ML20040F709

From kanterella
Jump to navigation Jump to search
Forwards Evaluation of Containment Design Basis Re Facilities,For Use in Safety Evaluation Preparation
ML20040F709
Person / Time
Site: 05000000, Limerick
Issue date: 08/23/1971
From: Case E
US ATOMIC ENERGY COMMISSION (AEC)
To: Morris P
US ATOMIC ENERGY COMMISSION (AEC)
Shared Package
ML20040F238 List:
References
FOIA-81-385 NUDOCS 8202100165
Download: ML20040F709 (38)


Text

{{#Wiki_filter:h* 5 A p-i s AUG 2 31971 l i 1 P. A. Morris. Director .5 .,k. Division of Reactor Licensing \\ LIMERICL COhTAIh'. ENT DESIGN BASES M \\ \\ Enclosed for your use in preparing the safety evaluation,for tbs \\ J subject project is an evaluation of the 1.imerick containment design bases prepared by Berschal Specter. (, Hore importantly, the enclosure would also provide useful input in the development of acceptable design bases for BWR contain-nents (i.e., a safety guide). DRS is prepared to assign Guy Arlotto and Herschel Specter to a DRL-DRS task force on this subj ect. Please let me know if you can make appropriate personnal avail-able to develop such a safety guide. 1 r. Originat Signed By E. G. Cine Edson G. Case,. Director Division of Reactor Standards

Enclosure:

Limerick Containment cc w/ encl: S. Banauer, DR R. Boyd, DRL D. Knuth,'VRL G. Laar, DRL \\ Diytribution: e Euppl. bec: E. Case '\\ SPB Reading R. Smith DR Reading-G. Arlotto DRS Reading R. Rosen B. Specter / a

D Im /_

3 3 Case, g sumut > ..8h3/71 ~ ' " ~ om >

  • f'202100165 ~EffiDi9 5 ~

'"* * ~ 'a '**""* " " " " - - ~ ~ ' " . '.e. PDR FOIA ZITZERB1-385 PDR

.. ~- ~ 8. ( i v,,. l .E6 2/4 ey. r-LIMERICK CO'.???.I!M"! T p.r;..,. D,.,:.'.. i ?

37. - }.

Sur ca.ry and Recc=cndatienc n :

e..; -

f.fter an intencive revict; of the Licerica contcinsent design, b.* the secff reco:: ends that a 15% preccure ccrglin be e.dded to the pech%,v.,: I 1.4*.. w. x..y. :b. calculcted drywell preccure end thct a concic tent precsure cargin be .e., added to the cciculcted pech dcch differenticL pressure. N conciatent Lf5y.' ... = dcch differcntici prer. cure targin is one wher; both the dcch and the f((.. dryuell can cccc: modcte the came $ncrccco in f cch crce..',ove the dcaign b c.h crc.~.. Ter Literich the dcch preccure rcrgin v:uld be '.L l ?.' 57%. Thcce i:crgius cre to be cdded to the ccc:cin= cat prescure trcn-Q g w. r,'.cntc.ac calculated by the Gancrcl Electric containnent code describca N2 ..Q u~ in TEDD-10320. W" Lpplying the above cargins to the Li=crich decign recults in the s:.- ^ following: j. Calculcred Decir.n Mcrcin p[.. e. W Containnent pcck preocure, psig 48 55 15% gg Peak deck dif ferential proccure, pcid 23 36 57% Additicrslly, it is recorr.anded that the height of the dounce: acts I above the dryvell dcch be raised to a cini:::nm of 18 inchec.

Further, it is recereacnded that ccch cingle uctuell-to-drp:cIl vacuu: relief valve be increcsed to tro chech valves in ccrics.

1 Specici ccre in the design of the contcinuent chould be excrcired 3,['. d-to prevent pipe uhip cnd the crection of bypccc crocs betecen the dry-uc11 cnd the,catpp'rcr.cion.chenher cir regior.. In particulcr pipe n ~'~. .A,._ e w .--r-. -* * " ' ' ' * " ~ * " ~ ~ ~ ~ ~ ~

  • 7i, 2

restrcints, barriers, cnd/or favorabic piping 1cyoute chould be enployed . j.. to'nininize the likelihood of one broken primary coolant pipe ccucing Y-2 the failure of another line. ...b' The douncencro chould be designed to resist the dyn =ic forccc ,,],[$. crented by jet forces, cissiles, blordcun loads, and unterhce.er in '.,*H the cuppreccion pool. 5.'. Effect of !!cw Contnirrent 1:odel on 1.it.crici: The Linerick containment prcr. cure trencient fellouing n Io:c-of-coolcnt accident ic taced en the corpeter code der.cribed in the Concrcl Elcetric report 100-10320 (April, 1971). This neu containment code i .x.... is c codification to the earlier Genernl Electric containment code d4-- ?& NN described in the GE proprietary docurent h2DE-10102 (l'a.y,1970). The princips1 diff erence betueen these tuo : nalytical =cthods is in the treat =cnt of the mixture dcncity of 'the fluid that ficus through t- : the vent systen. During a LOCA the vent system conducts the t :ce=, cir, and uater

. /.-

from the drywell to the cupprescion pool wherein the etcan condences. The forner GE cnalytical codel cppro::imated thin vent flow by treating the ni::ture as c perfect gec and acsured that th: nixture dcncity was deter =ined by the etcan and cir co=ponente only. The prc: cat vent f1cv 3 model also cppro::inctcc the ci::ture nc a perfect gcc but now calculatec nixture dcncitics based on stcan., air, cnd the en.rnined unter co=pe.

c.

Vr.

a u

The icentro'pic expension coefficient for this ci::ture is taken as ti. ; .]..

y. e-
U.

of the steen cotponent only, or 1.3. e g __._ _.. ,7.,.

e - -. _.._._z C C 3 (. p; E.. Yh-Other aspects of the prc: cot containsent prc: cure transient analysis ?M-l have remained the sane as the earlier code. The present Limerick con-- h. v. tainment analysis utilizes the same reactor vessel blowdoun model, g((El suppression chamber'codel, and initial conditions as the cerlier codel. - +r !.fi[i' One hundred perecnt liquid carryover through the vcut system is assumed

=.:

as ucll as no condensation of steam on dryvell surfaces. {'; - ' A.. As a consequence of the nev'anclysis of the Lir.erich contain=ent, .T;)v ..g., the calculated peak dryuell preccure und penh deck differential pressure have increared cycr the earlier calculstions. The tuo calcul:tions cc parc as follous: Peak Dryuell Preccure, Peak Dech Differentici E:j.;. PSIG Pressure, PSID r ~ + Carlier Code 38 21 Present Code 48 23 /.nother concequence of the new codel is that the peak dcch differ-c y. ential pressure is no longer calculated to occur at the tira of vent The ecrlier contcinzent nedel calculcted that the diffe ential clearing. Yd J 5" pressure across the dryuc11 deck increased until the 10 or 11 feet of unter in the subccrged end of the douncc2crs uns expelled by the d yuell This uas calculated to occur in about one half of a cecond. precsure. The present codel calculates that the greate t differentici preser e across the dech will now occur in about five ceconds, ucl1 into th time of flow through the vents. Inctcad of having a short-lived p ok dif fercatial preocure that subsides upon vent clearing, the new rcc 21 shows a higher and cuch lens,cr suntained dcch differenti:1 prescure. .9 e =.ee:=.- w y-c. _ - + '~

  • =="-;~~J~~"*

....e-s ~ _ _ _ _ -.

C l 4 . a. I Cenpariron of ibdels to Experit:ents 1 1;umcreus precoure supprecsion c::periments ucre run in the early ' [-~ 4 b f.'<. 1960's. The first scrics of c::pericente, thelHu=boldt Esy tests, -s;, cubstantiated the concept of precoure cupprecsion. The 1 ster Bodega i Bay tent series ucre less of a "prcof of principle" and core of a The Bodega Day test scricsl had dryvell to vettell fk " proof of decign." l -~ ~ volume ratios nore representative of full sized plents. l It is convenient to divide the Iodene testo into tuo group::: pre-n t purged t.nd non-preperged tects. Sicply statt.d, the non-prcpurged test cericsbrdtheirdrp:cIlsiniticllyfilledui\\hcirpric to the si=u-lcted reactor vetsel blowdoun. Intheprepurdedtect steam uns bled ..;. c 'C l intothedryvallpriortobreakingtherupturjdisc. This ster.n forced NY l the dryvell cir orer into the supprcesion chs:2her and heated up the dryvell surfaccc. This prehecting cinimired cor.densstion of the bicu-dcun steem on dryucll turfaces. Typicel initial dryncil <.onditions . ~ '. for the prcpurged tests ucrc 24 psig and 267tF. As shown in rigure 1, .] t% the pcck dryucll precourcs ccesured in the prepurged runs ucre consid-crebly higher then non-prepur<r3 runs of comparable break to vent crea r tios. The forcer CE codel has of ten been cc: pared cpcinst Henbeldt Day and Lodeg D:y tcut data such as shoun in Figurc 7 of D. K. llillcr's Y-The earlit r model inveriebly cciculsted pcsh dryucli prescurc paper. equal to or larger than the test date. Quite often cafety cralysis T( reports vould quo: c cc parison between the censured penh drywo11

    • ~w ~ ~~

-- p asr-= ~ ~ ~=- .......-...mme=:=.-~*~~-

- - - - - - - - - - ~ ~ ~ ~ * ~ ~ ~ \\ ( G ' s- ~ 5 .:.:-J: I.!NS - W:, pressure of Iodega test #17 of 37.5 psig and a calculated peak pressure }.7g .'.Qe y '[?.i Comparioons to this particular Bodega test were often of 48.6 psig. 3 4 l, c5,.-J made' because thic tc=t had the s==c brcah area to vent arca ratio ac 3.~~ full scale plants are often designed to. It appeared that the former- .),;.. GE codel uns quite conservntive relative to the test data. The overprediction of the earlier model tras attributable to ,;(, Theearlierno[icloverpredictedthetestdata several reasons. ~ boccur.e it utilized the !!oody blowdoun codel which introduced blow-doun fluid into the dryucil nore rapidly than that c::perienced in It vau nico assut:ed that there van 100% liquid carrycver the tects. p through the vents, no condensetion of stecm on the dryuell surfcces, F#tu f.N and that the dryvell air was forced over into the suppression chamber ~- cctly in the transient. E,. Severcl of -these accurptions are only conservctive uhen compared Since prepurging clinindtes condensation to the non-~, repurge tests. of steca in the dryuell cnd closely rese:bles the early air trancport y e: Recent model, the.formar GE code in effect uns a prepurge model. inf ortation contained in Supple::. cat 1 of NEDO-10320 indicates that .the prepurge tests also had high liquid carryover. Consequent 1'y, Figure 7 of !! iller's papers compares a basically prepurge cod s to non-prepurge experir:cntal viluec. b A core ucaningful comparicon was nade of the former GE code N against Lotft:;a prcpurge test f 32. This prepurge test had the ccme e o s 8 .o 9 MN - _umg emempeM_ _ _~

l w 6 i 2'.= ",1 break arca to vent area rntio as tne nan-prepurge todega test f17. .l9 e W. This comparison can be found in Figure 5 cf the Carolina Power ,. g ma, 1 3 and Light report to the AEC cnd is included as Figurc 2 of this i ITnen conpared to Bodega tect f35, the forncr GE code no report. I longer exhibited the overpredictions that were characteristic of ['f:{. .3,.. l The forcer code overpredicted Lodega test (32 by I.';;.. Millcr's paper. ~ only a feu psi. r" Iecnuce the concervative Moody bloudoun nadel had been used and alco because the cuppressien chenbcr =cdel produccd calculated bach preccurcs in excess of nea:,ured values, a hicher overprcdiction of Ecdega test (32 cas anticipated. It vec then recconed by the AEC M. 'Tf:i craff that the former GE vent flow codel cust abe non-conecrvative. If $43? ~ g b the 1:cody bloudoun rate was known to be too rapid and yet the agreenent i uith this prepurge test was quite close, then the flow of steam through 7;. the vent cycten cust alco be too rapid. In support of this contention, is: Carolina Powcr and Light was requested to re-ennaine test #32 by having !? y, - a trorc realistic blovdown and by f orcing agreccent uith the pressure

  • 1 1 ore realistic blordowns than those buildup in the cuppression ch.nber.

produced by the licody codel ucre detcrmined by using the actual test 1:casurccents of the reactor vessel presnurc versus time hcd been data. Blowdown rates werc nade in the Eu.boldt and Eodegn test scrics. !t-y cal'culated Uhich were consistent eith the observed reactor vecsel pressure +3: a u '.

  • traces.

L*2 for

  • Thic infornatio'n was rebaitted by CPLL in cupport of their requent

~ n a reduction in-their contairment design' pressure. 9 ..... - -.. - ~. - -

s.- C C e I 7 ., u J.e 4: I 52 Figure 15 of the CPLL report is a plot of Bodega test 632 with 3!.t. -p i note cppropriate blowdown valuce and cupprescion chamber response p. .c (Figurc 3 of this report). This cccparicon de=onctrated that the ris i 2?- forcer GE vent flou codel underpredicted test'recults during cost of 72.1 7 m, the duration of test f32. .c 0, It was the GE position et that time that their forcer contain=cnt l' code bounded all of the tect data, both preputged and non-ptcpurged. I This ic true provided that the coupled blo.:dosa-vent flow nodel were f ured. Tbc AEC rtaff teinteined thcc the GE nodel, in effect, hcd I cc::pc.nating errorn; cgrecaent eith the ccccuyed pech precsures in 5 [p-J: cud of itccif did not concticute proof that the pheno:co: of bicudoun kE cnd ven't flou ucre adequctely cniculated. l The staff cought a contain cat preccure trcncient model uhere all 1 the principal rubredclo (bloudoun, air ccrryover, liquid carryover, vent ficw, cuppression ch:cber rer: ponce) ucrc cecurcte or concervativt. a The staff felt that only by thic approach could it be cble to cscces the degree of conservatic: in the cciculcted peak preccure. Equally iv.por tent, the stcff unnted an enclyticci nethod that cdequately described the bicudoun end vent ficu phenocena. There was a concern that occ=ingly tinor design nodificatiens in future conccincents night hevo cignificent effects on the pech pressure. It ucs felt th t the potential effect of denign codificatienc, such as a new vent configura-tion, uould not be recognined by a code which had an inaccurcte vent flou codel.. Consequently, a considerable effort uss spent on decoupling the vent flow cubmodel frem other cubrodels.


~~~~

--_-._p.- 3,.. z. __, ~ - - ~ -

g.' 8 Several other concurrent cycnto during the Bruncuich request for ,7'. '-;.E.,.- loucring its design prcccure caused the AEC staff to cucaine the GE 'Q'** e :,,.* -. vent flou codel core cloccly. The CE proprietary document ECDE-10lS2 f.15:. contained 20 Bodega Lay pressure suppreccion tectc, utny of thc= pre- '.{. purge tests, uhich had not been cubmitted in the 196211ccards Sucr.ary p;.'p:. . y;: Report (Dochet No. 50-205). so::e of thece prepurge tecto execeded the i ; y' ?.* R ^" highest peak Bodega Eay test drywll preccurcs known to the AEC atsff. Further, the for=er GS cede r.nd the C01:TCiPT-PS cede choued significantly dif f erent concitivitico to liquid carryover. The CD TICIPT-PS code is under developcc: by the Idaho Euc1ccr Corporation es part of the Regulutory Technical Assistence progrc=. The former GE code va:; j,. ty; quite incencitive to' liquid carryover, while the opposite uac, true f or 3'i) C01 TEMPT-PS. In August 1970, the Druncuick request to lo'ucr its design preccure una turned doun. licctings ucrc held during the Lincrich revicu proccca between the

f....

ctaff, the applicant, end GE. In the cource of thece diccuccions it d.h c x-Age " M: was revealed that alt'.:ough the forcer GE codel utiliced an ensunption of 100% liquid entryo or, in effect the equations lcrgely ncteted the influence of thic entrained unter. The inertia of the liquid uac 2 riccounted for in the :orentum equation, but the cixture density uns that of the stcan and cir only. This accounted for the carhed differ- =~~ l ":C ence betucen the form r GE code and the CONTD* T-PS code in tcrns of J ..i'" the influence of liqui,d carryover. The present GE code and CC:UCIPT-PS Q ~' ntill exhibit.dif f erecccc in the ef f cets of liquid carryover and ec=- parisons of thecc tuo codes are nou in progrecs; i g

  • t

' ~ * = w.-- %.- a--.& - ~-sw- --a

  • g ***'
  • m.: - " * ---"

( '( 9 'kii

c:;.".

g',. t ". As pcre of the development of the COR Df?T-l'S code, Idcho nuclect Corporation (INC) ccde an independent analycis of the vent resistance fgg{. f.'iQ. factors of the Hur.boldt'and Eodega Bay tect configuration. INC's {f?r ipl. evaluation Icd to a vent Tesistance fccror of 4.29 for Humboldt Ecy it;-.

15. a g.*

'ij and 5.42 for Dodega Eny. By comparicon, GE's value for the vent ? L;- resictcnce f actor for the Eodenc Eay configuration had been 6.2. T.'f3 Recently, in the April 1971 NEDD-10320 report, GE recciculcted the g.f./I[ .. 7 vent reciutence fcetors. GE now calculates vent recictence facters c - of 4.24 cnd 4.07 f or the Humboldt and Eodenc Day configurations, recpectively. e) These codifications to the vent resictsnce fcetor have an 1:portant YEC bearing on all Lt.E calculationc. The verification of any pressurc 'jl. ' w suppression code depends in part on its comparison tdth the Bodega and Hu=boldt Ecy tests. The degree by which cnalysis and cxpericents cgree ,] depcods on the vent recistcnce fcctor. (Icdependce; c::pericent' l a necourcaents of the Humboldt and Bodega Bcy vent re $10tence were not . ;.i. cade.) The vent recictcnce factor of 4.07 that GE i on c1cias cc nore ./ ~ accurate is now used for analycing the "toruc-light'ulb" contain:ents such no Neubold 1cicnd. The staff feels that these louer vent resisten' c factors are appropricte. The IMO cndWCE values for the Humbold configuration cre f airly cicilar and both are bcced upon nore up-to-d. :e references. n,: Further, as. cxplained by GE representative in a Lit trich ACKS Subco=- ..?: uittcc ceeting, very high values of the vent resists ice fcetor verc e e 9 y w_ W BYbMW,- W"

./ C C t i i 10 i cciccted in the forner GE containment codel in order to produce better agree: cnt with the test data. Figure 3 of thic report was based on a 3 vent recictance f actor of 6.2. If the present GE value of 4.07 was 1 l used, the non-conservative nature of forcer vent flcv codel vould be .x 1 The 11lC cnd CE vent resiktance factorc for the 'Si'$ even core apparent. ISS.;. Eodega Ecy configuration arc, at present, qui':e different. f (.T l . 6.". Recent convercations with GE indiente thct the najor source of I these dif ferenecc lies in the vent loss fceters associr.ted uith two Ii Tce's in the rodeg.n vent. I!:C cccigns en f1/D of 1.50 to ecch of 4 thecc Tce's rhile GE usec 0.77 and 0.04. Ess d on stat >= ente by GE l the 1.50 values are more representativa of ctandard fittings with ZS .w., GE squcre edges while round-edged fittings vould ghave a lover value. I has a letter frcm the nanufacturer of these Tee's that the edges were rounded and the ct:tiented cluivale'nt length of straight pipe is 110 j feet. A copy of thic 1ctter hcs been rc. quested by the staff. .:;.y Utilication of this 1cwcr Bodega vent resistance factor would 93.; Y.h result in better cgreement of the COI;TDIPT-PS code with the tist data. The present GE vent flev model is considered by the staff to be a considerable improvc=ent over the earlier GE vent flo model. Figurc 4 of this report is taken fic= 1;EDo-10320, Figure 5-16. This cciculation used a vent recictance fccter of 4.07, an " exact" blot.doun, a forced

.. T l The

.) ? l ar,r'ccacnt in the supprecsion chcmber, and 100% liquid carryover. H-agrec ent with test recults eere quite'close. ,3- } .,~ E-s -_:,.7 m n.--- ....w-__.,,_. pr.. -- n ~ -..

h!' 11 m,' * - y. C? H One question that did crise on the new GE model's calculation of

  • g.-

.v Lodega test f32 is the assumption of 100% liquid carryover. Liquid 5..t. 3.: carryover uns measured directly in the Uurboldt tests, but not in the g.} u. sa:, bodega tests. As shown in Figure 5 (Figure 3-3 of NEDD-10320, Supple-yT. u.:,. s,=g.. cent 1), the agreccent betucen the new GE vent flow codel and the test j- $jkbi data would suffer a.s the n=ount of liquid ccrryover decreased. Eoucver, {"... v. estinates of the liquid carryover for the Bodega configuration have been nade based on deta in the todega test logs. According to GE, the I.: ~ liquid carryover va: prob:bly in execcs of 80%. If the actual liquid carryever of B:deg: tect 032 uns 80%, the present GE vcat flew noucl ~. ?Pr5 could be considered cccurctc, although slightly non-conservative. ppf.; >.,u W', In cddition to 'the cosparisons of the nee GE vent flou model to 31;, variouc test dnt cs deceribed in EEDO-10320 cod its supple =ent. INC has also cyclunted this nedcl. INC has progrc=med the GE vent flou /hr, 5 coc' 21 and compared it to cniculations by Shapiro. The agrecuent was execlicat. .a 1 The staf f concludes that the present GE vent flow model ccets its obj.ctive of having all aspects of the centnin=ent presst:c trancient codel accurate or conservative. _Evt.'.untion of the Li=crich'Pech Pressure The other contain=cnt sub=odels hcvc also been execined. The' 4g aos options of 100% liquid carryover, ently cir transport, and no gp ' con.ensation of steen on drywell curfaces are accurate if Limerick had c prepur,g.c typc'LOCA and conservative for a non prepurge LOCA. . - v-= ,,=~ 7 y,

  • /

C C I 12 n The preccure buildup in the supprensien bhanber subnodel has two minor parts of opposite pressure effects. The GE rnodel assumes that dif I M,' as the suppression pool heats up, the partial prccsure of the vnter sp,' ' - l 1.'1 J. '. vapor above the' pool increaces according to the pool temperature uithout l nit any tice lag. This instantaneous manif estation of vapor pressure is (T; l 8 slightly conservative. The GE nodel also asccccc that the hot dryvell g' 51 air cools to suppression pool temperatures as it passes through the pool on its way to the air cha=ber above the pool. Thic is not conscr-e vacive, but probably accurate. It hac been citincted by the staff t' hat if the dryt all air did not cool at all durinr. its pascage through the pool unter, the Linerick peak pressure vould i:e appror.icately 2 psi p+. higher. Houaver, liumboldt test data indicatei that the dryuell air. e.' I a does cool to near pool tc=peraturec. /dditici: ally, there Eu:boldt air 1 temperature recasurczents were cade for 6 foot'dotenco cr submergences. ThegreatercubscrhinceofLicerick,10to11 feet, should nahe the GE accu =pticas core VC.id. Consequently, the suppression chamber pressurc '[.] ek y., buildup codel is ce tsidered accurate. The bloudotin s.bnodel rcpresents the noct icportant other co=penent to the Limerich containnent analysic.

c CE perforcs a : ingle node analysis of the pressure and enthalpy of n

the coolant within.he reactor vecsel during the LOCA blovdotin. This analysis is based o. the assu=ptions that the fecdvater flow crops at the instant of the recirculation line break, that the etcas isolation v.1ves close in 3.5 sccends, end that.the ' initial pressure in the T_... ; m g= - __ ,P.*M- . Nf -"D6 WN** 4 M. 6-

...... - -... ~ ~ ~ ~ ~ ( 13 r; 1>..N9. n. recctor veccel at the start of bicudoun is the norecl operating preccure. " P~ ' l 3.. ';; The coolant precourc and temperatures in the rocctor vessel are then 3,G.v. ; i.:lt,::.. - calculated by acsc and hest balcnccc. Thece values cre then c.ntered -T ;95 I h2.? l into a Hoody bloudoun tchle uhere bloudoun rates are c function of. prec-fit.'. dg,.- sure and enthclpy. A rccctor vecscl orifice coefficient of 1.0 ic .,:fC. .2 T. i':,'.. ..i assumed and reactor veccel internal rcciatanccc are accused to be zero. 9.O * - Q'! In general, the pech dryuell preocure increases with higher blou-

k..h.

doun rates. liigher bicudcun ratcc can occur if the breck arca incrocscs ever the design brech r.rca, if the bloudoun is subcooled, or if the rcccter veccc1 prcccure is hir,her then that scsumed in the enc 3ycis. v. Bloudcun retcc decrecce fer orifice coefficients less than 1.0 sud 9:~ .:xw decreacc when reactor vcscel interncl resistences crc accounted for. The fecduater assumption is sli htly concervative and ic ucrth g cbout 0.5 psi on the peak dryucil picscure. The 3.5 second stcc: icolation closure is conr.crvative et rpared to a poccible 10.5 second closure tice. The. core rapid icolat ton produccc a higher recctor i, ..: ~ vessel pressure trcusient, hence o n are rapid bloudoun. Cc1culating the reactor vecocl blo. doun et en initial vescci pres-sure equal to the normal opercting Ircccure is. non-conservative. if the design break occurc during c rcc tor vessel preccure trencient, the pech preccure vill be higNer. Prect re trenciente occur during turbir.c trips (locc of off-cite poucr) and c ny other kinds of cvents.

r 3.
..

C.' During* c turbine trip vith no b; pass flow, the recetor vecscl .g. pressure vill reach *chout 1205 pci i)r Limerich. Eloudoun from thic u - clevated preccure would cause the pech to rise to'about 53 psig.

g._ .__.n ..- --=-- 7 _.> ( \\. I 14 Additionally, if a anall breah (say 0.5 f t ) precedes the design a.. ' break by about 30 seconds, the blevdown ratef could be greater than GE 3 27, purpoces and also the contain= cat could be prepurged. A 4 to.5 psi i increase in peak' pressure nicht be obtained for this prepurge accident. m l The Moody nodel itself is conservative 'for calculating saturated h.I-j. . y. blevdown rates. Subcooled bloudoun ratcc are faster than saturcted l blou. lown rates cnd nay be cs much as 1.6 times Icster than the 11oody I model. Althocch icrge portions of the primar"y coelnnt in a typical lum are initially subcooled by cbout 20'F, CE claius that cncept for clout 0.1 seconds or Icss of cupercritical figu, the bloudoun vill 1 W- ' @i. be naturated. This short time of supercritical flou will have so::.c l s x l .,, j effect en the tine to blow the cater out of the dcuncomers, but t . negligible effect on the peak dryucll pressure. Personal cc unications i by the AEC staff with thcrual-hydraulics experts confirm that a time of @.~, supercritical flou of.1 seconds or less for TA.T,s is rear.on:ble. 1, In evaluating the influence of the !!oody nodel on the prcdiction U.:: of the Limerich posh dryuc11 pressure, a distinction must be made Y^ between test conditions and full-scale conditions. The lioody codel produces greater overpredictions of peak pressures g. in the lic~.boldt cnd liodega tests than in full scale plants. Slover blevacun rates, such as a !!oody codel with orifice coefficients less than 1.0, shou less sensitivity in pech pressure in full scale plants b* 1 i as compared.to experiments. In a full scale plant with internal -Gg m heating, a slower bIoudoun rate results in' higher cater pressures and ?, ~ enthalpics within the reactor vessel. These hi;her pressures and bI 4.f. l -~----~-W'm~~~ ~?

e ( u 15 f.i.;. .i l ry;* .4.

4;
s.Ef enthalpiec cauce the blovdcun rete to increnc'c cud also to relcese core c$ergy per pound of blowdoun liquid. The c::p'crinento did not have
f. Y. N 1

.w :r.- .c internal heating and therefore did not cr.hibit this comcwhat self- 'N'4 '.;

  • R
  • l co=pensating effect.

y GE calculates a peth pressure of 73.7 pcic for Lodega test 032 jE' ~.i l $t' $g.dp using the neu vent flow tedel and a licody bic}:devn. By using an orifice coef ficient of 0.77, the lioody bloude; n rate is reduced and 'P u the calculcted peck prcr. cure would be equal to the censured value of t 61.7 psic. In or.her vords, fer ecch 1% decrci.cc in ble..Mern rcte the c.niculct.ed pech prcccure for redes: test (32 is decreased 0.71%. I -:AN Multiplying the Lincrick bloudoun rate i>y 0.77 would reduce the l wr =< For 3h pcak pressure from 62.7 psia to 57.8 psia. ' (bce Figurc 6) ~ Lincrich a 1% reduction in blevdovn rate (cquivclent to a 1% reductica 2',, ~ in break cres) results in a 0.34% reduction in pech dryuell pressure. Consequently, if the applict tion of the 11oody codel produced c 20% the .J ; overprediction of a test cet figurction, it would only overpredict

$K peak by about 10% for a full ciced plant.

i GE utilir.cs cti orifice :cef ficient of 1.0, which is conservct ve. IEC reco== ends that uc do no accept coefficiento less thcu 1.0. GE feels that they could justif en crifice coefficient of 0.85. Ecccuse J.A, of the scif-compencatin, eff cto deceribed cbove, the lorcr orifice coefficicut of 0.85 uould on y reduce the peak pressure of Lincrich to ,s. -- .y 45 peig, devn f ron 48 psig. y- ~ I _ -. ygg --q%*-' . O M %. O

  • O

w._ ( 16

O..p The Contcin ent Decirn }hrein

..7 A 15% preccure margin above the calculated peck dryuell preccure ';J. is recon =cnded for L1=crich. The purpose of the ccrgin is to provide for a linited nu=her of unkneuns which could result in drycell pressure - ^ transients more cevere then that cciculated for the design basis acci- '.y. . v... dent. Thece unkcouns are of two typcc: accidents comewhat different 'from the design basis accident and errors associated with the cciculc-tion of the design bcsic accident. la order to ninimice thece unknoana, the design cnd coretructica of the Licerich G::ncrcting S ctica tuct reflect the nece;:.pticno that nre inherent in the dcrign basis nccident anc. lysis. Je

  1. 2 Lincrich cust be designed to nininice the probability that the Wl-brcck crea of cny locc-of-coolent accident would exceed the design bccis crec.

Pipe restraints, barricrc, and/cr favorchie piping icycuts cheuld be caployed to cinini::e the likelihoot of cnc brohen primary coolent pipe ccusing the failure of another.. Coccideration cuct also { e,. 's be given to the bloudotn loads inpoced on ceti interncls. The Lincrick j,- design breah crea ucs determined by accuuing ict chohe flou in the noczle throatc of the jet purps limited the flou throu;;h one f ace of the broken recirculation line. Because of tl..c choked flow in the 'N: 6 2 jet puups the Liucrick det.ign brc.ah crea is 4 83 f t Thic decign break crea it. 66% of the area forced by both acca of a broken recircu- [, D 2 lation line (7.33 ft ). If the brech arca of Liecrich ves teken as C a-w 7.33 ft, the peck"dryvell preccure vould 'be :pproniustely 60 pcig, er D 5'N .,w,[~~

(- (

. i.

17 l4C( f.'? If 25% higher than the 48 psig peak dryuell pressure now calculated. < Y. '

m...~

f *:.' '.. these no::les cannot withstand the blevdoun loads and brcsh, the total --;T', break crea will increase uith a resultant increase in dryvell peak The blowdoun load analysis of reactor interncis should

45f.

.Q:r pressure. w,, account for subcooled bloudoun effects as well as saturated bicudo..n. My

d;s... ;.

N .'.~x .~.; -i. J. Figure 6 is a plot of peck pressure versus breah arca for the 2-W,' Limerich design. A 15% unrsin would accen=odate an additicnsl 1.55 ft 9,.- of break aren. For comparison purponce, this additienel brech arca is clore to the cren of both f aces of or.c Lincrick feede:ter line (1.5~ ft ). Similarly, both feces of one Lincrick core cpray line are also 2 .u _ 2 $5 1.57 ft h$ The Lincrich containment =ust be designed to nininize the like i-E,--- hood of bypacs of blo.:doun secca from the dryvall directly into the air chamber above-the cupprcesien pol. This "short circuiting" of the pool could prcduce significantlj higher pressures in the ruppressica .i e. chanbcr and in the dryuell. 7.,;.t.. Figure 7 relctes bypass flou c ca to peak dryucll pressure for 2 ,f Limerich. A precourc cargin of 15% vould be offset by 1.15 ft bypacs crea assuming cn crifice coc:ficient of 1.0 fer the b:, pass crea and pure ste:n flou. If an orifice coefficient of 0.61 is assumed fer 6 2 the bypar.s crea, 1.8D ft vould cc: cnsate a 15% precsure rcrgin. Several potential bypacs paths have been identified. One possible U,. f*. Each path is cl[ rough ti;c vetrell-to-dryu 11 vncuum relief velves. M. -o. d" dPF .\\- O =g. w. e. w

L

  • i 7

( \\ 18 i 2 uctwcil-to-drycell vacuun relief vslve hac un crea cf about 0.44 ft 'Tlicre are 12 ruch relief valves in the Lincrich plants. Thece relief valves are pocitioned on the dounceuern and vill be subjected to all l the vibrations and dyncnic londs the dounconers experience during a 1 LOCA. These valvcc are designed to open or cJoce at only 0.5 paid. It is therefore recor.=cnded that tuo cuch vt,1ves be put in scrics at cach singic present valve location in order to cinicice the lihelihood of bypass through vcivcc that cro ctuck open.- I lt is evidcut frou Figurc 7 that the loco of cnly onc dounconer out of eighty-five uculd crc:.tc a bypccc crcn[uhich could result in pech preocures that conciderably exceed the d' yncli design prcosure. ] r l

  • L Therefore, the douncoscrs nuct be designed tet rccist all the dyncaic jff-6 forces created by jet ispingc= cat forecc, nicriles, bicudoun lends, Lud usterhacmcr in the supprcccion pool.

~ Precsurc cupprescion contcin cato cuch cc Literich's store very little of the blou?oun energy in their dryucils. It only trics the accenulction of 0.56 x 10 ITU'c of encrcy (as etcr.m) in the dryuell^ to raice the Lincrich preccure by 1 pei. During the first 11.4 ceconds of bloudoun, the GE bloudoun model calculatco thet about 6 239 x 10 37p,c vill enter the dryucll ac bloudoim liquid. Abcut 6 177 x 10 UTU'c vorth of this liquid vill be converted to stcc=. Conr.cquently, a 15% pressure ucrcin only allous for the cccur.ulc-6 tion of 4.02 x 10 1U's worth of additionci clec= in the dryucil. This in only 2.3 Z"of 'the "ctcan" encrcy produced during the first part, or liquid phace, of bloudown. In other vords..if the stces cnergy flou

  • * " * * * * * * * * * * " * " * * * * * * * ~ * * * *

-=U8**** amo4 e -

e. (. i 19 ?.i; ~. through the douncc:'cre unc decreased by 2.3%,' the pcck dryuell prec-

4.

cure vould be 15% higher. M." N.; - The GE codel eclculctes that the blerdeva becocc: tuo-phaced at .P. I c 11.4 seconds cud continues to about 30 seconds. An additional 171: x ..g. l 6 6 10 DTU's cro released, of which 160 x 10 UTU'c are etca=. If all V" '.E l '.Y:iI the flow through the dounconers ucre co cntcrily interrupted during F.,.j this latter part of the bloudotai, the prescure would rice 7.2 poi y,; I (15% of 48 pcig) in only 0.53 ceconds. Inte:'rupted flou during the first part of bloudca.a vould cr.ure a 7.2 pci!precsu. n increcce $n d only 0.30 ceconde, i i. 1Taile interrupted flou in virtually impeccibic, reduced vent g-j -J C-flow rate night occur. Reduced vent flow rc.tec night occur if the lY: l gencrcl charceteristice of the etccu-air-wate'r cixture that flows throur.h the dounccscrc significently differed frou the cixtures thet t occur;cd in the prcccure suppreccion.tects.

  • be inlete of the Limerich dernecr. crc cre clevated tucive inchec off the dryuc11 floor.

The etcff has ecleulated thet if all the cntras2cd droplets of unter produced by the bloudcun prccccc ucre te cccumricte on the dryucl1 floor, it uould rccch c unifor= height of 17.5 tschec. The present CE nodel acsu=ac that these drepletc cre i trenci irecd through the dot.accr.erc (100'.' liquid ccrryover). The staff is cor erned that if these droplet cecumulated on the floor, the ucter ould receb the lips of the dounce= crc while the reactor was ctill axpericccing bicudown. Thic =.ight result in "globc" of unter ,8 .,,9 gg me. e. _ j

v ..s.. ( ? I t I 20 .a i 'j'% l'

  • $5 rolling down into the downcomers.

This could recult in a flow regine .,,65 thatwasnotinvestigatedduringthepressurelsuppresciontests. $".'?i The + ' w'. ctaf f therefore reco= ends a dounco:cr height of 18.0 inches. hi?* Ly preventing " globs" of water from ente' ring the dounco=crs during ,$h?- blowdoun, the staf f f eels that the flow regi=c of the Limerick vent . :...,.f. . C,a

.) '; -

systen during a LOCA vould be concistent with the GE vent flow codel y,g; . s ?q',te and with the prescure suppression tests. The 15". precoure cargin could alco cccc:todate other unkncuac such j (. ;0D as hir,her initial cupprescion pool tc:perature, greater vent resictcnce l'" l l than accut.cd, or the loss of scoe vent flor area. Table 1 cu=1:rizes l Q znrious itccc or events that have an cficct on the Lincrich peak drywell F.Y*~.' g. Oh ~ pressure. <~ Present dry Pl.'R containments have a minimum of 10% margin above [i..- the calculated peak pressurcs. These containments are not particularly f4 bloudot.a rate ccacitive.

  • ry Pl.'R containments depend upon a large volume to contain the blow ova energy and their peak prcosures are t.p ;

.m#' almost entircly a function of total energy released. v Precourc cuppression : ad ice condenser containments depend upon .large heat capacitics to c1: sorb the blowdown energy. Containments of this principic' arc not too sensitive to the total energy relenced, but are sensitive to the blowd: m rate and the vent flow rate. 7 The staf f f eels that I reause of their gret ter sensitivity, rate I; ' ' 5.i~ dependent contain=cnts requ.re greater' cargins than volumetric contain-

k. '{.'.

ocnts. 4. '\\ .l ---~----r..,,,-;.--+:- - q,,= ,g.q 5.=~--=---

( (,. 21 y; ~

y. e y..',*-

The staff feels that the present CE contain=cnt analysis censerva-jgtp.-

4,;4.;t tively calculates the pech dryvell pressure for a Limerick non-prepurge 2..

.\\ i:... cecident. With proper design, the poccibility of cdditionel break arca, ~5, 9 p,; bypass flou arca, different vent flow regi=cs, or higher vent resistcnce Q{ factors should he acceptcbly lou.

i.1[

w:.- .. p~. Eased on the above, the staff feels that a 15% pressure cargin 4j .. ~ 3.y; adequately covers a limited riumber of unknowns in the description and - q' ' . -u in the analysis of the design basic cecident. ~{ Dech Differential Pressure The staff recc=acnds that a 57% prescure cargin be added to the Y-peak deck dif ferential pressure. The peak differential pressure as ~ calculated by the present CE co'de for the Licerich design is 23 psid. 5'i'~ The design dech differential pressure vould be 36 psid. , ;/,: a@k s if the pressure suppression principle is to work in the 1.izerich T design, then significant stec= bypass betue n the dryvell cnd the suppres-onsequently, the drytell 2g. sion checber air space must be prevented. c - 6 4; deck cust survive the design basic LOCA and still perform its function. A higher percentage pressure carcin fo) the dryuell acch than the ,5ly;

.='

i l' : dryvell itself is reco = ended for the follo'ing reasons: f 1. Sensitivity of dryuell peak pressu e to deck bypcss s'" u i tr. 2. Possibility of short-lived blovdoin rates in crcess ON of Moody blowdown rates x c-N.r 3. Creater break areas than the design break arca '{4' 4. Incorpl'et$aircarryover ,.}'S 5. Diff erences betecen the experimental data, cnd analytical nodels h + -.ea e w - e am. .. O b M488 - ,d ""'F . ~' '- 4 04 g,' p g, e

1 -_-.y -..__..._....u. 22 =;x. E[.i.' During a loca-of-coolant accident the prcssure in the dryucll will wy.' .n.. rise rapidly until the veter in the downcomers is forced out by the Tj,. f.~ 'i. dryucll pressure. GE calculates that it takes about 0.60 seconds to NE.!. ' $.f., clear these dounconers of water for the Limerick decign basis cecident. At the tine of vent clearing the dryvell pressure is 21 psig and the W' 7,[ y.-*. suppression charber is 0.6 psig. The deck differential pressure is /:.y %..~.a ~ therefore 20.4 paid. The new GE containnent model calculates that the 'J deck differcatial pressure continues to inercace during vent flov, albeit at n nuch slcuer rate. A c.aximu: diffcrential precourc of about 23 psid is cchieved in chout 5 seconds. i_. During the ti=c of vent c1 caring the Lincrich dif f erenti-1 pressure M ~; is rialng at a rate.of 34 psid/sec. Consequently, the '.3 pound pressurc [ nargin vould acco=nodate a 0.38 second error in the calculation of the t:... time to clear the vents. An crror of this mcgnitudo is considered to be quite large in the scale of this event. ~ Blowdowns that are more rapid' than the !!oody blowdown v.11 also [.,.. h@.u s I increacc the dech dif'ferential preocure. Short-lived subcoo.ed blowdovn by itself will not be sufficient to use up all of the deck m rgin. GE calculates that the deck differential precourc uould be about: 26 psid at the time of vent elecring if the initici blo.:doOn rate va 1.6 times e a the Hoody flow rate. Usihg the norcal 1:oody bloudeva codel i f ter the vents are cicated, the peak deck differential preocure for ti is situ: tion x is estinated to be 28 psid. For an initial blevdoun rate of 1.6 r. lioody. the vents are calculated to' clear in 0.55' seconds. Since sub:coled .%=. ( - ,p -- '~. emem N 4P' F MN v.-- -. w, g

c. i 1 I 23 I i ' gp blowdownchouldnotpersiotforcorethen0.l!c,cconds,thispheno=enon .'h,k. d[iI F.s is not cufficient to use up all of the deck p'icccure nargin. 1 s,... (~[5 ; Bresh arcas larger than the design break srca vill cause more m:. I o.. rapid bicudouns and increase the deck dif fcrential pressure. The 67 l 2 h-staff estinates that a 36 psid deck design could handle a 6.38 ft brenh. Mc .l'$.7 As statcd earlier, the 15% pressure cargin on the dryucil peak precsure OJ-M' could acce==odate a break of 6.38 ft If the doch and the dryuell b.'. l E. were to h:ve cc parable capabilitiec in terne of cdditional brcch area, }:,- l I-the dcch design differential p cesure veuld have to bc 36 psid; uhich I' is a pressure cargin et 57%. e ~ Anothcr purpose of putting a unrgin on tl e deck differentini pressur'e is.-to account for unkncens in the ct'ount and canner of the air kd se l trcosport from the dryuell to the netvcll during a LOCA. The dech I I differential p: essure dependo upon the amount of air carried over into

h. g.

f*. the suppressio-ch:nber cir space. This dependency uns plotted by GE l-as Figure Q 1412.6 of Supplc=cnt F5 (/.nendment 6) 'and is included as $v4 Figurc 8 of th s report. Retnining the cir in the dryucll increases h5 M the deck diffc:ential pressure. The 57% dif f crential pressure cargin E' vould allou fo: an 80% retention of air in the dryvell. r.xanination l of the dcta in.icates that a very high fraction of the dryvell air J[4+:. c vas transporte-to the vetvell. The craff feele that a high fraction U, ~ of the Limerici dryucil air would also be transported into the uetuell TS M during a LOCA '.t perhaps not as high as the tests. The Limerich @j w dryvell is much cori encu=bered then the relatively simple drycells of M@ W WE b'."

_ _______________T_"*Y * '~ ~" ~ * ' ' ~' # W~~ T V ~~-M*~
  • M*Y%

'~ '

.. _ m .C C. o 1 [.~ a*.. 24 i ~:~ r.'.: ~

s.

.q The staff feels that there is a greater potential for JW. te the tests. N.~.O TgS trapping some air in the Limerick drywell than in the tests and the idD W. dcch margin is intended to compensate for this. 50.% l Although the staf f feels that cost of the Licerich drywe~' air lf't vill end up in the vetvell during a LOCA, the canner of this air [.'-I.' h transport may diff er fro = the GE codel. Test results have shown that high fractions of dryuell air carryover can be accomplished in 'h.i. several ways. The air can be pushed over early in the drywell trcn-sient, it con be pushed over uniforr.ly with time, or cven pushed over 1 late in the dryvell p cscure trcnrient. A good enn:ple of this can ry e. be found in rigure 12 (Figure 9 of this report) of a pcper by Ashworth. . J.w c..:_ c-* 6 Barton, Janssen, and Robbins. In the opinion of these authors, the gg w time dependency of the air carryover is a function of the drywell " hardware" configuration. Huuboldt test #25 had a drywell internal t arrange :cnt thct pro =oted carly air carryover while liumboldt test 627 had la e air carryover..Both of these tests achieved the same suppres-r. q' sion elamber pressure of 9 psig. However, it took Hu=boldt test 27 f.if about ;0 seconds to do this while Humboldt test 25 was at 8 psig in l l only 3 seconds. Tl e CE codel pushes over a high fraction of the dryvell air early in the LCOA transient. 'fhis assumption is not conservative in ter:s of the lock dif ferential pressure. If the Li= crick dryuell cir vent over in:o'the suppression chstbcr so as to produce a uniforn pressure buildup. the. staff esthtes that the deck would experience a pressure

c.__. e (. ( 25 h.'- Uhr ,r.. dif ference of about 35 paid. E:: amination of Bo '.cga test data indicates )."S ':2). mp that nany of the tests exhibited suppression chamber pressure buildups .$.I5 n. betueen the uniforc buildup codel and the CE early air transport nodel. g' ?j 'eqt. The staf f fecis thct the 57% deck diffcrential codel vould acco odate ~;T-T W . s..'.. 125; the unlikely situation of uniform uctuell air buildup. i2$ Finally, the '.otal number of data points on vent clearing ti=en $$['. ~ :;.. I: ' is quite limited; nuch fewer than the number of pressure suppression ~.y lioct of the vent c1 caring time measurements ucre taken for ' tests. 6' ilu=boldt runs; only one point is availchle for a deeper sub=crgence of 12.S'. Uhile the agrec=ent betucun the GE vent clearing nodel and the test data is good at dtyuell pressure rise ratcc co=parabic to

m..

%T3. MW Limerich's, the GE codel secus to be non-conservative for very higli The staff has (large' break to vent ratios) dryuell prcosure ramps. independently reproduced the GE vent c1 caring model and is in the The staff is process of' revicuing these higher ramp rate tests. cxamining the vent clearing time with the aid of the Naval Ordnance

d-Laboratory which has a two-dinensional code that solves the Navicr-yu Stokes equation for incenpressible flow.

h. .e ( 4..y.r 5.* r -2. m-y,

    • 'e g;

? .( i ,,?.4 c: ~ to w%_.. ,.4 _ _ _ f.,,. -,, j _, 3,,,,

.s t s i I REFERD;CES l. '4.'-- . 1. 1.,' Miller, D. R., " Pressure Suppression Containment Design - Current . :g; i re State of the Art," Journcl of Engineering for Power, January 1969 jf' i g 2. Moody, F. J., "Maximu:a Flow Rate of a Single Cc ponent, Two-Phase [,. l ,.. q Mixture," Transactions of the ASME, Volune 87. Series C,1965 G. l ~..

3. '" Proposed Containnent Design Pressure For the Brunswick Steam

,fe.3 W.3 Electric Plants Units 1 & 2," Docket Nos.,50-324, 50-325, Received Id; n ,.c. 3' I'.sy 11, 1970 4. "CO::TCiPT-PS," IDO-17252, April 1969 f 5. Shapiro, Ascher, "Dynonice and Thernodynn=ics of Co.:prescible i Fluid Flow," Volume I, Table 13-4, p::;c 626 -~ $p. 6. " Predicting liarinus Pressures in Pressure Suppression Reactor I Contain=ent, ASliE Paper 61-1.'A-222, D. B. Barton, C. P. Ashworth, i E. Janccen, and C. H. Robbins l l g 1 <.a I e'4 g e. ,g. o l

i TAni.!: I 'f ESTIMATED EFFECT ON LIMERICK PEAK DRYWELL PRESSURE ITEM l I l Conse rvative by.J...., e,i _laciw w ortuce coetficient 1. P.cody model with orifice coefficient of 0. 85. o f 1.00 i Conservative by about 0.5 psi. I l' 2. Instantaneous stopping of feedwater flow G About 5 psi /cach additional square foot. l 3.* Larger break area 2 About 6,3 psi /f t of bypass area 9 orifjce coefficient '4 Bypass flow between drywell and of hypass area = 1.0. Ab out 3.8 psi /ft of bypass arca l suppression chanber air space 0 orifice coef ficient of bypass area = 0.61. ,1 About 2.5 psi /100 psi increase in reactor vessel pressure l 5. Ilicher initial reactor vessel pressure [!!aximum e f fect rv 5 psi]. l than normal operating pressure 6. Prepurging of drywell by 0.5 f t break Peak pressure about 4 to 5 psi above design basis accident. \\ 2 l followed by full-sized break 30 seconds late 10 psi increase /100% increase in fL/D. About Increased vent resistance factor (fL/D) 7. flow area. About 3 to 5 psi increase /10% decrease in vent O 8 Reduced number of downconers g-Somewhat non-conservative when cwpared to Doddga prepurge 9. Ven t flow model test #32. Estinated 1 - 2 psi Imi. Peak dryvell pressure 49.1 psig at T pool (initial) = 110*F. 10. Suppression pool terperature initially Peak drywell pressure 50.8 psig at T pool (initial) = 130*F. higher than 90*F l ( Peak

  • 50 psig for completely uncooled drywell air.

Cooling of drywell air in pool water 1 I 11. f Peak pressure increases by 6%.

  • r 12.

Retention of all drywell air in the 1 1 h drywell during LOCA l 1 I -l;,*l.,..,,.. '. -. )l:E)!

  • r '

ii.??W R & l W }'q ~ l V,' ~*

' v- .l..- - -. ~. ~,'"7 w**,*

  • I
0. *

...~'J.l. ],,.

6.. ** ***.

1 .....i .l. '......*'.'...".1*.' ..-1 J g. .,.. ~. ...i.... ...e. .e. e.

s..

.I. .l. t.,. g si .i 3. e. ...s.. ,. j . a f... .%q -.l e a .l-s. .es. m.

s...

1 .:n _ 1 6 . [....... .s... s .e .4... I. _..l. e. ., ~. .s... _.4. l I.. .I.. .l. .e. ..e.. ...4 4 g .e ..s.. m .n .f... ...4. l -e g. g A ...i..... -l ..e e- ..a -.'g. ............{. . 6.. r..... '} v 3.. ....a-. ..l

d.....

s. l.. W ....e.... ...l......... .(...........l......... ....l. ( g .e .1. ..f .l. (.. g g... l....... .4. ...9 ...g. .e..- I 1. .........a..... ..g g. ...t..... ...]... ____.l.. . l..l.. ..A -.4..... ..l........ ..l... ......3. ..q. w. t..-.. .-e.- ......,e...,.--.a' ..-l... ........*.*..*l-..l...-.g.. 4-. ....t._..** ...I....*

  • j*... - -

I. e....... ...l*'.;.. l*..**... r ..... J... ..g.... .) ..)........... .J.. j 6* ...l.... ...l . g. g. .j. 4. ....a.. .g ....... 6 .. ~...... .. }.... ..g. ..d...... ..a.. f./ ** 8 4 g.. ..t.. PV

e..

...i....T*.... ".. ....t... 4...-y. .I g. .. s.* J.. ...p ..l i.q... ..d.... ....g.. ...I.. .........( s.... ....r. ..a. 4.. .. e l.. .....l... e....... g.. .1...{... .q,.... .-*..I*-* .1 ...l.. .. t...... ~ ~ .s., g...,....... 9. .g.... ...-..4 ee. +..J...-....a .a ...........*6.**]*.==........;.......... ..* l. g... l,. t...a. 4.. 1 ..s. j.-... .. y., ..g...g. ...9,.......e.- .4,. ..I..-i.l... .l ....e .....e.- ..1... l

j.....

s g

f.....-...1._.......

,...-..4,, . e. ..(... ...l.-.... .m .3 .a 4.. ...}. ... ~ .e. .{... ...a.. ..f... ...s....._ ...,......a ...,......,..............g... (),. gy ..I_. g.. ...q......}.... ..l.. .4...,.. ..e..._.., .r... ...1.......f..... .g :.. .J .=, j. -.. .. l T. . g. -.4. .-a.8. l.. .......,..4.. ..g.... ....t. .....e. .y .. l, ...g. .s. ..l e..... ....L. ..a .. e .l.. ..e... ...l..... q.a .4'. ..g. ....j....-. .t.. ...t... ... g.... 4 ..m,1... ,...( ..g. .ea g ....l. .. _..s.. s .{ 4 ~......l....... ....... j... .e.. .j- ....p....g,d...g.. 3....... e. .....s __. ..]....... La..s....... .g........- .s. 3.. a 4....... s .f.... .. l.... a.% a... . 6 g s. .l....- ..l..,.... _.......... a. .i...l... .... ~. ..t. .e i .l_.,....g. s,.. .4_.. e. 4 .l. ...l _.. ... e. g;, .g. .l -j 3 .l.- . i. ... e ..t,...,..... e... l.. I... s. s%. .l. .-.g.. e,_.. l..... _. >...l.. }. / *e g,p g . e ..{....- .,_....I. .....t. i... .. ]",. ....... L. a

a.

.j...l.. .l. 1 9 4 i. w... .2..._.

1......g t.

e g. .i i.e 9 .:.".. i.'.,..5* .B.***.') I. i .l............ ..4 4 !.t. } {f4 o .,. + 6 , " * *j' .i. .E* ( e, l ........ -.....-....,...... _. -.*l..**.... - l ._ 4,. (#g ....j....I, .e.... j.. A...... ._. e. ;. p .}.

1...
e.......g.

1 4.. ......l.. ...j . t. ..,e l.6.. 2 { e .g. l .e. g. .g ..... 9,.. d 4.. 3 I ..,s.. ( ... i 0./ g... .3 ..e3....e...,.... g a. ..e.... ..g..... .!...4. I... s .... ) . g.. l..,- f.,...., *. .{. ..,.e..g.. ...._.n..,, g g.. ...i g._..,, 4 .[ j .a e

i..

y. .....f..._.I...... . g.. .... s .s (. ..s \\ .....s b.o,g ......t.... r e f. %g.,. e,, r*p..,.......T... .e. ,...l...... .l... g. .. 9 .I. !.......,.. _...,.,._..gp g.,.. i... ,e,, 4 .y... ~ ....J. n. .. g. I........._.. .S... s.... t...q. . j, e..... ..... _.....j.. J.......... .,v, J ...4. (. .l..... j .-..g.... j.. ..g ). .4, 4. e p. ,...g.., .....,..... ~.... 3.4..... .s. g....... 4..,..1. \\ _... ,......I. ..l..,. . I,.. ....m..... .j... A.. 4..........}..., .e. {.... 1 ....a.~_......_. a. g... 6 ._.i....... I... g. ....-........l........ - ..........}. .....4. s .....I. ......_ _. 3... .. _... ~. i .4....l._. .e. .1..l..... '.....I"_....._. e... ).. _... .e. .~l ...)., i..I... 4.~......... ...s... 3.. .,.s... ..[ .. l. 4 e. .g % .._3..... g J. .t.. ,s. ~.~I. Lh,, t......g..s.,.... ...6....l. ..e.......s.... g I.......... .( m. .. el. ,....l.... _...,....,... _ ~.- g e. f ..s /p, ~........ . rs ....l.... ( .,.3... g a vie g.. ...~._t....g m ..'....l. ...l. e J.. .J 1... .s... 4 ..1.-..e . a . ~.. .s...g. ..I .g.... j ..) ....a.-......,.... .e. ..._. l....... -.. _ ___.j. .m ,A 1.,. f. ..... _ _...J....i._.. .4 .....]..... ._..4.,.s.... 1... .........p...... f*1 _._.. 4. .,j...f<.. .. i,,., ..j

  • .,f.....g..._....

..I. w.._. ........s,... . l _. c ...s v,, .4... .....l...,....,...la. e. ..e......d. .I -4....}..,...I...... .8 . ]2. .e....4..._.... ..,p.. ...f... ....I....e.. g ... g,... ..e ....q. 8' s,e p*p y ..L.

u. l _....

... _....1_. .w ..s......,.,.. ...p... 89 I ig.... .f.... ...)......... .,_..g. 4 .l,......__e...~],, ...=.4,.- ,4, [J.]

  • ..s p

.,...J ,.1 ..l.. ..s... ... l.. .. g .e.... ............s..l.. ,y s .l........ ... g. L ..J_.... .... f. _... ....l......._...... .s. 1..... g. . 6 ...i....l. w., ... i._. a.. ......e . n.. ~.. >u. ..). .g .4 r.. ..-I...d ...s...t__._........ .t.. _..-r.._......i._._._.1_........ 6.. ..i. ._.._J._._... ...a .... ) -. _._., _ ,d ..a. ..q ..,i. '10 .... j .i. .-.......a l.. ..j. .l ..T .. 4.. 1 ...........L._... .... l. J... ...l. .a.. O......... g... ....L...... t..,...!.., .t...,............. . J._.. ...-f. .l. ...~.. _.. l. .i....

4..........

...i ...,.1.. ....t.... .i..... s./ .. i..... t... _. ......)....._. l...

g.. i...,...

..a. ..l.... ].. .. 9. g... .m... .l. _..... 1,. l. .t ,,. _. _s. g.,. i...., i .p _ _...n., p,. . l...... ...l... ..t. .g_,_,.... lO ..... A.!..... D., A..s.i... i. 1 M.'.,. ..,... cA... c. e ~...s..... ..l ......,j.. . g.. - 1 3. .l... ... -.l........, _.......... ,C..: l .4 >,..s. .l..... ..e. . i. ..._.s_..._.. ij.. ..u__.. I. . l. _ _ .,a.. 9.g~. I >m..,.. ,.... ( g.. ..........1. .., s.. a. : _..i e..,

4....

.. s... .t. 1. . t.....r.. I s.... .s -... O-- ,o q , o g, 06 .og ,o p, ,a3 u...., , o. .s

,. ~...., ..). ~,, ,.j ( ~. v - ./ .-/ ,.. 1 g....,.,.

p. /..

r, v; .,f e .i.... .]. j ,j s.... D..

f.,.g.......

....i............L.. i l .. f....:,

i...

..t.. /..j f,, f.q. l. .N.. se 4 .. t s. .. {...;f ,,.......1. .. 7. .r.,.,. ' I. e..r-. ... ~,..... .f... ....g... ...s.a.. .s L , L.. 4... . _..,.r....... c. j,g, p s..

t...

t.\\.. g., r.,. j. .. g,, 6si. .. t......... ..s.g s, ...a.;.. ,......,...._w.. ....t. ,c.i c,.. t., 7 c... p. . ~3. .,.i... i.... .... g.N,... y. . t...;, g,....,0.. 1 . l...... .l g,. 2...... .i ..........:.....t.,. .......................1 gi,. ...3.. ..t. .l.....,s ,,.tv.._. I f~..Is. r.;. .l... f.. ... 1.(.,..... ..t....... _... _..... .......i.......... ~..., .............)..... .4 _ .m ...L f..,.' P ' j..... ....?~ - --- , i

' ;~

.',.;.i'..; W..,. n...;*

4. 7. ;

..,f,.

.J............

....t..... ....i.r

... -)- *1"...

..'l:...:l:.... ".. ......t... L..... 1 ~; ..:l. ,.....,.,......,..t... ...t,..... .......j...... s. .i ....:..i..... 1 .3 9. .....,....1.....\\... ....4 ............)............i_.... ....r.... ..t ..n.\\eg..l........ ... a....., .a.. .4 l, ..t.,. ...... 1 ...l,. .........). .J. ....., ~...........s..,.... .........l.j,.... r.. .I. 3.. 2.... _.. t......l.1.-.... .........1......,l.,........ 4..._.... u s... ....-. 1... ..f. l... ...f.. ..(... ..... s. s.~...._.. F. g3. .....t......... .,......L,.,. ......t...,... .s.. ...i. i.. .;4.. ....i., l.....

1...,...s,

..t 4. ... r.. 3. . 9.... .l...,. ......._ l., 1........ ....,)....,......1...... .l..- - -. _... ..y f,..,.,.1..... 2 ... =. .......4...L......-..li... ........ l -....... .l... w..._...._._,.._. 7,........_...... .J....... t...,. ... 1. ...l _. .,... _..._..,..i........ l..... (.. o. .. i............. s..4 L...... s I.........l. l .l.. .. L. . i..

l.._

..4.. l...

l....

.l....... ....r .g .777.....I.....,...... .. j. w .t. M ). a. ..l e. ......4..... 1.. . m... ;..J e.. g.. s. ...:......-w.. f. z. 1.... .]. v Ca i./ .......... _.,......._..1._....... .j... ., 4,. ..l..:.... ....J. _.. .....,. l... 1 e. . l.. ( e,..<q... i....g..-.....l. J ..l ...1.... i..... .l_ 4.... 4 ..l...,.. ....j.. ... 1....... .i. .l. ..(. _. i _... .).....i.,,..... .. l l.'I...,. .). ...l. ..).... ) s .l. ..'J... ...... 1.. 1 ..i.. : ...... 4: ,.............j.. 7..... 1. ...g.... 1 ...i._.. 1 .l. .I. ...g ..i 1... .g. .l.. ....g.4 _.......e.,....-..l... n. .f 1 j.. )/ f, /- a... .. I.. ....*-_.l. ......6...eA. .. _...........y,. .e. ......-.............t6. e... 4...... .i 4,

  • g

........4....................6.. ..,...I ...J. l ..e..4... ...l................_..... .4... g ...o...,.. .i ......l. .......... l.1............. I.. .I .e, .. --l.n..i ... m.. g .......i,. .s. ...,.}..... .......i... .... n e..,fg., .....-.J.n.. ......~. . =... ...w_ ..r t .s, .l.... ..{.-.. {..... /. .. I..... s.s. 6,..... .l...-.. 3... .l... ..l.. .....m. ) 4... .l.!.,-., ......s.............. _ .,,....,...............,............s...... .e ...~.)...... .g. ..g.......l... ..s. .. a ...g. .a. ..t... 4,...g... . N.) N

1........

.g.g.......[..... .J. if.3 L. .y. ~......., .g. .Z.i.1..... ...a. ....l. ....l....,. ........j..........., ..i .....a 1-.... W'\\ *p.s 6. .. l. .l. ..s. .g. 1...p........).. 6. g. .......,...l....... - m. .l. .....a...,. ..s .. I.................... .t. t. .w .).. .. %...E.g i..-..s... ....,1 ..,.......... l.a. fg.s...... ..q. .g,. .l. .(.. _... ...l. .J..,.l l.. .e. ,..j ].,.. q.?s., .. \\.,..J/. s _. -.... -......]...........k.......... .I..... ~. ..s .-.4.. ....~.a.. .....l w.. J. .g....... .l. . Q.. \\,....... .,e _.....,. .i . l.. 1 . I.. .{. ..s.t. r g,... .l. D.. g.. .l.... 4 ~... .,.T."-m.. ...e ,....... l..a a .g%s.t%. ..l....... l .). ...,.eu,....L........-=-...,........ .g...,, .l. .....-.t..... . i s.3. f..\\,__ . e. l... j........ rr f s. g............ .............,.q.- .. %...........,.....-..,g....,,..... . l. g... g. )..%i .g. .. 6...V............ ....,....c. -m i ..g p . b, -g. .g...g. .g.... ........1... 4. l.. . e.... J.. t ....l. .1 ,1. t. 3.h.g,e.f.. ..f..,.. s t3.. l...T...,....... ... ~{'J ..s .l. .1. l. .l. f.g ~..... -........ .,i... l........e....}-. ... 4... v. . 1.3 _........l..... -.,...........l... e. ..(. s. l.. . 4 .l...,. ..l. . 1...... ..%..aQ. C..... .e. ........ ~........l,..l,.. ..l. .1.... ............ 1. s,..<.... ..g..4..,........... .l... i. .a tl...,.......... .L..l... ..f _.. l.. ...l. 1 ./..........b. 1.. . e . i .l. .s .s .l....... ........l...1.. ~....... e. I .i. .N(g \\.s l'. e ..1-1.....,.... .1 a . e... .e 1.. .l. p ....-)... = .l. .. N... .i. ~... >.._ e.....e..... -.. l. ...l..........,.... . ~... .....]. .I........... ..g. .l .m.., .. _..l,.. .... a.... f........ 1. h.- .h.l.. .l. 3. ...l... ...14_. ...g..........................l .......J ...1.. .........a.. o, -l. .gLg. ....l...... .e... .l.- el.. 3. ...)..... q.... g.C.s. 4. g. -........ ~.... -......... s _e.. ....s. .l.......a...a....F.. .l. 5 .l p gb............... .s... ....l..,.... ..... 1 .a g, s \\.. s. 4. 4.. . l. e. l.. ...]...... ...g. .4 g..l.... 6 .....g....i v. n .t .s .................l.., .l. ...J..1.D.i.........I. .I s .....l... i .l.... e,e ...,.sg.g..!a.... -..l. .,...l..... ^... .l...l........ r .e .e... t. s1 .....h.l...l....... 1. ..I... e,, .=.=,.......4.... .g. .J.. 9 ...I...... .... l. 4*......... I' g. .e. ..l. .-...I. .l.

l.........

.... g ..t.... ...... 3.....F..............s. ... l...i.= ....l.... .e............g..... 6 ....f.... .I ..f . 9.,. .. 1...l.................. ,,,s..... {.... es .o .f....... .l..... .............I ,,I .l a / M...... . /.j .e . s.. ......... ~... ...e.. o

  • g

.s. +.. es.,. ~.. _.... m ... %./. W, ,i/ .A.. 1.i ... I....... ..1.,......

  • ...... I.

l. ...I.. t. .a.... .F.......,.

  • l

... 4.... ,t.,,......< ...g...... ..... 4........I. .g... .....,..a . fs ,..F., .I......I.. ..,..........l...l..... A. i. % C~.. J. < .l.. .........L...,..,l...l...l..-. .]. .l. ,f.. 8 <W e /. 7.. I, ... l.. ..g. 4 . i. g

3. :.

te.

. -a

.....,...,. f.,... m/.--.t,...e ..../.... rs. c. 2,. .t. l.. s ./ ,...... s.. .......I......l. .(, .,.,..s.s. .... i.... -. N....s. ..{.(.4j.,.... 2 ,p........ .. e. r .,.... j g/./,1 p , q..... a. .s 3... ***.j. .'.. ,r !.:. '. :.. ' 1 *.. * *.. t. 8.. -,

4...- -

.i g....

  • t..

.,. 'N' '/% S3

t... g.. t.... 1.,,. /g.

....4........,...], ..t .. a 4.. l... r L (. .. \\...... O 6 .B. s... . t s,... g.- .t..g.... % L, .I. .-.........6 j t.,........... ....~.. ..g.i....l.lr .... 4.....,~....l.,.,.. .I.. i.. g....g... -....... s, . N, s...... ~ .....]..,.... ( ........,.....J. i...

t...,..

...g .i ......s ..(,,...... .l. .I g.. e. ....,.......................]....l ..)...l. J. ; ~,g,... g..

3.... g

.-.~.g...e.......6.... .3. ..........~........s.....4...,..,........ ....s...,..... .). .g... .a .......l. ,g ~

l.....,.,.

....g.. ~. ......,....,..........e....t.. 5 .. j. 1... (., ..g.. g -..,.....l. ..,....-................L.........[.... ....].. fIdp.. -.... e. .s.....,. .I. 1 e ,4, s l. 4.....y. J.6.....,. 3 93 g.4.... t. 4 ......l...!.... g. .......,...... l. ...3..-....... e. ...... 1....,.........,....... y. )......,..,..J..,.... .g. .. I......... ..i .t, 3... ,......l....9....l......a. ......j.. .t. ..N..... j. ........J...,... .s

  • y.

..l.. y............ ~.,...n .I n,.. .......,-.-.....,....,n .p. ..(1 ...g....l n... g.... g 1.... ....i... .g. .r..... .;.....,1............ . ]........ ..J _..... ...,....g. ....g...,...,...,_.......,. ..g 1.. ....t....... .........g.... L...............,.......!.....,,.......!.........,.. .ta. .l..._.... .._....L. ..g. .....1. s .O,. j.... ...4... 1, s... I. N] ..... l... ..A- ..n ......:l. ..j...].................................j.... . h.. a... A.......g..s.... ...s........... g..... i q ...e,.... ..s........ .. 9,.... j. .....3 ...s ..4 i ..l,...j..,....... .l ....j.,. ......J.... .f. ....o .1 ...). .1..... . v. . a...... ~. .T."',) ...s ,..l .l....... .g ~.......L......,..,,,... .g.... ..,.,...g s ....l....,..\\...,................. ... 1..,... .. j.. ..~..s.. 3... ....s....,....\\.... .l .... l........... 1....... ... 4..... a....,... ...... ~. ..._.... J ,.gs........... .g.....,........._ ....... ~ I.. ....ls.~._.......... ...e.......+..n.......... ... L... _.{. ..l. e . -... I'.... n,,. _..........l.., .s. "'I ..{ .4 .(*[y (m... ... L.., L..9/. .2....,. ...J.... ... l..... 1............ . y _....... s4....... ...-..l....,..._l.........,..... 4... i.. 2....._...... .l... i...... _.... ..J n.1........ .....,,T......- .l.......j. ._...,~. _..... s. ........,..l...................... . ( i,.......,.... ....a .).......... ....l.. .l.. .....1,.... .). .a...... . s.. 4... ..l, 3............h_...... 1.. i..,......,...... ..) ....l.... .....d........ ...........e ~,... p .4......... .... _..............I,......,...... ..f. 3.

1. _...

.i."l .i... '\\.. . _....... l... ..r... .y.. ...e.,,. J.

  • c,f.. 3.. _.

..a - N.i, ,l ,., G /. _. .l. 1....,. 1 ....I ..i 't- . i .* -. i- .t .l ,..)... ..9,.,........,......l...... ..s. ........... _.l. ...~... 4..........l............... 1 ..I. ......1 .l..... ..a...... ..4...i...... a. ....s.. ..t.,..;. ..-_ i. _......... ... _.. l.... ...e.........{.. 4. s ..... l....._....... l ......._,....l ......s. ........i..................... ....................J....... . 1. v............ ... n... =-....z. ...........4.... ..1........ 1..... 1.,.... .4 ...l..... ...........J..... ...l.......... . l... ..........j. g .. 1 -..... . 3.. l..,........ ...u... .l.... . J. L., ....4............. ,...3.)..... .j.......... .....]............ l........... ....l.... ...........g .....1.,............. 4... ..... 4....,... s.. _.!. ......1.................... ..e f-... ....l.. '.*.1.~. . l......... i...4 ............... _..i.. . h.. :.........,...,........., ... l..

1.... a........J.....4

.n...-..- .".1....)..... ... I

4........

.1.. ..*1. ......F_............ ... ]... l... _. .. L.... u ..). .......J . o...I. v...- .......{......... ....s..) .............4.................. ... m....l.-.. ........g....... ._l.. .......J...l.... .i. N.,..N.......... s. -.L......... ..T...... ,,i.......... -.4. .l..

l....

s.......... ....l.... ... 1. . l .,....l .g..........4 ......l. ......{. 1.. ..}. s........ .s.a .s. ..l J..... ..e.... 7.. .j. s ,.... "*...,.a...........,... .1 ...i ....l. .. e,. .O.. \\ l..... l._... g.... 4..... (*..... ....l. l.... .e. ....s.... .q.. .....J ...4 4, /. .....s........J. l....i.....,..................,...l.... 4... . 3 f..s a.......... ..s m. . m............... ..l... g.F'"". f.. .~ r...... ..s..... -.) ...l...'." ,.l , \\........... ..). 4... ..o.. ....... u_- 4 ..a.av. m .e. 8 ..m.. ...l. ..,....l.....

d. s. A s.e...........t.

.............. mt....... ......(...a........ ...l............. .v...] i 6 e,... .L _........ i,). ....f........ ..9. \\.. \\.....e ...a.. ~.....,. .f....l... .g....... ...............j...... N f.. .. l .I............ .l.................................... ] ........T* _...... g. 3.... I,.. ! W. . g. ~....s.. .i. 'I..... ...l............... I. .l. -...l... .t4 s. . N - _ _ - ,1.......l!.........1..... d__... ....L.~,,.. . g... .s.s...... ..l............ ............l...... .1 4.. 4.... e

s..

e...--. -.... ~ /- .p...,s............ .......l ..........l..., a. ... l.. =-..- s. ...4 1... J. ,........]..l............. ..l......... ..s... .....~..6 . \\..l..\\. -e... .f..i.. .l.. ....D. ....,.I...,........l..,........ .s...... _..........__ ...<w...u.. ......l.......... ..I. ...l l. ...e.. h .s... ....l. f.....4 .J.....,..... 7.. .J.. 4..... ). .N... [i.,.......... 8 t 4 t....... .e................ ....n .j....... ........... 1.. 8.............. .6... n. g...... ...).......l............ g .l.... ..... 1.... !.. \\.,....,.. ....u ..l.. -_.......... Q........... n . ~. s N. .a (. e......... ...l s 1.................. .l 4,... 4 N . i..... .l.... ..4.. a. .....l.. .l......l...... 4 l...~ u ..l.................................. l... .s..... .!...].- .g.. .g. %s.. .....l......

a..

.. ~.. l... 1* ..3.....l............ .g ..............l. .a.. .1 e ..s.../......... g.. .e.... .l...,....")..

1.....

.../. c. .~.../ .l.., ... ~.y.y.r. f.'.. ,........L.,........ 1.. ................ p...;. _. ~ ....,....l.. ..~............. ..*..a..,......... 3 .l-........... l... ............. l... ~. 6. .f;.... ....l. .a....I. ,r...n....f,/.!.6_.. 1 A. ...t......... .p s .r'v. .. 1.... .Z .o 7.. ....g.... .....-.......g.........-.......... .I.. ....l..l. ........l........l. .......... 1....l. .,,y. t,l..l p [....,...l.. ......t..... ../.r....... .l. .........t.... a J (.. ...g... ....l. .....,b. ..g.. .....sw..,..... y. .g......... ...l. ... )... l,.s........ . l.. .4 C,1,..e.....*

  • f.g J.=

g.l...... l................. . e.... 9.. 4....! .s .s...... -....... w {.... u 7

g r.:.,i ...--....-[ n c.v cc n- \\. O Tt:.T tt : t. 5 ;.n. -* Cf.LCU*.J.'a [U r*'~ kgJl D { 3 10'.,') i E au c c p E, l m m ( l.3') 2 I O et O b O m K CO3 9 400 [

  • /03 b

I I 2 4 c 0! 10 12 0 Tl!.'.E bec) l co I i -1 iI I ei I I O TEsToiT^ C/.LCU LATE D x c3 97. 9,: h m_ R E& .eu R !i <.0 ' QY. O nm l' EE i O O l9<E 0-- - ~~D-O - D u O O O e g 5 pa{,_ 1 I I I I I I g o I o 2 4 0 o to 12 o Tit.'.E b a:1 1 b [7'".T'?'!Ci DODEG/s TEST I!O. 32 i } l 70 3 s t. --v ---n ::..-, c~:. -:-,= c-= :-,m = ~ ~ ~~ = -

3 s{- Is'EDC.10320 e \\ c-. u n.1 IN l l l l 'l I l l CO*/. Parit:0:t OF TI.5T DATI.T.llit f.I'ALYTIO/.L I.'OXL PREDICTIONS U5tHGVI.1:10UsLlQli:D CI.T.MYOVLI: Il'.ACTIO:;5 ACTUAL VESSEL I?LO*.'!D0'.".'N TLOVI HATES USED. SD . PLOT X 1 1.0 X = ogy/c V r (UC) D p 3 0.. to 5 0.2 C 0.1 7 0 YIllERE: I . V = VEliT LIQUID FLOW ( g - yo ra y= VENT CAS FLO7i t. g l.tg3 = LIQUID in DRYWELL i 1.tt,De CAS IN DRYCELL l' G0 i 9 t w ~ 'd 50 3 u .O O 2 _O D - ~- --- jf Ofy;= ~-_ ~. ~. ~ / . ~.-. - - ~ ~ - 40 7 O 3 O O O O O 0 0 ~ 20 D DRYl'IELL TEST DATA O SUrratSSion cH/J.t3ER TEST DATA 20 1 I I . _1 1 - _I I 1 0 1 2 3 4 5 6 7 8 l Tl!!.E (sec) Figure 3 3. Comparison of Bodega Press Sun Tests #32 Test Data ;o Analytical Model Predictions UsinD V$rious 1.iquid Carryover Fractions o O 13-e e

..,. -.....,...., L. V,.. s - .;... t. I . 7. . g + g .I I. t. g. i g .....e e . i. ,. a. n i l I t ya. e

w..

....g l -.. -..L. i g g e. t l .i,.,. s...,.......i .l

p!<,.
.. '...,..

..s i,. .i s"e.....'.,.', :. I.. l.~ l. ..t,........l...,.... i .t l I 1 ._l . g e. .o .t .h. s t .t ..e .s + {.

3..

t l . I. t. . i.- g.. ,e.- .L, (. ). .t e g .. _..,. 4,... a.....%.l.... ...p_ ..g ....) [ l., . m. .a -.3... I '.. s J C..t.p >w. 4. .,..l.. 'l. . !~ as ....g.. ,l. a s., <- .......,..j.. -m . !. 4 : 't.D.~g. g <, ; i... C2. p....,.:.. i. 5". v %..3,.'- i. .m_- . e. t. c t,..., g. .l .l. ..;.'j, .. a*' s.. ..\\.. . v.. s. ... s sw,

g. r.. c..

t, .g.. -.. ;. g.,.... .....t..... . t u 4... ,. 8.t r e,,.. U. ....ll i... .i - ..,i. -.I........... _.,..... l. cr., m. 47 g. .i... g. ..,..........., I.. ;,. g., r., . ~. y.. ,f

3..4...........

.i ... i.s..,.....f.. . l e.,,,,, c...p. p y r...: ).... t .j.. p. . x..?.r. .g. ..., *...t. i....... 1..... e, ,...,.. g. c.. r: 3.,. g, S. g,...,. g.. ......1..,- 1.. - - ~.t...~. ....1..,.... . l...{. ...i.,. .g. .J.. ..... l

e.,... t.

... r.. a..',.. 3 ..g ......:.. J...... l.. .s -- r-r. l .a. . a.-..i... l ..._e.=,__ .+. ....J,.. 3 ~ =, .g... . l, = ,.. 3..........'L.-..i.... .... p..-....,l.....,.. g. L. ..6..-.... g. + i.. g.,....,. I l. .f. s 1 W... ..s .g_ j ,,s.e.. - ,... g.. ..a ~~~.g.. E,O_, i... a. g... .-...-.4,...,_ ~. ..... g.., a. p.... ( .{ ...g....{. .g ....i.....,....i ..-.....l. .a .......6.I........-_...,. ,.6 '.f .q .8- ..I 3, .g 6 g ..... I.4.....) .[. 6. ...( 9..s_....... ....... -.i. ..1 ..,.......I .,..,......,.#.a.q., g. .-,.__u. ..l .g

1...

..i t

j...

....a s. s. ...s.....j....... ... /. 4.. g.... t..,. l .....t... 1 .E

g.,.g

/.

3..

g g. .. p,, _...._.'.s.. ...s... .I.. ..'].. .i..1......j.......... .s _e. .5 .,..... g..l g .3,. ..a..,. s. 9.. _.. k., g.. ....i..... .....4...- l . ~ l.. ... I. a. . ).- - ...p. 7 3. g. 4.., ..l e.. ..l....... 1.. _..--.1.I"...,.I... 4.. t.. V-) .I ....3 _-w.. .. g g $ pe p...,.... ... ~. ,..a...i%.. g... .g. ..,.s. .4. r j. w.......g.. .. g ...e s. .. Qp w .,.se at. _..._.. . 4...-%.._. ,..............g ( ..a. .p. 4. g.

.)

... CF ~.t.* .I....... ..j....... s-i ....l.. .......j._..,...... L s. ...-..g.. g t.......... s.... ..4...) ..I. ..g g...t a 3. .s.... .........,. ~..._... ,4... a -.l... e g .,j.. .. p 1.J. .....e..... .s . 1, e ....e.,_.. ,J ._.l.... .~I ...o.. .l. .s a -f I .e.... 4 ..i,...t.... S .q 1.. s,.l g l .....3... .4.. ...g. ..8......... ....4.. 1,.. ) 5.. l. a .........g.1 .......6.9.~. g .g .s q .g ,. +. - - 1...... _..._,.s s i i ....e l e .t ...*p \\, e) ~ ,t_. 1. .{. g t 1 .. s .. }........*.. .sr 1 ...g.. ..l... g .f. \\,; a t. .s .t. ,, s.... ._t. ) .,.... (..., .. e.... ,,,J, ....1,.-,j... .........a....... .g. l i. I. a. g e... .3

._.. 3...-..

~,...4....< fJ. j._. . l,. ..j. ..e. ......l.. I... 4 a.. g 1 -. .,.I.........,j.. 9.. I.. g... -. 4..... .I s.. l ...e 4. 'yO, ~ -. ....D .4 a _... i ,d._. 4 .I.. .....s.. i.. ..e...a..... ...a ..e I :..' l....Y ; \\. r *.l. -

  • M ' ' * *'. " ^ I-g...,.. h...

p. _9 .6.. .e..,.,.....J.7. 4*'- %. -.*.-- 4 ..<.4..l....* ifs C C. PL 11M* * ' [. 1 .g .a ..P 8.**.r-: .a. ...i...... 4... s.........., ..p. ...s......... 3. .l. . 1.... l c .......I. ....l ........ e. .........l...., l.... . i ~

  • M.

..T. l i"f **W bJ : _. Tf. *"Js

  • i:

.m l.. 1. _.l..., ..................s........ ..g........,.......,_ ... /. l. l....>. (. _... . a... l... s. g ...,.1/ .J -.. _.. f.. .i ....,..l a..... -.... I..... I......,. ...,.. s.......!......,.... .f ..j. .4 k .....J.,....... .1.... s.u i. , w ; l.........-.... ....,_..a. 3 ) / .g .l .s....... .L... I._. ....h d 1........ ,L . m.,-

  • n

..m.1. 9. a w *, ~, l w g, .,I.~: ;. ..s g 1 ,......,,.. r. -. ..2._.. (..... .8 - i. j o[.Ck ...{. .g ,.U....f,.'-. t eO .,.1 3 ' '. - A m p (

1. m. _..,e.j.

,..,.,,.i... ,3* ..v ....;...I.l _... i..... .s s ..l._. . t......a -.. (..... J.. 1 4 ._. _...8 _. .] -l - '.. s. ....,.,......... l...., j...,..........3.._...,. .-1,_..4..... 2, ..... 1.....- j. y ...l.......,. ..j.. ....) ..6.. ,sp .....4.. ......., 1 ..,./.... _ g .. L... _......s,....! .a, .... 3 4... +.. j,...l. $.n, .-..a.... ....I. -.....~,... 1..~,....t..I............ - -.. ~ .-g.. _.. ;. _. u_...!

n. e.,

~~g... .g........ t..9........t... l. g.,. ~.-. .. 1. ~...,. ..........g.... 4, . 8..w -....,.... ...,]. ...J.... 3,, r,, -g Q. .i....... ..t..... .,f g ....-.n....... -4 .. _....I.... g. I _l ...}..,-......... .l. .-1 y. - ~. e.. t..t r..e g y. . i' ...). i 4 ...s ..p.. g sM....,..J, 4m r. l ...t....8.%, g. c e r. s t l-l. ........l.... ,.. g... j. 4. ..;.....)...... %, 0 . 1.... I c. c.u p y. ...l.f I(,% . ( _ i

  • y..q......

. i. -..... 3 1 .,s. p _ ..... - a, y, c,. 1 ...l..._... ,.,.L ,s.. ,].. .>.3_

  • [,.

r -.m.. i,. ..3.._.... .....~. _.l.... +...... 1... ....s.. .. f. ..;.....,.1.. ~ _.. e... ....j...... 4.. ...,,....l..., ......)... 4... .....i. ,._..)_...4....... ....j - . A....,.. ............... --l. .e..* I.... ~.i _.. .t. f 1__ J. ..- _... c _n .. l.. i. .. l,......,4 ... __...e...- ..... {... l - .r .s. .* -=.m...). .J.. l..... 1....... ,u ..s. . r.-. y c. s... C h..L .....l...J..!..... ~..f ~. ( e r} ,.. 1.... l .......l... l....... L .. v, .l..... .o. N-

m.
c. Ir;..,

.... l.. .t s.L... .1.1... t... 2... ,...... J....,..... g.... ...l. i ....l,.... ... i ..{ .I ...,..... t. ..........l........ ..i g.. .1 .g. 1.....6... i. .-i - .l .I... _...1.t. ..i.. ---L._, m. ~...1 ....~ ...j... f. ...l.... ...e... ........o..,.., - -..... 6. .l....,.... ..i.. ..... _...,... )......... + e.. 1 _.j

l.....

.1.... s- .I .1....,. I ,.......l..........L.. i p...... ..i.. i.... !.. l.... .I..... ...,..... 3. .l,... ..f . f, ,.....t... 'l I. EC ... t.... .1. .. s l'.o .,-.f. 6.O (,o o. B h Ee% K RP.E A, F T- %o 2.0 3.p

Y .i. ,,l l ,[* s 1-....._.. .~...!

  • g.

....p.. t. e. s Ig ~f .l.t. l e .- i..6 u.m; . r. ,g ...g..... .[. v. e u... .... _.e ... I. f. 3. i..:,..?.., m.... g. ,...-.e.,. s... ' : 2.*.*..,. ; :.:.. _*. _ :... L.,., s. _.,. ;._;., ; . ',,.. s. -....,. -... .. g. .t l e. .g. s. ,.. J....:.,. .e._. L_._ g.

i..

.i . + .[. 3 . i 6 1-_.. . _I...L.. .l ......{ _.,....t.. i. ..... 2 ...L .. s. 4 ....l. ....]. .....p... 1 - . -.....l... ..j. .e.. i a...,....... .t. t. s. 9, _ p,,... s.. _..)......... . _. j...... I...,,....l..l...... .l.. . 1 .l .w.. g s l.....v.. l.... ..s..i_.. 3_.. p _%. p.... y;39,g e n t.b..., ...... q......eg............ O u *t. . r3 c,,. p;, I... .e.,,t.. v,.. .g*,.. .. l .I..y....... .... l. ._-.s-....... ....t 8. .l.. ...l... ....8.,.- ..1 t. l. ~,. ...e. f. l l. .... _..,.............g.......... l,. i.... _. 3 _.... p .-=. J. ...4... .,.I. 4 .1..., sf.,l.I...h* r L. 9..... 9... ..a. ..........i.. g... Lr.........l... .I.... L.. .

  • 9 e......-.).

.g.... .i _ _ _- l-O..... .....e...,. _.. ,l. A...., y p,.A.g. .g...,...... ...l... ) _.. !. 4.. 4. .. l. .. g . _.... L. _. .] .. [. . g...., l. n, i a..,L.._ w. _. _. %. s.... .g... ....I. ...l. ..,. s .,.......j. ........g. ..i.,. 9..l. ,f. l a.. . l. _. .I i..,.... ... g.,. .. I ..i ..,.3.. .g.4 ..I n.. .. 4 .....,._.l.. ....4........l..... ._I.. a .l _..... .....a.... r ....1.. ..J..... { ....l... ...i.. .......l...._.......... ._. t ....] 4 _.4.. ..l....,.. ._...a_. . ?,, .. a.. i ..4.. .g....s.s.......g.......... ......3..... ..g ..._L. ..a.. .,e.. l .._e__ Lfl .....1 .j. d... g..-... 3 7...~~.j".t..... ...[......... l....... ......l. .s. 4. 2 i .....l... .... 3 .l._..... ........I.....!-.......... ........i..,._. g

4..

i .l.. ..f....

1... s..

1 4 .,s. .............1..,._....l. .t 4..)... a.. .. p.

1.... e. :.-. _......

g, e . w.. 1_ ..._..g..

l..

,1. . s, 4.. f ,1 4-.. l.. i L. .... _. _......,.9 t e. I - \\1 _l ..e.8....,i.,.. .l e i .a. .I .t. l .} i . _,1. { ( .i.. .t ...e... .4.. n. I..c a.. - ti.. fL ..,g ..y 4,. _. - ,...c.1 1..... C,.# s. .l i .a....a. C W \\..WeWu. C V.L. n.. ..l- .1. ..A ... C. w. e y g, p,

  • t

..f . s e .,.4.. s. s f*.* ,.......l .....-,.._ _.. 1.. I._.... ......-.j1,.... ...,....g .. f, ,e...,.... . 1..... ........!..l........ ......l...4,.... ....4 ...,.f. . g.. ..t .........]...,_. J .a ..i j .y. J...y...]...,.... ...,..i ...I... _.........'....m..... _.. l......g..... .....l.*..,.,.. .-3... .... *. **. l.. 1"... I -... g.. l..... . - ~. 1. .g. 8.. J.e .. I.... g. ...I.... .....4... --.1... !........... ~ ,. ^.- t-C..- O ... l .,. 1 .l.. ~- ~a..- r,-...... ... 4.. ....,.a. r* h .p j. ..i.. -....l....,.e.... ... _......... ' e*..I. .....t.-- f36 . -j.,-.. -....-. ..t ...-.---e.*.3 .1... +

  • a **

...j. 4 .e ..c.I:. ...4.. e. . !.. s..

s.... g....

.v. e..,.. ..9. l... ,e. o. p tg. %... ..i. s.. 2 .g ....._f,.

g. ef.

s. .. 4.......e....-. . w...!..s.... .L Yg .J.. l......~....._- -. + .,s 4. .... e. .... ~.......... .. J,.

f......

....,f.. s. .......g........3 a... g, -.. J... 4... 3........... 1. e. 2 ...v. s. -...s. e. g e e w -. - - =.... ,.6.... ..e.....s', Z e. .6 .,. [ .l. .J. a.....--........ .......-.-. -{ ....-.J. .I .n..I....,... t S,a -....$..i. . - e i.~...-.-.... . ? f., e ........i.... .9.-.j 4. l e. ........... -... 3 ~. 6.. g. 1. ..i r, ,, ( ..g .j.....i.. e. ...) 4 .. 3.. ! _. t...,.. . 4- - g..I.'.*--- ... -..---i e.a. ct a ..I _1 p: g p ~~T

  • o. s.g

..l 4...1-g ,,.,. f... t e. s.s.* 1 ~.* l ~- -....... .l...-l.<...-..-.- e....s 1.-..--.-.~..I....>-...-l ~.. . 3- . ~.. ' . -.. -...l.-- l...

f...a..-l

._f.. x.dg ..l...... ..4.. _3. .a.. ... l. .-...... i.. ,.,.,..< 1 6.... ..r....

o... u..

...l......./ l .l.. ...l. a 3.1...,.. ,1. -,..t .a ..t. 6, a. 4. I.P t .l. . i....... l..... 8 g.- .. l. J., p.. .. 1. v. ..t. ....f...,.1,..,...-.... g ..... a. ! 4.. s. . a..- -.. s. j l ..g .-.t m 2 ' f;,n 4 q.. .g .-..s. y,,... y..- s...,.j...... 1 g e ..g ,.... g... g ,. 9 .g.. ,g... ...... g g I. g, 1 E *. .,. p.g.. QZWt- .f d 6 .p I... l 1,....,.., S .g. .~.........i.. L.. l.......t. .i.._.......I..............%.. ....4....... .e

1..

.1...... ...6 8. .l . i ( .._.1. ..e.i. ...l.... ~ e ...l ... J. i. g.... e .{... } . 1... ..s. ....l. .l. .I. . l. .3. ..I

4. l...--...l...4-.... g

.I.....i...~ j .... =.,.......i.. .l....... -...s.

l.....

.e ...l.... ..l...l. .] .e. n. .. L -.3 ..... 4.__ ..!... i. ....I. ....I.- .~ .g. .I .j... l .l... ...g.... ... ~.. ..[.4.. .l.. -...

1..._

4 i.... .i-....1. -.t. ..i.. ..... 1 . - _t....-._. . sg....... .= .1.i.. -. ~ 4 1..,.,. t.. 1... . = ..i. .l .l ,.i... t. .-1 i .g.. ..l..... .. l.. q........- 6 ..., c l...; ...p.... )* g.,. .. p.a,. ..p g O 'l. o LO \\.O D EC.K ByP M",' R ?J h TW b

~ -.*~- ~ ~ - 3 o el8 -e M ] 1... t 5*. C/1 o C4 j e c: o D e.' ~ n t: Da B c.c M en t' s. s M, g C*. o o.. o 'o' m ">'. O.d a u) oe -t 3.. M.

  • J* *m-*a n

N 11*.

    • I w

H a ~ > -.:

  • n O 61 9

) D3*...>= l az H a.

  • 2. 'J'.i, e u rg O

w: I g3f 6- - *'i u ;' ,q d. % y .s Cd t s ,s' M } - t'. hOh a Q;H u c-: ~ %' a o I O. w, m E.s a*. M s a.- UN =3 3 'A % Q a l g c: w O ( 6Z4 i MON i eI, i l Isa - TII.tsau:taara uoo'ra l 1 => ,.w-- 1 ) l 'o o t ci o, o, o. - - + - a M _.[-- l a l v- , l ~. - - l.. A ) __L _ _ + - 9 so

v -. l d 9 t' s i CONTAINMENT 50 1 z.$ 4.0. ~ 1 i i ..,a PLOOR in 30 ~ m e i C g 4 s ~. v. I i H 20 P. X = Ma/Ma Wher Ma.= vont air flow ~ Ma/Mg $g = Vcnt vapor flow p Ma/Mg = Drywell Air / Vapor Ratio 8 d

d s

10 ~ i -l .o e i i 0.2 0.4 0.6 - 0. 8 o 1 AIR CARRYOVER - X. t 1 s 4 i 9 .9

.+ ~- .... m. c- .u...,... s t,.~-_.,.y. r,

n'
  • L.'..-', ' :' ?;.'

FtG URE - l .,@jp.,. F i ^..r.' L.a Ednd-bm pqer-sc. GI-WA-22y.ff' pc Ld.,@e4(4 h Pe.- c N Peuwe 54.*uc'm Ab CcJ A 1 tkh.u A, wsse.n, a.,a C, L.L.' z ft.CM a 3.v,\\,l9i,pp Q..:. '. , ','.g. 4,b .~r.. *- 7 g ..../.~v,. . e.), W * ;'..*,:Q).[* s.=. '.,',*a**..

    • e.'..

' ~, ; :," g. $q. s ... <;~ vQ'" L .i++,,..a. "F. '. 3. . x $' % ;.1.*. k,u. %*; V.a.. - ^ '.+;.,,.* e- ..s'. ...e,, .., J. ~M 3;,*f '.- - ~ {* [ *M.

  • g i

m, g. i Y g g

  • '1L*.: ~; *.'? -

j j g $ t.007 gg-g~ O s,e. ) s

  • i,h.[<f h **

i g i l ~ ' - E 8000 g y ~.- a t t b1 60. 25 e F F igst e.o..[ t l I i e h 'O' l t i r t ~ ~ ~ l 4 i i i i { _.j '""""

02. Seo I

l 6 ' - * * " " ~ ' ' i i '00 j-, g tbc 1 i. g g ... 2 n n.. ir-, ....,. n n u a n n f. tiac istco6ou f I c.i. l l* l l j l A A>i c s i :,t.c ..c.<.r.e....tt 5184,.. l=4 c.anvCyr a, Ata C.a....... l l f l i 3cs c imi. i i .tt o .c i l _.,- ll';7: i nj.,. l g l ,n.:, 2

i. :..

E~~ME'a:j::E = P.s ,. a

.,. m.w.., <t. >v

-r t i i [,85 I J ) l s - i ( l i i ei . a - l u .n a u n \\ ......n n u u ~. a x c u 1.ut istcomesi l l I l l l 8 _._.- 3 l p_l uf e.#0.m, S..I....!...$-.87-----.-.-...._ w i I / 1 I J-l I I l 1', l l o..

7...

g yiss.: g.%1 t S1 Br. 8--==# m -l-4 .f_i/ g ) i p., s ' 's - af 1 I. '.I I .v:3 C ( r,a .!! _I J r' ' l I I ( l t ..i. d,.. l 6 y*s l .t I i 1 _- h,, .lh I i l l l l ..,. n n n a 3. n 2 n = .4 u mco ni Fig.12 Repictentative test results for 1.64-irs. orifice I. ~-

.;.d: n

., y. d... '.**.k',.p*.,+a -. v..' ~

y -

.'v i,'. ' -.s* ..............,1. ..., e. t....,... p!.*.d. u.c. \\..,. :- . s. N-

.:.w..

. ns,- ,, s Q a}}