ML20153G269
ML20153G269 | |
Person / Time | |
---|---|
Site: | Wolf Creek |
Issue date: | 09/30/1998 |
From: | Lott R, Perock J, Terek E WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20153G260 | List: |
References | |
WCAP-15078, WCAP-15078-R01, WCAP-15078-R1, NUDOCS 9809300020 | |
Download: ML20153G269 (300) | |
Text
{{#Wiki_filter:,
= . e -'l ,:l !.? -. . ' ,. . .- .! .; ,: .l, ='. . i. . ..,:.y ' ;L ^ -l. ; O :' .f ,&:.}.k. .. , ,. / .. : ,; Il l,l .l:.; ,. .?.h Y :
4 ** l . Gj[: :~ ~.', \';
- l.k;* ii'.'.N f. s.. .,[. ll ...$,l'.f.' . 'l:: . .,;;
,...c_;.?. ., JO.;&.s ,. ... n : .. '..] .- . .. . .a ...,:..?,,_-
c- ; . . . .
;g ,, ,* .- . . ,
s, .
,, .m ,_. t . :. : .. - - .. .q i s ;; ,. . .. ,;:. ,,, , ;. :' . :: .,- n ~ e, , e;_s. ,p..., ..;.. :.3y: . . . . ,,;'.:...: . ... .,.g.,:'p;. ..,, . . , g,. s . .
a.t '. , . , g; .
.c. , . . .
- . j. _ ;. p *, . ; . . .
,, _. ;::. ._ ) - i : 6. ;
r u, 7. . .Q.- . . S.
- . . ;-' +* ',.. .. :1: . . ' i d ". . f ' .o.n.',~....,'y'..'..yc.,
.L r :,% f
- f,e.....,.',.;,, s,q.%): . :. *! M.-'. -ls.;::.v:..;'T, ;r;-\.: :[l: ; , vp *' .,' U.::' ..
. . ' . '.; ::.Y. ': .i'... ;. '.':i . ;l', . , - ... .. 4 , .; .:; g. . i..., ,,. ; .,.r:. ., . , . ,. 4: .c ...,,.,c.....g.,e,.,...<;,....y..m,..g...,... .. ' . O, . ;. . ,,
s . ::
..s..g,... 3.,~:<. y ;, . ...- .=.- . ,1. : 4., .,.,,...ss. .- .. . . . .. ... ...-...u.:. .f.,.,......- . w. * ;; 4 ,.. *:.; - - . . s.,..;...g, . v ;. , , .. .s.
- . 4,. . . . . .
. .: .w -(:.: -.,.f,..~. ' .c.c. y:, .._z...,,.. , _ , ,; e ......n.- ;r . . ,q *_ l: .s. o_,. . . . : .. ; . v.;, . ~ . .4 3. . -, % ; , ; .,,, y . ..Q+,,._-,. .; . , ..*,,. . . , ...v ^'-A .: . . < : - '%
_'...'._,'.*.;.,.,;:*,'.",: .. g... 4c.:4.;-
^
c . .. t ,.6.ps.;. w .,, H q... -:. , . %,
;- 't : . ~ .al,,. s. >. , .u ;_ ':. - s,, ;: f, .,-l., ..';. , .Q,: .:...* ::..'e b :~, f *; ,' '.,.s e,. ' %: . ..,s. - .; . . *: ;
1.;.,..,.%.G..'..?..,.,".+,*.,*..- *' h h. ; .,
-e. .. ,..
- ..!.,L,y,.R*4.'..',.,!.*.,'.*",-f,,'.,;.'c%..'.".7..:,'.1.. e .
*..u.~..,...,.se e,,..1- .:. .,g. .g g, .- i.. . . - . . :. ..,9 y;: .. y :
a.
*. . ., , .v - . r i s. v.r . a. ,. 4 , ,. ,.',< ; t ,s : .;. *- . . . . . , ,: s - ..,,,.c.:..,,. .7.,s,',.... . ,,...a. . - . . W'* . . '.,, .,, . .. ,e....,a. . *.,,,,..eF.......'...,.;,....--.V,;.'ria;k..,c..>..-...,..,3;9..,..,. *..-..;..- <-- - .. .,...*.:;,..e t.r ... .q... ; . . t : o - ~- *- -. : ;-.... .' .! ,.e, ' ., s - .., t :. . - ,
s.ms:',v.- ./. ..
- , * / .a ., . . , g. ., : . c; ..
I; e .. , . . a ..a.- a.: ., g.,, , ,.i, 4 c ; .q.,...w.,eg,,..,..,.,s,;'.pt.,.s. . -
.,j- , . , . . , .
_. _ 7, .f::--
,w c < J.. .: .n,< . *.r.+s,,.,..f, ;,.,., _ .. ~q., , . .j ...i ...r,,.; g , . , . . . . . , ,...,,.3 ,..r. - ,,;..,t.,,- ., . . . , f - * , q . r$ 3 },,
shf:
.,s ,.. . .. --:.u. m , y; ;;-.;.. , . . . : g . . . .e ~. . ; :. .,
- . - . , ,;.- ; ? ..."'."?;6. - * .' -.
- s .i . . -
', *g . .- ~?, . - .-.f.
3, * : ,' l f5l'Q '. . , ' ) '
. ' .*l'_.,, y, *l. . . ; , 'l- .* *, , ' ' l . j ., ,_. .- . ., -
1,.
, [ ' .: ..a.:- ,,. x.# . .;; fr ' '.*:...'..e ".,,,.'d.- .:.**.',',:f. . , ; . v'. ,, , '.' -)* .. v '.:0 [# . ';,* I/'..'. ' .f
- r. { ...>..:v- ) I. f I ^c'g*, ,.* '.. #, 1+ * [ '.t,,g.3,.".'.. ,
t .'- ' ;' ; , .{: 4: ':r.,; yl-' ; ~ <:.
/
- 7i r2~ ** i'.9.,.
E, + .e :": . [ # - *
4, "f" '..,*l i .:,"*. g . , ..*..';,
I I
....? 4*Q- '..,.'Ij,.,7,* ,1* ",.$'[,.s.g',.',z.,.[.',','.'[,..,...',../', .,,'*.'*.,'.'c, . .. . u'.."[,. . = , e f,s.. ,, .,,e.,3;- .e.. .g..,.. . a ,-s ., '*. . , . . . , -" , . w.' ..-. . . s.
2
,-. :... : . . -l :. - . r g ::. .. m : ; L,....:',..c< ., , .- . ,; . , _ , . ..,, y- *; ,,t , ; ,, ,. .. - - . * -:.;...s f : -;,s.,~.*.',:,. ... ,...;=, ,.. ., r . ,.;_. .. .", .. . .\; ...... , ,. . o.
- .g . ,:~, ,
"'...?...',.. ',.*
y:. l . .:,;: ..,y. o .'..; -s.f.... . - ; 4. :. , .. :e
- ..,.'. y...jp';.,...c._,,,, } ;..,"._.. i , .:.,,,....,.,,,'.,.g..,=,_,,. .. . .p,*, ' ' , . . , ..n ,,c i. ,; t: -. ;. ... ,. ;. ., . , '*' :. >' .' .k.:. -; ..,, .n .: . , ., ...t... '. - , . . . ' '.';.r,,
f, , ; * ' ..; p, (.* f;*' 3. . .*; , . , - .N . ,. ..
.f s; ,:<,.".'q',;;,',. ,: e* . '". i . ' l , sh .l,' % . , , .~,,'~s C. ' :v.c,,..(. : ; ,(.*- ,, ., 7, . -e.~.,,.:-- .:: -., ,,;'.,'.,.,'.;.p,.'e'.,. y..'.,'
[ ;.,.. . s . %_ ; ; :,o A p. ; , .u. .., ; ' y ,;W : ' ,,.;.: l ,; f.v : . .;.. . ;.y, . f ,, '< . , * ', :. : ..: 3..'., .Ql.:, :[ . :.; ; . '. y ; .;
. . ,,=... , . . . '.;- .. . ~ n. v . . ; . w.:. ....;*';, ., .. ....::. . ,. , ?
5 . . u , ~ ._
- s. -
.. y . <y.- , .,
f4 .y, . y
- ' ',4....e',.'.-. . .;-,-
,, ' [ . . g; '. , . '. ' i . - ,4. . ,* ' l y., : ; h. . .g..'.,.,,',y - '. j' '.-i' '.S. :',.,,, ' .yy...s:
- ,..,'.;-- , . . ,: .. . . *l :,"v,.:
,.%.,,; ',"_.( * * , ; ;'y .. ' . , L,~; '.:l, .. :
s,
~ .
c'..- -. , - .-
,, q ('J', t .,,.'., ; ' .. (, .f.g......'.,.s.;;,.- j. i t, . .y '.,.3,..i,',; *,, ,; ' ,.c.- ., -.l-l., . . . < . :'.'...v.., f ' . " f. e . ,-3 i,, ..v. - ,, , g. , ,. q . . , . ;' , .:'. J .c.
- '.g.- ' ,
.y. ' . ......s . . .. ;-: . .7 . , .:a ;. . : ,u. _.. '<.:..' . . L_: .*
e . .: ' * ,, s . .q . .
. , . y , c. . : : .c.c..- .w.. ..is....., *. . . * - ,,*.e. . , . . . p/. . . . ./,~ - ..:- , , .:.., ..;.< , .*u.:-~ ^.-.' . - .. , w ?,S. ., ',. ,, ;,r..,.c.,.,1.;;.,,'*..,. . . ;- .. . Nj;' .
- ' ,L:$
4
..;...%gce.i ; '...,,.y. . ~.i ' . , . : .: ~ 4;'. . l ," . . . . .s .' :n _ .,::: . " c ...,.s . , . .j....,,.
5..Y. .p
..., ..m .. . . , : : : } L. .7 4 , : 3. ; e g-y .2 ;.. ? . ' .h, . , [ f. ll ,#y. hi'; *
(( . J' h '. ,".[ j ...... ((h ,, .[.. . . , .s. < 'f h,,.,,(. ;.'. ; ,,, '[ \. .f ; . , ',h i '. . . , ,,
..- u,g,. y .- ,...: -. ........,.,......,..e.-- [y . .,,y,, N,'.,.. .. : L, . .. . ,a . , . - :' , . : v;. . .v ;. . ,, . q. ..- ,. .a.
c- -...
.s ,...?..:.. .- . a y ;...c. . .
y -, .. w ; . .
,; r;_ i ; _ ' ');;,. . ';^'. -V :.s ..; -,,3. c. .; Q.;:;l ' N,:[ ' ,:.,'{ Q: s j:',' _.':y' ; p. ..,a,. _m' ;.,w,;g> '., - . . y'_,_." ' .; ., :7 5...7_,"._, "n %, ;. ;Ay. ;. ,.,.c.. .- _ ..,.,e-.,:,,_,.s ... .:%..
p ;
.,a . . . c va - . , . j ,, .y,e... < . * . ' ,. 7 .; ., , ,.,. *, , , , ,.,..i .- : .v+,.." ,.p' -c " k-,s.;a.'.- -. , t - * . : . .-;- .s..3... : .t ....:..,.'A... .*-,*.,...r^ , ,::. , . ' ' , d-, g..,<. ,.
- un;u.- . . -. 4. .; .o
. ; . .c p - * ;; ,. .. . +. . we :-,9- y 4 u. .. .,; ,f ,y.... .< < p, ' . 1 .n. - .y._...,.. - _.. l.. 9 . . . , , , -x. .;: 'v q. . , .:;. .:fc.- . .,. . ... -., .., :g v,. n - : ,2.,,,,.,.%...-
1 , .p: .
.6. -:'.',.,.*,. ',, ,.:. y . ., L 'V,., .r....,g,,,-.,,R. ' * . s* lf. .: .. .. ..,.;.. . . .' '.. ., .-.7 .. e. . . e. .. .- .* ' * ' . ~ ..',.._'z.- ,s- - .e. ,. '.M.
v-' - . g
." . ;).,':*.... - .* 9 . _ : . i .,c 'u.=,.t.;;',%, '.n-*.%, .,,a . : . -t , '17~; ,-- , - ;....',.y - t ,.:;: #;}, ; , ;; .s;'. .. ** . . . ~
s.'.;
. :-..*. ,'. 'r. . ;, ; .:s '. :. )- ?,
e i; + . : < m . ; '. . !...9 *-;'%i ., . .. v..,
;'~_','#- - .,',..9,.g;......\
- ,; s
;v.c......,,,-1.f'g*.'
- i . . :; . . c.
i,
,.,;.,;.. .s .y .. _, ; ,, . , i. , ,- g , ; .; . . .. , L....- . _ . ..- '. . . . . : w. ;. i ..w.
a.; ,..,,'>~_. ..,. :. .*: .. : q. . ;p ' :. ., ,. . . .; "..,.,,'.'.,').,..-.. g..,,:',";,' . ' p ,. . ,; c , . . , y n( . 3.,.
' , .* - .' . . ,;,.. ,y'._._.: . '. ', _j , . ::. y t -. ' ' , ' , .
- l ' . - ' .
.r._.~ , . . g . .
- n
. . 1. . . . , ,- .,-.'... ,. ,.. ,,,. .,,,, , , ..,,..? *gg . ,. , . .., T, .( ;* ..h.>>v$...,.. , , .
e r.,. . o
.,..,.,....t., y.- ., . , . .*. .c..- . . . . . . , . . , . - . . ._ .g.. . ,, ., . , . . . , ...
3 s . ..
.,...r,. .e
( ;
,y),,,.,-'s........3. .o .-;- ?. g . - . . .Q ..p., . ' . .. .c - ..c.. :. 's,.
a
* :. ' ' ,y ;:, . '; L \.:. ' ; j. - ..r __ .,.;-_ j'. . 'r - ',; '
- q. = v'-. :; i ,,. f . * ,,. n ',; =.,-_-
* ; 1. ,; - . ,:*., y-
_,;-.;!_' _;' ,,, j .. _-:n , *_.,q
,,.',..g . ;s :% ' h,. . ., . 'n }. ... , . - , . . . . , .,.... .,. . . . , . . , - . ..'p<. ,. . . ~._ ..>
w.. -
. y , c. ., . e .,,g'.,'
g...=
.q g 9 , - *~ e 't- . ' ,?
A':,1* .,. : '- ' '
,.-}"- ' . j.4.,i .' !.g,'.a ,.?. . ,2: : '.;r.,..s,.\'..",'... l 7/ / ,. . '.1, e
- ?. " : ,.: ,. ;;,,; i .n. v.~ s : . m ' . Jc'..." * .y /* :. .. -. . l.'-l ' .1. ) '..'.
- l. . , .
. , ,.. ~ . . _.. , - ', ; a : -l . * , ,,; ,- .. .-,.,:... - . , . . ,. . . . . . , . .':.
- n ;'. :. ,; * , ; 6., . .-y... f ; s ., ' ( . , . . ,..
,-,r,.,'4.- , . .. .. . v ...e,.. - . . . . .. . - p , - .- ...._ , . ......,..,..j . ,(, . / ,*4 ' * ;# $ . , L. ,*. .f ,{ '. .i, *. * ..,",- ,..' . . 4 .f.'l,.,'e, . . . . . ' . . . . , !! p *,1'*. . . . - : --(e,,, 4.,,- . ' ' . . , .av g, -'-, ., * .. ,,-- .. .- ',. '. q .- , ,,.,,.5..-. e:i . . '. ', * *,, f. ..,.'c,., "..s. h...' . , . . .: ..,,..;., .., - . ..n..'.* ,. . < .. . .- , ,g. . - ,. a.-. , . .p . . . , . , ', , ,' ' ' .. % ., ,..r.c,. -
r
- ,.-.. ., .* f..,,.,
" <-. , ' - '-- ,.,.n' o'r.- ',..y~. ,3,,,-
s.: 't
, . ,l,".,,.- * . ...~. , -*. ,A,, ...:* ,- .> * . ~. e s 't. >, . . ,;. 4: , . , ~.,.o_. '.,.'4,,..", .,.;,....'..:, ~ , l ,- .-; 4:
- s e
. .-_, ,. i b q.
g . 1,,*, ,. ,. ,.- .
*1, ' : ,; * , , , ' . , .
9,- ,
*...,:*, ' - i.. ~ l$** , . - .., ..%, , ,,j,- . ..d .t
- p;- .' ...*, : ' : :... ,~ As
'n'- ~ , . . .0- ; .. . - .,4. . . , . , :t']
5,:. .
., y .e * - s . ;i p,...*., . .p; , [.' ..'f.,'-l'.,.,*,.'
S..,,Q:,M.,,,,,.
. " . ',. j, ?; , *. (,1 ' .,; *,; ' f . , .' / ' , ' .,. J , p .... . ,, . , . .' y 4' i ; f. e. 6 . * ;; , <.'.,..y , . . . - ; - 7,,. +. . , . .- -, .. ; . :; . ,.. . ,'; , - r p. . hi .'. '.: g . , . ,.. ;~., ;q ,,,. ..g ),. .g - , ..,. . . ~, .. .,'d,....,.,.,,.,,'o ., ,;4,:,,:. '...,s., '
4 , n.-(:._.s ', . . .%..,,L,.,; ;,:q .. ,,,.
,; ., l, l:. _ r - . ,. . _ ' . . ' ' . . , . ' ~ ~-, q . . * ' { : :s , *._ _ ' , ' _, 'i. . :S, ' , . ..e;'.,,. . , .. r ,; ,; ' <... ' . .g.ll. ,.t:(. "o,c,37 _. ^ .o.-
8,G<.,,.<,..>.,. *) A, , i , -{: t'c ,
- , ,. .. , ,. - , ., , l '/ ,*,* , , , .i.,,;.r..;," , , .i,,- ' p._ 4 ^ ' ./ .': '.'l ' !" l*; * 'b N. ' ~* ' '*'# ' " ' #D. ' *a.
5 f .- (r ' '.'. . *; *,; >* :'-- . :j. .',;- y
\' t '., .., * . - . ., r' ' .;; . ,. -- - ..?'"w, ' _'A " f. .*; .., ;;
j ,-. ...L:, :: ;_,;f.. ;5. . ';..;p".* d,;;. <. t- -
,,L ', ,,C:. , . ' . . , f : : ' .w . . , e'; y . .;...r'.:.*%
p,j.s :vg;, 7, ,,: ' . .: h y _ s . ... ..? -
- e. .:
e_.
.fg.;3 y,,(_:,.;,~; ; q . . : .'- ; _. _ :: ::,,.7'k;9 . ,;. .' ;;3. ,s =4 - . , , .y, };; :. Q_.;. ._y.,. 't ' ;"'; ,'s . v *.:. , ;;. ..
J',; ; '.,j',,,f. r
- _
. ,, ; R.:. ,!.,..;...,: :..s.v,. .c <m+..,.;,;e.,,.' . . - . ' , . .;g
- . . - '. n, c
, , l. . . .,*,.,,i*. .;: .- t ,. ?. s :. ,.9 r. ,,.,,,'". ,g. . ... , . ,:, ,, . ., . . .- i,.'.- ;_ ,. ..3.....,....,..s.. , e ..g . , .-,-, . . ..m.-.~
- r. .
. . . . q j.
s).+'.;f ,._ L ; y , .I, . . y?.N . f 4,j,fY ',. ,.; .r ,.f,h_$.,.
,v:a .:..p:.o:,?f:;.,:, ,;l ly;t. . % M;_ '\[ . .:4'.; . ~ ,. : ;. .lh', . , . . .:r;;- i ;> .; . .- ,o A
m.m. .y .y co .np. yn ,q,; U, . y,i yy
, . ,t.,*..:- =,.;:: ;,4; .~:: v;.
7,c. ,p: #:.. n :., . - . .
-l n..
e.,.:'.:..* .,.,
. . . ; _. y. . . .: '.;.' ..,,...a.A?%l - ,1, ;.n,L . .*+.s:,- ;a. . iNeQ'Y'.p;a. .,y.a'.
s y*3;. ,:::;q~,,*x
.~s.. ::i; , ..n.,.'ys'y 'u :, ... .,.. s,. nt6y.l;,
- . ., g.;y. .e r ,}g"R . ,; ,%_
f;',_ ?t , - y-(; ,:-;e k YJ.** a, [;:: .).e : ',; g ' .f t.a n ,y .-
- y. ,-
) .; % +: l :. ; . ;,s4,.,.';.....,.;. , p g. .: ,.z,s. .c. .,w4. :.., . .._,, , nt .- ..
- , &m
;$. .e.
- n. '!g. . 3.),-),.
- r. >f. .c .9...
,. ., \;, 4 ,4,, t'.no,s.* ?. __* y!? ; ,; - Ofn,,:.* :< ...y y ' '.? . ,./.;*.:!. .> ..;~',.,., ;n. ' . :.,4., ' r i t p;.'::., ::i f,.?..t p- %, a K . .;a ;~. ,1,* u- .v.9.yj f.:% + ,*h ;,- > , .. .,.. 1 t :n.y . -
s y,- s' .
- , . . - - . . ,. g* _ .Q ln .*:$t .T.g : , . ,f .,;;7;lq +. ,p ; : .. 9 ,;. .. :p\(f ) . ; 4 . .\ p,'Q. ';,} ,' *l' j. . - }. , y: . y - -l b y ' , l;. .g;, . .p. . { ; .';.'3 ',, l. .,Y , . . l i;,[;, Qg, [: .
- !.} '_'f 'i_';f,..
.,._:l.!' k '. ? ll&N; ' ; 6y:f.,,f,' .(*;ol,l'::Y!o. - f.',l; lf. '):hjif- :. i',j,' *',,h f.f ?fl[*? ) ~. . :: .l ' i . i l.Y. , ' ,'
l* ~ , ,$.[.
').' k.'::: i fy, ' ') * : , , . + : Y* , f { .,' , '.; :;ej ; ,, ,; . ,fl,l', . - l . ., ; 0, ?.
e ,"r, ',**j**', ,,'-]
,,,;.; ..' (;g,. ,v.g'% '. :. ,;, [. ;. y}.'. .y j, j'; g.w *J;. .7 ag. .l , }}.9 ff f ,f.', , y: ~ [, .., ': .b. { _j']. , ';':{yi ..~_.'.' ~.,_- - -
l . ;s l ' f. c a .: .. *, ),. _ ., y. .: .,{ ,. ;p _ ' _ _,
*'*? . , ss . _: ? pt.': :!,.r;: * :'::, - ::,,~.; ; . . ' : Y. &-p- : (.; 9 .:'s .-v' -: ' .:,*, f*7 #0.;.: r,(f:p
- . _ ;,';_,,;.. q.;* W4;*3.+.y :.b l\, K 1 ? ;: ? '.. ; qv.:<"s; .n4 ; ..* . .,
'c ' ' ' ' - l ' :wh .o.:G, wn :- *;:,:) .:< < : ~.c.;,<,',.M. >1i* . y .;:'3 9'.?. 9..q C:l. ;v'. . -,..'..........*.,o, , y, . , . ; :: , . ,.. .w.
3;s ..' .,a. 4.a ':: . : .
. ,. . L ,5. . ,.. . - . ,g;. .'e . :. . , ..:: ,.. : p.
t.,?.". .; ;y . l(. . n
. . .j:; , i c.
es I.
~ . . -l,19.$,'p. . ,.;.y ',?. : Q.: .Ql: *: p .'. ? C i.dv. '...se .q-.
e
~
r. y s,v
.u.3;.
- l... .. 6 n
., y . s ,3 . , .. p. , 'e.s y N.9W i.Y. .e.
- .,.g..-
,. ?:.,' , .
4,
. .c a e. , , . e .- :V ; ., 4N ,V, ~. * . . ;,i . o: .. t. n . ~. .<.3,, .;.g . : , .
- .a : *. .<4.:s: .... .,.,e s, ., . .- ..,s -c t .. .z ;7:-m 2n v.. . .;. . 4. . s . ,. . . y, x.w..:
. .y . .p: ,. ., ., . 9,w.,y ..~e., . .: 4 ..-.: ;...;;. y'.s..... . ...,u.. , . 4; g e. :.:. n. ,g.. ,.f. cv ;.9 .>: ..u < ,. 4. - , s - ,n .;:, .: ; c. :v.. , ~ . .- ' . Q,. .'- [.:. ;. _ ' .; ' ? K., :; A_.. ;*. "...N;;%. Q g wy.:;9 p,;g.-., y,h. l . yM:'t :. . , *.',,,,'4 . ,. ..3 ,,..._.....r...,
g ,;.i#.:h #.g
.u ...: *< &a'g p .t, ./.t . .- F .t ..w., . . ', a.y:f s '*g p .n , ". ! ,:., e .*!. , f,.,lj , p'.l'^?.-l4.,y;3.;.
6,. *y;
.. ,;-*.. e e 6.. .,......,i. ;j!*4 y, u3. ._.
s- '
; j'b;.J,1 - .. .. j ',4.4. '.'i,..,..(q"v..,,**
3, : 6Q. . .,'i. O,; -},
. ,, ..",, ; i s, ; ! .b.;,J: . p.". .<*'*?.3..,,. , . . , J .~. , ;v,ly; ?.,:.;. : ,e ,',':;,.) p 5, Y.~ w .t %: .. n.'.rss;'. . ,,,t hy y* *', t , l . .v y, ..* s;f. . 5_~ .,, . ll.=*:t -..;.:y.r.': ;: *.s..', . , '. . , . -" . . ,. . ? ., q ,; . . ' ; '. . -. ' l' * : . '.'.7.,*#...w , 'O .';'. ' ' }. %..:< ', . :
n.'..
". 20..*: . " < '.",.;#l I:. ,. ,.,;- * ,i,.:,', . .. ; . 9. .'i;c s , 'c. .( f..,' ,E,3., N. .,: . :I.! .,.< ..;. :.*...g,3;;,. ... ... .. 7 ' ., ,'h ., g .J. ;,',.*. ' l ' . . .. ; ......s....,..r.<... z. #, ,:;.$.%, . :.~. ~ w_. ..'(,s~. .M, . . b. . , ...( . . ... :. , . . ,.....;m,.... .t,.., s- . ;, : .,,;.:t," :*....;.
- - ; .> . . , . - ..e,.. _-
, .. *. , z*, .f. . - .s. ..,e.<,.,,%.,,
u., .. p: ...r. ,, < c..,,_ ce; n ... ;,, ,n
;< ;: ., , . :: ; : : v
- s.
- L ,: : . .,
./. s , ; - . - , . . .- .v. /- . . . ., .. ; .- . .. . y q.s. , ., . :. ,%, *.. *:, . , , . . .. .s ._; . . : .
5._.;.'.....;..,.m,,s..J.'..:.,,. . . .:, . : j\ .r. . .. . v . .-. - e . . . .
.j.:..
c-: -.c.,. . . . .
..v . . . . . . _ . . _ . , -. j, ,.; -.j,.". .. .- ..", ... .. .c. ..,,s
- z. ;. ; .y ~._ ;, .
.. g . : - :... ,:s ;- . ..,..,'i' _,., :. . ..; e. < .; ,y . , . . . : , 3. .- ( ,, .: ,V 4i ; e:j.;,,;. vy;f.;., .. . : .. f.,,, s: . . '.r : :: .. 3.: n-' .7. ,. . 4. , f y.;,.,p0. . ;s. ,5,y .; y.. ..1l, w:.l c ,_. f .g;e. . ,., y: -).,r ..
r
,w, . ,. j. ~~ '-? .,.
j 9:.. _,y. -
=
n . . . <: .. , . . , 9. ..:..- .,r.....' 3';',,'.:,... ,?F . cm ', .s ;j ; . .e. :. e .,5 A.t-, . . j; ..p, ,: .- ".. .';
# .4. ..g;'.,....c..y i : . .,p ,. ,.s -. . , . . w c,,.q . . ..
c - A'; .l" ; h, ';. f
* ^ . : :, .,_ y '.) <! '. **l S'....
l-<- . -.4- . '. b. ! l
.;;h. . - lv . . ?. a . ,. h .*. . I. ;
y . , . . _ .l v .. . A _ , .
- ..h fg ., .;'_ ..;Q~y.:J . s:.. p.. . .t "l?g. ', \* *]. . . .a. ac.
i.1'1.yg.,h.
& :x..,.. ,.;.r.. y,;,Y, , ,;;; i . ' ; { ., .; ' .'s. f . l .*,;, . , <,.H= . . . ..l. ..,, . . ;j :. i Q,; ...yy y;;;.,. ;- .v ,),.i'l'4 3: . ,: _..f.g.3QM..q . . . . ,m. ,. :;,.. .;,'1 g+
f . 9;y s .
-( + n,)n:,? .;yJy . n .c ..'(::',::e...,._-.._~,.. ,.5
- .m . .: g..M r .;.V: .n:. .c.p ..s: : .e:.v... ; Any . ;.9. ,e
<; ,t tya.. sg ).;.n, ! wy..,. e M.
- j. .
,. q' .,,e p .- ;. n m.. . .u..,c., a. __. . m, .. . ...,.y . n,: - n *,, 3w' 4 . .;,w : .. . +: , , . :: . g gx,e : ,. :n. .. .., . : . .,... . ,. : ;'. :' 1.f '. ,";'. ' ;. . 5 ;r
- r. .';. .?.l.c. r a' ;~: ::.ciu.:, ng.gy$n.;. Q: m.,%n:f ;f; m. .,,J: ,,.'L'rg.;':
.(%., .\m,. 4. .
s
. PW~,;h.,;'s .., .c 4 , .:,,, . . ,e ,,w. .g . .y g .. ; ,.,... .. ,, %n a. . , .. .g.. m . ,4., .,..4..,..4 s Q:s. .a... s: f; . . ,a . -:. . ,. ..
y:s
. .e.
- h;+;:QA*
.c. &,.
- 6. .f. ,;u.,6y,4.;,, ..". ,. .
~y,Q.;f. p.:.,t...;.M y , (< ,s . ',. .; ,-, .> .,..?. .,t .q , y q. ,t . .f f '. 'y . . ,: ;y . , ,, i: . '; , '., . .'. ' , . ..L3 , : .. ;, ,* 1 n y a .,.9. _y; . . . . .,..;, a.% s. b ,
- y t :_. (l .;,. = 4 ;z., f ' ! %
. '_ i," { . [ ". , ...? ' ', , .: l-4 , , , r_\fl l . . 3 'J. ,s y' . ; ,4C; 'v '
A,
- 5.f' l* .. ' . , .' _ j.y
.**f , * ' ., ? ',.. '.t ' hi %. .,[*_., ' a .'q ), *'.#e 7, . ':f *,: 'r,-
cyQ.;a.Q
..a".- * %s%
is _.T,7)f:% Qs ys 3:$,4.s y
'9 gn' .: p.pW~ . , .,e 7 .
4 , .: y >. m :3:.:.. ; y y & . p'l,:7 g g w . w h g y' : w 'y m . 9 )..,c q m '
sh& p% a % s p e%wuM na %m s w % e c q uw s w aa w.e =# w- a m - M N b h M)$gwaw$$h b k '.1 $wewN M namnwwwam BR M G www M MkkW & RuV . m 8 m&. @g4j4m w w #pn%um _wn e awa.wwm.p snw w Wswwwamnm%w ,.- \h my yans m n W +e dnnaw ew,eg w3MM e w e annnw Wews Meeg Mg&AnalysistofeGapsul6MW w i MgMaM b
$wWMMmeempgwegMk ApM dweswww sg@hp %ifatomithetWolfrCreekW MsA 4 NucleggsperatingbMSn u%w$p@ enmunnn w smga smco - .
WW unm w w3Serpdfatik:i r nw-w w w e &eW61fW m s m n+e'sid - Mw mween w$vm$eW #be&wR d B m@w%eactoraVess'el&eneen ng JWWW nhe% wyn~sm.~sw,S~ur~ veil mwf&ww 4.wwwM
%opegRadiatiom Mge m u anceM ..- ..w@w - %_ g gE e%
gm m u xm Wya . w nW M $ n$s @ s w a _g g. w nn W G C W _% aT-QQ,r_amh %n W M n M %ma
.As& Whbd~Rk$$$Q % ,D & 5 ~N,wNW & % l -lWGN V h p l'Y % % . $]OhWRT i
mv Q::r hn c m - y mg?on}ew}lng tWQw n A)Q
>sm,u g+$PRG yQ ,w m.i r <% g, n_ a l?& h i
c
, w w~g @nl &,
wj(ns aa rgm%iH wa * - '
.. QYr + a.s p p c &c >N + m, '. *.
u 7+ ~42o ey .a%
/ug%,a/w&ge%m+ n'r. RQO.w>u$w$
dV , W, v m%sJW 7 j Mp p- f QQWo GhnW" 9&m ys w s%a ~ v' u as m m' m u%}m #w@m?WY2 pe %e
.=%
N pew h@k pf p4 SkNf mpgA s h
%g@sw?&glh$aswww$$gw.?hhhhYY Y bhkYkY %m Jew?$YIh 5h a% h . ., wn. ,. ~ n am km.+i!
n wc mna xwe w ea W J~e%w
.M q s Y[p o w"lh&pw%wdw&wp wQ wOW + @ehE$ w$a ma p &n% a;; 4 &g' c &y p / n 4 %{m,$$
WN&m%m?w^ W. . m$q3%x e m%;;4:8$w$$ M hh h hhhhhNhhh n n YY . .;
, ,??
MMhd2NkhdB8) w w$ w n n$e$dr Y ,"y" YM $ .$ M4 Y - n $ n.W @ #m
@*N $ '+
sp4pp
~
no e w oe. - M k $N m u e; w MM %m$0SMM %a r/S!f M S$ -h; d swg[n%w W@cj~M m?;p.yu -sny v4u.an gmyk W he upM@m x[p,2A W h,er._
% wM, ~. s.:4^n p .,s g W ,; a,n we, ess m g(:y .e > ; + ::V _ . . - g m&asqe p: q, ,
m% gg= v n ,. 4 .
, ,- ,t m TG r ., lp 1. % # <'nMMM M
- 9, '
c WW%W M C M w' p9,=n%yfgnfA%whw@M-J 4 -
, ig. p y:U wgQ < M 0 3.n as ' wWWQrm m n mw, e+4,wg n%u,f , g: .,pygg.j ,.
h m, o ,
# a -
mmMs n
~Gg .m wfg,gg . m. g-q g . [P AET V joi . 4 pgp a
,~ c wmvm , . ,, n vnnn v, a mu, n,o . n;g w n ywwwung
,e , n ; x , ~- ~ _ _2 awe
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAD-15078 Revision 1 ANALYSIS OF CAPSULE V FROM THE WOLF CREEK NUCLEAR OPERATING CORPORATION WOLF CREEK REACTOR VESSEL
. RADIATION SURVEILLANCE PROGRAM E. Terek J. D. Perock R. G. Lott September 1998 Work Performed Under Shop Order K6TP-106 Prepared by the Westinghouse Electric Company for the Wolf Creek Nuclear Operating Corporation Approved:
D. M.'Trombola, Manager Mechanical Systems Integration Approved: C. H. boyd, MAhager Engineering & Materials Technology
- WESTINGHOUSE ELECTRIC COMPANY Nuclear Services Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 @ 1998 Westinghouse Electric Company All Rights Reserved i .4 --J
~. _ I l l This report has been technically reviewed and verified. Reviewer: Sections 1 through 5,7,8. Appendices A, B, T. J. Laubham 4 C, and D - - Section 6 G. K. Roberts _ l l 1 I l l l l 1 1 l l Analysis of Wolf Cmek Capsule V l
li TABLE OF CONTENTS SECTION TITLE PAGE 1.0
SUMMARY
OF RESULTS 1
2.0 INTRODUCTION
6
3.0 BACKGROUND
7
4.0 DESCRIPTION
OF PROGRAM 9 5.0 TESTING OF SPECIMENS FROM CAPSULE V 19 5.1 Overview 19 5.2 Charpy V-Notch Impact Test Results 21 5.3 Tensile Test Results 24 5.4 1/2T Compact Tension Specimen Tests 25 6.0 RADIATION ANALYSIS AND NEUTRON DOSIMETRY 62 6.1 Introduction 62 6.2 Discrete Ordinates Analysis 63 6.3 Neutron Dosimetry 67 6.4 Projections of Pressure Vessel Exposure 72
. 7.0 SURVEILLANCE CAPSULE REMOVAL SCHEDULE 100-
8.0 REFERENCES
101 Analysis of Wolf Creek Capsule V J
iii ABLE OF CONTENTS (CONTINUED) APPENDIX A - LOAD-TIhE RECORDS FOR CHARPY SPECIhEN TESTS APPENDIX B - CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE HAND-FIT VS. HYPERBOLIC TANGENT CURVE-FITTING NETHOD (CVGRAPH, VERSION . 4.1)
~
APPENDIX C - CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOD APPENDIX D - Wolf Creek SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Analysis of Wolf Creek Capsule V
iv LIST OF TABLES Table liQc Eaga i 1-1 2 ' Effect of Irradiation to 2.528 X 10" n/cm (E > 1.0 MeV) on the 4 Notch Toughness Properties of the Wolf Creek Reactor Vessel i , Surveillance Materials 1-2 Comparison of the Wolf Creek Surveillance Material 30 ft-lb Transition 5 Temperature Shifts and Upper Shelf Energy Decrease with Regulatory Guide 1.99, Revision 2, Predictions a 4-l' Chemical Composition (wt%) of the Wolf Creek Reactor Vessel 11
- Beltline Region Surveillance Material 4 Heat Tniatment of the Wolf Creek Reactor Vessel Surveillance 12 Material l
4-3 Chemical Composition of Four Wolf Creek Charpy Specimens 13 Removed from Surveillance Capsule V 4-4 Chemistry Results from the NBS Certified Reference Standards 14 I 4-5 Chemistry Results from the NBS Cenified Reference Standards 15 4-6 Best Estimate Cu and Ni Weight Percent Values for the Wolf Creek 16
..- Lower Shell Plate R2508-3 4-7 Best Estimate Cu and Ni Weight Percent Values for the Wolf Creek 16
{ Surveillance Program Weld Metal 5-1 Charpy V-notch Data for the Wolf Creek Lower Shell Plate R2508-3 26 2 Irradiated to a Fluence of 2.528 x 10" n/cm (E > 1.0 MeV) (Longitudinal Orientation) Analysis of Wolf Creek Capsule V J
v LIST OF TABLES (CONTINUED) I / Iabic Iills PARC i 5-2 Charpy V-notch Data for the Wolf Creek Lower Shell Plate R2508-3 27. 2 Irradiated to a Huence of 2.528 x 10" n/cm (E > 1.0 MeV) . (Transverse Orientation) 5-3 Charpy V-notch Data for the Wolf Creek Surveillance Weld Metal 28 2 Irradiated to a Fluence of 2.528 x 10" n/cm (E > 1.0 MeV) l l 5-4 Charpy V-notch Data for the Wolf Creek Heat-Affected-Zone (HAZ) 29 : 2 Metal Irradiated to a Fluence of 2.528 x 10" n/cm (E > 1.0 MeV) 1 5-5 Instrumented Charpy Impact Test Results for the Wolf Creek lower 30 2 Shell Plate R2508-3 Irmdiated to a Fluence of 2.528 x 10" n/cm (E > 1.0 MeV) (Longitudinal Orientation) 5-6 Instrumented Charpy Impact Test Results for the Wolf Creek 31 2 i Lower Shell Plate R2508-3 Irradiated to' a Fluence of 2.528 x 10" n/cm (E > 1.0 MeV) (Transverse Orientation) 5-7 Instrumented Charpy Impact Test Results for the Wolf Cnek 32 2 Surveillance Weld Metal Irradiated to a Fluence of 2.528 x 10" n/cm l (E > 1.0 MeV) - l 5-8 Instrumented Charpy Impact Test Results for the Wolf Cmek 33 - l Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of , 2 2.528 x 10" n/cm (E > 1.0 MeV) 5-9 Effect Irradiation to 2.528 x 10" n/cm (E > 1.0 MeV) on the Notch 2 34 Toughness Pmperties of the Wolf Creek Reactor Vessel Surveillance Materials . Analysis of Wolf Creek Capsule V L _ _ _ _ _ _ _ _ _ _ - - _ - - - _ - - - _ _ - - - - - - _ - - - - - - - - - - - - - - - --
vi i LIST OF TABLES (CONTINUED) : Table _Titic ' Eage 5-10 Comparison of the Wolf Creek Surveillance Material 30 ft-lb 35 l-1 Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions ' l 5-11 Tensile Properties of the Wolf Creek Reactor Vessel Surveillance 36 2 Materials Irradiated to 2.528 x 10" n/cm (E > 1.0 MeV) 6-1 Calculated Fast Neutron Exposum Rates and Iron Atom Displacement 76
- Rates at the Surveillance Capsule Center i
6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom 77 Displacement Rates at the Reactor Vessel Clad / Base Metal Interface ; l 6-3 Relative Radial Distribution of $(E > 1.0 MeV) Within the Reactor Vessel Wall 78 - l 6-4 Relative Radial Distribution of $(E > 0.1 MeV) Within the Reactor Vessel Wall 79 i 6-5 Relative Radial Distribution of dpa/sec Within the Reactor Vessel Wall 80 l 6-6 Nuclear Parameters Used in the Evaluation of Neutron Sensors 81 l ; l- j 6-7 Monthly 'Ihermal Generation During The First Nine Fuel Cycles of the 82 (.. . Wolf Creek Reactor 1 6-8 Measured Sensor Activities and Reaction Rates
- Surveillance Capsule U 83 - Surveillance Capsule Y 84 l - Surveillance Capsule V 85 f .6-9 Summary of Neutron Dosimetry Results Surveillance Capsules U, Y and V 86 l
Analysis of Wolf Creek Capsule V
. - . . . . . - .~ - . - . . - . . - _ . - . - - . . . . . . . . . . . . . .-
vii LIST OF TABLES (CONTINUED) Table Iitle Page 6-10 Comparison of Measured, Calculated and Best Estimate Reaction Rates at 87 the Surveillance Capsule Center . 6-11 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsule Capsule U 88
- Capsule Y 89 - Capsule _V 90 6-12 Comparison of Calculated and Best Estimate Integrated Neutron Exposum 91 of Wolf Creek Surveillance Capsules U, Y and V 6-13 Azimuthal Variation of the Neutron Exposure Projections on the Reactor 92 Vessel Clad / Base Metal Interface at Core Midplane ,
6-14 Neutron Exposure Values within the Wolf Creek Reactor Vessel 94 6-15 Updated Lead Factors for Wolf Cmek Surveillance Capsules 96 ; 6-16 Fast Neutron (E > 1.0 MeV) Fluence at the Beltline Locations as a Function 97 of Full Power Operating Tune 7-1 Wolf Cnek Reactor Vessel Surveillance Capsule Withdrawal Schedule 95 l l 1 I 1 1 Analysis of Wolf Creek Capsule V ! I
viii LIST OF ILLUSTRATIONS Eigitte Illic Eage 4-1 Arrangement of Surveillance Capsules in the Wolf Creek Reactor Vessel 17 4-2 Capsule V Diagram Showing the Location of Spccimens, Thermal Monitors, 18 and Dosimeters 5-1 Chagy V-Notch Impact Energy vs. Temperature for Wolf Creek 37 Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek 38 Rer.ctor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) 5-3 Charpy V-Notch Percent Shear vs. Temperature for Wolf Creek 39 Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) 5-4 Charpy V-Notch Impact Energy vs. Temperature for Wolf Creek 40 Reactor Vessel Lower Shell Plate' R2508-3 (Transverse Orientation) 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek 41 Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation)
. 5-6 Charpy V-Notch Percent Shear vs. Temperature for Wolf Creek 42 Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation) 5-7 Charpy V-Notch Impact Energy vs. Temperature for Wolf Creek 43 l Reactor Vessel Weld Metal 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek 44 Reactor Vessel Weld Metal l
l l Analysis of Wolf Creek Capsule V
IX LIST OF ILLUSTRATIONS (CONTINUED) P_ age. Figure Tule Charpy V-Notch Perrent Shear vs. Temperature for Wolf Creek 45
. 5-9 Reactor Vessel Weld Metal ,
Charpy V-Notch Impact Energy vs. Temperature for Wolf Creek 46 5-10 , Reacar Vessel Heat-Affected-Zone Material 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek 47 Reactor Vessel Heat-Affected-Zone Material 5-12 Charpy V-Notch Percent Shear vs. Temperature for Wolf Creek 48 Reactor Vessel Heat-Affected-Zone Material 5-13 Charpy Impact Specimen Fracture Surfaces for Wolf Creek 49 Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) 5-14 Charpy Impact Specimen Fracture Surfaces for Wolf Creek 50 Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation) 5-15 Chalpy Impact Specimen Fracture Surfaces for Wolf Creek 51 Reactor Vessel Weld Metal
- 5-16 Charpy Impact Specimen Fracture Surfaces for Wolf Creek 52
, Reactor Vessel Heat-Affected-Zone Metal . 5-17 Tensile Properties for Wolf Creek Reactor Vessel Lower Shell 53 Plate R2508-3 (Longitudinal Orientation) 5-18 Tensile Properties for Wolf Creek Reactor Vessel Lower Shell 54 Plate R2508-3 (Transverse Orientation) .
.. Analysis of Wolf Creek Capsule V 4 - - + -
. . .. - . - ~ . - . . . , , . . . . - .-..-..~ - .-- . - - - . . . - _ - . . . . - - . . -
X , LIST OF ILLUSTRATIONS (CONTINUED) Figum Tills Eagg 5-19 Tensile Properties for Wolf Creek Reactor Vessel Weld Metal 55 5-20 Fractumd Tensile Specimens from Wolf Creek Reactor Vessel 56 Lower Shell Plate R2508-3 (Longitudinal Orientation) 5 Fractured Tensile Specimens from Wolf Creek Reactor Vessel 57 Lower Shell Plate R2508 3 (Transverse Orientation) 5-22 Fractured Tensile Specimens from Wolf Creek Reactor Vessel 58 Weld Metal 5-23 . Engineering Stress-Strain Curves for Lower Shell Plate R2508-3 59 Tensile Specimens AL4, ALS and AL6 (Longitudinal Orientation) 5-24 Engineering Stress-Strain Curves for Lower Shell Plate R2508-3 60 Tensile Specimens AT4, AT5 and AT6 (Longitudinal Orientation) 25 Engineering Stress-Strain Curves for Surveillance Weld Metal Tensile 61 Specimens AW4, AWS and AW6 t
. 6-1 Plan View of a Dual Reactor Vessel Surveillance Capsule 98 .- 6-2 Fast Neutron (E > 1.0 MeV) Fluence at the Beltline Locations as a Function 99 of Full Power Operating Time Analysis of Wolf Creek Capsule V
= ., - _ _
1 SECTION 1.0
SUMMARY
OF RESULTS
'Ihe analysis of the reactor vessel materials contained in surveillance capsule V, the third capsule to be removed from the Wolf Creek reactor pressure vessel, led to the following conclusions:
o The capsule received an average fast neutron fluence (E > 1.0 MeV) of 2.528 x 10" n/cm 2 after 9.49 effective full power years (EFPY) of plant operation. o Irradiation of the reactor vessel lower shell plate R2508 3 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation), to 2.528 x 10" n/cm2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 52.03 F and a 50 ft-lb transition temperature increase of 46.86 F. This results in an irradiated 30 ft-lb transition tem.perature of 27.08 F and an irradiated 50 ft-lb transition temperature of 46.98 F for the longitudinally briented specimens. o Irradiation a the reactor vessel lower shell plate R2508-3 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction of the plate (transverse orientation), to 2.528 x 10" n/cm2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 54.53 F and a 50 ft-lb transition temperature increase of 56.27 F. This results in an irradiated 30 ft-lb transition temperature of 56.54 F and an irradiated 50 ft-lb transition temperature of 90.59 F for transversely oriented specimens. o Irradiation of the weld metal Charpy specimens to 2.528 x 10" n/cm' (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 46.33 F and a 50 ft-lb transition temperature increase of 52.44 F. This results in an irradiated 30 ft-lb transition temperature of -11.36 F
. and an irradiated 50 ft-lb transition temperature of 31.79*F.
o Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 2.528 x 10" 2 n/cm (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 55.91 F and a l 50 ft-lb transition temperature increase of 52.01'F. This results in an irradiated 30 ft-lb transition temperature of-88.09 F and an irradiated 50 ft-lb transition temperature of -61.99 F. Analysis of Wolf Creek Capsule V
2 1 o Re average upper shelf energy of the lower shell plate R2508-3 (longitudinal orientation) resulted in an average energy decrease of 19 ft-lb after irradiation to 2.528 x 10 n/cm2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 129 ft-lb for the longitudinally oriented specimens. o The average upper shelf energy of the lower shell plate R2508-3 (transverse orientation) resulted in an average energy decrease of 6 ft-lb after irradiation to 2.528 x 10 ' n/cm2 (E > 1.0 MeV). His results in an irradiated average upper rhelf energy of 88 ft-lb for the transversely oriented specimens. o The average upper shelf energy of the weld metal Charpy specimens resulted in an average 2 energy decrease of 11 ft-lb after irradiation to 2.528 x 10 n/cm (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 89 ft-lb for the weld metal specimens. o Re average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy increase of 6 ft-lb after irradiation to 2.528 x 10 n/cm2 (E > 1.0 MeV). Hence, this result will be conservatively reported as an unchanged average upper shelf energy of 161 ft-lb for the weld HAZ metal. o A comparison of the Wolf Creek reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2m, predictions led to the following conclusions:
- The measured 30 ft-lb shift in transition temperature values of the surveillance materials are less than the Regulatory Guide 1.99, Revision 2, predictions. -
De measured percent decrease in upper shelf energy for all surveillance materials is less - thu the Regulatory Guide 1.99, Revision 2, prediction. The above results can be found in tabular form in Tables 1-1 and 1-2. Analysis of Wolf Creek Capsule V
3 j I
-i o 'Ihe calculated end-of-license (35 EFPY) neutron fluence (E > 1.0 MeV) at We core midplane for the Wolf Creek reactor vessel is as follows: l Vessel inner radius * = 2.18 x 10" n/cm2 l 2
Vessel 1/4 thickness = 1.30 x 10" n/cm ; Vessel 3/4 thickness = 4.61 x 10" n/cm2
- Clad / base metal interface I
o 'Ihe credibility evaluation of the Wolf Creek surveillance program presented in Appendix D of this report indicates that the Wolf Creek reactor vessel surveillance results are credible. o All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (35 EFPY) as required by 10CFR50, Appendix G t23, I i Analysis of Wolf Creek Capsule V
4 TABLE 1-1 2 l Effect of Irradiation to 2.528 X 10" n/cm (E > 1.0 MeV) on the Notch Toughness Properties of the Wolf Creek Reactor Vessel surveillance Materials Average 30 (ft-Ib)
- Average 35 mil Lateral
- Average 50 ft-lb " Average Energy Absorption #
k Transition Temperature ('F) Expansion Temperature ('F) Transition Ter perature ('F) at Full Shear (ft-lb) Material . Unitradiated Irradiated AT - Unirradiated - Irradiated AT Unliradiated Irradiated AT Unirradiated Irradiated - 'AE Lower Shell P!ete R2508-3 - 24.95 ' 27.08- 52.03 - 0.4 5335 53.75 0.11 46.98 46.86 148 129 - 19 (Longitudinal) Lower Shell Plate R2508-3 2.0 56.54 54.53 25.44 93.79 6834 3432 90.59 56.27 94 88 -6 (Transverse) Weld Metal - 57.69 -1136 4633 -27.07 45.52 72.59 -20.64 31.79 52.44 100 89 - 11 HAZ Metal - 144.01 - 88.09 55.91 - 89.78 - 43.6 46.18 - 114.0 - 61.99 52.01 161 167 +6 l l (a) " Average" is defined as the value mad from the curve fit through the data points of the Chypy tests (see Figures 5-1, 5-4, 5-7 and 5-10). (b) " Average" is defined as the value read frorn the curve fit through the data points of the Charpy tests (see Figures 5-2,5-5,5-8 and 5-11). 1 i i I t Analysis of Wolf Creek Capsule V ' ' '
- i
__ - . _ _ - - - - _ _ _ _ _ . . - - - _ ___-- - _ - - - _ - - - _ .- . _ - - i
i 5 TABLE l-2 Comparison of the Wolf Creek Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 30 ft-lb Transition Upper Shelf Energy Fluence Temperature Shift Decrease Pmdicted Measured Pmdicted Measured Material Capsule E > 1.0 MeV) y, ,3 33 33 Lower Shell U 3.429 x 10" 40.9 36.46 14.5 2
' ~
Y 1.308 x 10" 62.4 16.03 20.0 11 (Longitudinal) V 2.528 x 10" 72.4 52.03 24.0 13 Lower Shell U 3.429 x 10 40.9 23.79 14.5 0 Plate R2508-3
- Y 1.308 x 10" 62.4 35.39 20.0 0 (Transverse)
V 2.528 x 10" 72.4 54.53 24.0 6 Weld U 3.429 x 10" 30.7 27.21 16.5 8 Y 1.308 x 10" 46.8 45.09 22.5 6 V 2.528 x 10" 54.3 46.33 26.5 11 HAZ U 3.429 x 10" -- 58.41 -- 13 Y 1.308 x 10" -- 12.98 -- 0
, V 2.528 x 10" --
55.91 -- 0 (a) Based on Regulatory Guide 1.99, Revision 2. methodology using the mean weight percent values of copper and nickel of the surveillance material (see Tables 4-6 and 4-7 of this mport). (b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C). -
-(c) Values are based on the definition of upper shelf energy given in ASTM E185-82. ' Analysis of Wolf Creek Capsule V
6 SECTION
2.0 INTRODUCTION
nis report presents the results of the examination of capsule V, the third capsule to be removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Wolf Creek Nuclear Operating Corporation Wolf Creek reactor pressure vessel materials under actual operating conditions. Re surveillance program for the Wolf Creek Nuclear Operating Coiporation Wolf Creek reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Colporation. A description of the surveillance program and the preirradiation mechanical properties of the reactor vessel materials is presented in WCAP-10015, " Kansas Gas and Electric Company Wolf Creek Generation Station Unit No.1 Reactor Vessel Radiation Surveillance Program"m. The surveillance f program was planned to cover the 40-year design life of the reactor pressure vessel and was based on
- ASTM E185-79, " Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels". Capsule V was removed from the reactor after 9.49 EFPY of exposure and' shipped to the Westinghouse Science and Technology Center Hot Cell Facility, where the postirradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens we gdoed.
1 i nis report suramarizes the testing of and the postirradiation data obtained from surveillance capsule V t removed from the Wolf Creek Nuclear Operating Corporation Wolf Creek reactor vessel and discusses the analysis of the data. Analysis of Wolf Creek Capsule V
7 SECTION
3.0 BACKGROUND
ne ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an imponant factor in ensuring safety in the nuclear industry. The beltline region of the reactor presstae vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. He overall effects of fast neutron irradiation on the mechanical properties oflow alloy, ferritic pressure vessel steels such as A533 Grade B Class 1 (base material of the Wolf Creek reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an incmase in hardness and tensile propenies and a decrease in ductility and toughness during high-energy irradiation. A method for ensuring the integrity of tractor pressure vessels has been presented in " Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel CodeH1 De method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTuor). RTwor is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E-208W) or the temperature 60 F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens olanted perpendicular (transverse) to the major l l working direction of the plate. The RTuor of a given material is used to index that material to a 1 1 reference stress intensity factor curve (Ku curve) which appears in Appendix G to the ASME CodeN. l 1 De K curve 3 is a lower bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K3 curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors. RTwor and, in tum, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. He changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor surveillance program, such as the Wolf Creek reactor vessel radiation surveillance program m , in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. De increase in the average Charpy V-notch 30 ft-lb temperature I Analysis of Wolf Creek Capsule V
8 1 1 9 (ARTum) due to irradiation is added to th: initial RTum, along with a margin (M) to cover uncertainties, to adjust the RTum (ART) for radiation embrittlement. 'Ihis ART (RTum initial + M + ARTum) is used to index the material to the Ka curve and, in tum, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials. r b l l Analysis of Wolf Ocek Capsule V l
9 SECTION 4.0 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Wolf Creek reactor pressure vessel core region (beltline) materials were insened in the reactor vessel prior to initial plant start-up. 'Ihe six capsules were positioned in the reactor vessel between the neutron pads and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from lower shell plate R2508-3, weld metal
- fabricated with Weld Wire Type B4, Heat Number 90146 and Linde Type 124 flux, Lot Number 1061, which is identical to that used in the actual fabrication of the intermaliate to lower shell circumferential weld seam. The surveillance weld was fabricated with the same heat of weld wire as all beltline region welds and is therefore representative of all of the reactor vessel beltline region welds.
Capsule V was removed after 9.49 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch, tensile, and 1/2T-CT fracture mechanics specimens made from lower shell plate R2508-3 and submerged arc weld metal representative of all of the reactor vessel beltline region 1 welds. In addition, this capsule contained Charpy V-notch specimens from the weld Heat-Affected-Zone (HAZ) of lower shell plate R2508-3. ' Test material obtained from the lower shell course plate (after the thennal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched ends of the plate. All test specimens were machined from the 1/4 thickness location of the plate after performing a simulated postweld stress-relieving treatment on the test material and also from weld and heat-affected-zone metal of a stress-relieved weldment joining lower shell plate R2508-1 and adjacent lower shell plate R2508-3. All heat-affected-zone specimens were obtained from the weld heat-affected-zone of lower
. shell plate R2508-3.
Charpy V-notch impact specimens from lower shell plate R2508-3 were machined with some in the longitudinal orientation (longitudinal axis of the specimen parallel to the major working direction of the plate) and some in the transverse orientation (longitudinal axis of the specimen perpendicular to the major working direction of the plate). The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was Analysis of Wolf Creek Capsule V
~ . . . _ _ _.. ____ __. _ _ . _ _ . _ _ _ . _ - ~ . . _ _ _ _ .
10 peipendicular to the weld direction. De notet of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction. 4 i Tensile specimens from lower shell plate R2508-3 were machined in both the longitudinal and transverse orientation. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction. , Compact tension test specunens from lower shell plate R2508-3 were machmed in both the transverse l and longitudinal orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of welding. All specimens were fatigue precracked according to ASTM E399. De chemical composition and heat treatment of the unirradiated surveillance material is presented in Tables 4-1 and 4-2, respectively. De data in Tables 4-1 and 4-2 was obtained from the unirradiated surveillance program, WCAP-10015, Appendix Am. Contained in Table 4 3 is the results of a chemical analysis performed on four Charpy specimens removed from capsule V. De results of the NBS certified standards are presented in Tables 4-4 and 4-5. Contained in Tables 4-6 and 4-7 is the 1 determination of the best estimate copper and nickel values for the surveillance materials. Capsule V contained dosimeter wines of pure copper iron, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium l (Np2") and uranium (U 2") were placed in the capsule to measure the integrated flux at specific I neutron energy levels. The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed - in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the i test specimens during irradiation. The composition of the two eutectic alloys and their melting points - are as follows: 2.5% Ag,97.5% Pb , Melting Point: 579 F (304*C) 1.5% Ag,1.0% Sn,97.5% Pb Melting Point: 590 F (310 C) he arrangement of the various mechanical specimens, dosimeters and thennal monitors contained in capsule V is shown in Figure 4 2. Analysis of Wolf Creek Capsule V
11 TABLE 4-1 i Chemical Composition (wt%) of the Wolf Creek Reactor Vessel ' Beltline Region Stuveillance Materialm ; Element Lower Shell Plate Weld Metal
- R2508-3 C 0.20 0.11 Mn 1.45 1.46 P 0.008 0.005 S 0.010 0.011 Si 0.20 0.48 Ni 0.62 0.09 Mo 0.55 0.56 Cr 0.05 0.09 Cu 0.07 0.04 '
At 0.032 0.009 Co 0.014 0.010 Pb <0.001 <0.001 W <0.01 <0.01 Ti <0.01 <0.01 Zr <0.001 <0.001 V 0.003 0.005 Sn 0.002 0.003 As 0.007 0.004 Cb <0.01 <0.01 i N2 0.007 0.006 B <0.001 <0.001 a) Weld Wire Type B4, Heat Number 90146. Flux Type Linde 124. and Flux Lot Number 1061. Surveillance weldment is from a weld between the Lower shell plates R2508-3 and R2508-1 and is identical to the intermediate to lower shcIl circumferential weld seam. In addition, this weld is made of the same weld wire heat as the longitudinal weld seams. Analysis of Wolf Creek Capsule V
12 TABLE 4-2 Heat Tmatment of the Wolf Creek Reactor Vessel Surveillance Materialm Material Temperature ( F) Time Coolant Austenitized @ 4 hrs. Water-quenched 1600 25 Lower Shell ' Tempered @ 4 hrs. Air-cooled Plate R2508-3 1225 25 Stress Relieved (* 8 tus 30 min. Fumace-cooled
@ 1150 50 Weld Stress Relieved (* 10 hrs 15 min. Fumace-cooled @ l150 50 (a) The stress mlief heat treatment received by the surveillance test sate and weldment have been simulated.
Analysis of Wolf Creek Capsule V
13 TABLE 4-3 Chemical Composition of Four Wolf Creek Charpy Specimens Removed from Surveillance Capsule V Concentration in Weight Percent Base Metal Weld Metal Specimens Specimen AW-18 AW-23 AW-25 AL-35 Fe 92.4 90.8 91.1 98.0 I Al 0.011 0.010 0.010 0.019 Co 0.016 0.014 0.015 0.019 Cr 0.110 0.110 0.110 0.069 Cu 0.078 0.074 0.075 0.100 Mn .1300 1.200 1.200 1.200 Ni 0.100 0.094 0.100 0.530 P 0.013 0.012 0.012 0.011 S 0.012 0.011 0.011 0.009 Sn <0.010 <0.010 <0.010 <0.010 Ti 0.001 0.001 0.001 0.001 V 0.013 0.012 0.012 0.011 Zr 0.018 0.016 0.017 0.016 9' C 0.096 0.095 0.097 0.220 Si 0.560 0.540 0.550 0.250 . Analyses Method of Analysis Metals EPA Method for ICP Analysis Carbon Carbon Detennination by Cornbustion Method Silicon Silicon Detennination in Metallic Material Analysis of Wolf Creek Capsule V
14 TABLE 4-4 Chemistry Results from the NBS Certified Reference Standards Low Alloy Steel: NIST Control Standard Concentration in Weight Percent . NIST 361 NIST 362 Element . Measured Certified Measured Cedfied a Fe 983 95.6 95.0 95 3 Al 0.018 0.020 0.071 0.083 Co 0.032 0.032 0.260 0300 Cr 0.620 0.690 0.270 0300 Cu 0.046 0.042 0.460 0.500 i l Mn 0.540 0.660 0.850 1.040 Ni 1.600 2.000 0.490 0.590 P 0.018 0.014 0.035 0.041 S 0.017 0.014 0.027 0.036 l Sn <0.001 0.010 0.014 0.016 , Ti 0.017 0.020 0.020 0.097 V 0.013 0.011 0.040 0.040 Zr <0.010 0.009 0.150 0.190 , l C 0380 0380 0.160 0.160 l Si 0.220 0.220 0380 0390 t l l Analyses Method of Analysis Metals EPA Method forICP Analysis Carbon Carbon Determination by Combustion Method Silicon Silicon Determination in Metallic Material f Analysis of Wolf Creek Capsule V r
. . - - ~. .. . . - _ . - . - , . - - ~ . - _ - - - 15 TABLE 4-5 Chemistry Results from the NBS Certified Reference Standards I
- Low Alloy Steel: NIST Control Standard Concentration in Weight Percent l NIST 363 NIST 364 Element - Measured Certified Measuted Certified , * ~ .l~
Fe 92.7 94.4 91.0 9 .7 l A1 0.210 0.240 0.012 0.008 ' Co 0.044 0.048 0.130 0.150 Cr 1.200 1310 0.063 ' O.060 Cu 0.120 0.100 0.250 0.240 Mn 1.200 1.500 0.200 0.250 l Ni 0.260 0.300 0.120 0.140 P 0.019 0.020 <0.010 0.010 S 0.008 0.007 0.020 0.025 Sn 0.090 0.100 <0.010 0.008 Ti 0.039 0.050 0.190 0.240 V 0.270 0310 0.095 0.100 Zr 0.046 0.046 0.065 0.068 C 0.620 0.620 0.870 0.870 Si 0.730 0.740 0.068 0.060 m. Analyses Method of Analysis Metals EPA Method for ICP Analysis Carbon Carbon Detennination by Combustion Method Silicon Silicon Determination in Metallic Material Analysis of Wolf Creek Capsule V
16 Table 4-6 Best Estimate Cu and Ni Weight percent Values for the Wolf Cnek Lower Shell Plate R2508-3 Reference Measured Measured
% Cu % Ni 3 0.07 0.62 .
Table 4-3 0.104 0.532 SUM 0.174 1.152 Average 0.087 0.576 Table 4-7 Best Estimate Cu and Ni Weight percent Values for the > Wolf Creek Surveillance Program Weld Metal Reference Measured Measured
% Cu % Ni 3 0.04 0.09 Table 4 3 0.078 0.103 Table 4-3 0.074 0.094 ,
l- Table 4-3 0.075 0.101 SUM 0.267 0.388 Average 0.067 0.097 l Analysis of Wolf Creek Capsule V
17 O. REACTOR VESSEL 330' CORE BARREL Z , NEUTRON PAD CAPSULE U l l 58.5* 58.5' b 61* 270* 33
-- so- ) I
( 5Q*_ 4g,7 ! Y /I l\ X i W 210' j 180* - PLAN VIEW 1 Figure 4-1. Arrangement of Surveillance Capsules in the Wolf Creek Reactor Vessel 1 Analysis of Wolf Creek Capsule V l
-# j 1
l t
; LEGEND: AL - LOWER SHELL PLATE R2508-3 (LONGITUDINAL) ~ AT - LOWER SHELL PLATE R2508 3 (TRANSVERSE)
AW - WELD METAL AH - HEAT-AFFECTED ZONE MATERIAL LARGE SPACERS TENSILES COMPACTS COMPACTS CHARPYS CHARPYS CHARPYS COMPACTS COMPACTS CHARPYS CHARPY AW6 AW30 AH30 V AWS AWB AW7 AW6 AWS AW29 AH29 AW27 AH27 AW24 AH24 AW21 AH21 AW10 b AW4 AW2E AM26 AW23 AH23 AL8 AL7 AL6 AL5 AW20 AM20 AW17 E AW2B AH28 AW25 AH25 AW22 AH22 AW19 AH19 AW16 b N JL Cu I g' l l- Al .15%Co Cu j g ' ,l 1l l1 8I il Fe . !J I Fe I - l Udul UUl6 579*F t R I'0 RR' MONITOR A II l: Al .15%Co (Cd) MONITOR I ll l t :l 1 [ 13 il
!,! a ~"'
c CENTE TO TOP OF VESSEL g _ Analysis of Wolf Creek Capsule V
____,8_ 1 . l l l l APERTURE CARD Afaa Avalfablo on ADetturo Card DOSAAETER TENSil.ES CHARPYS CHARPYS CHARPYS CHARPYS CHARPYS CORAPACTS CORAPACTS TENSILES ALS AT30 AL30 AT27 AL27 AT;4 AL24 AT21 AL21 AT18 AL18 ATE des AL5 AT29 AL29 AT26 AL26 AT23 AL23 AT20 AL20 AT17 AL17 ATS AT7 ATE AT5 ATE AL4 AT2s AL2e AT25 AL25 AT22 AL22 AT19 AL19 AT1e AL18 AT4 l JL Al .15%Co Cu 3 ll ' Al .151Co lI I l i li I Fe ig g L,a w , u Al .15%Co (Cd) 579'F M f"1 M Al .15%Co (Cd) MONITOR ~8 Il II 8 i I 11 11 I ni lIg ia 8 ut L. ! 8. 11 1 b REGION OF VESSEL l
=
TO BOTTOM OF VESSEL Y BOD 00 D - J Figure 4.2. Capsule V Diagram Showing the 14 cation of Specimens, Thermal Monitors, and Dosimeters
19 l SECTION 5.0 TESTING OF SPECIMENS FROM CAPSULE V , 5.1 Overview 1 1 1
'Ihe post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens ;
was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center. Testing was performed in accordance with 10CFR50, Appendices G and Hm, I W ASTM Specification E185-82 , and Westinghouse Pmcedure RMF 8402, Revision 2 as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1. Upon receipt of the capsule at the hot celllaboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-10015m, No discrepancies were found. Examination of the two low-melting point 579 F (304 C) and 590 F (310 C) eutectic alloys indicated no melting of either type of thennal monitor. Based on this examination, the maximum temperature to which the test specimens were exposed was less than 579 F (304 C).
- The Charpy impact tests were performed per ASTM Specification E23-93am and RMF Procedure i 8103, Revision 1, on a Tinius-Olsen Model 74,358J machine. The tup (striker) cf the Charpy impact l
test machine is instrumented with a GRC 830-I instrumentation system, feeding information into an IBM compatible computer. With this system, load-time and energy-time signals can be recorded in i addition to the standard measurement of Charpy energy (Eo). From the load-time curve (Appendix }. A), the load of general yielding (PGY ), the time to general yielding (toy), the maximum load (Pu), and the time to maximum load (tu) can be determined. Under some test conditions, a sharp drop in load
. . Indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (P,), and the load at which fast fracture terminated is identified as the arrest load (P3). The energy at maximum load (E )uwas determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. 'Iherefore, the propagation energy for the crack (E,) is the difference between the total energy to fracture (Eo) and the energy at maximum load (Eu).
Analysis of Wolf Creek Capsule Y
20 The yield stress (cy) was calculated from the three-point bend fonnula having the following expression: cy = (Pay
- L) / [B * (W - a)2
- C] (1) where: L = distance between the specimen supports in the impact machine B = the width of the specimen measured parallel to the notch W = height of the specimen, measured perpendicularly to the notch a = notch depth The constant C is dependent on the notch flank angle ($), notch root radius (p) and the type of 1 loading (ie. pure bendmg or three-point bending). In three-point bending, for a Charpy specimen in which $ = 45' and p = 0.010 inch, Equation 1 is valid with C = 1.21. Therefore, (for L = 4W),
cy = (Por
- L) / [B * (W - a)2
- 1.21] = (3.33
- Pay
- W) / [B * (W - a)2] (2)
For the Charpy specimen B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. . Equation 2 then reduces to: cy = 33.3
- Pay (3) where oris in units of psi and Pay is in units of lbs. The flow stiess was calculated from the average of the yield and maximum loads, also using the three-point bend formula. !
l The symbol A in columns 4,5, and 6 of Tatles 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens: - A = B * (W - a) = 0.1241 sq. in. (4) t' Percent shear was deteimined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification A370-92W. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification. Analysis of Wolf Creek Capsule V
21 f i Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-93"1 and E21-92D 1, and RMF Procedure 8102, Revision 1. All piill rods, l grips, and pins were made of Inconel 718. The upper pull rod was connected through a universal joint l
'to improve axiality ofloading. De tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.
1 l l Extension measurements weie made with a linear variable displacement transducer extensometer. The j extensometer knife edges were spring-loaded to the specimen and operated through spec;imen failure. l
' he extensometer gage le'ngth was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93 f"1 Elevated test temperatures were obtained with a three-zone electric resistance split-tube fumace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures. Chromel-Alumel thennocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and controller temperatures was developed over the range from room temperature to 550 F.
During the actual testing, the grip tem, atums were used to obtain desired specimen temperatures. Experiments have indicated that this method is accurate to 2'F. The yield load, ultimate load, fracture load, total elongation, and unifonn elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength
, were calculated using,the original cross-sectional area. He final diameter and final gage length were determined from post fracture photographs. He fracture area used to calculate the fracture stress (tme , stress at fracture) and percent reduction in area was computed using the final diameter measurement.
5.2 Chamy V-Natch Imnact Test Results ne results of the Charpy V-notch impact tests performed on the various materials contained in capsule V, which received a fluence of 2.528 x 10" n/cm2 (E > 1.0 MeV) in 9.49 EFPY of operation, p are presented in Tables 5-1 through 5-8 and am compared with unirradiated resultsm as shown in Analysis of Wolf Creek Capsule V
22 l 1 l l Figures 5-1 through 5-12. The transition temperature increases and upper shelf energy decreases for the capsule V materials are summarized in Table 5-9. These results led to the following conclusions:
- - hTadiation of the reactor vessel lower shell plate R2508-3 Chamy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate 2
(longitudinal orientation), to 2.528 x 10" n/cm (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 52.03 F and a 50 ft-lb transition temperature increase of 46.86 F. This results in an irradiated 30 ft-lb transition temperature of 27.08'F and an irradiated 50 ft lb transition temperature of 46.98 F for the longitudinally oriented specimens.
- Irradiation of the reactor vessel lower shell plate R2508-3 Charpy specimens, oriented with the
- longitudinal axis of the specimen perpendicular to the major working direction of the plate 2
(transverse orientation), to 2.528 x 10" n/cm (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 54.53*F and a 50 ft-lb transition temperature increase of 56.27 F. This results in an irradiated 30 ft-lb transition temperature of 56.54 F and an irradiated 50 ft-lb transition temperature of 90.59 F for tmnsversely oriented specimens.
- Irradiation of the weld metal Charpy specimens to 2.528 x 10" n/cm2 (E > 1.0 MeV) resulted 1
in a 30 ft-lb transition temperature increase of 46.33 F and a 50 ft-lb transition temperature increase of 52.44 F. This results in an irradiated 30 ft-lb transition temperature of-11.36*F and an irradiated 50 ft-lb transition temperature of 31.79 F. l Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 2.528 x 10" n/cm2 (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 55.91 F and a 50 . ft-lb tmnsition temperature increase of 52.01 F. This results in an irradiated 30 ft-lb transition , temperature of -88.09 F and an irradiated 50 ft-lb transition temperature of -61.99*F. . The average upper shelf energy of the lower shell plate R2508-3 (longitudinal orientation) resulted in an average energy decrease of 19 ft-lb after irradiation to 2.528 x 10" n/cm2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 129 ft-lb for the longitudinally oriented specimens. Analysis of Wolf Creek Capsule V
23 i De average upper shelf energy of the lower shell plate R2508 3 (transverse orientation) resulted in an average energy decrease of 6 ft-lb after irradiation to 2.528 x 10" n/cm2 (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 88 ft-lb for the transversely oriented specimens. De average upper shelf energy of the weld metal Charpy specimens resulted in an average 2 energy decrease of 11 ft-lb after irradiation to 2.528 x 10" n/cm (E > 1.0 MeV). His results in an irradiated average upper shelf energy of 89 ft-lb for the weld metal specimens. De average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy increase of 6 ft-lb after irradiation to 2.528 x 10" n/cm2 (E > 1.0 MeV). Hence, this result will be conservatively repoited as an unchanged average upper shelf energy of 161 ft-lb for the weld HAZ metal. l A comparison of the Wolf Creek reactor vessel beltline material test results with the Regulatory Guide l 1.99, Revision 2"I, predictions is given in Table 5-10 and led to the following conclusions: i l De measured 30 ft-lb shift in transit;on temperature values of the surveillance materials are lower than the Regulatory Guide 1.99, Revision 2, predictions. De measured percent decrease in upper shelf energy for all surveillance materials is less than the Regulatory Guide 1.99, Revision 2, prediction. l . De fracture appearance of each irradiated Charpy specimen from the various surveillance capsule V i materials is shown in Figures 5-13 through 5-16 and show an increasingly ductile or tougher l-, appearance with increasing test temperature. All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy of no less than 50 ft-lb throughout the n life of the vessel (35 EFPY) as required by 10CFR50, Appendix Gt21 l [ l Be load-time records for individual instrumented Charpy specimen tests are shown in Appendix A. Analysis of Wolf Creek Capsule V I - . ,_ _
._ _ m_. _ . _ . _ . . _ _ _ _ _ _ _ . . _ . . _ _ . . _ _ _ _ _ _ . _ _ . _ _ 24 l i l l ne Charpy V-notch data presented in WCAP-ll553n21 and WCAP-13365DU was based on hand-fit Charpy curves using engineering judgement. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1. which is a hyperbolic tangent curve-fitting program. ' Hence, Appendix B contains a comparison of the Charpy V-notch shift results for l 1 l each surveillance material (hand-fitting versus hyperbolic tangent curve-fitting). Additionally, 1 Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data. A credibility evaluation of the Wolf Creek surveillance program is presented in Appendix D of this report and indicates that the Wolf Creek reactor vessel surveillance program is credible. 5.3 Tensile Test Results The results of the tensile tests perfomled on the various materials contained in capsule V irradiated to 2.528 x 10 n/cm 2(E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated resultsDi as shown in Figures 5-17 through 5-19. , The results of the tensile tests performed on the lower shell plate R2508-3 (longitudinal orientation) indicated that irradiation to 2.528 x 10 n/cm 2(E > 1.0 MeV) caused approximately a 9 ksi increase in the 0.2 percent offset yield strength and approximately a 4 to 9 ksi increase in the ultimate tensile strength when compared to unirradiated dataDi (Figure 5-17). The results of the tensile tests performed on the lower shell plate R2508-3 (transverse orientation) 2 indicated that irradiation to 2.528 x 10 n/cm (E > 1.0 MeV) caused a 8 ksi increase in the 0.2 percent offset yield strength and approximately a 10 ksi increase in the ultimate tensile strength when . L compared to unirradiated datam (Figure 5-18). . De results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 2.528 x 10" n/cm 2(E > 1.0 MeV) caused a 2 to 6 ksi increase in the 0.2 percent offset yield strength and a 4 to 10 ksi increase in the ultimate tensile strength when compared to unirradiated dataD1 (Figure 5-19). Analysis of Wolf Creek Capsule V
_ . . . . - _ . _ _ . - _ - ._ __ . . . _ _ ~ . . _ _ _ _ . . _ _ _ _ . _ . . _ _ _ _ . . 25 l l The fractured tensile specimens for the lower shell plate R2508 3 material are shown in Figums 5-20 and 5-21, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-22. l 1he engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-25. 5.4 1/2T Compact Tension Snecimen Tests Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Science and Technology Center Hot Cell facility. I l l l I l
- I l
l 6 Analysis of Wolf Creek Capsule V
26 l TABLE 5-1 Charpy V-notch Data for the Wolf Creek Lower Shell Plate R2508-3 2 Irradiated to a Fluence of 2.528 X 10" n/cm (E > 1.0 MeV) (Longitudinal Orientation)
- Sample Temperature Impact Energy Lateral Expansion She,-
Number (F) ( C) (ft-lb) (J) (mils) (mm) (%) 4 AL27 -50 -46 4 5 0 0.000 5 AL30 -25 -32 16 22 8 0.203 10 AL18 0 -18 13 18 4 0.102 10 ALl6 25 -4 20 27 14 0.356 15 AL24 35 2 48 65 29 0.737 20 AL19 50 10 56 76 33 0.838 25 ALl7 60 16 53 72 34 0.864 25 AL25 75 24 70 95 41 1.041 35 AL26 80 27 107 145 65 1.651 50 AL28 100 38 111 150 65 1.651 50 AL21 125 52 118 160 69 1.753 75 AL29 150 66 125 169 62 1.575 85 AL22 175 79 120 163 72 1.829 90 AL20 200 93 129 175 75 1.905 100 AL23 300 149 128 174 73 1.854 100 l l i Analysis of Wolf Cnek Capsule V
I 27 TABLE 5-2 Charpy V-notch Data for the Wolf Creek Lower Shell Plate R2508-3 2 Irradiated to a Fluence of 2.528 X 10" n/cm (E > 1.0 MeV) (Transverse Orientation) Sample Temperature Impact Energy Lateral Expansion Shear i Number (F) (*C) (ft-lb) (J) (mils) (mm) (%) AT30 -25 -32 6 8 0 0.000 5 AT24 0 -18 12 16 8 0.203 10 AT23 25 -4 16 22 8 0.203 20 AT16 40 4 26 35 15 0.381 20 AT25 50 10 29 39 19 0.483 35 i AT26 60 16 22 30 13 0.330 25 t l i AT18 75 24 45 61 31 0.787 35 AT27 90 32 45 61 35 0.889 50 AT19 100 38 57 77 34 0.864 60 AT28 125 52 78 106 55 1.397 75 AT22 150 66 65 88 45 1.143 80 AT21 175 79 87 118 61 1.549 80 l AT20 200 93 85 115 57 1.448 100 AT17 250 121 91 123 64 1.626 100 l i AT29 300 149 88 119 61 1.549 100
' { ^
I i Analysis of Wolf Creek Capsule V
j 28 l TABLE 5 3 Charpy V-notch Data for the Wolf Creek Surveillance Weld Metal 2 Irradiated to a Fluence of 2.528 X 10" n/cm (E > 1.0 MeV) Sample Temperature Impact Energy Lateral Expansion Shear - Number (*F) ( C) (ft-lb) (J) (mils) (mm) (%) AW18 -100 -73 5 7 2. 0.051 10 AW23 -75 -59 10 14 2 0.051 20 AW25 -50 -46 13 18 9 0.229 15 AW22 -25 -32 18 24 8 0.203 25 AW28 -5 -21 48 65 30 0.762 40 AW16 10 -12 53 72 33 0.838 50 AW20 25 -4 33 45 19 0.483 45 AW27 50 10 56 76 38 0.965 60 AW17 60 16 54 73 37 0.940 60 AW24 75 24 68 92 45 1.143 80 AW26 100 38 78 106 44 1.118 90 AW30 125 52 87 118 64 1.626 100 AW19 150 66 87 118 62 1.515 100 AW29 200 93 88 119 62 1.575 100 AW21 250 121 93 126 67 1.702 100
. )
l l Analysis of Wolf Cmek Capsule V i
-. l
. - .-.. _ . . - -.. - - - .- - -- - - - - - - - - ~ ~ - - - - " - ~ - ~ ^ - " -
29 l TABLE 5-4 Charpy V-notch Data for the Wolf Creek Heat-Affected-Zone (HAZ) Metal 2 i Irradiated to a Fluence of 2.528 X 10" n/cm (E > 1.0 MeV) Sample Temperature impact Energy Lateral Expansion Shear l Number (F) ( C) (ft lb) (J) (mils) (mm) (%) ,
. AH21 -190 -123 3- 4 0 0.000 0 f
AH2O -150 -101 8 11 0 0.000 5 AH16 -125 -87 11 15' 1 0.025 5 AH28 -100 -73 23 31 12 0.305 10 AH24 -80 -62 15 20 2 0.051 10 AH27 -60 -51 26 35 11 0.279 15 AH30 -50 -46 89 121 43 1.092 50 AH25 -40 -40 91 123 42 1.067 55
~
AH29 -20 -29 77 104 37 0.940 40 AH17 0 -18 141 191 76 1.930 80 AH23 50 10 132 179 'l 1.803 85 AH18 50 10 144 195 73 1.854 100 AH19 100 38 *131 178 71 1.803 100 AH22 150 66 143 194 67 1.702 100 AH26 250 121 252 342 55 1.397 100 l . Analysis of Wolf Creek Capsule V
30 TABLE 5-5 Instrumented Charpy impact Test Results for the Wolf Creek Lower Shell Plate R2508-3 hradiated to a Fluence of 2.528 X 10" n/cm2 (E > 1.0 MeV) (Longitudinal Orientation) Normalized Energies 2 (ft-Ib/m ) Time Time Fast Charpy Yield to Max. to Fract. Arrest - Yield Flow Test Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress Sample Temp. En Eo/A Eu/A E,/A Por for Pu tu P, P, or (ksi) No. (*F) (ft-lb) (It3 (psec) (Ib) (psec) (Ib) (Ib) (ksi) AL27 -50 4 32 15 17 1929 0.12 1929 0.12 4929 0 64 64 AL30 -25 16 129 65 63 3803 0.16 4232 0.22 4112 0 127 134 I AL18 0 13 105 59 45 3749 0.16 4074 0.21 4%3 0 125 130 ALl6 25 20 161 63 98 3621 0.16 3949 0.22 3847 375 121 126 AL24 35 48 387 324 62 3622 0.16 4665 0.68 4648 0 121 138 AL19 50 56 451 325 125 3593 0.16 4556 0.70 4499 704 120 136 AL17 60 53 427 317 110 3516 0.16 4557 0.68 4541 512 117 134 AL25 75 70 564 325 239 3529 0.16 4531 0.70 4364 1178 118 134 1 AL26 80 107 862 392 470 3509 0.16 4548 0.82 3634 903 117 134 AL28 100 til 894 399 495 3452 0.16 4582 0.84 3600 1570 115 134 AL21 125 118 950 309 641 3340 0.16 4404 0.69 3089 1567 111 129 AL29 150 125 1007 380 627 3282 0.16 4378 0.83 3502 2338 109 128 AL22 175 120 966 380 586 3230 0.16 4264 0.85 2922 2066 ~108 125 AL20 200 129 1039 370 669 3089 0.16 4226 0.84 N/A N/A 103 122 AL23 300 128 1031 357 674 2970 0.16 4081 0.84 N/A N/A 99 117 N/A - Not Applicable - Fully ductile fracture. i Analysis of Wolf Creek Caps 61e V
. . . 31 l TABLE 5-6 ;
, Instmmented Charpy impact Test Results for the Wolf Creek Lower Shell Plate R2508-3 2 Irradiated to a Fluence of 2.528 X 10" n/cm (E > 1.0 MeV) (Transverse Orientation) f t Normalized Energies (ft-lbfin') [
+ i i Time Time Fa*t !
Charpy Yield to Max. to Fract. Arrest Yield Flow I Load Yield L.oad Max. Load Load Stress Stress [ Test Energy Charpy Max. Prop. Sample Temp. EgA E,/A Pay tav Pu tu P, P, or (ksi) .
- Eu Eu/A +
(Ib) (psec) (Ib) (psec) (Ib) (Ib) (ksi) No. (*F) (ft-Ib) 48 27 2534 0.13 2534 0.14 2534 0 84 84 AT30 -25 6 21 r 97 41 55 3670 0.16 3733 0.17 3733 325 122 123 AT24 0 12 , t 25 16 129 49 80 3611 0.16 3804 0.19 3800 544 120 123 AT23 209 61 149 3511 0.16 3877 0.22 3795 793 117 123 , AT16 40 26 63 171 3521 0.16 3901 0.22 3768 1214 117 124 AT25 50 29 234 3465 0.16 3811 0.20 3807 1241 115 121 AT26 60 22 177 54 123 227 135 3471 0.16 4352 0.54 4289 956 116 130 ATib 75 45 362 166 196 3335 0.16 4096 0.43 4079 1955 111 124 AT27 90 45 362 L 222 237 3360 0.16 4177 0.54 4156 2351 112 125 AT19 100 57 459 327 3348 0.16 4333 0.68 4180 2085 111 128 ; AT28 125 78 628 301 I 196 327 3206 0.16 4012 0.50 2952 3078 107 120 j AT22 150 65 523 286 414 3133 0.16 4159 0.68 3480 2534 104 121 AT21 175 87 701 409 3016 0.16 3991 0.68 N/A N/A 100 117 AT20 200 85 684 275 733 261 472 2966 0.16 3981 0.65 N/A N/A 99 116 AT17 250 91 I 709 260 449 2928 0.16 3921 0.66 N/A N/A 98 114 AT29 300 88 N/A - Not Applicable - Fully ductile fracture. i ! I t f Analysis of Wolf Creek Capsule V !
f f !11 )l ) ll 2 3 wss 3 9 6 1 1 3 5 6 4 9 5 7 5 2 loer ki)s t 4 7 3 1 3 1 3 1 4 1 4 1 13 3 1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 F S ( d ;s ) 6 3 2 2 2 4 S 2 8 _ l ri s 4 2 1 8 7 16 _ i e e r ok( 7 3 3 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 i I I 1 1 0 1 1 1 1 YS t tsd 0 4 3 8 4 A A A e a ,b
) 5 9 9 9 1 4 2 A / / / /
- 0 0 0 9 0 0 2 5 r
r oPI ( 4 9 2 7 0 2 2 N N N N AL 1 1 2 t t .d ) 2 1 8 1 6 6 4 3 7 0 1 A A A A
- s c a ,b 3 5 6 8 7 0 2 1 2 6 8 / / / /
a ar oPI ( 2 0 3 2 5 4 2 4 4 1 7 N N N N l t a F FL 2 4 4 4 4 1 4 4 4 4 3 e M dl ) e e . c 2 2 2 2 2 8 9 6 6 7 x 2 8 0 1 1 W imoa 2 2 5 4 5 5 5 6 5 6 6 6 M uep 1 1 5 t t s e) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cV T ( ne l l aM ie0 v r 1 . 2 5 3 0 0 5 5 8 7 3 4 1 3 5 6 u xd a a ub
)
3 5 8 9 7 8, 7 2 9 1 0 1 1 7 8 S > oPI 2 0 3 2 6 " 2 4 4 4 3 0 2 1 0 kE e( ML ( 2 4 4 4 4 4 4 4 4 4 4 4 4 4 e3 r Cmc f / o n ) l e d c 2 6 6 6 6 6 6 6 6 6 6 1 6 6 6 moei rep l 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 W "0 Y tas( it 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7- e1 T 5 h tr X E, o2 i- f 6 B s 1 8 3 4 6 9 2 1 1 2 6 2 7 A t 1 dd l e a r) 2 3 6 3 5 7 0 1 9 0 6 7 6 3 7 4 5 5 T luf s i oPIob( 2 9 9 8 8 7 7 6 6 6 4 4 4 3 2 eo YL 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 R e t c s n e e Tl u t F pA 4 5 3 6 c 6 0 9 8 8 3 9 7 1 a a p o /, 3 2 7 3 4 8 4 8 9 2 0 1 2 6 1 2 6 r 2 2 3 3 4 4 4 4 mto 1 1 s PE I d e ye ig t r pai r e ad n) h a E 'n xA. 9 8 8 9 3 3 9 6 2 CnI i d/ b a/ 7 4 9 5 7 3 3 6 2 1 3 2 0 3 8 8 8 u 1 4 5 6 2 2 2 2 2 2 d e eI - z i ft ME 2 2 1 2 3 tn e la( m m r e ur o y r u t s N pA 5 5 7 7 6 1 5 8 8 1 1 9 9 t c n r 0 1 2 6 5 3 4 2 0 0 0 4 a I a/ r 4 8 0 1 4 1 8 3 4 2 4 4 5 6 7 7 7 7 f r hE V C l e i t c l e u O yy d s pg ) ly p r r nl b 0 3 8 8 3 3 6 4 8 8 7 7 8 3 a l 5 8 9 ha neEt f ( 1 1 1 4 5 3 5 5 6 7 8 8 F u C CE - k e e l e r b p) a c C t s 0 5 0 5 0 0 5 0 5 0 0 0 i l f 0 5 e e*( mF 0 7- 5- 2- 5
- 1 2 5 6 7 0 2 5 1
0 2 5 2 p p l o T T 1 1 1 A t W o f N o e 8 3 5 2 8 6 0 7 7 4 6 0 9 9 1 - i s lp . 1 2 2 2 2 1 2 2 l 2 2 3 1 2 2 A s o W W W W W W / y mN W W W W W W W W W N l S a A A A A A A A A A A A A A A A a n A 1 '
33 TABLE 5-8 Instrumented Charpy Impact Test Results for the Wolf Creek IIcat-Affected-Zone (HAZ) Metal hTadiated to a Fluence of 1.162 X 10" n/cm'(E > 1.0 MeV) Normalized Energies (ft-lb/in') Time Time Fast Charpy Yield to Max. to Fract. Arrest Yield Flow Test Energy Charpy Max. Prop. Load Yield Load Max. Load Load Stress Stress Sample Temp. Eo En/A E,/A toy Eu/A Por Pu tu P, P. or (ksi) No. ('F) (ft-Ib) (Ib) (psec) (psec) (Ib) (Ib) (Ib) (ksi) AH21 -190 3 24 14 10 1857 0.12 1870 0.12 1857 0 62 62 AH2O -150 8 64 34 31 3719 0.15 3738 0.15 3719 0 124 124 AH16 -125 11 89 52 37 4405 0.16 4691 0.19 4689 0 147 151 AH28 -100 23 185 76 109 4394 0.16 5027 0.22 4851 0 146 157 AH24 -80 15 121 75 46 3733 0.16 4811 0.24 4811 0 124 142 AH27 -60 26 209 71 138 4143 0.16 4638 0.22 4599 0 138 146 AH30 -50 89 717 356 361 7037 0.16 4949 0.69 4423 522 134 150 AH25 -40 91 733 359 373 4074 0.16 5045 0.69 4551 986 136 152 AH29 -20 77 620 359 261 4070 0.16 5025 0.69 4782 431 136 151 AH17 0 141 1135 356 779 3785 0.16 4901 0.71 2459 1257 126 145 AH23 50 132 1160 423 737 3717 0.16 4755 0.85 N/A N/A 124 141 AH18 50 144 1063 331 732 3798 0.16 4650 0.69 2899 2036 126 141 AH19 100 131 1055 331 724 3686 0.16 4672 0.69 N/A N/A 123 139 AH22 150 143 1151 411 741 3498 0.16 4613 0.85 N/A l N/A 116 135 ' AH26 250 252 2029 382 1647 3250 0.16 4338 0.85 N/A l N/A 108 126 N/A - Not Applicable - Fully ductile fracture. l Analysis of Wolf Creek Capsule V
34 l TABLE 5-9 l Effect of Irradiation to 2.528 X Id' n/cm'(E > 1.0 MeV) on the Notch Toughness Properties of the Wolf Creek Reactor Vessel Survei' lance Materials Average 30 (ft-Ib)" Average 35 mil Lateral
- Expansion Average 50 ft-lb " Average Energy Absorption "
Transition Temi erature (*F) Temperature (*F) Transition Temperature ('F) at Full Shear (ft-Ib) Material Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Inadiated AE Lower Shell ! Plate R2508-3 - 24.u 27.08 52.03 - 0.4 5335 53.75 0.11 46.98 46.86 148 129 - 19 (Longitudinal) Lower Shell Plate R2508-3 2.0 56.54 54.53 25.44 93.79 6834 3432 90.59 56.27 94 88 -6 t (Transverse) Weld Metal - 57.69 -1136 4633 -27.07 45.52 72.59 -20.64 31.79 52.44 100 89 - 11 HAZ Metal - 144 et - 88.09 55.91 - 89.78 - 43.6 46.18 - 114.0 - 61.99 52.01 161 167 +6
?
(a) " Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5 1, 5-4, 5-7 and 5-10). j (b) " Average" is defined as the value read from the curve fit through the data points of the Charpy tests 1 (see Figures 5-2,5-5,5-8 and 5-11).
) ~ *
- Analysis of Wolf Creek Capsille V
l 35 TABLE 5-10 Comparison of the Wolf Creek Surveillance Material 30 ft lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 30 ft-lb Transition Upper Shelf Energy
, Fluence Temperature Shift Decrease (n/cm2, Material Capsule Predicted Measured Predicted Measured E > 1.0 MeV)
(F)") ( F) *) (%) ") (%)k) Lower Shell U 3.429 x 10" 40.9 36.46 14.5 2 Plate R2508-3 (Longitudinal) Y 1.308 x 10" 62.4 16.03 20.0 11 V 2.528 x 10" 72.4 52.03 24.0 13 Lower Shell U 3.429 x 10" 40.9 23.79 14.5 0 Plate R2508-3 i Y 1.308 x 10" 62.4 35.39 20.0 0 (Transverse) V 2.528 x 10" 72.4 54.53 24.0 6 Weld U 3.429 x 10" 30.7 27.21 16.5 8 Metal Y 1.308 x 10" 46.8 45.09 22.5 6 V 2.528 x 10" 54.3 46.33 26.5 11 HAZ U 3.429 x 10" -- 58.41 -- 13 Metal Y 1.308 x 10" -- 12.98 -- 0 V 2.528 x 10" -- 55.91 -- 0 (a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.
, (b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C).
(c) Values are based on the definition of upper shelf energy given in ASTM E185-82. ( S Analysis of Wolf Creek Capsule V
r 36 TABLE 5-11 2 Tensile Properties of the Wolf Creek Reactor Vessel Surveillance Materials Irradiated to 2.528 X 10" n/cm (E > 1.0 MeV) 0.2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Test Temp. Strength Strength Load Stress Strength Elongation Elongation in Area Material Number ( F) (ksi) (ksi) (kip) (ksi) (ksi) (%) (%) (%) 40 68.8 89.6 2.80 201.8 57.0 10.2 25.3 72 Lower Shell AL4 Plate R2508-3 2.60 206.5 53.0 12.0 27.8 74 AL5 140 64.7 83.5 (Longitudinal) 58.6 83.1 2.07 129.8 42.1 12.0 23.4 68 AL6 550 72 67.2 88.6 3.10 186.2 63.2 13.7 27.2 66 Lower Shell AT4 Plate R2508-3 3.00 165.5 11.1 12.0 23.6 63 AT5 165 64.7 83.5 . (Transverse) 59.1 83.3 2.99 179.6 60.9 10.8 20.4 66 AT6 550 82.0 97.8 3.13 225.3 63.7 12.6 26.7 72 AW4 25 Weld Metal 3.03 1798.5 61.6 10.5 23.1 66 AV5 125 77.9 97.1 l 69.8 88.6 3.10 191.6 63.2 12.0 20.4 68 AW6 550 l l l 1 l
~ '
l Analysis of Wolf Creek Capstile V
37 LOWER SHELL PLATE R2508-3 (LONGITUDINAL) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 121119 on 05-28-1998 Results Curve fluence ISE d-ISE USE d-USE T e 30 d-T e 30 T e 50 d-T e 50 1 0 2J9 0 148 0 -2435 0 .11 0 2 0 219 0 145 -3 1151 36.46 3425 3423
. 3 0 219 0 131 -17 -8.91 16B3 3154 3L43 4 0 219 0 129 -19 27DB 52D3 46.96 4626 300 m 2so A
T
$ 200 h
t:D - n g 150 --
; -qr v ;; ,
c j r
% /al f 100 g /
Z g 0 o//
> /
O 'O_ s, so e
, 24 'o i ,
i i
-300 -200 -100 0 100 200 300 400 500 000 Temperature in Degrees F Curve legend Ic 2C) 50 4^
Data Set (s) Plotted Curve Plant Capsule Material Ori. Heat # 1 WQ UNIRR PLATE SA533B1 LT C4935-2 2 70 U PLATE SA533B1 LT C4&2 3 WQ Y PLATE SA533B1 LT C4&2 4 TO Y PLATE SA533B1 LT C462 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) Analysis of Wolf Creek Capsule V _-_________,._-i,-.-i....... -
38 LOWER SHELL PLATE R2508-3 (LONGITUDINAL) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 124269 on 05-28-1998 Results Curve fluence USE d-USE T e LE35 d-T e LE35 1 0 826 0 .4 0 2 0 7925 -4E! 21.43 2123 3 0 84 S4 .77 30.43 3033 4 0 7138 -1L96 525 5175 , 200 , en O 150 a N Ct] 100 m e , u
.x $ C P9 w= #6~"~" " ? g a l*/- $ Su D / O .M g ;
i , l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve ugend Ic 20 3^ 4^
Data Set (s) Plotted . Curve Plant Capsule Waterial Ori. Heatl
! WCl UNIP.R PLATE SA533B1 LT C4935-2 2 WQ U PLATE SA533B1 LT C4935-2 ,
3 WQ Y PLATE SA533B1 LT C4935-2 4 WC1 V PLATE SA533B1 LT C4935-2 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) Analysis of Wolf Creek Capsule V
39 LOWER SHELL PLATE R2508-3 (LONGITUDINAL) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 125033 on 05-28-1998 Results Curve Fluence 7 o 50x Shear d-T o 50x Shear 1 0 3&43 0 2 0 71 2 32.76 3 0 5484 1&4 4 0 9032 5138
. 100 - ;ge Q
8"
.!Y g T/.
E a m 60 X ci-
) lI l c j ? ,$'
8 ^ b ~
" ~j oc /
a> of *17 pp
;- 4 0 t 2 0 i ) ; ; l -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend ic 20- 30 4^
Data Set (s) Plotted Curve Plant Capsule Wateria! Ori. Heatl I WQ UNIRR PLATE SA53381 LT C4935-2 2 WQ U PLATE SA53321 LT C4935-2 3 WO Y PLATE SA53381 LT C4935-2 4 WQ V PLATE SA533B1 LT C4935-2 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) Analysis of Wolf Creek Capsule V
40 LOWER SHELL PLATE R2508-3 (TRANSVERSE) CVCRAPH 41 Hyperbolic Tangent Curve Printed at 1230d7 on 05-28-1998 Results Curve Fluence LSE d-ISE USE d-USE 7 o 30 d-T e 30 T e 50 d-T e 50 1 0 219 0 94 0 2 0 34.32 0 2 0 2J9 0 96 2 253 2179 59.55 2123 3 0' 219 0 94 0 3739 3139 81.49 47J6 . 4 0 119 0 88 -6 5654 5453 90.59 L'? 300 - en 250
,C T
5 2x x u 6 150 C.) c N - - - 100
~
U l f l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve irgend 1C 20 3^ -
4^ Data Set (s) Piotted Curve Plant Capsule Waterial Ori. Heatl I WQ UNIRR PLATE SA53381 TL C4935-2 2 WQ U PLATE SA53381 TL C4935-2 - 3 WQ Y PLATE SAf33D1 TL C4935-2 4 70 V PLATE SA533B1 TL C493fr2 - Figure 5-4 Charpy V-Notch Impact Energy vs. Temperatum for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Transverse Onentation) Analysis of Wolf Creek Capsule V
, . -- . -. -. .-- . . ~ --
41 LOWER SHELL PLATE R2508-3 (TRANSVERSE) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 130130 on 05-2&-1998 Paults Curve fluence USE d-USE T o LE35 d-T o LE35 1 0 6a05 0 25.44 0 2 0 7238 433 3636 1031 3 0 75.48 7.43 6734 4229 4 0 6L41 -643 9179 6834 200 m
.: 150 - ~
c C M 100 9 [ oB- 9 -- Y-Pd a so.
.e. )y '.
vg ' 2_-< D l ) i j
-300 -200 -100 0 100 200 300 400 600 600 Temperature in Degrees F Curve legend 1C 2(> 30 4^
Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl I WCl UNIRR PLATE SA533B1 TL C4935-2 t - 2 FC1 U PLATE SA533BI TL C4935-2 3 WCl Y PLATE SA533BI TL C4935-2 4 FCI V PLATE SA533B1 TL C4935-2 l l i i Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek Reactor Vessel i Lower Shell Plate R2508-3 (Transverse Orientation)
- Analysis of Wolf Creek Capsule V l
42 LOWER SHELL PLATE R2508-3 (TRANSVERSE) CVCPAPH 41 Hyperbolic Tangent Curve Printed at 13fl659 on 05-28-1998 Results Curve Fluence T e 50x Shear d-T e 50x Shear 1 0 4359 0 2 0 94D4 50.44 3 0 87.59 44 . 4 0 90.23 46.64 100 7 .
- 80 z
es a
.c cn a
so o
}
c - o O , 4 5 J o +p/ o ,
) ~
2 U t l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 2C 3^ 4^
Data Set (s) Plotted Curve Plant Capsule liaterial Ori. Heatl 1 WQ UNIPS PLATE SA533B1 TL C4&2 2 WQ U PLATE SA533B1 TL C4&2 - 3 WQ Y PLATE SA533B1 TL C462 4 50 V PLATE SA533B1 TL C4935-2 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation) l l Analysis of Wolf Creek Capsule V l i
_ .. - . - - . .-- - = . - - - t 43 SURVEILLANCE PROGRAM WELD METAL CYCRAPH 4J Hypertolic Tangent Curve Printed at niiS8 on 05-28-1998 Results Curve Fluence ISE d-ISE USE d-USE 7o30 d-T o 30 7 o 50 d-T o 50 1 0 2J9 0 100 0 -5739 0 -20.64 0 2 0 119 0 92 -8 -30.47 2721 6.44 27.09
. 3 0 2J9 0 94 -6 -1259 4109 2022 41.47 4 0 2J9 0 89 -11 -11 2 4633 31.7) 52.44 . 300 -
m 250-
,C T >
m am N u 3 150 C) c M o o 100 _ AA-n O m4 m (&, O
-A_
o l l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Irgend Ic 20 30 4^
Dau Ms) Pbtw Curve Plant Capsule Waterial Ori. Heatl 1 WO UNIRR WELD 90146 2 WQ U WELD 90146 3 WQ Y WELD 90146 4 WQ V WELD 90146 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Wolf Creek Reactor Vessel l Weld Metal Analysis of Wolf Creek Capsule V
44 l SURVEILLANCE PROGRAM WELD METAL CVCRAPH 4.1 Hyperbolic Tangent Curve Printed at 1:t24J7 on 05-28-1998 Results Curve Pluenc= USE d-USE T e IES d-T e IES 1 0 7526 0 -TID 7 0 2 0 77 1.74 -12.81 1425 3 0 70.08 - 5.17 17 S 6 45.04 4 0 6722 -&03 4552 7259 200 m O 150 - 8 m X N 100 3L ._o_m __ll ___
# p _._; " u a So llM7 g, u A
AW, ",, o l l l 1 1 !
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 20 30 4^
Data Set (s) Plotted , Curve Plant Capsule Material Ori. Heatf 1 10 UNIRR YE 90146 2 YC' U TELD 90146 3 WQ Y WELD 90146 4 WQ V WELD 90148 , Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek Reactor Vessel Weld Metal Analysis of Wolf Creek Capsule V
. . -. . ._ . . . ~ . -- . . .-_ . . . - - . .. .
45 : i SURVEILLANCE PROGRAM WELD METAL CVCRAPli 41 Hyperbolic Tangent Curve Printed at 13:3121 on 05-2&-1998 Results Cuae Fluence T e 50x Shear d-T e 50/. Shear 1 0 -7334 0 2 0 20S4 94119 3 0 -1 & 91
- 55.03 4 0 20.76 94.71 -
, 0 ~ >P $ $/ 9o 'I @ so f ;
L a / O/ C O O 064 y e/ o 4U ' / /
%. Ii O >
II .L 20 /~
/ *' ;/
U j J l l l t t
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 20 30 4^
Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl I WQ l'NIRR WE 90146
. 2 WQ U WE 90146 3 WQ Y WE 90146 4 WQ V WE 90146 l
l Figure 5-9 Charpy V Notch Percent Shear vs. Temperature for Wolf Creek Reactor Vessel Weld Metal 1 Analysis of Wolf Creek Capsule V
46 HEAT AFFECTED ZONE CVCRAPH 41 Hyperbolic Tangent Curve Printed at 13246 on 05-28-1996 Results Curve Fluence ISE d-ISE USE d-LEE T e 30 d-T o 30 7 o 50 d-T e f0 1 0 219 0 161 0 -14421 0 - 11 4 0 2 0 119 0 140 -21 -8550 5&41 -%32 S&68 , 3 0 E!9 0 200 39 -131.02 1298 -8432 2918 4 0 P.19 0 167 6 -8109 55.91 -61.99 5201 300 a to 250 6 + 1
$ 200 e m &
5 130 !! 8 c3
'd;n.
d *
/[,'
100 o# 9 Z > U so a ) o 84 n of y,0 -0 o
. .s f
- j l l l
-300 -200 -100 0 100 200 300 400 500 600 i Temperature in Degrees F Curve igend Ic 2C 30 4^
Data Setfe) Plotted Curve Plant Capsule Waterial Ori. Heatl I WQ UNIRR HEAT AFD ZONE . 2 NG U HEAT AFD ZONE 3 fu Y HEAT AFD 20NE 4 WG V HEAT AFD ZONE Figure 5-10 Chagy V-Notch Impact Energy vs. Temperature for Wolf Creek Reactor Vessel l Heat-Affected-Zone Material l Analysis of Twlf Creek Capsule V l 1
, 47 l i HEAT AFFECTED ZONE CVGRAPH 4J Hyperbolic Tangent Curve Printed at 11473 on 05-2B-1998 i Results Curve fluence USE d-USE T e LE35 d-T e ID5 1 0 84SS 0 -89.78 0 2 0 86.77 2.12 -5425 3553 3 0 97S6 13 3 -6051 2927
. 4 0 68J4 -16 5 -416 4 6.18 2CT m
O 150 c., M + 100 _~
~
a ' A o
- ol&e-s m e
3 $ .$
~
a c _ e ^ So o g O o a o 1 Ne,
~ A r:L Ul ; l 1 -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve legend Ic 20 30 4^
Data Set (s) Plotted Curve Plant Capsule Waterial Ori. Heatl 1 WCl UNIRR HEAT AFF'D ZONE 2 WCl U HEAT AFFD ZONE 3 FCI Y HEAT AFFD Z0h1 4 WCl V HEAT AFFD ZONE l l Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Wolf Creek Reactor Vessel Heat-Affected-Zone Material l Analysis of Wolf Creek Capsule V
48 i HEAT AFFECTED ZONE CVGRAPE 4J Hyperbolic Tangent Curve Printed at 135150 on 05-28-1998 Results Curve Fluence T o 5(k Shear d-T o 50x Shear 1 0 -7721 0 L 0 -20.47 5734 3 0 4 721 2 . 4 0 -30.46 4724 100 (v' C
~
L
~
a o
.u.
e >l
@ g .
Cl 41'o *l 8
/.
b d ? D l' O a c / l-o g#
, Y U -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Cu- ve igend 1C 2C 30 4^
Data Set (s) Plotted Curve Plant Capsule Waterial Ori Heuti
! WQ UNIRR llEAT AITD 20h1 2 WQ U- IIEAT AITD 20NE .
3 WQ Y HEAT AfTD ZONE 4 WQ Y HEAT AFTD 20hI l Figure 5-12 Charpy V-Notch Percent Shear vs. Temperatum for Wolf Creek Reactor Vessel Heat-Affected-Zone Material Analysis cf Wolf Creek Capsule V l
l 49 , l i i i 1 a l 4 1 j I
- aw.g -
l,
; 46 T[p1.. (I CN@u ..%%.g?
i 1 5
/ I b@.$ 5to A. ?$$p ESg .;; 4 AfWil ?
- 1. E , ~ '- r/ ,;gi , ay J4rj :
1-q l t , : ( ,
- AL27 AL30 AL18 AL16 AL24
. Q i.;.l.. St '~55 , shWT i
6 J:q$.WO M.- l
~*f & @,h-ll J;#Aj ge a.
[fj4yW-7 u:f,i; j
%. :# ,,e t:;. Mi -4 ). g A g
r ' N ] ~ %:- Mi?. ~? $
. .]s (y%>wins. ::~ .' . } ._}R l %,:. F.; . yt.c Xyt .,v w%,Q, d
ra -
- o. ,p
,4,, ,J, :.#,.
4 l- < - g j i..g,, y
- y. , y -
g u g,.4~ . , g , 4,,3, ,
, ~ ~ *. . : n AL19 AL17 AL25 AL26 AL28 i
1 4.AJE- r
% w:r: + < '
f
^
w g. l )g - l - s h t w:
. ?A '
] .. j O i
- e ,, f , e E . n[Sf . . . %.# .g w ~~~.~ ./kum
. , eg,4,, .. - .- 4d
[w,,;,u
~. gea AL21 AL29 AL22 AL20 AL23 i , Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Wolf Creek Reactor Vessel Lower
- Shell Plate R2508-3 (Longitudinal Orientation)
Analysis of Wolf Creek Capsule V
50 l l l
.h,, ? : ~
t) .
- g. ,
* ;{& :Y lhah MU ;erm A %
AT30 AT24 AT23 AT16 AT25 I -
?. 7 p kfhh ?R Y&
N@&[D' hfIh lt, t g/[ Yf{d{1,i Q[hj 7 o l Bw_% ' % ,p AT26
" Q:
I
@ _i G $
7.e kNf ; AT18
-hI 1-Q rff4KaC AT27 I$ $*EWyr.
AT19
- s. $ : wce?
h (
/f; ;;g_'!
AT28 I EHH AT22 Figure 5-14 AT21 AT20 AT17 AT29 Charpy Impact Specimen Fracture Surfaces for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation) Analysis of Wolf Creek Capsule V
. . _ .~.-_.. . . _- - - . - . - _. . _ . . - - _ _ _ .
51
.i l
1 1 . . .
~
k , w# e + _ .,% w,5cu o e ,,
~5gf,%4 j W yy ki;j($y) ~
J l N%$;r l s. w$a;-;tw[; h p}., i
+ ,;fys .t y a -. k'% -
e.).g$ A j; effpy
- %w ..
- .: s. - , 31,y, j fpg,p..
g g,.; . l AW18 AW23 AW25 AW22 AW28 l i j i E-.'4 AW16
't AW20 4-AW27 3
AW17 hh$$rgs AW24 F [ y ) l L gy - i;d .4
} ' l?Vib';h _
AW26 _ . . % R--. AW30 0 . p?
,h @g %@#"s.
AW19 AW29 AW21 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Wolf Creek Reactor Vessel Weld i Metal Analysis of Wolf Creek Capsule V i
52 1 h"; F:Ac Syg dtcs .; ,
- 2 r -
e v~q38 i P ' q.;.g2 - b,p%yd
.,r . ? TGUfj *^QQ; + 'g ?
WNio.r 1 .. s e $$$g?5lE 9[gg gyT1 ,. J,f [^ J w I!ff$2A7US ik % AH21 AH2O AH16 AH28 AH24 HEER AH27 AH30 AH25 AH29 AH17 EBERRAH23 AH18 AH19 AH22 AH26 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Wolf Creek Reactor Vessel Heat-Affected-Zone Metal Analysis of Wolf Creek Capsule V
53 (*C) 0 50 100 150 200 250 300 120 l i l l I l i-800 110 - 100 - 700 ULTIMATE TENSILE STRENGTH e - 6N i 600 ,
$ 80 _
A k . <n A-- - 70 - 500 ti 60 - o - 400 g_ 50 0.2% YlELD STRENGTH 300 40 LEGEND: A O UNIRRADIATED 19 2 0 A 4 IRRADIATED TO A FLUENCE OF 2.528 X 10 nlcm (E>1.0MeV) AT 550 F 80 - REDUCTION IN AREA 70 A~A- A-Qg g 60 g 50 - a p 40 -
% 30 -
I * "0""
, __ y 10 - A T -
A 4 UNIFORM ELONGATION 0 I I I I I 0 100 200 300 400 500 600 TEMPERATURE (*D Figure 5-17 Tensile Properties for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) Analysis of Wolf Creek Capsule V
54 ('C) 50 150 200 250 300 0 10.0 120 ; ; ; ; l l l 800 110 -
- 700 100 .
ULTIMATE TENSILE STRENGTH e NA i 600 ,
$ 80_
M
,0K A
j - k - 500 g 70 2' a 60 - 2
,o -
400 9 50 o.2% ytaD STRENGTH 2' 300 1 LEGEND: A O UNIRRADIATED 19 2 0 A e IRRADIATED TO A FLUENCE OF 2.528 X 10 n/cm (E>1.0MeV) AT 550 F l l 80 - - REDUCN IN AREA 70 - b a- A A j
- g. 60 2 N g 50 - b \
a
;: 40 - $ TOTAL EONGAM 30 -
A N , 20 - 2 10 - A- _ UNIFORM ELONGATION , O I I l I l 0 100 200 300 400 500 600 TEMPERATURE (*F) l Figure 5-18 Tensile Propenies for Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Transverse Orientation) Analysis of Wolf Creek Capsule V
55 (*C) 0 50 100 150 200 250 300 120 I l l I l 1 - 800 110 - 100 RWATE TENSILE SMENGE - 700 A- _A _ e 90 - k -g 1- 600 , S
- 80 N 70 'N O'
- w-6 -
500 k ' W 2 b 60 - 0.2% YlELD STRENGTH 400 50 - 300 40 LEGEND: A O UNIRRADIATED A 9 IRRADIATED TO A FLUENCE OF 2.528 X 10 n/cm (E>1.0MeV) AT 550 F 80 - 70 A REDUCTION IN AREA Ng'A- _A E A g 60
- %g t 50 -
h40 - k 30 - TOM ELONGATION
. 20 - -O 10 A bra-UNIFORM ELONGATION 8 4 0 ' ' I I I O 100 200 300 400 500 600 TEMPERATURE (*D Figure 5-19 Tensile Properties for Wolf Creek Reactor Vessel Weld Metal Analysis of Wolf Creek Capsule V
56
?? .g_ ; - # 7 g#- x.
8 9 -1 2 3 A 6 8 0l !
. . . . a.:., , - .
r 3 ,j t , ([4 [.~,[$.:a.
,;c']
y ,,,, Specimen AL4 gg - ~, 7 l, . ..-
,,, -.g g,7 - . - .~. ~ z 7. - 7 -
N:?%~2;. i .;r l )2[' 13?
.y., - . % M s{ w f [.. 7 .I 1 3 y .4 .;
gM ;4,, 4 2Q'r l ' ~ e - - w
+ ,n . ?,5 - -
e . m4 :g;. w n n..-
. , , . , . - w, v A. - ,g,, :
t , ,3 ,
' , .. r . 7- . .t 3 .?
II' . * * " .,o s. -
. .;- ?+ 4 .] h .:L.f.L. . : a.2 L. :~.- x=.._c x .: - s.22%
Specimen AL5
-- ., .].;;
y.,7 mg.,,3 g_,g.7 s . . . . , ,
;e " .: .3 .4 ?.
78.v.S y h. ,Je1[; i,,m;3 h4 i h Si57dN.1.,5 .. g . ,, A
~ y,; g . .p%
x . t, s , y - ..w : v:. f+m e ,- ,_ ~. , Q ,.gl, (S-ikY
>.~n ar a..- }$~j ' w .lc3 ^Ls 2 *' sM ,, :yi', r ~~ - .;{>,. . a.
y: .,pm - e:S+; r
,, ^.: . . .p y .c .
f ('. 5 k'
~ ; * '- Ni A'M ***]v*/...,m o' M,tb y u L a: ma e
i umr:,ca ,.m..a 2 ...w::.a ;.. .W . .a.;;ua.1 Specimen AL6 l Figure 5-20 Fractured Tensile Specimens from Wolf Creek Reactor Vessel Lower Shell Plate R2508-3 (Longitudinal Orientation) Analysis of Wolf Cr ek Capsule V
57
- c. o . ... o v o n z
- 3_.'l1._ q - . '
~6 -'Q:-l;; J)- - p, ; 3 4 ,.y .(; . J. pf 3 A
h :.
. .. r c;reze ,
p;;- . - -
- s. .s, Y
AT4
.y. . . :.y ;- . . .. - .. , No: C 3f.:5 W ' .J "
_ : .> _ . .j _
*;.8 i , ; ?2; { f .,0ffgl;j { g.. ,'.1 f . -. r g <-, 3,-
53 o + 1 4 s i i
,s .t. ,
s, . ( ) : cr no,' 0305;H : -
..g g 9l.. .
3 Q: ,3 s. 0A i h.. . ;8,l?% -
~ ' ?
l . l 1 i -sm c . :; , , . . , l .y ?. .. ;
.a ,j q .. :: v-a j ; ,
- j.j.y , #
2.ile- -
. . . . -. . - ~ . .. _u ~ ~ .a. = . ,w .
4 Figure 5-21 Fractured Tensile Specimens from Wolf Creek Reactor Vessel Lower Shell Plate 4 l R2508-3 (Transverse Orientation) i Analysis of Wolf Creek Capsule V
58 n o. u . e: .> - gs -
~ ;c $z.r-I 5 - 8 9 1 2 3 4 '
8 .# lllbl l r 7, ,
-,y e.. . ~ ' ' - .. . , , .
3, ; .m-w _a 3, , 'y >
- w: : ~
- g. . ., .
AW4 1 _.,.y n c c 3. . r;c;;caedn 7 9 ,,.- z-..., . - ., . . .. . iB;.'lO?i Mf4{2 g A [ 16[JijS % ; . M ll
$ft ,g; . , ,-?c 7 . g . *:y 2' ~
y .:-r . a,. Jjp :,: 3
.w.a - _ a :a . . -
as
- a. .. .
AW5 s g- - g - nu. n> v a o r J 7
.- 6 9 :1 2 3 .4 6 8 .;.
l l l 1. l .
,_;. , u r - -- ~. .; +m .
7 2%Mk . AW6 Figure 5-22 Fractured Tensile Specimens from Wolf Creek Reactor Vessel Weld Metal Analysis of Wolf Creek Capsule V
. . . . .. --,=.-.,.m...-- . ._._i.-4 . ..m. . . . . . _ . . . . ~- . ..m. . . . . _ . ~ - ,_.
59 I i l l-I I l 4 i Spectnen AL4 l l 100 ! 90 - 80 - e 70 - 80 - , N 50 - 40 AL4
=
i
- 40 F 30 20 -
10 - l 0 0 0.0s 0.1 0.is 0.2 025 0.s STRAIN, INW l s.ec=en Ats 100 90 < 0-80 50 - s [ 40 - AL 5 go . 140 F l 20 - 10 - , 0 0 0.06 0.1 0.15 02 0.25 02 STRAIN, IMN l Smmen AL6 m e0 - It go . g 70 - e g .o . 0 40 ALS
, 650 F su -
e 1e . 0 0 0.05 0.1 0.15 02 025 0.3 STRAIN. IMN Figure 5-23 Engineering Stmss-Strain Curves for Lower Shell Plate R2508-3 Tensile Specimens AIA, ALS and AL6 (Longitudinal Orientation) [. Analysis of Wolf Creek Capsule V
60 Specanon AT4 100 e0 gn-.0 N g. 40 - 30 - AT 4 20 - nF 10 - 0 0 0.05 0.1 0.15 0.2 025 0.3 STRAIN. IN/IN Specanen AT6 300 - - ,
.0 -
9 .0 ' t ,0 -
"~ AT 6 30 - 165 F 20 -
to - 0 0 0.05 0.1 0.15 0.2 025 0.3 STmN. niN Specimen AT6 100 so - D
, s0 - .
- 50 -
40 AT6 550 F 3o . 20 . 10 - 0 0 0.05 0.1 0.16 02 035 0.3 STRAIN. IN/IN Figure 5-24 Engineering Stress-Strain Curve for Lower Shell Plate R2508-3 Tensile Specimen
\
AT4, AT5 and AT6 (Transverse Orientation) l 1 Analysis of Wolf Creek Capsule V
61 Speamen AW4 100 g 70 < to - AW4 g 40 - 25 F 30 - 30 - 40 0 0 0.06 0.1 0.15 02 0.25 0.3 sim. m speamen Aws 100
.0 _
80 - y 10 - e0 - if [.0 40 Aws 126 F 20 - 10 - 0 0 0.06 0.1 0.16 02 025 0.3 sim. m speeknen AW6 100 90 - N 5 .0 - 80 - 40 AW 6 l gn . 500 F j .. a0 1 10 0 0 0.06 0.1 416 CJ 026 CJ sim. - Figure 5-25 Engineering Stress-Strain Curves for Surveillance Weld Metal Tensile Specimens ; AW4, AW5 and AW6 l Analysis of Wolf Creek Capsule V
l 62 1 1 I l SECTION 6.0 RADIATIO" ANALYSlS ANL NEUTRON DOSIMETRY , 1 1 6.1 Introduction Knowledge of the neutron environment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in l order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron environment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes observed in the test specimens to the present and tuture condition of the reactor vessel, a relationship must be established between the neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the surveillance capsules. The latter information is generally derived solely from analysis. The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for development of damage trend cmves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.
. Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, " Analysis and Interpretation of Light- . Water Reactor Surveillance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evalu.Lon is specified in ASTM Standard Practice E693, "Charact(rizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, " Radiation Embrittlement of Reactor Vessel Materials."
Analysis of Wolf Creek Capsule V
63 This section provides the results of the neutron dosimetry evaluations perfonned in conjunction with the analysis of test specimens contained in suiveillance Capsules U, Y, and V which were withdrawn during the first, fifth, and ninth fuel cycles, respectively. This evaluation is based on current state-of-the-art methodology and nuclear data including recently released neutmn transport and dosimetry cross-s'ction libraries derived from the ENDF/B-VI data base. This repon provides a consistent up-to-date neutron exposure data base for use in evaluating the material properties of the Wolf Creek reactor vessel. . In each capsule dosimetry evaluation, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeVL and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical talism relating the measured capsule exposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall. Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor vessel are provided. 6.2 Discrete Ordinates Analysis A plan view of the reactor geometry at the core midplane is shown in Figure 4-1. Six irradiation capsules attached to the neutron pads are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.5',61,121.5 ,238.5 , 241, and 301.5 relative to the core cardinal axis as shown in Figure 4-1. A plan view of a dual surveillance capsule holder attached to the neutron pad is shown in Figure 6-1.
'Ihe stainless steel specimen containers are 1.182 by 1-inch and approximately 56 inches in height.
The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot high reactor core. From a neutronic standpoint, the surveillance capsules and associated support structures are significant. The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectmm in the water annulus between the neutron pad and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model. Analysis of Wolf Creek Capsule V
64 l ? l l In performing the fast neutron exposure evaluations for the surveillance capsules and reactor vessel, two distinct sets of transport calculations were carried out. The first, a single computation in the conventional forward mode, was used primarily to obtain relative neutron energy distributions l l throughout the reactor geometry as well as to establish relative radial distributions of exposure parameters ($(E > 1.0 MeV), Q(E > 0.1 MeV), and dpa/sec) through the vessel wall. The neutron spectral information was required for the interpretation of neutron dosimetry withdrawT1 from the surveillance capsule as well as for the determination of exposure parameter ratios, i.e., [dpa/sec]/[$(E > 1.0 MeV)), within the reactor vessel geometry, The relative radial gradient information was. required to permit the projection of measured exposure parameters to locations interior to the reactor vessel wall, i.e., the %T and %T locations. 1 The second set of calculations consisted of a series of adjoint analyses relating the fast neutron flux, Q(E > 1.0 MeV), at surveillance capsule positions and at several azimuthal locations on the reactor vessel inner radius to neutron source distributions within the reactor core. The source importance functions generated from these adjoint analyses provided the basis for all absolute exposure calculations and comparison with measurement. These importance functions, when combined with fuel cycle specific neutron source distributions, yielded absolute predictions of neutron exposure at the locations of interest for each cycle of irradiation. They also established the means to perform similar l predictions and dosimetry evaluations for all subsequent fuel cycles. It is important to note that the cycle specific neutron source distributions utilized in these analyses included not only spatial l variations of fission rates within the reactor core but also accounted for the effects of varying neutron yield per fission and fission spectrum introduced by the build-up of plutonium as the bumup of individual fuel assemblies increased. The absolute cycle-specific data from the adjoint evaluations together with the relative neutron energy spectra and radial distribution information from the reference forward calculation provided the means to: 1- Evaluate neutron dosimetry obtained from surveillance capsules, 2- Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall, l Analysis of Wolf Creek Capsule V
65 3 - Enable a direct comparison of analytical prediction with measurement, and 4- Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel cycle evolves.
'Ihe forward transport calculation for the reactor model summarized in Figures 4-1 and 6-1 was carried ,
out in R,0 geometry using the DORT two-dimensional discrete ordmates code Version 3.l l"1 and the BUGLE-93 cross-section library M. The BUGLE-93 library is a 47 energy group ENDF/B-VI based data set produced specifically for light water reactor applications. In these analyses, anisotropic - scattering was treated with a P3 expansion of the scattering cross-sections and the angular discretization was modeled with an S, order of angular quadratum.
'Ihe core power distribution utilized in the reference forward transport calculation was derived from )
statistical studies oflong-term operation of Westinghouse 4-loop plants. Inherent in the development of this reference core power distribution is the use of an out-in fuel management strategy, i.e., fresh fuel on the core periphery. Furthermore, for the peripheral fuel assemblies, the neutron source was increased by a 20 margin derived from the statistical evaluation of plant-to-plant and cycle-to-cycle variations in peripheral power. Since it is unlikely that any single reactor would exhibit power levels on the com periphery at the nominal + 2a value for a large number of fuel cycles, the use of this reference distribution is expected to yield somewhat conservative results. f All adjoint calculations were also carried out using an S, order of angular quadrature and the P3 cross- , section approximation from the BUGLE-93 library. Adjoint source locations . vere chosen at several azimuthal locations along the reactor vessel inner radius as well as at the geometric center of each surveillance capsule. Again, these calculations were run in R,0 geometry to provide neutron source ' s distribution importance functions for the exposure parameter of interest, in this case $(E > 1.0 MeV). Having the importance functions and appropriate core source distributions, the response of interest could be calculated as: R(r,0) = [, [, [,1(r,0,E) S(r,0,E) r dr A dE j Analysis of Wolf Creek Capsule V t
.- .. -_ . .. . . ~
66 i where: R(r 0) = Q(E > 1.0 MeV) at radius r and azimuthal angle 0. 1(r,0,E)= Adjoint source importance function at radius r, azimuthal angle 0, and neutron source energy E. S(r,0,E)= Neutron source strength at core location r,0 and energy E. Although the adjoint importance functions used in this analysis were based on a response function defined by the threshold neutron flux $(E > 1.0 MeV), prior calculations DC have shown that, while i the implementation oflow leakage loading pattems significantly impacts both the magnitude and spatial distribution of the neutron field, changes in the relative neutron energy spectrum are of second order. Thus, for a given location, the ratio of [dpa/sec]/[$(E > 1.0 MeV)] is insensitive to changing core source distributions. In the application of these adjoint importance functions to the Wolf Creek reactor, therefore, the iron atom displacement rates (dpa/sec) and the neutron flux $(E > 0.1 MeV) were computed on a cycle-specific basis by using [dpa/sec]/[$(E > 1.0 MeV)] and [$(E > 0.1 MeV)]/[$(E > 1.0 MeV)] ratios from the forward analysis in conjunction with the cycle specific Q(E > 1.0 MeV) solutions from the indiviaual adjoint evaluations. The reactor core power distributions used in the plant specific adjoint calculations were taken from the fuel cycle design reports for the first nine operating cycle of Wolf Creek "' amp 2a Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. The data listed in these tables establish the means for absolute comparisons of analysis and measurement for the Capsules U, Y, and V irradiation periods and provide the means to correlate dosimetry results with the
. corresponding exposure of the reactor vessel wall.
In Table 6-1, the calculated exposure parameters [$(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec] are l given at the geometric center of the two azimuthally symmetric surveillance capsule positions (29' and 31.5 ) for both the reference and the plant specific core power distributions. The plant-specific data, i based on the adjoint transport analysis, are meant to establish the absolute comparison of measurement with analysis. The reference data derived from the forward calculation are provided as a conservative exposure evaluation against which plant specific fluence calculations can be compared. Similar data are given in Table 6-2 for the reactor vessel inner radius. Again, the three pertinent exposure Analysis of Wolf Creek Capsule V l
67 parameters are listed for the reference and Cycles I to 9 plant specific power distributions. It is important to note that the data for the vessel inner radius were taken at the clad / base metal interface, and, thus, epresent the maximum predicted exposur: levels of the vessel plates and welds. Radial gradient infonnation applicable to $(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec is given in , Tables 6-3,6-4, and 6-5, respectively. The data, obtained from the reference forward neutron transport calculation, are presented on a relative basis for each exposure parameter at several azimuthal locations. Exposure distributions through the vessel wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5. For example, the neutron flux Q(E > 1.0 MeV) at the %T depth in the reactor vessel wall along the 0 azimuth is given by:
$ 3f0*) = $(220.35,0*) F(225.87,0*)
where:
$y(0 ) = Projected neutron flux at the %T position on the 0* azimuth.
Q(220.35,0 ) = Projected or calculated neutron flux at the vessel inner radius on the 0 azimuth. F(225.87,0 ) = Ratio of the neutron flux at the %T position to the flux at the vessel inner radius for the 0 azimuth. This data is obtained from Table 6-3. Similar expressions apply for exposure parameters expressed in terms of $(E > 0.1 MeV) and dpa/sec where the attenuation function F is obtained fmm Tables 6-4 and 6-5, respectively. 6.3 Neutron Dosimetry The passive neutron sensors included in the Wolf Creek surveillance program are listed in Table 6-6. Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that were used in the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters of interest [Q(E > 1.0 MeV), Q(E > 0.1 MeV), dpa/sec]. The relative locations of the neutron sensors within the capsules are shown in Figure 4-2. The iron, nickel, copper, and cobalt-aluminum monitors, in wire Analysis of Wolf Creek Capsule V l
--. __ . . - .. . - - - -- - -- - - . . . - . . _ ~ - - . . -
68 fomi, were placed in holes drilled in spacers at several axial levels within the capsules. The cadmium shielded uranium and neptunium fission moniton were accommodated within the dosimeter block located near the center of the capsule. l l l The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the energy dependent neutron flux at the point ofinterest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target ! material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest: The measured specific activity of each monitor, The physical characteristics of each monitor, j- - The operating history of the tractor:26) , The energy response of each monitor, and The neutron energy spectrum at the monitor location. The specific activity of each of the neutron monitors was detennined using established ASTM proceduresr2' ***" 1 Following sample preparation and weighing, the activity of each monitor was determined by means of a lithium-drifted germanium, Ge(Li), gamma spectrometer. The irradiation history of the Wolf Creek reactor was obtained from Wolf Creek Nuclear Operating Corporation ! personnel r2'1 and data reported in NUREG-0020, " Licensed Operating Reactors Status Summary Report," for the Cycles 1 to 9 operating periods. The irradiation history applicable to the exposure of Capsules U, Y, and V is given in Table 6-7. Having the measured specific activities, the physical characteristics of the sensors, and the operating
, history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:
R, A No FY{ P c [1_,*g[,*g j ut i d i Analysis of Wolf Creek Capsule V l' L - ,
- . . - . - . - . - - - . ~ . . . - - - . - - _ _ - . . - - . - _ . - - - - l 69 1 l l l where. R- = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of P,,, (rps/ nucleus). A = Measured specific activity (dps/gm). No . = Number of target element atoms per gmm of sensor. Weight fraction of the target isotope in the sensor material. F = Y = Number of product atoms produced per reaction. P; = Average core power level during irradiation period j (MW). P,,, - = Maximum or reference power level of the reactor (MW). C; = Calculated ratio of $(E > 1.0 MeV) during irradiation period j to the time weighted . I average $(E > 1.0 MeV) over the entire irradiation period. A = Decay constant of the product isotope (1/sec). tj = Length of irradiation period j (sec). t, = Decay time following irradiation period j (sec). and the summation is carried out over the total number of monthly intervals comprising the irradiation period. In the equation describing the reaction rate calculation, the ratio [P]/[P,,,]j accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel ' cycles. The ratio C;, which can be calculated for each fuel cycle using the adjoint transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel
- cycle. For a single cycle irradiation, C; is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional C; term should be employed.' The impact of changing flux levels for constant power operation can be quite
~
significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned - from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved in m one capsule location to another. - For the irradiation history of Capsule U, Y, and V the flux level term in the reaction rate calculations was set to 1.0 for Capsule U only. Measured and saturated reaction product specific activities as well Analysis of Wolf Creek Capsule V e
- . _ - - . . - ~ . . --- . - . - - .- _.. - ._ - _ - _.
70 j as the derived full power reaction rates are listed in Table 6-8 referenced to 3565 MWt. The specific activities and reaction rates of the 23:U sensors provided in Table 6-8 include corrections for2 "U impurities, plutonium build in, and gamma ray induced fissions. Corrections for gamma ray induced fissions were also included in the specific activities and reaction rates for the2 "Np sensors as well. I Values of key fast neutron exposure parameters were derived from the measured reaction rates using the FERRET least squares adjustment code (4u, The FERRET approach used the measured reaction
- rate data, sensor reaction cross-sections, and a calculated trial spectrum as input and proceeded to l*
i adjust the group fluxes from the trial spectmm to produce a best fit (in a least squares sense) within l the constraints of the parameter uncertainties. The best estimate exposure parameters, along with the associated uncertainties, were then obtained from the best estimate spectrum. In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and l the measured data in accordance with the assigned uncertainties and correlations. In general, the measured values, f, are linearly related to the flux, $, by some response matrix, A: l
$'* = E, A$ 4f i
where i indexes the measured values belonging to a single data set s, g designates the energy group, l and cx delineates spectra that may be simultaneously adjusted. For example, l 5 " b, 'tr 4, relates a set of measured reaction rates, R,, to a single spectmm, Q,, by the multi-group reaction cross-section, o,,. The log-normal approach automatically accounts for the physical constraint of positive
. fluxes, even with large assigned uncertainties.
In the least squares adjustment, the continuous quantities (i.e., neutron spectra and cross-sections) were approximated in a multi-group fonnat consisting of 53 energy groups. The trial input spectrum was converted to the FERRET 53 group stmeture using the SAND-Il coder 421 'Ihis procedure was carried 1 4 Analysis of Wolf Creek Capsule V l l
- - - - - . . - .- - . ~ . - _ - - .,_ - - .. _ - -
71 out by first expanding the 47 group calculated spectmm into the SAND-II 620 group stmeture using a SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point spectmm was then re-collapsed into the group structure used in FERRET. The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry file M, were also collapsed into the 53 energy group stmeture using the SAND-II code. In this instance, the trial , spectrum, as expanded to 620 groups, was employed as a weighting function in the cross-section collapsing procedure. Reaction cross-section uncertainties in the fonn of a 53 x 53 covariance matrix for each sensor reaction were also constmeted from the information contained on the ENTF/B-VI data files. These matrices included energy group to energy group uncertainty correlations for each of the individual reactions. However, correlations between cross-sections for different sensor reactions were not included. The omission of this additional ancenainty information does not significantly impact the results of the adjustment. Due to the importance of providing a trial spectrum that exhibile a relative energy distribution close to L the actual spectrum at the sensor set locations, the neutron spectrum input to the FERRET evaluation was taken from the center of the surveillance capsule modeled in the reference forward transport calculation. While the 53 x 53 group covariance matrices applicable to the sensor reaction cross-sections were developed from the ENDF/B-VI data files, the covariance matrix for the input trial i spectrum was constructed from the following relation: u,,, - 4 + s si r,i, where R, specifies an overall fractional normalization uncertainty (i.e., complete correlation) for the set of values. The fractional uncertainties, R,, specify additional random uncertainties for group g that - are correlated with a correlation matrix given by: i r,i, = [1-0] 8,,, + 0 e-8 where: R = W8? 2 2y i Analysis of Wolf Creek Capsule V
, . _ _ - _ _ _ _ . . . _ _ ._. . _ m _ _ - . _ _ _ _ - _..-- _._ __ . _ __. _. ___ 72 De first tenn in' the correlation matrix equation specifies purely random uncenainties, while the l second term describes short range conelations over a group range 7 (0 specifies the strength of the
~
latter tenn). De value of 6 is I when g = g'and 0 otherwise. For the trial spectrum used in the current evaluations, a short range correlation of 7 = 6 groups was used. This choice implies that neighboring groups are stmngly correlated when 0 is close to 1. Stmng long-range correlations (or 1 anti-correlations) were justified based on information presented by R. E. MacrkerW. The uncenainties l l~ associated with the measured reaction rates included both statistical (counting) and systematic l components. He syrtematic component of the overall uncertainty accounts for counter efficiency,
- l counter calibrations, irradiation history corrections, and corrections for competing reactions in the 1 individual sensors.
i Results of the FERRET evaluation of the Capsule U, Y, and V dosimetry are given in Table 6-9. The I data summarized in this table include fast neutron exposure evaluations in tenns of @(E > 1.0 MeV),
@(E > 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the best estimate spectra to the individual measured reaction rates. He measured, calculated and best estimate reaction rates for each reaction are given in Table 6-10. An examination of Table 6-10 shows that, in all 1
cases, reaction rates calculated with the best estimate spectra match the measured reaction rates to ; better than 14E The best estimate spectra from the least squares evaluation is given in Table 6-11 in l l the FERRET 53 energy group structure. In Table 6-12, absolute comparisons of the best estimate and calculated fluence at the center of l Capsules U, Y, and V are presented. He results for the Capsules U, Y, and V dosimetry evaluation l (BE/C ratio of 0.975 for @(E > 1.0 MeV)) are consistent with results obtained fmm similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross-sections.
. 6.4 Proiections of Reactor Vessel Ex_oosure De best estimate exposure of the Wolf Creek reactor vessel was developed using a combination of absolute plant specific transport calculations and all available plant specific measurement data. In the t . case of Wolf Creek, the measurement data base contains three surveillance capsules discussed in this i report. :
i 1 l_ Analysis of Wolf Creek Capsule V
._ ~ , .,
.- .- . .~ _ _ _ . - _ - - . . .. - ._ . . -.
73 Combining this measurement data base with the plant-specific calculations, the best estimate vessel exposure is obtained from the following relationship:
*aan n " K Og, where: @%, = The best estimate fast neutron exposure at the location of interest.
K= The plant specific best estimate / calculation (BE/C) bias factor derived from the surveillance capsule dosimetry data.
@m, = The absolute calculated fast neutron exposure at the location of interest.
'Ihe approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and, further that the use of the measurement data on a plant-specific basis essentially removes biases present in the analytical approach and mitigates the uncenainties that would result from the use of analysis alone. That is, at the measurement points the uncertainty in the best estimate exposure is dominated by the uncertainties in the measurement process. At locations within the reactor vessel wall, additional uncertainty is incurred due to the analytically determined relative ratios among the various measurement points and locations within the reactor vessel wall. For Wolf Creek, the derived plant specific bias factors were 0.975,1.069, and 1.031 for $(E > 1.0 MeV), @(E > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude are fully consistent with expedence using the BUGLE-93 cross-section library. The use of the bias factors dedved from the measurement data base acts to remove plant-specific biases associated with the definition of the core source, actual versus assumed reactor dimensions, and , operational variations in water density within the reactor. As a result, the overall uncertainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncenainty in the dosimetry location, and, in the uncertainty in the calculated ratio of the neutron exposure at the point of interest to that at the measurement location. Analysis of Wolf Creek Capsule V
I 74 De uncenainty in the dedved neuten flux for an individual measurement is obtained directly from the results of a least squares evaluation of dosimetry data. The least squares approach combines individual uncenainty in the calculated neutron energy spectrum, the uncenainties in dosimetry cross-sections, and the uncenainties in measured foil specific activities to produce a net uncenainty in the derived neutron flux at the measurement point. De associated uncenainty in the plant specific bias factor, K, derived from the BE/C data base, in turn, depends on the total number of available measurements as well as on the uncenainty of each measurement. In developing the overall uncenainty associated with the reactor vessel exposure, the positioning uncertainties for dosimetry are taken from parametric studies of sensor position performed as pan a series of analytical sensitivity studies included in the qualification of the methodology. The uncertainties in the exposure ratios relating dosimetry results to positions within the vessel wall are again based on the analytical sensitivity studies of the vessel thickness tolerance, downcomer water density variations, and vessel inner radius tolerance. Thus, this ponion of the overall uncertainty is controlled entirely by dimensional tolerances associated with the reactor design and by the operational characteristics of the reactor. He net uncertainty in the bias factor, K, is combined with the uncertainty fmm the analytical sensitivity study to define the overall fluence uncertainty at the reactor vessel wall. In the case of Wolf Creek, the derived uncenainties in the bias factor, K, and the additional uncertainty from the analytical sensitivity studies combine to yield a net uncertainty of 7E Based on this best estimate approach, neutron exposure projections at key locations on the reactor vessel inner radius are given in Table 6-13; furthermore, calculated neutron exposure projections are also provided for comparison purposes. Along with the current (9.49 EFPY) exposure, projections are also pmvided for exposure periods of 16 EFPY,32 EFPY, and 54 EFPY. Projections for future
. operation were based on the assumption that the exposure rates averaged over Cycle 6 tiuough 9 (Iow-leakage loading pattem) would continue to be applicable throughout plant life.
In the derivation of best estimate and calculated exposure gradients within the reactor vessel wall for the Wolf Creek reactor vessel, exposure projections to 16, 32, and 54 EFPY were also employed. Data based on both a $(E > 1.0 MeV) slope and a plant-specific dpa slope through the vessel wall are provided in Table 6-14. Analysis of Wolf Creek Capsule V
~ . _ . _ . . _ . _ . _ . _ _ _ _ _ _ _ . . . _ . _ _ _ _ . _ _ . _ . _ . . _ . . _ _
75 In order to assess RTm versus fluence curves, dpa equivalent fast neutron fluence levels for the %T and MT positions were defined by the relations: KD = MOD ND ) MOD 1 and-M D = MOD MOD
\
Using this approach results in the dpa equivalent fluence values listed in Table 614. In Table 6-15, updated lead factors are listed for each of the Wolf Creek suiveillance capsules. Graphical representation of the best estimate and calculated plant specific fast neutron fluence at key locations on the pressure vessel clad / base metal interface are shown in Figure 6-2 as a function of full power operating time. Pmssure vessel data are presented for the 0 ,15*,30 , and 45 azimuthal locations. The data for the plots is also tabulated in Table 6-16 for reference. In regard to Figure 6-2, the solid portions of the curves are based directly on the cycle-specific core loading pattems thmugh Cycle 9. The dashed portions of these curves, however, involve a projection i into the future. As mentioned previously, the neutron flux averaged over Cycles 6 through 9 were 8 used to pmject future fluence levels. In the Wolf Creek mactor, the neutron fluence at the 30* and 45 azimuthal locations are nearly identical and the maximum location is projected at the 30' azimuth. l. Analysis of Wolf Creek Capsule V
i 76 Table 6-1 Calculated Fast Neutron Exposure Rates And Iron Atom Displacement Rates At The Surveillance Capsule Center 2
$(E > 1.0 MeV) (n/cm -sec)
Cycle No. _22 31.5' Reference 1.39E+11 1.48E+11
, 1 9.919E+10 1.057E+11 2 {
1.035E+11 1.141E+11 ! 3 8.596E+10 9.316E+10 4 8.357E+10 9.172E+10 5 8.402E+10 8.943E+10 6 7.708E+10 8.136E+10 7 7.459E+10 8.065E+10 8 9.093E+10 9.639E+10 9 7.375E+10 8.377E+10 l i 2
$(E > 0.1 MeV) (n/cm -sec)
Cycle No. _22 31.5' Reference 5.96E+11 6.37E+11 1 4.256E+11 4.538E+11 2 4.441E+11 4.900E+11 , 3 3.689E+11 3.999E+11 4 3.586E+11 3.938E+11 5 3.605E+11 3.839E+11 6 3.307E+11 3.493E+11 7 3.201E+11 3.462E+11 8 3.902E+11 4.138E+11 9 3.165E+11 3.596E+11 Displacement Rate (dpa/sec) Cycle No. _22 31.5 l Reference 2.63E-10 2.80E-10 , . I 1.875E-10 1.998E-10 l 2 1.956E-10 2.157E-10 3 1.625E-10 1.761E-10
- l. 4 1.579E-10 1.734E-10 5 1.588E-10 1.690E-10 6 1.457E-10 1.538E-10 7 1.410E-10 1.524E-10 8 1.719E-10 1.822E-10 9 1.394E-10 1.583E-10 i
l Analysis of Wolf Creek Capsule V
... . = _ . .
77 Table 6-2 Calculated Azimuthal Variation Of Fast Neutron Exposure Rates And Imn Atom Displacement Rates At The Reactor Vessel Clad / Base Metal Interface 2
$(E > 1.0 MeV) (n/cm -sec)
Cycle No. 0' _11' _10 45 Reference 1.951E+10 2.929E+10 3.325E+10 3.409E+10 1 1.387E+10 2.051E+10 2.389E+10 2.413E+10 . 2 1.502E+10 2.153E+10 2.507E+10 2.894E+10 3 1.199E+10 1.779E+10 2.108E+10 2.031E+10 4 1.380E+10 1.888E+10 2.061E+10 2.145E+10 . 5 1.339E+10 1.932E+10 2.059E+10 1.997E+10 6 1.069E+10 1.772E+10 1.893E+10 1.817E+10 7 9.037E+09 1.477E+10 1.834E+10 1.780E+10 8 1.109E+10 1.929E+10 2.219E+10 1.914E+10 9 9.130E+09 1.265E+10 1.828E+10 1.982E+10 2
$(E > 0.1 MeV) (n/cm -sec)
Cycle No. _Q _11' .30 45* Reference 4.104E+10 6.224E+10 7.226E+10 8.535E+10 1 2.918E+10 4.358E+10 5.191E+10 6.042E+10 2 3.160E+10 4.576E+10 5.447E+10 7.246E+10 3 2.523E+10 3.781E+10 4.580E+10 5.085E+10 4 2.904E+10 4.012E+10 4.480E+10 5.371E+10 5 2.817E+10 4.106E+10 4.473E+10 5.000E+10 6 2.250E+10 3.766E+10 4.113E+10 4.549E+10 7 1.901E+10 3.138E+10 3.985E+10 4.457E+10 8 2.332E+10 4.099E+10 4.821E+10 4.793E+10 9 1.921E+10 2.689E+10 3.973E+10 4.964E+10 Displacement Rate (dpa/sec) Cycle No. Q* _11* _10' 45' Reference 3.024E-11 4.496E-11 5.118E-11 5.384E-11 1 2.150E-11 3.148E-11 3.676E-11 3.810E-11 2 2.328E-11 3.305E-11 3.858E-11 4.569E-11 3 1.859E-11 2.731E-11 3.244E-11 3.207E-11 4 2.139E-11 2.898E-11 3.173E-11 3.387E-11 5 2.076E-11 2.966E-11 3.168E-11 3.153E-11 6 1.657E-11 2.720E-11 2.913E-11 2.869E-11
- 7 1.401E-11 2.267E-11 2.822E-11 2.810E-11 8 1.718E-11 2.961E-11 3.414E-11 3.022E-11 9 1.415E-11 1.942E-11 2.814E-11 3.130E-11 Analysis of Wolf Creek Capsule V
78 Table 6-3 Relative Radial Distribution Of $ (E > 1.0 Mev) Within 'lhe Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE {cnD 0* 15' 30* 42 (, 220.35 1.000 1.000 1.000 1.000 l 221.00 0.959 0.P58 0.956 0.957 222.30 0.852 0.851 0.844 0.846 , 223.60 0.739 0.736 0.729 0.729 224.89 0.634 0.630 0.623 0.622 225.87 0.561 0.557 0.549 0.547 227.01 0.486 0.482 0.473 0.472 228.63 0.395 0.390 0.382 0.380 230.09 0.325 0.320 0.314 0.311 231.39 0.273 - 0.269 0.263 0.260 232.68 0.229 0.225 0.219 0.217 234.14 0.188 0.184 0.179 0.176 235.76 0.150 0.146 0.142 0.140 236.90 0.128 0.124 0.121 0.118 237.88 0.111 0.107 0.105 0.102 239.18 0.092 0.089 0.086 0.084 240.47 0.076 0.072 0.071 0.069 241.77 0.063 0.058 0.057 0.055 l 242.42 0.060 0.055 0.054 0.052 i Note: Base Metal Inner Radius = 220.35 cm i Base Metal %T = 225.87 cm ! Base Metal %T = 231.39 cm l Base Metal %T = 236.90 cm Base Metal Outer Radius = 242.42 cm j U i Analysis of Wolf Cnek Capsule V
79 Table 6-4 Relative Radial Distribution Of $ (E > 0.1 Mev) Within The Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE fan) 0* 15* 30' g* 220.35 1.000 1.000 1.000 1.000 221.00 1.014 1.012 1.011 1.009 222.30 1.003 0.997 0.993 0.989 . 223.60 0.968 0.958 0.953 0.946 224.89 0.923 0.909 0.904 0.894 225.87 0.886 0.870 0.865 . 0.852 227.01 0.840 0.821 0.816 0.802 228.63 0.775 0.754 0.749 0.733 230.09 0.716 0.693 0.689 0.672 231.39 0.664 0.639 0.636 0.618 i 232.68 0.612 0.587 0.584 0.566 234.14 0.556 0.530 0.528 0.509 235.76 0.496 0.469 0.468 0.449 236.90 0.455 0.428 0.427 0.409 237.88 0.419 0.392 0.391 0.373 239.18 0.374 0.346 0.346 0.328 240.47 0.330 0.301 0.301 0.284 241.77 0.286 0.254 0.255 0.238 242.42 0.276 0.244 0.245 0.228 Note: Base Metal Inner Radius = 220.35 cm Base Metal %T = 225.87 cm Base Metal %T = 231.39 cm Base Metal %T = 236.90 cm Base Metal Outer Radius = 242.42 cm l l Analysis of Wolf Creek Capsule V l
l 80 l
'lhble 6-5 Relative Radial Distribution Of dpa/sec Within 'Ihe Reactor Vessel Wall RADIUS AZIMUTHAL ANGLE fan) 0* _1 S* 30* _41*
220.35 1.000 1.000 1.000 1.000 ' 221.00 0.965 0.965 0.964 0.965 222.30 0.877 0.876 0.873 0.879 223.60 0.785 0.783 0.779 0.788 224.89 0.699 0.696 0.692 0.703 225.87 0.639 0.635 0.631 0.643 227.01 0.576 0.571 0.567 0.580 228.63 0.497 0.491 0.488 0.501 230.09 0.435 0.428 0.427 0.439 231.39 0.386 0.379 0.378 0.389 232.68 0.343 0.335 0.334 0.345 234.14 0.300 0.291 0.291 0.301 235.76 0.257 0.249 0.249 0.258' 236.90 0.231 0.221 0.223 0.230 237.88 0.209 0.200 0.200 0.207 239.18 0.183 0.173 0.174 0.180 240.47 0.159 0.149 0.150 0.154 241.77 0.137 0.125 0.126 0.129 242.42 0.133 0.120 0.121 0.124 Note: Base Metal Inner Radius = 220.35 cm Base Metal %T = 225.87 cm Base Metal %T = 231.39 cm Base Metal %T = 236.90 cm Base Metal Outer Radius = 242.42 cm l l Analysis of Wolf Creek Capsule V i
81 Table 6-6 Nuclear Parameters Used In The Evaluation Of Neutron Sensors Target Fission Monitor Reaction of Atom Response Product Yield Material Interest Fraction Range Half-life Ife) - Copper Cu (n.ot) 0.6917 E > 4.7 MeV 5.271 y Iron "Fe (n.p) 0.0585 E > 1.0 MeV 312.1 d . Nickel "Ni (n.p) . 0.6808 E > 1.0 MeV 70.88 d - Uranium-238 2"U (n,f) 1.0000 E > 0.4 MeV 30.07 y 6.02 237 Neptunium-237 Np (n.f) 1.0000 E > 0.08 MeV 30.07 y 6.17 Cobalt-Al "Co (n,y) 0.0015 non-threshold 5.271 y Note: 2"U and 23'Np monitors are cadmium shielded. Analysis of Wolf Creek Capsule V
. _ _ _ _ _ _ _ _ . _ _ .. _ _ . _ .m_ _ . . _ .._ -
82 Table 6-7 Monthly 7hennal Generation During The First Nine Fuel Cycles Of The Wolf Creek Reactor l Yr Mo Thermal Yr Mo Thermal Yr Mo Thermal Yr Mo Thermal ! Generat. Generat. Generat. Generat. (MW-hr) (MW-hr) (MW hr) (MW-hr) j 85. 6 356676 88 8 2533606 91 10 0 94 12 2636320
- l. 85 7 .1025780 88 9- 2450165 91 11 0 95 1 2639803
! 85 8 1643803- 88 10 492163 91 12 0
- 95 2 2383600 l 85 9 2053023 88 11 0 92 1268945 95 1 3 2020996 l, 85 10 2086772 88 12 0 92 2 1524407 95 4 2543603 l 85 11 2366472 89 1 2095086 92 3 321390 95 5 2634001 85 12 2368666 89 2 2113705 92 4 .2446580 95 6 2524794 l 86 1 2480479 89 3 2535552 92 5 2534299 95 7 2632369
- 86 2 2005668 89 4 2454150 92 6 2453249 95 8 2634129 86 3 2513225 89 5 2498149 92 7 2535304 95 9 2468895 l 86 4 933250 89 6 2448863 92 8 2531360 95 10 2637097 86 5 2341310 89 7 2493515 92 9 2453478 95 11 2549850
- 86 6 1670026 89 8 2534633 92 10 2534881 95 12 2640215 86 7 2210358 89 9 2453774 92 11 2296524 96 1 2481700 86 8 2439547 89 10 2516573 92 12 2535128 96 2 0 ,
l 86 9 2406802 89 11 2450503 93 1 2534643 96 3 0 86 10 1219774 89 12 2536033 93 2 2288546 96 4 1784195 86 11 0 90 1 2534772 93 3 282997 96 5 2622027 86 12 650000 90 2 2017613 93 4 0 96 6 2349911 87 1- 1533313 90 3 599723 93 5 1124412 96 7 2642811 87 2 2192444 90 4 0 93 6 2453687 96 8 2603985 87 3 2471746 90 5 1003923 93 7 2535510 96 9 2564802 87 4 2247475 90 6 2442569 93 8 2535563 96 10- 2621302 87 5 2436662 90 7 2515109 93 9 2453641 96 11 2564301 87 6 2250313 90 8 2534494 93 10 2532824 96 12 2649864 87 7 2066874 90 9 2453417 93 11 2435990 97 1 2648915
' 87 8 2527262 90 10 2533710 93 12 2557464 97 2 2393586 87 9 1954923 90 11 2421081 94 1 2051879 97 3 2650251 87 10 0 90 12 2531359 94 2 2312015 97 4 '2564428 87 11. 0 91 1 2363291 94 3 2561261 97 5 2218326 87 12 0 91 2 1840498 94 4 2531248 97 6 2563505 88 1 1216547 91 3 1969185 94 5 2597022 97 7 2648185 88 2 956585 91 4 1506284 94 6 2520895 97 8 2649138 k 88 3 2526972 91 5 1692964 94 7- 2573456 97 9 2563192 l- 88 4 2452604 91 6 2434282 94 8 2577876 97 10 188631 88 5 2533966 91 7 2534580 94 9 1098290 ,
l 88 6 2451743 91 8 2466385 94 10 0 88 7 2531412 91 9 1221097 94 11 2306676 i s. 1 l l 1 l Analysis of Wolf Creek Capsule V
83 Table 6-8 Measured Sensor Activities And Reaction Rates Surveillance Capsule U Measured Saturated Reaction . Activity Activity Rate j Reaction Location (dos /em) (dos /em) (ros/ atom) i
Cu (n,a) "Co Top 4.44E+04 3.70E+05 5.65E-17 Middle 4.40E+04 3.67E+05 5.60E-17 I Bottom 4.75E+04 3.96E+05 6.05E-17 l
s'Fe (n,p) 5'Mn Top 1.51E+06 3.66E+06 5.80E-15 Middle 1.50E+06 3.64E+06 5.76E-15 i Bottom 1.80E+06 4.36E+06 6.92E-15 5 Ni (n,p) 5:Co Top 1.64E+07 5.67E+07 8.11E-15 Middle 1.61E+07 5.56E+07 7.96E-15 Bottom 1.76E+07 6.08E+07 8.70E-15 "Co (n,g) "Co Top 1.04E+07 8.68E+07 5.66E-12 Middle 1.00E+07 8.34E+07 5.44E-12 Bottom 1.01E+07 8.43E+07 5.50E-12 "Co (n.g) "Co (Cd) Top 5.27E+06 4.40E+07 2.87E-12 Middle 5.14E+06 4.29E+07 2.80E-12 Bottom 4.89E+06 4.08E+07 2.66E-12 23 U (n.f) "'Cs Middle 1.43E+05 6.17E+06 4.05E-14 , 2nNp (n,f) 2"Cs Middle 1.24E+06 5.35E+07 3.41E-13 l l De 23sU (n,f) 2"Cs reaction rate after correcting for2 "U impurities, plutonium build-in, and photofissions is 3.41E-14 rps/ atom. 2 De "Np (n f) "'Cs reaction rate after correcting for photofissions is 3.37E-13 rps/ atom. Analysis of Wolf Cnek Capsule V
84 l Table 6-8 cont'd Measured Sensor Activities And Reaction Rates l Suiveillance Capsule Y l
, Measured Saturated Reaction Activity Activity R tte Reaction LOGallDD (dps/em) (dos /cm) (ms/ atom) Cu (n.a) "Co Top 1.37E+05 3.52E+05 5.38E-17 Middle 1.20E+05 3.09E+05 4.71E-17 Bottom 1.21E+05 3.I 1E+05 4.75E-17 l "Fe (n,p) "Mn Top 1.66E+06 3.13E+06 4.96E-15 Middle 1.49E+06 2.81E+06 4.46E-15 Bottom 1.48E+06 2.79E+06 4.43E-15 "Ni (n,p) "Co Top 8.04E+06 4.59E+07 6.58E-15 Middle 7.38E+06 4.22E+07 6.04E-15 Bottom 7.33E+06 4.19E+07 6.00E-15 ! ) "Co (n,g) "Co Top 2.59E+07 6.66E+07 4.35E-12 Bottom 2.57E+07 6.61E+07 4.31E-12 ! "Co (n,g) "Co (Cd) Top 1.30E+07 3.34E+07 2.18E-12 Middle 1.36E+07 3.50E+07 2.28E-12 Bottom 1.39E+07 3.58E+07 2.33E-12 2"U (n,f) "'Cs Middle 5.43E+05 5.57E+06 3.66E-14 "'Np (n,f) "'Cs Middle 4,40E+06 4.5IE+07 2.88E-13 The 2nU (n,f) "'Cs reaction rate after correcting for2"U impurities, plutonium build-in, and photofissions is 2.95E-14 rps/ atom.
The "'Np (n,f) "'Cs reaction rate after correcting for photofissions is 2.85E-13 rps/ atom. Analysis of Wolf Creek Capsule V
85 Table 6-8 cont'd ) i Measured Sensor Activities And Reaction Rates ; Surveillance Capsule V Measured Saturated Reaction . Activity Activity Rate Reaction Location (dps/em) (dps/em) (ros/ atom)
"Cu (n,a) "Co Top 1.64E+05 2.79E+05 4.25E-17.
Middle 1.61E+05 2.74E+05 4.17E-17 Bottom 1.85E+05 3.14E+05 4.80E-17 "Fe (n.p) "Mn Top 1.35E+06 2.63E+06 4.17E-15 -
- Middle 1.37E+06 2.67E+06 4.23E-15 l Bottom 1.51E+06 2.94E+06 4.66E-15 "Ni (n.p) "Co Top 4.01E+06 4.33E+07 6.20E-15 Middle 4.00E+06 4.32E+07 6.18E-15 Bottom 4.37E+06 4.72E+07 6.75E-15 "Co (n g) "Co Top 2.78E+07 4.72E+07 3.08E-12 Middle 3.13E+07 5.32E+07 3.47E-12 Bottom 2.63E+07 4.47E+07 - 2.92E-12 "Co (n,g) "Co (Cd) Top 1.66E+07 2.82E+07 1.84E-12 Middle 1.62E+07 2.75E+07 1.80E-12 Bottom 1.57E+07 2.67E+07 1.74E-12 2"U (n.f) "'Cs Middle 1.14E+06 5.98E+06 3.93E-14 ,
2"Np (n,f) "'Cs - Middle 8.16E+06 4.28E+07 2.73E-13 The 2"U (n f) "'Cs reaction rate after correcting for 2"U impurities, plutonium build-in, and photofissions is 3.01E-14 rps/ atom. 2 The "Np (n,f) "'Cs reaction rate after correcting for photofissions is 2.71E-131ps/ atom. Analysis of Wolf Cmek Capsule V
86 l l Table 6-9 Summary Of Neutron Dosimetry Results Surveillance Capsules U, Y, and V l
, Best Estimate Flux and Ruence for Capsule U l
Flux Fluence Ouantity In/cm:-secl Ouantity In/cm 21 Uncertainty
$ (E > 1.0 MeV) 1.042E+11 @ (E > 1.0 MeV) 3.380E+18 7% $ (E > 0.1 MeV) 4.755E+11 @ (E > 0.1 MeV) 1.543E+19 15 % $ (E < 0.414 eV) 1.158E+11 @ (E < 0.414 eV) 3.757E+18 28 %
dpa/sec 2.050E-10 dpa 6.650E-03 11 % i l 1 Best Estimate Flux and Fluence for Capsule Y ' Flux Fluence Ouantity In/cm 2-sec1 Ouantity In/cm 21 Uncertainly ! $ (E > 1.0 MeV) 8.496E+10 $ (E > 1.0 MeV) 1.230E+19 7%
$ (E > 0.1 MeV) 4.145E+11 @ (E > 0.1 MeV) 6.000E+19 15 % $ (E < 0.414 eV) 8.810E+10 @ (E < 0.414 eV) 1.275E+19 28 %
dpa/sec 1.739E-10 dpa 2.517E-02 11 % Best Estimate Flux and Fluence for Capsule V
~
Flux Fluence Ouantity In/cm 2-sec1 Ouantity In/cm:1 Uncertainty
- l. $ (E > 1.0 MeV) 8.424E+10 $ (E > 1.0 MeV) 2.523E+19 7%
$ (E > 0.1 MeV) 3.951E+11 @ (E > 0.1 MeV) 1.183E+20 15 %
l $ (E < 0.414 eV) 6.098E+10 $ (E < 0.414 eV) 1.826E+19 29 % dpa/sec 1.673E-10 dpa 5.010E-02 11 % Analysis of Wolf Creek Capsule V
87 Table 6-10 Comparison Of Measured, Calculated, And Best Estimate Reaction Rates At The Surveillance Capsule Center Surveillance Capsule U Rest Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas / Calc
Cu (n a) 5.77E-17 5.46E-17 5.67E-17 0.98 1.04 1.06 "Fe (n.p) 6.16E-15 6.24E-15 6.12E-15 0.99 0.98 0.99 , "Ni (n.p) 8.26E-15 8.76E-15 8.58E-15 1.04 0.98 0.94 2"U (n,f) (Cd) 3.41E-14 3.37E-14 3.28E-14 0.96 0.97 1.01 2"Np (n,f) 3.38E-13 3.22E-13 3.30E-13 0.98 1.02 1.05 "Co (n.g) 5.53E-12 4.39E-12 5.51E-12 1.00 1.26 1.26 "Co (n,g) (Cd) 2.78E-12 3.07E-12 2.79E-12 1.00 0.91 0.91 Surveillance Capsule Y Rest Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas / Calc Cu (n,a) 4.94E-17 4.74E-17 4.76E-17 0.96 1.00 1.04 "Fe (n.p) 4.62E-15 5.36E-15 4.83E-15 1.05 0.90 0.86 i "Ni (n.p) 6.60E-15 7.51E-15 6.80E-15 1.03 0.91 0.88 2"U (n,f) (Cd) 2.95E-14 2.88E-14 2.64E-14 0.89 0.92 1.02 2"Np (n.f) 2.85E-13 2.75E-13 2.78E-13 0.98 1.01 1.04 "Co (n,g) 4.33E-12 3.67E-12 4.31E-12 1.00 1.17 1.18 "Co (n,g) (Cd) 2.27E-12 2.59E-12 2.28E-12 1.00 0.88 0.88 Surveillance Capsule V HcSI Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas / Calc Cu (n,a) 4.41E-17 4.42E-17 4.27E-17 0.97 0.97 1.00 "Fe (n p) 4.35E-15 5.00E-15 4.59E-15 1.06 0.92 0.87 "Ni (n,p) 6.38E-15 7.01E-15 6.50E-15 1.02 0.93 0.91 ,
2nU (n,f) (Cd) 3.01E-14 2.69E-14 2.59E-14 0.86 0.96 1.12 2"Np (n,f) 2.71E-13 2.57E-13 2.69E-13 0.99 1.05 1.05 "Co (n.g) 3.16E-12 3.43E-12 3.15E-12 1.00 0.92 0.92 "Co (n,g) (Cd) 1.79E-12 2.42E-12 1.80E-12 1.01 0.74 0.74 I Analysis of Wolf Creek Capsule V l
88 Table 6-11 Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsules
, Capsule U Energy Flux. Energy Flux Group # (MeV) (n/cm -sec) Groun # (MeV) (n/cm 2-sec) . I 1.73E+01 7.59E+06 28 9.12E-03 2.21E+10 2 1.49E+01 1.63E+07 29 5.53E-03 2.84E+10 3 1.35E+01 6.01E+07 30 3.36E-03 8.82E+09
4 1.16E+01 ' 1.64E+08 31 2.84E-03 8.40E+09 5 1.002+01 3.71E+08 32 2.40E-03 8.11E+09 6 8.61E+00 6.44E+08 33 2.04E-03 2.35E+10 7 7.41E+00 1.55E+09 ' 34 1.23E-03 2.25E+10 8 6.07E+00 2.36E+09 35 7.49E-04 2.03E+10 9 4.97E+00 4.87E+09 36 4.54E-04 1.81E+10 q 10 3.68E+00 5.71E+09 37 2.75E-04 1.97E+10 11 2.87E+00 1.12E+10 38 1.67E-04 1.92E+10 12 2.23E+00 1.55E+10 39 1.01E-04 2.05E+10 13 1.74E+00 2.15E+10 - 40 6.14E-05 2.05E+10 14 1.35E+00 2.51E+10 41 3.73E-05 2.03E+10 15 1.l lE+00 4.40E+10 42 2.26E-05 1.99E+10 16 8.21E-01 5.18E+10 43 1.37E-05 1.94E+10 7 17 6.39E-01 5.69E+10 44 8.32E-06 1.87E+10 18 4.98E-01 3.91E+10 45 5.04E-06 1.80E+10 19 3.88E-01 5.95E+10 46 3.06E-06 1.78E+10 < 20 3.02E-01 6.29E+10 47 1.86E-06 1.77E+10 21 1.83E-01 6.26E+10 48 1.13E-06 1.24E+10 22 1.11E-01 4.61E+10 49 6.83E-07
' 1.45E+10 23 6.74E-02 3.61E+10 50 4.14E-07 2.07E+10 24 4.09E-02 1.96E+10 51 2.51E-07 2.05E+10 , 25 2.55E-02 2.28E+10 52 1.52E-07 1.95E+10 26 1.99E-02 1.10E+10 53- 9.24E-08 5.51E410 27 1.50E-02 1.93E+10 Noa: Tabulated energy levels represent the upper energy in each group.
Analysis of Wolf Creek Capsule V
89 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsules Capsule Y Energy Flux Energy Flux . 2 Groun # (MeV) 2 (n/cm -sec) Groun # (MeV) (n/cm -sec) 1 1.73E+01 7.20E+06 28 9.12E-03 1.91E+10 2 1.49E+01 1.52E+07 29 5.53E-03 2.42E+10 - 3 1.35E+01 5.50E+07 30 3.36E-03 7.53E+09 4 1.16E+01 1.47E+08 31 2.84E-03 7.17E+09 5 1.00E+01 3.23E+08 32 2.40E-03 6.90E+09 6 8.61E+00 5.44E+08 33 2.04E-03 2.00E+10 7 7.41E+00 1.27E+09 34 1.23E-03 1.90E+10 8 6.07E+00 1.85E+09 35 7.49E 1.71E+10 9 4.97E+00 3.71E+09 36 4.54E-04 1.51E+10 10 3.68E+00 4.37E+09 37 2.75E-04 1.63E+10 11 2.87E+00 8.76E+09 38 1.67E-04 1.57E+10 12 2.23E+00 1.25E+10 39 1.01E-04 1.70E+10 13 1.74E+00 1.78E+10 40 6.14E-05 1.70E+10 14 1.35E+00 2.09E+10 41 3.73E-05 1.69E+10 15 1.11E+00 3.74E+10 42 2.26E-05 1.66E+10 16 8.21E-01 4.49E+10 43 1.37E-05 1.62E+10 17 6.39E-01 5.01E+10 44 8.32E-06 1.56E+10 18 4.98E-01 3.49E+10 45 5.04E-06 1.50E+10 19 3.88E-01 5.34E+10 46 3.06E-06 1.48E+10 20 3.02E41 5.65E+10 47 1.86E-06 1.47E+10 21 1.83E-01 5.64E+10 48 1.13E-06 1.03E+10 22 1.11E-01 4.14E+10 49 6.83E 07 1.17E+10 23 6.74E-02 3.21E+10 50 4.14E-07 1.65E+10 , 24 4.09E-02 1.72E+10 51 2.51E-07 1.60E+10 25 2.55E-02 2.00E+10 52 1.52E-07 1.50E+10 26 1.99E-02 9.54E+09 53 9.24E-08 4.06E+10 . 27 1.50E-02 1.65E+10 Note: Tabulated energy levels represent the upper energy in each group. Analysis of Wolf Creek Capsule V
90 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum At The Center Of Surveillance Capsules l l l Capsule V
, Energy Flux Energy Flux Group # (MeV) (n/cm2-sec) Groun # (MeV) (n/cm 2-sec) 1 1.73E+01 6.08E+06 28 9.12E-03 1.68E+10 ; . 2 1.49E+01 1.29E+07 29 5.53E-03 2.13E+10 3 1.35E+01 - 4.69E+07 30 3.36E-03 6.61E+09 4 1.16E+01 1.27E+08 31 2.84E-03 6.26E+09 5 1.00E+01 2.83E+08 32 2.40E-03 6.00E+09 l 6 8.61E+00 4.85E+08 33 2.M E-03 1.72E+10 I 7 7.41E+00 1.16E+09 34 1.23E-03 1.62E+10 8 6.07E+00 1.73E+09 35 7.49E-M 1.44E+10 9 4.97E+00 3.56E+09 36 4.54E-04 1.25E+10 10 3.68E+00 4.27E+09 37 2.75E-04 1.34E+10 ;
l 11 2.87E+00 8.70E+09 38 1.67E-04 1.23E+10 l 12 2.23E+00 1.25E+10 39 1.01E-04 1.39E+10 13 1.74E+00 1.79E+10 40 6.14E-05 1.39E+ 10 l 14 1.35E+00 2.08E+10 41 3.73E-05 1.40E+10 15 1.11E+00 3.69E+10 42 2.26E-05 1.39E+10 l 16 8.21E-01 4.38E+10 43 1.37E-05 1.36E+10 l 17 6.39E-01 4.82E+10 44 8.32E-06 1.32E+10 l 18 4.98E-01 3.32E+10 45 5.04E-06 1.27E+10 19 3.88E-01 5.00E+10 46 3.06E-06 1.26E+10 20 3.02E-01 5.22E+10 47 1.86E-06 1.2SE+10 21 1.83E-01 5.14E+10 48 1.13E-06 8.74E+09 22 1.11E-01 3.74E+10 49 6.83E-07 9.45E+09 23 6.74E-02 2.88E+10 50 4.14E-07 1.27E+10 24 4.09E-02 1.54E+10 51 2.51E-07 1.18E+10 25 2.55E-02 1.78E+10 52 1.52E-07 1.07E+10
, 26 1.99E-02 8.46E+09 53 9.24E-08 2.58E+10 27 1.50E-02 1.46E+10 Note: Tabulated energy levels represent the upper energy in each group. )
! Analysis of Wolf Creek Capsule V
99 Table 6-12 Comparison Of Calculated And Best Estimate Integrated Neutron l i Exposure Of Wolf Creek Smveillance Capsules U, Y, and V CAPSULE U i Calculated Best Estimate BE/C
$(E > 1.0 MeV) [n/cm2] 3.429E+18 3.380E+18 0.99 @(E > 0.1 MeV) [n/cm2] 1.472E+19 1.543E+19 1.05 dpa - 6.481E-03 6.650E-03 1.03 CAPSULE Y i
Calculated Best Estimatg BE/C
@(E > 1.0 MeV) [n/cm2] 1.308E+19 1.230E+19 0.94 $(E > 0.1 MeV) [n/cm2] 5.612E+19 6.000E+19 1.07 t dpa 2.472E-02 2.517E-02 1.02 CAPSULE V Calculated Best Estimate JE/C_ @(E > 1.0 MeV) [n/cm2] 2.528E+19 2.523E+19 1.00 @(E > 0.1 MeV) [n/cm2] 1.085E+20 1.183E+20 1.09 dpa 4.778E-02 5.010E-02 1.05 AVERAGE BE/C RATIOS .
BE/C 2
@ (E > 1.0 MeV) [n/cm ] 0.975 2 & (E > 0.1 MeV) [n/cm ] 1.069 dpa 1.031 Analysis of Wolf Creek Capsule V
92-Table 6-13 Azimuthal Variat!ons Of"ihe Neutron Exposure Projections On 'Ihe Reactor Vessel Clad / Base Metal Interface At Core Midplane
, Best Estimate 9.49 EFPY , O Dec 15 Den 30 Deg* 45 Deg E>l.0 MeV 3.42E+18 5.15E+18 6.03E+18 6.02E+18 E>0.1 MeV 7.88E+18 1.20E+19 1.44E+19 1.65E+19 dpa 5.60E-03 8.36E-03 9.82E-03 1.01E-02 16 EFPY 1
i E>l.0 MeV 5.42E+18 8.38E+18 9.93E+18 9.77E+18 E>0.1 MeV 1.25E+19 1.95E+19 2.37E+19 2.68E+19 dpa 8.88E-03 1.36E-02 1.62E-02 1.63E-02 32 EFPY E>l.0 MeV 1.03E+19 1.63E+19 1.95E+19 1.90E+19 E>0.1 MeV 2.38E+19 3.80E+19 4.65E+19 5.22E+19 dpa 1.69E-02 2.65E-02 3.17E-02 3.17E-02 54 EFPY E>1.0 MeV 1.71E+19 2.72E+19 3.26E+19 3.17E+19 E>0.1 MeV 3.94E+19 6.34E+19 7.78E+19 8.70E+19 dpa 2.80E-02 4.42E-02 5.31E-02 5.29E-02 l Note: Maximum neutron exposure projection reported for 30* vessel location representing the octant containing
, the 12.5 neutron pad span.
l L l Analysis of Wolf Creek Capsule V
1 93 l Table 6-13, cont'd Azimuthal Variations Of The Neutron Exposure Projections On The Reactor Vessel Clad / Base Metal Interface At Core Midplane Calculated 9.49 EFPY 0 Deg 15 Dec 30 Deg* 45 Deg E>1.0 MeV 3.50E+18 5.29E+18 6.19E+18 6.I8E+18 , E>0.1 MeV 7.37E+18 1.12E+19 1.34E+19 1.55E+19 dpa 5.43E-03 8.llE-03 9.53E-03 9.75E-03 16 EFPY E>l.d MeV 5.56E+18 8.60E+18 1.02E+19 1.00E+19 E>0.1 MeV 1.17E+19 1.83E+19 2.21E+19 2.51E+19 dpa 8.61E-03 1.32E-02 1.57E-02' 1.58E-02 32 EFPY E>l.0 MeV 1.06E+19 1.67E+19 2.00E+19 1.95E+19 E>0.1 MeV 2.23E+19 3.55E+19 4.35E+19 4.88E+19 dpa 1.64E-02 2.57E-02 3.08E-02 3.08E-02
. 54 EFPY E>l.0 MeV 1.75E+19 2.79E+19 3.35E+19 3.25E+19 E>0.1 MeV 3.69E+19 5.93E+19 7.28E+19 8.14E+19 dpa 2.72E-02 4.28E-02 5.15E-02 5.13E-02 Note:
Maximum neutron exposure projection reported for 30 vessel location representing the octant containing the 12.5 neutron pad span. l Analysis of Wolf Creek Capsule V
I ! 94 l Table 6-14 Neutron Exposure Values Within The Wolf Creek Reactor Vessel 1 Best Estimate Fluence Based on E > 1.0 MeV Slope
, 16 EFPY 0 Dec 15 Dec 30 Deg'._ _ 45 Deg Surface 5.42E+18 8.38E+18 9.93E+18 9.77E+18 i 1/4 T 3.04E+18 4.67E+18 5.45E+18 5.35E+18 i
3/4 T 6.93E+17 1.04E+ 18 1.20E+18 1.15E+18 32 EFPY Surface 1.03E+19 1.63E+19 1.95E+19 1.90E+19 1/4 T 5.80E+18 9.08E+18 1.07E+19 1.04E+19 l 3/4 T 1.32E+18 2.02E+18 2.36E+18 2.24E+18 h 54 EFPY ' Surface 1.71E+19 2.72E+19 3.26E+19 3.17E+19 1/4 T 9.59E+18 1.52E+19 1.79E+19 1.73E+19 3/4 T 2.19E+18 3.37E+18 3.95E+18 3.74E+18 i Best Estimate Fluence Based on dpa Slope 16 EFPY 0 Deg 15 Dec 30 Deg* 45 Deg Surface 5.42E+18 8.38E+18 9.93E+18 9.77E+18 1/4 T 3.46E+18 5.32E+18 6.26E+18 6.28E+18 3/4 T 1.25E+18 - 1.85E+18 2.21E+18 2.25E+18 32 EFPY Surface 1.03E+19 1.63E+19 1.95E+19 1.90E+19 1/4 T 6.60E+18 1.(ME+19 1.23E+19 1.22E+19 l 3/4 T 2.39E+18 3.60E+18 4.35E+18 4.37E+18 '* 54 EFPY Surface 1.71E+19 2.72E+19 3.26E+19 3.17E+19 1/4 T 1.09E+19 1.73E+19 2.06E+19 2.04E+19 l 3/4 T 3.95E+18 6.01E+ 18 7.28E+18 7.28E+18 l Note: Maximum neutron exposure projection reported for 30 vessel location Irpresenting the octant containing i the 12.5* neutron pad span. i i Analysis of Wolf Creek Capsule V l
95 Table 6-14, cont'd Neutron Exposure Values Within The Wolf Creek Reactor Vessel l Calculated Fluence Based on E > 1.0 MeV Slope . 16 EFPY 0 Dec 15 Dec 30 Deg* 45 Deg Surface 5.56E+18 8.60E+18 1.02E+ 19 1.00E+19 . 1/4 T 3.12E+18 4.79E+ 18 5.59E+18 5.485E+18 3/4 T 7.11E+17 1.07E+18 1.23E+18 1.183E+18 32 EFPY Surface 1.06E+19 1.67E+19 2.00E+19 1.95E+19 l 1/4 T 5.95E+18 9.32E+18 1.10E+19 1.066E+19 l 3/4 T 1.36E+18 2.07E+18 2.42E+18 2.299E+18 54 EFPY Surface 1.75E+19 2.79E+19 3.35E+19 3.25E+19 1/4 T 9.84E+ 18 1.55E+19 1.84E+19 1.78E+19 3/4 T 2.24E+18 3.46E+18 4.05E+18 3.83E+18 Calculated Fluence Based on dpa Slope 16 EFPY 0 Dee 15 Deg 30 Dec' 45 Deg Surface 5.56E+18 8.60E+18 1.02E+19 1.00E+19 1/4 T 3.55E+18 5.46E+18 6.43E+18 6.45E+18 3/4 T 1.28E+18 1.90E+18 2.27E+18 2.31E+18 32 EFPY Surface 1.06E+19 1.67E+19 2.00E+19 1.95E+19 1/4 T 6.77E+18 1.06E+19 1.26E+19 1.25E+19 3/4 T 2.45E+18 3.70E+18 4.46E+18 4.48E+18 - 54 EFPY Surface 1.75E+19 2.79E+19 3.35E+19 3.25E+ 19 . 1/4 T 1.12E+19 1.77E+19 2.11E+19 2.09E+19 3/4 T 4.05E+18 6.17E+ 18 7.47E+18 7.47E+18 Note: Maximum neutron exposure pmjection reported for 30 vessellocation representing the octant containing the 12.5 neutron pad span. Analysis of Wolf Creek Capsule V l
96 Table 6-15 Updated Lead Factors For Wolf Creek
)
Surveillance Capsules l Caosule Lead Factor i I U '1 4.38 YS1 4.00 V I 'l 4.08 Wid) 4.42 l fd Xl 4.42
'Edl 4.42 (a) - Withdrawn at the end of Cycle 1. !
[b] - Withdrawn at the end of Cycle 5. [c] - Withdrawn at the end of Cycle 9. (d) - Not withdrawn; standby. l I Analysis of Wolf Catek Capsule V
97 Table 6-16 ) Fast Neutron (E > 1.0 MeV) Fluence at the Beltline Locations as a Function of Full Power Operating Time 2 Best Estimate Fluence (n/cm ) Azimuthal Angle EEPl T E E E - 1.03 4.39E+17 6.48E+17 7.55E+17 7.63E+ 17 1.68 7.39E+17 1.08E+18 1.26E+18 1.34E+18 2.32 9.77E+17 1.43E+18 1.67E+18 1.74E+18 3.42 1.44E+18 2.07E+18 2.37E+18 2.47E+18 4.59 1.92E+18 2.76E+18 3.11E+18 3.19E+18 5.56 2.24E+18 3.30E+18 3.68E+18 3.73E+18 6.83 2.60E+18 3.87E+18 4.39E+18 4.42E+18 8.03 3.01E+18 4.58E+18 5.21E+18 5.13E+18 9.49 3.42E+18 5.15E+18 6.03E+18 6.02E+18 15.00 5.1IE+18 7.88E+18 9.33E+18 9.20E+18 20.00 6.64E+18 1.04E+19 1.23E+19 1.21E+19 25.00 8.18E+18 1.28E+19 1.53E+19 1.50E+19 30.00 9.72E+18 1.53E+19 1.83E+19 1.78E+19 35.00 1.13E+19 1.78E+19 2.13E+19 2.07E+19 2 Calculated Fluence (n/cm ) Azimuthal Angle EEPl T E E E 1.03 4.50E+17 6.65E+17 7.75E+17 7.83E+17 1.68 7.58E+17 1.11E+18 1.29E+18 1.38E+18 2.32 1.00E+18 1.47E+18 1.72E+18 1.79E+18 , 3.42 1.48E+18 2.12E+18 2.43E+18 2.53E+18 4.59 1.97E+18 2.83E+18 3.19E+18 3.27E+18 5.56 2.30E+18 3.38E+18 3.77E+18 3.83E+18 - 6.83 2.66E+18 3.97E+18 4.50E+18 4.54E+18 8.03 3.09E+18 4.70E+18 5.35E+18 5.27E+18 9.49 3.50E+18 5.29E+ 18 6.19E+18 6.I 8E+18 15.00 5.24E+18 8.09E+18 9.57E+18 9.44E+18 20.00 6.82E+18 1.06E+19 1.26E+19 1.24E+19 25.00 8.39E+18 1.32E+19 1.57E+19 1.53E+19 30.00 9.97E+18 1.57E+19 1.88E+19 1.83E+19 35.00 1.15Et19 1.83E+19 2.18E+19 2.13E+19 Analysis of Wolf Creek Capsule V
98 l l Figure 6-1 Plan View Of A Dual Reactor Vessel Surveillance Capsule i l l l (TYPICAL) U
- 58.50 - 61.00 Fe Cu , y,\
I s i
%y N '
A 0A
'EUTRONPAD%' nA % N l
i i l Analysis of Wolf Creek Capsule V
99 l l Figure 6 2 i l Fast Neutron (E > 1.0 MeV) Fluence at the Beltline Locations as a Function of Full Power Operating Time Best Esthnete Fest Neutron (E>1 D MeV) Fluence at sie BeltHne . . 10E+20
=s ,
- 15 hg e 10E+19
- .. . .. . . . . . . . . , chg 1
- 15 hg e 10E+19
a i f I 8 l s 1DE+18 s 1DE+17 0 5 10 15 20 25 30 M e EFPY i I Calculated Fest Neutron (E>1D MeV) Fluence et the BeltNne 10E+20 i r l l l
,,, e, l
I e SDE+1g. . ................................,sse
............................ O, 1 .....:.....................................................
, a . I w 1.0E+16 i. / l l 1 DE +17 l 0 5 10 m 15 20 25 3 e EFPY j Analysis of Wolf Creek Capsule V
100 1 SECTION 7.0
- SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule meets the requimments of ASTM E185-82 and is l
recommended for futum capsules to be removed from the Wolf Creek reactor vessel. This i recommended removal schedule is applicable to 32 EFPY of operation. i l TABLE 7-1 Wolf Creek Reactor Vessel Surveillance Capsule Withdrawal Schedule l Removal Time Fluence l Capsule Location Lead Factor") (EFPY)* (n/cm2, i E > 1.0 MeV)") U 58.5 4.38 1.08 3.429 X 10" ") Y '241.0* 4.00 4.79 1.308 X 10" ") V 60,1* 4.08 9.49 2.528 X 10" ") X(* 238.5 4.42 Standby --- W(* 121.5 4.42 Standby --- Z(* 301.5* 4.42 Standby --- (a) Updated in Section 6 of this report. (b) Effective Full Power Years (EFPY) from plant startup. (c) Plant specific evaluation. l (d) The standby capsules X, W, and Z will reach the peak vessel clad / base metal fluence at 54 EFPY at approximately 12.4 EFPY. Hence,it is recommended that the standby capsules be removed and placed in storage at the closest outage to 12.4 EFPY of operation. Analysis of Wolf Creek Capsule V
- . - -- - ..~ .- .-.-.. - . _ .- - ..... . - . -.. . - _ _ _ . ,
101. l SECTION
8.0 REFERENCES
{
- l. Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, U.S.
Nuclear Regulatory Commission, May,1988.
~
- 2. Code of Federal Regulations,10CFR50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
- 3. WCAP-10015, Kansas Gas and Electric Company Wolf Creek Generation Station Unit No.1 Reactor Vessel Radiation Surveillance Program, L. R. Singer, June 1982.
l
- 4. Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, Fracture Toughness Criteriafor Protection Against Failure.
- 5. ASTM E208, Standard Test Methodfor Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, in ASTM Standards, Section 3, American Society for l Testing and Materials, Philadelphia, PA.
i
- 6. ASTM E185-82, Standard Practicefor Conducting Surveillance Testsfor Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
- 7. ASTM E23-93a, Standard Test Methodsfor Notched Bar impact Testing ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,
- . 1993.
i I i
- 8. ASTM A370-92, Standard Test Methods and Definitionsfor Mechaaical Testing of Steel Productgin ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
o } Analysis of Wolf Creek Capsule V i'
l 102
]
- 9. ASTM E8-93, Standard Test Methodsfor Tension Testing of Metallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
- 10. ASTM E21-92, Standard Test Methodsfor Elevated Temperature Tension Tests of Metallic Materials, in ASTM Standards, Section 3. American Society for Testing and Materials, ,
Philadelphia, PA,1993.
- 11. ASTM E83-93, Standard Practicefor Verification and Classification of Extensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
I 2. WCAP-l1553, Analysis of Capsule Ufrom the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Program, S. E. Yanichko, et al., August 1987.
- 13. WCAP-13365, Revision 1, Analysis of Capsule Yfrom the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Program, L M. Chicots, et al.,
April 1993.
- 14. RSICC Computer Code Collection CCC-650, DOORS 3.1, One, Two- and Three-Dimensional Discrete Ordinates Neutron / Photon Transport Code System, Version 3.1, August 1996. l
- 15. RSICC Data Library Collection DLC-175, BUGLE-93, Production and Testing of the VITAMIN-B6 Fine Group and the BUGLE-93 Broad Group Neutron / Photon Cross-Section Libraries Derivedfrom ENDFIB-VI Nuclear Data, April 1994.
- 16. R. E. Macrker, et al., Accounting for Changing Source Distributions in U3 ht Water Reactor
- Surveillance Dosimetry Analysis, Nuclear Science and Engineering, Volume 94, Pages 291-308, 1986.
- 17. P. C. Cook, et al., The Nuclear Design and Core Physics Characteristics of the Wolf Creek Generating Station Unit 1 Cycle 1, WCAP-10483, February 1984. [ Westinghouse Proprietary Class 2)
Analysis of Wolf Creek Capsule V
103
- 18. D. S. Leach, et al., The Nuclear Parameters and Operations Packagefor Wolf Creek, Cycle 2 WCAP-ll251, Rev.1, December 1986. [ Westinghouse Proprietary Gass 2]
- 19. D. S. Leach, et al., The Nuclear Parameters and Operations Packagefor Wolf Creek, Cycle 3, WCAP-11543, September 1987. [ Westinghouse Proprietay Gass 2]
- 20. D. S. Leach, et al., The Nuclear Parameters and Operations Packagefor Wolf Creek, Cycle 4, WCAP-11956, October 1988. [ Westinghouse . Proprietary Gass 2]
- 21. M M. Baker, et al., Nuclear Parameters and Operations Packagefor Wolf Creek, Cycle 5.
WCAP-12530, Apnl 1990. [ Westinghouse Proprietary Gass 2]
- 22. H. Q. Lam, et al., Nuclear Parameters and Operations Packagefor Wolf Creek, Cycle 6, WCAP-13079, November 1991. [ Westinghouse Proprietay Gass 2]
- 23. Wolf Creek transmittal to J. D. Perock (Westinghouse) of selected Wolf Creek Cycle 7 core design data, March 1998.
- 24. Wolf Creek transmittal to J. D. Perock (Westinghouse) of selected Wolf Creek Cycle 8 core design data, March 1998.
- 25. Wolf Creek transmittal to J. D. Perock (Westinghouse) of selected Wolf Creek Cycle 9 core design data. March 1998.
- 26. M. K. Monis (Wolf Creek Nuclear Operating Company) email to J. D. Perock (Westinghouse) transmitting selected Wolf Creek operating plant history data, April 2,1998.
- 27. ASTM Designation E482-89 (Re-approved 1996), Standard Guidefor Application of Neutron Transport Methodsfor Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
Analysis of Wolf Creek Capsule V l
104
- 28. ASTM Designation E560-84 (Re-appmved 1996), Standard Recommended Practicefor Extrapolating Reactor Vessel Surveillance Dosimetry Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 29. ASTM Designation E693-94, Standard Practicefor Characterizing Neutron Exposures in fron and Low Alloy Steels in Terms of Displacements per Atom (dpa), in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 30. ASTM Designation E706-87 (Re-approved 1994), Standard Master Matrixfor Light-Water Reactor Pressure Vessel Surveillance Standard, in ASTM Standards, Section 12, American -
Society for Testing and Materials, Philadelphia, PA,1997.
- 31. ASTM Designation E853-87 (Re-appmved 1995), Standard Practicefor Analysis and Interpretation of Light-Water Reactor Surveillance Results, in ASTM Standards, Section 12, r American Society for Testing and Materials, Philadelphia, PA,1997.
- 32. ASTM Designation E261-96, Standard Practicefor Determining Neutron Fluence Rate, Fluence, and Spectra by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 33. ASTM Designation E262-86 (Re-approved 1991), Standard Methodfor Determining Thermal Neutron Reaction and Fluence Rates by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 34. ASTM Designation E263-93, Standard Methodfor Measuring Fast-Neutron Reaction Rates by Radioactivation ofIron, in ASTM Standanis, Section 12, American Society for Testing and -
Materials, Philadelphia, PA,1997.
- 35. ASTM Designation E264-92 (Re-approved 1996), Standard Methodfor Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel, in ASTM Standards, Section 12, Amedcan Society for Testing and Materials, Philadelphia, PA,1997.
Analysis of Wolf Creek Capsule V
105 !
- 36. ASTM Designation E481-86 (Re-approved 1991), Standard Methodfor Measuring Neutron-Fluence Rate by Radioactivation of Cobalt and Silver, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 37. ASTM Designation ES23-92 (Re-appmved 1996), Standard Test Methodfor Measuring
' Fast-Neutron Reaction Rates by Radioactivation of Copper, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 38. ASTM Designation E704-96, Standard Test Methodfor Measuring Reaction Rates by Radioactivation of Uranium-238, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 39. ASTM Designation E705-96, Standard Test Methodfor Measuring Reaction Rates by Radioactivation ofNeptunium-237,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1997.
- 40. ASTM Designation E1005-84 (Re-approved 1991), Standard Test Methodfor Application and ,
Analysis of Radiometric Monitorsfor Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing 'and Materials, Philadelphia, PA,1997.
- 41. F. A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
- 42. W. N. McElroy, S. Berg and T. Cmcket, A Computer-Automated Iterative Method of Neutron Flux Spectra Determined by Foil Activation, AFWL-TR-7-41, Vol. I IV, Air Force Weapons Laboratory, Kirkland AFB, NM, July 1967.
- 43. RSICC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.
- 44. EPRI NP-2188, Development and Demonstration of an Advanced Methodologyfor LWR Dosimetry Applications, R. E. Maetter, et al.,1981.
t Analysis of Wolf Creek Capsule V
APPENDIX A Load-Time Records for Charpy Specimen Tests O A-1
- . -.. --._ 1 x . . _ . , . - _ . . _ . _. _ n . , . - . - . . . ,a..u. .~,. a--- - ~
i l l 8
. . . e m s. . e. ... ...y.... 3.... ..<.....q.....<.... . . 3..... 3... . . . 3......q.. ~ .
8 . u
. i i .3............,.....,. ..... ....., . . . . . , .. .
6 . I 1 I . . . . . . .
. . . .p . . . . . } . .. . . { . . . . . .g . . . . 4. . . . . 4. . . . . 4. . . . . .. .; . . . . . .l. . . .. .
g d 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) - Figure A.1 Specimen AL27 8 m . . . . . . .
.....y.....>.....,.. . . . . , ......<.... . . . . . ~
4......<.... 3..... 3 ..... Q w . .
'S . .
9 , 6 . . . . . . . .
..p.....).....}... .g....
4..... 4......:......:......:.. 8 ~. , . _ ._ _ . .._ _ . _ ._ -. _. . d 0.00 0.60 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 2 Specimen AL30 8
......y.....>.....,.. . . . . . , ......<....4......<....3.....q......
3 * . 8 ., .... . . . . t . . . . . . 6 . . .
...>.....>.....,......;....4.....4.....4......<.....<......
8 A. . . . . . . . 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 3 Specimen AL18 - A-2
2 _ _ . . _ _ _ . ..._.;a u..... & ___ * # _.- _._._.-..._m.. ._m. . . _. _ . ma.._ .. . _ . . i 1 1 l 8 m . . . . . . .
.....p.....>.... 3.... . , 9......<. ....<.....<......<......<...... ^ 3
- c a ..........
v. R ., . . . . . 6 . l... \.. r p.....).....;.....g.... 4.......:......:...... 4 . 4..... 4..... g u: : : : : : : 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) Figure A. 4 Specimen AL16 8
......P......3.....,.. . . . . , ......<.....<.....<.....<.....q......
9 ..... ............................ l1R . 6 l . . . . . . .
.....}.. . . . ). . . . . 4. . . . . g . . . . 4. . . . . 4. . . . . . .: . . . . . . .:. . . . . . .:.
l g
- n. . . . . __
0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 5 Specimen AL24 8
......pa.. 3.....,.. . . . . , ......<.....<.....<.....<.....<...... . . . ^ . . . . . . . .. l . . . . .
Q-- .. ..... .................. ...... . .. . . . . ....... .....
.l .
l . . . . . . . . 6 .
. . . .. p . .1 . . .;.....,.. . . . . , ..... \ .
4......<.... 4.............:...... g . _ 0.00 0.00 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 6 Specimen AL19 A-3
8 a m . . 3,.....3.....t.....3.....<.....<.....<.....q.....q. 6 . .......... u. I 2 . 6 .
.....p.J....}.....{.....g.... . . .
4.......;......;...... 4 . 4..
.. 4.....
g 0.00 0.60 120 1.80 2.40 3.00 3SO 420 4.80 5.40 6.00 , Time (msec) Figure A. 7 Specimen AL17 f 8 o . . . a . .
....t.3--l----t.----t.----i.----1.---i.----<.---<.------
8 ., 1 1 6 .
. l......
4 .
.....>... i.. ..,.....t.----4.----i.-----<.----.:-----.l-----
g . .
. . . _ t _ _ _*___1-_*
ODO 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne(msec) Figure A. 8 Specimen AL25 8
......>.... 3.....+.....,......<.....<.....<.....q... .q...... ~ . . 3 .
8 . . . ....... ... ..... ..... ..... ..... ..... u ..... t 6
. . . .. p . . .. 3 . .. 44......,.....
4..... 4..... 4......<.....<...... g
- -. a .
0.00 0.60 120 1.80 2.40 3.00 3SO 420 4.80 5.40 6.00 Time (msec) Figure A. 9 Specimen AL26 A-4
l l l l l l 1 I
.i . .....p.... 3....
3......g.....<.... 4..... 4......q..... +.....
~ . . . . 3 . .
a v 1 .... . . . . . .
- u. .1. . .
9 . . . . . 6 . 4 .
.....p.....)..... ....
4..... 4..... 4..... 4.......:.....
+. .....
g _ x . Om 0.60 1 20 1.80 2.40 3.00 3E0 420 4.80 5.40 6.00 . Trne (msec) Figure A.10 Specimen AL28 8
.....p.... 3.....,.. . . . . , ......<.....<.....<.... 3 .....
3.... g;. . . . . .
-- 1 ..... . . . . . . ... 3............ . . . . .. ...... .....
- u. .
9 . D .
. 4 . -J......p.....).....f.. ..{....
4..... 4..... 4..... 4...... + ..... 8 * -
- s! ?
0 00 0.60 120 130 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A.11 Specimen AL21 8
......p.... 3.....,......, .....<.....<.....<.... ^
3......<......
.....3.. .................. ...... ...... .
8 1 ... . u . . . . . 6 .
. . . . . p . . . . . } . . . . . g ..
4.... 4..... 4..... 4.......:.... . 4. . ... g ; ; ; ; ; ; ; ; 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 SD0 Time (msec) Figure A.12 Specimen AL29 A-5
u u. a , . ...-..u a -.-oa ~s -..-.a.- - - -. . . I 8 l
......y.....g.....,....., ....
O
. . 4..... 4......<.....<.....q......
8 1 ... ...... . .. ..... ..... . . . . . n . 6
.....>.....i.....i.... .... . . 4..... 4......<.... 4.......:......
g "
. .. . m.
0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 l l Trne (msec)
- i Figure A.13 Specimen AL22 8 .
. . . . . 4 3.....,.. . . . . , ..... . . . 4.. ...<.....<.....<.....<......
O . . . . . . . 8 . . .
's
- 1. .. . ........ ...
s . . 6 \
....<.... 4......<......:......:...... .....[......l.....g.....
g 0.00 0.60 1.20 1.80 2.40 3 00 3.00 4.20 4.80 5.40 6.00 Trne (msec) Figure A.14 Specimen AL20 8
......y.....>.....,.. . . . . , ......<.....<.....<.....q.....q...... ^ . . . . . . .
a 1 6 .
.L ...>.....i.....;..... .a.....<.....<.....<......:......
g . 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec) Figure A.15 Specimen AL23 A-6
- m. m -
8
......p.... 3.....,.. . . . . , ... ..<.....<.....<.....<.....+ ..... ^ . . . . . . .
G . . . W . . . . . . .......
................e.
- u. . .
} . . . . . . . " .my..... %d
- p. ....e....
g
. e e e . . e . . 9..... 9......q.....g.....eg.....g.....q......
6 .
...p.....}.....t......{.... . . . 4..... 4..... 4..... .:..... +.....
8 , n .n m._ _ _ . _ _ _ __._ _ . _ _ _ . _ _ . _ _ _ . . _ d 0.00 050 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 , Time (msec) Figure A.16 Specimen AT30 8
......p.... 3.....,.. . . . . , ......<....
4......<.....<.....<...... m 3 . . . . . . 8 .
- c. 1 2 . . . . . . . .
6 . .
. r i ,...p.....g.... . . 4......{.....q.... . . 4..... 4..... 4..... 4. .....
4 . . . . . .. . g . L . . . ._ . . . . 0.00 OBO 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A.17 Specimen AT24 8
......p...........,......,.....<....4......<....3......,...... ^ 3 .
8 .,. . 3 . R , . . 6 . .
..I..p......3.....,..
4 . . . .. . 3. . . . . 4. . . . . 4. . . . . 4.. . . .. . .:. . ....... ... g d 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6DO Time (msec) Figure A.18 Specimen AT23 A-7
8 j ......>.... . 3.....,..
. . . . , ......<.....<.....<.....<.....q.. - 3 . . .
2 . 6 . ...... . . . . . . , ... . . . , .......
\ . ...h.[.....j.....j.....j.....j.....j.....j.....j......j......
8 0.00 DEO 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne(msec)
- Figure A.19 Specimen AT16 8
t . . . . . .
. ...>.... 3.....,.. . . . . , ......<.....<.....<.....q....q......
m a 3 : : : : : : : : 2 . l . . . 4 . . . . . .
.>.....}.....g.....g.... . . 4.. .. 4..... 4.......:.... .
4 ..... 0.00 0.80 120 1.80 2.40 3 00 3.60 420 4.80 5.40 6,00 Time (msec) Figure A. 20 Specimen AT25 8
......>.... 3......,.. . . . . , ......<. ...<.....<.....<.... . . . .
4 ..... t, R \ 6 . . . . 4 .
.p.....>.....i......,.. . . . .. . 4. . . . . 4. . . . . 4.. . . . . .:.. . . . .:. . . . . . .
8 . 0.00 0.60 120 1.80 2.40 3.00 3E0 420 4.80 5.40 6D0 Trne(msec) Figure A. 21 Specimen AT26 A.8
b i 1 i 1 i l f i i N i O
...<.....<.....q.....q......
4 r
....3..... 3.....t..... 9......<... ^ . . . . .
.I b 1 ... ....... a l . . . . . . . 6 l . .
, .-.....p4.....}.....{.....;.....q.... . . . . . 4......<......l......l......
J g *
- c ' . ..
- 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 J . Time (msec)
Figure A. 22 Specimen AT18 8 4 . . . . . . . . . 1 ......p.... 3.... 3 .
. 9......t..... 4......<.....<.....q......<...... ^ . . . . .i .
6 - . .. .............. . .................. ...... ...... ...... ..... . e . . . ,4. . . . . . ; . . . . . ; . . . . . ; . . . . . ; . . . . . ; . . .. . ' . . . .
. . . 4.. . . . 4. . . . . .
6 . .
.....). ...}.....}.....{.... . . . 4......<.....<......l............
g 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) Figure A. 23 Specimen AT27 8 3.....,.. . . . . , ......<.....<.....<.....<.... 3 ..... 3 . . . . . . . m . . . . . . . B
- u. .
s . . . 6 I . . .. 4 , a.....p....).....g.....g.....<....<.....<.....q.....q......
\ . . . .
g _ _. _ . _ __ 3 _. ODO 0 60 120 1.80 2.40 3.00 310 420 4.80 5.40 6.00 Time (msec) Figure A. 24 Specunen AT19 A-9
_... . + - . . .u. --...x - - -- . -._.. .- 8
.....p.....g.....,.. . . . . , ..... 4,.... . 3 . , , 1......<.....q....
4 ..... j ... u ... ....................
...... . . 4. .,..... . . . . . , ... . . . , . .....
6 .
.......p.....) ....}.....}.....q....
1 . 4......<......l......l g 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) . l Figure A. 25 Specimen AT28 8 3 . 3..... 4......<.....<.....<......
^ . . . .
G . . . 6 .
.J......p.....) . . . . . . . . ....t......}....
4......i......<......l......l...... 8 . . 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 26 Specimen AT22 8 m . . . . . .
......p.....g.....,.. . . . . , ... ..<. .. .
m 4......<.....<.....<......
- 6. ....... .
4 . . . . . . . . 6 .
.).....(.... .....p.....)...
4..... 4...... 4.......l......l...... g
- m ._ ' ' '
O.00 0.60 120 1 20 2.40 3.00 3.60 420 4B0 5.40 6.00 Tune (msec) Figure A. 27 Specimen AT21 A.10
8
. . . . . . . J .....p.... 3.....,......,.....<. ...<.....<.....<.....<...... .
e.
.i. ... .. ....
2 . . . . . . . 6
....p.....).... . . . . . { . . . . 4. . . . . 4. . . . . . .;. . . . . .l . . . . . .;. . . . . .
8 - _ ..- 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 28 Specimen AT20 l 8 o . . 8 e
......,6.... 3.....,.. . . . . , .. . . . . < . . . . . < . . . . . < . . . . . < . . . . . < . . . . . .
G u . .... .. ................. 6 . 3.....
.....,.. . . . 4. . . . . 4. . . .. .. .: . . .. . . .: 4. ......
g . . . . m . . . 0.00 0.60 120 1 B0 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) Figure A. 29 Specimen AT17 5 o . . . 8 e . 3.....,.. . . . . , .. . . . . < . . . . < . . . . . < . . . . . < . . . . . < . . . . . . B- .. j . r v .
.....p.....[....
s.....(.... 4..... 4..... 4.......;... . 4....... 8 ?
- x? ' ?
0.0C OBO 120 1.80 2.40 3.00 3SO 420 4B0 5.40 6.00 Time (msec) Figure A. 30 Specimen AT29 A-11
_ _ - - -. - 2 - . , . . . . _ . - .. - - ..,.,...u- , - - . - - . . . . - . . . . - -- 8 a m . . . . . .
.....p.....,..........,.....<. ... <.....<.....q.....q...... ^ .
G . v ............... .
'" . 3 . .. .y.....p.....,......p.....q.....g.....g.....eg.e...a.....
6 .
. .. p . . .. . }. . . . . . {. .. . . . {. . . . . 4. . . . . 4. . . . . 4. . . . . . .l . . . . . ..l. . . . .. .
_W. 8 . . . . . . . 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) . Figure A. 31 Specimen AW18 8 3.....,.....+... 3 . . . . . . . . . R \ 6 . 3.....{.....,.....
. . . . 4..... 4.......l......l.... . .
4 ..... 8 n..- . 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 SD0
, Time (msec)
Figure A. 32 Specimen AW23 8
.3...y.....,....., .....,.....<.....<.....<.....<.... 4...... ^ . .
2 . 2 . . . . . . . .
...;.....;.....;.....;.. ..;.....;.....;.... 4 .....
6 . 4.....
.. ...).....}.....g.....{....
4..... 4......<......l......l.. 8 .. i &. - - -. -- 0 .10 OSO 120 1.80 2.40 3.00 3S0 420 4.80 5.40 SD0 Time (msec) Figure A. 33 Specimen AW25 A-12
8 .
. 3 - - .' - - - - ! -- !. -- - - !. - - - .-i. - -- i. - - --. - i. - - - - 4. -- - - - +. - - -- - 1 . . . . . . .
a ..... ...... . . ss
- u. .
R , 6 .
.....;......>.....{....
4 . 5..... 4..... 4.......:......:......:...... 8 (. ; l l 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00
. Time (msec)
Figure A. 34 Specimen AW22 8
.....3.....,*....3.....3......<....4......<.....q'.....q'...... ~ . . . . . .
a ...... ...... v u 6 .l i . . . . . . .
' . . . . p. .4 . . . .) . . . . .. { .. . . . .g . . . . 4. . . . . 4. . . . . .. < . . . .. . .: . . . .. . .:. . . . . .
8 0.00 0.60 1.20 1.80 2.40 3 00 3.60 420 4.80 5.40 6.00 l Time (msec) Figure A. 35 Specimen AW28 8 m . . . . . . . 3....
. 3..... 3......<.....<.....<.... . . 3......q......
8 .... ...... . . . ................... ...... ...... ...... .....
. E .
2 . . . 6 .....t.... 3 . . .
.....>. ..).....g....., . . ....4......<.....<......:......:......
l g . . . . . 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 36 Specimen AW16 A-13 1 I
d a-.r g 4 .4aas a +~- - 4' a._. .- l i 1 1 8
... 3 3.... 3....., .....
4..... 4..... 4..... 4..... 4 ..... l
^ . . . . . . .
g : u. i 1
.o.
u 6,......p.... . . e e
......g.....,......g.....g.....q.e....
6 p. . 9...... 4 .
.....p.....t......;.... . . 4..... 4......:......:... . . l 8 . . . . . ,
0.00 0.60 120 1.80 2.40 3.00 3SO 420 4.80 5.40 6.00 Trne (msec)
- Figure A. 37 Specimen AW20 :
l 8
.... 3.... 3......,.... .,.. . . . . < . . .. . . , ......<.....q.....<......
Q v a . .... ........... 3 . 2 . . . . . . . 6 4...........
. . . . ... l. . . .. . ) . .... . . { . .. . . . { . . . . 4. . . . . . 4. . .. . . 4. . .. . . .{ . . . . . .:. . . . . .
g 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) l Figure A. 38 Specimen AW27 1 i 1 l l 8 : i . .
. .. 3..... .....,....., .....q.....q.....q.....q.....q......
8 .... .....
....4.....
6 . .
.....p.. .g.....;.....(....
4..... 4..... 4......<......:...... g 0.00 OSO 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 39 Specimen AW17 A-14
i l i . l I a i a. 2 ! 8 e . . . . . . . . . i . . . . . . .
...!.....,.. . . . . , ......<.....<.....<.....q.....q...... ......y.
3 . . . . . . . . G
)
- u. . .
, g . . . . . .
..4..
4 . 6 .
.....;.....g.....<.... . . 4.......:......:......:......
1 o O
- 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00
. Time (msec) 1 Figure A. 40 Specimen AW24 4
8 l e .
......y.... 3.....,.. . . . . , ... ..<.....<.....<.....q....
4....... 8 u e .\ . . . . . . . 3 4 . . 6
,.....>.....i.. ..,. . . . . ,. ......<.... 4......<.....<......:......
g . . . . . 0.00 OBO 120 1.80 2.40 3DO 3.60 420 4.80 5.40 6.00 Trne (msec) Figure A.41 Specimen AW26 8 e . .
......y.....!.....,.. . . . . , ......<.....<.....<.....<.....<......
m . Q-1 ........ ... ...... 3o 6 .
.....>.....i.... . . ......;.....<....4.......:.....<......:......
o g 4 0.00 0.60 120 120 2.40 3.00 3.60 420 4B0 5.40 6DO Trne (msec) Figure A. 42 Specimen AW30 A-15
._ . _ . _ _ _ _ _ _ ~ _ - - _ __ _ - _ _ _ _ ._ . . _ . .
8
......y.... 3....
9......g.... 4......q.....<....
. . . 3......q...... ~ .
a . . w .... ... .. . 1 . . 6 .
.).....g.... .....p.....}... . 4......(....
4.......l......:...... g : : : N. : : : : 0.00 0.60 1.20 1 20 2.40 3.00 3E0 4.20 4.80 5.40 6.00 i Trne (msec) - Figure A. 43 Specimen AW19 8 u) .
......>.....t.....,. . . . . , ......<....
4 . .
. 4......<.....<.....q......
a m . . . . . 8 ...... ....... 3 . 2 i 6 .
.......>.....g....
t.....,....4......<.....,:.....<......:...... g . . 0.00 0.60 120 120 2.40 3.00 3.60 420 4.80 S.40 6.00 Trne (meec) Figure A. 44 Specimen AW29 8 --
......>.... . .3.....,.. . . . .. . , .....<....4......<....3......,
g 1 ....... v. s . 6 .
.....p....
3...... .. 4..... 4..... 4......<... g ( . . . 0.00 0.60 120 1.80 2.40 3.00 3E0 420 4.80 5.40 6.00 Time (msec) Figure A. 45 Specimen AW21 A-16
1 4 i l 8
.....p.... . 3.....t......e...
4..... 4......<.....<......p.....
^ . . . . .
Q . . . . . . . v v. R , . . . 3...... . . . . . . . 6
. . . . . p . . . . . ) . . . . . .; . . . . . .; . . . . 4. . . . . 4. . . . . 4.. . . . . .; . . . . . .l.
g . . . _. _ ___. 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 S.40 6.00
. Time (msec)
Figure A. 46 Specimen AH21 8 4 . . & m . . . . .
.....p.... 3.....,..... ..
3..... 4.. 4..... 4......<.....<......
^ 3 . . . . .
8 . .... ....... ......
"e , . .
o u r . . . . . . . o .
...i......>.....,.. . . .. . i. . . . . 4. . . . . 4. . . . . . .:
8 tm.. _ _ _ . _ _ _ . _ _ _ _ _ . _ _ _. . _ . . _ _. _ _ . _ _ _ ___ d 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 47 Specimen AH2O 8 o . . . . 3 . * . * .
.y ...p....
1- 3.....t......t..... 4..... 4..... 4......<.....<...... E . . . .
. 'S R . . . . . .
e ....,...... . . . . . , .. . . . . , .. .. 6 .
...).....}.....{.....}.... . . 4..... 4.......l......;......l...... .
8 h._ _ .___ _._m-. d 0.00 0.60 120 1.80 2.40 3JD0 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 48 Specimen AH16 i 1 A-17 j l 1
8 ! 1 , . . . , 3 . .'
= . : ..y.... . .
3.... 3......,... . 4......<.....<.....<.....
+. ..... ^ . . . . . . .
B ss u. R . . 6
. p . . . .. . . g ... .. . . ;.. . . . . . g . . .. . 4., ... . . . 4. . . ..4... . ..l. . .. .. . . .l . . . . .
i
. . . . . \
8 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trne (msec) - l Figure A. 49 Specimen AH28 8 3 . 3.....,......, . . . . . < . . . . . < . . . . . < . . .. . . < . .. . . . < - . . . . .
^ . . . . . .
1 . . . . . . 8 ........... ...... u. S . . . . . . . 6 . . . .
..p.....}.....g.....(.. .
4..... 4..... 4.......l......l.. 8 A a m ._ _ . _ _ _. _ _ _ . _ -. . d 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 50 Specimen AH24 8
.3..*p.....*.....,'.....,'....4'....4'.....<.....<.....+.....
3
^
8 . 3
. 1..
s . . . 6 .
. .p . . . . .. g . . . . .. ; . . . . .. g . . . . 4. . . . . 4. . . . . 4. . . . . .. < . . . . 4 . . . . . . \. . . . . .
g
\g, . .
0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Tune (msec) Figure A. 51 Specimen AH27 l l A-18
l I i i 8 . . 3.....$......g.... 4.... . .+ ..... 4..... 4..... 4.....
~ . . . . .
Q v ..... \ u 6 .
. . . . . p . . . . . } . .. . . f. . . . . . g . . . . 4. . . . . 4. . . . . 4.. . . . 4. .. . . . .:. . . . . . ..1 .
4 . . . . 8 f .k. ; l l l l 0.00 0.60 1 20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00
. Trne (msec)
Figure A. 52 Specimen AH30 8 3...
. ", . 3..... 4..... 4... ..<.....q... . 7 n 8 I -
E . .
.o. . . . . . . . .
6 .
.......p.....;4....,.. . . . . . . , .....4.....4.......:...........<...... . . .
8 . 2 __,.-__. l 0.00 0.60 120 1.80 2.40 3.00 3S0 420 4.80 5.40 6.00 Time (msec) Figure A. 53 Specimen AH25 8 3 . . . . . . .
.g....
9......g.. 4..... 4......q......g...... 4.....
~ . . . .
B . . . . s- .... . . . . . .....
. 3 .
2 . . . . . . . .
. . . 4..... 4..... 4.......;......
6 .
...p.... .....{.....g....
4...................:...... 4..... . l O.00 OSO 120 1 20 2.40 3.00 320 420 4.80 5 40 6.00 Teme (msec) Figure A. 54 Specimen AH29 A-19 I
l 1 1 1
. 1 .....<. ...<.....<.....q.....q...... . j ~ . .
S . 1 - 6 .
. 4 . . 4 . . . ) .....p.....}.....}.....
4..... 4......q......l......
....q.... ,
i
. . . . . . 1 . . . )
g
? ? s? *
- O.00 OE0 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Trne (msec) .
i Figure A. 55 Specimen AH17 8 \ . . . i .... 6.... 3.....,.. . . .. . , ......<.....<.....<.....<.....<...... n . . . . . . . i , u l . . s 6 . . . . . l .
.....i.....i.....i.... . . . . . . . j . . . .. j . . ... . j. ... . . .i. .. . . . ..i. . . . .. . l g . . . .
OJD0 0.60 120 1.80 2.40 3DO 3 60 420 4.80 5.40 6.00 ' , Trne (msec) I l 1 Figure A. 56 Specimen AH23 8 m . . . i 3.....,.. . . . . , ......<.....<.....<.....<.....<...... 1
- u. . . .
m . . . . 6 . ( . . . .
.....p.....}.....(.....g.
4.... 4..... 4..... 4.......l...... . g C.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) Figure A. 57 Specimen AH18 A.20
l 1 8 a m .
. .. 6.... 3.... ..q.....q.....<.....<.....<...... . 9.... 3...
Q u ... ..... .. .................... ...... ...... ...... ..... 6 .
....p.....p.....;..... ....<.....<.....<....4.......:......
g . . . . . . . . . 0.00 0.60 120 1.60 2.40 3.00 3.60 420 4.80 5.40 6.00
. Time (msec)
Figure A. 58 Specimen AH19 8 ,
. . . . 1 ......>.... 3.....,......, . . ....3......<.....<.....<.....<..... ^ . . . . .
8 .... ....... E . . . . . R l . 6 .
. .....p.... .3.....i......,.. .2. ...<.....<....4.......:......
g . . . . . . . . 0.00 0.60 120 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec) l Figure A. 59 Specimen AH22 8 m . . . . . . .
.....p....
3......,.... . 3..... 3..... 4......<.....<.....<..
^ . .
8 ......... .......
. u. . .
2 . . 6 .
.....p....
3.....,.. 8 - . . 0.00 0.60 120 1.80 2.40 3.00 3E.0 420 4.80 5.40 6.00 Trne (msec) Figure A. 60 Specimen AH26 1 A-21 I 4 l
APPENDIX B Charpy V-Notch Shift Results for Each Capsule Hand-Fit vs. Hyperbolic Tangent Curve-Fitting Method (CVGRAPH, Version 4.1) B-I
1 i l 1 I TABLE B-1 l Changes in Average 30 ft-lb Temperatures for Lower Shell Plate R2508-3 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1 1 I Capsule Unirradiated Hand Fit ATw Unitradiated CVGRAPH ATa 3 . Fit l U - 20 F 10 F 30*F - 24.95*F 11.51 F 36.46 F Y - 20 F 10 F 30 F - 24.95 F - 8.91*F 16.03 F V - 20 F -- --
- 24.95 F - 24.95 F 52.03 F t
( !- TABLE B-2 Changes in Average 50 ft-lb Temperatures for Lower Shell Plate R2508-3 (Longitudinal Orientation) l Hand Fit vs. CVGRAPH 4.1 l Capsule Unirradiated Hand Fit ATso Unirradiated CVGRAPH AT5o I Fit 1 I 1 U 0*F 30 F 30 F 0.11 F 34.85*F 34.73 F Y- 0*F 40*F 40 F 0.11 F 31.54 F 31.43 F V 0*F -- -- 0.11 F 46.98 F 46.86*F r l j B-2 7 . . __ , , , . _ - - . , _ . . . _ . - , - _ . . - _ ,
TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Lower Shell Plate R2508-3 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1
~
Capsule Unirradiated Hand Fit AT33 Unirradiated CVGRAPH ATss Fit U - 10 F 20 F 30 F -0.4'F . 21.43 F 21.83 F Y - 10 F 45 F 55 F - 0.4 F 30.43'F 30.83 F
~
V - 10 F -- --
- 0.4 F 53.35 F 53.75 F l
TABLE B-4 l l Changes in Average Energy Absorption at Full Shear for Lower l Shell Plate R2508-3 (Longitudinal Orientation) l Hand Fit vs. CVGRAPH 4.1
. Capsule Unirradiated Hand Fit AE Uninadiated CVGRAPH AE Fit 1
I U 148 ft-lb 145 ft-lb - 3 ft-lb 148 ft-lb 145 ft-lb - 3 ft-lb i Y 148 ft-lb 121 ft-lb* - 27 ft-lb 148 ft-lb 131 ft-lb* - 17 ft-lb V 148 ft-lb -- -- 148 ft-lb 129 ft-lb - 19 ft-lb l l
- i There was a typo in WCAP-13365, Revision 1, Table 5-1 reponed a ft-lb value for
, specimen AL65 of 88 ft-lb and Table 5-3 reported a ft-lb value of 145 ft-lb. 'Ihe correct 1 f value is 145 ft-lb. I B-3 l- - - . . - . l
. ._._.._____.-._______.._.m-. _ .. _ .__m._ . _ . _ _ . . . _ _ . _ - _ _ _ _ . _ _ _ . _ _ _ _ _ _
i l TABLE B-5 Changes in Average 30 ft-lb Temperatures for Lower Shell Plate R2508-3 (Transverse Orientation) te,d Fit vs. CVGRAPH 4.1 1 1
- I Capsule Unirradiated Hand Fit ATw Unirradiated CVGRAPH ATw Fit U 0F 25 F 25'F 2'F 25.8'F 23.79 F
.Y O'F 40'F 40 F 2Y ' 37.39 F 35.39*F
- V 0F -- --
2F 56.54 F 54.53*F a I i i . l TABLE B-6 Changes in Average 50 ft-lb Temperatums for Lower Shell j Plate R2508-3 (Transverse Orientation) 4 Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT, Unirradiated CVGRAPH ATw Fit U 40 F 65'F 25 F 34.32 F 59.55'F 25.23 F Y 40 F 85 F 45'F 34.32 F 81.49 F 47.16 F V 40 F - -- 34.32 F 90.59 F 56.27 F B-4
TABLE B-7 Changes in Average 35 mil Lateral Expansion Temperatures for Lower Shell Plate R2508-3 (Transverse Orientation)
- Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATs3 Unirradiated CVGRAPH ATss Fit U 25'F 45'F 20 F 25.44'F 36.36'F 10.91 F l Y 25 F 45 F 20 F 25.44 F 67.84'F 42.39 F l
V 25'F -- -- 25.44'F 93.79 F 68.34 F TABLE B-8 Changes in Average Energy Absorption at Full Shear for Lower Shell Plate R2508-3 (Transverse Orientation) Hand Fit vs. CVORAPH 4.1 Capsule Unirradiated - Hand Fit AE Unirradiated CVGRAPH AE Fit U 93 ft-lb 95 ft-lb + 2 ft-lb 94 ft-lb 96 ft-lb + 2 ft-lb Y 93 ft-lb 94 ft-lb + 1 ft-lb 94 ft-lb 94 ft-lb 0 ft-lb V 93 ft-lb -- -- 94 ft-lb 88 ft-lb - 6 ft-lb I L0
1 I I TABLE B-9 Changes in Average 30 ft-lb Temperatures for the Surveillance Weld Material { Hand Fit vs. CVGRAPH 4.1 i I I Capsule Unirradiated Hand Fit ATa 3 Unirradiated CVGRAPH AT3a l Fit
]
U - 50 F - 30 F 20 F - 57.69 F - 30.47 F 27.21 F l Y - 50 F 0F 50*F - 57.69 F - 12.59 F 45.09 F i V - 50 F -- --
- 57.69 F -11.36*F 46.33 F TABLE B-10 Changes in Average 50 ft-lb Temperatures for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unitradiated Hand Fit AT, Unitradiated CVGRAPH ATw Fit .U - 15'F 5'F 20 F - 20.64 F 6.44 F 27.09 F i
Y - 15 F 30 F 45 F - 20.64 F 20.82'F 41.47'F V - 15 F -- --
- 20.64 F 31.79*F 52.44 F i
B-6
i I i TABLE B-ll Changes in Average 35 mil Lateral Expansion Temperatures for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated . Hand Fit AT35 Unitradiated CVGRAPH ATs s s Fit U - 25 F - 10*F 15'F - 27.07 F - 12.81 F 14.25 F Y - 25 F 20 F 45 F - 27.07 F 17.96 F 45.04 F V - 25 F -- --
- 27.07 F 45.52 F 72.59 F l
l l TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 l l l l Capsule Unitradiated Hand Fit AE Unirradiated CVGRAPH AE Fit l U 100 A-lb 92 ft-lb - 8 ft-lb 100 ft-lb 92 ft-lb - 8 ft-lb - l l Y 100 ft-lb 94 ft-Ib - 6 ft-lb 100 ft-lb 94 ft-lb - 6 ft-lb l V 100 ft-lb -- -- 100 ft-Ib 89 ft-lb - 11 ft-lb l l B-7
l TABLE B-13 l Changes in Average 30 ft-lb Temperatures for the Weld Heat-Affected-Zone Material ' I I Hand Fit vs. CVGRAPH 4.1 . 1 i I Capsule Unirradiated Hand Fit Unirradiated ATw CVGRAPH ATw l
~
Fit i U - 145 F - 80 F 65 F - 144.01 F - 85.59 F 58.41*F l Y - 145 F - 95 F 50 F - 144.01 F - 131.02 F 12.98'F 1 V - 145*F -- --
- 144.01 F - 88.09'F 55.91 F TABLE B-14 Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATz Unirradiated CVGRAPH ATw Fit U - 110 F - 45'F 65 F - 114 F - 55.32 F 58.68 F Y - 110 F - 70 F 40*F - 114 F - 84.82 F 29.18 F V - 110 F -- -- - 114 F - 61.99 F 52.01'F l
l l l B-8
. 1 TABLE B-15 Changes in Average 35 mil Lateral Expansion Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH AT35 Fit .
U - 90 F - 35'F 55'F - 89.78 F - 54.25 F -35.53 F '
.Y - 90 F - 25 F 65 F - 89.78'F - 60.54 F 29.27'F V - 90 F -- -- - 89.78 F - 43.6 F 46.18'F ;
l P TABLE B-16 Changes in Average Energy Absorption at Full Shear for the Weld Heat Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 , Capsule Unirradiated Hand Fit AE Unirradiated CVGRAPH AE Fit , 1 U 161 ft-lb 140 ft-lb - 21 ft-lb 161 ft-lb 140 ft-lb - 21 ft-lb , Y 161 ft-lb 180 ft-lb + 19 ft-lb 161 ft-lb 200 ft-lb +39 ft-lb V 161 ft-lb -- -- 161 ft-lb 167 ft-lb + 6 ft-lb B-9
l l l I APPENDIX C Charpy V-Notch Plots for Each Capsule Using Hyperbolic Tangent Curve-Fitting Method i e e 4 C-1
Contained in Table C-1 are the upper shelf energy values used as input for the generation of the ! Charpy V-notch plots using CVGRAPH, Version 4.1. Lower shelf energy values were fixed at 2.2 ft-i Ib. The unirradiated and irradiated upper shelf energy values were calculated per the ASTM E185-82 definition of upper shelf energy. TABLE C-1
, Upper Shelf Energy Values Fixed in CVGRAPH l . Matenal Unirradiated Capsule U Capsule Y Capsule V Lower shell plate R2508-3 l (Heat # C4935-2) 148 ft-lb 145 ft-Ib 131 ft-Ib 129 ft-lb (Longitudinal Orientation)
Iower shell plate R2508-3 (Heat # C4935-2) 94 ft-lb % ft-lb 94 ft-lb 88 ft-lb (Transverse Orientation) l 100 ft-lb 92 ft-lb 94 ft-lb 89 ft lb l (Heat 90146) HAZ Material 161 ft-Ib 140 ft-lb 200 ft-lb 167 ft-lb 1 l t l C-2 l t
UNIRRADIATED (LONGITUDINAL ORIENTATION) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 12J3J9 on 05-28-1998 Page1 Coefficients of Curve 1 A = 75.09 B = 72.9 C = 68.88 TO = 2434 Equation is CVN = A + B
- l tanh((T - 11))/C) l Upper Shelf Energy 148 Fixed Temp. at 30 ft-lbs -24.9 Temp. at 50 ft-lbs J lower Shelf Energy 219 Fixed
~
l!aterial: PLATE SA533B1 Heat Number. C4935-2 Orientation: LT Capsule: UNIRR Total Fluence 30o m 250 Q I a g em X bo 150 a u g a m z c e 0 a so 6: o o j l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant 101 Cap UNIRR h!aterial: PLATE SA533B1 Ori: LT Heat fr. C4935-2 .
Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-60 8 1364 -534 -25 55 29.96 25.03 -25 15 29.96 -14.96 -25 14 29.96 -15.96 0 35 4939 -1439 0 36 4939 -1339 0 80 . 4939 30J 25 90 7526 14.73 25 65 75.26 -1026 " Data continued on next page
- C-3
UNIRRADIATED (LONGITUDINAL ORIENTATION) Page2 L Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) t Temperature Input CVN Energy Computed CVN Energy Differential 25 85 7526 9.73 75 122 120.43
- L56 75 95 120.43 -25.43 .
125 151 140.45 10.54 125 151 140.45 1054 17 5 143 146.15 -335 l' 175 159 14615 1234 250 141 147.78 -6.78 300 145 147.95 -2.95 SUM of RESIDUALS = 1.14 I i I 1 l ? I C-4
CAPSULE U (LONGITUDINAL ORIENTATION) CVGRAPH 43 Hyperbolic Tangent Curve Printed at 121319 on 05-28-1998 Page1 Coefficients of Curve 2 A = 7359 B = 71.4 C = 63.67 TO = 56.71 Equation is CVN = A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy 145 Fixed Temp. at 30 ft-lbs 11 5 Temp. at 50 ft-lbs 34B Lower Shelf Energy: 219 Fixed Material PLATE SA533B1 Heat Number C4935-2 Orientation LT Capsule: U Total Fluence: 30o m 250
,.C l $ 200 x
bD c L 150 h < M / 100 l Z 0 l > 0 C O J o l l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap U Material: PLATE SA533B1 Ori: LT Heat [r. C4935-2 .
Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential
-50 7 7.03 .03 -25 14 1238 IS1 0 17 2278 -5.78 10 23 28.95 -5.95 20 22 36.45 -14.45 25 44 40.7 329 25 55 40.7 1429 50 62 66.09 -4.09 l - Data continued on next page "
C-5
, .-. . . . - . ~ _ - _ - _-. . . - _ _ . - . . . . . . - . _ . . . . _.
CAPSULE U (LONGITUDINAL ORIENTATION) Page2 Materiah PLATE SA533B1 Heat Number. C4935-2 Orientation: LT l Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential 50 84 66FJ 17.9 ,, 76 77 9458 -17.58 100 125 11532 9J7 15 0 133 13726 -426 225 151 14428 621
. 325 14 8 144.96 3.03 400 136 144.99 -8.99 SUM of RESIDUAIS = -5.62 1
l l 8 i O I i l C-6
CAPSULE Y (LONGITUDINAL ORIENTATION) l CYCP.APH 4J Hyperbolic Tangent Curve Printed at 1213J9 on 05,28-1998 ) Page1 J Coefficients of Curve 3 ) A = 66.59 B = 64.4 C = 106.11 TO = 59.53 Equation is CVN = A + B * [ tanh((T - TO)/C) ] Temp. at 30 ft-lbs -8.9 Temp. at 50 ft-lbs 315 Lower Shelf Energy: 239 Fixed IJpper Shelf Energy: 131 Fixed Material PLATE SA533B1 Heat Number: C4935-2 Orientation LT Capsule Y Total Fluence-300 m 250 p I a x 2m N we L 150 ee 0 e e r - c.d 100 /
*/ > e U #
- 4 0
- / -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap;Y Material PLATE SA533B1 Ori.: LT Heat f C4935-2 ,
Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-50 17 16.7 .29 -35 22 20.75 124 0 23 33.83 -10.83 10 60 3854 2L45 25 35 4635 -1135 30 65 SIM 13.02 M M MM M6 73 75 75.92 .92 "" Data continued on next page *"*
C-7
CAPSULE Y (LONGITUDINAL ORIENTATION) Page2 Material: PLATE SA53381 Heat Number: C4935-2 Orientation LT Capsule: Y Total Fluence: Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential 100 53 90.03 -37.03 125 116 101.95
- 14.04
, 150 109 1113 9 - 119 175 134 117.87 1612 250 145 12754 17.45 li5 145 128.81 16.18 300 - 136 129.62 637 SUM of RESIDUAIS = 47.02 1
l l l l r C-8
l CAPSULE V (LONGITUDINAL ORIENTATION) CVCRAPH 4.1 Hyperbolic Tangent Curve Printed at 1213:19 on 05-28-1998 Page1 Coefficients of Curve 4 A = 65.59 B = 63.4 C = 51B2 W = 60 Equation is CVN = A + B ' [ tanh((T - TO)/C) J Upper Shelf Energy 129 Fixed Temp. at 30 ft-lbs 27 Temp. at 50 ft-lbs 46.9 lower Shelf Energy: 2.19 Fixed Material PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule i Total Fluence-300 to 250
,C I
a g 200 h tw L 150 0 100 [ o ^- 50 0 j
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: ICI Cap V Material: PLATE SA533B1 Ori: LT Heat # C4935-2 .
Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differenth!
-50 4 3.99 0 -25 16 6.79 92 0 13 13.59 -59 25 20 2829 -829 35 48 37.18 1031 50 56 5351 2.48 60 53 6559 -1259 " Data continued on next page
- C-9
CAPSULE V (LONGITUDINAL ORIENTATION) Page 2 Material PLATE SA533B1 Heat Number L4935-2 Orientaticir LT Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential 75 70 83.45 -13.4 5 80 107 88.92 18.07 100 111 - 106.68 4 31 125 118 119.4 5 -1.45 150 125 12518 -18 _ 175 12 12751 -7.51 200 129 ITa43 .56 300 128 128.98 .98 SUM of RESIDUAIS = 38 O C-10
UNIRRADIATED (LONGITUDINAL ORIENTATION) CVGRAPli 4.1 ifyperbolic Tangent Curve Printed at 124269 on 05-28-1998 Page1 Coefficients of Curve 1 l A = 42.43 B = 41.43 C = 66.81 TO = 1171 Equation is LE = A + B * [ tanh((T - TO)/C) J Upper Shelf LE: 83B6 Temperature at LE 35- .4 lower Shelf LE: 1 Fixed Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule: UNIRR Total Fluence: 200 I l m O 150
$ l 1
a M 100 g 4- m d a oa a e A
- a f
a a 0 l l l l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap UNIRR Material: PLATE SA533B1 Ori: LT Heat f: C4935-2 .
Charpy V-Notch Data Temperature input lateral Expansion Computed LE. Differential
-60 3 937 -6.67 -25 41 2L71 1928 -25 9 2L71 -1?.71 -25 9 2L71 -lf.71 0 24 3524 -1124 0 27 3524 -824 0 58 3524 22.75 25 62 5056 IL43 25 46 5036 -456 l
- Data continued on next page
- C-11
]
UNIRRADIATED (LONGITUDINAL ORIENTATION) Page2 Materiah PLATE SA533B1 Heat Number: C4935-2 Orientation LT Capsule UNIP2 Total Fluence Charpy V-Notch Data (Continued) Temperature input lateral Expansion Computed LE Differential 25 56 5056 5.43 - 75 68 73.03 -5.03 75 58 73.03 -15.03 125 85 8tl6 3.83 12 5 87 8116 b.83
' 175 84 8324 .75 175 84 8324 .75 250 82 83.8 -1B 300 88 83B5 414 SUM of RESIDUAIS = -3.7/
l 1 i C-12
CAPSULE U (LONGITUDINAL ORIENTATION) CVCRAPH 41 Hyperbolic Tangent Curve Printed at 124259 on 05-28-1998 Page1 Coefficients of Curve 2 A = 40.12 B = 39J2 C = 57S5 TO = 29.06 Equation is LE = A + B ' [ tanh((T - TO)/C) J Upper Shelf LL 7925 Temperature at LE. 35- 2L4 lower Shelf LL 1 Fixed Material PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule: U Total Fluence-20o m .O 150 E a M cc 200 2e f o _
.~
n O o e A % a o o i i l'
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap U Material: PLATE SA533B1 Ori: LT Heat f: C4935-2 .
Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential
-50 9 SR 322 -25 15 11.4 5 354 0 20 2L97 -1F/
10 24 27B8 -3.68 20 265 34.04 -754 25 38 3738 S1 25 455 3738 8.11 50 505 53.7 -32
= Data continued on next page =
C-13 - _ _ _ _ - _ ___ - - - - ____-- _ _-_ _ _ _ _
CAPSULE U (LONGITUDINAL ORIENTATION) Page 2 Material PLATE SA533B1 Heat Numben C4935-2 Orientation LT Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature Input lateral Expansion Computed LE Differential 50 645 53.7 10.79 76 58
- 6635 -8.35 100 745 73.05 1.44 150 81.5 78.07 3.42 225 79 79.16 .16
- 33 81 7925 1.74 400 76 7925 -325 SUM of RESIDUAIS = 4.74 l
l l i I e o C-14
CAPSULE Y (LONGITUDINAL ORIENTATION) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:4259 on 05-28-1998 Page1 Coefficients of Curve 3 A = 4232 B = 41B2 C = 136.44 TO = 5625 Equation is LE = A + B * [ tanh((T - TO)/C) ] Upper Shelf LE 84S4 Temperature at LE 35: 30.4 Lower Shelf LD 1 Fixed Material: PLATE SA533B1 Heat Number C4935-2 Orientation LT Capsule: Y Total Fluence-20o 150 a M N 100 a M. e a 5 s e ' a so & && s
, M i -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Selis) Plotted Plant: TC1 Cap Y Material PLATE SA533B1 Ori: LT Heat h C4935-2 -
Charpy V-Notch Data Temperature Input lateral Expansion Computed LE. Differential
-50 15 1h55 .55 -35 17 1838 -138 0 15 26.49 -1149 10 45 2936 lib 3 25 25 33.4 -8.4 35 45 3635 8.64 50 45 40.9 4D9 75 44 4853 -453 " Data continued on next page =
C-15
CAPSULE Y (LONGITUDINAL ORIENTATION) Page 2 Material: PLATE SA533B1 Heat Number: C4935-2 Orientatior: LT Capsule Y Total Fluence Charpy V-Notch Data (Continued) Input lateral Expansion Computed LE Temgture 43 Differential 5178 -1278
- 67 6227 4.72 150 72 67.75 424 13 75 7215 284 S 78 80.02 -102 275 73
. 81.38 -3.38
# 84 8135 134 SUM of RESIDUAIS = -254 e
i C-!6
1 I CAPSULE V (LONGITUDINAL ORIENTATION) CVGP.APH 4J Hyperbolic Tangent Curve Printed at 124259 on 05-28-1998 Page1 i Coefficients of Curve 4 A = 36.44 B = 35.44 C = 48.03 TO = 5531 Equation is LE = A + B
- l tanh((T - TO)/C) ]
Upper Shelf LE 71.88 Temperature at LE 3fx 533 Lower Shelf LE: 1 Fixed Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule V Total Fluence 200 M
.O 150 j M
100 CC a y m m. 3 ^"
/
ec a so a a l 0 l l
-300 -200 -100 0 100 200 300 400 500 600 ~
Temperature in Degrees F l Data Set (s) Plotted Plant: WC1 Cap; V Material: PLATE SA533B1 Ori.: LT Heat #: C4935-2 l . Charpy V-Notch Data Temperature input Lateral Expansion Computed LE Differential , -50 0 1.87 -137 l
-25 8 3.41 458 0 4 7.44 -3.44 25 14 16E3 -2.63 35 29 . 2223 6.71 50 33 3253 .46 60 34 39.88 -5.88 " Data continued on next page =
l l C-17
._. . -. . -. . . _ ~ - - . - _ .-. . . .
l l L CAPSULE V (LONGITUDINAL ORIENTATION) Page2 i Material PLATE SA533B1- lieat Number: C4935-2 Orientation: LT l l Capsule V Total Fluence Charpy V-Notch Data (Continued)
' Temperature input Lateral Expansion Computed LE. Differential l 75 41 502 -92 80 65
* 532 11.7 9 100' 65 6234 2.65 125 69 6839 .8 150 62 70.53 -8.53 175 72 '
- 71.4 .59 200 75 7L71 328 300 73 7138 111 SUM of RESIDUAIS = .43 l
l L l i l 4 i , C-18
UNIRRADIATED (LONGITUDINAL ORIENTATION) CVGRAPH 4l Hyperbolic Tangent Curve Printed at 125013 on 05-28-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 86.99 TO = 38.43 Equation is Shearx = A + B ' I tanh((T - TO)/C) l Temperature at 50x Shear: 38.4 Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule UNIRR Total Fluence 100
- : j -
ao u e O
$ 60 n
o a , g O O 40 5 v m or o/ 2o o s o l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap: UNIRR Material PLATE SA533B1 Ori LT Heat f: C4935-2 .
Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 1
-60 9 9.42 .42 -25 30 18.87 1112 -25 18 18B7 -37 -25 23 1837 412 0 18 2924 -1124 0 29 2924 -24 0 36 2924 6.75 25 45 4233 2B6 l 25 40 4233 -233 l
l
= Data continued on next page "
l C-19
UNIRRADIATED (LONGITUDINAL ORIENTATION) Page2 Material PLATE SA533B1 Heat Number. C4935-2 Orientation: LT Capsule: UNIRR Total Fluence: Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential 25 43 4233 f>6 75
- 61 69 5 -85 75 58 69 5 -11M 125 100 87.97 12.02 125 100 87.97 12.02 175 100 9534
- 415 175 100 95.84 4.15 250 100 9923 ,76 300 100 99.75 24 SUM of RESIDUALS = 2287 e
C-20
l CAPSULE U (LONGITUDINAL ORIENTATION) CVGRAPH 4J Hyperbolic Tangent' Curve Printed at 12fA13 on 05-28-1998 Page1 Coefficients of Curve 2 A=M B=M C = 595 % = 72 Equation is Shearx = A + B ' [ tanh((T - TO)/C) ) Temperature at 50x Shear: 712
~
Material: PLATE SA533B1 Heat Number. C4935-2 Orientation: LT Capsule U Total Fluence:
~
100
# = ~
L 80
/
CC D ( A
- 60
)
C D c, O g 40
^
20 9 0 l l j
-300 -200 -100 0 100 200 000 400 500 600 ~
Temperature in Degrees F Data Set (s) Plotted Plant WCl Cap!U Material: PLATE SA53381 Ori: LT Heat f: C4935-2 . Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-50 0 1E7 -127 -25 5 3.79 12 0 10 8.36 1.63 10 10 1123 -1.33 20 15 1517 .17 25 15 17.46 -2.46 25 20 17.46 253 50 25 32B9 -7B9 r *"* Data continued on next. page ""
C-21
.~ -- . _ _ - -. .
1 CAPSULE U (LONGITUDINAL ORIENTATION) Page2 i ! Material: PLATE SA53381 Heat Number C4935-2 Orientation: LT Capsule U Total Fluence-Charpy V-Notch Data (Continued) Temperature input Percent Shear Computed Percent Shear Dinerential 50 45 32.89 12 1 76 45 54.02 -9.02 100 80 72.46 753 ' 150 90 9339 -3.39 225 100 99.43 56 325 100 99.98 D1 400 100 99.99 0 SUM of RESIDUAIS = -26 i i I O O \' C-22
CAPSULE Y (LONGITUDINAL ORIENTATION) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1250:13 on 05-28-1998 Page1 Coefficients of Curve 3 B = 50 C = 87B1 TO = 54B4 A = 50 Equation is Shearx = A + B
- l tanh((T - TO)/C) ]
Temperature at 50x Shean 54B Material: PLATE SA533B1 Heat Numben C4935-2 Orientation: LT Capsule Y TotalFluence-100 e . l
* / l m ( 1 0 i A l i
cn ,
> i c e o
P - g 40 w i e l ! 20
+
A 0 l l l
-300 -200 -100 0 100 200 300 400 500 600 l '
l Temperature in Degrees F l Data Set (s) Plotted Plant: WCl Cap.:Y Material PLATE SA53381 Ori: LT Heat f: C4935-2 , Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential l -50 10 8.36 1B3
-35 15 11.3 9 3.6
. 0 20 2223 -223 l 10 40 26.43 13.56 25 25 33.59 -8.59 35 45 38B6 613 50 45 4723 -?.23 75 50 61.3 -11.3
" Data continued on next page -
C-23
CAPSULE Y (LONGITUDINAL ORIENTATION) I Page2 Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: LT Capsule Y Total Fluence i Charpy V-Notch Data (Continued) l Temperature input Percent Shear Computed Percent Shear Differential 100 60 73.7 -13.7 125 100 8322 '* 16.7/ 150 100 8937- 1022 175 100 93.95 6.04 250 100 98B5 Ll4 7/5 100 9934 .65 300 100 99.63 36 SUM of RESIDUAIS = 22.07 5 t C-24 (
CAPSULE V (LONGITUDINAL ORIENTATION) CVGP.APH 4.1 Hyperbolic Tangent Curve Printed at 1250:13 on 05-28-1998 Page1 Coefficients of Curve 4 A = 50 B = 50 C = 73.61 TO = 90B2 Equation is Shearx = A + B ' I tanh((T - TO)/C) ] Temperature at 50x Shear: 90B Material PLATE SA533B1 Heat Number. C4935-2 Orientation: LT Capsule V Total Fluence 100 'g *
, 80- ,
C3 e C W 60 s / c .. o O y 40-a g a u U l l S ~
-300 -200 -100 0 100 200 300 400 500 600 0
Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap.V Material: PIATE SA533B1 Ori LT Heat l: C4935-2 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential
-50 5 2.13 2B6 -25 10 4.12 5B7 10 731 P_18 0
25 15 14B2 37 35 20 17.99 2 25 24B .19 50 60 25 302 -52
" Data continued on next page
- C-25 - .
CAPSULE V (LONGITUDINAL ORIENTATION) Page2 Materiah PLATE SA533B1 Heat Number: C4935-2 Orientation LT Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential 75 35 39.41 -4.41 80 - 50 42.7
- 729 100 50 562 -62 125 Ta 7t67 332 150 85 8331 1.68
, 17 5 90 90.77 -7/
200 100 95.1 4.89 i 300 100 99.66 33 SUM of RESIDUAIS = 14.72 D L i e l C-26
UNIRRADIATED (TRANSVERSE ORIENTATION) CVGRAPil 41 flyperbolic Tangent Curve Printed at 123017 on 05-28-1998 Page1 Coefficients of Curve 1 A = 48.09 B = 45S C = 7051 1D = 3L4 l Equation is CVN = A + B * [ tanh((T - TO)/C) l Upper Shelf Energy: 94 Fixed Temp. at 30 ft-lbs 2 Temp. at 50 ft-lbs 34.3 lower Shelf Energy P19 Fixed Material PLATE SA533B1 11 eat Number. C4935-2 Orientation: TL Capsule UNIRR Total Fluence 300 m 250 C I I a N am X u N 150 D c
" ~ "
100 " C l Z i > a o
~
o b 0
-300 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: NCI Cap: UNIRR Material: PLATE SA533B1 Ori: TL lleat l C4935-2 ,
Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential , -60 9 8.59 .4 l -25 22 17 S 2 437 0 31 2821 2.08 0 36 28.91 7.08 0 28 28SI -S1 25 39 43S4 -4S4
- 25 40 43.94 -3S4 25 37 43.94 -6S4 50 56 59.92 -3.92
- Data continued on next paga -
C-27
UNIRRADIATED (TRANSVERSE ORIENTATION) Page2 Material: PLATE SA533B1 Heat Numter: C4935-2 Orientation TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) Temperature Input CVN Energy Computed CVN Energy Differential 50 66 59.92 6.07 75 7/ 73.33 3.66 75 71 7333 -233 125 86 87.96 -12 125 98 87 2 10.03 175 88 9146
* -4.46 175- 100 92.46 7.53 250 90 93.81 -3.81 300 99 93.95 .
5.04 SUM of RESIDUAIS = 13.06 e 9 C-28
CAPSULE U (TRANSVERSE ORIENTATION) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1230J7 on 05-28-1998 Page1 Coefficients of Curve 2 A = 49.09 B = 46.9 C = 74.76 TO = 58J2 Eo,uation is: CVN = A + B * [ tanh((T - TO)/C) l Upper Shelf Energy: 96 Fixed Temp. at 30 ft-lbs- 25.8 Temp. at 50 ft-lbs- 59.5 Lower Shelf Energy: 2J9 Fixed Material: PLATE SA533B1 Heat Number: C4935-2 Orientation TL Capsule U Total Fluence 30o m 250
.c T
a x em X un L 150 C c cza . 100 v s
> s i
o /o. 50 o ( d o I
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant 1C1 Cap U Material: PLATE SA533B1 Ori: TL Heat f: C4935-2 ,
Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-50 7 7J2 .12 0 23 1855 4.44 10 23 22.48 .51 10 24 2148 151 25 32 2958 2.41 25 33 29.58 3.41 40 29 37.94 -8.94 50 46 44D2 1.97 - Data continued on next page
- C-29
l CAPSULE U- (TRANSVERSE ORIENTATION) l Page 2
- Material PLATE SA533B1- Heat Number. C4935-2 Orientation: TL Capsule U Total Fluence Charpy V-Notch Data (Continued)
Temperature Input CVN Energy Computed CVN Energy Differential 50 34 44.02 -10.02 76 70 601 939 100 69 72.92 -3.92 , 150 92 88.6
- 3.39 225 98 91.93 I 3.06
,, 275 94 95.71 -1.71 325 95 95.92 .92 i SUM of RESIDUAIS = 4.96 t l l l i t {= l. i l l l s I , C-30
CAPSULE Y (TRANSVERSE ORIENTATION) CVGRAPH 43 Hyperbolic Tangent Curve Printed at 1230d7 on 05-28-1998 Page1 Coefficients of Curve 3 A = 48.09 B = 45.9 C = 962 IV = 77.5 Equation is CVN = A + B ' [ tanh((T - TO)/C) ] Temp. at 30 ft-Ibs 373 Temp. at 50 ft-lbs 81.4 lower Shelf Energy: P19 Fixed Upper Shelf Energy: 94 Fired Material: PLATE SA533B1 Heat Number. C4935-2 Orientation: TL Capsule Y Total Fluence 30o m 250
.c I
g am x bD-L 150 c) c N 100 , 1^ o +1 So 2 0 l 1 l
-300 -200 -100 0 100 200 300 4-00 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FCI Cap.: Y Material PLATE SA533B1 Ori.: TL lleat f: C4935-2 .
Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential i -35 12 1027 1.72
-10 12 15 -3 10 20 203 -3 25 23 2527 -227 30 30 27.t1 238
- 50 35 3532 -22 i 60 39 3933 -33 l 75 62 46.9 15.09
*"* Data continued on next page ""
C-31
-. -. - . . . . ~ .- . - . -
CAPSULE Y (TRANSVERSE ORIENTATION) ! Page2 Materiah PLATE SA533B1 Heat Number: C4935-2 Orientation: TL Capsule Y Total Fluence ! Charpy V-Notch Data (Continued) l Temperature Input CVN Energy Computed CVN Energy Differential B5 l 47 51.66 -4f6 100 51 5&63
-7.63 125 64 69.08 -5.08 150 74 7/34 -334 175 89 8331 5.68 , 225 100 89.91 10.08 275 94 9251 1.48 SUM of RESIDUAIS = 9.48 l
'9 e l (
- l. C-32
I f CAPSULE V (TRANSVERSE ORIENTATION) CVGRAPH 4J Hyperbolc Tangent Curve Printed at 123017 on 05-28-1998 Page1 Coefficients of Curve 4 A 45.09 B = 42.9 C = 70.59 TO = 82.49 Equation is CVN : A + B * [ tanh((T - TO)/C) ] Temp. at 30 ft-lbs 56.5 Temp. at 50 ft-Ibs 90.5 Lower Shelf Energy: 2J9 Fixed Upper Shelf Energy: 88 Fixed Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: TL Capsule V Total Fluence: 30o cn 25o ,C I a g am N bD 4 150 0 c m 1 100 a i Z . O i 50 s a l 0 l l
-300 -200 -100 0 100 200 300 400 500 600 ;
Temperature in Degrees F Data Set (s) Plotted Plant: TC1 Cap V Material: PLATE SA533B1 Ori: TL Heat f. C4935-2 . , Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential
-25 6 6.09 .09 0 12 9.75 224 25 16 1626 -26 40 26 21.99 4 50 29 26.63 2.36 60 22 3157 -9.87 75 45 40.56 4.43 ,
l
" Data continued on next page "" l C-33
I CAPSULE V (TRANSVERSE ORIENTATION) ! Page2 Material: PLATE SA533B1 Heat Number C4935-2 Orientation TL Capsule: V Total Fluence Charpy V-Notch Data (Continued)
' Temperature Input CYN Energy Computed CVN Energy Differential 90 45 49.64 -4S4
- 100 57 55.52 1.47 125 78 682 9.79 150 65 76.95 - 11.9 5 175 87 82.18 4B1 ,
200 85 85.03 .03 i 250 91 8726 3.73 300 88 87B1 38 SUM of RESIDUAIS = 6J9 C-34
UNIRRADIATED (TRANSVERSE ORIENTATION) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 130130 on 05-28-1998 Page1 Coefficients of Curve 1 l A = 3452 B = 3352 C = 75.94 TO = 2437 Equation is LE = A + B
- l tanh((T - 111)/C) ]
Upper Shelf LE: 68.05 Temperature at LE 35- 25.4 lower Shelf LE: I fixed Material: PLATE SA533B1 Heat Number: C4935-2 Orientation: TL Capsule: UNIRR Total Fluence-200 m = . 150 a M 100 e g' pf u - "e :V a so O o t I
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap; UNIRR Material PLATE SA533B1 Ori: TL Heat f C4935-2 Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential -60 3 7f35 -455 -25 18 1535 2S4 0 26 2411 1B8 0 28 2411 3B8 0 22 2411 -211 25 35 34B .19 25 32 34 3 -23 25 33 34B -18 50 42 45.42 -3.42 "" Data continued on next page ""
C-35
UNIRRADIATED (TRANSVERSE ORIENTATION) Page2 Material PLATE SA533B1 Heat Number: C4935-2 Orientation: TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) Temperature Input lateral Expansion Computed LE Differential 50 50 45.42 457
, 75 55 54 2 .93 75 51 54.06 -32 125 62 6332 -1.62 125 68 63.62 437 175 64 . 66 3 -28 175 72 663 5.19 250 66 6737 -1.87 300 67 68 -1 SUM of RESIDUAIS = -1.4 e
i b + e C-36
CAPSULE U (TRANSVERSE ORIENTATION) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 130120 on 05-28-1998 Page1 Coefficients of Curve 2 A = 36.91 B = 35.94 C = 9327 TO = 4L41 Equation is LE = A + B
- l tanh((T - TO)/C) l Upper Shelf LL 72.88 Temperature at LE 35- 363 Imer Shelf LE; I Fixed Materiah PLATE SA533B1 Heat Numben C493rr2 Orientation: TL Capsule U Total Fluence:
200
. 150 c >i 100 c ] -
o a > a 50 O ( O j j l l I 1
-300 -200 - 100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant hcl Cap; U Material PLATE SA533B1 Ori; TL Heat #: C4935-2 -
Charpy V-Notch Data Temperature input lateral Fxpansion Computed LE Differential 9.89 3
-50 10 23.5 2L96 1.53 0
10 23.5 2528 -L78 10 30 2528 4.71 25 30 3038 -f>B 32.5 30.68 131 25 40 33 3629 -339 41 4023 .76 50 I
= Data continued on next page "
C-37 _ n
CAPSULE U (TRANSVERSE ORIENTATION) Page2 Material: PLATE SA533B1 Heat Number: C4935-2 Orientatiorc TL Capsule U TotalFluence Charpy V-Notch Data (Continued) Temperature Input lateral Expansion Computed LE Differential 50 37 4023 -323 76 49 49.67 .67 100 58 56.r3 1.06 15 0 70 66.48 3.51 225 74 71.5 2.49
- 275 71 72.4 -1.4 325 69 72.72 -3.72 SUM of RESIDUALS : 1.09 G
0 C-38
CAPSULE Y (TRANSVERSE ORIENTATION) l CVGRAPH 41 Hyperbolic Tangent Curve Printed at 130130 on 05-28-1998 Page1 Coefficients of Cune 3 A = 3824 B = 3724 C = 108.84 TO = 7734 F21uation is LE = A + B ' I tanh((T - TO)/C) J Upper Shelf LE: 75.48 Ten.perature at LE 35- 67.8 Lower Shelf LE: 1 Fixed Material PLATE SA533B1 Heat Numben C4935-2 Orientation TL Capsvie Y Total Fluence: 200 cn O 150~ a N N 100 e o u 3a /s rs A *
/
s f' M o I i
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap.: Y Material: PLATE SA533B1 Ori: TL Heat b C4935-2 .
Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential
-35 8 928 -L38 -10 10 13.46 -3.46 10 17 17.75 .75 25 20 2L59 -L59 30 30 22.99 7 50 28 29.07 -LO7 60 34 3235 L64 70 42 37.44 455 " Data continued on next page "
C-39
l CAPSULE Y (TRANSVERSE ORIENTATION) PageE Material PLATE SA533B1 lieat Number. C4935-2 Orientation TL l Capsule Y Total Fluence Charpy V-Notch Data (Continued) l Temperature input lateral Expansion Computed LE Differential 85 39 4035 -1.85 100 43 45B8
-238 12 5 51 53.58 -258 150 56 59.96 -3E 175 69 6436 413 , 225 78 70B5 714 275 68 7356 -5.56 SUM of RESIDUAIS = -S5 I i
l v l l l e e I i C-40
CAPSULE V (TRANSVERSE ORIENTATION) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 130130 on 05-28-1998 Page1 Coefficients of Curve 4 A = 312 B = 302 C = 672 TO = 8531 Equation is LE = A + B
- I tanh((T - TO)/C) J Upper Shelf LE: 61.41 Temperature at LE 35- 93.7 Lower Shelf LE I fixed Material: PLATE SA533B1 lleat Number. C4935-2 Orientation: TL l
Capsule: Y Total Fluence-200 m l
.O 150 a
X 100 e L
.8 -
x w
"r a . -f-A A
0 l l
-300 -200 -100 0 100 200 300 400 500 600 l .
l Temperature in Degrees F l Data Set (s) Plotted Plant WC1 Cap;V Material PLATE SA533B1 Ori: TL Heat f: C4935-2 . Charpy V-Notch Data Temperature Input lateral Expansion Coppetel LE Differential
-25 0 318 -318 0 8 5.42 257 25 8 9.6 -1.6 40 15 13.4 5 L54 50 19 . 16E5 234 60 13 2034 -734 75 31 26.61 438 l = Data continued on next page "
C-41
. . . . - . - _ _ _ - ._. . . _ - _ . . . . . _ . _ . _ _ . - . ~ . . _ . . .
l l l l CAPSULE V (TRANSVERSE ORIENTATION) 3 Page2 I Materiah PLATE SA533B1 11 eat Number. C4935-2 Orientation: TL i Capsule V TotalFluence
)
Charpy V-Notch Data (Continued) i i Temperature input lateral Expansion Computed LE J Differential . 90 35 33.31 L68 -' 100 34 37.7
* -3.7 125 55 4722 7.77 ,
150 45 53.72 -8.72 , 175 61 57.5 3.49 l 200 57 59.49
* -2.49 i 250 64 60.97 3.02 l 300 61 6L31 .31 l' SUM'of RESIDUAIS = .53 6
C-42
UNIRRADIATED (TRANSVERSE ORIENTATION) CVGRAPH 43 Hyperbolic Tangent Curve Printed at 13E59 on 05-2F1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 8128 TO = 43.59 Equation is Shearx = A + B
- I tanh((T - TO)/C) l Temperature at 50x Shean 435 Material PLATE SA533B1 Ileat Numben C4935-2 Orientation TL Capsule: UNIRR Total Fluence:
100 A m e e - .c cn 60 0 c o O g 40 a a O
}
27 0 s 0 l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WCl Cap UNIRR Material PLATE SA533B1 Ori: TL Heat #: C4935-2 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential -60 9 724 1.75 -25 25 15.6 9.39 0 29 25.49 3.5 0 29 25.49 3.5 0 29 25.49 3.5 25 38 38.75 .75 25 38 38.75 .75 25 33 38.75 -5.75 50 48 53.93 -5.93 " Data continued on next page -
C-43
l l UNIRRADIATED (TRANSVERSE ORIENTATION) l Page2 l Materiah PLATE SA533B1 lieat Number. C4935-2 Orientation TL Capsule: UNIRR Total Fluence: Charpy V-Notch Data (Continued) Temperature input Percent Shear Computed Percent Shear Differential 50 52 53S3 -1.93 l* 75 68 68.41 .41 75 57 68.41 -11.41 125 100 8 8.11 1138 12 5 100 8811 1138
- 175 100 962 3.79 175 100 962 3.79 250 100 9938 B1 300 100 99B1 .18 SUM of RESIDUAIS : 26B7 9
C-44
- . ._ ~ .- - . - -_ . _ _ . - -
I CAPSULE U (TRANSVERSE ORIENTATION) CVGRAPH 41 Ilyperbolic Tangent Curve Printed at 13M59 on 05-28-1998 Page1 Coefficients of Curve 2 A = 50 B = 50 C = 73.44 TO = 94.04 Equation is: Shearx = A + B
- i tanh((T - TO)/C) J Temperature at 50x Shear: 94 Material: PLATE SA53381 Heat Number: C4935-2 Orientation TL Capsule: U Total Fluence-100 '
O a 80 e e A W 60 m c / 3 e o L 40 C e 20 o 0 d l , I l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s Plotted Plant: WC1 Cap: U Materiat PLATE) SA533B1 Ori: TL Heat lC4935-2 -
Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-50 3 L94 1.05 0 10 736 P.83 10 10 92 .79 10 25 10 92 .79 )
15 1323 L76 25 15 1323 L76 40 15 18f6 -3.66 50 25 23J5 184 I
" Data continued on next page "
__.____________________._______-45 C
CAPSULE U (TRANSVERSE ORIENTATION) Page2 Material: PLATE SA533B1 Heat Numben C4935-2 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential 50 20 2315 - 3.15 , 76 40 37S5 2.04 100 50 54.04 -4.04 150 85 82J 239 225 100 977.5 2.74 , 275 100 9928 .71 325 100 99B1 J8 dUM of RESIDUAIS 8.55 1 8 e i i C-46
CAPSULE Y (TRANSVERSE ORIENTATION) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13f)659 on 05-28-1998 Page1 Coefficients of Curve 3 A : 50 B = 50 C = 91.17 T0 : 8759 Equation is Shearz : A + B
- l tanh((T - E)/C) ]
Temperature at 50x Shear: 87.5 Material: PLATE SA533B1 Heat Number. C4335-2 Orientation TL Capsule Y Total Fluence 100 a w c e
.c
- 60 g a
c -, e - O L 40 e c 4 20 -- 0 l l l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WCl Cap; Y Material PLATE SA533B1 Ori: TL Heat h C4935-2 Charpy V-Notch Data Input Percent Shear Computed Percent Shear Differential Temperature 626 3.63 -35 10 10 10.51 -31 -10 15 15.41 .41 10 25 20 2021 -21 30 22.03 7.96 30 30 30.47 .47 50 60 35 3521 -21 45 4313 1B6 75
- Data continued on next page "
C-47
' CAPSULE Y (TRANSVERSE ORIENTATION)
Page2 Material: PLATE SA533B1 Heat Number: C4935-2 Orientation TL Capsule: Y Total Fluence . Charpy V-Notch Data (Continued) ] Temperature input Percent Shear Computed Percent Shear Differential 85 45 48.57 -3.57
, 100 50 56.75 -6.75 12 5 65 69.43 -4.43 150 80 79.71 28 175 100 8718 12.81
., 225 100 95.31 4.68 T/5 100 9838 1.61 SUM of RESIDUAIS = 1614 1
'I O
I i c-48 j
CAPSULE V (TRANSVERSE ORIENTATION) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1306f9 on 05-28-1998 Page1 i Coefficients of Curve 4 _ A = 50 B = 'A C = 8113 TO = 9023 Equation is Shearx = A + B ' [ tanh((T - TO)/C) ] Temperature at 50x Shean 902 h!aterial: PLATE SA533B1 Heat Numben C4935-2 Orientation TL Capsule V Total Fluence
\ '^
m , c e .c M 60 a I c e O y 40^ , w
^
a /
. /
0 l J 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: W01 Cap; V llaterial: PLATE SA533B1 Ori: TL Heat l: C4935-2 -
Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential
-25 5 551 .51 0 10 9.75 24 25 20 16.68 331 40 20 22.47 -2.47 50 35 27.05 7.94 60 25 32.18 -718 75 35 40.72 -5.72
- Data continued on next page =
C-49
l CAPSULE V (TRANSVERSE ORIENTATION) Page2 Material PLATE SA533B1 Heat Number: C4935-2 Orientation: TL Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature input Percent Shear Computed Percent Shear Differential 90 50 49.85 J4 100 60 55.98 4D1 125 75 702 4.79 150 80 8125 -135 175 80 88.98 -8.98 200 100 93.73 626 250 100 98.08 1.91 300 100 99.43 .56 SUM of RESIDUAIS : 2.95 4 C-50
UNIRRADIATED (WELD) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 131558 on Ofr28-1998 Page1 Coefficients of Curve 1 A = SLO 9 B = 48.9 C = S135 TO = -1&75 . Equation is CVN = A + B ' [ tanh((T - TO)/C) ) Upper Shelf Energy: 100 Fixed Temp. at 30 ft-lbs -57.6 Temp. at 50 ft-lbs -20.6 lower Shelf Energy 2.19 Fixed Material WELD Heat Number: 90146 Orientation:
- Capsule: UNIRR Total Fluence-300 m 250
,C I
a g am N t:to L 150 e c N ._ a a 100 - " o Z
> B U /
So a m# 0 i l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap.: UNIER Material: WELD Ori.: Heat b 90146 .
Charpy V-Notch Data Temperature input CVN Energy Computed CW Energy Differential i
-180 6 429 L7 - 12 0 21 10.32 10.67 -50 35 33.76 123 -50 27 33.76 -6.76 -25 29 47.48 -1&48 -25 45 47.48 -2.48 - -25 44 47.48 -3.48 0 75 6L79 13 2 0 81 6L79 19 2 l " Data continued on next page =
C-51
i l [ UNIRRADIATED (WELD) Page2 i Material: WELD Heat Number. 90146 l Orientation: l Capsule: UNIRR Total Fluence: ! Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential 25 76 74.4 L59 25 70 74.4 -4.4 100 87 94.47 -7.47 100 86 94.47 -8.47 175 96 99.02 -1.02 ,, 175 97 99.02 ' -2.02 250 95 9933 - i 83 250 106 99.83 636 300 106 99.94 6.05 SUM of RESIDUALS = 27 l l I I l l C-52
CAPSULE U (WELD) CVCRAPH 41 Hyperbolic Tangent Curve Printed at 131538 on 05-28-1998 Page1 Coefficients of Curve 2 B = 44.9 C = 7928 TO = 131 A = 47.09 Equation is CVN = A + B * [ tanh((T - TO)/C) ] Temp. at 30 ft-lbs -30.4 Temp. at 50 ft-lbs 6.4 Lower Shelf Energy: 219 Fixed Upper Shelf Energy 92 Fixed ' Heat Numben 90146 Orientation: l llaterial WELD Capsule U Total Fluence 300 i u) 250
.c .
l I a x am X un L 150 0 a m u - 100 _ 2: 0 o n 3g -- 0
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WCl Cap;U llaterial: WELD Ori: Heat ft: 90146 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential -100 4 836 -4.66 -50 17 2131 -451 -50 29 2131 7.48 -40 22 25.61 -3.61 -40 30 2531 438 -20 34 353 -13 -20 25 353 -10 3 0 51 4635 4S4 " Data continued on next page
- C-53
r l CAPSULE U (WELD) Page2 i Material: WELD Heat Number: 90146 Orientation: Capsule: U Total Fluence Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential 0 54 4635 7S4 ,. 50 72 7145 ' .34 76 73 8015 -715 150 89 89.93 .93 225 97 9148 531 ,, 325 92 91.97 .02 l 375 89 91.99 ' -2.99 SUM of RESIDUAIS = -5.64 l t I I e I 4 C-54
CAPSULE Y (WELD) CVGRAPH 4J liyperbolic Tangent Curve Printed at 13:1558 on 05-28-1998 Page1 Coefficients of Curve 3 A = 48.09 B = 45.9 C = 72.92 TO = 17.8 I Equation is CW = A + B * [ tanh((T - TO)/C) l Upper Shelf Energy: 94 Fixed Temp. at 30 ft-lbs -12.5 Temp. at 50 ft-lbs 20.8 Lower Shelf Energy: 2.19 Fired klaterial WELD fleat Number 90146 Orientation: Capsule: Y Total Fluence- j a0o - l
)
1 4
- 1 1
a g am N ew L 150 D c
- M 100 " ~
> e
, O l 50 y
, G o -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted j Plant: TCl Cap; Y klaterial WELD Ori: Heat l 90146 .
l Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-125 4 399 0 -90 5 6.73 -1.73 -60 8 11S 1 -3.91 l -35 23 19f6 333 -10 29 3139 -239 l 0 47 371 9.89 15 30 4633 -1633 35 70 58.72 1127 l *"* Data continued on next page ""
l C 55
~ __ __ __ ._ . _ . _ . _ _ . . _ _ - . . __ _ . . - . .-_.__ _ _._..__.- _ - _ . _ _ . . _ _ _
CAPSULE Y (WELD) Page2 Material: WELD lleat Number: 90146 Orientation: Capsule Y Total Fluence Charpy V-Notch Data (Continued) , Temperature input CVN Energy Computed CVN Energy Differential 65 73 7424 -124 100 82
, 8527 -327 175 88 9178 -4.78 250 W 93.84 3.15 300 W 93.96 3.03 SUM of RESIDUAIS = -199 i
I i 1 l I h I l. l l l J C-56
1 CAPSULE V (WELD) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 13d558 on &5-28-1998 Page1 Coefficients of Curve 4 A = 4559 B = 43.4 C = 9029 TO = 22.6 Equation is CVN = A + B
- l tanh((T - TO)/C) l l Upper Shelf Energy: 89 Fixed Temp. at 30 ft-lbs -113 Temp. at 50 ft-lbs 3L7 Lower Shelf Energy 219 Fixed h!aterial WELD Heat Number: 90146 Orientation-Capsule V Total Fluence 300 En 250 4
l
$ 200 x
bD L 150 a> c: r.c 100 ,, a a f a so -g o
}1 i i l -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted l Plant: WC1 Cap V Afaterial: WELD Ori.: Heat b 90146 .
Charpy V-Notch Data Temperature Input CVN Energv Computed CVN Energy Differential
-100 5 758 -258 l -75 10 11.15 -115 -50 13 16.68 -3.68 -25 18 24B2 -6.62 1 -5 48 32.72 1527 10 53 3957 13.4 2 25 33 46.74 -1174 l
- Data continued on next page =
C-57
I CAPSULE V (WELD) Page2 . l-Material WELD Heat Number: 90146 Orientation-Capsule V Total Fluence l Charpy V-Notch Data (Continued) Temperature Input CVN Energy Computed CYN Energy Differential 50 56 5&37 -27/
- 60 54 62.6 -8.6 75 68 6828 -28 100 78 75.75 224 125 87 80.85 614 150 87 8432
- 237 200 88 87.32 El 250 93 88.43 4.56 SUM of P.ESIDUAIS = 611 1
l e o f I C-58
UNIRRADIATED (WELD) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 1324d7 on 05-28-1998 Page1 Coefficients of Curve 1 A = 3813 8 = 3713 C = 98.43 TO = -18.75 Equation is LE = A + B * [ tanh((T - IV)/C) J Upper Shelf LE: 7526 Temperature at LE 35: -27 Iower Shelf LE: 1 Fixed Material: WELD Heat Number. 90146 Orientation: Capsule UNIRR Total Fluence: 20o -l l l m : O 150 )
$ l a
X 100 p n a
~ ,a ll [
a 50 / O O J o i
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WCl Cap UNIRR Material WELD Ori: Heat f. 90146 .
Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential
-180 2 3.7 -1.7 l -120 15 9.41 558 -50 28 26.72 L27 l -50 20 26.72 - 6 72 -25 25 35 7/ -10.77 -25 38 35 7/ 222
, -25 30 35 7/ -5.77 l 0 52 4512 6.87 0 60 4512 14.87
" Data continued on next page =
u
- l. C-59
_ . _ . . . _ _ _ _ _ ..__-_ ~. _ ._ . . _ _ _ . . . _ . . . . _ . -. _ l UNIRRADIATED (WELD) Page2 Material: WELD Heat Number 90146 Orientation-Capsule UNIRR Total Fluence-Charpy V-Notch Data (Continued) L Temperature Input lateral Expansion Computed LE. Differential 25 54 53S2 .37 '* 25 52 53S2 -1.62 100 65 6915 -415 100 64 6915 -515 175 71 7381 -234 17 5 70
- 7334 -334 250 76 74 S4 105 250 78 74S4 3.05
! 300 81 75.14 5B5 SUM of RESIDUAIS = -1.44 i e l C-60
CAPSULE U (WELD) I CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1324:17 on 05-28-1998 ) Page1 Coefficients of Curve 2 A : 39 B=2 C=NM E = -El ' Equation is LE = A + B ' I tanh((T - TO)/C) l Upper Shelf LE 7/ Temperature at LE 35 -12.8 lower Shelf LL 1 Fixed Material WELD lleat Number: 90146 Orientation-Capsule U Total Fluence 20o en O 150 a N N 100 e n O k W o } o cd a so V o J s u 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap;U Material: WELD Ori: Heat i 90146 .
Charpy V-Notch Data Temperature Input lateral Expansion Computed LE Differential
-100 8.5 9.62 -112 -50 18 21.46 -3.46 -50 24 21.46 P.53 -40 235 24.78 -128 -40 30 24.78 521 -20 30 3217 -217 -20 245 3237 -7.67 0 47 4013 6B6 = Data continued on next page "
C-61
CAPSULE U (WELD) Page2 Material WELD Heat Number: 90146 Orientation: Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature Input Lateral Expansion Computed LE Differential 0 41 4013 .86 , 50 61 58 7/ P72 76 60 64.94 -4.94 150 725 7412 -132 225 78 76.4 1.59 I , 325 73 76.93 -3.93 i 375 82 76.98 5.01 SUM of RESIDUAIS : -l39 I O e e C-62
CAPSULE Y (WELD) CVCRAPH 4J Ilyperbolic Tangent Curve Printed at 1324J7 on 05-28-1998 Page1 Coefficients of Curve 3 A = 35.54 B = 34.54 C = 79.49 TO = 1921 Equation is LE = A + B
- l tanh((T - TO)/C) l Upper Shelf LE: 70.08 Temperature at LE 35- 17.9 laer Shelf LE 1 Fixed Material NELD Heat Number: 90146 Orientation:
Capsule Y Total Fluence 200 m O 150 a M 100 A Y 3x
- /
o a w e o 0 l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: NCI Cap: Y Materiah WELD Ori.: Heat f: 90146 .
Charpy V-Notch Data Temperature luput Lateral Expansion Computed LE Differential
-125 2 2.78 .78 -90 3 5J5 -2J5 -60 6 928 -328 -35 14 15.06 -1.06 -10 22 23.38 -138 0 35 2735 7M 15 26 33.71 - 7.71 35 51 4231 8.68 " Data continued on next page =
C-63
CAPSULE Y (WELD) l Fage2 haterial WElJ) lleat Number 90146 Orientation-Capsule Y Total Fluence Charpy V-Notch Data (Continued) Temperature input Lateral Expansion Computed LE. Differential 65 49 53.49 -4.49
. 100 60 62.08 -2.08 17 5 64 68.74 -4.74 250 72 69.87 2.12 300 74 70.02 3F/
SUM of RESIDUAIS = -528 l l l l l
+
l i l C-64
CAPSULE V (WELD) CVGP,APH 41 Hyperbolic Tangent Curve Printed at 1324d7 on 05-28-1998 Page! Coefficients of Cune 4 A = 3411 B = 33J1 C = 98.07 TO = 42.89 Equation is LE = A + B ') tanh((T - TO)/C) ) Upper Shelf LE: 6722 Temperature at LE 35- 455 lower Shelf LE: 1 Fixed Material WELD Heat Number: 90146 Orientation-Capsule: V Total Fluence-200 m O 150 a M 100 e 5 - Y a 50 , o^ U l
~/ -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap:V Material WELD Ori: Heat #: 90146 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential -100 2 4.4 -2.4 -75 2 6.48 -4.48 -50 9 9E -g -25 8 1426 -626 -5 30 1911 10.88 10 33 214 9.59 25 19 28J3 -9J3
- Data continued on next page "
C-65
_. __ . .. .. .. . . _ = - . - CAPSULE V (WELD) Page2 Material: WELD lleat Number. 90146 Orientation-Capsule: V Total Fluence Charpy V-Notch Data (Continued) Temperature input lateral Expansion Computed II Differential 50 38 36.5 1.49
. 60 37 39.82 -2.82 75 45 4457 .42 .
100 44 51.4 7 -7.47 12 5 64 56.77 722
' 150 62 6052 L47 200 62 64 S4 -2M 250 67 6626 .73 SUM of RESIDUAIS = -4.06 O
C-66
UNIRRADIATED (WELD) CVGRAPfl 41 Ilyperbolic Tangent Curve Printed at 133121 on Ofr-28-1998 Page1 Coefficients of Curve i A = 50 B = 50 C = 14517 % = -73.94 Equation is Shearx = A + B ' I tanh((T - TO)/C) ] Temperature at 50/. Shear -73.9 Material: WELD Heat Number. 90146 Orientation: Capsule UNIRR Total Fluence-100 g o f O O
$ [
e
.c cn gg-0 l [ O OO e
a g 40 cL O 20
/
l 0 i , i i
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: IC1 Cap UNIRR Material WELD Ori: Heat l 90146 .
Charpy V-Notch Data Input Percent Shear Computed Percent Shear Differential Temperature 23 1833 416
-180 50 Mf>5 1534 -120 5817 -817 -50 50 -50 50 5 8.17 -817 50 6624 -1624 -25 -25 62 6624 -424 55 6624 -1124 -25 82 73.47 852 0 '
90 73.47 16.52 0
"" Data continued on next page ""
C-67
l UNIRRADIATED (WELD) j Page2 Material: WFID Heat Number. 90146 Orientation- 4 Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) l Temperature Input Percent Shear Computed Percent Shcar Differential 25 81 79f2 17/
. 25 85 79.62 5.37 100 98 91 S 5 634 100 96 9L65 434 175 100 96B6 3J3 , 175 100 96B6 113 250 10n 9836 133 250 100 98.86 L13 300 100 99.42 57 SUM of RESIDUAIS = 23.04 9
I l l I C-68
CAPSULE U (WELD) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 133121 on 05-28-1998 Page1 Coefficients of Curve 2 A : 50 B = 50 C = 76.00 TO = 20.94 l Equation is Shearx = A + B ' l tanh((T - TO)/C) l Temperature at 50x Shean 20.9 Material: WELD Heat Numben 90146 Orientation-l Capsule: U Total Fluence:
' ~ ~ ~
00
/ - 80 cc i 0 0 .c W 60 a
i ce o a M 40~ g f w 20 Ja 0 1 l l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WC1 Capt U Material: WELD Ori Heat f: 90146 .
Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential
-100 2 3.99 -1.99 -50 10 13.4 -3.4 -50 15 13.4 1.59 -40 15 16.76 -1.76 -40 10 16.76 -6.76 -20 25 25.41 .41 -20 20 25.41 -5.41 0 45 36.56 8.43
- Data continued on next page =
C-69 )
i CAPSULE U (WELD) Page2 Materiah NELD Heat Number. 90146 Orientation-Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential 0 45 36M 8.43
- 50 70 6822 tn .% 70 150-80.96 -102 100 96.74 325 225 100 99.53 46 325 100 . 99.96 '.03 375 100 99.99 0 SUM of REDUAIS = -6.71 I
e e h J l I C-70
CAPSULE Y (WELD) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 133121 on 05-28-1998 Page1 Coefficients of Curve 3 A = 50 B = 50 C = 69.71 TO = -18.91 Equation is Shearx = A + B ' l tanh((T - TO)/C) ] Temperature at 50x Shear -18.9 Material WELD Heat Number. 90146 Orientation: Capsule Y Total Fluence 100 ( e
, 80 !
c D A s. 60- J s c0 / O o g 40 w 20 l ee O ; O l
-300 -200 -100 0 100 200 300 400 500 600 ,
Temperature in Degrees F Data Set (s) Plotted Plant: NCI Cap; Y Material WELD Ori: Heat [ 90146 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-125 10 455 5.44 -90 15 1151 3.48 -60 15 2352 -852 -35 45 38f4 633 -10 50 5635 -625 0 65 6324 1.75 15 75 7?.56 2.43 35 85 82.44 255
- Data continued on next page "
C-71
CAPSULE Y (WELD) Page2 l Material U1D Heat Number: 90146 Orientation-Capsule Y Total Fluence Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear 65 Differential 90 9L73 -L73 100 95
- 963 -13 175 100 99El 28 250 100 99.95 .04 300 100 99.98 .01
, SUM of RESIDUAIS = 4.02 9
I C-72
CAPSULE V (WELD) CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13S121 on 05-28-1998 Page1 Coefficients of Curve 4 A = 50 B = 50 C = 92f2 TO = 20.76 Equation is Shearx = A + B ' I tanb((T - TO)/C) l Temperature at 50x Shear: 20.7 Material WFID Heat Number. 90146 Orientation-Capsule V Total Fluence 100 c. A L cd O A 60 J
^
C o P ^ g 40 f n
$N O 1 i s -300 - 200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: FCI CapeV Material: WELD Ori: Heat f. 90146 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential -100 10 6.h6 3.13 -75 20 1122 87/ -50 15 17.82 -2B2 -25 25 27J2 -?_12 -5 40 36.44 355 10 50 4421 5.78 25 45 5228 -728 = Data continued on next page "
C-73 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
' ~
i i i l CAPSULE V (WELD) l Page2 i l Material: WELD Heat Number. 90146 Orientation: Capsule V Total Fluence l l Charpy V-Notch Data (Continued) l i . l Temperature input Percent Shear Computed Percent Shear Differential l 50 00 65 27 -527
, 60 60 69.99 -9.99 75 80 7633 3.66 i IW % MS9 53 125 100 90.47 952
- 150 100 94 21 5.78 200 100 97.95 2.04 250 100 9929 .7 SUM of RESIDUAIS : 20.76 9
l-i e C-74
UNIRRADIATED (HAZ) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 133946 on 05-28-1998 Page1 Coefficients of Curve 1 A = 81.59 B : 79.4 C : 844 TO : -7828 Equation is CVN = A + B * [ tanh((T - %)/C) ] Upper Shelf Energy 161 Fixed Temp. at 30 ft-lbs -144 Temp. at 50 ft-lbs -114 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFF'D ZONE Heat Number: Orientation: Capsule UNIRR Total Fluence 300 4 I g am-O C b O
& C; A L 150 7 0 0
c w 100 0
> c O O ,
50 o a O o r # 0 l
-300 -200 -100 0 100 200 300 400 500 600 .
Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap.: UNIRR Material HEAT AFF'D ZONE Ori; Heat !: - Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-300 3 3.04 .04 -200 31 10.71 2028 -150 57 26.91 30.08 -150 33 26.91 6.08 -100 M 61S 9 -27.69 -100 45 61f9 -16.69 -100 66 61f9 43 -75 95 84h7 10.32 -75 80 &i.67 -447 " Data continued on next page **
C-75
l UNIRRADIATED (HAZ) Page2 Material: HEAT AFFD ZONE Heat Number. Orientation-Capsule: UNIRR Total Fluence ! Charpy V-Notch Data (Continued) ; Temperature Input CVN Energy Computed CVN Energy Differential i
-50 110 10713 2.86
. -50 100 10713 -713 ! 0 150 13934 1035 0 155 139.31 15SS 75 154 15633 -233 . 75 163 15633 636 17 6 1&l 160.59 23.4 175 175 160.59 14.4 250 145 160.93 -15.93 SUM of REIDUAIS = 692 O C-76
l l CAPSULE U (HAZ) l CVGP.APH 4J Hyperbolic Tangent Curve Printed at 133940 on 05-28-1998 Page1 Coefficients of Curve 2 A = 71.09 B = 68.9 C = 8152 TO = -2953 Equation is: CVN = A + B ' [ tanh((T - TO)/C) ! Upper Shelf Energy: 140 Fixed Temp. at 30 ft-lbs -855 Temp. at 50 ft-lbs: -55.3 lower Shelf Energy: 2.19 Fixed Material HEAT Af7D ZONE Heat Number Orientation: Capsule: U Total Fluence 300 m 250
,-Q I
a g 200 h so -
~
L 150 o O o "O c N _ 100 / z .> 0 - so o f 0 l l 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap;U Material HEAT AFFD ZONE Ori: Heat f6 -
Charpy V-Notch Data l Temperature input CVN Energy Computed CVN Energy Differential
-200 2 4ZI -2 77 -150 14 9.01 4S8 -100 19 22.97 -3.97 -75 38 3621 L78 -75 32 3621 -421 . -50 99 5415 4434 -50 33 5435 - 211 5 -25 50 74.92 -2492 ** Data continued on next page =
C-77
CAPSULE U (HAZ) j Page2 Materiah HEAT AFFD ZONE Heat Number. Orientation: Capsule U Total Fluence Charpy V-Notch Data (Continued) l Temperature input CVN Energy Computed CVN Energy Differential
-25 26 74.92 -48.92 j . -25 130 74.92 55.07 0 84 l 95.02 - 11.0 2 1 50 143 12235 2014 76 132 13037 1f2 150 134 13833 -433 250 150 13935 1014 SUM of RESIDUAIS = 17.77 O
O 1 C-78
l CAPSULE Y (HAZ) CVGP.APH 4.1 Hyperbolic Tangent Curve Printed at 132946 on 05-28-1998 Page1 Coefficients of Curve 3 A : 101D9 B : 98.9 C = 138.51 TO = -5.62 Equation is CVN : A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy: 200 Fixed Temp. at 30 ft-lbs -131 Temp at 50 ft-lbs -84B Lower Shelf Energy: 219 Fixed l Material: HEAT AFFD ZONE Heat Number. Orientation:
- Capsule: Y Total Fluence-30o ,
, m 250 ! .c
- e I
x 200 ~ h l tw 4 / L 150 v a> I C e
% s 100 a 0 e s0 /
14 1 - . U
-300 -200 -100 0 100 200 300 400 500 600
- l Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap: Y Material: HEAT AFFD ZONE Ori; Heat f. -
Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-200 8 13.46 -5.46 -160 7 21.42 -14.42 -125 18 32.14 -1414 -100 33 4251 -951 -75 35 5532 -20.32 4 107 70.45 3654 -50 120 70.45 4954 -25 55 8725 -3235 " Data continued on next page =
C-79
. . . . - . - . ~ - . - - . . - . ._ .- .
CAPSULE Y (HAZ) I l Page2 ( l Material HEAT AFf'D ZONE Heat Number: Orientation: Capsule Y Total Fluence j Charpy V-Notch Data (Continued) Temperature input CVN Energy Computed CVN Energy Differential ) 0 95 105J1 -1031 15 114 115.71
. -1.71 1 50 153 138B1 1418 125 147 173.95 -26.95 200 180 190.33 -1033 :
,, 250 195 19518 -18 i 250 226 195.18 30.81 SUM of REIDUAIS :-14.45 j ( O o I C-80
CAPSULE V (HAZ) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 13246 on 05-28-1998 Page1 Coefficients of Curve 4 A = StS9 B = 82.4 C = 74.61 TO = -2859 Equation is CYN = A + B ' I tanh((T - TO)/C) ] Upper Shelf Energy: 167 Fixed Temp. at 30 ft-lbs -88 Temp. at 50 ft-lbs -61.9 lower Shelf Energy 219 Fixed Material: HEAT AFTD 20NE Heat Number: Orientation-Capsule: V Total Fluence 300-- a m 250 Q I a x em X ~ bD / a L 150 2. D a a c
% )
100 g Z a 0 50 /
, /a J
O i l
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: NC1 Cap:V Material HEAT AF7D ZONE Ori.: Heat f. .
Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential
-190 3 434 -134 -150 8 832 -32 -125 11 13.76 -276 -100 23 2338 -38 -80 15 3538 -2038 -60 26 51B3 -25B3 -50 89 6158 27.41
- Data continued on next page =
C-81 .
CAPSULE V (HAZ) Page2
]
1 Material: IIEAT AFPD ZONE Ileat Number Orientation: Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature Input CVN Energy Computed CVN Energy Differential 1
-40 91 72.1 1&89
- l. -20 77 94.04 -171)4 0 141 114.71 2628 50 144 14912 -5.12 50 132 14922 -1712
, 100 131 161.91 - 30.91 150 143 165.63 -2?.63 250 252 166.9 85.09 SUM of RESIDUAIS = 13.79 1
e e l C-82
\
UNIRRADIATED (HAZ) , CVGRAPH 41 Hyperbolic Tangent Curve Printed at 134701 on 05-28-1998 Page1 Coefficients of Curve 1 A = 42B2 B : 41B2 C = 73.15 11) = -75.93 Fquation is LE : A + B ' [ tanh((T - TO)/C) l Upper Shelf LE 84B5 Temperature at LE 35 -89.7 lower Shelf LE 1 Fixed Material: HEAT AFFD ZONE Heat Number: Orientation-Capsule UNIRR Total Fluence-200 en .O 150 a M . QQ 100 B r a o c> W D d - a so - o O g O [] o
-300 -200 -100 0 100 200 300 4M 500 600 Temperature in Degrees F Data Set (s) Plotted Plant WCl Cap: UNIRR Material HEAT AFFD ZONE Ori.: Heat #- .
Charpy V-Notch Data Temperature input Lateral Expansion Computed LF. Differential
-300 2 118 E1 - -200 13 3.72 9Z/ -150 25 10.75 1424 -150 17 10.75 624 -100 16 2954 -1354 -100 18 2954 -1154 -100 34 2954 4.45 -75 50 43.36 6.63 -75 41 4336 -236 = nata continued on next page
- C-83
i l UNIRRADIATED (HAZ) l Page2 Material HEAT AFFD ZONE Ileat Number Orientation-Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) i Temperature input lateral Expansion Computed LE Differential
-50 62 57.06 4S3
- , '30 52 57.06 -5.06 0 78 E33 2f6 0 84 75.33 8.66 75 82 8332 -132 75 82 8332
* -132 17 5 82 &l56 -256 l 175 86 8456 1.43 250 81 at64 l -3f>4 l SUM of RESIDUAIS : 18 i
'e 4 l l C-84
CAPSULE U (HAZ) i I CVGP.APH 4.1 Hyperbolic Tangent Curve Printed at 134731 on 05-28-1998 Page1 Coefficients of Curve 2 l A = 4338 B = 4238 C = 90.78 TO = -35.15 l Equation is LE = A + B * [ tanh((T - TO)/C) ] Upper Shelf LD 86.77 Temperature at LE 35 -542 lower Shelf LE 1 Fixed
~
Material: HEAT AFFD ZONE Heat Number: Orientation: Capsule U Total Fluence 200 m O 150 6 1 a l M 100 EL o 0 I O O a l D ln a so O O O O O l i 1
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap U Material HEAT AFFD ZONE Ori: Heat f: .
Charpy V-Notch Data Temperature input lateral Expansion Computed LE. Differential
-200 7 321 3.78 -150 11 732 3.67 -100 13 1758 -458 -75 22.5 2618 -3.68 -75 22.5 26.18 -3.68 , -50 64 36.93 27.06 -50 26 36.93 -10.93 -25 40 48.66 -836 = Data continued on next page "
C-85
i CAPSCLE U (HAZ) Page2 i Materiah HEAT AFD ZONE Heat Number Orientation: Capsule U Total Fluence I Charpy V-Notch Data (Continued) Temperature input lateral Expansion Computed LE Differential
-25 235 48f;6 -25.16 . -25 785 48f4 29B3 0 52 59.71 -7.71 50 83 7538 761 76 775 79.95 -2.45 . 150 875 8535 2J4 250 835 86.61 -3J1 SUM of RESIDUAIS = 4.09 l l
l l O C-86
CAPSULE Y (HAZ) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 134721 on 05-28-1998 Page1 Coefficients of Curve 3 s +,;, A = 49.48 B = 48.48 C = 129.49 +J2 Equation is LE : A + B * [ tanh((T - TO)/C) ) Upper Shelf LE: 97.96 Temperature at LE 35 -60.5 lower Shelf LE: 1 Fixed Material: HEAT AFFD ZONE Heat Numben Orientation-Capsule Y Total Fluence 20o m Z 150 a M e 100 e e M-e 4 J 0 e g
- a 30 /.
10 m a 0 l 1 l 1
-300 -200 -100 0 100 200 300 400 500 600 .
Temperature in Degrees F Data Set (s) Plotted Plant WC1 Cap: Y Material HEAT AFFD ZONE Ori: Heatf. Charpy V-Notch Data Temperature input lateral Expansion computed LE Differential
-200 2 6.71 - 4.71 -160 3 ILO9 -8.09 -125 9 1712 -812 -100 18 2?.99 -4.99 -75 18 3024 -1224 -60 66 38B6 2733 -50 66 38.66 2733 -25 31 47B4 -16.84 - Data continued on next page
- C-87
. - . . --. . . -_ . . . . - - .- -- = _ .
CAPSULE Y (HAZ) Page 2 Material: HEAT AFTD ZONE fleat Number: Orientation: Capsule Y Total Fluence: Charpy V-Notch Data (Continued) Temperature input lateral Expansion Computed LE Differential 0 -49 57J3 -8.13
. 15 56 62.49 -6.49 50 80 7357 6,42 125 79 88.7 -9.7 200 90 94 5 -45 250' 98 96.49 15 250 107 96.49 10 5
- SUM of REIDUAIS = -11.11 Y
a 4 C-88
i l CAPSULE V (HAZ) l CVGRAPH 4J Hyperbolic Tangent Curve Printed at 13:47:31 on 05-28-1998 Page1 Coefficients of Curve 4
~
A = 3457 B = 33.57 C = 35.7/ TO = -44.06 Fquation is LE = A + B * [ tanh((T - TO)/C) l lipper Shelf LE: 68.14 Temperature at LE 31 -43.6 lower Shelf LE 1 Fixed Material HEAT AFFD ZONE Heat Number Orientation-Capsule V Total Fluence-200 en O 150 a M 100 45
% s c.
D r -
% / ^
a so a 46
.a is 0 l l -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: TCl Cape V Material HEAT AFFD ZONE Ori: Heat l- -
Charpy V-Notch Data Temperature input Lateral Expansion Computed LE Differential
-190 0 1.01 -1.01 -150 0 1.17 -L17 -125 1 L71 .71 -100 12 3.82 Bl?
- -80 2 8.94 -6.94
-60 11 2053 -953 -50 43 29.05 13.94 "" Data continued on next page ""
C-89
l CAPSULE V (HAZ) l Page2 i Material HEAT AFFD ZONE Heat Number: Orientation-l Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature Input lateral Expansion Computed LF. Differential
-40 42 3837 3.62 -20 37 M27 -1721 0 76 62B7 13.12 50 73 67B E19 50 71 673 3.19 100 71 6812 P 2B7 150 67 68.14 -114 250 55 6814 -1314 SUM of P,ESIDUAIS : -El l
C-90
UNIRRADIATED (HAZ) CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 135150 on 05-28-1998 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 783 TO = -7/31 Equation is Shearx = A + B * [ tanh((T - TO)/C) l Temperature at 50x Shear -7/B Materiah HEAT Af7D ZONE Ileat Number: Orientation: Capsule UNIRR Total Fluence 100 a * , l e e A cn 60 a a e O y 40 w O O O 20 a [1 s D l l l l
-300 -200 -100 0 100 200 300 4-00 500 600 Temperature in Degrees F Data Set (s) Plotted Plant ICI Cap UNIRR Materiah HEAT Af7D ZONE Ori: Heat #: .
Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-300 5 35 4B4 -200 14 43 969 -150 30 13 3 16.19 -150 25 13 3 11.19 -100 25 3628 -1128 -100 25 3628 -1128 -100 36 .
3628 -28
-75 51 51.78 .78 -75 54 5L78 221
- Data continued on next page -
C-91
UNIRRADIATED (HAZ)
- Page2 Material: HEAT Af7D ZONE Heat Number: Orientation-Capsule: UNIRR Total Fluence:
Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential
-54 66 66Si -M o -50 61 66N -5S4 0 100 8731 1118 .
0 100 87B1 1118 75 100 97FI 2.02
, 75 100 97Fi 2.02 17 5 100 9933 16
- 175 100 99.83 16
- 250 100 99F/ .02 l SUM of RESIDUAIS = 422 I
i i i I C-92
1 CAPSULE U (HAZ) , CVGRAPH 41 Hyperbolic rangent Curve Printed at 135150 on 05-28-1998 Page1 Coefficients of Curve 2 A = 50 B = 50 C = 70.05 TO = -20.47 Equation is Shearx = A + B
- l tanh((T - TO)/C) ]
Temperature at 50x Shear -20.4 Material: HEAT AFFD ZONE Heat Number Onentation-Capsule U Total Fluence-100
~~
r ~ 8o a es O g O 60 a C o o o O g 40 0 0 20 O ( 0
) I -300 -200 -100 0 100 200 300 400 500. 600 Temperature in Degrees F Data Set (s) Plotted Plant WCl CaptU Material HEAT AFFD ZONE Ori: Heat f: .
Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential
-200 0 59 -59 -150 10 2.41 758 -100 10 936 .63 -75 15 17.41 -2.41 -75 15 17.41 -241 -50 50 30.09 19.9 -50 20 30.09 -10.09 -25 45 46.77 -17/ " Data continued on next page =
C-93
CAPSULE U (HAZ) Page2 Material: IIEAT AFFD ZONE Heat Number. Orientation: Capsule U Total Fluence Charpy V-Notch Data (Continued) Temperature Input Percent Shear Computed Percent Shear Differential
-25 30 4671 -16.7/ . -25 65 46 71 1822 0- 50 64 2 3 -14 2 50 100 882 11.7 9 76 100 94.01 5.98 , 150 100 9923 .76 250 100 99.95 D4 SUM of RESIDUAIS : 16.68 l
l e e w I C-94
CAPSULE Y (HAZ) CVGRAPH 4J Hyperbolic Tangent Curve Printed at 135150 on 05-28-1998 Page1 Coefficients of Curve 3 A = 50 B = 50 C = 85B9 TO = -47B1 Equation is: Shear /. = A + B ' [ tanh((T - TO)/C) ] Temperature at 50x Shear: -47B
~
Material HEAT AFD ZONE Heat Number Orientation-Capsule: Y Total Fluence r 100 A 80 e le ' e + , s% "o a a as O 40 o q) 4 V h e o . O I
-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: WC1 Cap; Y Material: HEAT AFD ZONE Ori: Heat &
Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-200 5 23 219 -160 5 633 -133 -125 10 1421 -421 -100 15 2237 -7B7 -75 20 34 S8 -14.08 -50 70 48.72 2127 -50 75 48.72 2627 -25 40 62.97 -22F/ " Data continued on next page "
C-95
l CAPSULE Y (HA'.'l Page2 ! Material HEAT AFFD ZONE Heat Number Orientation-Capsule: Y Total Fluence: Charpy V-Notch Data (Continued) Temperature input Percent Shear Computed Percent Shear Differential 0 70 75Z1 -5ZI !. 15 75 81.19 -619 50 100 90.69 93 125 90 9824 -824 200 100 99.68 21
- l. 250 100 99S .09 250 100 99S .09 SUM of RESDUALS =-ILTa l
l l 'O
'i f
l C-96
CAPSULE V (HAZ) CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 135150 on 05-28-1998 l Page1 : Coefficients of Curve 4 A = 50 B = 50 C = 61.53 TO = -30.46 Equation is: Shearx = A + B * [ tanh((T - TO)/C) ] Temperature at 50x Shean -30.4 Material HEAT AFFD ZONE Heat Numben Orientation: Capsule: V Total Fluence: 100 "
* /
c ( o
.C cn gg --
J
- c -
- e 9 .
g 40 m i I l * . l . . 0
$ [ l -300 -200 -100 0 100 200 300 400 500 600 -
Temperature in Degrees F l Data Set (s) Plotted l Plant WC1 Cap V Material HEAT AFFD ZONE Ori; Heat f: l Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential
-190 0 55 .55 -150 5 2.01 2.98 -125 5 4.42 37 -100 10 9.45 M -80 10 16E6 -6.66 -60 15 T/B9 -1239 l -50 50 3434 15.35 " Data continued on next page "
l l C-97
1 CAPSULE V (HAZ) Page2 Material HEAT AFFD ZONE Heat Number. Orientation: Capsule V Total Fluence Charpy V-Notch Data (Continued) Temperature input Percent Shear Computed Percent Shear Differential
-40 55 42.31 12.68
.- -20 40 58.42 -18.42 0 80 72.91 7.08 50 100 93.18 6.81 50 85 9318 - 8.18 , 100 100 98.58 L41 150 -100 99.71 28 250 100 99.98 .01 SUM of RESIDUAIS : 124 e C-98 !
APPENDIX D Wolf Creek Unit 1 Surveillance Program Credibility Analysis O e D-1
INTRODUCTION: Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for ! calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the a' djusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. De methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question. " To date there has been three surveillance capsules removed from the Wolf Creek Unit I reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the 4 surveillance data to be judged credible. De purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, , Revision 2, to the Wolf Creek Unit I reactor vessel surveillance data and determine if the Wolf Creek
; Unit I surveillance data is credible.
EVALUATION: Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement. i l
'Ihe beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, " Fracture l Toughness Requirements", as follows:
e )
"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."
i D-2 i
'Ihe Wolf Creek Unit I reactor vessel consists of the following beltline region materials:
I
- Intennediate shell plate R2005-1, ;
l
- Intermediate shell plate R2005-2, - Intennediate shell plate R2005-3, - Lower shell plate R2508-1, - Lower shell plate R2508-2, - Lower shell plate R2508-3, and l i -- All vessel beltline weld seams were fabricated with weld wire heat number 90146. The ! . intermediate to lower shell circumferential weld seam 101-171 was fabricated with Flux Type 124 Lot Number 1061. The intennediate and lower shell longitudinal weld seams 101-124A, B & C and 101-142A, B & C were fabricated with Flux Type 0091 Lot Number 0842. The surveillance weld metal was fabricated with weld wire heat number 90146, Flux Type 124 Lot Number 1061. Per Regulatory Guide 1.99, Revision 2, " weight-percent copper" and " weight percent nickel" are the best-estimate values for the material, which will normally be the mean of the measured values for a plate or forging or for weld samples made with the weld wire heat number that matches the critical vessel weld".- The suiveillance weld metal was made with the same weld wire heat as all of the vessel beltline weld seams and is therefore representative of all of the beltline weld seams.
I l
'Ihe Wolf Creek Unit I surveillance program utilizes longitudinal and transverse test specimens from l lower shell plate R2508 3. 'Ihe surveillance weld metal was fabricated with weld wire heat number 90146, Flux Type 124 Lot Number 1061.
I D-3
4 _ . . _ _ _ _ _ . . - _ _ _ _ _ _ _ _ _ _ _ _ The Wolf Creek Unit I surveillance program was based on ASTM E185-79. When the surveillance l j program material was selected it was believed that copper and phosphorus were the elements most l important to embrittlement of reactor vessel steels. Lower shell plate R2508 3 had the highest initial RTsor and the lowest initial USE of all plate materials in the beltline region. In addition, lower shell l plate R2508-3 had approximately the same copper and phosphomus content as the other beltline plate materials. Hence, based on the highest initial RTuor and lowest initial upper shelf energy, lower shell l plate R2508-3 was chosen for the surveillance program. Per Regulatory Guide 1.99, Revision 2, " weight-percent copper" and " weight percent nickel" are the best-estimate values for the material, which will nomially be the mean of the measured values for a l* plate or forging or for weld samples made with the weld wire heat number that matches the critical ! vessel weld". Since, the surveillance weld metal was made with the same weld wire heat as all of the vessel beltline weld seams, it is representative of the limiting beltline weld metal. l Based on the above diwssion, the Wolf Creek Unit I surveillance material meets the intent of this criteria. l Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and l unirradiated conditions should be small enough to permit the detennination of the 30 ft-lb temperature and upper shelf energy unambiguously. l l Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are l presented Appendix A of this calenote. l Based on engineering judgement, the scatter in the data presented in these plots is small enough to [ permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Wolf Creek Unit I surveillance materials unambiguously. Hence, the Wolf Creek Unit I surveillance program meets this criterion. D-4 i
Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of i ART.m3 values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28'F for welds and 17'F for base metal, Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82. The functional fonn of the least squares method as described in Regulatory Position 2.1 will be - utilized to determine a best-fit line for this data and to detennine if the scatter of these ARTm values about this line is less than 28*F for welds and less than 17'F for the plate. . Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2. NOTE: Since the calculated vessel ikence values are greater than the best estimate vessel nuences values, the calculated Quence values will be used for all calculations. I t l l* . t l D-5
TABLE D-1 Wolf Creek Surveillance Capsule Data Material Capsule FW FFW ARTuor FFxARTsor FF2 l Lower Shell Plate U 0.3429 0.705 36.46 F 25.70 F 0.50 R2508-3 (Longitudinal) Y 1.308 1.075 16.03 F 17.23 F 1.16 V 2.528 1.249 52.03 F 64.99 F 1.56 Lower Shell Plate U 0.3429 0.705 23.79 F 16.77 F 0.50
. R2508-3 Y 1.308 1.075 35.39 F 38.04 F 1.16 (Transverse)
V 2.528 1.249 54.53*F 68.11 F 1.56 SUM 230.84*F 6.44 2 CFa2m.3 = I(FF*RTuor) + I(FF ) = (230.84 F) + (6.44) = 35.8 F Weld Metal
- U 0.3429 0.705 27.21 F 19.18 F 0.50 Y 1.308 1.075- 45.09 F 48.47 F 1.16 V 2.528 1.249 46.33 F 57.87 F 1.56 SUM 125.52 F 3.22 l
CF,,a = I(FF*RTso7) + I(FF )2 = (125.52) + (3.22) = 39.0 F (1) F = Calculated Fluence (10" n/cm2 , E > 1.0 MeV). 'Ihese values were re-evaluated as part of the capsule V analysis (See Section 6 of this report). (2) FF = Fluence Factor = Fa2s .ei
- win (3) ARTuor values do not include the adjustment ratio procedure of Regulatory Guide 1.99, Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values.
l The scatter of ARTuor values about the functional fonn of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2. i l D-6 I I.
TABLE D-2 Predicted Versus Best-Estimate ARTuo7 Values for the Wolf Creek Unit 1 Surveillance Materials Matenal Capsule CF FF Best-Estunate Measured Change in ART m) ARTm" ART. ! l Lower Shell U 35.8 *F 0.705 25.24 36.46*F -! !.2 Plate R2508 3 Y 1.05 4 .03 7 M (Longitudinal) V 35.8'F 1.249 44.71 52 03*F 732 1.ower Sheu U 35.8'F 0.705 25.24 23.79'F 1A5 - Plate R2508 3 Y 35.8'F 1.075 38.49 3539*F 3.10 V 35.8'F 1.249 44.71 54.53*F -9.82 Surveillance Program U 39.0*F 0.705 27.50 27.21'F 0.29 Weld Metal Y 39.0*F 1.075 41.93 45.09'F -3.16 V 39.0*F 1.249 48.71 4633*F 238 s NOTES: (a) Best-estimate ARTsor = CF
- FF. Where the CF used when comparing best< stimate ARTwor values to measured ARTsor values for the credibility analysis were calculated based on the measured surveillance data.
(b) Calculated using measured Chalpy data plotted using CVGRAPH 4.l'1 l (See Appendix A). He scatter of ARTsor values about the functional fonn of a best-fit line drawn as de;cribed in Regult. tory Position 2.1 (Table C-2) is less than 17 F for all but one plate material data point. One out of six values for the plate material would be expected to be out of the 1 o range. ( l However, the capsule Y longitudinal data point is out on the low side (ie, the prediction is 22.5 F - higher the measured value) and is less than 2 c 2. He scatter of ARTsor values about the functional form of a best-fit line drawrt as described in Regulatory Position 2.1 (Table C-2) is and less than 28 F for the weld metal. Therefore, this criteria is met for the surveillance data of the Wolf Creek Unit I surveillance program material. His result is also presented graphically in l . Figures D-1 and D-2. l l l l ! D-7 i l l
FIGURE D-1 , 1 Lower Shell Plate R2508-3 l 200 l l 180-- l
- 160 -
! 140-E Wolf Creek Unit 1 Plate u.. 120 - g R2508-3 Data
. g z 100-E 80 - * * * *
- One Std Dev (17 F)
"O ;
60 - . ....... ....g...................... Reg Guide 1,99 Pos. 2 40 - ",,,g*,,,,,,,_., ..-..........-.......... (CF=35.8 F) 20 - ,,, ....g....... - 0 0 1E+19 2E+19 3E+19 4E+19 Fluence, n/cm' FIGURE D-2 Surveillance Program Weld Metal 200 180-160 - 140 - LL. g 120- E Wolf Creek Unit 1 Weld Data
' E 100 b *-
E 80 V , One Std Dev (28 F)
"******~~****************
60 - .'g....*****"" . m Reg Guide 1,gg pas _ g e 40 - / " (CF=39.0 F) 20 ... - ....................,,,,,, 0 1E+19 2E+19 3E+19 4E+19 Fluence, n/cm 2 D-8
Cdterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding / base metal interface within +/- 25'F. l De capsule specimens are located in the reactor between the neutron pads and the vessel wall and are positione'l opposite the center of the core. De test capsules are in baskets attached to the neutron pads. The location of the specimens with respect to the reactor vessel beltline provides assurance that the stactor vessel wall and the specunens expedence equivalent operating i conditions such that the temperatures will not differ by more than 25'F. Hence, this criteria is - met.
~ . i s
Criterion 5: He surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the data base for that material. i
^
he Wolf Creek Unit I surveillance program does not contain conelation monitor material. herefore, this criterion is not applicable to the Wolf Creek Unit I surveillance plogram. ( CONCLUSION: ' 1 Based on the precedmg positive responses to all five enteria of Regulatory Guide 1.99, Revision 2, Section B, the Wolf Creek Unit I surveillance data is credible. 4 e l D-9
.~, _ - _ - , . . . = < - -}}