ML20107E194

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test, Preoperational Test Results,Nov 1984
ML20107E194
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/30/1984
From: Lim A, Mulcahy F
DETROIT EDISON CO.
To:
Shared Package
ML20107E190 List:
References
NUDOCS 8502250426
Download: ML20107E194 (104)


Text

,

FERMI 2 Reactor Containment Building Integrated Leak Rate Test Preoperational Test Results November 1984 l Docket No. 50-341 Detroit Edison Co.

c.

Prepared by: -

M (4 (4f F .f A. Mulcahy /

~ .

Systems Engineering Reviewed by: ##[

'A . K. Lim ,

Systems Engineer M**!888 A ..

8188L PDR

_ l

FERMI 2 PCILRT PREOPERATIONAL TEST FINAL REPORT TABLE OF CONTENTS Page I .- INTRODUCTION 1 II. TEST SYNOPSIS 2 III. PRESSURIZATION /DEPRESSURIZATION 4 IV. INSTRUMENTATION 5 l V. DATA REDUCTION PROCEDURES 6 t

VI. RESULTS 13

'- VII. SIGNIFICANT TEST PROBLEMS- 15 VIII. REFERENCES 18 FIGURES l- TABLES i

APPENDICES A. PLANT DATA B. PUMP-UP DATA.

C. STABILIZATION DATA D. . TEST DATA E. VERIFICATION TEST DATA

-F. SAMPLE. CALCULATIONS G. PENALTIES.

^

L H. ERROR ANALYSIS I. LOCAL LEAK RATE TEST RESULTS

[.

r I

/

I I h

r. . 1

I. Introduction This report is submitted in accordance with the require-monts set forth in Appendix J to 10CFR50 and describes the preoperational primary containment integrated Icak-age rate test (Type A) which was successfully completed on December 1, 1984.

Fermi 2 is an 1154 MWe boiling water reactor (BWR-4) nuclear power plant located in Monroe County, Michigan.

The plant is situated approximately 30 miles south of Detroit, Michigan on the western shore of Lake Erie.

The reactor containment structure is a Mark I steel containment constructed by CB&I Co. and completed in 1973. Additional specific plant data may be found in Appendix A to this report.

The preoperational Type A test was performed over a twenty four hour period followed by a four hour verifica-tion test. The testing was performed using the absolute test method. Test results were calculated using the mass point and total time analytical techniques as described in ANSI N56.8-1981 and N45.2-1972 respectively. The total time method was used primarily to determine the feasibility of performing short duration ( < 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />) periodic Type A tests.

The calculated leakage rates (Lam) and upper confidence levels (UCL) were found to be as follows:

Method Lam UOL UCL + Penalties

%/ day  %/ day  %/ day Mass Point .250 .251 .254 Total Time .269 .278 .281 The acceptance criteria requires that the UCL plus any penalties be 5.375%/ day (i.e. 5.75La). The penalties equaled .003%/ day and are described in Appendix G of

. this report.

~

Local leak rate testing was performed prior to and following the Type A test. 'Results of this testing are contained in Appendix I to this report and summarized below:

Test Type Leakage Acceptance Cri teria Main Steam Lines 4.16 SCFH $100 SCFH Type B + C 990.6 SCFD 14281.2 SCFD Hydrostatic 1.017 GPM i 5 GPM 1

II. TEST SYNOPSIS The test was performed in essentially five phases:

A. Pump-up B. Stabilization C. Test D. Verification E. Depressurization Each phase is described below. Figures lA through 1E show containment pressure, temperature, mass, and total time Icakage during various phases of the test.

A. Pump-up Phase Pressurization of the primary containment system to 56.5 psig 6 was initiated at 1725 hours0.02 days <br />0.479 hours <br />0.00285 weeks <br />6.563625e-4 months <br /> on 11-29-84.

The pressurization rate was maintained at a nominal rate of approximately 5.5 psi per hour. Procedurally, the pressurization rate was to be maintained at a nominal rate of 6 psi per hour. The raw pressuriza-tion data is contained in Appendix B. During this test phase, pressurization was stopped at 10 psig for approximately 15' minutes to monitor for gross leakage. When no gross leakage was detected, pres-surization continued. The air compressors were secured at 0604 hours0.00699 days <br />0.168 hours <br />9.986772e-4 weeks <br />2.29822e-4 months <br /> on 11-30-84 when a containment pressure of approximately 59.413 psig was attained.

B. Stabilization Phase The containment stabilization phase began immediately following completion of the pump-up phase. The containment weighted average temperature was monitored hourly and the following stabilization criteria applied:

The containment was considered thermally stable when the rate of change of the weighted average contained air temperature, averaged over the

-last hour, did not deviate by more than 0.50F/hr from the average rate of change of the weighted average contained air temperature averaged over the last four hours.

Containment stabilization was declared at 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> on 11-30-84. Appendix C contains the stabilization phase processed test data.

2 L

C. Test Phase The leak rate testing phase began at 1100 hours0.0127 days <br />0.306 hours <br />0.00182 weeks <br />4.1855e-4 months <br /> on 11-30-84 and continued for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. Containment temperatures, dowpoint temperatures and pressures were recorded by the data acquisition system at 15 minute intervals and automatically transferred to an online computer system that was linked to the acquisition system. The computer system, when requested, would process the raw data and determine containment leakage. Appendix D contains the test phase processed data and test results. In addition, the processed containment weighted average tempera-ture, containment pressure and time were manually input into an offline computer that was being used as a backup to the online computer. Appendix D also includes the test results from the backup computer system.

D. Verification Phase The verification test phase was initiated at 1215 hours0.0141 days <br />0.338 hours <br />0.00201 weeks <br />4.623075e-4 months <br /> on 12-1-84. A calibrated leak of approximately La (5 SCFM) was superimposed on the existing leak.

After a one hour stabilization period, containment leakage was measured over a 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> period using the same .nethods employed during the test phase. The verification test results were well within acceptable limits. Appendix E contains the verification test phase processed data and results.

E. Depressurization Phase Depressurization of the containment commenced at 1925 hours0.0223 days <br />0.535 hours <br />0.00318 weeks <br />7.324625e-4 months <br /> on 12-1-84. Just prior to depressurization, the primary containment monitoring system was placed in operation and tested to~ fulfill requirements of the preoperational test for that system. The contain-ment was depressurized through the standby gas treat-ment system at a rate of approximately 6 psi per hour.

Depressurization was completed at 0627 hours0.00726 days <br />0.174 hours <br />0.00104 weeks <br />2.385735e-4 months <br /> on 12-2-84.

3 L

III. PRESSURIZATION /DEPRESSURIZATION SYSTEMS The pressurization system is shown schematically on Figure 2A. The system consisted of four 900 SCFM portable, oil free, air compressors, an aftercooler, a filter / dryer and associated piping and instrumentation. Only the filter / dryer,which is located in the reactor building, and associated instrumentation / piping is permanent plant equipment.

The four air compressors and the aftercooler were located outside the west end of the reactor building. Temporary piping was routed from the aftercooler through a reactor building penetration to the inlet of the air filter / dryer.

The outlet of the air dryer is routed through a removable spool piece to the containment spray system. The pres-surization rate was controlled by throttling valves VS-2518 and/or V5-2545 as necessary. During the test phase, a blank was inserted in one side of the removabic spool piece and the upstream pressurization piping vented to atmosphere.

The depressurization system is shown on Figure 2B. Depres-surization was through the standby gas treatment system.

The depressurization rate was controlled by throttling valve V5-2519.

The pressurization /depressurization rates were limited to a nominal 6 psi /hr with a maximum allowable of 10 psi /hr to prevent damaging the resilient seals in the butterfly valves of the pressurization /depressurization systems.

4 u

IV. INSTRUMENTATION SYSTEM The instrumentation utilized to determine containment leakage during the test and verification phases is listed in Table 1. Tables 2A and 2B list the physical location and weighting factor of each of the dry bulb temperature and dewpoint sensors. Weighting factors were assigned based on the fraction of the containment total free air volume which each sensor monitored.

Figure 3 is a schematic diagram of the instrumentation and data acquisition system (DAS). During the test, 26 temperatures, 12 dewpoint temperatures and 2 pressures were monitored using a Volumetrics Model A-100 data 4 acquisition system (DAS).

The DAS scanned the temperature, dewpoint temperature and pressure signals every 15 minutes. The signals were converted to engineering units by the DAS circuitry and transmitted to an on line Volumetrics computer system.

The DAS also provided e hard copy of the raw data. A backup DAS was online and available for use at any time.

The Volumetrics online computer system stored the raw data on an 8 inch floppy disk. On demand, the computer would reduce the raw data and calculate the containment leak rate.

The verification test was performed by superimposing a leak equivalent to approximately La. The superimposed leak rate was measured using a Fisher and Porter model 10A55 rotometer.

-All instrumentation required to meet acceptance criteria was calibrated prior to the test and is traceable to NBS'.

An instrumentation error analysis was performed and is included as Appendix H to this report. The instrument selection guide (ISG) was calculated to be 0.00286%/ day at the end of the-24 hour test period, well below the

.125%/ day limit specified in ANSI 56.8-1981. In addition, an accuracy and repeatability error analysis was performed with the following results:

Accuracy: I 0.00769%/ day Repeatability: I 0.00174%/ day These errors are only.a small fraction (43%) of the allow-able leakage limit of .375%/ day.

5

V. DATA REDUCTION PROCEDURES Data reduction was performed using a Volumetrics online computer system and an offline computer. The online system reduced the raw data and calculated leakage rates in accordance with ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements".

The offline computer system calculated Icakage rates based on ANSI /ANS 56.8-1981 for the mass point analytical technique and BN-TOP-1, Rev. 1, " Testing Criteria for Integrated Leakage Rate Testi14g of Primary Containment Structures for Nuclear Power Plants", for the total time analytical technique. Sample calculations for both the total time and mass point methods are contained in Appendix F to this report. The calculational methods are described below:

A. Data Reduction

1. Average Containment Temperature The average containment temperature was calculated by multiplying each raw reading by an appropriate weighting factor (Table 2A) and then summing the resultants:

NT 51 = ((TNi) (WFN)

N=1 where Yi = Weighted average temperature at time 1 OF l-TN1 = Reading of temperature sensor N at time 1 0F f' WFg = Weighting factor for tempera-ture sensor N - fraction NT = Number of operable tenperature sensors

2. Average Containment Dewpoint Temperature The average containment dewpoint temperature was calculated by multiplying each raw reading by an appropriate weighting factor (Table 2B) and then summing the resultants:

ND 7+ Di = {(DNi) (WFN)

N=1

)

6

. _ - = _ -.

where Di = Weighted average dowpoint temperature at time 1 0F DNi = Reading of dowpoint sensor N at time 1 - oF WFN = Weighting factor for dewpoint sensor N - fraction ND = Number of operable dowpoint sensors

3. Average Containment Pressure Two nensor pressure sensors were used through-out the test. True pressures were obtained by adjusting the raw readings using inter-polation constants. These constants were supplied by Volumetrics and are listed in Table 3. The true pressure of each sensor was calculated as follows:

PRJ) (MJ h + CJ PTJi =

where PTJi = True pressure for sensor J at time.1 - Psia PRJi = Raw reading for sensor J at time 1 - counts

, MJ =_ Multiplication factor for sensor J C- = Correction constant for.

sensor J This correction was performed'by the Volumetrics computer software.

~ Containment average pressure was derived from

.the arithematic average of the two true-pressures:

Pi= (PT11 + PT21)/2

B . Mass Point. Calculations The mass point' analysis was performed by'first

. calculating the mass of-dry air ~in the containment at.each data point. A regression analysis was then performed on the mass vs. time data using the method of_least-squares. -The calculated' leakage u

I a- 7 99

, . - ,e --,_.w,,n. e , ,

-e -eng --- ,

rate was determined from the statistically derived slope and intercept of the regression line. An upper one-sided 95% confidence level was then applied to the regression analysis based on the Student's t-distribution.

1. Calculated Dry Air Mass The mass at each data point was calculated using the equation of state for a perfect gas:

Wi= (144Pi V)/(RTi) where Pi = Containment average dry air pressure at time 1 - Psia V = Containment free air volume -

CF (assumed to remain constant over test duration)

Wi = Mass of air in containment at time 1 - lbm R = Gas constant for air =

53.35 ft=lbf lbm OR Ti = Containment weighted average temperature at time 1 OR (OR = OF + 459.69)

The containment average dry air pressure at-time i was derived by subtracting the vapor

-pressure which corresponded to the containment weighted average dewpoint temperature at time i.from the containment average total pressure at time 1:

Pi,= P_i - Pypi where Pi- =-Containment average-total pressure at-time 1 - Psia

-Pypi.= Containment average water vapor pressure at time 1 -

Psia P-i = Containment average dry' air pressure at time i - Psia e

l 8

4

2. Regression Analysis This analysis assumes that the loss of mass from the containment is linear with time.

The regression analysis used the method of least squares to determine the best fit straight line through the mass data:

A Wi = Ati+B A

where Wi = Mass of air in containment at elapsed time ti from beginning of test as calculated by least squares fit analysis - lbm A = Slope of least squares fit line - lbm/hr ti = Elapsed time from start of test - Hours .

B = Intercept of least squares fit line - lbm The slope and intercept were calculated using the following equations:

N{t Wii-fW[t i i

^ " N it i2 -

(it) Z B = {Wi {ti2 - {tiWi {ti N {ti2 - ({t i) Z The calculated containment leakage rate was-then calculated using the following equation:-

Lam = (-2400) ( A) / (B) where Lam = calculated-leakage rate -%/ day

3. Upper 95% Confidence Limit - UCL A one-sided upper 95% confidence limit was-calculated for the leakage-rate,. Lam. The confidence limit indicates that the probability.

that the value of the calculated leak rate (Lam) will fall below the UCL is 95%.

The UCL was determined as follows:

9

J UCL = Lam.+ 2400) (T95) (SA /B) where SA = The standard deviation of the slope B = The intercept of the least squares fit line T95 = 95th percentile of Student's t distribution as defined in ANSI N56.8-1981 Lam = Calculated leak rate - %/ day The standard deviation of the slope (S A) was determined as follows:

SA = (k) (N)b -

where k = S/ N kt i 2-

._ ((t i) 2_

and S=hWi - W i)2 (N-2) ,

N = Number of data points L

C. Total. Time Calculations Total time calculations were-performed using the method described in ANS-7.60/N45.4-1972, "American National-Standard Leakage-Rate Testing'of Contain-ment - Structures for ~ Nuclear: Reactors",. and BN-TOP-1, Rev 1, " Testing Criteria For. Integrated Leakage

. Rate Testing Of. Primary Containment Structures For.

Nuclear Power Plants".

A measured leak. rate was calculated for each. set of data following the initial data set at' time- -

.T = 0. Using the method.of least. squares, the;

~

leak rates were-then best fit to a straight-line using regression analysis in the:same manner-that.

was described forithe mass point analysis.. A'95%.

-confidence limit:was then calculated based.on the'

~

' calculated leakage rate. determined.by.the regression-analysis.. The calculations.were performed asz

.follows:

~

l'. Measured Leakage Rate - M1

- The; measured leakage rates were determined' w

10

using the same weighted average temperatures and dry air pressures described in the data reduction section:

Mi = 2400 1 - ToPi ti _ PoTi, where Mi = Measured Leak Rate at time ti - %/ day ti = Elapsed time from beginning of test - Hours To = Containment weighted average temperature at beginning of test (t=O) OR Ti = Containment weighted average temperature at time tiOR Po = Containment average dry air pressure at beginning of test (t=O) - Psia Pi = Containment average dry air pressure at time ti - Psia

. 2. Regression Analysis A regression analysis was. performed on the Mi vs. timeLdata in the same manner described in the mass point analysis description.

The equation used was:

Li = Bti+A ,

where Li = Calculated leak rate - %/ day B = Slope of least squares fit line - %/ day - hour ti = Elapsed time from beginning of test - hours A = Y Intercept of least squares fit line - %/ day The slope and intercept were calculated as follows:

11

B=N[tiMi-[tifMi N {t i2 ({t

)4 i

^,fMi-Bfti N N N = Number of data points M1

3. 95% Upper Confidence Limit - UCL The 95% upper confidence limit was calculated using the following equation:

UCL = Lam + T95E where UCL = 95% confidence limit - %/ day Lam = Calculated leakage rate at end of test - %/ day T95 = 95th percentile of Student's t distribution E = Standard deviation The standard deviation was determined as follows:

32- ~

(Mi-L)2 i N-2 ,

~

E2 s2 1+ + (tp - E)2

((ti - E)2 ,

where N = Number of data points Mi E=Averagetimeinterval=(t/N , i and E=S } '

1+h+((p- ti - E)2 ,,

The Volumetrics computer program used the 95th-percentile of the Student's t distribution, T , as described in ANSI N56.8-1981. The okhlinecomputersystemusedtheT95. described in BN-TOP-1, Rev 1, for elapsed times (ti ) of less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and the T95 described in ANSI N56.8-1981 for elapsed times of greater than or equal to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

12

VI. RESULTS A. Twenty Four Hour Test The maximum allowable leakage rate (:La) per the Fermi 2 Technical Specifications is 0.5%/ day while the overall measured Icakage rate must not exceed 0.75La or .375%/ day. The overall measured leakage rate is defined as the final calculated 95% upper confidence limit plus any added penalties. The penalties are described in Appendix G to this report and amounted to 0.003%/ day additional leakage.

The results of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test indicated that the final overall measured Icakage rate for both the mass point and total time methods was well within the acceptance criteria:

Volumetric's Computer System

%/ day Method Measured Calculated UCL UCL + Penalties Mass Point .241 .250 .251 .254 Total Time .241 .269 .278 .281 Acceptance Criteria - - -

f.375 Offline Computer System Mass Point .240 .249 .251 .254 Total Time .240 .275 .290 .293 Acceptance Criteria - - -

f.375 B. Verification Test The verification test was performed over a four hour period following a one hour stabilization period.

The acceptance criteria for this test as defined in Appendix J to 10CFR50, was that the value of the composite leakage rate (Lc) minus the superimposed.

leakage rate-plus the calculated test leakage rate be greater than or equal to .25La but less than or-equal to + .25La. That is:

- 0.125%/ day 6 Lvi + 0.125%/ day-where Lv = Lc - (Li - Lam) 13 L

All data indicated that the results were within the acceptance criteria:

Volumetrics Computer System

%/ day Method Lc Li Lm Lv Mass Point .675 .506 .250 -

0.081

' Total Time .677 .506 .269 -0.098 Offline Computer System Mass Point .677 .506 .249 -

0.078 Total Time .663 .506 .275 -0.118

  • ' -4 .

't 14-

, , , .- .c. . ,y.,- _ _ . . - , . . _.-_m..,., . .- _ . - e, , _ ,+

e VII. SIGNIFICANT TESTING PROBLEMS A. The initial Type B test performed on the drywell personnel air lock failed. Investigation found a wooden block wedged in the door interlocking mechanism. Although inconclusive, the investiga-tion determined that the wood block was installed during construction to defeat the interlocking mechanism. This allowed both the interior and exterior doors to be open at the same time to facilitate drywell entry during this period. The wedge also kept the equalizing valve between the drywell and air lock open, even when both doors were closed, thus preventing pressurization of the air lock during Type B testing. The block was removed and the Type B test successfully performed.

B. During the initial phase of containment pressuriza-tion, it was noticed that the torus pressure instrumentation at the DAS was not responding to the pressure increase. It was determined that the Target Rock one inch solinoid source valve, although indicating open in the control room was closed. The valve was opened and the torus pressure instrumentation began responding. The valve was opened by placing the control switch in the control room in the close position.

C. During pressurization, the drywell/ torus pressure instruments were to be monitored to fulfill a requirement of Appendix E of TMI Task Action ~ Plan Item I.G.1, Generic Letter 83-24. Monitoring was to be performed from 0-10 psig. When pressurization was halted at 10 psig, it was noted that this i activity had not taken place due to a communication problem. It was determined by the test director that the test would proceed and the monitoring performed during depressurization.

[

D. The Control Room started a condenser pump in order to pump down the main condenser hotwell. Water was discovered draining from the feedwater line A drain.

Apparently, while' pumping down the hotwell, water leaked past an' isolation valve and filled the feedwater piping. Since there was no way to show that water bad not gone past the' containment isolation valves a penalty for the two feedwater-penetrations was added to the type A test results.

15-k: -

E. One dewcell located in the Torus failed. The weighting factors for the remaining dewcells

- were recalculated in accordance with established criteria. The Icakage rate was calculated using 4

the new weighting factors from the beginning of the test.

i F. The following instrument valving problems were identified:

, 1. While depressurizing, three instruments were found not responding to the pressure change.

Investigation determined that a Target Rock one inch solinoid valve was giving improper control room indication. The valve was re-positioned and the instruments responded.

(See VII. B above).

2. A low range drywell pressure instrument did
not come on scale.during low pressure monitor-ing. Investigation determined that two instrument tubing valves on the instrument

^

rack were closed, and that the instrument vent

was open. The valves were repositioned.and the instrument responded.

r

3. After the test was completed, further investiga-tion revealed additional instruments that should have been subjected to containment pressure but were'not valved in. These instruments were either not included in the valve lineup, valved out:

during the test, or were signed off as being-

"In Service" but were not valved in. These instruments,-in addition to.the drywell pressure in sensing instruments,_were Type C tested and the results added to the Type A result.

See Appendix-G for a summary of the additional leakage added.

G. 'Following the.PCIIRT an investigation was conducted into the improper control room indication.of the two Target Rock valves-(E41-F402, Ell-F415). With

- the help of~a Target Rock engineering representative it was determined that,.although the1 valves were i' wired in'accordance with the DECO schematic diagram,

_the polarity.across the solenoids was reversed thus inducing reverse operation. ,

ic 16

- e - -- -- r e- w-- * ,---,-,.-,y-,=.,-e-c.,m<--y,e----w-- --.- . , e- --

Reverse operation of these valves would isolate divisional instrumentation associated with ECCS and RPS' logic. The potential loss of one division reduces the degree of redundancy for a safety related system. Accordingly, a potentially reportable 10 CFR 50.55(e) report (No. 142) was filed with the NRC.

A. program has been developed / initiated to verify the wiring and. operability of every dual solenoid Target Rock valve on site. Operability will be verified by ensuring the control room indication /

, demand matches the valves operation (Note: Valve

operation will be verified locally by a positive means).

d 4

17

.. . ~ , -. . ._, . . _ -- . _

VIII. REFERENCES A. Preoperational Test Procedure PRET.T2304.001, Rev. 1,

" Primary Integrated Containment Leakage Rate Test",

and test results.

B. American National Standard ANS-7.60/N45.4-1972,

" Leakage-Rate Testing of Containment Structures for Nuclear Reactors".

C. American National Standard ANSI /ANS-56.8-1981,

" Containment System Leakage Testing Requirements".

D. Bechtel Corp. Topical Report BN-TOP-1, Rev. 1,

" Testing Criteria For Integrated Leakage Rate Testing of Primary Containment Structures For Nuclear Power Plants".

E. 10CFR50 Appendix J, " Primary Reactor Containment Leakage Testing For Water-Cooled Power Reactors",

h f'

i 18 i

i 4

4 1

FIGURES 1A, 1B, 1C, ID, lE 2A, 2B 3

FIGURE 1 A 80-FERMill PCILRT SEQUENCE OF EVENTS II -

3 60-P R

E 50-S S

U R

E 40-P S

I A

30-t 20-l 4

'O' PRESSURIZATION STABILIZATION 24 M TEST ERIFICAll0N TESTT50 TEST DEPRESSURIZATION 0,

  • 8 10 12 IN l'6 l'8 2b 4b 4'g 44 4g 4g gy .

52 5'4 5'6 5'8 $0 6'2 6'4 g

  • ELAPSED TIME-HOURS

738 -

g. FIGURE IB FERMI 11 PCILRT 73.4 -

CONTAINMENT PRESSURE 70-7U-D R 73.1-A 738-1 I

72)-

P 72.8 -

S l 72J-R E

72J-P 72.5 -

S A 72.4 -

72.3 -

72.2 -

72.1 -

723 -

-i -i i 0 $ 4 5 $ l8 12 l4 l'6 l'8 IO $2 24 26 2'8 IO I2 ,

1108 11 33 34 EL APSED TIME-HOURS

FIGURE lC FERMIil PCILRT CONTAINMENT AVERAGE TEMPERATURE 888-IS-89-T E

M

[838-R A

T R 828-E i

  • F lik

.- i IU-7u . . . . . . . . . . . . . . . . . . . .

6 -4 -2 8 2 4 6 I II 12 14 16 II 20 22 24 26 28 30 32 34 1188

  • 1 11-38-84 ELAPSED TIME-HOURS

9 FIGURE ID FERMIil PCILRT CONTAINMENT ORY AIR MASS 197500-187808-181788- \

W i i.1 -

G H

T

, ' 197500-L

. B S.

187400- ,

187300-1 197200- , , . , , , . . . . , , , , . . , , , , , ,

-8 -E -4 -2 0 2 4 E I 18 12 14 16 II 20 22 24 26 28 30 32 34 1108 ELAPSED TIME-HOURS *

! 11-30-84

W W

CK La.s a=a - l M

- M gh.

C3 4 o LaJ Ch. na.s M &

0 D = "'d 2

m -

O

[ E cm e-ti. -

c=

y a x

a,

,=._

4 C

M

=

cad J W4 O C3 O M '2"#

O J

= = e.

EFD CJ _N H Il M 9

-2 N

' .N N

l' i cm I, '

W 1 ,

' g e

I 48 Led

't " E 1 , i --

It ,w w M

1, Ch.

4 u _~ d 1.

, .e3 P

l. 6 1;

li =43 1,

J; w I

M M

es M e

-e G" M 7

M W

1

-em I

-em

~

b

m. . .

M idJ W M 4 GSidJ M 4 >= ldJ == MGD h M(>

FIGURE 2A PRESSURIZATl0N SYSTEM j'

y

,' 9W STATION AIR i "I REACTOR AIR COMPRESSORS '

BU:LDIN6 WALL ,

  1. l 900 SC FM y4 3y 3y

, 2048 j g jg (E)PU(PyP

'E.900SCFh1

( AFTERC00LERy -

g ,N & y FILTER V8Z191 53.300 SCFM 3 TROM RWR SYSTEM i

44,9005CFM '

f 5

J j %y L V8 Z,545 3 Lff cr*Ja Vo Gl8 v

TO CONTAINMEllT SPRAY WEADER

6 FlGURE 2B DEPRESSURIZATION SYSTEM PlPIE- ARRAMGEMEkT kk!N T N ze n 70 O " zl53 x  :-c 2"

i, TWE?b5 VF3 3f4 EB -li @,

k 2 l f_

_ f29 20" r M l}!

k Rc w TEMPORARY SPOOL X25 y >(  ; PIECES CONTAINMEMT SYSTEM V g-A _/_

6" NI '

/ -

O b .

~

~

FIGUKE.5 LMS SYSTEM -

p g p yp g g ,N -------_ liGD R f350K - - - - - - - ,, ,

r s ONLINE COMPUTER f---

g _ _f -- - g'- V - - ] SYSTEM URelEfDRg; g-------- MD RfSSOR - ---- -

, y ,

3 M M i

\g Q) Q) I y

mrumsuD I

C  :=: as h --d---- l

@ $ II

() () II 11 I

MU5PRESSUR(; =l fc - ----- ---

PRINTER 2 III lil Ill ( J lit lll 111 NAFST l'8 3 ~g III Cl o /PTN lil l'll 1 i V ~

4C) -

g >G- /Pih II!

ti t i- - -

III I

SUPPLY VAI'WM 7Ili lggg r 3 C i d( E #E llll llll l Nr lill I i 11_ _ _ _ _ LLLI- - - - PRINTER I SWPLY AIR I' II '

k J U S[ANNER I

${ANNER 2

TEST (O R i t. _ _ _ _ _ i _ 4 i C 4_ _ _ _ _ _ .a  ; i

@  :=l

__ KTD DEW { ELL CARD & DER (MEDER ,

n 5 -12 DEW PolkT_5 26 TEMPERATURES a

4 TABLES 1

2A, 2B 3

m._

, . - . . .. - - .. . ~ . - . . - - - .. - . , - _- -. ~

1g TABLE 1 INSTRUMENTATION SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO. RANGE ACCURACY REPEATABILITY Pressure Precision Mensor Corp. 100-010-001 0-100 PSIA IO.002% FS- 0.001 PSIA Pressure Gauge (2)

Temperature ~

4 RTD's-(26) Rosemount, Inc. 78-65-17 60-120 0 F 10.l OF 0.030F 100 OHM-Platinum Dewpoint EG & G '660- 0-2120F I0.540F 0.10 F Temperature Chilled Mirror (12)

Rotometer' Fisher and Porter 10A555 0-12.59SCFM Il% FS -

DAS Real Volumetrics MM58167 N/A Il0 sec/ day -

Time' Clock-4 k.

e

TABLE 2A DRYBULB TEMPERATURE SENSOR LOCATIONS AND WEIGHTING FACTORS No. PIS Elevation Azimuth Volume Fraction Ft degrees RTD DRYWELL 1 TEN 020A 670 90 0.014476 2 TEN 020B 670 270 0.014476 3 TEN 021A 642 330 0.014841 4- TEN 021B 642 225 0.014841 5 TEN 022A 642 125 0.014841 6 TEN 022B 642 50 0.014841 7- TEN 023A 613 335 0.029676 8 TEN 023B 613 250 0.029676 9 TEN 024A 618 150 0.029676 10 TEN 024B 620 45 0.029676 11 TEN 025A 615 225 0'.052293 12 TEN 025B 615 145 0.052293 13 TEN 026A 595 30 0.052293

.14 TEN 026B 595 325 0.052293

~^

15 TEN 027A 580 220 0.020234

16. TEN 027B- 580 120 0.020234 17 TEN 028A 580 60 0.020234 18 TEN 028B 580 330 , 0.020234 19 TENO29A- 590 0 0.0145.04 20 TEN 029B 590 180' O.014534-RTD TORUS 21 TENO30A 562 -40 0.064158 22 _TENO30B 562 335 -0.'083876 23 TENO31A. 562 110- 10.088820 24- TENO31B 562 160 0.088820
. .25. 'TENO32A 562' 250 0.059213

-26 .TENO32B 562 - 280 0.088820'

, ~

i 5

TABLE 2B DEWCELL SENSOR LOCATIONS AND WEIGHTING FACTORS No. PIS Elevation Azimuth Volume Fraction Ft degrees DEWCELL DRYWELL l- MMEN040A 670 90 0.014476 2 MMEN040B 670 270 0.014476 3 MMEN041A 615 275 0.089034 4 MMEN041B 615 90 0.089034 5 MMEN042A 600 170 0.104585 6 MMEN042B 595 345 0.104585 7 MMEN043A 580 155 0.055052 ,

8 MMEN043B 570 30 0.055052 DEWCELL TORUS 9 MMEN044A 562 45 0.118426 10 MMEN044B 562 335 0.118426 11 MMEN045A 562 250 0.118426

.12- MMEN045B 562 160 0.118426-

1 l

11ABLE 3 l V0iUMETElt!

F ALD RDI.E5 CA;lFORh!E PRESSURE SAJ5E CAtlEF A110k FEDEEAP. l l

l PRESSUPE SAU5E 1 FRESSUPE GAJS! !

CA' llEATION TRUE GAUEE RJ.flPilCATION CDES.EC110t. GAJEE MJ,11FLICAi10N CORRECTION F0!hi PEESSufE REA21hE FA210F C0kST Ah'. REA:lh* F A T0F CCAETAki 1 0.00(

  • 0.0 00 * (.00:
  • -------------(  !.0175; C.00' +--------------( 1.0:766 0.000 2 5.000 e 4.914
  • 4.ici e----------...(  !.0125: 0.022 e-.------------( l.03:4: 0.027 3 10.00( l 9.850
  • 9.94c e-------------( l.01420 0.010 e--------------i 0.99EE; 0.06!

4 15.000 e 14.76C 6 14.95!

+-------------(  !.01674 -0.057 i------- ,----- s 1.0(4t; -0.0:t 5 20.00C e 19.6EE

  • 15.9::

+-------------; 1.01626 -0.00s 6------------- >: 1.000s. 0.(4i

& 25.00'

  • 24.60E
  • 24.93:
  • = -

( l.0204: -0.!!; +--------------t 0.9990: (.094 7 3:.00( a 25.50E

  • 25.93c

+-------------(  !.0222i -0.106 +--------------. 1.0016; 0.(It 6 35.000 e 34.39c + 34.92C g"

e-------------( l.01854 -0.0 ' +--------------( ).00040 0.059 t

40.000 e 39.305

  • 39.92c

+----- ----( l.02396 -0.25S +--- --- --- i 1.0014; C.015 10 45.000 e 44.191

  • 44.915 a-------------<. 1.02:3! -0.222 e  : 0.996 c L.144 11 55.00; e 49.077 e 4'.91c e --

-s 3.02375 -0.243 e--------------< 0.999s.' O.064 12 55.000 e 53.961

  • 54.927
  • -------------(  !.02291 -0.197 i--------------( 0. 999r.- 0.094 13 60.00: e 5E.845
  • 59.92E a ----- -------- C 1. 019 7E -0.013 +--------------( 0.99940 0.168 14 65.000 e 63.752 8 64.93c e-------------( 1.01709 0.159 *--------------( 0.9574; 0.232 15 70.00 s 66.66E + 69.945 a.------------( l.01355 0.031 *--------------f. 0.9576: 0.205 lE 75.000 e 73.575
  • 74.960 e .---------- -- ; 1.0162e 0.22% +-------------- 0.9954: 0.36E 17 80.000 e 75.495 i 79.9E2 e--.----------(  !.014g2 0.342 e-------------( 0.9936 (.5:1 IB 05.000-
  • B3.422
  • 85.013 e-------------( l.01358 0.445 +--------------( 0.990BE 0.762 19 90.000 8 08.355 4 90.059 e.----.------( 't.0099C 0.770 *-----------( 0.99285 0.545 20 95.000 e 93.306 e 95.095 e-------------( 0.99502 2.15E s--------------( 0.97924 1.879 21 100.000 6 96.331 e 100.201 e# 6469 64 85 866996666666649960669696699666666664688849695945 64 69 66 0 8 5508 88 88 86 5 6696 991999 9 9999 6 8 6566 6 66664 89 664469696 96960 896066604 s

e APPENDIX A PLANT DATA

~

i APPENDIX A PLANT DATA F

Plant Information Plant Name Fermi 2 Owner' Detroit Edison Co.

Docket Number 50-341 Plant Type BWR-4 Rated Output-Gross 1154 MWe Location Monroe Co., MI Containment Type Mark I Date Test Completed 12-2-84 i-Technical Data Containment Volume 294630 CF

" Maximum Allowable Pressure 62 psig Design Pressure 56 psig Design Temperature 3400F Peak Accident Pressure 56.5 psig Maximum Allowable Leakage-La 0.5%/ day Instrumentation No. of Temperature Sensors 26 No. of Dewpoint Sensors 12 No. of Pressure Sensors 2 Test Data Test Method Absolute Data Analysis Techniques Total Time and Mass Point Test Pressure 56.5 psig.

Allowable Leakage .75La .375%/ day 4

e e

l 1

b p

w APPENDIX B PUMP-UP DATA i

b l- 4 m

l l

r

[ ..

'I I  !

t I

Appendix B

.Page 1 of 5 FERMI 2 PCILFT PUMPUP DATA i

t TIME

@ @ p4P O @ @ @

ELAPSED PRESSURE 12 x dD HR AVE PUMPUP AP TIME-MIN PSIA PSIA AP alj) FLOW RISE PSIA PSIA SCFM PSIG 18.41:36 0 14.904 5 15.187 .283 3.396 10 15.460 .283 3.396

. 15 15.728 .268 3.216 20 16.063 .335 4.02 25 16.602 .539 6.47 30 16.994 .392 4.71 4.18 35 17.379 .385 4.62 40 17.798 .419 5.028 4.34 45 18.232 .434 5.208 4.44 1800 50 18.562 .430 5.16 4.51 55 19.097 .435 5.22 4.57 60 19.649 .552 6.62 4.75 65 20.200 .551 6.61 5.01 2300 70 20.737 .537 6.44 5.28 75 21.219 .482 5.78 5.49

. 80 21.689 .470 5.64 5.62 2040 6.99 85 22.167 .478 5.74 5.57 2040 7.47 90 22.639 .472 5.66 5.65 2035 7.94 95 23.103 .464 5.57 5.72 2211 8.20 100 23.530 .427 5.12 5.73 2140 8.83 105 23.962 .432 5.18 5.73 2135 9.26 110 24.395 .433 5.20 5.73 2135 9.70 115 24.827 .432 5.18 5.73 2140 10.127 Comp off 120 24.964 .137 1.64 5.32 0 125 24.939 -0.~025 -0.3 4.74 0 130 24.929 -0.01 -0.12 4.19 0 135 24.924 -0.005 -0.06 3.71 0 Comp on 140 24.922 -0.002 -0.024 3.23 2160 145 25.383 .461 5.53 3.22 150 25.837 .454 5.45 ~3.20 155 26.282 .445 5.34 3.18 2140 11.58 160 26.717 .435 5.22 3.19 2160 12.02 165 27.155 .438 5.26 3.193 2150 12.46 170 27.588 .433 5.20 3.193 2150 12.89 175 28.042 .454 5.448 3.215 2440 13.34 180 28.579 .537 6~.444 '3.615 2430 13.88 185 29.111 .532 6.384 4.172 2440 14.41 190 29.634 .523 6.276 4.705 2410 14.93 195 30.163 .529 6.348 5.239 '2420 15.46 200 30.685 .522 -6.264 5.763 2425 15.99 205 31.214 .529 6.348 5.831 2410 16.51 210 31.738 .524 6.288 5.901 2420 17.04 215 32.267 .529 6.348 5.985 -2410 17.57

uwwmsw w Pago 2 of 5 FERMI 2 PCILFT PUMPUP DATA i -

O TIME ELAPSED PRESSURE g4P e o HR AVE PUMPUP 12 x GD AP TIME-MIN PSIA PSIA AP ad) FLOW RISE PSIA PSIA SCFM PSIG 220 32.790 .523 6.276 6.073 2424 16.09 225 33.320 .530 6.360 6.165 2425 18.62 230 33.846 .526 6.312 6.256 2410 19.15 235 34.374 .528 6.336 6.332 2425 19.67 240 34.900 .526 6.312 6.321 2418 20.20 245 35.426 .526 6.312 6.315 2415 20.73 250 35.950 .524 6.288 6.316 2410 21.25 255 36.474 .524 6.288 6.311 2410 21.77 260 37.000 .526 6.312 6.315 2400 22.3 265 37.524 .524 6.288 6.310 2410 22.82 270 38.040 .516 6.192 6.302 2260 23.34 275 38.539 .499 5.988 6.272 2260 23.90 280 39.042 .503 6.036 6.252 2260 24.34 285 39.542 .500 6.00 5.696 2260 24.84 290 40.023 .481 5.772 6.177 2025 25.32 295 40.494 .471 5.652 6.12 1860 25.794 300 40.953 .459 5.479 6.05 1900 26.45 305 41.417 .464 5.568 5.991 1895 26.717 310 41.878 .461 5.532 5.928 1890 27.178 315 42.342 .464 5.'568 5.868 1895 27.642 320 42.801 .459 5.508 5.801 1895 20.10 325 43.267 .460 5.592 5.743 1880 28.56 330 43.726 .459 5.508 5.686 1885 29.03 335 44.190 .464 5.568 5.65 2040 29.49 340 44.670 .480 5.760 5.52 2040 29.97 345 45.147 .477 5.724 5.60 2040 30.45 350 45.626 .479 5.748 5.603 2190 30.93 355 46.122 .496 5.952 5.628 2200 31.42 360 46.609 .487 5.844 5.656 2220 31.91 365 47.103 .494 5.928 5.686 2200 32.40 370 47.596 .493 5.916 5.718 2330 32.89 375

, 380 385 49.143 5.876 2330 34.44 390 49.653 .510 6.120 5.927 2320 34.95 395 50.167 .514 6.168 5.977 2350 35.47 400 50.680 Totalizer 29,875 yd3 405 51.197 410 51.707 415 52.225 .518 6.216 6.103 2310 37.525 420 52.734 .509 6.108 6.125 2310 38.034 425 53.249 .515 6.180 6.146 2321 38.549

~430 53.759 .510 6.120 6.~163 2322 39.059~

435 54.275 .516 6.192 2322 39.575

+ - ~ ~ -

Page 3 of 5 i FERMI 2 PCILFT PUMPUP DATA O E fP HR AVE PUMPUP TIME ELAPSED PRESSURE 12 x dD AP TIME-MIN PSIA PSIA AP AG) FLOW RISE PSIA PSIA SCFM PSIG 440 54.785 .510 6.120 2315 40.085 445 55.299 .514 6.166 6.156 2331 40.599 450 55.808 .509 6.108 6.155 2325 41.108 455 56.313 .505 6.060 6.146 2221 41.613 460 56.806 .493 5.916 6.126 2230 42.106 465 57.301 .495 5.940 6.104 2221 42.601 470 57.797 .496 5.952 6.090 2224 43.097 475 58.298 .501 6.012 6.073 2228 43.598 480 58.794 .496 5.952 6.060 2229 44.094 485 59.293 .499 5.988 6.044 2212 44.593

.490 59.787 .494 5.928 6.028 2204 45.087 495 60.285 .498 5.976 6.010 2210 45.585 500 .60.778 .493 5.916 5.993 2195 46.078 505 61.274 .496 5.952 5.975 2200 46.574 510 61.764 .490 5.880 5.956 2205 47.064 515 62.260 .496 5.952 5.947 2164 47.560 520 62.748' .488 5.856 5.942 2189 48.048 525 63.241 .493 5.916 5.940 2155 48.541 530 63.728 .487 5.844 5.931 2171 49.028 535 .64.218 .490 .5.880 5.920 2154 49.518 540 64.702 .484 5.808 5.908 2150 50.002 545 65.191 .489 5.868 5.898 2130 50.491 550 65.672 .481 5.885 2134 50.972 555 66.156 .484 5.871 2130 51.456 560 66.633 .477 5.855 2110 51.933 565 67.114 .481 5.840 2090 52.414 570 67.589 .479. 5.825- 2085 52.889 575 68.070 .481 5.810. 2080. 53.370 580 68.546 .476 ' 5.798 2100 '53.846

. '585 69.027 .481 5.786 2070 54.327

~

590 69.503 .476 5.775 2070 54.803 595 69.983 .480 5.760 5.765 -2072' 55.283

-600 70.456 .473 5.676 5.754 2057 55.756 605 70.935 .479 5.744 2075 56.235

.477 5.748' 5.724 2059 56.712 610 71.412 5.740 615 71.654 .242 2.904 5.498 0858 56.954 Start 1 min 620 71.875 .221 2.652 5.~242 ~870 625. 71.922 .047 .564 880 4

630 71.968 .046 .552 882 635 .72.014 875 640 72.060 .046' .552 878 645 72.107 .047 .564 879 650 72.152 .045- .540 855 57.452 655 72.197 .045 .540 873 57.497 660 72.243 .046 .552 852 57.543

.I

499WdinRI~1->

Page 4 of 5 FERMI 2 PCILFT PUMPUP DATA 4

@ @ @ p4P @ @ @ @

TIME ELAPSED PRESSURE 12 x d) HR AVE PUMPUP AP TIME-MIN PSIA PSIA AP A@ FLOW RISE PSIA PSIA SCFM PSIG 665 72.283 .045 .540 855 670 72.335 .047 .564 879 675 72.381 .046 .552 871 57.681 680 72.428 .047 .564 683 57.728 685 72.474 .046 .552 890 57.774 690 72.520 .046 .552 903 57.820 695 72.567 .047 .564 886 57.867 700 72.615 .048 .576 876 57.915 705 72.661 .046 .552 883 57.561 710 72.709 .048 .576 887 58.009 715 72.755 .046 .552 869 58.055 720 72.803 .048 .576 868 58.103 725 72.848 .045 .540 860 730 72.895 .047 .564 860 58.195 735 72.942 .047 .564 868 740 72.989 .047 .564 868 58.289 745 73.037 .048 .576 858 58.337 750 73.083 884 755 73.130 889 760 73.176 876 765 73.224 .048 .576 878 770 73.270 .046 .552 888 775 73.316 .046 .552 848 780 73.362 .046 .552 863 58.662 785 73.408 864 790 73.454 849 795 73.501 857 800 73.548 855 805 73.595 847

! 810 73.642 883 l

815 73.689 867 i -820 73.736 880 l 825 73.783 840 830 73.830 836 835 73.877 851 840 73.924 874 845 73.971 858 850 74.018 853 4 855 74.064 865 860 74.083 000 865 74.071 000 870 74.063 000 875 74.055' 000 880 .74.048 000 1:

&W Page 5 of 5 t

FERMI 2 PCILFT PUMPUP DATA i

@ @ @ 04 @ @ G @

TIME ELAPSED PRESSURE AP 12 x dD HR AVE PUMPUP AP TIME-MIN PSIA PSIA AP AG) FLOW RISE PSIA PSIA SCFM PSIG 885' 74.042 000 890 74.037 000 895 74.032 000 900 74.029 000 905 74.027 000 t

i

APPENDIX C STABILIZATION DATA

\

i

Appendix C Pago 1 of 3 Calculation of Temperature Stabilization Date/ Time Started 0611 11/30/84 (1) (2) (3) (4) (5)

AVE. dT OVER AVE. 4T OVER TIME TEMP LAST 4 HOURS LAST HOUR t T Tt-Tt-4 Ti-Tt-1 ~( ~b 4

HOURS OF OR OR/HR OR/HR OR/HR 0 83.95 543.95 1 83.62 543.62 .33 2 82.85 542.85 .77 3 82.39 542.39 .46 8

4 82.06 542.06 1.j 1 = .47 .33 .14 5

6 7-8

\_ 9 10-t i

4

Appendix C VOLUME 1 kits Page 2 of 3 PA50 RDBLES CAtypcynya ILRT PROGRAM REPORT T i STARi!M6 DAY - 335 STARi!NG TIME - 7: 0: 0 STARTING SCAN - SD.156 EnDINS SCAk - S0.172 l l

POINI TO POINI TOTAL TIME MASS PLOT I SCAN ELAPSED AVERASE AVERAGE MEASURED CALCULATED MEASURED CALCULATED UPPER MEAS'JPED CALCULATEC UFPEF NO. TIME TEMP. PRESSURE LEAK RATE LEAK RATE LEAK RATE LEAA RATE CONFIDENCE LEAK RATE LEAK RATE CONFIDEN2E (HR) (F) (PSIA) (tE16HT PERCENT PER DAV)

CH3&E3 3 3 3RR3 3 3 33 3 3 333 3 33 33 3 333 333 3 3 3 33 333 3 3 33 3 3 3 3 35 2 E3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 338 3 8 3 3 3 3 3 3 3 8 8 3 3 3 3 3 3 3333 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 SD.156 0.00 83.67 73.595 SD.157 0.25 83.62 73.570 0.237E+0! 0.237E+0! 0.237E+0! 0.227E+01 0.000E 40 0.237E+0! 0.237E+01 0.000E+00 SD.155 0.50 83.57 73.549 0.190E+0! G.190E+0! 0.214E+0! 0.214E+01 0.000E+% 0.214E+01 0.214E+01 0.000E+%

SD.159 0.75 83.48 73.526 0.110E+01 0.115E+01 0.179E+0! 0.181E+0! 0.19t,E+0! 0.179E+01 C.149E+Cl 0.34 E+01 50.160 1.00 83.04 73.466 -0.249E+01 -0.159E+0! 0.720E+M 0.960E+00 0.138E+01 0.720E+00 0.261E+00 0.23&E+0!

SD.161 1.25 82.85 73.463 -0.458E-01 -0.128E41 0.567E+00 0.512E+00 0.771E+00 0.567E+00 -0.490E-01 0.102E+0i 50.!62 1.50 '82.71 73.455 -0.153E+0! -0.185E+01 0.218E40 0.119E+00 0.323E+00 0.2tSE+00 -0.349E+00 0.38!E40 SD,163 1.75 82.59 73.434 0.746E+00 -0.109E+01 0.293E+00 -0.535E-01 0.215E+00 0.293E+00 -0.338E+00 0.15tE+0L SD.lo4 2.00 82.49 73.414 0.771E+00 -0.581E+00 0.353E+00 -0.lt9E 4 0 0.210E 4 0 0. 353E+00 -0.241E+00 0.127E40 50.!65 2.25 82.39 73.405 -0.628E+00 -0.765E+00 0.244E+# -0.191E+00 0.151E 40 0.244E+00 -0.222E+% 0.570E-01 SD.166 2.50 82.30 73.391 0.245E+00 -0.581E+00 0.244E+00 -0.230E+00 0.12tE+00 0.244E+00 -0.166E+00 0.34GE-C.

SD.167 2.75 82.21 73.379 0.904E-01 -0.492E+00 0.230E+00 -0.254E40 0.101E+00 0.230E40 -0.156E+00 0.255E-0:

SD.168 3.00 82.14 73.367 0.173E+00 -0.398E+00 0.225E+% -0.266E+% 0.893E-01 0.225E40 -0.124E+00 0.264E-0; SD.169 3.25 82.06 73.360 -0.41tE+00 -0.4S4E+00 0.176E40 -0.283E+00 0.664E-01 0.!76E40 -0.!!5E+00 0.131E-0; SD.170 3.50 81.99 73.350 0.!!4E-02 -0.441E+00 0.164E+00 -0.294E+00 0.484E-01 0.164E +% -0.106E+M 0.369E-02 S0.171 '3.75 81.93 73.336 0.703E+00 -0.235E+0C 0.200E400 -0.290E+00 0.482E-01 0.200E+00 -0.798E-01 0.16CE-0; SD,172 4.00 81.87 73.326 0.31SE+00 -0.157E+00 0.207E+00 -0.282E40 0.517E-01 0.207E40 -0.532E-01 0.359E-Oi W

6

Appendix C i

M UMETRICS Page 3 of 3 PASO RDBLES CALIFORNIA ILRT PROGRAR REPORT T

START!h6 DAY - 335 START!b6 TIRE - 7: 0: 0 STARilNS SCAN - 50.15. ENLING SCAh - SD.172 ILRT RESULTS AFTER 4.00 HRS.

e33233.....................................3.....3....3......3..3.3..........333.....33....3..3333.....33..3..33 POINT TO POINT TOTAL TIRE MASS PLOT E3242323 333 3333 38.. 3 3 3..S.2......t.. 23 3 323. 33 3 513333323 3333333 3333 28 322332332 2333332332223 2 23333 333 333 333332.. 23.

AVEFAGE REASURED LEAK RATES frE!6HT PERCENT PER DAVI LEAR RATE LEAK RATE STD.DEV. LEAR RATE STD.DEV.

0.207E+00 0.634E+00 0.743E+00 0.6:4E+00 0.743E+00 3R37 3 3 383 3 332E. 33383.. 33. 333333 2333333333*S3333333. 3233333 33333333333 3 3333 233333333333233 3353 333333333 33333 333.

CALCULATED LEAK RATES (NEIGHT PERCENT PER DAI)

LEAK RATE LEAK RATE STD.DEV. UPFER CON. LIMIT LEAL RATE STL.DEV. USFER CCh. LIMIT

-0.157E+00 -0.282E+00 0.lB6E+00 0.490E-01 -0.532E-01 0.506E-01 0.359E-01 33333333333 3333323 333333333323 3533 333 3. 3..r33 333 3333333 3 33 3333333 333333 3333 33333. 3 33 3 3 3 3.SSS$3 83 ASS 483445 23 i

L

+

,/ -

. - . ~. . . - - -

O APPENDIX D TEST DATA e

Appendix D Pago 1 of 17 VOLUMETRICS RESULTS t

Appendix D V0suMETE!CS Page 2 of 17 FASO R0hES CALIFORh!A ILRT PRGG M R EEPORT T

STARilh6 CA) - 335 STMsilNG TIME - !!: 0: 0 STARI!N6 SCAh - SL.172 EhLING St% - SD.26f-FClhi 10 F0!hi TOTA; IIME MASS PLCi SEAh ELAPSED A ERAGE AVERAGE MEASCEED CA;CU.ATED MEASURED CALCULATEI trPEF MEAS $EL CALCULATE! UMEl NO. TIME TEMP. PRESS'5E LEAR RATE LEAL RATE LEr# RATE LEAL PATE COVILENCE LEA EATE LEAt EATE CONeiLENtf (Hb (F) (PSIA) (WE!6HT PEKEh! PEE Lan ES$23 3 33 3 3 3 3 3 33 3 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333 3 33 33 3 3 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 8 ?

$5.172 0.00 81.87 73.32e

$2.173 0.25 81.80 73.3!E 0.000E+00 C.000D00 0.Lt0DM 0.000EW v.000D0e v.!!ci-0; (.!3iDC2 0.0;0Ee-S0.114 0.50 81.75 73.309 0.145E G 0.145E40 0.727E-0; 0.727D01 0.000E G 0.7' IGE-0; 0.72EE41 0.00E+c St.!?5 0.75 81.69 73.301 0.595E-01 0.990E-01 0.663E41 0.E!!E-Ut 0.151E40 0.6E7E41 0.10D00 0.3:0EW SD.17o 1.00 81.64 73.288 0.2ME-01 0.524E41 0.559E-01 0.737E-0! 0.!!2E 4 0.561E-(1 0.726E%1 0.!!Mm 55.177 1.25 81.59 73.264 0.39 tDM 0.255E+00 0.123E40 0.!!0E40 0.137D0; 0.122DM 0.13?E40 0.2 5D6+

SD.176 1.50 81.54 73.275 0.21 2 @ 0.264D00 0.130E G 0.136E4: 0.155E40 0.135!% 0.15EDS 0.2:5D:

5D.179 1.75 61.49 '2.26E 0.157E40 0.24!E G 0.141E @ 0.151E+0V 0.leEE @ 0.141E +N 6.1:ii M 0~hiu SD !8) 2.00 01.45 73.261 0.930E-01 0.195E+00 0.133E40 0.15e!40 0.l?4EG 0.1:!De{ 0. b!E@ 0. !c!!% :

SD.181 2.25 81.41 73.25: 0.279E+00 0.2:2D00 0.150E 4 0.165E40 0.10:D0s 0.!!0E4. t,.17tE @ 0.195D't 5D.162 2.50 61.37 73.246 0.272E40 0.264E40 0.162DN 0.175D00 0.191E 40 0.le2E W 0.li(E 4 0.2GE+

$5.163 2.75 61.33 H.240 0.145E40 0.241E+00 0.160E40 0.!E!E40 0.197EG 0.160E+0i 6.18X40 0.2DDL SD.184 3.00 81.29 73.33 0.223E+M 0.247E+00 0.164D00 0.187D 00 0.202E 45 0.166E 4 0.167E*M 0.2 vie A 5D.185 3.25 81.25 73.276 0.197E+M 0.244E+00 0.166E @ 0.191E @ 0.h7E40 0.168D&' O.187E @ 0.h lE+

S0.166 3.50 81.22 73.220 0.204E+00 0.266E+C0 0.177E40 0.197E+M 0.212E @ 0.177E e 0.192 41 0.205i

  • S0.187 3.75 81.16 73.214 0.162D00 0.252E40 0.176E40 0.2ME40 0.216E@ 0.!?6E 4 0.195E40 0.h
  • E d(

4.00 81.!! 73.205 0.616E+M 0.34;E40 0.20 % @ 0.209D00 0.221E40 0.203EG C.20eDM 0.220E4; C)SC.186 50.189 4.25 81.12 73.202 4.220D00 0.236D00 C.179D00 0.2 TID 00 0.226 D 00 0.!?9E @ 0.2:5E+0p 0.2:7EW St.1% 4.50 81.09 73.184 0.48H40 0.29ID00 0.196E+00 0.215E 40 0.230E 4 0.19eE 4( 0.209E 4 0.221E*0.

S&.19 4.75 81.06 73.166 0.296D00 0.302D00 0.201D00 0.220D 00 0.234E 40 0.201E G 0.2:3Duc 0.2ME*0i S3.l?2 5.00 81.03 73.183 0.106D00 0.275E+M 0.196D00 0.223E 4 0 0.237E 40 0.1 4E 40 0.215E40 0.2ME4 SD.19; 5.25 81.00 73.177 0.257E G 0.279E40 0.199D M 0.225D 00 0.239E G 0.199D 00 0.217twe 0.I' 6Det 50.194 5.50 60.97 73.171 0.238D00 0.278t @ 0.201E40 0.226E @ 0.242DM 0.201E40 0.21GD00 0.227E%(

S0.195 5.75 80.95 13.167 0.!!4E40 0.255D00 0.197E @ 0.229E+00 0.243D00 0.197E40 0.219E 4 0.2;7D0' O .196 6.00 90.92 73.162 0.15H40 0.246E+M 0.195DM 0.2:0E+M 0.244E+00 0.195!+M 0.216D% 0.225Dt4

'SD.197 6.25 00.89 73.15e 0.3I2D00 0.269D M 0.202E40 0.231E*00 0.246E 40 0.202E+0( 0.214t @ 0. 22'E +

S0.192 6.50 30.07 73.151 0.202D00 0.264E40 0.202E40 0.232i40 0.247E@ 0.202i @ 0.21 % 4 0 0.2:!D'A C.199 6.75 00.84 73.143 0.572D00 0.311D00 0.216E40 0.235E 40 0.250E @ 0.216E40 0.222E@ 0.2pDot C.200 7.00 00,82 73.141 4.187D00 0.250E40 0.201D00 0.236E 4 0 0.250E N0 0.201D00 0.222D M 0.228Do(

SI,201 7.25 80.00 73.134 0.525DM 0.289E40 0.21M*H 0.230D00 0.252D00 0.21X4s 0.224E @ 0.220D M O.202 7.50 00.78 73.130 0.14X@ 0.275E40 0.210DM 0.219D 00 0.253E v0 0.210E @ 0.2* 5D% 0.230DX O.20! 7.75 80.75 73.127 0.B64E41 0.256E+M 0.20lDM 0.240E+00 0.254t @ 0.2}6DM 0.225E @ 0.270E W S0.204 6.M 00.73 73.121 0.40lE M 0.*76D00 0.212Dov 4.241E @ 0.*55Dw C.212Dui. t.225i+0( 6. 2 *vD r 50.205 8.25 80.71 73.115 0.40eE40 0.295E40 0.219DM 0.24;E 4 0.25aE @ 0.216EW 0.227Dn 0.2221

  • SD,206 8.50 10.69 73.110 0.291D00 0.290E4c C.220E4C 0.244D0e 0.257E40 0.2M@ 0.229t
  • 0.234D A C.207 0.75 10.67 73.106 0.152 40 0.287D00 0.210 0 00 0.245D00 0.259D00 0.218DM 0.233+00 0.2:51
  • O.200 9.00 80.67 73.105 0.100D00 0.272D00 0.215 DOC 0.246D00 0.259D 00 0.215D 00 0.;;0E W 0.235DA O.209 9.25 80.65 73.097 0.576D00 0.306E40 0.225E*00 0.248DM 0.261D00 0.225D00 0.232D00 0.237tw0 0.214 9.50 90.63 73.094 0.175D00 0.297t+00 0.224D00 0.249E 40 0.262D 00 0.224D00 0.2:4E @ 4.233EW S8.211 9.00 80.60 13.006 0.439D00 0.315D00 0.230E40 0.251E+00 0.264D 00 0.2 M 40 0.2:6DM 0.24)D0(

O.212 10.00 80.59 73.084 0.131E40 0.301E40 0.229000 0.252E+M 0.264D00 0.22eD00 0.23?t40 0.242D0s

% 213 10.25 80.57 73.079 0.275D00 0.302D00 0.230D00 0.25X40 0.h6E@ 0.2:0E @ 0.23+D00 0.243DM j C.214 10.50 80.56 73.075 0.432D00 0 !!?E 00 0.234E40 0.25!E 40 0.267E 40 0.2:4D00 0.241E*00 0.2 4!D X St.215 10.75 10.55 73.072 0.360D01 0.296D00 0.23CD00 0. 7.6D 00 0.264 D 00 0.2 0D00 0.241D 4 0.246Det

Appendix D Pcga 3 of 37 V0LtMITRICS FASG R06tES EALIFURNIA ILRT Ph0GFAR PEFORT T

STARi!NG DAY - 335 STARiihG !!ME - 11: 0: 0 STARilN5 SCAN - $0.172 EhDING SCAh - 50.26h F3 TNT TO F0!hi 10iAL i!ME MASS FLG' 5:AN ELAFSED MERA6E A'.'ERAGE MEASUEED CALLULATES MEASUML CALCU ATEI 04ER MEASUFED EALCULATEC UNEF NO. TIME TEMF. PRESSORE LEAt. RATE LEAK RATE LEAL RATE LEAR RATE CO V l((N:E lek RAIE LEA 6 RATE CChelDENCE (HR) (F1 (FS!Al tu!!5hi FERCENI K R LA O S$3CassssssssssssssssssJssssssssssssssssssssssssssssssssssssssssssessassssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss SD.216 11.00 E0.5 13.066 0. 44 X+ 00 0.31:D00 0.2:5E W 0.257E 40 0.:69D00 0.235E+vt 0.24!DX C.:4Bi4(

SD.217  !!.25 6>.51 73.061 0.13X+00 0.300E @ 0.233 40 0.25EI40 0.270DM 0. :M+00 0.244D00 0.245Df-5D.21B !!.50 60.50 73.060 0.549E-01 C.292D00 0.2:*E @ 0.259D 00 0.271E 40 0.2 8D0( 0.244 Doc 0.14Ev SD.219 11.75 6u.48 73.055 0.;66E40 0.29tE @ 0.2:lE @ C.260E @ 0.27tt+00 0.2:lE*00 0.:45E @ 0.24ito.

50.220 12.00 80.46 73.051 0.293E40 0.214D00 0.233E W 0.26tE 40 0.272E G 0.233E G ' O.245D M 0.243E4.

SD.::t 12.25 80.45 73.047 0.340D00 C.3ME@ 0.:!!E40 0.26!E40 0.273DM 0.2:5E40 0.246E4; 6.25;E*b SD 222 12.50 80.43 73.04 0.406E41 0.20N40 0.23tE40 0.262DM 0.27M40 0.2:!E+00 0.246D0e 0.250Dn 50.223 12.75 80.41 73.041 0.29 E41 C.265DM 0.2:7DM 0.26M+M 0.27:DM 0.017!@ c.24D00 C.25 ! c.

SD.224 13.09 00.39 73.015 0.354E @ 0.274E+M 0.2;M@ 0.263E 40 0.275E 40 0.23X@ 0.:4sDl0 0.250E+;

SD.225 13.25 BC.39 73.03: 0.454D00 0.290E40 0.233E40 0.:43E+ M 0.274E+ve 0. 2@ 0.246E40 0.250D U SD.2 e 13.50 60.36 73.0:0 0.229E @ 0.2669u0 0.23 E @ 0.*63DM 0.275Ede 0.233E4v 0.247E40 0.2%E4 St.227 13.75 80.36 73.025 0.210D00 0.264D00 0.233D09 0.:e4E40 0.275DM 0.233D09 0.247E40 0.:50!4' 50.0 9 14.00 80. 5 73.0:1 0.190E40 0.279E G 0.232E @ 0.2 4E 40 0. 75E W C.2:li e 0.247Edu 0.250D0f SD.229 14.25 00.34 73.018 0.314E40 0.263E40 0.2:4DCC 0.268E40 0.275E @ 0.:!4E 4 0.247E40 0.250E+0; SD.230 14.50 80.32 73.012 0.462E+M 0.297E40 0.230!49 0.265E+00 0. 76t+M 0.239E40 0.245E @ 0.25tE4C O.231 14.75 80.31 73.009 0.113D00 0.287E @ 0.235000 0.265E 4 0 0.276D 00 0.2:5E @ 0.248E 4 0.25tE @

15.M 00.30 73.006 0.320D00 0.291E @ 0.237E40 0.266E4C 0.276E40 0.237DM 0.24iE40 0.251E4s

)58.232 50.233 15.25 B0.29 73.002 0.228E @ 0.266E @ 0.237DM 0.266D00 0.277DM 0.:37E@ C.249E40 0.251D0'.

$0.234 l'.50 50.27 72.995 0.289D00 0.290D00 0.238E+M 0.266E 40 0. 77DM 0.22D00 0.:49E40 0.2:lE4-O.235 15.75 B0.26 72.995 0.332E+00 0.294DM 0.239E40 0.267E 4 0 0.277t @ 0.2:9E @ 0.;49E40 C.252D0'.

C.236 16.00 80.25 72.993 0.315E41 0.280E+00 0.236D00 0.267D 00 0.276t+00 0.236E40 0. 49D00 0.25:E4f

$0.2:7 16.25 Sv.24 72.906 0.372E+M 0.287E+00 0.2:8D00 0.267E40 0.278D00 0.23BE44 0.250D00 0.252E 4.

C.23e 16.50 80.23 72.987 4.73:E41 0.267D00 0.23X40 0.267D00 0.278E@ 0.23M+00 0. 49D 00 0.252E W

$8,239 16.75 00.22 72.982 0.489D00 0.281D00 0.237D00 0.267E40 0.27tDM 0.237DM 0.2490 % 0.252Dov O.240 17.M 00.21 12.981 4.193E 01 0.265E40 0.23!E+00 0.267t+00 0.278E @ 0.233E40 0.149D00 0.251E+0s 50.241 17.25 90.20 72.975 0.611E40 0.205E @ 0.239E @ 0.268E 40 0.278i 40 0.239E @ (.249D00 0.25 3

  • C.24: 17.50 00.19 12.975 4.133D00 0.263DM 0.233E40 0.2609 % 0.27ai @ 0.233E*00 0.24M@ 0.I'ID at C.243 17.75 80.10 72.969 0.55!E40 0.200E40 0.2:8E @ 0.268D 00 0.279E G 0. 3M 40 0.249E+00 0.251Ev.

C.244 18.00 60.17 72.966 0.24M@ 0.279D00 0.238E40 0.268D% 0.276D00 0.238D00 0.249DM 0.25t t+ x 0.245 18.25 00.16 72.961 0.469DM 0.291D00 0.24 tt+M 6.266D00 0.278t @ 0.24tE*00 0.25M*M 0.252E E C.246 18.50 30.15 72.959 0.102D00 0.282E40 0.239E @ 0.2e8E @ 0.27 M 4v 0.239DM 0.250E40 0.25N G C.247 18.75 90.14 72.954 0.1:5D00 0.275E+00 0.2!aE40 0.26tE40 0.079000 0.2:8900 0.250E40 0.252D x SL248 19.00 00.13 72.95: 0.317t @ 0.27BD00 0.239D0c 0.2e9DM 0.279DCt 0.II E+d 0.250 Duo 0.;5 i*

51#.249 19.05 80.12 72.949 0.24!DH 0.217D00 0.239DM 0.2 ele @ 0.079E + 0.:;9E @ 4.25vDvv 0.25:Dv.

S0.250 19.50 90.!! 12.946 0.%7D00 0.20X40 0.240E @ 0.269D00 0.:79E u 0.244 @ (.* 50D 0( c.25 De C.251 19.75 M.10 12.943 0.240D H 0.279D00 0.240E40 0.269D 00 0.279E 40 0.:40E @ 0.25eE 4 0.252DW St.252 20.00 00.09 72.941 0.326E41 0.;60E40 0.237D00 0. 69D 00 0.279D00 0.237D00 0.250t @ 0.25:($

C.253 20.25 80.H 72.938 0.40!E40 0.27 M 40 0.239D00 0.249D 00 0.27iE+ M 0.239E+% 0.250E*M 0.252Dfe.

Es254 20.50 90.00 72.934 0.416D00 0.282E@ 0.241D00 0.249E 40 0.279D 00 0.241E 40 0.:50t@ 0.252DE C.255 20.75 80.07 72.941 4.ll6E el 0.2tM40 0.2:4DM 0.266DM 0.270D00 0.224D00 0.249D M 0.251DM C.256 !!.00 to.M 72.92? 0.167D01 0.2tM*00 0.24tDM 0.269E40 0.278D00 0.04tD00 0.249E 40 0.251E @

C.251 21.25 00.05 72.923 0.33:D00 0.286( @ 0.243E40 0.269D09 0.279D00 0.243E @ 0.254 40 0.252E m 40.04 72.922 0.715E41 0.277D00 0.24tl+00 0.269E 40 0.279E*00 0.24 tE @ 0.;50D00 0.25NW

) C.258 21.30 C.259 21.75 00.03 72.919 0.190D00 0.275D00 0.240E40 0.26'DH 0.219DM 0.244 40 0.254 40 0.252D v.

Appandix D VOLUMETRICS Pago 4 of 17 PASO RG8tES CALIFCRNIA ILAT PROGRAM REPORT

)

STARi!NE DAT - 335 STARilNG IIME - 11: 00 STARilNE SCAN - SD.172 ENLING SCAN - 50.268 POINT TO POINT TOTAL ilME MASS PLOT SCAN ELAPSED AVERAGE AVEPAGE MEASURED CALCULATED MEAS'JRED CALCULATED UPFER MEASURED CALCULATED OFFER

- N0. TIME TEMP. PRESSURE LEAK RATE LEAK RATE LEAK RATE LEAK RATE C0mFIDENCE LEAK PATE LEAR HATE CONFIEENCE IHR) (F) (PS!Al (hE!6HT PERCENT FER DAH D2S0089838988888838333343333333333333333333333333333333333333333gggggggggggggggggggggggggggggggggggggggg,aggea,asseaaessB8s8aea88aBg O.260 22.00 40.02 72.916 0.233E+00 0.273E+00 0.240E+00 0.269E+00 0.279E+0C 0.240E+00 0.250E+00 0.252e*f' O .261 22.25 90.01 72.913 0.143E+00 0.248E+00 0.239E+00 0.269E+ % 0.279E+00 0.239E+M 0.250!+00 0.252E+0' SL262 22.30 00.01 72.910" 0.292E+00 0.270E+00 0.239E+00 0.269E+00 0.278E+ M 0.239E+M 0.256E+% 0.25tE*X C.243 22.75 30.00 72.907 0.299E+M 0.272E+00 0.240E+00 0.269E+M 0.276E+00 0.240E400 0.2hE+00 0.25tt+^:

0.264 23.00 79.99 72.903 0.346E+H 0.276E+% 0.241E+00 0.269E+00 0.278E+00 0.24tE+00 0.250E+M 0.251E+W C.265 23.25 79.90 72.902 0.669E-01 0.268E+00 0.239E+00 0.249E+00 0.278E+00 0.239E+00 0.250E+00 0.25!t+0-50.246 23.50 79.97 72.996 0.244E+M 0.267E+00 0.239E+00 0.249E+M 0.278E*00 0.239t+M 0.2%E+% 0.251E+0; St.267 23.75 79.97 72.894 0.26BE+00 0.2&BE+00 0.240!+M 0.269E+ M 0.278E+00 0.240E* R 0. 2'0E + M 0.251E*0; SD.268 24.00 79.96 72.872 0.335E+00 0.271E+00 0.241E+00 0.249E+00 0.27EE*00 0.241E*00 0.250E+00 0.2!!E+'.

f 4

)

i

Appendix D VOLUMETRICS PASO ROBLES CALIFORNIA ILRT FROGRAM REFORT STARilh6 DAY - 335 START!b6 TIME - 11: Os 0 STARi!n6 SCAh - SD.172 END!bG SCAk - 50.266 ILRT RESULTS AFTER 24.00 HRS.

e3s..............................................................................................................................

POINT TO PO!NT TOTAL T!ME MASS PLO?

S8..:.............................................................................................................................

AVERAGE REASUEED LEAi RATES (WE!EHi PERCENT PER DAYi LEAK RATE LEAK RATE STD.DEv. LEAL RATE STD.DEV.

i 0.241E+00 0.212E+00 0.492E-01 0.212E +09 0.491E-01 csc.............................................................................................................................

CALCULATED LEAL RATES (UE!6HT PERCENT PEF DAf)

LEAK RATE LEAA RATE STD. deb. UPFER CDn. Linli LEAt RATE STD.Div. DFFEF CGn.slRii 0.271E+00 0.269E+00 0.556E-02 0.279E+00 0.25)E+00 0.845E-C3 0.251E+0C CCI4.................................................................................................. ............e............

=

t 4

App;ndix D Pcgn 6 of 17 BACK-UP COMPUTER RESULTS

)

i

^

PRIMARY CONTAINMENT Appendix D INTEGRATED LEAK RATE TEST DATA Page 7 of 17 FERMI 2 ILRT 11/30/84 POINT DATE TIME PRESSURE TEMPERATURE WEIGHT STATUS NO. PSIA F LBS 1 11/30/84 11/00/00 73.326 81.87 107675.4 G 2 11/30/84 11/15/00 73.318 81.8 107677.6 G 3 11/30/84 11/30/00 73.309 81.75 107674.3 G 4 11/30/84 11/45/00 73.301 81.69 107674.5 G 5 11/30/84 12/00/00 73.294 81.64 107674.1 G 6 11/30/84 12/15/00 73.284 81.59 107669.4 G 7 11/30/84 12/30/00 73.275 81.54 107666.1 G 1 8 11/30/84 12/45/00 73.268 81.49 107665.8 G 9 11/30/84 13/00/00 73.261 81.45 107663.4 G 10 11/30/84 13/15/00 73.253 81.41 107659.6 G ,

11 11/30/84 13/30/00 73.246 81.37 107657.3 G 12 11/30/84 13/45/00 73.24 81.37 107656.5 G l 13 11/30/84 14/00/00 73.233 81.29 107654.1 G 14 11/30/84 14/15/00 73.226 81.25 107651.8 G 15 11/30/84 14/30/00 73.22 81.22 107648.9 G 16 11/30/84 14/45/00 73.214 81.18 107648.1 G 17 11/30/84 15/00/00 73.205 81.15 107640.8 G

18 11/30/84 15/15/00 73.202 81.12 107642.4 G 19 11/30/84 15/30/00 73.194 81.09 107636.6 G 20 11/30/84 15/45/O0 73.188 81.06 107633.7 G 21 11/30/84 16/00/00 73.183 81.03 107632.4 G 22 11/30/84 16/15/00 73.177 81 107629.5 G 1

23 11/30/84 16/30/00 73.171 80.97 107626.6 G 24 11/30/04 16/45/00 73.167 80.95 107624.7 G 25 11/30/24 17/00/00 73.162 80.92 107623.4 G 26 11/30/84 17/15/00 73.156 80.89 107620.5 G 27 11/30/84 17/30/00 73.151 80.87 107617.1 G 28 11/30/84 17/45/00 73.143 80.84 107611.3 G 29 11/30/84 18/00/00 73.141 80.82 107612.4 G 30 11/30/84 18/15/00 73.134 80.8 107606.1 G 31 11/30/84 18/30/00 73.13 80.78 107604.2 G

, 32 11/30/84 18/45/00 73.127 80.75 107605.7 G 33 11/30/84 19/00/00 73.121 80.73 107600.9 G 34 11/30/84 19/15/00 73.115 80.71 107596 G 35 11/30/84 19/30/00 73.11 80.69 107592.6 G 36 11/30/84 19/45/00 73.106 80.67 107590.7 G 37 11/30/04 20/00/00 73.105 80.67 107589.3 G 38 11/30/84 20/15/00 73.097 80.65 107581.5 G 39 11/30/84 20/30/00 73.094 80.63 107581 G 40 11/30/84 20/48/00 73.086 80.6 107575.2 G 41 11/30/84 21/00/00 73.084 80.59 107574.3 G 42 11/30/84 21/15/00 73.079 80.57 107570.9 G 43 11/30/84 .21/30/00 73.075 80.56 107567 G 44 11/30/84 21/45/00 73.072 80.55 107564.6 G 45 11/30/84 22/00/00 73.066 80.53 107559.7 G

, 46 11/30/84 22/15/00 73.063 80.51 107559.3 G l

47 11/30/84 22/30/00 73.06 80.5 107556.9 G 48 11/30/84 22/45/00 73.055 80.48 107553.5 G 49 11/30/84 23/00/00 73.051 80.46 107551.6 G

Page 8 of 17 POINT DATE TIME PRESSURE TEMPERATURE WEIGHT STATUS N O .- PSIA F LBS 50 11/30/84 23/15/00 73.047 80.45 107547.7 G 51 11/30/84 23/30/00 73.043 80.43 107545.8 G 52 11/30/84 23/45/00 73.041 80.41 107546.8 G 53 12/01/84 00/05/00 73.035 80.39 107542 G 54 12/01/84 00/15/00 73.032 80.39 107537.6 G 55 12/01/84 00/30/00 73.028 80.38 107533.7 G 56 12/01/84 00/45/00 73.025 80.36 107533.2 G 57 12/01/84 01/00/00 73.021 80.35 107529.3 G 58 12/01/84 01/15/O0 73.018 80.34 107526.9 G '

59 12/01/84 01/30/00 73.012 80.32 107522 G

~60 12/01/84 01/45/00 73.009 80.31 107519.6 G 61 12/01/84 02/00/00 73.006 80.3 107517.2 G 62 12/01/84 02/15/00 73.002 80.29 107513.3 G 63 12/01/84 02/30/00 72.998 80.27 107511.4 G 64 12/01/84 02/45/00 72.995 80.26 107509 G 65 12/01/84 03/00/00 72.993 80.25 107508 G 66 12/01/84 03/15/00 72.988 80.24 107502.6 G 67 12/01/84 03/30/00 72.987 80.23 107503.1 G 68 12/01/84 03/45/00 72.982 80.22' 107497.8 G 69 12/01/84 04/00/00 72.981 80.21 107498.3 G 70 12/01/84 04/15/00 72.975 80.2 107491.4 G 71 12/01/84 04/30/00 72.975 80.19 107493.4 G 72 12/01/84 04/45/00 72.969 80.18 107486.6 G 73 12/01/84 05/00/00 72.966 80.17 107484.2 G 74 12/01/84 05/15/00 72.961 80.16 107478.8 G 75 12/01/84 05/30/00 72.959 80.15 107477.8 G t 76 12/01/84 05/45/00 72.956 80.14 107475.4 G 77 12/01/84 06/00/00 72.953 80.13 107473 G 78- 12/01/84 06/15/00 72.949 80.12 107469.1 G 79 12/01/84 06/30/00 72.946 80.11 107466.6 G 80 12/01/84 06/45/00 72.943 80.1 107464.2 G 81 12/01/84 07/00/00 72.941 80.09 107463.3 G 82 12/01/94 07/15/00 72.938 80.09 107458.8 G 83 12/01/84 07/30/00 72.934 80.08 107454.9 G 84 12/01/84 07/45/00 72.941 80.'07 107467.2 G 85 12/01/84 08/00/00 72.927 80.06 107448.6 G 86 12/01/84 08/15/00 72.923 80.05 107444.7 G B7 12/01/84 08/30/00 72.922 80.04 107445.2 G 88 12/01/84 08/45/00 72.919 80.03 107442.8 G 89 12/01/84 09/00/00 72.916 80.02 107440.4 G 90 12/01/84 09/15/00 72.913 80.01 107437.9 G 91 12/01/84 09/30/00 72.91 80.01 107433.5 G 92 12/01/84 09/45/00 72.907 80 107431.1 G 93 12/01/84 10/00/00 72.903 79.99 107427.2 G 94 12/01/84 10/15/00 72.902 79.98 107427.7 G 95 12/01/84 10/30/00 72.898 79.97 107423.8 G 96 12/01/04 10/45/00 72.896 79.97 107420.8 G 97 12/01/84 11/00/00 72.892 79.96 107416.9 G

PCILRT Appendix D PLANT SPECIFIC DATA Page 9 of 17

1. PLANT NAME................. FERMI 2 ILRT
2. DATE OF TEST............... 11/30/84
3. CONTAINNENT VOLUME (CUFT).. 294630 4.' LEAK RATE LIMIT LA (%/ DAY). .5
5. LEAK RATE PENALTY (%/ DAY). O o

S

a Appendix D-PCILRT Page 10 of 17 TREND REPORT FERMI 2 ILRT 11/30/84 TOTAL TIME MASS PLOT POINT TIME MEAS.- CALC. UCL CALC. UCL 4 0.75 0.027 0.072 1.120 0.054 0.239 5 1.00 0.028 0.074 0.561 0.050 0.136 6 1.25 0.107 0.120 0.430 0.102 0.184 7 1.50 0.138 0.157 0.395 0.141 0.212 8 1.75 0.123 0.169 0.382 0.148 0.200 9 2.00 0.133 0.179 0.376 0.155 0.195 10 2.25 0.156 0.193 0.374 0.169 0.204 11 2.50 0.161 0.203 0.374 0.178 0.208 12 2.75 0.154 0.207 0.373 0.180 0.204 13 3.00 0.158 0.211 0.372 0.182 0.202 14 3.25 0.162 0.214 0.371 0.183 0.201 15 3.50 0.168 0.217 0.371 0.186 0.202 16 3.75 0.162 0.218 0.369 0.18'6 0.199 17 4.00 0.193 0.225 0.371 0.195 0.209 18 4.25 0.173 0.226 0.370 0.195 0.208 19 4.50 0.192 0.230 0.371 0.200 0.213 20 4.75 0.195 0.234 0.371 0.205 0.217 21 5.00 0.192 0.237 0.372 0.207 0.219 22 5.25 0.195 0.239 0.372 0.210 0.220 23 5.50 0.198 0.241 0.372 0.212 0.222

(' 24 5.75 0.196 0.243 0.372 0.213 0.222 25 6.00 0.193 0.243 0.372 0.213 0.222 26- 6.25 0.196 0.244 0.371 0.214 0.222 1

27 6.50 0.200 0.245 0.371 0.215 0.222

, 28 6.75 0.212 0.248 0.372 0.218 0.225

' 0.225 29 7.00 0.201 0.248 0.371 0.218 30 7.25 0.213 0.250 0.372 0.221 0.228

. 31 7.50 0.~212 0.252 0.372 0.223 0.229-32 7.75 0.200 0.252 0.371 0.222 0.228 33 8.00 0.208 0.252 0.371 0.223 0.229 i 34 8.25 0.214 0.254 0.371 0.224 0.230 35 8.50 0.217 0.255 0.371 0.226 0.232 36 8.75 0.216 0.256 0.372 0.227 0.233 37 9.00 0.213- 0.256 0.371 0.228 0.233 4 38 9.25 0.226 0.258 0.372 0.230 0.235 j, 39 9.50 0.221 0.259 0.372 0.231 0.237 40 9.80 'O.228 0.262 0.373 0.233 0.239 i 41 10.00 0.225 0.262 0.373 0.235 0.240 42 10.25 0.227 0.263 0.373 0.236 0.241 43 10.50 0.230 0.264 0.373 .O.238 0.243 44 10.75 0.230 0.266 0.374 0.239 0.244 45 11.00 0.234 0.267 0.374 0.241 0.246

- 46 11.25 0.230 0.268 0.374 0.242 0.247 47 11.50 0.230 0.268 0.374 0.242 0.247

' 48 11.75 0.231 0.269 O.375 0.243 0.248 49- 12.00 0.230 0.270 l O.375 0.244 0.248 50 12.25 'O.232 0.270 0.375 0.244 0.249 51 12.50 0.231 0.271 0.375 0.245 0.249 j 52 12.75 0.225 0.271 0.374 0.244 0.249 53 13.08 0.227 0.272 0.375 0.244 0.248 54 13.25 0.232 0.271 0.374- 0.245 0.249 1 55 13.50 0.234 0.272 0.374 0.245 0.249 -

Appendix D PCILRT Page 11 of 17 TREND REPORT FERMI 2 ILRT 11/30/84 TOTAL TIME MASS PLOT POINT TIME MEAS. CALC. UCL CALC. UCL 56 13.75 0.230 0.272 0.374 0.245 0.249 57 14.00 0.233 0.272 0.374 0.246 0.249 58 14.25 0.232 0.272 0.374 0.246 0.249 59 14.50 0.236 O.273 O.374 0.246 O.250 60 14.75 0.235 0.273 0.374 0.247 0.250 61 15.00 0.235 0.274 0.374 0.247 0.250 62 15.25 0.237 0.274 0.374 0.248 0.251 63 15.50 0.236 0.274 0.374 0.248 0.251 64 15.75 0.236 0.274 0.373 0.248 0.251 65 16.00 0.233 0.274 0.373 0.248 0.251 66 16.25 O.237 O.275 O.373 O.248 O.251 67 16.50 0.233 0.275 0.373 0.248 0.251 68 16.75 0.236 0.275 0.373 0.24'8 0.251 69 17.00 0.232 0.275 .O.372 0.248 0.251 70 17.25 0.238 0.275 0.372 0.249 0.251 1 71 17.50 0.232 0.275 0.372 0.248 0.251 72 17.75 0.237 0.275 0.372 0.248 0.251 73 18.00 0.237 0.275 0.372 0.249 0.251 74 18.25 0.240 0.275 0.371 0.249 0.251 75 18.50 0.238 0.275 0.371 0.249 0.251

( 76 18.75 0.238 0.275 0.371 0.249 0.251 77 19.00 0.237 0.275 0.371 0.249 0.251 78 19.25 0.239 0.275 0.371 0.249 0.251 79 19.50 0.239 0.275 0.370 0.250 0.251 80 .19.75 0.238 0.276 0.370 0.250 0.251 81 20.00 0.236 0.275 0.370 0.250 0.251 82 20.25 0.238 0.275 0.370 0.250 0.251 83 20.50 0.240 0.276 .O.370 0.250 0.251 84 20.75 0.224 0.275 0.369 0.249 0.251 85 21.00 0.241 0.275 0.369 0.249 0.251 86 21.25 0.242 0.275 0.369 0.249 0.251 87 21.50 0.239 0.275 0.368 0.249 0.251 88 21.75 0.238 0.275 0.368 0.249 0.251 89 22.00 0.238 0.275 0.368 0.249 0.251 90 22.25 0.238 0.275 0.368 0.249 0.251 91 22.50 0.240 0.275 0.367 0.249 .O.251 92 22.75 0.239 0.275 0.367 0.249 0.~251 93 23.00 0.241 0.275 0.367 0.249 0.251 94 23.25 0.237 0.275 0.367 0.249 0.251 95 23.50 0.239 0.275 0.366 0.249 0.251

~

96 23.75 0.239 0.275 0.366 0.249 0.251 97 24.00 0.240 0.275 0.290 0.249 0.251 9

i

-,- _,..-- ---- .-,-- - . , , . . _ . - _ _ , , _ , , , ,, o _ _ . _,

Appendix D PCILRT Page 12 of 17 MASS POINT ANALYSIS FERMI 2 ILRT 11/30/94 POINT TIME PRESSURE TEMPERATURE AIR MASS MASD LOSS AVE. LOSS HRS PSIA F LBS LBS LBS/HR 1 0.00 73.3260 81.870 107675.4 2 0.25 73.3180 81.800 107677.6 -2.2 -8.8 3 O.50 73.3090 81.750 107674.3 3.3 2.2 4 0.75 73.3010 81.690 107674.5 .2 1.2 5 1.00 73.2940 81.640 107674.1 0.4 1.3 6 1.25 73.2840 81.590 107669.4 4.7 4.8 7 1.50 73.2750 81.540 107666.1 3.3 6. 2 8 1.75 73.2680 81.490 107665.8 0.3 5.4 r 9 2.00 73.2610 81.450 107663.4 2.4 6.0 10 2.25 73.2530 81.410 107659.6 3.8 7.0 11 2.50 73.2460 81.370 107657.3 2.3 7.2 12 2.75 73.2400 81.330 107656.5 0.0 6.8 13 3.00 73.2330 81.290 107654.1- 2.4 7.1 14 3.25 73.2260 81.250 107651.8 2.3 7.2 15 3.50 73.2200 81.220 107648.9 2.9 7.5 16 3.75 73.2140 81.100 107648.1 0.8 7.2 17 4.00 73.2050 81.150 107640.8 7.3 8.6 18 4.25 73.2020 81.120 107642.4 -1.6 7.7 19 4.50 73.1940 81.090 107636.6 5.8 8.6 20 4.75 73.1980 81.060 107633.7 2.9 8.7

-( 21 5.00 73.1830 81.030 107632.4 1.3 8.6 22 5.25 73.1770 81.000 107629.5 2. 9. 8.7 23 5.50 73.1710 80.970 107626.6 2.9 8.8 24 5.75 73.1670 80.950 107624.7 1.9 8.8 25 6.00 73.1620 80.920 107623.4 1.3 8.6 26 6.25 73.1560 80.890 107620.5 2.9 8.7 27 6.50 73.1510 80.870 107617.1 3.4 8.9 28 6.75 73.1430 80.840 107611.3 5.8 9.4 29 7.00 73.1410 80.820 107612.4 -1.1 9.0 30 7.25 73.1340 80.800 107606.1 6.3 9.5 31 7.50 73.1300 80.780 107604.2 1.9 9.4 32 7.75 73.1270 80.750 107605.7 -1.5 8.9 33 8.00 73.1210 80.730 107600.9 4.8 9.3 34 8.25 73.1150 80.710 107596.0 4.9 9.6 35 8.50 73.1100 80.690 107592.6 3.4 9.7 36 8.75 73.1060 80.670 107590.7 1.9 9.6 37 9.00 73.1050 80.670 107589.3 1.4 9.5 38 9.25 73.0970 80.650 107581.5 7.8 10.1, 39 9.50 73.0940 80.630 107581.0 0.5 9.9 40 9.80 73.0860 80.600 107575.2 5.8 10.2 41 10.00 73.0840 80.590 107574.3 0.9 10.1 42 10.25 73.0790 80.570 107570.9 3.4 10.1 43 10.50 73.0750 80.560 107567.0 3.9 10.3 44 10.75 73.0720 80.550 107564.6 2.4 10.3

45 11.00 73.0660 80.530 107559.7 4.9 10.5 l 46 11.25 73.0630 80.510 107559.3 0.4 10.3 l 47 11.50 73.0600 80.500 107556.9 2.4 10.3 48 11.75 73.0550 80.480 107553.5 3.4 10.3 i 49 12.00 73.0510 80.460 107551.6 1.9 10.3 l

.____ . _ . _ - , _ . _ _ _ _ . _ . . _ ,_ _ _ . _ _ _ . . , _ _ _ _ - _ _.~ ,~_. _...___ _

Page 13 of 17 POINT TIME PRESSURE TEMPERATURE AIR MASS MASS LOSS AVE. LOSS HRS PSIA F LBS LBS LDS/HR 50 12.25 73.0470 80.450 107547.7 3.9 10.4 51 12.50 73.0430 80.430 107545.8 1.9 10.3 52 12.75 73.0410 80.410 107546.8 -1.0 10.0 53 13.08 73.0350 80.390 107542.O 4.8 10.1 54 13.25 73.0320 80.390 107537.6 4.4 10.4 55 13.50 73.0280 80.380 107533.7 3.9 10.4 56 13.75 73.0250 80.360 107533.2 0.5 10.3 57 14.00 73.0210 80.350 107529.3 3.9 10.4 58 14.25 73.0180 80.340 107526.9 2.4 10.4 59 14.50 73.0120 80.320 107522.O 4.9 10.5 60 14.75 73.0090 80.310 107519.6 2.4 10.5 61 15.00 73.0060 80.300 107517.2 2.4 10.5 62 15.25 73.0020 80.290 107513.3 3.9 10.6 63 15.50 72.9980 80.270 107511.4 1.9 10.5 64 15.75 72.9950 80.260 107509.0 2.4 10.5 65 16.00 72.9930 80.250 107508.0 1.0 10.4 66 16.25 72.9880 80.240 107502.6 5.4 10.6 67 16.50 72.9870 80.230 107503.1 .5 10.4 68 16.75 72.9820 80.220 107497.8' 5.3 10.6 69 17.00 72.9810 80.210 107498.3 .5 10.4 70 17.25 72.9750 80.200 107491.4 6.9 10.6 71 17.50 72.9750 80.190 107493.4 -2.O 10.4 72 17.75 72.9690 80.180 107486.6 6.8 10.6 73 18.00 72.9660 80.170 107404.2 2.4 10.6 74 18.25 72.9610 80.160 107478.8 5.4 10.7 75 18.50 72.9590 80.150 107477.8 1.0 10.6

( 76 18.75 72.9560 80.140 107475.4 2.4 10.6 77 19.00 72.9530 80.130 107473.O 2.4 10.6 78 19.25 72.9490 80.120 107469.1 3.9 10.7 79 19.50 72.9460 80.110 107466.6 2.5 10.7 80 19.75 72.9430 80.100 107464.2 2.4 10.6 81 20.00 72.9410 80.090 107463.3 0.9 10.6 82 20.25 72.9380 80.090 107458.8 4.5 10.6 83 20.50 72.9340 80.000 107454.9 3.9 10.7 84 20.75 72.9410 80.070 107467.2 -12.3 10.0 85 21.00 72.9270 80.060 107448.6 18.6 10.8 86 21.25 72.9230 80.050 107444.7 3.9 10.8 87 21.50 72.9220 80.040 107445.2 .5 10.7 88 21.75 72.9190 80.030 107442.8 2.4 10.6 89 22.00 72.9160 80.020 107440.4 2.4 10.6 90 22.25 72.9130 80.010 107437.9 2.5 10.6 91 22.50 72.9100 80.010 107433.5 4.4 10.7 92 22.75 72.9070 80.000 107431.1 2.4 10.7 93 23.00 72.9030 79.990 107427.2 3.9 10.7 94 23.25 72.9020 79.980 107427.7 .5 10.6 95 23.50 72.8980 79.970 107423.8 3.9 10.7 96 23.75 72.8960 79.970 107420.8 3.0 10.7 97 24.00 72.8920 79.960 107416.9 3.9 10.7

APPandix D

SUMMARY

Page 14 of 17 MASS POINT ANALYSIS PLANT NAME................... FERMI 2 ILRT TEST DATE.................... 11/30/84 NO. OF POINTS................ 97 SLOPE (LBS/HR)............... -11.187 INTERCEPT (LBS).............. 107696.2 LEAK RATE LIMIT.....(%/ DAY).. 0.500 ALLOWABLE LEAKRATE..(%/ DAY).. O.375 CALCULATED LEAKRATE.(%/ DAY).. O.249 95% UCL.............(%/ DAY).. O.251 TEST DURATION.......(HRS).... 24.00 CONTAINMENT VOLUME (CUFT).... 294630 l

1 1

l i

i I

Appendix D PCILRT Page 15 of 17 TOTAL TIME ANALYSIS FERMI 2 ILRT 11/30/84 POINT TIME TIME PRESSURE TEMPERATURE LEAMRATE HH/MM/SS HRS PSIA F  %/ DAY 1 11/00/00 0.00 73.3260 81.870 0.000 2 11/15/00 0.25 73.3180 81.800 .193 3 11/30/00 0.50 73.3090 81.750 0.049 4 11/45/00 0.75 73.3010 81.690 0.027 j 5 12/00/00 1.00 73.2940 81.640 0.028  ;

6 12/15/00 1.25 73.2840 81.590 0.107 7 12/30/00 1.50 73.2750 01.540 0.138 8 12/45/00 1.75 73.2680 81.490 0.123 9 13/00/00 2.00 73.2610 81.450 0.133 10 13/15/00 2.25 73.2530 81.410 0.156 11 13/30/00 2.50 73.2460 81.370 0.161 12 13/45/00 2.75 73.2400 81.330 0.154 13 14/00/00 3.00 73.2330 81.290 0.158 14 14/15/00 3.25 73.2260 81.250 0.162 15 14/30/00 3.50 73.2200 81.220 0.168 16 14/45/00 3.75 73.2140 81.180 0.162 17 15/00/00 4.00 73.2050 81.150 0.193 18 15/15/00 4.25 73.2020 81.120 0.173 19 15/30/00 4.50 73.1940 81.090 0.192 20 15/45/00 4.75 73.1980 81.060 0.195

( 21 22 16/00/00 16/15/00 5.00 5.25 73.1830 73.1770 81.030 81.000 0.192 0.195 23 16/30/00 5.50 73.1710 80.970 0.198 24 16/45/00 5.75 73.1670 80.950 0.196 25 17/00/00 6.00 73.1620 80.920 0.193 26 17/15/00 6.25 73.1560 80.890 0.196 27 17/30/00 6.50 73.1510 80.870 0.200 28 17/45/00 6.75 73.1430 80.840 0.212 29 18/00/00 7.00 73.1410 80.820 0.201 30 10/15/00 7.25 73.1340 80.800 0.213 31 18/30/00 7.50 73.1300 80.780 0.212 32 18/45/00 7.75 73.1270 80.750 0.200 33 19/00/00 8.00 73.1210 80.730 0.208 34 19/15/00 8.25 73.1150 80.710 0.214 35 19/30/00 8.50 73.1100 80.690 0.217 36 19/45/00 8.75 73.1060 80.670 0.216 37 20/00/00 9.00 73.1050 80.670 0.213 38 20/15/00 9.25 73.0970 80.650 0.226 39 20/30/00 9.50 73.0940 80.630 0.221 40 20/48/00 9.80 73.0860 80.600 0.228 41 21/00/00 10.00 73.0840 80.590 0.225 42 21/15/00 10.25 73.0790 80.570 0.227 43 21/30/00 10.50 73.0750 80.560 0.230 44 21/45/00 10.75 73.0720 80.550 0.230 45 22/00/00 11.00 73.0660 80.530 0.234 46 22/15200 11.25 73.0630 80.510 0.230 47 22/30/00 11.50 73.0600 80.500 0.230

) 48 22/45/00 11.75 73.0550 80.480 0.231 49 23/00/00 12.00 73.0510 80.460 0.230 L

POINT TIME TIME PRESSURE TEMPERATURE LEAKRATE HH/MM/SS HRS PSIA F  %/ DAY

== --- =_________________-_______________-____-______-

=

50 23/15/00 12.25 73.0470 80.450 0.232 51 23/30/00 12.50 73.0430 80.430 0.231 52 23/45/00 12.75 73.0410 80.410 0.225 53 00/05/00 13.08 73.0350 80.390 0.227 54 00/15/00 13.25 73.0320 80.390 0.232 53 00/30/00 13.50 73.0280 80.380 0.234 56 00/45/00 13.75 73.0250 80.360 0.230 57 01/00/00 14.00 73.0210 80.350' O.233 4 58 01/15/00 14.25 73.0180 80.340 0.232 59 01/30/00 14.50 73.0120 80.320 0.236 60 01/45/00 14.75 73.0090 80.310 0.235 61 02/00/00 15.00 73.0060 80.300 0.235 62 02/15/00 15.25 73.0020 80.290 0.237 63 02/30/00 15.50 72.9980 80.270 0.236 64 02/45/00 15.75 72.9950 80.260 0.236 65 03/00/00 16.00 72.9930 80.250 0.233 66 03/15/00 16.25 72.9800 80.240 0.237 67 03/30/00 16.50 72.9870 80.230 0.233 68 03/45/00 16.75 72.9820 80.22D O.236 69 04/00/00 17.00 72.9810 80.210 0.232 70 04/15/00 17.25 72.9750 80.200 0.238 71 04/30/00 17.50 72.9750 80.190 0.232 72 04/45/00 17.75 72.9690 80.180 0.237 73 05/00/00 18.00 72.9660 80.170 0.237 74 05/15/00 16.25 72.9610 80.160 0.240 75 05/30/00 18.50 72.9590 80.150 0.238

( 76 05/45/00 18.75 72.9560 80.140 0.238 77 06/00/00 19.00 72.9530 80.130 0.237 78 06/15/00 19.25 72.9490 80.120 0.239 79 06/30/00 19.50 72.9460 80.110 0.239 80 06/45/00 19.75 72.9430 80.100 0.238 81 07/00/00 20.00 72.9410 80.090 0.236 82 07/15/00 20.25 72.9380 80.090 0.238 83 07/30/00 20.50 72.9340 80.060 0.240 84 07/45/00 20.75 72.9410 80.070 0.224 85 08/00/00 21.00 72.9270 80.060 0.241 86 08/15/00 21.25 72.9230 80.050 0.242 87 08/30/00 21.50 72.9220 80.040 0.239 88 08/45/00 21.75 72.9190 80.030 0.238 89 09/00/00 22.00 72.9160 80.020 0.238 90 09/15/00 22.25 72.9130 80.010 0.238 91 09/30/00 22.50 72.9100 80.010 0.240 92 09/45/00 22.75 72.9070 80.000 0.239 93 10/00/00 23.00 72.9030 79.990 0.241 94 10/15/00 23.25 72.9020 79.980 0.237 95 10/30/00 23.50 72.8980 79.970 0.239 96 'a 0/45/00 23.75 72.8960 79.970 0.239 97 11/00/00 24.00 72.8920 79.960 0.240 t

Appendix D

SUMMARY

Page 17 of 17 TOTALTIME ANALYSIS PLANT NAME.................... FERMI 2 ILRT TEST DATE..................... 11/30/84 NO. OF POINTS................. 96 SLOPE (%/ DAY /HR).............. 5.7E-03 INTERCEPT (%/ DAY)............. O.137 24 HR PROJECTION (%/ DAY)...... O.275 MEAN LAST 20 PTS (%/ DAY)...... O.238 LEAK RATE LIMIT (%/ DAY)....... 0.500 ALLOWABLE LEAKRATE (%/ DAY).... O.375 CALCULATED LEAKRATE (%/ DAY)... O.275 95% UCL (%/ DAY)............... O.290 TEST DURATION.(HRS)........... 24.000 CONTAINMENT VOLUME (CUFT)..... 294630

s.

a w Appendix E Page 1 of 14

/

k APPENDIX E VERIFICATION DATA t

1 Appendix E Pago 2 of 14 VOLUMETRICS RESULTS i

d s

L

VOL0 METRICS Appenaix e FA50 RDBLES CAtlfCRNIA page 3 of 14 ILRT FR06EAM REPORT STA;T!h6 DA) - 336 START!h5 TIME - 13:15: 0 STAkilhG SCAh - 50.277 ENDING SCAN - SD.253 i

POINT TO Fa!KT TOTA:. f!ME MASS PLCT SC'.:: ELAPSED A', ERA 6E AVERA6E MEASURED EALCULATED REAEURED EALCULATED UFFER REASURED CALCULATE 0 UPPER N3. TIME TEMP. PRESSURE LEAL RATE LEAt: RATE LEAt RATE LEAA RATE CONFIDENCE LEAR RATE LEAt EATE CCNFIDENCE (MRI - (F) (PSIA: (WE!6HT PERCENT PER DAYI E323138233332333 33333332 823 333 33333333333333 33 r23338322233 333 33333 3 r23333233 3 33333 33333 3 33 33 33333s a s s a rs ta s s 3323 3 r s t s t ra r3 a s s e ra 2 33 3 SD 277 0.00 79.99 72.848 SC.278 0.25 79.89 72.842 0.627E+M 0.627E+00 0.627E+00 0.627E+00 0.000E+00 0.627E+00 0.627E40 0.000E+0e SD.I79 0.50 79.85 72.835 0.720E+00 0.720E40 0.673E+00 0.673E 46 0.000E+N 0.673E+00 0.c73E40 0. 0XE4'-

50.280 0.75 79.87 72.631 0.4E8E40 0.542E+00 0.61tE+0D 0.630E+ M 0.771E+e0 0.611E+ % 0.600E+00 0.118E4; 50.281 1.00 79.86 72.823 C.853E+00 0.739E+00 0.672E+00 0.657E+00 0.658E+00 0.672E+00 0.666E4.*. 0.80eE+0t 50.282 1.25 79.86 72.817 0.683E+00 0.723E+00 0.674E+00 0.670E+00 0.695E+00 0.674E+00 0.653E+00 0.751E+M SD.283 1.50 79.85 72.812 0.635E+00 0.687E+% 0.668E+00 0.673E+00 0.692E+% 0.667E+00 0.660E+00 0.720E+G SD.284 1.75 79.84 72.807 0.537E+00 0.623E+00 0.649E+00 0.666E+00 0.6E4E+00 0.649E40 0.663E+00 0.696E+0:

S3.265 2.00 79.84 72.800 0.775E+00 0.681E*00 0.665E+00 0.66SE+00 0.683E+00 0.664E+00 0.666E+00 0.690E+0:

St.286 2.25 79.83 72.794 0.703E+00 0.692E+00 0.669E+00 0.671E+0C 0.684E40 0.665E+00 0.670E+00 c.66:E+N SD.287 2.50 79.83 72.78E 0.700E+00 0.699E+00 0.672E+0C 0.673E+00 0.625E-00 0.672E+M 0.674E+00 0. eSiEe-SD.285 2.75 79.82 72.782 0.621E*00 0.678E+00 0.667E+00 0.674E+0C 0.684E+00 0.667E+00 0.673E+M 0.6E5E47 SD.2S5 3.00 79.82 72.776 0.700E+00 0.686E+00 0.e70E+00 0.675E+00 0.664E+00 0.670E+X 0.674E+M 0. 684E+.

50.290 3.25 79.81 72.770 0.623E+00 0.671E+00 0.6e6E+00 0.674E+00 0.6E!E40 0.666E+00 0.672E+Cf 0.68tE+3; SD.291 3.50 79.60 72.764 0.732E+00 0.687E+00 0.671E+00 0.675E+00 0.684E+00 0.6711 4 a 0.673E+00 0.600E+0e 50.252 3.75 79.80 72.755 0.749E+00 0.704E+00 0.676E+00 0.677E+00 0.695E+00 0.67aE+0C 0.676E+00 0.682E*0t-S0.293 4.M 79.7E 72.751 0.565E40 0.675E+% 0.669E+00 0.677E+00 0.654E+0C 0.669E+00 0.675E+00 0.681E+(.

)

VOLUMETRIES Appendix E PASO ROBLES CALIFORNIA Pacpe 4 of 14 ILRT FROGRAM REF0FT ,

. .., STARTING DAY - 336 STARTINS TIPE - 13:15: 0 START!h6 SCAN - 50.!77 Eht!h6 SEAh - SD.29J ILRT RESULIS AFIER 4.00 HRS.

ETTg33333333333333333ssr333333ss333str333333333333338t33t333333stt33ss3333stE33333333333333333R33332E3333333333322333333333333333 POINI 10 POINT TOTAL TIME MAS 5 PLOT E3333333333333333333333333333332s333333333333333Est33333333333333332333333333333333333333333333333333233r333333333333333333333E33 AVEFASE MEASURE LEAK F.ATEE (WEISHT PER:ENT FEE DAYS LEAK RATE LEAK RATE Elb. des. LE4 RATE STD.0E'.

0.669E+0c 0.642E+00 0.167E+0i 0.ho2E+00 0.147E+ev B323333333333323Esf333333333r33333333333333333338E333833333E333333333333333333333333333333333333333333333333333333333333333333333 EALCULATED LEAt RATES (WEIGHT PER:ENT FEK DAY)

LERA RATE LEAL RATE STD.DE'v. LtFER CGh. LIM i LEAt RAIE Sil.Div. UPFER CON.LI.'.'

O.675E+00 0.677E+00 0.425E-C: 0.454E+D0 C.67'E+00 0.33:E-02 0.661E+00 S8333333333333333333333333333333333333333333333333333333333333332332333333333333E3233333333333333333t333333333333335tst33&s333333 y

4 en 1

m O

/

/

Appendix E Page 5 of 14 BACK-UP COMPUTER 6

RESULTS L

h.

I-l

)

i i

I k-t .- .. . . .

PRIMARY CONTAINMENT Appendix E INTEGRATED LEAK RATE TEST DATA Page 6 of 14 r FERMI 2 VERIFICATION 11/30/84 POINT DATE TIME PRESSURE TEMPERATURE WEIGHT STATUS NO. PSIA F LBS

--_______--_____ . - - - --- ---------___---_ --- .=---------_---

1 12/01/84 13/15/00 72.848 79.89 107366 G 2 12/01/84 13/30/00 72.842 79.89 107357.2 G 3 12/01/84 13/45/00 72.835 79.88 107348.8 G 4 12/01/84 14/00/00 72.831 79.87 107344.9 G 5 12/01/84 14/15/00 72.823 79.86 107335.1 G 6 12/01/84 14/30/00 72.817 79.86 107326.3 G 7 12/01/84 14/45/00 72.812 79.85 107320.9 G 8 12/01/84 15/00/00 72.807 79.84 107315.5 G 9 12/01/84 15/15/00 72.8 79.84 107305.2 G 10 12/01/84 15/30/00 72.794 79.83 107298.4 G 11 12/01/84 15/45/00 72.788 79.83 - 107289.5 G 12 12/01/84 16/00/00 72.782 79.82 107282.7 G 13 12/01/84 16/15/00 72.776 79.82 107273.8 G 14 12/01/94 16/30/00 72.77 79.81 107267 G 15 12/01/84 16/45/00 72.764 79.8 107260.1 G 16 12/01/84 17/00/00 72.758 79.8 107251.3 G 17 12/01/84 17/15/00 72.751 79.78 107244.9 G

____ =_________-___________---__--______- - - -__------_--

a A

L;

PCILRT Appendix E PLANT SPECIFIC DATA Page 7 Of 14

+

1. PLANT NAME................. FERMI 2 VERIFICATION
2. DATE OF TEST............... 11/30/84
3. CONTAINMENT VOLUME (CUFT).. 294630 1 4. LEAK RATE LIMIT LA (%/ DAY). 1 i- 5. LEAK RATE PENALTY (%/ DAY). O a

i i(

.1 e

n W.

Appendix E l PCILRT Page 8 of 14 l TREND REPORT i FERMI 2 VERIFICATION

, 11/30/84 TOTAL TIME MASS PLOT

__________ ______ ______ .=_

POINT TIME MEAS. CALC. UCL CALC. UCL 4 0.75 0.628 0.647 1.110 0.640 0.858 5 1.00 0.690 0.653 0.948 0.662 0.767 6 1.25 0.710 0.670 0.904 0.686 0.756 7 1.50 0.672 0.660 0.839 0.673 0.722 8 1.75 0.645 0.642 0.789 0.652 0.694 9 2.00 0.680 0.646 0.782 0.660 0.693 10 2.25 0.672 0.647 0.772 0.661 0.687 11 2.50 0.684 0.652 0.771 0.668 0.690 12 2.75 0.678 0.654 0.765 0.670 0.688 13 3.00 0.687 0.658 0.765 0.675 0.691 14 3.25 0.681 0.660 0.762 0.676 0.690 15 3.50 0.676 0.660 0.757 0.676 . 0.687 16 3.75 0.684 0.663 0.756 0.678 0.689 17 4.00 0.677 0.663 0.752 0.677 0.686 t

4 1

s L_

Appendix E Page 9 of 14 PCILRT MASS POIlJT ANALYSIS FERMI 2 VERIFICATION 11/30/84 POINT TIMC PRESSURE TEMPERATURE AIR MASS MASS LOSS AVE. LOSS HRS PSIA F LBS LDS LBS/HR


_ =------- ------------------- ------ ------------------- ----

1 0.00 72.8480 79.890 107366.O 2 0.25 72.8420 79.890 107357.2 8.8 35.2 3 0.50 72.8350 79.880 107348.8 8.4 34.4 4 0.75 72.8310 79.870 107344.9 3.9 78.1 5 1.00 72.8230 79.860 107335.1 9.8 30.9 6 1.25 72.8170 79.860 107326.3 8.8 31.7 7 .1.50 72.8120 79.850 107320.9 5.4 30.0 8 1.75 72.8070 79.840 107315.5 5.4 28.B 9 2.00 72.8000 79.840 107305.2 10.3 30.4 10 2.25 72.7940 79.830 107298.4 6.B 30.O 11 2.50 72.7880 79.830 107289.5 8.9 30.6 12 2.75 72.7820 79.820 107282.7 . 6.8 30.2 13 3.00 72.7760 79.820 107273.8 8.9 30.7 14 3.25 72.7700 79.810 107267.0 6.8 30.4 15 3.50 72.7640 79.800 107260.1 6.9 30.2 16 3.75 72.7580 79.800 107251.3 8.8 30. 5 a 17 4.00 72.7510 79.780- 107244.9 6.4 30.2

SUMMARY

Appendix E MASS POINT ANALYSIS Page 10 of 14 PLANT NAME................... FERMI 2 VERIFICATION TEST DATE.................... 11/30/84 NO.-OF POINTS................ 17 SLOPE ( L DS /HR ) . . . . . . . . . . . . . . . -30.281 INTERCEPT (LBS).............. 107365.7 LEAK RATE LIMIT.....(%/ DAY).. 1.000 ALLOWABLE LEAKRATE..(%/ DAY).. O.750 CALCULATED LEAKRATE.(%/ DAY).. 0.677 95% UCL.............(%/ DAY).. 0.606 .

TEST DURATION.......(HRS).... 4.00 CONTAINMENT VOLUME (CUFT).... 294630 P

t

' 4; i

r i_

480 -

\

v>

4 mE 460 -

+

! J 440 .

++

. +

! o

!. o 420 -

+++

m +
  • o 400 -

+

, +

380 - +

i

+

H +

I 360 -

+

e +

+

[340 i -

, 320 -

n i I I I I I I I I $3 s

O .5 1 1.5 2 2.5 3 3.5 4 ;r em l TIME -

HOURS  :

Appendix E Page 12 Of 14 PLlLRT TOTAL TIME ANALYSIS FERMI 2 VERIFICATION 11/30/84 POINT TIME TIME PRESSURE TEMPERATURE LEAKRATE HH/MM/SS HRS PSIA F  %/ DAY

~

1 13/15/00 0.00 72.8480 79.890 0.000 2 13/30/00 0.25 72.8420 79.890 0.790 3 13/45/00 0.50 72.8350 79.880 0.768 4 14/00/00 0.75 72.8310 79.870 0.628 5 14/15/00 1.00 72.8230 79.860 0.690 6 14/30/00 1.25 72.8170 79.860 0.710 7 14/45/00 1.50 72.8120 79.850 0.672 g'

8 15/O0/00 1. 75 72.8070 79.840 0.645 9 15/15/00 2.00 72.8000 79.840 0.680 10 15/30/00 2.25 72.7940 79.830 0.672 11 15/45/00 2.50 72.7880 79.830 0.684 12 16/00/00 2.75 72.7820 79.820 . 0.678 13 16/15/00 3.00 72.7760 79.820 0.687 14 16/30/00 3.25 72.7700 79.810 0.681 15 16/45/00 3.50 72.7640 79.800 0.676 16 17/00/00 3.75 72.7580 79.800 0.684 17 17/15/00 4.00 72.7510 79.780 0.677

_____- .________-________________2____________________

l s

u.

SUMMARY

Appendix E TOTALTIME ANALYSIS Page 13 of 14 PLANT NAMC.................... FERMI 2 VERIFICATION TEST DATE..................... 11/30/G4 NO. OF POINTS................. 16 SLOPE (%/ DAY /HR).............. .013 INTERCEPT (%/ DAY)............. 0.718 24 HR PROJECTION (%/ DAY)...... 0.663 MEAN LAST 20 PTS (%/ DAY)...... 999.000 LEAK RATE LIMIT (%/ DAY)....... 1.000 ALLOWABLE LEAKRATE (%/ DAY).... 0.750 CALCULATED LEAKRATE (%/ DAY)... O.663 95% UCL (%/ DAY)............... 0.752 TEST DURATION.(HRS)........... 4.000 CONTAINMENT VOLUME (CUFT)..... 294630

Appendix E Page 14 of 14 i

1 I

l i + -

+

. +

to

+ _ .

! M i,

+ -

l + -

m

+ u)

, to oc

+ - .

O

+ mo y

+ -

m

! I

+ .

to i.u

+ - -

r

-4 m

+ H

+ - -

+

+ - O

+

o I I I I I I oo w .

+ m o m I

l AVO/% -

310NMU37

q APPENDIX F SAMPLE CALCULATIONS

- ,. . . - . _ . -. . _ . _ _ , . . . .,._1. .._, . _.

APPENDIX F SAMPLE CALCULATIONS I. TOTAL TIME METHOD Reference BN-TOP-1 Mi = 2400 y , To Pi dt Po Ti Li = Bti+A SCAN t-hrs TOF P-Psia MLR 172 0 81.87 73.326 -

173 .25 81.80 73.318 -0.1935 174 .50 81.75 73.309 0.0493 175 .75 81.69 73.301 0.0274 176 1.00 81.64 73.294 0.0281 177 1.25 81.59 73.284 0.1071 178 1.50 81.54 73.275 0.1380 179 1.75 81.49 73.268 0.1226 180 2.00 81.45 73.261 0.1332 181 2.25 81.41 73.253 0.1560 182 2.50 81.37 73.246 0.1612 N t< Mi t<M4 t4 2 1 .25 -0.1935 -0.0484 0.0625 2 .50 0.0493 0.0247 0.2500 3 .75 0.0274 0.0206 0.5625 4 1.00 0.0281 0.0281 1.0000 5 1.25 0.1071 0.1339 1.5625 6 1.50 0.1380 0.2070 2.2500 7 1.75 0.1226 0.2146 3.0625 8 2.00 0.1332 0.2664 4.0000 9 2.25 0.1560 0.3510 5.0625 10 2.50 0.1612 0.4030 6.2500-13.75 0.7294 1.6008 24.0625 Ei = IMi/N = .7294/10 Si = 0.07294 ti = It /N i = 13.75/10 ti = 1.375 SLOPE B = N (t Mi 4 -(ti [M i (10)(1.6008)

~

(13.75)(.7294)

N{t iz -

( { ti )2 * (10)(24.0625) -

(13.75)2 B = 0.11595

l Appendix F Page 2 of 5 INTERCEPT A = M - Bt = 0.07294 - (.11595)(1.375)

A = -0.08649 Li = Bti + A'= 0.11595ti+ (-0.08649)

N ti Mi Li Mi -Li (Mi -Li )2 (t i-E) 2 1 .25 -0.1935 -0.0575 -0.136 0.01850 1.26563 2 .50 0.0493 -0.0285 0.07780 0.00605 0.76563 3 .75 0.0274 0.00046 0.02694 0.00073 0.39063 4 1.00 0.0281 0.02945 -0.00135 1.8225x10-6 0.14063 5 1.25 0.1071 0.05844 0.04866 0.00237 0.01563 6 1.50 0.1380 0.08743 0.05057 0.00256 0.01563 7 1.75 0.1226 0.11641 0.00619 0 00004 0.14063 8 2.00 0.1332 0.14540 0.01220 0.00015 0.39063 9 2.25 0.1560 0.17439 -0.01839 0.00034 0.76563 10 2.50 0.1612 0.20338 -0.04218 0.00178 1.26563 13.75 0.7294 0.0325218 5.15625 STANDARD DEVIATION S

2 ={ (Mi - L i) 2/N-2 S2 = 0.03252/8 = 4.065 x 10-3 S = 6.3759 x 10-2 T95 = 1.95996 + 2.37226/8 + 2.8225/ (8) 2 T95 = 2.30059

)

1+h+I

~

U=S P

, (ti - t)2 U=S 1 + 1/10 = (2.5 - 1.375)2 5.15625

= 6.3759 x 10-2 (1.15994)

= 7.39568 x 10-2 T 95 0 = (2.30059) (7.39568 x 10-2) =. 170144 UPPER CONFIDENCE LIMIT BN-TOP-1

Appendix F Page 3 of 5 UCL = Lam + T956

= 0.20338 + .170144

= 0.3735 ANSI 56.8 T 1.6449)(8) + 3.5283 + 0.85602/8 = 1.8596 95 * (8+1. 2209 - 1.5163/8 UCL = .20338 + (1.8596) (7.39568 x 10-2)

= .20338 + .1375

= .341 II. MASS POINT METHOD oWi = weight of contained dry air - lbm Wi = (144P1V) / (RT1 )

V = 294630 lbm R = $3.35 ft-lbf/lbm' OR T = OR = OF + 459.69 P - Psia N M h. ti 2 tiWi -!

1 0 -107675.4 0 0 2- .25 107677.6 0.0625 26919.4 3 .50 107674.3 0.2500 53837.15

-4 .75 107674.5' O.5625 80755.91 5 1.00 107674.1 1.0000 -107674.1~

6 1.25, .107669.4 1.5625 134586.75 7 1.50 107666.1- 2.2500 161499.15 1 8 ~1.75- 107665.8. 3.0625_ 188415.15 9 2.00 107663.4 4.0000 215326.8 10 2.25 107659.6 5.0625 242234.1

11. 2.50- 107657.3 6.2500 269143.25

'13.75 1184357.5 '24.0625-1480391.8 N'=.ll I

Appendix F Page 4 of 5 SLOPE g , N (t W ii- [Wi ( t i N (ti 2- (( t)Z A= (11)(1480391.8) - (1184357.5)(13.75)

(11) (24.0625) -

(13.75)Z

-606.2 A= q

= -8.01637 625 INTERCEPT B= [W4 (t3 2-It4Wi[ti N $t2 i - ((t )2 i B= (1184357.5) (24.0625) -

(1480391.8)(13.75)

(11)(24.0625) -

(13.75)2 B = 8143215.6 = 107678.88 75.625 LEAK RATE - Lam Lam = (-24 00) ( A) /B Lam = (-2400)(-8.01637)/(107678.88)

Lam - 0.1787 W1 = -8.01637ti + 107678.88 UPPER CONFIDENCE LIMIT - UCL

^ ^

N ti 'Wi Wi (Wi -Wi )2 1 0 107675.4 107678.88 12.1104 2 .25 107677.6 107676.88 0.5184 3 .50 107674.3 107674.88 0.3364 4 .75 .107674.5 107672.87 2.6569 5 1.00 107674.1 107670.87 10.4329 6 1.25 107669.4 107668.86 0.2916 7 1.50 107666.1 107666.86 0.5776 8 1.75 107665.8 107664.86 0.8836 9 2.00 107663.4 107662.85 0.3025 10 2

. 25 107659.6 107660.85 1.5625 11 2l.50 107657.3 107658.84 2.3716 32.0444 S2= I (Wi - Wi) 2 = 37.0444 = 3.560 N-2 9

E Appendix F Page 5 of 5 i

l S = 1.887 K= S = 1.887 = 0.217

[N { ti 2 - ( ( t) 2] 3 (75.625)%

SA = K (N) % = 0.217 (11) % = 0.720 SB=K (t i2 % = (0.217) (24.0625) % = 1.0645 SAB = K 2 _-- f t (0.217)2(-13.75) =-0.6475

=

N = 11 T95 = (1. 6 4 4 9 ) (N-2) + 3.5283 = (0.85602/N-2) = 1.833 (N-2) + 1.2209 - (1.5163/N-2) a=B2-T95 SB 2 2= (107678.88)2 - (1.833)2 (1.0645)2 a = 1.1594741 x 1010.

b = AB - T95 2sAB = (-8.01637)(107678.88) -

(1.833)2(-0.6475) b = -863191.57 c=A2-T95 sg2 2 = 62.5204 i UCL = 2400 b - (b2 - ac) % /a

= -2400 -863191.57-((863191.57)2-(1.159474x1010)(62.5204)')

1.1594741 x 1010 UCL = 0.2081 UCL (Approx) = Lam + (2400) (T95)(SA )/B

= 0.1787 + (2400) (1.833) (0.720) /107678.88

= - 0.1787 + 0. 029 4 2

= 0.2081

& --A - --x. m n - -a_ s,. --, ,-

M APPENDIX G PENALTIES i

i a

5 l

f I

t I

mm---- --_ ..- ' -' " u .

Appendix G Page 1 of 3 APPENDIX G PCILRT PENALTIES The requirements for performing a PCILRT include placing the primary containment system in as close to post-accident conditions as possible. Any deviations to the post-accident lineup must be accounted for in the test results. This is accomplished.by adding to the final 95% upper confidence limit (UCL) of the calculated leakage rate, the postulated additional leakage that would have occurred if the test lineup had been exactly post-accident. This additional leakage is referred to as a penalty in the preoperational test procedure. Where possible, penalties are determined by Type B and C local testing and adding the minimum path leakage to tho test results. Penalties must be determined for:

1. Any system which is required to be operable and filled during the test to support the test or for plant safety which would be expected to be inoperable, drained and subjected to accident pressure;
2. Any system which is unintentionally placed in and left in an incorrect configuration during the test;
3. Any system which is intentionally or uninten-tionally isolated from test pressure which would be expected to be subjected to accident pressure;
4. Any isolation valve or penetration not subjected to test pressure which would be subjected to accident pressure;
5. Any change in containment volume.

The additional leakage which was added to the 95% upper confidence limit corresponding to each of the penalty situations described above is as follows:

1.a Both divisions of the emergency equipment cooling. water system were operable and filled during the test to supply cooling water to the.drywell coolers during the pump-up phase.

This system could be drained and subjected to accident pressure during an accident. The system includes four drywell penetrations:

Penetration Leakage X-23 1.119 SCFD X 1.119 SCFD

Appnndix G Page 2 of 3 X-34A 1.119 SCFD X-34B 5.49 SCFD TOTAL 8.847 SCFD 1.b The drywell equipment and floor drain sump systems remained operable and filled during the test. These systems could be drained and subjected to accident pressure during an accident. These systems use one drywell penetration each:

Penetration Leakage X-18 3.48 SCFD X-19 1.119 SCFD TOTAL 4.599 SCFD 2.a During the test, operations started a condenser pump to lower the hotwell water level. This operation caused condensate to leak past the feedwater system block valves, filling the feedwater system. Water was found draining from the feedwater line drains. Since there was no way of showing that the. volume between the feedwater isolation check valves was not filled, a penalty was taken for these penetra-tions.

Penetration Leakage X-9A 1.12 SCFD X-9B 1.12 SCFD TOTAL 2.24 SCFD 3.a Several instrumentation racks were found to be valved out following the test and were not sub-jected to test pressure as required. These racks were locally tested and had a combined leakage of 13.51 SCFD.

3.b Isolation valve T48-F451 remained closed during the test when it should have been open. The instrumentation associated with this penetration was locally tested and had a leakage rate of 3.024 SCFD.

m Appendix G Pago 3 of 3

4. Several Type B and C tests were not completed s

prior to the Type A test. These were locally tested -following the Type A test with the following results:

Item Leakage X210A - Testable flange 1.119 SCFD X39B - Testable flange 1.119 SCFD TOTAL 2.238 SCFD

5. During the twenty four hour test period, the water levels in the reactor vessel, torus and floor drain sumps changed slightly. The change indicated a containment volume change corre-sponding to a decrease of approximately 5.79 CF.

This corresponds to a leakage penalty of 0.00196%/ day.

Summary The total penalty which was added to the 95% upper confidence level was determined as follows:

Penalty Category Leakage (SCFD) 1.a 8.847 1.b 4.599 2.a 2.240 3.a 13.510 3.b 3.024 4 2.238 5 5.790 TOTAL 40.248 Containment Volume (SCF) at P a=294630CFxff*f= 1427051.4 Penalty = 100 x 40.248/1427051.4 4/ day

= 0.00282 %/ day

APPENDIX H ERROR ANALYSIS

/

Appendix H Page 1 of 5 APPENDIX H INSTRUMENT ERROR ANALYSIS A. Instrument Parameters Including DAS Pressure: Accurady: I0.01% RDG 0.002% FS Sensitivity: 0.001 PSI Repeatability: 0.001 PSI Resolution: 0.001 PSI Temperature: Accuracy: 0.1 0F Sensitivity: 0.OlOF Repeatability: 0.010F Resolution: 0.0lOF Dewpoint: Accuracy: 10.540F Sensitivity: 0.1 0F Repeatability: 0.1 OF Resolution: 0.OlO F B. Instrument Selection Guide - ISG

1. Total Absolute Pressure No. of Sensors.= 2 Range 0 - 100 Psia Sensor Sensitivity (E) = 0.001 Psi Resolution = 0.001 Psi Repeatability = 0.001 Psi Measurement System Error (f) = 0.0014142 The error _ associated with a measurement of change in pressure e p is:

_+ ,E)2+

(p (f )p 2 _

  • P - (No. of Sensors)5

_+ h001)2 y (0.0014142)2

[ (2)%

= 0.00122474 Psil

2. Water Vapor Pressure No. of Sensors = 11 Sensor Sensitivity (E) = 0.1 OF Resolution = 0. 0l OF.

Repeatability = 0.1 0F' Measurement System Error (f) = 0.1004988 0 F

Appendix H Page 2 of 5 The average dewpoint temperature during the test was approximately 780F. The equivalent water vapor pressure change at this temperature is approximately 0.01590 Psia /OF. The error associated with measurement of change in temperature e py is:

Epy =

0.1 0F(0.0159 Psia /OF) = 0.00159 Psia fpy = 0.10049880F(0.0159 Psia /OF) = 0.00159793 Psia e py + JEpy) 2 + (fpy) 2

=

(No. of Sensors)b

, +

~

[(0. 0'015 9) 2 + (.00159793)2 5 (11)%

= 1 0.000679671 Psi

3. Temperature No. of Sensors = 26 Sensor Sensitivity (E) = I 0.010F0

= 0.01 0R Resolution = 0.01 F

Repeatability = 0.010 F Measurement System Error (f) = 0.0141420 R The error associated with measurement of change in-temperature eT.is:

=

eT " ~

4 (ET) + (fT)k (No. of Sensors)b

~ ~

+ ) .01) 2 + (0.014142) b (26)b

= 1 0.0033968090R 4.- ISG 9

ISG = 1 2 *E + 2 *PV + 2 L P/ L P) (T, j

. Test Parameters at end of. Test P .= 72.892 Psia T = 539.650 R Tdp = 780F t = 24 Hours A.

Appendix H Page 3 of 5 ISG = + 2400 [0.00122474j2 f(0. 000679671)Y 24 ( 72.892 / ( 72.892 )

2[0.003396809)2

\ 539.650R / -

ISG = 0.00286%/ Day The ANSI requirement that the ISG be 6.25La (i.e.

d .125) is satisfied.

C. Accuracy Error Analysis The error e M in measured leak rate in weight percent per day is given by:

eM = + 2{ p 2 T 2  %

- 2400

+2 dt _[ T,j Where: ep = the error in pressure which accounts for the error in the total pressure measurement system; both total absolute pressure and water vapor pressure i.e e p= ep 2 e p

2 epT = instrument accuracy error / (No.

of instruments)% = error in total absolute pressure in psia ep y =instrumentaccugacyerror/(No.

of instruments) = error in water vapor pressure (dewpoint)

'i n psia eT = instrument accupacy error / (No.

of instruments)5 = error in temperature, OR 4t = duration of test = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Substituting the following instrument accuracy values-

'into above equations' yields:

Pressure instrument accuracy = 1 0.002% of full scale Scale 0 - 100. psia

Appendix H Page 4 of 5 Temperature instrument accuracy = ! 0.1 F Dewpoint instrument accuracy = 1 0.540F e pT = I (0.002%) (Full scale) / (2) b 2 is no. of primary pressure sensors

= 1 0.002 100 (100) / (2) b Full scale = 100 Psia

= I 0.001414 Psia 0

ep y = f 0.54 F = 1 0.1628 11 sensors (11)S At dowpoint temperature of 78 0F, the equivalent water vapor pressure change is 0.0159 Psia /OF.

ep for 1 .1628 0F = I .1628 x 0.0159 = I 0.00259 Psia y

With values of epT and epy, determine ep by substituting values in formula for e p, e p=I (0.001414)2 + (0.00259)2

= 1 0.00295 and eT= = = 0.01960 R 26 sensors eM = 100 .2 0.00295}2' , 7 0.0196 )2 459.7+80) ,

b

. ( 72.9 /

= 1 100 2 I.00295}2 0 + ,

, g 72.9 / 2([0.0196)2539.69).

= 1 0.00769 Weight percent / day

.7 D. Repeatability Error Analysis Using the same formulas as before the repeatability error e.; is substituted for the accuracy error.

epT

  • I 0.001 Psi ='1 0.000707 Psia Repeatability =

(2)4 0.001 Psi from Page 9' 1 of this cale and

/ 2 being primary press. sensors

Appendix H Page 5 of 5 O

e py = 1 0.l F = 1 0.0302 F Repeatability for (11)$

dewgointsensor=

0.1 F and # of sensors being 11 At dewpoint temperature of 780F, the equivalent water vapor pressure change is 0.0159 Psia / OF.

e py = I 0.03020F x 0.0159 Psia /OF = 1 0.000480 Psia ep = 1 (o,000707) 2 + (0.000480) 2_

= 1 0.000855 Psia O

also e T = 1 0.0l F = 1 0.0lO R Repeatability for (26) V (26)S temp. sensor =

0.OlOF and # of sensors = 26 2 b eM = 100 2[0.000855}2

( 72.9 / +2([0.00196 539.69j

= 1 0.00174 Weight percent / day

APPENDIX I LOCAL LEAK RATE TEST RESULTS

Appendix'I Page 1 of 9 TYPE C - AIR MSIV's TYPE "C"

~ PENETRATION # TOTAL LEAKAGE SCFD X 7A' 42.67 X 7B 15.76-X 7C 1.119 X 7D 40.48 AIR TESTS

. X 7D 1.119 X8 3.579

't X 9A 9.256

-X'9B- 10.019 X 10 2.238 X 11- 11.029 X 12- 9.569 1C 13A 58.47  !

X~13B 48.349 X ' 15 1.119

. X 16A 11.12 X 16B- 8.399

X 17 20.52

- X 18 11.21 JX 19 7.239 e

X 20 -1.119 1C ' 21 2.339 X 22 9.65 X 23 4.749 1

X 24 2. sos U-

Appendix I Page 2 of 9 TYPE C - AIR AIR TEST TYPE "C" PENETRATION TOTAL LEAKAGE SCFD X 25 7.02 X 26 56.8 X 27b 3.357 X 27a X 27c /

X 27d i X 27e 9.305 X 27f 1 X 28Cf 1.79 X 29Aa 2.93 X 29Bb 1.119 X 29Bc 3.356 x 29Be 1.119 X 31B 3.71 X 34A 2.238 X 34B 22.32 X 35C 1.119 X 35B 1.119 X 35D 1.119 X 35E 1.119 l

X 35F 1.119

X 35G 1.119 X 36 7.83 X 39A 2.238 y ton 59.99

Appendix I  ;

Page 3 of 9 TYPE C .-- AIR

, AIR TEST TYPE "C" PENETRATION TOTAL LEAKAGE SCFD X 40Dd 1.119 X 42 5.009 X 43 6.459 X 44 10.679 X 47a 1.119 X 47b 1.119 X 47C 3.045 X 47e 1.119 X 48a \

X 48b X 48c t T

/ 12.20 X 48d 1

X 48e- )

X 48f 3.966 X 49a 2.238 X Sla 2.238 X 204A 5.64 X 204B 2.74 X 204C 4.76 X 204D 2.64 X 204M 1.119 X 204E 2.64 X 204F 3.40 X 204G 3.20 y onan 0 70

Appendix I Page 4 of 9 TYPE C - AIR AIR TEST TYPE "C" PENETRATION TOTAL LEAKAGE SCFD X 204J 1.119 X 204K 1.119 X 204L 1.27 X 205A 54.68 X 205B 6.92 X 205C 2.22 X 205D 11.342 X 206A 11.4426 X 206D 1.577 X 211A 11.27 X 211B 1.119 X 212/214/220 50.987 X 215 6.307 X 218 8.006 X 219 15.34

. X 230 3.916 X 231 3.408 X 37/38 40.3 X 221/X 222 2.238

~ TOTAL TYPE C LEAKAGE (AIR) 746.4623 SCFD .

i

Appendix I Page 5 of 9 TYPE C - WATER WATER TEST TYPE "C" PENETRATION TOTAL LEAKAGE ML/ Min X 206B 0 X 206C 0 X 206E O X 206F 0 X 210A 45.56 l

X 210B 258.34 X 213A 104.40 X 213B 99.76 j X 223A 30.16 X 223B 440.8

.; X 223C 294.64

, X 223D 1329.72 1

X 224A 30.16 X 224B 262.16 X 225 668.16 X 226 37.12 l X 227A 80.24 X 227B 168.6 TOTAL WATER LEAKAGE 3849.82 ML/ Min

Appendix I Page 6 of 9 4

2 TYPE B - AIR AIR TEST TYPE "B" PENETRATION TOTAL LEAKAGE SCFD X 100A 1.74 X 100B 2.5936 X 100C 1.119 X 100E 1.119 X 100F 1.39 X 100G 2.33 X 101A 1.119 X 101B ~1.119 X 101C 1.119 X'101D 1.76 X 101E 1.119-X 101F 1.119 X~102A 1.119 X 102B 1.119 X 102C' l.119 X 102D 1.119 X 103A 1.119

-X 103B 1.119 X 104A 1.119 X 104B 1.119 X 104C ,

1.15 X 104D 1.119 X 104E 1.119 X 104F 1.119 y inca 1.119 l'

Appendix I Page 7 of 9 TYPE B - AIR AIR TEST TYPE "B" PENETRATION TOTAL LEAKAGE SCFD X 105D 1.119 X 106A 1.119 X 106B 1.119 X 209A 1.119 X 209C 1.119 X 228A 1.119 X 228B 1.119 X 228C 1.119

_X 228D 1.119 X 001A 1.119 X 001B 1.22 X 002 117.758 X 003 1.119 X 006 1.119 X 200A 1.119 X 200B 'l.119 DSM 1 1.119

DSM 2 '1.119 DSM 3 1.119 DSM 4 1.119 DSM 5 1.119 ,

DSM 6 1.119 DSM 7 1.119 DSM 8 1.119 v ggna 1 110

Appendix I Page 8 of 9 TYPE B - AIR AIR-TEST TYPE "B" PENETRATION TOTAL LEAKAGE SCFD

^

X 007B 1.119 X 007C 1.119 X 007D' l.119 X 008 1.119 X 009A 1.119 X 009B 1.119 X 010 1.119 X 011 1.119 X 012 1.119 i X Ol3A 1.119 X Ol3B 1.119 X 016A 1.119 X Ol6B 1.119

_X 017 1.119 X 043 1.119 X 35A 1.119 X 35B 1.119 X 35C l.119 X 35D 1.119 X 35E 1.119

_X 35F 1.119 X 33G 1.119 ,

X 39B 2.238 X 205C 1.119 Y ?^59 '

L_._

g i

Appendix I Page 9 of 9 TYPE B - AIR AIR TEST TYPE "B" PENETRATION TOTAL LEAKAGE SCFD X 201A 1.119 A 201B 1.119 X 201C 1.119 X 201D 1.119 X 201E 1.119 X 201F 1.119 X 20lG 1.119 X 20lH 1.119 X 210A 5.637 X 210B 6.714 X 218 2.238 X 227A 3.357 X 227B 3.357 X 213A 2.238 X 213B 2.238 X 223D 1.119 X 223B 1.119 X 223C 1.119 X 223A 1.119 u _2