ML20195C659

From kanterella
Jump to navigation Jump to search
Rev 4 to, General Instructions for Design Verification of Electrical Conduit & Box Supports
ML20195C659
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/12/1987
From: Hettinger F, Kuo T, Wu K
EBASCO SERVICES, INC.
To:
Shared Package
ML20195C398 List:
References
SAG.CP29, NUDOCS 8806220251
Download: ML20195C659 (197)


Text

.

Project Identiff cation No. SAG.CP29

, Rev. 4 EBASCO SERVICES INCORPOR1TED TEXAS ITTILITIES GFNERATING COMPANY COMANCHE PEAK STEAM ELECTRIC STATION

^

UNIT NO.1 GENERAL INSTRUCTIONS FOR DESIGN VFRIFICATION OF ELECTRICAL CONDUIT AND BOX SUPPORTS l Revision I Prepared l Reviewed l Approved l Date l Pages l l l by I by I by I I Affected l I I I I I I I I I I I I l l

( l R0 l J. Kuo lC.Y. Chiou lR. Alexandru I 7/15/86 l l l l l l l 1 l I l l l l l l I

I I I l  ! l l R1 l J. Kuo lK.t. Wu lR. Alexandru I 6/24/87 l All l I I  ! l I I i

! I I I I I I I I I I I l l R2 l J. Kuo lK.T. Wu 'R. Alexandru I 7/17/87 l All l i I l l I I I I I I I I I I

~ '

l l i l I 12,10,11, l l R3 l J. Kuo lF.T. Wu IF. flettinger l P/24/87 113,14,19, I I I I I i 120,21 I l l l l l l Attach. l I I I I I II,K,P,0 I I I I I I I I I I I I i i I l R4 I J. Kuo lK.T. Wu lF. FettinFer I /o[/2[(7 111,15,22, I (s n. . J 22c$8 29 FBASCO SERVICFS INCORPORATFD 3753H h!bDb A

[

1 l

l Projset Id:ntificction {

No. SAC.CP29 Rev 4 g CENERAL INSTRUCTIONS FOR DESIGN VERIFICATION OF i

ELECTRICAL CONDUIT AND BOX SUPPORTS

. l

_ TABLE OF CONTENTS Section Description I Pg  ;

1.0 Introduction 1 l l 1.1 Scope I 2 I 2.0 DesiSn Verification Procedure I 3 l 2.1 Generic Supports l 3 I 2.2 Modified Supports I 4 l 2.3 "IN" Supports l 5 l 2.4 Modification of Supports l 5 l 3.0 Computer Analysis l 6 l 3.1 Model l 6 lR2

( 3.2 itcectricities 7

3.3 Modal Points 1 8 l 3.4 .

Boundary conditions 1 9 I 3.5 Additlocal Notes I 10 l 4.0 Frequesey Requirements l 12 l 5.0 Loads & Lead combinations l

13 1 5.1 Dead Loads 1 13 l

, 5.2 Seismic Loads l t 15 l i

5.3 Load Combinations I 18 l I

COPYRIGHT e 1987 EBASCO SERVICES INCORPORATED l TWO WORLD TRADE CEhlER (R1 NEW YORx I

i 3753H l

Projset Idsntificction No. SAG.CP29 Rev 4 TABLE OF CONTENTS (cont'd)

Section Description g l

6.0 Allowable Stresses 19 I I

6.1 Punching Shear at Tubular Connections 19 l  ;

I 6.2 Warping Stresses 22 l l 1

6.3 Evaluation Methodology of Oversized Bolt Hole 22 llR4 Effects ll 6.4 Evaluation of Installation Tolerances 22e ll!

lI 7.0 Shear Center Location of Composite Channels 23 l l

8.0 Weld Design Verification 24 lR2 l

9.0 Anchorage Evaluation 26 l l

10.0 Interface Requirements 27 l  ;

I 11.0 Resolution of Inaccessible Area (I.A.) Items 28 l l

12.0 Footprint Load (FPL) and Engineering Evalua- 30 l tion of Separation Violation (EESV) Forms l 13.0 References 35 l

TABLES l

1. Orientation of Building Global Coordinates 36 l I
2. Enveloped Design "G" Values 37 l l

3A. Building and Elevation Groups for Junction 38 l Box Supports l' I

3B. Equivalent Coefficient and "G" Values for 39 I Junction Box Supports IR2 I

I FIGURES l l

1. Definition of Tributary Conduit Ioad on 40 l Support l I
2. Typical Cases for Warping Consideration 41 l l

ii 3753M

Project Identification No. SAG.CP29 Rev 4

( TABLE OF CONTENTS (cont'd)

LIST OF ATTACHMENTS A - Load eccentricities on members B - Member Eccentricities and Working point l

31 - Member eccentricities 32 - Eccentricities for braces welded to back of vertical post B3 - Working point eccentricity for brace with gusset plate B4 - Working point eccentricity for brace without guesset plate l C - KL/r requirements and K Factors lR1 l

D - Additional notes on models and design verification E - Shear center location of composite channels lR1 F - Member strength loss due to 1/32" undercut G ' verification of Hilti Anchor and Richmond Anchor bolts f C1 - Verification of Hilti so: hor bolts frer sur. face angle connections lR1 G2 - Verification of Richmond anchor bolts for surface angle connections G3 - Verification of anchor bolts securing surface angles G4 - Prying action factors f9r base plates with four bolte ,

G5 - Interaction requirt.nents for archor bolts

C6 - Comments for G Attachments

, H - Effective throat thickness of prequalified partial penetration lR1 bevel groove welds I - Anchorage spring rates in Strudl frame analysis J - Procedure for verifying members subject to oending due 4

to gusset plate connection 111 3753M

Project Id2ntification No. SAG.CP29 tev 4 {

l TABLE OF CONTENTS (cont'd)

LIST OF ATTACHMENTS (Cont'd)

K - Input skeletons for static run and load combinations l l

K1 - Generic Supports (Load Combinations only) l K2 - Modified /IN Supports 'G' Values Rotated lR2 l

l K3 - Modified /IN Supports 'G' Values Not Rotated l

I h,4 - Input akeleton for frequency run l L - Allowable normal force for stepped tubular section connections and {R2 formulas for finding punching shear M - Warping stress tables N - Footprint Load (FPL) and Engineering Evaluation of Separation lR2 Violation (EESV)

W1 - Miniaua spacing requirements (Hilti Anchors)

N2 - Minlaus spacing requirements (Richmond Inserts)

N3 - Footprint Load Transmittal Fora l l

N4 - Guidelines for EESV sad FPL Forms l l

Nfs - Separation Violations to be Documented on EESV Forms lR2 i

N6 - Sample EISV Form l

P - Tension Spring Constant For Anchor Bolts Q - Allowable Bending and Compressive Stresses in Angles l iv 3753M

Gesorcl Is0truction for Desigu Probet Idcatification Vsrifiestion cf Electricci Conduit N3. GAG.CP29

& Box Supports Rev 4 s

1.0 INTRODUCTION

These general instructions have been written to assist personnel design verifying Electrical Conduit & Box Supports. It is merely a means of interpretation of the Design Criteria for Seismic Category I Electrical Conduit System (SAG.CP10). It is by no means a substitute or repiscenent of the Design Criteria. These instructions also provide a uniform approach in calculations. The approaches identified in these instructions are those which the writers believe would have involved too much variability in interpretation, or would have been interpretated with unnecessary overconservatism. All engineers must therefore follow these instructions '

azactly as specified. The requirements herein are minimum requirements.

Conservative approaches may be used provided that the support can pass the design verifiestion process. If conservative approach is used a statement to this affect must be included in the calculation. For approaches which are not specifically outlined herein the engineers shall use documentation, books and other sources traditionally used and accepted in the design process.

(

O 1

3753M '

General Instruction fer Design Project Identification Verificatin of Electrical Conduit 'No. SAG.CP29

& Box Supports Rev 4

\

1.1 SCOPE This document is applicable to the design verification of Unit No. 1 l generic (S-0910 package), modified and individually engineered (IN) l electrical conduit and junction box supports. IN supports attached l directly to the Spread Room Framing (SRF) are considered as part of SRP lR2 framing and are in the SWEC scope of work.

l l

The modified and IN aupports shall be design verified based on "as-built" l conditions obtaiLed from the walkdown package prepared by the walkdown l Broup. The calculations for IN supports shall include the evaluation of ll all clamps in accordance with the procedure specified in Reference 9 llR3 (SAG.CP25).

ll l

Calevistion packages shall be prepared per Appendix Q of Ebasco Manual lR2 of Procedures (Reference 3). l k

l l

s l

l 2

3753M

General Instruction fcr Design Project Identificati:m Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4

(

2.0 DESIGN VERIFICATION PROCEDURE lR2 2.1 GENERIC SUPPORTS

a. Set up structural model with proper boundary conditions (Ringed, Fixed, or Spring) & critical dimensions.
b. If spring rate at anchorage point needs to be considered I give plate or base angle size; bolt site, aad lecation IR1 to base plate group to get the spring rate. I c.

Fill input data for frequency analysis and static analysis with proper spring rate obtained froe ites (b).

d. Review the static output to verify that all members pass code check (see Attachment "F" for reduction in interaction
k. ' equation coefficient due to 1/32 undercut). Add warping stressss, and other stresses due to eccentricity not considered in the model. The "Combs" computer program shall be uso$ to calculate maaber and weld stresses for structures with composite channels, see Das'ign Aid (Calc. Book No. Supt-0040) lR1 for detail.

I l

e. Check anchorage (surface angle, base plate, and bolts) using the procedure given in Attachment "G" (approximate method). If anchorage evaluation results in failure, or the configuration is not covered by Attachment "C", complete base plate evaluation form and request the base plate group to perform a more detailed analysis by STRUDL base plate program.

Results of this analysis shall be part of the calculations.

f. Complete calculations for all welds, gusset plate and lR2 members not included in code check performed by SIllUDL. l l 3 3753M

Ge arol Instructico for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports tav 4

\

3 Code violations, if any, (such as bolt edge distance, bolt spacing etc.) l shall be identified in the calculations.

2.2 MODIFIED SUPPORTS i A modified support is a support which has deviation (s) froe S-0190 package l typical details.

l I

a.

Modified supports with minor deviations free a generic support i may be design verified by comparison to the generic support l by hand calculations provided that all corresponding members and I attributes which impact the capacity of the support can be l demonstrated to be more conservative than those used for the I generic support to meet frequency requirements and acceptance l criteria.

l I

h b. If only the anchorage of a modified support matches the anchorage l of the generic support, the spring rate obtained for the generic l support (see Attachment *1") may be used instead of performing I new analysis to calculate the spring rate at anchorage point. l However, steps c to 3 of Section 2.1 she'1 be repeated ezeept I

when deviations from generic supports are such that the support l l

l frequency is not affected, in which case the minimum frequency l requirement is satisfied and the frequency analysis need not be , lR2 repeated. l I

c. When a modified support is significantly different from a generic l support all aspects of the support shall be design verified in l accordance with the procedure in Section 2.1. l I

4 3753M

Gener:1 Inctruction for Design Projset Id:ntificction Verification of 11ectrical Conduit No. SAG.CP29

& Boz Supports Rev 4 s

2.3 "IN" SUPPORTS l

I An individually ongineered (IN) support is a support which does not conform I to S-0910 package typical details. The procedures described in Section 2.1 I shall be used in the design verification.of IN supports. 1 I

2.4 MODIFICATION OF SUPPORTS l l

Modified and IN supports which are found "not-adequate" based on the l evaluation performed as described in Sections 2.2 and 2.3 respectively l shall be modified as follows: l l

a. A DCA for the proposed modification shall be issued to site for l feasibility review. Site walkdown group w!11 respond to this as soon l l as possible. In case of a complicated support, the DV engineer will l directly investigate the support and its surrounding situation to lR2

( eolve the problems. The proposed modification may consist of I reinforcing the existing support or if absolutely no:essary, I i

providing additional supports to reduce the loads on the support l under investigation. When the modification involves an additional I support, a new ISO evaluation shall be performed to obtain the new l loads and used to verify the support. I i

l

b. Perform custom ISO evaluation of all pertinent primary and secondary l 1sometrics as described in Appendix 1 of SAG-CP25 to determine the I actual "s" value and qualify the support. I l

l 1

l l

l l

l 5

3753M

I Ge= ral Instruction fcr Design Fesjset Identificctica Verification of Electrical Conduit No. SAG.CP29

& Box Supports I.sv 4 3.0 COMPUTER ANALYSIS '

. 1 Supports shall be analyzed using a computer programs such as STRUDL or lR2 3 Eshang.

l )

3.1 MODEL A three dimensional Strudl or Eshang model of the support shall be used with relative eccentricities between interconnected members determined in accordance with guidelines contained herein.

a. For generic supports the model shall be prepared using a global lR2 axes where the Y-axis is perpendicular to the base plate or embedded plate as shown below.

\

.. ' ' . +X p

/

-4.T NCRRL 'ID

~

IRSE PIATE

,% IRSE PIATE w

.v

+1 -

b. For Modified and IN supports the model shall be prepared using I a global axes where the Y axis is vertical, the X & Z axes lR2 oriented in the N-S and E-W directions according to Table 1. I 6

3753H

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 1

3.2 ECCENTRICITIES Various eccentricities must be considered to realistically account for the application of loads and interconnections between structural members:

a. A rJgid member shall be used to represent the eccentricity between the center of gravity of conduit (point of load application) and the center of gravity of supporting member (see Attachment "A"). Any torsional noment from ' shear center to l center of conduit not accounted for by the use of rigid aesbers l R1 -

shall be coded to the model as additional torsion. I

b. A rigid member from the center of gravity of a member to the center of gravity of a connected member shall be used to represent the eccentricity between maabers where relative k movement is negligible. (Attscheents B1 & 32).
c. For staplicity, the eccentricity between the centerline of susset plate and center of gravity of connected member (strut) may be excluded from the model and the procedure described in Attachment "J" used for verifying the members and welds involved.

7 3753H i

Gen ral Instructica fcr Design Project Identifiestion Verification of Electrical Conduit No. SAG.CP29

& Roz Supports Rev 4 n

3.3 NODAL POINTS All nodal point connections shall be as follows:

a. For bracing pin connection shall be assumed on connection with plate. (see Attachment "B3")

pin connection shall be assumed for braces welded to back of posts. (see Attachments "B2")

Assume.one nodal point if the dimension between the top of the horizontal tier and the bottoc of the diagonal brace is within d/2 inches for c(>f50' and d/3 inches for M( 50'.

where "d" is the width of the post to which bracing is welded.

g. Refer also to ATTACHMENT "R4".
b. For post to tiers:

all shall be fixed connections.

8 3753M

Gencr:1 Instruction for Design Project Identification Verification of Electrical Conduit No. St.G.CP29

& Box Supports Rev 4

\

3.4 BOUNDARY CONDITIONS Boundary assumptions should reflect the actual anchorage configuration.

Specific conditions for various anchorage configurations shall be as follows.

a. Surface angle or base plate connection to concrete with Hilti bolts or Richmond Inserts.

The anchorage fleribility shall be considered in the analysis by introducing the spring rate at the connection in order to s

provide a more realistic distribution of moments throughout the entire frame. For guidelines see Attachment "I".

\,

The anchorage shall not be modeled in the static analysis model, l howev'er, it will be checked as described in Section 9.0. lR2 lR2 I

b. Welded Connection If a structural member is welded all around to an sabedded plate lR1 or containment liner the connection should be assumed to be fixed l in all three (3) directions.

9 3753H

Ge =rci Instruction for Design Proj:ct Idaatification Varificatico cf Electrical Conduit No. SAG.CP29

& Sox Supports Rev 4 3.5 ADDITIONAL NOTES l l lR1 l

a. For KL/r requirements and K values to be used in slenderness ratio l I

calculations see Attachment "C". l

n. For additional notes on models see Attachment "D".
c. Whenever open section members are used, hand calculations should be made to check warping stresses. Shear stresses due to torsion are to be checked if not already verified by the STRUDL program.
d. When using rotational stiffness coefficients with the frequency I analysis, these spring constants should be included in the input l itier "joint releases" command (

Reference:

PD-STRUDL, Tae 3-23). I la2

e. For clarification in using Beta Angles, refer to Attachment "D". l I
f. The input data required to perform the anchorage spring rate and I finite element static analysis shall be filled on the standard l input sheets prepared for this purpose. The standard input I sheet contains the base plate geometry, anchor length, locations I of load points and loads. The bolt springs shall be obtained llR3 from the Teledyne Report, which is provided in Attachment P. ll l
g. In the design verification of L shaped structural steel members '

I subject to bending and compression such as bracing angle connected I with a ausset plate, the required reduction in allowable bending I stress about the strong axis of various angle sites for spans from I 24" to 144" are provided in a graph as well as tabular form in l Attachment Q. I 10 3753H

Ge:Orol Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports ,

Rev 4 I

\

3.5 ADDITIONAL NOTES (Cont'd)

. {

i g

In calculating the interaction ratio, the allowable bending stress I about the weak axis shall be taken as 0.6 Fy (22 kai for A36 steel) lR2 and the allowable compressive strees (Fa) obtained with consideration 1 of torsional buckling. For this purpose a table was developed (See l Appendir Q) listing the maximum acale lengths of various angle sizes l for which torsional buckling needs to be considered.

l The allowable load in a 3 x 3 x 3/8 angle bracing for lengths froe l 36 to 108 inches has been calculated and is provided in Attachr,ent Q lR3 (Sh Q-5). For sample calculations of angles subject to bending l

see Calc. Book No. SUPT-0235.

lL2 f

11 3753M

i General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29  !

& Box Supports Ray 4 I

\

4.0 FREQUENCY REQUIREMENTS l

All conduit and function box supports shall meet the minimum frequency l requirements as contained in Appendix 7 of the design criteria (SAG.CP10) l with consideration of base plate flexibility. (See Attachment "I" for l anchorage spring rates). l I

a. For generic supports which do not meet the minimum frequency l requirement allowable weight of attached conduit (capacity) shall lR2 be reduced until the frequency requirement of the support is met l (For guidelines see Calc. Book No. SUPT-0231). 1 I
b. For sodified and IN supports which do not meet the minisua frequency l requirement one of the two following approaches shall be used: l l

a) Modify the support to meet the minimum frequency requirement. I b.. I b) 'Re-evaluate all primary and secondary ISO's attached to that I support using the actual support frequency. l l

A computer input skeleton has been prepared to perform the frequency l analysis using the STRUDL program (see Attacbaent "K4").

l 12 3753N

General Instruction fer Design Proj2ct Identificatica Verification of Electrical Conduit No. GAG.CP29

& Box Supports Rev 4 l

5.0 LOADS & LOAD COMBINATIONS 5.1 DEAD LOADS

a. Generic Supports lK2 Values specified in the capacity table shown on the S-0910 drawings which includes the weight of clamp, shin plates, filler plates, lR3 connection bolts, etc. shall be used as the dead load of conduit lumped at the C.G. of the conduit. The weight of structural members shall be automatically generated by the STRUDL program.

The weight of cover plate shall be calculated and input as mass at the tip of the tube. Conduit loads shall be applied at the 112 conduit location which produces maximum stress. For supports where application of load at one location does not produce maximum stress on all structural components, the maaber where the load was Q- not applied at the most critical location shall be verified manually or by making an additional computer run to print stresses only for the member under investigation.

b. Modified and "1N" Supports For modified and IN supports, tributary conduit load (Lg&L} T l shall be obtained from the DV packages of the isometric (see l Figure 1 for definition of tributary conduit load). The weight of l shin and filler plates shall be calculated based on as-built lR2 dimensions and added to the conduit loads. When as-built I demensions are not marked on the redline drawings, it indicates that I the standard shin and filler plate sites were used and the 1 2323-S-0910 CSD series drawings shell be used to calculate the I weights of standard shin and filler plates. l The following procedure shall be used to obtain tributary conduit lR2 R3 loads which are not available from the DV package of the isometric. I 13 3753H

Genor:1 instruction for Design Project Identification Verification of glectrical Conduit No. SAG.CP29

& Box Supports Ray 4

\

5.1 DEAD LOADS (Cont'd)

b. Modified and "IN" and Supports (Cont'd)

The determination of tributary conduit Loads,gL and7L , for all lR2l R3

~ supports shall be done as per "LS" series of the generic l l S-0910 package. If conduit configuration is not contained in S-0910 l package but is covered by LS series of S2-0910 package, the I equations to compute Lg and h can be used. In these instances, l the LS-series drawing of the S2-0910 package shall be referenced l in the calculation package. l I

The tern Lg used in the Ly formula for a support IR2 represents the conduit load from the adjacent span to the l support evaluated.

l l

( Conduit load imposed on junction box is equal to half ti2e span I to the first support times the weight of conduit (s) entering l the box. l I

14 3753M

F C neral Instruction for Design Project Identification Veri"cation of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 5.2 SEISMIC LOADS The seismic loads are calculated by multiplying the appropriate weights l by the applicable accelerations in three orthogonal directions (R1 specified in the Unit #1 design criteria (SAG. CP10). I

a. Generic Stpports i

The design "g" values (Table A.7.1 through A.7.6 in Appendix 7 of l Reference 1) in each direction shall be rotated to account for I the most critical loading conditions for the support. A cosputer lR1 input skeleton (see Attachment "K1") was prepared to account for the llR4 rotations in "g" value (as described below) and loading combinations ll for structures mounted in various (vertical, borizontal) orientations. l For each computer run using the input skeleton in Attachment "K1" the lR4

\ "g" value is kept the same in one direction while the other two are l ,

rotated. Taerefore, when the strong axis of the support is evident, I applying the lowest "g" value in the strongest direction and rotating l the other two is sufficient to account for all rotations. I I

When the strong axis of the support cannot be easily determined. l separate runs shall be made for each of the three "g" values. In each lR3 run, one of the three (3) "g" values shall be applied in the same

'll direction of the structure while the other two are rotated. This ll procedure will be repeated until all three (3) "g" values are applied ll in that particular direction. In these cases, a total of air llR4 permutations of "g" values are required to account for rotations of ll both OBE and SSE cases. Therefore, for complicated structures, ll three runs may be required to account for all rotations unless ,the l critical direction can be determined by other means. , l I

15 3753H

Gener:1 Instruction fer Design Project Identificatica Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 5.2 SEISMIC LOADS _ (Cont'd) .

Since "g" values differ for each elevation in each building, the l

number of analyses required may be reduced by using the most l critical set (g ,y 3 ' 23 ) 3which will envelope all other sets. IR2 A set of enveloped de, sign "g" values thus obtained is provided in l Table 2 for each building. 1 In accordance with Appendix 5 of the Design Criteria (Reference 1) l the wefght of the junction box including its contents shall be l considered for 1.5 times peak "g" values while the weight of conduit l and dead weight of the support is designed for the design "g" l values. To simplify the STRUDL input, the weight of the junction I box and contents may be multiplied by an equivalent coefficient l (maximum ratio betwten 1.5 peak "g" and design "g" in three l directions) to ceuvert the weight of the box and contents. The l I

design "g" value is then used to obtain seismic loads for the design l

verification of junction box supports. To reduce the number of l analyses required, the equivalent coefficients fcr the six buildings l are condensed into three groups based on controlling "g" value and I frequency and are provided in Table 3A. The buildings and eleva- l tions in aach group are provided in Table 3B. lR2 l

b. "IN" and Modified Supports l

'l Unless the RSM analysis is performed to detemine the actual "g" l values and the support orientation is known, the support has to l be design verified in accordance swith Paragraph (Y) Section 7.0 l and Appendix 7 of the design criteria (SA0.CP10). l I

i l

! The design "g" values used for IN supports shall be multip1'ied I by a load factor as specified in Reference 9. I i

i 16 3753M i

t

C:n ral Instructica fer Design Project identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports tev 4 5.2 SEISMIC LOADS (Cont'd) ,

For supports sounted between two floor elevations, the larger of l the "g" values of the two floors aball be used.

lR2 i

b. Modified and "IN" Supports (Cont'd)

When a portion of the ISO is attached to a support by other discipline l or to the Spread Room Framing (SRF) the seismic loads nn the next l and second next supports to other discipline or SRF support shall be l calculated based on the enveloped 1.5 times peak "s" values from l floor elevation above and below. This may be accomplished by l multiplying conduit loads (Lg & L7 ) by a coefficient equal to the l ratio of 1.5 peak "g" to design "g" and using the design "g" values lR2 in the static analysis of the support. l l

For the cases when the conduit support is attached to steel l platform bring the fact to Supervisor's attention in order to l obtain stcel platform response spectra. i l

17 3753M t

G:n:rol Isotruction for Design Proj:ct Id:ntification Verification of Electrical Conduit No. SAG.CP29

& Sox Supports Rev 4 i

5.3 LOAD COMBINATIONS Lead combinations to be considered shall be as specified in the Unit il lR1 Design Criteria (SAG. CP10) I

a. Generic Supports The required load combinations based on the orientation the support is mounted (floor, ceiling or wall) are identified in the computer I skeleton for generic supports (see Attachment "K1")

I

b. Modified and "1N" Supporte  !

I Specific load combinations for modified and "1N" supports are l identified in the computer input skeletons prepared for "g" valueo lR2 which require to be rotated (see Attachment "K2") and those for l b which rotation is not required (see Attachment "K3'). l 18 3753M l .

Ge*,or:1 Instruction fcr Design Proj3ct Identificatica Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4

\

6.0 ALLOWABLE STRESSES Allowable stresses shall be as specified in the Unit #1 Design Criteria l (SAG.CP10). '

l l

Structural members shall be designed to account for a possible undercut I of 1/32" at welding locations. This will affect interaction ratios I computed based on formulas in Section 1.6.1 of the AISC Spec. The l reduction in the interaction ratios to be used for structural members I due to 1/32" undercut is provided in Attachment "F". l I

6.1 PUNCHING SHEAR AT TUBULAR CONNECTIONS: (Main Meebers Only) l 1

a. The allowable normal weld forces for OBE condition for stepped l tubular section connections is listed in Attachment "L". 1 I

(> The allowables are determined based on the punching shear I requirements stipulated in Section 10.5 of AWS D1.1, 1979 Edition IR2 I

The following clarifications are provided in conjunction with the l allowable normal weld force table: 1

1. Deleted l 1R3 I

I I

I I

I I

I 19

3753M i

Genercl Instruction fer Design Project Identification Verification of Electrical Conduit No. SAG.CP29 -

& Box Supports tev 4 l S.

6.1 PUNCHING SHEAR AT 7tTBULAR CONNECTIONS (Main Members Only) (Cont'd)

I la3 1

2. SSE allowables shall be 1.6 times OBE allowables provided I they do not exceed the following limit l I

Limit on l s SSE Allowables Main Member 1 (1bs/in) n ickness (inch) l l

4310 3/16 l 5750 1/4 1 7185 5/16 l

( 8625 3/8 l lR2

3. When th* branch member is adjacent to the open and of the I main member ( ( 2D) only 50 percent of the allowable will I be used, li the allowable is exceeded, provide cover plates I at the open and of tha main seaber, and weld all around, l using a 3/16 min. fillet veld. l I
4. Where possible an all around weld between TS members should I be used in design, unless it is not feasible to construct. l I
5. For formulas used in calculating the punching shear and I nomenclature for stepped connection, See Attachment "L". l 20 3753H

General Instructics for Design Project Identification Verification of Electrical Ccaduit No. SAG.CP29 4 Box Supports Rev 4

\

6.1 PUNCHING SHEAR AT TUBULAR CONNECTIONS: (Main Members Only) (Cont'd)

b. No punching shear requirement for matched box connections whether I perpendicular or skew; however, minimum edge distance from the i side of branch member to the end of main member shall not be less llR3 than 2X Depth (C)of main seaber. If minlaus edge distance is not l met, one of the following shall be satisfied. l l

1.

. Structural weld between branch member and main member shall be 1 evaluated by using 3 sided weld l

l

2. Cover plate shall be welded all around to main member by I using a structural weld.

l l

l COVER P. A - I k

MAIN EPSER- A STRUCTURAL WELD NOT REQ'D

/ I o

\

m N "/

c ..

c . .

e .. ....... ._...... i N

'. / STRUCTURAL lR2 3 SIDES /

r T WELD REQ' D '

WELD g

/

,f IA f _ _

<2c j _' >,2C l

,4 e r l

g i. .

i

' \ tr l sanwCg .

PEPSER - " L

!' ". '1 l

. . I i

I cover 9.b I I

21 3753N 1

l

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 6.2 WARPING S11tESSES After the static analysis results are obtained, torsional aosents are found in various members. These torsional moments generate warping stresses ( both normal and shear) on members with open cross-sections (Attachment "M") which have to be added to the normal and shear stresses obtained from the frame analysis done by computer. A few typical cases where warping stresses should be considered are illustrated on Figure 2.

For special cases contact your group leader for guidance. For this i purpose Attachment "M" or any other approved procedure may be used.

t 6.3 EVALUATION METHODOLOGY OF OVERSIZED BOLT HOLE EFFECTS l

For "IN", modified and generic conduit support redline drawings, the l following procedure shall be used to evaluate bolt hole edge distance l

\

and bolt stresses to account for the oversized bolt hole effects. l l

a. Bolt Hole Edge Distance l

l ,

For connections with more than two (2) bolts, the oversized bolt I hole effect need not be considered if the "As-Built" dimensions lR4 from center of bolts to free edges (edge distance) neet the edge l distance requirement specified in Table 1.16.5 of the AISC ,1 Specification (7th Edition).

l l

For two (2) holt connections, the worst edge distances to free edges l d

of structural member or plate shall be computed as follows: 1 I

d, = d - e l Following Sheet is 22a 22 3753M

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 6.3 EVALUATION METHODOLOGJ OF OVERSIZED BOLT HOLE EFFECTS (Cont'd)

a. Bolt Hole Edge Distance (Cont'd)

, where dy = Worst Edge Distance (From centerline of bolt to i nearest free edge) l l

d =

"As-Built" Edge Distance (From centerline of bolt I to nearest free edge) l I

e =

Permissible Bolt Hole Oversize Based on Statistical l Evaluation are shown below. (Bolt Hole Dia - Bolt Dia) l l

The minimumy d shall be considered in the design validation of I support.

l

\ l BOLT DIAMETER BOLT HOLE OVERSIZE (e) lR4 (INCH) (INCH) l l

3/8 3/16 l 1/2 3/16 l 5/8 1/8 1 3/4 3/16 1 1 3/8 l 1 1/4 3/8 l 1 1/2 3/8 I I

If calculated d is y equal to or greater than the minimum edge I distance specified in Table 1.16.5 of the AISC Specification l (7th Edition), the "As-Built" edge distance is acceptable. l l

For cases where above requirements (as spplicable) are not met, the l Following Sheet is 22b 3753M 22a

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 6.3 EVALUATION METHODOLOGY OF OVERSIZED BOLT HOLE EFFECTS (Cont'd)

a. Bolt Hole Edge Distance (Cont'd) worst edge distance shall be checked to assure that the shear stress l in the net section of the connecting part produced by bolt shear I load (bolt capacity or actual bolt load described in paragraphs l 6.b b and 6.3.c) is less than 0.3 Fu. Fu is 58 Ksi for A36 steel. l l

b) Bolt Strasses for Bolts in Steel to Steel Connections l l

.ulowable bolt stresses for bolts used in steel to steel connections i shall be calculated considering the connection as a bearing l connection with threads in the plane of shear. l I

( Bolts subjected to combined shear and tension loads shall satisfy l the interaction formula specified in AISC Specification, Section l 1.6.3. lR4 I

In calculating the shear in bolts for two bolt connections, the l total shear force parallel to an axis common to both bolts l (excluding shear due to torsion on the connection which is applied I to both bolts) shall be considered as acting on one (1) bolt only. l I

c) Bolt Stresses for Bolts in Steel to Concrete Connections l I

Bolts subjected to combined sheer and tension shall satisfy the l interaction formula specified in Appendix 2 of SAG.CP10. l l

In calculating the shear for bolts in two bolt connections, the l total shear force parallel to an axis common to both bolts l '

(excluding shear due to torsion on the connection which is applied l Following Sheet is 22c 3753M 22b

Ceneral Instruction for Design Project Identification Verification of Electricla Conduit No. SAG.CP29

& Box Supports Rev. 4 6.3 EVALUATION METHODOLOGY OF OVERSIZED BOLT HOLE EFFECTS (Cont'd) l I

c) Bolt Stresses for Bolts in Steel to Concrete Connections (Cont'd) l 1

l to both bolts) shall be considered as acting on one (1) bolt only. g However, if the shear ratio (actual shear divided by allowable g R4 shear) is less than or equal to 0.25, the oversized bolt hole effect  ;

need not be considered, g

i I

6.4 EVALUATION OF INSTALI.ATION TOLERANCES I

Installation tolerances specified on the generic 2323-5-0910 shall be considered in the design verification. l I

/

Following Sheet is 23 22c

Genere.1 I:stracties far Design Project Identification Verification of Electrical Conduit No. SAG.CF29

& Box Supports Rev 4 s

7.0 SHEAR CENTER LOCATION OF COMPOSITE CHANNELS j Attachment "E" is a summary of shear center locations for the following l

composite sections which consist of two channels: l i

1. C6 x 8.2 and C6 x 8.2 -

l

2. C8 x 11.5 and C6 x 8.2 [ l lR1
3. C6 x 8.2 and C4 x 5.4 l 4 .

Due to variation of distance "Dy", the above composite sections l represent twenty two different sections used in the Comache Peak l project.

Notes:

1. Attachment "E" also includes the information on C.G. and the area l

( moments of inertia with respect to principal axes as indicated l by 11-1 and 12-2.

l lR1

2. The above information was determined by a computer program which l is written in Basic and can be run on IBM PCs and other compatible l models. l l
3. If the shear center location is needed for composite section other than those supplied forward the geometrical configuration to your group leader and the information will be provided.

23 3753H

General Instruction far Design Proj:ct Id:stification I Verification of Electrical Conduit No. SAG.CF29

& Sox Supports Rev 4

\

4.0 WELD DESIGN vrAIFICATION Allowable stresses for welds shall be as specified in the Unit il Design Criteria (SAG. CP10).

Provision shall be made for an undersize of 1/32 inch for fillet welds as per the Unit #1 Design Criteria (SAG. CP10).

In order to standardise welding stress calculations, forms provided for this purpose shall be used.

a. Minimus Weld Size Welds not meeting the AWS code ainlaus weld size requirements, but found through detailed analysis to have stress within the allowable stress, are acceptable from a design verification standpoint.

However, a minimum acceptable structural weld (as shown on the As-luilt drawing) shall not be less than 1/8 inch.

b. Warping Stresses in Anchorage Welds In cases where members are subjected to warping effects (members welded "all around" at aabedded plates or anchored plates or other members), the anchorage weld verification shall include warping stresses in addition to other stresses. For such cases, warping will-cause two additional stressoa in the weld. One of these will be in the same direction as, and must be added to, the shear stresses caused by direct shear and pure torsion loads. The other warping stress is in the same direction as, and,must be added tu, nornal stresses caused by member axial and bending loads. These two total weld stresses must then be combined by SRSS.

t I

24 3753M

General Instruction fcr Design FrsDet Identification Verification of Electrical Conduit No. GAG.CF29

& Sox Supports Rev 4

\

8.0 WELD DESIGN VFAIFICATI,0fN (Cont'd)

c. The stress on welds between composite channels shall be calculated by the "Combs" program. Long hand calculations are not recommended.
d. For the effective throat thickness of prequalified partial l penetration bevel groove welds, see Attachment "B". lR1 s.

25 3753M

General In struction for Design Project Identification Verifiestion of Electrical Conduit No. SAG.CP29

& Sox Supports Rev 4

\'

9.0 ANCHORAGE EVALUATION Base plate analysis can be performed by hand calculations or by computer l analysis. In either method, Hilti bolt interaction and base plate / angle I stresses shall be checked. 1 I

a. Eand Calculations i I

The procedure given in Attachment "G" (approximate method) may be l used to evaluate stresses in the base plate, surface angle and I anchor bolts. I I

If the anchorage can not be qualified by hand calcu_ations, or the I configuration is not covered in Attachment "C", a computer analysis I shall be performed. I IR2 k .' b. Base Plate Finite Element Analysis l l

The computer analysis for the base plate shall be performed using I the PD STRUDL base plate program with anchorage loads obtained from I the static run. The effect of prying action and anchorage l flexibility will be accounted for. Input sheets for a standard I computer run provided for this purpose shall be used. I I

l c. Anchoring with Solts in Combination with Welds l I

When welds are used together with Hilti bolts for anchoring the l l base plate, welds should be designed such that total shear force is l resisted by weld alone. Tension force will be distributed between l l bolts and weld according to their relative axial stiffness. For I the design of th2 Hilti's shear forces shall be considered to be I l resisted by the Hilti bolts and welds in proportion to their shear I stiffnesses.

26 3753M l

l

s I

Getsrcl I struction for Design FroDet Idsstificctica '

Verifiestion of Electrical Conduit No. SAG.CP29

& Sor Supports Rev 4 t

10.0 INTERFACE REQUIREMENTS Conduits in our scope of work are sometimes connected / attached to the l the supports of subsystsee/ systems which are in the scope of other l disciplines such as cable Tray Hangers (CTB) and pipe supports. In l i

addition, conduits not in our scope of work may be supported by conduit I supports within our scepe of work.

. l IR2

, 6. Interface requirements with Ebasco CTH group, SWEC and Impell shall l be in accordance with Task Description TE-ID-EB-033 (Reference 8). l I

b. Any information missing on the redline drawings which are required l for design verification of IN and Modified supports shall be l requested form the walkdown group. l l_

27 3753M

l l Gensrcl Instruction for Design Proj2ct Idiatifiestica Varifiestion cf E1cetricci Conduit No. SAG.CP29

& Box Supports Rev 4 l

l 11.0 RESOLUTION OF INACCESSIBLE AREA (I.A.) ITEMS For resolution of Inaccessible Attributes see Attachaeot K to SAG.CP25. l I

I

. I I

I I

I I

I I

I I

lR4 I

I I

I I

I I

I I

I I

l I

, I I

I I

I I

28 3753M

G:nsral Instructica for Decign Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 s

11.0 RESOLUTION OF INACCESSIBLE AREA (I.A.) ITEMS (Cont'd) i I

I I

I I

I I

I I

I I

I I

( THIS SHEET LEFI INTFXIIONALLY BIANK IR4 I

I I

I I

i 1

I I

I l

I I

I f

I l

l l

1 29 3753M

Gen 3rsi 12structico for Design Project Identification i

Verifiestion of Electrical Conduit No. SAG.CF29

& Box Supports Rev 4 l

\

12.0 FOOTPRINT IDAD (FPL) AND ENGINEERING EVALUATION OF SEPARATION VIOLATION (EESV) FORMS , '

a. Footprint Loads For aach support analyzed which has attachments to embedded [

plates or has attachments consisting of Hilti bolts / Richmond l inserts that violate the ainlaus spacing requirements specified I in App. 3 of Unit il Design Criteria SAG.CP-10 (Spec. No. 2323-SS-30) l or Attachment "N2" a set of footprint loads (maximum absolute values) l must be developed and the information must be incorporated in the l footprint load transmittal form (referenced in procedure ECE 5.11-14) lR1 which is then transmitted to the Structural Embedment Group (SEG) . l Each engineer must be aware that the local coordinate "Y" is always lb assumed normal to the embedded plate to which the support is I attached. Therefore, the XYZ axes used in the analysis in general I g, do not coincide with the XYZ on the transmittal form. The engineer I must relate properly the Fr, Fy, Pz, Mz, My, Mz from analysis with I the Fr, Fy, Fs, and Mz, My, M on the teansmittal form. The foot- 1 print loads shall be given in Kips and Ft-Kips. The forces must be l developed always at the intersection point of the c.g. of the i support member and the surface of the embedded plate and/or I anchored baseplate (building surface element). lR1 I

l l

l l

l l

l 30 l 3753M

General Instruction for Design Froject Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 l'

12.0 FOOTPRINT LOAD (FPL) AND ENGINEERING EVALUATION OF SEPARATION VIOLATION (EESV) FORMS (Cont'd) l

s. Footprint Loads (Cont'd) l l

To Suasarizer l 1 l

l l

1. Footprint load transmittal forms must be completed for l each support with building stachments which affect the l qualification of embedded plates. These are attachments I that are welded directly to the embedded plates or are l attachments via concrete expansion anchors (CEA)/ Richmond l inserts that are closer to an embedded plate than the l minimum distance specified in Attachment N2 or App. 2 of lR1 the Unit il Design Criteria (SAG.CP-10). I i
2. Loads are required to be listed in the local coordinate system and are unsigned (maximum absolute value).
3. One footprint load transmittal form is required for each I attachment point and each attachment point shall be 1 identif.sd by a number obtained from SEG. l I
4. To void a previously submitted FPL, a copy of the FPL shall -l be submittsd to SEG stating on the form that the FPL is void l and the reason it was voided. lR2 1
5. Any revisiens to be made to the footprint load transmittal l forms shall be prepared with all items (Alled out on a new I footprint load transmittal form (see Attachment *!O*). l I
6. When footprint loads provided for a conduit support attachment lR1 are based on an envelope load case drived from a representative I calculation, the loads shall be indicated as "conservative" l Iten No. 8 on the footprint load transmittal form. I I

31 3753M

1 l

1 General Instruction for Design Project Identification l Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 )

1, I 12.0 FOOTPRINT IDAD (FPL) AND ENGINEERING EVALUATION OF SEPARATION l VIOLATION (EESV) FORMS (Cont'd)

b. Engineering Evaluation of Separation Violation (EESV) l l

The following guidelines apply for filling out EESV forma. I i

1. EESV form shall be filled out whenever separation violations i exist, per Appendix 3 of Reference 1 (Spec. No. 2323-SS-30) l or as shown on Attachment "N5". l l
2. Attachment "N5" shows: 1) cases where an EESV form is required l (also shown in a tabular form on Attachment "N4"; 2) methods to lR2 be used in evaluating the separation violation; and 3) dimen- l sions to be shown on conduit support drawing. l l

t 3. Attachment "hW shows a sample EESV form and depicts how the l information shcald be filled out. I I

4. i. Transmittal letters for EESV form approval shall be l prepared by an originator of calcualtions and sent out to I concerned disipline by a checker. Standard transmittal l 1etters should be used. If a support is released pending i approval of the EESV form, the copies of the transmittal l 1etter and the EESV form shall be made an attachment to l the calculations. l 32 3753M

General Instructica fcr Design Project Idontification Verification of Electrical Conduit -

No. SAG.CP29

& Box Supports Eev 4 12.0 FOOTPRINT LOAD (FPL) AND ENGINEFRING EVALUATION OF SEPARATION

  • VIOLATION (EESV) FORMS (Cont'd)
b. Engineering Evaluation of Separation Violation (EESV) (Cont'd) l l
4. (Cont'd) l I
11. When the response from affected discipline / organization I the receival date should be entered in the log book I and EESV form made an attachment to the calculations. l I

lii. If the EESV form is received after releasing the support I drawing, it will then be incorporated into calculation i package during next revision or ISO evaluation phase. lE?

In the interie, a copy of the approved EESV form will be l f Icf t in the calculation package and original will be I k

filed in a folder (or binder) labeled "EESV Forms To Be l Incorporated". l I

5. Whenever separation violation exists between two conduit / l Junction box supports, both drawings shall be identical in I showing the violation. If both support drawings are not l identical or one drawing does not show the violation at all, I the inconsistency shall be rectified. l I

33 3753M J

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29 4, Box Supports Rev 4 s

12.0 FOOTPRINT LOAD (FPL) AND ENGINEERING EVALUATION OF SEPARATION VIOLATION (EESV) FORMS (Cont'd)

b. Engineering Evaluation of Separation Violation (EESV) (Cont'd) I l

C. Revision of EESV Card l l

When an EESV card needs to be revised because of a revision I to a modified /"IN" drawing, the original EESV card shall be i revised to show the change. his shall be documented by I putting another set of signatures by the preparer and the l checker of the current calculation revision (see Attach- l ment "N6"). The EESV card shall be clouded to highlight the l change with a calculation revision number shown in a triangle. l I

7. A new transmittal letter with a new file number shall Ec ased l 3

k to transmit the revised EESV card to other discipline. A note lR2 stating "This Letter supersedes trannn! tral file No. I dated " shall be put at the bottom of the transmittal l 1etter. ne same shall be noted in the EESV card log book l ramark column. I I

i l

l 34 l 3753M 1

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Eev 4

\

13.0 LEFERENCES

1. Design Criteria for Seismic Category I Electrical Conduit System, l Unit No.1 (Project Identification No. SAG.CP10). l l
2. Drawing No. 2323-S-0910 Package. l 1
3. Ebasco Manual of Procedure Appendix Q, instruction for Unit No.1 l conduit calculation package preparation. l l
4. Procedure ECE 5.11-I4, reporting attachment loads and locations I to the structur+1 embedsent group. l 112
5. Procedure ECE 5.01-13. Design Change Authorization. l I
6. CPE-PVM-CS-033, Design Control of Electrical Conduit Eaceways for l k- Unit No.1 Installation in Unit 1 and Common Areas. l I
7. CPE-FVM-CS-014, Design Control of Electrical Conduit Esceways for l Unit 2 Installation in Unit 1 and common Areas. l l
8. Task Description TE-TD-EB-033, Interf ace control Guideline. I I
9. Technical Guidelines for Seismic Category I Electrical Conduit l Isometric Evaluation, Unit 1 and Conson Areas (Project l Identification No. SAG.CP25) l 35 3753M

}

l l

Ger::rcl Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 l

YABLE 1 1

ORIENTATION OF BUILDING GISBAL COORDINATES l i

1 l

l BUJLDING VERTICAL N-S E-W l ,

Reactor Buil. ding 1 )

i  ;

Internal Structures Y X Z l

Safeguards Building Y Z X l I

Electrical Building y g X R2 I

Auxiliary Building Y Z 7 I

l

' l I

Fuel Building Y Z X l

g Containment Building Y X Z l

- l I

Diesel Generator Building Y Z X l l

l l

t f

l l

l 3g 3753n

Ge = rcl 13structica for Design Proj2ct Idsntificatica Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4

\

TABLE 2 l

. ENVELOPED DESIGN "G" VALUES s 1

4 2I Campina 3I Dampina l l

Building OBE SSE I I

8, 8 7 3, 8, 8 8, f 7 aupt l (Min.) l I

Elect Control 1.19* 1.988 2.12* 1.82* 3.10*. 2.50* 16 Hz l I

I Safeguards 1.95 3.53 2.73 2.88 4.87+ 4.13 16 Hz l l

l Auxiliary 1.79 4.08 1.88 2.30* 4.878 2.64* 14 Hz I I

l Internal Struct 2.14* 2.42* 2.14* 3.13* 3.36* 3.13* 12 Hz lil2 l

containment 3 41* 3.63* 1.56* 1.798 4.25* 2.198 12 Rz l I

I Fuel (below I El 860.00') 2.43* 2.01* 2.43* 3.478 3.038 3.578 16 Es l l

l 1

  • 's' value may be enveloped by other building. l I

+ Original value 4.83 was increased to 4.87 to wavelope other I building. I I

The Diesel Generator Building is contained within the Safeguard l Building. I 3753M

f Gerere,1 Instructica fer Design Project identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4

(

TABLE 3A BUILDING & ELEVATION GROUPS FOR JUNCTION BOX SUPP0ETS Group No. lIA i

l 8 lI A lII B lI A lIII B i I I l l l l Ms. Supt. l l l l l l l Frequency l l Req'd (Hz) l 12 l 16 12 16 12 16 -

1 I l l

l l Elec Control 1 -

l -

l 873.33" l -

l 830.00' l 807.00' l Bids (Elev) l l l 854.33' l l l 778.00' l 1 I I I I l l l l 1 1 I I l Fuel Bids l -

l -

l -

l 860.00' l l l (Elev) 841.00' .

810.50' 825.00' l 1 '

l Safeguards l -

896.50' -

831.50' -

773.50' ,

R2 Bids (Elev) l l 873.50' l l 810.50' l l l

k. l l 852.50' l l 790.50' l l l l l l l 785.50' l l l 1 1 I I I l l 1 1 I I i  !

&uriliary l 899.50' l -

l 831.50' l 790.50' l -

l -

l Bids (Elev) l 886.50' l l l l l l l 873.50' l l 810.50' l l l l l 852.50' l l l l l l l 1 I I I I I I I I I I l Containment i 1000.50' l l l 860.00' l l l Bids (Eley) l 950.58' l -

l 783.58' l 805.50' l -

l -

l l 905.75' l l l ll l l l l l l l

Internal l 905.75' I 860.0,i' l - - -

Structure 1 885.50' l -

l 832.50' l l l (Elev) l l l 808.00' l l l l l l 783.58' l l l 1 I I I I I I I I Diesel l l l I l l Generator l l l l l l Blds (Elev) l -

844.0' l -

l 810.50' l -

ll -

l

'l l l l l l l 3753M

Gesoral Instructica fcr Design Project Idr.ntification Verification of Electrical Conduit No. SAG.CP29

& Box Supporto Rev 4 TABLE 3B EQUIVALENT COEFFICIENT AND "G" VALUE GROUPING FOR JUNCTION BOX SUPPORTS l

l Croup No. Dese,ription OBE (2% Damping) SSE (3% Damping) l 1

Mar Med Min Max Med Min l I

1.5 x Peak "G" 6.35 5.54 4.15 7.51 6.51 4.78 I I

I A &IB Design "G" 4.08 3.55 2.66 4.87 4.23 3.11 l l

Equivalent Coef. 1.56 1.56 1.56 1.54 1.54 1.54 l 1

l 1.5 x Peak "G" 3.81 3.28 2.89 5.10 4.36 3.50 l I

IIA & IIB Design "G" 2.43 2.43 2.01 3.57 3.47 3.03 l l

Equivalent Coef. 1.57 1.35 1.44 1.43 1.26 1.16 l l

l 1.5 x Peak "G"

( ,

2.77 2.36 2.10 4.16 2.91 2.71 1 IIIA ' IIIB Design "G" 2.12 1.85 1.60 3.10 2.31 2.02 l l

Equivalent Coef. 1.31 1.28 1.31 1.34 1.26 1.34 I I

Note: Use coeffiecient underlined to multiply wight of junction box and its contents to obtain equivalent weight to be used in static analysis with design "g" values.

39 3753M

l General Instruction for Design Project Identification Yerification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 L.

FIGURE 1 l DEFINITION OF TRIBUTARY CONDUIT I4AD ON SUPPORT l l l

l l

LL l o

r ,

g i

i i' I e q._, _.po. ._

i l

I Gb v i

(

l I

la2 i

LT I o

w'r ,.

l I

i i

i l

i I

l l

l 40 l 3753M

{

l

General Instruction for Design Project Identification Verification of RIectrical Conduit No. SAG.CF29

& Box Supports gav 4 FIGLIRE 2 I

TYPICAL CASES FOR WARPING CONSIDERATION lR2 l

.:- I -

1 I

,_ NO WAAPING STd.ESS

<- (, CHANNEL

\

)

\

'~

{N WARPING STRESS FIXED - FAZE CONDITION MEMBER "A" - NO WARPING

. . . MEMBER "B" - WARPING STRESS g r HINGE-HINGE CONDITION

, ,L Awr ml

_ __. _ _= .

M TTP MEd3ER "A" - WARPING STRESS FIXED-FREE CONDIT10d 1CHANNELj@7 WP MEM8ER "a" - WARPING STRESS P **

HINGE-RINGE CONDITION

6. =w h

>-a

m. -

41

- 3753M .

Go_ oral Instruction for Design Project Identification i Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 l

l ATTACHMENT A 1 IR1 MAD ECCENTRICITIES ON MEMBERS l l

\

3753M

r ATTACHHF.NT A - IAAD ECCENTRICITIES ON MEMBFAS I '

, - . SHIS R FILLER & .

A - E '

i A (sw.c) g i ; Q j' (W'"4 x CND l i

I g2

. _. _ ~d - '- - )+b e.'

' .I

- - - ,N $ TS l l

- ' - t-o -

(CND - , OVERHANCr ,

l g'. '

a l

e1 = Iength of Rigid Link

= 1/2 conduit 0.D.* +b+c S = Overhang

= 1/2 (Conduit Clamp Length * + t) + d g Use 5" f eaz. conduit unless otherwise noted.

.c =

Maximum combined thickness of shin plates and I filler plate as shown on the drawings. (use lR1 1-1/4" max. if not specified). l d =

Maximum distance between edge of clamp and the tip of tube as shown on the drawings. (use 2" if not specified).

t = cover plate thickness.

Note = Weight of cover plate shall be lumped at the tip of the tube.

3853M ^^

AMACHMENT A - MAD ECCENTRICITIES ON MEMBERS d

1-

, ----- -n _ _________

o '

' "- - (CL/ dip d -

e ,,

( T3 _--

en CH A N eJ L L,

(.

82 " length of Rigid Link Section A-A A-2 3753M

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports tav 4 ATTACHMENT B l lR1 MEMBER ECCENTRICITIES AND WORKING POINTS l 6

l l

3752M

...w s,... .,.,. -

s y, -

4..,-.,..,.,.,..

~

xrrecHMeur si_ MEMBER ECCENTRICITIES -

. TACE- DF- CONCRETC1'- g -

8

_._OR

  • RIGID BOUNDARYZ 9 mse em 4

[.i.- *.a ,

%* i _ t@$fEJ-

, YN' i if3 \

  • gp .

' _..-7' ~Austase 'r7' .

,  ; yc.g or post ll c.g or post t,,

. c,woun.

ll p ,

l l

i yemuust ll -

l lj

""%  : mso san -

!l r rien  !!

i' g-

,nine

.nm am N 85 Y

[I !!,. miss

!l:

t1

.n 58or

'* I 1; : -

U U LA .

susoem , , .

, _ ACTUAL SUPPORT CONRGURATION - ._ .

. n ost

- N10 DEL .

c.g reer t -

r .$ sus Awacume+rr Btron teuem or noe emmse 3

g .,,,g survr. ArTen puuutuo Mooet., so eacn Awo

~ c=cs once wrvn an eccumnictry usou. So

. pomL l c.g.N + c.g.

! - :s BRACE .

4. &$ L= LeusTH or nic.o nan nernessurium, ties Pour-Eso4

,I -

sPrectiv9 EccsuTR1CrTY _

! 1mg

  • nn + fTira

~

~

SEC.TIOM A-A_ -

A

s s '

. ~

1 ATIACEKDT GT- ECCINT11 CITIES Po*. MACES WI2.DED TO TEE RACK OF YnTICA1. POST

. <. . +

J ,+.

,( r' C.Gg. OF Post

\'- \

l

. . # +-%% .

.r

-l

.!B li i

9. #p i ,

E , 0l

v. - u e +

i r. \\

u , , .

U l l' h

y 1 6) 2c,s.or.ms t.s '

a '

J l i

i

-x ma i, r, a c .,

' f n,,

n. -

.. i c.6 ma. 1.

X 5 T ygX g g, g ,M 4CTUAL ' SUPPORT ~DET. t i

f

(. -

IDlinD L1WK WlIH LEHre'fH

.C4.0F BRACE

. (SEE ATTACHMENT B4) ,

PIN .

c,s.oF POST f% % T c.a.cs;'naR.

. 1<d-Ri&lD t.tWK l

_ MODEL l1 1

l c

B-2

~ -

ATTACHmXT S3- WORT.ING PCIET ECCIMRIC1n FOR BRACE WITM CUSSET plans

,. I',,

k

, ', 3 i .

jPp6T

, l  ! .

. I i I l l i rGU55ET ACTVAC

. . i i plait.

SUPPORT I I I

.DE T All I r si

( - ANGLE ll v ll -

11 ll ,

n ,,

  • 11 si 11 11 i , o I i

.. . e W ER '

( -

Q!

o

. / .

[f

. CUM P U T E K ,

MODEL -

. lHPUT NOTEi CPT.'.OP . PAPER. .ECCENT P.lC\1T

.40T _SHOWN . REP,5 bVT SHOULD bE coNstpts.Ep IF li EXISTS, l 0 p}

. , - - - - . , . . - - , - - - , -. -,,,n---

,. ATTACMMEhT 84- WORKING POINT ECQNI'RICITY FOR BRACE WI'IB00 GUSSET PIATES

, / ' $.

  1. W i  ?

/

.[

i .

wp / #* .

?,/l

,,c /. .^=--.

. _ _ - _ _ - _ _ _ _X -________

.C.G. OP iter. i p==  :=, --------------_-_-__

(, . ~ -

< c.s oF POST A_CTUAL SUPPORT DETAll n

. CORD \TIONS *. t d' K~ 4. d. PoR, x 4.

> 50*

.k 4. --FOR d d 4. 60=

S

, FiODEL . WHEW -

ya f /

.COWDITOWS ARE MET l  :; .

(ese xtTAcumT e,z)

.k MODEL'WHEN COMDITIONS ME NOT MET

-'(SEE 'A*TT4HMEWT Bt) B-4

l l

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4

. l l

l I

ATTACHKENT C i l

KL/r REQUIREMENTS AND K FACTORS

(

1 l

l l

I l

l l

l l

l l

l l

3753M

ATTACIDENT C - KL/r EEQU112MENTS

1. Compression Member KL/r Requirements

(' l Slenderness ratios (KL/r) for "compression seabers" shall be l

. limited to 200 in accordance with AISC Specification Section l 1.8.4. l All support members shall conservatively be considered as "compression members" except for vertical posts as noted below.

I

2. Classifiestion of support Vertical Post Members of Trapere, l LW and L Shape Configurations and their KL/r Requirements Classification of a vertical post member as a "compression" l or "tension" member shall be based upon the axial load component. l If there is any static compressive force (due to dead load) the I seaber shall be classified as a "compression member" and the requirement in (1) above shall be applied.

I If a vertical post member is subject to static tension and I the combined static plus dynaalc load does not lead to a l compressive force greater than 50% of the design compressive I strength (where KL/r is used to calculate the design compression I strength Fa), the member is classified as a "tension member. l11 A marinua slenderness ratio (L/r) limit of 300 is applied to l these members. All other vertical post members shall be l classified as "compression members" and the requirements of (1) above shall be applied.

(, I

3. "K" Value Determination for Slenderness Katio Check l l

K values shall be determined as specified on Sheet C-2 for KL/r I check. l I

4. Compressive Stress Check Requirement Regardless of the member classification, a full compressive l stress check shall be performed in accordance with the AISC Specification for any member subject to a compressive load, regardless of the amplitude of the load and whether the load I is static or dynamic.

For compression members, the appropriate "K" value shall be used. l For "tension members", (K=1) shall be used. l l

s C-1

  • 3753M

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - - - - - - - - - - - - - - - - - - I

XI'DONENT C - K FACIVR

(/ , '

~

a) Cantilever Support .

. e C

J )%%2EL AlQ fg i Le = L 7. r i

N* f.O For czmpressico ===+*rs R1 Q Trapeze Support with Out-of-Plane Bracing

\ .

4 4C VV & ,

'/ _ , j Y

' Tor this segment b M of post: K=1.0 (for compression &

R1 (tension etabers*)

4.?u% ' ,

e l Tor this segment 1

of' post: F=1.0 if TlERS ( k s I.o) M tension sember*: K-2.1 ,

if compression member *

  • see sheet c-1 dor definition

/

C-2

General Instruction for Design Project Idantification Verification of Riectrical Conduit No. SAG.CP29

& Box Supports Rev 4 AnACmexT D l lR1 ADDITIONAL NOTE.S ON MODELS AND DESIGN VIAIFICATION l k

3753M

. ~ .. ..

l 4

l ATTAC10ENT D - ADDITIONAL NOTES ON MODELS AND DESIGN VIAIFICATION l

l

\. i

1. The model should be drawn in the calculations.

1

2. The global Ames should be shown.
3. Wode points should be circled. The starting point may be I assigned as point no.1 and the remaining points numbered in l A2 sequence. l 9
4. Members should have the seaber number indicated by placing a box around the member number.
5. Arrow Heads should indicate the + I Local Axis for the seaber. (This is determined by the way the member incidences are input.)
6. Two copies of output should be printed. These copies should

,k be separated and carbon paper discarded.

7. Each copy should be stamped twice with the following stamp.

TEXAS UTILITIES GENEPsATING CO.

COMANCHE PEAK UNIT 1 SU BJECT ...............S.UR.P.Qi?I.NERI.F.lCAIlQN,....... .......................

COMPUTER PROGRAM ..............................................................

P R E PA R E D BY: . . . . . .. . . .. .. . . . . . . . . .. . . . . . .. . . . . . D AT E . . .. . .. . . . . .... . . .

C H E C K E D B Y: .. . .. . . . . . . . . . . . . . . . . . . ... . .. . ... .. . . . D AT E . . ... . . . .. . . . . .

CALC U LATIO N B O O K N O. ...................... ........ ............ ..............

D-1 37534

. =a q 1

ATTACIO0f.NI D - ADDITIONAL NOTES ON MODELS AND DESIGN VERIFICAIl0N 1

I l First stamp is for input where card input is copied. Second stamp is placed in front of run to reflect that the entire run results are correct and reasonable. (on page share "Strudl version" is shown) .

8. Deleted l IR1 l
9. For all calculations:

E, (Modulus of elasticity for steel) = 29 x 10 kai E, (Modulus of elasticity for concrete) = 3460 kai

, G (Shearing Modulus of elasticity for steel) = 11.2 x 103 kai

10. any section with a used or unused bolt hole has an interaction equation coafficient larger than 0.75, the section shall be manually verified by reducing the area and moment of inertia to account for the bolt hole.
11. Whensvar an as-built drawing abows that a conduit orientation is not perpendicular to a support (skewed), the forces should be -

f appropriately decomposed into components.

12. Principal axes properties shall be used in the design l verification of all angle sections under general loading lR1 conditions except when the seaber is restrained at the I loading point or at the ends. l

(

D-2 3753H

ATTACMENT D - BETA ANGLES FOR ANGLE SECTION y . .

o .

. L ., .

. 4x a ,y - L

)

. l' 8 h>

-2 L .

/ ~

s ec=%

,lio*.

.=

7 s' Ito. +1(

fN

. c. '-

- 27o'

,l-  ;.

0* ~y /N .'/

k.

Y~ n -

9o

+Xt . " - ,.

g ./

\

/ '

'l 5e s N q.

( s 90' N

v N

. N. '

l ex lio* -

N N 1 +X

\ y

-. *G 270* .

-K

. 9,,.

4x

. . . . .. L

\ .

S ,_ .

N - v. . . -

3753M

]

r -- o .6-- -a..

e ATTAC8 TENT D - SETA ANGLES FOR CHANNEL SECTION r- .... -

e :- ..

- t . . . ..

~

-- . . - c. ..

  • O ,4 ') ~~.*.c **,

..~.... ,

- ~. ~- -

.y.

(..y..

=

..  : . .a .

4- - .. ,

. t - -- . .

,. , .g . .. .

~

-3 p, .--

.n Iw 7 .

~

f /'t. ,,

N ,'

(

/ . ..-

-)

m.

80* p..

270' s.

A " 8

( .

+xt <

Yg a

s /

l I

. 4X

  • L K .

- - o, N

x.

.)

N I to' .

~

_ s/L SO

..  ??o. -

- Ng ,. .

/s e . i -

. s.

. . y

. o. ,

~

I

, ,* T+X

. 3

  • 905 \% 4y L

D-4 3753H I

ATTACHMENT D - BETA ANGLES FOR TUBE SECTION

., .bp u .

8 y .- .- ., . .: . ' '

~.

g 6, n o

---,Z a

L ', e ,- ,, g.Iq a ..

4.. .,

..a

%.g> <- . , - -

o'

.(/ .

r/

/. .

. ..g

.. So. .

. t

+x h . -

~

q p (. .

. .1 . . ,

. Ya s /- -

go.

tXL . . . .

/

i. .

s n n y$

g.  : . -
o. , R .

}O5 o .,

~

  • yfXu ,

l (' .

+X. u .

D-5 3753H l

9 General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Sox Supports Rev 4 ArrACHMENT E l

lR1 SEEAR CENTER 24 CATION OF COMPOSITE CHANNELS l 4

9

\.

I 3733M

j

j ATTAc10cDer E-shear ES .

easter Isestien er ep kesite chamael AKO $ERYJCU INC0 PCAATED ,

w c*~ Nor r ,,x

... ,,' M M ..,, dh r //f' i ...

emtATIN

' ,,,,, 7317- o o r- *i". *'

54 9 sues, a sAa6 Vflu uta vr i, ,iu,,G CO.

, .i' C M ucur 3 .g ,,. a i .

,,,,,,, CAEI TRAY HANGEt3 mossees 3aus.ud ' ,

e PS$au l%ht Lun Us ePQ1.'k dair,tr fs

.:g -u . * * ... '.

, a y, - t . , ,. ,

/

b'd

,/~"'

v- Note: I

![oyismomentof' a ut the y y axis.

inertia In- is moment of inertia about the : a a.xis.

.a.

  • 4 . .. . u.

[1---L...p l _.:... '

i h$ I .

l Seaoms ' -

Ca.<pnh.e.C.4., -

Cmyn'fr 5:c-

' ~

A b 9' in .2 in xnDF1ryy* In d et ni er in t csxa.t e s s.2 s.ss7 2.+41 -l: set I524s. 22. cat .A.ist essa L<s4 c.s., p .z a rt.1 s.co z;,sz -l.ts: 14.16 4 2z.es u.<ts o.

_e.ao_

ests.1 csxt..z r.co s.nz -s:su I4.us usu - n .su o.4 gz s. o<,s ,

csut.z cus.z I.oo s.,s z -l.str . lust. 22.ct -47ss o. sis .

o.<sr_.

csas.z c u s.z o.41s 4.o+1 -l.tse Is.ots. 22.on -set a sso a < sa_.

. cs.s s.1, csa s..zis24 s.9.o.o -l ss_t 3.tgs 2.z.nt a . o., sy_.

0.us_

ee!.t.:z . ctas z. r.u4 e,too_ , -< ns . ns.n2 22 u -o szs e.1se_. .

a.<. r_s _

a n t..z. c u t.2 z.424 e.oso -s .ns. .ss. ras zz.et. .-o.s:i o.s4z. . . o.!.s C6*s.Z .

Cjrtl.5 C4,t2.1 A624

, f.99 -4.t28 15,906 2 2.09 8 51z e. 64 9 , oA74_

c&s3A 5.796 s.org -f,.*M 5.' 404*5 Z8194 4. flF c.E s2. .o.vis .

Coc!h.5 c6rBA. 4.Me s.p2 ,

-I:7I5 5f.tos. 25.8 % . I.To5 c.it1 07as 48 tsl.G. c4xB.z. S. *M 0.s87 -17I5 94.911 259%. 5 266 0 75{. o.710 C8(U.5 CGsak2 5.coe, <Q.2I8_. -17I$ , SS47e.. 2S.AH_, -l}1]_ o. .5 6 9_ .._e.7l_1_

C81I]:.5 C4.Q2 2.**0 4.05 -t 115. ~ 06 520 0 7;l.'

U.8M. 44kf. o47S.

C81\l5 Ces2 2 l.1M 50f8 d.715 42.ISS 2SBsf -9 059' c.'s 74, o.7t.s_' .

caril.,5 c6:32 441 5.240 -1 715 44.#98 25.Ap4 .-10.846 c.511

) C6 s8 2 c4s54 4 45 2 97.I

~ \.220 15.004 7.f65 2 42'9 0.14l o.75 o.sIG ..

E Cf.tj,1 C415.4 A.600 2.457

  • -l.220 l5.556 71&9 2 176 0 716 o.6I5 cseg2 c4sse S.sv 28s4 -I.zzo IS 6ao 7.in o 645 o.570 .0.6'G' c4:3.2 <454 2.o2 5.z 50 -1.220 16 75Z 7. PJ -e.290 ,0.422 c. 4 !L f- -

csss.z ;c4ts.+ I,660 S.62 7 -l.22 0 85 792 7.l65 -242S o.26S. 0 657 .

c4:3 2 CA 54 o475 5.851 -l.220 17779 7.I65 - 5'290 c I48 0 672 E-1 . .

. c.i

~

ArrAcanzrr E - Bbscr center 1scation of r.omposito channel .

i .

EA A5CD SERYlt.El lNCORPORATED

. ,e 5/4 /25

- ,, d t v % .., E_..,_ e

B) , ,,,,e. ,, M %-tTN.4U, /M os usncRATING -

.,, 5 4 I 7-do E **t,.' 54 9

, g sus., COMANEM arAr nknr ., CD. nun owir !

~

eme,s cv CAALE TRAY HANGEts' eyeo.es M M M LYU 0 i' skSU kAW' Y C& kt 0 0 $. A OJld C.l$ j

'  %:I& n s ; DYw .TsMA{gj ca.UnIle c.'4 -inkaka.I M l' Ir.-ai#

~

.A .B in 'in Ii-i V 6 (m.)

C&!8.t- C 6 4..? .

. 5. 3. S 7_ . .. 4 .9.k.0. . ._.24I40 . I5MG . _.-26 58I* . .

L

- _ . . . ....L '

.. 5:" . _..'_ h  :-- ?2.+58 .- l525' - . _ - I.0. E 8 I 2.0/4 -

2 2.415 - 15g5'_. ._ . ,1,1,. 2pt_ .

I.000-2.QB52' _. _. )S. M 5 .. ._ @ 0.l4 5_ _ _ l

. .. .. . . . . . o.4ts. . . - . ... . 27242 . .. l 5 89 5.. . - . . 58 4J.7.__

_.2 __e.ns  : e ss . __

s

__ __ . _ . . . . 2._5.24. _.__. . ._2, . 0_8 8

. _ _ __ . c_ 1

- . _._ _ _ . _ . 2.s2.4.. _ . .

. . _ . . __22.:n56 _. IS.s95.. . _ 4: ssp _._ j e . .. v . 2.424 e . 22. lo.0 15 895

. . 2. lir2 . _.

CG58 2 C6te.2 2.62.4 4.76 0 2 2.l00 I S.895. . -2182 .

, .C6 (II.S ChiB.2 5790 5 7Bl. 43 749. . E0 577 22.250 ._,

l .

h h 4.000 d

. 55.593 . 25.605 . -. 9.&7A . . _

r __ _ .. _ _. . .. R000 _ .ss.26S_.

. , _ 2. ! .%9 _ zo.Iss_ _

&.* S.000 _ . . 54 018.. 23.546 s_.-10 5 9 _

2.000 S8 552 21.o&l- -2o.425 l

~ ~ ~'

' ' v ',~ ' '.' I.'006 v. 45.6 7]_ ' '20.I96 -22',=>5 i .~

C8 s. II.5 Cbx8.1 0 490 S.7Sl 50.550 . I446I . -22 192 c6xA.2 ~C4 x 5 4- 4,16.5 3 345 16 440 6.52 7 .I(.675 ,_

o 6 4.000 0

_ l .F. 3 79__ . _. 6. 620,_ , 4c20 S.000 .. . . . . . ISMS -. .

7:lo.0. ... _S 6.51 . . _

~

_. .' . _ . . . 2#00 . ,, 15.8.70 ... _ 7 3045 .7 56o . _

1  ? I.000 y _.

IM26 6.52.9 -14.66l.. .__

C&

  • 8.2 C A t 5.4 0.+5 5 - 3.945 18 7lb 6 227 ~15.8%

~

Notes:

~

1. I yy and I 2-2 are the maximu: and minimum moments of inertia, respectively,about the principal axes 1

1-1 and 2-2.

t

2. The angle p is measured from the axis with the maximum

- moment of inertia (either y-y or -s) to the 1-1 principal Fs axis. p should always be between +450 and -450 p sign l

~

convention: Q Q l 3. y and i are measured in Y 3 and 2 c crdinate system.

B l 4. e y and e, refer to centerline of channel webs.

1 E-2 .

s General Instruction for Design Project Identification Yerification of Flectrical Conduit No. SAG.CP29

& Sox Supports Rev 4 i

e ATTACHMENT F I

IAI asER sTmGTH LOSS DUE !!O 1/32" UNDERCUT l e

l f

l l

l t

3753N f - - _ _ _ _ _ _ -__ _ _ _ _ _ _ _ _ ___ __

ArTAcmaNT r - usunEn sMENGTH IASS DUE TO 1/32" UNDRCUT A) wnu1An sEcTIoN I i FucENTAGE LOSS I l 1 MEMBER SIZE l 8 I U)J. INTEE. RATI0l I AREA l SECT. M0D.l l 1 I I I I I I I I l l TS 2 X 2 X 0.25 l 14.06 l 14.79 l 0.852 l l l 1 1 I TS 3 X 3 X 0.25 '

13.49 '

13.80 1 0.862 I i l I i TS 4 X 4 X 0.25 l 13.23 l 13.40 1 0.866 I I I I TS 5 X 5 x 0.25 l 13.07 13.18 0.868 i l l I I TS 6 K 6 X 0.25 l 12.97 l 13.05 1 0.870 l i i l i l i TS 6 I 6 X .0.375 l 12.97 l 8.96 1 0.870 l l l l TS 4 X 2 X 0.25 13.49 l 13.97 0.860 I I I I I l TS 8 X 4 X 0.375 8.90 l 9.00 1 0.910 l I ,

I I I TS 8 x 6 X 0.375 I 8.80 l 8.80 1 0.911 l l l l

l 1

l l l l l

\ l

Reference:

Calculation Book No. 5, Comanche reak SES Unit No. 2 Electrical Conduit and Box Supports t

l r-1 3753H

ATTAcunist r - Mziota snzNGTH MSS DUz To 1/32" UNDRCUT a) cEANNEL szcTIoM i

I l MEMBER I rzaczxrAcz uss i SIZz l I lu I --- --- l ADJ. INT E. I 1 A- 1 sx- sr I I l m I i aArio i I l 1 iszer. Moo.lszer. nod.I I I I I I I- I I i i I c4 x 5.4 1 27.64 I 24.07 l 26.40 l

1 0.724 I I I l C5 x 9 19.95 27.40 l l 1

1 l 21.08 0.726 l I I l I l C6 x 8.2 l 25.15 l 21.45 l l 23.01 '

O.748 l I I c8 x n.5 1 22.81 1 19.47 l 20.29 l 0.772 1 1 l l I I 1 c10 x 15.3 I I

l 20.89 l 17.73 l 18.18 1 0.791 1 I

I l

I I I I I nc3 x 7.1 1 19.58 l 18.08 l 21.27 i i I 1 0.787 I I I l l Mc6 x 16.3 l 15.23 l 13.77 l 15.72 l 1 1 0.843 l 1 I I I

Reference calculation Book No. Supt-0231, Comanche Peak SF.S Unit No.1 Electrical Conduit and Roz Supports. 1 l

l F-2 375M

i General Instruction for Design Projec2 +^;ntification Verification of Electrical Conduit No. SAC.tr29

& Box Supports

. Ray 4 e

ATTAC M NT G l

vF.urIcATION OF HU,TI ANCHOR MD UCHMOND ANCHOR BOLTS In I

\

4 3753M

1-

' ATIAcaxart s1 - TE11racA720pi or BILTI Anmon soLT Poa sUniAct Ancu conxlertons Ancu ts x23 3,/4 Ina Tula ,

' 3 -

~

7

.. (AFPLits to sors n!LTI KVIK ANN BILTI SUPERVIK) h .

The tension formulas below are conservative.

to ATTACHMENT-G3. If anchorage fails, go

'. 1 T j,y .

M Lc=c.

Ma X

9 a 1.: v

\

ij I

1Ll TVO 80LTS (Max. Angle Length = 2'-4) n[ I. - l

_ EILT! - ,!

SOLT d I

hg A L r c/

. a l

.A b p

L W '

'I

,4e, f

I e, [ e, Mh ON2 BOLT . . . . , , , , ,

(Max. Angle Lansth = 0'-9)

~

[ ,

' _f FORCES TROM COM?t7D OUTTL7 F,F,F,M,My M, Calculate M'[a Mg+Ty b-

) .

MA.X SOLT T DISIO N_

T = 2.15 &, + .1 2.15 h b f e + 1) + 1,1 g Tox Two actTs L (C-C) , L L C = 8 INCHES

~

e .

T

  • 1.81 g.& + 1 1,15 h b f e + 1) + 1,1 h tor TVo loLTS

_(CW , L L. C = 6 INCHES a

T = 1 . 1 5 3 3. + I3 83 (C-C)- E F7(C + I) + M" tor ONI 30LT a MAI noLT FMIAR *

. . u, p, . ,, g. > . ,, e. . , n-a2. y/ G-1 3 --)

j ATTAc2DO7 C1 - YEA.IFICAT10H of Ma*ED Mca01 acu ts Mrs. 3/4 laica Tala ,

SoLT CT1cKS j ( -

(APPLlu to AC, DIAMITIA.s or UcaotoxD utaDu) '

A The tension to ATTACli4 INTformulas G3 below are conservative. If anchorage fails, go LT '

Y

) M L Cat m hef - ._} l -- x, $a OM*

v

\

E/ o tl i

j e utggogy TVO 30LTS /FK -- '

i 0

(Max. Angle Length = 2'-4)

%R 1

w \

& b

. m .

3 ke

,- L i, ,

OKI 30LT # #

[ t (Max. Angle Lasg:h = 0'-9)

.I & '

t

---E-----

i n

6736,i 4

3 r Fy '

e

_ FORCES TROM C0KPL7!2 CUTFL7 T, T F, M, M M, Calevista 7 ,

M ',

  • M, + F1 b-MAX &DLT TINSION
  • T = 3. 2 0 ji'3, + _ 1 1.20 Py b (c + 1) + 3.25 Mr b
  • L - tor Wo 30L75 (C-C) L C = 8 INCHIS
1. ,

u T = 2.70 M's + 1

  • L M " 1.20 Fr bL (e 4 i) + 1.23 h b ToA TVo BOLTS T, C = 6 INCHIS T = 1.70 M = + _ 1.20 Fy (c + 1) + m' e, (C-C) .

= *

. rox oxI soLT

( _ MAX BOLT SEIAR 5= f M

(, + T,L . b + F, (C + a~)- ) 2 + 7 Ta q2 "

' Ib 4 1/2 i o-a \

t y-=-----r------w---v---e---vw-.-*y-p-r- ---g m- -----s--,---ww-p ww.yvo w-r y------r w~ ew-----w ry9m---=w-we

m-is emiee umi in 9

h*

ATIACHNINT C3 - TERIr2cA275 or McMcR 33,5 EIQJKDiG ELTRTACI ANGLES BASE APC.E VITH 2 McNCR SCLM

\

FOR WO DCL5 DCLT T1N570H i

f Ms '

dY Tm , g ag (/g,gxx y+ 2 a 74 fCr

,et, an

  • "3 %yi )

Mtk AMG'.t3 p \ f, ..

lg.)" . (q_ . q'.),* ~ V2 ro '-

MA ,

I f7,2 sMs. s) ror g , , a a,i so rui. s d

I  % fa,/ A'

2) L C & C in inche..

(SH. G-4)

/t. f

/ _, z/ * / ""[ fjc.4 * /

3) xx, Ity & Ma in I[ps-in. and Fx, 4 & rz in Eips.

?/ 4) %' = 4 + Tx'G L

< 73(vM.t7 .

FUR NE 30LT TCLT MTION -

' t gx s t xg i f.C )

3Ast ANott VITV 1 U CHOR EIT * *1'g M A

    • "2 M k "3

. 6 /

^Scut s) GAR

(' " \

s = (rx2 + n') IN tw.-Aus g ,. y

.C2*'

1)F***1'*z'"3'satag)2 g MA r

i i / .

N

2) s' = The anauer dimensico of

.1 a .2 ,

l f WE

p. , 3) ei, e2, C a C in inches.

zas - -

/- A w.r.34 => xx a x. a u r ..u. nd

/ /c-a rx, n a n a us..

/ et / et /

/~

d~

1

-/

sM"Ei Finase note a different peint of application for loads in this attachment when compand to attachmentaG and C g

2*

See Attachment G6 G-3

"# 6 9 e e

ATTACHMENT G3 - VERIFICATION

  • OF ANCHOR BOLTS

.- 7ABLE 2 - PRYING ACTION FACTORS FOR BASE ANGLES W/2 BOLTS

( '

TYPE & SIZE 07 30LTS ,

R/SE ANGLE L C Prying action factors' (INCHES) a a 3 2 *1 RMAR KS' ALL S21E5 0F l'-9.~ l i i

HILTI KWIK 4 L8 x 6 x 3 4 MAX 8. 1.12 2.00 SUPER KWIK 1.09 1 ", 3 g ",1 "

4 2

  • 0*3 "

3 ge .. 3u 4 e 3n < -

4 6. 1.09 1.69 1.06 II"'

L5 x 5 x 3 4 "

5. 1.09 1.69 1.06 i

i 14" Du. L8x6x3 4

8. 1.27 3.07 1.21
  • RICKHOND 3XSERT L6x6x3 4
6. 1.26 2.56 1.21 L5 x 5 x 3 4 "
5. 1.26 2.!6 1.21 tu. L8 x 6 x 3 4

(- 1" nIcnnoND

'XSERT

. 8- 1 23 2 88 at 19 L6x6x3 4

6. 1.22 2.38 1.16 1

L5 x 5 x 3 4 "

5. 1.22 2.38 1.16

?

  • See Attachment G6

~

G

, [4 '

G-4

ATTACHMENT C3 - VERIFICATION OF ENCHOR BOLTS ,

TABLE 2.-

PRYING ACTION FACTORS FOR BASE ANGLES W/1 BOLT

'h^'OF TYPE 4 SIZE BOLTS

' BASE' ANGLE L . C (IN), PRYING ACTION FACTORS

,1

,,2 ,

,3 RDLARIS' ALL SIZE 5 OF .

HILTI KWIX 4 L8 x 6 x 3 4 gX-9 8. 1.11 1.15 1.08 SUPER KWIX -

14 ", 3 g ",1 '

2 L6 x 6 x 3 4 "

6. 1.10 1.11 1.04 Sg ", 3 4 ", 1" gn -

L5 x 5 x 3 4 "

3. 1.10 1.11 l'.04 1\," D"*

, 3g LB.x 6 x 3 4 "

8. 1.20 1.67 INSERT 1.15 L6 g 6 x 3 "

- 4 6. 1.19 1.56' 1.12 L5 x 5 x 3 4 "

5. 1.19 1.56 1.12

' (' 1" Du. , La x 6 x 3 4 "

8. 1.17 1.55 1.12 RICHNOND INSERT

(. L6 x 6 x 3 4 "

6. 1.16 1.47 1.11 L5x5x3 4
5. 1.16 1.47 1.11 l

! '3et Attachment G6 I

e e

4

. G-5 l

9 l* .

I , ATTACHMENT, C4 - PRTING ACTION FACTOR FOR ANCHOR 50LTS

~

ESA5CO SERYlCE5 INCORPORATED l ,, I *TLi'n ..,,4/20/BE

'li .e. ., 7F4 .4,a */Z 7/8 E . ,,,, _ ,,_

.... 3317.eo7 ~ **;;' Fee' g 3

' TEXAS UT1HTIES GEN!tATING CO.

paesagt Giss.ni FiAK wC 2 nug vivi a i

.W CABif TRAY WAN$FJC i

.auesats i 5 YlL.!O A E T' I ON W AC T0EC N'O E A Y C'A0 E sol *1"*C' TA= =S. = -L- E - - -- -3  !  : , i j i  ! I ' I I I  ;

i . .

, ==5AS E P4.A vr ,Wi"N ' 4 4 tJC4 cit' s0 LT5 '

i' '

L . _e }'

, I ' . .

, hAsr rtisAxk.'%, m.. J..Yy.U.4

. 'h.)._._e .. . oer reMSwJr__ . .

i 1 1 -

1 / / ,/ . . __-%' g,.M_ru, .

7dy~~x 7d th p3.Ea_

/, ; m/ x ,/

/r

\ '

~~ .~

F2 $s, // $/2 /

~I my , '

' r, ,f y 361.T~5 Q E A 1t i " '

,_, l' <

// 'F s / n' , Tf. (sI}'[~~dr rd'i~

f

~'~ ~'

~3

~

A4 acu< a s*> >

A . .

, T , - 2k Mu tire) ----- & ac 5', b"'>

Y' ~.

(~

l -

l . * *

' a ves s six on 8 Art Pt4 rr pim's cru> Prysus AeTioe FAeroes gg-son:rs t da di 0. , as as ALL SilES W. .MILTI . . ./s O. . .. ../.8.b J8 0 .

wx e som em ' n w. un. as x. . .T22 -. 722.., - _.! - 30 . . .

1 0' 9 RIC.N M OND .'n:- I

, - -- - ' . . ,- ..g,yg-.- g,14 - y,c q - ~~~

f.'.9 .RICMMt%D- ,

. . , , . ,, .. - i.,, .

INCEPT .,,.q $ . . .-.,33 - p .

5 e i $

g e

l t i -

  • i . '

i e a i .

~

i  !

. . . . . . . . . . . 3 .- . . .

..**. =' . . . - . = . . . . - .*a'* - ***=*

4._,5EE.ATTACHM ENT 4 6

{ .

i ATTAcxMENT c5 - INTELAc71oM AIQUIADu:N7s roa ANoton sotts a~. _

-I

( .' I. For Milti & Super Milti Solts*

1.0

~

, I ' ( 5 p.. ) 5 ' 5.a. , ,

2. For R$chmond Inserts & Balts* '

A) Check Insert; ( q g 'I3 T

+ ,,

8 4/3 g 1.o'.

. 3) Check bolt s I f, 2 8

5' n 1.0 n

.y .-

t

. *Vbere T a Tension Value Calculated '

I  :

I 5 = Shear Talue Calculated '

I 5.R. = Separation ratio na

T' and 5' = allwable bolt loads or insert capacity se a*see Appendix 2 and 3 of the seisair design critsrla

, (SAG.cFlo) .

i l

l O

f G-7

e e

I ATTACHMENT C6-COMMDTT5 FOR 'C' ATTACKMENTS g 1.

For the design verif teetion of anchorages utilising 511t1 Kwik or Super Milti Kwik for which arrangaments and bolt sites are not addressed in Attachments Cl-C5, or if the anchorage fails, use the flatte element baseplate program with bolt stiffnesses given in Teledyne Engineering 25, 1979 "Anchor Bolt Shear and Tension Stiffness" fast Report dated Ma Services for Milti Kwik sad Hilti Super Kwik or conservatively use values given below.

. For Richmond Anchors use the values shown below.

  • e
2. Bolt stiffnesses:

Bolt Tne Bolt Tension Bolt thear Bolt Diameter (in) Stiffness (K/in) Stiffness (X/ie)

Milti 1/4 to 1.25 461 111 Super Milti 214 to 1.25 461 111 Richmond 1.5 3460 652

, F.ichmond 1 2175 435

_ Notes the above stiffnesses ware used to develop Attachments G1-C3.

l t

l l

  • i l

4 G-8 I

e

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CF29

& Sor Supports Rev 4 uTAcxxzxt u i

ErrEcTIVE Tuaon THICKNESS or razquALIrIEo 111 i

PARTIAL PENETRATION HVEL CE00VE WELDS , j e

I e

3753M

i I

l

  • ATTACEMZNT R - EFFEC 71Y1 TIDLOA.T TE2CKNZ55 0F FR.1QUA2.1F1ZD Fang 2A2, FFNUR.ATION BEVEL CR00VI VELDS
1. Flare Sevel Croove Wald

- The folleving effective throat shall be used for pregualified partt.e1 penetration tubes and - flare bevel groove welds between cold formed rectaasular/sguare 1

A.

flat plate surf aces (su,ch as sabedded plate, anchorage angle, etc.)

with or without rainforcing fillet fald.

3.

tube to tube astebed bor connections.

t = thickness of the thiamar tube

- T = effectiva throat thickness i i

1 = miniana corner radius of the tube = 2t l I Effective Threat Thickness T(in) l (A) Flat Surface l Tube I .

l thicknessl aim. radius l(fillet site (1) ofIw/o reintiv/reinfereins fillet T(2)l(l) (in) Matched

) T(in) I t (in) 1 (in) fil.le t T (la) l l -

1 F (in) l l

l 1 I i l

l 1/4 l 1/2 l o.16 1 3/16 l I

o.29 I

l' o.25 l

' s/16 ,

s/s I o.31 ' 1/s o.35 I

3/s 3/4 I I o.31 1 1 0.37 < 1/s I c.40 c o.37 1/2 .

1 I o.s l 1/s c.62 l

s/s I u o.s I

, , 1 11/4 I o.62 1 -

I -

I o.62 I p' '

.,-d - '

v 5%. '

ErwcM 7 . : f g

.gb .

~ fffsex r is R g - ' I k A Tew

+ / '

  • m '-

yi._.J7 .'R!) 1 H x i

~

w og su~< ' m.. .

. N

'g- e' -,y y,

w ~ ,i.+ Nj>~~

, .ne *y .u -

tWIE OK W/f f*j f7' 0R HMetWrittry f

e Fiusr w.w e -

e t.i.~a .

~-

r>ur r Notest 1. As per AVS-D.1.1. , Table 2.3.1.4 for t #1/4". T = 3/16* 1.

As per AVS-D.1.1, Figure 10.13.33 and test results, for t k s /16* , T

  • t.
2. As per geometric proportions with vald penetration to the 1/4" groove width level.
3. As per AVS-D.1.1., Figure 10.13.35.

H-1

LT1, "*v 11 -ETFECTIVE TE10AT T51CDit$$ OF PLEQQA1.1F11D PARIlAL PDfETRATION BEVEL CR00VE WELDS li F.  ;. e-B evel-Croove Welds t

'T. JPNf Td N O T4 & $$n

. ' ( .. . . . _

, Ij y N R kg 4:w 4 fff4fift e.[ .

LYA Al VIN 99 g(4 'gt) ,

LOWitIDGFFOR NOAll.P0$lff04 7 ,"I ) .

W .

j STC P4A .

l JOINT PETAll.

_ /ALL wrtetwo rostflows) ,

Single-beval groove welds for butt joints, T-joints and corner joints welded from one s'ide on1F having base metal thickness ("T*) of 1/4 f ach up to 1/2 lach shall have aff setive throats agual to *f*-1/8 inch, where

("T*-1/8 1ac h) n f/2. The above shall not be used for the qualification of welded standard tray claap plates. .

i

.\ '

0 t

H-2

t General lastruction for Design Project Identification Verification of Electrical Conduit No. SAG.CF29

& Boz Supports Ray 4 ArrAcaxzst I

, i It2 ANCHotAGE SPRING 1ATES IN STRUDL FRAME MLYSIS l 9

\-

1 3753M

ATTACHMENT I - ANCHORACE SPRING 1ATES IN STRUDL FRAME ANALYSIS (SH.1)

Deleted (11

, The spring rates to be used shall be obtained as follows a.

Spring rate values may be obtained from the attached table if the anchorage configuration f alls within the range covered by the table. The values in the table vera developed using standard AISC "C" gage distances for location of the anchor bolts, i.e. 3.0 in. for L5X5X.75, 3.5 in. for L6X6X.75 and 4.5 in. for L8X8X.75. A +1/2 in. variati;A from these sages is acceptable. The distance of the bolt from the and of the angle can vary from 2.5 inches minimum to 4.5 inches marisua.

If the spacing L of the anchorage does not reatch exactly the spacing in the table linear interpolation between the immediately higher and lower spacing can be used. The values shown in the table are acceptable when the centerline of the post is within 6 inches of the centerline of the two bolts, so

\

long as the edge of the channel attachment is not beyond the bolt centerline. It must be noted that the spring rates are '

given in the local coordinate system of the base angle. They have to be converted to the global coordinate system of each individual STRUDL analysis.

b. Deleted (R2 L3 c.

If the anchorage configuration is not covered by either "a" or IR2

  • b" above, then a baseplate analysis run to obtain spring rates I

for each such plate suat be requested from the baseplate group.

It must be noted that the spring rates as obtained are given in the local coordinate systen of base angle. They have to be converted to the global coordinate system of each individual STRUDL analysis.

1-1 1R1 3753M

ATTACHMENT "I" - ANC80 RAGE SPRING 3 ATE IN STRUDL FRAME d.

For steel maabers welded directly to embedded plates, the joint shall be assumed rigid with all anchorage translations and

, rotations fixed.

Translational stiffnesses for base angle configurations in the lal attached table maed not be considered in design verification. l Their impact on systes frequency is insignificant for frequencies l smaller than 33 Herts for the normal load range. In addition, I disregarding translational spring rates in the static analysis l yields slightly higher reactions, which la conservative. For l

marginal cases, where reduction in conservativisa is required. l translational spring rates can be incorporated in the design, l and will be calculated on a case by case basis.

I For "sof ter" anchor bolts, (specifically 1" 811ti Kwik bolts and smaller, with an anchorage reaction due to dead load greater .han

( -

1 Kip), the impact of the translational stiffness on the frequency may not be negligible. For these cases translational stiffness in all three directions should routinely be incorporated in the design. These stiffnesses should be obtained from the baseplate group as described above.

e.

Spring rates for the base plates of modified or IN supports l

with anchorage configurations which are similar to generic lR3 supports may be obtained from the calculation books of the l applicable generic support.

I I

I I-2 3753M lR1

l... .

I 4

l AST&C3 cutt '* I * (Ce at 'd)

.. FOR TTP2CA2, hAltPI.AYE CE*P2CVRATIONS l

'e ECRING  :

i" MATER FOR TYP1 cal BattrL ATE ESNrf SURSTf DNE CASE 3: R DDLT PATTERN

(,

  • Y

/p . m,i. x et

' l r *

' ih '

y g,.' E

'/_

I I

.. I ANGLE I L I KMX I- lin.k/deg.) --- l -

i KMY (in.k/dec.) l KMZ (i r.. k/d e g. ) l I SIZE I (in. ) -l =- --

=--I I

1 1 11.25 dlall.5 dia.11.25 stall.5 dia.11.25 diall.5 dia.1 IisU.NfLTil to . I INBERT I RU. 277WILT f 651 l INtfRT I BU. HflYf f INEERTl a it I 41 1 I at 4 El I 46 4 1 1 133 4 171 ILEX5X.751 24 417 8 904 1 152 193 1

I I- Et i 49 4 544 1984

.I l I 30 i Rt I' 49 I 1 1 17R I 20E I I I E53 1 1187 180 l 3G I, Et i 48 1 20E I  !

1 740 1 Stat i 184 I tot i I i 4  :  :

12 8 27 39 ,

__I I I 18 8 1 8 295 i SOE I* 107 i 30 8 4 E. I 457 SEE- 1 ILEX&X.751 24 3 32 8 878 1 144 4 182 I 1 50 1 612 1 1091 SE3 1 1 30 1 33 4 52 749 1 1 192 1 t I I 36 4 33 1 8 1837 8 172 1 195 i Y g--  :

4 52 i SE3 l 1343 176 I' ,

+- - _:

1 1 194 I I 12 I te i

-- -* :  : _l i

33 i

( l IL8X8X.758 i 18 24 8

1 33 36 1 40 1 REE 431 1

1 497 771 . I I 94 Sts 4

i 125 153 I

I l )

1 46 8 601 1 1011 1 145

' 1 30 1 39 l 50 1 1&& I i

f 26 1 764 i Sttt i 155 173 I 1 40 1 Et i 914 8

1 1296 f 160 t IT5 l CASE En 1 3DLT PATTERN ,

i

, . Y- / 3 . ' .:,'

i a -

T *

  • l1-

.Y ' . V I I

, / .

i ANGLE I L I KMX lin.k/deg.)

l--- ----

- I-i KMY lan.k/degT) l KMI'(in.k/deg.) I 1 512E I lin. ) -l-==- =1 1 I 11. 25 dia ll.5 dia. II.85 diall.5 dia.12.c4 Wla11. 5 dia.1 '

ILEX5X.751 it iIsu.HILTri 14 i 1NarRT k7 inu.HfLT11 I 86 INtraT IBU.NILTff INSEst i I 1 '180 4 - I -

g _ ___+. _9 _ +...13- - + I-1 1 Rt

- -: - ....+-

1 55 l 113 8 I

4 I

IL&XEX.751 12 i  :. _ : -- -I SE I R$ I 40 i

'I l 9 SE5 1 ==" I '

i 1

~ ~1 4~ - + - - - + - - - + 1' I 1

I -- ----+ - - - + - El 53 103 1 - I -

I t

IL8X8X.751 at i 14 'l Et I '72 2-*---- - I 4 j i 9 l 14 1 134 I - I - I l 17 1 47 I at 1 --- 1 I

  • configurations.

Rotational degree of freedom about I axis must 6e fwlly released for these-- ---

1-3

General Instruction for Design Verification of Electrical Conduit Project Identification

& Box Supports No. SAG.CP29 Ray 4 ATTACHMENT J l

PROCEDURE FOR VRIFUNG MEM3RS SUBJECI lai l

TO BENDING DUE TO GUSSET PIATE CONNECTION l

l A

)

l l

3753M

I I.

. ATMQOtENT "J" - Proceduro for varifying members subject to bending

~.

due to gusset plate connection.

I t The following procedure shall be used to include the effects of excluding eccentricty between centerline of susset plate and center of gravity of sttached member (strut) as shown below h ( W F.LD A MEMBER oussr.T 45 7' / LATE pgg,g, g,f

[ =

_ J's f1C ogynw

8 __._ .A ) Axl A L m

b

, / -

) ) Lo A D dSTRuT LC.4 0F AMGLE k

l WELk %"

V N l .

l 1 -

k' 1) The soment due to the eccentricity (P z e2) s, hall be taken by the strut member. The stresses due to this soment shall be manually added to stresses froe computer output due to axial load (P.)

2) The ausset plate and weld "A" and weld "A" shall be designed for the axial load (P) plus the moment due to (P z ei).

4 e

t J-l 3753H a

I l

Gen 3ral Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supporte Rev 4 ATTACL._JT K IR1 INPUT SKELETONS FOR STATIC EUN AND LOAD COMBINATIONS \

\ .

3753M

n

>* ATTACHMENT K1 - INPUT SKZLETON FOR STATIC RUN AND 14AD COMBINATI0H -

exusn1c suPronts . .

I nota, CODED SY, .

6 L- -

t 3AMMER TITLEE .* -

e6 F

G e 3ATA GMTegeb 'BY, gj,7,,

CAoGs -cur pig W CASES sp noy-APPLtcaste ,  :

LORDING 1 ' UNIT "G" +X DIRCCTIDN' -

DEAD LDAD COMP GLD X 1.O BY JOINTE JDINT LDADS . . .

.: F. X - M. Y 'M2 t FX- MY Mz px ..

MY "#

' LDADING E. ' UNIT "G" +Y DI RECT 10N' M2~ - 7 E4004 DEAD LDAD COMP SLD Y 1. O BY JOINTB #4

, JOINT, LDAD'5 ." '

W4LL F Y,t MX - -

t F Y,: MX i .

l FY MX -

' , LOADING S EA' ' UNIT. "G" -Y .DI RECTI ON',i ' .

U DEAD.

JOINT LDADS- LDAD COMP SLD Y ~1.0 BY JOINTBl .- *

  • FY MX -

~/4008 FY -

MX -

(uSE - /e4

.FV MX -

, d Ed '

.h tDING 3

  • UNIT "G" +Z DIRECTIDNS . * -- -

L AD LDAD COMP SLO Z.1. O BY 'JOINTSI ~

JOINT LDADS'

    1. d'N -

F2 -

  • MX --

~.N##4~

pg .

ny -

. . *R: -

j pg gy . ,

. WM '

! LDAD CDMB 4 *DBE LOADING +X DI,R ' YDMPDRENTS - .

1 - , G/4/NC LOAD COMB 5- ' DBE LDADING +X DIR S CDMPONENTE . - ,,, fl o o g ,

' 1 -

oR i *LDAD CDMB E- ' DBE LDADING +X DIR ' COMPONENTS - - WA L L.

I 1 -

l LDAD COMB 7 ' DBE LDADING +Y DIR ' COMPONENTS - -

E -

l LDAD COMB 8

- ' OBE LDADING +Y DIR '. COMPDNENTS -

! E- .

=

l LDAD COMB 9 ' DBE LDADING +Y DIR ' COMPDNENTS - _ cE/4rN6, E

ogF4006 LDAD CDMB 10 ' DBE LDADING +2 DIR ' COMPONENTS ~ 2:::

a uruy4 LDAD CDMB 11 ' DBE LDADING +2 DIR ' COMPONENTS - ~/4004 a .

CA WALL LDAD COMB 12 ' DBE LDADING +2 DfR ' COMPONENTS - -

3_ - WAI.L

' 7AD COMB 131 SSE LDADING +X. DIR S COMPONENTS - -----

_ CEtttHC, -

t. DAD CDMB 14 ' SSE LDADING +X DIR ' COMPONENTS - '

F4004 1 OR WALL LDAD CDMB 15

  • BSE LDADING +X DIR S COMPDNENTS - - -----

1 .

LDAD COMB 16 ' SSE LDADING +Y DIR ' COMPONENTS - -

E* K-1 .

l ATTACHMENT K1 - INPUT SKILETON FOR STATIC RUN AND 14AD COMBINATION -

i .

CENERIC SUPPORTS i

l l . (E.

' p L--

p M y '

LOAD COMB 17

  • SSE LDRDING +Y DIR ' COMPONENTS -
g. '

~

~

WALL LORD g CDMB 18

  • SSE LDADING +Y DIR ' COMPONENTS - . .E

- - Ce/Lg/c, og

- LORD 3 COMB 19

  • SSE LORDING +2 DIR COMPDNENTE - = #4
1. DAD COMB 20 *SSE LDADING +2 DIR
  • COMPONENTS - '

f,#$ g LDAD COMB 21 -

'C 3 .

--;

  • SSE LDADING +Z DIR' '. COMPONENTS PRINT STRUCTURAL DATA

~ - WALL

. PRINT LDADING DATA .

, .PLOT.

PLOTPROJECTION DEVICE PRINTER XY . WID 10 $N .10 i

  • ' PLOT PROJECTIDN.YZ -

PLOT': PRDJECTION TN1.45. TH2 30. - ' . .

STIFFNESS ANALYSIS REDUCE BAND '

.. A LORDg 31CDMB.22' ' DBE '- 5RSS 4 9 11' ~ RMS '--

- CEtOHcy

' LORD COMit '23 .'DB'E GRSS 5 9 10' RMS - " ' ~

~

  1. 4 s 9 10,

,A CDR

\ . DAD g.gg, COMB E4 DBE SRSS 4 8 12' RMS -

~

R1

'l .

- LOAD ' COMB 25 8 DBE BRSS G 8 10' RMS -

~

G S.1o.'

WALL LDAD. COMB *' 26. '.DBE SRSS 5 7 12' RMS'-

.5 7'12

.- ~ '

LORD CDMB ' 27 ? DBE BRSS & 7 11' RMS - -

. 4,7 11 - .. . ..

? .

- . LOAD CDMB .28.

  • SSE BRSS 13 18 20' RMS 13 1s e0 . . .' -

counar LDAD. CDMB .29 ' SSE GRES 14 18 19' RMS -

14 18.19 .

g

,' .g#

' LOAD CDMB 30 ' SSE SRSS 13 17 21' RMS - ~

13 17 21 -

LORD COMB 31

  • SSE GRES .15 17 19' RMS - .

15 17 19 '

LOAD COMB 32 5 BSE GRSS 14 16 21' RMS -

14 16 21 LORD COMB 33 $ SS.E BRSS 15 IE 20' RMS -

15 16 to -

GTRESS RESULTS ARE 70 BE CDMBINED AT STRESS LEVEL -

0 FDLLOWING LOAD CASES 1000 SERIES ARE *

  • OBE & 2000 SERIES ARE ESE O CEILING MOUNTED s' CASE 1 LDAD COMB 1001 ' DL+SRSS 4 9 11 (DBE)' COMPONENTS -

"i 1. O R2- 1. 0

.ORD COMB 1002 ' DL-SRSS 4 9 13 (DBE)' COMPONENTS - - CE/L/MC)

- 2 1. 0 RE -1.0 0 CEILING MOUNTED CASE R

  • LORD COMB 1003
  • DL+SRSS 5 9 to (DBE)' COMPONENTS -

2 1. 0 23 1. 0 -

K-2 -

c e

'\

ATTACHMENT Kl . ,1NPUT SKELETON FOR STATIC RUN AFD LOAD COMBINATION -

CENERIC SUPPORTS , l l l

9~:

M P

, 9 O I .

LOAD COMB 1004 ' DL-SRSS 5 9 to (OBE)

  • COMPDNENTS .

2 .1. 0 23 -1.O, CE ILI N C3

,2 s EC6dR 50'UNT5b's CASE 1 ' # *S ' '

LOAD

' 2 A' 1. COMB0 22 1005 ' DL+SRSS 4 9 11 (DBE)' COMPONENTS -

1. 0

" LOAD COMB 1005 ' DL-SRSS 4 9 11 (OBE)' COMPONENTS -

' 2A' 1. 0 22 -1. 0

$ FLODR MOUNTED : CASE 2 *

- floog

,' ' LDAD2 A ' ' 1.COMB 0 2 1007 3 ' DL+SRSS 5 9 10 (OPE)' COMPONENTS -

1. 0 .

i LDAD

' 2 A' 1. COMD 0 231008 -1. 0

' DL-SRSS 5 9 10 (DBE)' COMPONENTS - ~

8 MOUNTED WALL CASE 1' '

, LORD COMB 1009 ' DL+SRSS 4 8 12 (OBE)' COMPONENTS -

3 1. 0 24 1. 0 . I.

1

' ,' LOAD 1.CDMB 0 '24 1010 ' DL-SRSS 4 8 12 (DBE)' COMPDNENTS -

3, - -1. 0 ,,

.s MOUNTED WALL : CASE 1

'*1LOAD -1.0 COMB 25 1011 1. 'DL+SRSS 0 6 8 10 (OBE)' COMPONENTS '

LOAD 1 -1.0 COMB 25 1012

-1.0 'DL-SRSS 6- 8 to (DBE)' COMPONENTS ' .N4LL 0 MOUNTED WALL : CASE 2 l .

=

3 LOAD 1. 0COMB 26 1013 1. 0' DL+SRSS 5 7 12 (DBE)' COMPONENTS - -

i ..'

l LOAD1.COMB

'3 O 25 1014 -1. 0

' DL-SRSS 5 7 12 (DBE)' CONPONENTS -

O MOUNTED WALL Pl

. CASE 2 I -

LOAD 1 - 1.COMB 0 27 1015 1. 0

' DL+SRSS E 7 11 (OBE)' COMPONENTS -

l LOAD 1 -1.0 COMS 27 1016

-1. 0

' DL-SRSS E 7 11 (DBE)' COHPDNENTS - -

  • O CEILING MOUNTED : CASE 1 ~

2 -

~2LOAD 1. 0COMB 28 2001 1. 0

'DL+SRSS 13 18 20 (SSE)' COMPONENTS -

I LOAD E . , 1.COMB o 28 2002

-1. 0

'DL-SRSS 13 18 20 (SSE)' COMPDNENTS - .

0 CEILING MOUNTED : CASE 2 - Cetu4ci 0LOAD1.COMB 0 29 20031.' 0DL+SRSS 14 18 19 (SSE)' COMPONENTS -

,OLOAD1.COMB 0 29 2004 -1.0

'DL-SRSS 14 18 19 (SSE)' COMPONENTS - '

O FLODR MOUNTED : CASE 1 "; _ ,

.' 'LOAD 2A' 1. COMB 0 2820051.' DL+SRSS 0 13 18 CO (SSE)' COMPDNENTS -

' LOAD

, ' EA' COMB 1. 0 28' 2006-1.0

' DL-SRSS 13 18 20 . (SSE)' COMPDNENTS -

O FLOD.R MOUNTED : ~ CASE 2.. _ gggyp; LOAD

' 2 A 1. COMB0 29 2007 1. ' DL+SRSS 0 14 18 19 (SSE)' COMPONENTS -- '

, LOAD COMB 2008 'DL-SRSS 14 18 19 (SSE)' COMPDNENTS -

' 2A' 1. 0 29 -1.0

'O MOUNTED ' WALL 's'C'SE~I A , a

,&VALL K-3

na tavam.n a u UEFUT SKZ1.ETON FOR STQTIC9 BW GB W3AD COMBI. NATION -

GENERIC SUPPORTS ,

'. y P

\ -

l

\

LOAD COMB 2009 ' DL+SRSS 13 17 23 (SSE)' COMPONENTS - 2 3 1. 0 30

1. 0
  • LOAD COMB 2010 ' DL-SRSS 13 17 21 (SSE)' COMPONENTS -

3 1. 0 30 - 1. 0..

'O MOUNTED WALL CASE 1 LOAD COMB 2011 'DL+SRSS 15 17 19 (SSE)' CONPONENTS -

.1 - 1. O 31 1. O

' LOAD COMB 2012 ' DL-SRSS 15 17 19 (SSE)' COMPONENTS -

1 - 1. O 31 -1. 0 -

1 0 MOUNTED WALL CASE 2 l i

! LOAD COMB 2013 ' DL+SRSS 14 16.21 (SSE)' COMPONENTS - -

W4l L l3 1. 0 32 1. 0  !

l LORD COMB 2014 ' DL-SRSS 14 16 21 (SSE)' COMPONENTS -

l3 1. 0 32 -1. 0

.tO MOUNTED WALL : CASE 2

",.,1 l LOAD -1.0COMB 3320151.*DL+SRSS 0 15 16 20 (SSE)' COMPONENTS -

lLDAD COMB 2016 'DL-SRSS' 15 16'20 (SSE)'. COMPONENTS -

11 -1.0 33 -1.0 ..  :. . . .- . l

~

LOADS 1.ISC ~'_ .

  • Q* coudC on mew H e 2 ro e5 2r To 2 9 TO' TO - -

N . .

SEE @Wm I

urt w s w oc m a. e r -ro .

~ OTRESS RESULTS ARE TD BE COMBINED AT STRESS LEvt.L '

CENERATE RESULTS - '

LOAD' LIST - . C"^'* ' To'CD' foo 8 To Fa" Mfu% DR RDCA

( -

TO.

CDMBINED ALL.

TD g u. -

90D I TO JOoA s e s prTwea7 tooI To Post c s O 4 ,Aloot of W Ltj toot 70 toss 2001 To 2oss

'LDAD LIST'ALL. .

- U

." DUTPUT DECIMAL 3

  • OUTPUT 'BY .70!NTS ; DUTPUT BY MEMBERS .

LIST' DISPLACEMENTS, REACTIONS, FORCES

~ . . " . CECTION'FR NS 2 0.01.0 ~

' *- GROUP . '. &LM' '. DEFINITION MEMBERS ALL BUT A,

  • RtGi lD e.ARS END OF GROUP -DEFINITION '

LIST SECTION STRESS MEMBERS!' SLM' ccams -

reo# roaood'

' O DL COMB OBE (FOR CHECK WELD) ** d 't'* M ** '88' 70'O'#

LOAD LIST - cD$a. ,"me E mic. lo$No i

, k LIST FORCES ENVELOPE' MEMBERS' # MEMBER WITH W&l.O COUNCTice) 0 DL COMB SSE (FOR CHECK WELD)

LDRD LIST - * *

~

.4 g ,, .

,,,,.Todos a ru s oo n.o w 20o1 ro coor TO 4 **

  • w***

LIST FORCES ENVELOPE MEMBERS '

I '" . ." '

PARAMETERS k"'*""""#

' CODE' ' AISC' ALL ; ' VERS 2 0N' ' E.9 U1 ' ' ALL \.ggggg g7q gg

  • TORSION' ' YES' ALL ; ' CB' 1.0 RLL M

' ASF' 1. & LOADINGS TD -

CC'**

  • P* * ' To r o o g

-mus a noor

'.FSHMAX' O.55 ALL 2001 ro acer

-mm .

a urno vw '

, ' CBIRUCS' ' YES' LDADINGS - .

' """^'**"'""'- i *' '" 2 '"

30 TO --: cartons utu%,eR R. Dor teos ro roos eco s to 200+

raos r or HALL .

Spr A r o o t ro s_oer

~

CUO%,Gloot CR M_LL., Icol 70 talG t ool 70 20'h K-4

_._ m .. . _ . . . .

- ATTACHMENT K1 - INPUT SKELETON FOR STATIC RUN AND 14AD COMB 15A710H - .

'I CENEAIC SUPPORTS ,

i

{ 6

(

to F s A PARAMETERS , .

'LY' -

MEM

' LY' MEM .-

'LY' , MEM *

'LZ' MEM

' LZ' MEM

'LZ' MEM *

' CMY'

  • MEM

' CM Y '. .

MEM' '

'CMZ? ., MEM

' CMZ' . -

MEM SKY' MEM

' KY' MEM ~

' KY' ' MEM ' R1

'KZ' - -

MEM * * .

? KZ' .

  • MEM -

?KZ' "MEM

  • U N L C F 8', , MEM -

e,,, ,w a feo,To,oos go, , y, e go: ,

  • U N L C F t.' -

MEM Ce/04 *R RDOK 10 0

  • To 1001 too e 'o e cor

,UNLCF5 - - MEM- - "~ 5"""*"

cssus,cteot oR ovall LOAD LIST ~ .

rear se loss 2 001 To 2 o n 6 l ECK.' CODE ALL BUT. -

. AIEtD.BA% d f CNERATE TRACE & RESULTS FOR FAILING MEMBERS

~ ~ ~ - - - - - MEMSERS uo7 ' REQUIRE , '

r-INISH NOMESSAGES'.: -

CQDE CHECA G

O l

l .

t e

I I

l l

l l

l K-5 l

l

GENEAIC SUPPORTS STATIC AUN AND LOAD Com 1MATION -

3' , -

  • . u , 3E A 9 . / . .

.- "c8si Yj, ' ;joj . -

U!-

T6(8d Y ,41, 2.3, S,9

/of2 } pot soor _

4.;, _}rj

, 20. 'l+. /8. / 9

  • .23,2f,/003

$')

t YEST.

l //M,2003,20$+

Y(g,)cAu ; 1 -

ass 2 CGILINCn MovHTS O Wk' -

Ett,4 K.4,9 '

'7/s23,/B 20^ # L '0 ##

y fg993- ft(S ) VEFT. . . . .9, 10,14, ' S 6 *Y" / , +($O 7 bps,~)PD,( i/1,23,21 . '$') / .

l" f

.raog 2007,)MB

.Joo7, sors.

nr +*,($2) 49. +1 c^ss 2

'^

+1 f FLOOR MOUNTED Y'}

\' + /,2,3,4 8, /0, /5 R1 i

ff 4,) /: ,

/7.,/9.2LD/,fo!!

/0/?,20//,ro/2

. $/ YNYN

}< b y /h,2, 3,4,8, /2 y 4, 21,M f';(y)cAss2 1 s ( u> V//ff 30,/cof,/olo 44 .

gs

. . , . CAS I .teof,/4/o ,

j) -

.i . . .

i N.%2,3,5,7 72,/4, /4 .k v

' 2C.24,;32,/073,/0/+ / fi '2 + /,2,3,4, 7, ll,15 20/3;2pg f +y.

(g,)V!RT '

/4.20,27.31 /0/5 l#b '#'E 20S V ~- +'f C82 )

l ---~- + s ys)

' N

+2C$1) VERT.

c4ss 1 4Y(js) l . usa e Wall M0utJTED .

j Notes: 1) Nur:be.rs shown after

  • are load cxxtinat.icn Nos. to be filled in the blanks under the load list cn the input skeleten.

i ,

2) g,, gg, g3 can be any cne of the design *g" in 3 orthogonal directions l shown cm Table A.7 of the design criteria. (SAG.CP-10) 1 K-6

l ATTACHMENT K2 - INPUT SKELETON FOR STATIC RUN AND 14AD COMBINATION - )

PODITIED / IN SUPPCRTS ("G' VAIDES M7DED) l l

l l

( l CMb~ RQ /' ,

s PLEASE USE 'CDND-RG.SKL' SKELETON TO CREATE TE M W FILE 9 INPUT FILE NO. . __ DISK ID: DATE:

s USER s SAfMER NAnE  :~

STRUDL 'CFSS SI' ', , _ _ _ _ , , _ , , , ' '

SOM # D e CFSSI ELECTRIC CONDUIT & JUNCT!Dif 90x SUFPORTS TYPE SFACE FRAnE -

  • ALFHANUnERIC IDENTIFIER TREATnENT B'Y CHARACTER COnFARISDN .

UNITS INCHES, K!PS, DEGREES, FAHRENHEIT, LBn, SECONDS SSHIFT COOR SYST 181 TRA x Y_ _ 2_ - U d 7fK# W S ROT R1__ ,_ R2 ' R3__ . - W4EW M f/cRT SJOINT COOR SHIFT BY 181 COMB VoTye JOINT COORDINATES 1

WryHgg g

. . . . Cooc o.

2 . .

=

CAc% OJT f's

:  : (aor Cocoma s . . . Cmed wm A

7

. . g. .

ose.

p .

8 .

p .

g .

II .

G P  :  : SY,T 9 % /1 7 1: . . .

i- . . . aro 4tWh. %/p 7 i4 . . .

1 15 . . .

(' 6 . . .

17 .. . .

18 . . .

19 . . . i 22 . . .

21 . . .

    • P3 22 . . .

23 . . . .

24 . . . . .

25 . . .

26 . .

27 . . .

28 . . .

29 . . . i 3e . . .

31 . . .

SUFFORT JOINTS -

JOINT RELEASES

. . . .F._._ n___

. ._ v ._ _ n _ _._ .

. _ .as .aY a2 _

. ...nnx une nnz. .. sJPm7

. a.x Knx nFv Knv r.Fz

.Knz wy

' '_ ' vm nnt._ r.n z ...:. *"W

. . ____ rnx xnY ________ xnz .

__ .a .

xn g , __ knv knz

.g g ... ..

1 2

3 4'

K-7 i

,gg. - (5 -

- ATTACHMENT KS - INPUT SKELETON FOR STkTIC AUN AND LOAD C K OIFIID / 2 SUPPCRIs (was yAIAIS MIA2ID) e a '

g .,

  • { ,' e f .'
  • 2

. .i 5 S .

7 l

- E ..

9 I 1

1S  ;

11 '

1 12 l 13  % '

14 '

l is 3& g,,

g .

g p Y .

R&I; g 21 W:h $blll}

22 23 .*

24 . . ..* I, 25 26 27 .

28 2?

23 .

31

/ 32

  • t' '

TYFE SPACE TRUSS AQUT W WG)

MEMBER INCIDENCES

_g gg g

. ~-

PENBER RE1. EASES ..

l ST A F . _ ..., M . E.ND F _ . M _ _ W6T I-ST A F , ' M ., _ END F , _ M _ _ -

._; _ M, JTJ74tT y

" 'I

.,2%Ib JWLil.'P,Y6 E 29.E3 ALL 3. POISSON 3.3 ALL 3 DENS 3.234 ALL

  • 8 11.2E3 ALL 3 CTE 8.0000845,ALL .. .

.

  • FYLD '36. S ALL SUT 46.9 CONSTANTS '

DENS L E-3 l'Q? ffr/neUS

, 'fTMTS gggyqq ,;gy SETA *

DETA .

PEMBER PROPERTIES

. , , , . . , TASG 'STEILW' 'W.,_I _ '

- T ABLE / TUDESQR' 'T_ X_.r_'

T . ,.

  • T APLE
  • TUDEAECT '. ' T _.X__1 _' ,,

f,.. '

  • T APLE. ' STEELC' 'C.X ' TWI ' ' CHANNE.L' .

, TARM. ' STEELMC'

  • MC I ' TWE J. CHANNEL'

.. -TABLE ' STEELL';.'L .,

T ABLE.

  • STEELL' . 'L__

' ' At les. , AY 188. A2 ,199 ?2 2 1889. *.32.-1380, !!.,1980.

AX - AY A2 *II

. . !Y 3 2 .. - .;

, SY-SZ .' *

  • INERTI A OF JOINTS LLrPED .

1 NEAT!A OF JOINTS FACTOR l' ADD . .

  • s teFUT WEttiHT OF CONDUITS / BOIES IN POUNDS ( LDS 3

, _ . . . --- LINEAR I Y . I' K-B l

ATTACHttENT K2 - INPUT SKILETON FOR ST TIC RUN AND LOAD COMBINATION E DIFIED / IN SUPPORIS ("G" VAIMES REA2ID)

! 3 t

____ _______ LINEAR X ,,_, Y ,,,,, 2

_____________, LINEAR X ,,,_, Y ___ Z,,_,

______ ______ LINEAR X ,_,, Y ,__ 2

______________ LINEAR X __, Y , _ ,,, * ! , _ _

PRINT STRUCTURAL DATA PLOT DEVICE PRINTER WID 19 LEN lt PLOT PROJECTION XY gg ogy PLOT PROJECTION X2 .p g agepM' PLOT PROJECT 10N Y2 -

g .

BROUP '& RET' DEFINITION JOI ALL ACTIVE gy i

- #eg'/

DYNAMIC DE3REE STATIC V g I' P/lr[p7 JOI DEGREE 0" FREEDOM p L- r

'bRET' XT,YT,2T p M gb ,y@eE[f/g /

UNITS CYCLES ASSEMBLE FOR DYNAMICS MODAL ANALYSIS MAX FRED 48.8 LIST DYNAMIC EIGENVALUES LIST DYNAMIC EIGENVECTORS LIST DYNAMIC NORM PART FACTORS SCHANGE olNERTIA OF J0!NTS LUMPED s s!NERTIA OF JOINTS FACTOR 1 ADD ,

MW N' g g y p s f3 s .. LINEAR X B.B Y 8.0 2 8.8 -- #M sADDITION /U/'/T AY '0#. *N #I UNITS DEGREES Ca444c$ gj S4/Adj lt'M'4 s DEAD LOAD OF CONDulT SUPPORT IS IN -Y DIRECTION (A$e /, 2 og 5 LOADING 1 ' UNIT "G" +X DIRECTION' DE AD LOAD COMP GLO X 3.9 BY JOINTS sJOINT LDADS hng@ooA

(' .

s _ MOM 2 .* Y Z tE scWT ,6,.W8/APJT sW*l'% J?IPJUh N' J"W sMEMBER LOADS pri atII.'T To e:W MD s FORCE k CON FRA P L 1. 8#

, 3 FORCE Y CON FRA P L 1.e , R3 l

  • s FORCE 2 CON FRA P L 1.9 W h,M l s MOM X CON FRA P L 1.0 - F(VT M RW, #
  1. fU.MNf3 M I# W 8 MON Y CON FRA P L 1.8 s MOM 2 CON FRA P L 1. 8 *. AA.E JhoutD rWN HiV&T t TO . ,

LOADING 2 ' UNIT "G" -Y DIRECTION' A4zuas4 c W D.

DEAD LOAD COMP GLO Y -1.0 BY JolNTS (US&Lo0 M M W.,

i sJolNT LOADS

.s MON 3 Y I

$EE tJDT ##5 SMEMBER LOADS (t oeb/*.ld; i) s FORCE X CON FRA P L 1.9 *"

l 5 FORCE Y CON FRA P L 1.8 S FORCE 2 CON FRA P L 1.8 M M Mg '

s s MON MON X CON FRA P Y CON FRA P L L 1.8 1.8

~ (4M47 /)

s MOM 2 CON FRA P L 1. 5 .e-LOADING 3 ' UNIT "G" +2 DIRECTION' DEAD kpA.D COMP GLO 2 1.8 BY JOINTS sJOINT LOADS ' --

SEE A)dII dbfIi" s MOM X Y 2 ( @ y /,)

sMEMBER LOADS l s FORCE X CON FR A P L 1.e'*--

t FORCE Y CON FRA P L 1.9 l

I s FORCE 2 CON FRA P L 1.8

"" M dTV 4 6.:4

@Mh s MOM I CON FRA P L 1.s e MOM Y CON FRA P L 1.0 I

K-9

LTTTACH.W.ENT KS - INPUT SKILETON FDA STATIC AUN AND LOAD COMB EN / IN SUPPORTS (*G" VAMES M7Dm:D) i

. ++

gag abrr ed /3 s MOM 2 CON FRA P "

LOAD COMB 4 '0BE LOADING *X DIR L 1.B (MAI SEIS)* C DNP DNEN T S = ===

(gg g 1 ______

LOAD COMB 5 '03E LDADING +X D1R (NED SE1S)* COMPDNENTS -

' ~

LOID C65B 6 '03E LDADING +E DIR (SIN SE!S)* COMPDNENTS -

1 ______

LOAD COM8 7 '0BE LOADING +Y DIR (MAX SEIS)' COMPDNENTS -  %

, 2 ...___ .

LOAD COMB B '0BE LOADING +Y DIR (NED SE15)* COMPONENTS -

2 ______

LDAD COM8 9 'OBE LDADING +Y D1R (MIN SEIS)* CDMPONENTS -

2 _..__.- -

LDAD COMB le 'OBE LOADING +2 D1R (MAX SEIS)' COMPDNENTS -

. 3 ._____

LDAD COMB 11 '03E LDADING +2 D1R (NED SEIS)* COMPONENTS -

3 _____. *

  • LOAM COMB 12 '09E LOADING +2 DIR (MIN SE15)' CDMPONENTS - -- VALV6%

a __.__. .

LDAD COMB 13 'SSE LDADING +X D1R (MAX SEIS)' CDMPDNENTS -

1 ______

LDAD COMB 14 'SSE LDADING +X DIR (MED SEIS)* CDMPDNENTS -

1 ......

LDAD CDMB 15 ' SSE LDADING

  • X DIR IMIN SEIS)' COMPONENTS -

LDAD COMB 16 ' SSE LDADING +Y D!R (MAX SEIS)* COMPONENTS - R3 2 ______

\ LOAD COMB 17 'SSE LDADING +Y G1R (NED SEIS)' COMPDNENTS -

2 __.___

LDAD COMB IB 'SSE LOADING *Y DIR (MIN SE;S)* COMPONENTS -

2 ______

LOAD COMB 19 'SSE LDADING +2 DIR (MAX SE3S)' COMPONENTS -

[ 3 ______ **

i LOAD COMB 22 'SSE LDADING +2 .1R (MED SEIS)' COMPDNENTS -

DA6~C653 21 'SSE LOADING +2 DIR (MIN SEIS)' COMPONENTS -

  • ~

PRINT STRUCTURAL DATA -

PRINT LOADIN3 DATA .

STIFFNESS ANALYS!S REDUCE BAND

. LOAD CDMS 22 'DBE SRSS 4 9 11' RMS - .

i 4 9 11 J 7. \I" I M* ej ,e l

LDAD COMB 23 '03E SRSS 5 9 It' RMS -

59 'B -e l

LOAD COMB 24 'DBE SRSS 4 3 12' RMS -

48 12 d l L,IL\. //[0"JI l

LDAD CDM8 25 'OSE SRSS 6 S IS' RMS -

68 le LOAD COMB 26 '0BE ERSS 5 7 12' RMS -

57 12

Ib LDAD COMB 27 '08E SRSS 6 7 11' RMS - f2

! 67 11 P4

[ LDAD COM8 28 'SSE SRSS 13 18 20' RMS - g3 f l 13 18 20 LOAD COMB 29 'SSE SRSS 14 19 19' RMS -

14 13 19 LDAD CDME 39 'SSE SRSS 13 17 21' RMS -

l 13 17 21 l

l LOAD CDMS 31 'SSE SRSS 15 17 19' RMS -

15 17 19 4

K-10

e ATTACHMENT X2 - INPUT SKELETON FOR STATIC RUN 'AND LOAD COMBINATION -

KOIFIID / IN SUPPCRIS ('G" VAllES M7IXED) l

..- - .. di .

=.

LDAD CDMB 32 ' SSE BRSS 14 16 21' RMS -

14 16 21 LDAD COMB 33 ' SSE SRSS 15 16 29' RMS -

15 16 28 STRESS RESULTS ARE TO BE COMBINED AT STRESS LEVEL s FOLLOWING LDAD CASES 1990 SERIES ARE OBE & 2002 SERIES ARE SSE LOAD COMB 1901 'DL*SRSS 4 9 ll (DBE)* COMPONENTS -

2 1.3 22 1.8 '

LOAD COMB 1902 'DL-SRSS 4 9 11 (DBE)' COM*DNENTS -

2 1.0 22 -1.8 LDAD COMB 1903 'DL*SRSS 5 9 le (DBE)' CDMPONENTS - (k 2 1.8 23 3.0 LOAD CDMB 1984 'DL-SRSS 5 9 1B 103El' CDMPONENTS - gp 2 1.0 23 -1.8 LOAD COMB 1985 'DL+5RSS 4 8 12 (OBE)' COMPDNENTE - (7

  • 2 1.0 24 1.8 LOAD COMB 1996 'DL-SRSS 4 3 12 (OBE)* CDNPDNENTS - b T

2 1.5 24 -1.8 LDAD CDMB 1987 'DL*SRSS 6 8 le (DBE)* COMPONENTS f*

2 1.8 25 3.8 g LOAD COMB 1989 'DL-SRSS 6 9 le IDBEl' COMP DNEN's v 2 1.9 25 -1.8 LOAD COMB 1809 'DL+SRSS 5 7 12 (OBE)' CDMFDNENT S 2 1.9 26 1.8 LOAD CDMB 1818 'DL-SRSS 5 7 12 (DBE)' C09PDNENTS -

2 1.e 26 -1.e R3 LOAD COMB 1831 'DL+SRSS 6 7 11 (DBE)* COMPDNENTS -

2 1.9 27 1.9 LOAD CCMB 1912 ' DL-SRSS & 7 11 (DBE)* COMPONENTS -

2 1.0 27 -1.8 LOAD COMB 2001 'DL*SRSS 13 IS 28 (SSE)' CDMPDNENTS -

2 1.0 28 1.8 LOAD COMB 2922 'DL-SRSS 13'1B 29 (SSE)' COMPONENTS -

2 1.0 28 -1.0 LOAD COMB 2003 'DL*SRSS 14 IB 19 (SSE)' COMPDENTS - 3)) [ /~FN P/"['/[

2 1.8 29 1.t LOAD COMB 2904 'DL-SRSS 14 19 19 ISSE)* COMPONENTS - gg b. g7% 8[II 2 1.8 29 -1.8 LOAD COMB 2025 'DL*SRSS 13 17 21 (SSE)* CDNPONENTE - .

2 1.5 32 1.8 LOAD COMB 2006 'DL-SRSS 13 17 21 (SSE)' CDMPONENTS -

2 1.9 32 -1.i LDAD COMB 2027 ' DL+SRSS 15 17 19 ISSE)' COMPONENTS -

2 1.9 31 1.9 .

, LDAD COMB 28tB 'DL-SRSS 15 17 19 (SSE)' CDMPDf INTS -

l 2 1.8 31 -1.8 i LOAD COMB 2P99 'DL+SRSS 14 16 21 (SSEl' COMPDNENTS -

l .2 1.9 32

  • 1.8 LOAD COMB 2918 'DL-SRSS 14 16 21 (SSEl' COMPONEr.tS -

2 1.9 32 -1.8 LOAD COMB 2211 'DL*SRSS 15 16 20 (SSE)' COMPONENTS -

2 1.8 33 1.8 LOAD COMB 2012 'DL-SRSS 15 16 28 (SSE)' COMPDNENTS -

2 1.9 33 -1.9 PRINT LOADING DATA l LOADS LIST -

22 TO 33

. STRESS RESULTS ARE TO BE CDMBINED AT STRESS LEVEL GENERATE RESULTS

. LDAD LIST -

l l

K-ll l

093ACHMENT K2 INPUT SKELETON FOR STATIC RUk AND LOAD CtMBI.HATION - '

MITIE / IN SUPPORTS (aG3 yAI4gs ;OIATED)

.- ,. , p y

,n,...--

_, , _ . . , ~ . . . , , , , ,,, ,

1981 70 1912

  • 2991 TO 2012  ! , , , , , ,

COMBINED ALL LDAD LIST ALL b

  • DUTPUT SY J01NTS : DUTPUT SY MEMBERS LIST REACTIONS LDAD LIST 1981 19e:

LIST REACTION

  • LDAD LIST 1903 1984 --

LIST REACTION LOAD LIST 1905 1886 LIST REACTION '

LOAD LIST 1927 1999 LIST REACTION LDAD LIST 1999 1019 LIST REACTION LOAD LIST 1011 1012 LIET REACTION U ***

Bf, 7 7 [M*4/ h7

$7 Ng"[7$y*I CNk'0 W:~I N IU /N LDAD LIST 2001 200

  • LIST REACT!DN LOAD LIST 2003 2004 LIST REACTION LOAD LIST 2035 2036 6 LIST REr.CTION g::2 LOAD LIST 2007 2029 d L *ET RE ACT IOrd g b U LDAD LIET 2009 2010 LIFT REACTION LOAD LIST 2011 2012 g LIST REACT 10't

\

LOAD LIST 20C1 TD 2012 L 1 E T RE ACT I ON LD42 LIST 1001 TO 1010 "CC1 TD ",010 SECTICN FR NS 2 0. 0 1. E,,,

G; DUP ' LL1l' t,Er it!! T I DN MEMFE F.S ALL I UT . ...... . ..,. UM M END OF GADUF DEFJHIT JON LIST SECTION STRESS MEMBERS *hLM' 9 DL CDriP BPE (FOR CHECK WELD)

LDAD LIST - .

tect TO 1012 -

LIST FORCES ENVELDFE MEMBERS . _.,.. .. ._,,. "

s'DL COMS SSE (FOR CHECU WELD) MEMM4 M/rT//

LDAD LIST - ~

2001 TO 2012 WElb M'ftr/W LIST PARAMETERS FORCEE ENVELDFE MEtt&ERS ...... .

' CODE' 'A!SC' ALL ' VERS 10fd' ' 6TUI' ALL

' TORSION' 'YES' ALL 'CB' !.0 ALL

'ASF' 1.6 LOADINGS 2001 TO 2012

'FSHMAX' O 5 ALL

'FACMAX' O.9 ALL

'FATMAX' 9.9 ALL

'FPMAX' O.9 ALL PARAMETERS

'LY' .- _. MEM ........

'LY',,,,..,,,,,, ME M __.,,,,,,, . . -

.',LY' .... ,McM ._...... .

'Lz,' _..... ME M _. . . ., . .. ., ,

K-12 i

ATTACHMENT K 3 .

' .arUT SKE1,LTON FOR STATIC RUN AND 14AD CWGIRATION -

,, E E E / IN SUPPORPS (egs VALUES M7IXIII)) '

7 t' - us . . m n . .._____

'L2' ___.. MEM ____ _

'CMY' ___.. MEM . _ _ ____

'CMY' _.. MEM ..... __.

. 'CMZ* _.... PEM ..____....

  • CMZ' .... MEM ____......

'KY' ,_.._, MEM ...... ___

'KY' __ ... MEM .......... .

'kY' MEM ----------

'x2' ______ MEM .. _____ , p L E

  • K2* _ ... MEN .......... A

' K Z ' _ __ _ MEN _.... ___

g

'UNLCF' . . MEM . . _..

'UNLCF' _ ,,,,,, NEM ,,,__,,_,,

'uNLCr* ... ____ nEn _.....____  ;

LOAD LIST - -

1821 TO 1812 2221 TO 2212 "HFCK CODE ALL 907 _.... ___ ___ ... _

. - -~ AM/D d4M45 8 GENERATE TRACE MESULTS FOR FAILING MEMBERS MENM A/07' FINISH N0 MESSAGES 4Ed/4E CJ24 CMEN e t.. fTEkd 6/q weh ny M Gth 2/u/27 f..

R3 l

l X-13 .

t

-~

ATTACHMENT X 3 - INP'UT SKILETON FOR STATIC RUN AND LDAD COMBIMATIDH -

D IF22D /.2N SUPPORTS ('G" VAI11ES NOT M72X21D)

\ n .. _

c .. .

l' ';^ e t.v. '.

  • COMO" N tir l /
  • [ ' ' f' "

o F1.E ASE USE. 'COND-UR.St.L' AS THE SKELETON s INFUT FILE NO. ".

- DISK ID: __ _ DATES _ _____

0 USER t __.,,, DANNER NAME s

' ' 84FT X.O STRUDL 'CFSS #1' __ -

e CF SS1 ELECTRIC CONDUIT & JUNCTION SOX SUFFORTS TYPE SFACE, FRAME ALPHANUMERIC 3DENTIFIER TREATMENT SY. CHARACTER CDNPARISON .

UNITS INCHES, MIPS, DEGREES, FAHRENHEIT, LBM, SECONDS- ~

vil 77555 cAWuA Y__ Z_

SSHIFT COOR SYST 181 TRA X ~ Mtv JuWT ROT R1 _ R2 R3  %

$ Cocc.Arr/$f45 SJOINT COOR SHIFT BY 181 werV blu mt; JOINT COORDINATES . . cooa o, 1

. csdj, ecy f',

2 .

kJOAJT coon:,asts 4 Y . Mo st>>

s .

V . USE

~

7 . f .

e . p .

P .

le .

9 .

. VI, TT Sh % g

,f s .

(

C'At b 11f;l'[' ,,

I 15 .

g 16 .

1; 17 .

le . R3 19 .

20 .

21 .

03 .

24 .

25 .

26 .

27 .

28 .

I 29 .

I 30 .

l 31 .

i SUF FORT JOINTS - -

! JOINT RELEASES l F__ M___

Y_ M___ -

\ .

KFX KFY KFZ __ __

I KMX KMY ,,,,,__ ___., KM Z ,, 5 9 $ 2 f KFX KFY - KFZ ___ g,q KMX KMY . MMZ KMX KMY KMZ CN'k[

KMX KMY KMZ __

KMY KMZ _ _ -

KMX _

MEttBER INC2DENCES 1

4 -

=

1 l

1 X-14 l

l

- LCDUT SKELETON FOR STATIC RUM MD LOAD COM31. NATION -

EN / IN SUPPCEPS (eG" VAUIS NCTI m)

I . .

. 9*e .

~

5

. .'b . .*

y * .

8 .

9 le . . E 11 <g M P 12 S 13 -

14

  • 15 I I' '4/' 7 7' T4'r*// t/q/t j 17 1 M 4)'; 7 7 b [d/[ 0 2e 21
  • 22 23 24 25 26 27 28 29 30 31 -e --

32 AFJT M Nie TYF'E SF ACE TRUSS ~yJ,ct% (AruL MEMBER lt4C1DEttCES gy

\. ___ i-444b) g3 ffMPER FILEASES , M W IIME

_ ... _ , STA F , ,, M ,, , _ END F _ _ M ,, ,

  • END F _ ,, M _ ,, _, Mt ATTWT(

.-- _ _ STA F , _ M .,a CDP.'S T APJ7 5 f

' E 29.E7, alt. g FOISEON F.3 ALL ; OENS e.2E4 ALL G 11.2E ALL 3 CTE O.0000065 ALL FYLD 36.S ALL ELTT 46.8 .

! . cot +ST At4T E --- AM AC DT/oc5 DENS 1E-3 .

MEMMg W "..

l CONSTANTS l BETA BETA PETA

) MEMEER FROFEAT3ES j

( TABLE 'STEELW' ' N_,,,, r_ * ,

l _

T ABLE ' TUBESCR' ' T__1,,,,,, K _ '

T ABLE 'TUBERECT' ' T, I., _ r_,_

  • TA9LE 'STEELC' 'C I ' TYPE ' CHANNEL' T ABLE ' STEELMC' 'MC I ' TYF E ' CHANNEL' TAPLE ' STEELL' 'L ' .

l

' T ABLE ' STEELL' 'Ll

. _.AX 183. AY 100. A2 At 180. IX IX 1000. !Y

!Y 1900. 12  !! 1000.

AX AY SY SZ INERTI A OF JOINTS LUtWED INEATIA OF JOINTS FACTOR 1 ADD LBS ) ,

S INT'UT ' WEIGHT OF CONDUITS / SOXES IN POUNDS (

LINEAR X _,,,,,,_ Y ,,___ 2 _

j ,,,

. e

\ t e

I x-15 l

l 1

ATTACHMENT K 3 - IMPVT SK.ELETON FOR STATIC RUN AND 14AD COMBINATION -

KOIFIID / IN SUPPCRTS ('G" VAIDES NOT M7DED.)

11 g y --

I v, i . s y . .

, 3 1.sNeAR X ..._ v ___ z M,17 M Q'r 7

____.... ... LINEAR X ,__. Y ..... I _, , ,

LINEAn X ___. Y___ 1- cHt'D ty:7Tk El1/j, /

____.._______ LINEAR X .Y___. 2 .__

PR]NT STRUCTURAL DATA PLOT DEVICE PRINTER WID 10 LEN le PLOT PROJECTION XY ,

PLOT PROJECT 10N XI ~ y s oyy ,

PLOT PROJECTION YZ p g p,ppyrgrpos)

SROUP '& RET' DEFINITION gg y 6 JO! ALL ACTIVE g F DYNAMIC DEGREE STATIC g f4 JO! DEGREE OF FREEDOM

'& ET* XT,YT,ZT M g y gpgf og,y UNITS CYCLES ASSEMBLE FOR DYNAM1CS y y of FoLLDE% W4 I I/ C# D' MODAL ANALYSIS MAX FREO 40.e M g,y79 pg e$ilfCTIO)(MLL LIST DYNAMIC ElGENVALUES Af 64540 W N # # # og pgj LIST DYNAMIC EIGENVECTORS LIST DYNAMIC NORM PART FACTORS agyg 'p' v444Ali ##/CN CddS6 6 sCHANGE Nf gI gg, SINERTIA OF JOINTS LUMPED

.s!NERTIA OF JOINTS FACTOR 1 ADD

___ LINEAR X e.e MW. ,#

SADDITION Y e.e z e.e WM g.ggy gg,q f3 UNITS DEGREES N/VT AY M *W MO j t DEAD LOAD OF CONDUIT SUPPORT IS IN LOAD]NG 1 ' UNIT *G" +X DIRECTION'

-Y DIRECTION csw C45sFg4 s x,r @S it.WW

/, 2c oR f DEAD LOAD COMP GLO X 3. e BY JOINTS sJOINT LOADS' j "*

s Non X pK4.Y[.94YAFIN '

enEnsER LOADS

, Y t Ygqct,E so w T i w if @ A I P A-s

=

nery resfi:7 To sto6*l Mt. R3 FORCE X CON FRA P

! S FORCE L 1. S c ,

i s Y CON FRA P L 1.e FORCE 2 CON FRA P s MON L 1.8 ACAOFTJ W X CON FRA P 6 MOH Y CON FRA P L 3.5 -pArTA4M834% N b M

  • MOM L 1.8 MATE /edgX M2/N4 Z CON FRA P L 1.e LOADING 2 ' UNIT "G" -Y DIRECTION' #4 df/4/d3 N W K D I I# *

. Mm'M4 40 S80 *

  • DEAD LOAD COMP,,GLO Y -1.9 SY JOINT $
  • SJO!NT LOADS (T/SI 4 AO M S l

.s.

  • MON ~ I Y Z

SMEMBE't LOADS Sgg 4,Ap7g gw:WA S

S FORCE X CON FRA P L 1. e *"' (toe g 'f)

FORCE Y CON FRA P L 1.8 s EORCE k CON FRA P L 1.8 MM #

MON X CON FRA P

  • L 1.0 MOM Y CON FRA P L 1.e ~ (404D % 1)

MOM 2 CON FRA >

LOADING 3 ' UNIT "G" +2 DIRECTION' L 3 . e e-DEAD LOAD COMP GLO Z 1.s OY JD)NTS sJO1NT LOADS I $gg p)0T6 Aboff-NOft X Y 2 S

SMEMBER LOADS -

(44L%g,f,)

FORCE I CON FRA P

  • L 1. e
  • FORCE Y CON FRA P s' L 1.8 FORCE 2 CON FRA P L 1.5 m dry 460F'#

! 5 MON MAN X CON FRA P Y CON FRA P L

L 1.8 1.6-

@NO

'. X-16

ATTACHMENT K 3 5 INP'UT SKELETON FOR STATIC RUN t.ND LOAD C0!GINATION -

M"DITIID /. IN SUPPORTS

(*G" VAll!ES NtTr Knxm))

~

S MON 2 CON' FRA'P L 1.9 -

SG ME 00 f 3 LOAD COMB 4 ' DBE LDADING + x DIR' COMPONENTS - -

GAWy tj

.1 ,_____

LDAD COMB 5 'DBE LOADING +Y DIR' COMPONENTE -

2 ......

LDAD COMB 6 'OBE LOAD]NG +2 DIR' COMPDNENTS - . .

3 ______ -

-j WWES LOAD COMB 7 'SSE LOADING *X DIR' COMPONENTS -

1 __....

LDAD CDMB B 'SSE LDADING +Y D]R' COMPONENTS - '

2 ......

LOAD COMB 9 'SSE LOADING +2 DIR* COMPONENTS - g 3

  • L PR[N E DAD]NG DATA g F STIFFNESS ANALYSIS REDUCE BAND A LOAD COMB 10 'OBE SRSS 4 5 6' RMS -

4 56 LOAD COMB 11 'SSE SRSS 7 8 9' RMS -

789 STRESS RESULTS ARE TO BE COMBINED AT STRESS LEVEL s F01.LOWlNG LOAD CASES 1200 SERIES ARE OBE 1 2000 SERIES ARE SSE LDAD COMB 1981 'DL+5RSS 4 56 10BE)* COMPONENTS -

2 1.9 le 3.8 LDAD COMB 1922 ' DL-SRSS 4 56 (CBEl' COMPONENTS -

2 1.9 19 - 1. 0 LDAD COMB 2601 ' DL*SRES 7 8 9 ISSEl' COMPONENTS -

2 1.9 11 1.8 LDAD COMB 2002 ' DL-SRSS 7 8 9 (SSE)' COMPDNENTS -

2 1.0 11 -1.e LOADS LIST - f f g p $;Q ,9,7,,j;.y R3 le TD 11 f PRINT LOADIN3 DATA GENERATE RESULTS cpd ,yg 7%g / .h LOAD LIST -

1801 TO 1e02 2001 T O 2 C C 2 *..

COMBINED ALL LOAD LIST ALL DUTPUT DECIMAL 3 OUTPUT BY JOINTS 1 DUTPUT BY MEMBERS LIST DISPLACEMENTS, REACTIONS, FORCES .

SECT 10N FR NS 2 e.0 1.0 SROUP *LLM* DEFINIT 3DN ME M B E R S AL L B UT _ _ _ _ _ _ ___ _ __... . _, " W6 mW END DF GROUP DEFINITION LIST SECTION STRESS MEMBERS 'SLM' s DL COMB eBE (FOR CHECK WELD)

LOAD LIST -

1801 TO 1222 LIST FORCES ENVELOPE MEMBERS ............__.

s DL COMB SSE (FOR CHECK WELD) ~ g m gap /

LOAD LIST - y y c ,y4,gg,7; Q 2ect TO 2222 LIST FORCES ENVELOPE MEMBERS ,,,,,,,,,__... .e----

PARAMETERS

' CODE' 'AISC' ALL i ' VERSION' '69U1' ALL ,

' TORSION' 'YES' ALL 1 'CB' 1.8 ALL

'ASF' 1.6 LDADINGS 2001 TO 2002

'FSHMAX' O.5 ALL

'FACMAX' B.9 ALL O

K-17

I ATTACHENT K 3 - INPl?T SKILETON FOR STATIC RUN AND 24AD Core 1NAT20H - l

@ IF23D / IN SUPPORTS (*G" VAILMS Nor KTI%rfD)

~

l l

FATnAI- 3.9 ALL I '

F BnAl - S.9 ALL PAAAncTcRS ,~

tv ____ . ncn __________ .

tv ______ acn __________ s tv ______ ncn __________ p es P u

'Lz ______ ncn __________ 6 tz ______ nca __________

tz ______ ncn __________

env _____ acn _ ________

Cnv- nen -

enz Z._- ncn _-

enz _____ .nen __:_::: _ _____

e6 r r'f4v g/c7 l S: ------ Z - ----

c"4'f:7TLmf4/p7 xv ______ ncn __________ -

xz ______ ncn __________

xz ______ ncn _- _____

xz ______ acn __________

mtcr ________ nrn __________

uNu c r _ _ __ _ __ nc n ______ __ _

unucF ________ ncn ________

LOAD LIST -

1981 TO 1822 2001 TO 2002 CHEcx CODc ALL BUT ,,____,,_,,____________ _ -

240 UMI 4 GENEPATc TRACE 6 RcSULTS FOR P A! LING nEnBERS M tvll'. d# T /f W ,,

FINISH NOncSSAGES coce ggfcg R3 q ..

K-18

N K4 - N N FGt M M 6

v e

y V P

,

  • PLE ASE USE ' IN-MF. SML' f45 THE SMELETON G

.___ DISM ID s INPUT FILE NO. _

DATES s USER .. SANNER NAME :

STRUDL ' CPSES 81' ' _ _ _ _ '

JLf'T I . D s CPSS3 ELECTRIC CONDUIT 8 JUNCTION P0X SUPPORTS s' input file no. ,,,,,. ._,

TYPE SPACE FRAME ALPHANUPIERIC 2DENTIFIER TREATMENT FY CHARACTER CDPFAMISDN UNITS INCHES, MIPS, DEGREES, F AHRINHE I T, LDN, SECONDS SSHIFT COOR SYST 192 TRA x Y r -

,. tse mm m*

s ROT R1 A2 R3 _ Co$444WS W#fd sJOINT COOR SHIFT BY 101 5(47Cc7 cocD JOINT COORDINATES g gggg p;rr;j e , , , M Glo6 AL enoao.

4 , ',* , CAOSF 097 d's 5 . . .

$fwdTCootW G . . . cgesu u b wks^)

7 . . . ujg.

S . . . .

9 . .

10 . . .

1 . . . Jy' 77Thp/) 7 /7 12 . . .

13 14 .

ckk'Od) h N h /

15 . . . R2 16 . . .

17

{ le .

19 . . .

l 10 . . .

25 . . .

l 22 . . . .

. 33 . . .

24 . . .

25 . . -

26 . . .

27 ,

28 . . .

29 . . .

l 30 . . .

(

33 . . .

SUPPORT JOINTS - .

JOINT RELEASES l - F,, M..,, -

l

.F.. N-.- MWY

~ KF x

. MF1 -

MNr MMY KM2 SUf/D#I MFX MFY MF2 -

EOY KNX KMY MNZ

._. .,_ ,_ KMX MMY MMZ _ OVLY

... _ MM X MMY MMZ b5M5kR"[N3!DE S I .

t K-19 R3

1 N X4 - INPLTT N FCR F1EU,DCY RN I

( .

P 6

= 3 '

F -

4 5

f P

& G 7

8 9

18 11 12 13 14 15 16 17 18 19 28 21 22 23 .

24 25 26 27 28 29 30 31

,, R2 k TYPE EPACE TRUSS MEMBER INCIDENCES ,,,,,, otf>T Fat blAff A4A o W p v/4/ _ Icat)

NEMbER RELEASES F,_H___ M gg pyggy r 4 p~~

F__H.

p CordSTArdTS

~~~ ~~ ~~ 47 7DN

    1. 47 f ,,"g

[

E 29.E3 ALL 3 POISSON e.3 ALL l' DENS 9.284 ALL G I1.2E3 ALL g CTE 0.9000065 ALL FYLD 36.9 ALL BUT 46.0 _

CONSTANTS i DENS SE-3 m ems CONSTANTS BETA ,,__ MM M[

BETA ,,,,_

BETA ___

[ HEMBER PROPERTIES l

' TABLE 'STEELW' 'W._X___' '

_,,,,,,_,,,______ T ABLE ' TUBE S Q R ' 'T_.X_.X _'

____ TABLE 'TUBERECT' 'T__X,,.X..'

, , _ , , _. TABLE 'STEELC' 'C X ' TYF E ' CHAfJNEL'

_ , , , , _ _ _ TABLE 'STEELMC' 'MC X '

1YPE ' CHANNEL'

_ , , , , , _ _ YABLE ' STEELL' 'l _'

_ _ _ _ , , TABLE *ETEELL' 'L_,,____'

_ , , _ _ _ , _ _ _ _ _ , , _ , , , , AX 100. AY 100. AZ 100. IX tees. !Y leeg. II 130s.

~~ AX' AY A2 IX XY 3Z -

SY SZ INERTIA OF JOINTS LUMPED INERTIA OF J0!NTS FACTOR 1 ADD s INPUT WEIGHT OF CONDUlTS / SOIES IN POUNDS ( LDS 1 K-20 1 R .'

l

ATDCi'M K4 - INPLTT SIG2EIQ4 PQR 6 M 6

v LINEAR X ,,____ Y ..,___ Z g V

____ _ LINEAR X,__ Y . ,_ _ Z _ ,, ,

_____ LINEAR X ____,, Y _ _ _ Z- (>*

_ _ _ _ _ LINEAR X ____ , Y ..,__,, 2 _____ g

______________ LINEAR X _____ y _____ z _____

PRINT STRUCTLAAL DAT A STEEL TAKE OFF ITEN!!E PLOT DEVICE PRINTER WID IB LEN 10 FLOT FROJECTION XY PLOT PROJECTION XZ C4 DSS od7~

PLOT FROJECTION YZ NNO#

GROUP '& RET

  • DEFINITION NOT #4G'b J01 ALL ACTIVE -

DYNAMIC DEGREE STATIC JOI DEGPEE OF FREEDON

'& RET' XT,YT,2T END UNITS CYCLES

., ASSEMBLE FOR DYNAMICS MODAL ANALYSIS MAX FREO 48.0 LIST DYNANIC EIGENVALUES LIST DYNAMIC E]GENVECTORS LIST DYNAMIC NORM PART FACTORS llNITS DEGREES FJHISH NOMESSAGES R2 1

i I

l l

I l

l 1

i l

l K-21 R2 l

l

Gemaral Instruction for Design Project Identification Verification of Electrical Conduit No. SAG.CP29

& Box Supports Rev 4 ATTACHMENT L l

lR2 ALLOWABLE NORMAL FORCE FOR STEPPED l

TUBUIAR SECTION CONNECTIONS AND FORMULAS FOR FINDING PUNCHING SHEAR

\.

i 3753M l

N

ATTACHMENT L - ALLOWA3LE NORNAL FORCE FOR STEPPED TUBU lR2 i

Allowable Allowa ble

%in B= Normal Main 8= Allowable n.aber Normal Main 8" b Weld Force Member b Normal Weld Force Member b Weld Force t,XD D lbs/" t,XD T lbs/" t cKD D lba / "

.5 792 .4 4507 .43 3/16 x 4 .625 845 1/2 x 5 .5 1257

.75 10$$

4507 5/16 x 7 .57 1282 76 4695 .71

.875 1811 7 5366 1527

.5 1408 .8 F 2611 7042 .43 1/4 x 4 .625 1502 F 1811

.75 1878 528 3/8 x 7 T 1847 3/16 x 6 .5 528 K 3219 F .71 2199

.5 2200 .83 597 F 3760 835 .375 5/16 x 4 .625 2347 F 396 T 939 3/16 x 8 .5 396 2535 1/4 x 6 .5 939 .625 422

.875

.4 5030 634 F

.67 - 1061 1664 W 905 R2

.5 .375 704 3/16 x 5 .6 634 F 1467 1/4 x 8 .5 704 660 5/16 x 6 .5 1467 7 754 ~6T5- 751

.67 1659 M

.8 1609

.4 990 1127 F

Y 2600 2112 5/16 x 8 W .5 1100

.5 1100

' 1/4 x 5 .6 1127 1173 3/8 x 6 .5 F

2112 2389 W 1173 T 1341 F ~IF 2515 3743 .375 1584

.8 1760 F 1760 452 3/8 x 8 .5 1584

_. 4 3/16 x 7 .57 462 .625 1690

.5 1760 .71 5/16 x 5 .5 1833 549 N 3622 i .7 2095

-.86

.43 940 X 2817

.8 804 1/2 x 8 .5 2817

.4 2751 1/4 x 7 F 820 .625 3004

.5 2535 F 977 ' 875

. 6436 2535 .86 1671 3/8 x 5 .6 2641

.7 3018

.8 3961 l

l i

L-1 3753M l

AITACEMENT L - FORMULAS FOR FINDING PUNCHING SHEAR lg2 i

Nomenclature for stepped tabular connection;

. branch number is perpendicular tr., main number. The configuration is shown below.

b

- Minor width of structural tu;;e branch member (in.) ,gb_,

I- a tb - Thickness of brauch member ().n.) , , ,

I 9 "O h D - Width of structural tube stic member (in.) i I I l- A2 t e- 1hickness of main member (ir ..) t h - Beta ratio, (b/D) box sections C - Depth of structural tube main member (in.)

C

, Eq 1

L b f I i L-2 3753H

, h, ,h ,,,_

Il'Ik/y ASCO SERYlCES ATTAcMENT L INCORPORATED g,4 ,,,, ,j[

c= = o. ev

=* ll-l4 TgpjAS UTEITIES GENERATINGSQ,,.93 l

cuc=v 00MANCHE PEM UNIT 1

~*' S*0t^ 00",00;T CE5iGN ^vthir ATION

,,,-1060LAf- m +rer CDWNE.enog 'D6ml

,b. ~

i / hp : A,W,5. Rl F~~f9 heer 10,9

.{-* W wer u ;f l Aus40LefonchA SW 1

\ly= $ - Q S. ( ba><. \le )

tc i Wh+G

/ Fy =

Fy

=

3Mc.Fy hu.ic- \ r = o.WG( % )

  • D P

'~

k 6 T L-A 5)DD @ PJ lf

  • 2tc. ,9'b 3 y g, cs. o g By= 1.0 FvF @ * - 6 a g te N. Test.e WWW 2F 3 c seco =>a m u -

ppg g >,s

@ l 11 Fo6 '19 cop &, pa.g UfE 1.2 e U=1,0 g.' = j.o Fra U 6 44 To @ve' e re 76 - e

%, , a = 1.f-sJ Fag U > 44 .

1n r"*

b*8R**N* FvF CoH9r,venve temW use-p 4 o,7 Fog At t- U vat 0 M 3

d = 0 ) C.7 p 3 ) (. 3.v438.a) -i BR $ 6: = 90. 9 E

ve g,2.'Ig og ),l?S.9

.g ,

c._. 12.91, j_,,_ 7,g 7.s

,,, m

w. gem. Wets 6Rce ra.Comde 4 04/ )

anuns li-3

EB SCO SERYlCES INCORPORATED

., C UfA/ e.,. 8-/ AMACME.N7 L 1

. ,[ ,, 7 #

c u o.o f S k E FA R M cuc=, GENERATING CO.

  • r8 ** M ' O "U: M '

COMANCHE PEAK UNIT 1

} ,, ,,,,,

S4910 CONDUlT DESIGN VERIFICATION

~  ;

.,ce, _6TEPPED TUP 3UIAR. AEt T CONN  !

t

_4 .

- . - - b

a. 4

. ACTIN A PuncHIN6 SHs 6Tacs iw FAM N . .M kM S ER

.htH MEM

.ks y.. .

j g,yg

.3&,Ts Yg.= g i P t es

' m b ,

Ka.

K s ,i T

kt N/per yv..i./,,,ri ...

/

/4

' y

W W E o ' ~- p P b

u ,i t. n e w s ,i r r / 1 i '

l . s '

' s1 n,

( ".

_.Dl i .

\0 .

' by + . b l Ste m 44

< '[ 'sTitE44 t

I .(

.. -- \. .

f GEFAPPLi c.A.g LE Fo P-1 i

s DW 87 PLANE WPi@

I. MAN MENhER '

Ts' k= b'N' DN8 g

AFTEFs 5vB5TiTuTio9 THE-W Y=6 '+ +88

.T _ kb- f^Nt / 7 . 4

~

& W f ~t e V lt6fW9 lt % N8 C.ALCDLA.TE-p Actin 4 PuNCHIW6 $H5M PDRCE- f N Maid MEM BE-g (V"T )t C sE::. t, Vg(A.tt aw. wontd4L weto P

..... Force fre m sw.I.-2 l'

4F 1. Awt Cope DH 19 .<7EcT 10 5 -

1. Hsw Awk cops- 4pscett> TN %6H of TuSLIW \

w i. .

4T94tT BY O. IbloDEeTT-  !  !

1,- < '

.- , J

Gereral Instruction for Design Projset Identification

-Verification of Electrical Conduit No. SAG.CF29

& Box Supporte Rev 4

\

ATTACHMENT H l

lR1 WARPING STRESS TABLE I

l l

l l

l l

1 3753M l

ATTACHMENT M.

SUMMARY

OF WAAPING STRESS TABLES

/*

A. Channal Sections Warping stress table for channel sites listed below have been developed for different points (0, 1, 2, 3 see Figure 1) on the channel section for various cases (3, 6 & 9) depending on the end condition. These tables are compiled in the Unit il Design Aids and may be obtained from your group leader.

CHANNEL SIZE CASE END CONDITIONS C6 x 8.2 9 M C4 x 7.25 9 CASE 3 C6 x 8.2 6 ot t _ (

C4 x 7.25 6 MC3 x 7.1 6 L "* t MC6 x 12 6 [ i[w  ?

CASE 6 MC6 x 18 6

\ L MC3 x 7.1 9 MC6 x 12 9 h / p CASE 9 MC6 x 18 9 (y U C6 x 8.2 3 L .

l C4 x 7.25 3 Figure la Stresses of the following points are calculated:

WARPING NORMAL STRESSES I O ' E

' 6we(SIGWO) at point 0 dv/(SIGW2) at point 2 3

WARPING SHEAR STRESSES Tas(TAUW1) at point 1 8

  1. e gr Tvi (TAUW2) at point 2 l

Taf3 (TAUW3) at point 3 f

M-1 3753M l

AZTACBMINT M. WARPING SMISS TABLIS B. Composite Channel Sections l

I

  • Warping stress tables for composite chancel sections are ( R,1 compiled in the Unit #1 Design Aids (Calculation Book No. l SUPT-0040) and may be obtained from your group leader. l

/

I l

I t

I t

M-2 37531

General Instructica for Design Verification of Electrical Conduit Project Identification

& Sox Supports No. SAG.CP29

. Rev 4 9

ATTACHMENT N

[

IR2 FOOTPRINT LOAD (FPL) AND ENGINEERING EVALUATION l OF I l ,

SEPARATION VIDIATION (EESV) GUIDELINES I

\

i l

3753M

i ATTAC10ENT N1 - MINIMUM SPACING RZQUILEMENT l

(

Deleted (Refer to Appendiz 2 of the Unit 1 Design Criteria SAG-CP-10) 9 H-1 3753M

(Il }

(, mostn-MINIMUM SPACING REQUIREMENT

( LOADED RICHMOND INSERT TO , LOADED EMBEDDEO PL ATE) i -

j.

10 , $8 . l/ g l0ADED NELSON STUD CLOSEST E. ,

1, g,3. t' , gQ' NN .. .

._ g .

_.. TO INSERT

- - T DR . .

'I

~

gog 1 ,4 B.T*).; - i .

g g

. d .

I k '~ hl '

.l .I CENTER OF I I h -

LOADED -- --

RICHMOND INSERT '

  • d .

AT ' STRIP' EMBEDS - NELSDN STUD LOCATIONS KNOVN 3(  ! . -

1 . .

' EDGE OF LOADED

. h EMBEDDED PL ATE '

\

FOR l '( R. I. SA' IN FOR 1j'p R. I. ' 13l' . MIN -

4 j

C0F LOADED -

, RICHMOND INSERT.

4 (- .

AT ' STRIP' EMBEDS - NELSON STUD LOCATIONS UNXNOWN AND AT 'SPRE AD' EMBEDS (4x8 & L ARGER)

N-2 9

--..,-,--y- .,2, e.w-e.---,e -

-,-,-.---..--..,--w,,--,-ww---.y. - - , - - . _ - - - - . - - - - - - . . - . - . . . - - - , ,

ATTACHMENT N3 - FOOTPLINT LOAD TRANSKITTAL FORM IR2 i

I FOR FOOTPRINT LOAD TRANSMITTAL FORM SEE lR2 FIGURE 7.1 IN PRCCEDURE ECE 5.11-14 i

h 3753M N-3

ATTACHMENT N4 - GUIDELINES FOR EESV AND FPL FORMS lR2 I I I I l CASE l l CONDUIT l STRUCTURE l EESV l FPL NO. l MINIMUM REQUIREMENTS TO BE l l SUPPORT lBY OTHER l FORM l FORM IUSING- MET TO RELEASE DWGS. TO DCC I l DISCIPLINE l l l PENDING APPROVALS OF EESV/FPL l l lUSInc l l l FORM l l l 1 1 I

I I NILT1 1 1 11. COND. SUPPI HILTI l 1 ,

OR l l NOT ll SHOULD BE OK

1. l HILTI ' RICHMOND lKEQUIRED l REQUIRED 2. MEIT GUIDELINES OF l

l INSERT l l SECT. 11 l 1

3. PUNCHLIST THE SUPPT. l I I l
1. HILTI SHOULD BE OK. l l l EMBED l l NOT l2. SEND DWG. COPY 70 l
2. l HILTI l PIATE l REQUIRED l REQUIRED l STRUCI11RAL EMBEDMENT l l l l l l CROUP (SEC) (IATER) l l l l 1 l

l l l REQUIRED 1. MEET GUIDELINES OF l l EMBED l l l SEE l S ECT.11 l

3. 1 PIATE I BILTI l REQUIRED lSECTION l2. PUNCHLIST THE SUPPT. l l l l l 8.2 l l l l l I

l l l l REQUIRED I eHOWEVE, IF OTHE l l EMBED l EMBED l NOT* SEE l DISCIPLINE SENDS THE EESV l

4. I PLATE PIATE l REQUIRED SECTION l FOR CSDV APPROVAL IT SHALL f, I l l ,

8.2 l BE PROCESSED FOR ESTAB-l l l l lLISHED GUIDELINES. lR2 I

CASE  ;

CONDUIT l l EESV l FPL l MINIMUM REQUIREMENTS TO BE I NO. ,

SUPPORT l CONDUIT l FORM l FORM l MET TO RELEASE DWGS. TO DCC l IUSING- l SUPPORT l l lPENDING APPROVALS OF EESV/FPL l l l USING- l l lyogg , l 1 l l 1 l ,

I l REQUIRED l l lEMBED l EMBED l NOT l SEE l l

5. IPLATE l PIATE lKEQUIRED lSECTION l l l l ll l 8.2 ll l l 11 l '

I l l REQUIRED ,EILTI BOLT SHOULD BE l EMBED l l NOT l SEE l ACCEPTABLE I

6. l PLATE l HILTI l REQUIRED lSECTION l l l l l l 8.2 l l l l l

i I l .

HILI' BOLTS FOR BOIli l l l l NOT l NOT lSUPPTS. tiHOULD BE I

7. lHILTI l HILTI l REQUIRED l REQUIRED l ACCEPTABLE. I l l l l l 1 l l THERE IS l IIREQUIRED ll l l EMBED NO NOT* l SEE l
8. IPIATE SEPARATION REQUIRED SECTION I l l VIOLATION l l 8.2 l l l 1 I I I I N-4 3753M

ATTACHMENs N5 - SEPARATION VI0lATIONS TO BE DOCUMENTED 01: EESV CAADS FOR .THE FOLIAW1NG CCND2TIONS CASE I *

. - .L USE ETHOD 6 0F THE 8 '

N PROCEDURE DSCH:S-15.

' 2.DIK A OR 8 & C SHoutD S .i e-HILTI BE SHOW ON DWC, . DIK A o Jl 1 er I IS METERA8LE.

- ~g  % \ WDC N T'

' -EMBEDDED R N

Ex!STINO MLDED ATTACWCNT  !

( PIPE SUPPORT CA OTHER DISCIPLIE)- j r STUDL TTP)

S > Y .

r CASE II o o_ I. DIK A OR R & C SHOUf.D

, BE SHOW ON DWC. . DIK A -

IS PREFERA8LE.

$ i S~ y c HILTI 2. Em. P.,70 SE EYN.uATED BY g , STRu"uRM. E N EDE NT GROUP.

u

\ EXISTING PIPE SUPPORT OR 1 DTHER DISCIPLINE SUPPORT

-ENDDED g ..

R2

% CONOUIT SUPPORT g y r STM TYP) , ,

F -

CASE III EXISTING PIPE SLPPORT OR

/QTHER DISCIPLINE SUPPORT

1. DIK A SHOLA.D SE SHOW ON DbC. .

O

2. FOR VIOL A ON SETWEEN TWO HILTI 80LT USE ETH00 1 HILTI OR AND BETWEEN HILTI & RICHWND ND INSERT USE K1H00 2 0F THE PROCEDURE 080H:$-15.

CONDUIT SUPPORT -A- HILTI

~

N-5

AZTAOM2TI N6 - SAWII EESV FGM O

d R $f f. F.3.E.5. EESV _ 7 52_ ,

ENGINEERING EVALUATION OF SEPAAATION V10LAT10N (EE3V)

NANGER 1 MANGER 2 A. SUPPORT NO. [23 52 6N.E1LL.1 of tH Rp uben c4 7 l B. MANGER TYPE (IF APPLICABLE I.E., l CONDUIT SUPPORT CST-18) f s M.14 ,T l C. SEPARATION PROVIDED 3 h b .3 Y 3E 3 T* '

c6 5.ve *S9G L '

O. ACTUAL LOADING ON BOL Tr .S01 - sraarpWmTLoes mTnugp IN QUESTION Sr .I12 el(A E. METHDD OF EVALUATION hF7 u ob W0- i fW svv- doo#

F. RESULT 5 OF INTERACTION CALCULATION ' U W'I ST 586 G80@

( S. APPROYAL 31GNATURE 1 bob 8 er.) /If6 AT f.

4 G J <

R2 REY.NO. By c r"It/8//6 RUERENCE: CF.EP-4.3 - ATTACMENT 6 EW D/ I#F*I i

l

$ y ( gg a yog sygit gong (d.S.K:6. s S Y \

fM SUPPM T A04 809 PIpr sy!!CLT No<

CZERE HV1/6 047 C23#2 HV S]46-{ pf 2.ecnriaa : &

,- he rl-hiy, ' , -

}~l(RICRHbMD ZNSERT fok surrocr po.

DD'A 106 - Alg. csgg ELETAT/0W V/Ew

(

4 N-6

+

Gencral 11structico for Design Verification of Electrical Conduit Project identification

& Box Supporta No. SAG.CF29 Rev 4 1

ATTACHMENT P l

TENSION SPRING CONSIANT POR ANCHOR BOLTS t

I I

3753M

~

'vPTELEDYNE 1

ENGINEERING SERVICIS g .

ATIAO NE2R P- TD2SICN SPRDC CQiSTRE FOR N N Anchor Belt Shear and Tension Stiffness May 25,1979 R3 HILTI KWIK BoLTi '

H1 LTl S uPER- K h/' K S dL T S P1

ATIACHMENT P- 'IINSICN SPRDC COG 7NTI FDR McCR BCLTS  !

WTELED(NE  !

ENGlNEERNG SERVICES  !

  1. I

( .

i l

Bolt stiffnesses for tension and shear are sumarized in the follow-ing tables. The data was collelted from manufacturers tests, FFTF re-po'rt, and Detroit Edison testing.

i The stiffnesses were calculated by determining Pu, the ultimate tensile or shear load, and dividing it by an appropriate factor of safety (fourorfive). The deflection 'at 4 or 5 is read off the loading-deflection curve. P The ' linear' stiffness using 4 or 5 is then calcu-lated. If the load-deflection behavior of the bolt is better approxi-mated by a bilinear curve in this load range then two slopes were cal-culated. The load and deflection at which this change in slope occur is tabulated in the last column of the tables, g3 ome of the data indicated that the bolts are rigid up to the al-lowable design load. Actually, the measuring devices used to obtain this data may have not been sensitive enough to measure small displace-ments. For these cases the stiffness is based on the lowest load to have a measured displacement. .

The raw data used in these tables are on file at TES and copies willbeprovidedtoindividualutilitiesuponrequest. Note that a substantial amount of ' scatter' is evident in most of this data; this fact should be considered in using these value's for analysis.

O R.2

yt;R MOOR IKLTS V

",.PTELECT/NI ENCOLC. EOdG S.'_r.'MC23 a ,,.._ i '

w o.ev.4/_.p.e4n- I rr-71 _ . , i 1,

reu m- Va /

i fed Nderf,b N Cirrit4*] /W jin R

. Pe y .. r

,I

, q ,/ l LOAb /

lK' bKum >

l

/. i

'I y _

s e_ Pv y.4 r bETLECTION R3

( - TYPICAL oM-bUtEcrisW Cu&E

" ,in n ri n r.i.u hMs. th bt14.il stL sk ,

(I) 44

.__ L.-

I

,, ///do? '9 LM3 knit .4a t ' '""

M4n s16 btshA;1,t/5VT -

(1)! 6 l L4M .

l R, a /- -

/

/

(;y va

.?g.

r (e.crwaarevovxms) bifiELTooN (n) w-.0 r L (e ect n:bl L

pt.h btT tCTtw CWWE Sitor!A4 AlY!b GE//A5'IM i

l P3.

O:

) . -

' s

't eb .

api

)l o(

) ) ) ) ) ] )

.SK ) ) ) ] ) 2 2 8 l 5 1 7 5 1 0 3 8 3 5 7 f nr 2 1 2 0 0 0 0 2 0 0 0 0 0 0 _

D eia e 0 0 0 0 0 0 0 0 0 0 d.0 0

F.

( en ( ( ( ( ( ( ( ( ( ( (

0 N 9i (

drl 5 O 0 0 0 0 0 0 N aal 0 SI 2 0 0 6 2 0 0 0 0 0 T ohE 1 3 3 5 1 4 4 0 5 0 0 F LC 4 9 4 0 L r 2 T T

f o c 7

S T,

)

G B n 0 0 0 0 0 0 0 0 0 0 0 0 i

9 0 0 0 0 0 0 0 0 5 0 2 R

O

/

s K 2 2, 5, 0, 0, 5, 3, 7, 0, 0, 2, 6, 8, H b 9 5 0 6 6 3 1 5 0 1 7 6 C I 6 2 8 7 6 5 - 5 6 3 4 5 N ( 1 2

A K ~

R r O a 0 0 0 0 F

e 0 0 0 0 0 0 0 0 0 0 0 0 T n 0 0 0 3 0 0 0 N i 1 0, 0, 7, 0, 0, 3, 0, 5, 3, 0, 0, 1

7, A l K 1 0 5 2 7 3 0 0 4 3 6 T

S i

B 2 8 4 1

1 6 1 1 1 2 1 1 7 1 5

8 I 2 G

C t

f O ._

~

I G S K)

D I

M n 0 00 0 0 0 0 0 00 0 0 0 0 0 2 0 0 0 f ri 7 0 0 0 0 0 0 0 0 0 R 2 8 0 6 2 0 8 P

T a/

es 3, 9, 0, 3, 0, 0, 0, 0, 0, 3, 0, 9, 7, 2 0, 8, 0, ' 8, S S nb 2 49 55 24 0 15 01 35 8 1_ 8 14 7 8 4 i

T i I 1 1 2 9 2 9 4 5 0 6 L L( 2 1 1 1 1 3 3 9 c 1 2

" [Q N

S S

K 6

T I u 9 1 W f4) 9 3 8 R

9 n 1 0 0 3 0 04 7 8 50 06 46 0 2 1 45 6 7 5 0 1 1 1 1 0 6 0 4

- I T

i

( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 P t i

A. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P-H 6

_ D 9

)

s O u h 5 3 704 0 3 40 0 04 6 7 0 5 0 0 0 5 0 2 2 0 0 5 2 3 4 7 8 8 5 5 7 8 24 14 7 8 1

P4T 1 1 0 5 7 D ( 1 4 7 4 1 8 T 1 1 1 1 1 2 3 3 A

)

s uh 0 4 5 7 0 6 5 2 0 5 5 2 0 6 0 0 0 4 0 5 0 5 0 0 0 2 0 5 0 5 0 0 0 0 0 0

Pt

( 9 4 1 17 2 3 3 2 2 2 3 4 94 9 3 2 1 3 8 3 74 75 6 6 8 9 26 5 5 6

1 1 eh t t e g) rni ces nrp 0

0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- ot(

CS 0

2 0 4 0 6 0 2 0 4 0 6 0 2 0 4 0 6 0 2 0 4 0 6 0 2 0 4 0 6 0 2 0 4 6,0 dh nton) 8 8 8 8 4

/ / / / 4 dci EO(

1 5 5 5

/

1

/

1 1 2 1 4 2 6

1 e) 1 rn ,

i nii 4 8 -

2 l S( / / /

1 3 1 I;

,!Iljifj

+ .-

ATDOMNP P-

'1DhN SPRING CCNSTMP H]R MC1K)R BCE.TS n.x l

l (-} lillTI KWig. BOLTS f(R$10N t-

- f 3.'

g U8:11 [ + cil. Concretc Fu --

5 tic litisth Strength Pit T O,T P58 3illne.tr K (Ibs/in) loJ.I (th fl.) at (in) (in) (psi) (ths)

Linear K -

Charge in Slope (ths) (in) (Ihs/in) F. y Ky

5/3 2 3/4 2,000 for Biline.ir K (ib. ) .
I 6,000 1,500 0.015 100,000 ~

4,000 6,900 1,725

6,000 0.016 107,800 I 8,200 2,050 0.006 341,700 .

i 7 3/4 2,000 10,000 2,500 4,000 0.025 400,000 17,000 4,250 0.030 141,700

, 6,000 21,000 5,250 0.105 50,000 138,200 18,710 3,800 (.0275) 3/4 3 1/4 2,000 8,200 2,050 4,000 0.007 292.900

' 10,500 2,625 0.023 114,100 -

6,000 10,700 2,675 0,018

' 148,600 30,000 296,900 ,

9 1/4 2,000 15,700 3,925 0.10 300 (.01) ,

4,000 38,250 700,000 24,500 3.421 I 6.125 0.070 87,500 262,500 - 17,500 3,500(0.005) 6,000 22,375 5,594 0.03 5,250 (0.02) 186,500

.' 1.0 1

4 1/2 2,000 14,300 3,575 0.019 4,000 16,200 188.200

4,050 0.01 405,000 6,000 21,600 5,400 0.025 216,000 - '* R3 10 1/2 2,000 16,500- 4,125 0.02 4,000 206,250 '

27,000 6.750 0.045 150,000 l 6,000 35,750 400,000 53,846 5,000 (0.012) 8,937 0.23 38,900 650,000 I

11.100 6,500 (0.01) l 1 1/4 5 1/2 2,000 18,400 4,600 0.099 51,111 -

75,000 32,000 g 4,000 23,000 5,950 0.165 3,000 (0.04) 6,000 36,060

, 33,500 8,375 0.180 46,527 J

160,000 28,226

! 10 1/2 2,000 26,000 4,000 (0.025)

  • 6,500 0.160 40,625 88,808 4,000 40,500 10,125 21,739 4,000

' 0.26 38,942 225,000 23,437 6,000 45,000 11,250 0.095 118,421 340,000 39,285

- 4,500 ((0.02)0.'045) -

8,500 [0.025)

, , r i

1 ng "sc TF1 ITWPF

ATDQ9ENT P-TDISIQi SPRING CDISDWP IVR ANCER BOE.TS -

s r ' * "3.* -

Hil.TI K'Jtic BOLT 5 SHEAlt Boft E6fd. '

Concrete -

  • i 'Pu

, Sire Scoth Strength , Pu  ! 4 a8 P.!

4 Linear E Cillne.ir K (Ibs/in) Loid (IMl.) at (in) (lu) (psi) (Ibs) '

. Change in Slope

('ths ) '(In) (1hs/in) 73 K2 for Billnear K (Ibs)

I

'l/4 1 1/8 * . 2000 2230 '577 l O'090

'6,'194 i 80;006 i 4,'5l11 '16(;00?)

O

' I l 4000 3400 2870 '0?O66  ! '13,'182 "

{ 20;000{ 12.241  ; 160 (.008) 6000 'O!042

~4050j 31012 l 24l107 l l -

! 2 5/8 2000 ' 1 Il750; '437 'O!070 '6,250 24),'16'7 ', '4;094 '

! ' I 175'(0.006) 4000 ~2700 I '675 'O!018  ! 37,500 '130,'000 ! 25,937 6

~

! 6000 :2300 ' 266#(.002)

'575 'Of01'4 'VI ,'071 80,~000 #

,3/8  ! 3'4.'583 ~160 (.002)

I '5/8 l' 2000 f

3904 '976 , 01060

'12,200 3D,357 ' ,

~8,348

'425 '( .*0'14) 1 4000 '5100 '1275 '0104'4- ~

28,977 220,000i ~ ,

19,"881

, i 6000 l '6200 g .

440 (.002)

'l~550 '01048 32,292 75,'000 '

' l 28,410 l

! 4'5/8 2000 3400 300 '(.*604) .

, 7850 'O.'019 44,737 I 266,700 ' 25,700 I

4000 '5500 400 '(.60iS')

', 6000

'6600

'1375 '01040

} E75_ 18't,250l 18,'656 '

~

725 (.004) l '1650 *0 026  ; '63,461

~

' 125,'000 j 52,300 506'(.004')

1/2 21/4 . 2000 7400 ' '1850 l *01069 g 26,810 15,*500 '86,400 4000  !

l 900'(.'058) 1300l-2075 '010283 l '86,460 366,700 I

~46.h30'

'6000 9100 ' :2275 g 'lico"(.003) y 'O.956  ! 40l630 19,440 78,750 6 1/4 7000 l

700 '(J036) l 1900l2225 VJ069 25l000 I I4,il10 '86,54'O 4000 { Io06(1076) i 10400 l 2600 V.V20 1_30p 77,780 1 600J000 12061.*062) 6000  ! 11500 < 2875 V.V22

,  ! '130,700 l 255,060 76,790 5/8 2 3/4 2000 12200 ' 3')S0 ' ' ,

I808(.~006)

D.V72 42,360 '

4000 11800 2950 i U.0)1 268,200 1,000,D66 '

195,600 6000 12900 3225 U.025

' )000'(.bOI) 129,'000 8),820 166,l'00 900(.Oli)

+ ,

ATDODENT P-

'ITNSIN SPRING CWSTMFT FOR MOOR BCE;rS a, ., :

Q m ..r ?.

. HILTI KWIK BOLT 5ff[AR Dult [4ed. Concrete -

Po Slie Deptli Strength 3,4 Pu <

s (in) (in) (psi)

Po 4 Linear K Billnc.ir K (Ibs/in)

  • LoJif (Defl.-] at g

'(ths) (Ibs) (in) _(Ibs/in)

Change in Sicp.-

Ki K2 5/8 7 3/4 2,000 for Billne.ar K (Ibs) 12,900 3,225 .096 4,000 33,590 18,000 50,540 15.400 3,850 .026 148,100 6,000 15,000 3,750 850,000 89,580 900 (.050)

.016 208,300 850,000 1,700 (.002) 128,100 1,700 (.002) 3/4 3 1/4 2,000 13,200 3,300 .037 89,200 4,000 17,600 4,400 6,000 .020' 220,000 550,000 18,000 4,500 .060 137,500 2,200 (.004) 66,200 23,530 108,800 9 1/4 2,000 15,400 3,850 800 (.034) 4,000 .042 91,670 120,000 18,800 4,700 .070 65.910 2,400 (.020) '

6,000 21.200 5,300 67.140 250,000 56,100

.028 189,300 1,000 (.004) .

s 1 4 1/2 2,000 30,000 7,500 4,000 .066 113,640 1,000,000 27,000 6.750 .038 185,900 2,000 (.002) 6,000 177,600 700,000 30,500 7,625 .021 148,600 363.100 1,500,000 243,400 1.400 (.002) 10 1/2 2,000 27,750 3,000 (.002) 6,937 .120 57,810

, g3; 4,000 35,000 6,000 8.750 .105 83,300 600,000 37,000. 9.250 .045 57,500 3,000 (,005) '

1 205.600 650,000 150,000 l 1 1/4 5 1/2 2,000 37,000 3,250 (.005) -

9,250 .072 128,500 i 4,000 41.000 333,300 109,800 l 6,000 10.250 .088 116,500 312,500 96,880 2,000 .006) .

45,500 11.375 .044 2,500 .008) i 258,500 -

1.750,000 187,500 10 1/2 2,000 40,500 10,125 3.500 .002) 4,000 .130 77,880 33,330 31,500 7,875 .005 116,100 2,000 (.060) 6,000 49,500 92,650 12,375 .000 154,700 400,000 138,300 1 2,000 (.005) .

f 0

I

xracteerr P - 'ITNSIGI SPRING CINETDNF IUt MOUR BC13S

  • f 3' 1"

,HIL7I SUPCR KWIK 90L75 TENSION Bult Enhed. Concrete Pu Sire a p P,1- Bilinear K (Ibs/in) Lead (llefl.) at' 3coth Strength Pu T Lincar K

  • Change in Slope (la) (in) (psi) (ths) (Ibs) (in) _

(lhs/in) K1 K2 for Stilnear E (its) 1/2 3 1/4 1,500 6,350 1,587 .014 113,400 4,000 9.200 2,300 .015 153,300 6,000 13,600 3,400 .023 147,800 75,000 227,300 900(.012) 6 1/4 1,500 9,600 2,400 .050 48,000 4,000 15,000 3,750 .015 250,000 '

6,000 15,000 3,750 .010 375,000 1 6 1/2 2,000 21,400 5,350 .019 281,600 800,000 203,000

  • 2,000 (.0025) 4,000 35,000 , 8.750 .019 460.500 6,000 37,300 9,375 .020 468,800

. RI 10 1/2 2,000 35,000 8.750 '.140 62,500 -240,000 23,910 6,000 (.025) 4,000 48,500 12.125 .045 269,400 6,000 57,500 14,375 .030 479,200 1 1/4 8 1/8 2,000 28,541 7,13,5 .165 43,240 440,000 17,650 4,400 (.010) 4,000 43,000 10,750 .045 238,800

~

6,000 47,000 11,750 .090 130,600 300,000 65,380 7,500 (.025 13 1/8 2,000 41,500 10,375 .275 37,730 240,000 17,500 5,700(.02d))

4,000 65,500 16,375 .045 363,900 6,000 73,000 18,250 .060 304,200 387,500 137,500 15,500 (.040) wm rrwer

~

ATDCNENF P-1DESICN SPRDIG CGISTANF Ft)lt m m yI- -

8 Q.dr litLTI SUPER KWIK-Bet.15 Sit [A4 Bolt [m' ecd. Concrete Pu size Ocyth Strength A,a Pts (in) (in) (psi)

Pu 4 t.ineer E Billnear K (Ibs/in) -

L*4'8 fikfl.) JL (ths) (Ibs) (in) Chaa9e in Slope

( ths/ in)- Et K2 for Ellinear E (Ibs) 1/2 3-1/4 1500 10,000 2,500

.015 166,700 4000 11,800 2,950 .025 118,000 6000 14.000 3,500 .012 291,700 6-1/4 2000 11,800 2,950 .025 118,000 400,000 47,500 4000 15,400 3,850 .050 2000 (0.005)'

' 77,000 6000 10,700 2.675 .005 535,000 1 6-1/2 2000 19,200 4,000 .056 -

85.710 800,000 59,260 l 4000 26,250 6.562 1600 (0.002')

.059 111,200 , 312,500 79,660 6000 34.000 8,500 .062 2500 (0.008) 137.100 1.000,000 - 77,590-4000 (0.004) 10-1/2 2000 27,000 6.750 .075 90,000 -

- .R3 4000 32,750 8,187 .058 .141,200 500,000 107,700 6000 34,000 8,500 .055 2500 (0.005) -

l 154,500 '

1-1/4 8-1/8 2000 52,420 13,105 .200 65,530 f

4000 42,000 10,500 .030 350.000 916,700 208,300 ,

6000 39,000 9,750 5500 (0.006) -

.035 278,600 13-1/8 2000 38,000 9,500 .055 172,700 4000 47,000 11,750 .058 202.600 ~

6000 47,000 11,750 .065 180,800 l

General Instruction for Design Project Identification Verification of Electrical Conduit No. SAC.CP29 4 Box Supports tev 4 ATTACHMENT Q l

WWAsu mDING AND COMPESSIVE STESSES IN ANGLES j

(

l l

l I

3753M

~

.4N/ cded ,,,, 7-2r3EBA5CO $ERYlCES lHCORPORATED,

... .. e ' 4 0 .... m - # " *" -

x .,

cus=,

TgvAg irrn iT!gg ggugmA nug en

....ua.3"_..::'E<

\ , n e, COMANCHE PEAK UNIT 1

,,,, S-0910 CONDUlT DESIGN VERIFICATION

.)

A LLOW AfaLE B ENDa,LA. . STRESS foR__ A.N C,t.E. M d '. A x is 1. . t

. . .L

--- _ -- _ _m

"^ --- -

-._m -__ .

^-

. - - _ = _ =__: =

_4

_ _ -- h.__.

c il y _

f -

-~__

..Q et --

l -

-m -

._ __ i -

y, tt s .-

~

41 _ -_ .'- _

1 4 to

~

' f 6

j T -

_- I _- _-

I ( f- "-_ - -

- ~

g g  :

(

g R2 iq . _=_

) _-_ _

~_- _.

he g -

2 _.

.=, . --_.

_ - -_f-C Ml g

= __.

w

},

~-_-_

-T_

==_ _ = -

_a l

l l g3 _' 1_

~

s.y _

1'--. _ .

t!s _ _

t, . c is .

-...6 _

l e __ _ _- .

t

. j __=_-

,J 4 Ib. - _

f l =-.-

_-L _

-.--~u__ ~w_---

I x --

_-t l

'== c= . --

20 T - _"M $

_1' iw

---se.'

20 .50 40 h -

q 50 60 10 & 10 100 llc 120 llo le hPAQ . L. IN CH a.i m .

O-1 I

1

~

Et $CO SERVICES lHCORPORATED ~~

,, *

  • ENe.,,3-16-8 b hir 0 -

en.. e, M ,,,,, M ,, Z c u s ,, ,

ca,$4'kEXAS UTILITIES GENERATINCPOm Ob 'O

  • O COMANCHE PEAK UMT 1

,,,,,, y

' s 0910 CONOUlT DESIGN VERIFICATION ev

,,e, //A3i'lM// Az16DMd' smsr M -fat / MMAft?S/-/

, Rff 341/C .Tfffl 23f76W J/"AftXf d ///N.r7m/

PJM ' J24

_ MEN 9t*,311E fc * $9 J f*'(epv) e TM E6Viv

F3 k P.aoesRTse+ lenoRi L _Lt.: Ownw u, NI2 wa *'5 1s er Y9.

y Y+5

.L'2; d s, % .;;gq, 24 4499 298.9 2+ 204

..I.,='2.1q3'd p 46 '147.B i 29.=> 34 107

_..y2,,qgy + i f 11 169.1 86.2 41.6 19.1 4 96 11').9 64.6 46.l 18,5

.. J . .=.a d 5,, ito 49.l si., 53,3 is C e = 1.It t 144 82.6 43.1 ses 17,5 Lg2,1., 33 q4 4Mi 1926

,,,,9 24.4 2o.3

-Ig

  • 4.5 7 - - 48 '142 ) 12 6 '6 3 4.4 J 11 1414 84-2.

14.6

. 7 25l;17 4-2.1 l9 96 Iti 63, ) 4g, , ig,g

( J : 'l2+. 11o  %.6 60.9 Ce=t47 9 94.4 18, 14 4 80 1 42.l M, (,, 17.s L4 r 4d6 11508 'l 4 474 f '150.2 '2 +. 9 '2 0. d l=4.'14+ 'S ' +9 8 Ilf'l '4* '9 6 i .A 12 I59.8 S3A 42.3 19 32s I.716 96 II 9.9 62,6 48.9 18 4 J = 14e6 120 96.9 90 54.7 17.4 Ce = 2.828 l44 I

19 9 4l.7 59.9 l7.4 L4<4x,it I'sB3g 24 659.9 '3443 2c.B <20. c,

..I,sg.327  % Ho 171 2 '29.4 to

--I t s1.295 .. 1t 2to H 4.8 2>6.I 14.5

. ..J _ , .33 3 3 96 14 9 86.i 4l. 7 14. I ito is 2. ca.3 4+. c, it. 6 C,*2.826 ,44 e

,,g gq,4 g ,g3 L5x s 3% il309 't 4 471 1 '1% f 2.6 1 s o.3 y, , [ 3,q 4 y 48 1%6 12 1.9 $4. 9 14. 6 2 2= 3,538 11 157.1 81 42.5 14 J = ,l758 9b l'l'8 bl'5 +9' 3 E+

i 2.0 9 4 t. . 49. l 56.I 17.9 Cc = 3.935 g4 qg ,, 4g  ; 7,, 3 jy O-2

............w b Edes,,1-2 $b AmONE2TI Q - -

c=: . ., J r d ,,,, k ,, T g u , ,, ,

e.,,6*W6fhxAS UTILITIES GENERATINCPOM Ob'01 "UE COMANCHE PEAK UNIT 1

' 6 0910 CONDUlf DESIGN VERIFICATION _

,, ,,,, A/UAVA8AfAfA/)>A' 6 SM& yaw Amf AsVFAR/S /q.'

ME N *ite L= e

'* 'Y?f')4 6ps ,k Fe'(epn Tf5 E$viv .

F3

.L_9d.A.l.2 , _ l rf go 24 N1 GM.6

[b 433,7 i h 2.14

%f* '

'20,6

.l i=l8 ol'4 p 46 319.6 16 6.9 299 14,q 72, 49,q',* /' 11 215.1

/ 111,1  %, g 19,4 96 149 9 A ,4 42.3

_.J.=+7 izo i2,.9 a. ,

19 ig c

. . C e * .'7, G M , y.3 I44 106.6 55 % SI g is,s L9.45%. 14943 14 I012.6 633.6 i G.7 2 o. 9

.. I, 14,8  ; 46 911 4 264,8 15.~l 20.4

_. 72- 6,5 1 7 - D '

'IIi 19 TO

.. 96 gg, ; l 33,'4 ge, iq,7

(

l # I'4 (10 104.6 106.7 37.4 194

_'Ce=3.55 gg 14 4 11 o.9 4l 39,;

L6 4 x 34 q g gg 14 qs4sl 6 13 4- n.) to.2 2,= 44.s47 ) 48 12 49 1 916

'256.7 '24s1 29 6 2o.3 u 32

  • N'N _ 96 '24 6 il I,1 i28.5 2.o 079)

J = l6S7)  %. 19.6 120 196.8 1o2. 7 38 i 19, $2 Ce : 4,7.41 l44 l64 89,G 4l.g lq L< x 24 I,= M

__-], .

f 1b Ob J_~.

lto C,,' ;44 Lx 3 44 li= j 48 2= 11 2

J= 96 12o Cc= -

14 4

u. .

O-3

Colcrcl Instruction fer Design Project Identificatica Verification cf Electricci Corduit No. SAG.CF29

& Roz Supports Rev 2 ATTACHMENT Q - 1JRSIONAL BUCKLING 0F ANGLE MF.9ERS he following lists the maximus angle lengths for which torsional buckling l needs to be considered. If the actus1 angle length is less than or squal I to the length listed, the L/r shown shall be used to calculate the allowable compressive stress F(a). For lengths greater than those shown, I torsional buckling is not critical. I I

l LENGTH l

ANGLE SIZE (L) L/r l L2 X2 X 0.250 16" 41 l L2 X2 X 0.375 12" 31 l L 2.5 X 2.5 X 0.375 16" 33 l L3 X3 X 0.250 37" 61 l L3 X3 X 0.375 25" 42 l L3 X3 X 0.500 19" 31 l L 3.5 X 3.5 x 0.375 33" 47 i L4 X4 X 0.250 65" 81 l L4 X4 X 0.375 42" 53 l

\, L4 X4 X 0.500 31" 39 lR2 L5 X5 X 0.375 67" 67 i L5 X5 X 0.500 49" 49 l L5 X5 X 0.625 39" 39 l L5 K5 K 0.750 33" 33 l L6 X6 K 0.375 97" 81 l L6 X6 X 0.500 72" 61 1 I L6 X6 K 0.625 56" 47 i L6 X6 X 0.750 46" 39 i L4 X8 K 0.500 131" 82 l L8 X8 X 0.625 103" 65 l L8 I8 X 0.750 84" 53 l t L8 X8 X 1.000 63" 40 l l l 3

If the angle fails using the above values, consult the group 1eader. l l

l l

he equations and tabular values presented above apply to equel les angles only. I Unequal les angles shall be addressed on a ceae-by-case basis. l Q-4 3753N L -

ESA$CO SERYlCES INCCAPORATED ar, <

'bN es,. A IQ-fd ' gypo, err o - ,,, ,_ 4 0 ,, y f cun. cv f bO cas ?k'US eeeme. b % G O'lI C' k G 5 c)

CWEu?

=.n e, AL Lzu/A s a L>sA o i ki A w d. L s B R ett wirH stucar A Cownenog

~

, f - - - -

,. ~

p_: V~ % Gu%eT tt. '. . .

.p

) i I. BRC4 L Auste 6 PAN Atto m te size. A LOAD P

( iWCN I ( KIP 6 )

L3x3x3 36 16 0

48 14 4

bo IB

~11 ll ^3 84 9

_ 96 7 Io8 6 .

l NOT H : ljALLowAstsLow,p 9How s og T&g TAgte 19 FoR obe WAo CcNbi@7 tow . .

7.)Feg.l,4 99 E- "TIM LoAo E SComainnog AlloWAOLE . WAp 6bLt. S E

' 3, ) 9R CA.LCOLATIo y oF AuowAgQ: LoAp , 65E book. No puPT 025 5.

4-) LiN EAR. INTE:s POLATioW 19 AcWTASLe . ,

I

. mi 0-5 t i

EBASCO interotfice corresraondence DATE March 14, 1988 FILE REF.

2.CP/C-2313

,- To CND-70-20-04 DISTRIBUTION OFFICE LOCATION CPSES FROM CMV UEr C. Y. CHI 0ll/M. BAGHAEI OFFICE LOCATloN CPSES S. DUTT @-

SUBJECT

' TU ELECTRIC COMANCHE PEAK STEAM ELECTRIC STAl' ION ADDENDUM NO. S2 TO SAG. CP25. REVISION 1 NODAL fPACING FOR CONDUlTS WITH FIREWRAP OR THERM 0 LAG When modeling the ISO for conduit system covered with firewrap or thermolag, maximum nodal spacing shall be as specified in Addendum No. S2 to SAG.CP25, Revision 1. Attached for your use is the marked-up page 6 of Appendix 1 to be incorporated into Revision 2 of SAC.CP25 at a later date. This addendum is to be used immediately in design verification.

Please acknowledge receipt of subject document by signing below and returning this memo to C. Y. Chiou no later than March 25, 1988.

CYC:rm Receipt Acknowledged cc: E. Odar F. Hettinger

, R. Muldoon C. Anderson J. Dwyer J. Young, IMPELL A. Jones, Site File Distribution ' '

WI.TMn@f Wolff M. McGrath A. Wong L

r

-- --w 'v es weers e:. es

, PREPARED BY: 6. D d 3 14-84 REVIEWED BY: u. M wer/ '3g APPROVED BY: . 14 DATE: _ __

(

v TECHNICAL QUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP2$

ELECTRICAL CONDUIT ISOMETRIC VAL.tDATION REV. 1 ADDENDUM NO. 52 APPENDIX I 5.2 LOCATION OF CONDUIT NODAL POINTS

a. For overhang seguent, two nodal points shall be specified, one at the tip of the overhang and the other at the midspan,
b. Any segment shall have preferably three equally spaced nodal points between the end points. A segment is defined as straight portion of the conduit run without turns. A single bend has two segments and a double-bend has three sega~ents.

The nodal spacing shall not exceed the Sees when modeling the ISO:

CND_ SIZE S a a 1, (INCH)

  • 9 , _ - . .-

y 3/4 {26.2 1 30.2 1.5 '34.8 2 39.7 2.5 43.6 ,

i ,

3 45.8 l 4 51.9 5 59.6 l

  • The maximum nodal spacing, S.:, is calculated by the following formula:

S = J. g 7I X 4 EI38.6.4 MAX 2 2F W '

Where F = cut-off frequency = 33.0 Hz W = unit weight of conduit 8/ inch E = modulus of elasticity t/ inch 8

  • / ^For Smax of conduitsT covered = moment of inertia of conduit (ini) p wnn Tiitwrapme'aEtiEhed p'a'ge.m '

m-.._.__--- ,

c. If Additional weights, such as BC or LBD are imposed, additional nodal points should be added.
d. Conduit with a bend less than or equal to 15 degreen is consi_dered a straight run. i 6

t

I

  • EBASC9 SERVICES INCORPORATED ev 5 DuI DATE l'17' Eb APFAdVED Y h/h SHEETd OF3 CHKO.8Y- d DATE - ~5 t*2., G8 M 4N /

ops No. gI -

cusNT T U EU'c TR Ic PROJ ECT C A $ ? b

  • Ul}l l'
  • I suesecr V n Mm L spAcin w catmur-s w/ cope was p .

' l ,

. . . l. . -- FRoIEC T llCQJilRCA T.W

. . ~ - . . >_.- = - ,

. + . -

y.y .- _

, ,s 3.-3 u.- .

_+_g p _ygy g  ;

t

- $_.. h WJM ho M1. SEACM.5.&,b, f L.h. o iTE t i H.. D 8 i A k ri T.-: i. -

i i i i l . .

l , [l!{L9 AJ M , j '

I, M ,' j l a; - .- -,i ,!

l l

_ j -!  ! I ' f I

2---  ! ...:. . J l

L. '

I

! _ .,!. .-l l I

< __i .

l-i ,

p. - i 4__.

l .

.' i  ! l l i i

! l I kN g T

  • _,i... q .

- bInCb). h  !

! i ~ "j l i i i

! I

! i 6$}ild-I l  ;  ; j  ; Cosiouryst f pop!urrjM u l 10 ')v r#

{' - ' '

~!

. I f

i

_ ,.u . . ,.

l '

'( i  ! - ,

._.I.-....y i

6 /2 -  ?

A f 4, 5;  ;

i r 55.2,6 -

j  ; n 7,:22

^ 7, , . , t.. . - . .p _

! ., . . .! .aC,  ! I _.., . .,_ ! _ _ 4' 4 f4 7: l  :

38 , d,.4 i

l _{4c g2j I

.g i -. I i

'  ; j .  :

i

, I . l  !,  ! . j I i i

N.

. I

....-_1._,

l  ;

ff [6di66l ,

] fj ,2.6 .2 5

l 4/.j6 l

,  :  : i . . c  ;

$ ,f l M ,13 ff 2*

4 -

f  !

l i y  :

1. 2  ; I i  ; e i i  ! i .i

. t .5[l

$..w ;.

, l l

. .p - ._.

l q,

_i t . t { f j ,

. m ._ . ,

i i -

r l  ! #

.t.' L *

!  ;._ _ .d.__ -

' }

-- ' l i
i- ) . j i ,

' l . . i

! - ; I 4 I i i 1. -

. m . . - r- -

. , +-

j.

! I i I

?-

! i  !

)

. *= r-"

i f fi!,

( i I '

I  :  ; f

,i }' I .  ! .

_{ ,. ,

, f i-[

I i

l l l ,

y I i I -

! .I

,f

l

~

l i i  ! i l

I i-l l i  !. l .

i l t i 1

!  ! fl ._

'  !  ! i  ! f l l  ! 1 i i  ! l, +

i l ,! l l l .

i.

. i .

t >

a,.

3, i

p:_  !  ! i . .-.t. t. L .:

'. t.:. . . . .

', t . J.

1.

3

.- , , ---.m t-( , i  ; . s i i  !  !  !  !

sei s-87

    • TOTAL PAGE 009 **
f t- ,

j=;.

.Y '

/@.1 TECHNICAL GUIDLLINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25

' ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ADDENDUM NO. S1 i: APPENDIX II ~ ,

!i ,

jl .

1 4

APPENDIX II PROCEc. -

FOR DESIGN VALIDATION OF SEISMICALLY RESTRAINTED 'C' TR/ D' LARGER THAN TWO (2") INCH DIAMETER CONDUIT ISOMETRIC 9

REVISION PREPARED BY REVIEWED BY APPROVED BY DATE PAGE AFFECTED Exl y ao, /Jfb<W9 w/347 i

e .,

i

' TECHNICAL GUIDELINES

[i3I. FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. S1 APPENDIX II PROCEDURE FOR DESIGN VALIDATION OF SEISMICALLY RESTRAINTED 'C '

TRAIN _ LARGER THAN TWO INCH CONDUIT ISOMETRIC

, TABLE OF CONTENTS SECTION DESCRIPTION PAGE 1.0 PURPOSE 1

2.0 REFERENCES

, 1

3.0 BACKGROUND

1 4.0 DESIGN VALIDATION REQUIREMENTS 2 g, AND CONSIDERATIONS TABLE I. MAXIMUM ALLO,WABLE RESTRAINT TRIBUTARY , ,

SPAN LEN'GTH WITH ONE CONDUIT ON SUPPORT 6 II.

ALLOWABLE DEAD LOAD ON CSRS (LBS) ,

8 III. ISO. VALIDATION WORK SHEET 13 11

1, .*.

j  ;,

e *.

,ys. ,

, TECHNICAL GUIDELINES PROJECT IDENTIFICATION t, t ' - FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. S1 APPENDIX II

. 1.0 PURPOSE

'The purpose of this design procedure is to provide guidelines.for design validating the seismically restrained (CSR) Train "C" larger than two inch diameter conduit isometrics in'the Unit No. 1 and common area where the failure of conduit. system will affect the capability of safe shutdown of the' Unit No. ~1 operation in accordance R.G. 1,29 (Reference 2) or inflict injury to the Control Rcom personne1 during and after safe shutdown earthquake (SSE).

2.0 REFERENCES

1. Design criter'ia SAG.CP-10.
2. R. G. 1.29 - Regulatory Guide 1.92 I "Combining Model Responses and Spatial Components in Seismic Response Analysis Rev. 1. Feb. 1976."

g' S.O BACKGROUND Train "C" conduits larger than 2 inch in diameter fall under three (3) categories: 1) seismically designed, 2) seismically restrained by aircraft cables and 3) non-seismically designed.

(NONIS) .

For ' seismically designed train "C" conduits, design validation shall be in accordance with "Design Criteria for Seismic Category I Electrical Cond.uit System " SAG.CP10 for Unit No. 1 an'd SAG.CP2 for Unit No. 2. Non-safety related, non-seismically designed Train "C" conduits (NONIS) shall be addressed as part of System Interaction Interaction Program to evaluate the adequacy of conduit systems.

This ' document, Appendix II of SAG.CP25, shall be 'used for the design validation of seismically restrained conduits. Seismic restraints were installed in accordance with the CSR and LSR series drawings of the original 2323-S-0910 package. The CSR drawing series contains all restraint details, such as Aircraft Cable sizes, clamps types, anchorage details, etc. The LSR series drawings contains the maximum conduit allowable span length. For this design validation effort, the LSR series drawings need not be 4

1

m .-

g.,

  • it q v h

b

~

TECHNICAL GUIDELINES PROJECT IDENTIFICATION

]* ,69 FOR SEISMIC CATEGORY I N.O. SAG.CP25

'[ c ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. S1

'f APPENDIX II b .

l[ considered since the "As-Built" span lengths vary greatly from e i.

,R those shown on the LSR series drawings and the conduit span length

' t.

can'be checked based on the requirement specified in Section The CSR' series drawings shall be design validated based on 4.0. this procedure on an as required basis in order to validate the conduit

, isometrics.

4.0 DESIGN VALIDATION REQUIREMENTS AND CONSIDERATIONS The design validation requirements shall be in accordance with Design Criteria SAG.CP10 latest revision, except the following:

1) Only dead load plus Safe Shutdown Earthquake (SSE) need to be considered.
2) Dead load hangers marked as NONIS on isometries exist, however, for conservative reasons,' the capability of dead load hangers to- resist any dead load as well as seismic load shall not be considered. Also the weight of the dead load hangers need not 4

be considered.

3) The following design "g" values for various zones and building elevations shall be utilized.

highest These design "g" values are the peak accelerations from Amplified teaponse Spectra of 7% damping among all building elevations in the specified zone i,

plus dead load. The 7% damping is selected due to the fact that all CSR supports are constructed of aircraft cables, unistrut members, t lts, split clamps, etc. All these items are highly energy abesrbers.

Zone Buildings and Elevations Design "g's" + 1

1. Safeguard Building: 790'-6", 785'-6", 773'-6" Internal Structures: 783'-7" Fuel Building: 8608-0",.8418 -0", 825'-0", 810'-0" 2.46
2. Safeguard Building: 831'-6", 810'-6" Internal Structures: 8S0'-6", 832'-6", 808'-0" Elec./ Control Building: 830'-0", 807'-0", 778'-0" 2.81
3. Safeguard Building: 852'-6" Auxiliary Building: 810'-6", 790'-6" Elec./ Control Building: 873'-4", 854'-4" 3.04
4. Safeguard Building: 896'-6", 873'-6" .

Auxiliary Building: 899'-6",886'-6",873'-6",852'-6" 831'-6" 3.22 Internal Structures: 905'-9", 885'-6".

Fuel Building: 918'-0", 899'-6" 2

~] . '

4 ,

. c

[I' '

TECHNICAL-GUIDELINES' PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM N0. Sl APPENDIX II T

4) A factor of safety of 3 shall be used for Hilti bolts.

I

5) The_ allowable stress for conduit shall not exceed the yield stress Fy. (Reference 1)
6) The allowable stress for miscellaneous structural steels shall be limited to the yield stress Fy. (Reference 1).
7) The conduit tributary weights on conduit restraints sh'all be calculated as follows:

a For conduit support adjacent to an overhang, the conduit tributary weight shall be computed by static equilibrium method.

For conduit support in all other cases, the conduit

?-

tributary weight on support may be computed based on sum of one half span length on each side of the support, if there is not electrical fittings. Should there be an electrical fitting on a span, the additional electrical fitting weight shall be added to the condui't tributary weight on supports on each end of the span.

8) Stainless steel type 304 aircraf t cable shall be as manufactured by Indusco Inc. "Power-Strand" wire rope or equal. The breaking strength in pound shall be as shown and a factor of safety of 2.5 has been applied to obtain the allowable design tensile load.

Allowable Design Cable Size Breaking Strength Tensile Load (Ib) 1/8 1700 680 3/16 3700 1480 1/4 6100 2440 5/16 9000 3600 3/8 12000 4800 7/16 16'300 6520 1/2 21000 8400 3

L.

ft , . . .

-j . '.

I 9^

c n. -

' 1" TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION ,REV. 1 ADDENDUM NO. S1 APPENDIX II i-

9) Eye nuts shall be galvanized carbon steel and manufactured by Billings-and Spencer Compan- sr equal (Chicago Hardware and j' Fixture Co. is an equal).

Allowable Design Size Tensile Load ( n) -

3/8 1150 1/2 2250 6/8 3675 3/4 6625 7/8 9000 1" 11775 .

In order to account for the possible shear load'due to inclination of aircraft cable, these allowable design loads were obtained by dividing the manufacturer's recommendation safe load by a factor 2.

4

10) The conduit clamp types C-725 and C-725-H shall_ manufactured by Superstrut, Company and the allowable load shall be obtained by mul.tiplying the manufacturer's recommended loads by 1.6.
11) Unistrut members shall be manufactured by Unistrut Company and the allowable loads shall be obtained by multiplying the manufacturer's recommended load by 1.6.
12) Since the CSR restraints can not resist compression, the conduit system' stability shall be reviewed and if required, additional restraints shall be provided.
13) Any seismic supports which are in "C" Train conduits Oith CSR restraints shall be treated as NONIS (dead load hangers).

l l- 4 e

3 .,

l *-

a 7? ?. TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 A00ENOUM N0. S1

' APPENDIX II-

14) For all junction box supports which are identified as NONIS with CSR restrained conduit runs attached, CSR restraints 0

shall be added.

15) In evaluating the conduit isometrics attached to junction box. the conduit may be considered as free end. However, in evaluating the Junctien box restraint adeque'cy, the conduit' tributary weight on the junction box shall be considered.

a) If junction box is seismic supported and conduit runs are seismically retrainted, CSR restraint shall be edded to the junction box. Otherwise, locknuts between conduit and junction box may be removed to release the restraint from the junction box or flexible conduit may be installed with the Electrical Department's approval.

.-- b) If junction box is seismically restrained and conduit runs are seismically supported, locknuts between junction box and the conduit runs may be removed or flexible conduit may be installed with Electrical Department's approval. Otherwise, seismic restraints shall be added to the conduit runs and seismic supports shall be treated as NONIS.

, 17) Pendulum effects (horizontal motion) of CSR restraints shall be considered. Maximum horizontal motion of the conduit and restraint is considered as "Commodity Clearance" and they will be input to the PCHVP. In calculating the pendulum effects, the restraint shall be assumed as a simple pendulum.

Based on the pendulum frequency, the horizontal motion can be obtained from the floor response spectra of various buildings for pendulum frequency equal to or greater than 0.9 Hz. or based on the ground motion displacement (Figure'3.7B-4, CPSES FSAR) multiplied by an amplification factor which is the response spectra acceleration value divided by the ground motion acceleration values at 0.9 Hz. for pendulum frequency less than 0.9 Hz.

18). Conduit run with NONIS or CSR restraint shall not be attached to the seismic category I (Train A and Train B) support.

5

li .

3 .

~ TECHNfCAL GUIDELINES PROJECT IDENTIFICATION

~FOR SEISMIC CATEGORY I NO. SAG.CP25

' (g - ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ADDENDUM NO. S1 APPENDIX II

[. TABLE I MAXIMUM ALLOWABLE RESTRAINT TRIBUTARY SPAN LENGTH WITH ONE CONDUIT ON THE SUPPORT 4 4 o If ISO tributary span is less than table l  ;

. . value, ISO is adequate, nothing else need I  ! to be checked. * .

$ $ gr

- . (rve) o for determining tributary span for cantilever .

bends etc. SEE NOTE 3 on next sheet.

CND SIZE .

ZONE 1 ZONE 2 ZONE 3 ZONE 4 0 I 5 13'-0 11'-3 10'-5 9'-9 4 l 15'-9 13'-8 12'-8 11'-9 3 15'-9 13'-8 12'8 11'-9 2h 15'-9 13'-8 12'8 11'-9 NOTES:

1. In case there is a B.C. or UNION on adjacent span, minus 6" from table value for 5"9 and 4"9 conduits. No deduction for 3"9 and 2h"9 conduits.
2. In case there is a LB0 on one adjacent span, minus 3'-0 for 5"9 and 2'-0 for 3"9 and 2h"9 conduits.
3. Conduit tributa'ry span length:

(a) Continuous conduit span interior support i a b Tributary Span = a + b 34 .

a. Tributary Span = a + b

\ b l-1 4 O*

K t.

TECHNICAL GUIDELINES PROJECT IDENTIFICATION M. !

  • FOR SEISMIC CATEGORY I NO. SAG.CP25 ij ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ADDENDUM N0,S1 APPENDIX II

'( ,p.'

TABLEI(CONT'D) 1 I-y a .

r Tributary Span = a + b

?

!! o I,

)

o j.

i

, (b) Overhang

, Use static solution to compute reaction at support and converted

, to equivlent span length.-

~

4. ADDITIONAL SPAN LIMITATIONS i

The outstanding leg of a single or double bend shall not exceed one

' half of the adjacent span.

p*-d( ,

b<}

b .

c 4

g '>

l N=

.b < a/2 '

IF a is very short OR- IF d = b_ < c/2 .g check b < a + c 2 2 (a + c) < Allowable Span Length (Table I)

C _d- -

b a

, . 1] l b < a/2 0 < B/2 OR IF d+b<c )

q Air Drop or onduM F Project length l < ' Allowable Span lg Length (Table I& Note 2)  !

u l

l l

Reaction limited by Note 3b s -

i.>. .

.._ ._ __ . _ . _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _o

  1. % 9 N 1 U Y

.- g

=m 3

,9

    • v '

a n!Ji Igiig ie,. 8 " 8.! e& lad %n.n.rr .

n -

,t < . . .r

.g "mi kg{

w . g + = /

  • tr 8-8 3 ,% M > ?

5 S b I435H ** ~

IYd gVl N' 3

l hvU fri3 e

5 ip$

x 3qt ,ga #

!!! #il IS!'} ;sg'('Ih!jj1bfb[j$h.g![gri fo y .

'lllfhij$b l o s.

y a

di' i

C 4

E ,g a

I m

%a eji a

35,plis ne m3 : a a a s m

},gli!"' %nI i  !; s/Ej'. fit: D4:i s

E a r' r

.h CI6*jjo 4 "Vyg8 83 =

d

  • 4 I .iErlisIE!hliBls,1138Elin!.IE'4lj"al{ji;6 i.

l i 5 ._,

!!h {! / #  !

s.em . .Iig 3 < 4 a , lL

' ,Se

& 'D r

4 % $ 0i j 3m i' 9 I k E E3 I E l r-:4 ',a=

3 5 dI$$ @= [ } lg 7

w a$w, < T};; Bw .G, ml.3 a,

  • l.

- = . a' ' .

. :,,:.e=:.

a *

  • w 1

- . . o iv 9. .

W

  1. )d'  ; ,,  :,

'u,_i ii. )

g.* g $ = U ? e t 'd "

c $ Cig e ie

$ N e j O 'C bh i

'~

-, ,,, i

2 2 2 2 2 5 S !H Z ll :!

$ l}i

  • i '

'e i ', ',

u-  : -

! $3%5",IcG, 29 cr !! O Os g

3

  • " 5
- h, 3 WWl '

il C

g .

j,4 p; ,,

( 3 E O $

= *"-*. 5.'

4 =.'

, t 1

ICI y

v ll pjt g ih wj e s m

ik! 09 i zl :is k

c o- ,

i

-p 5

n l t

wp

  1. $_ J y s,M f.S; {' + !4 k \ $ <T;  !:' ! iYIl Fj.qTrn$,s Xpr!s 75 ri l _  : i

[,+_.aLi3j$

g

- l8 m

,/j I

lI ll I ti-i

  • ^~ I ' ^ ec s 3,. le. m e , , . .

I g 5 a

.p  ;

'9s:e

. 1

>m m l

ll I I l.? i y

~ .

3

  • g i ,

, R 23 * '

lllllN J:

I _ s. . / 4 U

J I l l l l llll!

I s

lm:

' !ss yn 4 ; r:3 0 J n e .s '8 a

I w! ,

SE

>~a YAi

. w .!>H.2 (0 ]

e -

S 2D. , .N' e g I":;!y' 4

6 -

... . y s~ 1

,!$s -! =. 'dM p ,

ig 2 r- ,

s,i 00"-

, E ;! -

'522U j: x e .

e s .u a i e Mc

. it ;U/ w i

sP7 g j',

5 2

k ~j $ s 's

! ! "i E E imer h.$O li <i0 s

' - *c*

.j th $ }

(;:.2 i $

4.8

i o _, e.

u u. w c

b.- ..

M r:! 3=

v,o u

.i. -

l

.l l TECHNICAL GUIDELItiES PROJECT IDENTIFICATI0fl FOR SEISil!C CATEGORY I it0. SAG.CP25 l ELECTRICAL C0t1CVIT ISOfiETRIC VALIDATI0fl REV. 1 ADDENDUM N0. S1 I

APPEllDIX II

  • TABLE II ALLOWASLE DEAD LOAD ON CSR C0tlCRETE C0t.flECTIONS (LBS) l l

M e0 < mt j

  • '" Nv4 4 1I ,.?

s WwM my -k '

t?

( _'*: y ,

m rt $'

l 4e m m 9(SN DeltJJ ,

fl[VA T/bAJ (L EV97/QAl 5 TAIL A 6 e QE htrast T.H.M. 5, Y All0 NAB Li De AO LdA D 6H (SR (LsS) 1 ectr zout I ZON6 2 Zout 3 Zone 4 0 '* E DGTA ll No l+ $ = 1. % I t $ 21.8 I I t .9 S.04 l \13-3 22 4,I 'h@sr5(54 3 to 21I 76I 237 I

6 , If @ssrsig 354 31o 29 27i -

C, E , l{tHix644 354 31o 2h 2.71 D, 2 fHfX614( 1316 ll5 l 1064 loos E,7 flirtsaloh 1947 i H 4. - 1251 i is l

~

l i

h a

i .- .u .

s l

' TECHtifCAL GUIDELINES PROJECT IDENTIFICATION

- FOR SEISMIC CATEGORY I NO. SAG.CP25 1 ELECTRICAL CONDUIT IS0liETRIC VALIDATION REY. 1 ADDENDUM N0. S1 APPENDIX II )

i TABLE II ALLOWABLE DEAD LOAD ON CSR CONCRETE CONNECTIONS (LBS) pen $se asrA

% }AMT 1_

%r.

3 - % f mef se41ra

__o _.

ge .

.-. ,- , - g:?

rI- *1/

I DUAll FAHJ ( l 6EC T*. A-A ALLONASL6 De AO L6 A O 6N (SR (. Lb s)

Bo Lq~ 2ONS / ZONL 2 ZQUb 3 ZGM6 4 0'#5 IT 3 2.8 I l10 = 3 2 2 DGTA ll H0 l+$ = 2 46 I90 ; 3.04 \

F- 'd'Hsrs 44 GoS 53o 49o 462 l

( l*Hsr6cd 1407 l232 ll 31 Io7 s i

H . l*H5r5<ld ISGS I433 (609 I423 i

J IDsxscr4 2517 27o4- 2017 l'925 l

l i l

l 10

r .  ;. .

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CP25 77 L C P.ICA CONDUIT ISOMETRIC VALIDATION REY. 1 ADDENDUM N0. S1 TABLE II ALLOWABLE DEAD LOAD ON CSR CONCRETE CONNECTIONS (L8S) i ki/?.Mn k - g 6' Ten 8L,

~'" .

e 8

-u<

564L$a&

\

\ /L4'J'i g k f* 7} (p P

t /

y_ s:q s4(n use June?

I,( Y57/CA) ' "

MTAll. E1. W f g M I ra u s i) ,

GEcT A-A (FOTAft 40' Te vsg 4 )

ALLOWAS Li De A O L6 A O dH ($R ect.r zoul l 20H6 2 ZOU6 3 Zout 4 0'*5 i f $ 2 2.8 I I + 0 ; 3.C 4 '(10*3 22 DGTA ll No l+ $ = 2. A(o U hHW5 4/.'+ 745 652 003 . Ni EU ih;xs.8's 2%7 2073 1916 1806 VIE. .

4%srs=4 314co 275+ 2 5 W, 2+o4 11

.; / , .

e TECHilICAL GUIDEllilES PROJECT IDEtlTIFICATION FOR SEISMIC CATEGORY I NO. SAG.CPES ELECTRICAL C0tt0VIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. S1 f o- APPEll0!X II r

TABLE II -

ALLOWABLE DEAD LOAD ON CSR CONCRETE C0tlNECTIONS(LBS) 1 l

t

, ~

  • sy '

s ,-

F64L5nd

- m .. . .

i sq=

- ~4 -

y\

+

g wQi

  • /mya r .. /
p
  • ? "- } -

y_ b (,ggz

. LUA MM 'HAN6 ing Difac7104 NTDil M, L.

GEdT AA ALLONASLi De AO Ld A D 6H CSR 1

SQL *f ZONl I ZONL 2 I CAIb 3 ION 0 Y 5/26 ,,g = q, g i , 3 , q,3 g .

DETA IL No Ie3: 3.c 4 it 3 = 3 27 K ITH Sk8 <8'2 312I E732. 2 92 S 2384 L. I'[NS@l5 3 3 31? I 2.1'37 2929 2384 O

e g 9 *%

TEClilllCAL GUIDEllDES FOR SEIS!11C CATEGORY I PROJECT IDEllTIFICAT10ft Il0. SAG.CP25 -

ELECTRICAL C0!{DUIT IS011ETRlC VALIDATI0rt REV.

APPEllDIX 11 1 A00EfiDUM fi0. S1 TABLE III ISO VALIDAT10riIJORK SilEET CBAKO 5tRveCf 3 p*CORPOnAf to

~.. 1 u etnia Lc. ___ _

. .,.. < o m w o.r_ r<a s h _.u.m r i ; a ____ _ ,,..,_._'

.... ... DC

. ..~16H vat iDA11g11 of 'C_1Wi WmfD,bv[1rf1 _] 50. NO i

Ip0. JJ0. ' , 'Buo.>e(titvArol,-

g

CND MC 'q' Spq Zons N *J SymacHacg. MLisTeore Riss*owir. S,rry NO ( 'e v t.cy. At% vAcy
  • *# W 7p SPA mJ CH4cn _Yts y g %. .t .c.,

elo ' tao ' ' 'J o

  • U*=#Da a Y 110 ,4e

, _l W r4 4 5 p1 MWL (.p.,,y * * * * * " *f o,es 7486ca. t '*

  • C T' *" **8L Z Z 'I_

eJe.. a ce. {'y'C ru.aeasty 2 3 o

. M . 1 .

{

g, =g ,i,... .t,a s rg

.. ,.,. , _. t . -

I p4;et= re j.w e a ea46 -

A> s' g = Ele l.'aC .

1 .

s l

- , a e s ,,.-1 A , -

4 +1 -T Sartori 15 r,.f ;,i l . 48 4 sq.4 h 74 or*

  • C *** C *be J-aJ la.4 hgm f .la.4 l

@ ene.ss se-<:s. ,ms%

1

.e <. ory v.x

  • A mes,s M co'***T rw v.y .vsa.<a l M.c v.<. s.,rm
  • I teed > 1o be Atwp.

! @ 3*rr*<1. u.c < e t4a o.

I ,

see re wr * **-

@

  • S* e4... .% e 4rties

,__ eneed esue . <

f rig.,.re t; r<. ht.,

i l76 / b W 8 % O L W z j d

' ,s d __ .

l as ers'J.

SolurioP4 RESPOHSF TO SPAM C4 4 ECK " N O*':

@ ADD RESTr tAtt4T* AT DEND.

(9 ADD PEST 6tt4T ClosE To LBO/s.o.

Qc ADD itOR120t4TAL. RESTFAIMT.

@ SPA 4 Ioo LoNCv . PRovtOE. RESTYtAt MT 1Q OETWEEM. .

@ Pne/ ton An AnotYtbr4A. gerTAAieuT 'AT SPAR 4 FREE. Er4D.

9, Q SEISMst. SVPPORT CS) TO BE REPLACEO Oy ' g' 3 s ilj. . ) COMCRETE Watt WILL M.STNT(M.

PROVIDE RESTRAiMT . J CT8o'd -

^ g 13

' .11.% Z, u-. .' *a . I-

L EBASCO Interoffice Correspondence DATE November 10, 1987 FILE REF. SAG.'IUG1. 9811 To- Distribution- OFFICE LOCATlON Various C4 (C./ 'a FROM C Y Cliou / H.//bu/'pKuo S a OFFICE LOCATION 81/2NIC

-I SUBJECT 'IU ELECTRIC CDMANCHE PEAK SES UNIT #1 ADDENDUM #2 'IO SAG.CP25, PEVISION 1 EORMULA FOR CAICUIATING SUPPORT REAL STIFFNESS REF: (1) SPEED IEI 'R # S$G.TUGl.9'623, DATED 11/23/87 (2) FDD # SAG. TUG 1.9696, DATED 11/23/87 (3) BED # SAG. TUG 1.9746, DATED 11/25/87 The referenced speed letter specified the proposed resolutions to the potential problerns identified by NYO during ISO design validation process. References 2 and 3 provided our coments to all itans except No.17. This memo contains our resolution to problem No. 17.

Following material are attached for your use to calculate the support real stiffness.

a) Added Attachment X total 9 Shts. (Formula for calculating support real stiffness plus taples for clamp stiffness in conduit run direction) .

b) Revised sheets IV, V & 21 (To provide reference to Attachrent X) .

c) Revised Attachment D total 19 sheets (Added tension spr' ig constant for base plate) .

This addendum is to be used immediately in design verification and will be incor-porated into Revision 2 of SAG.CP25 at a later date.

Please acknowledge receipt of subject document by signing below and returning this merro to C.Y. Chiou at 81/2WTC no later than Dec. 17, 1987.

CYC/HSY/JK:nw Receipt Acknowledge:

PRINT NAME SIGNATURE DATE (Iast Name First)

Distribution:

K T hii cc: R C Iotti '

I Wolff (CPSES Site) E Odar H Patel (Dallas) J Padalino R Shetty M bt:Grath F Hettinger NYO Conduit Personnel (K T Wu)

CPSES Site Conduit Personnel (I Pblff)

Dallas Conduit Personnel (H Patel)

. PREPARED BY: bM REVIEWED BY: hk

.l -

APPROVED BY: [X/fkbu DATE: [ -

/O![7 4 <

-L

$. TECHNICAL' GUIDELINES. PROJECT IDENTIFICATION b' ~FOR SEISKIC CATEGORY I NO. SAG.CP25

-. ! ELECTRICAL CONDUIT ISOMETRIC. VALIDATION REV. 1 ADDENDUM NO. 2 l'

1; j- ATTACHMENT X Sil. 1 0F 9 FORMULA FOR CALCULATING SUPPORT REAL STIFFNESS NOMENCLATURE 3

r K, is the shear spring of each bolt, see Attachment P of SAG.CP29.

Kg. is stiffness of support at center of conduit in the direction of conduit run (kip /in.).

I K is stiffness of conduit clamp in the direction of conduit run e

(kip /in.) (See Table X1 through X4).

l' KMX* b Ys XMZ are rotational spring of base plate about X, Y, Z axis respectively ("k/ Rad).

.I For KMXS KMZ value see Attachment D of SAG.CP25

transformation of axis may be required.

2 i

Kgy = 2C KS for 4 bolt base plate, where C is distance between the bolts. (See Sh. 4 of.9) ,

Ky is the tension spring of base plate (kip /in.) (for Ky value see Attachment D of SAG.CP25, Y is the axis perpendicular to base plate).

X X8 EZ is the shear spring of base plate (kip /in.).

XX"KZ " "KS 'n' is no. of bolts in base plate I is moment of inertia of tubular section (in.4),

e is eccentricity from center of conduit to center of TS (in.).

A is cross-sectional area of member (in.2),

E is modulus of elasticity of steel (29,000 k/in.2),

Es is modulus of elasticity of steel in shear (11,200 k/in.2),

()l. is form factor (see Design of Welded Structure by Blodgett Section 2.6-2).

L is distance from center of conduit to face of base plate (in.).

0782s

7-4

.i t$: .

jl TECHNICAL GUIDELINES PROJECT IDENTIFICATION g FOR SEISMIC CATEGORY I NO. SAG.CP25 I .

ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. 2 f( -

-ATTACHMENT X 1- -

SH. 2 0F 9

$$ =

. CASE A For single cantilevel tubular section with end base plate A1. When conduit run is perpendicular to T3 section Y g={[1+5.18(f)2) +

c 2

l -1

+ +g J

Z a

.j:

ej-Kg term can be neglected for tubular size

-
  • and length as shown below:

L 75 Ts 2 x 2 & 3 x 3 L = 1'-6 and longer

. 4_ Jl T3 4x4 L = 2'-0 and longer V

Ts 5 x 5 & 6 x 6 L = 3'-0 and longer

,1 .

e 7-1 .

A2. When conduit run is parallel.to T3 section g- Xg =f [1 + 6' (f))+

2 c 4

e 4 l_ ". -1

%z N; -

y / /

,l j/ d is depth Iof square tubular section l-(S -

'/ - /*

5. ,

s

' ~

Y? // ,

,,[~g/ -

.k f v

0782s -

/

PROTECT IDENTIFICATION

'i TECHNICAL GUIDELINES NO SAG.CP25 FOR SEISMIC CATEGORY I -

REV.'1 ADDENDUM NO. 2 ,

ELECTRICAL CONDUIT ISOMETRIC VALIDATION .

s' , ,

'i. 3 0F 9 ATTACHMENT X 1 .

'!! For L shape support with tubular cross sections conforming to generic

!; CASE B j}

- support type CSM18-f. -

Bl. k' hen conduit run is parallel to X axis l

I fL L" 2

'l Y } L + +

- k "I.C 3E 1 Z I

2

+K

~

u . b term can be neglected when L ;h 2'-0.

' s Ky I

bb Z f: '

, _/ i 0 sg . }f

- N '@

il Ts l  :-

,/ l j

~

.L 1 Ypffff8fR 2 0 Y * =

.l

-d.-

iTS *

.; B2. When conduit run is parallel to Y axis Id qL -

2- L (1+5.18 ( ) +' 1 _) ,

_g f. k" 3E _

+Lj(

I/~7I ~

l

.h / 1 . 1

/p .-/.--

+KC

7 u
e i

s p *4 term can be negl.ected for tube length z ,r-m *r .

Ly h 2'-0.

i. ,

f 1 /i 9 ,

)

4 .'< /

f 7g

- /

-? j

/ j [}lfM81R2

'n _ Lz _/

s l Y?, b$ /

0782s ,

  • s j .

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I .

NO. SAG.CP25 REV. 1 ADDENDUM NO.'2

+

ELECTRICAL CONDUIT. ISOMETRIC VALIDATION j

J.

^

3e A'CTACHMENT X SH. 4 0F 9

~

E3. 'When conduit run is parallel to Z axis

. 3 3 2 2 2

' O L' L L L 2

k * ?, 3EI L 14 + 3EI2 l__ _2 i

,, y 2 + _Q + _( .+ J.L ' EJ 3y

/ -

p2 g 2* _1__ d E EJ K S2 C

' ~'

When 2 tube size are same, above equation can

\ be rewritten as 3

T5 3 p2

$ ccd4 " -

3 3f e Yg=

3EI

+ )+ * ( 3

+

~

1 L

/ / i 1// ~

l

%',7 ~ 9::D / #"O L r 2_ L8 2

.L 2 ~

I

, f()pff[A 2 5.18 '( ) + y + +

Y l-1  : j j -LI e 47s 7

=4 D

~

i *.

1 4

e G

. n 9

9 9 6 g 8 #

. O e t

. e e e s

  • 0782s '

~

- _ . . . - . . .. ~^~T""-~~

q. .

~1 f .

1 TECHN'I CAL GUIDELINES PROJECT IDENTIFICATION

,FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECIRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. 2 t

I. -

ATTACHMENT X SH. 5 0F 9

~L.

.i .

l .

.;. CASE C For CA Type Support (CA-5a, CA-Sa-A, CA-11b, CA-llb-A)'

.y

, "C3 x 6 (for CA-llb only)

.MC3 x 7.1 (for CA-llb-A only)

, i t) .

i -

3 X

- l / l lA /N

/N .

' /' S j- - . ..

4 Kn = KC For Generic Supt CA-Sa 1

  • For' Generic Supt CA-Sa-A ^

K --

~1

= (K1.+C h+ Z b ]~1 1- e 1 -

( = . {7 + g + 7Z + 533) 1 For Generic Supt CA-llb C MX ,,

  • ~1

-- --- + 4 0. 6 B j For Generic Supt CA-llb-A

= [.1.

C + h +Z 1 t

t i -

1

'i 7 .

lc U-

[.

I -

1, l .

~

. D782s. ,

N 4

I I

J TECHNICAL GUIDELINES PROJECT IDE'NTIFICATION

.' FOR SEISMIC CATEGORY I

  • NO. SAGeCP25 .

8

. ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM N0e 2 e

A'ITIG'ENT X S,H e 6 OF 9 e

i e i

- - _e e a e

  • - == tre to an an an

/ O s w m w w w G3 W ** M M M M C C3 O O 4 e e e O. e e

  • . }

V. T e N N N N N e C3 L = . -

( Om

.  % =.e

$ Um L -

L, T ea C .O en C O

> N 4 M M M M C O N tr. C C: C s*

C-

.Je-e O

e=

CD m - O C1 C ^

e r. m m # C 3 ** ** in Ve in m m D .O a-=  % w w w LAs 6.s b ED e.# M e >< M M M Q D C O et m- 4 e e e e O. e m N N N N

-rp C Cf C O - N tr. "to C C w.

8 v _

tr be %

' *e '

r,q , N.-U e C. ise T as M L *C d

  • O'%' CJ V.

w T m9 M M M8 M O ' O W nn O

an O

O O

an e

m' Q C 44 C- Cn C3 r= r= to M w Jw C CJ

' C&

b c s e 4 e-= c j .e ne - sn m an sn sn g N I.e.J 6As tea LaJ taJ EJ WV M ' M M M C O O 'O ML > .c e e e e O.

  • CC == e .= e.

Q -

~

m Tm C r-N se e G *r= e. .

1 < ===.

O O C O M L T **

M 4 M M M M ar es O .OCr* cc

  • D E C. C == N N C r= N h J" Q 3 "

O E

) r- es

^

X E ^

an e.e c

==

  • as= 17. nn i m en nn V. en en h

=aM. U C

C W er N w O

L.J O

L.n O

e w O

w O

w O

w O

LaJ O

LaJ O

r'*' C' 4 e e e o e N , N e e e .' e O- t T. - N N N N N N N "O Z L' e-a "O C N 8

gC C ee F fd W L,

^

.cq m e.

T e nc .

C N

O

%.~.

eO N

o o m ti.s %C %C C

N in CO O

O C CM CP CPt C.3 r* N N N CD

> D - .C a.

O 3 r- 42 e-- M e

< C -

c m *^ in to in in sa t^ in s w w w w .w w w w

" O f3 m r W e 4

C e

C e,

C-we C, e C

e C

o C

e C.

e O

e * *

.p.= y CC t.

m er, D 8 - == === e-o M N N N N N m == m 2 me y g nn 64 & C 4

=.C NL-C Ce se O%

>CU ^

O ,e er C es

" O T o* C O C C nn

  • w as 4 4 C N er O r% M *r N C nn W tr *F C no s .., ee e me e LC.e e ee -

e o C)

^

r--

' =O e .b w av er my v s.,. - in m mw Ln w

to N w w w w w v.

H L W ** C C C C C C O.

O O

4 a

y' e Q

~3 4

w n n m t=2 e '.*

M we w ve j '3 C C3 .

e mC .

' sn m -

P NU e

=, gh, e t e O O in O O O C O en c .c sc er N - en no nn N e

. O s= N N N M C . P.

O er no go e,

'n e ,,,,4 w e.=a 8 I 1 e

  • e e C1 a== mf ' er N N E es
  • N . N N N as me M e-o n ,. M g

m == .c.

  • n e-o 3

we 8

N N 0

n ** kn I U m wn 5

j e o 4

e .

1 t -. . - . -- _

e

  • ~

TECHNICAL GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY.I NO. SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ADDENDUM NO. 2 ATTACH'ENT X SH. 7 OF 9 l-t < .

g 1, l .

- -i- a

, ]I ,* . -

O

-e N

w , w w ,

j s, .

p M a M M, M Gd LJ *6J kJ L.J x . M. C. O. O. O.

i..I O.

tn C - PT P1 f*3 C3'c,J * -

f") f")

,'( i.t

. C w.

p.%

  • Ue t a

W m

  • p . ed T. M g.c e C C .C C C * '

3' p f

D * > M M M M w N C C C

e. g O c- w %c sc e ica

, w .,J w

}--

2%- W

e. -

"--== a c

  • O

= w w w w w fg so

^

J Me x M w w w w w

-f ' , M M 4-

  • a .:

Q m- .c C. O. O. O. =

O.

i. ,i *F c m 'C.Om nel me %

CD O -

- r1 M ' P4 P.1 r1 m

I* '

  • m NwU e J $ U h e "O 1

L mt u m

.,1 ' . es an = ma C O C C C

  • -= > w- ga M M M M N c C n C j g'.lt, 1 g c c- sn m. w sn m v*

M

}* I. ,

  • C) e i- ,* M -c w w .'w w me m'

N t.J w w w . La

r. C) te M ea M M M M C

> .c O. O. O. - O. O.

. C ** - M f") r1 'M 8")

46.

e* * *

.mein se NL w-1 .r gg

  • 4J *C a e g as 7v C O C O C 1 Jl: M M M M c3 v. C to N

/.) CL e nn *F r1 M w

=0 h -J .

$ *.1 C H' *

', *t-r m h-g o~

fg .,*- -* m e J c w w

  • *U

- -

  • w w ..w w w w w ,

4 . U O  % LJ w kJ he Li LJ LJ a.J 6.J

e. C C MV

..tI 6

  • g = 4 C. C. C. C. . C. C. C. C. O.

s

-I A

eV - P1 8"1 M r1 r1 e4 r1 r1 r1

.= E sJ we W e g %

Q C == ,

r4 . !'

+

C N e U n.

  • e
  • d

.f- s p--.

e4

  • T e

> n4 C

tc C

C C

N O

sc C

C O

en O

C O

C O

O y O C- N w w r1 m N C C O  ?

7 ]'t ,

w .J w- -= em - .

l J C) .

1 o

& 'O'"" e =

=c v w w w w w 3 U Me

-% w he w L.J ='W J

L.e - w kJ w L.J he

. ' '* O' "a .e m e C. C.

  • Oa C a C. O. C. C. C. .

'd'. y gn .e,.

s=,, Cc s - r1 M e4 M e=1 M c) P1 I")

  • , .mz  %.

e '

4 en M .J CD 8

r% 6-O 4 e, O N

  • 4 p- > CU a .

O C Te O C C O C C O ,an C

  • * * 'r"
  • i=* at4 N e er nn o en N C
  • )f 1 C-nn .%c.-

N f") f% N to W %G

..a l et . .

Q

> a 9

.- ' 7

-- ., w w w w w , w w l '.1 ,  % s,nJ kJ L.J L.J w L.J kJ GJ S.J

,.'4I*- + . -

o b MM e4 -Q. O. O. C. C. O. O. O.

C.

i s'6 *)D g) D - r1 f") r4 r") r") P1 r1 r1 1 r- cc Cc *== .M in O

't

  • M &n tw 3)

+ *

) m NU E A b t ta C C ~ C O O C O O O

\ .'I;. .( .

e 4 e-On cc ec C r-tc m . sn O

,O O

w O e

, a dw' a' .

.. t % . . . . . . . . . + . . . . * . .

1 g * . . l'L . '

  • w w N N e l lir es
  • N *% N  %

,'J fg* , . S e se c p.=--==

c1

. g .I

.-e g

3$- .. . , U M *-a We M M N N. F1 w m

.'g. (

,s-1 t .*

(*I. 4 Dk

_% , U t

l .* . (

-g wg_...,, , ,gg M *9,p4. 3 AM M M M W,W N 4,MJ85.WWeg w yeit m Wpp F MN.**<W -

4 L

i k '

9

!. j TECliNICAL GUIDELINES PRO, JECT IDENTIFICATION i FOR SEISMIC CATEGORY I ,NO. SAG.CP25 .

,l ~ ' ELECTRICAL CONDUIT ^ ISOMETRIC VALIDATION -

,REV. 1 ADDENDUM NO. 2 .

'j - ,

1 s .

ATTACINENT X -SH. 8 OF 9 .

- i i Table g,3 Axial Allowable Clamp Loads and Stiffnesses (K) Using HILTI

't

  • b' Clamp Type i

i i

  • s P2558 P2558A *

! . ci a.p' (Oversized ~' (Overslied Bolt)

Site P2558 or Bolt) A C70AN-U P2558 4 C7085 e e e,g n ,) C70311 C708N-U (0versf red Bolt) Abrasive (5td. Bolt) .

, Lead K Load K Load K.. Load -K Load K

, (1bs) (1bs/in) (1bs) (1bs/in) (1bs) (1bs/in) (1bs) (1bs/in) (Ibs) (1bs/in) ,

~

. 't j '

3/4 70 -3,0 E 4 360 7.0E4 650 1.0E5 I, I I I

! j ,

125, *3.0E4 230 7.0E4 800 1.0E5 I I I I I,

['s ,1 3 3/4 125' 3.0E4 175 7.0E4 790 1.0E5 I I I I*

1

] 'l 1 1/2 ;30 3.0E4 120 7.0E4 780 1.0E5 I I I I ,

! 2  ?$0 7.0E4 525 1.0E5 I I 300 7.0E4 700 1.0E5

\? .

i. 2 1/2 265 7.0E4 650 1.0E5 I I 240 7.0E4 660 1.nE5 l 3 280 7.0E4 800 1.0I5 I I' 'lan 7.nE4 675 1.0E5

. 4 230 7.0E4 800 1.0E5 I 1. 205 7.0E4 875 1.0E5

.. 5 ISO 7.0E4 800 1.nES I I 230 7.0E4 1150 l'.0 E 5

  • T t s . *e k g i '

i .

8 el 1 ,. .

5 l

i t-

) .

=

!J

..I - .

-. l.

[4

~

-

  • e a

l7  ; .. .

,j ,

l. .
l. .

3 it ...

l1 .

! i li

's .

l

r . .

~

f

{- - - /- - -

l'

...--.~m.....s........- . . . ...__,,.;

iil

,,.3 .,.;,.; !

r

~

I j TECHNICAL GUIDELINES.' ,

PROJECT IDENTIFICATION

, FOR SEISMIC CATEGORY I

$ ~ No. SAG.CP25

< ELECTRICAL CONDUIT ISOMETRIC VALIDATION , REV.1 ALDENfUM No. 2 ATTAQsENT X SH. 9'

~

OF 9 j' '

. Ta bl e x,4' Axial Allowabl.e Clamp Load and Stiffness (K) j .

Using Nelson Studs and a Filler Pla.te 1"-2'! Thict t ,' -

t t .. .

C1 amp ' Type P255'8

!- I .I Clamp -

(Oversized

^ . . , !, '

Size P2558 or .. Bolt) & C708N-U -

(i,n . ) C708U C708N-U

  • (Oversized Bolt) i .. . .

1 i Load K Load K Load K ~!

{ Tj) , (lbs) .(lbs/in) (lbs) (lbs/in) (l'bs ) (lbs/in)

~

t ' l, . -

  • '* 2 i .

1150 1.0E4 1200 2.0E4 1200' t

, 4.0E4. ,

j .

. 2-1/2 1050 1.0 E4 ' '1175 .' '2 . 0 E4 '

1200~ 4.0E4 - - -

4

' ' ~ '

, ., 3 950 1.0E4 1150 2.0E4 1200 4.0E4 t.

4 800 1.0E4 1000 2.0E4 1075 4.O' E4 t . ..

'S 680 1.0E4 ',8 4 0 '. 2.0E4 950- 4.0 E4 i .

. , 4 .

E. #

4. .;

5 . ,

i. ,, .
i.

t i

j .

'd .

i

(; .,,

ll

.i S

' j , -l j.

+ =

i

  • 1 .. .

!\

il l:s ' .)s . ,.'

yp.

. s -

l - -

y . . ,- -

i j,

. . 1.j

1. . .

g

}1i ,.. .l ' .' .,

  • i . ,

s .

l .

_ de - aus. mime estes mampmemmeemme - - - madr*P W * * * - - - - es'e -p**.uereresum %9 *ss T* **P**'.*Wf*-r ' 4. h *""'" *

  • f .

l} ~ . '

1 '

C I TECHNICAL GUIDELINES , PROJECT IDENTIFICATION

FOR SEISMIC CATEGORY I 'NO. sad.CP25 N

[b 1

-k.iELECTRICALCONDUITISOMETRICVALIDATION 'REV. I ADDENDUM NO. 2 .

F

_f .

TABLE OF CONTENTS (CONT'D)

.y I

.f ATTi[HMENTS '

, ?j d A LIST'OF MEMOS IINTERIM GUIDELINESI INCORPORATED IN THIS GUIIDELINE B LIST OF RIGID GENERIC SUPPORTS

A' C ALLOWABLE NORMAL WELD FORCES FOR TS STEPPED CONNECTIONS .

?j - -

0 D TENSILE AND PUTATICtAL SPRING CONSTANTS FOR NRIC BASE PIATES FOR

'J GENERIC CONDUIT SUPPORTS m e

]

.i E ROLL'ING OFFSET CALCULATION EXAMPLE AND MEMBER PROPERTIES OF.A SPRING MEMBER

$j F PRETENSION LOADS OF THE CONDUIT CLAMP 0 G STANDARD AND' OVERSIZE' BOLT / STUD DIAMETER (IN.) FOR

k. ~

VARIOUS TYPES OF CLAMPS

..l

'?

4 H HILTI BOLT DIAMETER (IN.) FOR VARIOUS TYPES OF CLAMPS

.; I SEPARATION VIOLATIONS TO BE DOCUMENTED J DEFINITION OF SEISMIC INPUTS

'1 K INACCESSIBLE ATTRIBUTES (IA) E\'ALUATION PROCEDURE 1

,j 1. UNIT 1 BUILDING AREAS WITH 2" FLOOR TOPPING ON FLOOR SLAB

'l ,

i M ADDITIONAL WEIGHT DUE TO 45* FLEX CONNECTOR j N RIGID CONDUIT SPANS

. n, .

O 1.S PEAK "G" VALUES FOR 4% (OBE) AND 7% (SSE) DAMPING FOR Ik ATTACHMENTS TO SRF IN ELECTRICAL CONTROL BUILDING 0

>3 3 .

n i iv

3

(

.s

'j 1.j J - -. -. .

TECHNICAL GUIDELIhi5 PROJECT-IDENTIFICATION

(--FORSEISMICCATEGORY I

NO. SAG.CP25 D' ELECTRICAL CONDUIT ISOMETRIC VALIDATION REY. 1 ADDENDUM NO. 2 TABLE OF CONTENTS (CONT'D)

ATTACHMENTS P HILTI A'NCHOR BOLT LENGTH AND NUT THICNNESS i

, Q MINIMUM CONDUIT' SYSTEM FREQUENCY REQUIREMENT R COMPONENT WEIGHTS AND PEAN "G" YALUES'FOR WHICH ECSA'S

, ARE QUALIFIED l S LOAD FACTORS -

T MATRIX TO CONVERT REDLINE DRAWINGS TO S-0910 SHEET NUMBER U ULTIMATE ' ALLOWABLE BOND STRESS BETWEEN CONCRETE AND CONDUIT AT PENETRATION ,

V FILLER PLATE AND SHIM PLATE' WEIGHTS C

W CONDUIT RUN TRIBUTARY LENGTH FOR LONGITUDINAL LOAD

. - - DISTRIBUTION VER!FICATION  % w

%i X FOPSULA EOR CAICUIATING SUPPORP REAL STIFFNESS AND AXIAL STIFFNESS EVR CONDUIT CIAMPS I,. . - - --

APPENDIX ,

I PROCEDURE FOR RESPONSE SPECTRA MODAL ANALYSIS OF CONDUIT

. ISOMETRICS i

l 1

V .

!C -

~

l

. TECHNICAL GUIDELINES PROJECT IDENTIFICATION

,.,/FOR SEISMIC CATEGORY I NO. SAG.Cp25 ELECTP CAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDCEXE NO. 2 9.7 VERIFICATION OF LONGITUDINAL LOAD DISTRIBUTION (Continued)

K.  : conduit sup2 ort stiffness at support i. 7t

. Y tor formul ~^~

U

~

l = total ~ conduit load (lbs), including electrical j fittings for conduit run in the tributary lengt.h.

I l f = 1 x 2K j x 386.4

[ -

2 U- y j ga : maximum floor response spectra acceleration at frequency f between N-S and E-W responses.

', gar = minimum design "g" values. .

j '

b. Vertical or Skewed Conduit Run on Vertical plane i- t K

L L = i X V x (1 + R)

.' ) k (1 + 93F) ga : floor response spectra acceleration at frequency f in vertical direction.

For definition of other symbols, see paragraph (a) above.

If L't is less then the support capacity, the isometric is adequate.

10.0 EVALUATION OF JUNCTION BOX CAPACITY AND , JUNCTION' BOX SUPPORTS

a. All rcCline drawings chall be reviewed for deviations from generic drawings. Juc.; tion Box shall be considered adequate if the conduit load on the Junction Box does not exceed capacity as shown in JA-14 and JA-15 Series drawings.

Junction Box support shall be consi,dered adequate if the

_, total load on the support (conduit load, and Junction Bos weight including contents) does not exceed support capacity i

of JA and JS Series drawings. In other situations conduit capacity for smaller Junction Box for suppoet validation may

. be obtained as per 10.0b. Further analysis shall be j "),

performed when load capacities are exceeded or the redline

l/ , drawings do not meet the generic drawing requirements.

4 21

. TECHNICAL..GUIDELTUES PROJECT IDENTIFICATION FOR SEISMIC CATECORY I .

NO. SAG.CP25

' ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. 2 I liITACICCIT.D SH. 1 Op 19

. Tensile and Potational Spring Constants for Generic Bas'e Plates of C+neric Conduit Supports. '-

b Suoport Anchor Base Plcte

~

Spring Constants .

'. ; Type Bolt Size & Fatation ' Tension ***#

p Size Attachment (in-lb/ Rad)

(lb/in) .

'i

'I2~f Hk8 L G s 3 ?: s I/t 5" 9f* 7h l0 3 V. a- a CA -3 ct YNz 'MS. C8s11.5 W = 16 2 7'89'io] KYY" 5**bA\* -

(Case Q (a = I ") kM2 = 49 ? .6I s sc) , w y ,.;g y ./ w.a u,, n}g CA-3a f$9 HK8 L f y jfgs 3fg KMX= 79,c71l N 'Y. -,

"/' Sii' EMS. C8 s 11,S KMY = 690. t3 s to (Ff=f.{,Q9 l. /,

(case 2) (a = G") KM2 = 537.66sto ,,,,,,."'

RMX = '88.27:10 f/2 ,'$y2 L G n 3/,1)/s'

""Y****"','

4 % .% d bgg"s,'i CA -3 cs ysh"ens. c6x8.s (case 3)

(a s t1")

KME = 31%.97'l0, TCg~ m~ CD~~h w w n w -w XMx = 97. 38 , to) p

-**cA.3a  !;;"f pgg L G x 3t: s ?s

[ 4 * ' * '#'A'#'#

ffY=LT.ho g;,y""'ies l -e (Case 4) "lSI2 "'- KM2 = 3 80.03 tl L ,

(a s c") -tsees.a L 6 s 3'/1 s 3/g M" 6. IS sto' (;

j Q#0 CA-3% 'l!$ XX8 '

qsgens. c e i n.s *

  • W % '0 M=yo.Wtl V'h  % a

]- ((,,, ,, (a = g29 KM2 = 49f*2)sto ,IT R ~ B  %

o xMy = 79 10,1g 3 0 "

cA-3n W9px3 L 613V2.s h '

(Case 6) YIb"A' '**"'

  • 537,c9.s0 3 $FY=O$kilb L' ,
  • "s
  • (a s{) .

xn a ye....

'/l$M9 L G s 3l<(= 3/g knX = 76. 8Io ta' 7 C A-3cs

"" N ,7 . 5 M- .

l'# N

,,,} xM =3

' 'I, st F'(=L4.]6)(to' l' c' . a i . *T cs 3a,

/z f FK3 LG>3'>Vg / gny = 1 s . 7 g , go 3

, QQg Y$1'"' KNY = 2097 91,10 gfy;; ) *

,yt

((a,agy CS .n f ,

y }

L s

=:n xna o 355 38 to (a.=6") ne.n 3

V2 + Hr8 L 6 7 3'/ s /b> 3 KMX= l 3 1 .41 t0 ,7 cs q, y 39,

"/!h '"'- C4 ' 7'25 V.M Y = 2 7 6 7 98

  • 10 k'FY=l72Mtd D'TW ' A';-e .

(Case 9)

<n . o i n z = z g a.92.t? P'wm a J-',M ? .. ",. 4 ,

I .

e y . 2 7.:,

sec.sl" l

' a p g ,g _

} .

i

.. TF,ClulICAL. GUIDELINES

,. PROJECT IDENIIFZCATION r FOR SEISMIC CATEGORY I -

HO. SAO.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO.

  • 2 t ATIAOM2Tf . D . SH . - 2 . OF 19. -

. Tensile and Ectational Spring Constants for Generic Bas'e Plates o'f Generic

  • Conduit Supports. '

_ .d Sucport Anchor Base Plate Sp Constants .

~ .

Type Bolt Size & Ectation Tension ~ Remark Size Attachmen!. (in-lb/ Rad) .

(lb/in)

  • I L 612V:x V3  %= 161.y3,j u _ f sr n, CA - 3a. f19 Mx6 ' '~'

'~Y'h '" N#I" 'I l0M Y

  • 4 685 '34'l$Nf 01.NJW

@au 10) KM2= 3G3.C4,th

' M M

[" = G ") 1 ~, , w a i _

L G s 2h s %ir KM7 = 197. IB d

  • Sh. :,,, ' ^ b*

cA.3a V.*p yrg "l'h"'"I' 00 A

  • l'I KMY=I2G44.11sth ypy 5 Y

~ ff' (CdSe 11) KM2 = 317 .55=th u  %,, f '

(a : 12) u .>

E. G 1 Y:

  • S's MX' Bf *Cato' (X cA-3o fl9

/ xxs t ^

CC111.g XMY s 76) .55 slo VFf=2]),.]'lg; O (Case 12) '.fsWEMS.

MM2 = 11 29 20*l

@hh_

C . . . ...h,

u. u'b,~h~,i___,

m .....,

h ajt O. s.

g Ala;'..:

"' & +* ge.s.s

$ h;t x2"x31' MX= 3 2 8Csto' , s.

(,_ ., 3/p*yxe '

l,# "l2 "fMA RmcnncHT: H.A. KM Y = u. A . _3 gff=ygg,o' i (gg7 g - (a..pg,ogn) KM2 = 47.costo i e /%

  • XMX =

C.A. ga h'"$Ntj $ f.n 2 7 31" U/2*EM8RTTA CHMENT.* H. A.

KM Y =

92.1filo y.A.

3 Qd.$ No 3

~

pflh O (OET. f) kM2 = 47* 0 Oslo @

(A = 9 5") ,

L_

8 1* v L"x 3f JCMX = 3927 57sto) c;.ga

$/g "f NES uj2"EMB, A rya cMMENT.* y. 4. gMy' : p. A .

3 ff'fg 9 5

%. f,, ,

(n. = 10.09 ) gM2 , 290 6l'l0 i(Ns/

~

. *: N :

k

~

CA -ga YM $ '0 2's t? ' KMX = $ 1 *

  • 7sI0' AI. A. i ATTACMMfvf; W.A RM Y = gfy 7,jq/y gn U/26M. 3 (ALT. 0!T.1) xm2 = As.4hto g,., , , ,,

l '

3

^

'; . i p . gg  %'p p,g $ UD 2 I?" KMX = 59 78 48st0 ~

WY=lCh,h

  1. '""'#Y "' A 5MY *' "'A' 3

(ALT. DET.1) - Y2"EMS RM2 = 2IJ .2jn10

  1. ~

3 CA-Sa h*$MLS &lbs"*2"x17' KMX = '7427 53 mto E

t-fS EMS.

A TACNMEWT'; U A K H Y = /J.A. 3 Q,ygj),glg (ALT. M i~1 KM2 = 760.Chlo

---m... - . _ _ . . _m , ,

. s,v, k *

3) TECliNICAL. GUIDELINES PROJECT IDENTIFICATION

'!T '

FOR SEISMIC CATEGORY I -

NO. SAG.CP25

,k ELECTRICAL CONDUIT ISOMEIRIC VALIDATION REV.1 ADDEHDUM NO. 2 d

' ' . ATTACH'ENP . D SH. 3 OF, 19.

Tensile and Botational Spring Ccnstants for Generic Base Plates of Generic

'g Conduit' Supports.

Spring Constants Support Anchor Base Plate ,

i Type Bolt Size & P.otation Remark L Tension

.) Size Attachmeht (in-lb/ Pad) (lb/in)

+

I lf fiKS. b I4 '2 "9 UN " l SON

  • 24 510A CA - S a h 5

(,(7, pg,, f*ggg, MTACNMENT: N.A. EMY: y,A, g.Q.,f ,

MM2 s $27 13 ,to fg

-g Af

+

  • 1 8 I "s MMX
  • 5192.05 n 10 S /4"x 20 cp.gb Vg*f ya (ss.c. ,.,y v/4*en. Amenwr:N.A MMY : % A.

3 jg 9yll  % ,

XH2 = 4758.13 x to d .-

    • b

- . A . . N ,5 .

O CA - 11 c",e IQygg ANC 7 ' 40 NIX * !]? b.9" f 3 cc ss 1 KMY = 99 791 25 sto, iq, $ q ),g gn (nnpgz sjy v/7"ems. MMi, 1398 03 510 Kt1X = 734,$4 x 103 .f

  • l0 , ,

C A - 11 n  ? D X8 4 2fg*.7's48' NM Y

  • II 22
  • i 'I fQ% A '$'

C (MCDEL '*2) UlS*SMS [ b ' 0*A KM2 = 1388 2) ,n fo*

Q - '._

fl- 7 f pal

_ _ . _ _ , 2t k,.1',n7*x48" KMX= 17?t.76 y 10)

CA - 1(w I'f NKS #

(ggggg og W/7'EMB. c 6 x 8.2 KMY = Il0529 44 " 10 3 y f RME = 143 9.16 s10

~

c A - 11 b Vz"# A $ 3/8 'b"* 13W KMX = 72t.09 s to 3

  • . y p, 3 3 C326 KMY ,3 %

(noggi, a Q u/6."U19. 7143,79 , to , l( **

w KM2 = A07.55 x 10 z o sir ' " 4 CA - iib WW k. 3/8 5 4's 6.S' KMXz 487 22s10 3 ,

(MCCEL"2)

"I - #A"S Y I S' AS E 10 Q E . .. . ,

a " It b

)/YYNxg. . L G x 4 x 34 yMxa 1715.01 x 103 C A - 12, ';

S' #MY

  • A N0' T1
  • IO3 QQ3g I

N'i $_

(MCCFL *l) "l0

' HC Gs l& 3 ---.' .i >

KM2a 650. 01 x 10 u

' ,', , lhe o,

'h .

w:n__ s :,

ne (

l

- - ^

- - --- = ~ .u . ~ . _ n _ , _ _ . _ _ _ _

TEClifiICAL.CUIDELINES

  • PROJECT IDENTIFICATION

)

, FOR SEISMIC CATEGORY I .

No, SAG.CP25 ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ADDENDUM NO. 2

~

SH. 4' CF 19 A'ITAODENP . D -

j Tensile and Rotational Spring Constan,ts for Generi'c 'Eas'e Plates'6f Generic

  • f Conduit Supports. ' ,

. s <

~~

'j Support Anchor Base Plate Spring m nstanu .

y; Type Bolt Size & Potation 'Ibnsion Remark Size Attachment (in-lb/ Rad)' .

(lb/in) g c A- 12' 3p"fygg, 2l. 6s4s3/4 KMX e 12S7.03 = 10' fs'; ,' o 9,

! p/6"EMS. M C 6 *IG.) W H'f ' 2 2 ?IA ' *,; "= ~~

3 y

. (mw.

  • 2) s ema - 767.St<!* v 5. &,

\.

e, c l -

CA - 13 Wb## b P ' '4"'I M " '2 0'2?#

i (cau-0 "I5"m3- c6**5 - ""**''$ 'W

(a 4.u: bn.6ts; KM2n 402 39O g?,,

C A 13 l$ #N $ l9 IO 4 " ' "

s 1

v/s'as e e s 10.5 KMY = Sl003'38l  % hU (a.3 71: b.1.125) kM2

  • 3''2"5 l'""*V

\

1 1

'\

i cp _ g3 3/4 pyg t W= tox34W W* 358 62 8 1

~s

^

Cto <153 R>i \

\ (Case-3) W/S EMB. , -

KMY =gog,7g,g ggy , 44492'93}

s D&

j i k~ '

_ g3 gg $ 0/8 5l+A34/4' He s s 12 Y,MX =

92).4}sl guy ,3208716 m Q

3  %.

2qt-(Case -4) v/5"tMB. ~

(ae 4.25, h s).6$) KH2 s 389 20=f0 '

\$ cp. f3 ]q'qygg & Vs"x 14"s 364' E.% = I167 04*10'3 y"' a

  • 4
a Mees 15.3 u,, gns* mr = soe31.es to (Cate -5) -

(,,4,,, y ,3,4g(, yng , g;y,gy,go 3 ll c p . ,3 pgs a warmN m = 323.2sn?,

l C8 = II.S MMY =37732.61sI0

((#st-V Wl5 "fM8- ,

(a,5.13lb.3.sts) KHE = 15504*l0 3

i

  • y 3/4 qMK8 $ ("*ll's 3$$ XMX c 380A0'I0' KMY = 46723.25=ff v/5"tNB. .::10 s 15.3 C '#" - V zos.n*to ca.s.u:s.3.m) xni KHX = y I"fNSKB L 8y8x1 577.21s\0' 2 k CA -14 n WAY
  • N'#' T \

li (Case 1) "l0 C 6 x t) kM2 = 920.F6

  • lo 3

N lj k Ch 14 w I"$Hstl L 8 x8x3/4 cg ay

'KMX=

XHY =

336.blo)

H.k K

e f' -

l (Case!)' '/'ths. MHz = S S2.tysIl

,,-Q# ,.

MHt.= 301. fos to 3

M}

b L 7

cy 14 n f/fMxg L 4 x 633/4 l KM1 = M.A. )

' /' 6(EMB c;y g3 l)

\-

(catetii)

~*' kME = 361.f4s10

l TECliNICAL. GUI DELINES FOR SEISMIC CATEGORY I PROJECT IDE!!IIFICATION

[

NO. SAG.CP25

^

ELECTRICAL CONDUIT ISOMETRIC VALIDATION 5

REV. 1 ADDENDUM NO. 2 ATIAGBENT J D ~SH. 5- OF 19 -

lg

.Conduit' Tensile Supports.'.W and Rotational Spring Constants foi- Generic Base Plates 'of Generic "' '"

.m._.. .- >

}g _..: ^Suoport . Anchor Base Plate Spriq Constants .,

1 Ty'pe Bolt' Size & ' Potation Tension Remark Size Attachment (in-lb/ Rad)' .

(1b/in)

}

i ggg it I s 6 "s IS" KMXa 1268 3st0 3 g M Y , M.A.

(Case I) es. "/' L 8* 6 '

c6 x 13 V H E = 1165.29 = 10 l .

C A -14 C l$MK3 Il I "' 6 IS " KM A

  • 6 33' SA ' 'O (Cast E ) y,f~m;' v/L 1 s i1h gHY . u.A. 3 R. s' j' h C4. f4 C c g , ,3 ggg , go go.gp ato f/f /{g3 fl I " x 6 "x 15" . MMX ' 849 33'10

[x f .

. .J 9' k KM~ "'A' g f i

I (case m ? u/ch*ms WL C6 x 13 KME c Gl01,,,,3 hYj

, ( i I /

CA- 14 C  %"$ Nk3 $ I o 4 x 15" WM

  • 6 09 ' IO (gge 3 y uj'6k"ots. ' N/ l. f'8 s k KHY = H'h' 3 X

L c s x s3 gM2= 546.04*I

cA -s4 c ty21 l l= 6 's Is
  • K nx , 4g 7,33 ,so 3 u/L9s813'4 KMY= u.A.

(CateQ) C C 13 KM2 = I461. 8)sso#

CHM-tw  !!'4 hsta (. 5 s S u % KMX = + 25%9.n = to) z

'/'/${MS. C 6 s 10.S 4

~

K,M'f n 9ss5$7 l,l3

<?

(Case 2) C 6 u lt. S 3 r

(or. 13 ') KM2 t5939 55 . to .-

j F, c> . {

CMM-Jc+ IWfHf.t3

  • yg L 5 > St 3/+ MMX s -+26co.6t 723 95 a to af / f KM Y = g3,s.yg , so 3 CG
  • 10 5 9 q,, ,

(Case. 4) s c x tigQ, y.M 2 = tslag.ct n to 3 us

, x CHH-2a IVNWy.8 l KMX = 40239.a sto 2 L ric5>c 3/4 ) g w,, y (c.ai.1) U/t!'/fMB. , ,, gg ggy , 3g,94,yz a,o (a. 51', b s I.1', c.y') KM2 = 193131.o9 st) {

CHH-2% l k*f)dt$ g(,gy5a3/4 M M x = $17$4 03 .to3 .

\

(Case-4) w,ft 'k,' EMSgy(79y23 KMY s .29933.65 s Ie'

<a.u:s.,vs:c.4 K m wr* 9 " ' 3 R e' .

C HM - 20 (V4yggg 2 [g,e gs.yg g m , 4 4 4 02 p sio.) K

  • KMY = 30739.s7,10 V

(

(Case-t) uj'd2 m3, .2 We w .25 Kne 13330 t is 10 ,

y .,,; s ,,, c.2;>

f

7 *

., TEClfiiICAL. GUI DELIliES PROJECT IDENTIFICATIO!!

FOR SEISHIC CATECORY I lio. SAG.CP25 ELECTRICAL C0llDUIT ISOMETRIC VALIDATION , REV 1 ADDEllDUM tio 2

AITAODETf D SH. G OF 19. / l l . Tensile and Fatational Spring Constants for 'Ganeric Bas'e Plates of Gene 5ic

,'k Conduit' Supports. '

3 . . ,

't Suoport A'nchor Base Plate E '

f Type -

Bolt Size & Fotation Tension Remark

)

Size Attachment (in-lb/ Fad)' . (lb/in) .

CHM-3a 44 'Y *S L I' 5 " I* K0X = I303.70

  • 10 h? 'i

] v/13h EMS. XMY = 10JfS.17 = 10 }' g , . , , . y . 'f 4 .

)

(a s J.: ~,' b = d.7h KM3=2S264.785f0 y - . .g ,

f(4m3 L54^N K* M 3P'8 3 " 'Y j

}

CHM.3u #4 ujif;"sna. ( L ' '7' S") KHY = 10383,St = to c to = 113 ,, gn y, 29g77.y ,go 3

[

u_ ,*

lc ! 'Mts.5 (c . e.2r', 6 4.25 )

,m.

I k; LS n KHX= 1350.69710' 't. no CHM-3a 44 1"f 21. ,,f)4 }'

. unY: t36 3 6.43 s sh c so > 15.3

) (a=3",b=7") #"I

  • O '# ' '*3 CHM - 3 a, t?4"fxsr.g L 5 > 5' 3/4 VW= 1716 16 *10' 3

' (L= 9 g n y , 19 9 I 6 4 1 sto y'i;jy"gns. , ,

y , ,2., y ,, y KH2s675 0 M'l0

}

CHM-3a. 'W4HSK5 L 5 s 5 =,,3<'+

M = % 0.&d 3

efr3Veny

[

( ,,Ef, MHY= 1941? 720 3

(a,7z"bats.g") KHt # GSt43 61"lo k L 5 # Sr 4 yng, gg49, 33,,o 3

' CHM-Ja 4+ I"$2/ '

c to n ls. .

YHY ' ' 7 'l ' '0 ' '*

(a . 6.y', b = G.25) KH?. : 64848 98810 L S s 5x% kMx: 1356 76 ssc)

CHM-Ja 94 I"$Ht8 u/7"EMB. Sh,",'f, ,'f YM1: 7945 70 x10 (as.2s:b.ar) KHE = 17153 94

  • to' e

') .

.i.

ie i

i

m

.. -s TECHt1ICAL,.GUIDEL2HES '

.. PROJECT IDENTIFICATION

) ' '; .

1 -

FOR SCZSMIC CATEGORY.I -

No. SAG.CP25 ELECTRICAL CONDUIT IS'0 METRIC VALIDATION REV.1 ADDENDUM NO. 2

] ~

ATIACEENT. D .SH. 7. CF ' 19. - -

4 . .

' Tensile and .Potational Spring' Constants for Generic ' Bas'e Plates 5f C+.neric *

.)- _.

Conduit Supports. ,

$o -

Spring Constants Suoport Anchor Base Plate .

-f.k. Type Bolt Size & Potation ' Tension Rema d .

[ Size Attachmen't (in-lb/ Rad) ' .

-(lb/in) -

Gl. ~f b 1 x 1,g '4 ' " fY

~

g l

c sM - t 0 l. sg "@ 8 /'g ~< 5"< 8'2 NM y = 6.292 x o K M 2 : 1.'% KW:W%o 2 __

w/3'i.. n.n - < 10} v.

/+

17d - l TS 4 2 4 x',4' , ii -

c6M-isc c9M tBC-I fi'pge & '/z'kIII 2 Sil#"

csM-ISC-E W.6fa& .

1 O KM4: #

" 1

*' ?i I'.'67 to KFX=6.iz3xto

,y . .

+

x, nd 2 T5 4 A44 4 8

s CSM- )BC " I '. .

., c5M- IBC - 9 2 d#1 #ll i

llt WD L'N m, FX=5.41Kto ,

/9gh H,g%

, c sH-ISc- Yi .

g g g y i, m g7 j, . 17e-t 79 3 x 3 x'4 '

csu-tBc a r A c 6M-lBc - g l[d H&B d I2 ,,G 1

  • i tl. m I.ni < to 7

7 KFN9m a l' c5M-IBC .x w/ S 2 A f

KMZ = 1.11\.= \0 .

] c56 -ISc 17 e- Z .r6 D 'D '4

.- .. ju 7 s l (' . c s m-i Sc- x til 't f MG gI 2"5i't x 9 2 K gy .- \.089 = i O7 c 54 - IBC - XIV w/ g/ 2"gl, ggz=1.oB9s10 KFx=6.c/2.Mo ,,

l 17f 76 Ax4xA .

. c 5M-is d " s c.se . I Bd. I V4H66 Ft.h"Xl2'^12' WY = l 077 ' 107 kFX=2.9\2l/do ,,

cs M 18d- D w./5% KSZ : l' 71 IO

, 17 'h T S 2 A p.14 (T I" XMY: 1,'3M x lO k I'#

/2"Y N80 2 X ix 0 2 g=g,g)

CSM ISJ W/'3f g'gn K)AZ '5.C7 h n0 /

- nk Ts zx24 Jk3g ":5"eS'g* xay= 6.tS7x105 gpyyg,gq)ggo" -

3"fH68 CSM-16h s ,

pf g.g KRZ=I'>N ".lO 17 B TS 4x4x 33 (Y t cem 186 .

s d c5M- tSb I '"4 M B i l'> l 6' 51 b" kuY = e 989 ' 'o,7 KF><=7.Oy to KMz = 2.tC9 ' to 2-j

?

+-

,; c 3 m -i s b r. wg., g.,

{ 17A/17C pg (,g 954 a

csa- is a.

c S M - I S A- 7. l*4HMb' R P4"' 2('/gq" t 10 i

7

$5,$%y fj c s u-i ea.-It - ggig . u z==7 7 6 ~ < 10 ,

'Ai N', ws s a CsM M g u : 9.2.9 5 lo ' -

d

  • 5' ~ 6" gay - t, t 9 , (o

. .j J2 1 H68 y __x j

pse t .to wf. si, 1 3

O - **-.uk g e p

-

  • gy 4 {

e .

43 4

N<- v v v V

.. TECHNICAL,.GUIDELTHES PROJECT IDENTIFlCATIOM

.' FOR SEZSMIC CATECORY.I -

NO. SAG.CP25 g ,'

ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ADDENDUM Eo. 2 ATIAGOENT D . SH. 6.' Op 19. -

i .

j . Tensile and Rotational Spring Constants for Generic ~ Bas'e Plates 5f Generic '

. Conduit' Supports. '

e - -

i . .

Suo Anchor Base. Plate Cons e ts .

Ty'pbrt

~

pe Bolt Size & Potation '. Tension Remark '

Size Attachment (in-lb/ Rad) ' .

(lb/in) -

I D66 (Y C5M 376 KM= l.959 dol T

,2NHMB d

  • 9" N 8 ' KlW i 4. I'7 A to 5 -

,+- -

x (c ASE @,1YJ T5 n 2x,4 syg/j g,,, ,

z/

356 6

~ /" k M'x = i. 63xio 9 CSM_37 6 3jjggg d =. 7 2 s I o" y K%Y = 4.25 x 10 (CASE 9,il,QI) Ts 93*/4 t sw 40 {Y C D . 7 / bx (34"x3g KMX = 5.2 % to r.,

te__.w ,

c SM-4 t o. - I.t '2'( H6K6 K4Y : 9 241 x jo 6 ,L-p T6 2x 2.x Q

_rm, ,

. c $4 47.b $52# 'k 7. /

d-O i c5s 42A .? 43x2x3O KMX = 7. 616(ioi ,

c sM - 4t g.3..y /"dhMG 2 .

7 a G SM '- 41. 6 / . T5 MS A 4 1

Kn'f:1.s5zt10 W/5[ Min

' ' ' go C5M 424 7g , g3g KM = 169 < lo 7 7

{

c sM_4f a.g l,'#H5Xe

//

/ KMY = 4.431 x 10 T6 4X4 X 4 c54 4fb W/ g tf's..

. i3A i 7 css t< a. pj gg 7 46dzd3 .g gx _ e.im go u csu- ta g-I gj geg, ,3 g3 c a n e.ivz x io' 13 6 7

  • 2 ' & #D 7- 4 K " " G 50~lx107 p-c3M 44 6 l"dN6ts6 T9 h >4de KMY - S.85t< f o c5vi_ i46-1 w/ 6%

tr 17] s css isg D H^B g/ 2"El oito" T41x124 D " "'c Kt4z = s.so3,. Io KFX=354xd :x/ f.

P

"/6 wn -

  • 36 MC / ,. 4,ag'

' KfAY = 1.7 t r 10' y '.

cSM_S8 I"4H% 7 KFX=3321x.to l

oz = i.2774 to wf g n 64xIdvlo t se a. 6 ,y Ts 4 x4798 g 3.ggqo y .

c.- - csM.37A 1" Hwe d = lo b l{,u RMY =4.0% 10 7 N4.736rX(o , . J w/ gtg, ' 7-n 24a. 7 l* *J ,

iVAX.2 7. 536 s, l0 C.'b M . 2.5 c.

~ ~ KMT-5.52.7,,io7 .) $, . 3

i. m
/z

,.c.'

'*,,.m.

- . . --..*.s.,.,sw.%, .z

C

.'. . TECHNICAL. GUIDELI?CS .

PROJECT IDENTIFICATION FOR SEISMIC CATECORY :I -

NO. SAG.CP25

. . ELECTRICAL CONDUIT ISOMETRIC VALIDATION ', REV. 1 ADDENDUM NO. 2 ATIACHMEN1'. D , SH. , 9l OF ,19. -

I,

. Tensile and Potational Spring Cons,tants for Generic Base Plates of Generic '

Conduit Supports... , ,

I Subport Ancho'r Base Plate

  • Type '.- Bolt Size & . Potation . .. Tension ,. Rema rk' ,

Size Attachment.- (in-lb/ Pad) '. (lb/in) /

csM-tod 17eg .

J7 ggj, 9[4H% 'R. 3. 4 x l2 ^ t t,i K.4 y - 9.776 xlO +

cgp.i d. I c.s g.tod. ig g,, M Kg z = 9.776 A lo f x,, +

c c. sA-1B cl . X

. 2BB .

IX ctM.296 KM = Z

~

O

, {u = ,43gj I"4 MK3 .

q _,

cSM 29 b I ( 68tM;6 '

29 .

T6 4x4?38 7 i Kt(x=3352^107 CSM-BO I"pHX6 c .4 A 1x ,,lM4 wuz 3.w2 10 D . No "

'b7 A, B ,3 g g .

,- II ,

C SM. 3 9 0.

c5m . 39 b ly'Qgg g4/6$W.-

524h24'z KmY= 6.77 c lo' W B 00I^l KFW43%X\o ex MJ 32.

. ) 3iHKB

/ 6x(p 5 34 KM X,= 1. o 6 8 x t o 7-i + ,_ ,_,y

. CSM-33 4 d'O,,~l:." 6 gy RMr% 1 676s.io 24-b 2 L 3h t f /,7 I N KB X= 3.56 x 10

~

. b '

C5M.26b 7 I c sM.25b -I ~{ $ GK S [g KMh3 3ll x 10 n -- / m

'E C S M 'b9 a. FIA I3 j c5M 39 b I'4DEG U .<M Y = 6.77 A 10 - g y, !T +- + y ~

I e l4 (24 l x N1, xM Z . l.ot9x to8 y4 W/g g'g,.,

s rdW LO ,ro

. CSM lb e -

c o4 T, f. N E A IId KMAsl. to  ;

C5M-tbf .lifHgg 9 x_

gg 2l p', R. ' 2. 5 (l'2181 2. K R Z = 1 6("I ( \ o 74 ,

'/

IM hqx 3A q l 7 l

b2 "4 9 It Mt. X K r 1 111 to' N:k'dl0 //

l'if.

T6 4 v a r'4 Knx : ).oL l0 7

i CSM 16f - 3d 4 N ID 34(Il # 12. kM Z.: l.071x 1o 7 Kp g I2XIO . // ,

gi. ,

4 h4 *

-s TECllNICAL,CUIDELINES

, ' PROJECT IDENIlFICATION FOR SEISMIC CATEGORY I '

  1. NO. SAG.CP25 fl

~ . ELECTRICAL CONDUIT ISCHETRIC VALIDATION REV. 1 ADDENDUM NO. 2 AITACE C7T D . SH. Io or 19

.j . Tensile and Rotational Spring Ccnstants for Generic Base Plates of Gena Conduit Supports. ' ic s.

y Suo Anchor Base' Plate onstants! .

Ty'

' peport

l / Bolt Remark Size & Potation -

' Tension g Size Attachment (in-lb/ Rad) .

(lb/in) '

9

" 17 Y T 5 6x p)4 7 P

- CSg;lSf 3.t & h K6 ,

KMX 1.OM A LO gpg,qqgg X p

l+

$ k. 3 ti.,* lt KR z .1.077. (10 yj a

ba .

a N

3 I ,

e

.. a' .

.g i3

'.k n

3 3 .

. O e

. q S

g

~

3 .

l . .

4 I

i 4

) .

- i

_ _ _ _ -1. . . . . .  :...... . . , . . . - I _ _ . . _ _ _ ___ .~

I W ..

?. .

.l -

l. TECililICAL. CUIDELIllES PROJECT IDE!!TIFICATIO!!

I FOR SEISMIC CATEGORY I -

ti0. SAG.CP25 ELECTRICAL COIiDUIT ISOMETRIC VALIDATI0ff REV. 1 ADDE!1DUM NO. 2 j

ATTAC1 DENT . D . SH . Il..OF 19 . - -

Tensile and Rotational Spring Constants for' Generic Bas'e Plates of Generi'c j,, Condu.it Supports. - -

~~

Suoport Anchor Base Plate Sp ng Cons e .

l Ty'd p . Bolt Size & P'otation Tersion Remark

{ Size Attachment (in-lb/ Rad)'. .

(13/in) .

e m = o n = m, fm yggg c gg. gg o, egy 102.5 x to x ++ +

(c ASE - 1) I4 N g 4[ 6 x'4 x 4 7- 9 KM

  • 19' 5$ i

%M c 5,M tg g g7. m 6Ns(( 6 KMY = 216 9 a 10 6 a

!"4 t gg,,gg4g4,9 #

KM7. 263.3 a lo o g,grg WSK6 x x x - 2.2'ti x io' x MY : ~17. o'>x 10 4

(<ASE.~b) IV4 "@ g g.z c.So.9 % gg 6 L6xbt4A'3,_i 3

Bott dP = 4

$ U

  • 6 gg, gg g KM X e 6 0'Z2 x 10
  1. ggy gi4,3 x go6 y (cA W 4) l@ L656x 4<3-15 KMZ. = to2.9 x to6 Sr4T V- t#i g 6 ' '* ^

HsK6 EM x. = 26.954 io ___.__l C S M- 16 6 TSis4 x's my .39. e5, to 6 E' -.____m h 3 L6 g4 x 4 x N 6 KM7 "79 9 5 30' ii'-

^ \Y

' ~

RI m W 61x

  • T'i '"'Ip[

CSM 16 6 l,d T54x41 35

  • a L 4 x 4 gh t g'- 6

. klSKS MM As % *7'to' CSM 166 (p T54x4 d I 3 L6 x4 x'4 x. 2 ' 5 0.ou W - 2 4 KM x = '5 6.72 < g o' C.5M S6 T 54

  • 4- A KMT:DI3 0 ' 'O N

["4 1.6 a 4 x'4 x 2'-5 " " 39+'3*I p.

    • k"*=68"'

C3M_ nE C6*i3 -

E~~~~~~~

"*i #

. t s,3,i = d.4 kM2 = 9M 4 xid 4- I

^

. V

s. jl RSK6 KMI: 1.24~l=lo .

6 C S M - l'7 C.

ig x MYs 5.579 <10 ,3_ l + +

L6:452sl-3 EM7. - f.o70 x lo' ggg Y 145 Kib KM A = B 40. 0 : 10 "

C S M l'i C. - 6 l4 g g4x2xO'-9r#MT*I'360*'O l

6

,  ; KM7. 2 2 *>2 b s t o 6ct.T de 6 l

_ _. i

a .

TECliflICAL. GUI DELINES

, FOR SEISHIC CATECORY I PROJECT IDENTIFICATION NO. SAG.CP25 ELECTRICAL CONDUIT IS011ETRIC VALIDATION REV.1 ADDENDUl1 NO. 2 ATI'ACHMENI'. D SH. 12. OF 19 -

/

.Condult' Tens),.le and Botational Supports. ' Spring Constants for Generic ' Bas'e Plates of Gend/ic y .: : . ..

3 Support Anchor Base Plate Spring Constants .

Type Bolt Size Eotation Tension Remark j '

Size Attachment E.

(in-lb/ Rad) ~ .

(lb/in) -

1 N, Ts4x4x 6 KM x. : 597,6 x to G3 CSK: 24 i

, a e i E _. -_]

(CME l) I6 9 L6x54x. .Ao-4 (KMY=6.oM=ld l M 4 ::: 219.4 a.io' L_ Qy i ' R K6 TS4x4xI6 D RMx = 0 9.9x A C5M 24 , KMY=6 9695io' //

'.' ( c ASE -2.') l c5 L 6 x 3'/t x'4 x o-4 KM 2 = 326.~5 x3 10 1'

s j HK6 VM X = 5.260 519 T3 6 dx 'I6 I CSM-27 +

i - KMT = to.27 s io "

j ip L% '6 2 x 2xo-6 z a r . i.902 ,to6 j Ger.Sr cueo gKS 6 3 RMX e 6.141 x 10

! C s M - 2.7 I, Ts 6 d x S, ggy , g,g io'c ,,

j -

(TcoeJO Rot 4') L% 92 s'2 xo 6 XM 7_: 2 26Sx to 3 (-

3

' HKS VM r, = 1. 6 3 x t o c.,

fl q CSM.26ct L542<>4xd 0 8 K M Y = 12 .92 ,.i0 6 g + +j i, KM Z= 20.25 x 106 asi2 j b. 4 l_ a +c-i blNY I

HK1b , Y H x. ~ i.*b A o e io$
  • 1 CSM.264. g"4 L5 4 6A d x l- 6 RMY = 6 967 c lo'* <<

1 KA4T_ = I I.74 A 10 0.= 10 2

o=z 4 {A 4 KMX. = 4 5.23 x to Hs<lk T5 6 x 6 x*8 + g-i C S*4. 29 a. g, y tg4 gsy , 27 3o, go 6 7 j (c A sE . I') Q< KMT = 45. th, to' h, ~

~

. 6 (X B5K6 TS 64 4 36 MM A =10.92 s to CS M. 29 q, , KMT r25.56,106 ,Q.

I I ^ I3

  • I 5, 6 y+ + _,_2

( C A S E .*2,') KM2. = 30 91 t0 p 4 x g ggg

  • H5K4 TS656<% KMx = 49.2 6f to .

E MY = 24.0 x t o p'

  • j (CASE.S). I<4 fB ! ** 13g
  • 13y KM2 = 49 2bv to6  %

>! 6 II

} CSM31a HSK6 g KMx = 2.726 s to i i I C SM Stc

  • Ie4 KMY = Ms to .x j + ll +j (c AsE I) L 6 x 6 8411'-6 K M 2 : 20.02 A 106 .

. f' 7,, g _ \y CS M ~h t 8 KM A = I.M6 a t o'

't C S M.31 c HSKS tbx.ll.5 x + ..

K M T = 7.4t5 a to6 l (CASE 6') ll44 LGa6:4x(.6 KM2 =iB.46 5 ich 7 hs NY li 1 .--.- -,,,, .,..,,,- - m , - u,_ . m .._.-. _==----,-.m~.

L

i -

TEClii1ICA L, GUIDELINES l

FOR SEISMIC CATEGORY-I PROJECT IDEMIIFICATION s

,.HO. SAG.CP25 h ELECTRICAL C011DUIT ISOMETRIC VALIDATION

} REV.1 ADDEHLUM NO. 2

/dTACh h T D SH. I5 OF 19. ;c - '

j( .

- Tensile' and Rotational Spring Constan.ts for Generic Bas'e Plates 6f Generic h% .._.:_ .

Conduit Supports. * ,

Suenort Anchd'r Base Plate Spring ons O .

j' Tyfe ' Bolt.- Size & Fotation Tension . Remark

. Size Attachment (in-lb/ Pad) ~ .

(lb/in) a gM X = 34.9 riO3 l

CSM _32. ct HKS C 4 x 7.2.5 I I.f

, KMy = H/A x l,'96 L645sS4(0 6 ggg=g.247xto -l 4 j Q

RSK6 M C. 6 x 16 3 KMX = 1235 x tob .bl CS M-34 ct KMY = 9.037x 106 Ikh S L 6 x 6 c 4 41'4 2 i

KMz = id,gt , io6 1+

g , gig +Y I 6

( C5M-Sh E KS N c 6 = 16.'*> kMX = '.o62 4 iog y L5 6 x'4 xi 4,2 tMy = 11.62 x t o lk 4 KM2 = ts.2% 106 a - %.

H5Ke, MC 6 x 16.b CSM- " 3 KM x : 1.2 *44 ID = tof y

(Q p L 6 x 6 x 4xlI4k, fg{l 3, gg 6 .

ct > d '

I( cs_sa gggg M c 6 x l6.'> KMI =l'0695LOg 6

a l,4 d c3xs werE M2. . "= c2 ts,32 x t o io, a = S,4 s

KMx=t.2iovto ~

C SM- 34 b H5KS C 6

  • 6.2 (cow.) xmy = 6.646x iob [a T2.wQjj7-144 L6x 6 m'/4 AlI 4'2 K wz.= i4.29 x t o' +

g gsgG c6 x B.2(ceW.) K'MX=l.067x10 c5M-34b ,i tN L6* 5^34x I. 4g -

KM Y = 8.'279 < t o -

6 kM Z = 15.19 x 10 d=gz i 6

RSKB. c 6x %.7.(OWU W

  • I'
  • C5M- 34 b KMY = 6'. 6 5 a i o$

l'4p L6 x 6 .'4 x i' 4't (uz. wit.ssil06 y

ct = 6'4 H5KB KMx csa-34b C6(B.2.(ceWd g gy 1.07t 3,3,4,goa t6 o' 3

l'4 q6 L5 x sx4 < lI 4't. K M I r15.Bl=to e a=6 i

': etu H5KG c to 515.3 xMx W.6 x to g _y f QS[ t s s s' a i 3 4 L t"# C1't.215 L+,iq gs te, KMy .,

CIO: 15 3 i24 6 mio,

~

L 6 5 5 d+ 5 I' 3 ' _

n l'96- M. b--

i#

_m_ . . . _ - - - - -

ym - ___ _ . , _ - -

,(

R 1 .

TECllHICAL. GUIDELINES PROJECT IDENTIFICATION l' -

FOR SEISMIC CATECORY I i HO. SAG.CP2S ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUl! NO. 2

f. ATTACHMENT. D SH. 4 OF 19 /

.y Tensile and Pota,tional Spring Constants for Generic Base Plates of Gene 2,:ic g , ~

Conduit Supports. ' ,, ,

'f i

Spring Constants '

M Suoport Anchor. Base Plate .

i Type Bolt Size & Fotation Tension .Nemark

d

.~ Size Attachment (in-lb/ Pad) (lb/in) -

d 6 I!N uf Hs R(; egiton.i.z x M = 19. O ^10 31 M- 5 Mc 6 x 16.3 KHY 9 37Z ' '0 5 +

T e;

cA>E.I. l'44 g33,7 EM2 = to.12 A io y z't g a 4)6 6

4 .

c5M 4O H S KF, R l1 to At' Z KMx=2199A1o 6 //

0 -

MC 6

  • I 6.'3 KHY e 9 736 A lo
C An- E lg4p q33,7 gg.Z. = t o. ~13 x i o' ge, t

$ C. b A b. b KM( "il"bb7 6 ^IO *

] g _4g

.3 cgg,J (f

~

L5a5 U4(l'.2 KMY : 4.W ^ i ^ + +l RMz = 10.77 x iO 6 -*-

g, y a 3 c g g , 4.l HSK6 C6 x S.2 KM X BDO -

>{ , e KMY - 4.6 9 5 x t o, g ,,

CAN-U ld # D *34

  • I, h KMZ = 10.7 3 A i o' -

ii n .- . i c SM. 41 gggg c f x g,1, kMx e 617.0 410 s (- , KMy tO.m io a case ~ a- l'44 L6* 6^g A l D KM 2. \3, $9 x t o'

'1 1

_' gg , ,4. g MKS gg,g gq x . 8t'3 6 x\o ,

//

L, _ ' KMY c IO.'b7 f t o I4 g L D% 6 g ^ L,,9 RM Z. a g3, g 9 x go6 i

C AW I.V

}

n-12 bs!4 t. d d Z, h JA-/* K5K6  !?. 4 x '2 KMt = 724, B A lo " '<8 i T" "' + +

f' l'44 L6A6Ab.2fl0 qz ' 27 i g JA-(c> 95KG (E 4 x 't. vs x = si9.,2 = Io ff t -.' WPE7A W" '

5: 24 l14f- L 6 A 6 M4 A 2'.10 KM l. v.10 5o s t o 6

\

$ J A fo HSKS g 4 s g, i VMx= 72(. 9 = lo . ./[

TYFE t> 3 ' #*' 'b*'L l"@ L 6 s 6 A 4 r. 2'4 6 g

K M 2. 1.2 61 s t o e = (14 , d y, t 6 _

' . 3 i  :! JA4 HSCB @ 4 x 't. kMx :: 556s to 6 //

l e KHY 334%to g A:lO , b= 0 lM L 6 A 6d4 A l.4- KMt i 24g,tO

] g TYpt 9 c \ 4,i d =.12.

( rgijo GcLT 5

. com) l}*

4 a.

' beer,n:. w . gmw_ .,m ro-- nrmmw mun ow n- *~~ mw -4~~~~~~~-

1

2 I

).

T ECllHICAL. GUIDELINES FOR SEISMIC CATEGORY I ELECTRICAL CONDUIT ISOMETRZC VALIDATION PROJECT IDENTIFICATION HO. SAG.CP25 REV.1 ADDENDUl1 NO. 2 ATTACHMD7T D SH. 16 Op 19.

)h- -

. Tensile and Rotational Spring Constants for Generic Ease Plates'of Ger.eric Conduit Supports. ' )

Spring Constants Anchor Base Pla.te Suoport .

Typ'e Bolt Size & .

Fotation Tension Remark i Size Attachment (in-lb/ Pad)' . (lb/in)

] 3 geppe p.

t JA.6 HKG

  • box. 36'a 36 x24' KM = z 22 9. to, yp q gg IyFE l'3 Ig4 L 5 4 3'2 s'e,x2'3 KMY : A67 ? ^ 10 g KM 2. : Zb.% to gp. l +j

+

yx g i ! et 5

JA. 6 gKS m ic/x to"524~ k"X = '5 8' ' ' 103 N KMY w %I.0 a to L 5 A N15g d l' I gy.t., g, o gg g g 6 d T 9 PE. I'b '2.cf b .i r , 1 G stn- t'Kaqi --

$ JA.S 4KG Gox 6o 06 <24 K41 = 219.4 io __,

'r*

L 5 x 3't <hd.3 A Y = 5 3.t xto 6 x$l+

4

- TYFC . I'2, '2. d' gs z = i9.95,io ++1 u.u -

yX i

., )A.S HK6 ~

g g gn24' KMt : 244. t = \o r yg e <2. 5.4 2 Le d2 <g xiui ksY = 5o2.5 to$ a K 4z.= 45 17a10 h 3  % tz

/

JA;9 M6 If'2x4: IB kM( *MO45lj --

L 6s6: 43 (l'. 6, *b '

K M 2 : 1.iSt a t o$

i C A$E J. fg I'2 l ,1\y 3

JA.9 ggg, KMX=390.6ato Ri .t < 4 x 16 6 a 3 KMY: 13. 5 4. s to

- CD z3 $Y L 6 x 6 x 11 51., o gy.7, , i, qo g , , o6 JA.9 H KE, gitxdx36 ynx - 435>.9 ^ 10 g C A SE fL '4p L 6 4 6 s'4 x f-O ku'f o 31.0 8 00 9 v

KM w l.o sto J A. l1 4K2:> K M X s \'11.3 410 KMY 2,o 9 s to' X R c A 5E. I Ip cmc 3q)(i'4 gg.2

  • tu.h td t

71Le W NY 3 , 2.

gg x . r+2.i u t o t[,

J S- Il 64K6 L 5 a c> s'4 [,,,, ,

t. e,.s A dyt k MY- ' "" ' 66

{

i p KM2.s 19. 34 s to ,

d+p is j+8 yN J 5. I'2. He t%sx 34 KM A - 869.7

  • io'
  • I I c ASE . 3 (~4 L6 =85 z*4 a 2'. O 6

KM2 2 2'o.92. . to

/ js . i? HQ t s e s s,34 KNA 886.4 < td KMY=1.49miob "

c AAC .'s I,p L 5 x 5=?4 v.2'.o K M2 :. '2 o.92 s i o' J

imew =??,522.W??K724WWwn*w=*omw==wm== === - - ' ~'~~"~~w"** '

  • i

'IECHNICAL. GUIDELINES PROJECT IDENTIFICATION FOR SEISMIC CATEGORY I NO SAG.CP25 j, ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ADDENDUM NO. 2

, IdTACH'E7I' D SH. IG CF 19 . - /

. Tensile and Rotational Spring Constants for Generic Base Plates of Generic l

Conduit Supports. '- .

~

Suoport n A'chor Base Plate Spring Constants .

j Type Bolt Size & Potation Tensicn Remark j Size Attachment (in-lb/ Pad)' .

(1b/in) ,

J 5 13 WSKf6 i

L 4 x 4.< 3s M ' I 3 9 " l0 (My - 4.544 s 10 hbx . + +

,l IN L646?4=3'-O g. 4 i s 4 4 .14 A i o' 7ll_2rjggYj 6

' kMX = l. '5 44^ to y js, g 3 ( .)$ 14 L 4x 4*h tt<Y = 4.90'5s id 6

- )I44 L 6 5. 6 24 ( 3'.O trez.= 64. B9 a lo a .- 3 '2.

! gg K M < = 1. '> bi Nto 6

. I JD 'S 3 +

TW6- 1 lg g ( 3 KMY = 3 5 27 eo' 6 l__4+ ' -d 14 8 KM 2. = I4. lG a t o is 12L,V

. sY js.1%

7ygg,p 45KG t'4 c6

'#* " * * S # ' '

! ([ J% IS M LacAi'S MM A

  • l lbl < lo rm .w- w t. s .6 . w i. s tsy=3*S^io!

Kyz = LS.46 s to a._ +

J I t'a

+ I "i QY J 5 I'b DK6 L4A44% KMr.eI.loi^80' 6 #

TYR-$1 l'44 L 6 4 6 < b t'- S KM: = 16 54 co I Jg. t4 IMK6 L4,4.x% RM r s t.4 5 x t o&

p, l i 3 (MY = 3 9 to TYPE.1 L4p L6x 6 s 4 1, e. i+ gg7 .= 27.s95 t o6 6

gg,l4 fueG L4(4/g k W = 1. 41'h 4 0 .

b I' A b ' 4 8 g 6'4 K.4 2 = 27.79 5 to b - #

l TYPE B l'44 i.

  • I I ' "

J5 15 "6 C 61 B 1 ""*'*6 Ip gwf=.2T.16sto Z bl2,2 x12,r. <M 2 = 16,7 9 t io' 6

5%.+f.kE y/ b;i[

p l' g g Asaic

!' 4W6 KMX 'is.95 e to .,__

D ID .: q I,,#

C6 cit TEb IS 19 ggy ,4 o,,g, i o 6

{ p;4gE ,

, xsz =i4.7+< # y/ siiE

,7-

~M ^

KM A = II.N 'Io 6

  • I I J 5 19 g@ (6 4 $.2 ep ++g(

y i, n g 9, g 9 Kwf=4766if' mz e i4.0 00 v,a3 fr cr 5 l

I: g - c. . 6.,. _ _ _ _

__.A '

ACMb /i O W* ^ b ~.h4 J'V# CAN M E'N ' ~ ~ ' ' '

) -

i[, .

l ..

TECH!iICAL. GUIDELINES j- FOR SEISMIC CATEGORY.I PRO.1ECT IDENTIFICATION

~

LT NO. SAG.CP25 '

' ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV.1 ADDEllDUM NO. 2 IGTAOBD7T . D SH. I7.' OF' 19.

Tennile and Conduit Supg>rts. Rotational Spring Constants for Generic ' Base Plates df Generic

.g .

Suoport Anchor Base Plate , pring onstanu - .

~

l Typ'e Bolt Size & Ibtation Eemark Size ' Tension Attachment (in-lb/ Rad)' .

(lb/in) .

J S.15 WK6 C G r o.2. K M x = 20.D a l o M* T[

(4 g34gg9,g9 NY e 24.oS = IM ,

Ih l VH1 = ll.oi s to' y 'j g z.

E323.5.09to g g g, KMx= I tela 1o 6 SH.JS.t& 2c. 4 r 7 25 6 fZb$

g~, l'g, L 6 x d s,h r,2'. l kuY = 6167 x ID X,_ i + i +j u KM 2 = 41.70 4 t o b 3,,, L

, 3., y J5 el %KS W6x25 "M*

  • S2'76" * -

E# O j TWW 8 14 4 g76 M is'2 s; l b't. g .t 3,'i o' -

o + + _ z, I

an a Y/

Js_2 2 ca.

  • I g gg, 7,g , 4 ,4 , 3,3 KMX = 5 64 < fo' K4Y . 36.59 uo,
g. ----

. ; ha-b r 4, 3@4 2 L 6 x 3't.shsi b K 47 = 24 415,1o6 2 NTH

.A ai d y JS 226 M x

  • u h io' l(. CASE . I HKG TS 6 < 6 ' 6

%4 2L 6 M185'z RM'L - 30.20 s 106 egy = 41.25, m'

, a = 2 '4 b=Y4 l

3 5. Ef. b . N T5 6 x 6 s 5 16 RMK=r743,id . o.= 2'4 i c A5E 2. Iq!> 2 L 6 x 4 s'7s I! 5'2 k b-%

l

<4'L"T54.4

  • 3 8' ,iob ' .i o .

l JS.25 f45tB TS 4 x4 '4 gr.t X = C 3 2 3 4 l o' kg-f i

l c AS E . '2. ( 2 L 4 = Tz s.\ ad h M Y = 4 0 43 ^'8 0' 6$ TIFF (2 58 Tu r,. t:M7. = S E 76 A t o' b 2i 2l L t tj Lk'T' JS.27 H5tB. Ktu =70o.7=Io' N I5' j_f +. +1 l .

gig L 4 x.4 t'B KMT = 35.64.a io6 1' KMI. = B.5sio6 k I. JS.JJ\T"zu M -

3 KMx = 2.*5 4'3 , l o' I *o. f j JS_2 9 i SM5 #6 g,.ty, 3,o;4.<y., , os b.4

%-G2

'2 @ E L4 x,3x'850-4 V M 2.s t. 0 5 o A I o' A '

1.9lN Y

- d 5. ~3 O T56 444ic *

  • I' O D ' '

K M h io.ot o s,to; ,, a:3't p2L5a hh o. 6 EM2 6N A @ b=5 TMtT.[ .

EMr,, s.se2 x io 6 j J5.3o HKG TS4a4c'6 #

I TM('i.g. 'z.4 2L%n3?sco'.s ll (,,,

i _

1

p

.1 w .

h TECHNICAL GUIDELINES PK0,1ECT IDEUTIFICATION i FOR SEISMIC CATECORY I liO SAG.CP25

{ " ELECTRICAL CONDUIT ISOMETRIC VALIDATION KEV. 1 ADDENDUM Ko 2

>j . MTACifG7I' D SH. 18 CF 19 . - '

e

.h . Tensile and Rotational Spring Constants for Ceneric Base Plates of Generic

'j -,, ,--

, Conduit Supports. ' ~

r-

  • Suopert . Anchor Base Plate Spring Constants .

-_f-N

'Ty'pe Bol't Size & Ibtation . Tension Remark j

y . . ,

. Size Attachment (in-lb/ Rad)' .

(1b/in) -

i: -

ggg --

g- JS.2.5 c L.

4,. , -ith mA 79,4 4 g ss t m g = 21. % xio

  • TyFE.1 1"p -

-"B"-

J' 2 lx H, e 9,L KMY = 12.o 3 m io .a g g r = 21.3 8 xloc, =

y'/t Lb % r.

d b26 T#6 E kMX =23.#19 t Io' q T5 3

x 16 EMY = 12. 05x to6 n.3 3 db3@ IS 17. l'atS 413

//

b=3 2, TW6 '19 KM2 = 23 99410 b J 5 'bl a rs 4 x 4d6 WtB K* * '2 3. 2 3 n o' a:t S I*Ib*'3< MMY = 16. 21 x i o' TTi% '2 9 4 (4 KM z.= 23.22 g ioG 6

J 5. '> t 6 H5KS 'Ts 6 x 6 '+ (Mx = 46.60 < t o C' II

.l #

RtJ.Y = 23.7 9 < io6

/

- U D - Si G - l 95 2 ('s a; a c) b 4'z l WE K W z. = 4 6.s o aso6 d'

5( ' J 5 . 31 b h6 KNT4

  • 4t b 10' J s _ ji c., TS 6e 6x 14 a s t't CMT = 33.36< 106 ,p
c A5p H f*@ 2 ("x i9 s g 9 KM2 = 4l.Sl a, lob 0:4'2

.- Hsk6 rs c,, g6g KM X = 4,t .t c,' e i c6 ,

'j g~ MMY = 56.12 4go 6 . a:34

C ASE 3. .

g*p i qg4*IIg'22 i KMZ - o.t<, , j M '+

j MSG 6 x4x 2 66.to s t o' fi'-[9$ Ts 6 < 6x 4 g g,*

  • 2'2g N2g K4Y = 66. M x to 6 6
  • 4.: l'4 C ASE E I4 KMZ iS6.io (io 6:3'4

. J5 39c- p gg' 734 4,14 KM A = s. m aio 6

. a s i'2 JS 39d ceg,7 g3p9,9 KMY es z ==e,.2% 10.1+ i6 = to{

/r nist U.N TS 4 x + Ak tid X = 7. 96 ' t o R I"

JS-39d y g g, 9 gy u, m io 6 <<

g is

. cast .E. -

Kg z. i 9 e , i e6 ,

4 J b See 4K6 Ts 4 : 4 = '+ g4 x = t 6.29 a o' m4 cA56 1 KMY = 23 6ht /r g

(, ITS 8 i @34x(3'2x(31 KAa?. - 16.7 % \g

'9" 4KB 7 s 4 4 t'+ cu x =- ts.w i o' a-(4 c A 5G . T1 gg gsu g3,et g gg z K MY = 25.70 m io' i v g ,4 3 k M2.=ts.se x to t

I

. f. . . . , . ., . . . . . . . . - - - --.. ..-~ .~- --- " + * ~ - ' " --- --- ~

.l .

$ TEClillICAL. GUIDELINES PRO,1ECT IDF.iiIIFICATI0ti FOR SEISMIC CATEGORY I NO. SAG.CP25 ELECTRICAL C0!iDUIT IS0 METRIC VALIDATION REV. 1 ADDENDUM No. 2 i ATTACDSP D . SH. / 9 OF 19 . - f j Tensile and Rotational Spring Ccnstants for Generic Ease Plates of Generic u .

Conduit Supports. ' '

Spring Constants Suoport Anchor Base Plate .

i ' 3. ' Type Bolt Size & Rotation Ten sion Remark

] Size Attachment (in-lb/ Rad)' .

(lb/in)

)* -_=. m -

dd blJ TYF6 N HSKS rs'-L i 3 = 4

" 'r 9' 6 M

" Xdt4

  • J 3_3t e I

K MY= 5 660tto 6 (n >k -MR -

N't -

T M PE 27d t, @ 2 h (IOx t o #

+ '

  • KM 2.:. 9 670 4 to'
c A'E. )

JS 'bld STtFF. f? % (M?sh"M "

< 6 q- l12 T M F( 2 9c. 45 M G, 73 3,3x 1 4 KMX = 8.506 10 6 JS- 3ie guy = 7 39921o 2'4 a Ts n.29d 1@

1 R. '2 r 10 t to 4 c A5 6 2. sidF (E '3e K M"2.= 9 942. = to tt J 5 '5 7. ~WKG rs 4. m % XM(*#234I d' ' ' $>'.h.

j *3 2 L 54 3 tg t g. 6 car o.st2 -io 4d' s g g.g .,ggi,4 , ga s -

g 132 3 e

, se. as-u as cs,e.A Ku x - 1. 0 0 5 s t o' i k.S L f_~

k C ASE . h [4p L5x524m.2'.O b+

K4 2; - 73. ~59 = io 4 3

L 16 +k's

_I y gM x = 86 9.7 s t o

( J S . 3'A HK6 L5 A 6xS +

gyy , 7,4cj ,o s y c A5(.4 IV L54 5 =h f-0 KM2 =.2o.92<io 6 a=+

J 5_ 'b4 HKB r Wx e 2s7 3. lo 3

f bsa jn b 2 L50 L d6 .

KMy = 9.7 87 io , x +. + 1

'4 4

K4z . 6.ois s i o6 +-(Lig y gy) guh - 7s8.6 = 103 a-3 ygg . e, m th J s . '5 6, gy5,% g gy ; io. i9,i ec y 1*p <M 2. = 6. 0% i e6 35.3'7 RK6 3 n- a t,4 x 4,12. i<M A = (>d B. 6 < t o o.,141

\h KMY = \o:24s tol t, ,

K42 =. g;ggs ztol x j .

'~~ ,

. < ,s M4f s .' . . -

H46 L 3,3 xh < m ( = 856 =to J 5. 'b 6 16 -key - 3.32 6 m io' y 4 v

L 5= 5s*+ t 2,- 4 gg.7,,_., 4,93 ,g,6 g y .

,(

t

, p Y /

f

.s,

- ___ _ _ i

EBASCO Interoffice correspondence DATE Novertkr 24, 1987 FILE REF.

To Distribution OFFICE LOCATION Various x.

f FROM C Y Chi OFFICE LOCATION BE/2WIC i

f' i SUBJECT 'IU EIRTRIC CCMMCHE PEAK SES t. NIT #1 ADDENIXJM #1 TO SAG.CP25, P1VISICN 1 DEIETICN OF SIENDERNESS PATIO RDNIREVe27f FOR CCIERT Minor correction was trade an the meno SAG.TUGl.9688 and its attach ent distributed previea ly. c. Lease discard the m mo and its attachment and replace them with the attachment to this treno.

4 i

Distribution _:

K T Wu cc: R C Iotti I Wolff (CPSES SITE) E Oder H Patel (D111as) J Padalino R Shetty M McGrath F Hettinger NYO Corduit Personnel (K T wu) MGetVED CPSES SITE Conduit Personnel (I tbiff)

Dallas Conduit Personnel (H Patel) NOV 2 41987 .

I K.T. WU 157% G072= 7b /44 'v'.

$ 0. C w outf G w f M G A 'a l

AM l

1 l .

-.--7' --

m - - -

=:

q t

1

l. EBASCO interoffice correspondence DATE Novcmber 18, 1987 FILE REF.SfG.'IUGl.9688 To OFFICE LOCATION Distribution Various
~- -z FROM CY C u'ou/h/ H4So^^1r Yu / O S Yue OFFICE LOCATION

,i 81/25YIC

' SUBJECT 'IU ELECTRIC CCMANCHE PEAK SES LWIT #1 ADDENDUM #1 'IO SAG.CP25, PEVISICN 1 DELETICN OF SIENDEFNESS FATIO RECUIPD'E27T FOR C3NDUIT Since conduit is not considered as a cagression mrler, the slenderness ratio (KI/r) require ent as specified in Paragraph 7.3.h of Appendix I of SAG.CP25 is being deleted. Attached for your use is the marked-up page 19 of Apdix I to be incorporated into Revision 2 of SAG.CP25 at a later date. 'Ihis addendum is to te used imrodiately in design verification.

Please ackncwledge receipt of subject docu: Tent by signing belcw and returning this me:To to C.Y. Chiou at 81/2WIC no later than Noveder 24, 1987.

CYC:nw Ecceipt'Ackncwledged: D , .

b . t. . s d w 2 q

PRINT NAME SIG!ATURE DATE (Last Na e First)

Distribution: '

K T Wu cc: R C Iotti I Wolff (CPSES SITE) E Cdar H Patel (Dallas) J PaM1ino R Shetty M FtGrath NYO Conduit Personnel (K T Wu) F Hettinger CPSES SITE Conddit Personnel (I Wolff) '

Dallas Conduit Perscnnel (H Patel)

L L

4 4

4 4- = .-. *- *- toe #+6=e w e' eP W ag> e requmew r_ _JWh*. .,,=.an>9*e,g -%""% ame,emte ggu.9 93 eee***=,, ,Ae ,

  • ' __-________-_-_-___-------w - - - - - -

ch f PREPARED BYt o. s. vn, '

REVI N ED BY , H. S. YU ApppOVED BY ,

C. Y. CHIO0 hfOJd u -

DME fl!N 3!h7

  • - ..l -- - - - - - - --

. .)., , TECHNICAL GUIDELINES ....__.m

,/ FOR SEISMIC CATEGORY I PROJECT IDENTIFICATION Q

NO. SAG.CP25 M ELECTRICAL CONDUIT ISOMETRIC VALIDATION REV. 1 ACOENDUM NO. 1 03 APPENDIX I

'y '

4 ,

.q 9 '

. 7.3 EVALUATION OF CONDl'IT FORCES AND HOMENTS FROM RSM FROM SPANS

.) g (Continued) 4 '

2.! h. Effective Length Factor in Slenderness Ratios-6

.~s

] 'For overhang, single and double bends, the unbraced length

'd s and its respective K vslue is given in Table I.3.

-3

3 The slenderness ratio of the conduit in the STRUDL printout need not be checked except for overhang. For Overhang, maxim a slenderness ratio j

7 (KI/r) for for conduits conduit supportray be taken menters) . as 240 when fa/Fa <. 0.15 (not applicable

( Where fa = computed axial stress ja _ . F a. , =. e.11 owabl e ati a l s t r.es s.. _. _... -

'l -

-l -

~q When fa/Fa > 0.15, maximum slenderness ratio (KL/r) shall not

{

(.%) exceed 200. ,

},-

5 The SSE allowable shall be used for SSE loads and OBE 3 allowables shall be utilized for OBE loads and if necessary

'I each conduit span shall be evaluated for corresponding member j forces.

  • l 7.4 COMMON SUPPORT g a. Conduit Stresses I

{ Each individual conduit has to satisfy the design

{ requirements stated in the procedure described in Section

7.3.

> J,

b. Support Capacity
  • ll; ..

l For Vertical Direction

t . .

f =

,! Ri + Wx 5 (1 + GActual) OP L) 3g (1 + UDesign) (L L T

3 '

. ;i 19 -

n ..'.

N r x;. . _;..-- , _.=5'~ e n. iW#'~ ~ ---z* ..=5"h'.F112'"CbhTWN.~.~.T:".'". ": E-

~ '

L