/8" 0.300 1/2" 0.5 l

l 81-0456 I

  • Value obtaised by interpolation /estrapolettoa.

I 7798-1634503 82 l

g.

DBD-CS 19

.REV 1 PACE 10 of 29 TABLE 5-1 (Cont)

CAP LOCATION

~ELEVA'!ONS HIN. CAP REQUIRIMENTS (INCHES)

\\

(RET. DVCS.)

VITNOUT SEALS WITH INTIANAL SEALS N OM. _,

ACT.

NOM.

ACT.

51*0451

$1-0458 5-0747 S-0714 5-0721 Al-0403 Al-0407 Al-0411 PIPE nfNNEL TO 824'-6" 3/8" 0.338 5/8" 0.564 REACTOR MAKE-UP 810'-6" 3/8" 0.338 5/8" 0.564 WATT.R STORAGE TANK 807 '-6" 3/8" 0.338 5/4" 0.564

$1-0318 51-0317 PIPE TUNNEL AND 824'-6" 1/4" 0.20 3/8" 0.334 CONDENSATE 810'-6" 1/4" 0.20 3/8"

(,334 STORAGE TANK 807'-6" U4" 0.20 3/8" 0.334 St-0318

('

S1-0316 k

CONTAINMENT BLDC.

903'-6"*

1-7/8" 1.813 3-1/8" 3.022 TO FUEL BLDG.

899'-6" 1-7/8" 3.806 3-1/8" 3'.01 51-0552 886'-6" 1-3/4" 1.738 3"

2.897 5-0801 873'-6" 1-3/4" 3.684 2-7/8" 2.807 l

5-0800 860'-0" 1-3/4" 1.627 2-3/4" 2.712 5-0803 852'-6" 1-5/8" 1.585 2-3/4" 2.642 5-0804 832'-0" 1-3/8" 1.358 2-3/8" 2.264 824'-6-9/16"*

1-1/8" 1.118 1-7/8" 1.864 i

S-0806 l

S-0807 810'-6" 5/8" 0.516 7/8" 0.86 5-0809 405'-6" 1/2" 0.397 3/4" 0.662 CONTAINMENT BLDG._

916'-0" 2"

1.887 3-1/4" 3.145 TO AUX. SLDG.

900'-0" 2"

1.970 3-3/8" 3.284 S1-0501-886'-6" 2"

1.914 3-1/4" 3.19 (SECT. 17-17) 873'-6" 1-7/8" 1.851 3-1/8" 3.085 l

81-0509' 860' 0" 1-7/8" 1.790 3"

2.984 51-0552' 852'-6" 1-3/4" 1.744 3"

2.907 (SECT. 4-4) 832'-0" 1 5/8" 1.505 2 5/8" 2.508 5-0700 824'-6" 1-3/8" 1.157 2-1/8" 2.095 5-0711 810'-6" 3/4" 0.653 1-1/8" 1.088 5-0745 805'-6" 5/8" 0.526 1"

0.877 (SECT. 2-2) 800'-0" 1/2" 0.500 7/8" 0.834' S-0748 790'-6" 1/2" 0.478 7/4" 0.797 (SECT. 69-69) 7798-1634503-82

DBD CS-19 REY 1 FACE 11 of 29 TABLE 5-1 (Cont)

OAP LOCATION ELEVATIONS HIN. CAP REQUIRIMENTS (INCXES) l (RIF. UWGS- )

WITH0lTT SEALS WITH INTEANAL 8EALs nom.

ACT.

WOM.

ACT.

PIPE TUNNEL AND 824'-6".

3/4" 0.282 1/2" 0.47 RETUELING WATER 810'-6" 3/8" 0.282 1/2" 0.47 STORAGE TANK St-0318 31-0315 SATE CUARD BLDG.

810'-0" 3/8" 0.350 5/8" 0.583 T,_0 PIPE TUNNEL 796'-6"*

3/8" 0.329 5/8" 0.548 WEST S1-0602 51-0605 S1-0626 51-0318 SATE CUARD BLDG.

809'-3" 3/8" 0.350 5/8" 0.584 TO PIPE TUNh*EL 800'-0" 3/8 0.339 5/8" 0.565 EAST 51-0318 51-0605

$1-0626 CONTAINMENT BLDC.

918'-4" 1-7/8" 1.825 3 1/8" 3.042 TO SATI GUARD 905'-9" 1-7/8" 1.759 3"

2.932 BLDG.

896'-4" 1-3/4" 1.694 2-7/8" 2.823 51-0553 886'-6" 1-3/4" 1.635 2-3/4" 2.725 (SECT. 2-2) 873'-6" 1-3/4" 1.577 2-3/4" 2.628 51-0602 860'-0" 1-3/4" 2.637 2-3/4" 2.728 S1-0605 852'-6" 1-5/8" 3.587 2-3/4" 2.645 8

831'-6"*

1-3/8" 1.321 2-1/4" 2.207 51-0608

$1-0611 824'-6" 1-1/8" 1.089 1-7/8" 1.815 810'-6" 1/2" 0.484 7/8" 0.807 51-0614 S1-0617 790'-6" 3/8" 9.307 5/8" 0.512 AUX. 3LDO. AND 893'-10-1/4" 3/4" 0.700 1-1/4" 1.177 TVEL BLDG.

886'-6" 3/4" 0.687 1-1/4" 3.145 S-0711 873'-6" 3/4" 0.659 1-1/8" 1.098 S-0748*

860'-0" 3/4" 0.636 1-1/8" 1.06 (SECT. 69-69) 832'-0" 5/8" 0.581 1"

0.968 S-0801 824'-6"

%/8" 0.565 1"

0.942 5-0815 810'-6"

./8" 0.538 1"

0.897 S-0817 f,05'-6" 5/8" 0.531 1"

0.885 (SECT. 9-9)

S-0819 (SECT. 13-13 e

& DET. 13-A) 7798-1634503-32

D8D-CS 19 EV 1 PAGE 12 of 29 TABLE 5-1 (Cont)

CAP LOCATION ELEVATIONS MIN. CAP REQUIREMDITS (INCHES)

(M r. DwCS.)

WITHOUT SEALS WITM INTIRNAL

~

SEALS WOM.

ACT.

NOM.

ACT.

C0h'fAINMENT VALL 933'-3" 1-1/4" 1.16 N/A AND IhTERNAL 905'-9" 1"

0.93 1-5/8" 1.55 ST1lUCTURE 897'-6" 7/8" 0.84 1-1/2" 1.4 51-0509 885'-6" 3/4" 0.74 1-1/4" 1.234 51-0512 873'-0" 3/4" 0.68 1-1/4" 1.134 51-0519 871'-6" 3/4" 0.68 1-1/4" 1.134 51-0522 861'-6" 5/8" 0.58 1"

0.967 51-0534 460'-0" 5/4" 0.58 1"

0.967 51-0552 851'-6" 1/2" 0.49 7/8" 0.817 51-0553 849'-0" 1/2" 0.49 7/8" 0.817 51-0557 842'-0" 1/2" 9.44 3/4" 0.734 832'-6" 3/8" 0.36 5/8" 0.600 824'-6-3/4" 3/8" 0.34 5/8" 0.567 822'-9" 3/8" 0.33 5/8" 0.55 408'-0" 1/4" 0.25 1/2" 0.417 ELECT 1tICAL 833'-10" 3-1/8" 3.102 5-1/4" 5.17 CONTROL BLDG.

821'-8" 3-1/8" 3.088 5-1/4" 5.15 AND TURBINE 810'-6"*

3-1/8" 3.075 5-1/8" 5.125 b.

BLDG, ALONG 778'-0" 1-5/8" 1.516 2-5/8" 2.53 A-A WALL 51-0410

$1-0749 (SECT. 15-15)

$1-0413 1

51-0409 52-0410 52-0413 52-0409 Al-0400 A'-0401 Al-0407 Al-0409 Al-0411 A2-0400-A2-0402 1

I l

7798-1634503-32 i

(

DBD CS-19 RIV 1 PACE ?) of 29 6.0 SEC0!TDARY WAI.I. DISP!.ACEMENTS k

ihe secondary wall displacements adjacent to sefsnic gaps are r,4ven la Table 6-1.

Seismic displacements are either positive or negative.

All displacements are relative to structural elements adjacent to the secondary wall asps, i.e. floor slabs or beans above the gaps.

The horizontal displacement is normal to the plane of each secondary well. Contractors evaluating cossmodities affected by these displacements must transform them to coordinate as required by their analysis procedures. Appendix 3 shows axes the locations of secondary walls.

e O

l I

1 O

4 7798-1634503-32 4

l r

Page 14 of 29 TABIZ 6-1 SECONDARY WALL DISPLACEfENT5 e

Vertical Norizontal Noriz No. of Disp 1 Disp 1 Diept Well 314g.

Elev.

Location Welle _

(SSE/09E)

(SSE/0BE)_

(PKESSURE)

Reserks N _..

Wells htwa 10158 1

S.C. #1 773'-0" and 10156 3

0.15"/0.10" 9.1C"/0.13" See footnote 1 Labyrinth well, 2

S.C. #1 790'-6" RM 66 2

0.15"/0.10" O.19"/0.13" Leybytteth well, 3

S.C. 91 790'-6" RM 67 2

0.15"/0.10" 0.19"/0.13" Well btwa 301 SO &

M 81 and corrider 6

5.C. #1 810'-6" RM 79 3

0.15"/0.10" 9.19"/0.13" Well htwr. RM 01 and corrider S

5.0. #1 810'-6" RM 79 1

0.15"/0.10" 8.19"/0.13" Well btwa MVAC

~6 S.C. #1 310'-6" chose & RM 82 1

0.15"/0.10" 0.19"/O.13" Well 11' N of 3-5 btwo RM 96 6 corr-X (*)

7 S.C. fI 831'-6" idere RM 95 & RM 94 1

0.15"/O.10" 9.19"/0.13"(**)

Cete 1 Displacemente due to compartment dif ferentist presource caused by LOCA are to be provided when pressures are evellable from EBASCO.

Mate 2 See page 28 for legend.

7798A ~634503-82

1.

l c

Pete 15 et 79 TABLE 6-1 SECONDARY WALI. DISP!ACEfENTS i

f Vertical Norizontal Neriz No. of Diert Disp 1 Diert l

Welf.

, Locaties Welle (SSE/09E)

_(SSE/OBE)_

(PRESSURE)

Reserke 1

L.

314.

Elev.

3 Ibleid well es E-S line 155 95 (Peered coecrete portise B

5.0. fl 038'-6" med been ebeve) 2 0.15"/0.10" 9.19"/0.13" Welle htwa 351 ISSA i

9 3.0. ft 852"-6"

& Ist 103 2

0.15"/0.10" 0.19"/0.13" Welle htwa 300 104 X(f) 13 5.0. #1 352'-6"

& Ist 103 3

0.15"/0.10" 9.19"/0.13"(ff) l Well in 301 104 X(f) 11 5.0. fl 852'-6" steeg 4-3 Line 1

0.15"/0.10" 9.19"/0.13"(ff)

Welle htwo m 36

~

12 3.0. #3 821'-0"

& Ist 87 3

0.15"/O.10" 9.19"/0.13"

~

I Welt btwa 158 97 1,

. 0.,8 1

0.15,0.10-0.1,,0.13-l Well btwo IWI 98

)

14 5.0. #1 848'-6"

& let 99 2

0.15"/0.10" 9.19"/0.13" Well btwo NVAC l

15 5.0. ft 831*-6" chose & let 95 1

0.15"/0.10" 9.19"/0,13" W11e htwo NVAC 16 S.C. -f t 831'-6" chose & RM 94 2

0.15"/0.10" 9.19"/0.13" Well btwo IUt 185B I

17 E.C. 778'-0"

& Rf1 113 1

0.15"/0.10" 0.19"/0.33" 77984-1634503-52

[

Page tw of 29 TABLE 6-1 SECONDARY WALL DISP 1ACEMENTS Vertical Norizontal Nortz

~

V;11 No. of Disp 1 Disp 1 Disp 1 L.

314.

Elev.

Eocettes Welle _

(SSE/0BE)

(SSE/DBE)_

(PRESSURE)

Reserks 3

Well htwa 358 1155 18 E.C. 778'-8"

& IWI 114 1

0.15"/0.10" 0.19"/0.13" Well htwo IEt 1150" 19 E.C. 778'-0"

& RN 113 3

0.15"/0.10" E

Wells htwa 301 115C 20 E.C. 778'-0"

& RM 113 3

0.15"/0.10" K

Well htwa let 115A 21 E.C. 778'-8"

& RM 113 1

0.15"/0.10" 8.19"/0.13" Welt htwo IWI 115 22 E.C. 778'-8"

&lWI 115A 1

0.15"/0.10" 9.19"/0.13" Welle htwa 350 126 23 E.C. 792'-0"

& let 128.

2 0.15"/0.10" 0.19"/0.13" Welle htwo Ist 126 24 E.C. 792'-O"

& Ist 122 1

0.15"/0.10" 0.19"/0.13"

~

Well htwa IWI 128 25 E.C. 792'-0"

& RM 122 1

0.15"/0.10" 9.19"/0.13" Well htwa IWI 128 26 E.C. 792'-0"

& RM 123 1

0.15"/0.10" 0.19"/0.13" Well btwa RM 123 1

0.15"/0.10" 0.19"/0.I3" 27 E.C. 792'-0"

& Rrl 122 7798A-1634503-82

l r

l Page lt of 29 I.

l TABLE 6-1 1

SECONDARY WA1.E. DISPEACEIENTS S

Vertical Norizontal Ileris

!Well No. of Diept Diept Diep11 lL.

31dg.

Elev.

Incaties Welle _

(SSE/0BE)

_(SSE/OSE)

(FRESSURE)

.Reserke Well btwo Ist 123

, 28 E.C. 792'-9"

& INI 120 1

0.15"/0.10" 9.19"/0.13"

\\

]

Well btwo NE 129 29 E.C. 792'-e"

& Iul 122 1

c.15"/0.10" 9.19"/0.13"

)

Well htwo IWI 120 j 30 E.C. 792'-9"

& Ist 118 1

0.15"/0.10" 9.19"/0.13" i

Well htwo IWE 118 l 31 E.C. 792'-8"

& Iul 122 1

0.15"/O.10" 9.19"/0.13" l

Well htwo IWI,118 l

& IWI 116 &

! 32 E.C. 792'-8" vent shaft 1

0.15"/0.10" 9.19"/0,13" Welt htwo Ist 116 33 E.C. 792'-O"

& IUt 122 1

0.15"/0.10" 9.19"/0.13" Well htwa Iel 116 t 34 E.C. 792'-8"

& vent shaft 1

0.15"/0.10" 9.19"/0.13" 1'

Welt btwn IUt 117 35 E.C. 792'-8"

& went shaft 1

0.15"/0.10" 6.19"/0.13" 6

['

Well htwn IWI 117 36 E.C. 792'-O"

& let 125 1

0.15"/0.10" 0.19"/0.13" Well htwa IUt 119

& IUt 117 &

37 E.C.

792*-0" vent shaft 1

0.15"/0.10" 0.19"/0.13" 7798A-1634503-82

t t

l Page 18 et 29 TASIX 6-1 SECONDARY WALL DISPLACEIENTS I

j Vertical Norizonte!

Noriz i

Well Me. of Disp 1,

Diept Displ i

lie Bldg.

Elev.

I.ecaties Wells (SSE/00E)

(SSE/00E)

(PRESSURE)

Reserk2 I

Well htwa lut 119 l

38 E.C. 791'-8"

& Ist 125 1

0.15"/C.10" 9.19"IO.13" 1

Well btwo IUt 119 39 E.C. 792'-4" E lut 121 1

0.15/0.10" 9.19"/0.13" Well htwa ISI 123 40 E.C. 792'-O"

& Rft 125 1

0.15"/0.10" 9.19"/8.13" i

Welt htwa Ist 121

)

43 E.C. 792'-0"

& IWI 124 1

0.15"/0.10" 9.19"/0.13' l

Well htwa ist 124 42 E. C. '

792'-8"

& IWf I25 1

0.15"/0.10" 9.19"/0.13" 1

I Well htwo WI 124

)

43 E.C. 792'-8"

& lut 127 1

0.15"/0.10" 8.19"/0.13" l

I Well htwa Ist 127 l

44 E.C. 792'-8"

& lut 125 I

0.15"/0.10" 8.19"/8.13" '

i i

Well htwa IWI 127 I

45 E.C. 792'-8"

& RN 129 2

0.15"/0.10" 9.19/O.13" Well btwa 155 129 i

46 E.C. 792'-0"

& IUt 125 1

0.15"/0.10" 9.19"/0.I3" well htwa 191 194 47 AUI.

810'-6"

& Rfl 207 1

0.05"/0.04" 9.13"/0 09"

~

1 i

7798A-1634503-32

k E

t.

(:

r.

t

21. h
Jag, 2

E 8

8 8

3 3

2 2

3 c

5 s

s s

S S

S S

E

~

b h

hh h

h Y'

b h

h h

ran a

a c

c c

c c

a c

c d

i i

i i

4 4

4 4

i E

a s

s s

s a

s s

g h

h h

Y h

h h

Y

.h h

g 1*

=

s a

s s

s s

s s

s s

-.ay s"S 4

4 4

4 4

4 4

4 4

6 5

a

.T a

a

==

tt 9

l g

5 n

n n

~

~

l 8

u W

2 I

s s

8 M

0 R

~

~

~

E E

.E E

E E

E E

E E

5

.!. s..!. *..!. s.!. s !. s !. s !. s !. s.! a !. =~

~

~

. ~. ~

~

l CE

E
E.:E E
E
E
E E
E i.

A.

A.

A.

i.

i.

i.

A.

i.

i.

3 3

3 3

3 8

8 8

8 3

....T T

T T

T T

1

?

?

~

~

t L

L L

b b

b b

~

a a

s a

a a

s a

s a

g G

o I

E E

I E

E E

I I

E, 1

I k

M W

d 1

1 1

~

92 s

k f

r o

es 0

e P2 R

e g

i P

)E R

z1 U t pS rsS oiE NDR P

(

"9 "3

"3 "3

"3 "3

"3 9

9 9

l

)

a E

0 0

0 1

1 1

1 0

1 1

t 8

nt0 O

0 0

0 O

0 0

0 0

0 op/

/

/

/

/

/

/

/

/

/

/

"3 "3

"3 "9

"9 "9

"9 "3

zee 9

9 iiS rDS 1

1 1

1 1

1 1

1 1

1 e

(

N 9

9 9

6 9

9 9

9 9

9 S

4" "4

"0 "0

"0 "0

"0 "4

T "0

N 40 0

0 1

1 1

1 1

0 E

)

1 f

l E

0 0

0 E

a B

0 0

0 0

O 0

f C

ct 0

/

/

/

/

/

/

0

/

/

/

"5 "5

"5 "5

"5 "5

"5 "5

"5

/

A ip/

5 L

t oE 1

P riS 0

0 0

1 1

1 1

1 1

0 S

eDS 6

I V

(

0 0

0 0

0 0

0 0

0 0

D M

L B

L f

A A

oe T

W

.l l

Y oe R

NW 1

1 1

1 1

1 1

1 1

1 ADNO CES 5

2 2

2 1

1 0

9 2

2 4

4 4

4 4

4 2

3 2

l l

1 1

1 1

1 1

E 2

2 l

l I

1 9

t t

9 9

r n

P

.I e

e 5

5 s

s 5

5 o

Rl A W

w w

1 1

I I

1 1

& o l

I se o

h h

a a

n a

a n

D aer w9 t

t w4 w1 u0 w0 w4 w9 wwl

.i t

t1 e

n t4 t4 t4 t4 t4 t3 o t r e a

b2 t8 i6 h1 h1 h1 h1 h1 b1 t biteS c

r1 r1 f 1 l t lM lM l

l t

1 y2 y2 l t l

t f

I o

l s

U 0

l lR1 l S r W

l1 L

lI b

b lI l I a

at at e

e e

e a

e s

e o

W&

LR LI W&

W&

W&

W&

W&

W&N W&f f

s "0

"0 "0

"0 "0

"0 "6

6 6

O

'3

'0

'0

'0

'0

'0

'0

'2 v

l 3

3 3

3 3

3 3

3 3

4 e

1 1

E 8

8 8

5 3

3 3

3 3

8 2

B 3

0 3

K 5

4 K

K K

C.

C.

C.

. C.

C.

C.

U 4

1 U

U U

3 A

A A

E E

E E

E E

A 3

6 1

4 8

9 l

ee 8

9 0

1 2

3 4

5 6

7 7

l WN 5

5 6

6 6

6 6

6 6

6 7

~

/

r Page 2a of 29 TABtE. 6-1 SECONDARY WAt1 DISFIACEMENTS Vertical IIerizontal Neriz Well IIe. of Disp 1 Diopt Diert

'lle Bldg.

Elev.

Incation Wells _

(SSE/OSE)

(SSE/OSE)_

(PRESSURE)

Reserks Well htwa Ist 233

& Stairwell 68 AUX.

842'-0*

for Stair A13 1

0.05"/0.04" 9.13"/0.09" Wells htwo ist 227

& Velve &

69 AUX.

841'-O" Fipe Collery 351 230 2

0.05"/04" 0.13"/0.09" Wells btwa Velve

& Fire Collery 73 AUX.

841'-0" let 230 & Ist 219 6

0.05"/O.04" 8.13"/0.09" Well htwo Ett 241 71 AUX.

852'-6"

& fel 234 1

0.05"/0.04" 8.13"/0.09" Wells htwo 151 ?35

& both entreeces 72 AUX.

852'-6" to Ret 234 2

0.05"/0.04" 0.13"/0.09"

~

Usti htwa IWI 151A 73 E.C. 854'-4"

& lut 150A 1

XX O.19"/G.13" Welt htwo let 150A 74 X.C.

854'-4"

& Mrt 150 1

XX 0.19"/0.13" Welle htwa fel 151 75 E.C. 854'-4"

& 101 150A 2

XX 0.19"/O.13" Welle btwa ful 151 76 E.C. 854'-4"

& Rtg 150 2

XX O.19"/0.13" 77984-1634503-82

/

p.

Pete 22 of,29 TABLE 6-1 SECONDARY WALL DISPEACEFENTS Vertical Norizontet Moriz Well No. of Disp 1 Disp 1 Disp 1 ~

No _,

Eldg.

Elev.

Lecetten Wells _

(SSE/OSE)"

_(SSE/OSE)_

(PRESSURE)

Reserks Wells htwo IRt 151 77 E.C. 854'-4"

& IWI 152 2

XX S.19"/0.13" Well htwo IWI 152 XX 9.19"/0.13" 78 E.C. 854'-4"

& let 150 1

Well htwo Iul ISO 79 E.C. 854'-4"

& IWI 1518 1

XX 0.19"/0.13" Shield Well 80 R.S. ft 849'-b" IWS 159 1

0.05"/0.04" 8.13"/0.09" Labyrinth Well 15l 155A et entreece St R.S. fl 861'-6" to IWI 161A 2

0.05"/0.04" 8.13"/0.09" S2 R.B. #1 832'-4" Well in Ist 155A 2

0.05"/0.04" 9.13"/8.09" Welle htwa let 58

~ 83 s.C. #2 773'-0"

& Ist 56 3

0.15"/0.10" 9.19"/0.13" Labyrinth Welle 84 S.C. #2 790'-6" in let 66 2

0.15"/0.10" 0.19"/O.13" Labyrinth Wells 85 S.C. #2 790'-6" in fut 67 2

0.15"/0.10" 0.19"/0.13" well htwa IUI 80 86 S.C. #2 510'-6" E, 101 81 1

0.15"/0.10" 0.19"/0.13" 7798A-16?A503-82

O f

p r"'

Page 23 et 29 TABLE 6-1 SECONDARY WALL DISPLACEMENTS Vertical Norizontal Neriz Wall No. of Disp 1 Disp 1 Dispi He _.

81dg.

Elev.

Locaties Walls (SSE/OSE)'

(SSE/00E)

(PRESSURE)

Remarks Well htwo RN 80

& Cerrider j

87 S.C. f2 810'-6" RN 79 2

0.15"/0.10" 9.1f"/0.13" Well htwo RN81 l

5 Cerrider 88 5.0. #2 810'-6" RN 79 1

0.15"/0.10" 9.19"/0.13"

)

Wall htwa RN 82 89 S.C. f2 810'-6"

& NVAC Chase 1

0.15"/0.10" 0.19"/0.13"

)

Wells htwo NVAC U

~

90 Well is deleted l

91 S.C. f2 831'-6" Chase & RN 94 2

0.15"/0.10" 9.19"/0.13" 5

Wells htwo NVAC l

. 92 S.C. #2 831'-6" Chase & RM 95 1

0.15"/0.10" 8.19"/0.13" Well htwo RM 96

&'Cerriders X (*)

93 S.c. f2 83t'-6" RM 95 & RM 94 1

0.15"/0.10" 0.19"/0.13"(**)

Shield Wall in RM 95 en E-S Line (peared concrete portion 94 S.C. #2 831'-6" and been above) 2 0.15"/0.10" 9.19"/0.13" Wells btwa RM 105A X (f) 8 95 S.C. #2 852'-6"

& RM 103 2

0.15"/0.10" 0.19/0.I3"(ff) e 7798A-I634503-82

l l

e e

m o

S

(

.O N

m

.N -

.e S. M b.

9==

EG w

m O

th w

3 3

8 3

3 3

8 8

2

't t

O.

m M

M M

M M

M e

e e

e e

su.

se.

O.

O.

O.

O.

O.

a=

en es os w

S.*

O O

O O

O O

O O

O O

O eeN m%

.N.e = W DE 3

8 2

3 8

E 2

3 2

2

=M wm e

e m

e m

M M

M

.M.

.M te O M en e.

en en s.

en en en om

=

a w

M.

2 O

O O

O O

O O

O O

O O

3 3

3 3

2 3

3 3

3 7

3 E

.O O

O O

O O

4 W

W 4

4 O.

O.

O.

O.

O.

m

=

em en e.

e.-s O

O O

O O

O O

O O

O O

4J W a=.

N d

R. %

3 3

3 8

3 3

3 2

2 8

eJ ed as ini e6 4A en am to en en no en to e

.=

4.

4.

M e-em

  • =

a=

  • =

0 0

O.

O O

e to O tra

=

w em w

O O

O O

O O

O O

O O

O a

s(

5 aa

=..

>=

.-as n

N N

n M

n

.O E

- a.

3 e

O E

I R

E s*

p' e

-t E

E

~

E

,1.*

E E

I I

E:

I I

I

=

~

or

=

,8.e

~

,. ~

e.

O 8

.n I

,s ee f M.e

.e =

.=

~

e.

.e

=E

.e en e em eg om g.

ce g me

=e

$d

$I

$d

$d S

SW

)

B B

2 8

3 3

3 3

3 1

1 1

1

?

k

.3?.

1 1

1 T

e t

N N

m N

N P

.M 4

4 4

3 g

.R g"

N

=

=

I b

N N

N Q

Y l

.N

.N

.N

.N

.N

.N

=

M O

i i

h g

w l

5 4

i i

d i

aa ad 3

0(

j e

en N

N l

SA 2

R 2

N

i f~.

r er Page 25 of 29 TABLE 6-1 SECONDARY WALL DISPIACEFENTS Vertical Nerimental Nertz Wall No. of Disp 1 Disp 1 Diopt L.

31d.

Elev.

Iecatlee Welle _

(SSE/DBE)

(SSE/08E)_

(PRESSURE)

Reserhe 3

Shield Well et estreece to Seal Table Room. IWI 156 107 R.B. fl 832'-6" from Rfl 155A 1

0.05"/0.04" 9.13"/0.09" Welt et estreece 108 R.R. #1 642'-8" to Rft 161A 1

0.05"/0.04" 9.13"/0.09" 109 R.R. 92 819'-6" Well in RM 155 3

0.05"/0.04" 0.13"/0.09" Shield Welt et entrance to Seal Table Rees. Rft 156

- 113 R.B. f2 532'-6" from IWI 155A 1

0.05"/0.04" 9.33"/0.09" Well at entreece 111 R.S. #2 842'-0" to SWt 161A 1

0.05"/0.04" 9.13"/0.09" Well btwo IWI 72

~ 112 S.0. Il 790'-6"

& lut 71 1

0.15"/8.10" X

Well htwo Ist 72 113 5.0. #1 790'-6"

& Rft 73 1

0.15"/0.10" X

Wall htwa Rft 73 114-5.C. #1 790'-6"

& Rft 71 1

0.15"/0.10" X

watt htwa Rft 73 115 S.C. ft 790'-6"

& Rft 74 1

0..

/0.10" X

7758A-1634503-32

/~

Page 2G et 29 TABLE 6-1 SECONDARY WALL DISPEACEfENTS iPertical Norizontal Nortz W11

~

No. of Disp 1 Disp 1 Disp 1 L.

Bldg.

Elev.

1,ecetten Welle (SSE/09E)'

(SSE/0BE)_

(PRESSURE) 3emerke hil htwa35174 116 S.S. ft 790'-6"

& IWI 71 1

S.15"/0.19" E

W 11 btwo IWI S3 117 5.8. ft 810'-6"

& IWI 35C 1

0.15"/0.10" E

Wall htwo Ist 96 118 5.C. #1 831'-6"

& IRE 965 2

0.15"/0.10" X

~

Well in IDE 96 119 3.0. ft 831'-6" e 7'-6" s or 3-3 1

0.15"/0.10" E

Well htwo IWI 193 129 S.S. fI 852'-6"

& IWI 1955 1

0.15"/0.10" I

W11 btwo INE 88 121 3.0. #1 83t'-6"

& Fire Chese 3

0.15"/8.10" -

9.19"/s.13" Well htwa Igl 72 122 3.0. f2 790'-6"

& SWI 71 1

0.15"/0.10" I

~

well htwa 558 72 123 5.S. #2 790'-4"

& IWI 73 1

0.15"/0.10" X

Well htwo IWI 73 123 5.0. #2 790'-6"

& Bel 71 1

0.15"/0.I0" I

well htm IUS 73 125 S.C. #2 790'-6"

& strl 74 3

0.15"/O.10" X

e 779BA-1634503-B2

(

r Fase 27 er 29 l

TABLE 6-1 SECONDARY WALL DISPLACEFENTS Vertical "Norizontal Norts Well No. of Disp 1 Disp 1 Diopt

_ SSE/OBE)_

(FRESSURE)

Reserhe

(

L.

314a.

Elev.,

incetlee Welle (SSE/00E)

Well btwo IWI 74 126 S.S. F2 790'-6"

& gul 71 1

0.15"/8.10" X

Welt in IWf 96 0.15"/0.10" X

127 3.S. ft 831'-6"

@ 7'-6" N of 14-3 I

Well htwo IWI SS

~

128 S.S. #2 831'-6"

& Fire Chase 3

0.15"/O.10" 9.19"/0.13" Welle htwo IWI 233 129 AtlK.

842'-0"

& IWI 230 1

0.05"/0.04" 8.13"/0.09" Welle htwo Ist 143 130 E.C. 330'-t"

& let 141 1

0.15"/0.10" 9.19"/8.13" Welt btwo 158 151 133 E.C. 054'-4"

& IWI 151A 1

XI 0.19"/0.13" Welt btwo IWI 272A

~

E Powdered Resta 132 FUEL-'

360'-0" Not Phase Separater 4

0.05"/0.04" E

Well htwo corrider 213 and entrance to AUK.

338'-6" stetrwell No. A-13 1

0.05"/0.04" 8.13"/0.09" As 4 r.* -Q 7Ts50-1634503-32

1 j

/

i m

i Page 28 of 29 l

.TA31.E 6-1 i

SECONDARY WALL DISPLACDENTS I

j Vertical llerlsental Nortz Well No. of Disp 1 Disp 1

,' Disp 1 L.

814.

Elev.

Inceties Wells (SSE/OSE)

_(SSE/0BE)

(FRESSURE)

Reserks 3

I j

Well btwo corridec J.

213 med estronce

~

j 13%

AUK.

831'-6" Stairwell No. A-12 1

S.95"/9.04" 9.13"/0.09" i

Onf LtcEno eLif,

mw j

O For l' and 2' thick pertions of Well No. 7 and 93 with angle supports.

i For 3' thick pertise of Well No. 7 and 93 witheet eagle sepperts.

i f

For the porties of Well No. 19, Il and 95, 96 with angle sepperts.

i ff For the porties of Well No. 10, 11 and 95, 96 witheet eagle sepperts.

Angles imetalled et the top of secondary wells to restrict sevement. Therefore, the horizontal dfsplacement =

X e".

i See Fase 29 for the vertical displacements et the top of the noted secondary walls.

II l

i I

l l

l l

3

{

7 79 R A. I(.14%D1-R2 i

coo.cs.i,

,p nty i g

Pact 2s.: a f12 45 5

'I 3r

(

,f.h n

, i;'; ; ' '

.sq

-t jh I3 -

8 li

-l

@~i(00/20*0~

p. -

l l

l J$

1 3

1 I

-A.sc.0tsc0 c

2 k

I 1'P t E tt u

~

9 9

."'*E0'0/10'0-U !1 [ $3

{

e e

e e

g y-. e 4 --e-.e-.

2.,..,

8,,. '$

o s

wm a

I

_3 i

fw_ It'0/tt*G E

J

.,1

's.

l e

e E

E

=

-1 l

C 5 J

i g I

g E

E jtt'o/ss'c -~ 4 4

4 4

  • q A

I

(

E I

i i f I "ft:t'o/st's --3 2-2e 6

~

e.

e qq q

g k e

e e e e

o e 1-- *- m===*-wet'o/tt's S 3 i

4,

l i e.

"r" i I s.

n l

t t w E 4t o/st o I

~

g

' (-

e 4

4-]-

n e-1 N

St o/tt o I

/

e/

n n

t st e m o s

4 * *.

d." "[.

g j10'0/tD'r j 3 4

)

,i r.

o t t. tt4 C E 80.o/10 0 -

g g g

. S.

5 9

i

  • *,o0/50c-
[i I

1 I

=

y j CC'0/t0'0

  • a gg I te'e'fa'e E

i I

u

.0 c; l

r

.s 4

.c si

.o s:

I

=

=

d N

d h

l e

o

'.l

c

=

DBD CS-19. Rev. 1 APPENDIX-A 4

'..g 0

e 4

S 9

9 e

e

!i V:

~

8

(

i.

t g;

E 9.-yl!

It i

6t

?!-:l2 r-il E

I at4 l[

r: :,

=<6 l I i

l

/

/

I.

I r

8

- -w*

i lai l

[

h; i}i l' il Atlan

  • SII4lang 3465 a4 3

~~

gI* )

Li El L

1 y

r 1.

l1_.. :

d,,

1 t,

_d.

i ri i 11 i

L rl I,,

L

.3

-- 1 x w....n i..... 3-ll,es e

8 I7 l'Il au :.

g_ hk i

N 3

e li ill I e

r e

4 e

4 e

e e

4 4

DSD CS-19. Rev.1 M PLKD1X=5 S

O e

8 9

e e

4 e

w.--

980+CI 19, tev. 1 AFFIJDI.1 3

(

Fact 1 or 27 FlCs. I MFLCou ARQb 6% al b

'x l

6.J

\\

\\

La s

ha

$l E

- o{. _b EI l

nn._ _

v-1 0e F

i 1

y

L 5m

@p

~

E I

-g cf uJ

@E g

2 1

a l

1

.%/c s

/

3 a

/ D r

w

'r e

s, T.

r 1

I

~ c e

t

DID CI 19. Rey, t APPEND 12 3 PACE 1 CF 17 e a.1 u n. w nes s.eu.,

e q

w I

J r

I' LM9

$1

.-_i.

g -;

g en.,

i

,. mur I

-v y%+ -

PA DLau EL 11 C O"

\\

l F4 5 SAFEctaAR C' ELCn.

  • t 4

O O

D a

k 7

c-J, nnw

. mwmmmmmum l

~l l

"""b 4

a 3 i

Ie i.

>u_4_4 e

I PAR 7 PLAM AT El OD Y

DID CE 19. Rey, 1 APPENDIX B Fact 3 0F 27 FIG 4 SAF Lou ARD5 h.t:c.:

9 I

@i

)A

+

s.

4, RM &S Rh64 l

. ~

(

r v_.. S u r a c.u r n o s a w - i e.

m,

-- -O RM St.,

~

t f )) ff ff f~fl f/ E RMbl

+, - 4

-y' r

y PAR T m u A"i E.L.S U O'

[

S

,,._.y

-.--.y--.-

+

1 DSD CI 19, Rey, 1 APFtrDLZ 3 Fact 4 0F 2,7

(

l ris.G ***s.suw % g %,g g

g rg

~

e

~

o a

a e

e

.nwssssem s

l l

S l

j e

r i

O I

'd, I

g.s.

~,

l l

(

a

\\

t.,

l 2

4 s

)

1

.'0 \\,

g

..y-a m.

,a w e.

g.g g j.

~

i

-g O

l i Og

{; $

a

> i. &

E D

' :l,

.r*

3 g

e,

.O f'

O 4

r s

l

/

.Q_

t n

s O

l!

1 g*n I

.,,nx,

'-I

_._.a i

'M j

hh

'h I

me

. a a

SID CS 19, tev. 1 AFFIE112 8 tel u or 27

(

F K,. 7 WY.GuA R os gee,.

1.p 4

i 5

'tf ns 91

- - rn -

RM ib v--

.r--1m b

m

,g**g

.n~

~

8 e

4 S

e 0

4 O

e l

k e

e 9

DID CS 19, Rey, 1 MPEFDI.I I tur t. or r.y ev..a ursonnes m t

8 g

O a

a S

O O

9 m=m:1 nn mS l

O O

O a

0 3

c g (:...

- x3 e

am to*

S 9

9 e

S PAR t PLAM EL.85b*

l

[

1

DSD CS-19, Rey, 1 APPI.XD1I I Pact 7 or 27 Fu.8) RtACTOR bl.Dc. s I t

Loop *I f$

tou

., _, m..,,.

g Fica. to REACioR BLh

  • I M

M EM64

, i nN i-i Qen) user et g

N

/

m$

19

/

RM 159A v At exaw etm EL. sW4/

p

-w-m-m..w

--e-w se---,n-, - - -

aw,-,

,-ne,-

,vs----,-r-,,,w-w---

v

-~

DED*CI 19, Rey, 1 AFFtrD12 3 FACE O OF 27 ro. n atu. ron am..

3 1 l

(

i.

LOO P M

\\

EM E*IA PART m.A N t.L 842fo*

l ra. t?.

REArtoR BLcc.4

.+.

l g

h\\

\\

a wu

~~

),

j e&

m

+.

PA R"T PLAW EL. N IO' l

l 4

i DSD CI 19. Rev. 1 AFFTEDLI.B

(

Fact 9 0F E7 1

FIC. tb R E.Ac *to g gg g g

.l

~~

)

i 1.cor.4 RM tcal A P

RM ll%O'f

'M S\\

O V

l l

l 1

1 4

f e

l

D5D CI 19, toy, t 2 1 LED 11*n FACI to CF 27 Fl(e. 64 ELECTRv At. cou tgot a.m

\\

J 4

s C.

D s

h k

s C

/

A O

w 0

0 0

9'g x

r g

r o

5 d

{

s

,o 7

~

s r

4 a

l d

oe

= p

nc
.

g-o o

c f

- ^j -

,1

,1

,1 1

e

'c E

s s

E bD q

D5D CS 19, Rey, g AFFENDII-3 FACE 110F 27

(

nu inan== co,o= m 4-8 j

. sin h/

n p _@ __

j g

g ami,.

@rR o

e ol

_ a

,,,u m,1o g

g

~

-.m,i, f'.m. c,, @g

.bg~

(d5, l

e g

(> f

!1 5 :]

9 ami, min ama mits l

l g

t s-l a.

s

@A %7 Pl M El. M $ Y l

t

1 f

DID CS 19 Rev. 1 AFFENDIX B l

FActl!.or p k

i Fic.. L elf.CRV. AL couih m l

~

9 4

4 J

--O e

f 1

i e

1 e

h I

4 S

i O

g i=

U-p-e l

l t

T l

E t

c s

.i I

O

~. @ ;;i

~

e

~

y a

A I

q r

24

~

d i

g h

O r

I I

O n

I pf t=

I i

._g e

t

~

DSD CS-19, tev, 1 APPENDII 5 FACE 13 of 27

(

Fit. t*1 ELECTRit. At. Cou1% %

RH OS I

m e

i y'1r i ff)

= =" 4 1

g i

es p IN1 3 in t

EM I

/N a

(

y g

j ir s

We h@

G PART PLAW EL.oSo'o'

  • (

FL.16 Au ntLtARM 61.0 0 b

M// M ((

// [ N M (( ! /[ ((

b D kk D D D \\\\ \\

\\\\ \\

p

~.

g ItKm i

M _

AL.<.

i..

- _ ~. -

-l DBD CS-19, gey, g APPEKD12 3 FACE 14 0F 27

(

i FICs. lal AUAltlARY BL%

V /////////A E

~~

/

RMi%4 RM i'))

RMtve(50) l

/

i l

r Ys y,- - -@

r o

<41 e

e e

6 PART PL AN EL. 810'.#

h

/ff.

Fa.2o AuxitiARx esco T/// /J ////A U

N N

m RMli$

ll>4Do RM2el

\\

1

--O s

me dl'c-RM105

-e J

kN m

hmnd W

PAR 7 FtAu n Aew.

DSD CS-19 tav. 1 Q

AFFIND12 8

\\

U Fact is or 1.7 E

Fh it Au Ait.l A RY St.%.

k iQ RMtb h

1

,q.

PART PLAM EL, B3%'

(-

FtC 7.1 AU AtLtARY SLce.

l 0

8 O

<W.

h' RHilb 1 O h

RM115

{

C l

PAstT PtAN Et SS Nd

1 h

h h

DID cs-19, g,y, g

AFFtJDII 3 FACI 4 or 17 h

(

E F L.1 b A u tit.lA R Y bt.ca I

@d if I

O d

a R M f.3')

--- D D

@v t

1 PAWT PLAAI EA. 85219 A

FIG 7A AuMt.tARY M tc.

g h

i f

g 8

o i

RMit$

l j

-- 4 t

O l 0

~

s s

4

~

-..-Q 3

ART AAu n..oSZtV l

e

DID CS-19. Rev. 1 AFFIC12+8 Fact 17 or 11

(

h h

Fica.15 AUAILIARM 6W b

g T

m 8

+

Q RM243 s

E W

PART PLAN EL.Scs26' O

e 9

1 1

l 080-C5 19, rey, 1 A!!EKDL1 8 FACE 18 0F 17 wu..tv Auu u4ax suos e

RMut G

J RL% Q a

._i

/ // // A f

g hm,-am v

F lce, l'1 AUutlARY SLCr G

l

~

g O

RM14 C

S l

@ =

l i_

d R

w z 12 9

Pw4 EL 84tto'

.___J_,,

DBD CS 19, Rev. I l

AFFENDII 5 FACE 190F21

(

FIG.18 FUEL Ex %

.+.

h I

RM 272 A g.

9 7 -6 i

1r eu, e t A u r. t e<.,o s o -

V l

l l

amm.

I l

4

_ _. _ _, _ _ _ _ _ _ _ _ _ ~... _

DID CS 19, tev. 1 AFFENDLI 8 PACE 10 CF 21 l

(

  • FW.19 SAFEGUARD Bloc.st i e

\\.

1

,J Q

Q 1

-L g

k

@3 C

3 0

F b

7

~. '

  • 3 e.

1 5

r-J 2

5 i

L

-:r n

9 i ',

r'1 9

s s

s s

s i x s s

s u

' AT '

@@ @p@

i i

i 1

m r'

Y

i DID CS 19. Rev. 1 4

AFFIE1I I Pact 11 or 21 pg,.m SAS E GU ARD be s ?.

A p'

d g--

i k

SS y

mal Re g

pxgg pt.A,w A r EL173'C" T

pg,. gg SyEc.uARD be et

.A-8 d

.s nMoo @p s

_S d

my RMb\\

r 1

~

6 r-nnes k

6 g..,,.t. u = g. -

w

08D CS-19, Rey, 1 APPENDIX-B Fact 11 or 27 Ph.St wtGuges gm.g O

+

k g

nn s t.o Q

=2 E 1/ 11 ff 1/ 11 1 R M S'1 h

8 1 PART. M.AM E.1..att O*

O d

FICA.$$ 6&FEQUARDS BLCY.a 57 O

0

~

O r

RM11 I 3 h uzz zz z-

.s,.

y ----->

N RMM d'I i

u em, nxu u a4v-

95D CS 19, gay, g AFFINDIX 5

(

FACE Z3 0F 27 F l<s..*A S A F ECsu ARD bt.Dc. s.1

-4 L..,

=

Q

~

@ =

1 o

= p.

D

.o DE a5 x

a>

w C

Q 3

d M,

2 a

a W

&C

-J s

P gh 5

%(wwwww~ T a

a o

o o

9 m

g e

_g t

DSD-C5-19, Rev. 1 AFFIND11 5 FACS 14 CF 27

(

Fu $5 WU.auARDS BLDr.s st e'

O

@ s-

<h-D D

D l '*

O RMWS 4

0-

-4 O

l

......m j@.

c RM w4 8

w 9

6 e

O O

e

- ^

D5D CI 19, Bey, t

]

AFFENDIX 5 Pact 25 or 27

(

pc. SC, Rt.A< tor BLes. a2.

<A LocP ol b+#

(M 4

PAR T PLAM EL.81*Wi u.

Fw. S7 reactor btDG.*?.

\\(

v

~

5 x

.D

--t 3

anis 5A

' o PART PLAN R.b17ks'

.___u

DID CS-19. Rev. 1 AFFirD11 3 FACI M OF 27 vn.us atu ron,stoc..;

es*

LDOP M 2

Ill FKs.5A REACTOR bLec s?.

6 4

([ feart,

,, ~

R 7

p

/

+

W MAMELa49'c' t

e 4

e e

D8D CS 19. Rev. 1 AFFENDIX 3 FACE Z7 or 27

{

Fic.s 4c REAR-TOR. Ek.Cc et Loop *4 R H n/.A A h

io3 1

PAR-f PLAw Et.. Not!<,'

k 0

e O

8 e

e l

l e

7/

NOTICE OF CONFERENCE

~V

\\

, /

cALLEDsy S'IONE & WEBSTER ENGINEERING CORPORATION m,e LocAtsoN 87-443 a o./w o. NuwsEA S&W ADHlH BLCD.

16345.01 W.M. Kennedy HORTH CONT. RDOM k

OATE DAY TufE 9:00Au.

March 25, 1987 Q uoN O Tuts

@ wto O Tmaits O rni ex SUEJECT

.. :):

r., ; ;

MMODITY ON SE NDART Watt

'l '.

It'. 7 i,.? st;6;..J d#

.,A*.'.,' lf,

  • t s t.

ATTENDEES LOCATION ATTENDEES LOCATION O

R.c. Totti EnAsCo O

R. ci tto svEe O

R.L. Crubs IMPEtt O

C. Dean

_SVEC SVEC/PSE D

5. Malhotra SVEC D _S. Furohit D

o.W. teve TU ELECTRIC Q

s. tiu svEe O

C.R. Mooten TU ELECTRIC O

T.S. Wilson SvEC D

5. McBee TU ELECTRIC D

\\

_Q W.N. Kennedy SvEC O

NAME OF ATTENDEE WMO 7.

son SHOULO TAKE ANDISSUE NOTES AnENDA ANo/OR aAcKGROUND INFORMATVJN AGENDA:

J

  • Contractors to identify bridging
  • Schedule and milestone-for bridging problems 8

.. *S. &

~

IF UNAsLE TO ATTEND PLEASE CAU.

T.3. Wilson X6928

\\

PLACE ON DESK-NOT IN BASKET 4

/

1 Ebasco Design Criteria for Project Identification Seismic Category I Electrical No. SAG.CP10 Conduit Systen Rev. 7 APPENDIX 10 THERMAL LOADS FOR GENER.IC CONDUITS AND SUPPORTS s.

e e

0966u

q Project Identification No. SAG CP10 EBASCD SERVIES INCDRPORAED TU EIZETRIC CDRM PEAK S'IIAM ELECTRIC STATIOi

'tNIT NO. 1 IESIG1 CRITERIA FOR SEISMIC CXIEGOR:( 1 EIE7RICAL CDCUIT SYSIDi APPDDIX 10 CDEhTS Secticn Cascription Page 1.

Introduction 1

2.

Backgromo 1

~

3.

Positico on Noznal Operating aM Accident Operating Shermal Iced Ccnsideraticm 2

2 4.

Methodology and Sumary ksults for ibzmal Operating 2hezms1 Irad Ccnsideraticn 2

5.

Accident Themal Icads aM Sa ple Cases 4

6.

Sutmary b - - --eticn 6

s R5 7.

References 8.

Attachants Attactuaant 1 List of calculaticm bocks for themal Analysis Unit 1 Attactnant 2 List of calculaticn bocks for thezmal Analysis Unit 2 Attactment 3 Sketch for Accident themal Analysis Cbnfiguraticns 4

e t-m,

,--a-

~ -,, - - - -.

,.,.--,a-,

,-,.-,.m--w-,,,r-------

~

j EH95gg SggylggS lygt cgdeygdE EE9K SIE@D E(ECISIC Sl@llgy IdEQUS( (Q99@ EQS 9999W11@ 992 QWEEQSIS

/

1.9 1U3399Y91196 l

This Appendix presents Ebasco's position wi th respect to the consideration of thermal loads f or the design verifica-l tion of Seismic Category 1 electrical conduits and supports ran CPSES Units 1 and 2.

i l

1 This posi ti on emphasizes compliance of the program with FSAR and design criteria requirements, lists studies under-taken and provides recommendations on thermal load conside-r a ti on for generic conduit span and support configurations l as documented by S-2910 and S2-0910 packages.

2.e gegkggggyp i

The generic conduit span allowables and conduit support capacities are documented in 2323-S-2910 and 2323-52-0910 l packages and were generically design verified f or dead load and seismic l oad only.

The thermal load effect was not R5 explicitly included in the generic design verification because it would have required a very large number of combi-g nations of parameters which influences the outcome. Some of I

the most important parameters are :

o nun.ber of conduits on a support a size of conduit (s) l c

lengths of conduit run o

location of the support in a conduit run o conduit support and clamp stiffnesses Studying on generic basis (S-2910 and S2-0910), all possible l combinations and values of parameters would be economically l

unfeasible.

Using envelope conservative values of some or l

all parameters would have resulted in unreasonable and unne-cessary limitations to conduit system installation.

It is recognized that generic designs have conbervatism intr %duced by the approach used in the dead and seismic load l

verifications.

These conservatism 5 are further, discussed in section 4.9 and have been utilized to accomodate the thermal l

load effect.

l l

l 1

T l

=

i 3.e PgSJT}gN QN NgRg3( gP{R3))hg @yp 3pg]pEy] }$[RD$k (999 (([EgIg The Category I conduit systems have been design verified based on SAG.CP2 and SAG.CPIO criteria which comply with FSAR requirements.

The criteri a require c on si d er a t i on of i

normal operating and accident temperature load ef f ects.

l The. load combinations specified in Section 3.B.4.3.3 of CPSES FSAR (Ref.

7) for "Other Seismic Category 1

Steel Structures" include thermal loads associated with normal operating or shutdown conditions (To) and accident conds-tions (Ta).

In addition, the FSAR specifies that accident thermal loads may be neglected when they are secondary and self-limiting in nature and the material is ductile.

Thi s position is consistent with the NRC Standard Review Plan (SRP)

(Ref. 2).

For normal operating condition for loading combi nat i ons with thermal load an increase in allowable stress is permitted.

This increase in allowable stress compensates for increase in thermal loads.

The electrical

conduits, supports and attachmente, except support anchor bolts in concrete structures, meet all FSAR requirements and therefore the thermal loads have to be considered only f or support anchor bolts in concrete structures.

gg The purpose of the studies is to evaluate the thermal effects on the generic design verification results.

The scope of the studies is,

however, limited to the effect of thermal loads on the conduit support capacities as they might be af f ected by anchor behavior and capacities.

4.e DEIb999k99Y t 99559B%

DE BE5VLIS E9R hggg36 gggg3IJyg 10E858L 6999 G9SSIDESSIIDU The methodol ogy used to perform the studies is outlined in Paragraph 5.e of the Technical Guideline SAG.CP22 for Unit 2 (Ref.

6) and SAG. CP-21 f or Unit 1 (Ref. 5) with the normal operating temperatures specified in the Desi gn Criteria SAG.CP-2 and SAG.CP-le.

As stated in Section 2.0, the

' generic conduit supports were design verified based on dead load and seismic load only and the inherent conservatism in the support design verifiention as further detailed b el ow,

made the results of these studies easy to apply to generic conditions.

I o The generic conduit supports were design verified in all possible orientations and the minimum capacity was selected as the final sunport capacity.

I 2

m o

The maximum seismic "g" values used in support dis si gn verification were based upon an assumed minimum support f requency regardless of the actual support sti f f ness and i ts f reQuency.

o Thermal and sei smic load responses on the supports are compensating, that is, when the support stiff-ness is

low, the seismic load is high and the thermal load is low.

When thi support stif f ness is high, the responses are reversed.

The studies consist of the following steps.

(a)

Selection of a conduit system.

(b)

Perf ormance of thermal load analysis.

(c)

Perf ormance of dead load and seismic load analysis by

Response

Spectre Method (RSM) or equi val ent static method with the actual stiffness of the support.

(d)

Combinati on of resul ts f rom (a) and (b) 5 (e)

Comparison of support reaction from (d) with the support capacity contained in 2323-S2-0910 and l

2323-S-9910 packages for Unit No.

2 and No.

1 respectively.

The f ollowing is a summary of results of the study includ-i ing documents.

A list of c al cul ati on books f or Unit No. 2 and Unit No. 1 are included in Attachments 1 and 2.

4.1 IMESUek k999 gNg(yg[$

o Single straight run conduit with maximum equal spans and aupport stiffness for group IV of Unit #2 thermal loads was enalyzed and was utilized as a basis f or comparison with other configurations permitted by the generic packages.

o Single

& Double Bend Runs versus straight run c ondui t.

Unit #2 Calculation Book No. 84.

o Unequal versus equal conduit spans Unit #2 Calculation L

Book No. 85.

o Thermal Load Effect on Conduit Supports from Single and Mul t i -c ondui t Runs and Effect of Mul ti c ondui t s Ri mul t a-neously Supported versus the Combined Effect or Indi vi-dually Supported Unit # 2 Calculation Book No. 86.

I 3

I

's o Thermal Effect on Conduit Supports from Conduit Runs l

with One End Fixed.

Unit a2 Calculatida Book no. 91.

o Study of multiple run conduit on singl e support.

l Unit M1 Calculation Book no. Ther 1761.

i o Thermal Effect and Support Adequacy for other Groups.

Unit #1 Calculation Book No.

Ther 1760 Vol. #2 and Unit l

  1. 2 Calculation Book No. 89 I

o Results of these studies indicated that single straight run conduit with equal spans and support stiffnesses can be used f or obtaining thermal lo&ds with proper amplif2-cation f actor to account for other c onf i gur a t i ons.

The unit #2 study results were evaluated and applied to Unit

  1. 1 as documented in Calculation Book No.

Ther 1760 Vol.

  1. 1.

4.2 SygegSI geteg111 ggege31ggy l

o Calculation Book No. 97. Vol. I and 2 for Unit a 2.

o Calculation Book No. 1991 for Unit #1.

The results clearly demonstrated that the* generic support s_

capacities as documented in 2323-5-0910 and 2323-52-0910 packages need not be lowered due to the thermal effect.

c5 l

4.3 EBIE Elf 9SE199 Maximum free expansion of a 75 feet long conduit based on a

temperature increase of 32 degree F is

.529" which is less than 1/32 inch and is theref cre considered to be negligible and insignificant to affect the capacities of l

the generic conduit sapports.

This further confirms con-clusion reatned in para.

4.2.

This concept is also used in quali f ying unistrut type of supports.

l 4 4 DS9WIED EESEIB9IIDS Study has been performed for various configurations g

consi sting of conduit, supports & grout penetrati on.

These l

results are documented in Unit 2 calculation Book No. 151.

s.e eggIpgNI IM[$5e( (Qep) 5.2 9999WII EWEE9BI 999E19999IIDS!

In order to veri f y a l arge number of anchorages covered by l

S-8918 and S2-0910 packages for accident thermal c ondi ti on l

the f ollowing analyses were perf ormed l

4

o Four dif f erent conduit support configurations rep-resent 8ng a straight run, single bend and double bend >. surface mounted case were studied.

These configurations represented the most rigid (straight run and surface mounted) to a very flexible (double bend) configurations. Surface mounted conduit run would result in large shears on the anchors.

The spring stif f hess used in this anal ysi s (excluding the surface mounted case) were based on 4 x 4x 1/4 tube steel with 2

foot cantitiver length.

The capacity of support equal to the reaction load from about 16 f oot long conduit.

This support has an bol t interaction coef ficient f or tension and shear of approximately one for seismic and desd load combi nati ons thereby indicating that it has the least margin available based on minimum support frequency of 14.45 Hr. Static b non linear dynamic analyses indicate that the seismic condition with accident temperature is not controlling the design of the anchors.

Calculations f or this study are R. 5 documented in Calculation Book No. 92 Vol.

2.

o Free expaasion (l ongi tudi nal displacement) of a straight run conduit was calculated at critical supports and support con fi gurati ons (based on operating thermal analysis)

Supports were subjected to these displacements (representingY maximum thermal load /di spl acement possi bl e).

This analysis represents the most critical shear and/or tension load condition on the anchors.

Cal cul a ti on 92 Vol.

2 details these findings.

Acceptance criteria for the accident temperatures are divided into two categories, i.e.

sliding of conduit at ciamp and anchor displacement.

For the condition where sliding of conduit at clamp controls, a minimum of 2 ovoports shall have factor of safety of 2 on ultimate displacement of the anchorage.

Using a minimum of 2 supports provides an additional margin f or accident thermal load and also ensures that the dead load of the system is adequatly supported. For the condition where anchor di spl acement control s, all supp or t s shall have a

factor of safety of 2 on ultimate displacement of the anchor s.

These acceptance criteria have been met for all supports covered in the S-9912 and 82-9918 packages ewcept for supports S-9919-CSM-18h, 181,.1Bj, CA-la CA-1b, CA-2a, CA-2b, CA-B and individually engineered suDports (!N) and modified supports with anchorages similar to these supports identified herein.See paragraph 6.2 for recommendations for these supports.

5

  • M

. -e-g: :-.

, " b.

5.2 2WNGIIQN EQH GQHDWII & EWEEQBI GQNEIQWB&IIQH shows a

critical configuration including a

Junction Box, conduits and associated supports. Four cases have been analysed t o' assess the adequacy of the anchorage for the accident thermal loads.

Dr.e more sample esse is being analyzed to obtain the maximum eSear, tension and shear and tension interaction on the anchorages for steel mounted Junction boxes. These cases have taken into account the variations in size of the anchors. The results of completed analyses is covered in Para 6.2 s.e EW55eBY BEGQUBENDAIION Gul HQRuek QEEBAIING IEHEE8eIWBE (a) Unit NO. 1 and Common Area In the Safegusrd. Auxiliary. Electricel control and Fuel Buildings, if a conduit system meets all the conduit span and conduit support capacity requirements shown in the 2323-5-0910 for m-bD LS Series and the total conduit length is 75 feet or less between expansion joints, the support capacities computed based on dead load and seismic

~

consideration, do not have to be reduced to accommodate thermal effect. This conclusion is also applicable to the Reactor Bldg. At total conduit length is less than 45 feet between expansion joints.

(b) Unit No. 2 In the Safeguard and Reactor Buildings if a conduit system meets the conduit span end conduit support especity requirements as shown in the 2323-52-0910 package and the total conduit length between expansion joints is less than 75 feet and 45 feet respectively, the support capacities computed on the dead load and seismic consideration basis do not have to be reduced to include thermal effect.

(c) Grouted Penetrations For results of analysis for grouted penetrations see calculation no 151 of unit i 2.

6.2 AggIQgNI IggggaeIWag G.2.1.

All supports, except those as listed in para 5.1, in the Reactor Building covered under the S-2910 and S2-2920 packages and designed in accordance with Ebasco design specifications SAG. CP 2 or SAG. CP is are qualified for 6

~

E*:

.(*

,f,,

e accident thermal loads f or c ondui t runs up to 45 feet.

6.2.2.

Conduit supports S-9912-CSM-18h,181, IBJ and all other supports (including modified and IN supports) with similar anchorage.with conduit support length less than 12 inches ( al ong the cantiliver length of support

)

and a total conduit run exceeding 10 feet shall be evaluated f or accident thermal loads.

o Uni strut type of supports CA-la, Ib, 2a, 2b.

and JAl, JA2, 3A, 3B shall be evaluated for accident loads f or conduit runs exceeding 15 feet, and CA-B for all condui t runs.

o Grouted Penetrations See paragraph 6.1. (cc).

7.B RgFgRgNQgg 4,~,. Comanche Peak ~ Steam Elec, Electric Utilities.

tric Station Final Safety Analysis Report, Texas '

2 2.

Standard Review Pl an, Nuclear Regulatory. Commission, l

1973.

s 3.

TUGCD Drawing No. 2323-5-2910 Peckage.

!R5 4.

TUGCO Drawing No. 2323-52-0910 Package.

5.

Technical Guidelines f or Thermal Analysis of Seismic Category 3 Electrical Conduit Systems SAG.CP-21.

6.

Technical, Guidelines f or Thermal Analysis of Seismic Category I Electrical Conduit Systems SAG.CP-22.

7.

Ebasco Specification SAG.CP10, " Design Criteria for l

Seismic Category I Electrical Conduit System ",

Comanche Peak SES Unit No.

1.

B.

Ebasco Specification SAG.CP-2, Design Criteria for Seismic Category ! Electrical Conduit System ",

Comanche Peak SES Unit No.

2.

I I

I l

I i

7

PAGE 1-CALCLIST UNIT ND 1 A;7//dM4 //[ g /

,~

CALCULATICN PDCK # 8 COMPUTER RUN PP. INT DUT LIST FOR THCtzmAL A v A t.4 5 I $

BOOK TITLE f

a wo.

__'________ _ _-.,UNCT:CN POXES g

THER 1750 JUNCTION PDX SPRING COH3 TANT g

O THER 1751

/

VOL. 1 T!!ERMAL ANALYSIS (J3 1)

IBX12X*2 O

(E-LOLTS)

THER 2751 VOL. 1 CCMPUTER Pr.INTOUT

.O THER 1751 VOL. 2 THERMAL ANALYS2S O

(JD EA) 18X12X12 (4-BOLTS)

THCR 2701 O

VOL..2 CCMPUTER PnINTOUT p

THER 1751 l

VOL. 3 THER.**.AL ANALYS 2 S (JB EDS) 3EX3EX24 e

O. THER E751 1

vot. 3 C'or.PuTER PR2NTour T'. E R 1751 l

O vet.

4.

THERMAL ANALYS:s

.I (JB ECS) 48X1SX18 THER E751 O

Vot., 4 COMPUTER PR2NTDUT l

)

l THER 1751 O

vot. s THEnMAL ANALYS2S (JB ED) 60X24X24 THER E751 O

VCL 5

COMPUTER PRINTDUT i

TIER 1751 O

voL. &

THERMAL ANALYSIS (JB EE) 48X3&X48 THER 2751 0

.voL. s CCr.PuTER pn:NTour THER 1751 E)

VOL.,7 THERMAL

  • ANALYSIS (JD 3A) 3EX3EX24 THER 2751 VOL' 7 COMPUTER PRINTCUT 9

t e

l

]

6..

)

PA3E E-CALCLIST l

UtJIT NO. 1 CONT D.

l CALCULATIOfJ SOCK 41 A COMPUTER RUli PRINT DUT LIST DOOK TITLE ThE4MA{EV

  1. #l## ##

0 ATE

)

TI:ER 1751

[

' ~ ~

~

~

VOL. 8 Ti:IRMAL ANALYS2S (JD 33S) 43X3CX18 0

THEa IT51 VOL. a col'.PUTER PRINTCUT 3

THER 1751 g

VOL. 9 TMERMAL ANEYSIS

/

(JD 3C3) E0X3EXIS

)

Tr' *ER E751 VOL. 5 CCM7U~ER PRINICUT

)

T):IR 1751 l

VOL. 10 THERMAL GNALYS!S I

r (JB 3DS) 48X4EX18

)

THER 2751 l

VOL. 10 cot'.PUTER PR21/ TOUT

)

THCR 1731 VOL. la T;4CRMAL ANALYSIS (JB 4) toX35X48 7

THER 2751 VOL.,11 COf".T-t'TZR PRINTOUT s

) -ib T:iER 1751 VOL. 12 THERMAL ANALYSIS (JB.5)

E0X25X36 VCL. 12 CO:4PUTER PR:ffTOUT 1

)

THER 1751 VOL. 13 THERMAL ANALYSIS l

(JB EA) 72X4SX30 l

)

THER 2751

}

i VCL. 13 COMPUTER PRINTOUT l

l

}

TiiER 1751 l

VOL..14 THERMAL ANALYSIS i

(JB 7) 12XEX12 1

)

(2-BOLTS)

{

THER 2751 VOL. 14 COMPUTER PRI'! TOUT

)

THER 1751 l

VOL. 15 THERMAL ANALYSIS I

(JB 8).

12XEX12 (4-BOLTS)

.' THER 2751 VOL. 15 COMPU ER PRINTCUT

\\

O PAGE 3-CALCLIST UNIT NO. 1 CCNT D.

l CALCULATION PODK # 8 CCM?UTEn nuti PRIliT DUT LIST

[

ffA TNh2ArkL v4WA Apff f f BOOK T17tg 3

NC.

/

TH2R 1751

)

VOL. 16 THERMAL ANALYSIS (JB 9)

EOX4BX3C

)

THER E751

)

VOL. 15 CCMPUTER PRINTCL THER 1751 3

VOL. 17-THERMAL A;4?.LYSI:

(JD 10) 3CX3EX2/

THER 2751

.)

VDL. 17 COMPUTER PR:lCCL THER 17N1 9

VOL. 18 THERMAL ANEYSI!

(JB 11) EOX3EX1d VOL. 3G CC;*.PUTER FRINTOL THER 1751 VOL. 19-THERMAL ANALYSIS 1

(JB 12) EOX14X1d THER 2751 l

VCL. 19 COM 11TE3 PRIt.'TOl THER 1751 VOL. 20 THERMAL Af1P.LYSIE

)

(JB 13) 30X1EX8' TMER 2751 VOL. 20 CCMPUTER PRINTOL

)

THER 1751'

)

VOL. 21 THERMAL ANALYSI!

)

(JB 14) 48X30X1 THER 2751

  • )

VOL. El COMPUTER PRitCOLf THER 1751

)

VOL. 22 THERMAL ANALYS!!

(JB 15) 18X12/8 THER 2751

)

VOL. 22 CCMPUTER PRINTot THER 1751

)

VOL. 23 THERMAL ANALYS21 (JB 16A) 3&X24XJ

. THER 2751 VOL. 23 COI.PUTER PRItCC)

)

)

f

,)

PACE 4-CALCLIST UNIT NO. 2 CCNT D.

CALCULAT20tJ I;DOK #1 & COMPU 2R RU;; PR2NT DUT I m un' W THERAAl A t'A Lil.C/S 3

T!!ER 3758 '

VOL. 24 THERMAL ANALYSIS 3

(JB 2EB) 4SX18X10 THER 2751 VOL. 24 COMPUTER PRINTOUT

  • )

T:!ER 1752 VCL. 25 THECMAL ANALYSIS 3

(JB IEC) 60X30x24 THER 2751 VOL. 25 COMPUTER PRIICDU'T 3

TH2R 1751 VOL. 26 THERMAL ANALYSIS 3

(JB 17) E0X30X25 THER 2751 VOL. 25 CDMP*wTER PRINTOLT

)

T):2R 1751 VOL. 27 THERMAL ATJALYSIS j

3 (JB 185) 48X1SX18 THER 2751 VOL. 27 COMPUTER PRINTOUT

)

THER 1751 VOL. ED THER;'AL ANALYS2S a

(JB 19A) 28X18X12

)

(2-3" DIA. COND.)

l THER 2751 VCL. 28 COMPUTER PR2iGOUT l

e

)

THER 1751 VOL. 23 THERMAL ANALYSIS

'3 (JB 193) 38X18X12

.(2-5" DIA. COND.3 THER 2751

)

VOL. 23 COMPUTER PRINTOUT I

THER 1751

)

VOL. 30 THERMAL Rf!ALYSIS (JB 1sC) 18X18X12 (6-3" DIA. CpND.)

,VCL. 30 COMPUTER PRINTDUT

)

THER.37(.D VOL.e a APPLICAT10N OF UNIT NO. 2 STUDIES TO UNIT NO. 1 GENERIC SUPPORTS THER 27EO 4

V3L.112 CD.$1JTER PRINTDUT

).

l

~y g

l PAGE 5-CALCL2ST.

UNIT NO. 3 CNT' D.

i l

CALCULAT3CN PDOK # 4 COf'.PUTER RL*N PRINT CUT LIST 93D%

TITLE

  • y~pq fyyp j p) pypjyj t.,s NO.

THER ITE!

STUDY OF MULTIPLE SL*N CONDUIT CN S:t:0LE s

SUPPCRT 2

THER 27El Cot!PUTER PRINTOUT.

THER 3301. HAND C LC. SINGLE STRAICMT RUN COtC3.

T:4ERMAL LDr.DS 9

THER C 01 CCriPUTER PRINTC'.JT VOL.C112 SINGLE STRA23MT RUN

,.)

CONDE. TH;ERMAL LO.*C3 FOR 7;-iER 1901...

I I

)

l I

)

THER 2 9E3 STIFFNESS ~DF "~" ~~~~~ ;

SUPPORTS l

THER ESE1 COMPUTER PRINTOUT

)

VOL. #132 FOR THER 2051 THER 1922 HAND CALC.-ADD THER D..-

& SEISMIC LOADS &

g COMPARI WITH V

CAPACITY 9

THER,2301 COMPUTER PRINTOUT VOL. #f FDR TtCR 1981 I

THER 19b2 APPL.2 CAT 20N DF GEN.

h TO CNC & IN SUPPORT

& 250.

I THER c"". 302 COMPUTER PRINTOUT FOR THE."1 1982 VCL.# 1 D

THER 2933 CONDUIT THERMAL DEAD LDAD & SEISMIC SYRES3ES.

THER 2983 CCMPUTER PR!taOUT

)

VOL. # 1 FOR THER 1983

,)

3-D-2-005 ACCIDENT THER11AL STUDY I!2AT TRANTJER ANALYSIS I'

n n

f*

A ff/JCHMt 7 ~#aT-TEXAS UTILITIES CENDtATINC COMPANT Revision Date 4/28/87 CONANCNE PEAK SES UNIT 2 CONDUIT PROGRAM CALCULATION BOOK LISTINC FOR 52-0910 PACKAGE

((.[

y,g fj/ffM194 QA14$/S IN PROJ.

FILE'S DOOK No.

, REV DATE TITLE 1

81 Straight Run Conduit-Crephs of Sye. Stiffnese Versus Thermal Loads t

for Cantilevers R5 i

82 Surface Mounted Conduits Crephs of Cleep Stiffness Versue Thermal f

1.o.

83

  • Crephe for Tube Steel, Base Plate & Cleepe Versus System Stiffnese l

g.

r. ' -

..m 4,* -

l

'..?

TEXAS UTILITIES CDIERATING CONFANY Revision Date 4/28/87 C0HANCHE PEAK SES UNIT 2, CONDUIT FROCRAM

.gf,g, CALCULATIDM BOOK LISTIMC FOR S2-0910 FACKACE nATE IN PROJ.

FILE'S BOOK NO.

REY -- TEDS.

TITLE CoeParison of Single and 'ouble Bends Versus Projected / Straight Runs 84 D

i 85 Cooperison of Yariation in Spen Lengths and Support Stiffness for -

(

l t

Straight Run conduit

~

C6 Study of Multiple Run Conduits on Single Supports 87 (Vol 1)

Straight Run Conduits - Combining Seismic Load With Thermal & Dead Load (Croup IV) 87 (Toi 2)

Straight Run Conduits - Combining Seismic Load With Thermai & Dead l

Load (Croup IV) l' i

87 (vol 3)

Void t,

p 8

87 (Vol 4)

Yoid RS 88 Spare 89 Thermal Effect and Support Adequacy for other Croups 90 Spare; 91 Thermal Effect on Conduit Supports from Conduit Rune with One Fixed end.

92(Vol.1)

Accident Thermal Analysis - Sample Case 92(Vol.2)

Accident Thermal Analysis - For conduits and supports g(Vol.3) ggdent Thermal Analysis - Junction Boxes 94 Combining Loads for Surface Mounted Conduit 95 Conduit Support Location Criteria. Specing between JB 96

- Sconduit Support Location Criteria for Unsupported JB (locreased

/~l

~

,,,epacings)

, ;l l,

(

$ 13.

TEKA5UTILITIESCENERATINC.pFANY Revision Date 4/28/87 COMANCNE PEAK SES '.

UNIT 2 CONDUlf PROGRAN CALCULATION BOOK LISTINC FOR S2-0910 PACKACE

~

DATE

~

IN MM.

FILE'S BOOK NO.

REY gg TITLE s

. >l

?

111 Jenetton Bowee ThErsal Analysis Yet 1 60 x 48 x 42 - Supported 2

60 x 30 x 12 - Supported 3

36 x 30 x 36 - Supported 4

36 x 30 x 12 - Supported 3

18 x 12 x 12 - supported 6

36 x 18 x 18 - Unsupported N

7 24 x 24 x 18 - Unsupported 8

12 x 12 x 6

- Unsupported 9

tx8x6

- Useapported 10 24 x 18 x 12 - Steel Mounted 11 12 x 12 x 6

- Steel Mounted l

l I

E I

i u

I 117 Special Junction Boxes l

~ ~ ~ ~

~~~

L.

i

... _._. w..-_-__.

...s...

gyg(gjtjfx.ty, 3 '

~

EB ASC0 $ERVICE5 lHCORPORATED

,,s.h6,'>,,,, iolu las

,,,, M,, :2-

,,,,,;,, Efu sW,1,,16/ 30'/ PL

,,.., 33% '2 si or;;. sso

\\...I'.

Y I WI f

__M_ O

--.....PO., OF'.".".".m**,.'"."

C Lit se, w.

PeteJ C,

-- _ COMANCHF PEAK UNIT 2 hiDEM I.LtLIMILAL CUNDUlT g BOX SUPPORTS 9N N.

Geo<

intu m myi u,,s e, s

! : i

.i t :

i....,.. '

i u.

I i

e

,l

.,._ lHoti2onkCL GQ.-

I i

i l

j i ).,..uJ

.._..s.,

(D i i

'O i

CD' 4 G

s i

t 1. e _;.@9... H. i-.-..--

D..

S -

. O.,2..-.

Y.*a..

4

,3...

9....

i

..t

,.,3__op,.:u..u c'D 19d = 950'k,t;7 c.t t.G' l

!',..'._'..s.

e

.... 2... 7 m

_ A C C I D 6-M T

  • TEM PS E M u m.E-A h h 'g i s M A'T'kl M O DE-Le

(

CA *!ir t-1 S@ 15 'lO" :.d( ~}'. $

4 TGlA%W7 f.= 18Alo" j S

.- 1lr u N c/

  • cW o gf S

S 4

@#UP N

=Y y

p 9, q-v Z,

y sp

.I M

N

.4 W-o '

s' - G'If '

q e s '. g o

  • ggg g '.

3 s

4

-\\

s t u d L E-g Wj.

f SE-ND 5

f r

e s/

  • c N o 4

62cd PI5?.

P 1

%3 u

5} 76 C A S G 'b: N/yy YW64 *

  • Y f c.tY u% g : '(4 7 i

n)<?o.lYUSESG: lod

__ oo u e Le-E 4 L

i be 4 o.

Se5 Ls-4g g"4 c,go -

' *c,

.d G '- 3 g

crR.ouP E g.,,,

, 3.,,.

, t, * *.

  • y", ( TY.P) 4 4

3

(,,

,(go.I [h, y [n W

2/

. wm 4

ix WCTES

~

l.. ALL dbPAM Le 4 u t'tM A.126

_. E PJ A*b c-o

'b E-ev t c & S f u c.

t> A dir(s D O N D *ec 4 SA b d/l.0910

2. U '.* E-AW M db do MP LIT (-!2.

COM AN cH E P E A K.

... y ra. p 4 r2. A M

^*""-3

3. ATA = M7* wiTucursnsmic t.oAns

-ATa. = 59' WITH Seismic TOADS succv 2 ore

= -. _ _ _ _...

i Ebasco Design Criteria for Project Identification Seismic Category I Electrical No SAG.CP10 Conduit Systes Rev. 7 l

APPENDIX 11 ALLOWABLE SOND STRESS BASED ON ACI 318-63 i

i l

s I

I i

l t

t 0966u i

.. a.

ES A5CO SERYlCES lNCORPORATED

. / M/SM.... S' /f-M 9., _ 13 x

...,,. AWR

.,, PIM ?

n c6 1 H_ *c:: ss o s

susu, T' Mat ""!!! C!N'!t**? T COA %NCHE Pl.AK UNIT 2 s I 8.-e /t Md /f

/; ;

ELtLIMICAL CONDUIT & 5R4 3UWxid SafSJ,CT i

e.j

, 'A r+SEb.;.AAl;. A C.2..?l.$,'

G _3y Mhwit91C Bonp 'f TKcts i

1 l

_..t

.... j..

l

^

g u.t. Low. ut.TtMATw Bono Attov. ut.riMArt scuo c e u s.

c o n.O s

evi ttet una.

.t Tratt.foR PtAlu BA A STRiss r.on nain e Af <

Dlb.(D) '~h i g

'( P S!)

' N'"*K l[,^fb"U W

~

I k'c H

( NdM. )

SL A 6 WA L. t.

52 A 8 W.4 4.t

_l..0 5

4. _ _

2 'I O "Er t.

/ Z. ',"

IC I

_l 3.a

.I.

2. t. 9 161

/ I '-4

&I

)

ifM

. I 'd

.I ? I 17 o 9I G4 t.' S

_.'l N ~

1%~IY I l *2-

~7 *)

s~G h.31_

2

/7c

, _c ? _-

c3 c.f 5,-

.1.*J 6

. tk..

.I0'-l..

7 '4.. -

S~2.

3~1

'3. 5 *

3.. _.. E G..

C* l.

'43' SI A

  • C.__

4 VJ H ~1 i t-f 2H 5 56

' ),

, $~I-I i8 2.]

l9 J,.._9.oo e' P r Cce #cte.IJ,....". l_..

o,eg<& W $

t. At.tasvMt.e t.itr. Sono'trREss M PAN SAR M ttAt 's

)

3, 4

o

' e: fogWAt'I,e ' b, *pA.'ez.go.ygl

...,e er h

s m.__.

p

f. u_ss OP. ALLN. DEMO C.T.M... st'foR W B.nR FeR couppti wMI HM No HtCK.

1.

.._.__.r

_ht. cut.AT u ns e u 10 Etis IO.1. II.,.'

s.E c

% couousr PAaraRries Frss1 Mc'. *7 "'wras,u.

s A

A A A

--