ML20141F032

From kanterella
Jump to navigation Jump to search
Forwards Info Re Rebaselining Study for Application of NUREG-1465, Accident Source Terms for Lw Npps
ML20141F032
Person / Time
Site: Grand Gulf  Entergy icon.png
Issue date: 05/14/1997
From: Hughey W
ENTERGY OPERATIONS, INC.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
RTR-NUREG-1465 GNRO-97-00043, GNRO-97-43, NUDOCS 9705210187
Download: ML20141F032 (44)


Text

e

. f. L. y sen

~ r 1-Entergy Operation 2,Inc.

r kd J

h Port Gbsort MS 39150 PO. Box 756 Tel 601437-6470 May 14,1997 W. K. Hughey am

. Nuclear Safety & F4rgulatory Affars

> U.S. Nuclear Regulatory Commission Mail Stop PI-137-I Washington, D.C. 20555-0001 t

Attention:

Document Control Desk i

Subject:

Submittal of Grand Gulf Nuclear Station Information for the Rebaselining Study for Application of NUREG-1465 Source Terms Project No. 689 6

GNRO:

97/00043 Gentlemen:

i On March 27,1997, Nuclear Regulatory Commission (NRC) staff and Grand GulfNuclear

[

Station (GGNS) staff met to discuss the application of revised source term insights contained in NUREG 1465," Accident Source Terms for Light-Water Nuclear Power i

Plants." This was the second meeting in support of the NRC's rebaselining of a generic boiling light-water reactor (BWR).

The NRC requested information about GGNS to aid in the BWR rebaselining. The f

information that has been collected to date is provided in Attachment I through 3.

We look forward to continued participation on this project. If you have any questions concerning this submittal, please contact Sheri Mahoney at 601-437 6552.

i Yours truly, g

QQ 7

% Kil/SBM i

attachments:

1. Requested Rebaselining Information

{

2. Core Source Terms
3. TRANSACT Code j

ec:

(See Next Page)

'l 1

i 9705210187 970514 pd PDR.ADOCK 05000416

-P PDR u

1

p

[ % ^-

^

k

~

.i f

4 -.

I l

GNRO 97/00043 -

1Page 2 of 3 q

., _ j t

e..

' ~

cc:

Ms. S. C. Black (NRC/NRR)

Mr. K. Cozens (NEI).

l Mr. L. J. Smith (Wise Carter)

-l Mr. N. S. Reynolds I

Mr. It L. Thomas

.i i -

Mr. J. W. Yelverton l

~

l.

GGNS Resident inspector s'

Mr. E. W. Merschoff(w/a)

Regional Administrator U.S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011-l s

Mr. J. N. Donohew, Project Manager (w/2) i Office of Nuclear Reactor Regulation l

U.S. Nuclear Regulatory Commission l

Mail Stop 13113'

. Washington, D.C.

20555 y

4 l

b

.I l

j

~

I

/

f J

1 i

iGNRO 97/00043'-

. Page 3 ' f 3.l o

'bec:

Mr. G. E. Broadbent -

Ms. S. B. Mahoney Ji Mr. M. D. Withrow

~

File (LCTS/RPTS)

File (llard Copy).

.. File (Central) ( 54 )

-4~

cc: mail:

Mr. D. G. Bost

'Mr. C. A. Bottemiller Mr. R. W. Byrd Mr. L~. F. Dale 4

Mr. L. F. Daughtery Mr. J. G. Dewcase Mr. W. A. Eaton Mr. J. J. IIagan Mr. C. C. Ilayes, Jr.

Mr. W. K. Ilughey Mr. R. D. Ingram Mr. D. L. Janecek -

4 1

1 7

f Attachm:nt I to GNRO-97/00043 Page1of34 REQUESTED REBASELINING INFORMATION

/

f Attachment I to GNRO-97/00043 Page 2 of 34

1. LOSS OF COOLANT ACCIDENT '

l

1. LicensedPower Level The GGNS licensed thermal power level is 3833 MW. Consistent with Reg. Guide 1.49, the LGGNS dose analyses are developed to reflect a 2% uncertainty in core power. The power level
c..

applied in accident analyses is 3910 MW.

2. Licensed Maximum Core Burmip

. GGNS is not licensed for a maximum core burnup. Instead, the fuel designs used at GGNS are licensed to a maximum burnup based on the thermal-mechanical analysis of the fuel rod. Core-average exposures at GGNS are expected to range between 10 and 35 GWd/MTU at Beginning-of-Cycle and End-of-Cycle respectively.

.L Core Radionuclide Inventories reports the GGNS core inventories at time zero (l.c., with no decay) at the minimum and maximum expected core average exposures. These source terms were developed i

with the ORIGEN2 code based on the following core power and nominal bundle assumptions.

Parameter Value Core Thermal Power 3910 MW Bundle Enrichment 4 w/o Bundle Uranium Mass 175 kg U Since many of the isotopes reported in Attachment 2 contain very short half-lives, a significant portion of this activity will have completely decayed before release from the fuel. Other isotopes do not have significant dose consequences. Only the elements in Table 3.8 of NUREG-1465 are reported.

4. Bounding Design Basis Accident The instantaneous guillotine break of the suction side of a recirculation line is the limiting design basis accident for the LOCA acceptance criteria reported in 10CFR50.46. This accident leads to the earliest core uncovery and consequential release of fuel source terms. Other accidents, such as main steam or small line breaks, would delay core uncovery relative to the recirc line break and the consequential fuel source tenn release.

i S Accident Sequence andShort-Term Response

' The short-and long-term accident pressure and temperature profiles are reported in the following ligures. These figures include operation of the ECCS systems.

)

. =._

q Attachment I to GNRO-97/00043 Page 3 of 34 Figure Description USAR Figure 6.2-2 Short-term drywell and containment pressure response to recirc line break j

USAR Figure 6.2-3 Short-term drywell temperature response to recirc line break USAR Figure 6.2-4 Vent Flows (via suppression pool) for recirc line break

(

USAR Figure 6.2-10 Short-term drywell and containment pressure response to steam line break USAR Figure 6.2-11 Short-term drywell temperature response to steam line break GE 22A3759AE Vent flows (via suppression pool) for steam line break Figures 3.3.1.12(a)-(c)

~

USAR Figures 6.2-5 Long-term containment pressure response USAR Figures 6.2-6 Long-term drywell and suppression pool temperature response and 6.2-7

-Short-term drywell and containment pressure response to intermediate line break USAR Figure 6.2-13 USAR Figure 6.2-14 Short-term drywell and suppression pool temperature response to intermediate line break

6. Initial Activity Distritution i

The GGNS LOCA model assumes a release into the drywell with the species distribution required in Reg. Guide 1.3. Specifically,25% of the core iodine inventory and 100% of the 3

nobles are released into the drywell with the iodine in the following species. All of the noble gases are assumed to be in the elemental form.

lodine Form Fraction (%)

Elemental 91 3

Organic 4

Particulate 5

1

7. Drywell l'olume The drywell volume used in the accident analysis is 2.7*10 ft'.

5

8. Drywell Leak Rate Technical Specification Value Surveillance Requirement 3.6.5.1.1 requires that the as-left drywell bypass leakage, prior to the first startup after performing a required drywell bypass leakage test is <10% of the drywell bypass leakage limit. This surveillance ensures that the actual drywell bypass leakage is less 2

than or equal to the acceptable AFk design value of 0.9 ft,

i Measured llistorical Values The measured drywell bypass leakage surveillance test results through RF06 are reported below:

1 Attachment I to GNRO-97/00043 Page 4 of 34 Test Date Calculated N ik (ftz) 01/82, 0.016 03/83 0.042 06/84 0.067 11/85 0.060 11/86 (RF01) 0.040 12/87 (RF02) 0.039 04/89 (RF03) 0.042 11/90(RF04) 0.041 05/92(RF05) 0.016 11/93 (RF06) 0.022 Value Used in Accident Analysis As reported in USAR Section 6.2.1.1.5.3, the bypass flowrate out of the drywell can be calculated with the following expression.

L A

2g,(Pa - P,)

  • 144 M = /E v

where M=

the flow rate (Ibfs) the flow area (ft )

A

=

the total loss coefficient including entrance, exit, discontinuties, and friction k

=

ge proportionality constant (Ib -ft/lbr )

=

s E = d.rywell pressure (psia) d Pc = containment pressure (psia) specific volume of fluid flowing in the leakage path (ff/lb) y =

2 The design value for AFk value is 0.9 ft. The drywell bypass flow rate is therefore dependent on the drywell-to-containment pressure differential. Consequently, the accident analysis uses a time-varying drywell bypass flowrate based on the drywell-to-containment pressure differential for the recirculation line break.

i 9, Drywell Thermal / Hydraulic Boundary Conditions Drvwell Pressure The initial drywell pressure is 0.0 psig per USAR Table 6.2-4. The drywell pressure response to the various line breaks is reported in the response to Question 5.

Drvwell Atmospheric Temperature The initial drywell temperature is 135*F per USAR Table 6.2-4. The drywell temperature response to the various line breaks is reported in the response to Question 5.

t.

=

J s

Attachment I to GNRO-97/00043 Page 5 of 34 Drywell Upward-Facing Area The drywell upward-facing area is reported below, i

Region Area (ft2)

Surface Area of drywell floor inside the weir wall 2480.2 Metal Grating 2364 Surface Area of Drywell Side of Suppression Pool 553.7 Total 5397.9 Drywell Vertical Area The drywell_ vertical surface area is reported below.

Region Area (ftz}

Pedestal-drywe!! wall 1,216.2 inner drywell wall (including penetrations) 11,275.7 Equipment area 163,718 Total 176,209.9 i

Drywell Cylinder Equivalent IIcight The drywell height is-79' 5". With a radius of 36' 6" and a volume of 2.7E5 ft', the drywell equivalent height is calculated to be 64.5 feet.

H, = V 2.7E5ft'

= 64.5ft

=

A tr. (36.5ft)2 Steam Mole Fraction in Drywell Atmosphere The initial relative humidity in the drywell is 20-90 % per USAR Table 6.2-4. For accidents involving line breaks within the drywell, the relative humidity will approach 100%.

Steam Condensation Rate The GGNS containment design does not rely on steam condensation in the drywell. Instead, steam generated in the drywell is quenched as it enters the containment via the suppression pool.

Ileat Removal Rate from Drywell Atmosphere The GGNS containment design does not remove heat from the drywell atmosphere during accidents. Instead, the.RilR system pumps water from the suppression pool (in containment) through a heat exchanger and injects this cool water into the reactor vessel. The GGNS containment analyses do not credit heat conduction through the drywell structure.

10. Co.ttainment Free Volume 6 3 The con'ainmem free volume (outside the drywell)is 1.4*10 ft.

1 l

--.. ~.

if, i

Attachment I to GNRO-97/00043 Page 6 of 34

11. Containment Leak Rate The design containment leak rate is 0.35% per day.
12. Asfound Containment Leakage Rate and Test Data The containment leakage test results are given below:

Test Date Leak Rate (wt %lday)via TotalTime Analysis 1/4/82 0.139 11/4/85-0.187 4/16/89

- 0.178

13. Containment ThermaWHydraulic Boundary Conditions Pressure s The ' initial containment pressure is 0.0 psig per USAR Table 6.2-4. The containment pressure response to the various line breaks is reported in the response to Question 5.

l Atmosphere Temperature The initial containment temperature is 95 F per USAR Table 6.2-4. Most of the reported

~

containment temperature profiles are for the wetwell region which is the portion of the containment above the suppression pool and below the IICU floor. This area will experience elevated temperatures relative to the remainder of containment due to its proximity to the suppression pool. The wetwell temperature response to the various line breaks is reported in the response to Question 5. For the long-term containment response, the containment atmosphere is conservatively assumed to be in thermodynamic equilibrium with the suppression pool.

Upward Facing Area -

The containment upward facing area is given below.

Region Area (ft2)

Operating deck (concrete portion) 2,774 Upper poolwater surface area 3,535.8 Upperwetwellgrating 1,886 Grating at El. 227'7' 244.4 Wetwellgrating 1,355 HCU Floor 3,079 Suppression Pool Surface Area 6,665.67 Total 19,539.87 Vertical Area The containment vertical area is given below.

L i

e U. ?

.- to GNRO-97/00043 Page 7 of 34 Region Area (ft2)

Drywellwall 12,820.3-Wetwell (containment wall above suppression pool) 9,252 Containment wall (between HCU deck and operating floor) 28,550 Containment wall (between operating floor and spring line + dome) 35,418 Wetwellequipment area 39,100 Upper wetwellequipment area 79,600 Upper containment equipment area 34,100 Total 238,840.3 Containment Cylinder Equivalent Height The total height of the containment is 206' 9". With an inside radius of 62 feet and a volume of 1.4E6 ff, the containment equivalent height is calculated to be 115.9 feet.

11' = V 1.4E6ft'

= 115.9/1

=

A 7:-(62ft)*

Steam Mole Fraction in Containment Atmosphere The initial relative humidity in the containment is assumed to be 60% per USAR Table 6.2-4.

For the long-term coutainment response, the containment atmosphere is conservatively assumed

- to be in thermodynamic equilibrium with the suppression pool.

Steam Condensation Rate The GGNS containment design condenses steam in the containment for pressure control with the containment spray mode of RilR. The steam condensation rate due to spray operation is 38 lb/see when the containment is at its design limit per USAR Section 6.2.1.1.5.5.

lleat Removal Rate from Containment Atmosphere The GONS containment design does not remove heat from the containment atmosphere during accidents. Instead, the RHR system pumps water from the suppression pool (in containment) f through a heat exchanger and injects this cool water into the reactor vessel. The heat removal capability of the RHR system under accident conditions is reported on Sheet 69 of GE 22A3759AE, Rev.1.

14. Blowdown Rates (Dn well to Suppression Pool) and Duration As reported in the response to Question 5, the vent flows for the design basis recirculation line-break and steam line break are given in USAR Figure 6.2-4 and Figure 3.1.1.12 of GE 22A3759AE, Rev. I respectively, e

i--

e n

--e

-. - + - " -

T T

-r

1 Attachment I to GNRO-97/00043 Page 8 of 34

15. Containment Purge Operation Valve Closure Time The containment isolation valve closure requirement for containment purge operation is 4 seconds per TRM Table 3.6.1.3-1.

Flow Rate GGNS may purge the containment using either the low-or high-volume purge modes of the containment ventilation system. The use of the low-volume purge is unrestricted during power operations as discussed in USAR Section 9.4.7. In this mode, two 500 cfm fans would purge the containment through non-safety filter trains.

The containment high-volume purge system is restricted from use during operations in MODES 1, 2, and 3 by SR 3.6.1.3.1 except for containment pressure control, ALARA, or air quality considerations. In this mode, two 3000 cfm fans would purge the containment through non-safety filter trains.

16. Containment Mixing Rate The containment mixing rates are based on containment thermal gradients prior to spray initiation and spray induced mixing afler spray initiation. The containment model (excluding the drywell) consists of a directly sprayed region and two unsprayed regions. The sprayed region represents the containment dome area above the refueling floor (El. 208'). The first unsprayed region represents volumes with good communication with the sprayed region (i.e., open areas below the refueling floor). The second unsprayed region represents volumes with restricted communication between themselves and the sprayed region. The mixing rate between the unsprayed regions is neglected.

Mixing Rate with Regions with Poor Communication with Sprayed Region The mixing rate between the unsprayed region with poor communication and the sprayed region during spray operation is based on the guidance given in SRP 6.5.2, Revision 2 which specifies that the mixing rate to be equal to two volurae exchanges per hour. The LOCA analysis assumes a mixing flowrate of 5,600 cfm between the regions with poor communication and the sprayed region of the containment based on this guidance.

Mixing Rate with Regions with Good Communication The mixing rate between the sprayed region and the unsprayed region with good communication prior to spray initiation is based on the natural circulation methodology given in NUREG/CR-0304. Appendix K of this NUREG developed a model for circulation rates due to heat transfer i

from a hot lower surface to cooler walls and ceiling. This model is analogous to the conditions following a LOCA in which heat is transferred from the suppression pool to the containment walls and dome. This method produces a conservative lower bound of 4,100 cfm before the j

sprays are initiated. During containment spray, the mixing rate based on the condensation capability of the sprays gives a flow rate of 66,000 cfm.

1 l

i i

- ~

i Attachment I to GNRO-97/00043 Page 9 of 34 c

- Summary The mixing rates between the containment regions are summarized below.

l i

Mixing Between Mixing Rate (cfm) i Sprayed Volume and Volume with good 4,100 communication without sprays Sprayed Volume and Volume with good 66,000 communication with sprays Sprayed Volume and Volume with poor 5,600 communication Volume with good communication with sprays 0

and Volume with poorcommunication i

i

17. Containment Spray System

'Is the system safety related?

The containment spray system (CSS) is a safety-related system. The containment sprays are automatically initiated upon high containment and drywell pressure after a ten-minute deh,y.

i Sprayed Volume

~

Since some areas of the containment are not directly sprayed, the primary containment (outside i

the drywell) was divided into three regions consisting of the directly sprayed region of the containment, and two unsprayed regions of the containment. These regions and the associated i

volumes are listed below.

i Region Volume (ft3)

Directly Sprayed region 9.927x105 Unsprayed region with good communication with the 2.383x105 sprayed region Unsprayed region with restricted communication with the 1.690x105 sprayed region Elemental Iodine Removal Rate l

The LOCA dose analysis uses the simplified method given in NUREG/CR-5966 with a median value of 6.29 hr for the ^1emental spray lambda. This removal constant does not consider wall removal.

Gas-phase Mass-transfer Coeflicient 4

' The gas phase mass transfer coefficient was determined to be 12.2 cm/s.

Average Droplet Fall Height i

The average droplet fall height is 65.64 fl for the "B" Train of containment spray and 62.85 feet i

for the "A" Train.

9 4

1-

, to GNRO-97/00043 Page 10 of 34 l

Terminal Velocity The terminal velocity for a mean drop diameter of 480 microns is 6.0661 ft/sec.

. Operating Time

[

The contairunent spray system is automatically initiated with high drywell and containment.

pressure signals after a ten minute time delay. The design basis LOCA analysis assumes that the sprays are initiated at 30 minutes and continue to operate for the accident duration..SRP 6.5.2, Revision 2 states that the maximum decontamination factor (DF) for elemental iodine is 200.

When this point is reached, the effectiveness of sprays in removing elemental iodine is assumed to end. There is no maximum DF applied for particulate iodines. However, the particulate removal efficiency is assumed to be reduced by a factor of ten (F1D is assumed to change from 10 to 1) when the aerosol mass has been depleted by a factor of 50 (a DF of 50). The times when the elemental and particulate iodines reach a DF of 200 and 50, respectively were conservatively l

determined based on the activities in the sprayed region only.

'I Locations of Spray Headers (height) 4 Each train of the CSS consists of three headers incorporating a number of nozzles of type Spraco No.1713A. The elevations are reported below.

RHR Header Header Height (ft)

Number of Train Designation Elevation above Floor Nozzles at 208'10" B

A 294' 85.17 50 C

282'-10" 74.00 115 E

264' 55.17 185 A

B 292'-6" 83.67 50 D

279'-10" 71.00 115 F

261' 52.17 185 Time ofinitiation The containment sprays are automatically initiated upon high containment and drywell pressure with a ten-minute time delay, in the design basis LOCA analysis, the sprays are assumed to be initiated at 30 minutes.

Duration of Operation See discussion of operating time, above.

Particulate lodine Removal Rate J-Spray Drop Size (diameter)

The design basis LOCA analysis assumes a 480 micron mean diameter based on a mean drop diameter of 400 microns from a 40 psi pressure drop across the spray nozzles and a 20 percent increase in the mean drop diameter to account for the effects of condensation and coalescence.

f

i 0

Attachment I to GNRO-97/00043 Page 11 of 34 Spray Flow Rate The Spray Flow (per train) is 5650 gpm.

Spray Water Flux The spray water flux at the refueling floor with one train of containment spray is 3.84 lb / min-m 2

ft, Number of Sprayed Regions The only region considered to be sprayed is the upper containment above the refueling floor.

The volume below the refueling floor would actually be subjected to some spray and runoff from the refueling floor but this effect is not considered in the analysis.

Number of Spray Nozzles in each Region There are 350 spray nozzles in each train of core spray.

19. Suppression Pool IVater Volume The minimum suppression pool water volume in the drywell is 13,041 ft'.

The minimum suppression pool water volume in the containment is 122,250 ff.

i

20. Suppression Pool Decontamination Factors Consistent with the Section 6.5.5 of the Standard Review Plan, the suppression pool retains 90%

of the elemental and particulate iodine that passes through it.

21. Efective Suppression Pool Water Depth The water depth above the top of the highest row of drywell vents is 6 feet.
22. Suppression Pool Water Temperature The initial suppression pool water temperature is 95 *F as required by Technical Specification 3.6.2.1.

The suppression pool temperature during accidents is reported in the response to Question 5.

23. Suppression Pool WaterpH Suppression pool pH is measured quarterly and is confirmed to be within the range 5.3 to 8.6.

The GGNS LOCA model does not evaluate the suppression pool pII.

21. Quencher 7)pe GGNS uses X-type quenchers.
25. Quencher Submergence Depth The GGNS quenchers are 13.3 feet below the normal low suppression pool water level.

$ to GNRO-97/00043 Page 12 of 34

26. Afean AerosolParticle Size The GGNS LOCA analysis assumes 5 percent of the airbome iodine to be in the particulate form consistent with Reg. Guide 1.3. The size distribution of this activity is not quantified.
27. Chemical Additive UsedForSump WaterpHControl GGNS does not use any additive to control suppression pool pH.
28. Amounts ofChemical Additive ForpH Control GGNS does not use any additive to control suppression pool pH.
29. Chemical Afixing Afethodand Afechanism Used GGNS does not use any additive to control suppression pool pH.
30. Amounts ofHypalon (or equivalent) Cable Insulation Afaterialin Containment The amounts of EPR, Hypalon, or cross-linked polyethylene cable in the GGNS drywell and containment are 9,835 and 176,400 pounds respectively. All of the cables in the GGNS

. containment or drywell are run in cable trays or conduits. Consistent with NUREG-0588, Rev.

1, Section 1.4(9), the GGNS EQ analysis credits a reduction in the beta dose to these cables by a factor of 2.

31. Afaximum Amounts (in mols) Hydrochloric and Sulfuric Acids Produced by Radiolysis in the Containment The GGNS LOCA model does not evaluate the suppression pool pH.
32. ladine Species Distribution (mols) in the Containment as afimetion oftime The GGNS LOCA model does not evaluate the aqueous iodine species in the suppression pool nor the re-evolution ofiodine for the pool.
33. Containment Leakage x/Q Values Containment releases are assumed to be ground level releases. The ground release x/Q values are reported in Section 9.
34. TRANSACTcode inputs and outputs The inputs and outputs associated with the TRANSACT code are described in Attachment 3.
35. ESF Component Leakage Outside Containment (Auxiliary Building and Atailiary Building Pool)

Initiation Times for ESF Systems (Leak initiation)

Consistent with SRP 15.6.5, Appendix B, Rev.1, postulated ESF leakage is assumed to occur throughout the accident, starting at the earliest time that recirculation of contaminated fluid is

g,-

Attachment I to GNRO-97/00043 Page 13 of 34 6

i initiated. In the GGNS LOCA model,' contaminated liquid leakage from the containment is-conservatively-assumed to begin at 58 seconds post-LOCA consistent with operation of the low-pressure ECCS systems.

' Maximum ESF Leak Rates (Twice Tech Sxc Values) i The GGNS Technical Specifications do not report a maximum allowable leakage from the ESF i

- systems.

Instead, the specific types of-postulated leakage that can be expected during operation of the ESF recirculation systems were identified and quantified. The systems which l'

are expected to be operating during the recirculation phase for long-term core cooling and containment spray cooling are the LPCI and containment spray modes of RHR and LPCS. Valve stem and pump seal leakage were included in the evaluation ofleak paths for LPCS and all three trains of RHR.' The total leakage from these ESF sources was determined to be 2.32E+5 cc/hr.

l 1

Iodine Partition Factor The post accident, long term, suppression pool peak temperature is 171.3 'F for a recirc line break assuming loss of offsite power. Since the temperature of the recirculation water is less '

l than 212 *F, then 10% of the iodine in the leakage is assumed to become airborne. Consistent with the guidance in SRP 15.6.5 Appendix B, Rev.1,10% of the halogen activity released (flash fraction) in the spilled liquid is assumed to become airborne.

ESF Room (Auxiliary Building) Filter Efficiencies l

The ESF system leakage occurs in the auxiliary building which is served by the SGTS system.

The response to Question 36 reports these filter efficiencies.

i ESF Room (Auxiliary Building) Release y/O Value i

The ESF system leakage occurs in the auxiliary building which is served by the SGTS system.

The response to Question 36 reports the x/Q value associated with SGTS releases.

36. Enclosure Building SGTS Bypass Flow:

The design basis LOCA analysis assumes a 50 cfm bypass flow around the SGTS filters. Design changes are currently being prepared to reduce this leakage to approximately I cfm.

i SGTS Initiation Signal The SGTS is initiated on high drywell pressure, low reactor water level, high radiation in the fuel j

handling area ventilation exhaust, or high radiation in the fuel pool sweep exhaust.

SGTS Initiation Time /Oxration For a design basis LOCA, the SGTS initiation signal (high drywell pressure or low RPV water l

level)is generated I see afler the break.

i l

SGTS Flow Rates

[

The design SGTS flow rate is 4000 cfm per train.

j I

l i

s Attachment I to GNRO-97/00043 Page 14 of 34 F

SGTS Filter Efficiencies The SGTS filter efficiencies, as determined accordance with Regulatory Guide 1.52, are:

lodine Form SGTS Adsorption and Filtration Efficiencies (%)

Organic 99 l

Elemental 99 Particulate 99 Enclosure Building Mixing Rate The design basis LOCA analysis assumes a 50% mixing rate in the Enclosure building, j

Enclosure Building Pressure Drawdown Time i

On an initiation signal, each SGTS subsystem can draw down the secondary containment to 0.25 inch of vacuum water gauge in 120 seconds per Tech. Spec. 3.6.4.

As described in USAR Section 6.2.3.3, this 120 seconds includes 16 seconds for the diesel to start and load the SGTS fans.

Enclosure Building Volume 3

The Enclosure Building volume is 600,000 ft'. The LOCA analysis uses a volume of 300,000 n to account for 50% mixing.

Enclosure Building Recirculation Flow Rate-4 i

The Enclosure Building recirculation flow rate is 1.27*10 cfm.

37. Enclosure Building y/Q Values Enclosure Building releases are assumed to be ground level releases. The ground release yfQ values are reported in Section 9.
38. MSIVLeak Rates Technical Specification 3.6.1.3 requires that the leakage through all four MSIVs is less than or equal to 100 scfh.
39. MSIV Leakage Pathway (Main Steam Lines, Drain Line Header, and Drain Lines)

Length and Inside Diameter The Main Steam Line data is given below, inside -

Outside Average Length Line Diameter (in)

Diameter (in)

(ft)

Reactor to Outboard MSIV Pipe Compartment 25.404 28.00 120.385 Outboard MSIV to Turbine Stop Valve 25.636 28.00 280.778 Outboard MSIV Drain to Condenser 4.953 5.563 75.778

, to GNRO-97/00043 Page 15 of 34 l

i Mass per length, Insulation Material, and Insulation Thickness The main steam line and main steam drain data is given below.

Pipe Mass Psr unit Insulation insulation

+

Line Length (ibm /ft)

Material Thickness (in)

Reactor to Outboard MSIV Pipe Compartment 366.231 Calcium Silicate 3.5 Outboard MSIV to Turbine Stop Valve 338.5503 Calcium Silicate 3.5 Outboard MSIV Drain to Condenser 14.6444 N/A N/A In.sulation Thermal Conductivity The thermal conductivity of calcium silicate is given below per USAR Table 6.2-55.

Temperature (*F)

Thermal Conductivity (Btu /hr ft2 op) l 300 0.42 700 0.60 Leakage Steam Pressure and Temperature The pressure in the main steam lines between the MSIVs during operation of the MSIV Leakage Control System is -0.139 inches of water.

40. P&lD ofMain Steam Piping Showing Leakage Pathways See GGNS Drawings M-1077A-D, M-1269, and M-1097.
41. Efective Condenser Vohune (above drain line) 3 The free volume of the condenser (not including'hotwell) is 218,625.5 ft and the free volume of the LP turbines (total of 3 turbines)is 39,153.3 ft.
42. MSIVLeakage ControlSystem initiation Time The GGNS LOCA analysis assumes that the LCS is manually actuated at 20 minutes in accordance with Regulatory Guide 1.96.

Flow and Discharge Pathways The MSIV LCS flow is assumed to be 25 scfh at 20 minutes and increases to 100 scfh at 2.91 hours0.00105 days <br />0.0253 hours <br />1.50463e-4 weeks <br />3.46255e-5 months <br />. The discharge pathway is into the Auxiliary Building atmosphere.

Flow Rates as a Function of Time See above.

Release Point See above.

A

Attachment i to GNRO-97/00043 Page 16 of 34

43. MSIVLeakage x/Q Values Leakage from the MSIV Leakage Control System is into the secondary containment. The X Q

/

values are given in Section 9.

1 e

4 9

4 1

I

Attachment I to GNRO-97/00043 Page 17 of 34

2. MAIN STEAM LINE BREAK OUTSIDE CONTAINMENT
1. AfS1VClosure Time The MSIVs are assumed to close in 5 seconds which is the maximum time permitted by Technical Specification SR 3.6.1.3.6. An additional 0.5 second delay is modeled to detect the break. The MSIVs therefore close within 5.5 seconds.
2. Afass ofPrimary Coolant ReleasedBefore AfSIVClosure A GGNS-specific analysis has been performed to quantify the releases during this 5.5 second duration. This analysis determined that 107,600 pounds ofliquid (before flashing) and 26,600 pounds of steam would be released. This total of 134,200 pounds is slightly less than the generic value of 140,000 pounds reported for 251-inch BWRs in Section 15.6.4 of the Standard Review Plan, NUREG-0800.
3. Duration ofAccident and End ofSteam Releases This accident is considered to end once the MSIVs are closed. Reactor scram would occur on MSIV position. Reactor level would be maintained via High Pressure Core Spray (HPCS) or Reactor Core Isolation Cooling (RCIC). Reactor pressure would be controlled via blowdown of reactor steam to the suppression pool via the Safety / Relief valves.
4. Thermal Afargins and FuelFailure No fuel failures are assumed in this analysis. As demonstrated in the BWROG gap release timing report, fuel failure is not predicted to occur sooner than 121 seconds for the more severe recire line break.
5. Percent ofFuel Assumed to Experience DNB Although the associated reactor pressure transient may cause some fuel to experience DNB, the duration of this transient is so short that no fuel failures are assumed.
6. Reactor Coolant Activity Before Event GGNS Technical Specification 3.4.8 reports the allowable iodine concentration. Per Technical Specification 3.4.8, GGNS may continuously operate at 0.2 pCi/g 1-131 dose equivalent without entering an LCO. On this basis, the equilibrium iodine concentration is considered to be 0.2 pCi/g. Another higher level reported in TS 3.4.8,4.0 Ci/g, requires an immediate (12-hour) shutdown. The maximum iodine concentration (associated with a pre-accident spike) would therefore be 4.0 Ci/g.

GGNS Technical Specification 1.1 defines the Dose Equivalent 1-131 as:

that concentration ofI-131 (microcuries/ gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture ofI-131,1-132,1-133,1-134, and 1-135 actuallypresent. The thyroid dose conversionfactors usedfor this

s

, to GNRO-97/00043 Page 18 of 34 calculation shall be those listed in Table !!! cf TID-14844, AEC,1962,

" Calculation ofDistance Factorsfor Power and Test Reactor Sites "

7. Jodine isotopic Concentration Based on 1-131 Dose Equivalent The iodine isotopic concentration in the liquid phase at 0.2 pCi/g is reported below. Two percent l

of this activity is in the steam phase of the reactor coolant. The iodine isotopic concentration in the liquid phase at 4.0 pCi/g would be larger than the listed values by a factor of 20.

Isotope Activity -

Concentration (pCilg) b131 4.70E-02 1-132 4.66E-01 1-133 3.08E-01 1-134 8.91E-01 1-135 4.52E-01 Technical Specification 3.7.5 limits the gross gamma activity rate of the noble gases measured at the offgas recombiner efiluent to 380 mci /second after 30 minutes of decay. Based on this limit,

~

the associated noble gas generation rate in the reactor (no decay) is calculated with GE methods and reported below. All of this activity is assumed in the steam phase of the reactor coolant.

Isotope Relaase Rate isotope Release Rate (pCils)

(pCi/s)

Kr-83m 1.19E+04 Xe-131m 9.88E+01 Kr-85m 2.63E+04 Xe-133m 1.03E+03 Kr-85 9.00E+00 Xe-133 2.97E+04 Kr-87 7.79E+04 Xe-135m 1.14E+05 Kr-88 7.78E+04 Xe-135 8.10E+04

- Kr 89 4.93E405 Xe-137 5.63E+05 Kr 90 1.23E+06 Xe-138 3.27E+05 i

Kr-91 2.09E+06 Xe-139 1.14E+06 Kr-92 4.01E+06 Xe-140 1.86E+06 j

Kr-93 4.92E+06 Xe-141 4.05E+06 Kr-94 5.45E+06 Xe-142 4.57E+06 Kr-95 5.37E+06 Xe-143 5.29E+06 Kr-97 5.20E+06 Xe 144 2.12E+06

- 8. Release Point x!G Values i

Depending on the location of the break, a main steamline break outside containment would release source terms either into the turbine building or directly through the environment via J

... ~-

.- -. ~

1

.r t

x.

i i

Attachment I to GNRO-97/00043 4

Page 19 of 34 blowout panels. These source terms are assumed to be ground level releases. The ground release x/Q values are reported in Section 9. -

?

s 4-.)

?

i o

'I e

f 4

i t

T i

r i

'h t

t i

i b

4 i

i ao}

i f

0 e h 4

1 s

i j-i d

f q

.w p.

y y

e-*W

~-e 7

f

      • 7

s Attachment I to GNRO-97/00043 Page 20 of 34

3. CONTROL ROD DROP ACCIDENT
1. Coincident Loss ofOffsite Power The GGNS CRDA analysis assumes a coincident loss of offsite power (LOP). Sensitivity analyses have demonstrated that cases with offsite power available would be non-limiting due to the operation of the condenser offgas system.
2. liighest Cladding Temperature This parameter is not calculated in the GGNS control rod drop analysis. Consistent with Section 15.4.9 of the Standard Review Plan, NUREG-0800, a fuel rod failure threshold of 170 cal /g of deposited enthalpy is assumed.
3. liighest Fuel Enthalpy The maximum deposited enthalpy is determined on a cycle-specific basis to ensure that no fuel rod exceeds 280 cal /g consistent with Section 15.4.9 of the Standard Review Plan. The highest calculated fuel rod enthalpy for GGNS Cycle 8 reload was 181 cal /g.
4. Fraction ofthe Fuel Rods Experiencing Fuel Melt The amount of fuel calculated to achieve melting is 0.77% of the fuel mass in the failed rods.
5. Fraction ofthe Fuel Rods Experiencing Fuel Failure The GGNS CRDA dose analysis conservatively overestimates the fraction of rods experiencing failure. Although the Cycle 8 reload analysis reports only 86 rods exceeding the 170 cal /g failure threshold, the dose analysis assumes a bounding number of 1026 failed fuel rods.
6. Amount ofActivity Carried to the Turbine / Condenser Consistent with Appendix A to Section 15.4.9 of the Standard Review Plan,10% of the iodines and 100% of the noble gases released from the failed rods is assumed to be transported to the turbine / condenser.
7. Partition Factors in Turbine / Condenser Consistent with Appendix A to Section 15.4.9 of the Standard Review Plan,10% of the iodine and 100% of the noble gases reaching the turbine / condenser are assumed to remain airborne and available for leakage.

8 Turbine / Condenser Leak Rate Consistent with Appendix A to Section 15.4.9 of the Standard Review Plan, the turbine / condenser is assumed to leak at 1% per day for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

s Attachment I to GNRO-97/00043 Page 21 of 34

9. Release Point x/Q Values A control rod drop accident would release source terms into the turbine building which is not part of secondary containment. These source terms are assumed to be ground level releases. The ground release yfQ values are reported in Section 9.

P T

s Attachment I to GNRO-97/00043 Page 22 of 34 4; FUEL IIANDLING ACCIDENT

1. Decay Time The GGNS fuel handling analysis assumes that both the dropped and struck bundles have the minimum 24-hour decay time required by Technical Requirements Manual 6.9.1.
2. FuelPool Water Depth In the event of drops over the fuel racks in the auxiliary building and containment, over 23 feet of water coverage is available. In the event of drops over the core, over 46 feet of water coverage is available.
3. Gap Activity Released The GGNS fuel handling analysis credits the release fractions in Reg. Guide 1.25. An additional 20% of the iodine is assumed in the gap consistent with the NUREG/CR-5009 results for extended burnup fuel. The release fractions are tabulated below.

Isotope Release Fraction todines 12%

Kr-85 30%

Other Nobles 10%

4. Radial Peaking Factor The GGNS fuel handling analysis uses a radial peaking factor of 1.70 for both dropped and struck fuel bundles.
5. ladine Decontamination Factor in Pool For drops over the fuel racks, an overall pool decontamination factor (DF) of 100 is credited.

For drops over the core, the Reg. Guide 1.25 iodine species distribution and the associated species DF values predict a DF of 391 as shown below. However, a DF of only 200 is conservatively applied.

Pool DF (46-feet) 0.9975 Ci 0.0025 Ci 133*133 1

6. Release Period Regulatory Guide 1.25 permits releases over 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. The GGNS fuel handling analysis assumes an instantaneous release (i.e., no decay) in association with 2-hour x/Q values.

-w-+-

- - - +

g Attachment I to GNRO-97/00043 Page.23 of 34

7. Enclosure Building Normal Filtration System Isolation Time During fuel movement, the Fuel Handling Ventilation and/or the Fuel Pool Sweep Ventilation Systems will be operating. As discussed in USAR Section 9.4.2.2, these systems maintain the fuel handling area at a slightly negative pressure relative to the surrounding areas and have radiation detectors placed sufficiently upstream of the isolation valve that complete isolation can occur before any activity can pass the isolation valve. High radiation signals from these systems trip the associated fans, isolate secondary containment ventilation systems, and initiate the SGTS.
8. SGTSInitiation Time On an initiation signal, each SGTS subsystem can draw down the secondary containment to 0.25 inch of vacuum water gauge in 120 seconds per Tech. Spec. 3.6.4. 'No unfiltered outleakage is assumed during this drawdown time since the fuel handling area is initially at a slightly negative pressure relative to the surrounding areas and the secondary containment ventilation systems have been isolated.
9. Number ofFuel Assemblies The GGNS fuel handling analysis follows General Electric's NRC-approved GESTAR-Il methodology. This methodology assumes all rods in the dropped bundle fail in bending and that a number of rods in the struck bundles fail in compression. The GGNS analysis predicts that 144 and 96 fuel rods fail in the event of drops over the core and fuel racks respectively. Each fuel bundle is conservatively assumed to contain only 66 rods. Therefore, 2.18 and 1.45 fuel assemblies are determined to fail in the event of drops over the core and fuel racks respectively.
10. Containment Purge Valve Isolation Time The required valve closure time is 4 sec. Once the containment ventilation is isolated, the remaining airborne activity would migrate to the auxiliary building through any of the containment hatches that would be open during refueling.
11. Containment Purge Rate The containment high volume purge flowrate is 3000 cfm per train. With two trains operating, the total flow rate would be 6000 cfm.
12. Release Point x/Q Values A fuel handling accident would release source terms into the secondary containment. Secondary containment releases are assumed to be ground level releases. The two-hour x/Q values used in this analysis are reported below.

Location ylQ (m3/sec)

EAB (696 m) 1.26E.3 LPZ(3219 m) 2.84E-4 Control Room 3.29E-4

s Attachment I to GNRO-97/00043 Page 24 of 34

5. RWCU IIIGII ENERGY LINE BREAK Although the RWCU high energy line break is not currently analyzed for offsite and control room radiological impacts at GGNS, this event is considered for compartment pressurization issues. This section identifies the assumptions and data that would be appropriate for the radiological analysis of this event.
1. Power Level The RWCU line break would release coolant source terms into the secondary containment. The initial reactor power level would not be an input to this analysis.
2. Offsite Power Availability A loss of offsite power is assumed coincident with the break to obtain the longest blowdown period and consequently, the most severe compartme. pressurization and temperature profiles.
3. ThermalMargins andFuelFailure No fuel failures are assumed in this analysis. As demonstrated by the BWROG gap release timing report, fuel failure is not predicted to occur sooner than 121 seconds for the more severe recirc line break.
4. Percent ofFuel Assumed to Experience DNB Although the associated reactor pressure transient may cause some fuel to experience DNB, the duration of this transient is so short that no fuel failures are assumed.
5. Reactor Coolant Activity before Event Consistent with the main steam line break, the iodine isotopic concentration in the liquid phase at 0.2 pCi/g is reported below. The iodine isotopic concentration in the liquid phase at 4.0 Ci/g would be larger than the listed values by a factor of 20. No noble gases would be assumed in the liquio phase of the reactor coolant.

Isotope Activity Concentration (pCilg) 1-131 4.70E-02 1-132 4.66E-01 1-133 3.08E-01 1134 8.91E-01 1135 4.52E-01

6. Break Discharge Rate A number of breaks are postulated in the RWCU system. USAR Tables 6.2-34 to 38 report the break flow discharge rates for these events.

s:

Attachment I to GNRO-97/00043 Page 25 of 34

7. Break Location Postulated break locations are taken from USAR Tables 6.2-20,6.2-22,6.2-24, and 6.2-26.

Break Location Break Area (ft2)

RWCU Heat Exchanger Room 0.362 RWCU Breakin Main Steam Tunnel 0.160 RWCU Break in Filter /Demineralizer Room 0.362 RWCU Pump Holding Room 0.362 RWCU Valve Nest Room - 6" double ended break 0.362 RWCU Pipe Chase Transfer - 6' double ended break 0.362 9

8. Break Size See item'above.
9. Isolation Mode and Time The RWCU system is isolated on the following signals per TRM 3.3.6.1.

Iligh Differential Flow

~

Iligh RWCU lleat Exchanger Equipment Room Temperature Iligh RWCU Pumf Rooms Temperature liigh RWCU Valve Nest Room Temperature e

liigh Main Steam Line Tunnel Ambient Temperature e

Low Low Reactor Vessel Water Level e

SLCS Initiation Manual isolation 10 Total Amount ofBreak Flow Based on the flow rates reported in the response to Question 6, the worst-case break would i

release 42,074 pounds of reactor coolant to the auxiliary building. This release is less than one-third of the mass released in a main steam line break.

I1. Lodine isotopic Concentrations based on 1-131 Dose Equivalent The response to Question 5 reports the reactor coolant iodine concentrations.

--12. lodine Spike Assumed The offsite and control room radiological consequences of a RWCU line break are not currently evaluated.

Attachment I to GNRO 97/00043 Page 26 of 34

13. Release Point x/Q Values GGNS incorporates blowout panels that mitigate the pressurization effects of a RWCU line break. These panels open directly to the atmosphere and would release the steam associated with a RWCU line break. The y/Q values for these releases would be essentially identical to those for the main steam line break.

s to GNRO-97/00043 Page 27 of 34

6. RECIRC PUMP SEIZURE ACCIDENT The recirculation pump seizure accident during single loop operation has been analyzed for Cycle 9 with General Electric's methodology. This analysis concluded that this accident would not result in the violation of the MCPR safety limit. Therefore, no signi?icant fuel failures are expected in a pump seizure accident. This conclusion is consistent with the original GGNS Safety Evaluation Report, NUREG-0831.

The previous GGNS fuel vendor, Siemens Power Company, had calculated more severe consequences with a more conservative model. For Cycle 8, Siemens calculated that 4986 fuel rods experienced boiling transition and were conservatively assumed to fail. This gap release during power operation was modeled identical to the control rod drop accident, with the more restrictive radiological acceptance criteria of a small fraction of 10CFR100 per Section 15.3.3 of the Standard Review Plan.

1. Break Discharge Rate A core-wide boiling transition transient is assumed to fail a number of fuel rods releasing their gap activity into the reactor coolant. No breaks are postulated to occur in the reactor coolant pressure boundary.
2. Break Location No breaks are postulated to occur in the reactor coolant pressure boundary.
3. Break Size No breaks are postulated to occur in the reactor coolant pressure boundary.
4. Mininnun DNBR The minimum CPR is calculated to violate the MCPR safety limit. Consistent with Section 15.3.3 of the Standard Review Plan, fuel failure (rod perforation) is assumed for all rods that are

)

calculated to exceed this limit.

5. Fraction ofthe Fuel Rods Experiencing Fuel Melt No fuel rods are postulated to experience fuel melt as a result of this transient. Reactor power j

falls during this transient due to the associated core voiding. A temporary dryout condition occurs at the fuel cladding due to the rapid reduction in core flow.

6. Fraction ofthe Fuel Rods Erperiencing Fuel Failure The Cycle 3 analysis predicted 4986 fuel rods to experience boiling transition and were conservatively assumed to fail. The Cycle 9 analysis does not predict any rods to experience boiling transition.

0 Attachment I to GNRO-97/00043 Page 28 of 34

7. Fraction of Total Core inventory in the Gap Consistent with the gap inventory fractions for the control rod drop accident,10% of the iodines and 10% of the noble gases are assumed to be present in the gap.
8. Fraction oflodines and Noble Gases Released to the Reactor Coolant All of the gap activity of the fuel rods assumed to fail is released into the reactor coolant.
9. Reactor Coolant Activity Prior to Accident The reactor coolant activity at the onset of the accident is not modeled since it is insignificant compared to the postulated gap releases.
10. Steam Releasesfor Duration ofAccident Consistent with Appendix A to Section 15.4.9 of the Standard Review Plan,10% of the iodines and 100% of the noble gases released from the failed rods is assumed to be transported to the turbine / condenser. In addition,10% of the iodine and 100% of the noble gases reaching the turbine / condenser are assumed to remain airborne and available for leakage. The turbine / condenser is then assumed to leak at 1% per day for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

i1. Release Point x/Qs Similar to the control rod drop accident, a pump seizure accident would release source terms into the turbine building which is not part of secondary containment. These source terms are assumed to be ground level releases. The ground release yfQ values are reported in Section 9.

s Attachment I to GNRO-97/00043 Page 29 of 34

7. CONTROL ROOM
1. ControlRoom Volume The control room volume credited in the GGNS dose analyses is 2.53E5 cu. ft.
2. UnfilteredInleakage When the control room fresh air supply system is operated in the recirculation mode, the control room is not at a positive pressure to the surrounding environment. The maximum control room unfiltered inleakage is 590 cfm per Condition 38 to the GGNS Operating License. The GGNS dose analyses consider an additional 10 cfm of unfiltered inleakage due to ingress / egress per the guidance in Reg. Guide 1.78.
3. FilteredIntake Flow Rate The control room HVAC system can take 4,000 cfm of air from the intakes on Elevation 133' (ground level) and pass this air through the control room fresh air (CRFA) safety-related filter units before entering the control room. In this mode, the control room is at a higher pressure than the surrounding areas and there is no recirculation flow.
4. Recirculation Flow Rate The CRFA subsystem recirculates 4,000 cfm of control room air through the CRFA filter units.
5. Filter Eficiencies Per Technical Specification 5.5.7, the CRFA filters are tested in accordance with Reg. Guide 1.52. The CRFA IIEPAs are credited to remove 99% of the particulate iodine activity while the charcoal adsorber removes 95% of the elemental and organic iodine activity.
6. P&lDsfor the Control Room Envelope The control roo.m envelope is illustrated in Figures 1-3 of Engineering Report 91/0061, Rev.1.

j l

7. Modes ofOperationfor Each Accident The current radiological analyses conservatively do not credit the post-isolation fresh air makeup mode of operation, j
8. Control Room isolation Signalsfor Each Accident As discussed in GGNS SAR Section 9.4.1.3, the control room IIVAC intakes are automatically isolated in the event of(i) high radiation in the outside air intake duct, (ii) high drywell pressure, or (iii) low-low reactor water level. Non-LOCA events credit control room isolation on high radiation in the outside air intake duct.

.-m

--_,-..._m-__m.

s

  • to GNRO-97/00043 Page 30 of 34 5
9. Calculated lodine Protection Factorsfor Each Accident 2

No protection factor has been calculated for the GGNS control room. Instead, TRANSACT considers the transient effects of activity inleakage into the control room envelope based on the conditions in the surrounding areas.

1 I

l l

)

S 4 to GNRO-97/00043 Page 31 of 34

8. METEOROLOGY
1. Five year hourly meteorology data on PC disk (in format as shown in SRP Section 2.3.3, Appendix A)

The only readily available meteorological data is for the years 1995 and 1996. The data for years 1992-1994 is archived and will be supplied later. The 1995 and 1996 data for elevations 33 ft and 162 ft of the GGNS Meteorological tower are provided on the attached PC disk. In cases where the automated data collection system retrieved inapplicable information from the tower, the entry " nan" (for "No'. a Number") is reported. The format for this data is as follows:

Date and time, Wind Direction at 162-ft above grade (degrees), Wind speed at 162-f1 above grade (m/sec), Wind Direction at 33-R above grade (degrees), Wind speed at 33-R above grade (m/sec), Delta T (*C/100 meters)

2. EAB and LPZ distances (in 16 sectors)from DBA release points The relative ground-level air concentrations (x/Q values) for potential accidental releases of radioactive material from Grand Gulf Nucl:ar Station were performed using the PAVAN computer program. This computer program implements the guidance provided in Regulatory Guide 1.145," Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants."

A ground release includes all release points that are effectively lower than two and one-half times the height of the adjacent solid structures. The standby gas treatment (SGTS) vent is located at elevation 272' on the roof of the Auxiliary Building. The top of the Enclosure Building is at elevation 307'3". Therefore, the Grand Gulf release mode is classified as a ground release.

The current accident EAB and I,PZ x/Q values were conservatively based on the minimum site boundary distance of 696 m and a minimum low population zone distance of 3219 m from the containment center line. These minimum distances were conservatively used for all 16 sectors.

The minimum distance to the exclusion area boundary for various release points are given below from USAR Figure 2.1-2.

Vent Minimum distance to EAB (ft)

Radwaste Building 2030 Turbine Building 2090 Standby Gas Treatment 2350 Fuel Handling Area 2340 l

Containment 2240 Turbine Building Smoke Purge Exhaust 1990 The distances from the center point of the Unit I reactor to the site boundary, in 16 sectors, are reported below.

I l

.s Attachment I to GNRO-97/00043 i

Page 32 of 34 Direction Distance (m)

S 982 SSW 1046-SW 1368 WSW 1722

?

W 1835 WNW 2157 NW 2205 NNW 1642 N

1271 NNE 1062 NE 1014 ENE 1014 E

885 ESE' 885 SE 821 SSE 740

3. Control Room Air Intake Locations, distancesfrom DBA release points, and directions The control room air intakes are located on the west side of the control building. The locations of the DI3A release points and their distances to these intakes will be quantilled later.

1

4. Radius at exit, height, flow rates, flow temperaturefor stack, vent and all other release points.

The elevation of the reactor building (enclosure building) is 174.5 feet above grade. Since all release points are below this elevation, the accident x/Q values were based on a ground level release in accordance with Regulatory Guide 1.111.

L Meteorological tower instrument heights The instrumentation heights for the GGNS Meteorological Tower are 33 feet and 162 feet.

4

6. Elevation at plant grade and all other release points (and control room air intakes)

Plant grade elevation is 132.5 feet and the elevation of other release points are taken from USAR Figure 2.12 as follows:

Release Point Elevation (ft)

Radwaste Building 164 i

Turbine Building 232

[

Standby Gas Treatment 272 FuelHandling Area 272 Containment 193 i

p

~

s

Attachment I to GNRO-97/00043 N

Page 33 of 34 -

4

-)

x v.

7. Plant map showing all release points See USAR Figure 2.1-2.

n i ~

-8. Containment diameter and building area

. The ininimum width of the enclosure building (above Elevation 266') is 141 feet. The building

]

area, def'med 16 be the smallest vertical plane cross-sectional area of the reactor building, is 2729 2

3 m,

f jf' h

_ f i

E

.E i

I a.

e l

i P

a

~

I i

S 6

E k

i

-f I

1 3

l

+-

.--.,_.,n_

^

Attachment I to GNRO-97/00043 Page 34 of 34 9.GGNS /Q VALUES X

i The GGNS ground release yfQ values applied in the radiological analyses are reported below.

s5% PROBABILITY LEVEL X/G VALUES (sec/m3)

Time Period (lirs) 0-2 2-8 8 - 24 24 - 96 96-720 Site (696m) 1.26*10-3 LPZ (3219m) 2.84*10-4 1.56*10-4 1.16*10-4 6.06*10-3 2.39*10-3

5% PROBABILITY LEVEL x/Q. VALUES (sec/mJ)

Time Period i

0 - 2 min 2 min - 8 8 hrs - 24 24 hrs - 96 96 hrs - 720 hrs hrs hrs hrs Control 1.34

  • 10-J 3.29*10-4 1.96*10-4 1.08*10-4 6.98*10-6 f

Room i

l

.i i

t.

l

5 Attaciunent 2 to GNRO-97/00043 Page1of5-CORE SOURCE TERMS 4

l l

i i

t in

' Attachment 2 to GNRO-97/00043 Page 2 0f 5 Core Source Terms (in Curies)

Cere Average Core Aver _ age

. _.j Core Average

,,Bumup (GWd/MTU)

Bumup (GWd/MTU)

Bumup (GWd/MTU)

Isotope 10 36 isotope 10 36 isotope 10 36 AM239 2.02E-02 1.75E-01 CE145 1.21 E+08 1.10E+08 EU158 4.64E+05 9.80E+05 AM240 iO3E+00 4.38E+01 CE146 9.36E+07 8.81E+07 EU159 2.32E+05 5.22E+05 AM241 3.47E+03 2.19E+04 CE147 7.10E+07 6.80E+07 EU160 1.07E+05 2 39E+05 I

AM242 1.35E+06 9.78E+06 CE148 5.01E+07 4 97E+07 EU16?

4.55E+04 1.03E+05 AM242M 3.45E+02 3 03E+03 CE149 2.68E+07 2.75E+07 EU162 1.49E+04 3.03E+04 AM243 1.36E+02 3.98E+03 CE150 1.13E+07 1.27E+07 EU163 3.76E+03 7.08E+03 AM244 3.00E +04 1.27E+06 CE151 3.24E+06 3.79E+06 EU164 8.40E+02 1.42E+03 AM244M 5.71 E+05 2.41E+07 CE152 6.97E+05 8.35E+05 EU165 1.45E+02 2.23E+02 AM245 1.90E+00 2.50E+02 CE153 1.17E+05 1.48E+05 1128 3.12E+05 1.73E+06 AM246 3 08E-04 6.45E-02 CE154 1.31E+04 1.72E+04 1129 1.23E+00 4.57E+00 BA135M 9.78E+02 2.77E+04 CE155 1.50E+03 1.98E+03 1130 8.70E+05 4.34E+06 84U6M~3I73EI 5 1.42E+06~CE156 1.41 E+02 1.87E+02 1130M 3.36E+05 1.69E+06 BA137M 4.24E+06 1.44E+07 CE157 1.12E+01 1.46E+01 1131 7.56E+07 1.06E+08 BA139 2.02E+08 1.92E+08 CM241 9.92E-02 2.09E+00 1132 1.25E+08 1.53E+08 BA140 1.40E+08 1.85E+08 CM242 5.11E+05 6.29E+06 1133 2.13E+08 2.15E+08 4

BA141 1.84E+08 1.74E+08 CM243 1.27E+02 4.62E+03 1133M 5.19E+06 6.57E+06 BA142 1.78E +08 1.65E+08 CM244 8.26E+03 9.74E+ 05 1134 2.43E+08 2.36E+08 g

BA143 1.60E+08 1.44E+08 CM245 4.45E-01 1.29E+02 1134M 1.81 E+07 2.31 E+07 UA144 1.26E+08 1.09E+08 CM246 3.25E-02 4.18E+01 1135 2.03E+08 2.01 E+08 BA145 6.10E+07 5.5BE+07 CM249 1.64E-03 4.60E+01 1136 9.85E+07 9.52E+07 BA146 2.24 E+07 2.07E +07 CO 72 1.41 E+02 1.70E+02 1136M 5.98E+07 5.62E+07 BA147 4.94E+06 4.78E+06 CO 73 4.29E+01 5.44E+01 1137 1.01E+08 9 31E+07 BA148 7.94 E+05 8 44E+05 CO 74 9.33E+00 1.08E+01 1138 5.20E+07 4.63E+07 BA149 8 20E+04 9.58E+04 CO 75 1.24E+00 1.43E+00 1139 2.36E+37 2.06E+07 BA150 5.91E+03 7.17E+03DCS132 7.17E+03 2.98E+04 1140 7.01 E+06 5.83E+06 BA152 1.51E+01 1.91 E+01 CS134 3.80E+06 2.79E+07 1141 1.12E+06 9.65E+05 BR 79M 8.43E-01 1.89E+00 'CS134M 1.55E+06 6.37E+06 1142 1.34E+05 1.39E+05 BR 80 4.98E+01 9.35E+01 CS135 2.53E+01 8.40E+01 1143 8.01E+03 9.09E+03 BR 80M 3.01E+01 5.86E+01 CS135M 4.13E+05 3.98E+06 1144 6.14E+02 7.40E+02

_,4 BR 82 1.79E+05 7.13E+05 CS136 2.26E+06 8.63E+06 KR 81M 1.23E+00 3.84E+00 BR 82M 6.77E+04 2.73E+05 CS137 4.46E+06 1.52E+07 KR 83M 1.58E+07 1.30E+07 BR 83 1.58E+07 1.30E+07 CS138 ~

2.09E+08 1.96E+08 KR 85 4.67E+05 1.33E+06 BR'54~~iB85i+0'7"~23d5ib7 Cit 38M

~ 29EiO6~f25Ei65-RR 85M 3.555 i 7 8

~

~ I73Eid7 2

BR 84M 6.93E+05 7.99E+05 CS139 1.98E+08I 1T85Eid5-5f87 7T 7Ei67' T225i07 BR 85 3.52E+07 2.69E+07 CS140 1.79E+08 1.67E+08 KR 88 9.99E+07 7.35E+07 BR 86 2.62E +07 1.93E+07 CS141 1.36E+08 1.24E+08 KR 89 1.25E+08 8.96E+07 bR 86M 2.64E+07 1.94E+07 CS142 8.60E+07 7.53E+07 KR 90 1.24E+08 8.84E+07 BR 87 5 9/E+07 4.40E+07 CS143 4.48E+07 3.70E+07 KR 91 9.27E+07 6.58E+07 BR 88 6.73E+07 4.70E+07 CS144 1.11E+07 1.06E+07 KR 92 4.28E+07 3.24E+07 BR 89 5.01 E+07 3.30E+07 CS145 2.73E+06 2.66E+06 KR 93 1.52E+07 1.19E+07 BR 90 3.32E+07 2.10E+07 CS146 3.76E+057.'89EiO5 Kil94 6Y4EiOf 4.29E+06 BR 91 1.09E+0747.25E+06 CS147 5.60E+04 6.43E+04 KR 95 5.35E+05 5.50E+05 BR 92 8.14 E+05 7.68E+05 CS148 3.43E+03 4.17E+03 KR 96 8.58E+04 8.54E+04 BR 93 1.67E+05 1.39E+05 CS150 3.10E+00 3.92E+00 KR 97 4.21E+03 4.99E+03 4

BR 94

.1.31 E +04 1.17E+04 EU152 6.24 E+02 1,46E+03 KR 98 5.07E+02 5.86E+02 BR 96 4.20E+01 4.88E+01 EUTM-l.~74Ei65 1.58E+06JLA141 1.85E +08 1.75E+08 CE141 ~

1.69Ei65 ~ii52Ei66 EU156 3.41 E+06 2.42E+07 LA143 1.78E+08 1.61E+08 1.26E+08 1.76E+08 IEU155 1.77E+05 1.15E+06 LA142 1.82E+08 1.69E+08 CEi43 CE144 i 7.66E+07 1.33E+08 EU157 T 93EEid5 T74EiU6 LA144 T65E+08 li2EiOS

~

4 to GNRO-97/00043 Page 3 of 5 l._ Core Average l __

[.

Core Average l

Core Average lBurnup (GWd/MTU)

J_

Burnup (GWd/MTU) iBurnup (GWd/MTU)

Isotope i

10 35 ilsotope i

10 35 Isotope 10 35 LA145 1.13E+08 ~ 1.03E+08J NB111 i T58E+02 2.53E+02 PM153 7.29E+06 9.76E+06 LA146 7.23E+07 6.69E+07 ' ND147 5.29E+07 7.05E+07 PM154 3.58E+06 5.47E+06 4

5.57E+05{ 9.28E+05 PM154M LA147 3.46E+07 3.26E+07 ND149 3.78E+07 4.11E+07

.@ii8 C2yd[33E707]ND151 1.69Ee 07 2.13E+07 fM155 2.09E+06 3.465i65 LA149 2.90E+06 3.05E+06 ND152 1.52E+07 1.46E+07 PM156 l 1.02E+06 1.92E+06 LA150 5.16E+05 5.82E+05 ND153

'56E+06 8.605+06 PM157

' 4.65E+05 9.28E+05 Qi51

@fM] 5E y ] 56554

( f965+06 4.455i 6 -PM158

~1.44E+05 3.00EI 5

~ -

LA152 6.7K+03 8.42E+03 ND155 1.09E+06 1.72E+06 PM159 S57E+04 6.84 E+04 LA153 6.87E+02 8.76E+02 ND156 3.43E+05 6.16E+05 PM160 6.03E+03 1.14E+04 LA154 3.17E+01 4.06E+01 JND157 9.38E+04 1.73E+05 PM161 7.07E+02 1.33E+03 M3i9 1.55E U5 id65i65 UD158 1.44E 0ii 2.64E+04 PM162 3.74E+01 5.82E+01 I

7 M0101 1.72E+08 1.80E+08 ND159 1.49E+03 2.61 E+03 PR140 5.76E+02 2.77E+03 M0102 1.53E+08 1.70E+08 ND160 1.40E+02 2.00E+02 PR142 1.99E+06 9.57E+06 MO103

_1.29E+08! 1.62E+08 ND161 1.02E+01 1.42E+01 PR142M 3.76E+05 1.81E+06 BT895id7[ 9 05E+07 MOid4 1.28E+08

.NP235 1.32E-01 1.23E+00 PR143 1.18E+08 1.57E+08 5 55550f 1NP236M 1.60E+02 1.21 E+03 PR144 7.71E+07 1.34E+08 MOl05~~f53Ei67 4.86Eidf1SP237 M6T06 1.09E+01 5.88E+01 PR144M 9.21 E+05 1.60E+06 MDio7 935EiO'6 1.75570

^ A~P255

~ ~ ~8 22Ei65 6.19E+07 PR145 1.21 E+08 1.10E+08

~ 355+09 PR146 9.355I6f~8Ti5701 MO108 3.08E+06 5.07E+06 NP239 1.555 i09

~

2 g

MO109 1.01 E +06 1.61 E+06 NP240 1.19E+06 2.30E+06 JPR147 7.27E+07 6.99E+07 MO110 2.45E+05 3 27E+05 NP240M 2.14E+05 4 '2E+05 PR148 5.55E+07 5.53E+07 M0111 524E+04 6.75E+04 PD107 2.92E+00 1.67E+01 PR149 3.68E+07 3.86E+07 M0112 9.64E+03 1.23E+04 PD107M 1.08E+03 1.29E+04 PR150 2.24E+07b.57E+07 2

i.43E+07 M0113 6 86E+02 8.76E+02 yPD109 1.34E+07 3.73E+07 PR151 1.19E+07 MO114 7.02E+01 8.96E+01 PD109M 6.19E+06 1.45E+07 PR152 5.09E+06 6.31E+06 M0115 4 68E+00 5.97E+00 PD111 3.77E+06 7.48E+06 PR153 1.57E+06 2.01 E+06 NB 93M 3 39E+00 2.63E+01 PD111M 4 60E+04 1.15E+05 PR154 3.45E+05 4.80E+05 4

NB 94 3.93E 031 1.98E-02 PD112 2.30E+06 3.94E+06LPR155 6.65E+04j 9.63E+04 g

NB 94M 597E+01 1.20E+02 jPD113 1.99E+06 3.13E_+06QPR156 1.17E+04l 1.80E+04 NB 95 1.26E+08 1.77E+08 iPD114 1.52E+06 2.17E+06 PR157 1.89E+03[ 2.77E+03

~T24Ei06 PD115 1.54E+06 2.07E+06 PR158 1.46E+ 121 2.05E+02 NBi5M'~ ~8T965i65 1

NB 96 1.68E+05 3 20E+05 PD116 1.23E+06 1.57E+06g PR159 5.87E+ 101 7.99E+00 t

g NB 97 1.85E+08( 1.78E+08 PD117 1.18E+064 1.41 E+06 PU236 1 9.45E+00i 1.27E+02 NB 97M 1.74 E+08! 1.68E+08 PD118 9.19E+05 1.16E+06 PU237 ~

  • 2.74E+01i 6855702 1.87E O8I 1.81E+08

'PD119 5 88E+05 8.33E+05 PU238 3.89EidiT4'lET63 NB'98'

~

i NB 98M 1.26E+06 1.78E+06 PD120 2.53E+05 3.18E+05 PU239 2.30E+04 4.74E+04 NB 99 1.88E+08 1.84E+08 PD121 I 9.86E+04 1.25E+05 PU240 _j~ 1.77E+04 6.86E+04 NB59M STB 5E 06~i.5i5iO6I~PD122 l 3.01E+04 3.81 E+04 PU241 4.m+067 i~fi5id7

~

7 SB1d0 1.02Eid8 1.02Ei65~PD' 25 6.90E+03 8.67E+03i PU242 2.37E+01l 2.46E+02 1

SBi0dff'7 02Ei68T 02E708 PD124 1.27E+03 1.62E+03 PU243 3.54E+06l 4.79E+07 F.68E+08 PD126 1.79E+01 2.41 E+01

PU245 j 1.90E+00L2.50E+02 NB101 1.66E+08 1

NB102 1.33E+08 1.42E+08 PM146 7.17E+01 3.69E+02 PU246 3.08E 6.45E-02 NB103 8 41E+07 9.78E+07 M147 9.70E+06 1.57E+07 RB86 6.62E+04 2.79E+05 NB50i~~ 556E707 4.6AEid7 PMii5 1.40E+07 2.74 E+07 RB 86M 8.92E+03 2.78E+04 NBid5 108Eidf 1.555id7[PM14BM

~

2.31E+06 4.01 E+06 RB88 1.01E+08 7.48E+07 NB106 3.07E+06 4.12E+06 iPMii9 j'~4.23Eid7 ~5145707{ R5~5'9 1.5I5iO8 ~~55EidV 9

NB107 4.65E+05 6.29E+05 PM150 j 2 87E}05 5.36Ei 5 RB 90 1.29E+08 9.28E+07

~

1 1.64E+0ff 2.13E+07 NB108 1.11 E+05 1.37E+05_

PM151 RB 90M j 2.78E+07 2.18E+07 NB109 2 01E+04 2.64E+04

.PM152 1.15E+07 1.49E+07 RB 91 l 1.55E+08[1.16E+08 NBIid - ~ f33EiU3 f58$iO3'IPM152M 1.83E+05 2.76E+05[~ RB 92 I 1.33E+081 1.01E+08

~

5

, to GNRO-97/00043 Page 4 of 5 Core Average

(

Core A_verage

_ Core Average l

_.{Burnup (GWd/MTU)

!Burnup (GWd/MTU)

Burnup (GWd/MTU) isotope 10 L 36 isotope 10 35 isotope 10 36 RB43 9 99E+07

/.71E+07. iRU118 4.61E+04 5.89E+04 SM160 7.17E+04 1.56E+05 i

RB 94 5.12E+07 4.05E+07 RU120 9 64tI6L 1.23E+01 SM161 1.92E+04 4.27E+04

~

RB 95 2.65E+07 2.03E+07 SB122 5.96E+04 3.06E+05 SM162 3.01E+03 5.50E+03 i

RB 96 6.77E+06 5 82E+06 SB122M 4.77E+02 2.43E+03 SM163 3.77E+02 6.19E402 RB97 1.26E+06 1.11E+06 SB124 3.18E+04 1.91E+05 SM164 3.65E+01 5.41E+01 RB98 2.53E+05 2.47E+05 SB124M 5.33E+02 1.30E+03 SM165 2.41E+00 3.35E+00 RD 99 2.35E+04 2.45E+04 SB125 5.66E+05 1.84E+06 SR87M 1.68E+02 1.07E+03 RB100 1.83E+03 2.13E+03 SB126 5.58E+04 1.31E+05 SR 89 8.49E+07 9.89E+07 RH102 1.93E+01 1.69E+02 SB126M 3.09E+04 5.22E+04 SR 90 3.64E+06 1.06E+07 i

RH103M 8.56E+07 1.49E+08 SB127 7.34E+06 1.16E+07 SR 91 1.63E+06 1.24E+08 RH104 2.78E+07 1.07E+08 SB128 1.00E+06 1.57E+06 SR 92 1.70E+08 1.35E+08 RH104M 1.81E+06 7.00E+06 SB128M 1.61 E+07 1.90E+07 SR 93 1.85E+08 1.53E+08 RH105 6.12E+07 1.07E+08 SB129 2.84E+07l 3.44E+07 SR 94 1.72E+08 1.45E+08 RH105M 1.89E+07 3.19r.i+07 SB130 8.85E+06 1.11E+07 SR 95 1.60E+08 1.35E+08 RH106 2.08E+07 6.NE+07 SB130M 4.56E+07 4.99E +07 SR 96 1.12E+08 9.35E+07 RH10W 9.67E+05 2.25E+06 SB131 8 65E+07 8.84E+07 SR 97 5.86E+07 4.94E+07 RH107 2.96E+07 6.52E+07 SB132 5.47E+07 5.25E+07 SR 98 2.28E+07 1.96E+07 RH108 1.94E +07 4.50E +07 SB132M 3.47E+07 3.44E+07 SR 99 5.83E+06 5.37E+06 RH108M 1.7 t E+G f, 4.24E+05 SB133 6.93E+07 6.11E+07 SR100 1.06E+06 1.05E+06 RH109 1.23807 2.86E+07 SB134 9.98E+06 1.02E+07 SR101 1.48E+05 1.49E+05 RH109M 6.17E+06 1.43E+07 SB134M 9.29E+06 9.41E+06 SR102 1.25E+04 1.36E+04 RH110 5 99E+06 1.30E+07 SB135 6.59E+06 5.73E+06 SR103 3.83E+02 4.49E+02 RH110M 3.63E+05 9.26E+05 SB136 1.20E+06 1.12E+06 SR104 1.36E+01 1.82E+01 RH111 3.71 E+06 7.24E+06 SB137 1.52E+05 1.67E+05 TC99 5.90E+02 1.87E+03 RH112 2.21 E+06 3.69E+06 SB138 1.77E+04 2.08E+04 TC 99M 1.48E+08 1.75E+08 Riff 1'3 if3Ei65f 2.61E+06 SB139 1.27E+03 1.54E+03 TC100 1.27E+07 5.49E+07 RH114 1.13E+06 1.52E+06 SE 77M 7.47E+02 8.45E+02 TC101 1.72E+08 1.80E+08 RH115 8.95E+05 1.15E+06b SE 79 1.81 E+01 6.0iE+01 TC102 1.53E+08 1.71E+08

~ '48Ei65~SE 75M- ~UiE+05 C5T5765-IC102M 1.085+05 1.96E+05 i

R5 iib T375iO5 5

~~

RH117 3.14E+05 3.10E+05 SE 81 6.56E+06 5.74E+06 TC103 1.30E+08 1.65E+08 l

RH118 3.62E +05 4.62E+05 SE 81M 1.93E+05 1.57E+05 TC104 9.38E+07 1.37 E+08 RH119 2.47E+04 _3 63E+04 SE 83 5.99E+06 5.07E+06 TC105 6.66E+07 1.12E+08 RH120 _ _ 4.41 E +03 5.62E+03 SE 83M 9 64E+06 7.64E+06 TC106 3.94 E+07 7.74E+07 RH121 691E+02 8.85E+02 SEB4 2.82E+07 2.17E+07 TC107 1.99E+07 4.24 E+07 RH122 8.38E+01 1.07E+02 SE 85 1.74 E+07 1.26E+07 TC108 1.14 E+07 2.46E+07 RH123 7.22E+0_0 9.18E+00 SE 85M 1.26E+07 9 31E+06 TC109 5.53E+06 1.14 E+07 RU103 9.50E+07 1.65E+08 SE 86 3.56E+07 2.47E+07 TC110 1.69E+06 2.89E+06

~~

~

g RU165 6.74ET07 1.14EIO8 'SE 87 2.72E+07 1.99E+07 TC111 6.61 E+05 9.52E+05

~

1.86E+07 6.30E+07 SE 88 1.04 E+07 7.53E+06 TC112 2.46E+05 3.24E+05 RU106-~fMET0f{5T8Eio7

~SE89

~f858IU5~2i65+05-TC113 6.61 E+04 8.53ET64 FEU1U7

~

~

RU,103_

1.93E+0_7; 4 46E+07 JSE 90 9.50E+05 6.65E+05 TC114 1.50E+04 1.92 E+04 RU109 1.19E+ 07 2.75E+07 SE 91 1.18E+05 9.59E+04 TC115 3.18E+03 4.06E+03 RUI.10_

__5 63E+06_1._21 E+07]SE 92 4.46E+03 5.01E+03 TC116 8.47E+0D] 2.50E+02 1.96E+02 R,U111 2.90E+06 5.34E+06 QSM151 3 40E+04 7.04E+04 TC117 1.07E+01 RU112 1.53E+06 2.34E+06

~SMi55 f35EI06 4.17E+0blET25M 1.105+05 3.96$T05 SL1153 1.72E+07 5.27E+07 TE123M 1.64E+02 3.69E+03 t

4 RU113

~ iTBEI65"T.5IEiO6

~

RU114 4.47E+05 5.73E+05 SM156 1.35E+06 2.56E+06 TE127 6.996+06 1.15E+07

]

RU115 2.12E+05 2.69E+05 SM157 8.36E+05 1.69E+06 TE127M 7.89E+05 1.54E+06 RU116 4.76E+04 6.03E+04 SM158 4 33E+05 9.15E+05 TE129 2.72E+07 3.39E+07 1

RU117 7.61E+03 9.00E+03i,SM159 Tff1$705 4.365765 TET29M 3.04E+06

~

~ 645T05 5

1

. -.. ~

r

.. to GNRO-97/00043 Page 5 of 5 Core Average Core Average Burnup (GWd/MTU)

Burnup (GWd/MTU) isotope 10 36 Isotope 10 36 TE131 8.9?E+07 9.39E+07 Y104 1.97E+04 2.58E+04 TE131M 1.29E+67 1.54E+07 Y105 1.14E+03 1.33E+03 TE132 1.23E+08 1.51E+08 Y107 1.12E+00 8.55E-01 TE133 1.28E+08 1.26E+08 ZR 90M 2.28E-01 4.85E-01 TE133M 8.74E+07 7.80E+07 ZR 93 8.44E+01 2.66E+02 TET34 2.01E+08 1.77EI68 Z5 95 ii9E+08 1.76EI 8

~~

TE135 1.02E+08 9.29E+07 ZR 97

.1.84E+08 1.77E+08 TE136 5.71E+07 4.91 E+07 2R 98 1.85E+08 1.78E+08 TE137 1.48E+07 1.38E+07 ZR 99 1.82E+08 1.76E+ 08 TE138 3.60E+06 3.44E+06 ZR100 1.70E+08 1.63E+08 TE139 6.63E+05 6.69E+05 ZR101 1.11 E+08 1.04E+08 TE140 7.83E+04 8.22E+04 ZR102 6.00E+07 5.87E+07 TE141 3.41E+03 3.72E+03 ZR103 2.01E+07 2.15E+07 TE142 3.19E+02 3.97E+02 ZR104 3.94E+06 4.97E+06 EE'~27 5HE-01 1.135+0i

[ZR105 5.19E+05 6.71E+05 1

XE129M 626E+01 1.22E+03 ZR106 8.1GE+04 7.98E+04 XE131M 7.65E+ 05 1.18E+06 ZR107 3.90E+03 3.66E+03 XE133 1.59E+08 2.09E+08 ZR108 8.43E+02 1.04E+03 XE133M 5.50E+06 6.73E+06 ZR109 5.94E+01 7.59E+01 XEJ34M id2E+06 _160E+06 2

XE135 8.44E+07 7.36E+07 i

XEi35M 3.95sTO'7 4.24Ei07 AEi57 1.92E+08 1.88EiO8 XE_138 1.92E+08 1.77E+08 i

XE139 1.54E+08 1.38E+08 XE140 1.06E+08 9.02E+07 xdi41 iT35si0f~3I17607 XE142 1.26E,+07 1.09_E+07 XE143 1.94E+06 1.82E+06 XE144 3.19E+05 3.21 E+05 XE145 2.73E+04 _3 46E+04 XE146

___1.88E+03 2.24E+03 XE147 1.58E+02 1.99E+02 Y 89M 2.85E+01 5.38E+01 Y 90 3.73E+06 1.10E+07 Y 90M 9.41E+02 1.78E+03 Y.91 1.05E+08_1.28E+08 Y 91M 9.46E+07 _7.21 E+07.

Y 92 1.71E+08 1.35E +08 Y 93 1.89E+08 1.57E+08 Y 94 1.85E+08 1.59E+08 Y 95 1.93E+08 1.71 E+08 V~96 1.826d8 1.55E+08 Y 97 1.55E+08 1.40E+08 Y^98 1.12E+08 9.96E+07

~99 6T3tEI67 5.70biof-Y100 2.86E+07 2.57E+07 Y101 9.30E+06 8.35E+06 fiy2 2.11E+06 2.05E+06 Y103 2.67E+05 2.93E+05

i 9

.= to GNRO-97/00043 Page 1 of 12' TRANSACT CODE I

3 to GNRO-97/00043 Page 2 of 12 TRANSACT Code The TRANSACT code is a modification of the NRC's TACTS computer program which is, in turn, the successor to TACT 11I and earlier versions of TACT (an acronym for Transport of Activity). The TACT 5 computer code was modified to allow eight primary / secondary containment regions and to incorporate a generalized control room model to allow realistic modeling of the containment and to provide for the calculation of control room doses. The new code was named the TRANSACT code. Details of these modifications are provided below.

The control room is modeled as a single volume into which outside activity is introduced by inleakage (direct inleakage plus door openings, etc.) and forced infiow which may be filtered.

The activity in the control room is then removed by radioactive decay, cicanup filtration, or outleakage. For cases in which the control room is pressurized, inflow will generally exceed the outflow.

The following variables were added to incorporate a control room model.

CRQ1 Control Room forced air intake (cfm) - filtered intake CRQ2 Control Room inleakage (cfm) - unfiltered inleakage CRLEAK Control Room outleakage (cfm).

Normally CRLEAK = CRQ1 + CRQ2 to satisfy the control room mass balance unless the control room is pressurized.

CRRC Control Room forced recirculation flow rate (cfm)

.'ered recirculation CROCC Control Room occupancy Normally control room occupancy is:

1.0 0-24 hrs 0.6 24-96 hrs 0.4 96-720 hrs CRINFE(ITH)

Control Room filtered intake filter efficiency (%) for isotope ITH.

Specific filter efficiencies can be entered for elemental, organic and particulate iodine.

CRRCFE(ITil)

Control Room filtered recirculation filter efficiency (%) for isotope ITH. Specific filter efiiciencies can be entered for elemental, organic and particulate iodine.

ACRIN(ITII)

Activity ofisotope ITH entering control room (Ci)

f

, to GNRO-97/00043 Page 3 of 12 t

ACTCR(ITfi)

Activity ofisotope ITH in control room at end of current time step (Ci)

ACTO (ITH)

Activity ofisotope ITH in control room at end of previous time i

step (Ci)

The changes to the time dependent input involves lines of code added to establish the time dependent control room parameters. These lines are described below i

' CONTROL ROOM

'.0.0.0,0,5, 6.000E+02, 0.000E +00, 6.000E + 02, 4.000E +03,1.000E+00

[

l Control Room occupancy Control Room recirculation flow Control Room Outleakage Filtered Air Intake Control Room inleakage Number of data items to be read (always 5)

~

First Four entries Not Used (i.e.,0,0,0,0)

Cor..rol Room Data Designation The time dependent format for control room filters, x/Q, and Breathing rate are:

Recirculation Filter Efficiency i

Intake Fi'ter Efficiency

'CR FILTER EFF ' 1,1,0,0,2,0.950E+02 0.000E+00

<- Elementallodine Filter Efficiency

'CR FILTER EFF '.1,2.0,0,2,0.950E+02 0.000E+00

<- Particulate lodine Filter Efficiency

'CR FILTER EFF ',1,3,0,0,2,0.950E+02,0.000E+00

<- Organic lodine Filter Efficiency

' DOSE PARAMS ' 0,0,0,0.7,1.080E-03, 3.47E-04, 3.260E -04, 3.470E -04,1.340E -03, 3.470E -04, 0.350E+00 Control Room X/Q and Breathing Rate t

1 l

1 1

  • to GNRO-97/00043 1

Page 4 of 12 t

l 1

The TRANSACT inputs used in the LOCA analysis are given below:

i l

'c \\TFANSACT\\GGICPP30 1

,'c \\MTAPE

','c \\NTAPE i

'ct\\LTAPE '

'GGN3 - LOCA Calculation; Calculation using ICPP 30 DCr's, SP Dr=10, CR Vol - 2.53E5 cuft

'GGNS LOCA Calc. Rerleion 4; GGNS LOCA Airborne Ooses'

' Input files GGLOCA.R4 outputs GGLOCA.SP4 j

'SCTS Bypass = 50 cfs, Control Poom Inleakage - 600 cfm 0, 0, 0, 1, 0 5,

3

' Sprayed ','Drywell ','Unsprl3)','Unspr(4)','Sec_ Cont' 23 3.993E+03, 0.000E+00 0,250E+00, 1.000E+00 0.000E+00, 0,000E+00 0.910E+00, 0.040E+00, 0.050E+00 l

1.000E+00, 0.000E+00, 0.000E+00 9.92?E+05, 2.700E+05, 2.383E+05, 1.690E+05, 3.000E+05, 2.530E*05

' TIME INTERVAL

',0,0,0,0,2, 0.000E+00, 5.555E-05

  • !NITIAL FRACTION',0,0,0,0,5, 0.000E+00, 1.000E+00, 0.000E+00, 0.000E400, 0.000E+00

'TRANSTER IERCENT',0,0,0,1,6, 3.500E-01, 0.000E+00, 0.000E+00, 5.950E+02, 8.123E+02, 0.000E+00

'TRANSTER PERCENT',0,0,0,2,6, 0,000E+00, 8. 8 81E4 03, 0.000E+00, 8.881E+03, 8.881E+03, 0.000E+00

'TRANErEk FERCENT ',0,0,0,3,6, 3.500E-01, 4.364E+03, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

'TRANSTER PERCENT *,0,0,0,4,6, 3.500E-01, 2.9f5E+03, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

'TkANSTER PERCENT',0,0,0,5,6, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

' CONTROL ROOM

',0,0,0,0,5, 6.000E+02, 0.000E400, 6.000E+02, 4.000E+03, 1.000E+00

'CR FILTER Err

',1,1,0,0,2, 0.950E+02 0.000E+00

'CR FILTER Err

',1,2,0,0,2, 0.950E+02 0.000E+00

,1,3,0,0,2, 0.990E+02, 0.000E+00

',0,0,0,0,7,

'CR r!LTER Err 1.260E-03, 3.470E-04, 2.840E-04, 3.470E-04, 1.340E-03, 3.47CE-04, 0.350E+00

'DOUE FARAMS

' TIME INTEkVAL

',0,0,0,0,2, 5.555E-05, 1.389E-04

  • 1RANSf1R PEkCENT',0,0,0,2,6, 0.000E+00, 1.205E+04, 0.000E+00, 1.205E+04, 1.205E+04, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 1.389E-04, 2.778E-04

'TRANSTER PERCENT',0,0,0,2,6, 0.000E+00, 1.402E+04, 0.000E+00, 1.402E+04, 1.402E+04, 0.000E+00

' TIME INTE RVAL

',0,0,0,0,2, 2.77BE-04, 3.333E-04

'TRANOf1R PEPCENT',0,0,0,2,6, 0.000E+00, 1.414E+04, 0.000E+00, 1.414E404, 1.414E+04, 0.000E+00

' TRANSFER CFM

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E400, 4.940E+06, 0.000E+00, 0.000E*00

'r!LTER [Fr

',1,1,0,2,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.900E+02, 0.000E+00

'rLLTER Efr

',1,2,0,2,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

'rILTER Err

',1,3,0,2,5, 0.000E+00, 0.000E+00, 0.000E*00, 0.900E+02, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 3.3330-04, 5.556E-04

'TRANSITR PERCENT',0,0,0,2,6, 0.000E+00, 1.414E+04, 0.000E400, 1.414E+04, 1.414E+04, 0.000E+00

  • TEANSIER CrN
  • 0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 8.829E+06, 0.000E+00, 0.000E+00 f

'T!ME INTERVAL

  • TRANSITP PERCENT',0,0,0,2,6, 0.000E400, 1.31eE+04, 0.000E+00, 1.318E+04, 1.31eE+04, 0.000E+00

'TPANSFER CIN

  • 0,0,0,2,6, 0.0000+00, 0.000E+00, 0.000E+00, 1.066E+07, 0.000E+00, 0.000E+00
  • TIME INTERVAL

' 0,0,0,0,2, 8.333E-04, 1,389E-03

'TRANSrER PERCENT',0,0,0,2.6, 0.000E+00, 1.24eE+04, 0.000E+00, 1.248E+04, 1.248E+04, 0.000E+00

' TRANSFER CIN

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 8.074E+06, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 1.389E-03, 2.77BE-03

' TRANS f ER ITRCENT',0,0,0,2,6, 0.000E+00, 1.163E+04, 0.000E+00, 1.163E+04, 1.163E+04, 0.000E+00

'TRANZrER CrH

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 8.028E+06, 0.000E+00, 0.000E+00

' TIME INTERVAL

  • 0,0,0,0,2, 2.778E-03, 5.5560-03 i

'TRANS TER PEftCENT',0,0,0,2,6. 0.000E+00, 1.152E+04, 0.000E+00, 1.152E404, 1.15?E+04, 0.000E+00

'TRANSitR CFM

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 6.786E+06, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 5.55fE-03, 8.333E-03

'THANSFER PERCENT',0,0,0,2,6, 0.000E+00, 1.070E+04, 0.000E+00, 1.070E+04, 1.070E+04, 0.000E+00

'TRANSTER CFM

  • 0,0,0,2,6. 0.000E+00, 0.000E+00, 0.000E+00, 2,919E+06, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 8.333E-03, 1.389E-02

  • TRANS TE R IthCENT ',0,0,0,2,6, 0.000E+00, 8.79BE+03, 0.000E+00, 8.790E+03, 8.798E+03, 0.000E+00
  • TRANSTER CIN

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 5.332E+05, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 1.309E-02, 3.330E-02

'TRANSTER PERCENT',0,0,0,2,6, 0.000E400, 7.080E+03, 0.000E+00, 7 080E+03, 7.000E+03, 0.000E+00

'TRANSF1R CFM

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E400

' TIME INTERVAL

' 0,0,0,0,2, 3.330E-02, 2.167E-01

  • TRANSFER PERCENT',0,0,0,1,6, 0.000E+00, 0.000E+00, 0.000E400, 5.950E+02, 8.123E+02, 3.500E-01

'TRANSrER PERCENT',0,0,0,2,6, 0.000E+00, 6.222E+03, 0.000E+00, 6.222E+03, 6.222E+03, 0.000E+00

'TRANSrER PERCENT',0,0,0,3,6, 0.000E*00, 4.364E+03, 0.000E+00, 0.000L+00, 0.000E+00, 3.500E-01

' ikANS rER TERCENT ',0,0,0,4,6, 0.000E+00, 2.965E+03, 0.000Een0, 0.000E+00, 0.000E+00, J 500E-01

'TRAN$ rEk FEkCENT *,0,0,0,5,6, 2.400E+01, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E-00

'TAANSITR CFM

' 0,0,0,5,6, 4,300E+03, 0.000E+00, 0.000E+00, 0,000E+00, 0.000E400, 1.270E+04

'1'!LTER Err

,1,1,0,5,1, 0.990E+02

'rILTER Err

  • ,1,2,0,5.1, 0.990E+02

'rILTER Err

',1,3,0,5,1, 0.990E+02

' DOSE FAAAMS

',0,0,0,0,7, 1.260E-03, 3,470E-04, 2.840E-04, 3.470E-04, 3.290E-04, 3.470E-04, 0.350E400

' TIME INTERVAL

',0,0.0.0,2, 2.167E-01, 0.333E+00

'TRANSitR CFM

' 0,0,0,1,6, 0.000E+00, 0.000E*00, 1.000E+03, 0.000E+00, 0.000E+00, 0.000E+00

'TRANSITR CrH

',0,0,0,2,6, 0.000E+00, 0.000E+00, 0.000E+00, 1.000E+03, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 0.333E+00, 0.500E+00

'TRANSetR PERCENT *,0,0,0,2,6, 0.000E+00, 6.222E*03, 0.000E+00, 6.222E+03, 6.222E+03, 2.222E-01

1

,, to GNRO-97/00043 Page 5 of12

' TIME INTERVAL

',0,0,0,0,2, 0.500E*00, 1.095E+00

TRAN$rER PERCENT',0,0,0,1,6, 0.000E+00, 0.000E+00, 0.000E+00, 9,574E+03, 8.123E+02, 3.500E-01

' TRANSFER PERCENT',0,0,0,3,6, 0.000E+00, 7.024E+04, 0.000E+00, 0.000E+00, 0.000E,30, 3.500E-01

' REMOVAL RATE

',1,1,0,0,5, 6.900E+00, 0.000E+00, 0.000E+00, 0,000Z+00, 0.000E+00

' REMOVAL RATE

',1,2,0,0,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

'RLMOVAL RATE

',1,3,0,0,5, 9.700E+00, 0.000E+00, 0.900E+00, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2i 1.095Ee00, 2.000E+00

' REMOVAL RATE

',1,3,0,0,5, 0.970E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

' TIME INTERVAL

',0,0,0,0,2, 2.000E+00, 2.19E*00

' DOSE PARAMS

' 0,0,0,0,7, 0.000E+00, 3.470E-04, 1.560E-04, 3.470E-04, 3.290E-04, 3.470E-04, 0.350E+00

' TIME INTERVAL

',0,0,0,0,2, 2.19E+00, 2.910E+00

' REMOVAL RATE

',1,1,0,0,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00 l

  • TIME IRTERVAL

',0,0,0,0,2, 2.910E+00, 0.000E+00

'TRANSITH PER0ERT',0,0,0,2,6, 0.000E+00, 6.222E+03, 0.000E+00, 6.222E+03, 6.222E+03, 0.609E+00

' TIME INTERVAL

' 0,0,0,0,2, 8.000E+00, 2.400E+01

' DOSE l'ARAMS

  • 0,0,0,0.7, 0.000E+00, 1.750E-04, 1.160E-04, 1.750E-04, 1.960E-04, 3.470E-04, 0.350E+00

' TIME INTERVAL

' 0,0,0,0,2, 2.400E+01, 9.600E+01

' FILTER EFF

  • 1,1,0,2,5, 0.000E+00, 0.000E*00, 0.000E+00, 0.000E+00, 0.000E+00

'rILTER Err

',1,2,0,2,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

' FILTER EFF

',1,3,0,2,5, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00, 0.000E+00

' CONTROL RDOM

',0,0,0,0,5, 6.000E+02, 0.0000,00, 6.000E+02, 4.000E+03, 0.600E+00

' DOSE PARAMS

',0,0,0,0,7, 0.000E+00, 2.320E-04, 6.060E-05, 2.320E-04, 1.060E-04, 3.470E-04, 0.350E+00

  • TIME INTERVAL

',0,0,0,0,2.

9.600E+01, 7.200E+02

' CONTROL ROOM

',0,0,0,0,5, 6.000E+02, 0.000E+00, 6.000E*02, 4.000E+03, 0.400E+00

' Dose PARAMS

',0,0,0,0,7, 0.000E*00, 2.320E-04, 2.390E-05, 2.320E-04, 6.980E-06, 3.470E-04, 0.350E+00

'END

',0,0,0,0,0, 0.000E+00, 0.000E+00

v_..

  • to GNRO-97/00043 Page 6 of12 The output obtained from the GGNS LOCA Analysis is as follows:

TRANSACT Version 1.0, Revision 1 Based on TACT V SEP 87 PC VERSION REVISED TO REVISION 1 FEBRUARY 1995 BY OMECA TECHJ4! CAL SERVICES, INC.

MODIFIED FALL 1992 FOR GGNS SY OMEGA TECHNICAL SERVICES, INC.

NUCLEAR REGUIATORY COMMISSION ACCIDENT EVALUATION BRANCH DATE 3/ 8/1996 TIME 14:38 29 r

MODEL

SUMMARY

FOR CASE 1

GCNS - LOCA Calculation) Calculation using ICRP 30 DCr GCNS LOCA Calc. Revision 4; GGNS LOCA Airborne Doses Ir put File s GGLOCA.R4 output: GGLOCA.SP4 SGTS Bypass = 50 cfm, Control Room Inleakage = 600 cfm 1

TIME INDEPENDENT INPUT CASE NUMBER 1

NODES NSTEP 5

23 OUTPUT CONTROL PARAMETER I

1 2

3 4

5 I FRINT (Il 0

0 0

1 0

NUMBER OF DOSE EVALUATION POINTS - 3 POWER (HWT)

REACTOR SHUTDOWN TIME (HRS) 3.993E+03 0.000E+00 FRACTION OF ACTIVITY RELEASED FROM CORE TO CONTAlf. MENT BY ISOTOPIC GROUP MALOGENS NOBLES 2.500E-01 1.000E+00 PIATEOUT FACTOR FOR ACTIVITY RELEASED FROM CORE TO CONTAINMENT BY ISOTOPIC GROUP RALOGENS NOBLES 0.000E+00 0.000E+00 TkACTION OF CORE INVENTORY AIRBORNE IN THE CONTAINMENT DY ISOTOPIC GROUP RALOGENS NOBLES 2.500E-01 1.000E+00 ISOTOPIC SPLIT BY GROUP ELEM.

ORG.

FART.

HALOGENS 9.100E-01 4.000E-02 5.000E-02 NOBLES 1.000Et00 0.000E+00 0.000E+00 VOLUME OF NODES (CU FT)

Sprayed Drywell Unspr(3)

Unspr(4)

Sec Cont 9.927E+05 7.700E+05 2.303E+05 1,690E+05 3.0 DOE +05 CONTROL ROOM VOLUME (CU IT) 2.630E+05 DATA FROM NUCLIDE FILE c \\ TRANSACT \\GGICRP30 ISOTOFE SOURCE DOSE CONVERSION FACTORS NAME SPLIT (C1/MWT)

WHOLEDDY SKIN THYROID bR 82 ELEM.

6.2AE+01 0.000E+00 0.000E+00 0.000E+00 BR 92 ORG.

2.76E400 0.000E*00 0.000E+00 0.000E+00 DR 82 FART.

3.45E+00 0.000E*00 0.000E+00 0.000E+00 kR 83 LILM. 2.67E+03 0.000E+00 0.000E+00 0.000E+00 BR 63 ORG.

1.17t+02 0.000E+00 0.000E+DO 0.000E+00 BR 63 FART.

1.47E+02 0.000E+00 0.000E+00 0.000E+00 fin 84

ELEM, 3.95E+03 0.000E+00 0.000E+00 0.000E+00 PR B4 ORG.

1.74E+02 0.000E*00 0.000E+00 0.000E+00 BR 84 TART.

2.17E+02 0.000E+00 0.000E+00 0.000E600 BR 85 ELEM.

4.48E+03 0.000E+00 0.000E+00 0.000E+00 I

s.

4.

  • to GNRO-97/00043 I

Page 7 of 12 BR 85 ORG.

1.97E+02 0.000E+00 0.000E+00 0.000E+00 DR 85 FART.

2.46E+02 0.000E+00 0.000E+00 0.000E+00 1 129 ELEM.

0.00E+00 3.020E-03 2.435E-02 5.542E+06 1 129 ORG.

0.00E+00 3.020E-03 2.435E-02 5.542E+06 1 129 FART. 0.00E+00 3.020E-03 2.435E-02 5.542E+06 1 131 ELLM.

2.51E+04 5.590E-02 3.070E-02 1.100E+06 1 131-ORG.

1.10E*03 5.590E-02 3.070E-02 1.100E+06

! 131 PART.

1.39E403 5.590E-02 3.070E-02 1.100E+06 1 132 ELEM.

3.81E+04 3.550E-01 1.100E-01 6.300E+03

)

1 132 GRG.

1.67E+03 3,550E-01 1.100E-01 6.300E+03 1 132 FART. 2.09E+03 3.550E-01 1.100E-01 6.300E*03 1 133 ELEM.

5.63E*04 9.110E-02 8.900E-02 1.800E+05 1 133 ORG.

2.47E+03 9.110E-02 8.900E-02 1.800E+05 1 133 FART.

3,09E*03 9.110E-02 8.900E-02 1.800E+05 1 134 ELEM.

6.58E+04 4.110E-01

1. 4 20r.-01 1.100E+03 1 134 ORG.

2.89E+03 4.110E-01 1.420E-01 1.100E+03 1 134 FART.

3.62E+03 4.110E-01 1.420E-01 1.100E+03 1 135 ELEM.

5.11E*04 2.490E-04 7.860E-02 3.100E+04 1 135 ORG.

2.25E+03 2.490E-01 7.860E-02 3.100E+04 1 135 FART. 2.81E*03 2.490E-01 7.860E-02 3.100E+04 1 136 ELEM. 0.00E+00 6.786E-01 1.300E+00 0.000E+00 1 136 ORG.

0.00L+00 6.786E-01 1.300E+00 0.000E+00 1 136 FART.

0.00E+00 6.786E-01 1.300E+00 0.000E+00 ER 83M ELEM.

4.15E+03 1,270E-05 0.000E400 0.000E+00 KR 85M ELEM.

1.30E+04 2.310E-02 4.970E-02 0.000E+00 ER 85 ELEM.

4,100+02 3.310E-04 4.840E-02 0.000E+00 kR 87 E LEM.

2.34E*04 1.330E-01 3.360E-01 0.000E+00 ER 6e E LEM.

3.20E+04 3.380E-01 7.760E-02 0.000E+00 KR 89 ELEM.

3.90E+04 3.030E-01 3.4700-01 0.000E+00 XE 131H ELEM. 2.60E+02 1.250E-03 1.3300-02 0.000E+00 XE 133M E LF.M.

1.380+03 4.290E-03 2.960E-02 0.000E+00 XE 133 ELEM.

5.62E+04 4.960E-03 9.670E-03 0.000E+00 XE 135M E LEM.

1.56E+04 6.370E-02 2.140E-02 0.000E+00 XE 135 ELEM.

5.36E+04 3.590E-02 6.320E-02 0.000E+00 XE 137 ELEM.

5.10E+04 2.830E-02 4.590E-01 0.000E+00 XE 138 ELEM.

4.78E+04 1.870E-01 1.470E-01 0.000E+00 TIME DEPENDENT INPUT i

CASE NUMBER 1

TIME INTERVAL 0

0 0

0 2

0.00000E+00 5.55500E-05 INITIAL FRACTION 0

0 0

0 5

0.00000E400 1.00000E+00 0.0C000E+00 0.00000E+00 0.00000E+00 TRANSFER l'ERCENT 0

0 0

1 6

3.50000E-01 0.00000E+00 0.00000E+00 5.95000E+02 8.12300E+02 0.00000E+00 TkANSITR PERCENT O

O O

2 6

0.00000E+00 8.88100E+03 0.00000E+00 8.88100E+03 8.88100E+03 0.00000E+00 TPAN5FER l'ERCENT 0

0 0

3 6

3.50000E-01 4.36400E+03 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 TRANSITR PERCENT 0

0 0

4 6

3.50000E-01 2.96500E+03 0,00000E+00 0.00000E+00 0.00000E+00 0.00002E400 TFINSFER OERCENT 0

0 0

5 6

0.00000E+00 0.00000E+00 0.00000E*00 0.00000E400 0.00000E+00 0.00000E+00 CONTROL ROOM 0

0 0

0 5

6.00000E+02 0.00000E+00 6.00000E+02 4.00000E+03 1.00000E+00 CR FILTER EFT 1

1 0

0 2

9.50000E+01 0.00000E+00 CR FILTER Err 1

2 0

0 2

9.50000E+01 0.00000E+00 CR FILTER Efr 1

3 0

0 2

9.90000E+01 0.00000E+00 DOEE PARAMS 0

0 0

0 7

1.26000E-03 3.47000E-04 I

2.84000E-04 3.47000E-04 1,34000E-03 3.47000E-04 3.50000E-01 TIME INTERVAL 0

0 0

0 2

5.55500E-05 1.38900E-04 TRANSFER FERCENT 0

0 0

2 6

0.00000E+00 1.20500E+04 0.00000E+00 1.20500E+04 1.20500E+04 0.00000E+00 TIME INTERVAL 0

0 0

0 2

1.30900E-04 2.77800E-04 TRANSITH PERCENT U

0 0

2 6

0.00000E+0C 1.40200E+04 0.00000E+00 1.40200E+04 1.40200E*04 0.00000E+00 TIME INTERVAL 0

0 0

0 2

2.77800E-04 3.33300E-04 1

TRANSITR PEkCENT C

0 0

2 6

0.00000E+00 1.41400E+04 1

0.00000E+00 1.41400E+04 1.41400E+04 0.00000E+00 TRANSFER CfN 0

0 0

2 6

0.00000r+00 0.00000E+00 0.00000E+00 4.94000E+06 0.00000E+00 0.00000E+00 FILTER EFf' 1

1 0

2 5

0.00000E+00 0.00000E+00 0.00000E+00 9.00000E*01 0.00000E+00 FILTER EIT 1

2 0

2 h

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 FILTER EFF 1

3 0

2 5

0.00000E+00 0.00000E+00 0.00000E+00 9.00000E+01 0.00000E+00 TIME INTERVAL 0

0 0

0 2

3.33300E-04 5.55600E-04 TRANSITR PERCENT 0

9 0

2 6

0.00000E+00 1.41400E+04 0.00000E*00 1.41400E+04 1.41400E+04 0.00000E+00 TRANSFER CFM

. 0 0

0 2

6 0.00000E+00 0.00000E+00 0.00000E+00 e.82900E+06 0.00000E+00 0,00000E+00 TIME INTERVAL 0

0 0

0 2

5.55600E-04 8.33300E-04

)

i

(

  • to GNRO-97/00043 Page 8 of12 1

TRANSFER PERCENT 0

0 0

2 6

0.00000E*00 1.31600E+04 0.00000E+00 1.31800E+04 1,31800E*04 0.00000E+00 I

TRANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 0.00000E+00. 1.06600E+07 0.00000E+00 0.00000E+00

)

TIME INTERVAL 0

0 0.

0 2

8.33300E 1.38900E-03 TRANSFER PERCENT C

0 0

2 6

0.00000E+00 1.24800E+04 0,00000E+00 1.24800E+04 1.24800E+04 0.00000E+00 TRANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 0.00000E+00 8.07400E+06 0.00000E+v0 0.00000E+00 TIME INTERVAL 0

0 0

0 2

1.38900E-03 2.17800E-03 TRANSFER PERCENT 0

D 0

2 6

0.00000E+00 1.16300E+04 0.00000E*00 1.16300E+04 1.16300E+04 0.00000E+00 TFANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 3

TIME LEPENDENT INPUT CASE NUMBER 1

O.00000E+00 0.02800E+06 0.00000E+00 0.00000E+00 TIME INTERVAL 0

0 0

0 2

2.77800E-03 5.55600E-03 TRANSFER PERCENT 0

0 0

2 6

0.00000E+00 1.15200E+04 0.00000E+00 1.15200E+04 1.15200E+04 0.00000E+00 TRANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 0.00000E+00 6.78600E+06 0.00000E+00 0.00000E400 5

TIME INTERVAL 0

0 0

0 2

5.55600E-03 8.33300E-03 TRANSFER PERCENT 0

0 0

2 6

0.00000E+00 1.07000E+04 0.00000E+00 1.07000E+04 1.07000E+04 0.00000E+00 TRANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 C.00000E+00 2.00000E+00 9.19000E+08 0.00000E+00 TIME INTERVA1, 0

0 0

0 2

8.33300E-03 1.38900E-02 TRANSFER PERCENT 0

0 0

2 6

0.00000E+00 8.79800E+03 0.00000E*00 0.79800E+03 8.19800E+03 0.00000E+00 TRANSFER CFM 0

0 0

2 6

0.00000E+00 0.00000E+00 0.00000E+00 5.33200E+05 0.00000E+00 0.00000E+00 TIME TNTERVAL 0

0 0

0 2

1.38900E-02 3.33000E-02 TRANSITR PERCENT C

0 0

2 6

0.00000E400 1.08000E+03 0.00000E+00 7.08000E+03 1.00000E+03 0.00000E+00 TRANSITR CFM 0

0 0

.?

6 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 TIME INTERVAL 0

0 0

0 2

3.33000E-02 2.16700E-01 i

TRAN$FER PER0ENT 0

0 0

1 6

0.00000E*00 0.00000E+00 0.00000E+00 5.95000E+02 8.12300E+02 3.50000E-01 TRANSFER PERCENT 0

0 0

2 6

0.00000E+00 6.22200E+03 0.00000E+00 6.22200E+03 6.22200E+03 0.00000E+00 TRANSFER PF.RCENT C

0 0

3 6

0.00000E+00 4.36400E+03 0.00000E+00 0.00000E+00 0.00000E+00 3.50000E-01 TPANSTER PERCENT C

0 0

4 6

0.00000E+00 2.96500E+03 0.00000E+00 0.00000E+00 0.00000E+00 3.50000E-01 inANSFER PERCENT 0

0 0

5 6

2.40000E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 TRANSFER CFM 0

0 0

5 6

4.30000E+03 0.00000E+00 0.00000E+00 0.00000E*00 0.00000E+00 1.27000E+04 FILTER Err 1

1 0

5 1

9,90000E+01 FILTER Efr 1

2 0

5 1

9.90000E+01 FILTER EFF 1

3 0

5 1

9.90000E+01 DOSE FARAMS 0

0 0

0 7

1.26000E-03 3.47000E-04 2.84000E-04 3.47000E-04 3.29000E-04 3.47000E-04 3.50000E-01 TIME INTERVAL 0

0 0

0 2

2.16700E-01 3.33000E-01 TRANSFER CFM 0

0 0

1 6

0.00000E+00 0.00000E+00 1.00000E+03 0.00000E+00 0.00000E+00 0.00000E+00 TRANSFER CFM 0

0 0

2 6

0.00000E+00 0,00000E+00 0.00000E+00 1.00000E+03 0.00000E+00 0.00000E+00 TIME INTERVAL 0

0 0

0 2

3.33000E-01 5.00000E-01 TRANSFER FERCENT C

0 0

2 6

0.00000E+00 6.22200E+03 0.00000E+00 6.22200E+03 6.22200E+03 2.22200E-01 TIMC INTERVAL 0

0 0

0 2

5.00000E-01 1.09500E+00 TRANSFER FERCENT 0

0 0

1 6

0.00000E+00 0.00000E+00 0.00000E+00 9.57400E+03 0.12300E+02 3.50000E-01 TRANSitR PERCENT 0

0 0

3 6

0.00000E+00 7.02400E+04 0.00000E*00 0.00000E+00 0.00000E+00 3.50000E-01 REMOVAL RATE 1

1 0

0 6.90000E+00 0.00000E+00 i

0.00000E+00 0.00000E+00 0.00000E+00 i

PEMOVAL RATF 1

2 0

0 5

0.00000E+DO 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 i

TIME DEPENDENT INPUT i

CASE NUMBER 1

l 4

REMOVAL RATE 1

3 0

0 5

9.70000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 TIME INTERVAL 0

0 0

0 2

1.09500E+00 2.00000E+00 I

REMOVAL RATE 1

3 0

0 5

9.70000E-01 0.00000E+00 0.00000F.+00 0.000000+00 0.00000E+00 I

1 3'..

  • to GNRO-97/00043 I

Page 9 of l2 TIME INTERVAL 0

0 0

0 : 2 2.00000E400 2.19000E+00 DOSE PARAMS 0

0 0

0 7

0.00000E+00 3.47000E-04 It36000E-04 3.47000E-04 3.29000E-04 3.47000E-04 3.50000E-01 i

TIME INTERVAL 0

0 0

0 2

2.19000E+00 2.91000E+00 1

REMOVAL RATE 1

1 0

0 5

0.00000E+00 0.00000E+00 O.00000E+00 0.00000E+00 0.00000E+00 TIME INTERVAL 0

0 0

0 2

2.91000E+00 8.00000E+00 1

1 TRANSTER FERCENT 0

0 0

2 6

0.00000E+00 6.22200E+03 0.00000E+00 6.22200E+03 6.22200E+03 8.89000E-01 TIME INTERVAL 0

0 0

0 2

0.00000E+00 2.80000E+01 DOSE FARAMS O

U 0

0 7

0.00000E+00 1.75000E-04 1.16000E-04 1.75000E-04 1.96000E+04 3.47000E-04 3.50000E-01 TIME INTERVAL 0

0 0

0 2

2.40000E+01 9.60000E401 FILTER EFF 1

1 0

2 5

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 FILTER Err 1

2 0

2 5

0.00000E+0L 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 FILTER EFF 1

3 0

2 S

0.00000E+00 0.00000E*00 0.00000E+00 0.00000E+00 0.00000E+00 CONTROL ROOM 0

0 0

0 5

6.00000E*bi 0.00000E+00 6.00000E+02 4.00000E+03 6.00000E-01 DOSE FARAMS 0

0 0

0 7

0.00000E+00 2.320003-04 6.06000E-05 2.32000E-04 1.08000E-04 3.470000-04 3.50000E-(1 TIME INTERVAL 0

0 0

0 2

9.60000E+01

7. 2000( E+ 02 CONTROL ROOM 0

0 0

0 5

6.00000s+02 0.0000(E+00

6.00000E+02 4.00000E+03 4.00000E-01 DOSE PARAMS 0

0 0

0 7

0.00000E+00 2.32000C-04 2.39000E-05 2.32000E-04 6.98000E-06 3.47000E-04 3.50000E-01 i

e k

s f

i

1.. '

, to GNRO-97/00043 Page 10 of l2 1

PAGE 1 EUMMARY OF OFF-SITE DOSES OGNS - 14CA Calculations Calculation using ICRP 30 DCr CALCULATION FOR WHOLEBDY DOSE (REMS)

SINGLE NODE CONTAINMENT WITH NO ESF START EXCLUSION PADIUS LOW POPULATION EONE CONTROL ROOM

~

TIME EACH ACCUM.

EACH ACCUM.

EACH ACCUM.

(HRS)

STEP STEP STEP 0.000E+00 2.294E-03 2.294E-03 5.171E-04 5.171E-04 2.440E-03 2.440E-03 5.555E-05 3.441E-03 5.735E-03 7.156E-04 1.293E-03 3.660E-03 6.099E-03 1.389E-04 5.732E-03 1.147E-02 1.292E-03 2.585E-03 6.096E-03 1.2200-02 l

2.718E-04 2.290E-03 1.376E-02 5.161E-04 3.101E-03 2.435E-03 1.463E-02 3.333E-04 9.166E-03 2.292E-02 2.066E-03 5.167E-03 9.748E-03 2.438E-02 5.556E-04 1.144E-02 3.436E-02 2.578E-03 7.145E-03 1.217E-02 3.654E-02 8.333&-04 2.286E-02 5.722E-02 5.152E-03 1.290E-02 2.431E-02 6.085E-02 1.389E-03 5.673E-02 1.141E-01 1.283E-02 2.573E-02 6.054E-02 1.214E-01 2.77eE-03 1.130E-01 2.271E-01 2.547E-02 5.120E-02 1.202E-01 2.416E-01 5.556E-03 1.118E-01 3.390E-01 2.521E-02 7.640E-02 1.189E-01 3.605E-01 8.333E-03 2.206E-01 5.595E-01 4.972E-02 1.261E-01 2.346E-01 5.951E-01 1.389E-02 7.399E-01 1.299E+00 1.668E-01 2.929E-01 7.868E-01 1.382E+00 3.330E-02 5.675E400 6.975E+00 1.279E+00 1.572E+00 1.482E+00 2.864E+00 2.167E-01 3.0120*00 9.987E+00 6.789E-01 2.251E+00 7.865E-01 3.650E+00 3.330E-01 3.927E+00 1.191E*01 8.851E-01 3.136E+00 1.025E+00 4.676E+00 5.000E-01 1.163E+01 2.655E+01 2.622E+00 5.75BE+00 3.03BE+00 7.713E+00

[

1.095E+00 1.360E+01 3.914E+01 3.065E+00 8.823E+00 3.550E+00 1.126E401 2.000E+00 0.000E+00 3.914E+01 3.022E-01 9.125E+00 6.374E-01 1.190E+01 2.190E+00 0.000E+60 3,914E+01 1.027E+00 1.015E+01 2.166E+00 1.407E+01 2.910E+00 0,000E+00 3.914E+01 4.364E+00 1.452E+01 9.203E+00 2.327E+01 8.000E+00 0.000E*00 3.914E401 3.562E+00 1.808E+01 6.019E+00 2.929E+01 2.400E+01 0.000E+00 3.914E+01 2.164E+00 2.024E+01 3.857E+00 3.315E+01 9.600E*01 0.000E+00 1.914E+01 1.325E+00 2.157t+01 3.870E-01 3.353E+01 TOTAL 3.914E+01 TOTAL 2.157E+01 TOTAL 3.353E+01 CAlfULATION FOR WHOLEEDY DOSE (REMS)

MULTI NODE CONTAINMENT WITH ESF START EXCLUSION RADIUS LOW POPUIATION ZONE CONTROL ROOM TIME EACH ACCUM.

EACH ACCUM.

EACH

ACCUM, (HRS)

STEP STEP STEP 0.000E+00 7.071E-07 7.071E-07 1.594E-07 1.594E-07 1.699E-13 1.699E-13 5.555E-05 4.279E-06 4.986E-06 9.645E-01 1.124E-06 2.052E-12 2.222E-12 1.389E-04 1.768E-05 2.266E-05 3.985E-06 5.109E-06 1.660E-11 1.882E-11 2.7780-04 6.179E-05 8.445E-05 1.393E-05 1.904E-05 2.56BE-11 4.451E-11 3.333E-04 1.679E-03 1.764E-03 3.785E-04 3.975E-04 1.176E-09 1.820E-09 5.5565-04 4.807E-03 6.570E-03 1.083E-03 1.481E-03 9.999E-09 1.182E-08 8.3330-04 1.379E-02 2.036E-02 3.108E-03 4,589E-03 6.459E-08 7.641E-08 1.3890-03 4.087E-02 6.123E-02 9.213E-03 1.380E-02 4.881E-07 5.645E-07 2.778E-03 8.429E-02 1.455E-01 1.900E-02 3.280E-02 2.461E-06 3.020E-06 5,556E-03 8.337E-02 2.289E-01 1.879E-02 5.159E-02 4.427E-06 7.453E-06 8,333E-03 1.637E-01 3.926E-01 3.690E-02 8.849E-02 1.456E-05 2.201E-05 1.389E-02 5.424E-01 9.350E-01 1.223E-01 2,107E-01 1.055E-04 1.276E-04 3.330E-02 2.528E-01 1.180E+00 5.697E-02 2.677E-01 1.113E-03 1.241E-03 2.167E-01 3.339E-01 1.522E+00 7.526E-02 3.430E-01 6.085E-04 1.850E-03 3.330E-01 6.337E-01 2.155E+00 1.428E-01 4.858E-01 9,149E-04 2.764E-03 5.000E-01 3.058E*00 5.214E+00 6.893E-01 1.175E+00 4.522E-03 7.287E-03 1.095E+00 5.371E+00 1.058E+01 1.211E+00 2.386E*00 1.149E-02 1.878E-02 2.000E+00 0.000E+00 1.05BE+01 1.383E-01 2.524E+00 3.102E-03 2.188E-02 2,190E+00 0.000E+00 1.058E+01 4.990E-01 3.023E+00 1.343E-02 3.531E-02 2.910E+00 0.000E+00 1.058E+01 2.223E+00 5.246E+00 1.077E-01 1.430E-01 8.000E+00 0.000E+00 1.058E+01 1.392E+00 6.638E+00 1.278E-01 2.708E-01 2.400E+01 0.000E*00 1.05BE+01 6.763E-01 7.315E+00 3.838E-02 3.092E-01 9.600E+01 0.000E+00 1.058E+01 3.963E-01 7.713E+00 2.555E-03 3.117E-01 TOTAL 1.058E+01 TOTAL 7.713E400 TOTAL 3.117E-01 PAGE 2

SUMMARY

OF OFF-SITE DOSES GGNS - LOCA Calculations Calculation us1ng ICRP 30 DCF CALCULATION FOR SKIN DOSE (REMS)

SINGLE NODE CONTAINMENT WITH NO ESF START T.XCLUSION kADIUS LOW POPULATION SONE CONTROL ROOM TIttE EACH

ACCUM, EACH ACCUM.

EACH ACCUM.

(HR$)

STEP STEP STEP 0.0000+00 2.6eBE-03 2.688E-03 6.059E-04 6.059E-04 2.859E-03 2.859E-03 5.555E-05 4.031E-03 6.719E-03 9.086E-04 1.514E-03 4.287E-03 7.146E-03 1.389E-04 6.713E-03 1.343E-02 1.513E-03 3.02BE-03 7.139E-03 1.428E-02 2.778E-04 2.680E-03 1.611E-02 6.042E-04 3.632E-03 2.851E-03 1.714E-02 3.333E-04 1.013E-02 2.684E-02 2.418E-03 6.049E-03 1.141E-02 2.854E-02 5.556E-04 1.338E-02 4.021E-02 3.015E-03 9.064E-03 1.423E-02 4.277E-02 8.333E-04 2.669E-02 6.690E-02 6.016E-03 1.5080-02 2.83BE-02 7.115E-02 1.389E-03 6.627E-02 1.332E-01 1.494E-02 3.002E-02 7.048E-02 1.416E-01

3 ai to GNRO-97/00043 l

l e.

Page 11 of12 2.77%E-03 1.307E-01 2.638E-01 2.945E-02 5.941E-02 1.390E-01 2.806E-01 5.556E-03 1.282E-01 3.920E-01 2.889E-02 8.836E-02 1.363E-01 4.169E-01 8.333E-03 2.495E-01 6.416E-01 5.6240-02 1.446E-01 2.654E-01 6.823E-01 1.389E-02 8.054E-01 1.447E+00 1.815E-01 3.261E-01 8.565E-01 1.539E+00 3,330E-02 4.911E*00 6.358E+00 1.107E+00 1.433E*00 1.282E+00 2.821E+00 2.167E-01 2.124E+00 8.482E+00 4.787E-01 1.912E+00 5.546E-01 3.376E+00 r

3.330E-01 2.636E+00 1,112E+01 5.942E-01 2.506E+00 6.883E-01 4.064E+00 5.000E-01 7.638E+00 1.876E401 1.722E+00 4.227E+00 1.994E+00 6.05eE+00 1.095E+00 8.875E+00 2.763E+01 2.000E+00 6.228E+00 2.317E+00 8.376E+00 2.000E+00 0.000E+00 2.763E+01 1.977E-01 6.425E+00 4.168E-01 8.792E+00 2.190E+00 0.000E+00 2.763E+01 6.750E-01 1,100E+00 1.424E+00 1.022E+01 2.910E+00 0.000E+00 2.763E+01 3.076E+00 1.018E+01 6.48eE+00 1.670E+01 8.000E+00 'O.000E+00 2.763E+01 3.315E+00 1.349E+01 5,601E+00 2.230E+01 2.400E*01 0.000E+00 2.763E+01 2.420E+00 1.591E+01 4.314E+00 2.662E+01 9.600E+01 0.000E*00 2.163E+01 1.469E+00 1.738E*01 4.291E-01 2.705E+01 TOTAL 2.163E+01 TOTAL 1.738E+01 TOTAL 2.705E+01 CALCULATION FOR SKIN DOSE (FEMS)

MULT1 NODE CONTAINMENT WITH ESF START EXCLUSION RADIUS LOW POPULATION ZONE CONTROL ROOM TIME EACH ACCUM.

EACH ACCUM.

EACH ACCUM.

(HRS)

STEP STEP STEP 0,000E+00 8.2e6E-07 8.286E-07 1.868E-01 1.866E-07 3.482E-12 3.482E-12 5.555E-05 5.013E-06 5.841E-06 1.130E-06 1.317E-06 4.205E-11 4.554E-11 1.389E-04 2.070E-05 2.654E-05 4.666E-06 5.983E-06 3.402E-10 3.857E-10 2.778E+04 8.575E-05 1.123E-04 1.933E-05 2.531E-05 5.827E-10 9.684E-10 3.333E-04 2.391E-03 2.504E-03 5.390E-04 5.643E-04 4.397E-08 4.494E-08 5.55t0-04 6.860E-03 9.363E-03 1.546E-03 2.110E-03 2.490E-07 2.940E-01 8.333E-04 1.967E-02 2.903E-02 4.433E-03 6.543E-03 1.610E-06 1.904E-06 1.389E-03 5.810E-02 8.719E-02 1.311E-02 1.965E-02 1.214E-05 1.405E-05 2.778E-03 1.193E-01 2.065E-01 2.689E-02 4.654E-02 6.088E-05 7.492E-05 5.556E-03 1.171E-01 3.236E-01 2.639E-02 7.293E-02 1.00AE-04 1.837E-04 8.333E-03 2.273E-01 5,509E-01 5.124E-02 1.242E-01 3.534E-04 5.371E-04 1.389E-02 7.283E-01 1.279E+00 1.642E-01 2.883E-01 2.463E-03 3.000E-03 3.330E-02 2.698E-01 1.549E+00 6.081E-02 3.491E-01 2.110E-02 2.410E-02 2.167E-01 3.067E-01 1.856E+00 6.913E-02 4.183E-01 9.444E 03 3.354E-02 3.330E-01 5.534E-01 2.409E+00 1.247E-01 5.430E-01 1.361E-02 4.716E-02 5.000E-01 2.613E+00 5,022E+00 5.889E-01 1.132E+00 6.677E-02 1.139E-01 1.09tt+00 4.499E+00 9.521E+00 1.014E+00 2.146E*00 1.618E-01 2.818E-01 2.000E*00 0.000E+00 9.521E+00 1.146E-01 2.261E+00 4.498E-02 3.267E-01 2.190E+00 0.000E+00 9.521E+00 4.118E-01 2.672E+00 1.941E-01 5.209E-01 2.910E+00 0.000E+00 9.521E+00 1.979E+00 4.652E*00 1.734E+00 2.254E+00 8.000E+00 0.000E+00 9.521E+00 1.954E+00 6.606E+00 3.200E+00 5.462E+00 2.400E+01 0.000E+00 9.521E+00 1.374E+00 7.980E+00 1.384E+00 6.847E+00 9.600E+01 0.000E+00 9.521E*00 9.557E-01 8.936L+00 1.081E-01 6.955E400 TOTAL 9.521E400 TOTAL 8.936E+00 TOTAL 6.955E+00 FAGE 3

SUMMARY

OF OFF-SITE DOSES

-GGNS - LOCA Calculations Calculation using ICRP 30 DCF CALCULATION FOR THYRO 10 DOSE (RFMS)

SINGLE NODE CONTAINMENT WITH NO ESF START EXCLUSION RADIUS LOW POPULATION ZONE CONTROL ROOM TIME EACH ACCUM.

EACH ACCUM.

EACH ACCUM.

(HRSI ETEP STEP STEP 0.000E+00 1.540E-01 1.540E-01 3.472E-02 3.472E-02 1.638E-01 1.638E-01 5.555E-05 2.311E-01 3.851E-01 5.209E-02 8.681E-02 2.458E-01 4.096E-01 1.389E-04 3.851E-01 7.703E-01 8.681E-02 1.736E-01 4.096E-01 8.192E-01 2.718E-04 1.539E-01 9.241E-01 3.468E-02 2.083E-01 1.631E-01 9.828E-01 3.313E-04 6.164E-01 1.541E+00 1.389E-01 3.472E-01 6.555E-01 1.630E+00 S.5560-04 7.700E-01 2.310E*00 1.735E-01 5.208E-01 8.189E-01 2.457E+00 8.333E-04 1.541E+00 3.851E+00 3.473E-01 8.681E-01 1.639E+00 4.096E+00 1.389E-03 3.851E+00 7.702E+00 8.680E-01 1.736E+00 4.096E+00 8.191E+00 2.778E-03 7.102E+00 1.540E+01 1.736E+00 3.472E+00 8.191E+00 1.630E*01 5.556E-03 7.699E*00 2.310E+01 1.735E+00 5.207E+00 8.188E+00 2.457E+01 8.333E-03 1.540E*01 3.851E*01 3.412E+00 8.680E+00 1.638E+01 4.095E*01 1.369E 02 5.379E+01 9.230E+01 1.213E+01 2.000E+01 5.721E+01 9.816E+01 3.330E-02 5.073r+02 5.996E+02 1.144E+02 1.352E+02 1.325E+02 2.306E+02 2.167E-01 3.209E*02 9.205E+02 7.232E+01 2.075E+02 8.378E+01 3.144E+02 3.330E-01 4.596E+02 1.380E*03 1.036E+02 3.111E+02 1.200E+02 4.344E+02 5.000E-01 1.627t+03 3.007E+03 3.666E+02 6.777E+02 4.247E+02 8.591E+02 1.095E+00 2.443E+03 5.450E+03 5.507E+02 1.228E+03 6.380E+02 1.497E+03 2.000E+00 0.000E+00 5.450E+03 6.296E+01.1.291E+03 1.328E+02 1.630E+03 2.190E*00 0.000E+00 5.450E+03 2.369E+02 1.528E+03 4.997E+02 2.130E+03 2.910E+00 0.000E+00 5.450E+03 1.600E+03 3.136E+03 3.391E+03 5.521E+03 8,000E+00 0.000E+00 5.450E+03 1.682T+03 4.819E+03 5.636E+03 1.116E+04 2.400E+01 0.000E+00 5.450E+03 3.868E+03 8.686E+03 1.031E+04 2.147E+04 9.600E+01. 0.000E*00 5.450E+03 4.150E*03 1.284E+04 1.813E+03 2.328E+04 TOTAL 5.450E*03 TOTAL 1.284E+04 TOTAL 2.328E+04 I

.e.,*

s

.Attachmem 3 to GNRO-97/00043 Page 12 of12 1

CALCULATION FOR THYROID DOSE (REMS) l MULTI NODE CONTAINMENT WITH EST START EXCLUSION RADIUS LOW POPULATION EONE CONTROL ROOM TIME EACH ACCUM.

EACH ACCUM.

EACH ACCUM.

J (HRS)

STEP STEP STEP 1

0.000E+00 4.748E-05 4.748E-05 1.070E-05 1.070E-05 1.996E-10 1.996E-10 i

5.555E-05 2,874E-04 3.349E-04 6.478E-05 7.54BE-05 2.411E-09 2.611E-09 1.389E-04 1.188E-03 1.523E-03 2.677E-04 3.432E-04 1.952E-08 2.213E-08 2.778E-04 1.357E-03 2.879E.03 3.058E-04 6.490E-04 1.048E-08 4.061E-06 3.333E-04 2.400E-02 2.688E-02 5.410E-03 6.059E-03 5.005E-07 5.411E-07 5.556E-04 6.477E 02 9.165E-02 1 460E-02 2.066E-02 2.490E-06 3.031E-06 8.333E-04 1.834E-01 2.751E-01 4.134E-02 6.200E-02 1.541E-05 1.845E-05 1.389E-03 5.435E-01 0.186E-01 1.2250-01 1.845E-01 1.14BE-04 1.333E-04 t

2.778E-03 1.131E+00 1.949E+00 2,548E-01 4.394E-01 5.80?E-04 7.139E-04 5.556E-03 1.114E+00 3.083E+00 2.555E-01 6.948E-01 1.054E-03 1.768E-03 8.333E-03 2.268E+00 5.353E+00 5.112E-01 1.206E+00 3.526E-03 5.294E-03

'1.389E-02 7.920E*00 1.327E+01 1.785E+00 2.991E+00 2.700E-02 3.229E-02 3.330E-02 1.200E-01 1.339E+01 2.723E-02 3.019E+00 3.293E-01 3.616E-01 2.167E-01 1.910E-01 1.358E+01 4.306E-02 3.062E+00 1.785E-01 5.401E-01 3.330E-01 4.090E-01 1.399E*01 9.218E-02 3.154E+00 2.224E-01 7.626E-01 5.000E-01 2.014E+00 1.601E+01 4.540E-01 3.608E+00 5.583E-01 1.321E+00 1.095E400 2.876E+00 1.888E+01 6.483E-01 4.256E+00 4.468E-01 1.76BE400-2.000E+00 0.000E+00 1.888E+01 6,823E-02 4.324E+00 6.019E-02 1.820E+00 2.190E+00 0.000E+00 1.888E+01 2.435E-01 4.568E+00 1.697E-01 1.998E+00 2.910E+00 0.000E+00 1.888E+01 1.495E+00 6.063E+00 5.048E-01 2.502E+00 0.000E+00 0.000E+00 1.880E+01 1.530Ee00 7.593E+00 6.942E-01 3.197E400 2.400E+01 0.000E+00 1.888E+01 3.515E+00 1.111E+01 7.624E-01 3.959E+00 9.600E+01 0.000E400 1.888E401 3 770E+00 1.488E+01 6 952E-02 4.048E+00 TOTAL 1.898E+01 TOTAL 1.488E+01 TOTAL 4.048E+00 1 NO MORE CASES END OF EXECUTION I