ML20039F394
ML20039F394 | |
Person / Time | |
---|---|
Site: | Robinson |
Issue date: | 12/11/1981 |
From: | CAROLINA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML14188B858 | List: |
References | |
PROC-811211-01, NUDOCS 8201120412 | |
Download: ML20039F394 (86) | |
Text
H. B. ROBINSON STEAM ELECTRIC PLANT NO.2 PLANT EMERGENCY PROCEDURES No. Revision Table of Contents 3 3.4.1 Initial Dose Projections 5 3.4.2 Whole Body Dose Projections 5 3.4.3 Thyroid Dose Projections 4 3.4.4 Initial Ingestion Dose Analysis 4 3.4.5 Automation of Dose Assessment Procedures 2 3.4.6 Determination of Affected Areas by use of Visual Aids (Isopleths) 4 s
v
~
f
/
f
' 8201120412_POO104' - ii
, PDR ADOCK 05000261
~
~-
- 'E ..- PDR
- -_____,,____.____.____._m.x____.__
~
H. B. ROBINSON SEG PLANT TITLE
! EMERGENCY PLAN AND PROCEDURES VOLUME 13 TABLE OF CONTENTS REVISION O REV. APPRDVED BY DATE . REV. APPROVED BY Dr.TE R EV. APPROVED 3Y ,
D/.TE
/ BJf& f jf./t l 0 V05 lCC //-/8-81
- b lb5 l 17.H- fi
}
c f Recommend By: 2 L d- Zo-f /
- ^75 E'& RC Supervisor i
Approved By: [6 />'/,4
/
ar
n ant sene m nanage u 1
t il 1
i L
4 i
PLANT OPERATING MANUAL VOLUME 13, BOOK 2 b
i PLANT EMERGENCY PROCEDURES (PEP) i f
i 1
i I
1 L
l t
l l
l f
i l
l l
l i
1
- ~ - -_ _ _ _ _ _ _ _ _
TABLE OF. CONTENTS Rev. No.
U Table of Contents . . . . . . . . . . . . . . . . . . . . . 2 1.0 PLANT EMERGENCY PROCEDURES INTRODUCTION . . . . . . . . . . 3 1.1 Manual Purpose and Use 1.2 Emergency Organization 2.0 EMERGENCY CLASSIFICATIONS AND CONTROL PROCEDURES 2.1 Initial Emergency Actions . . . . . . . . . . . . . . 3 2.2 Emergency Control - Unusual Event . . . . . . . . . . 2 2.3 Emergency Control - Alert . . . . . . . . . . . . . . 3 2.4 Emer8ency Control - Site Emergency . . . . . . . . . . 3 2.5 Emergency Control - General Emergency . . . . . . . . 3 2.6 Em'ergency Management Guides 2.6.1 Plant Operations Director . . . . . . . . . '2
- 2.6.2 Emergency Repair Director . . . . . . . . . 3
(}
\,_)
2.6.3 2.6.4 Logistics Support Director . .
Radiological Control Director 3
2 2.6.5 Representative at the Forward Emergency Operations Center . . . . . . . . . . . . . I 2.6.6 Environmental Monitoring Team Leader . . . . 2 i 2.6.7 Plant Monitoring Team Leader . . . . . . . . 1 2.6.8 Personnel Protection and Decontamination Team Leader . . . . . . . . . . . . . . . . 1 2.6.9 Fire Brigade Leader (to be used for fire concurrent with declared emergency) . . . . 1 2.6.10 Emergency Security Team Leader . . . . . . . 2 2.6.11 Damage Control Team Leader . . . . . . . . . 1 i 2.6.12 Operational Support Center / Evacuation
! Acsembly Area Leader . . . . . . . . . . . . 3 2.6.13 Site Public Information Coordinator . . . . I 2.6.14 Site Communications Systems Coordinator . . 1 l 2.6.15 Support Services Coordinator . . . . . . . . I j 2.6.16 Emergency Response Manager . . . . . . . . . O L 2.6.17 Administrative & Logistics Manager . . . . . 0 2.6.18 Technical Analysis Manager . . . . . . . . . 0 2.6.19 Radiological Control Manager . . . . . . . . 0 3.0 EMERGENCY ACTION PROCEDURES 3.1 Communications Procedures 3.1.1 Follow-up Notification and Communications . . . . . . . . . . . . . . . 2 l
HBR Rev. 3
TABLE OF CONTENTS Rev. No.
3.1.2 Communications Activities .. ... . . . . ~2 3.1.3 Use of Communications Equipment . ... . . 2 3.2 Augmentation and Mobilization Procedures 3.2.1 Notification of Off-duty Personnel . .... 1 3.2.2 Mobilization of Outside Organizations and Personnel .. ..... . ..... .... 1 3.3 Plant Monitoring Procedures 3.3.1 In-plant Monitoring and Surveys . . . .. . 2 3.3.2 On-site Monitoring and Surveys . .. ... . 1 3.3.3 Collection of Very High Level Radioactive Samples . . ...... .. . .. . . ... 2 r 3.3.4 Analysis of Very High Level Radioactive Samples ... . . .. . . .. ... . .. . 1
, 3.4 Radiological Consequences 3.4.1 Initial Dose Projections . .. ... ... . 5 +
1 3.4.2 Whole Body Dose Projections .... .. . . 5 3.4.3 Thyroid Dose Projections . .. ... ... . 4 O 3.4.4 3.4.5 3.4.6 Initial Ingestion Dese Anslysis Automation of Dose Assessment Determination of Affected Areas'by Use of 4
2 Visual Aids (Isopleths) . .... . . . . . 4 j 3.5 Environmental Monitoring Procedures 1 3.5.1 Confirmation of Initial Dose Projections . . 2 l 3.5.2 Expanded Environmental Monitoring . . .. . 1 3.5.3 Plume Tracking by Actual Measurement .. . . 1 3.5.4 Coordination with State Monitoring . ... . 1 3.6 Source Term Assessments and Estimates of Core Damage 3.6.1 Release Estimates Based Upon Stack / Vent Readings . . .... . . ... ... . .. . 2 3.6.2 Release Estimates Based Upon Direct Radiation Levels . . . . . ... . . . . .. 1 3.6.3 Interpretation of Liquid and Gaseous Samples . .. .... .. .. . .. . .. . -2 3.6.4 Consequences of Leakage Spills . .. . .. . 2 3.7 Radiation Control Procedures 3.7.1 Emergency Work Permits and Exposure j
Control . .. . . . . . . .... . ... . I 1
HBR Rev. 3
TABLE OF CONTENTS 4
f
\
Rev. No.
3.7.2 Emergency Personnel Monitoring and Dosimetry . ................ 1 3.7.3 Issuance and Use of Protective Gear .... 1 3.8 Protective Action Procedures 3.8.1 Evacuation . . ............... 1 3.8.2- Personnel Accountability . . ........ 2-3.8.3 Administration of Radioprotective Drugs .. 0 3.8.4 Access Control . . . ... . . . . . . . . . . -1.
3.9 ' Aid to Affected Personnel 3.9.1 (Reserved) 3.9.2 .First Aid and Medical Care . ........ 1 3.9.3 Transporting of Contaminated Injured Personnel . . ............... 1 l 3.9.4 (Reserved) 3.9.5 Personnel Decontamination ......... 1' 3.9.6 Search and Rescue ............. 1 3.10 Damage Control Activities- .............. 1 4.0 SUPPLEMENTAL PROCEDURES 4.1 Record Keeping and Documentation . . . . . ...... 1 4.2 Emergency Facilities ar.d Equipment . ......... 1 4.3 Performance of Training, Exercises and Drills- .... 1 4.4 (Reserved) 4.5 Public Education and Information . .......... 1 4.6 (Reserved)
APPENDICES A.0 EMERGENCY ORGANIZATION MEMBERS AND TELEPHONE NUMBERS A.1 H.B. Robinson Unit 2 Perscanel . . . . . . . . . . . . 2 1 A.2 Federal State and County Agencies .......... 1 A.3 Police Fire and Medical Phone Numbers ...... .. 1 A.4 Other Emergency Response Cantacts- .......... 3 B.O 3-HBR Rev. 1
-~ , . - - - - . , . , , ,..,.._y ,.,,.,.y, , - - . _ , . . . , , . _ . . . . , . . . , , , . _ - , , _ _ . . , _ . , , _ _ . _ - _ . , , , _ - _ . . _ _ _ _ _
~
,2D' - f?' f fh 7, w L -Id%2da n>
's H. B. ROBINSON SEG PLANT TITLE EMERGENCY PLAN AND PROCEDURES VOLUME 13
~
INITIAL DOSE PROJECTIONS PEP-3.4.1 REVISION 0 g n- APPROVED BY DATE REV. APPROVED BY DATE MO REV. APPROVED BY DATE REV.
G j j / '
283 /m 1-M- fi f 28J /90 7- M - l/ '
E W83 7)eo V.;ff-//
4' WA6 lM //-641 6 KBS '/ud n -a-ti Recommend By: L N 2dd/
oArc E&RC Supervisor 28 Approved By: i (. [ /0.,
.A..
- m. e_m_y.
PEP-3.4.1- INITIAL DOSE PROJECTIONS A
N b:
1.0 Responsible--Individual and Objectives The Radiological Control. Director'is~ responsible to the Site Emergency- .
. Coordinator for determining initial dose projections from readily. avail '
able data. The performance of.the calculations may be' delegated to the Dose Assessment Coordinator. The Radiological Control Manager will-assume: responsibility for off-site ' dose projection af ter the Emergency Operations Facility'is activated.
2.0 Scope and Applicability This; procedure is intended to enable a rapid de_ termination of.the severity
-of an e.nergency. It shall be implemented-as the first step. subsequent =to recognition that an unplanned off-site release has occurred or could.have occurred.
The dose projections calculated by use of this procedure are to be: compared against preestablished criteria for possible consequences off-site, using exposures at-or near the property boundary as the benchmark. For more detailed evaluation of off-site' consequences, use' procedures PEP-3.4.2 through PEP-3.4.6 as appropriate.
A simplified formula for. estimating radiological consequences of an accidental release to the atmosphere is:
D = Q ' x . DCF Q
where D = Dose in rem Q .= Source. Term (PEP Section 3.6), generally as curies or curies per second.
~ '
=
X/Q AtmosghericDispersionFactor-(Step 3.3),inunitsof sec/m , and with vslues determined by atmospheric stability and wind speed.
DCF = Dose Conversion Factor (Step 3.4 or 3.5).
3.0 Actions List of EXHIBITS:
3.4.1-1 Calculation sheet for " Projected Dose Near Site Boundary."
3.4.1-2 Atmospheric Dispersion Factors (X/Q) at Robinson Site.
Boundary (Elevated Release).
, 3.4.1-3 Atmospheric Dispersion Factors (X/Q) at Robinson Site Boundary (Ground Level Release).
3.4.1-4 Extrapolation Ratio 'for estimating doses beyond Robinson s - Site Boundary (Elevated Release).
HBR PEP-3.4.1 Rev. 5
3.4.1-5 Extrapolation Ratio for estimating doses beyond Robinson 4g) Site Boundary (Ground Level Release).
i I
LJ Note: EXHIBIT 3.4.1-1 is for calculating and recording-dose projections (near the site boundaries).
Step 3.1 through 3.5 provide the input for the calculations.
3.1 Use the source term calculated in accordance with appropriate l'EP Section 3.6, " Source Term Assessments." If the source term is based on stack / vent monitor readings, apply the source term directly for whole body dose projections. -Use 15 percent of this monitor-based source term if making a thyroid dose-projection. Enter the Source-Term Value in column 1 of EXHIBIT 3.4.1-1.
Note: Ensure that the source term is in units of Curies or Curies /sec (rather than pCi or pCi/sec).
3.2 Determine the Atmospheric Stability Class (The following are methods to be used in order of preferred use.)
3.2.1 If operable, use the plant computer or E&C computer to l obtain the Atmospheric Stability Class, Wind Speed, and Wind Direction, and record on EXHIBIT 3.4.1-1.
3.2.2 If the computer is not accessible, call E&C and request meterological data in accordance with PEP 3.4.2, Section 3.2. -l.
. [O] - 3.2.3 Call the Licensing and Permits Section in Raleigh and request meterological data (See PEP Appendix A.4).
3.2.4 Call the National Weather Service office in Columbia, South Carolina for area weather data (See PEP Appendix A.4).
3.2.5 If there is no meteorological data readily available, a l
general estimate of the current Atmospheric Stability
' Class can be made by visual observation, using the following table:
Sunny Cloudy Cloudy Clear l Day Day Night Night light wind or calm B C E F l
(<4 m/s or 9.0 mph) moderately strong C D D D wind l
(>4 m/s or 9.0 mph) ~'
Note: Assume Stability Class D whenever it is raining.
O HBR PEP-3.4.1 Rev. 5
X 3.3 Determine the x/Q value(s).
- ( )
U'/ =
3.3.1 If the release was out the stack and if the wind. velocity at the upper level on the meterological' tower is less than 9.0 miles per hour, EXHIBIT 3.4.1-2 (elevated release) is to be used. In all other cases, use EXHIBIT 3.4.1-3 (ground level release). Ask the Site Emergency Coordinator or Radiological Control Director, as appropriate.
3.3.2 If the wind speed has been inferred as per 3.2.5 above, use 2 m/sec (4.5 mph) for light wind conditions and 4 m/sec (9.0 mph) for stronger winds.
3.3.3 Read acrcss the appropriate row based on wind speed to the X/Q value under the Atmospheric Stability Class determined in Section 3.2.
Note: The X/Q values in EXHIBIT 3.4.1-2 and EXHIBIT 3.4.1-3 are for distances corresponding generally to the site boundary (approx. 1,400 ft.). For other. l pcints of interest use PEP-3.4.2, "Whole Body Dose Projections," or PEP-3.4.3, " Thyroid Inhalatica Dose Projections."
3.3.4 Record the selected X/Q value in column 2 of EXHIBIT 3.4.1-1.
3.4 Determine the Whole Body Dose Conversion Factor (DCF) from Table 3.4-1 d(D and record in column 3 of EXHIBIT 3.4.1-1.
Note: Selectthedgseconversionfactorthathasunitsof (R/hr)/(Ci/m ) where the sgurce is given in terms of-Ci/sec; or use R/(Ci-sec/m ) where the source term is given in units of total Curies released over the time period of interest.
Note: If dose projection is for Thyroid (Iodine inhalation) go to Step 3.5.
- TABLE 3.4 1 WHOLE BODY DOSE C0hTERSION FACTORS Accident Condition 1 Dose Convergion (R/hr)/(Ci/m ) FactorR/(Ci-sec/m4)
-Unknown / Unidentified 610 0.170 Major Damage to Fuel Cladding 610 0.170 RCS Leaks or steam line leaks 290 0.081 but no major cladding failure j Accidental discharge of Waste Gas 86 0.024 Fuel Handling Accident 43 0.012 HBR PEP-3.4.1 Rev. 5
3.5~ Determine the Thyroid (Iodine inhalation) Dose Conversion Factor V from Table 3.5-1 and record in column 3 of EXHIBIT 3.4.1-1.
Note: If Dose Projection is for. Whole- Body, go to Step 3.4.
TABLE 3.5-1 THYROID DOSE CONVERSION FACTORS Accident Condition Dose Conversion Fagtor Rem /(Ci-Sec/m )
Unknown / Unidentified 63 Major Damage to Fuel Cladding 63 RCS leaks or steam line leaks 98 but no major cladding failure Accidencal discharge of Waste Gas 180 Fuel Handling Accident 280 Total Mix Consisting of I-131 330 3.6 Perform the multiplications and record the projected dose in column 4 of EXHIBIT 3.4.1-1 and initial and date each calculation in column 5.
Note: If the release was elevated as defined by Step 3.3.1, maximum radiological exposures could occur beyond the
- . property boundary depending on stability class. Refer to Step 3.8 and EXHIBIT 3.4.1-4 to project doses at distinces beyond the site boundary. l
-CAUTION-THESE PROJECTIONS PERTAIN TO THE RADIOACTIVE GASES AT GROUND LEVEL AND DO NOT INCLUDE RADIATION FROM AN OVERHZAD CLOUD THAT MAY CONTRIEUTE TO THE WHOLE BODY DOSE AT GROUND LEVEL. UNDER CERTAIN METER 0 LOGICAL CONDITIONS (ELEVATED RELEASE i AND E, F, OR G STABILITY CLASSES), DIRECT RADIATION FROM AN OVERIEAD PLUME MAY PRODUCE SOMEWHAT HIGHER DOSES THAN THOSE CALCULATED BY THIS PROCEDURE.
3.7 Report the projected dose near the site boundary to the Radiological f Control Director (Radiological Control Manager if Emergency Operations Facility is activated) or Site Emergency Coordinator. If an elevated release, determine and report maximum off-site projected doses as per Step 3.8.
r%
]
HBR PEP-3.4.1 Rev. 5
-s \ -CAUTION-
/
THE FOLLOWING STEP PROVIDES A QUICK FIRST CUT AT DETERMINING RADIOLOGICAL EXPOSURES OFF-SITE. IT IS INCLUDED TO AID IN DEVELOPING ADDITIONAL PERSPECTIVE ON ACCIDENT CONSEQUENCES. PEP-3.4.2 AND PEP-3.4.3 SHOULD BE USED AS THE BASIS FOR MORE DETAILED ASSESSMENTS, PARTICULARLY THOSE IN SUPPORT OF EVALUATIONS OF POSSIBLE PROTECTIVE ACTIONS. -
3.8 The following steps can be used as an initial method to determine the dose at distances in increments out to 10 miles from the plant.
3.8.1 If the release was elevated as defined by Step 3.3.1, use EXHIBIT 3.4.1-4; and if not, use EXHIBIT 3.4.1-5.
Note: These exhibits provide the ratio of X/Q at the new distance compared to the site boundary X/Q.
Assume the same stability class as found in l Step 3.2.
3.8.2 Multiply the dose calculated in Step 3.6 by the ratio found in EXHIBIT 3.4.1-4 or 3.4.1-5. The result is the projected dose at the distance identified in the left hand columns.
7
-m w _/
I l
l t
1 f
t
\_ 'i
[
1 j HBR PEP-3:4.1 Rev. 5
t EXHIBIT 3.4.1-1 PROJECTED DOSE NEAR SITE BOUNDARY
'l l Projected Dose = (Source Term) . (X/Q) . (Dose Conversion Factor)
Column 1 Column 2 Column 3 Column 4 Column 5 Proj ected Time /
Source Term (1) X/Q (2) DCF(3)(4) Dose Initial e
O I
l i
l (I) Obtain from Step 3.1 i
(2) Obtain from Step 3.3 (3) Obtain from Step 3.4 for Whole Body (4) Obtain f. rom Step 3.5 for Thyroid l-O HBR PEP-3.4.1 Rev. 5
-s EXHIBIT 3.4.1-2
( )
'v' METEOROLOGICAL DISPERSION (X/Q) VALUE AT HBR SITE BOUNDARY (1400 FEET) h ELEVATED LEVEL RELEASE ("}
Speed X/Q Values By Atmospheric 3 St bility Class
-(MPH) (m/s) (Units: sec/m ) l A B C D E F -G 1.0 0.4 6.7X10-E 8.5X10 @ 4.8X10-E 1.0X10
-6 -9 -18 -42 1.6X10 1.2X10 3.5X10 2.0 0.9 '3.3Xi6-E 4.3Xio-E $.4Xi6-5 5.6Si6-7 7.9kiO-I9 6.2X16 ,19 1.M16-42 19 3.6 1.3 .ik16-5 5 1.6ki6 3.3Mid 5.3Xi6-19 4.iN1d 19 1.iki6
-03 4.6 i.B 1.72i6-5 .i.sXi6 E i.iX16-E 2.5X16-2 4.6X16-19 -19 3.1X10-8'6X10
- s. 2.I i.5Ni6-E i.2Xi6 E 9.6kiU-6 A.6Si ~2 3.IX16-10 2 i.72i 5 6 7 g. gggg-10 j.5X1019 6.9Xi 3
5.6 5.1 'i.iS16-5 i,ggig 5 8.UEig 6 g ggg 7 ,jg g I9 5.85ig 7.0 3.1
-6 -
-10 -
-4 9.5X10 1.2X10- 6.9X10 1.4X10- 2.3X10 1.8X10
-6 -5 -6 -10 -I9 4.9X10 -3'3 8.0 3.6 8.4X10 1.1X10 6.0X10 1.3X10- -
2.0X10 1.5X10 4.3X10 ,
9.0 4.0 7.4X10j 9.5X10j 5.3X10j 1.1X10_7 1.8X10[ 1.4X10 3.8X10 -
10.0 4.5 6.7X10 8.5X10 4.8X10 1.0X10 1.6X10 1.2X10 3.5X10 11.0 4.9 6.1X10 7.7X10 4.4X10 9.1X10 1.4X10[10g 1.1X10[I9 3.1X10 39 12.0 '5.4 5.6X10 7.1X10 -6 4.0X10 1.0X10 2.9X10 5.8 -6 -6 8.3X10,3 1.3X10 -10 -20 -43
-6 3.H10 -6 7.H10 -8 1.2X10 -10 9.5X10 -20 2. H10 -43 13.0 5.1X10 6.5X10 14.0 6.2 4.8X10
-6 6.1X10 3.4X10 -
7.1X10 1.1X10 8.8X10 2.5X10
/N 15.0 6.7 4.5X10j 5.7X10j 3.2X10_6 6.7X10j 1.1X10 8.2X10 2.3X10[
h 7.2
-6 8.M10 -6 6.3X10 -8 9. 7.H10 -20 2.2X10 -43 16.0 4.2X10 5.3X10 10_
17.0 7.6 -6 18.0 8.0 3.9X10 3.7X10
-6 5.0X10 4.7X10
-5 2.8X10 -6 5.9X10 -8 9.3X10,33 7.2X10 -20 2.0X10 -43 19.0 8.5
-6 4.5X10
-6 2.H10 -6 5.6X10 -8 8.8X10_33 6.8X10 -20 1.9X10
-43 3.5X10 -6 2.5X10 5.3X10 8.3X10_33 6.5X10 1.8X10 20.0 8.9 -6 -6 -8 -20 -43 3.3X10 -6 4.3X10
-6 2.4X10
-6 5.0X10 .9X10_33 6.2X10 1. H10 21.0 9.4 3.2X10 4.1X10
-8 -20 -43
-6 -6 2.3X10 -6 4.8X10- 7.5X10_33 5.9X10 -20 1.6X10
-43
-6 2.2X10 -6 4.5X10_8 g 7.2X10,33 5.6X10 22.0 9.8 3.0X10 -6 3.9X10 33 -20 1.6X10 -43 23.0 10.3 2.9X10
-6 3.H10 -6 2. H10 -6 4.4X10 -8 1.5X10
.24.0 6.9X10_33 5.3X10 -20 -43 10.7 2.8X10 3.5X10 -6 2.M10 -6 4.2X10 1.4X10
-6 -8 6.6X10_33 5.1X10 -20 25.0 11.2 2.7X10 -6 3.310 -6 1.M10 -6 4.0X10 -8 6.3X10,33 4.9X10 -20 1.4X10 -43 -43 2.6X10 3.3X10 1. 10 4.7X10
-20 1.3X10 -43 26.0 11.6 3.8X10- 6. E10_
-6 -6 -6 2.5X10 3.2X10 1.8X10
-20 1.3X10 -43 27.0 12.1
-6 -6 -6 3.7X10_8 g 5.9X10_33 g3 4.6X10 28.0 12.5 2.4X10
-6 3.0X10
-6 1. H10 -6 3.6X10 1.2X10 5.7X10_33 4.4X10 -20 -43 29.0 13.0 2.3X10
-6 2.8X10
-6 1.7X10
-6 3.5X10_8 g 5.5X10,3 4.2X10
-20 1.2X10
-43 30.0 13.4 2.2X10 2.8X10 1.6X10 3.3X10 5.3X10 3 4.1X10 1.2X10
(*)For Stack Vent Release With Upper Level Wind Speed Less Than 9.0 MPH.
HBR PEP-3.4.1 Rev. 5
EXHIBIT 3.4.1-3 f~
b' METEOROLOGICAL DISPERSION (X/Q) VALUES HBR SITE BOUNDARY (1400 FEET)
GROUND LEVEL RELEASE Speed X/QValuesbyAtmosphericgtabilityClass (MPH) (m/s) (Units: sec/m )
A B C D E F G 8.4X10 -5
-4 5.4X10-4' 1.4X10 -3 -3 -3 -2
~
1.0 0.4- 2.4X10 2.0 4.2X10
-5 1.2X10
-0 -0 2.7X10 -3 6.4X10 -3 1.5X10 -3
- 0. 9. 2.7X10 3.0 1.3 2.8X10
-5 -5 -4 7.0X10 -4 1.3X10 -4 3.2X10 -3 7.6X10 -3 7.8X10 1.8X10 4.7X10 9.0X10 2.1X10 5.1X10 4.0 1.8 -5 ~ ~
2.1X10,5 5.9X10,5 5 1.4X10[0 4 3.5X10_4 4 6.7X10 1.6X1033 3.8X10[33 5.0 2.2 1.7X10 4.7X10 1.1X10 2.8X10 5.4X10 ~
1.3X10 3.1X10 6.0- 2.7 1.4X10 3.9X10 9.0X10[ 2.3X10[4 4.5X10,f1.1X10j 2.5X10 7.0 3.1 1.2X10
-5 3.W10
-5 7. 10,'5 2.M10,44 3.9X10 -4 9.2X10 -4 2.2X10,3 8.0 3.6 1.0X10 2.9X10 6.8X10 1. 10 3.9X10 8.0X10 1.9X10 9.0 4.0 9.3X10
-6 2.6X10
-6 -5 -4 -4 -4 -3
-6 6.0X10 1.6X10 3.0X10 -4 7.1X10 1.7X10 10.0 4.5 8.4X10 -5 -5 -4 -4 -3 2.4X10 ~ 5.4X10- 1.4X10 2.7X10- 6.4X10 1.5X10 11.0 4.9 7.6X10_6 2.1X10_5 5 4.9X10,5 5 1.3X10[44 -2.5X10_4 4 5.8X10['4 1.4X10[3 12.0 5.4 7.0X10 2.0X10 4.5X10 1;2X10 2.2X10 13.0 5.8 6.5X10
-6 -5 -5 1.1X10 -4 -4 5.4X10 -4 1.3X10 -3' 6.2 -6 1.8X10
-5 4.2X10
-5 -4 2.1X10 4 4.9X10 - 1.2X10 -3 14.0 6.0X10- 1.7X10 3.9X10 1.0X10 ~
1.9X10- 4.6X10" 1.1X10 15.0 6.7 5.6X10_6 1.6X10 3.6X10 9.3X10,5 1.8X10 4 4
4.3X10[ 1.0X10j 5
g 16.0 7.2 5.2X10 1.5X10 3.310 4.0X10 9.M10,4 17.0 7.6
-6 -5 -5 8.H10-5 1. H10-4 -
4.9X10 -6 1.4X10 3.2X10 8.2X10 1. 10- 3.8X10_4 9.M10 -4 8.0 -5 -5 -5 4 18.0 4.7X10
-5 1.H10 -5 3.M10 7.8X10 1.5X10,4 3. M10
-5 7. 10 -5 1. 10 4 -4 8.5X10 -
19.0 8.5 3.4X10 8.0X10,44 20.0 8.9 4.4X10-6 1.2X10-5. 2.8X10-5 4.2X10 -5 -4 -4 1.2X10 2.H10 7.0X10 1.3X10 -4 3.2X10
-5 1. M10 -5 -5 -5 -4 7.M 10-21.0 9.4 4.0X10
-6 -5 2.M10 6. H10 1.3X10
-5 6.4X10 -5 1.2X10 -4 2.9X10 3.1X10,4 7.3X10,44 22.0 9.8 3.8X10 1.1X10 2.5X10 3.6X10
-6 1.0X10 -5 2.3X10
-5 6. 10 -5 1.2X10 -4 2.8X10 -4 7.0X10 -4 23.0 10.3
-6 -6 -5 -5 -4 -4 6.6X10 -
24.0 10.7 3.5X10
-6 9.8X10
-6 2.3X10 5.8X10 1; 10
-4 2. H10 -4 6.4X10,44--
3.4X10 9.4X10 2.2X10
-5 -5 2.M10 -4 6.1X10-25.0 11.2
-6 -6 5.6X10 1. 10
-4 2.1Xq 5 5.4X10 -5 26.0 11.6 3.2X10 9.1X10 -6 1. 10 2.5X10_4 5.9X10,,44
-6 5 -5 -4 27.0 12.1 3.1X10 8. 10 8.M10 5.2X10 1.M10 2.410 5.7X10 -4
-6 -6 -5 -5 -5 -
28.0 12.5 3.0X10 -6 8.4X10
-6 1.9X10
-5 5.0X10 9. 10 2. E10.4 5.5X10
-4 2.9X10 8. E10 -6 -5 -5 4 2.2X10 -4 5.3X10 29.0 13.0
-6 1.9X10 4.8X10 9.3X10 -4 2.8X10 7.8X10 1.8X10
-5 4.7X10
-5 -5 2.1X10 5.1X10 30.0 13.4 9.0X10
!. O HBR PEP-3.4.1 Rev. 5
+- _ _ _ .
EXHIBIT 3.4.1-4 v ~ EXTRAPOLATION RATIO FOR ESTIMATING DOSES BEYOND ROBINSON SITE B0UNDARY (1400 FEET) ELEVATED LEVEL RELEASE DISTANCE FROM EXTRAPOLATION RATIO PLANT ATMOSPHERIC STABILITY CLASS Miles km A B C D E F G 1.0 1608 .027 .81 .82 58.3 2.5 x 104 4.5 x 1012 6.0 x 1033 2.0 3218 <0.01 .05 .26 33.3 2.6 x 104 2.2 x 1013 .6.9 x 1033 3.0 4824 <0.01 .02 .13 21.9 2.1 x 104 2.5 x 1013 1.9 x 103s 4.0 6432 <0.01 .01 .08 15.3 1.6 x 104 2.5 x 1013 2.8 x loss 5.0 8040 <0.01 <0.01 .05 11.4 1.3 x.10 4 2.2 x 10 13 3.3 x.1036 6.0- 9648 <0.01 <0.01 .04 8.9 .1.1 x 104 2.0 x 10 13 3.6 x 1036 i
7.0 11256 <0.01 <0.01 .03 7.2 9.1 x 10 3 1.8 x 1013 3.8 x 1036
) 8.0 12864 <0.01 <0.01 .02 6 .1 - 7.9 x 10 3 1.6 x 1018 3.8 x 10 36 ~ t:-
9.0 14472 <0.01 <0.01 .02 8
- 110 . 0 16080 <0.01 <0.01 .02 4.4 6.1 x 1013 1.5 x 1013 3.7 x lose 1 -
i i
l i
HBR IEP-3.4.1 Rev. 5 l
f
EXHIBIT 3.4.1-5 EXTRAPOLATION RATIO FOR ESTIMATING DOSES BEYOND
- ROBINSON SITE BOUNDARY (1400 FEET)
GROUND LEVEL RELEASES DISTANCE FROM EXTRAPOLATION RATIO PLANT ATMOSPHERIC STABILITY CLASS
, miles km A B C D E F G 1.0 1608 0.02 0.07- 0.09 0.11 0.11 0.-11 0.10 2.0 3218 <0.01 0.02 0.03 0.04 0.04 0.04 0.04 3.0 4824 <0.01 <0.01 0.01 0.02 0.02 0.02 0.02 '
4 4.0 6432 <0.01 <0.01 <0.01 0.01 0.02. 0.02 0.02 5.0 8040 <0.01 <0.01 <0.01 0.01 0.01 0. 01-- '0.01 6.0 9648 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01
[ 7.0 11256 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0 01 8.0 12864 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 9.0 14412 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
. 10.0 16080 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
?
l I
a L
HBR PEP-3.4.1 Rev. 5
- , - - - , - . . - - . , ,-,,~..,n.,-- -, , , . . , - , , - - , , , . - - - - - , , ,
. - - . , - - , - , , . , - , , , - - . . . , , .,,-n-n,,.- , . , , - - . - - , - - , . , - - - - , - - - -
l
- ?
i # @ !; g g l
a wu H. B. ROBINSON SEG PLANT I
I . l l
TITLE EMERGENCY PLAN AND PROCEDURES I
-VOLUME 13 l
i WHOLE BODY DOSE PROJECTIONS 1 l
PEP-3.4.2 ;
I REVISION 0 I I
DATE REV. APPROVED BY DATE APrROVED BY DATE REV. APPROVED BY
. R EV.
/ WBS 3./o-/;
.2 TB1 l& 7-/7.// \
.9 785 !h 9- 2r-/f
' I 4 V)% ld4
/H641
$ D fad /7-//-8' l
' \
Recommend By: Gn &u j h _ _2^750 $ !_
I&RC Supervisor l
Approved By: 1 ' j@ hM "^'"
- Plant General Managei '
N l
<1 PEP-3.4.2 WHOLE BODY DOSE PROJECTIONS i
()
1.0 Responsible Individuals and Objectives The Radiological Control Director or the Dose Projection Coordinator is responsible for calculating whole body dose projections to be used by the Radiological Control Director and the Site Emergency Coordinator in determining and evaluating possible off-site consequences from a release of radioactivity. The Radiological Control Manager shall assume responsi-bility for calculating off-site whole body dose projections (to be used by the Emergency Response Manager) after the Emergency Operations Facility is activated.
2.0 Scope and Applicability This procedure is intended to be used for all manual calculations of whole body dose subsequent to that in PEP-3.4.1, " Initial Dose Projections."
It is intended to provide realistic assessment of doses at any point in the Emergency Planning Zone (EPZ). This procedure shall be performed periodically as directed by the Radiological Control Director, (Radiological Control Manager after the Emergency Operations Facility is activated).
These projections pertain to the radioactive gases at ground level and do not include radiations from an overhead cloud that may contribute to the whole body dose at ground level.
(,-~.) Provisions are included for:
LJ
- 1) Determining the Atmospheric Dispersion Factor (X/Q) at any point downwind in the plume exposure planning zone based on the atmospheric stability class and the distance to that point from the point of release.
- 2) Correcting the dose to account for the tin.e af ter shutdown that the source data is taken.
- 3) Correcting for distance away from the centerline of the cloud.
3.0 Actions List of EXHIBITS:
3.4.2-1 "Whole Body Dose Projections" 3.4.2-2 10 Mile EPZ Map (Example) 3.4.2-3 50 Mile EPZ Map (Example) 3.4.2-4 Xu/Q with Distance for Elevated Releases 3.4.2-5 Xu/Q with Distance for Ground Level Releases 3.4.2-6 Horizontal Dispersion Coefficient as a Function of Downwind Distance From the Source 3.4.2-7 Vertical Dispersion Coefficient as a Function of Downwind Distance From the Source
(N 3.4.2-8 Whole Body Dose Conversion Factors
_, l - 3.4.2-9 Doses at Various Distances'From Cloud Centerline HBR PEP-3.4.2 Rev. 5
. . ~.
Note: EXHIBIT 3.4.2-1 "Whole Body Dose Projections
-(g) -Calculation Sheet" is for recording and calculating
.V. dose projections. Steps 3.1 through 3.6 provide input for the calculations.
3.1 Use the source term calculated in accordance with appropriate PEP-Section 3.6, " Source Term Assessments and Estimates of Core Damage."
Enter the Source Term Value in column 1 of EXHIBIT 3.4.2-1.
3.2 Determine the Atmospheric Stability Class Note: Steps 3.2.1 through 3.2.5 are in order of preferred use.
3.2.1 If. operable, use the plant computer to obtain the Atmospheric-Stability Class, wind speed and wind direction and record on EXHIBIT 3.4.2-1.
Note: The wind speed and wind direction should be that best approximating the effective height of the release. This may be determined by various plant monitors. Where available, results from plume tracking / monitoring should be used to confirm or modify these estimates.
3.2.2 If the computer is not accessible, determine the Atmospheric-Stability Class, wind speed, and wind direction as follows:
p() 1) Dispatch someone or proceed to the Met Tower Building.
Note: Pasquill Stability Class can be determined by one of two redundant systems (A T , or T . They are located in the first two-3cad2)inets on the right of entrance.
- 2) Plug the leads from the pulse counter intc the correct jack. The black lead is for y or 32 T The white lead plugs into the white jac
- 3) Set the pulse counter switch to position 2, zero the pulse counter and obtain pulsen for ninety seconds.
Record the pulses below.
- 4) Look up the current normalizing factor and the correct T or T zer adjust factors. This information is 32 hobatedonthenorthwallandisupdatedperiodically.
Ensure you use the correct T or T zer adjust factors. List below.
A3 32 i
, ( X 10 X .01667) ,
=
- 3y T or A2 T Pulses Zero Adjust Number 1
, X =
( Number 1 Normalizing Factor Temperature Differential HBR PEP-3.4.2 Rev. 5
- 5) -Circle _the correct stab'ility class to be used in the Dose Calculation.
(
STABILITY CLASS' TEMPERATURE DIFFERENTIAL ( C/100m)
A <-1.9 B -1.9 to -1.7 C -1.7 to -1.5 D -1.5 to -0.5 E -0.5 to 1.5 F 1.5 to 4.0 G >+4.0
- 6) Obtain and record wind direction and speed on EXHIBIT 3.4.2-1.
3.2.3 If the onsite meteorological station is completely inoperable,
.the following can be performed to obtain an estimate of.
the onsite wind speed and direction, and the appropriate
. Atmospheric Stability Class.
- 1) Call the National Weather Service Office at Columbia, South Carolina for the current-weather observations. Use the data from the Florence, South Carolina station, which is available in the Columbia NWS office, if it is available.
If the Florence data is not available, use the-South g Carolina station information. Obtain the following information
/ from the meteorological forecaster who is on duty:
- a. Station for which data is given
- b. Wind speed (knots)
- c. Cloud cover (in tenths of total)
- d. Cloud ceiling (feet above ground)
- e. Wind direction (N, S, E, etc.)
- 2) Load the programmed cassette (the same cassette used in the Automated Dose Projection Procedure, PEP 3.4.5) into the HP9830A, enter LOAD 3 EXECUTE, and enter RUN EXECUTE.
NOTE: Press the EXECUTE button after each entry into-the computer to allow'the program to proceed.
- 3) The display will read " STATION.. 1= COLUMBIA, 2= FLORENCE".
The program is asking for the staion from which the weather observation has been obtained. Enter the appropriate response.
\~ )
HBR PEP-3.4.2 Rev. 5
- 4) . The display will read " WIND-SPEED (knots)."1 'The program
( is;asking for the wind speed in knots for the NWS observation '
N station. -Enter the-appropriate response (example.. 1.0,
3.0, or 0.0 for a_ calm wind).
- 5) The= display'will-read 1" CLOUD COVER'(TENTHS)."' The program is_asking for the total cloud cover of;the sky'in tenths.
That is,-if the sky is overcast, 10/10ths would be the condition. The. proper response to the computer would be to enter'10. If the sky was. clear, the appropriate response-to the' computer.would be to enter-0. Enter'the appropriate response.
- 6) The display will read " CLOUD CEILING (FEET)." The program is asking for the height of the most obscure cloud deck-above the ground level. Enter-the appropriate response (example.... 1430.).
- 7) The display will read JULIAN DATE." The program is asking for the current JULIAN DATE, that is the number of calendar days since the first of the calendar year. Enter-the appropriate response.
- 8) The display will read " CURRENT TIME'('24-hour clock)." The program is asking for the current time-(EASTERN STANDARD TIME) in the common 24-hour clock (that is,.N00N=1200 and midnight =0000.; all other times are reported such as 1 O' p.m. = 1300). Enter the apprcpriate response.
- 9) The computer program will now compute the appropriate
-Atmospheric Stability class, based upon the weather observations entered into the computer. The oucput will be displayed on the visual screen as follows:
Wind speed =-(number) mph Atmospheric Stability _ Class = (letter)
NOTE: The letter for the Atmospheric Stability class will be the Pasquill Stability indicator, plant' process computer.
- 10) _Obtain and record wind direction and speed on-EXHIBIT 3.4.2-1.
Use the correct Atmospheric Stability class in the Dose Calculations.
3.2.4 Call the Licensing & Permits Section in Raleigh and request meteorological data-(See PEP Appendix A.4). l 3.2.5 If there is no meteorological data readily available, [
estimate the wind speed and direction, and determine and circle the appropriate Atmospheric Stability Class.
HBR PEP-3.4[2 Rev. 5 .
1
(O - Sunny Cloudy Cloudy Clear D') Day Day Night Night light wind or calm B C E F '.
(14m/s) = (19.0 mph) moderately strong wind C D- D D
(>4m/s) = (>9.0 mph)
Record wind direction and stability class on EXHIBIT 3.4.2-1.
NOTE: Assume Stability Class D whenever it is raining.
3.3 Locate and mark with an "X" the point of interest on either EXHIBIT 3.4.2-2
-(10 Mile EPZ) or EXHIBIT 3.4.2-3 (50 Mile EPZ) and estimate the distance in meters or miles to be used in Step 3.4.
Note: EXHIB1TS 3.4.2-2 and 3.4.2-3 are examples ONLY. DO NOT USE! Use an appropriate scaled (larger) map provided.
3.4 Determine the Atmospheric Dispersion Factor, X/Q by using either Step 3.4.1 or Step 3.4.2. Step 3.4.1 makes use of Xu/Q versus distance curves by stability class. Step 3.4.2 makes use of the original equation from which the curves in Step 3.4.1 were generated.
3.4.1 Determine the Atmospheric Dispersion Factor, X/Q,using gj either EXHIBIT 3.4.2-4 if the release is via the stack and
'if the wind velocity at the upper wind level is less than 9.0 miles per hour; otherwise use EXHIBIT 3.4.2-5.
3.4.1.1 Using the distance determined in Step 3.3, locate the distance on either of the horizontal axes of the EXHIBIT.
3.4.1.2 Read up or down to the line for the appropriate stability class as determined in Section 3.2.
3.4.1.3 Record the appropriate XU/Q'from the vertical scale for use in Step 3.4.1.5.
3.4.1.4 Record the u (wind speed) from Section 3.2 for use in Step 3.4.1.5.
3.4.1.5 Calculate the X/Q for the point of interest and enter in Column 2 of EXHIBIT 3.4.2-1.
X Xu . -
q q
r u p 1 = + =
9
'HBR PEP-3.4.2 Rev. 5 i
NOTE: Wind speed must.be in units of m/sec.
\
w/ 3.4.2 Determine the Atmospheric Dispersion Factor, X/Q,.using the following equation where concentration is to be cal-culated along the centerline of the plume at ground level.
= 1 exp X
Q nay au -1
-2 lIH_0) f z L., k z.
where X/Q =
Atmosgheric Dispersion Factor,
, sec/sa L n = 3.1415 u = average wind speed, m/sec.
H = release emission height (60.7 m for stack releases, O m for ground l
- level releases).
, a = horizontal dispersion coefficient, m; Y
(see EXHIBIT 3.4.2-6).
, a = vertical dispersion coefficient, l m; (see EXHIBIT 3.4.2-7).
l 3.5 Determine the Dose Conversion Factor corresponding to the time'that the cloud is projected to pass by the point of interest.
3.5.1 Estimate the time of cloud psssage over the point of l interest (X):
distance to point of time after shutdown (in hours) + interest (in meters) 3600u
= hours 3.5.2 Select the Dose Conversion Factor from EXHIBIT 3.4.2-8 l corresponding to the cloud pasgage time of 3.5.1. Use the value in units of (R/hr)/(Ci/m ) if the source term being used is given in terms of Ci/sec, otherwise use R/(Ci-sec/m3 ).
Record it in Column 3 of EXHIBIT 3.4.2-1.
Note: Multiplication of columns 1, 2, and 3 of EXHIBIT l
3.4.2-1 results in a projected dose for a ' semi-
- infinite cloud at the distance and time specified
~
! if the point is on the centerline of the cloud.
'3.6 If the point of interest is not on the centerline of the cloud,
(~ . correct the Dose for lateral distance (y) deviation.
l O]
HBR PEP-3.4.2 Rev. 5
. _ _. . ~ _. _
3.6.1 Estimate the lateral distance (y) between the point of
,h interest and the centerline of the cloud using EXHIBITS 3.4.2-2 V. "10 Mile EPZ" or 3.4.2-3 "50 Mile EPZ" as appropriate.
Record: .y= (m).
Note: EXHIBITS 3.4.2-2 and 3.4.2-3 are examples only.
DO NOT USE them. Use full size, appropriately scaled maps prpvided. If not otherwise known, the lateral' distance (y) between the point'of interest and the centerline of the cloud is estimated by use of triangulation of the point with respect to the plant and the cloud center-line sector on the appropriately. scaled map.
3.6.2 Using EXHIBIT 3.4.2-6 determine o as a function of distance (Step 3.6.1)andStabilityClassYStep3.2)bylocating 4
the distance on the horizontal axis, read up to the diagonal line for the atability class and read the a from the left vertical axis. Y 3.6.3 Divide the lateral distance by a to determine the number of a 's between the cloud centerYline and the point of intelest; '
3.6.4 Using the number of a 's, refer to EXHIBIT 3.4.2-9 and
("] determine the dose coIrection factor. Locate the number
\g of a 's on the horizontal axis, and read up to the distance of oY 4
the Ipp(meters). Read across ropriate correction to the factor vertical (CF). Enteraxis thistovalue obtain in Column 4 of EXHIBIT 3.4.2-1.
t 3.7 Multiply Column (1) through Column (4) and record the projected dose
- i. in Column (5) of EXHIBIT-3.4.2-1. Initial and date each calculation in Column (6).
3.8 Report the Whole Body projected dose to the Radiological Control
- Director or Site Emergency Coordinator. Report to the Radiation I
Control Manager if the Emergency Operations Facility has been activated.
! 3.9 To estimate a source term based on measured radiation levels in the environment these procedures need only be performed in reverse order, solving for the unknown value in Column 1 of EXHIBIT 3.4.2-1.-
i b
v i
HBR PEP-3.4.2 Rev. 5
) e 6 l t
( aa iD n t/
m i e l
u nm Ii o T C
]ka ) d 5
(
e t
ce n es jo m
u oD l r o P C
. W
) n )
4
(
o 6 i r t o3
- n ct ecp m
u rae
. l rFt T o o S
(
E C C E
l i f
. S N ) )
O 3 5 I (
T F3 A n C Dp
- L m U u e C l t L o S 1 A C (
- C
- 2
- S _
- 4 N O ) )
3 I T
2
(
4 C Q3 n
- E /
m Xp 9VJ 5
X O
R P
l u
o t
S e
_ E c (
E S
O D ) )
Y 1 1 _
D ( e . .
O cm3 B n rr m uep E u oTe L l S t O o S H C (
W y
t i s l s i a bl aC t
S n
o i) t m co er rf i(
d D n
i W d c
) _
O ee es p/
S m
(
$ @6 i E<. u
,! ', : i! '
l l
l l
1 d. ' * *
- I I l*~ # -#
~
/
7 - . \ . gn .-
-- . ,;.I ' \ .,2.y'(g.1 c
,y l7,3,.9 7 3sg j
/3~+ ~ c w, k 3/x % RM j.
/ /.~., % . _ .
- m. / --t ^
\
m )p )r,,.
p ., c\
. i'
. ' :,~%.
4 - .
n
- i
-4 y, ~. r,"A L.;
s .\,s '
. . 'A V 4 1, ~(
l
. / , ;.
Q[
~ ^
7- 15 . .. L -f ,
/b jf ,_ " .J . l & j W-
- g.n' W , f f s , @ j % ,'f R ? - Y. ] i'
[> ~ .
i
. h .
N- .
-. j ',' -
D y ._\ %..
1 p ' uf.f! [. s ,
/
o ['Q:. 7.
.%g'= , . .T_,,pg..
-. . g,<. ', ' . . e . 8y .. g_.
- k.
'w
't= g! g- J--~W- ,
- =,. . k$.\sf.Pp.e,.f[s.y. =rk i f w4 uc.d.i s . N.,.Y-
- '. '.j,. 4U^ '1 -d
'i
~.
M.
y a :--- % W. c ij,$[I
' W ~ e -- / .
'TTI N
.- , e, x J1 s _ ., .
A.I.y'[:\ . f..'f;"~C. O: '5.1 --kki /
V'.
C _~y*, ~ 7- . .:-[y
~^[.
3 -
w fr',, ' Q )[V ,Y .:('{./'.' M S
~:Q
(.f MM !' f ,-.
. .o
.. v "N 7.E 9h ( .- j.b .
- , _. ,f W h,,! '
h i -hC m,L .
% v_ l 9 -: . .. .
~ r ;- t y .
- O. m$ff v -
' f-fry..
. , , , + !"
. , :s _f .5-8 s.
+
w . >
',,b ~g.s,fg.v.YS
- g. sy :..* r k ,.h.* . ";'d,y[
- 3 p* m, y- <<i
~
r.
2
.2
/g , .
~.. .-
I*,% . Qs' , . - Et'$Ngh@*\ d' . ,M
^
'~
--.. ~'. *3
, , ; ....'. <y
,g ..
_ i. 5 !,[ ,
? 5 ' . .? . - $ -
' ~
.' l '"
~
. -l ~ ry.- [o ,=.& .
.%, 2
. $fi . .
^ ' ' ' ',
~
[ '
Y -
x ,'h*.
. c..
L gt ~: wR-.y p
/. lQ
- q. ;-.;-: '.~ 2>\ ..
-J ,Y~ %
Y
( , " p-k .,7 5 Ss'.~ >- ~,
" ],,
i; .
5 Y[2 -
'sF['k 2 ,.[ .",, 4
-k- ",
4 }. '.,,
?'~ e,, 1--y[w _
1 l . . .
.a=<
.- ? mg , , , y.4,,, 4_}{
- p. ,g,..f . !
5 f
- y. a . g. ._. , y, > .
.t-\ -
P'.7 l
.? f '~ ?VQ{ # ., '? _
$ '( .. <f ',x' d\ e 5-p-
- v
/' Qp : :-.. @ s l - f ,' .---L ] ;
t J.
9g- 'i,. 1
- ,.3;;- ... ., .n. ..
q_g" M
/
- O O =% -
,9 ; -. :.~.
=- ,
--.._ - - .- ._- _ . , M.-- mw
,,wp.y. 6 e-4 s .. .
,f .,
hk .) Y
~
') /.
w '.'
\.,p fpi?. Q i-].. ~ i=M D ( @, % N.-BON [
i e/
f,'. . v. D . . ,- ! .
l.
/ , , , . . .-
EXHIBIT 3.4.2-2 Ten Mile Plume Exposure Emergency Planning Zone
(-)')
( for H. B. Robinson (Example)
HBR PEP-3.4.2 Rev. 5
}
- m. .c
,.> , 4 u ,
-p ,pA ,
r.-. - . _-, ..s.
/mq- 3.-
.y,,..
4 -
-r e g) ; ,
3 Pinehurst 1,2
- o - . . , ,- , -,' ;
n, , ,, r,, ,
( v ;.3., .,~ ,
>a .. ,
~ -
l 3
c-- -
- =.-> 4 u ,
~ ~_f. s Lj
- p. s .a ~
., g~ .( M~ , s..
- =
. tr . / y u N'T"*i'c ,
h5 _n uon o y- as
.. at mb;,)Fe:. ,
.y m
n '
)m e o u g* r !*'q . . _tm.* 8 A N s tochfigue ,
.a ocg '
"~""l'**
j 3a . l -
3 3 l p*d c-.-WW ) ,
4 e,,,,_,'
Q ~ .r'.u'". u n " ~ ~, ,
, i, s l
l
..a n,--
~
f . pp / f }x,,'seortAh I-qi'Qs yd- y: la*"'E\ y c A n e}. . ~.? :,~ q,' ~ ~'f~ fc,....
. .y m.
,.;, . p.f$g.,,a ).______gY-~.
_ , w .u .
- e. .
9k
, .-i 1 '-' 1 , m. +
,y (\, m,,g; g M.::- , w.w ,,. .
g~Y nuier. . . t .c - ,, g ,
S' *
- R
-u {,,5($$. c-~j .i
' b m', .. ' .E'i t sean.tri,s.'
b'.,
,,_ , , , , , , a-y ., ,. m ~
, J- ,,T
- wa.. _ ,.; , - ,'y J+ , ;: . u.~ .
~-
is - r.edria. ,
3 . g g j. , ', . . '*/ e h 9 w ~~- *) } ,, g Q p""*" {; N
' /
G _: j-$ 4fyk;,/M i
-i
- w ,, ,,
"*y.,9,/i 7 r TJ;[% .N'M-c '#
r :
.se Q
., s . ~.:.. a
.m. ._,
.~ <,. f ,, e_n x t ds s
c~ I l w v . .,,
Q.. %, yol.).'2..Va fl mp',
s f.s n, <
. . _ . c s A s art o.---- < - #. 3, . ==
. ..2s:0 t t 3
>_.'..-so.-..* w 4,
, *,s. .
.- s-T , , ,
- 3j,j- - ,
4ers .. i
- j od,oi
- e. , sw .
et 4,1- , J,, --' , m
.s s u j
,t 7, N
., .j ,,, . I
..r I' -t i
4,;3
- r 5 ,. t i *A
~ , . -
s.
i
- g/_ ..
~
,j 4 I
y _ e, pe. .s..f j ; uu (
' j ,, a .' m* _ i j ,,, g ,
- y. q"n-s.cirwta j q.p-
,;Q
,. g l ,, " n. . . .
.n s ,a s . .;_ .. , .
t
,- w f.w .Le lf
' - 3 e sesnap,se _* florenc
. ~. A,' 4 a !@i / <. ". ' Q^ (u ',<,,. -
(m) , ,e}'p~
t..,K* 4.#. A ., -- .
r_<.3.M. .,., s,, ,m , a.
. 3s ,-
L,
- m. - ,
, .s. ~ , <,. .,. .
m.
.d %p +7 c-6 <s, .
rr ,
~
, V 3 "*'"N ,_ _ ; ! a FLOR 'E 3 . ,, ,
,',"7; (/ '
,, Q. . } '""
/ L' ~ptake caty
. % 4 , , , . . . s w %
t"'
/ 94 7'l , 'O ," ) ,3 u!., a !,4 's.
j i ;) F l ,
4LHC * * '
m* e,dy.7 scai.s, *"* as$
] (-
p.u t
.M . ; . :.a,r ,? , ,
, ., 9 iaoom ,
q'~Q %..:,
,,,,c,,,,,,,,,,,,,,,,,,,,,.,,,,
, %) ~
wy eg t pg ,,f, r o n e e v n~
l ., . so
/q ii "--- 's,3 c.~. -
n... _,,, g 3 ; , g go g, g, ,,.
. >, -e g .
a i .3 casoc,asamovin.=us
!\ '
{- . h{ N E-' E.
i_] ,x J ik.kk.IMk M EXHIBIT 3.4.2-3 50 Mile Emergency Planning Zone Map
('])
(, for H. B. Robinson (Example)
HER PEP-3.4.2 Rev. 5
r, .
i '
Distanea (nilca) 12 t i . l 5 10
. l 2i--- r-:=Er=$rH :
-*F* - . . . - - .-E-:="T : *- . "E.- -
,* / r- =
., s
- =r ,t_:-:; 2_2-' ? . a _ = h:_idm.-u--t E:. ~ _m _ t_
.-- _._ :d=g"'
_ = . _g.-. _ . 4 t. - . . a. _ _ _ _ _ _ mn1 i IGNIMUM SITE BOUNDARY (418 metes)
,._ _4
(
) ,
10
~
NJw A-e
- > F f u._.m _._.m i s u
- rag as=3at.. =_ h= ,m =. . .k _ ;$redNEih. _ . %,._,m=iW-E*ili=_E!a z U=i
_iU=-f=;='.=ir
__m~'-xx ._,:---. -
m.-.j.--\-/:= 7.-,
^-
_-t:
y * -_
,x.
, ., . . % T: -
n:=E. i@i . DEW =WM%=Am 'NN3 m=._iM._et 24=i MME35 9, EA. ,N_ -.id_s,ts'-M_,
- m. e- , - . . ,-.-_%_
s s _
__,t - m_ t&t=.=% , nrr- __g _ % ,
m m=y =_._%_~s__.--.
r=- - - -=t=*=
-3 i t_:
x m
,N An
, 1 : , y. x . <- s- - wi .
- 10=. ) ~, ,1 1,.
_. .,7 u n- s
. s s . w
- s. s...___.4
- ., . m -
- w : a
, u , '/ .
Y==-Ja=Ete c t W+ b-i, *i=M. tY . = EE h2VfM Mt== ' 4- s . =N-~..E =i+.~.Mihi=k='%
L '=5=W.3-1 y .
m --Em w.____M.mf e .... -- = w wy _. _.
3 e=a = v
.,-7_... -r. -
e w H ,-- +- :
u x i Xu m
-2
- Nh=^2M EMS MM=*5W W ^ ~*:,T %==* '~
- == ~~** -
=*N-M
.-+-44.7"
+ - - -
4-+ - -- m
-w-4-...y g a .4_ r==.r ~- *~-. g'=-v : e - * -
%.T r12=T*:
=_._e---**f.*20*:T.T' :".3 "'t E""I'- . . 2 2, a.--- N-t-Q e m _..
-+,-,--i- - - . , ,- m w .
1 \ s _
-Q 10' 6 3 I i I 1 1 1 %
I I f 1 F 1. ,
T 1 -
4_ g ._.5- .
s.- .. ( g4 -g . - _ . . %-*--.--4 s
k-ia--swaai i+ei m, b. .:.=..t. =.est .
..; = _ - + .g:TOswasw= ,-... -.. rte, ,r-a; ;2s, _wec _=: -- .==;4'M. .
-. .+ -
, =3f= . . - i .__g . 7 5_ - , . :.:t-2= -
. _m.9s
-s 5
f'=sa:2 22;.._
-2 92 : cc
.u g:u: w Euc_d=- ;_
- = ;;22;=+=c c: r:r=y===_,;====n 3 cmg v .==e= ==-g n._ ._ was :-
ft 3 ,
t- %.4
,- -.. .r- -
_ _..._._s_.._._.u. _ _ _
)
2 1 10-7 1 , 1 ' - 1
^
- -== :==.
=_g=x===
__ y'+ = am.
===u=:::: -; .7 = ====y: :: :. ..y, e
. . . _ i .'~ ~" 4 ,,2,_;__;,,,___,__;_, .
2_+.=- :-
3 n#m- =+m, w
=
- =_===mm.t a _ ..
. _ . . _ c . m. E m. == =_5 u- a s V.,_. _ciM2,5
"~~. 'j,._4-.,.1M..-- . . . _,--w.. - 4 e- - + - . .-6 .-M 10 d ' -
l J, _-
_ i.
- _$h b~ '-M brh h b.I~~ 'b
- N - -- b =-
k* C
.. --,. . _ .m.._ .- .
y
--.1.-_____.==,..-
_ 1 3
=n=;
mi.a=2xme
. cc xv=
n-,f* *;-'. 2 *. L .
-aa de
==c ==m.an.
4rwe,na==isaa1M 2. - - - -w.
. _ - . - _' - , _ + .-..".";'._, ..,_"-j.
-'T .M_ ..a_.
2-*- T-~! .. -.--+.~-4-+------ --+-u-+_4-.-.
to-9 . .
s 1
. ...f .
Distance (neters) m '
- EXHIBIT 3.4.2-4 Xu/Q With Distance for Elevated Releases (60.7m)
? by Stability Class HBR PEi-3.4.2 Rev. 5
., Distanea (nilw) 1 2 4 10 10"* v . n.__. , , n .
a i
n . T... ...__~.__._._._.
i._.
- .m . - . . . + _
,p5 '.
- N -- .
- -+%, %
- .t x
- (vmum w+%=btse ;it=+-u
=5 q\
w s n= m m p: a =i.u. m a w s hii=it=#+4,-W: h n ===+&myym;s 4 y
, _ %4*=M=.W q_= 2-- ~ ~p_. ;n
., [ z, ,
s: = 3, =:=gg- - ;gp- -- - ,- -,- =, 2 g.
L' Nl'=I M C.'j M.$}:iTWg-;;:-q=witspr;gi I
N Y -* NA'[J - A;'{ijli:{
-. 1-i.[_.y j_{ {
saynwpp
/ gg;py_
=h . == .f4:ht
=vam,=rm .e---- -:- , et - , - -- . - . , _ , , , ,
-n - -
-: y=mh.t== t- -n c . =t-u - _ t _n
- i -- [
t-m .+a.-
J
'\ m+.
,1
+-+-.:
10
-3 x1 x
v i
-_,.,,s 1, s,- ,
_. '. s. s .
.s___._._
. _ . _ _ . . . _ . _ .. y 2,
-._v 7 - __ v _. . _ _ _ ,
, s -. - . o. _ .u 3 ._
," ---A \.---,-h- A 1 +-N--. :
, i . x - . n x-V-hM .i'M'lT:'-f.q-' p j t O--Ly-j,_ :. j,-pg 4j M y \b- W +1 mi a }H.
--M=d +; =-. al\ shug-y=q=j j3pI44=tgitogy=4 _u i ql m-by .gk pA =_=v=_ * . , u =m V_= y ---_ ,_. - _. ._-m._ .._t
.-u l
. I
=s:A gra W y . .y =;m -3 m, :g-pw_2m 9.ggp
=M-M? :M-t=% -+ .wWiim=_.-- 3
--- ,R, e==-*-.,=-r:t- Niw=Jz=q.ev
=wM. __ _. _ -. __ _t=~-i-ppy- %' 5 _
-- r:23 = s .
-.A %=t 'TL __._V--+
05' 10 a K ._ s s
rpAj 1
.x .~.
N 1
m.
i
.s s
$ k ,
t s
-, --. .s._.. y .. _ ..s. - _.s._..__s______. .
- * - -t . t 4-e*
-V ~ .h-+-+-..h- : .. _
-- - v.- w.~_x x x _._\,
e-4 -E = w = . \ -i- - ww gw-+%m--wh g.
+ pup 4 ,.~. t,z y 4
.a_= 2 -+ .; _. 4 'Q.q 2.--(
g ; g ;-t-4
==-u_
y--m-w m= r- 7,=r.;y. -v - !--. =_y=.==.m=r=._uw gg&.y=.,sp=4yt . _ . _ _ .
mg mm fuQ (3 2) g __p g 7 y ;= y ,
5 : Ei=-5 ' W.i\ it= _-^1=iihkM(= =vi=-NY.i 4=tN_EfqTL w m - -rV,iEri=b,-,
" =7. +
x _;= M +: ._~+-t s__w i . _ . _ _ -' +_ +FE:
- --4 ~
't
~
\ \. 1 :\
^ D *-* l N X:e ~ $+-+
10-5 *
~* V ' '
'? '#
's
._ i _ _ z _.__ . __1.4 -
-+--
(_'s-
.-+m-__.'._s"_._.._',1 -
, - g% .
< m c mm p=ww%g
_sw w
. = m e %g% =#4-
= =i"5 =rM
- =i=_Jgpy-.-y_.._-._-p.
&t t. .S ==i.
=V -siis mgli4=i: g =x=;=ppy
, - s..-.-.. y gg - _. -g+:.;
.. u-. _.d V \ . 'f '. Q g <=gy mm=+cev=w i = -
t =nm;=p=p=pwie
{pk ?v=====g=..
4,2xi;y 6:s##M-==4 5= M -C =_\ iEM;s~-igl==9,=J
=
t .gp;4-14
- _ ~. ---
._. wm. __. m __ ...w;g
. ., l x x
,\
, 'i. ..
i ,
10*. ,
_ __- _' . - __ . . . . , ' \_ , _ _ ,_
. , . _ . _ . \ _s_._..- .
',',O
.m .....__,...__
s __ w -
gww
=_=- =m n ;m=ntu mwm . .mq. ,
aMMt===1a- M=4 F : =?i== ap m= pit y-:i==A=q= =_.tsn.p=g 3-y - s. y -
m-.7_
+
1, - .)-
"h=QiRI-'-Q cf.3 :
t_.jg _ -lj.zi.4 j;QQg y;ggg}.g. pg.-. g-4g
==54 eel +=-
_ . - _m.c;;.
. 2== r =_s=n=="-i:(g:E._=Mim._g- ygsnggggg=m g.- a - ;4
+ - - - --+-- V4
- V \ 't '
n 10 y-
-.-. --.'_-- --.__,i,
.,- . ~..
+.
P
.j' 2;Q.ci-f --sm .zi :
__ '4 : . t k-f 1- -';i=3-!7 1,
${5 af Si-: ido ;;', r-:y} ci--'Y-d L' {
hFih=49;-AE ' .=_Eu .[.=nH- - ~ s' !=- ."=4p-li:-j-- .-- ti P r=~}Ej:'Q 2 l
. :.= =y_- x _4= = r m . 3 w3-W .:-*:1L.-.tg 4:.'%b. l,
--=__ -*
\ . t-6 a.- i.
q J _'- .# wr a-s-w
==m=. m 4*rma.-w l
(418 notersm q) s__. .
M=n+=i:e# =g s ITIIhVM SITE BOUNDARY =_=r C=h I
. e 4 ,m u._1
_.._. m- - - -. t c r_ -... - ._
r .t_ ri-.g _ -- m.\t
-+ - % __. /t-::*__:\-
. tit ~'t-f: i.
L : . :-
._t-f (3 10
~
t-t $- >
' 'P-- I-- @ @ ~ 5 E
,i . , , . . . . . . . , . . . . . . , - -
s DISTANCE (noters)
EXHIBIT 3.4.2-5 Xu/Q With Distance for Ground Level Releases ($m) by Stabilty Class HBR PEP-3.4.2 Rev.'5 :
L
{p '. .
i4tppJ.4; iy:gm .J ".4LF.4.,.M i g A p4p;;;4 .. q;._, 4
}ftf M@C '- M%(~1. ' ' Ej lty MMSi4.SiM M :.2 7 _% % df$ $ 2 ? ?
4 d . '.Hb ' 64'E ["M)g;%.
r - i= E ,. .t. C i 'h fl!.
E 4 M '. ' .f?--.esi.Mv4 MU 4 +--p 4+i %!%.@hiniN[J.IW 7
- !L
- i!!!nE;Ez~i~="P: y . !! :
thMn Pr":=Q3 +!-
4-$ $ Iti.i!* :HisNN5t'2$$5.5}:lNi 1 g!j!jh;f li } MIHIE T "5NN S!5E= r:[: -
i!. ihi!!!!@'iEi!J h [ .M .--
v' "q ~.'
i
- l. -%.. s%,..
- 4. .m,
..:r. ' :',I.I"w .m.u.q - o q . } 'IiT -
q... M Tw, h.,i. m. 3. 4,.I 1%pA a .,m 4 I' L' T, okp ..TT du U"~ -
.p.", a 7 '+". .,x j, ,- 4' 3 i'.4~.ri . h.[
i
'. ama mQ.4:.a.m,b.
4 a
[ " -. sit.r . ..4. .i a w:. n..pp4.. .
4 4,4 p 4 '
m a
, .y. . ,
' g. .. ..+
gp-
,, 3 . [
u
,3 +2 +-.4=*. . . " -5 'p . Es.i= 1. 4 1 .a m.: i. ;
i . .:. ,..: a, y 4.} J 1 s -
2 r3 % ! p i:- in {i;H dH22: u-.a i+Nis ,; d .
'- 2lf fH24it e M* H +ni.>. ?p. r i p=....
.- Li- +iili T 1 i. . ......,.;a - ..;in.
tii' W!!
. " - _ F . _Mii@:3. . . +#. . _ ??!i. _ . t+te+: r E' . :r . _ .r ~
ri--Y *-2" g .:n lij:.n... . ...: :::. n.. . . _ +
+ . - - - ..g..i.n. .. .:. . .. ..:: ::--. /.. . . = .r.- . . c n. r._._ ..m.-. :.c.r...: _: c. y: t z.,_;t ..ta. :.f.r.._.: . _m..._mw . . . . _._. ;r . . ..2 .r-- t : { :.
3 r ...m.
- p ::*:*
; :1::::: **n.;;= :/ . -...
2_ :::: ::*::
- =:::n.}:::-~ :nn:._ z n::: ._::I* .::* r .=;
2 r :. ..::r ; ..:= :: . .::::/:~.=;.C.- 7 ..:
=:
r_ ; n..~#m i i
. ..%*r *" -
- .. . :".._.d. . ... s. / ::~~.= .J, :/.fr.v.M--.:n :d /_
-.*t..- : +
m :.
-.. - m u.m- ---.:w~-..-
e +. _ _ ~ _ . .y - - t ,
.. w "1+._- .+m+. ' -h - M++- : .
- *+: ;f: .
,.9,- 4+.+. : ' me. =
4-+ e . .M+6 :d :l +++4
;4p'.- Q: 4., .yl 4 4.+..; ;q .-.- ,." 9 ..
t.000 - 1
;a.6, - f f. , +j t,-+- .4. ./ -[-- m.=" . t I. j y. m ,- m paup4 r v- . W 4ilip a , v_ ' mr 2 = ~ -
4 {~ m . w. n ,ww.-.,m- m 9 +.41 a p, A ~. u ;f ,r:
.: F . g%. , y-J4T.~ %q l ej - _iqi[G . .. >rpi .p- eq._-
x ms. .
- m y q..y.m 4 nym 4 m..y4pliM wfC. .;. -.... + g J.i.2. gl( "..+ns.4uiW p%
-}.+:- i r !;m Hih m- '
2 - g-t - .
.-4in d -i). l' "!!!!!.y
- n. + 1 t . .
F [. Mi m -t+ r k,J ijfj-p +a. . , m .. .. : _ "1.!?f n ;i; ..g hgm 13.zs .1. -:.ii.E .i.!..!!.i.PE.E . 4
.1 ?E .!.:i:.. .. 4..JJw n . .. .m . . .. ..n:nf. ..=y . _ . .a = ... =.. . - i = 1. .g! .' t-t i !...s.. . .
- i. ii'. ?, _..~.B. P. . a.i.01 -
s iilTW 'I'"?!"~ T HP _ Qr : ! .:} )ITT T~ : t *
~
Y ST t; it M. .. i.M., ,.E' : -'fc. gn ; 1 {4 -ia yf 1 ! "U .!?'lif.. .:V iin . -' M .Nm n X" ^ :iP. O*":: TIT *' - f#
"F$..."'N'i *"d"'T""?'"h.D['
i 4.O
.a y:,Y:..,. ..
M:clM$'.* ,2 ;. .
}4 2 :;:' .d.'-
- p.e.g
-- -d 54 i'~' ~;
y;r. :.a 4.- V 1i4 y{ .14 t - ;jt:d.: .
; .._ M. L*.I;r Mb;: . ;t r:. :r.m 1:rca rN -..t- ii9- ;W T. .'
((} pp; it :h.:- .g.itM,p ir
.q: .c g "iqp ng .
ii....
..; ~dJ [ g ' p ,.p; y ; n ,d ' . ='4- g; p*,te l}. "m p:jn~
m
-+
M H
;ii-12-a2-~p r:-- 2H!-i---
g,ygt. yq e. :g..:p
.:. ;; l~..... .t. ..; =. 7.:. .::::m... ;.' . .:13 i :....L.-.. .. [w .i
- !' . .m...
i .. . . . g . g.. ....p. . . . .......[..../...,....... ,_.
-+. ....4...
t.i.yl- 3
- . : .: - .n :* *
. . t. %... .. .a . . . n. : .
g g . :=. .-...r. .1.q . .L. o.
.w:P +-+ '* n &':: L:,. g L:- ;w L*~' J:"*. ::*f=--*/ . :::.* .:;* :Mi****** r-'*-- -'*:i;.3- ':2~.J : '~ L ::.V u_/::*.~7. pr :::12.':tn**: "..z..I .'" '~~'~
_ e<.;.++ :n +:n:: _. mn...n. : g --r. / / == e
- - - - - - - -.+-
._r?. - c-.: 7 f M( : n n...: +4 + .~
e 4 y f ,f f +. : : : : _=~. e4 - - - - -
- + . - - -
E ++'++~+++-*
+-+ -
44"- * /.' j4".-+- *- f I /- = M **** m.+ .--
+
24;-M i '.~'9 '. 4' r , P/.-
~ "
5-b 100 -:---- -
-t 3 + i ..
Tj IdbyNw. .. .r J p . a.
.'# _-3:--- ; +1, 2 +M' : : : /:-y -W 4 %+d .:..1 . "m,+a;b.-/.Q.
i 1 m
-+-+
WM y df-+i +M+rn . m ,_ .m.. /: +m ,.. y:. v. -
....J n., .
J ..-
.13.=4~ g ..;hli .dj;M i gly ; LW +' .. .3 +' Iq? .. % fn it dUtE".'O yT Q y.T i..E Q c '.-y:d' 'uff-f s ----M -N. . . d'. --t- . _3iiE . . . . " . . . . . T J.* '. . i 0 i.
- Ei SP: .:1. "!:" . ~. &
- 7. y [r t tt+:- . .
.- ;i$N I ' ~_ _
i Nfi'$3 * ; II 3
- 1....
A * . 2:-+ [Ih.55 . .. -- r.' .' .w ~ .... . . . . . , _ . , . ..1 T '. 'i 1.!I. . I!!il.!!b *$. . . . .:Y ( / 4 i!53 ....q-. ..-t T'3 I . ..MIE! 5I
- INN . . .
v b. ._. L. gn. -
.n...=_=.._:-2-..~=..=....r. .e ._
- m. . J .._.:. .. m. .t._-____..::.
. _ . _ m....
- .*.r...
t
. _.4.... . . - . . . . _ =ne. L:.::_c==k. . . ... wmen :=- -
I u
- y. q.c :EU: T -- :- a . ; +m c.ic
~
asTT1TTTr ffT e:>is r/ #Le. v- . *.: :: '. .zh.: l -E M'~#": b:T'h q. ;..~ ~ * .:. 2 w mg.- m-m . t.W-4.r
.,+n.w.e. '
ta L = w: + -
-+
f l .w .s. s,~.T.~+.u.w _a ..) o - I ..ggi. 4.::a=..=gf .: . p 1. j i 4 9.t +a v s. -
- . : 7,; 7 . -i -5t 1.. + F} q+:+. s q;;-b
~ m .. w. 7.y . ;;;;,p ,f - p :.- f
_#. liWid:M--3 4- 13 2 j i!H
;!!! ~ ;MFE dF ~ .;H .. 9,.4;f:=p,3 mmis E",.- .E.i"3 iiil ' i -::::r :
e .:+:r.:9 .-- r r-t 2.x 4 I ,;
- p yih,.r gn-
.: wr: p.. _. rrr._:..;. . . . - _ . . . . . . _
n
.m . t ~ti.irF . . :': .: . e u ::: r=- :n.: . "...- .a --p-rq u. ~ u. : =p-... . . . . aurr -tr==t m t: x; : .r---myu =:--F u, - -- "tra-
_ p h 5i M.E._ ,. .n...ia.:W. K.E..E...K._.".=@.t;np.
#;"u;ir i: u = =I=.EF,x..E. I E3=@-.-llHZ b. .s. ?, rt r " "._".,.*. _:- .4.- 4 *---- pm-+
- n::.
-+--+
n .--i' r * * ~ * - - " - " - - ' - - * * ' - Mt::*ui::::f.R # ..:- f_n::- y ' +-+-* m:*:: 6"- f :::n: r f_: ;e_.w _ e ,- - w +). f... .u+ %. /. .f p ,_- .
;w~++~i----
y. Ps . : . : s . **. 4.*/. . . . s .a ;4 :N 1 w.7 ["
~ ;," w , i i i ! ! f* -
__i
- m a 10 g.-p q -
- ..~u .
w
+1
- m. -.
L: : w
, e Hx m -.r -~m A l.hv m ..~L: m, ,44- .
F 4mw-w, l. ' w" Pwh p
/-- :w"=%amm A, , ,:n"-- . ~ -
- r -
p-A .
, w*m r .a-P W %.,,,w,.l- 9 ;- -- f -J. +1 T !. !. !.-.- :im. ._ H Hf f =
_- f.- u 9'- A H: d... k; :2 dF'-ho_ 3 N W,l.N.= .. '= ~ w. . ..g , h,n rF (_
~ . . .
2 : 'i F- 9- EE pi.7gimiW i ]----
/ i .ri M.iii:.mMa-!!-T!!W %dD. b .:
I ! H[ E MP=_5siEFiP* li.n. -ri- -M iME'M +3: @..si=*s T:g- m. g!/gr r2.: .g +: 2.m.;.y. _. r-. . . .i!W.... % .m.u.m _... .._ "2: 4n a., g"- pt.
- tdilliE.n.cy ... , 2:=" W-4
'~# ~~
P f imIT:wim % si
- M*I'd~=r ~W~ e.g m 9 T}@UIm In - - . - . .
I.Evi o t. qi
= .-: =:t..aer: : -
flg1MMi k ir 9' EFik- M.M".c l M - ~- H @t" 5 A. it U"MfW: t rW 1 itc ".m%.t:qd' C,- ' ; .;:..e$n: j.u.} i.% wmi=m g.i sb.im. _-_it_ . ' p fi
. w ..ht:
71 t ms n M}t-7.+.t.E h' -3 y I. 1 Mphii s. _ Ems q = f g.f3 y'- m= .qg.4.q: 1 q fj.g 4 g g s;am+mfr9gngigiitfampq;jWy.k(g?
- a =~d ==.g.ai wrsg!"$g.g !w ; p i 0.1 I to goo DISTANCE DOWNWIND, km n '
(j i EXHIBIT 3.4.2-6 Horizontal Dispersion Coefficient as a Function of Downwind Distance from the Source. HBR PEP-3.4.2 Rev. 5 !
?
m_. : ,. r l! z.-.:--
.i. .
F4 4
- 1. ; +. iia - -
uu!HW""T g%w.Q_2.g a.. m w= y nu:a..v a - - y g" . .i ,) a w L wp.:iuta..u.g tT . ia r . i _g.. 4,.., _;. =. -.t.iap.si y,O p. . e... n. .J, h. u.c.:;. .t, ,i . p
.- .=."-... 3,. . , y 3
D. t .+
< . . . . . . ..m, ,.-
1 q. _ . . . . . ... . i i Mein.H $ =t- 7~CibEE,$.M i .rCi i @n.iiE Ei"=7:=i2!!sii!EE :i Uhbip:ii!!jlil.4 2::mihM~ l
=m m-. .+ --
e:.:.g:n..:1.:.
. . - n-.
a.gm. m-- b.+n a -
- 44. :t:--
1 f .1 -.#.. - _ - "f . . . . . .t - l
- T M.- . w : ***: ,p * *** i K, - - - - :.- -+. _--! .,
_ . . ,,.. e: m l
+.+444 e. . . . . .
1 I
- JM ' I- - .- :
# l 1Ii! !j bl)!" i l l: ! ! ~ CIh '!: ^i l s I i ? !]iy[ ' ' ' '
i i i l 1'000 -.d l M, ' W'i y a,
+
9 a i .. g1d.p1.1;.q=. 3
.:..,;'m+
t r-t iL44 WP.= ,-;p.i.s w m-
-r #.r.. -1. - 3/e" %g I e . m x --. =% --
_j ' i
! = .,rr iHEF?"l: i .
E-me
.E=M i
- J: m efiH-EI^:
W. m
- r n tii;i ElfC 4
2 ,* !!!- m
' M*i = 'i = " ' .J"
- ++
N l
!4Ft!!t = hit-!i-i- E shim .p +i -
i !- m. i=siss"M=i43isD Es?i:#W M -+ . ,
.=h. f.A-1.li.s...a!E..E. .W 11i" .n.?.. iM.d -
Il.y.. j n. .a.,b. :. .a..sp"=* IMEE. p= ='-2 =* /. E m. . ..p1f: i'6.. =.
~ ~ ~ . .. . . . . . . U. . I. . . _:a=i! . r =;i_-i=2is.c=+.:5ic l
- i. HP jffi?imM Hi[ Ev 3- f. m'* { "I T' l 2::. : r f' iiii 7 . '"
I i i i ' . :J J . :5 5 4 8 h ii .1: ~ ; 2 i l '.F'- II.%b", -j ;: i Mllt?
- if IN"*IT . thE gy'i 9,'i l"J.,+- *M M * 74*
'~ ~' ' *
- 5 Y
'f f . d ~ }'.Si' J. 'jM 3 } T' -
44 a f 1 * "
,' }~} f- j_ ._ .. , .
M!'. arfA n = w mm'I 2
- .umnin : x +# rn .~L%4.:.- A
+ iv= m m.y-.A. y . .m M- 4ti.
a.g3 p. ..
} 6 ..7:D'$i%* = A / s' N: j- t**2 'O ' E!I M 5$ilij'Q l
MEM rli ' ?,{ I i.N .id Ti.Edfd I'sE N' @ t 1f.- - f5iM$$$t"diji5Ei' EEE3!!E5!ii$/SE d l'.Oi:sp.f
. _._. o . . . _ n. . p ..i . f-5E . .- ^'7EEM4 $$lilii .il@5~Wl!E- C- ^#L _. . . .. . . . .. . pe:. . ._. .
T~ g.4.-..] i'.*. { ^ g $-gt 401 j j - - - gg , _ ; .Z. . . . _ _ _ . e m
' : .e=.
_-*-e+++++wa
,m.. ++ : .++. ;- 'G . . .
_ - - .p o.n.+
+4 *x.++.4w.
g ynt
- -+ f o ++ w. e.e
. x+&.
4
~-
m:
'.at.... -.-.-! e
- =,e.m.Eb a
j s
#~ ^-- - , , .. + +.+ ..+# .e* - ! maewd.g 3 #: I -/ 4 ,g' : 4+ -H f : - . ^ e l l' ' y , .f-4p.~+4+ ._[ :. i j l : w.. , , 1 i i i . g . ,
if P +n. D i+*> . L9 em { i{ ?
- tttrng-upg li:}dii
-/ . e -
j
,[+44l li!? ; r E l:] f H :'.' Z - .r J" d*Tj +++M Mt7tt;"p.ab.
s 21 H 2 , . . . .i!~ 'l-..
+; / - .- ~
m t4
- - r wrn g--
+yu .L,. y.
w p=c =&. ;Q..f.h:*. E.,7.m,
.o i k s
1 iti p& ;
=
i!Wi!M ... @fE 7 i - 1- i t( ii! !!%-W!hy a 1; u: Q.=gg g{'. et r:qg!Mi it ityii = p g M *= h 5;. : Q jh iin E-/E!i diff 4=C h@ii ii
! iiiW iin-iiii gsW!ri=aliiW4ne ~ ,6 .. fr+- .=. =.s:.:W :p= .=:+:% +liim Milici=g dus-i=!
a;31312h. . . p -1 - rI
++:t=r.in u-.n . . =F.. p =W
- a. ,
- =[.:-+--+-~r2 ~ ~4":t: fg:= r._. 4
- n.:.c$s=
+- n g nr:t .
i
~
p
- .j- 2M i 4Y 'M" "Y
jE. g' i!" im
, gdtM'- ^ - I h..
F : . . . ' i Tili .
. . . f 4.. .
hi - .- , F g'i!"h}I- 4...r.
- l. , t-N..j s . i. y.K. # ..d, d,c.+ M1. ..
T n ;{ili:' ' 'f-.:r.h. .. fr {-th .@.,' tlj!) mt II ' N i E a h I; * . .d i ~EU 3 id - t
-- M W:-b I .
rm.br.- 3-1 e - - m? 1a, +&uf;n=u===.:a%an ==:n=?+!w.2.j.$: /*e mir= art'phQ- .5- -ti= u- 3d' .Y- . .. y- - zf ..
.L: J 1 + . . .h: : :.nni:== : xx--- t- t g .n O 4 t.- ;._;_..,f.g=.= =r _. :art:a:: @ .. : nt =t.
u t: ::: 1.nze = =.,ptp::E_x . t um .. . ~. . =-;,/r .e : u:;- . . 2.n.t:= e tn* : . r::f. . a y :::: =:; _:- 4=.:=-~4=x..:
= : =:=.:=nt==_2 ==:- =t tra:: .
t y m .u -
---+-n-n utu :ur : -ym ;2=:. . . 4
{
,,v/ ! .- .= .; ~;- .f -f--~~.yr..- ^
f a;=m ~~ = == ~ ~-- m.. #,=. .
.:d. .pg. m f ,.- . f .;-
_ /. -
---=. *'@-. r. " [ -__...p. [.[ s ; [~ ?i:i '. P**"*' . i !i! .
2 i e i: 1 1: i i .
-!1114 y I1 .f ..<i i- 1 i . i . i . %L . !, i 10
F d ' 1 I .Ir m mf iim
' , ' ~M' 2
i: :::r diai
#i 7Y i==. .'!TE.'f 'I-t!I I I ME ^Di / W ~~
iI' (MT M: 'JMe iii Jiii
'.@k i t-1 -- 3i % QimHii-. 4t p:f=54= H ii i I [i'i N M'Em alib @ -
E - - a$ h I= V =s ! iapRd ij 44 N - - - iN Y.!PWW i Dii lii hMisil=EO Ri: : A di
%Wiiiiiiis##iid 4iWM :itiiiwau!W . Iis .=aMENEL Mi5iEiEii2 e
t M ii ?il dIlliinti!?!sME x:w.s o-L 7 W*a-p3 f
-+ . i. mar-+
- ip yr. '-+ nen:.=%s_:-- + 11T n t:r:mt. . . -
_ . ..an=r--:=_ m_. ... 2 :-+-~ 7~.mm. =.:::=t=x: n=4 - p - - - an m :m , 1 r i; MiijE a ip M# .ca_ 4
= r-qd y n ims= -it e m nrq
( emW 2 pt.m- i
# 3 a i tQm ! W. . - t:. 1] .fa - ,pt ! '
1./m'st@
}v p ... m - ,a .z; :.. .=. w
- 3. x. =p.x.2 ..x .... .=.W Wh:.i---
7 .
,, q # g. :- f=. = .= nn =. =1 2 .: x===r a==2=as=+ - --m:
a 3 ,.. .m e;puuuu=r
. 2..mm s rn.z. m --+4 + { .i h+ iu -e=+-w fq E h=uies+s=_=E=is=p=i is: s==
d+f.a= nl. a n=. .f =m==. n= =.,.c=.=s4 -
=
m !h == l=m:3== ti - 7tist=h= d..: 4w!.= m : w
-,plin .f. . _ ._ 2-ge:n+ ,a.r-:::. . . _
r " -
=11. q: ! g .+w ,. . .-.. . . mar _u n f I. 2 9.. .~3 un.. u . -+ ::::m-* *!~ ,_.:a:. 4 ..t nnn.. '---+- rtty- - ~~--+ 1 _;;:nng. - -,w.. +
m
- - / -- --f : , : .W
( .. l
}. jj ..
I i I (( .11 . I I i. 5[. A i ! ._ I ' IIl II. I t!' .I!'i . t I s iIII ;i: 11I f 1 - I I iiI - I -I l.0 ' O.I i 10 100 DISTANCE DOWNWIND, km o
/
ex
- EXHIBIT 3.4.2-7 Vertical Dispersion Coefficient as a Function (V) of Downwind Distance from the Source l HBR PEP-3.4.2 Rev. 5
_ _ . _ . . . _ - . , . . _ _ _ _ _ - . ~ . . . _ _ - - - I l C 4 EXHIBIT 3.4.2 . WHOLE BODY DOSE CONVERSION FACTORS FOR A SEMI-INFINITE CLOUD-I Time of Cloud Passage After Dose Conversion Factors Reactor Shutdown R/hr R (hr) Ci/m3 Ci-sec/m3 1 i j 0 650 0.18 l 0.5 610 0.17 1 470 0.13 l 1.5 430 0.12 ? s 2 330 0.092 1 2.5 350 0.097 ! 3 340 0.094 3.5 330 0.091 4 290 0.081 4.5 270 0.075 5 260 0.071 6.5 210 0.059 8 180 0.050 10 150 0.042 12.5 120 0.033 15 130 0.035 24 86 0.024 48 36 0.010 72 43 0.012 Source: RG 1.109 Table B-1, ORIGEN Run for inventories
~
() NBR PEP-3.4.2' Rev. 5
-._.___.,_._...__m._2 2______ - . - -
EXHIBIT 3.4.2-9 Dose at Vari:us Distances froa C1 cud Ccnterline g--
- - h+ m.e
,m xp=m ,- y_. .p s p m m ,e m.
e q
+ -
1- 1- ', a--. m n=,- ~e n n g= r.- ---.-.-.-.yg.y; exwm m ' ,- m mm
;_; - - a===2
( ) ~~~~ TW- -10 4 4e M4-) v' d
~*'i' 4--W=i n 4-H4 -iM ,---= TU -- - =i= E4EdT=4 X - - t-i== T M l '~F ii ' '~h ~ ~ =.e me =
4 m m IOm rrm==
- r - _ _ , . ==. =n. %. , __. = um
- =-
.z. =. 2-- QEi-y =Y3=1=iE' 26i=7=
mm
- 3- - - -.,y a .u.
r 2---- vek 3._g: ,
< 1 1 -. \- ; ;4 -.aq. . -1 -
w - ' l w j i y .,2
.l _! i 39.,-- ,i ,, . ii i -
4 i it
.., ,--- wn=w= a> w= =w sw =+=tm a- = 100m ,::.
c supup+1 -mw=m= w +2H :M .= itEsi=ri. Adda n=w
*-- <== = ;'- 14 w=V-Y= =iM~iMi-i=i=Me@ =
t,
- s. - - ,- r3- c_y
= ,==
m\q=. _;===tX=IE=t=====
.e,
_.;M3_,\ _ m m_ # 5--- w ___ d - a-m = = 4=c =c mee mJ t trFtJA15N r.- - - - =*- -t I-=j =' 1
?o **-= = 2=1-s = =
ei'Pfi- M ' i=h it444DE=~-' M&Rkb; k==kadmti=iu\h 4 i=Mi- W=2=k
= . = = = = y :-
v ,--- .-- - .
- -_- g g.Qg ,, -- h=.p
_ , - y 1
*- t--- .o t. 1 ,- ; y&g_
i .\.->; i
, g - --
ll i .
\--. Li e,T '
o- = 300m ( y'~) 1 "o i go;2- q- mem=xy + + +++ m= ==" i i
\i - ii 2w = + = + = = =W M t*-* ^7 ,-~ =. ==2g+-t-i--151 === ;cmMf443!- *hW =
{ih-t-4 = 4='+ %~
< f-- U: m=Ed= 9 1Jr+1-EM.=W # =1 -i-!P= ?G#*Td=E" ~ ~ ~ == ._g g . 7 m . =======; =r_:--:2-==== , .
g .
.. pq mg _g -
un + --;yF = -'
= % = r %3 = #Wt.F 1%tf: 'IM L17hf I h j -f- = --= ,__ =2-k = Yh == V+w M+ ;-
i T+ lI= = =A
? n=f 'd f=='m(_
u a=n
= == =+=~ im = -= = s} = n+ar t= =T ~j i E=
- 11 121 T] Z- :._= =_
t
*C - 3 :::zc Z--
_- w___-= _ , = _ . = _=_
. =-z.----=. - -=' ==-=. ' {=-- =- - y=t-o y --- ;].c _ . ,p_
(o *-= n
, i i
1 I
' \i I \
[ The Gaussian Distribution represents g . { !
.th2 reduction in concentration as a i i
- h. _
- function of distance from the cloud I. lo-3.,-
I centerline at any distance. The J e wi+n s
& h, .-u n.my:, +tew -=H- = * * =* _g,,33g,n =
i gg& g oth:r curves show the contribution m 9 of direct radiation added to immersion E-~'=i =Mi?i-N M-P!t =
- c. #M
= = N H=h_*Mi =W~FI$7 I ;dd 1 5_
M1 Nk I
- both of which contribute to the G*:
l gama dosej *~ - i e 4 - -
-g
- -y g] ; g is({; gQgjy
= == =g --= -15}
- =j .#5s+=-s=-= 4% E=f5=' !Z ~TT
;ur $- ==w_===== ====u==a === - -
v7 -
- 3. -- -- - _
I f (w, )
,, i H I o 1 2 3 - +
A . . Distance Frora Cloud Center 1.Ine (in units of cr) y ' l _HBR REP-3:4.2 , Rev. 5
p
- 4 -. , .. f:
- u. ... ..,
. 7- .;:' ...... QVQ,Qivt &
F}
\ H. B. ROBINSON -
SEG PLANT TITLE EMERGENCY PLAN AND PROCEDURES
- VOLUME 13 THYROID DOSE PROJECTIONS PEP-3.4.3 REVISION 0 l
REV. APPROVED BY DAT DATE REV. APPROVGD BY CATE H IV. APPROVED SY V] _] I
/ 283fm 1-/s.// /
j .2. .s 'dJ .' . sg f.15-fi 196 /ar B x-Mi Y $b fnN lt-11-iI Recommend By: &, ,, d M-M/ EERC Supervisor Accioved gy; g g [gg _ l Plant General Manager / t l
PEP-3.4.3 THYROID DOSE PROJECTIONS v 1.0 Responsible Individuals and Objectives The Radiological Control Director or the Dcs: Assessment Coordinator is responsible for calculating thyroid dose projections to be used by the Radiological Control Director and the Site Emergency Coordinator in determining and evaluating possible off-site consequences from a release of radioactivity. The Radiological Control Manager will assume responsi-bility for thyroid dose projections after the Emergency Operations Facility is activated. 2.0 Scope and Applicability This procedure is intended to be used for all manual calculations of thyroid doses subsequent to that in PEP-3.4.1, " Initial Dose Projections." It is intended to provide realistic assessment of doses at any point in the Emergency Planning Zone (EPZ). This procedure shall be performed periodically as directed by the Radiological Control Director (Radiological Control Manager after the Emergency Operations Facility is activated). Provisions are included for:
- 1) Determining the Atmospheric Dispersion Factor (X/Q) based on the Atmospheric Stability Class and distance of the point of the dose projections from the point of release;
~) 2) Correcting the dose to account for the time after shutdown that the source data is taken; and
- 3) Correcting for distance away from the centerline of the cloud.
3.0 Actions List of EXHIBITS: 3.4.3-1 " Thyroid Dose Projections" 3.4.3-2 10 Mile EPZ Map (E:: ample) 3.4.3-3 50 Mile EPZ Map (Example) 3.4.3-4 Xu/Q With Distance for Elevated Releases h 3.4.3-5 Xu/Q With Distance for Ground Level Releases 3.4.3-6 Horizontal Dispersion Coefficient as a Function of Downwind Distance From the Source. 3.4.3-7 Vertical Dispersion Coefficient as a Function of Downwind Distance From the Source 3.4.3-8 Dose Conversion Factors for Iodine (Thyroid) Inhalation Dose 3.4.3-9 Dose at Various Distances From Cloud Centerline. Note: Exhibit 3.4.3-1 " Thyroid Dose Projection Calculations" is for recording and calculating [ dose projections. Steps 3.1 through 3.6 provide V input for the calculations. HBR PEP-3.4.3 Rev. 4
Note: If the source term, stability class, and X/Q are knoun as a result of recently completing a whole body dose projection per PEP-3.4.2, transfer - O' information into columns 1 and 2 of EXHIBIT 3.4.3-1 and ge to Step 3.5.
~
I 3.1 Use the source term calculated in accordance with the appropriate PEP Section 3.6, " Source Term Assessments." The source term needs + to be in terms of total curies of Iodine released. If the source 1 term is based on stack / vent monitor readings, use 15 percent of this monitor-base.d source term. If the curies of iodine released can be determined from isotopic analysis, use this source term directly. Enter the Source Term Value in column 1 of EXHIBIT 3.4.3-1. 3.2 Determine the Atmospheric Stability Class Note: Steps 3.2.1 through 3.2.5 are in order of preferred use. i 3.2.1 If operable, use the plant computer to obtain the Atmospheric Stability Class, wind speed and wind direction. Note: The wind speed and wind direction should be that best approximating the effective height of the release. This may be determined by various plant monitors. Where available, results from plume tracking /nionitoring should be used to confirm or modify these estimates. 1 3.2.2 If the computer is not accessible, determine the Atmospheric Stability Class, wind speed, and wind direction as follows:
~
- 1) Dispatch someone or proceed to the Met Tower Building.
Note: Pasquill Stability Class can be determined by one of two redundant systems (3T or i T . They are located in the fiYst two ha$)inetsontherightofentrance.
- 2) Plug the leads from the pulse counter into the correct jack. The black lead is for or 32T The white lead plugs into the white jac
- 3) Set the pulse counter switch to position 2, zero the
! pulse counter and obtain pulses for~ninety seconds. Record the pulses below.
- 4) Look up the current normalizir.g factor and the correct T # T zer adjust factors. This information is A2 kocatedonthenorthwallandisupdatedperiodically.
1 ~ Ensure you use the correctgg T or_3T2 zer adjust - factors. List below. O ( X 10 X .01667) i = T or g2T Pulses Zero Adjust Number 1 () 33 HBR PEP-3.43 Rev. 4
X - i . Number 1- Normalizing Factor Temperature Differential
- 5) Circle the correct stability class to be used in the Dose Calculation.
STABILITY CLASS TEMPERATURE DIFFERENTIAL ('C/100ral. A' <-1.9 B -1.9 to -1.7' C -1.7 to'-1.5 D -1.5 to -0.5 E -0.5 to 1.5 F 1.5 te 4.0 G >+4.0 6)- Obtain and record wind direction and speed on EXHIBIT 3.4.3-1. , 3.2.3 If the onsite meteorological station is completely inoperable, the following can be performed to obtain an estimate of the onsite wind speed and direction, and the appropriate Atmospheric Stability Class.
- 1) Call the National Weather Service Office at Columbia, South Carolina for the current weather observations. ;
O Use the data from the Florence, South Carolina station, > which is available in the Columbia NWS office, if it i: svailable. If the Florence data is not available, use the South Carolina station information. Obtain the following information from the meteorological forecaster who is on duty:
- a. Station for which data is given
- b. Wind speed (knots)
- c. Cloud cover (in tenths of total)
- d. Cloud ceiling (feet above-ground)
- e. Wind direction (N, S, E, etc.)
Load the programmed cassette (the same cassette used ! 2) in the Automated Dose' Projection Procedure, PEP 3.4.5) into the HP9830A, enter LOAD 3 EXECUTE, and enter RUN EXECUTE. NOTE: Press the EXECUTE button after each entry into the computer to allow the program to proceed.
't A
HBR PEP-3.4.3 Rev. 4
- 3) The display will read " STATION.. 1= COLUMBIA, 2= FLORENCE."
f~- The program is asking for the staion from which the weather observation has been obtained. Enter the (- s) appropriate response.
- 4) The display wi'.1 read " WIND SPEED (knots)." The program is asking for the wind speed in knots for the NWS observation station. Enter the appropriate response (example.. 1.0, 3.0, or 0.0 for a calm wind).
- 5) The display will read " CLOUD COVER (TENTHS)." The program is asking for the total cloud cover of the sky in tenths. That is, if the sky is overcast, 10/10ths would be the condition. The proper response to the computer would be to enter 10. If the sky was clear, the appropriate response to the computer would be to enter 0. Enter the appropriate response.
- 6) The display will read " CLOUD CEILING (FEET)." The
- i. program is asking for the height of the most obscure cloud deck above the ground level. Enter the appropriate response (example.... 1000.~).
- 7) The display will read "JULIAN DATE." The prcgram is asking for the current JULIAN DATE, that is the number of calendar days since the first of the calendar
.[~) %j year. Enter the appropriate response.
- 8) The display will read " CURRENT TIME (24-hour clock)."
The program is asking for the current time (EASTERN STANDARD TIME) in the common 24-hour clock (that is, N00N=1200 .:nd midnight =0000.; all other times are reported such as 1 p.m. =-1300). Enter the appropriate response.
- 9) The computer program will now compute the appropriate Atmospheric Stability class, based upon the weather observations entered into the computer. The output will be displayed on the visual screen as follovs:
l l Wind speed = (number) mph i l Atmospheric Stability Class = (letter) l {_ NOTE: The letter for the Atmospheric Stability class will be the Pasquill Stability indicator, plant process computer.
- 10) Obtain and record wind direction and speed on EXHIB1T 3.4.3-1. Use the correct Atmospheric Stability class in the Dose Calculations.
I '[) ( ' \s j
- . HBR PEP-3.4.3 Rev. 4 l
-4
3.2.4 Call the Licensing & Permits Section in Raleigh and request l
~~N meteorological data (See PEP Appendix A.4). I ,/
3.2.5 If there is no meteorological data readily e.vailable, estimate the wind speed and direction, and determine and circle the^ appropriate Atmospheric Stability Class. Sunny Cloudy Cloudy Clear Day Day Night Night light wind or calm B C E F-(14m/s) = (19.0 mph) moderately strong wind C D D D (>4m/s) = (>9.0 mph) Record wind direction and stability class on EXHIBIT 3.4.3-1. NOTE: Assume Stability Class D whenever it is raining. 3.3 Locate and mark with an "X" the point of interest on either EXHIBIT 3.4.3-2 (10 Mile EPZ) or EXHIBIT 3.4.3-3 (50 Mile EPZ) and estimate the distance in meters to be used in Step 3.4. Note: EXHIBITS 3.4.3-2 and 3.4.3-3 are examples only. DO NOT USE. Use the full size, appropriately scaled maps provided. (' 3.4 Determine the Atmospheric Dispersion Factor, X/Q, by,using either
'~ Step 3.4.1 or Step 3.4.2. Step 3.4.1 makes use of Xu/Q versus distance curves by stability class. Step 3.4.2 makes use of the original equation from which the curves in Step 3.4.1 were generated.
3.4.1 Determine the Atmospheric Dispersion Factor, X/Q, using either EXHIBIT 3.4.2-4 if the release is via the stack and if the velocity at the upper wind level is less than 9.0 miles per hour; otherwise, use EXHIBIT 3.4.2-5. 3.4.1.1 Using the distance determined in Step 3.3, locate the distance on et,her of the horizontal axes of the EXHIBIT. 3.4.1.2 Read up or down to the line for the appropriate stability class as determined in Section 3.2. 3.4.1.3 Record the appropriate xu/Q from the vertical scale for use in Step 3.4.1.5. 3.4.1.4 Record the E (wind speed) from Section 3.2 for use in Step 3.4.1.5. 3.4.1.5 Calculate the X/Q for the point of interest and enter in Column 2 of EXHIBIT 3.4.3-1.
/O N~-)
HBR PEP-3.4.3 Rev. 4
(q X' = Xu ,u V) X = , _= Q NOTE: Wind speed must be in units of m/sec. 3.4.2 Determine the Atmospheric Dispersion Factor, X/Q, using-the following equation where concentration is to be cal-culated along the centerline of the plume at ground level. X
= 1 exp -1 (H 9 ""y U" z 2 ozi a -
t where X/Q = AtmosghericDispersionFactor,
, sec/m n = 3.1415 I u = avera'ge wind speed', m/sec.
H = release emission height (60.7 m for stack releases, O m for ground
- level releases).
p\ j o Y
= horizontal dispersion coeff'icient, m; (see EXIIIBIT 3.4.3-6) .
o = vertical dispersion coefficient, m; (see EXHIBIT 3.4.3-7). 3.5 Determine the Dose Conversion Factor corresponding to the time that the cloud is projected to pass by the point of interest. 3.5.1 Estimate the time of cloud passage over the point of interest (x): j distance to point of ,_ interest meters) ( time after shutdown (in hours) + hours Select the appropriate time of cloud passage after reactor shutdown from the left column of EXHIBIT 3.4.3-8. 3.5.2 Record the appropriate dose conversion factor in column 3 of EXHIBIT 3.4.3-1. Note: The values in EXHIBIT 3.4.3-8' apply only to-elemental iodine. They are overly conservative by a factor of- 100 for organic forms of iodine. HBR PEP-3.4.3- : Rev. 4 i
- ~ , - , , - - , , . . , ., ,, ,, .-. , , - - - , . - < --
Y The values may be used directly if the sampler ,i p is a charcoal filter which has not been specially treated to trap organic forms ~(e.g., not doped-with Potassium Iodide), or if the sample was taken by a charcoal impregnated paper. filter. If there is an indication of a particulate release, use the values in EHXIBIT 3._4.3-8. They will.be somewhat conservative, but not overly so. 3.6 The dose will be lower at all points not on the centerline of the-cloud. To find the dose at any such point follow'the steps b'elow: 3.6.1 Estimate the lateral distance (y) between the point of'
. interest an'd the centerline of ths cloud using the appro-priately scaled map, (EXHIBITS 3.4.3-2 "10 Mile EPZ" or
- 3. 4. 3-3 '.'50 Mile EPZ").
Record: y= (m) Note: EXHIBITS 3.4.3-2 and 3.4.3-3 are examples only. DO NOT USE.them. Use full size, appropriately scaled maps provided. The lateral distance (y) between the point of interest and the centerline of the cloud is estima u d by use of triangulation of the point with respect to the plant and the cloud centerline vector on the appropriately scaled map. 3.6.2 Using EXHIBIT 3.4.3-6 determine o as a' function.of distance (Step 3.6.1)andstabilityclassTStep3.2)bylocating the distance on the horizontal axis, read'up to the diagonal line for the stability class and' read the o 'from the left vertical axis. Y 3.6.3 Divide the lateral distance by the o to determine.the number of a 's between the cloud cenlerline and the point of interest? 3.6.4 Using the number of a 's, refer to EXHIBIT 3.4.3-9 and determine the dose coEversion factor. Locate the number of a 's on the' horizontal axis, and read up to the Gaussian curve. Read across to the vertical axis for the dose correction factor. Enter the dose conversion factor in column 4 of EXHIBIT 3.4.3-1. 3.7 Perform the multiplication and record the projected dose in column 5 of EXHIBIT 3.4.3-1 and next to the appropriate mark (X) on the map. Initial and-date each calculation in column 6. 7 3.8 Report the Thyroid projected dose to the Radiological Control Director
}d- (Radiological.. Control Manager if the Emergency Operations Facility 'is activated) or Site Emergency Coordinator. .HBR PEP-3.4.3 Rev. 4
ll l 1
) e 6 /t
( l a aD n i/ m t e u im l ni o IT C O *
)
5 ( d e t ) n cem ese n joR o oD( l r o P C
) n 4 l om6
( aio rt r3 n eaf p m ti u avFe l L eCt o D S C
) n 5 3 o
( i)3 etF n mcC p 4 m ieDe uTr( t n l r S o o m u C C l o C 1 )
- S 2 3 N (
O )4 4 I n 3 T m Qm3
- 3 C u //
E l Xcp T J o ee O I O C st 3 B R (S n I P H m X E ) ) u E S 1 i1 l O ( eC . o D c(3 C n r D m ump I u ore O l S et R o TS Y C
- H T t t s n e '2 if r ooe n P t m n u I l o
C y t i s l s i a
- bl aC t
S 1 n m u l o m) c o = r( F d 5 i n n W c m u d e l O S es e/ pm
- C o
5x m$F>U I' l? >
?
i s lI jllll
i 'w . .. . ~ .K"' 1 >a pi
~
2 ; A "'T-
/ ~, \ . I m ~* ' u. f/ . p-f \ - . - - ,/ ' ~ ~ . / .e ,
fS \ , s f v/ ,. .,. .-m ~
\ \. _ ;.I.
I. f.~'..\.-%,&
$ t 'i{:4 / ~~' / /1yckcy\ M l \ CGV ~~~ ' ~ ' * 'c / -}?.) - *. .f .x. *, > . ) :* 44 '
(' __, , -
? ~.S'% &b i / / r_ % s ky- ,,
e'---~-- J.. ; .,._ -
,3 . .i 't-y 1, A <, lv,, . : I.9 /. . , # ' ;g ~ pl ,. .)_ /_ " c , e,. - .. s.,, ~ ,'
s f_ < T. .
\ l -
N ' s y - c.- p. [ }&..,:.;._ . .h(, &[ft') ;-f,,YN
} !
k
- b y,..
y~x
- n .. , m %.
7-Wu ._
---~,.y. \; .-:q / *. e %s.,$.M +
j N'. "
,. i ! 1:a;.g. - . . Je ! ". A r* , ( , Q . ~<.h ,. ' +_- :. ,.s 'N' '~W ,[L 'il;'" /.if.3 Y%
W. f,,, }p .l ,,l A.X. - H . 1, y A L;.'y . p!\ y v. - --- - 4 . m- m- . ,g.:;
- Q~ , - :~, ,x'GJ' g,, *3 -, i.u.. .,?,\ ' j i ~
- s. ' ;
3.' *i 0 .-
' " " ~ . ., : Q. . .h \_ / ? . ~~:- .J i '. . -: /f -/ ~.
L'
/x / f ?\ L ' .: ,,p / :T Q ( Q-S.% / ,. - C
- f g' = yyy e
'< _. ~ W.. a,g x . . . ., % ~ , :,, . 'T . ~ . -
t L '
> s.
O R- . a . h. G + ,' *[}A{_..-t-+ i7. ^%i'J .e le ,d
-~
[ ' . _',. tu,,[ -,:t .
~..,(yY .'. m' , ~ .. . ~ ' l i~-~'... f<,g- *% ' t / ~-
G' 79 . ._ . '- y L) 9
'S*','- "',K.'f. + . ~~'~~?f! , , ) . .' . , -
i% *. B..-T! " ,#
/ ,x .c, e " "j f' i N ' ' , y <-- y, . - - - . s . . . . . ~~ ~,,;-y_f T.: \ *f '_ , ?
Q/ f,
,;- . - MT ~b n' ;
3 _ A ,9,%p,m - .' &
," c. . /,>; /t ' V '.. < s, ~, - w./J' --m :\ / N _. ..-' .r'-
N tt - .'
~j-Q ,M;'.(.% . . m:
e q. ..;3 ./
%g. _ _ ,
c c g.- . r i .*t __ #. <.,. , m; m
/_,. 1 s ,%. .. .
W 3
- , . - ._,p.n. / .. .x. .. . .=t*t, . , z.a
- s. -
~
l* _ b3
.5. ~ k,*... . ' ' .;;"C. 4 }, X % N '.;' .
- x. !: '
- , l" '
b 'l g? nQ- m '5._ .n-
.i hJ ~
1
, - - c.Q: ,. ._-2 . ~ .- p~- K y. f . .. ', ; . g e 3.- M, , ^'- ./.. / . W. ? s. sy '6 n =~- 3 .y- ,)[ ' - }. _
I .>. . -, ..
$: . gly;~d- < ,' .
3I
,yQ&. , n. M,.&t. ~~f. . y . .. c
- ~
r
' a:Qg@,4..,- '. .2 .. e . . .
_' 3 ' S e N
.', s '%-9
[. ,. ;-- ,7 ..'::
& wy-- . . -) -~
u: ~%. -
. . :. .y :. -- r 9 ', ..
f ,A . w u. V.a .....:. . . > , -
.. . : g;. .
4 _ . . .. -' ~ ,.;g
- .> . y .
,,. e J ,. .
y - 3./,~. ..s, .\ >
' \ f _%. - ?
[,..} , ....,,.,.,,.,.g.,," l '.h . _ _ _ , [ .} . QM. ,,D}. _ .. x
. - .s - .g A. . ,:..~. .
v . y-
~
W k : , -, _f .c ,s; 'O' ' l , .h- ~ ~
~ j q' $ ' , .[ * ~~' j: ~" ' ~ = 0O , ..,3,- .9 .. &..,,, . .T'; , . .h .. /m. . ; Y, h,. , . %-l .. . . ,) . - ~W . ;s .
f'
~
- i $
[< . '. ) k l. . I 1: -.
- h. ,
m EXHIBIT 3.4.3-2 Ten Mile Exposure Emergency Planning Zone ( v) for H. B. Robinson (Example) HBR PEP-3.4.3 Rev. 4
,d ~ ' ,h m ~ -, ,.i .-.,a . .r. -\ l ,s ....a. , p.,,, ._
a$"., .,
' a r 1 , #,.m.j,,$ ~* .I(' y 'T . ,/a , + . ,. M,4'., Mi . m.o. %/ -- * *'**' '*T's r -- - p i
6****as.'. ? ; i 9 , ' * ** *'. '# .-
- ****~"O.
to - ~ ' n d.4,J /Ne% P.W ' -'
' .g 4 .' ** D.
rce
' F /, ,, u. gj ~. v. r i '% * .2 4 I" 9 I H *.f ON Og,~**C '***----.s, -
g,,7 gi y(. ata g +4 v.r.8 * % ,.
~% _ .. -
me.fo,,,
.... g.3,, .q ,tu e y&.g,,,,,,,,, ,, f._,< u o s ' a w - '! n c *~T e #w . . , w\ , ".y Q 7, ::'... I. . . y" ! esa - , -~,
- n t;,',,'5 C/ O 7 t< - '
~~% e//* - , 2: % ,
(* ? "*" ,f AA J, 9
/ i? l- p, .
N~)p m ' A .a~~
!u- ~ -~-\
l * .a s .
< 2 . ', .gC"i - e .{s,J ,,~.r qM,,,, r. r.a z - -.a-- , m- -- -s ~
l- . u u. : A AsT ru s M, ,._,,,,,, 'd, .-ci L., ,,! 3'r
*-c r-- ^
_ h> 1 ' . ==bw
,(. ,,, ,,, .ter * ,},, ",,,,,,,3 t,nac m, '~.'J; . . ,;
- a + , " ,. \'
s
+ ,, g J -* w -
u r,, , t ,
,,, & ~ 7
[,, r r F . . , p/..~,' g i
. ,. :s t ,,r ..r u r a r. iI t m.P'"* .
W, -
-.,,'Y~*X,,-h.'
s n y
.,-,p . 4 * ,73 4 * -
p ;, 9,,l'c
! c m..y ,,,,,J
- g:: ~h y .~e ,,
,,h.... # t,e ro ".
- t -'m , -
, ..n,...
i.- _.
- n . % s, .
a ,c [=4lp ', j' a o p, ., - M , e , j 3'
, - p[Q[;," @ _, - a M12 t_._'%';t. . .;,;,. .[4.J g < i sarr 7 -- y- -+[ ~.-- ,'7 T n. %W- .
2 ., Q .: r.. a- p,*a i , .. h,ei, K E P) > dl !A W j ,.- ,' ,[?' cd ! [* t , - O -. l
- h. -A:
P e ; p at s Amd wi ,
,i L,l'-Q. o)-
d a
- , \.
u ' , + o. . _ g.,,
, % (T ,,,,,,f, w. ' ...xm\y - ~ ' .s E .p/c s-a ,w L y . , ;i - .eo ,,gsw t e. io 4 o ,oe : - i .i s . a .-. N, , g.; _ '
m J. r. ,/. (c, ,/ t- a . - j, % .
' f~*y Mo%'4, ;.4-Q',.-. e ., ..
t, j y* ** ' ( q l l? t. ~ ~ ~ ~ ,l _ rE.G:.
% ~~ /,,. 'a *.~ , ay ,
t. spe a.M,,' '- . o-. L .,.' norencel , y ^ . ., .
/o --- h '".. n),wT ' _ I.- > =.,N' ' "" u. '& 9 ,,, & ',' ,(
s . n, ' . 7, ,4 rt.,d,
. ~. .[~ A, .,, 7 \c. 2 u5 G ;.s
- .-%._,_ .. ,- 4 ....
~ r. x e-. -~. . h .
r y s n's - n E a c r / Tr, - A , m x ; t ,, . o,,..q.,,,, r 4.
. I . ' , L o ne (. ,,,,, '. v'~6 COLUM8!A L;;;q-- -a - y~ h ' b. m A.gN - ~9 ./ 1,Qu f.,-f.g u._ __ 2" ._m-- . "v"--'(a .., e- ng PQ, n s a } _ f _ - Q, - - h , , g \ ~[ .
W,m ;b R
^ M,,-c,~ - . ".N & %$~L. .. _ . Q \ f,lil,"',li&./.l , e. . - *C ?= ' n..-W --' [. n! -b,. . .H+k.p n 7 M '. o, . - - ,,,,'~~ > u ", ~,~.h y- .
- Sumter g. , *. g j ~ pui, c,r, _. y r, -
.t w - ,, ,. g'"~ . - ai t 1 .vv ...; + "s ' ~ ~
u o .y 39 . . a i ,' .
~'%. g ' -
2
-.,.,g .r.,j .- --u 7 , '
v
- g. y ..
n.,,,,,,L..,
. . . .,.,y ,, ; , *-'~ V' q % >j t
- 3. ,,,,
i e,,,.,9 *: *%e' , - - s<
~p ' q . /, n'== ,,J' a
M .A/% d/s. K i' a
~
4 4
' dla g.,l' , T9. , r '. n n,'"""~
o u r, W, . ,.' ,,
- .3
* ~ 'fg~ ' ' 5 tlM s _, sy,v4n ,.,3 .,
s-i , .y.
, . . , 3c, . . . . ,,,,, -, ,. a.a.. ,& * ~~
somm..m , ,f , s pni , /,t e' io io ao' .ow == N,- #e) y', *w f,' . g",,,'.'., c. ,,,*J . . - k u-
,,i,,o,,,,,, ,g , ,,,g, ,,,j; ~~-, . . "~ w jf q.V ? f - . . .' '; ', 6 i aYgehg., ' i,' ,_ / I j O ,M$(j [k,,[ ~ EXHIBIT 3.4.3-3 Fifty Mile Exposure Emergency Planning Zone for H. B. Robinson (Example)
HBR PEP-3.4.3 Rev. 4
Distenea (nih a) 12 5 10 l_J_ l t . . F 2 1 a e=- __._x =*=M c:i =- unc- ;irr
. __2_ _ ;__
- f=T
_ ; 1
=
MD!IMUM SIIE BOUNDARY (418 meters) ~
~k ~
t ( < 10
)
- NT,
.; 1 m
n : .%-----: =_t,. . . .. m.. , _ ++ - . _ . , - _ - _ .__. .
., ~ Tile e ~7_._EGEF=. . _ . . _ *-, '+y :. ~ ~ %
EiA--m w* ~~*
~~C=
it- ,
* -- : :- _v_=_%'.E.
- ... .v. ., ; ,
.z mus =__ .i-_- = i ar_'.m-h.v_ .. ..- . =. K_iieh . m==k.
w-. i. =K,?%,..9 :":
?= - . .
8 m ---v= s=n =- 1_ -_;_ - -. .
. ~ _ _ -==
_. + '-- --
.g, .. m =.- .-- . i.
10 5 .
._ . : v: '., , v =. ~ ,I - 1 u - -- ~ ~.._ # . w: . . , , = _ _~ ~
i"l , , , , _ -\ \ 'x =4 as _gr= = sa. v, :, , g==w
.=.- . sai -aarefwe;= - - -
_. r. . _ _ , - _ - . r= mm .=. c =s-y-set
._ _4, __=- ;p:;;m_x - ;r ,r -- .g. .r- h g , n ,- -
y _ __ _. _ 4 w. .. _ , _ _ . _. .. _:, _; . ___ _4 .._ _m
.. . i Xu (,-2 ) --- = = -
Mi 1F MMM, F MSN-CM __.__. M*M , q r=I~ - _ __ _ . .__ ._. __ ;% .c_ m====w _;g. .
; L, .,,, , , , ,
- 10. , , . ,,
, , . 1 - s x -- = .- -
i=_h
===
A:+ w = n.- ~: S T=se=whw=-_ aNasa=n =)ws
.C.-'Q ^ ~ ' -~ ;e T m.-
i __ ~ :==msa=- -- -- - y.. z z zz dn._-_ . :rfr==_. r e. is 7 y ,
\ .-
1 (J x 10'7 ' '
; i 1 \ - . ~ ^ =:. _ ~. = p : == == ?E E'=w"n ? ,
y .
= = __. _. -
g __. _ . g _ _ -,_-
.. a , _ _~ _ __ __._ _ _ . __. ._..,.___,s- _
1
' ~
10'O Y' .I
1 _,'.
l
;W h v.= = % ;_-gn=ymm;Q
_. _ _ _ _._- g . ._ .. .,. .,__ _ . l
.e~ =
i. b
. = z. : -= -_ g: - .m._,g_3 Ti L5-. gq33 -- --- - - ~
3 wg
==. ;;;;r'='- :7 ::: : u _ , _ _ _- _ _x= -- - - -
- x I
_t -+== __ .. ._ _ _ , . . _ . . . . _ . . __ _ _ , _ .-- ; m ,_- 10~9 ' '
's 1 . . ...l.1 .
Distance (neters) . EXHIBIT 3.4.3-4 XU/Q with Distance for Elevated Releases (60.7m) i [_), by Stability Class V HBR PEP-3.4.3 Rev. 4
, Dist:nca (nilos) 1 2 c 10 ' ' .T a t o' ..
v_. m r.. - g -
; u -- . ,_
- t e
%=m w ay .y agegggswf; w+aw-m m._ta m W ra=Wi= 3 A= 4=M41?. T="3Meims:=44n:#=-2i= -itM:ist==&= -.- t a=g,_ pax '-v- ty =3_g=qr. ~*._ x ,m s -.- +- _ -; ---!
- :NiiiMf'i-\} =-MJN'- ,V
# g 'tMNiMENi4MNi iI- PI= =iIf=M55d6iM~i@M (V l e $=i=N=%EE M' g_ __. . . ,3}N
- .. q _
m
- t*MsiM&=is_"&#i fGi==L-;3M45=dMW,
, . _ , _ , 4. . . _ _ _ , _ g s_~ ~ . . =- ~
s
- s. .-x i.
s
,,1 1 I
3 I 1 I 1 1 I 1 T - 1, 1 10 ..- _4,.__'__~
' t
_'.,-_.,~._-..s.._,_.._._'..-
.. 4., ^
_'s._ . _ _ . 4
= _ _ . . .- * .v . . . i . w x .v , s . =.:a" =;www -inx mt==,=vei=w1=-pta:M:+_-u+_---iw=amzie';i;M =DM - 9=2=%hV=:itMi&=-din -_.g_-... y _ m ._-y +=s&-E=Mf ;_,_,...._ S id =<i=_=...L_:t1=_=M _ ,, . _ , - -
7
.~1'-- :; 4 : . ,
3pghp=-g+gi-b}= "i-hj+a :_ju }=j---=j u -i .
==Hn== = = g.p p_y __jf.y 2jc+qjsN=
' -~
.ytG=W_ MAN = _-y_ W=i= M6t__=_=-4_ _ ._;gg4EE1=dE42 r, -e.. .e _ - - - - - mra-3.==- < -- +;mw____ ; - x m . . _ _ . _ . _
Y ?%- +\
', ?'d - ih -+ M 'N ' ,X. N: . - 'A,__._...-__.-_.:"
10 4 , __ s, __....v,.-~.5-__._.w__.v---e,,..'
-i
_. .~_ _m e_
, .__* v w. -- %w . s s .x '. , . . ~ -.--- -} 'd =O =5== : -N =-- :. f r i\ 't%N c N5.~f='%55:WN f-;t-I:W = I:n*W_EOMMD 5-.. ==
3= s= Wis.qpt =:1-=y = u t=gw=N.gx=-#rt=t -tNM: _ _ __m_ w.._x.,_ ,_.s. . . y a-ww. . __w w .,J: __ N__ 4 - JCu (,-2) ' mu -----b =a+*:m 4-- m s=N=t===mstmN r= -rw=taiw=t=t' di$ N= lit-tN=%'%=44=EW WM
~
Q ==.==~ 5 E=:iP# iN\ W@M=am ._
=_. ==:---+,- p s- - ' + \~--:t X :,
W:r 3. 12= m._ v _3
- _4._
1 1-
\, \+ i t' w 'w 't 'W 10-5 ._ _ ..___'.___..'.__ _'v,. __ _ _Y4,_.. .'N _' W .---.s._.
xi \t
.._, 42: x. . _-..a. _.__.__-v__-_. ; , . m.
8 _ g. m 1 .
. , xv--
- r=-_.= wid=h : i. = - [+}g _ __.E=.qi q=.-ir=y n it- , =i p-t=;'Af .-ii-pg j id
/ _
V - ~l- L -3 1:4-Fiti=a-na5Mais : 1
== =~ -
W--: E=%_1=_m&rt
'.m.- -w +3uia-t=m &=w _ 4: stm"=^ =+**v = NF Y == renistA,iw' i=,iA = _w =. .. e m = r= 4-- u_ = . . 4 =. m.-t.=_ _= s u__.__ . w_ ._.. 2\ -r_---._-_,1 ps ==:N t-+=*= .,; =__.._r_;_=._r.r~T=>.=__=..
_ r.._.._ .. _
, +- .-#. '_ ..M'-**
x s 1 1 1 1. Y _
@ l 1 1 I \ I _1.
m I 1 10 ,... n' .' e, __.
~. . . w x - - --_,==- 8= w. y; m yy:. =... . . - - - g == == = y .,=m,. .eam_ x ium _. x= . p _=_=__=.w_
_.g _ . .
;-,_j-j. .*g .mhr_g. . .g . 'LI*_m. _C.s. ._ ' L.g i , ' _ _ . g_ ; m. ._ _ . , , s ._
a m 1 . _,.3 : - s g _y +p-- .p- c -- 1: 1- ; .- y 2as 2 g; g =_;=
=. .===~= ::- = .m .-n . .: m : .cxrn xxxr;4.1- == =_- == - - =_ ..
4 m_= . _E=% .=r-a=m s= W . q:=_3 s -ta= -wr a ___ _ _ - :._--it: ___=c-=
. _ , _ _ , ;y . . _ ..... _ , ., e- _ _ . . _ , -+- + -_ .
i2 .e m . 10~7 _ _ _ _ _ _ _ _ . . __ ._
' 'I ' '
I. _ . _ . _ , . . . _ _ _ _ _ , _ . . _ . ~ . _ .. _ .
=
_ . _ _ 2_ _ . _ . . . _ an .s &- W_ = = = = - - =r, M*w. .+ sw==t=wa-W.+i. v *i' l 4 =_La- '== =-t rue.2pi2q ;.2 _ = = = js_ -agt+ 4: ___g:2 a;=-N-._ g45Mr-t- .
- ____ . . . _ - . y -_..,___,__._.g _ .
._ g .. -w..____.yg = h.g .e.s_. m.E
_ _ . . -+ - ; ; u_m-e a w a =.nr w-s=m==.a -a=. ump,_2_,=5-s_=mm4 43fi-t li
=._ _a. =.=. =-==. = WIMUM .m SITE - . 9OUNDARY _ . . ,
_.g (418 me._ters) , y __ ._ s _y , j w_ _._..;
. _ __.__ : __ _4 %
_g - r :-'= ; : _ __ % - m , +--%+ j- -t- ;1 @ H- Wt 15
,m , 10 _. > , . . . . ...n . . . . ..., ,
- ('s,z DISTANCE (neters)
EXHIBIT 3.4.3 $/Q with Distance for Ground Level Releases (@m)
.by Stability Class HBR PEP-3.4.3 Rev. 4
10,000 qg g
*b.,gL gg p.,-, g g gu . ;9 g , . . n1.g@, fj m@ . . . . .. m' j :
_ m:
..w 1:
ex.2 .
-m u - .ea.u- m r p ::4. a--n f,t. ht.i Is m
H: . m .3. . :
- " t -
sit a : ggy' : : . ; i$,w.: ii' i
-io ;.F pi?
pii g (g.1@. a' jij g 1 4i Qi Eina. i .-
- --d I,
fIi ?!If,1.NNiU9fidEsf..' 3:WT3 ! Ni UH :- siil55id!ilddi!!iENEYi } } ' }} iiI NibliiEF8MMO%,,, e - .:t: u. ; ;
~ - ?J t. :: :-+
n:- :a:. -:n;.r %
.. :.3 .t ;_ ----+ ar.r:: T: T443 r + + - 13:* -- r::-I >h_d t . . . ... ..p..~i ;r;:;=n.p.. r. t :n..-__. + +-+ --
2.c r. ur }::n n:E: =a . ..4:: ! e.=d .2 mik' .. i
- g. i } T X a -y '*w it im i+=a m 7 : 3 - in ,# .:.3.w :m U lw Ii :,w.
ja - k[T mUi:= J<-L.4 J. l-t m m .m,.x.nM"fr.:mw
+ ;Q.-.~ wr m =-:: wra.e m+- g-p1-- shs:nw.m: 1 -
1p
.: +y.l-I j g- u-- f:- "r v-- w m yni :=,- . ~ ;ur !T1 gn jagt p fp W im i j;! L 1 tii Ii---h.
g'ehiMM z-i t i !! j:P i: = a J=R.=3;U;iiMii .u ib jL QM ...ii-W p.4 r!= ' .;
~jf 1
iWd.E *- .E!?-i EE.lri:ik:q;LO 7.Jjj1f T rm t- jg':: Xr 1- . : --- ;:r ;cy:- f.-
't. : 7 : =a,=u:1-4 '{' .iT. 1. m im N' [:: r---
Q-.;.nns o .n F ma
- n I:.". }. ,t - -
~' .c: :: t . :-. m1 = -. . : -mrt- rr mg: A.u-f: .nj y . f 2:h;../..y:.
ta sg nit .
..i:nr:: .& . s:ng[ :-:t.::"+::.=; t::_g:p: i. .ji .. .aniihi:;: ::a d--- m:::,;;.:.:2 2 t :.n t e:,f(
- 22. .... . . . . - . :::.:::nc .. =.. 2-- - ..l*:nMr- - 9 :- .=
w.g.g. .~ w
- n. +.::.g .. . . ,.
,. . .. . . t s . .n.i +-+ %.
nntn +*
. . . --- - .r:r_..n.: - ;.:: ,.-f.r :: . . :. .. ..::. --- = - . .
n ;-V .
,/ .3 - m ..e 4-:
- u. - ;
3. f.: ,:p- . m .. :.-.- , . . . . e.r/.-+-+-+ - p .
/a.:
d-4 7+:M - iin T'" v i: 4
.i. ,++i ' i ,i 1
i-1 i +.f fV' :/*f ~
++ i-^ ^ ~ - r~ ~t-+-- ~
y^ ' p. ( "t+" 1*000 l- 1- ~W h 76 i .! i* g! I wg W/N id%;.gfg VN indipist d;h' idy fM:t M? g4h ne ween &A I R jij -9 4 i t ;me iii ti;i; i m et-wM 3 nt: m i kiitW=iWiin#i i=9ta4mt 44 4Heh.:idihMi14 giin 4t ii !!iWW f 1 is.
.t! .a.? 5 +M!"aii'i?fE!:if fi tti ii :M4#ZEsh$iM#f 9 i~ Fii;4i nW@C.Ei i *M ~ -i .
Mi- - gig, sin 1:imE!" . J =2:= = E 3 El y. M ggggiFi=!ifiy==t:%yju!! g"3!!gu%gEijg dh.;g
=
1 + <f !I]ti- e - MM; - - -iT. < = .w w $AMif@lGLiM[jiLiFMI'M[um3iKsMM m- -ti nw g a=m i r. MAh; I%%.:iid"?'T-M Nm WP4'.1 19 m.m
-r4 1ti:j ij M rd#!Mi= =- dEis itiv .micr ll! isin 4U di 4 tii tr 4 .c Egfr %y n.n 6 =r M i?.th,id , ni . .. .jn m F.
- p. ...n
.= . ut.- =Er=q"! < :w=: -a= +
r Or +.: 1gjr .=n= Jim- -- .:=== j== m.. ;:r. .p. :. .;p.ir - 4 -- mim.+M31 cinip
=r . = -m : m . .e rItu... .
y.A. tiddi$i!!iF"""~=BEEfii2Ei55Nppi5i%=E.iM%iE'P~5 isis' ili sii.EEs ri!:Wihi$1Esh ,
< e- #- d :::: u:2 .i _.::: dei;:::.r::.;
x:2:.:nF'EI . f::=e .::. ed n-f / - A f.E f. :=~ < :- . . . . . . .
~ =t t=rr
- w. . .a. 2~- ,,: j.: ^j.. : ~ . = ~ ~ - .- ~
g
.. , .M -
p :/i .,
,. /
S+w+ tnD .: 7.: e , .
+ *[ : /. ' ,/-
- 3 . _ , _ .
6 m 3.,=....,.
.+ : : -m. M.4 .+;. - ...q..- -- .tti: twt h:j 1
f: q'; .4-. ::::: e'-'
, A. f ;+, ,.++++..
[E'M,/ t t*-V; : : . . . ' . - xi ,
-t' *.
b 100 ' q ' j' ' .') " ' ^ Miy'g.Np ! M ! D' - i + Ny { j j77 = L4y* i n .1:iq p- n Jig ! w
!:ppify;#E MIIg.' it' O tl F' 4 i ! .
iffsE .G & -
% if il .Mi@i/M' i iii; i9M M- f'- -
W ib .iEb V + .i ?
. n. y a. :
J = . . _= air /vi.u. g m ciW s. . y_M_ , . . . -p, s.f..i.d.h a.=. ,me. .u. . n ni ."hT_T^
!Ir,t..: p.r.d;.i.Y. gvu =x._= u. .,. .:i. n. . =. -
m . m i ini - IH3~ :iMalii"aidi=F g : ain filiH"Z=iusiliittiippigE!EpfW .
, Li1rgiihtg=E - "riipFg .m .;:= :_: 2manw -.:.;p: .f.::A :=; :~/ 4f- - :
2=u - 2=.x
-x:2Hn - r.e'!?ur; ... r 2:-- .a2 ::p mtm m+::::f=r - . ..- 2n: t=+:2__ -M /wk M4!1. Mil imb RiifM$ - - - :lid n ++a JIS 4- ~.
p . OfFNOdW Jt u Q+w!iiV - n iM a un "N % Mpunw. INIO s L -- NnMM * :' JT t~ B q i .ut? . orytV 'n"fi !- : nh993hn-M -4sfits 14 3 igg #p: iWM wist
, ri J. . . .M{u;: ir a.T=%!!",it=r .#=1' gig f in , t.tp yi@m,pma..
r er-
. :=;== TD. r n Q.1 a17 r
tt ;
- m3== +n .= =1iig . n- =t +m - ===== w.= .g:a: :c:= mr m-. .
a2 m &r .- .: . p=..
=.
- . iEiitiEliEi; :-2 j ~ ~ 1,, i-jr$N$ii jSji'jlifEErim"iEiiiEL.3E58;Elli 2-.,1](.j:3E;:5Ff;pc,E.%.ijj!g*~2T :sc .Hiih
_p:.q; j,,_,,g-- ,,. f .y ,.- .,; r ~ .-
.c . ; ~ - + ~ - . . m... r - ~~
t r nwy: -. i s' . -,'-
.t++-s 1 . - s:
I: ./ ' m++% MF++u M/ ; ": . l z'
~
F
/ i i ;dE R ~ ,' ; / ::1 .I I I. ,~~' .?I Ii .
b+ , . i 1 i ! M i m l.: II / i # !I! !It- I .I I 'il! 1 ! 1 I ! i ! 1 .i l i i g g' 10 F
> t V
v"4 wr" m- se m' i m" Hi 1 e m ee t i 'uym r' o g"ymm M=id@-
- 4: m t1 iMin!Ehi- ##Os 4 ist$G'I=ii -*M+ -4 4-. & V lih 4
Mjg.MMfi9t=T1ybit n iIdd- , d : MiNEM ==- H4f - p !bi +iii% w.as.: itt Mi Ir#" ..1=5sii T..M iri lii i JiEi$Eiifi3F fiHiE3=*E: Ei Wi : TIdiliisi:iiiM=4 NMN5
@){iiiiflidJ~ . :="'t ="=dR45tEiEi1 ~ ~==ini;EEiEitE:E"igu 4EMitMiE.P"M."='=i.n: iirb 6WXi g 4 p m !J4! M inWCl .I"U' R 4 n + m w=L 2 n RQGlia*nea" nasee umc 4 T..I.P iin e.w -
- " e . mn m mmer r
-f n - nU~i =W-G=- l.%.ii:.d.jii: .=.- L
F -
.n -=C =imm.=j jiUIit iiiGEi -
l's iFiii -
- .. i .!: a.jitif.:ui I-w n=.irc.fi lii d i 1 il.nHi .iiiMEii +sifm @:=3t h !+inilxg-.-
3 .
- ~ =--- m-41w. tilit P"'" Ef91@3fe!!Ei =i- a%' ml.iini##MP = -. =6 Hiis? Mil:E
- tt.
0.1 1 jo too DISTANCE DOWNWIND, km EXHIBIT 3.4.3-6 Horizontal Dispersion Coefficient as a Function of Downwind Distance from the Source. HBR PEP-3.4.3 Rev. 4
" ~'
Z .
-I.iftEi ,}l{ jQHjg ;,Qj{ '
h hNh[ [ ,. _; [. Ik . bM. i -
- -SIid I 23,j} .I -
i ,'f ,___ g
- j. }};,_ ..,.3
[j!*.[ gj.K.. .hr : .:'I r- . j
'." .-1. ; :".:11* . ... .1:: . .[. .y . 3. .. nra? ' j .:gh. .. m: .-t. r ,1 r-
- 4. .
, . . . . _ f-.. . ..o. T , _. .. . . . . .. . . + . -.+-* '~~""-
n':r- '-* "p' u-$. ::.:4'
*- ~~ * - - - + ;3L. : ../.p. ;. .t. -.t:: +;.;- _..._1_, - - -t:;;;;;;y-- . t - - .$ $.: . T ! :. : ' - g ..=;-4
_ :::: ;;;, ; 4,,;;;;;,;.:::} :. z2 v -d. _t:2n rr+ ta. a :: /2 '
-= 4u :n :::.- ^ : -c:t:2 2.:: :
r+ +++- m. ..n. E.-. .~y.2=--.:=
.. :=- :;f. u-}m. .t. --=- .
j.g ,
- n@, ; ;: ** r/4n:.4 -
,7 y f g0=*c. : .""_- '
J J
'~
I' ... _^ w
- -": , , . +a.t I i . , .
h .. ' l -' )
'!II i!!I m: l !',l i d / i U ~+-t+--
1'000 W 9 D 3{! W--M. -- tic +@:
.c r( - y t .
u9 j! :
- m. .
> y. 3::: ;g::- y::.. .: . p<-- - ty< -i p7e @p;pa.p,.e.,y n jy q :: m.e... e7 -#r.
4 -if i nii n= i=rE . . . MgrL..F4-u t iiri i*M=W=iMarin n= -of kk.- w+ i 1,. D n 9t=F"~*i9 NSIEEldid E:ph-iQg;f p g4-hj!} ij jjjjMi rg;,(Giggijjji-$p:Ma; r jj:p!..y;j 7 lj jjjiMf,ryisgjsjip ry;y-Mh Yi '
-EkNI MI- !!I~.I 2.IE!h $,[N MN!5 0 *ININN:l!!5$b5I!!I!iMNN b~ -
d j hh: .f f.hh['.+1dj.N;b, _d i
.fhr [i-9 !
fT hhN '" %=f ^!.
~h*i :
jph
."....i- 2H :P FJ ' S r . '
L
- H *- - 7!W-;T -:-
.l.hFyi b{.8 3 $! h : I.-ji:i d Sd !Mdisf2 II- 4t!~ di..N ' i ji i im 4r-p ;ry;3 e d i {1 + d.. 'i.i.i , 6 .. . .=....E=s.~s.
z ti.l. ;i.r.jd/ a.. ia,
. +-Tn. 1IF2 Ifi F.
- i!
g"' EF. @=.E. 1 .. . .
$-3.G...%.. . . 2 fI n.,i. i. *[ . [. wi. 50a.-i.&,+
1
.. - i.h.=iu# . .
T '+ i.'"U i -- rtn.i$$ }i1 C ~""~~'~~' '*:j;Mjf.!:ii,::315Mijn p@;""= 3:rp'E:...Z:E:5))= igg:p3rstp".):!-!jij.
~
j#.
=:::u.4 7, -+ +- /c.:. ;*;. : j .m=:=7, ^ -:+tA- e - -- : ...1. **",",,;*/*"+--&-~*-" ~
_ $:.; f. . - - dn. .+t - - -f. . . /' w
- *-+*r$--
. + ..
- 4
.. . pW-- ;+ + fy . "y - + - - : 3 ~.a* - --
- 3-
, e- ; ; } / .: *- j: ,s/. ^ ^
4-6 4 +9. : . : . g.ps
.. :j. -: . .. : ~ p" ,,.e-.--
I
.te I ]g : IIi ,. I 1 . . . .
i!! !!5!
! i_[ h ,y 'h ! "* d' t"T*
100 y
+ '
yga 7* !:L { . p [re
'?!=
l r u (ri
- ).-1 ,, { 'l ppp igmin.. my .If*F AM f
gg.j lp)t ymog@iu il?.r!.= Me ihli! ' ' Mi
- ~,,,.#P
%' 8
[ -i e 1 :1 i t:1 5- ..
@W t-Ki - i 2 #liti Wew: Eri4# i--i & - @ir i WWi- 444- . i Fi-T :ii- t !!!#iMEfftMii f - M v-fiEl # W -
a liiNid,dE=fis=idMESE E + 21- ;$k:%=h 1.# h N *- .. *t;. --f.M I- -
-1 * " A C ::. ; jMl u :; .;a; 3:7. ..;; .3 :. : . .. .av *'
g N+ %c ;.L.. r2 :::* ::;. tntP'$ "-t y f"r--+f d r--nt]l 2.it: n #";(tn:-r._.my n.'; ;;- ~ ~- *--~ g " p2 2- ;.r . ::t.::::1:::- =:n r : :::rt. # l dII@h@fm d! $=:gm. Uim! i 4w;! F m inG w W IMi!f.w.dM?i [' 44MI.hMIRQWW'LF- M M -r m t %
]4 i
e tis /sitiliiA gyiU.wm* it % iYp;gimi@eM14hiq$ g@na i! y .Cp
.} I .,1.. . .i r:i.I[..
n . .. d.i.E.. .i. J . :.I.l...'..Z.. ..'. . tu ..2 . .
~
i.-h. . U 'W
. - . . .../.- . 3. 3..U.5..:.N .t-- -2 .1 N+$. . . . . .i C.-..~* . * . * . , .
- r. .. .}b. -
E$i!NIE*';EW"% tN.Ni :ElliiiEiN!EE O- ndi$2h !!N [ N F ""iN:$ddirTNII
-- my _g- .;;.. ::--s , .
[
*m f M*W pr'"
CUN-MQ%- jhild 5$5
' - - - + - " + ~ !!g [ ,- ,
s-
- e:
1* . - . 4:yo.+. , ++ e f f.-e-e--e . +. 4.s.4.-w
+ f . - . j ; - . : --.f + ^f _: A t+
f' . .*- -- Ma+>~*-
- +++ 7 i ! . ! ,-. . f, ,f.. - .---: : +++ a***
f, . f f
*I.- : : I- s. 2: s ./ : - # "I , . 7 : ' ' . . . #:. '. " ,E : ' ' .is 1 . #. . I s- T . ~
7 7 . i i ] # .f I #. _l i
' '. I : # # . 1 i. iI .I, I f 3
t1 iii!I'f . } 1 i i . . 2 .. i i i: i i i i i; i1i6 i- 1 6 iiI l'.f i.<p .I if
?f5 Li, Q;;;djj. ids'b II. W :T 4 -tP'I F I sirI ! m - -TD: T l i. n.: 'I ,y[p-a_. Q!idhi V " -
g
=gr'gprji .s art ag;i:52 v t.. i n. RI:jr i wg!! !:.erIf= g- & %!W .gni--
it -::n . f
-tiEli F4E-I l- .i n sis!@ !.ii i ii i:i=n P--Mf M . Q.5 if I#i.% - Ett t. 1 :
F !Hii"?!W - - 2ih T4 M rilM4Eiiiii/=5#iE: MMitEi!E hi? t til L fuit'!EiE!!EsiiiE Ells = == EW i'l: imi"i4Eii! Ei Fi;ssW NiL r i
- y. p c- :s .: =ar : .; m =;:3 2 m : =i. :=t.:
_. 2.7 wm v!.1*ig. : 8- ._k . ?.1 :.i.kr C itIt . - +1*:!I*!". l:2 - *-- i.1 d t * * :: 4;t;;**L*:*' ". T IC .n:. :;. .Z: 1's.E~- - Y 'imi
- JiIN Hil X T I IHi :Ir
# I' HiiiFr .2.5: -liiLii..--
i?
'l + b m'fli:bi:
i.: w
~. ' bi 1-'i4' :" ht ii%it- : i's*- i:*F: ' ~NEl.b..-
l it
+I 2 'p/.'- -{d' +': it. fin,"jihse p i+a .i-' . d.J:.1: diim--- 4f +i { F n: :~.e. 1:;
ii?W +i++]i$' i .
-M .
WM:-di-f H 4:ii :"' i;%!: -'~ ii @::m: Hii i- W*i9- - t . IL NF.55 N'S !
!I iIN*iUNN.! i !ili id $ % -k :$ I iN! iNi- 2.:i=i-~id!b
[.I'. 2
- h. j f
li i agjj;f.gpigtd.i$f:WsQf [{h3.g sgici4Ei!!d"i!{(iw bihr:sf KM/[Q .i! y:tN=.23:p;
==
9-h'[%n
'74; a..; ;;f,4 2p: y / E!*' -- -- .;g; - - + - . -
w 74 ;
;g2 :2.g.,;. n;;g;;;;-
4 i
- Lgiu .::m ;, ,;;g --- -- p ,,,- ;4;; ;g::t ;g t - ._ es - - .=
- a .-+.m . . a.+.,
^ ~ *** ^ ! 4. i^ .%4 } _ -~em^ . . . i 4. .::: . ' +.+: ^ - ;++++ .*4 --
_;;- -1 +;: :w
- +..-- ++ i . .
f- , i ? 'l 1 I i. I .:.i 2 I ! t
!!I i i e i1 .1II I i ! .1 - ! l i 3 ' i ii!i i!... '! i 3 i ; i i : i 11i' -'i 1- i r , i r ;;; i i 1 -_ j r i ;
3.0 0.1 1 10 100 DISTANCE DOWNWIND, km O EXHIBIT 3.4.3-7 Vertical Dispersion Coefficient as a Function of Downwind Distance from the Source HBR PEP-3.4.3 Rev. 3
i
-EXHIBIT 3.4.3-8 ; DOSE CONVERSION FACTORS FOR IODINE (THYROID) INHALATION DOSE Time of Clcud Passage After Reactor Dose Conversica Factor Shutdown Rem /Cigsee I -(hr) m 0.0 -55 II) 0.5 63 1 71 1.5' 78 2 85 2.5 87 3 89 3.5 94 4 98 4.5 100 5 110 6.5 120 8 120 10 130 12.5' 140 15 140 24 180 ^
48 240
- g 72 280
', 100% I-131 (2) -330 4 i. (1) -Based on an average breathing rate, " standard man". Dose to other segments of the population will vary, with the " standard child" inhalation dose generally taken as twice the standard man dose. , (2) 100% I-131 is of ten used for drill and exercise scenarios; however such a release is not typical during an actual emergency. 1 i i O HBR PEP-3.4.3 Rev. 4 4
- ..-rd, --,-,,---ee- ,v..,v.. -- , , + ,c--,,--. - , - - . - . - , - , - ..,~-*---,--,,c .,-,,v - . - . . . - - - - < , . - --- - - - -
r - f'~ N n =en M " /.% / 'nN 6 1 tD C 3" 4 l } . / ( s " ,') 3 3 (D 3" !. / k [ nO #D ms . (D, t..t. aa "1 *
- e O n. > . === 3 C C 3 OM o M * (D Oos a. -e.
gne OW 3
- pg n O.n.. 3 .
mm-O h 3n3- .m Mb OMM D , m O1 ><
'Q, a n. . 2 - ,
Z e/n n O* - p% mC ,X
, ., an=d' .- # 3O M - ' ng 1 O w w3 < u .a , a e . ,:1 -,
gD O ID .,.D
, n,3"O, u -= a f O att m . - e g.a2 c- . g .ifama Air Dose As A Fraction of Peak Cloud Centerline Gama Air Dose .i . , e,. ,,, . o.
o . . . . .
. . . , . . ..o. --- i o .
c t . . i ,
.~.i2 . ,., i, i , i, , ,
i
,,, E. . , .. .. ... , ,. ,. ,. , s ,
o O- bf Sh I N ;i [ f i$nlI L 92i C l $ ) ] N-s- N M:n e O hk d f- c ]g b,
~ ~~
i 6 ! .
%* f h}h t '
g 4 h ik p a r-gpe .}-
- p. 1.p:.t
- 4 L:: . . .__ _ __
- {d a
i {m! yNQ W
@ y . -
ep .- g. - ;'
-l ga g i , p g.p !,
- q. .p, .g. - . __.
_ ;.yg-4 ; y - -- i l ip p . ipl!. . a d..l.l . l.. 9,:.q, m l.
- .g i
c: C,
/: :. .u 1 .4 .
ii ;. y; T;r t : a
- - :t { j ig ..j:q j .f.:
n : ,- 3 ;.. . f -l f pL ]
] @.i . e i - - - -
4 . i; 15 t' l t:
. [J {;Q - - -.
- g-hil -
; i -{i ;j y.y,g .y....
gQ
; - :g , :Tn-- h7h
- l d
r H 1 :
- g. y 4
p .y_ a pd 4.. g
- m. g4, +.A :hr .g- .., .;.
f e. i, .
,m e . ,a 1oq%.3 , .. i 2
- b. [. c f kj lH /,
g t ,rg,jgg ti,---
~ . --
n 3 re
- r11 'l r
n .. ,
- j- i y
l d P9r l m 1 ;* - - l ij , J .. i. c 1e g: 9 n m .. 4 a ..t = my- er r n7 &- a.H. %
- i
,A;g.cn.+. u : ., , . ,
m!!!- 4 };
- p y pi g-p en v rg l[ p
@ h %v$
4G i;.jj@ 3 y! jiI, lijry l 4q% ' 2::3 l
]4.q: r 3
w-
"= -
pnp r e. , m h 4 -, y-
#- - -- Iodsi u l l pr.
H,- l dr wp e 2 pi$ . u.i - 2.m.-r. ir _. f m.
- i;. - m' n
. <l ;j,,
[^- rn +m a .o 7..,7t - .i . .r z. - i ,I # .i.e h. ; I q .I 4,t.;j. !.f,f h i.h p g. .- [ .: . 4,q [!Lb f1 i Pl fn y # r Y, :! .! : F j~ u 3 -
' '. .:ir -rr r :
j, ;n l,g r-.r*. . j .t. .
.i .. . ',l l ,., j, ,[ j j: a: E y l l l. i J f
[c .:1 l;ji,, -
. 4 ; .
I 1,.. . .
l .q-7 '. ! h .hy- {i ( 1 - i ;- 4 L I[ 1 ' ::
2 i .j
- t. n.
lli!it. i r .d i' p fg..,.:.:;r j j! ..!
;gpf w
i} - l l 7p3 o i
,i p: ,,,, / ,-l :
b: W i 4 r l i
- L
' I p- }-l.{a '.l'-
i .4 :F l '- I i. [ .:
* '1 ..j.-, .
i- El.
,p . _ _ , i ' ..i i u..r. l -
- g. q c3 ..
- .i 6' - A; e@ FE .s '$.. p.
. m,:;.. ;:l p.- .1
- = = tn l
% /. '.4 ;>l-g ;;
l :, ; 'la y q +
'l i: I. i y ,. .
t
} 1. ]:
g .g 9 hp ll j j: ' .- y v:- pi . ' . l :.
- y yJ ,,,,
H <3 d i h r .n,.d S.
< d g 3m b: - - . ;r ].cJ:. m
- i. 1; l
.h m
J-M
.. I .
1 y. . l-
- l :.:- i:,
m !D. lh4 i l!..#, a-'t.;il'H.. g. . t j : i,s__-- l['i r .. , ,. ' m Y.';! - :1 r '.i.
.e .'% w e .a .I il .l! ju . p ;l . .,
F. h j -'M_" " ~ _ _! . !O idy ' ,
;8F a 4 -
m .' i . 4 '4- -! it [,;y:: j'- -d,1 l-ll!. ,g. ' !p lj ,,i. ! .. - ;:r. l, i
- . Y.
h.iqi.
"'t - -
I y t
-}
li n,l. i
;: 7 ,,
y .J. E- 41 P ...- ; ... p,q7
- p y j +%g.
7' (g]l j3 :k [ h p ggj i, e Qq q r p ;s .- - r l M
;,.i . p _
nh .;;-l;.. G i
- i dp.. ..L 1 g. 4 v
p iT r T- p:- - ' l . i ,
'i ,
k.
.;-f * ( jd, '
hi k },
.- > sh t ] g O H. B. ROBINSON SEG PLANT 9
TITLE EMERGENCY PLAN AND PROCEDURES VOLUME 10 INITIAL INGESTION DOSE ANALYSIS PEP-3.4.4 REVISION 0 REV. APPROVED CY DATE DATE REV. APPROVED BY DATE REV. APPROVED BY ( )
/ TB3fm 3-/s.// .:f_ 7d5 != f-45:./e $ Y lC4 'H-184l R$Yh0 1241-51 Recommend By: j /?_ v d M 20^75 8/
EtRG Supervisor Approved By: ' N [' ((l- / ' ^75 Plant General Manag&' b
PEP-3.4.4 INITIAL INGESTION DOSE _ ANALYSIS n 1.0 Responsible Individuals and Objectives The Radiological Control Director or Dose Assessment Coordinator is , responsible for calculating the possible doses through ingestion for use ) by the Radiological Control Director and Site Emergency Coordinator in j determining and evaluating possible off-site consequences from a gaseous ; radioactivity release. The Radiological Control Manager will assume responsibilities for calculating ingestion doses after the Emergency Operations Facility is activated. - 2.0 Scope and Applicability This procedure is intended only as an initial step in evaluating possibic off-site consequences through the ingestion pathway and assumes a pathway based on consumption of milk from cows pastured in an area contaminated as a result of deposition after a release. , 3.0 Actions List of EXHIBITS: 3.4.4-1 " Ingestion Dose Projection Calculations" 3.4.4-2 10 Mile EPZ Map (Example) _.s 3.4.4-3 50 Mile EPZ Map (Example) 3.4.4-4 [V 3.4.4-5 Xu/Q with Distance for Elevated Releases Xu/Q with Distance for Ground Level Releases 3.4.4-6 Horizontal Dispersion Coefficient
-3.4.4-7 Vertical dispersion Coefficient 3.4.4-8 Doses at Various Distances From Cloud Centerline 3.4.4-9 Ingestiog (rfilk Consumption) Dose Potential (REM) From 1 Ci-Sec/m of I-131 Note: EXHIBIT 3.4.4-1 " Ingestion Dose Projection Calculations" is for recording and calculating dose projections. Steps 3.1 through 3.6 provide input for the calculations.
l- 3.1 Use the source term calculated in accordance with appropriate PEP Section 3.6, " Source Term Assessments." The source term needs to be
- in terms of total curies of Iodine released. If the source term is based on stack / vent monitor readings, use 15 percent of this monitor-based source term. If the curies of Iodine released can be determined from isotopic analysis, use this source term directly. Enter the Source Term Value it. column 1 of EXHIBIT 3.4.4-1.
Note: If the quantity of Iodine-131 in the mixture of iodine isotopes has not been determined, the following may be used: Curies I-131 Released = Curies I released at time t d ~ X 330 HBR PEP-3.4.4 .Rev. 4 4
,e. -mn. u,. , . - - - - - , - u, -
m where the DCF - Iodine is that in EXHIBIT 3.4.3-8 of PEP-3.4.3. 3.2 Determine the Atmospheric Stability Class Note: Steps 3.2.1 through 3.2.5 are in order of preterred use. 3.2.1 If operable, use the plant computer to obtain the Atmospheric Stability Class, wind speed and wind direction from the trend printer. Note: The wind speed and wind direction should be that best approximating the effective height of the release. This may be determined by the various plant monitors. Where available, results from plume tracking / monitoring should be used to confirm or modify thcse estimates. 3.2.2 If the computer is not accessible, determine the Atmospheric Stability Class, wind speed, and wind direction as follows:
- 1) Dispatch someone or proceed to the Met Tower Building.
Note: Pasquill Stability Class.can be determined by one of two redundant systems (3T i or T . They are located in the first two
~
eas)inetsontherightofentrance.
- 2) Plug the leads from the pulse counter into the correct jack. The black lead is for 3 T or 32 T The white lead plugs into the white jacE.3
- 3) Set the pulse counter switch to position 2, zero, the
'pulce counter and obtain pulses for ninety seconds.
Reccrd the pulses below.
- 4) Look up the current normalizing factor and the carrect ATj or AT 9zero adjust factors. This information is located ofi the north wall and is updated periodically.
Ensure you use the correct 3y T or g2 zer adjust factors. List below. X 10 X .01667) + = (_ T or g2 Ay T Pulses , Zero Adjust Number 1 X = Number 1 Normalizing Factor Temperature Differential
- 5) Circle the correct stability class to be used in the Dose Calculation.
O HBR PEP-3.4.4 Rev. 4
-~ -_ _ - . . . . - . . . - - - . . . .-
1 i
- i. STABILIT7 CLASS TEMPERATURE-DIFFERENTIAL (*C/100m).
- A 5-1.9 B -1.9 to -1.7 C -1.7 to -1.5 ~
D -1.5 to -0.5 ; E -0'.5 to. 1.5
- F 1.5 to 4.0 l G >+4.0-
- 6) Obtain and record wind direction and speed on EXHIBIT 3.4.4-1.
! i l 3.2.3 If the onsite meteorological station is completely inoperable, , j the following can_be performed to obtain an estimate of j the onsite wind speed and direction, and the appropriate F Atmospheric Stability Class.
- 1) Call the National Weather Service Office at Colurabia, SouthLCarolina for the current weather observations.
! Use the data from the Florence, South Carolina station, which is available in the Columbia NWS office, if it. L is available. If.the Florence-data is not available, use-the South Carolina station'information. Obtain the following information from the meteorological forecaster.who is on duty: l
- a. Station for which data is given.
l , b. Wind speed (knotr)
- c. Cloud cover-(in tenths of total) 1 i- d. Cloud ceiling (feet above ground) t
- e. Wind direction (N, S, E, etc.) . N
- 2) Loadtheprogrammedcassettel(thesamecassetteused- i in the Automated Dose Projection Procedure, PEP 3.4.5) into the HP9830A, enter-LOAD 3 EXECUTE, and enter RUN EXECUTE.
NOTE: Press the EXECUTE button after'each entry. into the computer to allow the program to. L proceed.
- 3) The display will read' STATION. . 1= COLUMBIA, 2= FLORENCE". . I The program is asking for the staion from-which the weather observation has been obtained. Enter the.
appropriate response.
- 4) The display will read " WIND SPEED (knots)". The '
program is asking forLthe wind' speed in knots for the'. HBR PEP-3.4.4~ ?Rev.L4= -
, . -- ..-. - . . - - _ _ , ~ . . . . . - . .-- ,-. .-.-,,...,, -,-.- - , - -,. - ,- , . . ..
NWS observatiori station. Enter the appropriate [ response (example. .1.0, 3.0, or 0.0 for a calm (],/ ' wind).
- 5) The display will read " CLOUD COVER (TENTHS)." The program is asking for the total cloud cover of the sky in tenths. That is, if the sky is overcast, 10/10ths would be the condition. The proper response to the computer would be to enter 10. If the sky was clear, the appropriate responst to the computer would be to enter 0. Enter the appropriate response.
- 6) The display will read " CLOUD CEILING (FEET)." The program is asking for the height-of the rost obscure cloud deck above the ground level. Enter the appropriate response (example'.... 1000.'). - >
- 7) The display will read "JULIAN DATE." The program is asking for the curret.t JULIAN DATE, ti.at is the -
number of c:lendar days since the first of the calendar year. Enter the appropriate response. ] 8) The display will read " CURRENT TIME.(24-hour clock)." i The program is asking for the current time (EASTERN STANDARD TIME) in the common 24-hour clock (that is, N00N=1200 and midnight =0000.; all other times are reported such as 1 p.m. = 1300). Enter the appropria.te O response. j 9) The computer program will now compute the appropriate Atmospheric Staoility class, based upon the weather ~ observations entered into the cotaputer. The output will be displayed on the visual screen as follows: Wind speed = (number) mph I Atcospheric Stability Class = (letter) l NOTE: The letter for the Atmospheric.Statiiity class will be the Pasquill Stability indicator, plant process computer. i
- 10) Obtair. and record wind direction and speed en EXHIBIT 3.4.4-1. Use the correct Atmospheric Stability class l
in the Dose Calculations. 3.2.4 - Call the Licensing & Permits Section in Raleigh and request meteorological data (See PEP Appendix A.4). l 3.2.5 If there is no meteorological data readily available, l estimate the wind speed and direction, and determine and-circle the appropriate Atmospheric Stability Class. a . HBR PEP-3.4.4 Rev. 4
Setuny Cloudy Cloudy Clear Day Day Night Night light wind or calm B C E F (14m/s) = (19.0 mph) l moderately strong wind C D D D' (>4m/s) = (>9.0 mph) Record wind direction and stability class on EXHIBIT 3.4.4-1. NOTE: Assume Stability Class D whenever it is raining. 3.3 Locate and mark with an "X" the point of interest on either EXHIBIT 3.4.4-2 (10 Mile EPZ) or EXHIBIT 3.4.4-3 (50 Mile EPZ) and estimate the distance in meters or miles to be used in Step 3.4. Note: EXHIB1TS 3.4.4-2 and 3.4.4-3 are examples only. DO NOT USE. Use the full-size, appropriately scaled maps provided. 3.4 Determine the Atmospheric Dispersion Factor, X/Q, by,using either ! Step 3.4.1 or Step 3.4.2. Step 3.4.1 makes use of Xu/Q versus I distance curves by stability class. Step 3.4.2 makes use of the l original equation from which the curves in Step 3.4.1 were generated. j l 3.4.1 Determine the Atmospheric Dispersion Factor, X/Q,.using l N either EXHIBIT 3.4.4-4 if the release is via the stack and l
,' if wind velocity at the upper. level is less than 9.0 miles per hour; otherwise, use EXHIB1T 3.4.4-5. l j 3.4.1.1 Using the distance determined in Step 3.3, ~ - locate the distance on either of the horizontal exes of the EXHIBIT. l 3.4.1.2 Read up or down to the line for the appropriate i stability class as determined in Section 3.2. )
3.4.1.3 Record the appropriate xu/Q from the vertical scale for use in Step 3.4.1.S. 3 l 3.4.1.4 Record the u (wind speed) from Section 3.2 for l use in Step 3.4.1.5. 3.4.1.5 Calculate the X/Q for the point of interest and , enter in Column 2 of EXHIBIT 3.4.4-1. I X = Xu , g l m q q ; X = + = NOTE: Wind speed must be in units af m/sec. O D7 3 i l HBR; PEP-3.k.4 . Rev. 4 rm
3.4.2 Determine the Atmospheric Dispersion Factor, 'dQ, using yx the following equation where concentration is to be cal-
.l culated along the centerline of the plume at ground level.
X
= 1 exp - 1_ [H Y 9 ""y "z" 2 oz ~
where- X/Q = Atmosgheric Dispersion Factor, sec/m n = 3.1415 11 = average wind speed, m/sec. H = release emission height (60.7 m for stack releases, O m for ground level releases). o = horizontal dispersion coefficient, m; Y - (see EXHIBIT 3.4.4-6). o = vertical dispersion coefficient, m; (see EXHIBIT 3.4.4-7). 3.5 If the point of interest is not on the centerline of the cloud, correct for the lateral distance (y) deviation. O 3.5.1 Estimate the lateral distance (y) between the point of b interest and the centerline of the cloud using the appro-priately scaled maps (EXHIBITS 3.4.4-2 "10 Mile EPZ" or 3.4.4-3 "50 Mile EPZ"). Record y = (m) 4 Note: If not otherwise known, the lateral distance (y) between the point of interest and the' centerline of the cloud is estimated by use of triangulation of the point with respect to the plant and the cloud centerline vector on the appropriately scaled map. ! 3.5.2 Using EXHIBIT 3.4.4-6 determine o as a function of distance (Step 3.5.1)and'StabilityClass{ Step 3.2)bylocating the distance on the horizontal axis, read up to the diagonal line for the stchility class and read the o from the left Y vertical axis. 3.5.3 Divide the lateral (vertical) distance by the o to deter-mine the number of o's between'the cloud centerline and the point of interest. U HBR PEP-3.4.4' Rev. 4
3.5.4 ' Using the number of o's refer to EXHIBIT 3.4.4-8 and determine the dose conversion factor. Locate the number es of o's on the horizontal axis and read up to the Gaussian' l (j curve. Read across to the vertical axis for the dose concentration correction factor. Enter the dose-concen-tration' correction factor in column 3 of EXHIBIT 3.4.4-1.
- 3.6 Select the appropriate Ingestion dose convesion factor from EXHIBIT 3.4.4-9.
3.6.1 Select the appropriate age category from the left hand column. Note: If the actual age-is not specified, use 0-1 to be conservative in protecting a critical segment of the population. 3.6.2 Read across to the appropriate column for the season and record the conversion factor in column 4 of EXHIBIT 3.4.4-1. 3.7 Perform the multiplication and record the projected dose in column 5 of EXHIBIT 3.4.4-1 and next to the appropriate mark (X) on the map. Initial and date each calculation in column 6. 3.8 Report the projected thyroid ingestion dose to the Radiological Coatrol Director (Radiological _ Control Manager after the Emergency Operations Facility is activated) or Site Emergency Coordinator. O t l l l l i l l l f% (.) f HBR PEP-3.4.4 Rev. 4 l T-+ w w e- -w rp.iyw-- 1* = -* 7 -
- r-- ** A--A
) e 6 /t (l a aD n i/
m t e O l C u o im ni IT
)d 5 e
( t ) n cem ese m joR u oD( l r o P C
) n 4
( o 6 i r et o3 n sct oecp m u Drae l rFt o o S C C S N O I ) n 4 T 3 l om5 A ( aio n L rt r3 m U n eaf u C m ti p l
. L u avFe o A l L eCt C 1 C o D S - C 4 N O
. 4 I T ) - 3 C 2 )4 E ( 3 Qm3 O T J I O n // 3 B R m Xcp I P u ee n H l st m X E o (S u E S C l . O o D C N ) ) O 1 i1 I ( eC . T c(3 S n r
- m ump
_ E G u ore N l S et - I C o TS 2 n m l u
- o C
y t i s l s i e bl
- aC t
S 1 n m u l o m) c o r( = F d 5 n _ i n _ W c m u - O d e S es e/ pm
- l C
o
~
- - mE0,f's ~
?? s t ) i! . !l i '
g' W-- *' - -
- g - . s f, -.- r [Aq %
-r?'f . f m,. , / + -.
- i. ~A , -s 'y._
,+ , - - y g *f * ' [t ,, : ,,( * ' / <- '% o,
[ .5
'Y ,- l 5 - $Q ',m , 7I .. f '*~** *, ,,
j f, - y 3 ..
- g. ..,,,,
... .ty a y. ,e / M g 'y-k ,MX.A C 'q .- {? \~ , ~ ,N,s' - A , ~* ^\Q%s,q j / ; [ r
[T y _s g -
..___ ,/ - .
9,"c- ,
;O ,rj , ,
i
.)
7
,",*ll e +I A,f - y v ._ ,. ; - g' l . .
Q. f .. 0[' M' (. / ~ 'N? '- / \ -
,I, j. ~., }l - % h.a. g .g ' 4'/ ,; $.,; y -f f Q- .s k
V y \w . .~ v
- Q .y . : n / .,
h
-- ' . /h, f s, '~'"f ~ * ' ' . ,)' } [ , , /. t j' ,j k Q \ , ,- ,-
ti ,e
/, : '. % , A.
t
.,/. ' .v - t *} n j :~ '< x ',h.i h!
E t 2 ~ >4- - u. . . g: v.r...<. m,..: .= - -
. . .s . +. -- %. / -
h y!I . N;s , f* ^ ', _ '*'
'r ' . i*. ',.g*_ 7 _; . }c,,d ,_s. n 1 .. r> .... .3,; - . g, [ ;
h[. f-
~
i
. .h,,{J o N 'I , b N ~ j .7 *-j,.ed- .
b,. 'fp,'. '[ j ) b ,,
~~_.-
(
~
J . 'a h~ ,, ' , f y.
-: 3 J q., .
e/ ,
- m. . . . :.u . .
%-(
o,./, ll%
;. .- */ ~ ~ ' ' ~. ,y'. G ' ~--eT \,
_' ,Qk xf_.),jQ...Q Q' '. &j %
,, f* , ,/. .. g -}, }1.
h
* *-:.,.+
Q,a
,/' 4* ,M* >- ? . "? e Q.
f,.
~.,~- % . ~- #
w < , , 5"j' #* M
\
W
- 7. , [
} . n. -. 3. :t.,., .. . r, '* *, (r .c.
s u,'m s \. . . w. n
- 2. g p. .
.s ~ -. .. ;/ 5.e a . .... ,
C< g n . m ,7 0
- v.u. pw . ; -f'% .}. g:' . : . , .
j
.[ -
r== ~ r . : .'- _;y y
- .- N w < 1. N. ..o: >=. y 7j ,,. ,5.2
- ) Q, N: R.y._ :- j ,/
' i y.a"*i" V a s ,~ a ~ N . .. . (lQ Nt 7,h- o c - (s. ' , .5 1.%' Q.- f . . e -v '-
y&. #
,, h T'. '- f... , .f >- t l 4* '$b g-'M'-,f~;~~~~'& - p *.i'y - - a A:,.,y . .. .+ . a4 m.a.-v \.y,,. a,s , -N *v s .1, ic- ,u - ,, .l -- ,,,4 e j n ,. , .
L.y?
%' b : 'I ,t --i- f* ,._...+.i -ly , . . . .. A .,., , . - .g. * ~ .L .p- ?'
a T X. y p e %:~'.]
-{ 7,
{ ?% %c 3 M , Q...h u.' -
~ = i l* -Q .' 'y ;. 2.qa.- -
Cb l 7
=#,_ . ,. .t
_- g. ,_, - - . ,g% y ,. s c
] ,. -
M
-N. u N -
k.
- n. ra. a9 .k. y.%~. %
, s ,: ~.y. - t, r.,m,u.=s .
t
\ sf. . ,~ \.. .
1 M, N. ,; ( Y. , .....
,c3 EXHIBIT 3.4.4-2 Ten Mile Exposure Emergency Planning Zone
( ! for H. B. Rcbinson (Example) v HBR PEP-3.4.4 Rev. 4
. > __ . _ .. m ._. _ - .*.... p q
JN, J t
) * ., . - ) Pintfluflt .
a..,-_ .- n_e a u s. b.m*-e5 9e.,..
~o, .,, ; s .,_s "".r. --.,.2 - .. m...
s., .
. r.___ ,e vm. .
b,-, s.
~ q~s.
y/
;+',,
y-+, s
- . o.., w/ . r.r,
_ -~ kN$?f..(.-(WMY.:.pk.u$#.$n . e . . . k:.-,_%lh,61 b ; 1 w ag<::.r-~,,D., A %. e. v ; .~. f- 2 :. T 8 _ gd, .,.a - 1. e; 2 a a s
\
l ;' r ...f7'7*c., p - ---/
,RT.,i 'h e, a A.+ + \ N ry. *p L *'**/. .- ' *~e** !. 0A51 E o < r +i .=*=-A ,,,4.%
in . Cr'*a Mn - a .'#
-a[J.f '
A \ aurmbur
'i --a.=
6' [ L 3 ancast , .
~ , ~ kai,e. *
- C'*d*'8 m 1
* * ' </N* Ud ' Ga ,
1*~@..
"W hester a w b '] p 'eg s ar; ,s Da i '=** , # ,',1 $
j, c' I E F *
'", [i ~ .'. , -
p( . ' f ,..L.T E R F l E} I D *
- puj *
.l.,'E p 8
i.. a .
**N *, y,L *"r* a. . .,w s
p .,,.l..
,g w[ < 4 fc. g e. , ', r M
q
. Ag ,) , ,,,,,,,,, , Sa*D=a L , o+ Bennettsville' i - ='( 5 -,,,e.g ) Go' -[. .. ',P .
hf' "'t.-
- 2. .
[ * E*'
,.4. j[h, t.,, ; ,, / ;,is,,,. - + ~ **-=. l s '4 *- ,,,,,,,,,,( .
M[ g :,, sh i
"'"g': ,,,. b \ ,,,,,,,,,, .m M '
f/ e { Q, ,= ,
, i se , ~ , -t +&.
C,,,,,, j, %.;. /..- ..:: m I
- u. . r a,;. a.- > T-
'O '3 " *"" ;h',,' , __ ^ ' ');
cy,,,] i h
) ,3 5 3 . 's- . -
A ,_
- 2 4-
' Weas r ; -
K E R C H A
' h ? 'b 0' "** z 'c h)*( , e ' % .k , - 'e'.;, a3 t=* a. -ar*.
9 3/
\,
E .***[, '** / ." . - . %+D
.i 10;.. -.
ters Q* c a ( , . is' O CJ3 '
, 3 I L fi N 'u. . ' '
a 1 1*%- 1: \ 9 \U,. A 4* 0** k=- Larts D
- h f. #*'"\
g , , , F- s ,
/ y sn ,- ""**'""'# ** ' . t *D 1 ] <. y*
l
, / ,e' t 't *.
M/ i ' *
~,~
_ .Q,
~~, 24 Camdes O \ - * ,,1 f .,, ; ..+ yng on ._, }.s yI . . . . a,p fl0fenC C, y } , j . .;
3 m , ,, ,. , 1
~l .
e ea e e ,'q , . L- -
, g!topvMey ,% . s* *7+'
pas
,, s y ,'[ ,y is , ~,,,, ' es * @ . \ -B . , ' 1,% M,s ~@M, 6 Maren ,g ' W. --M.[ ' 4 ,4 M' * \3[$4 f,, 6 T V ~ h i' .k'y '- =s - 1.- 'u h.,. .~~. o;,y - - g, s ~%s , %, . ~. %w- % , .. s -
s , . .
- . s -< s '
es e r ';
, . N' '
se ca. s O*'"' .,.(
~""-' Ikq N, '$ ), $' e i. o a 4.s'2,. s^ .k ,SIUdBII@E - -- . > v r~m' ..- - r ' ~".~ t.-.
6 .I 7.g '"
,, g r7 -
- ;;;, , , e. .
? ' . '.y
- a,, , , Pam iso _ _
-- ,.f*'**~* . . m.N'4, ,j, ;, .- t., . # , .q~~ 7 - ,, - ,,,,,;,,,,, .g 2 C 1 ,, ,
[ L.
~
wa' 2 ,. ,. a.g - -
.n . ~. . s n.,,.. / - ,/c .,, - s 1.. ;n.A ,
y, p\f y . , y , g n;pa g y. _ d, 4 . N ,';+ ,7, 9 ,, a v ,_ m a 7 ee.
., ., :m ,,,:p w.y -c. m . A;.9 s V, .R,, sc :'A'j.
s q My, . v . s; N "==
,4, ' ,, ;-~, m gl s,.~(f.~.ye - .,e pp,,[,tsw. - o o,,,,,,,,,
no x ,n p -y , ;,j
;/y'~ _,_ ,, = go l.. :-- ,'oc ,..4 - p. -
o , . ~ * , - -r-
, . I 3 ,
o.c.
.. on. . is.
so . t i l aYge g.,
- E, , 'i , , Ng <
-8 f ,
k _ _ m EXHIBIT 3.4.4-3 Fifty Mile Exposure Emergency Planning Zone
) for H. B. Robinson (Example)
HER PEP-3.4.4 -10 Rev. 4
Distanem (niles) 12 5 10 t i i I . .. _W- =
- m. .._- -- i .= ;5m. 1El==#r3=s'====M_ E,_r.4=T. _E f. ~.=~=?=.=
=T= .t. . . - . -q
- 7.-_ -.3.. _ _
.- 'e- - _-s,- 29._3---___,W e e = . . - . . _ .--r4 - -.- -.%._ ~ _ ~ _ . . . _
4.-t: .
.~ '
MINIMUM SITE B3UNDARY (418 mete.s) r . _g ( ) 10 ... - .- a w~ , :
. : , ; -\ -s . .
l ~A:iG=[EWhr5 4tN BR""%t-' . r s = C-'-il if If =' ==r- '~ ='= 3-4?i hL
~
M -~ ~~
~ T: --41%E W
f.. Eke -f =3WM,-N4=W=WZ m, x xx i==-*E _.= c'.
. u =mdwiv,i-y=m#.c=A_ . . t , At ' =_r=. tswi=1-- ---*' t a=-- #44 --
_. 4 .2- t- h-
- 1--.n L35 4^--1\m..gT,.==t=%u=%
-. .en. N. w.,'%m4==_c==.-c;=_1-=_._,muw g_ - - . - n-G= .L-v.----- -- --2-=s=1--.~. * +--. n-
- ---+s- +f-x y- . sy-,8-y---x_ , ; m-r.: w - i - . m x m!.. 's s,; .-2
. ', A - u xn .
10 5.
,,-~.~s_ >,
s .
,..s. _ _ ~ .
x_- . _ i
- j. \ xy -
, r: x ;- .
n'. i M ese m - w%im!/=ini asiwstd=im =xw =tQw M U = l
==
S=tsm EE
~ ,3*iE4 &=95 -tM5=F=D ~
i ._ +.- ..
= -w.-,m_ 4._1
_m
,eMW*
g- -m
-+.--- . . . v-+---.- 1 x ---",-~ ._' j - f5E E=p bit 3'-- - -Ti+:E dijs-iWh-di~2-; -._
u (,-g ) gu
.- .- . 0 ; .:..h pi }g-Ji}-[-tt---2=fiyt, =_-), 2 2n,fN
- 7. .. anz 2 .
=u_ by;;;_a' f. ' i ; .
g ,
=1 =r-f = =i 1 =1 - - .y -~_p -
- c. _ . . -._ ;==2 pe.=v s- 2=- -_..__.:= . t:3
'. y - ~~ .= . .' x.
10 ; i '
.-_._.!'___.___'s.._,
l \ .\, \s s._,-, .m j
, t 1
- a =i4iqc==,
d, ;= air 4,2=ne =..=.= d. w =g =x=4s c2 i___ c
=_ .
322
. ._ . . --_ W ix=
sie v_.__. _ k.,qsas _.. wy + M q}1 _ _ - -__ .Tr a e "SO=23234 (i.N NEI'
'E 5_.i [f3' ;3i-@ffi5E h~-555bNMw.M:i3d' II @ ,f my - b^-d'.Nf --w =--f--4 f_,_ 4, =m7__-_ c - . - - , - _; _ _42, . . - -=--w .. 2: .. === n - %./ -
10
.l . '. \ ;___ \ l . wir.qmgg:;g=g . . .
d... .-- 4 m ec=m m.-.sek. s=1__=4 m
--u -~. . . _ _v._2-=-2b- -s == ,h. . == .=t .._++ n -. - ===% =w mr -m = w -- - - - -- =-r.
a,; == p w= n s.-2e m.== =es ====._, :
=====tm=L m. -
w ' _=- a__
- t==[==: ?
104 .,
; i ,, . .
iT
* ==' #. ,
j.
's in J.}. ==ii sp.2}.=.g Es 2E W:- -9 [== {=j = g -4IpE =.jiEj d_'sa=ph4 5.ti- :.
A i __ r. . _-. .x._ ,..-.--.-
. - + = _; ..= ;
t
.;.= - -. , T---- .7m7' -
w..t. _- ., , ....+a
,% _m._ __; - _ _,
y g _._ r--- ?
. +. @
Es+=4 = m e =+1 m -i gma =9-8 ;ee; ;=a->w=T+s w a =w= r=r- At+g i G 515 i4-E-f 4ti t$ EGA_Z. Z~T-1 1._. - _~.i Z l . . . -~ --l.%-T=M!i -1 E !
- - - . _ y. _ - _ , _ , .m .y_.-._ __
l 10-9 r , 2 1 1 , ,,
. . . . . . . . . . . . . . . ..p . . . . . . . . , ~
Distance (noters)
,- s
( ' '
) EXHIBIT 3.4.4-4 Xu/Q with Distance for Elevated Releases (60.7m) by Stability Class HBR PEP-3.4.4 Rev. 4 i
,, ? Distarice (niles ): 1 2 '5 10
_ .'. _ .i._ . . . , . _ ' , . . .i. . __
' 10,' m, _., ... . . ._._..e .. .'
8 _,_4.. . , . . . ___; _. - . _ . _ _ _ . . .
&%:l\sm v & ' =i m sy m ga p w vm am,,=wym M.LMe:.i!:sti tM4 d __&m=_':h"tiK
_ , - _ . , . .M sh-14: \ "~ ti"_-l ' ",fF. ~ _. _nis=_siM
;_ w - 4_t_:%-__ =
_z_. t MilN ink-\ =M 'i =# 8 M-I-i-kM5 NE -i!IiF'M NE5".EM}T ~- j- :N i : W+5 + i .I
., @.Ms=N
- g. .
W ~ tMMWM W =_m . . w .___ ET_ E:15si
.'__=a 9= . .
J;=_LMie ee __, aisi P =
= = t=t
__\. w_ ._m 1 - to-3 .___v.. 1 1 tmy _+ y
. m . ,++ > ,+.'s.x ._s.
1 >> w- _.s.._m.__m__.. :_.m__..._ . _
. ~ _+_ v 1 1 . _ . _ _ . v-+- + . 1 s x +. ' ,{ ??'?ib\if-kM .E@ N Ei ir*=:F.h".-Ei-i- ;]E=p 1--;ii.iItfs ;== t -=j=+44uc t-4"52. .Wr = "=4=M mW e M n k=t"=Wi=d1Y=ns id # =i=er r nf-e 1 9 ;;'- % 4 + u - r__g__ _-
w# _-- m _ ~ s _. 4o_ ,__._. _ .._ _.,__._,_ 1--. . = : M FiW=_ Wi-\' =QEJ P =i\'-3D-Ngi":h=@JiWl?hpt==f=4=bt 4=#-te:=r.Mi=y=!*
== -Es =-r=4W iW == =* ~WwKiH=a
_ _. u. . 4W24:iT.r=#e'=NEhittS==he
- . - - n. _ .-_.-_._
q.w A54=n
- , __,y -+ 4-w v.=_- _.v4_ vm r=\ n ' s
_'? N,# s. - 5 10
~ - _ - _ ~ . . . _
Au
-_k M ..y 1 .m_.m_....n_.._ -.-._ . y_ r _4._p. n .\ .- -
r m.._g., _ _ ; - + y ..J
't--**r *>+N-t*- 1 , \. w . x sn .' 4 s -v .
ewp= = .p_.4 t =uy= ==ey=t-A ngwum =m_+ in
= r- = y (gy _ _s g.p-m .__y
_.m - _., _ __3_ y.1. m .- . w-_ . 27 _t .g_ - - - - u .(, ) g=;_;w +. w q.g_y_g4.- .;gggwg__qq - Q , =="152=. . -r tPi\tt=M'i-itAN =5:I:+NintsiC A=.45-2% b=til:1- _ 1m.:r .'- L_ w === -' n
- x- +--+-g : - ! w w.p,9 4-+; 1 ~. ' x : ;_+_.4
'.' ~ . . ,N-+gi t --lm i ~.ht,--+--+-~.V-* .' m m ; .
x 10-5 . _ _ , . _ ' _ . _ ,'_...s _ - __ .\ % _- w_.. _ _.a,;. _ . . nm_._. s x..
.. s ;
_ - ._ - _. - - s __ .___ w . s O. ..,.-
. - . . s . .
r=cs m- =-+ wsw=si==isw -
===_=p-is s +mg=w=my,= r M -s a t = = =====.; ;gige. tsM.asi=7 . .e._ _ =-y. y c.n,;r_gt_ _z-g--g-r n.3-tm ,_ m __y _ _ _ _ye,,1__g% ,
cat._a=_ . =. r.,_e= _e =. 4 wtm_. .m=. is ,:..=_M=m_ _st\m. mts.m=m_,ix r- v m. ig __- .+ :
===.=p = .m -+-e- y-
_ m- _
. w _.=. rn _m.=_ ---s ,--_ .-
n g---- .
.,+-'
s \ to ta, x.
, 1 . t. , - 1= 1 -+-+-: .1 ~+-+1 '1 , .-,
T 2 9i= *+ mwaia:Wi@=Ehti+Nake+V . Na
=- , ". " *16 -M siiEt*-=E~=SE+=M i=-E:tiJilW_=&N:W' -2. .q=i)"E
__ _ . _ -.__w._,.s, , _ . . .m
- , -n g m.
i=r.- w~ _;cs j=t.iwit:wg+en
.. .p.
m_ _ .m..t.3p . , m +\,ta e _-. m.s. __ ,= -c=. .
= = _ , _r. ... =m m m =w-._e , =_-1====t-2.,_
_ _ _ . . _ ._-._._.3,=-=-- _ _ . .._ . y . _._.=..--w.1 n 4._ .-._g ,
&,,.-.. g -+ ' L' 10~ > _ . - _ . . _
1
. _ _ , _. . _. ' . .,,__._.e. . _ . , _ m..-_. , - - _ _._-. . ._ _ r . _ _ . _ . . . . -,4._, .>9- +_n . , . . .h '=4 h:-ME*=- M ". U+:-iU -E siiE:iI i=W ' =(s4.j- 'y..4 j == - 51 =t*r ? bi. =s="--t=4-- :a 34 %_sas- === _. . 5=g=. ==yp ,
m .r . _ m- e a _=., _ _ , . w.p__ _ _-_=.q=4 __, g_g_
.. =. r.=
2_ . t=_:: . , =m ,.rg i u r.z:-R -- p. r --= ; 76 .. 4 :=t. _.a -' 2-w %, b=.pppp= =4 ::;g4=.gg;.gg q -
==Mi= is : MINDE SI?E A00NDARY (418 meters) Wie .i.
gpg.- _. .: g_ =-_=r==c.
= m --,: w.n,= n+a =r _4 _g\- g t. .;e g 4
1 O# 10 - t-- #d n-m - N;; +,!--:, . @-N+. w-DISTANCE (meters) EXIIIBIT 3.4.4 Xu/Q with Distance for Ground Level Releases (9m) by Stability Class in- n.v . 4
10,000- .
= = . . m-i 'b " ~ = ,l s . .. =Lis'$i+f - . . ".1H) yk !-# 1 1h--- .: ~-~~~-
wb[iFH -id [I . ' ' M '3 * . . --F
- i If!'j "I. --..] t-- Mi d' "..2
. i! :Vt 2'N:r&[:.fFmt:!n' fg 2 i : .!'!i'i:; N f-i - -f- jF " r 1 M piut mi' ."ru:- i pfm -4 dSN if flII:!- 2 7M-J E N y- ii$.@ pl4j r ', ji' ij$inii iQ:ja j p./ id /
V) ' iiM
~ -
, -i : , i
- i- t 1 ihhiii=.== M ii P =% biWii h " = 9 s !#igfli t:4_= M Li y i-iiii!:ighisi Fr@
.. y4 . ; . 4.... : CT:= = .L2.6.n 1.:n'c; ;:.:n 3 :.-*:.rt ::. : - -- - -- -+ a '__L.- ::.;;;;;g:;::: .r r.::.; u. ~ ~ +
_T_ :::.. -1 :.z :.t:n::*- :n :+"-*-~ ' 1 :z . nn;.;=_ n ;;n-... . :,,:.f;; ; q;n ;;- L ., : QifM %.il ta: M$inA;k}Q-[i.ibR -12i MiU H U !b.r - M N.Ibisi$iM:W J p.4mtpME ijl- W.M
..h ___g 5 NiN+9f.i.E3HU i ., . i}:.E. t g * : &cr3.cr:.2.p ..f1' T.-- . g a_t j ,
1 -r-w rfel fg gn n:m:. :n.... b=r u p; W
^'
x
"; TJ'~ :: ~ *v;-
u.,.: 3 h.'j}t
- t .n n c ." .
II*!- --H;
]
Q' T ' UqA n:i
'~ n n:j'in. H n: .: n,gr..: .nn:rEnn:nmii : Tr.. tr- m.::E rt ; l ~lI-b Q-': 'i +r ,r.- .e n -i .- t r r ---y : u-f: n .F- : : _: ". .'. '<a i' Jl!~iiti'i~~EiE=~ *!b. .- ,.... . .2.r; tr- -- t' 'i t ^f
- i - {: I. ?
- :-d. P 'T.
t:Y' s :: I*'.. m. " r.H!i ::::~ dt =.
' i' ,& t. 3C--h.'~": T- +:M: m3 : r-SMjil -
- idifiilT' if iii i~. ~-.GM '2MM.jjgi-jr";C -Q.Q-~ ~ G-f_py_gi .
% gi gj:= g / "i g-4-.J., "'**b _. ~ *y :f, W/ + ~~f.,; ,7;" J+ -Q:--
_d M**-~-~-+- f:~a ' ~+ *g+._*,pgr ---+-wf.;ng w .--- .+. .- < < q.-
; t .y f.' ,-- -. , _ . _, - ) -+-+-: .;ff. /
m ./ */ ' 1 I
- I ;ii 1 ,
i t
- 7 ),
14 { .. '/
. 7 9 6 g t . . i e' 1 / < - , , , , , ' /i 1 !**I. j 1'000 . _ ' . - {t{ ; ~
a :m-g u p.3 _. y i}ijjj zji: 7 2 4_. ,3: fs. ;-g 3gg1-~ (pI' . : 3 jfrgif D U
p. ? -
Y.j 2 r
-f. Y~ - a--
u . . . 3d :$ :
.3:p:g;g-g . ..Y$ 3]:$jt p ,
fy
~
M N.;;;;_:%:p:qQ.. hdNrpE@t jlI M Mil . g-[ N , @1dh' fi j dMMt t;fynk.. . Y ~IM kh- fi#!
- : nin MNh: d-!!! 3~ 5fI i "
[NsM f5 II!!55 bed 1. j'E 1 ..i if N! ifNbh ! kN J; r2 _.t _-._;n:4tn 4.t-
--t--+ 7 y
- a .r.rg g -.;;;.=-t- :f; -<._nn;;.f. .
--i _ . _; ig< t.r tnnt. " T"]:. nnr+/:== Cf :: _ ::=::g:m_;;
A-g-+ nf'_-t----fgf-I, .. an: ,: .: pj U1 fil. Hic. 1=m :==us rg . !! ! ~ . F.i: t s .3 :Hd
;-iii'!! . aulisit i.9:-.d iiNu;sd ai V- -9.:Q}'j k . p" Hip:=U.u r ..i .
F==a--!++w +p=.fr?L 2=t m y. n 2 L Li j j i'f i r .e .ui.N
.u-ii+= :- [Mr Win: = ..iw ideiam t%;-p+=i-- - im . u n =ix - amrm g g.:i t.g.; 4.d- ry{jli , m::-- :=
z 7: .tirviur. r= 4 s ji: p.a uu p-= e m s%.&- py+y.,j;_ rp ii~;r
=F :- ki tiIi-liiEi.i-?u : iHi. e . - ,i _gai+3;;
j 'ip --iiEhiT.T.C.'1'~ fEr.Z:. J s $'g yi: :-M - . H xji.:-irr!5--i . ' . ~ ~~T"y? n .f +.4 (i'.U *-'
.n5i~--d liiI- -f ..i..r: "=issm=..t -~ =na. A. s,i~ tid:r .-i32ji'.idF _,-d3i-ideit:: Wi=ms==.=..m"E~jiHk.1, .=.m==jiFaim!F ,.d -i+ p=2. . iimm '. . . =a t iii = .+-.' E .
w y.. ti
.. ,.. .a a.. . . . . . . . . .. . ;_ . . . . . . . . - . .
ix' u.7 .-
'yT-J'.f_: g! W ,.0.$---..g.+.---'"~2.. . . , . .._..-~.4--
J. ?- . .g:-'*;;.i~ -- ...- . . p:.::'/*..
.j__, .4.h.:..s.- :. .33TJ.. ..'+: .0 nut.:~* "7:::' ~* ..*_.
- m. --
--+
( f:5,+'~~l ?~ -
! ='-* .N** ' '*** -"--*~~~f~&~~"
e. e
." +,'+ ' "" +i-m , . . J e - . *.*-++-s vw +s e
e,-f- f l'; ' . _..o-- e"
; -z-: -- ++ : .- -/ : - ._ i +-t~--+-
E
~
i i . , 'e^ /; .s.4 ..- /O ' *+# __/ . /i .
' i .
- 3,, l! !!!! t
- M , i[O I '# ' '
ii; ! 6 100 ' r' '2' y' i ". n g y m p'y gm ;f ^*'^ ' y y yg f'g , w.7 m n' ' m' , 1 w' .,'. . v m' . f 1 .
-I '. U- -lii g i- ' f W'"i5 ^-i " e 5-- W fl' !V!'Niis jg-jjiU -d -j4 8 -ili sin @-"==FF I!U=t:h'n a
\ ~j 4E-t t-- d%ijW.;.ii i liI IIH ! 5;E YI4/$ Mi- Siii E53MENid E 4=d4 HN itfiE"- i *J Ei MiO~ j T-fr si M/[s?" #E!!ij/SEC44=7:liiMiii Ji4-i=iE9E!!!ii!Minssiihi-M stii FI: iii5EE 9Ei 7
~
MMiM i5sb F # " M Es M 5E; d iti M N!M 7 '" ".nd M MMMddid!!s5#"Edii!Eiif;s5E h f fii 9Fi4
-Ei$r mrv - .h: 0 ; -h5$i k N Y...
i:fi*f *7 .-~. :-! -i F.W:~= %g '
"iid'Y i'i ' ':H- ! =ib?~14-i-hI -
F"'II:n t;H) ? !:4 r.:
- n- i8'i
-. : t- ....3 r. - M.
g-i T, M tiir = . =. --ii*! i:7 aiE3 ~r '--'bM-i : 7 Ejii .i :
- r. . - -- -+* - -
FC !- t fl i - I: H --{+j- iE- titi:i=-
- - - " 1?'i ---- - - - #=
b.rd - - - - - - -M= ' - ite.J- - = - Eb s. Ti" ---
.d =T=, ?=I~in"y. '
r .. , .{ j . f . g, , 3.'; +i..nig=j TiirQm;. jii*. g /t . ii.d,jmg:ri' ;.,,'i' f t ,...t., jig 1.- ...t. .m Tjl .. T!iggi.. gignM.-, ,J, M. . , ggf..
.t..........--..T. .. QJ, .e .
U 2* .;+
/ +
t :*C.553 I F
- , g r' '.- - p .-. , -,- / - m . .
-.m.., ,_ -.a ; ~* yyr . , , , , , , ,,,,,_,,/ / -
J
^
- +-**
W'+*W_ : a. .z.../ .s' . 1/ . . 1f.-+ 1 i t+?t*+ N[b v.
. .: I.::-- .I !Y -[4 it[
_.m y f
. . .1 .a . .
I !#. I ~ I: _ / - 1 ' ;l I ' I.1I I: 1 ;..' .I < !I . , / I! i F . 1 .I . ! i -- !Ii! .... i i.I II i.- :-I 1 .i-- i > 10 WWW l lf4 7 m l .l wm e lIH f m l!!!!l !! m y r....
%m i.
3- 7 -- ipi n y tii!WW! 7 , iiiitiqCNim d ii ' 4 . it mi=E
^ *En=r=
[OT
=*
6
,W A[flipiad!.m .
i
.dni!Msii"'kW l!5iEi==ai ..!Mt=EiEi,-i;._c1.
idii&
- i : 1- 4.
HF
- p= g== 9.- _5 .-E3.2 M.
i aigni:U=9 Gi i t siE:MMW liiidi Me$$.m.,t M h bi (!Mi 1:"p21IkbE i:2Mfi!M9 9tHF M 9-d.n.iiMGlis y n.. . ._a m. z. um .y.,en ;_ =, ==
~
- f. ,ut. =n . 2.. - - ---- .-. .r - 2- m zu: m:--nt- *:nmar _
#- +4]v ] J4!M5 mtr bin]mm -Msein MIM..i lm N iI D."L M I4!5 M =ib hi42 :1%% i3III3D4 = /*
1 E 1 i r 1 i IEM"tiip:m - iY,t = i=gmI'M i.,ri.:inshiiit-1- I.. ! 5- ?! 1 i t 1- ei==r iiE!pM E m
#1 =
MM!*Mi : lI p -+ar zhi gh 1iP"]=AF d+,ii" di!WM i A gE4*- T.. . .ime=sr_==rivi=r.- Mt*~! r%)0 1l -.tr .HR ~re-d- =i~ii.,sii:rs= 33 ~-- n$+10 2 li!!1 H ni- 1 M i=mf:=-~J hanH2s-=$i]it 4 - -
, n E-0.1 I go 100 DISTANCE DOWNWIND, km ! )
e EXHIBIT 3.4.4-6 Horizontal Dispersion Coefficient as a Function of v Downwind Distance from the Source HBR PEP-3.4.4 Rev. 4
"^'- - - -{EiE! ij ' ~ ^
3il - j E I
..-tN --. :r -- 2 -. .. .. ii!Ed-~f 3 -1edU . M.... -g .El:ik.-.-
1:B: %::t 1,3: .n:.. M-~ 1: ..!{'i: r3!4' , 'n n .- n s, _ . y-.,-
- u - . --W n= ,_.Il'e- i .-....;.. ;1?*ii I'iUEi:'f:3[; Tr st-C M -' :
t . . T 2 IQ,+ -
- Jqu.?!! ? min:f'::'- +1 . , . .'--:p. ^y{} ,f.. . . {'Ta~ fiH{r iii iE5".M nu fiiit""p" _ /
h :* T f::*.
-'s; ) . .- .4 .. 21; tt 't p..., ,n;:C:::r nt"-- 3:J, p f .f:!!?'!H. : t--:n.... .:t:3 , c; .ca \ .c p'4'...: .Z ;t4j(, ; y +- '*~---~& +- gg0- 41.; g :n;;;;&+ t g;n4;g*~ -" ~;;*t:;; 4;t-- - ';I' 4i y
_; ; -- -. a
. !T17 *hg;':n: / Z -+J :11 A u 44 r, *ig;b;;d3;:;;;*;"; j u nN,y,g,;;;;; 7;*:;T;; ;;. % t ** + .g!I 11.*
- '3n:
Wi
. :; p ++ _
- 7 +.+.
!. ;1. , . ;.,4.---+-~
n p. . ;-
-bW. ' -[ i .j i +O . , c * " - * * - " , f f' i . ,G . , -f ,1 .m t*,
f . 1&L . . . . i .c . t-t Y. . t i i li .l I I f: ' ,i:.I:' :1- /! I f i v Y' : 1 i i!.!
.1 6
l7!. !![;I - I . r i i . !;I I' "' "if i 1*000 4 '"
- i ' '
4 p p -. .: . t f. :: n ,
- 1;:
m npp .;--
'.*2 : : Mi i2,V+.m em+eg- - ; ,au
- . m.- mm; -
e.
.w; . . c .+1 isi ....w==
i:P 4 4 timpi
; e .:.~i pjf -. =..= tp i4iy -
n
- i. r .
Twitn .- -
'-' * "*- ":E' i. j , .f ~%* *-h ~
[ _j - j} - y Q { {ii: p . jp t 4 gr,; ibi' i;_ h M frlf ih Eiii !illiE==. miiinlif-ild . IMi - i=iid!E: fin f~fi:MMie - Ism m; @4 =:.+ j_i%gi. iii:lidill".'Z~'".3 ---+ .EM:d:F ]jix"" ~7fi:HITE iiiE.iEg:5 3 3 i g jjQ.:j.{]:: =--y g i y. g c ( da F u li ii:', f~h -j . i j
-42 {f ii limi:ii'IT.i . iif.FL j;r blHe2:3-ii p* TII I'*!! { ' 7. .ni Tv*m ! { W 1 rf if . .: T :itstrr . : : p(iii ^..,:.. i-%.ftirfi sY._-' -4M -- ( !. +! r{-N@iHH3+mM:: -r% [ Attr$iN !.I,i t IH..' .:'}n. J.i].. 'f(t fff. -:: r t- H u I.;.;:HF .-
- d. :14* H 7. m t,q.g.5:a=- -.m.3 n F.. " ^ ' ~ . f.. h. r-- I a U
..F !?F'- , 3 1 +k. }r . f .:. -g:f-A ,i . :
53 ;7*3ii;.Hi; ii g,h- ' is l . .
- 1 ji ,d. 'U ., h.M.
- 9. 413?i.-
i?f~-i9,ti .. F* -_.? IN1'-- fi ::
..-:_.... .t.tm[- .m. ,j.4'e . : .-fE T =7 .k[..--._' g.- g_d x n..' 1. u Try h{;. ::;.;_=en:
un r- K.; p=- ;g :.- 7y tr _g ty,m= =n =k;_ .- tg _g ;=4:jf{gpg.;N.!!'=wt-s,f-7
=- - r-rw
{m ti ; q g=n- .
! U*-j;~iF' q:,.3:31n;7.Mjijiy .= =-sw.md ,9 . .;. . ;a g,, .-..E- . n~:t : :m.. .
w . .g:-g;:nt=nn := :-y pa;;-.+ m.%..
;u ;.n --- ::g ::: n.tm .g#g:... --
u n. :=.2:= p.&,,, ; : gn::t..g=..m ,, :n. .
**T.?t!T:P.~U"' e ~ *- ...'23'*"
4 d.
^
g' (,.-]. ' -. * "*-"*
+ %*T! .... .. # ..r - - - - - - + +-i i
- *f t-*++++-
.III .- ~f er . , WMN.Ne pe*=*L : '
U.pfd
^;W ~ 'i ++r*e ! '- ,
I. -g 1 4 - i . i
,31 -. j . p, . , , .%w , , . '1 g.-
ss- ; ++.*t** tMa'*=-
*!III'd'#,J.6 ^
k'I!
'ie r i~2 .
II ! Iiii iIii iiii! i 1j'a, I Iifii i i r3 r
?
1
/ -
i
' i I i/ . ,
4Y" d' j i
.,,c 1
I
^+ .d' . ,-g *"t**+ j i
i
- , Ya C- .' e' $ **" 8 ^
i ~.
***"t'*
L i i I it 1 f fI !H F MMiB# tu- - H T- 7*i ! WI:E!! M7m- Tb~"
. L 4" t' I iII !!! +
iW ==!;fli' GIT"'ET'
=14 .
i 4 H iii si Mi:i!W&hi sie 4- kiii[iv. --i - f =E - 2 1 4IN%= tis d i-' n :ii i=; - A.ii + 4- #iiii--#4.:t- a# $
. ME M 4i-E+?:) li ii-ME 2351 #ifiEFisiM(-iVW l.i +r.t= fi dilhi/@E Y :i -
12
- m. #W{M ilhili *=i iii; Ets e pik d;ihWh 1 # M .y.yT I m. GL M" t-i
~
dq Mn g
~ .=-._
qu - _
+-
g _.,. #---*p_ cts::HIL:.w23 y . -- . .
;e.m:r.rurry .. a g- r_F13g&, nbau . m
- m- a ~ .3:reim
~m g---n.::.. g-.w .e W) rp g: , ein p q;g""~ f ys , ase C m :i.=re- .m sw4 li}jTiTir cm.rv di:---" m t r br [rr t-+F-i - =
w'[t
.3 , "1"b'T' =W+ -?h:= a- 7.* * -H u I f d, i tiMyT7m srs"=4".H +p""". .. ' . -_I I-- ,j h. rF "iim rL:n'Q.r:
m z. r =1-' + .E"' 'E :
-+ r .
Hi + el. ++i u ++@t 'inra ri+. -f
/
fm < 1 -fg '( g;g-. ;.. .p {h; J q3 ;.py s q 4ip-{'.;gisigig Mg-iq+t_ - T . ggig.gy gi f ;g.;
\
t]'.e 1 g nt :; q** g _ g g.g.
--. -t .. . -r =&pj .-- } 3 r .. .,:. ..../;r=,=2 g
xy
) ~
1 .x =.m . : r p. y; .g . wn=h=,=a ;, b - n h, ;M n.!:f:g%... ,9.n7 n 7-m
=-a4yrgi.p?- -+~
s-~--+e-
._ pn= -,aD.n:n ;zu au3
- .==w r :nt,.e
.a =w .m.:p:g.4aup=na::. ,.;rtn u;a r=;.
g=nn g-i 3* f y / +++J ; .)7 *~QD'$ [,;;.;p r--+--+Wd3.:::. -pi:3 =;==:n=
-. M. 4f t: -- y , , ..? . . .. - . - - ,,,,,,.-,pt.~.- *-+/9/ : ..i# # "t . ,- . .17- --. / * + + - - , -
[NM1'[* , [ f': , -[ ' ' ' l Y' ,
"~
5 !! .. . . . s Ii .. [ I iIi ;
.1 i V! I i' i .Ea 1 #!' I .L*". f I1 13 [ . ] -[.
a l-
'/i i l ' ~ / iI i' ;#- #_ ' .# 1 i i i ' i 1 .i . . ' '! ] i 8 >.f-' .i I i 'g F 1}I ,f". : ,f ! .. ! 4e f/5 i [ . , . 'I : 1. il: 'N. M7 L3#
ill.r fi lim 7+
- 11 iW idiiiiiii!!'ili 1 i 3 iE 4 im -
=
_".-;I i.i a i r p : . R, ipF ..gr.m:gr;p.:J-ig;ig;y.iq.4 ip
;13 , ypr:rg .
i i. piL .c - . g A_- ~ '
/ / ii!::t:ii Wl EM @ia !>= :i r : 4 515 _ AMM'F17!-- 1i g f .
Mii!! GE; r ;;id!L s=H-/AGi HMEsi nMi!E3E %Mi ii !- siili5'@iEi 5 iMs!"fd t44fi ii inb HBii@@i.r EM
@fr-[d #EEiin=E mW%rE""~ =+:i5 dei =EE Udi 2iiiEiF~~ ~ 754 1 /-
F i
-4iliiW.".6..'
83 Ti u if h'Z'y..." ifi-:w=- 41lL:%- .-zg
.g ;a il .- iiid=?
n: li-'ti-
- a ili7 ? i' : -
1 i i f --+.inElfi
+ge%'m55=Ffiligt .=-}.==
Hii mii-i l. fili:ci
. --HmT-i -- i N' ~ } *Ii 1 +3fj Tiij+jd{i'1 1-s..:ra fif i EbmC Mlf- = - - - ;u:-- r' , .,-- . xiin wmy=
- s i. i :."&.. =.i.3-~.
~
g, P g !t t gr:. .n::; t* .s . .n g: .::: a : g
. . .::: -. . r:p ,:g:g:" ;.4 r .iJg '. ~ - - + -
- .gm.*n c :.r ~-
t: :1-g5'"*+t .:;.: - -
.- :;nf ur; .. ' . -'t t g t t n*:"rt::0 -: [$ 2g -t : - h: : y g:. :u.
j' j 3; n+. 3 g t j g ,7:".r tc : Iy[ .g -it m- = nat=p:--
.. -..2Q,j. ru m.gpgj'=Ep Mnt- '*:-~=ir:--!*=p"*T...gj"
- r?II inu u!
=fn p':g p'i ..:22.: n: = - ~. .. e - r- =.-3 . m .gg;prt nc i,pn.:1 ' 3 J IC....
q' :g.-
., .. .t'. I!1. 7 r .l . . . , f;;+::nn;-'tr: :*: 1" : :, . . . .
r y .m=4 1 p. gp:- -
- y. _ = rt ;. . .J 4 2,2;:: ::: t=2:---
2:==z _:. :t2. i. . .. _ .:q. - 21g: j=mh::u umap ==- .:
- an
-.t.u.p::;:
t
-+_r a .a :E - w. -+- r)" ,fh---+++- t+++++-+-~: ---+- -
7++++,, y , . 1 .
. : S': :t-y '.
i 4e. I 1 I i ,.. .'. l' f i I : i n i i i i iil' !l T
.112 ..i.. I'. .
I I 1: i ~1..' *-iI l I! :.! I f I In!i 17!!!!3 i i 1 I > l.0 ' ' ' 0.1 1 10 100 DISTANCE DOWNWIND, km n
/ \
( i EXHIBIT 3.4.4-7 Vertical Dispersion Coefficient as a Function of
'V Downwind Distance from the Source HBR PEP-3.4.4 Rev. 4
EXHlBit-J.4 4 Dese ao vor com M sunce - f rom c t 'ud Cente r tks , e- -
. IO.)___ * . , g] , _ I l-I t i- '! i 1 }
- bzL ) 3 1 t I- i +4.-i- is.i r- -
-i-Iri ts g__ : -
4 i r. s -i-v v t. Q.i .e t. *. : . ki._ e t- i ..; . . .- L.:_6. , I---- r --
.. l Ir r- +-
t-t- t-I-
- -i- ;-t
' W ::d :H- -:*T- . -i-i- ei-i- : , T-: p-::
s g- - - - ~t ii~W 5Y .- b UI' E- 2. T. . *E -EUE : ?. *-.~ L ~ 2I.A. 5~?L.C' U= 5
._w._.,- -y -- . , . _ _ . . .. .. .. g....._.... ._._,-- . . . . _ _ . _ _ _ . _. .__.. . / .y ~I -(
w'
/
I 5_ _ _ r
-'*--*-*~ '.s-.- )i ,t 4 ..t_.4 f r 4 . j g.
Q 4 py :ss , s a.gs.i- 6 i st..
. g2_ .; . .;_ g .:d:9, : .sg &_ 5:53 .; . ;5-5.;. g.,_ gg 5h6I;5 '=I=?.E':-N -il.I'~i\. l=~:24= 5=$:~ EIE l~" 2t=:'I di: =-5I';=;IUM=L.;
2-E ris =. '~i;._.. -~* 2 -; l-~ "
* =g- *.2FE-.~.Z_ ~ I_-' E 3._---- -+-- - .~~_.-~.: k iiE E - . _ - _ - - _ . - ' . . . - ;__..g.---- ~
b? h-.- -
, n_ _ = __
I __ eig ,
- 1 i ,
4 ie ! i i <'
- 3 i o lo.,
-+ , - i m -
o ^1.= E =i&-. - Ni-i+:- = \+* -*=s = n=~ -:- ==~ - i =- WH C -g [ =-M -i T.'
"M 5-E---i: - MW 54= iM M21-MW3 ' -: W i- h u I=
y 5f*3^ ~ Y. -I-5-582.I NS~E~~5~5 51hT- N[1-M $J-I';;i= -$
- ,- v--,.-- ;- . ;
G '
--'4 - - - - - - - b ___;._ ,; ; -.;-;,- =_.r_;-
4.s 6. . - g_.-_-.-.. a 5--
.. . - gmmm,m 9 . ra y__ i T l E _-6-b :I : _ u___. :-M= \ W=-EG-"M#ifa -EL= '--"
g y=_-r_ z_- = = =- pc._. ==
-- =r-a;\g- ==g; ._=.=_ m g: c.i,q-3 .
__y_____ .__. v 3--- - ' - - - - - - - - - - - - - - - -
= ._ _.=___-_q .o G .\ ,
A 2_ _ t --- \ ----f ee. ' \ O , I i i i C , , O . i i , i ! ,e i e i
/, ,\ I i! * , i e l i
- T e
*"# i i 4 h,3 .
- f ) 'u o i I t
- I t i, ,
h i
-( ' /
2 y,g--= .m m_ . . .
- _--a\-o_--c. % =
e._ == =-a=aaM =m == =w t-ta-# = = -n = w =*+==
< , _ _ T :==-wn.2 : ==;=t=E = == =='.L==5=#6\=m-iu=- =;
a ac: .._ _ __ L -,
- --M\=_cE . T__
G s.= riu-- i 2i E-b:_ ~~Ll~ Or Pilist'-2.-:- E==*#rir_ ~:WM =-T \ t=- NE =3 8" n t= ==-===>= e-= =t- == ==== : -- mt==== m+ n + =- =L p
. a_ c s.. -t==== = == = . _ . =__ = _- -- -_-_ .__ _=_=_ _-.==.:=__. = _ _ _ - =._=_.\==--:_=--
m
.s . s_ - - - -.-_ . - e- -i ;o..
n.= I i 1 1 I
, , , I. .L I
( 1 i i [The Gaussian Distribution represents ; j ; ; ; ,; , i i ii > - the reduction in concentration as .1 _i_' c ' ' ' e i . function of distance from the cloud 10 s- ._r' 4 _' =-um-*
.=-N...+.- - - _ - _ . .
m- - '- Gaus.sian ----+
- s. += " 4
~ - = Y-e ;=s centerline at any distance.}, - - -m . , 7. :=*ti:= = = = =4 - i=t=t =i=t :-4. . :; -*:n M , - + :tri-+=-i == = \ r .. E=M " " met-h @!Ei":5ti' =" __' : ==.HTM"E -2:iMre:EE.=\i: --, g . _ . _ . . _ . - . - _ . - - = _ - _ . - . _ _ . . . . _
- s. -- -2 - - - - - - . - . =.=d:_
7 t i .i - -
- 4. .! e t. -l:j-l T _i . r.n ! i ! -r: b.k u . .L F t i- f -r- I
* . .i:p =.u i . u mm -w .- -+w .. ;w m:. .g ~.a 5:
M. -5 .l ---tin i-9{4- - IE-5 t:1- -5 @_55 m :-i-35t= -LIi-i:2) _ - r
- r. ::rj_.:. :_ .. - - - .
.... .je.cr :._ g=n:r:_
r- ..
.._= =.c ~ __.
- 2. ==_=:.r( . ;.: ; .:.
fG ::Tcpt: . :t_ . _. 4.--:---- IT*t:DT- T - .-- j j -._,-7._a...... . , . ..4- -
~~-
(./ I-f -t_*,-3-!- -
- - ~ ~ ~-+--T- - *
- i 5 t i l i 0 1 2 3 + H
. Distaned from Cloud Center Line (in units of'ey)
HRR PEP-3.4.4- Rev. 4 - i I
' EXHIBIT 3.4.4-9' .b b INGESTION (MILK CONSUMPTION) DOSE POTENTIAL (REM)'
3 FROM 1 Ci-sec/m of I-131(a) Age Winter Spring _ Summer. Fall 0-1 1000 3600 34,000 32,000 2-3 900 3200 31,000 29,000
.4-6 900 3200 31,000 29,000.
7 900 3200 31,000 29,000 13-19 450 1600 -15,000 14,000
>20 290 1000 10,000 9,400 (a) Allvaluesmustbemultipliedbythemeanwgndspeed. 4 Thus a 1 Ci release and a dilution factor of 10 sec/m and a wind speed of 2m/sec will result in a 6.8 rem thryoid dose to a 0-1 year old child in the summer months.
(Sotirce ID0-12053) O HBR PEP-3.4.4 Rev. 4
^
O H. B. ROBINSON
- SEG PLANT TITLE DIERGENCY PLAN AND PROCEDURES VOLUME 13 AUTOMATION OF DOSE ASSESSMENT PEP-3.4.5 REVISION O REV. APPROVED BY DATE REV. APPROVED BY DATE REV. APPROVED BY DATE I 286 / cc n+m E T35/'mA /z-n-f/
s Recommend By: r 7 J I f/ Assistant to General Manage [ OATE' Approved By: / (p - f /f
"""~''"~'" '"^^
O
,e - e
. , . . . _ ~ . _ - _ - _ .. . .. - > . _ -
gb e . , 4 .
~
PEP-3.4.5 AUTOMATION OF DOSE' ASSESSMENT PROCEDURES
- 1.05 Responsible Individual and 06jectives The Radiological Control Director or the Dose Assessment Coordinator is:
i . responsible for calculating dose projections to' be used by the. Radiological
- . Control Director and the' Site Emergency Coordinator in. determining and- ,
( , evaluating possible off-site consequences from a release of radioactivity. j The Radiological Control-Manager shall assume responsibilit'y for. calculating off-site dose projections (to be used by the' Emergency Response Manager)' after.the Emergency Operations Facility is activated. , t 2.0iScope:and Applicability
~
This procedure is intended to describe the use of a computer program
!' which automates many of'the calculations performed in PEP-3.4.2, Whole .
Body: Dose Projections; PEP 3.4.3, Thyroid Dose Projections;- and PEP-3.4.6, Determination of Affected Areas by Use of Visual Aids (Isopleths). The. program is intended ~for use on a Hewlett-Packard Model 9830A tabletop ' computer.
. Individuals using this program to automate'. dose projections should be very familiar with the above mentioned procedures. The program allows
- i. the capability of calculating downwind centerline doses at.any distance
-including the direction dependent site boundary distance, 1, 2, 5, and'10 ~
i j' miles. The program can also provide X and Y coordinates (X being 'in the Q downwind direction) for plotting'any desired isopleth. The program does' p not include provisions for: - 1) finite cloud correction factors (applicable l , within the-first 3 1/2 hours after reactor shutdown for whole body dose
. projections; and, 2) correction for lateral deviation if the point- of ~
interest'is not on the centerline of the cloud. These provisions can.be ,. . included if the correction factors are determined manually and then
' applied directly to the computer' program's results 'where appropriate.
3.0 Actions i Refer.to the appropriate Plant Emergency Procedure for guidance.-in deter-mining the necessary inputs called for by the computer program. PEP-3.4.2 is for Whole Body Dose Projections, PEP-3.4.3 is for Thyroid Dose Projections, i and PEP-3.4.6 is for determination of necessary isopleths. The worksheet EXHIBITS in each of these procedures can be used for recording dose-i; projections. i- , The computer program uses the same calculational methods as those described ; in the procedures mentioned above. The. program calculates X/Q values from the basic equation using inputs of release height, stability class, ambient temperature, stack flow rate, wind direction, and wind velocity. ' - Other inputs include an appropriate source term and time af ter reactor
. shutdown. Inputting the time after shutdown allows the computer to choose the dose conversion factor corresponding to the time that the cloud is projected to pass by the point of interest. The program calculates l l isopleth coordinates based on'the B. Turner method described in Step 3.9
','~ of PEP-3.4.6. ( t f. 4 HBR PEP-3.4.5 - 1- Rev. 2 e -e q f -P14m- ; get wTW _i+--sw++-%tv49e r*-t=-1.-.mP11-h tw ' e -c te TI-p v e- r- e t'-~9-- ~'?+-'T""* 'W"@ -fl "
-'T'T T*P'"'W'*7'W ^'I- ' "
~
4 IThe following steps explain the procedure for using the program. [:- q
~ 3.1 Load the programmed cassette into;the HP9830A, enter REWIND, enter LOAD 0 EXECUTE, and enter RUN EXECUTE.
NOTE: Press the EXECUTE button after each entry into the computer to allow the program to proceed. t 3.2 The display will read " PRESET (1) OR KNOWN(2) INVENTORY?" The program is asking if the radionuclide mix of the release is known. If the mix is unknown enter 1 and proceed to. Step 3.3, if the mix is known enter 2 and proceed to Step 3.13.
.3.3 The display will read "O=WHOLE BODY.. 1= THYROID?"' The program is asking whether the user intends to make a whole body dose projection or a thyroid dose projection. This entry will allow the program to access the correct dose conversion factors.
3.3.1 If a 0 was entered (whole body), then'the display will read " SOURCE TERM =?" Enter.the appropriate source term in. either Ci/sec or Ci s. The display will then-read " SOURCE TERM UNITS 0=CI/SEC.. 1=CI". Enter the appropriate response-and proceed to Step 3.4. 3.3.2 If a 1 was entered (thyroid), then the. display will-read
" SOURCE TERM =(CI)?" Enter the source term in total curies. '3.4 The display will read " HEIGHT OF RELEASE (METERS)." _If the' release-was via the stack, enter 60.7 meters. If the release was from anywhere else, enter the correct height above ground level in meters.
3.5 The display will read " TIME SINCE SHUTDOWN..(X.X HRS)?" -Enter the time since~ reactor _ shutdown. 3.6 The display will read " STABILITY CLASS.. 1=A, 2=B7" Enter the-appropriate stability class, 'i.e. ,' for stability class E, enter a 5. 3.7 The display will read " AMBIENT TEMPERATURE (DEG F) = 7" Enter the appropriate _outside temperature in units if farenheit. 3.8 The display will read " STACK FLOW RATE (CFM) = 7" Enter the appropriate flow rate in cubic feet per minute. Note: Obtain this information from the TSC or the Control Room. 3.9 The display will-read " WIND VELOCITY...(MPH)?" Enter the appropriate wind speed in' units of miles per hour.
-3.10 The display will read " OUTPUT TO PRINTER (Y OR N)?" The program is asking if.a printer is hooked up to the HP9830A for use in printing results. Without a printer, results will need to be transcribed from the 9830 display by hand. If there is no printer, then enter a
- 1. If there is a printer, enter a 0.
HBR PEP-3.4.5 Rev. 2
NOTE: The rest of this procedure will refer _to computer results Y being given on the-display (assuming there is no printer). [j( Keep in mind that with a printer, .these same results would automatically be printed out. 3.11 The display will read " DISPLAY TIME DELAY.. 1=1 SEC, 2=2SEC?" This allows the program user to delay computer results on the display for _any amount of time before displaying the next result. This delay gives the user time to transcribe results from the display. The time delay can be tailored to the user's preference, i.e., an entry of 5 will delay the display for 5 seconds,.etc. 3.12 The display will read " SPECIFIC DISTANCES?.. 1=YES, 0=N0?" The program is asking whether the user wants to look at centerline doses corresponding to the specific downwind distances of site bcundary 1 mile (1609 m), 2 miles (3218 m), 5 miles (8046 m), and 10 miles (16093 m) or to-look'at centerline doses at downwind distances yet to be specified. 3.12.1 If a 1 is entered, then the computer will read " WIND DIRECTION?" Enter the appropriate wind direction, i.e., N for North, NNW for North-North West, etc. Note: This allows the program to determine and print the site boundary of the downwind affected sector. g 3.12.1.1 The display will read "ISOPLETH COORDINATES.. 1=YES, 0=N0?" 3.12.1.1.1 If a 1 is entered (YES to isopleth coordinates), then the display will read "ISOPLETH VALUE=?"' Enter the desired isopleth value keeping in mind that the isopleth dose units will be the same as those just calculated for 'the centerline (Rem /hr or Rem). The computer will display in sequence the isopleth coordinates for the dose just entered. The X coordi-nates give the downwind distances in meters corresponding to the site boundary, 1, 2, 5, and 10 miles. The corresponding Y coordinates give in meters one-half the isopletb width at each X distance. After all the isopleth coordinates have been displayed, the display will read "NEXT ISOPLETH.. 1=YES, 0 = N0?" By entering a 1, a new set of isopleth coordinates for a new isopleth
\ value can be determined. By HBR PEP-3.4.5 Rev. 2
entering a 0, the display will (}
\s ,/
read "ANOTHER RUN (Y OR N)?" Enter the Y if Yes and N if No. If Y is entered the program will display " ENTER RUN." By entering run the program will return to Step 3.3. If N is entered the program will display " PROGRAM i TERMINATED" for about 2 seconds then display "TO USE AGAIN, ENTER RUN." 3.12.1.1.2 If a 0 is entered (NO to isopleth coordinates), then the display will read "ANOTHER RUN (Y OR N)?" Enter Y if Yes and N if No. If Y is entered the program will display, " ENTER RUN." By entering
- i. run the program will return to Step 3.3. If N is entered the program will display " PROGRAM TERMINATED" for about 2 seconds then display "TO USE AGAIN, ENTER RUN."
3.12.2 If a 0 is entered, then the display will read " MAX DISTANCE (MI)?" Enter the maximum downwind distance in miles for Qs _,. which centerline doses are desired. The display will then read " DOWNWIND INCREMENT (MI)?" Enter an incremental distance in miles for which centerline doses out to the maximum downwind distance are desired. The computer will display in sequence the centerline doses for each downwind increment out to the maximum distance (X-max). 3.12.2.1 The display will read "ISOPLETH COORDINATES.. 1=YES, 0=N0?" Follow Steps 3.12.1.1 and 3.12.1.2. 3.13 After a 2 is entered, a brief delay and blank screen will result while the new program is being loaded. 3.14 The display will read." OUTPUT TO PRINTER (Y OR N)?" The program is-asking if a printer is hooked up to the HP9830A for use in printing results. Without a printer, results will need to be transcribed ', from the 9830 display by hand. If there is no printer, then enter an "N." If there is a printer, enter a "Y" and skip to Step 3.16. NOTE: The rest of this procedure will refer to computer result > being given on the display (assuming there is no printer). Keep-in mind that with a printer, these same results would automatically be printed out. ( A v HBR PEP-3.4.5 Rev. 2
4
.t .g 1 15 The display will read " DISPLAY TIME DELAY...]=1 SEC,-2:2SEC?"(-This-('
s allows _the program user.to delayfcomputer results on'the display for: any' amount of. time before displaying the next result. This delay-Egives the user time to transcribe results-from thc_ display. The time -delay- can be ~ tailored to the user's preference, ' i.e. , an entry
~ of.5 will delay the display for.5 seconds, etc.
3.16 The-display will_ read "WILL INPUT' AMOUNTS BE~IN CONCENTRATION (1) OR-PERCENT (2)." If the~conce'ntrations of-the nuclidesJare known enter a 1,~if:the percents.are known. enter a 2. 3.17 The display'will. read " RELEASE'TO SAMPLE TIME'=-(HRS)?" Enter: the f appropriate time between sample time'and' expected or actual release time. 'Zero may be entered if appropriate. 3.18 The display will. read " INPUT ISOTOPE?" - Enter the comm'o n : abbreviation: for each' isotope,_i.e., KR-85, I-131, etc. Note: Depending on which nuclideLis entered first the program will decide whether to compute a whole body dose conversion- 3 factor-or an iodine inhalation dose ~ conversion factor. -Do l-not mix noble gases and iodine species.when entering isotopes. Also when entering percents of nuclides ensure that the sum of the percents equal:100 percent. 3.19 The display will read " OUTPUT DCF (Y OR N)?" A Y entree will print or display the calculated DCF, 3 N entree will not. ,
- d(\ 3.20 The display will flash " WAIT FOR REWINDING." The computer has !
completed the calculation of the dose conversion ~ factor and-is , loading the first program. 3.21 The display will read " SOURCE TERM = 7" Enter th'e_ source term and proceed back to Step -3.4 for completion of dose: projection calculation. 4 t i. t i LO l-l HBR PEP-3.4.5 Rev. 2 ; t . 7
. hb' k
- o. yzMgIg "rm H. B. ROBINSON -
SEG PLANT TITLE EMERGENCY PLAN AND PROCEDURES VOLUME 13 DETERMINATION OF AFFECTED AREAS BY USE OF. VISUAL AIDS (ISOPLETHS) PEP-3.4.6 REVISION 0 1 4 REV. APPROVED BY DATE DATE REV. APPROVED BY OATE REV. APPROVED BY
/ 2Bs / 3-/s-// .z Pas /~ 9.tr-fi ses/d aee ~
s
- h l/b$ fkA 12-ll-1) 1 Recommend By: M M 28- ^
61f Supervisor W e
=
m ant ceneral Manager /
PEP-3.4.6 DETERMINATION OF AFFECTED AREAS BY USE OF VISUAL AIDS (ISOPLETHS) 1.0 Responsible Individual and Objectives The Radiological Control Director (Radiological Control Manager after the Emergency Operations Facility is activated) is_ responsible for implementing-this procedure- to. aid in tracking radioactive releases and projecting the-area of possible affects from the release. The visual aids are used to (1) verify off-site. dose projections,- (2) a'ssist in coordinating the off-site : environmental sampling and monitoring program, and (3) providing - confirmation that inplant corrective and mitigating actions are effective in reducing off-site exposures. 2.0 -Scope and Applicability This procedure is intended to be ised for manual determination of isopleths whenever automated isopleth capabilities are not available. This procedure is to be used upon completion of PEP-3.4.1 " Initial-Dose Projections," to meet the objectives stated in 1.0 above. The methods used in this procedure are applicable'to shorter term releases, however they can be used to track a plume during longer duration releases. For-the longer term releases, atmospheric conditions will change, which can be taken into account by repeating.this procedure hourly or as dispersion conditions change. This procedure is used to determine the area within which the radiation exposures will be equal to or greater than some specified dose of interest. As an example a typical request may be to estimate the area where doses will be greater than Protective Action Guideline Levels. The basic approach used herein is to determine the distance from the plant where a 9pecified dose will occur, given as input the estimated atmospheric dispersion conditions and quantity of radioactivity released from the plant. 3.0 Actions List of EXHIBITS 3.4.6-1 Whole Body Dose Conversion Factors for a Semi-Inifinite Cloud 3.4.6-2 Dose
~
Conversion Factors for Iodine Inhalation Dose 3.4.6-3
~
X /Q With Distance for Elevated Releases 3.4.6-4 Xu/Q With Distance for Ground Level Releases 3.4.6-5 10 Mile EPZ Map (Example) 3.4.6-6 50 Mile EPZ Map (Example) 3.4.6-7 Horizontal Dispersion Coefficient as a Function of Downwind Distance from Source 3.1 Request information from the Site Emergency Coordinator or Radiological Control Director for dose of interest and record in Step 3.5. HBR' PEP-3.4.6 key. 4
[. i 3.2 Use and record in Step 3.5 the source term calculated in accordance with appropriate procedure in PEP Section 3.6 " Source Term Assess-
'V ments and Core Damage Evaluation."
3.3 Determine Dose Conversion Factor corresponding to time after reactor shutdown and record in Step 3.5. 3.3.1 Use EXHIBIT 3.4.6-1 for whole body doses. 3.3.2 Use EXHIBIT 3.4.6-2 for thyroid doses. 3.4 Determine or estimate the current average windspeed (E), in m/sec, and enter in Step 3.5. 3.5 Solve for X U/Q: XE _ (Dose: ) X (E ) Q. (Source: ) X (DCF: ) Xu _ Q 3.6 Determine the maximum distance (X-max) down wind for the XU/Q in Step 3.5. 3.6.1 Select the appropriate EXHIBIT. Use EXHIBIT 3.4.6-3~if p the release is out the stack and if the wind velocity at Q the upper wind level is less than 9.0 miles per hour; otherwise, use EXHIBIT 3.4.6-4. 3.6.2 Locate the XE/Q value on the vertical axis and read across to the appropriate Atmospheric Stability Class curve. 3.6.3 Read from the horizontal axis the corresponding distance (X-max) for the Xu/Q in Step 3.5. _ 3.6.4 Draw a line from the release point (plant) on an appro-priately scaled full-size map (EXHIBIT 3.4.6-5 or EXHIBIT 3.4.6-6 are examples) to X-max in the downwind direction from the plant. Note: Given the maximum distance downwind just derived, the cross sectional distance (width) of the plume can be determined by Step 3.7, 3.8 or 3.9 in increasing order of sophistication. 3.7 Determine maximum width of affected area based on wind speed. 3.7.1 If the wind speed is >4 m/sec (9.0 mph), multiply X-max by 0.13 and cross-tee a line at both ends of the X-max line on the map and complete the rectangle. O HBR PEP-3.4.6 Rev. 4
Note: This represents the maximum width of the area
-(m within X-max where the dose ray be > dose of-- %s) interest. This assumes wind meandering will not exceed I sector.
3.7.2 If the wind speed is <4 m/sec (9.0 mph), multiply thE
- X-max by 0.16 and complete the rectangle.
Note: This assumes wind meandering will'not exceed 2 sectors. 3.8 Determine the maximum width of the affected area based on atmospheric stability class. 3.8.1 Determine the' multiplier based on stability class:
- 1) for A or B use 0.16;
- 2) for C, D, or E use 0.06;
- 3) for F or G use 0.04; and multiply.X-max.
3.8.2 Using the results of 3.8.1, cross-tee the X-max line on the map and complete the rectangle. 3.9 Determine the width of the affected area based on the B. Turner method. 3.9.1 Divide the line from the plant.to X-max into 10 equal segments. 3.9.2 Determine the width (y) at each division of X-max by solving for y in: y=f-2 a Y 2 1n XE/Q of interest
] Xu/Q at centerline
- 1) Select EXHIBIT 3.4.6-3 if in accordance with Step 3.6.1, l
otherwise use EXHIBIT 3.4.6-4.
- 2) For each distance (division of X-max) determine a Xu/Q at the centerline of the affected area. . Select the distance on the horizontal axis, read up to the release height curve and read the Xu/Q from the vertical axis.
l Note: This is the XE/Q at the centerline value to l be used in the equation. Xu/Q of interest j' is that calculation in Step 3.5. ! Nf i HBR PEP-3.4.6 Rev. 4 I h
1
- 3) For each distance (division of X-max) determine a .
Find the distance on the horizontal axis, in Y
' s- - EXHIBIT 3.4.6-7, read up to the' appropriate stability class, and then read the o from the vertical axis.
y 3.9.3 . After determining (y) for each division of X-max, draw the-isopleth on the map.
- 1) Draw in the distance y, perpendicular. to .the center-line,=at the appropriate X-max division.
2). Connect the ends of the y lines. The area inside the torpedo shaped isopleth is the area within which the dose is greater than or equal to the dose of interest. W + 4 -l 6 4 I) i I i, i f b i l us?t 1 + HBR PEP-3.4.6 Rev. 4 , 4
,-,~r- vn,--ee.,,e.,-,,.,,,,.,e ,,-,n.-,n,,,,-.,.,,.,v,rm, ,,--,.w - ,, ., ..n. , , , - - - . - , . - , . ..-.,w . , , - -_ -,-,n,,-- - - - - . - - - , , - - , - - - - - ~ . . -
4 1 f~s EXHIBIT 3.4.6-1 1- - . - - , \+ - WHOLE BOD'i DOSE CONVERSION FACTORS FOR. A SEMI-INFINITE CLOUD i f Time of' Cloud Passing After ' Dose Conversion Factors ' Reactor Shutdown R/hr R (hr) Ci/m3 Ci-sec/m3 0 650 0.18 , 0.5 610 0.17: t + 1 470 0~13 .
- 1. .
j 1.5 430 0.12 2 330 0.092 I 2.5 350 0.097-l
- 3- 340 0.094 3.5 330 0.091 4 290 0.081 4.5 270 0.075
%)
5 260 0.071 5 6.5 210 0.059 8 180 0.050 , 10 150 0.042 12.5 120 0.033 15 130 0.035 i l 24 86 0.024 L i 48 36 0.010 ; E 72 43 0.012 i Source: RG 1.109 Table B-1, ORIGEN Run for inventories Q ~ HBR PEP-3.4.6 nev. 4
. . - . _ , . - , _ _ . . . . . . _ . . - . _ _ _ _ . _ . _ _ _ . _ . . . _ . _ . _ . _ _ _ ~ . . . _ - - _ . - - - _ . . _ _ - . - - _ - . _ . - _
,.-,.. .- .- . - . _ . . - . ~ . . - . . - - . . . - - . - . _ - . . . . w .. -. . . . - - . ... ' a j '. "
4
-EXHIBIT.-3.4.6-2. '
l~'D 4
-.. DOSE' CONVERSION FACTORS FOR IODINE'(THYRGID) INHALATION DOSE (k)- .
A . . Time After Reactor Rem /Ci-sec ]: Shutdown. 3
- f. (h)- (DCE) 0.0 55
- i. 0.5 63 -i
!; -.1 71_ s!
! 1.5 73
- 2 .85 1
4-2.5- 87 3 89 .
! 3.5 94 ;. 4 -98
- . 4.5 100 4 5 110 6.5 120 8 -120
/ 10' 130 i 12.5 '140 ,
! .15 140- ! 24 180 3 48 240
{ 72 280 i l 1
- (1) ~ Based on an average breathing rate, " standard man d . Dose .o other j segments of the population will vary, with the " standard child" inhalation dose generally.taken as twice-the' standard man dose. ,
? I-i= L' e p , I
' HBR PEP-3.4.6 ~-6 - - Rev.:4'
i Yv9 t w v=w=-r t w y*v--
- m ey-w W mr=w e vy-y y ee e m ye t-tet-w ww e r e werw t-t wP , -tr-se e, on-w,er ---+ - W W+e m w ww-c e w n ,me -=v -e - w-= ww - * - -w
1' 2 5 10 Distanea (niles) t I t 1
- -= _ -~- -= -t :g u . : ; ., . - _ . . - _ . _ . . . - . _
j a
. :.w.. .
MINIMUM SITE BOUNDARY - (418 meters) __ 10 --
= - ';"'" % =m -.a.=: . ,-- w.. +=- =s =m m =- AM=Nu m-a-c m =- .-. . ~ .__#_.-e +=.; 's
_ + . . _ , _ ,
;^ , 5K g- .,
A-==-:37
- -~~__-*-~~__D;- -- --- . . - %, ;A U pKN_ eiiK==t_'55_55 EwaE M-m,
- :==id_ii =_r=Mu w.,r m; %9==~*x*2,
= =w , -~:==w- -1=, -m a
_s ..,, _ _xy,
.Nu'._xms . x
- 5. , ,_- , 1 ,
m m 1
~ ~
10 - _m___.._ .... ~ . .- -- m
.e . . .. + _:
y ,"', ! ,1 x
.x . .~Dx-+V :
s w missy tritfK,n-iii4=- = Ai.M. -=5dWH5N 1 va . .1 n_ ::- T a
-s==_ _ _ _ _- - - w= L .=WM=sM .. , w - -
m - . . , _ _ _ ._-s n, =h -m-t- _---m
. . - . = -- s. s-. -+
u _f;.__ := .=_ #, i-i;_. _ . _ , d . J .,1,
. . _ _ hv=M_eW53 _ =_f_=N_W=r==$ -.,._ =X. . . ~' =2 r - . = =,=u ,-_.-=,== - =-,1.tx
_f . _ .- (m_2 =_. _=_.
-s-Q .
1 F
.i 1 \
N E E I 1 s x > 10" _ _ _ _ _ . _ -
.1- ;
r -y= 5 =-,=_gw 5= a;y=_m=r- 'gi-a weg-.
=+=_
_.. . _ - - . . . . . - . _g g . . _ m, .-
.....F.I.. . . . ... . - - %%:=---
1.-_._.'~ --~e.. ua_.._.__-..
.. - 3==3 J =-..G2F., .-. ' !'i r 1-4:
_ . . . 0. _. 1.---.- . _2-w . I I s .
. -t 10-7 - 1 . . m z- 7 =* s:-- zieg = . = = _ .g gag xm L ;_ .=_=gsgm:
3 -.-.- -. 9 a.
= r y . + ..( - - - - . , - - -,. = - =_.= - --. _
- z.= ====
- = '- -'
.n ~_ 7_._- ._.-x +. -= - - - ~_ =
10 J m Yl F
- _ .. . :--= tim =eie4=iiET
* :.= = '-!_ =_-i+e_ nw-i a =s;4.ni+i=E=== . _ . _ . . .. y _. -mm- _ . . __=. m. - 3 m . .2- --t-h_. - , _ . 7_.... o - - =__. . . . -__ * = t:;- ;
n._ .Ji,- =n=. m s: www....:94.=ia t, =ms._a.r s=l.e _ , _e . +i +=.-W- , --- =5 r-=55=-51:_ === x
-s _. . -- =-- ct----m r=,A::t- =- V_ _ _ . _ - . . h- - _ . ,T*. - - - - - - -_ _=_ . _ . ._=.t=-
_ r. _ _ . . _ r-
, . , r=_- _ .
z s 10-9 1
.- . .- . . . . . , . . . . ...m . .
Distance (neters)
-- EXHIBIT 3.4.6-3 XE/Q with Distance for Elevated Releases (60.7 m)
By Stability Class HBR PEP-3.4.6 Rev. 4
,, Dist me; (nilcs) 1 2 < 10 ' T * ._ ..i 10~". , -. , _._ _. . . . . . - __.m,.-,a____m .m..._ . . . . . . . - . . .-+-. - -4 8 -.-H_., --+-.-7 .- ; 4-a%==g ww wpng-na =p: wim sm+wwwwiwimi M--W=Ni-e A= +1= \i42h5 == #ivi-- M E=:=.. r.- =!=ittst.,= + ai-M u
- , .xm=_ -
_. ,_i:11,
;== v. ==~=v=.EN=:.u.r:*m.4 -- -
_t m- __ W-- d=f"I:i'f!EU~El 2 Nil:!':M=~ 'p=hti:-l D 4} ' litr
= prig >}"- ! M-i. ,' = -t- =
A is %=W \ =iN u
#M,=iMi-M=MiliiMiMMM 4=_r="W~iGillin
_ _ . . _ , _. w. M3 e~_,_y.v =:A+_1.4 : _ _ . . _ . - .t=-:===dHi
-. -i 4a iva ; *3 x t i 4 . .w** ' i* :
n, ' u i i i 1
,i! r 10 , _ , - . _s. g-. -e 1 . ..,-y.. . .__g - .. - - 3 _._ ,
a
= s-.-w x . s .-._ - 1 .
P
, T. H . : g+ % i x X ,
e===i=u=W. ; =MrN - w=+>v_=NNex=!=@ Tti = =e="1- -wi:=M .P N]N--h~C: = Ni:k N1M50~-bb_--+ :kbkhNId'i-i. E _!NkD)'i=I -i)-*h
--.-e_., , A: dyr_ q -m, w__g- --- r.=. --y_,2 x v-~~-- =r.m- r 7 ,.;.a;;_Il :i I ==== =mW@ @w-4Mv==M wA+w-thi4 = a twi *=P:Y% sit =EE-EM=:YtE=i ii =Th $iHMiiS;Elidl= hie =f3i.fiik==%ET-M=E-iEd=.d?f . . , , =
w w _. . nw , c ..
- - - , b=_.;h--eh. zu-x - ' ,_. e-t-b. ==t-- ---::t-tr W . g~ '1 'x M 4_.".+.$x .-+.._ # _ . . _ , ' _ -& ,+++*.. _ '1,._- x .
10 .s , .
. V_' ' _' 's ,
_. .. , _ ~. m . . 4 .s . . _
, ,++_..A. N 4_4..-.. -e- 's - _. 3 ry_ _,m-A _.--_, x _ -( x . .w . . _ _ . _ . _ _ '- --- - ?== i=-= ' i == ' %= n di t= tin =+i?M Wi =Witisi-iW=~-=iENF4 *Q=M-t-iN t - = '-4== qq-- g=2=q=,%g.: icy-j:4t_h= ire =-y._yp-.-i=E t :4_q s . w?w .+- r.:\ ~N- ---- - - = = 3._= - - .yd.__: t-v_ : : .\=___-:=.==m_. _==m w;; , q -g j_ % ._ 4 =#.pigg ;y.%.,y.pgg= p= g.
JCu Q (n 2) == +==tE'
= "Ei =Bi\ #41-W2-i=W '-EwiN=l*fk'==iE-Vali=e-NMaim my ,a = = =.= - 7p.u -
- c. y .
. \gy%__%._.m.
mx, x, i
$tr+ =:A_ !xM.' M.
s 10-5 t . .' ' v .s.___,_.. x
' N_:. . . . . -v ,s.-_.+
x .._s... .s.
, -.-._,-.-.-.,g: 4 g g.--.....-k.
_ + h. .4
. x .. . r- =+ wi== A= == m+i+iri iW+r-=i;=+ ==in=%i.is-m==.iE =%i-Hw NOM:
sw a=iE=Ms -is-taittMn=iEM Ei==WMtih=*'=$P=WF N-ti
;7 _:g -zg1 ---- - a:; , y. r- gq t= si:w 4= + w m em 5 *= nemi--eNt-ti- wC. :Aaimb9tNa nNw t:_aa== = =y= =. n ~ . . .. %ys=. + =.w=r- e, m. s. - r-w %n== = .=.m.== .=c -~ 3 ..=_=a_.=.w= = - -.
w
._,q - m._n._ __. t -
i '_ 'N .a - 10-6,
, ., , 1 1, , 1 x x, x3 ;
_ _.._____m . . . - . _ _ _ _ _ . __x,. . . , - _ . _ .
.__...s, , _ _ ..___ r _- ,. _ ~ . _ . . _ . .
s.v u m F ass = :i a=1 =+s =Ni-nit 4=== - 4thi=- e=w=kiiiS n Eahw-t* 4em
#==t s t=4= =m si2 M Mt = =+it WE42Mai=TT = +==\=4-is-isc +=iN+
y ; ___ s .w ., h m\ a--. +--.
== ' +;= est.Mi=t=i.==>=F= *aititi wia=&i=i=-=iu=tm =.====+t.===i=m === . _s ._g =-i-fg ~Ty .-. w:--= ==-- =a_.x= :::=.1_ \^ m : ~._..y.,_, = ar'4 =- . r-s..' ..=
tw.:=t . .2 v = r= =s-m
-__ _ . _- .,=: = -r a ..=t:S.:-
p ._ . _:_-- _ _ . _ . . g
.,. n .4: ._n ...
- __-.---.__. --+_. - , _ - _ . . _ _ . - -
- - - , , < t - 1 1 ' +-i ; +';
10~7- : , _+
~ ' ,* __ . _ . .~._. .. -__.__,__. __ ~}}