ML20015A351

From kanterella
Jump to navigation Jump to search
Attachment - NRC-2020-000076 - Appeal Response to NRC-2019-000132. (Part 1 of 29)
ML20015A351
Person / Time
Issue date: 01/08/2020
From:
NRC/OCIO
To:
Shared Package
ML20015A350 List:
References
FOIA, NRC-2019-000132, NRC-2020-000076
Download: ML20015A351 (96)


Text

TAILINGS COVER DESIGN WHITE MESA MILL, OCTOBER 1996 FOR RECLAMATION OF WHITE MESA FACILITIES BLANDING, UT AH PREPARED BY TITAN ENVIRONMENTAL 7939 EAST ARAPAHOE ROAD, SUITE 230 ENGLEWOOD. COLORADO 80112 APPENDIXD

eTITAN Environmental TAILINGS COVER DESIGN White Mesa Mill Prepared For:

Energy Fuels Nuclear, Inc.

1 5 1 5 Arapahoe, Suite 900 Denver, CO 80202 October 1996 By:

TIT AN Environmental Corporation 7939 East Arapahoe Road, Suite 230 Englewood, Colorado 80112 j~

LIST OF FIGURES LIST APPENDICES I. 0 SOIL COVER DESIGN TABLE OF CONTENTS 1.1 Radon Flux Attenuation 1.2 Infiltration Analysis 1.3 Freeze/Thaw Evaluation 1.4 Soil Cover Erosion Protection 1.5 Slope Stability Analysis l.5.1 Static Analys.s 1.5.2 Pseudostatic Analysis (Seismicity) 1.6 Cover Material/Cover Material Volumes FIGURES ArPENDICES REFERENCES I

3 5

6 7

8 9

9 9

eTITANEnvironmental

2 3

4 A

B C

D E

F G

H LIST OF FIGURES Reclamation Cover Grading Plan for Cells 2, 3, and 4A Reclamation Cover Grading Plan for Cells 2 and 3 Reclamation Cover Cross Sections and Details Reclamation Cover Cross Sections and Details LIST APPENDICES Laboratory Test Data Radon Calculation Radon Flux Measunnents HELP Model FreezefThaw Evaluation Erosion Protection Slope Stability Material Quantities eTITANEnvironmental

ENERGY FUELS NUCLEAR WHITE MESA MILL TAILINGS COVER DESIGN 1.0 SOIL COVER DESIGN A six-foot thick soil cover for the uranium tailings Cells 2, 3 and 4A was designed using on-site materials that will contain tailings and radon emissions in compliance vvith regulations by the United States Nuclear Regulatory Commission (NRC) and by reference, the Environmental Protection Agency (EPA). The cover consists of a one-foot thick layer of clay, available from within the site boundaries (Section 16), below two-feet of random fill, available from stockpiles on-site. The clay is widerlain with three feet (minimum) random fill soil, also available on site.

The cover layers will be compacted to 95 percent maximum dry density using standard construction techniques. In addition to the soil cover, a minimum 3 inch (on the cover top) to 12-inch ( on the cover slopes) layer of riprap material will be placed over the compacted random fill to stabilize slopes and provide long-term erosion resistance.

Uranium tailings soil cover design requirements for agency compliance include:

Attenuate radon. flux to an acceptable level (20 picoCuries-per meter squared-per second

[pCi/m2 /sec]) (NRC, 1989);

Minimize infiltration into the reclaimed tailings cells; Maintain a design life of up to 1,000 years or to the extent reasonably achievable and in any case for at least 200 years; and Provide long-term slope stability and geomorphic durability to. vithstand erosional forces of wind, the probable maximum flood event, and a horizontal ground acceleration of 0.1 g due to seismic events.

Several models/analyses were utilized in simulating the soil cover effectiveness: radon flux attenuation, hydrologic evaluation of infiltration, freeze/thaw effects, soil cover erosion C ffOJECTS\\6111-001~!61611 I OO)(tll0/96) eTITANEnvironmental

........ ~

Page 2 protection, and static and pseudostatic slope stability analyses. These analyses and results are discussed in detail in Sections I. I through 1.5. The soil cover (from top to the bottom) will consist of: I) minimum of three inches of riprap material; 2) two feet of compacted random fill;

3) one foot of compacted clay; and 4) minimum three feet of compacted random fill soil.

The soil cover design for the uraniwn tailings Cells 2, 3, and 4A was developed based on two construction options:

An integrated soil cover over Disposal Cells 2, 3, and 4A; and A cover over Cells 2 and 3, where Cell 4A tailings are excavated and placed into Cell 3.

For modeling/analysis purposes it was assumed that the physical and radiological parameters of the tailings in Cells 2, 3, and 4A are not dependent on the tailing volume in each individual cell.

Therefore, each of the two construction options above resulted in the same soil cover configuration. The only variation between the options is in the required volumes of cover materials, which is dependent only on the surface area to be covered (see Section 1. 7).

The final grading plans for the two options are presented on Figures I and 2, respectively. As indicated on the figures, the top slope of the soil cover will be constructed at 0.2 percent and the side slopes, as well as transitional areas between cells, will be graded to five horizontal to one vertical (5H: IV).

A minimum of three feet random fill is located beneath the compacted fill and clay layers (see cross-sections on Figures 3 and 4). The purpose of the fill is to raise the base of the cover to the desired subgrade elevation. In many areas, the required fill thickness will be much greater.

However, the models and analyses were perfonned conservatively assuming only a three-foot layer. For modeling purposes, this lower, random fill layer was considered as part of the soil cover for performing the radon flux attenuation calculation, as it effectively contributes to the reduction of radon emissions (see Section 1.1 ). The fill was also evaluated in the slope stability analysis (see Section 1.5). However, it is not defined as part of the soil cover for other design calculations (infiltration, freeze/thaw, and cover erosion).

C \\IROIECTS'el 11-00l'Ali>li>I I I 00l(9/'l0t96J eTITANEnvironmental

Page 3 The folJowing sections describe design considerations, complete with calculations performed and parameters utilized, in developing the tailings impoundment soil cover to meet regulatory requirements.

1.1 Radon Flux Attenuation The Environmental Protection Agency (EPA) rules in 40 Code of Federal Regulation (CFR) Part 192 require that h. "uraniUr.1 tailings cover be designed to produce reasonable assurance that the radon-222 release rate would not exceed 20 pCi/m2/sec for a period of 1,000 years to the extent reasonably achievable and in any case for at least 200 years when averaged over the disposal area over at least a one year period" (NRC, 1989). NRC regulations presented in IO CFR Part 40 also restrict radon flux to less than 20 pCi/m2/sec. The following sections present the analyses and design for a soil cover which meets this requirement.

1.1.1 Predictive Analysis The soil cover for the tailings cells at White Mesa Mill was evaluated for attenuation of radon gas using the digital computer program, RADON, presented in the NRC's Regulatory Guide 3.64 (Task WM 503-4) entitled "Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers". The RADON model calculates radon-222 flux attenuation by multi-layered earthen uranium mill tailings covers, and determines the minimum cover thickness required to meet NRC and EPA standards. The RADON model uses the following soil properties in the calculation process:.

Soil layer thickness [centimeters (cm)];

Soil porosity (percent);

Density [grams-per-cubic centimeter (gm/cm 3));

Weight percent moisture (percent);

Radium activity (piC/g);

Radon emanation coefficient (unitless); and C 111.0JECTS'*I I l.001\\l'l *16111 OOl{'illlOl'IIIJ eTITANEnvironmental

Page 4 Diffusion coefficient [square centimeters-per-second (cm2/sec)].

Physical and radiological properties for tailings and random fill were analyzed by Chen and Associates ( 1987) and Rogers and Associates ( 1988). Clay physical data from Section 16 was analyzed by Advanced Terra Testing (1996) and Rogers and Associates (1996). See Appendix A for laboratory test data results.

The RADON model was perfonned for the following cover section (from top to bottom):

two feet compacted random fill; one foot compacted clay; and a minimum of three feet random fill occupying the freeboard space between the tailings and clay layer.

The three layers are compacted to 95 percent maximum dry density. The top riprap layer was not included as pan of the soil cover for the radon attenuation calculation.

The results of the RADON modeling exercise show that the uranium tailings cover configuration will attenuate raJon flux emanating from the tailings to a level of 17.6 pCi/m2/sec. This number was conservatively calculated as it takes into account the freeze/thaw effect on jie uppermost part (6.8 inches) of the cover (Section 1.3). The soil cover and tailing parameters used to run the RADON model. in addition to the RADON input and cutput data files, are presented in Appendix B as part of the Radon Calculation brief. Based on the Model results. the soil cover design of six-foot thickness will meet the requirements of 40 CFR Part 192 and IO CFR Part 40.

1.1.l Empirical Data Radon gas flux measurements have been made at the White Mesa Mill tailings piles over Cells 2 and 3 (see Appendix C). These cells are currently covered with three to four feet of random fill.

Radon flux measurements, averaged over the covered areas, were as follows (EFN, 1996):

Cell 2 Cell 3

~

7.7 pCi/m2/sec 7.5 pCi/m2/sec C Pa.OJECTS"-.6111-00I\\Al616111 OOJ(IOll-'i6}

1m 6.1 pCi/m2/sec 11.1 pCi/m2 /sec

Page 5 Empirical data suggest that the random fill cover, alone, is currently providing an effective barrier to Radon flux. Thus, the proposed tailings cover configuration, which is thicker, r.10isture adjusted, contains a clay layer and is compacted, is expected to attenuate the Radon flux to a level below that predicted by the RADON model. The field radon flux measurements confirm the conservatism of the cover design. This conservatism is necessary, however, to guarantee compliance with NRC regulations under long term climatic conditions over the required design life of 200 to 1,000 years.

1.2 Infiltration Analysis The tailings ponds at White: Mesa Mill are lined with synthetic geomembrane liners which under certain climatic conditions, could potentially lead to the long-term accwnulation of water from infiltration of precipitation. Therefore, the soil cover was evaluated to estimate the potential magnitude of infiltration into the capped tailings ponds. The Hydrologic Evaluation of Landfill Performance (HELP) model, Version 3.0 (EPA, 1994) was used for the analysis. HELP is a quasi two-dimensional hydrologic model of water movement across, into, through, and out of capped and lined impoundments. The model utilizes weather, soil, and engineering design data as input to the model, to account for the effects of surface storage, snowmelt, run-off, infiltration, evapotranspiration, vegetative growth, soil moisture storage, lateral subsurface drainage, and W1saturated vertical drainage on the specific design, at the specified location.

The soil cover was.evaluated based on a two-foot compacted random fill layer over a one-foot thick, compacted clay layer. The soil cover layers were modeled based on material placement at a minimum of 95 percent of the maximum dry density, and within two percent of the optimum moisture content per American society for Testing and Materials (ASTM) requirements. The top riprap layer and the bottom random fill layer were not included as part of the soil cover for infiltration calculations. These two layers are not playing any role in controlling the infiltration through the cover material.

The random fill will consist of clayey sands and silts with random amounts of gravel and rock-size materials.

The average hydraulic conductivity of several samples of random fill was calculated, based on laboratory tests, to be 8.87xl 0" 7 cm/sec. The hydraulic conductivity of the clay source from Section 16 was measured in the laboratory to be 3.7xl0" 8 cm/sec. Geotechnical soil properties and laboratory data are presented in Appendix A.

r 'J>II.OIECTS\\6111-001\\lll616I I I OOJ(Wlo.<l6J eTITANEnvironmental

Page 6 Key HELP model input parameters include:

Blanding, Utah, monthly temperature and precipitation data, and HELP modd default solar radiation, and evapotranspiration data from Grand Junction, Colorado. Grand Junction is located north east of Blanding in similar climate and elevation; Soil cover configuration identifying the number of layers, layer types, layer thickness, and the total covered surface area; Individual layer material characteristics identifying saturated hydraulic conductivity.

porosity, wilting point, field capacity, and perce,1t moisture; and Soil Conservation Service runoff curve numbers, evaporative zone depth, maximum leaf area index, and anticipated vegetation quality.

Watt.c balance results, as calculated by the HELP model, indicate that precipitation would either run-off the soil cover or be evaporated. Thus, model simulations predict zero infiltration of surface water through the soil cover, as designed. These model results are conservative and take into account the freeze/thaw effects on the uppermost part (6.8 inches) of tt t cover (Section 1.3).

The HELP model input and output for the tailings soil cover are presented in the HELP Model calculation brief inclvJed as Appendix D.

1.3 Fre,ezeffbaw Evaluation The tailings s )ii cover of one foot of compacted clay covered b~, two feet of random fill was evaluated for freeze/thaw impacts. Repeated freeze/thaw cycles luwe been shown to increase the bulk soil pe,meabilil)' by breaking down the <.:ompacted soil stn,cure.

The soil :over was evaluated for freeze/thaw effects using the modified Berggren eqt1ation as presented in Aitken and Berg (1968) and recommended by the NRC (U.S. Depanment of Energy, 19~8). This evaluation was based on the properties of the random fill and clay s,)il, and meteorologicd data from both Bk.nding, Utah auJ Grand Junctic n, Colorado.

The results of the freeze/thaw evaluation indicate that the anticipated maximum depth of frost penetration on the soil cover would be less than 6.8 inches. Since the random fill layer is two feet thick, the frost depth would be confined to this layer and would not penetrate into the C \\l'lCl.lECTS\\61 I I -00 I \\l 1611> I 11 OOJ( WJ<W6 I eTITANEnvirorunental

~

)(

)(

)(

)(

)(

)(

)(

X

)(

)(

M u

1,1\\

N

"° 0

'° M

N CIC)

"° r'\\

N r'\\

A

Page 7 underlying clay layer. The perfonnance of the soil cover to attenuate radon gas flux below the prescribed standards, and prevent surface water infiltration, would not be compromised. The input data and results of the freeze/thaw evaluation are presented in the Effects of Freezing on Tailings Covers Calculation brief included as Appendix E.

1.4 Soil Cover Erosion Protection A riprap layer was designed for erosion protection of the tailings soil cover. According to NRC guidance, the design must be adequate to protect the soil/tailings against exposure and erosion for 200 to i.000 years (NRC, 1990). Currently, there is no standard industry practice for stabili~ing tailings for 1,000 years.

However, by treating the embankment slopes as wide channels, the hydraulic design principles and practices associated with channel design were used to design stable slopes that will not erode. Thus, a conservative design based on NRC guidelines was developed. Engineering details and calculations are summarized in the Erosion Protection Calculation brief provided in Appendix F.

Riprap cover specifications for the top and side slopes were detennined separately as the side slopes are much steeper than the slope of the top of the cover. The size and thickness of the riprap on the top of the cover was calculated using the Safety Factor Me'Ulod (NUREG/CR-465 J.

1987), while the Stephenson Method (NUREG/CR-4651, 1987) was used for the side slopes.

"Ibese methodologies were chosen based on NRC recommendations ( 1990).

By the Safety Factor Method. riprap dimensions for the top slope were calculated in order to achieve a slope "safety factor of I. I. For the top of the soil cover, with a slope of 0.2 percent, the Safety Factor Method indicated a median diameter (D50) riprap of 0.28 inches is required to stabilize the top slope. However, this dimension must be modified based on the long-term durability of the specific rock type to be used in construction. The suitability of rock to be used as a protective cover must be assessed by laboratory tests to detennine the physical characteristics of the rocks. The sandstones from the confluence of Westwater and Cottonwood Canyons require an oversizing factor of 25 percent. Therefore, riprap created from this sandstone source should have a D50 size of at least 0.34 inches and should have an overall layer thickness of at least three inches on the top of the cover.

C 'IIWJECTS...111-001\\111616111 00ll'lll0/'l6J eTITAN Envirorunental

Page 8 Riprap dimensions for the side slopes were calculated using Stephenson Method equations. The side slopes of the cover are designed at 5H: l V. At this slope, Stephenson's Method indicated the unmodified riprap Dso of 3.24 inches is required. Again assuming that the on-site sandstone will be used, the modified Dso size of the riprap should be at least 4.05 inches with an overall layer thiclcjess of at least I 2 inches.

The potential of erosion damage due to overland flow, sheetflow, and channel scouring on the top and side slopes of the cover, including the riprap layer, has been evaluated. Overland flow calculations were perfonnec'.JSing sit,: meteorological data, cap design specifications, and guidelines set by the NRC (NUREG/CR-4620, 1986).

These calculations are included in Appendix F. According to the guidelines, overland flow velocity estimates are to be compared to "permissible velocities", which have been suggested by the NRC, to determine the potential for erosion damage.

When calculated, overland flow velocity estimates exceed permissible velocities, additional cover protection should be considered. The permissible velocity for the tailings cover (including the riprap layer) is 5.0 to 6.0 feet-per-second (ft./sec.) (NUREG/CR 4620). The overland flow velocity calculated for the top of the cover is less than 2.0 ft/sec., and the calculated velocity on the side slopes is 4.9 ft/sec. Therefore, the erosion potential of the slopes, due to overland flow/channel scouring, is within acceptable limits and no additional erosion protection is required.

1.5 Slope Stability Analysis Static and pseudostatic analyses were performed to establish the stability of the side slopes of the tailings soil cover. The side slopes are designed at an angle of 5H: IV. Because the side slope along the southern section of Cell 4A is the longest and the ground elevation drops rapidly at its base, this slope was determined to be c1itical and is thus the focus of the stability analyses.

The computer software package GSLOPE, developed by MITRE Software Corporation, has been used for these analyses to determine the potential for slope failure. GSLOPE applies Bishop's Method of slices to identify the critical failure surface ai:d calculate a factor of safety (FOS).

The slope geometry and properties of the construction materials and bedrock are input into the model.

These data and drawings are included in the Stability Analysis of Side Slopes Calculation brief included as Appendix G. For this analysis, competent bedrock is designated at 10 feet below the lowest point of the foundation [i.e., at a 5.540-foot elevation above mean sea C- \\P110J£CTSi6111.001Jtl616111 OOl(w>>'96) eTITANEnvironmental

Page 9 level (msl)J. This is a conservative estimate, based on the borehole logs supplied by Chen and Associates ( 1979), which indicate bedrock near the surface.

t.S.I Static Analysis For the static analysis, a FOS of 1.5 or more was used to indicate an acceptable level of stability.

The calculated FOS is 2. 91, which indicates that the slope should be stable under static conditions. Results of the computer model simulations are included in Appendix G.

t.S.2 Pseudostatic Analysis (Seismicity)

The slope stability analysis described above was repeated under pseuuostatic conditions in order to estimate a FOS for the slope when a horizontal ground acceleration of 0.1 Og is applied. The slope geometry and material properties used in this analysis are identical to those used in the stability analysis. A FOS of 1.0 or more was used to indicate an acceptable level of stability wider pseudostatic conditions. The calculated FOS is 1.903, which indicates that the slope should be stable under dynamic conditions. Details of the analysis and the simulation results are included in Appendix G.

Recently, Lawrence Livermore National Laboratory (LLNL) published a report on seismic activity in sou.them Ut.ah, in which a horizontal ground acceleration of 0.12g was proposed for the White Mesa site.

The evaluations made by I,LNL were conservative to account for tectonically active regions that exist, for example, near Moab, Uta'i. Although, the LLNL report states that **... (Blanding] is located in a region known for its scarcity of recorded seismic events,"

the stability of the cap design slopes using the LLNL factor was evaluated. The results of a sensitivily analysis reveal that when considering a horizontal growid acceleration of 0.12g, the calculated FOS is 1. 778 which is still above the required value of 1.0, indicating adequate safety wider pseudostatic conditions. This analysis is also included in Appendix G.

1.6 Cover Material/Cover Material Volumes Construction materials for reclamation will be obtained from on-site locations. Fill material will be available from the stockpiles that were generated from excavation of the cells for the tailings facility. If required. additional materials are available locally to the west of the site. A clay material source, identified in Section 16 at the southern end of the White Mesa Mill site, will be C "1lOIE.Cn\\6111.00I\\Al61611 I OOl(Wl0/96) eTITAN Envirorunental

Page 10 used to construct the one-foot compacted day layer. Riprap material will be taken from on-site sandstone. located at the confluence of Westwater and Cottonwood Canyons.

Material quantities have been calculated for each of the components of the reclamation cover.

Volume estimates Y.l!re made for the two soil cover design options, as follows:

Option I: an integrated soil cover which incorporates Disposal Celk 2, 3, and 4A, and Option 2: a cover which includes Cells 2 and 3, where Cell 4A tailings have been excavated and placed in Cell 3.

The quantity of random fill required to bring the pond elevation up to the soil cover subgrade and construct the final slope was not calculated. This layer will be a minimum of three feet in depth and is dependent on the final tailings grade, which is not known.

For Design Option I, construction will require the following approximate quantities of materials:

Material 1 Volume (cubic yards)

Clay 365,082 Random Fill 737,717 Riprap (top of cover) 82,762 Riprap (side slopes) 41,588 For Design Option 2, construction will require the following approximate quantities of materials:

Material Volume (cubic yards)

Clay 289,514 Random Fill 585,334 Riprap ttop of cover) 64,984 Riprap (side slopes) 35,885 Material quantities calculations are provided in Appendix H as part of the Tailings Cover Material Volume Calculation brief.

C IPllOJl:CTS'6111.001\\1116161 I I OOJ(9il<W6(

eTITANEnvironmental I

n,

  • ~

\\

-~ '

'ti

~/

~

',01

"'/

~

RECLAMATION COVER GRADING PLAN FOR CELLS 2, 3 & 4A PREPARED FOR ENERGY FUELS NUCLEAR BLANDING, UTAH

  • ~--..

TI *J

- Environmental

>ATE:

8-12-96 FIGURE 1 iCALE:

AS SHOWN DRAWING NUMBER 6111-E1 1

I J

ffi

  • ,i

~

1

\\

~

l

Aawwwr

. '.\\ -

RECLAMATION COVER GRADING PLAN FOR CELLS 2 & 3 PREPARED FOR 8-12-96 FIGURE 2 AS SHOWN DRAWING NUMBER 6111-E2 I &

~. -*. J PVH111 II

1)

I

',j

~

i

-~

j

l~V HORIZONTAL SCALE 200 0

200 400 FEET RECLAMATION COVER CROSS SECTIONS & DETAILS PREPARED FOR

>ATE:

8-12-96 FIGURE 3 DRAWING NUMBER I &

iCALE:

f,,S SHOWN I,,,

6111-E3 1

-*. J I.

i 4

1 0

,\\

t l

HORIZONTAL SCALE 200 0

200 400 FEET RECLAMATION COVER CROSS SECTIONS & DETAILS PREPARED FOR ENERGY FUELS NUCLEAR BLANDING, UTAH eTI~

)ATE:

8-12-96

CALE

AS SHOWN FIGURE 4 DRAWING NUMBER I &

6111-E4 1

~---.... --

\\

~{

~

,/

~~

4

~

' i

APPENDIX A Laboratory Test Data

  • TITAN Environmental

Haterjal Tvoe Tailings Random Fill Table 3.4-1 Physical Properties of Tailings and Atterberg limits ll fl 28 6

22 7

Proposed Cover Material Specific Gravjll_

2.85 2.67 s Passing No. 200 Sieve 46 48 Maximum Dry Density Cocfl 104.0 120.2 Note:

Physical Soil Data from Chen and Associates (1987).

Optimum Moisture Content 18.1 11.8

~.

.... z w

t-z 0

0 w

a:

~

0

~

18 ------~~---------,--~-----r-:-:--:--:-:--:-:-:'T':"".:-:-:-:-:--:-~-:-:-:'"7'":"'-::--:-7":"'f:'"~7':-:-:--:-~~-:---:--:,

.****..** I ********* I ********* I

' ******** I ** I t

        • )
          • I
      • I ****** I
    • I I

I

        • I I ********* I ********** I **** I I **** I
        • I ********* I ***** I *** I I

I ******* I I ******* I *** I I

              • I I
      • I
      • I I

I I

          • I **** ' ****
: : : : Ii : : : : : : : : :

16

.. I........

I I

I I

I I

I

                  • I I
              • I
                  • I
          • I
      • I I
              • I I

I

                • I **** I
        • I **

I 0

I r

I I

I t

I I

I I

I I

t I

I t

I t

I I

I I

t t

I t

I o

t t

      • I
      • I
        • I I

I I ******** I I

' ** I

    • I I

I

' ******** I ********* I *******

  • * * * * * *
  • I *********, *********, *********, ********
  • 1 *.......
  • 1 *........ I.........

1 t

I I

t o

I I

I O

I I

O I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I o

I o

I O

1 o

I O

I 1

o t

1 I

t I

I t

I I

I I

t t

I O

I I

I I

I I

I I

I e

t I

I I

I I

I I

I I

I I

I I

I I

I I

1 1

e 1

1 o

1 o

, 4 1.. \\.. _.........,... --*-*- '**-**------*-*----*-*~*-*---*-*---**-1*-*

  • . * * *...
  • 1........
  • 1 *........,........
  • 1 *.......
  • 1 *.......
  • 1 *........

12 0

1 I

O 0

1 0

0 I

I o

t I

I I

t I

f I

I f

I I

f I

I I

I I

I I

I 1'

I I

I I

I I

I I

I I

I I

I I

I I

o I

I I

O I

I I

I I

o o

o o

o o

o I

o I

o o

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

f I

I I

I I

I I

I I

I I

I I

o I

I 1

I I

t I

1 1

~

I I

.......... I ********* I ********* I I ******* I ********* I ********. J ****** ' **

        • I
        • I **** I
      • I I ********* I ********* I ******************* I
                  • I ***** I I

I I

    • I ********* I ******** I

--1--**--

............ ~..,......... _,, ___, __....

Y: :MA~R

  • * *
  • S:IT~ '#.1 * * * *
  • o I

I I

o&..,,,I*

I

......... I.........

s:::. *

  • I o

I I

O O

I I

I I

I o

~

              • I l ********* I ** --;---:-,:-,.
                • t*********t******~*********

1 0 J......................................... -.... *-*-.................... **-*--....... -

  • . *
  • I.!.,. *. *

. t......... I.........

  • -*-----.. I0-1010-*000_0_00H i

~

8 0

I I *********

I I

o I

I O

o f

I 0

.. --...:...RA;OM F11't.,..... *.

: : : : s,r* * :#.2; :i: & s: :: : : : ::
  • ******** I ******* I I ********.

I ********* I ******** I I

I ******* I ********* I ********* I ********* I *********

2 4

6 8

10 12 14 16 TENSION. BAR

SUMMARY

Of CAPILLARY ~OISTURE RELATfONSHIP TEST RESULTS WHITE MESA PROJECT OAiA FROM CHEN & ASSOCIATES FIGURE 3.6-1

  • ~

t J

t

~

z

~

z 0

0 UJ a:

t-U')

5

~

24 I.*.******,* *. * * * * ** '

1'......

o o

o O

f o

o o

O o

o O

I o

O O

o I

I I

I t

I O

I f

I I

I I

I I

I t

I I

I I

I o

I I

O o

I O

O O

o o

o o

I

.... I

                • I..*..*
  • I *** I I
        • I *** I I

I I

I

              • t I ***** I I

I **** I I

I ** I ****** I.......... I ****.*

I.******** I ***** I

    • I I ********* I ********* I I

I 1 **,

1 **,

1 I

1 *

  • I 1

I I

          • I
                  • I
    • I
    • I
      • I ** I
    • I
      • I

' ***** I I

I ******* I I..**..

2 2 I*\\***............................ 1

....... ---*--*.. **-*---t*......... -........ --***-1-*--

1------r-**..

  • r-----.. -***-*1*..... -...........................

I

                • I *........ I.... *.....

..... i..**..

  • .******* I ********* I ********* I I

I I

I I

I I

  • .****.*. I ********* ' ********* ' ********* i ****** I
    • I ********* I ***.*.***
  • 1,
  • , 1,
  • 1,

, 1,

  • 1,
  • 1,

I

          • I
    • I *** I
          • I ***** I I

I *** I

      • I I *********

I

        • I I

I ** I

        • I I ****** I
    • I ** I
      • I
    • I *********

I I

              • I ******** I I

I

                • I ***** I
      • I I

20 I********-~-*:**;.. *~*-!,**:**:... \\.. *:*-~-~... :.. *;**:... ~.............................. --..,.......... --.---..,_ ________.... _.. ________...

I I

e et I

f I

                  • I ** I
            • I I
          • I
    • I
  • I. I
    • I
    • I I
          • I
    • j I
  • CL1\\Y. : ~ATERIAt : :

.. SITE *.M.'.A

.TN *., **, ***

18.....................................

,,4..-1,-

--*..._+-*----**I-.**-

--*I***... -*-*.. -*.. ***.. **--*-*****

--~f'

\\

I

I* * * * * * *
  • I * * * * * * * *
  • I * * * * * * * * *
                  • I I

I

        • I I
              • I **** I
        • I ********* I ********* I ********* I *********

t I

I I

f I

I

      • I I

I *********

16 1 ****...... :***:***:.. *:*":"~'"i.. :... :... :... :-:*.. :*.. :**:... :.. r-:-:*:--:*:--*:---:-:-:--

14 0

I I

I I

I I

i

                  • I ********* I ****** I
    • I *********

I I

      • I I ********* I ********* I *********

I

.******* I ********* I ********* I ** ' ****** I ******* I I ******* I I **.******

' ** I.******** I ***** I

      • I I
                • I ********* I ******* I I ***** I
      • )

'.**.*** I

. ** I I

I I

        • I ******* I I ** ' ****** I

' **** I

    • I ********* I *******.*

1 I

I I

I I

I 2

4 6

8 TENSION. BAR 10 12 14 16 SUf\\1MA~Y Of CAPll-LARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT DAT A FROM CHEN & ASSOCIATES; FIGU~E 3.5-~

I....

O' I

SECTION 6 ROGERS ANO ASSOCIATES ENGINEERING CORPORATION Letter Dated March 4, 1988 Letter Dated Hay 9, 1988 Radiological Properties

R A

E Rogers & Associates Engineering Corporation Hr. C. 0. Sea 1 y Umetco Minerals Corporation P.O. Box 1029 Grand Junction, CO 81502

Dear Hr. Sealy:

Post Office Box 330 Salt Lake City, Utah 84110 (801) 263-1600 March 4. 1988 C8700/22 We have completed the tests oro~red on the four samples shippej to JS.

The re~ults are as follows:

3 Radium Emanation Diffusion {g/cm)

Sam;1le pCi/gm Fraction Coefffc. Density Moisture Saturation Tailings 981+/-4 0.19+/-0.01 2.0E-02 1.45 13.2 0.39 8.4E-03 1.44" 19.1 0.56 Composite (2,3,&5) l.6E-02 1.85 6.5 0.40 4.SE-04 1.84 12.5 0.75 Site 11 l.6E-02 1.85 8.1 0.48 l.4E-03 1.84 12.6 0.76 Site 14 l.lE-02 1.65 15.4 0.63 4.2E-04 1.65 19.3 0.80 lhe samples will be shipped back to you in the next few weeks. If you have any questions regarding the results on the samples please feel free to call.

RYB/b Sf ncerely, a- 'f/;.__

Renee Y. Bowser Lab Supervisor SIS Ease 4SOO South* Sall Lake City. Utah 14107 fl.*'

R A

E

~gers & Associates Engin~ering_ Corporation Hr. C.O. Sealy UHETCO Minerals Corporation P.O. Box 1029 Grand Junction, CO 81502

Dear Hr. Sealy:

Post Office Box 330 Salt Lake City, Utah 84110 (801) 263-1600 Hay 9, 1988 ll~'t 12 \\98i C8700/22 The tests for radium content and radon emanation coefficient in the following samples have been completed and the results are as follows:

Sample Random {2,3 & 5)

Site 1 Site 4 Radium (pCi/g) 1.9 + 0.1 2.2 + 0.1 2.0 + 0.1 Radon Emanation Coefficient 0.19 + 0.04 0.20 + 0.03 0.11 + 0.04 If you have any questions regarding these results please feel free to call Dr. Kirk Nielson or me.

RYB:m:s Sincerely.

~

'(6.~..

Renee Y. Bowser Lab Supervisor SiS East 4SOO South* Salt lake Ciry. U1ah 84107

-ADYAHCl!D Tf RRI\\ TtSTIHC ~- -

833 Parlet Street Lakewood, Colorado 8021 5 (303) 232*8308

ATTERBERG LIMITS TEST ASTM D 4318 CLIENT Titan Env.

BORING NO.

DEPTH SAMPLE NO.

UT-1 SOIL DESCR.

TEST TYPE ATTERBERG Plastic Limit Determination l

Wt Diab, Wet Soil 3.34 Wt Dish 6i Dry Soi!

2.96 Wt of Moisture 0.38 Wt of Dish 1.05 Wt of Dry Soil 1.91 Moisture Content 19.90 Liquid Limit Device Number Determination Humber of Blows Wt Diab C Wet Soil Wt Dish C Dry Soil Wt of Moiature Wt of Diah Wt of Dry Soil Moisture Content Liquid Limit Plastic Limit Plasticity Index 103.1 19.9 83.3 Atterberg Classification CH 1

39 12.18 6.64 5.54 1.10 5.54 100.00 2

4.06 3.57 0.49 1.11 2.46 19.92 0258 2

27 10.42 5.67 4.75 1.06 4.61 103.04 3

3.42 3.03 0.39 1.06 1.97 19.80 3

18 10.92 5.87 s.os 1.06 4.81 104.99 NA.A Date:

7-26-96 Date:7-Z~-'to JOB NO.

2234-04 DATE SAMPLED DATE TESTED 7-25-96 WEB, RV 4

s 14 9

12.33 10.06 6.53 5.34 s.80 4.72 1.10 1.08 5.43 4.26 106.81 110.80 Data entry b'*-A Checked by:~

FileName:

TIGOUTl ADVANCED TERRA TESTING, INC.

I 111 110 109 I

Atterberg Limits, Flow Curve

,, UT-1 108

"-.. I',..

t--+--+----ie--+---+---i-+---+-..,..:-+-----t---t-+---+--+-t----+--+----t-+--~

1; 101 o"'-.

8 108----------~----------t~---l"'-..~+--+--+---t---.t---+---t-__ -+ ___

i 1~1---+--+----ie--t---+---i-+---+--+-t-~*-~--...~~.---+---+--+-+--+--+-~

E 104

t---------------------.1 103

"~

1m

~

t--+--+----i'---t---+---i-+---+--+-t--+---t---11---t---t--"'tc,--+--+--+-~

101

~

t--+--+----ie--t---+---i-+---+--+-t--+---t---11---+----+---+-,P.,.--+--+-~

100 Number of Blows 25 PLASTICITY CHART

,, UT-1 100.------r------,---;--,----/--"'7't--------y--------,

80 ----+----+---+---+-,,,,,1/"------+--*--__.___,...c;..../_---4

/v

,,,.,./'

/v

/.,

20 1-----,,,.,,rc..-.i-----b,,,ol'~:..._._-4-_

_....... ___ ~M111~uHa:J.-c.':"-""-----4---~

/

/_

0 50 100 150 Liquid Limit I

  • Classification]

CLIENT:

RORINGNO.

.PTH

~AMPLE NO.

Titan Env.

UT-1 Moisture determination Wt of Moisture added (ml)

Wt. of soil & dish (g)

Ory wt. soil & dish (g)

Net loss of moisture (g)

Wt. of dish (g)

Net wt. of dry soil (g)

Moisture Content(%)

Corrected Moisture Content Density determination VVl of soil & mold (lb)

Wt. of mold (lb)

Net wt. of wet soil (lb)

  • wt of dry soil (lb)
  • , Density. (pcf)

Corrected Ory Density (pcf)

Volume Factor COMPACTION TEST ASTM D 1557 A 1

100.00 384.26 350.60 33.66 8.01 342.59 9.83 14.20 10.36 3.84 3.50 104.89 30 SOILDESCR.

DATE SAMPLED DATE TESTED 2

3 150.00 250.00 393.92 291.42 355.61 251.40 38.31 40.02 8.34 8.31 347.27 243.09 11.03 16.46 14.49 14.68 10.36 10.36 4.13 4.32 3.72 3.71 111.59 111.28 30 30

""'ta entered by:

RV Date:

7-26-96 a checked by:~

Date:_LL<o- %

JOB NO.

2234-04 7-25-96 RV 4

5 350.00 450.00 244.20 281.17 202.69 225.04 41.51 56.13 8.29 8.43 194.40 216.61 21.35 25.91 14.59 14.46 10.36 10.36 423 4.10 3.49 3.26 104.57 97.69 30 30 FileName:

TIPRUT-1 ADVANCED TERRA TESTING, INC

135 130 125 120

'6'

,9: 115

.~

C CD a 110 c:-

0 105 100 95 90 85

~

0 I

Proctor Compaction Test

,, UT-1

\\ \\ \\

\\

I\\

Zero Air Voids Cuc ~e

~\\

~ ~6 1eportedi>e,......

~

(

~\\

I*

"\\~

I

~

~

~

~

I I

I 10 20 30 Moisture Content(%)

- Best Fit Curve o Actual Data J

- Zero Air VoidsCurve @ SG = 2. 70 OPTIMUM MOISTURE CONTENT= 13.9 MAXIMUM ORY DENSITY= 113.5 ASTM O 1557 A. Rock con-ection applied? N ADVANCED TERRA TESTING, INC.

PEJUIEABILITY DETERMINATION PALLING HEAD PIXED WALL CLIENT Titan Environmental BORING NO.

DEPTH SAMPLE NO.

UT-1 JOB NO.

2234-04 SAMPLED TEST STARTED TEST FINISHED SOIL DESCR.

Remolded 951 Mod Pt. @ OMC SETUP NO.

SURCHARGE 200 MOISTURE/Dt~SITY BEFORE AFTER DATA TEST TEST Wt. Soil & Ring(s)

(g) 386.9 404.5 Wt. Ring(a)

(g) 93.0 93.0 Wt. Soil (g) 293.9 311.4 Wet Deneity PCF 122.3 120.5 Wt. Wet Soil & Pan (g) 302.4 319.9 Wt. Dry Soll & Pan (g) 266.2 266.2 Wt. Lost Moisture (g) 36.2 53.8 Wt. of Pan Only (g) 8.5 8.5 Wt. of Dry Soil (g) 257.7 257.7 Hoiature Content '

14.l 20.9 Dry Density PCP 107.2 99.7 Max. Dry Denaity PCF 113.5 113.S Percent Compaction 94.4 87.8 ELAPSED DORETTE BURBTTE TIME READING READING (MIN) hl (CC) h2 (CC) 0.2 2599 10.8 10.8 1427 14.2 14.2 1440 16.8 16.8 1440 18.6 18.6 1440 20.2 20.2 1440 21.6 21.6 1469 23.0 23.0 1440 24.4 Data Entered By:

NAA Date:

8-8-96

&-~-~

Date Checked By: ~ Date:

PERCOLATION RATE FT/YEAJt at/SEC 0.14 1.4£-07 0.09 8.4E-08.

0.01 6.SE-08 o.os 4.6£-08 0.04 4.lE-08 0.04 3.7E-08 0.04 J.6E-08 0.04 !.*.1~~98 7-28-96 CAL 8-7-96 CAL 1

Filename:TIFHUTl ADVANCED TERRA TESTING, INC.

Rogers & Associates Engin*eering Corporation Poat Office Box 330 Salt Lake City, Utah 84110--0330 (801) 263-1600

  • FAX (801> 262-1527 September 3, 1996 Pamela Anderson Titan Environmental Corporation 7939 E. Arapahoe Rd., Suite 230 Englewood, CO 80112

Dear Ms. Anderson:

C9600/9 Enclosed are the results from the radium content, specific gravity, and radon emanation and diffusion coefficient measurements that were performed on the sample sent to our laboratory. We will be returning the sample within the month.

If you have any questions or if we can be of further assistance, please call

~re~

~Roge Scientist 515 Eut 4500 South

  • Salt Lake City, tJl' 84107-2918 Adcli&ianal omc. ID: Idaho Falla, m
  • Santa Fe, NII
  • Wul\\inc1GD DC

Rogers & Associates Engineering Corporation REPORT OF RADON DIFFUSION COEFFICIENT MEASUREMENTS (TIME-DEPENDENT DIFFUSION TEST METHOD RAE-SQAP-3.6)

Moisture SampJeID (Dry Wt. 'I,)

UT-1 14.6..

Radon Dilfusion Density Coefflclent (lrfcml)

(cml/s) 1.72 9.lE-03 Poet Office Bo:a: 330 Salt Lake City

  • Utah 84110 (801) 263-1800 Report Dare:

Contract:

By:

DaJe Received:

9/3/96 C9600f)

BCR 8/96 Specific Saturation Gravity (Mo/P)

(arJcml) 0.89 2.39 RAE

Rogers & Associates Engineering Corporation REPORT OF RADIUM CONTENT AND EMANATION COEFFICIENT MEASUREMENTS (LAB PROCEDURE RA.E-SQAP-3.1)

Sample ldentificalion: Dwi Envirmmental

  • ID trr-1 Moisture Radon Emanation (Dry Wt.,. )

Coeffldent 14.6'1, 0.22 :i: 0.04 Post Off"~ Box 330 Salt Lake City

  • Utah 84110 (801) 263-1600 Report Date:

9J3f)6 Contract:

C9(i00,9 By:

Dare Received:

BCR BM Radimn-22Ai (DCUe)

Cona11mts 1.5 :t 0.3 RAE

_'. chen and ~ociates, inc.

CONSULTING ENGINEERS sou., fCM*NJJOlt N S. ZUNI DENVER. COLORADO &0223 lOl/744-7105 ING IN 1111 N' 1124 UST flRST STREET CASPER. WYOMING 12'01 307/234-2121 Job No. 16,406 SECTION 2 Extracted Data From SOIL PROPERTY STUDY EARTH LIHED TAILINGS RETENTION CELLS WHITE HESA ~AHIUH PROJECT BLANDING, UTAH Prepared for:

ENERGY FUELS NUCLEAR, INC.

PARK CENTRAL 1515 ARAPAHOE STREET OEHVER, COLORADO 80202

~uly 18, 1978

TAIi.i I S\\119\\AAT o, \\.AIOAATOAT T(ST A(SU\\.TS l'*t* I of J NAT~AL

,...,_ o,,,_

ATT(lltAC LIMITS

,AAAATION ~LYSIS ltl!OUtD l'Cl1'lM I LI T'r Tut o.,c11 o,,

'4ol11ure s,.. 1t1c S.11 Hole,,1.)

110lsl11**

Ory o.,u lty Co,iunt u.,,,

  • IHtlclty IIMI-bu thMt lry

,,~

Cofttaftl 0.ftt lty Ll*lt 1200

'.u 0.11111, C...te11t

...,,ac.

U!)_

(1dl '*"'

tu IY.)

l1.\\

  • '1.1 l1cl}

1'11 2

o-s 117.5 10.a 20 J

SI

'11~,

0.57 s.s.. 10*7 hft4y Slit J

7-1 7,2 u

,2 s."~ er,., *.,

  • ~**

11.s J) /

1.z.10*1 Slit s

1t-10 12 102.1 22.0 o.oas 2.U C.lcareeu1 2S 7

17 SIity Clay 1-2 10.)

S lft#y C I *r*r SI It at-,

6, I 27 /

70 h1ufy Clay I

s-st I), I HI'

)/Ii '"*

'2 c,,,,, *..,,

hft#y s "'

O*l I. I HI' SJ Saft*

  • SI It 10 i..4l llt 10 7l Sa1uf1 Cl *r II H*'i tli.O 2'

'5 SI IUlofta-.

e s,

6.h10**

Clayltofta 12 2-S 101.0 20.,

SJ./

JS

,s.o 11,J 0.0'8 2.,7 Wuthara4 C l1y1tofta ll 7.1 I). I lt /

C1lc1reou1 Slit Clay 1-J

,,. )

Ito.*

21

\\la11har;i4 2' /

1.2a10*1 J;6ti CI rrllOft*

IS I i*lti 106.1

,,.o I

J/1 '"*

'5 17 IOJ.li 18,0 0.012 "94. Calurec

  • Sift~ Chy 17 2-)

II,It II s,

Saft~ Sitt A,

O*)

117,5 12.I Z) 70 10,.,

12,li 0.0)5

),lta 10-1 Saft#y Clayey Slit 22 1-2 1).2 u/

10 7J San#y Chy

/u 1-)

....I 21t IJO 17 Vaather,4 Clayatoft*

A>

,.a JO IJO Cl ay1to11, As

    • H

').)

26 /

57 S111ofy City

,4, lti*S IS. l

... /

JO

,1 Vaatllere4 Cl ayatOft*

~/,

0-2 11.1 21 /

10

,,. 111.

72 SM#>/ Clay 2-)

8.5 z

s, SanJy SI It J2 I-Ii s.,

2)

IJO n

hft#y,,.,,.,.

SI Ir

)7 o.i.

118.1 11.S u

s 72 110.s 11.S o.o

,.,.10*7 hn~ Clayey S II r

)8 5.7 II I. 0

* 7 2, /

Iii J/1 111.

'9 101,lt 11.,

O.O'*I i..0.10*:

,,.,...,,. Cl.,

loO i.-H 110.0 1,.2 2,

I

,1 27 IM Ii

I, II 011 I &ato*

hndy Cl,y

TMIU SUl'fVAY o, ~OA~TOAY TrsT AlSULTS l'*t* 1 of 2 HATUAAL llaal-o,,,_

ATTlAltAG LINITS GAAOATION >MALTIIS Al"°Uto

,rAkEAI I LI n Tut l>eptll o,,

l'IOhture S,eclflc Soll Hole (re.)

,...,h111re Ory 0.111 lty C9111MII Ll.-14

~lelllclty,....,_

hit'"'

Lu, tllM Ory Tr,*

Oe,ulty Ll*lt 1,uiu Ill*

1200 z"'

o..,,,, '°"' *.,,

,,.1,,.

u../1ec.

1:.1 f,ctl

(,ct)

Mt\\

l'Ll m

~,

. ~,

(,cf)

(1)

~!;,.,.

u I

J/1 In.

,o Santly Chy liJ

  • >H1t;

"/

10 J/1 In,

7)

Sandy Clay It) 11-,,

12. I

"' /

2.

Chy1tona Ii)

IJH6i 110.0

. "° /

Iii J/1 In, IS IOli.1 IS.I 0.021, J,Jalo**

2.62 Cl,YllO/\\*

7.5 JO /

II

)/1 In,

, 79 C*lceru111 s.n.iy c l*y 1,6 o-z 12.)

u 1,

S,,,..., CI ayey A

S II t S*St JO /

)II In.

'5 S*n<ly Clay

.;,(,

S*7 110. 7

,s.,

2S /

71 105.2 0.))

),.h10**

hnlfy Chy

.A;',

tit-IS 21 /

s 55 c.1careou1 S anlfy S 11 t 51, 0-1 ll. I

2)

S,in.+y Clay ss s-s I

,.a H.,,,

IJO 71 Jll'ldy Chy

,1-,o*

21

/

IJ lit 71 Santfy CI ay ss

~ Sl-6 I 2. S lS.,

ii jlt 75 l'"dy, SI lty lay 6 I 0* 1 II. S 21 7S Santly SI It u

II* I It

8. I I In,

]It c,1,,,eou1 hnd, SI It 6J

... ~

JO/

S a/\\oly Clay 6S 1-2

,.o SIity h11il 68 H-8 8.6 u/

I)

'1 hn'r Clay 70 lf-lot 27 Ii In, Celureo111 Sand, SI It 72 0-J

12. 2 22 I

s, S 111.ty CI ay 75 10.11 I Z. I,

.., /

2S 75 Wutherad Claylton*

75 12-llo 1,5.,.

22 Cl eylCon*

Cll&,*106

TABLE 11 LABORATOkY PERkEABILITY TEST RESULTS Compaction Samp?e I

Solt Type I

Ory Ho I sture t of "'\\

Surcharge I

Permeab 11 f ty Dens I ty Content I\\STH OS98 Pressure (pcf)

Ci)

(psf)

(F't/Yr)

(Cm/

TH 2 P 0'-5' Sandy Silt l tt 1.6 16.~

95 500 0,57 5,5,d TH 5@ 7i'-IO' Calc1reous SIity Clay 102. 1 22.0 101 500 I

0.085 8.2x1 TH 12@ 2'-5' I \\leathered CI 1ystone 9S.O 18.J 91, 500 I

0.068

6. 6x I Tit 15 e li'-L!' I Calcareous Sandy Clay 10).4 ts.o 97 500 I

0.012 1

  • 2x Ii TH 19 e 0'-3' I Sandy, CI ayey SI lt I

109.9 12.~

91, I

soo I

0.035

3. l1x I 1 TH 37 e 0'-4 1 I Sandy, C 1 ayey SI h I

110. 5

11. 5 I

93 I

500 I

0.6)

6. lxlC TU 38 e S'-7' I Sandy Clay I

102.~

17.9 92 I

500 I

0.0~1 11, Ox 1C Tll 40 e 11 1-Si' I Sandy Clay 106.~

16.~

97 I

500 I

0.017

l. 6x1C Tit itJ e IH-161'1 Claystone

, 10~. I ts.a 9S I

500 I

0.024 2.Jxtc Tl! 1,9 e 5'-7' I Sandy Clay I

IOS.2 13.9 95 I

500 I

O.JJ

3. 2x IC

SAMPLE 2 (.i) Q - 5 I s@ n - 10*

IS@lt-1*1' 19@ 0-3' 26@ 1*!-5' JO @ 5 - 7 1

SOIL TYPE Sandy Slit Calcareous SIity Clay Calcareous Sandy Clay Sandy, Clayey Si It Weathered Claystone Sandy Clay TABLE 111 RESULTS OF ATTERBERG LIHITS PERCENT ATTERBERG LIMITS PASSI NC Liquid Plastfc NO. 200 Llml t Llml t

  • SI EVE (i)

(%)

sa 20 17 56 33 25 65 26 18 70 23 17 91

'41 21 69 29 15 Jol, ho. 16, *au*

Shrlnk119e SHRINKAGE Llml t RATIO (X)

17.

1.61 25

t. 62 17.5 I. 76 18 J. 80 I 2 I. 90 14 I. 89

chen and associates, inc.

CONSULTING ENGINEERS SOil 1 IOUNOATIOH 96 S. ZUNI DENVER, COLOP.ADO 10223 (HGIHflllHG SECTION 3 Extracted Data From SOIL P!OP::..~ SillO'i PRORlSED TAILINGS RETEHTIO~ Cfl,CS

~IT£ r£SA l~,NiliM PROJECT Bl.ANON;, UTAH Prepared for:

~ER:;:< FUELS Nl.JCLE'AR, INC.

1515 ARAP.A_!i0£ STREET 0-::?NER, ~

80202 303/74'*710!

Jo::> t-0. 17, l JO January 23, 1979

CHEN ANO ASSOCIATES TABLE I *

SUMMARY

OF LAElORATORY TEST RESULTS Pa9e I of 3

'"'=--

-1 tlATURAL NATURAL ORY ATTEROCRG LIMITS UNCONFINED TRIAXIAl SHEAR TESTS PERCENT HOLE OEPTtf MOISTURE DENSITY LIOUIO,usr1c1n C.OMPAESSIVE O(VIATOA CONFINING PASSING IF E £T)

SOil TYPE

,.,.)

1PCrr LIMIT INOCI STR[UCTH STRESS PRESSURE NO, 200 (Y.)

(*1.)

(PSF)

(PSF) '

(PSF)

__]§_

0 -

I

__ i..~s 21 s _

___ 7.L... -~~~cl'l-!!!.~ *---*---

~.2._:_!Q_ -~.:!-

NP 26

--~ _I J..t Y. &.-!1.r:!>Xtl!.Y~ ~E-.

__]7 l...i... - 6

-~6 30 15

__JJ__ 2E.!' ! ry _ ~_I_'!)'.

79 O -

I lt

  • I 20 s

_!!1__ S :incly_ s 11.t ________

- :-2t..L S.5 NP

__!_,_. __.. c~..1 c~.r.ctf>llS._ ;_~!'~Y- ~I~)

no t,. 5 - 7 39 20

_ __J_8_ _ ~'?..!.. c-~~ ~-s-~~ ~y- ~~

8 - 8.5

10. I 1,0 20 86 Wcothercd cluyHone 01 3 -,,

6,J 26 8

611

.. 5-!..!.ty 1 -~!!'!~Y.. <: 1_.1y ___

0)

L1 - 6 2lt

--7.

6lt

_S~n~1Y,.EJ."'r'.~Y *. ~ i_lJ_

01, 0 - 2 18 2

I

__ f>.L.. _ _s!'~ndy. s I l_t. *- __ -*-

9 - 9.5 2.7 NP

-- _2.7 __.S.1 ! ty ___ S.'.>I)~---- --

06 o - ~.s 2, 6 NP 12 Si11ntlstone 07 0 -

I 3.1 16 I

61

-~~~'!L ~.1..1. ~----- -

89 o_.:_)

21 5

66 St111dy -~ l.J ~ ---* ** __

~o 8 - 8.5 I 4. q 35 15 61

--~-t ~crcg. ~.!.<?Y s ~!'.fl~.-

92 0 -

I 5.9 21.

5 80

~dy *-~-' ! t. --.. --. ---

9l1

~ - 5.5

13. 7 27 10 68

..J.~~1ly _c; I ~Y- ------

95 6 - 7 23 s

62

.* S.i1D<h _JI It*---**_. _

21 4

7S 96 0 -

7.

5.2

..i~n..~Y. ~.JJ t ____ - * -

8.5 - 9.5 32

'6 66

_eel !~~r~~!-.!E!'.~Y --~-'-~

0 -

I

.--1,.L __

-~ 5

___ 7~* -- _Sandy_ s I. I t ---*-*-*-*-

g=

... _1L_.

/1 - '~.:.L.__l]_.8 4~

25

. ~~.~ th~.r.eJ~.J.~y-~ t,,D£_

9 O - 9.5 ltO 20 89 We a th<: red c I ~t.5. t~!~.!:.-

I CD U'I I

rj

J

'l.o.

II OLE DEPTH (FE. ( T}

Job No.

0 CHEN AND ASSOCIATES TABLE I

SUMMARY

OF LABORATORY TEST RESULTS NATURAL MOISTURE

(.,. )

DENSITY llOUIO,usrmn OMPRESSIVE OE:VIATOR COr,ftNING PASSING NATURALOfiATTEROERGLIMITSUNCONFINEO'TAIAXIAL SHEAR TESTS PERCENT I (PcrJ I.IVIF IMOCI STRENGTH STRE!S PRESSURE NO, 200 c~,.)

I c*,.,

(PsF)

<PsF)

cPsF, s1EvE Pc19c 2 of J SOtL TYPE 99 ~-I_!_!_-~ 12 j 13, 5 I * ~6 J 10 I

I J

j_7J __ J~ L~y~_t_o_~!!... ___ _

z._,

NP 1

1 1

w,i.

~-~1 UY.*. l!'tiP~-

- -1 NP I

I I

I 6 I IJ..<?.0 ~!!£>.f)~I L'.t ~ ~-"-'=--

JLj B I I

I 1-ZL--1-~! ! ~ ~-r*~~ ~-.!_ii'!~. c 1 0

..J NP NP

§ 6

3_j 6 I I

I

'1-~--1-~ 1 c>Y.~.c:,~c:-.~U t.! ~~"-~-

LI 12 I

J I

57 J~n~~,,y _______.

2 *

~

j 33 ~

1*

I I_JO L~!!.l~~~us..!!,.ndy __ cJ!,)

Lj_§__j I

77

.J~~n~!Y_JJ l_t ________ _

I

~

2 -

!1 j

6

_J __ NP I

I I

--1-~~-1-~-~ndy_!.!.'.~.------

~- -

B_,

6

  • I I

I

___,_s, ___ l.~l.c>y~~onc-s~:,t.l~tor~ __

2

__ NP 6.

. -1.. NP I

I L--~.3 ____ --1.s.arid~-~.o~c. _______ *

.. NP 3

L!

3 I I

1----1--~9 _jS~ndy __ s!l~------*-

8 j 16 j

j j

j__j)

.J.~_1_.,y!.~.<?.".lc __ **----

I -

j 116 109

,, --~ - ---

75 l S <)ndv cl.:,yev s I It


1 r

1---1*

    • . JI.-**.*

L.*

ll 7

111

~

9 - 9.5 I 5.8

~

5-0

..!E*S - II.

111, 0 -

2 10 -f I-**

I 53 i~CJ,,yHonc

-,~ ~~ 1 [= __ F-=~ __ } J~ __ J~~~;;:~~~:~~!~~: :~~-:*

6 I I

I

~_18 t.~~-".!!Y.,.. S. !.~Y~Y.. s i *' ~--

1 I I I

58

,~~~-'..~.<!~!. ____ _

ll

,,o 24 -22 1 I~

,,. 5 - 6 t-

116 0 *

~

7 - 0 117 -~ I

  • 2--- wo,6 I

110 O -

2 -

22 -

b 2ft 10 2w.

~---21 6

' ~

~-1 I

I --

I t

J t

I ;2

_j_Sa~_s.!J.i __

I

~

lw---* -

........!.L_l.f.L~Y!.t'?~C.:-t~n~t_orut.

  • ---.---~- - *--,

I

~

I

_;, *. ]7 ___,~.~~~y_!!__I_~.---

_:'._:__~

~

L *.,

1 w

_j 77

~!~..U

Job No. lJ, 130 CHEN AND ASSOCIATES TABLE I

SUMMARY

OF LABORATORY TEST RESULTS P-,gc 3 of 3

---: =-4 TRI.AXIAL StftAn TESTS! -

NATURAL NATURAL ORY ATTERBERG LIMITS UNCONFINED rEt\\CENT ti OLE DEPTH MOISTUFIE DENSITY LIOUIO 'LASflCITT COMPRESSIVE 0£ VI A TOR CON FIN ING PASS INC SOIL TYPE (FEE f)

(.,. )

( l'Cl')

LIMIT INtCI

'STRENGTH STRESS PRESSURE NO, 200

(*,.)

("I.)

(PS F')

(PSF')

(PSF}

SIEVE

,,o_ __§_, 5 __ -_§_, 2 110 20 89 W~c1t!1.~r~2-s;; lQY! t~P~--

119

~

...!i_-_L.--1..Q. 0 26 t 2 68 2~~<!Y~PY~---~

_t2Q I ---~- -

25 8

-~- Sandy,_ c I Jte_rJI It r, -

~~

__Jj_, 5

~-

10 78

.. ;!~~Y-.£!..~Y_. ___ --

11 -

11, 5 1 ~, 6 42 2ft

-~Q ____ C 1.>y.s tone_-*--*- ___

122 l1 - 6 25 8

66 1!~~y_,_s_~ Lty_slE.Y._

11*,i - 15.

6. t, 26 8

66 Sandy cl11y 123

_J_- 3 23 7

_].! __, -~~~~y., __ ~! ay'?'l s I l_t_

121,

.i..i...:_L 6.0

2) 7 69 Sandy, cl~yey sl It 6*

12S 0.. I

__j,8 22 67 Sandy si It 12 7 5 - 6 51, 3t,

-~~--- ~.I clys_t_'?!',: ____

120 6 - 8

z. t 2'*

90 Clc1ystonc


*--~*.. *****-**... -*-*- ***---

~---------*

.E 11 LABORATORY PERMENllLITY TEST RESULTS Compaction Dry Moisture

% of Surchor9c Pcrmeob 111 ty Sample Classification Dens I ty Contant ASTH 0698 Prr.ssuro Ft./Yr.

Cm/Sc, (pcf)

(X)

(ps f) ru Bo (ii),,j--7, Calcareous sandy clay 100.2

19. 4 96 500 0,81 7.0x10* 1
  • 200*78; LL*)9; Pl*20 TH o,, (ci) 0-2 1 Sandy s 11 t 11 J. 8 II. 7

-200*65; LL*IS; P1*2 96 500 4.45

11. Jx io-(

TH 96 (iii 0!--9} 1 Calcareous sandy clay 96.9

20. 7 97

.500 I.55 I.SxlO-(

-200*66; LL*32; P1*6 TH 96@ Bt-9t 1 Calcareous sandy clay 95.7 20.3 q6 500

26. 90l'r

-5 i.6i<IO TU 99 (Ii) 8-9t' Weathered ctaystone

2. tx10*7

-200*89; LL*40; Pl*20 99.8 18.S 95 soo 0.22 TII 100 (cJ 0-1' Very s 11 ty sand 117. 5 9.7 98 500 0.30 3.7xlo-7

-200.. 1,1,; PI *NP TH I "' (@ 0-2 1

Sandy, clayey silt 112 * '*

12,9 95 500 0.60 S.8x10*7

-200*58; LL*22; P1*6 Ttl I 20 (@ I -2 1 Sandy, cloyey silt 100.2 1 '4. 7 95 500

0. II I. lx10*7

-200*69; LL*2~; P1*6 TH 122 6il,,-6' Sandy, silty clay 108.8 15.S 96 500 o.ltJ l1. 2x io-7

-200*66; LL*25; Pl*O T II I 2J ~*) I - J I Sandy, cl~yey sl It i 1 o. 9 12,6 95 500

0. 56
s. '1:<10*7

-200*71; LL*23; P1*7 TII 120 Gil 6-7' Cloys tone 92.4 2).9 93 500

0. 12 l.2xlo-7

-200*89; LL*'*I; P1*2'*

TII 120 (a) 6-7' Clays tone

93. I 2 2, 1 9'4 500 O.Sb':
5. Ox I0* 7t

-200*89; LL*l1 I ; P 1 *4

  • 1.5 pll sulfuric.:1cld liquor used during percolation test Interval.

I u I u '

II I I

II J m

1 ill~ **1aa******************************************************

  • 1 1 1
  • iiZ***************************************************;

11

  • i (

I I

      • =*******... *******;**************;****1;1,1111111 :f I It I

I Ii 11**1a****11*,1**1*******a1***********1*i*****,*********,2*

fl~ ;;;**a**2****;a*****~*;*********a*:;z;;11111;1****a********

llff 1a1**11*1*i1111*****1*1*********a*a11111****1*****1***1****

I 11 * !!ff51U!_HU!IUIH5HIUIHUUIHH5fUUU!Ul!IUIUH I ~II 11111aa:1,:;o)***aza2aaaaaa;aaaiii12,:a2;aa~;::;:;;aaa**~*z*

I l*ll ii*******************************a*aao*******************a:

I f I

I I l1111l1111J~IJ1Jll~ll111JIIIJI IIIIIJIIIIJllllllllll1II~

i If l***fSdlll**l~***IJ~1l~dddddfldl~ll***addldllddddldddlllff I

Iii !11sss1~111111111111111;111;11s1,s1~,11111s!~lllllllll2S!!!

ill 1,:1:,,:11111aaaa11a111;;aaaa,21~;2;;;;;11aa.:1;,;;;i.:,:~

1 I

£11 112*::ia,a;a;;aaaa;ar,;;;;;;aaa1,1:12a:;aaaa;**aaaaa11aaaa****

I llf 1111111111111lllllllllllllllllll1ilillillll111111ll11111lfii I~: 111111~~~~~!~!!~!!!!!!!~!~~!!~!~!!~!!!!::::

t I iiiiiiiiiiliiiiiiiiiiiiiiiiiii~liiiiiiliiiiiiiiiiiiiiiliii

~1996 11:03 602 820 2941 88%

P.12

i I a

I 1 ~

II !!!

I

  • 1*

I j a

1i1 m 11 J fl lfl 111 illll 11;;a*oaa******************************************a21;~a,,,111111 Ifill **-aa*1,, *****, ************************, *********** 1i.fii*********

1 *****;***~;*******i********;******ia**;******* ****a;***.~******

I I

I II ****1;1112i**********;*****;11,111;;ii;111****1****;;1a111~;1,iiaa IIII **i12;2112a11**~*************************************;a**;a;******

II!( **~1;1***,1**1*1****11* 1111**********1******1********,;**111******

I fl ***!*!*S!!!****!*******************!***************5!S**55!!******

I I flll 1i;~aa1* 1;:;;;i~;a;a;a1;;;;:aaaa;;;a;aaia;ati;~~=~;a;a=***~~2a;a;;:

I filt a2***a***t*******1****************i***********iitii******iii******

I i I I 11JIJl111111ll1l1ll1111111111111111111l11111111111~1111l1111ll111

  • If dllldli1~J*ll****llddudddddddddlllddddddddddlllddddddlilf1di1Jfddf I

ill ~11!1!!!!1!5!!!'3'11ji21111Jlit;l~5il}!ltllll!5B!,J!,!!!ll3999!!1!

ill ;~1~1J,::=~===1ia;;;2aaaaiai~a;;1;~;;;=~;12a1;2::i;,1:,2;:;==a2a;:

I Ill ara:;:,:1:!======1~1;1;2;a;;:ai11ai;a:a;a=112ao1a===~1=1=,,;,;,,:;1a:

I 11i,,,,,,1111,, *******, **,,,.11,,, ******,, *******, ******,111111,.,*,.

  • 1' ill rri11lllllllllllllll~llllllllllllllllllll~ll11111iilllllllllllll ii 111111111111111111111111111111111111111111111111111111111111111111 I.

ililillliilllllililiiiiiiilllliilliiilllllJ2iiJiiillZ

  • , ~ i I lilHllllilltff illllllllllHHIIIIIIHIIIIHIIIIIIIHIIIHIHHl1i

-*...,:... *.... -*-4*~--*

RL-09-1996 11: 03 602 820 2941 P.13

a I

f

,l I I iJ !

11111111111111111111111111111111111111111111111111111111111111111111111

'I I ****, ******,., *******************************, ** 111111,111*1111,,1 D I (

I It a111111***0*111a111ia111;1111111111111111111111111;;1;1111a1111111 II ****1**1***1***1**~a:***1*1**1*******1************;i*a****a*******

Ill( 1112****111111111z11111a111111111111a1111111;iaa111111111111111111 1111 lllfllllllfllllflfllllllllllllllllllfllllllliiii***1111111a1111111 I II *****~*********~*********~11111111111111115111111111,1111111t1,111 I 1111 aaia1aa;a1aa;1;aa~ai;Jaaaa:i;s2;;aai~;aaa~;;;;~~*;*iai~*~**a3;aaa*

I 1i11.,.,1,,,1,ia****,aiit,_il*****l*ii*iiiii*ia*******************i**!

I '

! I JJll1111IJJIIIIIIJJJIIIJIIIIIIIIJJJ:11J11JllflJIJJll~IIIIJIIIIIJ1

i.

If dlJ*****d~dddddddld,1dddddddddl*dJ!d1ddd111Si11111ddddlddddd11ddf*

ill ~1~211oss5,~~~1=~5,121,~5,~;1111,i1ssi~11!sass~1g1fi111~ssjJi=1:=::

iii aa;;;;;;,1;;aaaaa2aa11:aaaaaa;;;;;;,;;a;;:~a==;;;;;a2a;,;;;;iaaa;;

I Ill 2aiaaaaa11;aaaaaa:i1aa11=;1111;1;a;::;;z;::;:,~a;;:aa2;21;1;;1g;;;

I II! 11111111111,lfllliiiillllllllllllll!iillliiilllllllllllllllllllili ii:: !!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!~!!!!!!!!!!!!!!!!!~!!!!!!!!!!!

I

~ lllllllllllliiiiililiiilliillllliiililiiiiiiiiiJJiiiiiliiliiilllif i

s lilllll llllllllllllllillllillilllllillillllllllllllilllllllllllll f:Uz-09-1996 11 : 04 602 820 2941 P.14

~

ala

~

)i I I i

I ff fff I '

I I I

~ I fl...

it, II '

I J a! '

1J HJ

! ii II ! I illll ****;*a**i*2*~***a2**********************************************i

'I I '*-i'if*a*,~**t;;**********a**~********************1*******;****

. l (

I i aa*******i*****:1**;;~**a1a***=*,******1211111~*****; ************

I II *******1,11it111111;;;11;;;111J11*******1111i1;111,i;121t*11111a:t l!II ****~****1*2*;i2a*1~;**********2*****1a*********a*ao1;111111,;1;11 ll!I *11*a****1*i111;;**11*1111**11*11*1***11*1*11111a*11*1*1**1*1;1;11

! fl *****~*******s*~**S!!**11111151111111,1*******!******s***1*1s1*s**

I 1111 =;;:;;a~;~;;~~~;***a;aa2;2;;~;a;aa;;;;;;;;-a2;~;,~;;;J;11rli2~~ ** ;,

I Jllf i1;1*21;a*;*;*2*1**ii***2ai***1*******11***********a**ac2*~aa*a*2*

I,

f I 1::11111~IIJJ1JIJJIJ11111l111Jl111IIIIJl1111JJIIJIIIIIIJIIJ1l111

, If ddd111s11*****sts1d11ddfddd1af**.f,s1****ff dfd*lldlS*11a1f 1dddddf 111,do

~ ilf 5!!,:s1,fi,~!5ff!!!!!!55f!lf!J!,1:,1;)1l~=5:111:11i11111ss5,ss!!III I ill :::;;:;:1;;:;1a2:2::,::;,~;:,;aa~;2a2s2aa1;1;2;2:aaaa===;;~::,:,;a I Iii 2::;;2;;a;,2211::::,,,2;:,,,:,aa11;aJa;;2aa;;2;;2;;;;2::2;;2:::;;;

I jff ifllftfllftflfllll~lflllflllfllllll!llfllfllllflllllflltiiilfllif

'1! ill tiiiillili1111~liiillllilllllllllllllllllllllllllllllaaaaiziii*111 ii 111111111111111111111111111111111111111111111111111111111111111111

. I I illiiiililiiililiiiiiliilliiiliiliiiiliiliiiiillllllliZilZliliilZI

  • ,,4 i

!!!!111!!!11111111111111111111§11111111111111111111111111111111111 PUi-09-1996 11: 05 602 820 2941 98%

P.15

I 1

I I

,1,. ' !

11 J i i II I I I

IIIII 11;1;1;,;****a****************a***********************************

'i ~ i'i'i'i****a****************i**********1111,11111111111111111111 i *1£ C

11 ***;*;*~****a*****************~****a*******a***;*a*;*a****;***a***

II,,;a*a1;1;a*a**********************a*******a;1a;1;1;1,~1;,i***,***

IIII **222aaa1**~1;111111,11;1;2i**;************a*:*11111111111111111;1 ll!I *i2iBiiflllilf111111111i*iil**i111111111111;1;111111111111111111; 1 I Ii 111515*9****!*******a************i***************s***********ttl!I I

I I II==i*1**a1*2~=*a;;;:~;;;;***==aa;a2a:a:;:;;a<ai*a2aa~;iae;;;;;;;::a I 1, 11

,1111,,, ***** 11,,, **************************,1 **,.1, *********, **

I f I

,~

IIC'III'

! I JJII 11111111111111111111111111111,l11111111l11lll1111111~11111I

~ 11 11,1,d,dd~d-~ldddllldlllll,iidlddddddddddldddddddddddddddddddddlid I. ii( ~5J!!!!!!!15!!!5,=S=!t,55j5!f:!!!i3555J!!l:S!!ll5~5!S:5s,1!!ll!S5!

C iii==1~2~2J=,=;:=:lilll'~i=!i221i~~:;:~;2;~;~;~=;,;:3;2;;=;~;,::;:;:;

I Ill ::;::::::,::::::a;:;::;::;::a~::;::a:1::;;;:::::;;*aa::;;:,:;:;::

I ill **tllllll***ll***l************t*ll1llllllf!fll11IIJ11fllllllllllll Ii:: :::111111~!11!!!!!!!!!!!!!!~:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

i 1-i1111111111111111111111111111111111'l'l1'iiiiii~,,,1 11111' 11 f~t'li i I,1,111122222111,111111111,111111111lllllll1l1llllllll2ll2IIIIIIII l=Ui-09--1996 11 : 06 602 820 2941 P.16

j I

d1 11 11111 1

I,1fl

!lalt ;u I if ff I

I

  • t!J I* ~=i!

II ;;; I 11 II lllf a** J '1** J rl l

I I II 1111 I 1 1111,.. I 11111111.c. !

' II ***

i *Ill ;:a 'I~ e. f I Ii I le I I J i 1,11 *~i i 11 i

I r I,1

! 1m1t:

,H i j If ddd l IJ 110111. J g ill !I' 11=.1 111*11 I J I,21,~: in*',t 1111111111)1 I II

~II* 11111 II l I Iii==a iltti i

'llf i** 1

,1~11111ll1fl11I, I 1111 I

-,1 ill 111 i, J*t ~

J

  • I I I a a 111 II 1.E I I

111

~~.,,d, Ill w

I

~2; I A..G-09-1996 11: 06 602 820 2941

  • 7 ~

P.1?

APPENDIXB Radon Calculation eTITANEnvironmental

TITANEnvironmental By IAM. Date..2f1¥2.6 Subject EFN - White Mesa Page I of 31-Chkd By~ Date~

...... R_a..

do""'n...,Ca_,,.lc"""uula-tix.ion..___ ________ Proj No 6111-001 PUQX>se:

Method:

Results:

To detennine the required soil cover thicknesses to limit radon emissions from the White Mesa tailings impoundments to 20 pCi/m2/sec using United States Nuclear Regulatory Commission {NRC) approved methods and inputs. The White Mesa Mill site is located in Blanding, Utah.

Determine the geotechnical and radiological properties of the tailings and cover materials based on NRC-acccpted methods and existing database values previously collected. Input parameters into the computer modeling program "RADON" to determine the radon flux values through the cover materials. A variety of scenarios adjusting cover thicknesses were run to determine the optimum thickness of cover materials to meet NRC specifications. It was assumed that the tailings located in the three cells at the White Mesa Mill site (Cells 2, 3, and 4A) have similar properties (Figure I). Therefore, cover layer configurations as determined by the RADON model are applicable to the three tailings cells.

A 2-layer uranium mill tailings cover composed of (from top to bottom) a 2-foot layer of random fill and t I-foot compacted clay layer will meet NRC specifications. In addition to the tailings cover materials, a minimum of 3 feet of random fill will be placed between the tailings and soil cover to fill the currently existing frecboard. This 3 foot layer was included for modeling purposes since it will assist in reducing the radon flux from the tailings impoundments. This layer, however, is not considered a part of the actual soil cover. The resulting radon flux exiting the top cover layer of the tailings impoundmcnt will be 13.6 pCi/m2 /scc (see Appendix Al for RADON output).

As indicated in the "Effects of Freezing on Uranium Mill Tailings Covers Calculation Brief' (6/17/96), 6.8 inches of the top random fill cover layer will be effected by freeze/thaw conditions at Blanding Utah. This suggests th.at 6.8 inches of the top layer may not contribute to reductions of radon emanation from the tailings covers. To conservatively compensate for effects from freezing and thawing, 6.8 inches were subtracted from the top random fill cover layer.

Executing the RADON model based on this cover configuration resulted in a radon flux emanation of 17.6 pCi/m2/sec (sec Appendix A2 for RADON output).

NRC specifications (Regulatory GuiJe 3.64) requires that a uranium tailings cover

".. produce resonable asswance that *he radon-222 release rate would not exceed 20 pCi/m2/sec for a period of 1,000 years to the extent reasonably achievable and in any case for at least 200 years when averaged over the disposal area over at C!\\efn wnue\\r..aani.clc lt/l&/MI

TITINEnvironmental By IAM.. Date~ Subject EFN - White Mesa Page_k_of 3~

Chkd By~ Date~

... Ra_do.... a.... c.. a... lc..

u_la.... tio

.... n _________ Proj No 6111-001 least a one-year period" (NRC, 1989). Therefore, the above design with accounting for freezing and thawing conditions is adequate.

Parameters; The RADON model requires input of the following parameters for all tailings and soil cover layers:

- layer thickness ( centimeter ( cm));

- porosity;

- mass density (g/cm3);

- radium activity (pCi/gr), source term, or ore grade percentage;

- emanation coefficient;

- weight percent moisture ~long**term) (percent), and;

- diffusion coefficient (cm /sec).

Physical and radiological properties for Tailings and Random Fill were a..dlyz.ed by Chen and Associates (1987) and Rogers and Associates (1988) respectively. See Appendix Bl for analysis results. Clay physical data input for RADON modeling are included in Appendix 82 and were analyzed by Advanced Terra Testing (1996) and Rogers and Associates (1996).

The following cover profile was modeled.

Random fill (2')

Clay (I')

Random fill (3' min.)

\\ ).,,

\\ ~ \\ ~ \\ ).,, Tailings (16.4' (500cm)]

........ ************-~*****************************************************************

This cover configuration represents the actual cover layer thicknesses which would be constructed on site. The cover profile above was adjusting for modeling purposes to account for freezing and thawing conditions. The modeled profile is identical to the one above with the exception of the top random fill layer which was reduced to 1.4 feet (2 feet minus 6.8 inches). It is assumed that 6.8 inches of the top cover layer effected by freeze/thaw conditions will not contribute to reductions in radon emanation from the tailings covers.

c.\\efn Mlllte\\l'-....i clc lt/1'/KI

-~,

I

TITANEnviroomental By IAM.. Date 9/11/96 Subject.... E...

FN...,__-....

Wh"-&U,lit..,e..... M.... e...

sa._ _______ Page.3 of 32-Chkd By _n_ Date ~ltv\\~~

Radon Calculation Proj No 611-1-0-0 I Layer thicknesses The thickness of the tailings was assumed to be effectively an infinitely thick radon source. In accordance with NRC criteria (Reg. Guide 3.64, p. 3.64-5) a tailings thickness greater than about 100-200 cm is considered to be effectively, infinitely thick. A value of 500 cm represents an equivalent infinitely thick tailings source. The actual tailings thickness of Cell 3 at White Mesa is approximately 28 feet (8SO cm), therefore, a value of 500 cm was used for the RADON model.

A minimum of3-fect (91.5 cm) of random fill will cover the tailings to fill the existing frceboard and bring the tailings piles up to the subgrade elevation of the soil cover. A I-foot (30.5 cm) layer of compacted clay covers the random fill with an additional 2 feet (61 cm) of random fill overlying the clay layer. Adjusting for freeze/thaw conditions results in a (43 cm) random fill layer overlaying the clay layer.

Porosity Porosity is calculated from the specific gravity and dry bulk density according to the following equations;

1. Dry bulk. density= [(specific gravityXdensity of water)]/(1 + e] (Ref.: Principles & Practice of Civil Engineering, 1996, equation 14.5.6). Sec Appendix C.
2. Porosity = [e / (1 +e)) x 100 (Ref.: Principles & Practice c,f Civil Engineering, 1996, equation 14.5.4). Sec Appendix C.

Max. Dry Bulk.Dry Specific Density of "e"

porosity Density Density Gravity Water Ob/ft3)

(2)

(3)

Ob/ft')

(lb/ft') (1)

Tailings ( 4) 104.0 98.8 2.85 62.4 0.80 44°/o Clay (S) 113.S 107.8 2.39 62.4 0.38 2s01o Random fill (4) 120.2 114.2 2.67 62.4 0.46 31.5%

Notes;

1. Bulk dry density is 95% of the ASTM Proctor maximum dry density for all materials.
2. Calculated using Equation 1 above where "e" is the volume of voids per volume of solids.
3. Calculated using F.quation 2 above.
4. Physical tailings and random fill data from Chen and Associates (1987) included in Appendix Bl.
5. Clay physical data from Advanced Terra Testing (1996) and Rogers and Associates (1996) included in Appendix 82.

c,\\etn-*Ste\\r.....a.clc lt/U/NI

'*;*--'-*,---*~

TITINEnvironmental By IAM.. Date~ Subject EFN - White Mesa Page_:!_ of 3]..

Chkd By.fth. Date~

..... Ra_d_.o... n....,C..

al..

c..

ul_at.... io-o ________ Proj No 6111-001 Mass Density Mass densities were measured by Rogers and Associates (1988 and 1996) to be {see Appendix Bl and 82):

Tailings

= 1.45 g/cm3 Clay

= I. 72 g/cm3 Random Fill = 1.85 g/cm3 Radium Activity, Source Term, or Ore Grade 0/o Radium activity value.1 from Rogers & Associates (1988 and 1996), were input for White Mesa tailings and cover materials (Appendix 81 and 82). The radium activity values are:

Tailings

= 981 pCi/gm Clay

= 1.5 pCi/gm Random Fill = 1.9 pCi/gm.

Emanation Coefficient Emanation coefficient input for the tailings and cover materials are measured values from Rogers

& Associates ( 1988 and 1996), induded in Appendix 81 and B2. The coefficients are:

Tailings

= 0.19 Clay

= 0.22 Random Fill = 0.19 Note: Use ofNRC's default value of E=0.35 is not considett.d appropriate since laboratory analyses of emanation coefficients are available.

Weight Percent Moisture Long-term moisture content (weight percent moisture) was assumed to be 6% for the tailings.

NRC Regulatory Guide 3.64 states, "if acceptable documented alternative information is not furnished by the applicant, the staff will use a reference value of 6% for the tailings moisture content because 6% is a lower bound for moisture in western soils" (NRC, 1989). Laboratory data does not exist to determine the actual weight percent moisture of tailings therefore, this is a conservative assumption.

The weight percent moisture of the new clay source (UT-I) is also Wlknown therefore, it 'W8S asswned that the average weight percent moisture from clay (site #1 and site #4) would be equivalent to the new clay source (UT-I). This is also a conservative assumption as the new clay

TITINEnvironmental By IAM. Date~ Subject EFN - White Mesa Page_5:_of 3 1-Chkd By 1l!l. Date~

.... Rad_o,...n....,C,..a...,.lc_ul_at..,.jo...,.n _________ Proj No 6111-001 source i_s believed to be of better quality. Weight percent moisture values for clay and random fill were derived from the "Summary of Capillary Moisture Relationship Test Results" figures included in Appendix BI. Weight percent moisture values used for modeling purposes are:

Tailings

= 6%

Clay

= 14.1%

Random Fill

= 9.8%

Diffusion Coefficient Diffusion coefficient input for the tailings and cover materials arc measured values from Rogers

& Associates (1988 and 1996), included in Appendix Bl and 82. The coefficients used for tailings and random fill were an average of the two values presented. The coefficients for each material are as follows:

References:

Tailings Clay Random Fill

= 0.0142 cm2/sec

= 0.0091 cm2/sec

= 0.0082 cm2/scc Advanced Terra Testing, 1996, Physical soil data, White Mesa Project, Blanding U~ July 25, 1996.

Chen and Associate$, 1987. Physical soil data, White Mesa Project Blanding Utah.

Freeze R Allan and Cherry, John A., 1979, "Groundwater".

Principles & Practice of Civil Engineering, 2nd Edition, 1996.

Rogers and Associates Engineering Company, 1988. Radiological Properties Letters to C.O.

Sealy from R. Y. Bowser dated March 4 and May 9, 1988.

Rogers and Associates Engineering Company, 1996. Report of Radon Diffusion Coefficient Measurements, Radium Content, and Emanation Coefficient Measurements, September 3, 1996.

U.S. Nuclear Regulatory Commission (NRC), 1989. "Regulatory Guide 3.64 (Task WM 503-4)

Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers",

March 1989.

c,\\efn-*t.t*\\r~ clc lt/1&/KI

CELL 1-I CELL 2

(

  • ,.r.-

I

. *(

WHITE MESA PROJECT I

I I I SITE O AAINAGE F l(j VR..E: /

ti

,*~--~

. l Appendix Al c,, \\ola-wlllte\\<-. c:lc lt/10/Hl


*****!RADON!*****-----

Version 1.2 -

MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS DATE/TIME OF THIS RUN 09-l0-1996/18:06:33 EFN - WHITE MESA CONSTANTS RADON DECAY CONSTANT RADON WATER/AIR PARTITION COEFFICIENT SPECIFIC GRAVITY OF COVER & TAILINGS GENERAL INPUT PARAMETERS LAYERS OF COVER AND TAILINGS DESIRED RADON FLUX LIMIT LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION RADON FLUX INTO LAYER 1 SURFACE FLUX PRECISION LAYER 1 THICKNESS POROSITY LAYER INPUT PARAMETERS TAILINGS MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY

.0000021

.26 2.65 4

20 0

0

.001 500

.44 1.45 981 s"-1 pCi m"-2 pCi l"-1 pCi m"-2 pCi m"-2 cm g cm"-3 pCi/g"-1 s"-1 s"-1 s"-1 MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT I' MOISTURE

.19 1.2900-03 6

pCi cm"-3 s"-1

\\

MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT LAYER 2 THIC1<NESS POROSITY RANDOM FILL (FILL FREEBOARD)

MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY

.198

. 0142

91. 5

.315 1.85 1.9

.19 cmA2 s"-1 cm g cmA-3 pCi/gA-1 MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION

~IGHT I MOISTURE 4.4520-06 pCi cmA-3 SA*l 9.800000000000001

~STURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT

.576 8.200000000000001D-03 cm"2 sA-1

      • ~~,-~ -

LAYER 3 CLAY (UI'-1)

THICKNESS ROSITY a~

MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT t MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT LAYER 4

'l11ICKNESS POROSITY RANDOM FILL MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT I MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 30.5

.28

l. 72 1.5

. 1 cm g cm"-3 pCi/g"-1

.22 4.257D-06 14.1 pCi cm"-3 s"-1 t

.866

.0091 61

.315 1.85 1.9

.19 cm"2 s"-1 cm g cm"'-3 pCi/g"-1 4.452D-06 pCi cm"-3 9.800000000000001

.576 8.200000000000001D-03 s"-1 t

cm"'2 s"-1 DATA SENT TO THE FILE 'RNDATA' ON DEFAULT DRIVE N

FOl CNl ICOST CRITJ ACC 4

O.OOOD+OO O.OOOD+OO 0

2.000D+Ol l.OOOD-03 LAYER DX D

p 0

XMS RHO 1

S.OOOD+02 l.420D-02 4.400D-Ol l.290D-03 l.977D-01 1.450 2

9.lSOD+Ol 8.200D-03 3.lSOD-01 4.452D-06 5.756D-01 1.850 3

3.050D+Ol 9.lOOD-03 2.800D-Ol 4.2570-06 8.661D-Ol

1. 720 4

6.lOOD+Ol 8.200D-03 3.150D-01 4.452D-06 5.756D-Ol

1. 850

BARE SOURCE FLUX FROM LAYER 1:

4.667D+02 pCi mA-2 sA-1 RESULTS OF THE RADON DIFFUSION CALCULATIONS LAYER l

2 3

4 THICKNESS (cm) 5.000D+02 9.150D+Ol 3.0SOD+Ol 6.100D+Ol EXIT FLUX (pCi mA-2 s"-1) l.233D+02 2.562D+Ol l.962D+Ol l.361D+Ol EXIT CONC.

(pCi lA-1) 4.519D+OS 7.892D+04 2.276D+04 O.OOOD+OO

  • . "s.'

~

n,u~~::e)..EE;fJFN~-Wh~j~te.hM~esaa_ _______ ::~cN~ ~~r 1~!1 By IAM.. 0*

..ERawJ!dow:ouc~awlcaiulblallJtigion11._ _______ _

Chkd By_ ate __ _

Appendix Al c,\\ef***U*\\l'....,.clc lt/18/MI Cl


*****! RADON!*****-----

Version 1.2 - MAY 22, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS DATE/TIME OF THIS RUN 09-10-1996/14:46:46 EFN - WHITE MESA {ACCOUNTING FOR FREEZE/TIIAW CONDITIONS)

CONSTANTS RADON DECAY CONSTANT RADON WATER/AIR PARTITION COEFFICIENT SPECIFIC GRAVITY OF COVER & TAILINGS GENERAL INPUT PARAMETERS LAYERS OF COVER AND TAILINGS DBSIRED RADON FLUX LIMIT LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION RADON FLUX INTO LAYER 1 SURFACE FLUX PRECISION LAYER 1

'nlICKNESS POROSITY LAYER INPtrr PARAMETERS TAILINGS MBASURED MASS DENSITY MEASURED RADIUM ACTIVITY

.0000021

.26 2.65 4

20 0

0

.001 500

.44 1.45 981 s"-1 pCi A -2 m

pCi l"'-1 pCi m"'-2 pCi m"'-2 cm g cm"-3 pCi/g"-1 s"-1 s"-1 s"-1 MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM C'ONCENTRATION WEIGHT t MOISTURE

.19 1.2900-03 6

pCi cm"-3 s"-1

\\"

MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT LAYER 2 THICKNESS POROSITY RANDOM FILL MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY

.198

.0142 91.5

.315 1.85 1.9

.19 cm"2 s"-1 cm g cm"-3 pCi/g"-1 MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WF.IGHT t MOISTURE 4.4520-06 pCi cm"-3 s"-1 STORE SATURATION FRACTION k.t:.ASURED DIFFUSION COEFFICIENT 9.800000000000001

. 576 a.2ooooooocooooo10-03 cm"'2 s"-1

LAYER 3 CLAY THICKNESS lOSITY kl:!ASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT t MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT LAYER 4 THICKNESS POROSITY RANDOM FILL MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE 1'ERM CONCENTRATION WEIGHT t MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 30.5 cm

.28 1.72 g cm" -3 1.5

  • pCi/g"-1

.22 4.2570-06 14.1 pCi cm"-3 s"-1

\\'

.866

.0091 43

.315 1.85

,_. 9

.19 cm"2 s"-1 cm g cm"'-3 pCi/g""-1 4.452D-06 pCi cm"-3 9.800000000000001

.576 8.2000000000000010-03 s""-1 t

cm"2 s"-1 DATA SENT TO THE FILE 'RNDATA' ON DEFAULT DRIVE N

FOl CNl

!COST CRITJ ACC 4

O.OOOD+OO O.OOOD+OO 0

2.000D+Ol l.OOOD-03 LAYER DX

  • D p

Q XMS RHO 1

S.0000+02 1.420D-02 4.400D-Ol 1.290D-03 1.977D-Ol 1.450 2

9.150D+Ol 8.200D-03 3.lSOD-01 4.452D-06 5.756D-Ol 1.850 3

3.050D+Ol 9.lOOD-03 2.800D-Ol 4.257D-06 8.661D-01 1.720 4

4.300D+Ol 8.200D-03 3.lSOD-01 4.452D-06 S.756D-Ol 1.850

BARE SOURCE FLUX FROM LAYER 1:

4.667D+02 pCi m"-2 s"-1 RESULTS OF THE RADON DIFFUSION CALCULATIONS LAYER 1

2 3

4 THICKNESS

'cm)

S.000D+02 9.15v0+01 3.0500+01 4.3000+01 EXIT FLUX EYIT CONC.

(pCi m"-2 s"-1) (pCi l "-1) l.237D+02 4.Sl4D+OS 2.6790+01 7.6220+04 2.123D+Ol 1.9440+04 1.756D+Ol 0.0000+00

~*.

TIJANE:!$1&m~::.=,

1

..EE~ENli.:.-.JWhQ1UitestM~csai1__-:------ ~:!e NloS6 ~~ 1 ~~

By IAM.

ate JRadwlJ021Jol.!Ca~lcilluJ1lal.l!tiowa1-... _______ _

Chkd By_ Date __ _

Appendix Bl

...!:laflrtnl? 7

.. -rMl-\\t0ft5 ~

~o~ ft\\.L ~oPt.e...ll~

Table 3.4-1 Physical Properties of Tailings and Proposed Cover Materials HaXillUII Opt111J81 Atterberg L111ts Specific Haterial Type

.L1.

fl Gravity s Passing No. 200 Ory Density Moisture Sieve (pcf)

Content Tailings 28 o

2.85 46 104.0 18.1 Random Fill 22 7

2.67 48 120.2 11.8 Clay 29 14 2.69 56 121.3 12.1 Clay 36 19 2.75 68 108.7 18.5 Note:

Physical Soil Data from Chen and Associates (1987).

H A

E Rogers & Associat.es Engineering Corporation Hr. C.O.S aly Umetco Hir... rals Corporation P.O. Box 10,J Grand June~: n, CO 81502

Dear Hr. Sealy:

Post Office Box 330 Salt Lake City, Utah a.no (801) 263-1600 Harch 4. 1988 C8700/22 We have complet~d the tests ordered on the four samples shipped to JS.

The re!:ults are as follows:

3 Radium Eaaanation Diffusion (g/ca)

Sam;,le pCf/9! Fraction Coe"fffc.

Densitl Moisture Saturation Ta111ngs 981+/-4 0.1~.0l 2.0E-02 1.45 13.2 0.39 8.4£-03 1.44 19.1 0.56 Composite {2,3,&S) l.6E-02 1.85 6.5 0.40 4.5£-04 1.84 12.S 0.75 Sfte 11 1.6£-02 1.85 8.1 0.48 1.4£-03 1.84 12.6 0.76 Site 14 l.lE-02 1.65 15.4 0.63 4.2£-04 1.65 19.3 0.80 The samples will be shipped back to you in the next few weeks. If you have any questions regarding the results on the samples please feel free to call.

RYB/b Sincerely, (4- 'f.6-.,_

Renee Y. Bowser Lab Supervisor SIS Eu1 4SOO South* Su Laite City. Utah 14107

~-.

(

}

R A

E Rogers & Associates Engineering Corporation Hr. C.O. Sealy UHETCO Hfnerals Corporation P.O. Box 1029 Grand Junction, CO 81502

Dear Mr. Sealy:

Post Office Box 330 Salt Lake City. Utah 8411 O (801) 263-1600 Hav 9, 1988 HAY 1 2 \\988 C8700/22 The tests for radha content and radon emanation coefficient in the following Scdllples have been completed and the results are as follows:

Sample Randa. (2,3 & 5)

Site 1 Site 4 Radium (pCi/9) 1.9 + 0.1 2.2 + 0.1 2.0 + 0.1 Radon Emanation Coefficient 0.19 + 0.04 0.20. + 0.03 0.11 + 0.04 If you have any questions regarding these results please feel free to call Dr. Kirk Nielson or me.

RYB:ms Sincerely a

~

'fli.*

Renee Y. Bowser lab Supervisor SIS £ass 4SOO South

  • S~ll Luc Ci1y. Utah 14107

~

z

~

z 0

(.)

w a:

I-

~

0

E 24 I

- '*' * *'. i *' *,

I::<::

I t

  • I I

I I

t I

I

              • I
  • *** I ******.
  • *. * * * * *
  • j *********

I

  • ****** I *****.** I I *** I
          • I ********* I ********* I I
                • I.**.

I I ********* I **** ' **** I I

                • I ********* I ********* I *.*.*.

22 I\\-.... -.......... --..... -... -..... _

.. __, ___.. _..... -..... -.. ***-*--"-**-.. ----... _______ *--*-.. *-----****----~--.......... -*-.. *-**--*-.... -*-.. *-* *..... _.. _

.. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : *: : : : : : : : : : : : : : : I : : : : : : :.

...................... r.................................... I.......

1........................................................... *I*.....

0 0

1 t

o o

I o

1 t

t t

t t

t t

I I

I I

o I

I I

t o

I I

I I

I I

t I

t I

I I

I I

I I

I t

I I

l

        • I
    • I I

I

    • I I

I I

        • I J ** I
    • II *** I I
                • I ********* I ** I
            • I

... I I

I

              • I ******** I I

I o

O O

I I

o t

I I

I I

I I

t O

I O

I I

t I

I I

I I

O I

O I

O I

I I

I I

-~*. ****i*..... ***i**.... ***i*........

20,._,,_....... * --*--*..... -*-*-**----*---.. -* *------* -------

I o

I o

a o

o O

O I

I o

o O

O I

I I

I t

I t

I O

I t

I I

1

              • I ******** I i *********

I I

            • I ********* I ******** '

o o

I I

I I

I-,,..,,,.

I O

o O

I I

O I

I I

I I

I I

O I

I

  • CL'A-V * ~ATE0 1A.*.,. * * * * * * *
  • 1 * * * * * * * * *

~

t"I I.. * *

.. SITE '-"-'A *.... *. * * * * * * * * * * * * * * * * * * * *

  • .,,-H. * * * * * * * *
  • 18
  • I -----.........,...... -... - ***,----*-**.... -. ***--**********-*--*****

I ~ i.,

          • I I ********. I ****** I I **

I I

              • I I

I ******** I

              • I ********. I.******** I ********* I ********* I **** I
    • I I **** I
      • I I ***

I I

              • I ***** I
      • I I

I ********* I ** I I

I

      • I ****** '

I i ****** I I

I I *. I

      • I
    • I ****** I I

f

' ** I

          • I I

I

        • I
    • I.******* I I

' ******* I *.**.

            • I I.** I
          • I I
              • I ********* I **** t **** I ******** I I ******* I I ****.* I 16

,._........................... -.......,.... _____.. ____.. ___.. _r

---r--3-------r----*.. r*-.. *--*.. --.--....,

o o

I t

o o

I I

o I

I I

I o

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I O

t t

t I

I I

O I

I O

I O

O f

I I

I O

o 0

f 0

o o

o O

o o

o I

I o

I o

I I

o I

I I

I I

t I

I I

O I

I I

I I

I I

I I

O I

I I

I O

I I

I I

I I

I t

t 0

o I

o o

0 0

O 0

t I

O o

O I

o o

O 1

o o

o I

I o

I O

I I

I O

I I

I I

I I

I O

I I

I I

I I

I I

I f

I I

I I

I I

O O

I I

I I

I o

I I

I I

o t

o I

I I

14 0 2

4 6

: : : : : : : : I : : : : : : : : : I : : : : : : : : : I : : : : : :

.*J:

i I

I I

I I

O I

I I

I O

I O

O I

I O

I I

I I

I I

I I

I O

o o

O I

0 o

I t

I I

I I

I I

I I

O I

I I

I o

I I

I I

O I

I I

I I

O O

O O

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

O.*

I I

I I

I o

I I

O I

I O

t I

I I

I I

I I

I I

t I

I O

I I

I I

I t

I I

o o

I I

I t

o o

o 8

10 12 14 16 TENJ10N, BAR FIGURE 4.4-2

SUMMARY

OF CAPILLARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT I

Cl) c.n I

rj DAT A FROM CHEN & ASSOCIA res;.

ri

18 16 **********-***********-***--**.. --..,....... --.---**---*--******.. *----

a.e.

1-z w

1-z 0

()

14

    • ----**-.__...,----*--*--*-*t-----... *--1*-
  • I _......... _. __.. ___ *-*.. -*--*-*..... -**-*-***-***-----**

w a:

1-(/) -0

E 12 10.... w...,-.uM, ___.,,

8 0

2 4

DATA FROM CHEN & ASSOCIATES

  • -+

1--**-~***--***-1.. **--**--*-*-*--***

6 Y: :MA~R

~,

  • t*

I I

t I

I I

I I

I I

0 t

I t

o e

o

~ --*1 * -----~---r *... ---* 1. - - - - - - - -I -. -.

I t I

  • i: ~- ~
  • RANP:OM FJt.t.:

S:ITSS :+.2; :3,: & 15:

8 10 12 14 1*

TENSION, BAR FIGURE 4.4-1 IV~

16

SUMMARY

OF CAPILLARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT I

ex

,&1 I

m11~1rJAr:!!

1

...EE~ENZ'i.:.-]!WlllblU!ite~MMgesatil._ ______ ~ :~*Z:6r~1~;;;

By IAM.. DaRa lllad.!do12IJ0L!Ca~lcuat11l1ll!tio'2IoL-_______ _

Chkd By_ tc__

...1:

Appendix 82

c. \\*C* *11.e\\r..-..i.ck 11/11/MI

-ADYAHCf!D TtRRI\\, TfSTlffD,nc 833 Parfel Street LakewOOd, Colorado 8021 5 (303) 232*8308

ATTERBERG LIMITS TEST ASTH D 4318 CLIENT BORING NO.

DEPTH Titan Env.

SAMPLE NO.

SOIL DESCR.

TEST TYPE Plaatic Limit Determination Wt Diab G Wet Soil Wt Diab G Dry Soil Wt of Hoiature Wt of Diah Wt of Dry Soil Moisture Content UT-1 ATTERBERG 1

3.34 2.96 0.38 1.05 l.91 19.90 2

4.06 3.57 0.49 1.11 2.46 19.92 Liquid Limit Device Number 0258 Determi.nation Number of Blows Wt Diab G Wet Soil wt Di.ab G Dry Soil Wt of Moisture Wt of Diab Wt of Dry Soil Moisture Content Liqui.d Limit Plaatic Limit Plaaticity Index 103.1 19.9 83.3 Atterberg Classification CH 1

2 39 12.18 6.64 5.54 1.10 5.54 100.00 27 10.42 5.67 4.75 1.06 4.61 103.04 l

3.42 3.03 0.39 1.06 1.97 19.80 3

18 10.92 5.87 5.05 1.06 4.81 104.99 NAA Date:

7-26-96 Date:7, 2~-<io JOB NO.

DATE SAMPLED DATE TESTED 4

14 12.33 6.53 s.eo 1.10 5.43 106.81 2234-04 7-25-96 WEB, RV 5

9 10.06 5.34 4.72 1.08 4.26 110.80 Data entry bnt-A Checked by:~

FileName:

TIGOUTl ADVANCED TERRA TESTING, INC.

.-----------------2'ih1r 112 111 110 10!,l 108 c 107 I 8 108 i 1C6

~ 1Ck

)C 103 102 101 100 100 80 eo I I..

20 0

I V

/

V

/

a.....

V 0

Atterberg Limits, Flow Curve

,

  • UT-1 II

',i',....

~

' t'-...*

I'-..

""' 'II Number of Blows 25 PLASTICITY CHART

  • , UT-1 V

V

/

V V

/

/

V

/

OH V

/

V V

/~

V CLorCl.

/

V V

/

/ - "'-

~

so 100 150 Liquid Limit I A Class,ficalion I

CLIENT:

BORING NO.

PTH

~PLENO.

Titan Env.

UT-1 Moisture decerminatiou WI of Moisture added (ml}

WI. of soil & dish (g) 0.-y wt. sol & dish (g)

Net loss of moisture (g)

WI. of dish (g)

Net wt. of d,y soil (g)

Moisture Content (%)

Corrected Moisture Content Density decermiaatioo WI of soil & mold (lb)

WI. of mold (lb)

Net wt. of wet soil (lb)

  • * '1 wt of dry soU (lb)

J Density, (pcf)

Corrected Dry Density (pcf)

Volume Fador C

.PACTION TEST ASTMD 1557 A 1

100.00 384.26 350.S<i 33.66 8.01 342.59 9.83 14.20 10.36 3.84 3.50 104.89 30 SOILDESCR.

DA TE SAMPLED DATE TESTED 2

3 150.00 250.00 393.92 291.42 355.61 251.40 38.31 40.02 8.34 8.31 347.27 243.09 11.03 16.46 14.49 14.68 10.36 10.36 4.13 4.32 3.72 3.71 111.59 111.28 30 30 n;aia entered by:

RV Date:

7-26-96 a checked by:~

Date:-1..::l.<o* %

JOB NO.

2234-04 7-25-96 RV 4

5 350.00 450.00 244.20 281.17 202.69 225.04 41.51 56.13 8.29 8.-13 19-1.40 216.61 21.35 25.91 14.59 14."6 10.36 10.36 4.23

-1.10 3.49 3.26 104.57 97.69 30 30 f-lleName:

TIPRUT-1 ADVANCED TERRA TESTING, INC

135 130 125 120 cs

,9: 115 2:-

  • c:;;

C CIJ a 110

~

a 105 100 95 90 0

Proctor Compaction Test

,,UT-1 10 20 30 Moisture Content (%)

- Best Fit Curve oAdual Data

- Zero pjr VoidsCurve C SG = 2. 70 OPTIMUM MOISTURE CONTENT= 13.9 MAXIMUM ORY or* SOY: 113.5 ASTM O 1557 A. Rock correc.1ion applied? N I

ADVANCED TERRA TESTING, INC.

PERMEABILITY DETERMINATION FALLING HEAD FIXED WALL CLIENT Titan Environmental BORING NO.

JOB NO.

2234-04 SAMPLED DEPTH SAMPLE NO.

TEST STARTED 7-28-96 CAL UT-1 TEST FINISHED SOIL DESCR.

SURCHARGE Remolded 951 Mod Pt.@ OMC SETUP NO.

200 MOISTURE/DENSITY DATA Wt. Soil fr IU.ng(a)

(9)

Wt. Ring(a)

(g)

Wt. Soil (g)

Wet Denaity PCF Wt. Wet Soil G Pan (g)

Wt. Dry Soil G Pan (g)

Wt. Loat Moiature (g)

Wt. of Pan Only (g)

Wt. of Dry Soil (g)

Koiature Content '

Dry Denaity PCF Max. Dry Density PCF Percent Compaction ELAPSED 8URBTTE TIME READDIG (MD) hl (CC) 0.2 2599 10.0 1427 14.2 1440 16.8 1440 18.6 1440 20.2 1440 21.6 1469 23.0 1440 Data Entered By:

Date Checked By:

BEFORE AFTER TEST TEST 386.9 404.5 93.0 93.0 293.9 311.4 122.3 120.5 302.4 319.9 266.2 266.2 36.2 53.8 e.5 8.5 257.7 257.7 14.1 20.9 l 'J7. 2 99.7 113.5 113.5 94.4 87.8 Bt1RET'rl:

REAl>I1'G h2 (CC) 10.8 14.2 16.8 18.6 20.2 21.6 23.0 24.4 Date:

Date:

8-8-96 H-~

PEROOLATIOR RATE FT/YEAR CH/SBC 0.14 l.4E-07' 0.09 8.4E-08.

0.07 6.SE-08 o.os 4.6E-08 0.04 4.1£-08 0.04 3.7£-08 0.04 3.6£-0B 0.04 3.7£-08 8-7-96 CAL 1

Filename:TIFROTl ADVANCED TERRA TESTING, INC.

Rogers & Associates Engineering Corporatio11 REPORT OF R. \\ DON DIFFUSION COEl-~FICIENT MEASURF.Mi'~NTS (TIME-DEPENl>ENT DIFFUSION TEST METHOD RAE-SQAP-3.6)

Radon Dlftwdoa Molature Density Coelllden, Jem

<Dr.FWt.lJ&)

(.teml)

(c:ml/*>

trr-1 14.61',

1.72 9.1£.03 Rerun Uatc:. __ '1/YK, C(XIUilCI: C9{,(l(W Dy: --~

Dau: Raxil'td:.

"96 Specific Saturation Gravity

{MdP)

(trfcmJ) -

0.89.. -

2.39 RAE SEP-03-1996 14=16 Poet OUlc:e Boa 330 Balt Lake City* Utah 84110 (IOU za.1eoo 8012621527 P.03

Rogers & Associates Engineering Corporation REPORT OF RADIUM CONTENT AND EMANATION COEFFICIENT MEASUREMENTS (LAB PROCEDURE RAE-SQAP-3.1)

Report Dale:.....9/Y!.. tl.)

01111r~.*. _(.'9000fJ Hy:._._m.:R.

~Received: __ 8126 Simple ldallflclldon: DMD fmirqungctd Moisture

. ID mnw1..,,

UT-I 14.ft.

SEP-03-1996 14: 16 R.adaa............

Codlld111t 0.22:tOJM Post Off"e<< Boa 330 s.cc Luc a,,. lhall 84118 (801) 263-1600 8012621527 Radlum-226

~

---..Ill IM.:at*I I.S 10.l Coma~

RAE P.04

I I

I I

I I

I I

I I

I I

I I

I DJANE:~:~:tl.EEEFNt'.L-:JWhWit~c.MM~esaLA_ _______ ~:~c ~~~ I~

By IAM.. 0 8

..ERa~dmoonJCaCAk;lc:11.1ut111at10.ionn__ ______

Chkd By_ ate __

Appendix C

...from the Professors who know it best...

PRINCIPLES & PRACTICE OF CIVIL ENGINEERING

-2nd Edition-The most efficient ancl authoritative review book for the PE License Exam Editor: MERLE C. Po~ PhD, PE Professor, Michigan State University Authon;: Mackenzie L Davis, PhD, PE Richard W. Furlong, PhD, PE David A. Hamilton, MS, PE Ronald Harichandran, PhD, PE Thomas L Mal~ PhD, PE George E. Mase, PhD Merle C. Potter, PhD, PE David C. Wiggert, PhD,PE Thomas F. Wolff, PhD, PE Water Quality Structures Hydrology Structures Transportation Mechanics Fluid Mechanics Hydraulics Soils The authoa are professon at Michigan State University, with the ex~ption of R. W. Furlong, who teaches at the University of Texas at Austin and D. A. Hamilton who is employed by the Michigan Department of Natural Resources.

published by:

GREAT LAKES PRESS P.O. Box 483 Okemos, Ml 48805-0483

~,,

~2

I I

I I

I I

I I

14.5 Other Useful Equations for Weight-Volume Problems It is strongly recommended that weight-volwne problems be solved using phase diagrams rather than only formulas, as completing a phase diagram clearly indicates whether sufficient information is blown to complete the problem, whether information is insufficient and assumptions must be made, or whether too much information is present and the problem is overconstrained. For example, it may not be immediately apparent from the information given whether a soil is saturated W\\til all quantities are calcu-lated.. Nevertheless, following are given additional useful equations that may be used to solve certain classes of weight-volume problems.

A very useful equation relating four different quantities is Se=toG, (14.5.1)

For satunted soils (S = 100%) there results t = IDG, (14.5.2.)

The relationships between the void ratio and porosity are t=-"-

1-n n=..L..

l+e (14.5.3)

/l,. ~,-oc;.;~

l 7. \\Jo{".i.. 4 \\l_!)d.t (14.5.4)

The total unit weight can be obtained as

= (G1 +Se)r. = (l+iD)r*

r l+e w/S+l/G, The-dry unit weight can be obtained as Vi\\\\#.~ 3b ~'1\\S (14.5.5) t,~ ~

&Jt,_ a-.. ~

6s *. ~,;,,"t- ~"His.6) y M ~ Q.t.oi ',1' '3 Of W<-v


EX.AtdPLEl~s---~---~~~~-----~~~~~~~~~~~~

Rework example 14.6 using equ.ations introduced in this section.

Solution.

Se=toG

  • S = wG,lt = (.20)(2.65)/(0.800) = 0.6625 or 66.3%

t 0.800 n = 1 + t = 1 + 0.800 ::: 0.444 r= (1+u,)r. =

(l.20)(62.4)

=1I0.2 lb/ft3 w/S + l/G1 0.2/0.6625+ 1/2.65 r = G,r * = {2.65)(62.4) = 91.9 lb/ftl l+e l+0.800

APPENDIXC Radon Flux Measurments eTITANEnvironmental

II I

I I

I I

(aJ Ula mean radoo flux for **ch "Sfion vttlwa eaab ceU 1* ** followa, I

ct.11 2

  • Cower Al'M 7, 7 P,:t/,.J ** (!¥Nd OD.225,112 a1 UUJ
  • ... cb A.nae 3J,J,.c11rJ-* (bue4 oo u, 7'1 rJ area)

- ttendtns Liquid Ana*

  • o pCJ./r/-* Cbuect CID 2, t12,.J anaJ dell J - Cover Ana
7. 5 1/Ci/rJ-* c-... oa 12,,u,I, aruJ
  • kacb Ana
  • JI. 7 IQ/r/*1 (buld CG '2, '1'1 a1 UU)
  • ltand1ag Liquid An.aa
  • 0 r,Ci/rl-* Qauect Oil 1U,J3S *' aru) e, Raferaac,e __...,1*
  • of tJlitl nporc for at11:e *I.Wry tor 1ndiY1411al *anreamc naulta aDd apectflc Hllple n,ioll 111p1.

Cb) bf tJae data pru*ted eboo,e,.. bave oalwlated Ula total Mall rlldan u follow, 11 J

  • 10.0 pCJ./rJ-.

Cl,ZI 1223.1121 t (31,IJ 1fl 711!

  • CQI J2.tl2>

2,0.,21 11 J

  • 10.t pCi/**-*

17.11 <12,7,2> t 111,71<<f3,lf11

  • CPI IJtl,11$1 211,111 11 SEP-10-1996 11:05 32 P.02

I I

I I

I I

I I

I I

I I

I I

I I

I I

l~Qj 6.0 r RESULTS/CALCOl.\\fI(II$

~

Refere~1ft4 40 en, Put 61, Subpart If, 1'ppencl1JC B, Nttthod 115 - Monitoring to..:

Jll.ldon-J 2 Eni**ion.1, Sub1ection 2.1.7 - ~lC\\llat1on., *t11e..an radon flux tor Mcb r ion of the pU* and for th* total pile 1ball be calculat'9d and reported u foll+vs:

ca>

The indbicmal ndon flux calculaUou ehall be aade ** proY!dtld 1n J.f.penclix A EtA H(l).

Tbe MIA radoll flv.x for Uc:I\\ retion of tM pile eb&U be calculated by euaaing all 1nd1ddual tlu MHIIAMPt* for the ntion and diddinf by the total number of flux *atureaenta for the nglcn.

(bJ The Man radon flu for tM totd urania 11111 ta1liftl* pile ahall be calculated** fo110ll8:

I J. - ila!a *, ** "'*i+)... "t!a 111\\en. J,

  • ISean fla fot t.be tot.al pil* CpC1/D1-a)

Ja

  • NuD flu NHUed 1ft ngion i (pCi/a'*aJ At
  • ArM of re9ioa i Cr>

~ - Tot.al area of tM pile ca'>

\\ 2,1.1 "'9poniDCJ.

the ruulta of lndbidual flux M&aur-.nta, the I

approaiaate locat.iou oa UM pile, tmd tJla MU radon flux for each I

I I

j I

I re,ion an4 u. aNn radon flux for tba total auck (pUeJ 1hall be incl\\&ded 1n ~he ea1H10A t.. t npozt.

~

OODdlt.lon or unu.ual eTeAt tut occurred dud.at tbe N&aONMata that could 11QD1f1cantly affect the reault.a abolald be nported, *

.... r-*-* -..,

..,.-,1...... 11 (a) The IIHft radon flu for.. ch raglan vitb.in *di cell b H follows, Cell 2 Coftr AN*

,.1 y;J./r** Cbued on 225,1112 Ill oru) hach ANH

21. t pei/r** (baaed on U, 7'1 r UN) 8tand1119 Liquid Anu
  • 0 r,CJ./rl-* Cba*ed on 2,HZ r anat I

Cell l t CO'Nr An*

11.1 pa./rl-a (baaed oa 12, 7'2 rt u.. >

U. I pC1/J-e CbaHCI Oft '2, 161 r area) 0 r,CJ./11-* Cbued on 141, JJ5 a' lrMJ I

t leach Ana*

t StandinrJ Liquid Anall *

+*

I I

I I

13

  • - ----~*-*- ---** -**-r SEP-10-1996 11:05 32 85%

P.03

I I

I I

I I

I I

I I

I I

I I

I (bJ Uling the dit1 pre11nted lboYe, we have calcullted tha total.. Aft radon flu.a for each pile Cc.llJ aa follows:

I I

Cell 2

  • 1.5 pCi/al-a

.t§.1J(22S.112J * (21.4AC41,761) * (OJ (2.t82) 2l, '2S cr-11 l

  • 12. 9 r,CJ./~-.

jJ.1.1)(1217,2) + C44.IJJ62,761J + C0}Cl431Jl5J JH,bi SEP-10-1996 11:06

  • --~----

32 85%

P.04

APPENDIXD HELP Model eTITANEnvironmental

TITINEnvironmental By ~.Date~. Subject EFN - White Mesa Page_J_of 31./

ChkdBy4ffi-Date~

_.H._e_lp...,...M_od_e..... l __________ ProjNo 6111-001 Pw:pose:

Method:

Results; To detennine the required soil cover thicknesses to minimize surface water infiltration through the White Mesa tailings impoundments so that precipitation will not fully penetrate the soil cover. The White Mesa Mill site is located in Blanding, Utah. The perfonnance of the tailings cover was evaluated using the Hydrologic Evaluation of Landfill Performance (HELP) Model. The HELP model was developed to facilitate rapid, economical estimation of the amounts of surface runoff, subsurface drainage, and leachate that may be expected to result from the operation of a wide variety of possible cover designs.

Determine the soil properties of the cover materials and climatic properties of Blanding, Utah based on existing database values previously collected, and acceptable default parameters. Input parameters into the computer modeling program "HELP" to determine the percolation through the cover materials. A variety of scenarios adjusting cover thicknesses were run to determine the optimum thicknesses of cover materials to eliminate percolation through the bottom cover layer. The modeled tailings cover consists of a compacted clay layer over the tailings, with a random fill soil layer covering the clay.

The model was developed for Cell 3 at the White Mesa Mill since it is the largest of the three cells to be covered (Cells 2, 3, and 4A). Figure 1 shows the location of the cells. The cover requirements determined for Cell 3 will be applied to the remaining cells as well. This is a conservative approach since the remaining cells arc smaller in size and require less time and distance for pRCipitation runoff.

A two-layer uranium mill tailings cover composed of a 2-foot layer of random fill over a I-foot compacted clay layer will reduce percolation into the tailings material to a negligible quantity (see Appendix A for HELP results). As indicated by the model results, pRCipitation will either runoff the soil cover or be evaporated.

The cover thicknesses recommended above were also determined to be the minimum thickness requirements for White Mesa tailings covers based on results from radon flux calculations (see "Calculation of Radon Flux from the White Mesa Tailings Cover", 9/11/96). As indicated in the Radon Flux calculation, to restrict radon flux to 20 pCi/m2/sec, (Regulatory Guide 3.64), a cover consisting of 2-feet random fill and I-foot compacted clay is required.

c: \\ef11 wtute\\,-&f3. clr lt/U/MI

TITINEnvironmental By IAM.. Date 9/J J/96 Subject _.E... EN~*-Wh.uJl.aa:ite.._.M.......,..es_a...__ _______ Page 2-of ~

Chkd By. Date llhv\\q~

Help Model Proj No 6111-QOJ Parameters:

The HELP model requires input of the following parameters for the cover materials:

- Weather Data:

Evapotranspiration Precipitation Temperature Solar Radiation

- Soil and Design Data:

Landfill area (area of Cell 3)

Percent of area where runoff is possible Moisture content initialization

- Cover Layer Data:

Weather Data Layer type Default soil/material texture nwnber Runoff curve nwnber Evapotranspiration* and solar radiation data was input using the default parameters from Grand Junction, Colorado. Grand Junction is located north east of Blanding Utah in a similar climate and elevation. The elevation at Grand Junction is 4,600 feet and the elevation at Blanding Utah is 5,600 feet Figure I in Appendix 8 shows the locations of Blanding and Grand Jun.... tion in relation to one another.

Precipitation data from 1988 to 1993 (skipping 1989) was obtained from Utah State University (see Appendix C). Daily precipitation values for the five years were input manually into the HELP model. Temperature data was obtained from the Dames & Moore (1978) and is also included in Appendix C. Daily temperature data was not available for manual entry therefore, the computer calculated mean monthly temperatures based on the default location (Grand Junction, Colorado). These values were then edited to match the actual mean monthly te~peraturcs for Blanding, Utah.

C'1\\ef1t.t\\1te\\Mlp.1.clC ft/1'/KI

TITINEnvironmental By IAM.. Date~- Subject EFN - Whjte Mesa Page..1._or s'/

Chkd By.iJ!_ Date~

....,H...,el&,ljlp"""'Ml,Ml,¥od,.,,eu.l __________ Proj No 6111-001 Soil and Design Data The surface area of Cell 3 at the White Mesa Mill, Blanding, Utah was used for the landfill area value. The surface area, as indicated on Figure I, is 78. 7 acres. It was assumed that runoff was possible over 100°/o of this area and that no rain would sit on the tailings cover.

Cover Layer Data Lgyer Th:c/cnw; A two-layer cover over approximately 28 feet of uranium mill tailings was used to run the HELP model. Actual cover thicknesses which would be constructed on site consist of2-feet of random fill over a I-foot compacted clay layer. This cover profile was adjusted for modeling purposes to account for freezing and thawing conditions. As indicated in the "Effects of Freezing on Uranium Mill Tailings Covers Calculation Brief' (6/17/96), 6.8 inches of the top random fill cover layer will be effected by freeze/thaw conditions at Blanding, Utah. This suggests that 6.8 inches of the top layer may not contribute to reductions of infiltration into the tailings piles. To conservatively compensate for effects from freezing and thawing, 6.8 inches were subtracted from the top random fill cover layer. Therefore, modeled layer thicknesses consisted of 17.2 inches of random fill over 12 inches of clay.

..* Lqyer 'f.vpe; The random fill soil layer was classified as a vertical percolation layer. Vertical percolation layers are composed of moderate to high permeability material that drains vertically, primarily as unsaturated flow. The clay layer was classified as a barrier soil liner. 1bis material consists of low permeability soil designed to limit percolation/leakage and drains only vertically as a saturated flow.

Moisture StoeQ£c facamcccrs; Required moisture storage parameters such as; porosity, field capacity, wilting point, initial soil water content, and permeability, are interrelated with the exception of permeability. The porosity must be greater than zero but less than 1. The field capacity must be between zero and 1 but must be smaller than the porosity. The wilting point must be greater than zero but less than the field capacity, and the initial moisture content must be greater than or equal to the wilting point and less than or equal to the porosity (U.S. EPA, 1994 ).

Based on these relations, actual measured porosity and penncability values were input for random fill (Chen and Associates. 1987) and clay (Advanced Terra Testing, 1996, sample UT-1).

See Appendix D for physical property data. In addition, wilting point data for the layers was se*

c,\\eln.,.lle\\bolpa.clc lt/1'/NJ

TITUEnvironmental By I.AM. Date~ Subject EFN - White Mesa Page --1._of -g4 Chkd By_fkL. Date~

..... H..,eUjlp,...M.._.od..

e.._l __________ Proj No 6111-00t equal to the long-tenn moisture content of the materials and the soil water content was adjusted to equal the optimum moisture content. Field capacity values just less than the porosity's were assumed to maintain the interrelationship of the parameters.

RunQQ:Curve Number The runoff curve number was calculated by the HELP model based on a minimum surface slope of 0.2%, slope length of 1,200 feet, soil texture of the top layer, and vegetation. A slope length of 1,200 feet was assumed to be the maximum distance which precipitation would travel over the soil cover. The top layer on the tailings cover will be minimum 3" of rock riprap (sandstone) therefore, no vegetation will exist. Tilis top layer, however, was not included in the model to detennine percolation quantities.

References:

Advanced Terra Testing, 1996, Physical soil data, White Mesa Project, Blanding Utah, July 25, 1996.

Chen and Associates, 1987. Physical soil data, White Mesa Project, Blanding, Utah.

Dames & Moore, 1978. "Environmental Report, White Mesa Uranium Project, San Juan County Utah", January 20, 1978, revised May 15, 1978.

Principles & Practice of Civil Engineering, 2nd Edition, 1996.

U.S. fa1vironmentaJ Protection Agency (EPA), 1994. "The Hydrologic Evaluation of Landfill Performance (HELP) Model", September, 1994.

Utah Climate Center, Utah State University, Daily Precipitation Values, Station #42073807, Blanding, Utah, January 1988 through December 1993.

CELL 1-'I CELL 2

.* %': '*(*'\\.J

'Hio'.,

1

, oOO

~

WHITE MESA PAOJt:CT SITE 0 RAINAGE FI <ju R.E: /

.H

(

TITDEnvironmental By I.AM. Date~-- Subject EFN - Whjte Mesa PageLor.3i Chkd By~ Datte~

_.H....,e...

lp~M...,..od.......,e!..__ _________ Proj No 6111-001 Appendix A

                                              • ~******************************************************

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.01 (14 OCTOBER 1994)

DEVELOPED BY ENVIRONMENTAL 1.ABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

                                                                                          • ~********************************

PRECIPITATION DATA FILE:

TEMPBRA'ruRE DATA FILE:

SOLAR RADIATION DATA FILE:

EVAPOTRANSPIRATION DATA:

SOIL AND DESIGN DATA FILE:

OUTPUT DATA FILE:

C:\\HELP3\\PRECIP.D4 C:\\HELP3\\TEMP2.D7 C:\\HELP3\\SOLAR.D13 C:\\HELP3\\EVAP.D11 C:\\HELP3\\efn-fin2.Dl0 C:\\HELP3\\efn-fin2.0UT TIME:

14: 9 DATE:

9/11/1996 TITLE:

EFN - White Mesa NOTE:

INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER l

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 88 THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER EFFECTIVE SAT. HYr

=

17.20 INCHES

=

0.3150 VOL/VOL

=

0.3140 VOL/VOL

=

0.0980 VOL/VOL CONTENT

=

0.1180 VOL/VOL COND.

=

0.886999999000E-06 LAYER 2

CM/SEC

THICKNESS POROSITY FIELD CAPACITY WILTING POINT TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 89

=

12.00 INCHES

=

0.2800 VOL/VOL

=

0.2799 VOL/VOL

=

0.1410 VOL/VOL

=

0.2800 VOL/VOL INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYO. COND.

=

0.3699999950008-07 CM/~EC GENERAL DESIGN AND EVAPORATIVE ZONE DATA NOTE :

SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #27 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF O.l AND A SLOPE LENGTH OF 1200. FEET.

SCS RUNOFF CURVE NUMBER

=

96.40 FRACTION OF AREA ALLOWING RUNOFF 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE

=

78.700 ACRES EVAPORATIVE ZONE DEPTH 17.2 INCHES INITIAL WATER IN EVAPORATIVE ZONE

=

2.030 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE

=

5.418 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE

=

1.686 INCHES INITIAL SNOW WATER

=

0.000 INCHES INITIAL WATER IN LAYER MATERIALS

=

5.390 INCHES TOTAL INITIAL WATER

=

5.390 INCHES TOTAL SUBSURFACE INFLOW

=

0.00 INCHES/YEAR EVAPCl'RANSPIRATION AND WEATHER DATA NO""E:

EVAPOTRANSPIRATION DATA WAS OBTAINED FROM GRAND JUNCTION COLORAOO MAXIMUM LEAF AREA INDEX

=

0.00 START OF GROWING SEASON (JULIAN DATE)

=

109 END OF GROWING SEASON (JULIAN DATE)

=

'293 AVERAGE ANNUAL WIND SPEED

= 8.10 MPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY

= 60.00 '

AVERAGE 2ND QUARTER RELATIVE HUMIDITY

= 36.00 \\

AVERAGE 3RD QUARTER RELATIVE HUMIDITY

= 36.00 \\

AVERAGE 4TH QUARTER RELAT:!"VE HUMIDITY

= 57.00 \\-

NOTE:

PRECIPITATION DATA FOR BLANDING UTAH WAS ENTERED BY THE USER.