ML20100F319
| ML20100F319 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 11/30/1995 |
| From: | Kingston R, Klapproth J GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20100F314 | List: |
| References | |
| 24A5188, 24A5188-R, 24A5188-R00, NUDOCS 9602210148 | |
| Download: ML20100F319 (81) | |
Text
._
I l
J 24A5188 Revision 0 Class I November 1995 i
i i
Supplemental Reload Licensing Report i
i for l
RIVER BEND STATION Reload 6 Cycle 7 i
I i
4 I
i i
l l
1 0
)
1 i
9602210148 960209 PDR ADOCK 05000458 s
P PDR 1
s es bs GE Nuclear En:rgy 24A5188 Revision 0 Class I November 1995 1
l 24A5188,Rev. O i
Supplemental Reload Licensing Report for i
River Bend Station Reload 6 Cycle 7 l
i 4
i i
1 i
/ './
/
Approved Approved k 6 f~
- 1..
appro, M er R. E. Kingston Fuel and Facility L censing Fuel Project Manager i
i i
e i
Rev.O Reload 6 Important Notice Regarding j
Contents of This Report Please Read Carefully i
i 4
i This report was prepared by General Electric Company (GE) solely for Entergy Opera-tions, Inc. (EOI) for EOl's use with the U. S. Nuclear Regulatory Commission (USNRC) for amending EOl's operating license of the River Bend Station. The information con-tained in this report is believed by GE to be an accurate and true representation of the facts known, obtained or provided to GE at the time this report was prepared.
l The only undertakings of GE respecting information in this document are contained in 1
the contract between EOl and GE for fuel bundle fabrication and related services for Riv-er Bend Station and nothing contained in this document shall be construed as changing i
said contract. The use of this information, except as defined by said contracts, by anyone l
other than EOl for any purpose other than that for which it is intended, is not authorized; and with respect to any unauthorized use, neither GE nor any of the contributors to this document makes any representation or warranty (expressed or implied), as to the com-pleteness, accuracy or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of l
such information.
i i
i i
i i
l Page 2
gu3 33 RIVER BEND Rev.0 Reload 6 Acknowledgement The engineering and r'eload licensing analyses, which form the technical basis of this Suppl Licensing Report, were performed by D. P. Stier. De Supplemental Reload Licensing Repor by D. P. Stier, his document has been verified by W. E. Russell and J. L. Rash.
i 1
Page 3
24A5'iss
^
RIVER BEND Rev.O Reload 6 6
%e basis for this report is General Electric Standard Applicationfor Reactor Fuel, NEDE-24011-P-A-10, February 1991: and the U.S. Supplement, NEDE-240ll-P-A-10-US, March 1991.
I i
1.
Plantenique Items Appendix A: AnalysisConditions Appendix B: Alternate Analysis for Feedwater Teuw.he Reduction Appendix C: Basis for Analysis of Loss-of-Feedwater Heater Event Appendix D: Basis for Analysis of Core-%We and Overpressurization Trand ats Appendix E: Basis for Analysis ofImss-of-Coolant Accident Appendix F: Basis for Analysis of Standby Liquid Control System Shutdown Capability Appendix G: Plant Operation Above the Rated Load Line Up to Rated Power 2.
Reload Fuel Bundles i
Cycle Loaded Number Fuel Type i
Irtw{interI:
I, i
4 8
G E8 B-P8SQB 333-10G25-120M-4WR-150-T (GE8 x 8EB)
GE8B-P8SQB 334-10GZ-120M-4WR-150-T (GE8x8EB) 5 1%
GE8B-P8SQB 334-10GZ2-120M-4WR-150-T (GE8x8EB) 6 132 6
56 GE8 B-P8SQB 334-i l GZ-120M-4WR-150-T (GE8 x8EB)
Nsm G El l-P9SUB 353-10GZ-120T-146-T (GE l l) 7 128 G E l 1 -P9S UB 354-13GZ-120T-146-T (gel 1) 7 64 GEI1-P9SUB354-14GZ-120T-146-T (gel 1) 7 40 624 Total 3.
Reference Core Loading Pattern
)
i Nominal previous cycle core average exposure at end of cycle:
26043 mwd /MT
( 23626 mwd /ST)
Minimum previous cycle core average exposure at end of cycle 25259 mwd /MT from cold shutdown considerations:
( ?.2915 mwd /ST) 4 Assumed reload cycle core average exposure at beginning of 13188 mwd /MT cycle:
( 11964 mwd /ST)
Assumed reload cycle core average exposure at end of cycle:
26250 mwd /MT
( 23814 mwd /ST)
Reference core loading pattern:
Figure 1 f
Page 4 1
)
14kef0
~
RIVER BEND Reload 6 Calculated Core ENective Multiplication and Control System Worth - No Voids,20 C 4.
Beginning of Cycle, kg.cuve 1.118 Uncontrolled 0.953 Fully controlled 0.981 Strongest control rod out R. Maximum increase in cold core reactivity with 0.003 exposure into cycle, &
Standby Liquid Control System Shutdown Capability & AW F) 5.
Boron Shutdown Margin (d)
(ppm)
(20*C, Xenon Free) 660 0.021 Reload Unique GETAB Anticipated Operational Occurrences (AOO) Analysis 6.
initial Condition Parameters Exposure: BOC7 to EOC7100%P/100%F Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 lb/hr) gel 1 1.45 1.39 1.36 1.035 6.307 112.4 1.27 GE8x8EB 1.20 1.51 1.40 1.051 6.821 109.7 1.17 Exposure: BOC7 to EEOC7 WITH ICF 100%P/107% F Peaking Factors Bundle Bundle initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 lb/hr)
Gell 1.45 1.40 1.38 1.035 6.333 120.9 1.27 6.826 118.3 j
1.18 GE8x8EB 1.20 1.51 l 1.40 1.051 Exposure: BOC7 to EEEOC7 WITH ICF AND FFWTR 100%P/107%F 320 Deg. F P aklae_ Factors Bundle Bundle laitial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 lb/hr)
Gell 1.45 1.46 1.37 1.035 6.612 119.6 1.25 GE8x8EB 1.20 1,55 1.40 1.051 7.016 116.9 1.18 Page 5
~4A5188 RIVER BEND Rev.0 Relo*d 6 Exposure: BOC7 to EOC7 FWTR 100%P/100%F 320 Deg. F Pealdag Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 Itvhr)
Gell 1.45 1,46 1.34 1.035 6.581 111.1 1.25 GE8x8EB 1.20 1.55 1.40 1.051 6.990 108.4 1.17 Exposure: BOC7 to EOC7 - HALING 100%P/100%F Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 Itvhr)
Gell 1.45 1.50 1.16 1.035 6.768 108.0 1.25 GE8x8EB 1.20 1.56 1.40 1.051 7.079 108.0 1.12 Exposure: BOC7 to EEOC7 WITH ICF - HALING 100%P/107%F Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 lidhr)
Gell 1.45 1.50 1.18 1.035 6.778 116.5 1.26 GE8x8EB 1.20 1.57 1.40 1.051 7.123 116.3 1.13 1
Exposure: BOC7 to EEEOC7 WITH ICF AND FFWTR - HALING 100%P/107%F 320 Deg.F l
Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 lb/hr) 1 f
Gell 1.45 1.55 1.23 1.035 6.993 115.4 1.25 GE8x8EB 1.20 1.61 1.40 1.051 7.273 115.1 1.14 Exposure: BOC7 to EOC7 WITH FFWTR - HALING-100%P/100%F 320 Deg. F j
Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power How MCPR (MWt)
(1000 lidhr)
Gell 1.45 1.54 1.21 1.035 6.947 107.1 1.24 GE8x8EB 1.20 1.60 1.40 1.051 7.245 106.7 1.12 Page 6
~
24A5188 RIVER BEND Rev.0 Reload 6 Exposure: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/100%F Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Mow MCPR (MWt)
(1000 ItAr)
Gell 1.45 1.56 1.41 1.035 7.056 105.0 1.24 GE8x8EB 1.20 1.60 1.40 1.051 7.261 106.9 1.09 Exposure: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/107%F Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 ItAr) gel 1 1.45 1.57 1.39 1.035 7.093 113.0 1.26 GE8x8EB 1.20 1.61 1.40 1.051 7.301 115.1 1.10 Exposure: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/107%F 320 Deg. F s
Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 itAr)
Gell 1.45 1.66 1.42 1.035 7.489 110.0 1.22 GE8x8EB 1.20 1.66 1.40 1.051 7.513 111.1 1.09 Exposure: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/100%F 320 Deg. F j
Peaking Factors Bundle Bundle Initial Fuel Design Local Radial Axial R-Factor Power Flow MCPR (MWt)
(1000 ltAr)
)
gel 1 1.45 1.65 1.44 1.035 7.449 102.1 1.20 GE8x8EB 1.20 1.66 1.40 1.051 7.500 102.9 1.08 i
l Page 7 i
~
S acios RIVER BEND Rev.0 Reload 6 7.
Selected Margin Improvement Options Yes I
Recirculation pump trip:
Yes
- Rod withdrawal limiter:
Yes Dermal power monitor:
No Improved scram time:
No Measured scram time:
Yes Exposure dependent limits:
2 Exposure points analyzed:
8.
Operating Flexibility Options Yes Single-loop operation:
No(See Appendix G)
Load line limit:
No Extended load line limit:
No Maximum extended load line limit:
Yes increased core now throughout cycle:
107.0 %
Flow point analyzed:
Yes Increased core Gow at EOC:
Yes Feedwater temperature reduction throughout cycle:
100.0 F Temperature reduction:
Yes Final feedwater temperature reduction:
No ARTS Program:
)
No Maximum extended operating domain:
No Moisture separator reheater OOS:
No Turbine bypass system OOS:
No(See Appendix D)
Safety / relief valves OOS:
No ADS OOS:
No EOC RPTOOS:
No Main steam isolation valves OOS:
Yes Feedwater Heater OOS Page 8
M Aaiao ~
~ r RIVER BEND Rev.O l
Reload 6 i
9.
Core-wide AOO Analysis Results Methods used: GEMINI; GEXL-PLUS Exposure range: BOC7 to EOC7 100%P/100%F Uncorrwied ACPR Event Mux Q/A Gell GE8x8EB Mg.
(%NBR)
(%NBR)
FW Controller Failure 291 113 0.18 0.09 2
386 114 0.20 0.10 3
L-i Reject w/o Byps=
hrbine Trip w/o Bypass 336 112 0.18 0.08 4
Press. Regulator Failure 144 104 0.09 0.04 5
Exposure range: BOC7 to EEOC7 EEOC WITH ICF 100%P/107%F Unceirxted ACPR Event Flux Q/A Gell GE8x8EB Ms.
(%NBR)
(%NBR) i FW Controller Failure 329 115 0.18 0.10 6
429 116 0.20 0.12 7
L-1 Reject w/o Bypass hrbine Trip w/o Bypass 381 113 0.19 0.10 8
Press. Regulator Failure 144 105 0.09 0.04 9
Exposure range: BOC7 to EEEOC7 WITH ICF AND FFWTR 100%P/107%F 320 Deg. F.
Uncorrwied ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 311 118 0.18 0.11 10 Load Reject w/o Bypass 381 115 0.18 0.10 11 Turbine Trip w/o Bypass 335 112 0.16 0.08 12 Press. Regulator Failure 146 105 0.10 0.05 13 Exposure range: BOC7 to EOC7 - 100% P/100% F 320 Deg. F Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failuit 289 116 0.18 0.10 14 LW Reject w/o Bypass 361 114 0.18 0.09 15 hrbine Trip w/o Bypes 314 111 0.16 0.07 16 Press. Regulator Failure 144 105 0.10 0.04 17 Page 9
~
'.'4Asas
~
RIVER BEND Rev.0 l
Reload 6 l
Exposure range: BOC7 to EOC7 - HALING 100% P/100% F Uncorre.ed ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 198 107 0.16 0.04 18 Lnut Reject w/o Bypass 267 108 0.18 0.05 19 hrbine Trip w/o Bypass 231 105 0.16 0.03 20 Press. Regulator Failure 142 103 0.07 0.03 21 Exposure range: BOC7 to EEOC7 WITH ICF-HALING 100%P/107%F Uncorir.ed ACPR Event Flux Q/A GE11 GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 229 109 0.17 0.05 22 Enad Reject w/o Bypass 313 110 0.19 0.07 23 Turbine Trip w/o Bypass 266 107 0.17 0.05 24 Press. Regulator Failure 143 104 0.07 0.03 25 Exposure range: BOC7 to EEEOC7 WITH ICF AND FFWTR - HALING 100%P/107%F Uncorrected ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 234 112 0.18 0.07 26 Load Reject w/o Bypass 310 110 0.18 0.07 27 Turbine Trip w/o Bypass 256 107 0.16 0.04 28 Press. Regulator Failure 144 104 0.09 0.03 29 Exposure range: BOC7 to EOC7 - HALING-100%P/100% F 320 Deg. F l
Uncorrected ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
IM Controller Failure 205 110 0.17 0.05 30 Lnad Reject w/o Bypass 274 108 0.17 0.05 31 hrbine Trip w/o Bypass 228 105 0.15 0.03 32 Press. Regulator Failure 144 104 0.08 0.03 33 Page 10
24A5158 RIVER BEND Rev.0 Reload 6 l
Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/100%F UncoiTec.ed ACPR i
Event Mux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 153 104 0.14 0.03 34 L=i Reject w/o Bypass 204 104 0.17 0.02 35 Turbine Trip w/o Byanss 184 102 0.15 0.00 36 Press. Pegulator Failure 143 103 0.06 0.03 37 Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /St) 100%P/107 %F UncoiTC.ed ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 174 105 0.16 0.03 38 L=i Reject w/o Bypass 234 106 0.19 0.03 39 Turbine Trip w/o Bypats 205 103 0.17 0.01 40 Press. Regulator Failure 143 103 0.%
0.03 41 Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/107%F 320 Deg. F Uncorrected ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 144 108 0.14 0.M 42 Load Reject w/o Bypass 196 104 0.15 0.01 43 Turbine Tnp w/o Bypass 168 101 0.13 0.00 44 Press. Regulator Failure 144 104 0.06 0.03 45 Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/100% F 320 Deg. F Uncorrected ACPR Event Flux Q/A Gell GE8x8EB Fig.
(%NBR)
(%NBR)
FW Controller Failure 129 108 0.13 0.05 46 L=1 Reject w/o Bypass 173 102 0.13 0.01 47 Turbine Trip w/o Bypass 150 100 0.11 0.00 48 Press. Regulator Failure 144 103 0.06 0.03 49 Page 11
RIVER BEND 24A5188 Rev.0 Reload 6
- 10. Local Rod Withdrawal Error (With Limiting Instrument Failure) AOO Summary The generic bounding BWR/6 rod withdrawal error analysis described in NEDE-24011-P-A-US is not ap-plied. A cycle-specific rod withdrawal analysis found the AMCPR to be 0.13 based upon a one foot with-drawal, and is not bounded by the generic RWE analysis reported in the referenced report.
t
- 11. Cycle MCPR Values Safety limit:
1.07 Single loop operation safety limit:
1.08 Non-or==--lzation events:
Exposurt range: BOC7 to EOC7 Gell GE8x8EB Rod Withdrawal Error 1.20 1.20 Loss of Feedwater Heating 1.18 1.18 Fuel Loading Error-Rotated 1.17 1.22 Fuel Loading Error-Mislocated 1.22 1.22 Pressurization events:2 Exposure range: BOC7 to EOC7100%P/100F Exposure point: EOC7 Gell GE8x8EB FW Controller Failure 1.26 1.17 Load Reject w/o Bypass 1.28 1.18 Turbine Trip w/o Bypass 1.27 1.16 Press. Regulator Failure 1.17 1.12 Exposure range: BOC7 to EEOC7 WITH ICF 100% P/107% F Exposure point: EEOC7 Gell GE8x8EB FW Controller Failure 1.27 1.18 Load Reject w/o Bypass 1.29 1.19 Turbine Trip w/o Bypass 1.27 1.17 Press. Regulator Failure 1.17 1.12
- l. For stagne-loop opennon. the MCPR operenng linus is 0.01 gnmeer them du two-loop value.
Page 12
24A5188 RIVER BEND Rev.0 Reload 6 Exposure range: BOC7 to EEEOC WITH ICF AND FFWTR 100%P/107%F 320 Deg. F Exposure point: EEEOC7 Gell GE8x8EB 1.27 1.19 FW Controller Failure 1.26 1.18 Lmd Reject w/o Byp==
1.25 1.16 Turbine Trip w/o Byp==
1.19 1.13 Press. Regulator Failure Exposure range: BOC7 to EOC7100%P/100%F 320 Deg. F Exposure point: EOC7 Gell GFJm8EB 1.26 1.18 FW Controller Failure 1.26 1.17 Load Reject w/o Bypass 1.25 1.15 Turbine Trip w/o Bypass 1.18 1.12 Press. Regulator Failure Exposure range: BOC7 to EOC7 - HALING 100%P/100%F I
Exposure point: EOC7 Gell GE8x8EB 1.24 1.12 FW Controller Failure 1.27 1.13 Load Reject w/o Bypass 1.25 1.11 hrbine Trip w/o Bypass 1.15 1.11 l
Press. Regulator Failure 3
' Exposure range: BOC7 to EEOC7 WITH ICF - HALING 100%P/107%F Exposure point: EOC7 Gell GE8x8EB FW Controller Failure 1.25 1.13 1.28 1.14 Load Reject w/o Bypass 1.26 1.12 Turbine Trip w/o Bypass 1.15 1.11 Press. Regulator Failure Exposure range: BOC7 to EEEOC7 WITH ICF AND FFWTR - HALING 100%P/107% F Exposure point: EEEOC7 Gell GE8x8EB FW Controller Failure 1.26 1.15 Load Reject w/o Bypass 1.27 1.14 hrbine Trip w/o Bypass 1.25 1.12 Press. Regulator Failure 1.18 1.11 Page 13
24A5168 RIVER BEND Rev.0 Reload 6 Exposure range: BOC7 to EOC7 FFWTR -HALING-100% P/100% F Exposure poist: EOC7 Gell GE8x8EB 1.25 1.13 FW Controller Failure 1.25 1.13 Load Reject w/o Byp==
1.23 1.10 hrbine Trip w/o Bypass 1.17 1.11 Press. Regulator Failure Exposum range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/100%F Exposure point: EOC7-3693 mwd /MT (3350 mwd /ST) i Gell GE8x8EB 1.19 nc*
FW Controller Failure 1.23 nc L1=1 Reject w/o Bypass 1.21 nc hrbine Trip w/o Bypass 1.15 nc Press. Regulator Failure
+ nc. noi cnicuissed Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/107 %F Exposure point: EOC7-3693 mwd /MT (3350 mwd /ST)
Gell GE8x8EB 1.21 nc FW Controller Failure 1.25 nc Load Reject w/o Bypass 1.23 nc Turbine Trip w/o Bypass 1.15 nc Press. Regulator Failure Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100%P/107%F 320 Deg.F.
Exposun point: EOC7-3693 mwd /MT (3350 mwd /ST)
Gell GE8x8EB 1.20 nc FW Contrcller Failure 1.21 nc Load Reject w/o Bypass 1.19 nc Turbine Trip w/o Bypass 1.15 nc Press. Regulator Failure Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/100 % F 320 Deg. F.
Exposure point: EOC7-3693 mwd /MT (3350 mwd /ST)
Gell GE8x8EB 1.18 nc FW Controller Failure 1.19 nc Land Reject w/o Bypass 1.16 nc hrbine Trip w/o Bypass 1.15 nc Press. Regulator Failure i
Page 14
~
~
~~24 A5188 RIVER BEND Rev.0 Reload 6
- 12. Overpressurization Analysis Summary Psi Py Plant Event (psig)
(psig)
Response
MSIV Closure (Flux Scram) 1282 1311 Figure 50 3
- 13. Loading Error Results Variable water gap misoriented bundle analysis: Yes' i
ACPR i
Misoriented Fuel Bundle 0.15 GE8B-P9SQB334-10GZ2-120M-4WR-150-T gel 1-P9SUB353-10GZ-12(TT-146-T 0.10 Mislocated bundle analysis: Yes 0.15 ACPR
- 14. Control Rod Drop Analysis Results River Bend Station is a banked position withdrawal sequence plant; therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-240ll-P-A-US.
- 15. Stability. Analysis Results GE SIL-380 recommendations have been included in the River Bend Station operating procedures and Tech-nical Specifications; therefore, the stability analysis is not required. NRC approval for deletion of a cycle-specific stability analysis is documented in Amendment 8 to NEDE-240ll-P-A-US. River Bend Station recognizes the issuance of NRC Bulletin No. 88-07, Supplement 1, Power Oscillations in Boiling Water i
Reactors (BWRs), and will comply with the recommendations contained therein.
- 16. Loss-of-Coolant Accident Results LOCA method used: SAFE /REFLOOD De following table lists the least limiting and most limiting MAPLHGRs for the new fuel: The core-wide metal water reaction is <0.23% De peak clad temperature is 62189'F at all exposures; the local oxidation (fraction) is $ 0.060. De MAPLHGR multiplier for single-loop operation is 0.84 for all fuels in the core.
- 3. See immer. J. P. IOspproth (GE) to R. C. James. )r. (NRC). Rosased Bundle Evalastion. July 20.1992. Tims lauer ideannes that the maanon of C-tasace hel designs may result in a signancent CPR change.
- 4. Includes a 0.02 peantry due to vanalde weser gap R-factor uncenasary.
I Page 15
24A5188 RIVER BEND Rev.0 Reload 6
- 16. Lossr-of-Coolant Accident Results (cont)5 Bundle Type: gel 1-P9SUB354-14GZ-120T-146-T Average Planar Exposure MAPLHGR(kW/ft)
(GWd/ST)
(GWd/MT)
Most Limiting Least Limiting 0.00 0.00 11.23 11.65 l
O.20 0.22 11.29 11.69 1.00 1.10 11.40 11.77 2.00 2.20 11.55 11.88 3.00 3.31 11.70 11.99 4.00 4.4I i1.85 12.09 5.00 5.51 12.00 12.20 6.00 6.61 12.16 12.25 I
7.00 7.72 12.30 12.31 8.00 8.82 12.36 12.36 9.00 9.92 12.48 12.48 i
10.00 11.02 12.59 12.59 12.50 13.78 12.65 12.71 15.00 16.53 12.40 12.55 17.50 19.29 12.10 12.14 j
20.00 22.05 11.73 11.79 25.00 27.56 10.96 11.19 30 00 33.07 10.24 10.51 35.00 38.58 9.55 9.78 40.00 44.09 8.92 9.26 45.00 49.60 8.32 8.62
~
1 50.00 55.I2 7.74 7.95 l
55.00 60.63 7.I1 7.27 J
58.77 64.78 6.65 6.71 59.14 65.19 6.67 6.66 59.19 65.25
\\
l S. For formas expi-see laser L S. Charnley (GE)to M. W. Hodges (NRC). Recommended MAM.HGR Technical Specifications for Mul-uple Larece Puel Desp March 9.1987. Most Limiting and 12 ass Littuung refer to the lowest and lughest hauts, respecovely, of any ennched imuse im ine bedie.
1 l
Page 16 1
24A5188 RIVER BEND Rev.0 Reload 6
- 16. Loss-of-Coolant Accident Results (cont)'
Bundle Type: Gell-P9SUB354-13GZ-120T-146-T Average Planar Exposure MAPLHGR(kW/ft)
(GWd/ST)
(GWd/MT)
Most Limiting Least Limiting 0.00 0.00 I1.39 11.65 0.20 0.22 11.44 11.69 1.00 1.10 11.53 11.77 2.00 2.20 11.65 11.88 3.00 3.3I i1.77 11.99 4.00 4.41 11.89 12.09 4
5.00 5.5 I I2.02 12.20 6.00 6.61 12.15 12.25 7.00 7.72 12.27 12.31 8.00 8.82 12.36 12.36 9.00 9.92 12.48 12.48 10.00 11.02 12.59 12.59 f
12.50 13.78 12.64 12.71 15.00 16.53 12.40 12.55 17.50 19.29 12.09 12.I4 20.00 22.05 11.74 11.79 25.00 27.56 10.97 11.19 30.00 33.07 10.25 10.51 4
35.00 38.58 9.57 9.78 40.00 44.09 8.93 9.04 45.00 49.60 8.23 8.35 50.00 55.12 7.54 7.76 4
55.00 60.63 6.85 7.09 58.40 64.37 6.35 6.61 58.52 64.51 6.59 59.19 65.25 6.50 6.49 59.21 65.26
- 6. For formas explanance, see leaar J. S. Geraley (GE) to M. W. Hodges (NRC). Recommended MAPLHGR Techakal S;ecificanons for Mul.
ople Lamce Puel Designs. March 9.1937. Most Imunes and Ls.ast Unmong refer to the lowest and highest Emmes. sospectively, of any ennched lanus in the bundle.
Page 17
RIVER BEND 24A5188 Reload 6 Rev.0
- 16. Loss-of-Coolant Accident Results (cont)7 Bundle Type: gel 1-P9SUB353-10GZ-120T-146-T l
Average Planar Exposure MAPLHGR(kW/ft)
(GWd/ST)
(GWd/MT)
Most Limiting least Limiting 0.00 0.00 11.65 12.00 0.20 0.22 11.69 12.03 1.00 1.10 11.77 12.09 2.00 2.20 11.88 12.17
)
3.00 3.31 11.99 12.26 4.00 4.41 12.10 12.35 5.00 5.51 12.22 12.44 6.00 6.61 12.34 12.53 7.00 7.72 12.46 12.63 8.00 8.82 12.56 12.71 9.00 9.92 12.64 12.76 10.00 11.02 12.72 12.81 12.50 13.78 12.69 12.77 15.00 16.53 12.41 12.55 17.50 19.29 12.10 12.15 20.00 22.05 11.75 11.79 25.00 27.56 10.98 11.19 30.00 33.07 10.25 10.59 35.00 38.58 9.58 9.93 40.00 44.09 8.95 9.26 45.00 49.60 8.35 8.63 50.00 55.12 7.76 7.96 55.00 60.63 7.16 7.23 58.86 64.88 6.63 6.65 59.19 65.25 6.60 6.58 59.25 65.31
- 7. For formas explananon, see lenar J S. Charnley (GE) so M. W. Hodges (NRC). Recommended MAPLHOR Technical Specincanons for Mul.
uple Laence Fuel Designs. March 9.1987. Most Lanunns and Least Linsnag isfer to the lowest and highest hauts. nespeenvely, of any ennched latuce in the bunde.
Page 18
w-un omoooooo ll mMMMMMMMo mMMMMMMMMM.
oMMMMMMMMMMM.
M E M M M M M M Mn:'!M M M lLo M M M M M M M M M M M M M o ll:E M M M M M M M M M M M M M E ll:EMMMMMMMMMMMMME l:: E M M M M M M M M M M M M M E ll-
- M M M M M M M M M M M M M "
ll MMMMMMMMMMMMM ll
- MMMMMMMMMMM*
- HMMMMMMMM*
- MMMMMMM*
2 TWWooooo IIIIIIII I 3 5 7 9 11 13 15 17 19 28 23 25 27 Il 31 33 35 37 36 41 43 45 47 de 51 53 55 Fuel Type l
)
l A =G E88-P85QB 331-10GZ-120M-4WR-I ST (Cycle 4)
E=GE88-P83QB334-10GZ-120M-4WR-lWT (Cycle 5) i B Gell-P95UB354-14GZ-12GT-14T (Cycle 7)
F=GE8B-P85QB334-10GZ2-12(N-4WR-1ST (Cycle 6) l C= Gell-P95UB34130Z-12GT-14T (Cycle 7)
G=GE88-P83QB3%110Z-120MWR-l%T (Cycle 6)
D-Gell-P95UB353-10GZ-12&T-14T (Cycle 7) i
+
Figure 1 Reference Core Leading Pattern l
Page 19
RIVER BEND 24A5166 Reload 6 Rev.O Neutmn Flux Vessel Press Fhee (psi)
- - - - Ave sm Hess Flux
- - - - - Safety Veno Flow 150.0 - --- Core inlet Flow 125.0 - --- Renef Velve Flow
- -- Core inlet s%
--- Bypass Veno Flow
.U
- ~~.
100.0
-- - - = w -
u- - -- W I.
75.0 2
\\
2
'\\
,.\\
'.\\
25.0 l
50.0
..I I
I 0.0
- 25.0 O.0 20.0 0.0 20.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reactivity
)
- - - - - Vessel Steam Flow
- - - - - Doppler Reactivity l
150 0 - --- Turtune Steam Flow 1.0 - --- Screm Reecevity
{
- - - Feedwater Flow
- - - Total Reactivity G
i 3
\\
\\
\\
l 0.0
... +......... q(\\
g 100 0 gW l
f l
I l' [.
3 50 0 r S -1.0 l
- 1. , ':' "'....
E l',.l' '.
g' t.' l'..'
i-il l
H
00
- 2.0 00 20.0 0.0 20.0 j
Time (sec)
Time (sec)
Figure 2 Plant Response to FW Controller Failure (BOC7 to EOC7 STANDARD)
F Page 20
2dA5166 RIVER BEND Reload 6 Rev.0 1
Neutron Flux Vessel Prose he (pel)
- Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0
- core irst now 300 0 - --- Relief Valve Flow
- - - Bypass Verve Flow s.
M*%
200.0 1
100.0 h
hpK"h.
s 4
p
~~
50.0 100.0 I~,--.......---...
'f 0.0 0.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
{
Level (incNEF-SEP-SKRT)
Void R
'ty
- - - - - Vessel Steam Flon
- - - - - Doppler eact 200 0 - --- Turtune Steam Flow 10 Scram R
- - - Feedwater Flow Total R vity j
I G, -
j C
=,. '
j!!
g
\\
0.0 v i00 0 - - - - - - -.
e v.
n l,
C L.
\\
4 t.
3 00d a--------
b m -1.0 1
l ec i
6,.
..A 1
I
\\.
I I
-100 0
- 2.0 0.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 3 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7 STANDARD) i Page 21
I RIVER BEND 24A5188 Reload 6 Rev.O Neutron Flux Vessel Press Rise (pel)
Aw Surface Heat Flux
- - - - - Sofety Velve Flow Core inlet Flow 300.0 - --- Relief Velve Flow 150.0
-- - Bypees Velve Flow s,'
/ \\
- 3. 100.0 3'%w
- 3. 200.0 g
.w,~~~,~~
e m
g
~ ~ ~,
100.0 50.0 j
0.0 0.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void R vity Vessel Steam Flow
- - - - - Doppler eace Turtrne Steam Flow 1.0 - ^
- Scram R 200 0 - ---
Feedwater Flow Total Reactrvity g
.\\
r\\
~~
\\
l c
c g 00 h
','f*""
g 1000 5
I*
g l,
O
\\g 1
3 I
\\
b y. - +..,- - - - -
es -1.0 00 1
l.:l
\\ \\')
\\.
\\.
I A
I
-100 0
-20 O.0 3.0 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 4 Plant Response to 'Ihrbine ' hip w/o Bypass (BOC7 to EOC7 STANDARD)
Page 22
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (pel)
..... Aw Sh Heat Flux
- SdetyVWve FW 150.0 - --- Core inlet Flow 300.0 - - - Relief Verw Flow
- - - Bypeen Vain Flow
-N 100.0
,b 200.0 E
N s '
t s
~%
100.0 50.0 I
^#
0,0 O.0 0.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Level (irrA-REF-SEP-SKRT)
Volo
- - - - Vessel Steam Flow
- - - - - Doppler Reactvtty 200.0 - --- Turtune Steam Flow 1.0 Scram Reactvity Total Reacevtty
- - - Feedwater Flow g
w 2
c 8
0.0 s,
y.-
g,-
g 100 0 g
L
' ' ~ -.
.s*
\\
cc V.
\\
~
N', ;.
~
\\
g-g 2
\\
r2g-1.0 g
00 cr i
l l
s 1
I l.
I
-100.0 2.0 0.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 5 Plant Response to Press. Regulator Failure (BOC7 to EOC7 STANDARD) i Page 23
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Fhm Vessel Press Rise (pel)
..... Aw Sh Hee Fkm
- - Sdely VWw Flow 150.0 - --- Coro inlet Flow 125.0 - --- Resef Velve Flow
- -- Core iniet Subcoosng
--- eypese vehe Flow
.s
~p*",~
\\,
l.
e 100.0 l
A e 75.0
\\
's e
e
'\\
e eE
', \\
E A
.\\
g
', N s
~~~
50 0 25.0 l
,.I
]
l l
I 0.0
- 25.0 0.0 20.0 0.0 20.0 T'ime (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reacewty
- - Vessel Steam Flow
- - - - - Doppler Reacbety 150.0 - --- Turtune Steam Flow 1.0 - --- Scram React wty
{
--- Feedwater Flow
- - - Total Reactiwty g
J
\\
00 e 100 0 s
r' e
g O
Eg
(
0 f
t
- 1. '
.n
(.,*
y
.. /
m -1.0 50 0 1,,,,,.
e e
i l
V','
I::.-
$j I
I; ::
t 00l l :
I \\'
- 2.0 00 20 0 0.0 20 0 Tkne (sec)
Time (sec)
Figure 6 Plant Response to FW Controller Failure (BOC7 to EEOC7 WITH ICF)
Page 24
~
RIVER BEND 24A5188 Reload 6 Rev.0 Neutmn Flux Vessel Prese Rios (ped)
Safety Velve Fir,w Ave Surface Heat Flux 150.0
--- Core inlet Flow 300.0 - ---
Rollet Vefw Flow Bypese Velve Flow T
3 100.0 gj p,N 200.0 E
E
~. ~~~~
Y
~~~
100.0 50 0
',l~..................
0.0 0.0 O0 3.0 6.0 0.0 3.0 6.0 Vme (sec)
Time (sec)
Leve6(inch-REF-SEP-SKRT)
Voed R
'vity Doppler secti ~
- - Vessel Steam Flow 200 0 - --- Turtune Steam Flow 1.0 Screm R ty
- - - Feedwater Flow Total Reecevity g
\\
..=...
}
=*
2
\\
0.0
.,)
g 100 0 g
,~ --..
NI... -
E l,,
O
\\
g l.
2l=
e -10 00 C
e
\\,),
p I
\\'
I
-100 0
- 2.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (soc)
Time (sec)
Figure 7 Plant Response to Load Reject w/o Bypass (BOC7 to EEOC7 WITH ICF)
Page 25
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessed Press Rise (pei)
Ave Surface Heat Flux
- - - - Safety Valve Flow Core inlet Flow 300.0 - --- Relief Velve Flow 150.0
--- Bypees Valve Flow s
./ \\*. '.
200.0 A]
100.0 y
s'~~~
a e
e e
100.0 50 0 l
, --........,~~
I 0.0 O.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Levei(inch-REF-SEP-SKRT)
Voed R y
Vessel Steam Flow
- - - Doppier Turbine Steam Flow 1.0 Scram R vity 200 0 Feedwater Flow Total Reecavity to s
c 00 u 100 0 W -----.
g'.,......-
er, i,
e i.
1; l '.,' '. ' ' '
~
N, g
N 1
3,y.
m - 1.0 00
.C
~
h,j I
\\
)
I I
-100 0
- 2.0 00 3.0 6.0 0.0 3.0 60 Time (sec)
Time (sec)
Figure 8 Plant Response to 'Ihrbine ' imp w/o Bypass (BOC7 to EEOC7 WITH ICF)
Page 26
RIVER BEND 24A5188 Reload 6 Rev.0 Neuron Flux Vessel Press Ries (pel)
- - - Ave Surface Heat Flux
- - - - Safety Valve Flow 150.0 - --- core inlet Flow 300.0 - --- Reiiof Velve Flow
-. - p peeg m pio, y
'N
/"7 s
\\
] 200.0 100 0 3
\\
s s s E
N E
3R N
3R s
~~~'%
50.0 100.0 I
---L*-*---'----
0.0 O.0 0.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void vity
- - - - Vesset Steam Flow
- - - - - Doppler Reactivity 200.0 - --- Turtune Steam Flow 1.0 Scram Reacthsty
- ,., *~,.-
Total ReactMty
- - - Feedwater Flow G
m c
s.
%,~-.
p.-
g 00
.g, 'f C
g1000 y e
s d
\\',
o
\\
3e N'.
U
)
\\',
{
g i
00 t
m -1.0
)
G1
\\
l 'I l
I
-100 0
-20 I
OO 5.0 10.0 00 5.0 10.0 Trne (sec)
Time (sec)
Figure 9 Plant Response to Press. Regulator Failure (BOC7 to EEOC7 WITH ICF)
Page 27
RIVER BEND 24X5168 Reload 6 Rev.0 f
Nepen<
Vessel Press Rise (psi)
- - - Safety Valve Flow
,p. Ave Surface Heat Flux
- Core inlet Flow 125.0 - --- Relief Valve Flow 150.0
- -- core inlet =%
- -- sypass valve Flow l'.
--- a
.....z,- 4 75.0 g 1,,
g a
s E
,N C
N g
g
"" ~ ~
50 0 25.0 s
v.
s'
~
(_1....
I I
0.0
- 25 0 0.0 9.0 18.0 0.0 9.0 18.0 Time (sec)
Eme(sec)
Level (inch-REF-SEP-SKRT)
Void Reactiwty
- - - - Vessel Steam Flow
- - - - - Doppler Reactivity 150.0 - --- Turtme Steam Flow 1.0 - --- Scram Reactivity
- - - Feedwater Flow
--- Total Reactivity g
~
g
\\
C g
i g 100 0 r
o 0.0
-.............n-
,\\
t 3.'
n I
g l'..
3 4
C l.
1%
N 1
.2 1 '..
ye -10 50 0 e
e l ', l ',. ',. > ', *
~
I E
i l, ' '.
I I
l '.' '.' \\
~
}...*
A ' '
I I'
00
- 2.0 00 9.0 18 0 0.0 9.0 18 0 Time (sec)
Time (sec)
Figure 10 Plant Response to FW Controller Failure (BOC7 to EEEOC7 WITH ICF AND FFWTR)
Page 28
F g eg
$CCe RR i
eI lV 1
1 2
1 1
g o
0 0
0 0
5 u
0 0
0 0
0 0
0 0
aE 0
0 0
0 dR re 0 0 0
0 0
0 0
6
- m..[.
0 B
1
)
1 E
' \\
N P
D a
l 4
n t
CAN R
FTVL
.Y.
ov e euee e
ert sv r eu e
s d >n e (e w
l I
Srt is p
el ni nu o ir n a
on i
eSt T
t Sc T
ef eh i
aF m
t cl r
t a -
m Fa Fe u e
s l
x l
mR e3
.~
wH e
e 3 I
o o
s om E
(
0 w
( 0 t
e e
Fl -
s N
a ol o e
t wS l
L c
w E
c F
)
)
u o
P x
a d
S K
R R
T p
e
)
~
je s
c F
t Fw
/
Wo 6
6 TB 0
0 Ry
)p C@
g2 Ogk@c2 g
$ Ee a
r 1
2 3
s 0
0 0
1 0
1 0
0 0
0 s
2 0
0 0
0
(
0 0
0 0
0 B
0 0
0 O
s.
C 7
t t
o
'l
\\,
E TSDV BRSV E
ocooi
/
y eae at r
p l
f s E
l ap d Rmpl aetes i
s fy e O
e sV l
C T
err T
VaVP l ar 7
i a e i
avl e r
c m
l e v o
e v
e s e
n s.'
I i v' 0
v e3 eF s
W t
L l F Fol R 0
y i
(
(
l oi t
t s
ow w e I
s y
s T
e y'
e w
c c
(
P H
)
)
p s
a i) g I
2 e
C 4
2 F
RA 9
A e3
.v 1 N
6 05 D
/
6 6
0 0
jlI l
i\\
(lIlil l1I1jlll1 I
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - Safety Valve Flow Core inlet Flow 300.0 - --- Relief Valve Flow 150.0
--- Bypass Valve Flow
/
1 's,g )'.
f
.0 e
200 100 0 I,
N C
m N
, ' ' ~
1
~ ~ -
50.0 100.0 l- - -
00 O.0 00 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT) oid Re ctivity
- - - - Vessel Steam Flow
- - - - - Doppler sa vity 200.0 - --- Turbine Steam Flow 1.0
-- Scram R
'vity
--- Feedwater Flow Total Reactivity g
w m
,~
E u 100 0 00 f
7 --- -.
Y.. **
- "~f g
\\
g l,
O O
,i g
4 y
e y
00 k -1.0 e
~
~
,)
i -
I I
-100.0
- 2.0 O.0 3.0 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 12 Plant Response to 'Ibrbine hip w/o Bypass (BOC7 to EEEOC7 WITH ICF AND FFWTR) 1 Page 30
RIVER BEND 24A5188 Reload 6 Rev.0 l
l i
I Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150 0 - --- Core inlet Flow 300.0 - --- RelielValve Flow
--- Bypass Valve Flow 1
"N s
v 200.0 100.0 E
s e
s s
wC N
C s
~ s%
f
~
~s N
100.0 50.0 t
0.0 O.0 O.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec) l I VoidNacbvity Level (inch-REF-SEP-SKRT)
- - - - - Vessel Steam Flow
--- - Doppler Reactivity 200 0 - --- Turtune Steam Flow 1.0 Scram Reactivity
--- Feedwater Flow Total Reactvity g
c i
8 e 100 0 g 0.0
.g 3
\\* =.,,
- g.
\\
h
\\',
O
\\
g l
\\'
\\
5m - 1.0 g
00 C
\\,
l 1
\\.
I
'I I
-100.0
- 2.0 O0 5.0 10 0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 13 Plant Response to Press. Regulator Failure (BOC7 to EEEOC7 WITH ICF AND FFWTR)
)
Page 31 I
~
RIVER BEND 24A5188 Reload 6 Rev.O NM Flux Vessel Press Rise (psi) f Ave Surface Heat Flux
- - - - - Safety Valve Flow I
150.0 - --- Core inlet Flow 125.0 - --- Relief Valve Flow
- -- Core inlet Gubcooling
--- Bypass Valve Flow
~2~~~~~~~
75
!. 100.0 30
,vr E
'N C
'?. % $
F-~
50.0 25.0 l
1....
l I
00
- 25.0 OO 90 18.0 0.0 9.0 18.0 Time (sec)
Time (sec)
Levol(inch-REF-SEP-SKRT)
Void Reactivity
- - - - - Vessel Steam Flow
- - - - - Doppler Reactivity 150 0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity
}
- - - Feedwater Flow
- - - Total Reactivity Q
w i j 3
- q i
E lj
._ J g 100 0
,'g
{0.0
- m r...,,,,,,-- y,4.,'
i A..,
l'l \\
g t
y o
oc 0
l k
N
\\
I*.
>3
- 1. '..
m -1.0 50.0 e
l' l ',., '."..
E l, * '., \\
I i
l ' e' '..'
~
[. ' e'
'I' # '
I h
0.0
- 2.0 0.0 9.0 18 0 0.0 9.0 18.0 Time (sec)
Time (sec)
Figure 14 Plant Response to FW Controller Failure (BOC7 to EOC7 FWTR-100%P/100F)
Page 32
1 RIVER BEND 24A5188
~
Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150 0
--- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow d$-
3 30 N
200 100.0 N e.s e
e m
a gt
., ' ~ - -
ge 100.0 50 0
,/
..i...............
e oo oo 0.0 3.0 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT) oid Re 'vity
Vessel Steam Flow
- - - - Doppler sa ty 200.0 - --- Turt)ine Steam Flow 1.0
-- Scram R vity
--- Feedwater Flow Total Reactivity c
C e 100.0 0.0 h
W----.
,p
\\
g o
O
\\
3e p.
. t,
. '..-~...
.y 00 co -1.0 m
1 V,
I 1
I
-100.0
- 2.0 0.0 3.0 60 0.0 3.0 6.0 Time (sec)
Eme (sec)
Figure 15 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7 FWTR-100%P/100%F) 4 Page 33
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0
- -- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow s/
g 100.0
\\
g 200.0 e
v%
s m
T e
s%
C E
g
., ' - _, ~ ~ - _, ~ f
~.,
100.0 50.0
/
I--------
0.0 O.0 00 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (incMEF-SEP-SKRT) oid R
'vity
- - - - - Vessel Steam Flow
- - - - - Doppler e ty 200 0 - --- Turbine Steam Flow 1.0
-- Scram R vity
- - - Feedwater Flow
- Total Reactivity t*,,
e E
8 u 100 0 g 0.0 7 - ---
g s'.,. " ~
\\
g l,
,q e*
v
\\
so ii s
o y
00
, r-
, r - - - - - - -
m - 1.0 1
e x
t U\\*
I I
-100.0
- 2.0 OO 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 16 Plant Response to Thrbine Trip w/o Bypass (BOC7 to EOC7 FWTR 100%P/100%F)
Page 34
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rice (psi)
Ave Surface Heat Flux
- - - - Safety Valve Flow Coro inlet Flow 300.0 - --- Relief Valve Flow 150.0 - ---
-- - Bypass Valve Flow
".,N 100.0
-r #
200.0 s
N e
m N
C
[
s
%,,,,~
8 100.0 50 0 I
0.0 O.0 OO 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec) l Level (inch-REF-SEP-SKRT)
VoidNactivity Vessel Steam Flow
- - - - Doppler Reectivity 1
Turbine Steam Flow 1.0 Scram Reactivity 200.0 - ---
Total Reactivity Feedwater Flow G
w us E
v 100 0 k0.0
.g,'N.,'
g---
m s
\\
~
\\'.
\\
1
\\'
~,-
i i
b 1
4 m -1.0 I4 1
0.0
@1
\\
~
\\.
\\
l
\\
l
-100.0
- 2.0 O.0 5.0 10 0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 17 Plant Response to Press. Regulator Failure (BOC7 to EOC7 FWTR 100%p/100F)
Page 35
RIVER BEND 24A5188 Reload 6 Rev.0 l
l
\\
Neutron Flux Vessel Press Rise (psi)
- - - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0 - --- Core inlet Flow 125.0 - --- Relief Valve Flow
- -- Core inlet Subcooling
--- Bypass Valve Flow p'-
j i
g 75.0 100,0
= = - - - " - - - - - - -
E
}\\
EC C
~
', x
', \\
~~ ~ ~~
50.0 25.0 l
i I
i
.J l
I 0.0
- 25.0 0.0 20.0 0.0 20.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reactivity
- - - - Vessel Steam Flow
- - - - - Doppler Reactivity 150 0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity V
--- Feedwater Flow
- - - Total Reactivity e
\\
i E
\\.'
\\
\\
E
,/
7 100.0 g 0.0 5
b' E
O 1,
C ll 0
1 g
- 1. "
l
- g. u 50 0
\\a
- 1.0 e
I
- s.. :7.\\:..
I;...
t
- l....
l
- j. >. '
lll :
I, I i.-
00
- 2.0 00 20.0 0.0 20.0 Time (sec)
Time (sec)
Figure 18 Plant Response to FW Controller Failure (BOC7 to EOC7 l
STANDARD-HALING)
Page 36
)
RIVER BEND 24A5188 Reload 6 Rev.0 4
Neutron Flux Vessel Press Rise (psi)
- - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0
- -- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow
-
l....
I J ' '
I 00
- 2.0 0.0 9.0 18.0 0.0 9.0 18.0 Eme (sec)
Eme (sec)
Figure 26 Plant Response to FW Controller Failum (BOC7 to EEEOC7 WITH ICF AND FFWTR HALING)
Page 44
F
- $e
$ C,g RR eI ig lV 1
1 2
1 1
u 0
0 0
5 0
5 o
r 0
0 0
0 0
0 0
aE 0
0 0
dR e
O 0 0
0 0
0 0 0
'..,m. l'[-
,_\\
- .L,
,t 0
2 O
6 B 7
,/
E
,y N
P t
,.a,~,. ';
l D
a
.M-n R
'e FTVL CAN eue e wne(i
,.'x o vr n e
e T
r s v r eu n
i h.,
e b
l e
t s
dise p
iSr e
l n
nu o o
a t
Sc T
^
lef s
m r
t eh i
eSt t aF m
F c
om l
e ul e a -
e e 3 Fa mR e3
~
x o
l E
wH t
(
0
(
0 o
s wFlFF e
ol o -
s N
a e
wS e
t L
c w
E c
lF
)
)
o P
u s
a x
d S
K
~
F R R
T
~~~
e Fj
)
We c
T t
~
Rw
/
o H
6 6
A B 0
0 y
Lp CeN y>
g cg -Q
$ C,g I
a 1
2 3
Ns 0
0 0
G (s 2
1 0
1 O.
0 0
0 0
0 0
0 B
0 0 0 0
0 0
)
0 0
~
~
O
\\
C
\\;,
7 g\\
t 1
\\,
, \\
o b.
E E
TSDV BRSV ocoo
'/.
y eae E
t a al p d p
l ef s r
i s
aet Rmpl R sfy e O
e o
sV l
C T
err T
7 i
a e e
i VaVP t
l ar m
i aet m
avl e c
i l
e s
v c
v e s vt vi e3 e 3 I
t i y
0 I
W eF i v t
l F 0
y i
(
Fol R
(
I s
yt vi s
l oi ow wes T
e ty e
c c
w P
(
a H
)
)
p is g
I
)
e C
2 4
F x
4 5
RA A
e5 N
.v 1 8
D O8 6
6 0
0 i
l iI
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - Safety Valve Flow 150.0
- -- Core inlet Flow 300.0 - --- Relief VsNe Flow
--- Bypass Valve Flow
/s(.
jyg g 200.0 g 00 0 7 1
a N
s V
' m _~,'
c e
~, ~.
50 0 100 0 g.----...---.
I I
00 O.0 00 30 60 00 3.0 60 Time (sec)
Time (sec)
Level (inch.-REF-SEP-SKRT)
Void Re etivity
)
- -- Doppler vity
- - - - Vessel Steam Flow 200 0 - --- Turbine Steam Flow 1.0 Scram Reactivity j
- - - Feedwater Flow Total ReA-tivity g
2 i
c i
l 8
v 100 0 g 0.0 E
s'.'*'
k 7l.
O
\\l e
s.
0
.a 4
g
\\,
\\
00
.-,r- ~
cc -1.0 I
e t.l e
\\\\
\\\\\\'
I
- 2.0
-1000 OO 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 28 Plant Response to 'Ibrb!ne 'IYip w/o Bypass (BOC7 to EEEOC7 WITH ICF AND FFWTR HALING)
Page 46
1 RIVER BEND 24A5188 Reload 6 Rev.O t
4 Neutron Fluw.
Vessel Press Rise (psi)
]
- - - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 3
150.0 - --- Core inlet Flow 300.0 - --- Relief Valve Flow
- - - Bypass Valve Flow
~N \\
n 100.0
\\
v 200.0 N
e 7o" N
E s
K T
g s
j
~'
50.0 100.0
'. ~.
s l
I 00 O.0 00 5.0 10 0 0.0 5.0 10.0 Time (sec)
Time (sec)
I VoidNactivity J
Level (incNREF-SEP-SKRT)
- - - - Vessel Steam Flow
- Doppler Reactivity 200 0 - --- Turtune Steam Flow 1.0 - -- - Scram Reactivity
--- Feedwater Flow
- - Total Reactivity
~',.
J m
c y
g 0.0
- $,,g A.. -
g 100.0
\\
v g
s,
\\
l N'.
O l
\\'
y
\\
g
\\
\\..
g cc -1.0 g
00 e
i C
1
~
I
\\'
1 I
I' j
-100 0
- 2.0 i'
OO 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 29 Plant Response to Press. Regulator Failure (BOC7 to EEEOC7 WITH ICF AND FFWTR HALING) l Page 47
RIVER BEND 24A5188
~
Reload 6 Rev.0 Flux Vessel Press Rise (psi)
\\
Ave Surface Heat Flux
- - - - Safety Vetve Flow 150.0 - --- Core inlet Flow 125.0 - --- Relief Valve Flow
- - - Core inlet Subcooling
--- Bypass Velve Flow
- ~~~
75.0 100 0 l 6,
[
A E
', N 50.0 25.0
{-~
' _J....
I I
00
- 25.0 00 90 18.0 0.0 9.0 18.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reectivity
- - - - - Vessel Steam Flow
- - - - - Doppler Reactivity 9
150 0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity
--- Feedwater Flow
--- Total Reactivity G
a g
8 1.-
g 100 0 g
g 0.0
- m. = e --=
= -
m.\\
E g
C l'.
O
\\
ll ' \\
\\'
l'
\\
h l
l
- v. - 1.0 50 0 c' '.,, '...,'
l' ' '
(
- f. "
I' I
'l* #
00
-20 OO 90 18.0 0.0 90 18 0 Time (sec)
Time (sec)
Figure 30 Plant Response to FW Controller Failure (BOC7 to EOC7 WITH FFWTR HALING-100%P/100%F)
Page 48
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Rux Vessel Press Rise (psi)
- - - Ave Surface Heat Flux
- - - - Safety Valve Flow 150 0
- core iniet now 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow
\\,
g 700.0 100 0 L
/#
k, g
C
' *~,'
I
/
g j
' ' ~ ~.
100.0 1
50.0
/
I 00 O.0 00 30 6.0 0.0 3.0 6.0 Time (sec)
Time (sec) 1 Level (inch-REF-SEP-SKRT)
Void R ctivity Doppler e ty Vessel Steam Flow 200 0 - --- Turbine Steam Flow 1.0 Scram R
'vity Feedwater Flow Total Reactivity g
u, i
y v 100.0 k 0.0 g
8.
7,.
1-8 r:
t 0.0
- ,, a -+
m - 1.0 e
.o m
i p
I I
-1000
- 2.0 O0 3.0 6.0 0.0 3.0 0.0 Time (sec)
Time (sec)
Figure 31 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7 WITH FFWTR HALING-100%P/100%F) i l
l Page 49 1
I
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - -
- Ave Surface Heat Flux
- - - - - Safety Valve Flow 150 0 - <- -- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow I
200.0 L
100.0
\\f ' ',
3 3
'3
'0hy C
'. ~
T gt gt
, ~
s'
~~_.
50 0 100.0
/
0.0 O.0 00 30 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Re ctivity
- - - - Vessel Steam Flow
- -- Doppler ea ty 200 0 - --- Turtune Steam Flow 1.0 Scram Re tivity
- - - Feedwater Flow Total Reactivity g
A e
- \\
E i
g 100 0 k0.0 y
r--.'-
e s
o C
l.
g O
g ji
.o
[
\\
00
,,.-~~----
=
tu -1.0 g
\\j e
a
\\\\
\\\\
\\'
l I
I
-100.0
- 2.0 00 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
J Figure 32 Plant Response to 'Ibrbine Trip w/o Bypass (BOC7 to EOC7 WITH FFWTR HALING-100%P/100%F) i Page 50
RIVER BEND 24A5188 Reload 6 Rev.0 t
Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 2
150.0 - --- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow J
7N 100.0 s,
200 0 s
E
\\
E s
s
's'%
100 0 50 0 1
I I
i 0.0 O.0 OO 50 10.0 0.0 5.0 10.0 l
mme (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Nactivity 200.0 - --- Turtune Steam Flow 1.0 - - - - f Void
- - - - - Vessel Steam Flow Doppler Reactivity I
Scram Reactivity
- - - Feedwater Flow
- - Total Reactivity Q
w C
8 00 v 100.0
. s --
E
\\h 2
\\,
\\
s'.
.a-i y
\\
\\~.
g
. -1.0 0.0 a>
\\ l
[
t
\\ ).
I
\\
I I
I
-100.0
- 2.0 0.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec) i Figure 33 Plant Response to Press. Regulator Failure (BOC7 to EOC7 WITH FFWTR HALING-100%P/100%F)
Page 51
RIVER BEND 24A5188 Reload 6 Rev.0 4
Neutron Flux
[
Vessel Press Rise (psi)
- - - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0 - --- Core Inlet Flow 125 0 - --- Relief Valve Flow
- -- Core inlet Subcooling
--- Bypass Valve Flow
./ ~,,
l(
g 75.0 g 100.0 u
w
's a
m
,s c
', N
~
,=\\',
~~~
25.0 l
50 0
..I i
i l
I 00
- 25 0 OO 20 0 00 20.0 Time (sec)
Time (sec)
Y Level (inch-REF-SEP-SKRT)
Void Reactivity
- - - - - Vessel Steam Flow
- - - - - Doppler Reactivity 150 0 - --- Turbine Steam Flow 10 - --- Scram Reactivity
- - - Feedwater Flow
--- Total Reactivity G
y g 100 0
],
k0.0
+.....- i.y,,.,y,, /
w c
e P
O C
U Y, * '
l',,
N I.
I',,
5 l
..,,,e as -1.0
)
50 0 I, ' l '.' ',l,,.
E t.
l,, ",.}.
i l::'
I ll ',,
i.
I 0.0
- 2.0 OO 20 0 0.0 20.0 Time (r.ec)
Time (sec)
Figure 34 Plant Response to FW Controller Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) STANDARD)
Page 52
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - Ave Sudace Heat Flux
- - - - Safety Valve Flow 150.0 - -- -- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow
! b.5, '.
3 200.0 100 0 E
-N
'>w C
Ns
[
~ ' ' -
V 100.0 50.0
/
_.-r 0.0 0.0 00 3.0 6.0 00 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Re
- - - - - Vessel Steam Flow
- Doppler Reactivity 200.0 - --- Turbine Steam Flow 1.0
-- Scram Reactivity
- - - Feedwater Flow
-- Total Reactivity g
l f.
~'***..
8 Cg 0.0 u 100.0 g
l,,
g q.
T
- s O
Y L,.
o
. \\
t g
i.
l ',
g-t
.a s
00 bd L--
N -1.0
\\
e
\\,
x
\\
t I.
I l
-100.0
- 2.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 35 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) STANDARD)
Page 53
RIVER BEND 24A5188 Reload 6 Rev.0 d
1 A
Neutron Flux Vessel Press Rise (psi) g Ave Surface Heat Flux
- - - Safety Valve Flow Core inlet Flow 300.0 - --- Relief Valve Flow 150.0 - -..--
--- Bypass Valve Flow A
/ 'T
'A N. %
30 200
] 100 0
=
N z
c
~
~. _ _ _ _
50 0 100.0 l
00 30 6.0 00 3.0 6.0 Time (sec)
Time (sec)
Level (incMEF-SEP-SKRT)
Void Re Vessel Steam Flow
- - - - - Doppler Reactivity 200 0
-- Turtune Steam Flow 1.0
-- Scram Reawvity
-- Feedwater Flow
- - Total Reactivity gr 8
l g
{0.0 I
g 100.0 7l, g
y o
i i
e I.
o g
1,
.2 r
g.
\\
h.- N -
N-1.0
\\
00 a>
\\
c
\\
i,
\\
I I
-100.0
- 2.0 OO 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 36 Plant Response to Thrbine 'IYip w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) STANDARD)
Page 54
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi) j
- - - - - Ave Surface Heat Flux
- - - - Safety Valve Flow 150 0 - --- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Row 1
'.,/ " ' h g200.0 g 1000 w
..A s
N
[
C
~
s s
s' m~
100.0 50 0 0.0 O.0 00 50 10 0 0.0 5.0 10.0 J
Time (sec)
Time (sec)
I Level (inch-REF-SEP-SKRT)
Void Reactivity
- - - - Vessel Steam Flow
- Doppler Reactivity 200 0 - --- Turt)ine Steam Flow 1.0 - - - Scram Reactivity
- - - Feedwater Flow
- - Total Reactivity g
m y
y g 00 g-...
3120 g-s s.
E i
e
- \\'x.
o C
\\.7
_g k -1.0 I
00
\\
\\
T
\\
\\
\\
\\
l l
I I
-100.0
- 2.0 0.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 37 Plant Response to Press. Regulator Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) STANDARD)
Page 55
RIVER BEND 24A5188 Reload 6 Rev.O Neutron Rux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - Safety Valve Flow 150.0 - --- Core inlet Flow 125.0 - --- Relief Valve Flow
- - - Core inlet Subcooling
--- Bypass Valve Flow
,.d
,== #,
f h
3
-~ ~~~~
30 75 100 0 --
s m
\\
=
E
'. \\
[
\\
~
', N s
50 0 25.0 l~ ~ ~
.J J
l I
I 00
- 25.0 00 20 0 00 20.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reactivity kY
- - - - - Vessel Steam Flow
- - -
- Doppler Reactivity 150.0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity
- - - Feedwater Flow
--- Total Reactivity a
3 g
I,. '
t 100 0
^ 00
--.m m n,,. m e
p.
E E
l' EO g
j' O
l' l '
f
(
E [,
U
).
50.0
,. s m -1.0
{
1, d l.", ' '..,.k l-I. ',,
ll l' ' ','
l,
' g'
- 2.0 00 00 20 0 0.0 20.0 Time (sec)
Time (sec)
Figure 38 Plant Response to FW Cor. troller Failum (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) WITH ICF)
Page 56
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Rux Vessel Press Rise (psi)
- - -
- Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0 - -- -- Core Inlet Flow 300.0 - --- Relief Valve Flow
- - - Bypass Valve Flow
/ s p/7\\
g 200.0 g 100.0 w
sN w[
C s --
50 0 100 0
/
~ ~ ' ~ ~ '
00 0.0 O.0 3.0 60 0.0 30 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Vod ReaYty
- - - - - Vessel Steam Flow
- Doppler Reactivity 200 0 - --- Turbine Steam Flow 1.0
-- Scram Reactivity
--- Feedwater Flow
-- Total Reactivity
~~
Q f.
E
,t
?
\\
g 0.0 u 100 0 -.
g
.~.-
g O
Y C
l,'.,,'. l ,. "..,.
h
~\\
.a 1
\\
- b.. - u..
N. -1.0
\\.
L 00 a
ti
\\\\
\\
1( '
I I
-100 0
- 2.0 O.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 39 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) WITH ICF)
Page 57
~
RIVER BEND 24A5188 Reload 6 Rev.0 I
Neutron Flux Vessel Press Rise (psi)
Ave Surface Heat Flux
- - - - Safety Valve Flow Core inlet Flow 300.0 - --- Relief Valve Flow 150.0
--- Bypass Valve Flow n
_. / y 1
,- kK g 200.0 g 00.0 w
w's, w
[
E
'~
Y Y
~
50 0 100.0 I'~~----'~-'*-
0.0 O.0 00 30 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void ReaNty
Vessel Steam Flow
--- - Doppler Reactivity
- --- Turtune Steam Flow 1.0
-- Scram Reactivity 200 0
--- Feedwater Flow
- - Total Reactivity G
n
$ce C
g 0.0
,,t g 100 0 p;.
g 7~
i 3
i
\\
ls g
~
T s
I 5
, ' '., l ',,, ' ',.
p g
s W
(
i ld -1.0
\\1 4..d -
.u -
4 00 e
i i
\\.
\\
I I'-
1
-100.0
- 2.0 0.0 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 40 Plant Response to 'Ihrbine Trip w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) WITH ICF) l 1
I Page 58
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0 - --- Core inlet Flow 300.0 - --- Relief Valve Flow 4
--- Bypass Valve Flow
~.
gw N
g 200.0 g 100.0 g
w s
a N
[
[
s Y
~
~
Y
~
s '
s%
a 20 1@0 I
0.0 O.0 0.0 5.0 10.0 00 5.0 10.0 Time (sec)
Time (sec) 4 Level (WREF-SEP-SKRT)
Void Reactivity
- - - Vessel Steam Flow Doppler Reactivity 200 0 - --- Turt>ine Steam Flow 1.0 - - - Scram Reactivity
--- Feedwater Flow
- - Total Reactivity e.
n a
e 8
0.0 p 1m0 s.,
~, - - -.
g..... -
3
\\.
g
[
\\'.
o g
\\,
O I,
\\ '.,
g
\\
\\
2
] _i.0 i
00 s
1
[
1 1
\\
\\
l
\\
I
-100 0
- 2.0 O.0 5.0 10 0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 41 Plant Response to Press. Regulator Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) WITH ICF)
Page 59
RIVER BEND 24A5188 Reload 6 Rev.0
/
Ne p Tlux Vessel Press Rise (psi)
A
- * * - - Safety Valve Flow
" ~ 7 ve Surface Heat Flux
- Core inlet Flow 125.0 - --- Relief Valve Flow 150.0
- - - Core Inlet Subcooling
--- Bypass Valve Flow I
"**~~~
- 3. 100 0
!s
- 3. 75 0
.s
. N C
C
/
'. \\
' " ~ ~ ~
50.0 25.0 l.;
J....
I I
00
- 25.0 OO 9.0 18.0 00 9.0 18.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reactivity h
4
-- - - Vessel Steam Flow
- - - - - Doppler Reactivity 150.0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity
- - - Feedwater Flow
--- Total Reactivity G
.}
m E
g 100 0
{0.0
- C- --E -,-
1 1, d,'
1.\\
E y
C l'.
6
(
l.
3 l' ',
I I.
50 0 I,, '\\.+,,
k -1.0 g
e j ',
- N, i,,
C l-ll : ',. ' '" '
l' 1: : :.".'
I, I
- l. '. '
I s
' I.
4' o.o
- 2.0 t
O.0 90 18.0 0.0 9.0 18.0 Time (sec)
Time (sec)
Figure 42 Plant Response to FW Controller Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWHOOS with ICF)
Page 60
1 RIVER BEND 24A5188 Reload 6 Rev.0
'i Neutron Flux Vessel Press Rise (psi)
- - Ave Surface Heat Flux
- - - - Safety Valve Flow 150.0 -.- -- Core Irdet Flow 300.0 - --- Relief Valve Flow
-- - Bypass Valve Flow
_.[ w g 00.0
,, ' r,{s g 200.0 1
e
'N e
N
~~, -.
f
^
100.0 50.0 00 O.0 OO 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
A /
Level (inch-REF-SEP-SKRT)
Void Reactivity i
- - - - Vessel Steam Flow
- Doppler Reactivity 200.0 - --- Turbine Steam Flow 1.0
-- Scram Reactivity j
- - - Feedwater Flow
- - Total Reactivity 3
f.,
t\\
ag g 100.0
{ 0.0 y
~.
g l '.
O
- \\
g l
00 - -,- -,,---
g -1.0 C
l.
\\(
\\'
I II I
_ t oo.o
-20 0.0 30 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 43 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWHOOS with ICF)
Page 61
RIVER BEND 24A5188 Reload 6 Rev.O Neutron Flux Vessel Press Rise (psi) j - - - Ave Surface Heat Flux
- - - - Safety Valve Flow 150.0 1--
Core Inlet Flow 300.0 - --- Relief Valve Flow
-- - Bypass Valve Flow
_. /\\'
100.0
/
200.0 e
e s'%
[
N
[
3R 3R
, - ~.
50 0 100.0
( - - - - - - - -..-.
00 OO OO 30 60 0.0 3.0 6.0 Time (sec)
Time (sec)
/ oid Reactivity
/\\
V Level (inch-REF-SEP-SKRT)
- Doppler Reactivity
- - - - Vessel 3 team Flow 200 0 - --- Turbine Steam Flow 1.0
-- Scram Reactivity
--- Feedwater Flow
- - Total Reactivity Q
v m
y 8
g 100.0 g 0.0 ga
{ ',] - ----
1 g
e
,, ',, *.. ~...
0.0
,,,m'---
m -1.0
\\*
u i
e l
1
\\\\
.n
\\\\
l'
\\)
i I
I
-100.0
- 2.0 OO 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 44 Plant Response to 'Ibrbine ' Rip w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWHOOS with ICF)
Pap 62 i
RIVER BEND 24A5188-Reload 6 Rev.0 I
Neutron Flux Vessel Press Rise (psi)
- - - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow
--- Core inlet Flow 300.0 - --- Relief Valve Flow j
150 0
--- Bypass Valve Flow
,./ ~~ ]
N 200.0 g 1000 w
's s
N E
E s
4
/
's
/
's'~
50 0 100 0 00 O0 OO 50 10 0 00 5.0 10.0 Time (sec)
Time (sec)
I Level (inch-REF-SEP-SKRT)
Void Reactivity
- - - Vessel Steam Flow
- - - - Doppler Reactivity 200 0 - --- Turt)ine Steam Flow 1.0 - - - Scram Reactivity
- - - Feedwater Flow
- - Total Reactivity G
we m
y 8gu v.....-
3 1000 s-.
a v.
e t
d g
\\.
l4!
\\
2
~
l' N-y
\\.,,
um -1.0 I
0.0 e
)
C
\\
\\
\\
l t
I I
t
-100.0
- 2.0 O.0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 45 Plant Response to Press. Regulator Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWHOOS with ICF)
Page 63
RIVER BEND 24A5188 Reload 6 Rev.0 N
Flux Vessel Press Rise (psi)
Ave Surface Heat Flux
- - - - - Safety Valve Flow 150.0 - --- Core inlet Flow 125 0 - --- Relief Valve Flow
- -- Core inlet Subcoonng
--- Bypass Valve Flow
~~ --
l'
~~~
%s
- 3. 75.0
- 3. 100 0
=-
l E
,A C
[
'. N
~
r - --
50 0 25.0 I
yj
.---_J....
I I
00
- 25.0 O.0 90 18.0 0.0 9.0 18.0 Time (sec)
Time (sec)
A b
Level (inch r4EF-SEP-SKRT)
Void Reactivity Vessel Steam Flow
- - - - - Doppler Reactivity j
150.0 - --- Turbine Steam Flow 1.0 - --- Scram Reactivity j
--- Feedwater Flow
- - - Total Reactivity G
3
\\
C e
-- g p 100 0
'g k0.0 M--y,--,q,
,.\\
E I.
s
__ ~
x I.
o I.
O l
~
l.
\\
~
i:::\\
f i
I,, '\\.-
N -1.0
\\
50.0 e
l :,,', ',.,-
C 1'
\\
I:. '.. '
I'
- l. ' :.'
i; i:: ::.
l I
N 00
- 2.0 0.0 90 18.0 0.0 9.0 18.0 Time (sec)
Time (sec)
Figure 46 Plant Response to FW Controller Failure (BOC7 to EOC7-3693 mwd /MT l
(3350 mwd /ST) FWTR-100%P/100%F)
Page 64 i
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - Ave Surface Heat Flux
- - - - - Safety Valve Flow Core inlet Flow 300.0 - --- Relief Valve Flow 150 0 - ----
--- Bypass Valve Flow 30 200 1000 E
w'.x ?-w e
- _.m e
m,~~,
e p
~.
50 0 100.0 00 O0 OO 30 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Void ReaNty
^
Level (inch-REF-SEP-SKRT)
Vessel Steam Flow
- Doppler Reactivity 200 0 - --- Turtune Steam Flow 1.0
-- Scram Reactivity Total Reactivity Feedwater Flow 2
~~~....
y n
e 0.0 V 100 0 d
e j
g y
,~~-
- \\
\\
l.
0 g
(.
2-t
~..-...
m -1.0 00 - - - -, " - - - -
's' e
\\
E
\\a o,=
Ie i '
-100 0
- 2.0 00 3.0 6.0 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 47 Plant Response to Load Reject w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWTR-100%P/100%F) 4 l
Page 65 l
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi) t
- - - - Ave Surface Heat Flux
- - - - - Safety Valve Flow
-- Core Inlet Flow 300.0 - --- Relief Valve Flow 150.0 k
--- Bypass Valve Flow 1
/n h
.0 200 1000 h
'.. '1}W'\\
to m
C E
%o'-
-~
~ ~ ~ ~ ~.
100.0 50 0 7_______.-.-__
I I
00 O.0 00 30 60 0.0 3.0 60 Time (sec)
Time (sec)
Void ReaYty l
Level (inch-REF-SEP-SKRT)
- - - - - Vessel Steam Flow
- - - - - Doppler Reactivity 200 0 - --- Turbine Steam Flow 1.0
- Scram Reactivity 1
--- Feedwater Flow
- Total Reactivity
\\
2
\\
m y
-l,\\
y v 100 0 g 0.0 Cl.
E
~ - - - -
~ ~.
\\l O
1 m -1.0 l
00
,r-S
\\.
1
\\\\
\\\\
l.
\\}
I I
-1000
- 2.0 O.0 3.0 60 0.0 3.0 6.0 Time (sec)
Time (sec)
Figure 48 Plant Response to 'Ibrbine 'IYip w/o Bypass (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWTR-100%P/100%F)
Page 66
RIVER BEND 24A5188 Reload 6 Rev.0 Neutron Flux Vessel Press Rise (psi)
- - - Ave Surface Heat Flux
- - - - - Safety Valve Flow 150 0 - --- Core inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow
/%
g 1000 g 200.0
\\
w s
s
\\
[
[
s
/
~
~
/
~
s
~ ~ ~ '
100.0 50.0 I
00 O.0 OO 50 10.0 00 5.0 10.0 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Reactivity
- - - - Vessel Steam Flow
-- - Doppler Reactivity 200 0 - --- Turbine Steam Flow 1.0
- Scram Reactivity
--- Feedwater Flow
- - TotalReactivity g
w us E
g g100o g 00
- s...... -
y, ~
e i
w k'.
b I
1
\\,
d 1\\.t 3
\\
\\...
y as -1.0 I
0.0 a)
\\
\\
[
g
\\
l I
I
' I I
-100 0
- 2.0 O0 5.0 10.0 0.0 5.0 10.0 Time (sec)
Time (sec)
Figure 49 Plant Response to Press. Regulator Failure (BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) FWTR-100%P/100%F)
Page 67
RIVER BEND 24A5188 Reload 6 Rev.0 Flux Vessel Press Rise (psi)
A ace Heat Flux
- - - - Safety Valve Flow 150.0 - ---
Cor Inlet Flow 300.0 - --- Relief Valve Flow
--- Bypass Valve Flow
/G 100 0 g 200.0 s
E N's E
C Ts
[
~%s~~
~
'. ~.,
100.0 50 0 l
l 00 0.0 O.0 4.0 8.0 00 4.0 80 Time (sec)
Time (sec)
Level (inch-REF-SEP-SKRT)
Void Re vity
- - - - Vessel Steam Flow
- - - - Dop r Reactivi 200 0 - --- Turbine Steam Flow 1.0 - --- Sc m Reactivity
--- Feedwater Flow al Reactivity G
h g
o 0.0 t 100 0 -
e',s. N. N -- -
/
'N c1
',N e
E
,\\
E s,..-
g 3
e y
s,-
g x
k N
.a s
h -1.0
\\,
00
').**
e1
\\r
\\
I,i
\\
l I I
-1000
- 2.0 00 40 B.O 0.0 4.0 8.0 Time (sec)
Time (sec)
Figure 50 Plant Response to MSIV Closure (Flux Scram)
Page 68
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix A Analysis Conditions To reflect actual plant parameters accurately, the values shown in Table A-1 were used this cycle.
Table A-1 STANDARD Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 84.5 Reactor pressure, psia 1055.0 Inlet enthalpy, BTU /lb 527.9 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.46 Dome pressure, psig 1025.0 Turbine pressure, psig 985.9 No. of Doal Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0-EEOC WITH ICF Parameter Analysis Value Thermal power, MWt 2894.0 Core flow Mlb/hr 90.4 Reactor pressure, psia 1056.4 Inlet enthalpy, BTU /lb 529.3 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.45 Dome pressure, psig 1025.0 Turbine pressure, psig 985.9 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig 1133.0 Safety mode lowest setpoint, psig 1200.0 Page 69 i
- -- J
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix A Analysis Conditions (continued)
EEEOC WITH ICF AND ITWTR Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 90.4 Reactor pressure, psia 1055.1 Inlet enthalpy, BTU /lb 519.0 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 11.00 Dome pressure, psig 1025.0 Turbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 FWTR-100%P/100%F Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mib/hr 84.5 Reactor pressure, psia 1053.9 Inlet enthalpy, BTU /lb 516.8 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 11.00 Dome pressure, psig 1025.0 Thrbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 l
i Page 70 1
)
RIVER BEND 24A5188 Reload 6 Rev.O Appendix A Analysis Conditions (continued)
STANDARD-HALING Parameter Analysis Value Thermal power MWt 2894.0 Core flow, Mlb/hr 84.5 Reactor pressure, psia 1055.0 Inlet enthalpy, BTU /lb 52'7.9 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.46 Dome pressure, psig 1025.0 Turbine pressure, psig 985.9 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 EEOC WITH ICF-HALING l
Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mib/hr 90.4 Reactor pressure, psia 1056.4 Inlet enthalpy, BTU /lb 529.3 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.45 Dome pressure, psig 1025.0
'Ibrbine pressure, psig 985.9 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 l
l Page 71
RIVER BEND 24A5188 Relocd 6 Rev.O Appendix A Analysis Conditions (continued)
EEEOC WITH ICF AND FFWTR HALING Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 90.4 Reactor pressute, psia 1055.1 Inlet enthalpy, BTU /lb 519.0 Non-fuel power fraction 0.039 Steam flow analysis Mlb/hr i1.00 Dome pressure, psig 1025.0 Turbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 EOC WITH FFWTR HALING-100%P/100%F Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 84.5 Reactor pressure, psia 1053.9 Inlet enthalpy, BTU /lb 516.8 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 11.00 Dome pressure, psig 1025.0 lbrbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 Page 72
=
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix A Analysis Conditions (continued)
STANDARD-MOC Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 84.5 Reactor pressure, psia 1055.0 Inlet enthalpy, BTU /lb 527.9 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.46 Dome pressure, psig 1025.0 Turbine pressure, psig 985.9 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig 1133.0 Safety mode lowest setpoint, psig 1200.0 MOC WITH ICF Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 90.4 Reactor pressure, psia 1056.4 Inlet enthalpy, BTU /lb 529.3 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 12.45 Dome pressure, psig 1025.0 Turbine pressure, psig 985.9 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 Page 73
RIVER BEND 24A5188 Reload 6 Rev.O Appendix A Analysis Conditions (continued)
MOC -FWHOOS with ICF Parameter Analysis Value Thermal power MWt 2894.0 Core flow, Mlb/hr 90.4 Reactor pressure, psia 1055.1 Inlet enthalpy, BTU /lb 519.0 5'on-fuel power fraction 0.039 Steam flow analysis, Mlb/hr i1.00 Dome pressure, psig 1025.0 Turbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest,tpoint, psig 1200.0 MOC-FWTR 100%P/100%F Parameter Analysis Value Thermal power, MWt 2894.0 Core flow, Mlb/hr 84.5 Reactor pressure, psia 1053.9 Inlet enthalpy, BTU /lb 516.8 Non-fuel power fraction 0.039 Steam flow analysis, Mlb/hr 11.00 Dome pressure, psig 1025.0 Turbine pressure, psig 994.7 No. of Dual Mode S/R Valves 9
Relief mode lowest setpoint, psig i133.0 Safety mode lowest setpoint, psig 1200.0 Page 74
RIVER BEND 24A5188 Reload 6 Rev.O Appendix B Alternate Analysis for Feedwater Temperature Reduction To provide for improved operating flexibility and cycle extension for Cycle 7, expanded operating domain analyses were performed forIncreased Core Flow (ICF) at 107 % rated and intermittent use of Final Feedwater Temperature Reduction (FFWTR) to a temperature (at full power) of 320 degrees F. T he analyses for cycle 8
extension with ICF were performed at EEOC7 exposure point using appropriate thermal hydraulic condi-9 tions. The analyses for cycle extension with ICF and FFWTR was performed at EEEOC7 exposure point achieved with ICF and FFWTR using the appropriate thermal hydraulic conditions. Contained in this license submittal are results of all analyses evaluated for this licensing activity. The transient MCPR values for all analyses are given in Section i1. The analyses for ICF and FFWTR bound the intermittent concurrent use of FFWTR from BOC to EEEOC operation with ICF and FFWTR.
The Final Feedwater Temperature Reduction (FFWTR) extension flexibility option cannot be exercised until the GE Nuclear Service organization has completed their work and evaluation.
I
- 8. EEOC7 idenufies the rated power operanon eaposee point attainable. usmg ICF only. For Cycle 7 the core average exposure for EEOC7 is 26.476 Mwd /MTU.
j 9 EEEOC7 idenufies the rated power operauon exposure point attainable. using ICF and FFWTR For Cycle 7 the core average exposure for EEEOC7 is 27.133 Mwd /MTU.
Page 75
RIVER BEND 24A5188 Reload 6 Rev.O Appendix C Basis for Analysis of Loss-of-Feedwater Heater Event The loss-of-feedwater heating event was analyzed at 102% rated power using the BWR Simulator Code (Reference B-1). The use of this code is permitted in GESTAR II(Reference B-2). The transient plots, neutron flux and heat flux values normally reported in Section 9 are not an output of the BWR Simulator Code; therefore, these items are not included in this document.
References-B-1. Steady-State Nuclear Methods, NEDE-30130-P-A, and NEDO-30130-A, April 1985.
B-2. General Electric Standard Application for Reactor Fuel, NEDE-240ll-P-A (latest approved version).
l t
a Page 76
i RIVER BEND 24A5188 Reload 6 Rev.O Appendix D Basis for Analysis of Core-Wide and Overpressurization Transients l
The Core-Wide and Overpressurization Transients were analyzed with four valves out of sixteen operable in relief mode and five valves out of sixteen operable in safety mode. The seven inoperable S/RV's are appli-cable only to the Vessel Overpressure ASME Code Compliance upset condition and fuel thermal performance criteria. The analyses performed reflect the River Bend Station Technical Specifications, which permit operation with 4 valves in relief mode and 5 valve:. in safety (spring) mode.
In addition, the core-wide pressurization transients and overpressurization transients were evaluated with new opening setpoints on the S/RV's. The GE Nuclear Services analysis is still not complete and these set points cannot be implemented until such time as their evaluation has been completed.
d Page 77
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix E Basis for Analysis of Loss-of-Coolant Accident The gel 1 MAPLHGR's for Cycle 7 have been generated assuming a MCPR of 21.28 and a diesel startup time of 10 seconds, which is the same as the FS AR basis. By having generated the gel 1 MAPLHGR's with the above assumptions the potentially lower OLMCPR MOC points reported in this submittal are not applicable until further analyses are performed or SAFER /GESTR is implemented.
d 4
Page 78
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix F Basis for Analysis of Standby Liquid Control System Shutdown Capability The minimum required boron shutdown margin is dependent on the fuel design type and the calculational j
method. The minimum required boron shutdown margin represents the biases and uncertainties needed to assure suberiticality. This is a GE recommended value and may be less restrictive than the River Bend specific technical spesifications requirement for the liquid boron shutdown margin, in which case the technical speci-fication value shall be used. For the analysis reported in this Supplemental Reload Licensing Submittal fuel specific borated libraries were generated using lattice physics methods at 160 deg. C and 724 ppm boron.
A boron concentration of 724 ppm boron at 160 deg. C is equivalent to 660 ppm boron at 20 deg. C resulting from the change in water density and inventory. The margin requirements to satisfy for this method with gel 1 in the core is 1.4%.
)
1 l
Page 79
l RIVER BEND 24A5188 Reload 6 Rev.0 4
Appendix G Plant Operation Above the i
Rated Load Line Up to Rated Power l
For River Bend Station, Reload 6/ Cycle 7 analyses have been performed in addition to the standard reload analyses to support operation in the extended operation region. The consequences of the AOO's have been evaluated to determine if operating limits reported in Section 11 are bounding for operation in the extended operating range. The analyses were performed at 100% power and 91% flow with both normal feedwater temperature and reduced feedwater temperature. The results of the calculations are reported below and are bounded by the OLMCPR operating limits of 1.28 for the GElI fuel and 1.22 for the GE8 fuel reported in Section i1 of the Supplemental Reload Licensing Report.
Exposure range: BOC7 to EOC7100% P/91%F Exposure point: EOC7 Gell GE8x8EB l
FW Controller Failure 1.25 nc*
i Load Reject w/o Bypass 1.27 nc Turbine Trip w/o Bypass 1.25 nc Press. Regulator Failure 1.17 nc Exposure range: BOC7 to EOC7100%P/91%F 320 Deg. F Exposure point: EOC7 Gell GE8x8EB FW Controller Failure 1.25 nc Load Reject w/o Bypass 1.25 nc Turbine Trip w/o Bypass 1.24 nc Press. Regulator Failure 1.18 ne
- nc = not calculated I
Page 80
RIVER BEND 24A5188 Reload 6 Rev.0 Appendix G(continued)
Plant Operation Above the Rated Load Line Up to Rated Power Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100 %P91% F Exposure point: EOC7-3693 mwd /MT (3350 mwd /ST)
Gell GE8x8EB FW Controller Failure 1.18 nc*
Load Reject w/o Bypass 1.20 nc Turbine Trip w/o Bypass 1.19 nc Press. Regulator Failure 1.14 nc Exposure range: BOC7 to EOC7-3693 mwd /MT (3350 mwd /ST) 100% P/91 % F 320 Deg.F.
Exposure point: EOC7-3693 mwd /MT (3350 mwd /ST)
Gell GE8x8EB FW Controller Failure 1.16 nc Load Reject w/o Bypass 1.17 nc Turbine Trip w/o Bypass 1.15 nc Press. Regulator Failure 1.14 nc
- nc = not calculated l
Page 81
-