ML20003C500

From kanterella
Jump to navigation Jump to search
Environ Radiation Surveillance Program Summary Rept,Jul- Dec 1980.
ML20003C500
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 02/26/1981
From: Jerrica Johnson, Schleiger T, Swart F
COLORADO STATE UNIV., FORT COLLINS, CO
To:
Shared Package
ML20003C498 List:
References
NUDOCS 8103060291
Download: ML20003C500 (167)


Text

_ _ _ _ -

gADIATlO/V Q .  : -$

/

l

//

_I -

', f N- ,/

$(

/ ~

'x f ,', FORT ST. VRAIN ", 7 f / NUCLEAR ', -

g' -I GENERATING STATION

. 'O tu ! / \ 'M i

h PUBLIC SERVICE COMPANY OF COLORADO

~ ~ '

l , 1

/ 's

/ \~

~ l

_f PROGRAM

SUMMARY

REPORT THIRD AND FOURTH QUARTERS 1980 PURCHASE ORDER 62156 COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO 80521 181 o s o e 03.V S . - - -..

AMsee c j FORT ST. VRAIN NUCLEAR GENERATING STATION Page 1 of 1 O

m ERSP SUMM!RY REPORT COVER SHEET

%7 ENVIRONMENTAL RADIATION SURVEILLANCE PRCGRAM Summary Report for the peried 3h!, j_ l'T8 c> - Deu~ ho, 21, I'lacs Prepared by: 1 b/ N [

Professor, Dake James

^oltracoE. Joh(sef,iversity State Un O

Reviewed b /w f u/' f~ 2 d5 +$!

Hearth Physiss/FJp[ visor Date' a~ p ,

Reviewed by: ju sEo _ (& w 2/2W<Y(

NplearProjectManager - Dite D

Approved by: - 2 7 ' F-[

Operations Manager

\ Date 2 N' ?/

D a

ud y ./ hw .

A m4 2/ h[

N4 clear Project Manager ~ '

Date 3

0

D Acknowledgements S

The following have worked hard and conscientiously on this project and are acknowledged here to receive credit for all phases of its operation. For the past half year these have been:

8 Diane Berry John Combs Sheri Chambers Charly Dominque 8 Stephen Duce Diane Higgins Marion Mcdonald Hildy Morgan

  1. Larry Mundy Carolyn Ponce Marilyn Watkins Mark Wilk 8

3 O

O D

l

!- TABLE OF CONTENTS -

l Page No.

List of Tables J ,

jjj

. List of Figures- yf i

I. INTRODUCTION. 1

)- -II. SURVEILLANCE DATA FOR JULY THROUGH DECEMBER 1980, AND INTERPRETATION OF RESULTS 4

A. External Gamma Exposure. Rates 4 B. Air Sampling Data '7-C. Water,-Sediment, and Precipitation 26 Sampling Data D. Food Chain Data -

66

) E. Aquatic Biota 92 F. Beef Cattle 101' G. Sample Cross Check Data 103

)- H. Conclusion and Summary 109 I. Errata 125 ,

III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM AND SCHEDULE A. Collection and Analysis Schedule 152

8. Sampling Locations 155 J-J

?

ii l

i

. - ~.. . . - ,

O LIST OF TABLES

, Page No.

II.A.1. Gamma Exposure Rates Measured by the TLD Technique. 6 II.B.1. Concentration of Long-Lived Gross Alpha 8 Activity in Airborne Particles

  1. a. Third Quarter, 1980. E
b. Fourth Quarter, 1980. 9 II.B.2. Concentrations of Long-lived Gross Beta 10 Activity in Airborne Particles,
a. Third Quarter, 1980. 10
b. Fourth Quarter, 1980. 11 II.B.3. Tritium Concentrations in Atmospheric Water Vapor. 16
a. Third Quarter, 1980. 16
b. Fourth Quarter, 1980. 17

. II.B.3a. Tritium Concentrations in Air. 18 J

a. Third Quarter, 1980. 18
b. Fourth Quarter, 1980. 19 II.B.3b Tritium Released in Reactor Effluents,1980. 20 II.B.4. Iodine-131 Concentrations in Air (Composite). 24 II.B.5. Gamma-ray bcitting Radionuclide Concentrations 25 in Air (Composite).

3 II.C.1. Gross Beta Activity in Water 28 II.C.la. Gross Beta Activity in Effluent Water, Goosequill 34 (E-38).

II.C.2. Tritium Concentrations in Surface Waters. 36 II.C.3. Strontium-90 Concentrations in Surface Waters. 37 II.C.4. Strontium-89 Concentrations in Surface Waters. 38

, II.C.4a. Tritium, Strontium-89-90 in Effluent Water, Goosequill, 39 J

(E-38).

II.C.5. Gamma-ray Emitting Radionuclide Concentrations in 41 Water.

iii

P 3

l List of Tables (Cont.)

j Page No.

g

^

II.C.5a Gama-ray Emitting Radionuclide Concentrations in 47 Effluent Water, Goosequill (E-38).

tI l# II.C.6 Gross Beta Activity Concentrations in Ecttom 51 l, Sediment.

II.C.7 Strontium-90 Activity Conceni.mtions in Bottom 52 l Sediment.

l l[ -

II.C.8 Strontium-89 Activity Concentrations in Bottom 53 l Sediment.

'O

l II.C.9 Gama-ray Emitting Radionuclide Concentrations 54 in Bottom Sediment.

II.C.10 Gross Beta and Tritium Deposition from Precipitation. 62 h II.C.11 Gammt-ray Emitting Radionuclide Deposition from Precipitation at Location F1.

63 L

II.C.12 Gamma-ray Emitting Radionuclide Deposition from 64 Precipitation at Location F4.

O II.C.13~ Radiostrontium Deposition from Precipitation. 65 II.D.1 Tritium Concentrations in Water Extracted from Milk. 69-II.D.2 Strontium-90 Activity in Milk. 70 II.D.3 Strontium-89 Activity in Milk. 71 II.D.4 Gama-ray Emitting Radionuclide Concentrations in 72 l Composite Milk Samples.

II.D.5 Tritium, Strontium-89, and Strontium-90 Concentrations 76 in Forage.

, II.D.6 Gamma-ray Emitting Radionuclide Concentrations in 79 l- Forage.

l II.D.7 Gross Beta Concentrations. in Forage (pCi/kg) and 84 l0 l Soil (pCi/kg)

. II.D.8 Gross Beta Soil (pCi/m2 ). 85

( II.D.9 Gamma-ray Egitting Radionuclide Concentrations in 86 Soil (nCi/mc ).

O l II.D.10 Tritium, Strontium-89, and Strontium-90 Concentrations 89 '

in Soil.

! iv l

6

D List of Tables (Cont.)

Page No.

II.E.1 Gross Beta and Radiostrontium Concentrations in 93 Aquatic Biota Samples.

II.E.2 Gamma-ray Emitting Radionuclide Concentrations 97 in Aquatic Biota Samples.

II.F.1 Radionuclides in Facility Area Beef Cattle. 102 II.G.1 Sample Cross Check Data Summary. 105 II.G.2 Cross Check Analysis on Split Water Samples. 107 II.G.3 A.I.E.A. Sr-90 Cross Check Results. 108 II.H.1 Data Summary. 113 II.I.1 Errata 125 3 III.A.1 Environmental Radiation Surveillance Program. 154 III.B.1 Facility Area and Effluent Sampling Locations for 155 Environmental Media.

j III.B.2 Adjacent Area and Downstream Sampling Locations 156 for Environmental Media.

III.B.3 Reference Area and Upstream Sampling Locations 157 for Environmental Media.

l D

i m

y l

O O

.)

LIST OF FIGURES Page No.

D II.B.1 Concentration of Long-lived Gross Alpha and 12 i Gross Beta Activity in Airborge Particles for Second Half,1980, (fCi/m ).

l II.B.2 Tritium Concentration in Atmospheric Water 21

!] Vapor for Second Half,1980, (pCi/1).

l III.B.1 On Site Sampling Locations 158 III.B.2 Off site Sampling Locations. 159 w/

l lb i

3 l

O 1

lO l

lO 1

l l

Vi

O O
D I. Introduction to Radiation Surveillance Data for the secor.d half of 1980.

$) During the last six months of 1980 the Fort St. Vrain Nuclear Generating Station produced electrical power as follows:

) Number of Gross

, bbnth Dates with Days Without Elcetrical Energy l (1980) Electric Generation Generation Generated (bfWH)

I l

L July 1-8, 22-31 13 49,390 3

l August 1-4,7-16,20-29 7 66,793 September None 30 0 i

October 8-10,12-22,28-31 13 50,335 3

November 1-27,29-30 1 123,965 i

j December 1-15,17-26,28-31 2 127,569 l

O From the above it can be observed that the reactor operated for a substantial fraction of the period. The power generation was signifi-L, cantly greater than during the first half of 1980 and if measured sJ environmental radioactivity concentrations are due to reactor effluents, these should be correlated with the pattern of reactor operation. An l

analysis of the data generated during all of 1980 as well as for this L)

! a reporting period is given in section II.II. A complete and detailed listing l of radioactivity released by all effluent routes may be found in the semiannual Effluent Release Report to the U.S.N.R.C.

O A significant atmospheric nuclear weapon test was conducted by the Chinese on October 17, 1980. The yield of the test was unannounced but the radioactive debris was clearly evident in many of the environmental l

I O

l samples collected in this-program. The fallout pattern and radionuclide frequency was different than from previous Chinese tests. These observations are discussed in section II.H.

The environmental sampling and analysis program was essentially identical to-that used in the previous reporting period. A few minor changes in sampling locations occurred, and these are noted in Section III.

l Essentially all radioactivity data measured on this project are near background levels and, more importantly, near the minimum detectable activity (MDA) levels for each radionuclide and sample type. It has been well documented that even independent of the above reasons, environmental data exhibit great inherent variability. As a result, the overall variability cf the surveillance data is quite large, and it is necessary to use mean values to make any conclusions about the true absolute radio-activity concentrations in any environmental pathway.

l l

Environmental radiation surveillance data commonly exhibit non-l l normal frequency distributions. More often than not the data can be i

satisfactorily treated using log -normal statistics. However, when the I

number of observations is small, i.e. less than 10, log-normal treatment is tentative.

l When a high percentage of data points are less than MDA or MDC, (the minimum detectable concentrations of activity in that sample type),

calculation of true mean values is impossible. Therefore in this report l we have chosen to not include mean values with each data table. At the l

end of this report in Section II.H. , Conclusions and Summary, we have listed the calculated arithmetic means and confidence intervals for the entire reporting period as well as for the last year. We also list the geometric means and standard deviations for the last year of data reporting. If the data point measured resulted in a negative value, this value was used in calculating the true mean value in Table II.H.1.

~9 _

(Negative values are possible due to the statistical nature of radioactivity counting) . This is the current accepted practice by the U. S. Nuclear

-Regulatory Commission. It should be noted that we have not used any footnote for values less than MDC. Rather we list the measured value as less than the actual MDC value. Because the h0C is dependent upon

) variables such as the background count time and sample size, the value t-L will be different for each sample type and even within sample type.

bbny sets of data were compared in this report. The statistichl

) test used was either a "t"-test or a paired "t"-test. If data sets are noted to be significantly different or not significantly different, the confidence for the statement is at the 95% IcVel (a=0.05).

h

The following is the footnote system used in this report.

a. Sample lost prior to analysis.
b. Sample missing at site.

m

?> c. Instrument malfunction.

l d. Sample lost during analysis.

l e. Insufficient weight or volume for analysis.

) f. Sample unavailable.

l g. Analysis in progress.

l h. Sample collection omitted.

n> N.A. Not applicable.

?

l l

i 0

l O

L) _ II. Surveillance Data for July through December 1980 and Interpretation of Rer 'ts.

3 A. External Gamma-ray Exposure Rates The average gamma-ray exposure rates expressed in mR/ day are given in Table II.A.1. The values were determined by CaF2:Dy 3 (TLD-200) crystals for each of the 37 locations (See Table III.B.1-III.B.3.). Two TLD packages are installed at each site and the mean value is reported for that site. The mean calculated total exposure Q then was divided by the number of days that elapsed between pre-exposure and post-exposure annealing to obtain the average daily exposure rate. The TLD devices are changed monthly at each location.

9 The data are grouped for Facility (F), Adjacent (A) and Reference (R) zones. See Figures III.B.1 and III.B.2 and Tabic III.B.1, III.B.2 and III.B.3 for the exact TLD locations.

l O The TLD data indicate that the mean measured exposure rate in the l facility area was 0.52 mR/ day. The mean standard deviation for all facility sites was 0.04 mR/ day. The mean exposure rate was 0.52 mR/ day Q for the Adjacent area and 0.55 mR/ day for the Reference area (excluding l

l the high value for R26 in November) . There were no significant l

l . differences between the values for the Facility, Adjacent and Reference O. areas. No reason can be proposed for the high value at R26 in November.

l It is assumed to be a methodological error.

The slightly higher values noted during the last quarter of the Q year as compared to the third quarter are probably due to the deposition of short lived fission products from the October Chinese nuclear weapon test.

O The exposure rate measured at all sites is due to a combination of exposure from cosmic rays, from natural gamma-ray emitters in the carth's crust and from surface deposition of fission products from

HuJ world-wide fallout. The variation in measured values is due to true

variation of the above sources plus the variation due to the

, measurement method. The purpose of the TLD ring around the reactor V

is not to measure exposure rate generated from the reactor facility I itself but to document the presence or absence of deposition of

,,, gamma-ray emitters in the reactor effluent pathways.

y lO i

i i

JD

'w/

I I

i l

lo 1

i o

i l

l lO LO l

l

O i

l l

. I O

1 l

1

f .,

Table II. A.1 Gauna Exposure Rates Measured by the TLD Teclinique-(mR/ day).

-Facility Area 1980 Average Daily Camma Exposure Rates Locations July Anou s t- Santombar Detnhor Nnuomhor noenmhor F 1 .44 .46 .47 .60 .53 .47 F 3 .41 .45 .52 .59 .62 .51 D F 4' .43- .50 .45 .61 .53 .48 i

F -7 .35 .52 .48 .58 .56 .48 F 8 .26 . 52. .49 .63 .58 .48 F 9 .48 .55 .49 .67 .56 .48 F 11- :42 .48 .44 .61 .55 .48 F 12 .47 .55 .50 .70 .5E .46 O F 13 F 14

.46 .53 .48 .66 .55 .49

.45 - .50 .48 .58 .51 .46 F 46 .47 .57 .b .75 .54 .62 F 47 .43 .51 .45 .67 .51 .49 F 51 .49 .53 .51 .73 .61 .49 0 443acent trea Locations A 5 .44 .53 .49 .71 .53 .48 A 6 .42~ .45 .47 .65 .49 .43 l A 27 .44 .52 .46 .68 .51 .46 C

A 28 .45 .50 .47 .66 .47 .53 A 29 .48 .50 .49 .67 .49 .45 A 30 .47 .53 .49 .71 .51 .54 A 31 .42 .48 .48 .67 .47 .46 l A 32 .45 .51 .49 .71 .50 .47

! A 33 .46 .50 .46 .68 .45 .48 O A 34 .52 .57 .56 .75 .53 .55 A 35 .44 .47 .53 .76 .53 .49 A 36 .47 52 .49 .68 .47 .42 Reference Area Locations 9

l~ R 15 .44 .45 .46 .55 .48 .47 R 16 .50 .54 .53 .64 .61 .58 R 17 .42 l .42 .44 .56 .49 .48 R 18 .41 .40 .43 .48 .49 .43 R 19 .44 .41 .44 .48 .53 .47 g R 20 .44 .45 .51 .48 .70 .51 l R 21 .45 .43 .47 .49 .65 .52 l R 22 .45 .44 .49 .54 .99 b l R 23 .90 .44 .74 .55 .75 .53 l- R 24 .51 .54 .55 .59 .67 .61 >

R 25 .54 .50 .55 .55 .63 .54 g R 26 .46 .43 .48 .55 2.21 .51 l

b Sample missing from site.

O l

n

II.B. Air Sampling Data

1. Gross alpha and beta activity.

O The concentrations of gross alpha and gross beta activity measured on air particulates for the Facility and Adjacent sampling sites are listed in Tables II.B.1 and II.B.2, Although it is not strictly proper when the O activity is due to a mixture of radionaclides, the concentrations are listed in femtocuries per cubic meter of air. These concentrations are plotted in Fig. II.B.1 for the entire period for sampling sites F1, F4

= cs 3d and A35. F1 and F4 are at opposite ends of the Facility sites and in the predominant wind directions from the reactor. Also precipitation collectors are located at sites F1 and F4. A35 was chosen as a repre-

.' ru sentative control site in a predominant wind direction.

From Figure II.B.1 the contribution of fresh fallout from the October 17 Chinese weapon test is clearly evident in the measured gross

C) beta concentrations. The values for all sites increased during the last week of October and in general continued co increase for at Icast three more weeks. A second pulse of tropospheric fallout was observed at all O stations for the week ending December 13. It should be noted that similar gross beta air concentrations both in activity magnitude and time pattern were observed at a CSU study site near Grants, NM.

<O As is generally the case, very little increase in gross alpha emitter concentrations can be attributed to the Chinese weapon fallout.

There was no statistically significant difference between facility C) and adjacent sites for either gross alpha or gross octa concentrations.

The predominant contributors to the increased gross beta air concentrations were Ru-103, 106 and Zr-Nb-95 (See Section II.B.3).

O L C)

(

Table II. B.1 Concentrations of Long-Lived Gross Alpha Activity in Airborne Particles (fCi/m3 ),

a) Third Quarter, 1980.

Date Facility Areas Adjacent 6 eas Collected 1 2 3 4 5 6 35 7-5-80 7.7 (1.7)* 5.1 (0.8) 3.2 (0.5) 5.7 (0.8) **

4.8 (0.8) 3.2 (0.8) 7-12-80 6.7 (1.4) 2.1 (0.5) 5.8 (0.8) 5.3 (0.8) 2.3 (0.7) 2.6 (0.5) 5.0 (1.0) 7-19-80 9.1 (1.8) 4.1 (0.6) 5.1 (0.8) 5.5 (0.9) **

3.3 (0.6) 3.1 (0.7) 7-26-80 8.9 (2.0) 2.8 (0.5) "*

8.8 (1.1) **

4.2 (0.6) 4.6 (1.0) 8-2-80 9.3 (1.9) 3.5 (0.6) 4.1 (0.6) 8.3 (1.8) **

2.2 (0.5) 2.8 (0.7) 8-9-80 9.6 (1.8) 3.0 (0.6) 4.8 (0.6) 9.4 (1.7) **

3.3 (0.5) **

8-16-80 7.1 (1.4) 3.0 (0.5) 5.5 (0.8) 7.2 (1.3) **

2.9 (0.5) 3.1 (0.7) 8-23-80 5.1 (0.9) 2.8 (0.5) 5.1 (0.6) 6.1 (1.2) **

2.6 (0.5) 3.1 (0.7) 8-30-80 4.8 (0.9) 2.5 (0.5) 4.1 (0.6) 5.9 (1.1) **

2.6 (0.5) 3.5 (0.8) 9-6-80 8.3 (1.7) 2.8 (0.5) 5.8 (0.6) 8.4 (1.5) 3.8 (0.9) 3.7 (0.6) 3.6 (0.8) h 9-13-80 9.4 (1.7) 2.1 (0.3) 3.7 (0.5) 6.4 (1.3) 2.9 (0.7) 3.5 (0.6) 2.4 (0.7) 9-20-80 3.3 (0.7) 1.8 (0.3) 5.5 (0.8) 8.1 (E.0) 1.7 (0,5) 2.9 (0.6) 2.4 (0.6) 9-27-80 3.6 (0.7) 1.8 (0.3) 3.9 (0.3) c 1.8 (0.4) 1.1 (0.3) 2.8 (0.6)

Quarterly Quarterly (50 Samples) -minimum 1.8 (30 Samples) -minimum 1.1

-maximun 9.6 -maximum 5.0

-average 6.3 -average 4.1 All concentrations are expressed in femtocuries per cubic meter of air: IfCi/m3 = 10 -15 uci/ml.

Uncertainties (in parentheses) are for the 95% cor.fidence interval, (1.96 S.D.).

    • Excessive dust loading, analysis uncertain.

c Instrument malfunction. Pump in for repair and recalibration

v v ,

, a  ;

o t Table II. B.1 Concentrations of Long-Lived Gross Alpha Activity in Airborne Particles (fCi/m3 ),

b) Fourth Quarter, 1980 Date Facility Areas Adjacent Areas

~~

Collected 1 l_ 3 4 5 6 35

~

10-4-80 6.0 (1.2)* 4.1 (1.2) 7.1 (1.2) 6.1 (2.0) **

4.0 (0.8) 2.8 (0.6) 10-11-80 **

7.6 (1.4) 9.7 (1.5) 8.8 (1.7) 2.3 (0.7) 3.5 (0.9) **

10-18-80 6.8 (1.1) 7.7 (1.2) 6.5 (1.1) 7.0 (1.3) **

8.0 (1.4) 4.1 (0.8) 10-25-80 6.6 (1.3) 4.9 (0.9, 5.9 (1.0) 7.2 (1.4) 4.8 (0.9) 3.9 (0.8) 3.9 (0.8) 11 ' > 7.5 (1.4) c 4.8 (0.9) 6.0 (1.2) 6.3 (1.1) 6.7 (1.5) 7.8 (1.5) 11-8-80 8.9 (1.7) 5.5 (1.0) 4.4 (0.8) 9.3 (1.5) c **

6.7 (1.6) 11-15-80 9.0 (1.2) 8.3 (1.3) 5.8 (1.0) 9.5 (1.5) ** **

9.0 (1.4) 11-22-80 8.2 (1.4) 5.9 (0.9) 7.3 (1.0) 5.6 (1.0) 5.5 (1.0) 5.9 (1.3) 9.6 (1.5) 11-29-80 5.4 (1.0) 2.7 (0.5) 6.1 (1.0) 2.7 (0.6) 6.3 (1.0) 2.5 (0.7) 7.1 (1.2) 12-6-80 3.1 (0.6) 3.2 (0.5) 8.2 (1.0) 2.4 (0,5) 7.8 (1.2) c 7.2 (1.3) h 12-13-80 **

7.3 (1.3) 5.8 (1.1) 5.1 (0.8) 8.5 (1.5) 5.8 (0.9) 9.5 (1.5) 12-19-80 5.3 (1.2) 5.6 (1.2) 7.4 (1.3) 5.7 (1.3) 7.2 (1.5) 8.0 (1.5) 9.1 (1.8) 12-27-80 4.3 (0.9) 5.6 (1.2) 4.4 (1.0) 1.8 (0.4) 3.4 (0.7) 3.2 (0.8) 6.8 (1.2)

I Quarterly -minimum 1.8 Quarterly -minimum 2.3 ,

(49 Samples) -maximum 9.7 (31 Samples) -maximum 9.6

-averaae 6.1 -average 6.0 All concentrations are expressed in femtocuries per cubic meter of air: 1 fCi/m3 = 10-15 pCi/ml. t

    • Excessive dust loading, analysis uncertain
  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

c Instrument malfunction Pump in for repair and recalibration

Table II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles (fCi/m3 ),

a) Third Quarter, 1980.

Date Fac111ty Areas Adjacent Areas Collected 1 2 3 4 5 6 35 7-7-80 26 (2)* 14 (1) 14 (1) 18 (1) 37 (3) 9 (1) 11 (,

7-12-80 15 (2) 14 (1) 12 (1) 21 (2) 6 (1) 9 (1) 14 (1) 7-19-80 29 (2) 12 (1) 12 (1) 21 (2) 17 (2) 9 (1) 11 (1) 7-26-80 37 (3) 12 (1) 23 (2) 21 (2) 20 (2) 9 (1) 15 (1) 8-2-80 37 (3) 16 (1) 16 (1) 32 (3) 32 (2) 9 (1) 12 (1) 8-9-80 39 (3) 14 (1) 16 (1) 25 (2) 32 (3) 7 (1) 13 (1) 8-16-80 17 (2) 12 (1) 12 (1) 18 (2) 19 (2) 4 (1) 6 (1) 8-23-80 16 (1) 3 (1) 14 (1) 18 (1) 15 (1) 7 (1) 11 (1) 8-30-80 12 (1) 12 (1) 14 (1) 17 (1) 19 (2) 7 (1) 10 (1) ,

9-6-80 35 (2) 12 (1) 18 (1) 26 (2) 13 (1) 9 (1) 14 (1) y 9-13-80 28 (2) 12 (1) 14 (1) 22 (2) 12 (1) 4 (1) 10 (1) 9-20-80 11 (1) 9 (1) 16 (1) 37 (3) 6 (1), 7 (1) 6 (1) 9-27-80 15 (1) 12 (1) 21 (2) c 8 (1) 7 (1) 8 (1)

Quarterly Quarterly (51 Samples) -minimum ., (39 Samples) -minimum 6

-maximum 39 -maximum 37

-average 19 -average 12 All concentrations are expressed in femtocuries per cubic meter of air: IfCi/m3 = 10 -15 Ci/ml.

  • Uncertainties (in parentheses) are for the 95% confidence interval (0.96 S.D.).

c Instrument smal function. Pump in for repair and recalibration.

-t i

. Table II.B.2 '

Concentrations of 1.ong-lived Gross Beta Activity in Airborne Particles (fC1/m3 ).

b) Fourth Quarter, 1980

! Date Facility Areas Adjacent Areas

  • I Collected 1 2 3 4 5 6 35 i 10-4-80 16 (1)* 19 (1) 16 (1) 32 (2) 27 (2) 6 .'(1) 9 (1) 10-11-80 49 (4) 23 (2) 23 (2) 29 (2) 5 (1) 10 (1) 31 (2) i 10-18-80 18 (1) 16 (1) 15 (1) 18 (1) 23 s(2) 14 (1) 10 (1) 10-25-80 23 (2) 16 (1) 18 (1) 28 (2) 18 (1) 12 (1) 12 (1) i

)

11-1-80 62 (2) c 40 (2) 58 (2) 43 (2) 36 (2) 69 (3) 11-8-80 97 (3) 60 (2) 51 (1) 66 (2) c 119 (6) 88 (3) .

11-15-80 81 (2) 91 (3) 75 (2) 101 (3) 89 (3) 134 (5) 137 (3) 11-22-80 111 (3) 68 (2) 72 (2) 77 (2) 66 (2) (3) 103 100_(3) 11-29-80 25 (1) 39 (2) 62 (2) 41 (1) 39 (2) 40 (2) 44 (2) ,

12-6-80 103 (2) 92 (2) 103 (3) 67 (2) 71 (2) y c 160 (4) 12-13-80 136 (4) 174 (4) 144 (3) 79 (2) 123 (3) 246 (3) 131 (3) ,

12-19-80 86 (3) 122 (4) 111 (4)- 55 (2) 92 -(3) 69 (2)

, 101 (4) 12-27-80 96 (3) 125 (4) 70 (3) 46 (1) 77 (2) Sr (2) 86 (3)

Quarterly -minimum 15 Q" e.erly -minimum 5 (51 Samples) -maximum 174 (T Samples) -m..fmum 246 4 average 64 -average 68 All concentrations are expressed in femtocuries per cubic meter of air: I fC1/m3 = 10-15 Ci/ml.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

c Instrument malfunction l Pump in for repair and recalibration i e

m 500-Fig,1f.B.I Concentrollon of Long-Lived Gross Alpho

- and Gross Beto Activity in Airborne Particles for 1980 2nd Half (fCl/m3 )

/

10 0 .- CHINESE NUCLEAR e f\

TEST Mh J

- w' A.

V i -

_ e l s\ '.

t

~

l\ l i

'l .'.

r - -i , y 'l a-----4 F-1 y 9

/ k' ,

l 's N\ i 1

n 4 i g Ib],, ,8 fj A- - % F-4

^

Gross Beto

^

^-35 g , \/ , 1.q /,' I i

, ,, ; ------ F-t s , ,

M i

  • - - - - - F- 4 Gross Alpha 10 - i

- 3 r--A. ,-A A-35 h /- (n

^

( ,

,o

/

f p ,t ,y if g i 4' \\

f s -./i g / gs

's

-  % ! s I \

\ ,~. ,[- k'A.,

t u ., ' ,

v, -[

\

s \,

~

\

I - . . . . . . . . , , , , , , , ,

10 20 30 9 19 29 0 18 28 8 18 28 7 17 27 7 17 27

' July Aug $v1 Oct Nov Dec 1980

l L

y 2. Tritium Activity. Tropospheric water vapor sampics are collected continuously by adsorption on Silica Gel at all seven air sampling stations n

9 (four in the Facility area and three in the Adjacent area). The specific l

activity of tritium in water in weekly samples from these stations is listed in Table II.B.3. The air concentration of tritium for the same L

weekly samples is' listed in Table II.B.3a.

i i The specific' activity data for sites-F1, F4 and A35 are plotted in

( Figure II.B.2.

From the tables and the figure the influence of plant effluent tritium l

l-and fallout tritium is very evident. In the period before the influx of l

Chinese weapon fallout tritium specific activity values above MDC are q

F observed essentially only at sites F1 and F2. These sites are the closest i

to the principal water effluent pathway from the reactor. (See Figure III.B.1). The values at F1 and F2 have always been greater than at the other q'-

sites during reactor release periods. These elevated values are assumed l

l to be due to evaporation from contaminated water in the discharra ditch or the pond impoundment. The reactor effluent release of tritium q is given in Table II.B.3b by release mode. A relation between the release p

l data and the values at F1 and F2 does exist but the correlation is not l

high due to variations in temperature, humidity, ditch flow rate, etc.

O It is very important to note that elevated concentrations of tritium in the local terrestrial or aquatic food chains have not occurred as a l result of reactor effluents. This is due to the great dilution with O water from the hydrosphere. Increases due to the fallout from the October 17 test were however noted.

From Table II.B.3 it can be observed that the mean value of tritium P specific activity in water vapor was higher for the Facility An, sampling O

~14-O sites than for the Adjacent. Although this difference is not statistically significant the same trend was noted in the last two reporting periods.

"m Due to the evaporation. phenomenon discussen above this slight increase is not unexpected.

The influence of fallout tritium is observed from Table II.B.3. The values observed for all sites including F1 and F2 began to increase the last week in October.

The increase correlates in time with the gross beta concentrations O in air. The second pulse of fallout arriving during the week ending December 13 was also evident. The fallout tritium concentrations in water vapor are much more sporadic than the accompanying gross beta concentrations however. This must be due to local micrometeorological differences in atmospheric moisture from rivers, ponds and soil.

At location F-4 the hygrothermograph was operational for most

~O of the last half of 1980. Using the temperature and relative humidity data from the hygrothermograph it is possible to convert specific activity of tritiated water collected on Silica Gel (pCi/ liter) to activity per unit p'

volume of air (pCi/m#) . This is critical if calculation of immersion dose from tritiated water vapor were ever necessary.

Two equations are used in the conversion of pCi/ liter of water to pCi/m of air. The first equation is used to determine the vapor pressure of water (1):

log 10P = A - B (C+t) , where: P = vapor pressure (mm lig) l

.g t = temperature (C) 1 A = 9.10765 B = 1750.286 l C = 235.0 The temperature used is the integrated weekly value taken from the n

hygrothermograph. The conversion is completed in the second equation which is the " Ideal Gas Equation:"

O

7 PV = nRT, where: P = vapor pressure (atmospheres)  !

' V = volume (liters)

! n = number of moles of gas R = 0.08206 liter-atmospheres / mole- K T = temperature in K The number of grams of water per cubic meter of air is .then determined.

l The value of "n" obtained is for saturated air. The relative

)

i humidity is therefore integrated over the week and this percentage of the I 3 saturated air value is taken. The final value is reported in pCi/m .

This procedure has been applied t data collected for the last half of D

j 1980 and listed in Table II.B.3a. The weekly integrated relative humidity l

at the F-4 site is relatively constant and the correlation of measured tritium specific activity in atmospheric water vapor and air concentration

) is very high. It is for this reason that a hygrothermograph is located at.

l only cae site. Inspection of Table II.B.3a shows the same site dependence on reactor effluent and fallout discussed above.

) ,

i i e

?

l l

D D

D-

r i

-Table II. B.3 Tritium Concentrations in Atmospheric Water Vapor (pCi/1).

- a) Third Quarter, 1980.

Facility Areas Adjacent Areas

! Date "

4 5 l 6 1 35-Collected 1 l 2 1 3 l 7-5-80 457 , 442 < 277 < 277 < 277 < 277 < 277 (249) (250) 7-12-80 < 247 < 247 e < 247 < 247 < 247 ~ < 247

< 247 < 247 < 247 < 247 < 247 < 247 < 247 7-19-80

< 247 < 247 < 247 < 247 < 247 < 247 -

7-26-80 367 (221) 8-2-80 447 498 280 352 < 247 < 247 335

. (222) (223) (220) (221) (221).

8-9-80 < 238 < 238 < 238 < 238 < 238 < 238' 303 .

(214) 4,

, e' 8-16-80 522 834 < 238 < 238 < 236 < 238 < 238 (216) (219) 8-23-80 2,820 4,610 < 238 < 238 < 238 < 238 <-238 (238) (256) 8-30-80 984 1,570 < 251 < 251 < 251 < 251 1,080 (233) (239) (234) 9-6-80 1,750 643 704 443 < 238 < 238 < 238 (228) (217) (218) -(215) 9-13-80 954 674 < 238 < 238 365 < 238 < 238 (233) (230) (227) 9-20-80 262 1,010 < 238 < 238 < 238 < 238 < 238 U26) (233) 9-27-80 < 275 < 275 < 275 < 275 < 275 < 275 < 275

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.')

e Insuffici6nt. weight or volume for analysis.

- . _ , . ~ . . _ , _ - , - - _

-O .O O O O O O O O .U_ U-

, Table II. B.3 ,

Tritium Concentrations in Atmospheric Water Vapor (pCi/1).

b) Fourth Quarter, 1980 -

Date Facility Areas Adjacent Areas Collected 1 l 2 1 3 l 4 , 5 l 6 1 35 ,

10-4-80 874 1,250 .< 403 < 403 447 < 403 < 403 (406)* (414) (399) 10-11-80 1,430 3,030 544 727 597 < 403 903 (418) (272) (248) (250) (249)' (252) 10-18-80 777 966 < 403 < 403 451 < 403 430 '

(250) (252) (247) (247) 10-25-80 1,180 1,280 < 296 < 296 296 e < 296 (272) (273) 11-1-80 2,410 2,480 760 510 2,740 2,080 571 (265) (285) (268) (266) (288) (281) (266) .

11-8-80 1,530 2,030 1,070 484 375 279 < 260 '

(246) (251) (241) (235) (233) (333) 11-15-80 1,120 1,070 < 260 260 < 260 < 260 8,430 (252) (252) .

(233) (313) 11-2'2-80 2,180 2,170 2,420 115 e 708 693

, (252) (252) (254) (115) (237) (237) 1,170

~

11-29-80 480 452 512 361 786 471 (277) (279) '(272) (272) (271) (275) (272) 12-6-80 985 894 < 302 < 302 720 230 642 (277) (276) (275) (270) (274) 12-13-80 1,070 1,350 492 784 1,890 905 973 -

(278) (281) (272) (266) (277) (258) (268) 12-27-80 1,210 984 526 818 710 737 333 (271) (268) (264) (267) (266) (266) (262) ,

Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e Insufficient weight or volume for analysis.

Table II.B.3a Tritium Concentrations in Air (pCi/m )

a) Third Quarter, 1980.

Date Facility Areas Adjacent Areas Collectel 1 2 3 4 5 6 35 7-5-80 6.65 6.20 < 4.03 < 4.03 < 4.03 < 4.03 < 4.03 7-12-8. < 3.59 < 3.59 e < 3.59 - 3.59 < 3.59 < 3.59 7-19-80 < 4.66 < 4.66 < 4.66 < 4.66 < 4.66 < 4.66 < 4.66 7-26-80 5.87 < 4.66 < 4.66 < 4.66 < 4.66 < 4.66 < 4.66 8-2-80 8.07 8.99 5.06 6.36 < 4.66 < 4.66 6.05 8-9-80 < 4.15 < 4.15 < 4.15 < 4.15 < 4.15 < 4.15 6.69 8-16-80 6.21 9.92 < 4.15 < 4.15 < 4.15 < 4.15 < 4.15 $;

8-23-80 49.0 80.2 < 4.14 < 4.14 < 4.14 < 4.14 < 4.14 8-30-80 15.1 24.1 < 3.85 < 3.85 < 3.85 < 3.85 16.6 9-6-80 < 3.85 < 3.85 < 3.85 < 3.85 < 3.85 < 3.85 < 3.85 9-13-80 11.8 8.34 < 2.95 < 2.95 4.52 < 2.95 < 2.95 9-20-80 3.05 11.7 < 2.77 < 2.77 < 2.77 < 2.77 < 2.77 9-27-80 < 2.73 < 2.73 < 2.73 < 2.73 < 2.73 < 2.73 < 2.73 e Insufficient weight or volume for analysis.

Table II.B.3a Tritium Concentrations in Air (pCi/m )

b) Fourth Quarter, 1980.

Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 35 10-4-80 e c c c c c c 10-11-80 7.72 16.3 2.94 3.92 3.22 < 2.18 4.87 10-18-80 5.66 7.04 < 2.94 < 2.94 3.28 < 2.94 3.18 10-25-80 6.66 7.23 < 1.67 < 1.67 < 1.67 e < 1.67 11-1-80 10.5 10.8 3.31 2.22 11.9 9.05 2.49 11-8-80 6.53 8.66 4.56 2.07 1.60 1.19 < 1.11 11-15-80 6.00 5.73 < 1.39  !.39 < 1.39 < 1.39 45.2 hs 11-22-80 10.1 10.1 11.3 < 1.27 e 3.29 3.22 11-29-80 1.41 3.43 1.32 1.50 1.06 2.31 1.38 12-6-80 3.33 3.02 < 1.02 < 1.02 2.44 < 1.02 2.17 12-13-80 4.39 5.69 2.01 1.50 1.64 1.88 3.46 12-20-80 23.1 19.7 11.4 13.2 27.5 13.2 13.4 12-27-80 17.6 14.3 7.65 11.9 10.3 10.7 4.85 c Instrument malfunction. .

e Insufficient weight or volume for analysis.

)

Table II. B.3b. Tritium Released (C1) in Reactor Effluents

) Second Half of 1980 Mode July Aug Sept Oct Nov Dec Total

! Continous liquid 0.264 7.32 1.66 0.538 0.346 1.17 11.3 effluent, turbine p) building sump and

! reactor sump

Gaseous stack 0.07 0.06 0.08 0.03 0.02 0.07 0.33 g Batch Liquid 2.22 3.50 2.24 Id.5 31.0 16.7 74.2 Total 2.55 10.9 3.98 19.1 31.4 17.9 85.9

.)

LD i

l 3

LD .

O C

l l I

O

) 5 l

/ l 4 3 i

icr Cp F F A e ( . . .

O h . c c c p 0 n n n s

8 o o o o C C C m19 t

A , m m mu f

i iu iu i n o i H i

t r

t ir t

i r

n d T T T o n 1 e :

it 2 -

a O r r t

n e

of c r -

n o -

o p e :

C a V

,7 2 iu m r e , - 2 t t a -

8 ir O 1 1

TW - ,7 1

. , c ig F /! o.:

  • I , ,7D e

o

,l V

. \,t

' ,7

\'\ , \ ls t 2

> l' V \' ,7

!g \

\

\ 1 o

v

\' '

e ,7 N T ,/ ,8 2

S j i E

T 1 . ,8 U \. \

\- 1 R .\ t E

A & R

, ,8O c

L <

C '

U ' , ,8 N 2 E

S ,8 U E N \,\

t

\

1 t

3 p I

H \' ,t e

,8S C

A l 9'

\

/

' /. ,9 2

O .

h' 1l .

iI

,9 1

g lt _

u

, ,9 A t s

/ ,0 3

f '

/ ,2 0

U ly

\) ,0 u 1 J N

~ - _ -

0 0 o 0 0 o 0 0 .

U 01 1

j 1

9

3. Activity of gamma-ray emitting radionuclides in air.

Table II.B.4 lists the concentrations of 1-131 observed in air by activated charcoal sampling and gamma-ray spectrum analysis. The sample counted is a composite from all seven air sampling stations. All charcoal samples are counted approximately 20 days post collection to allow Rn-222 decay and minimize decay of I-131. Background is determined from counts of unused charcoal. The I-131 concentrations presented are the result of decay correction back to the midpoint of the sampling period. Decay correction to the miopoint of the sampling period is appropriate as any I-131 in air does not arrive at the sampling station at a constant rate, but rather in pulses short compared to the co11cetion period. This is

)

the case whether the 1-131 source term is weapons testing fallout or reactor stack effluent.

The air concentrations of 1-131 during the second half of 1980 were generally less than the second half of 1979 even though power generation was greater during the first half of 1980. Ne to the short half-life of I-131, measured air concentrations, if due to the reactor.

should correlate highly with power generation. The highest values during this period were noted after the Chinese nuclear test and correlate with measured air concentrations of other fission products.

O Since there was no known source term for I-131 in the period before the Chinese fallout input, some of the detectable I-131 values during the early fall are suspect. The method currently in use is active adsorption on charcoal. Radon-222 is trapped at the same time and as pointed out above a decay time of 20 days is allowed. Ilowever in periods when ambient radon is extremely high c.g. during prolonged inversion periods it is likely that sufficient decay of radon has not occurred. Therefore in the next reporting period we will install one

D silver-zeolite adsorption disk of high specificity for 1-131 at station j F1. A regular charcoal cartridge will still be used at F1 for comparison.

The charcoal is normally counted on the NaI(T1) crystal for periods of 300-1000 min. 110 wever, on two occasions charcoal sampics with measured j I-131 concentrations were counted for 2000 min on a Ge(Li) high resolution spectrometer. No I-131 absorption peaks were observed. This gives l

! further reason to suspect the variation in the I-131 air concentration j data.

l Although the mean measured I-131 air concentration for the period

-was 12 fCi/m , for comparison purposes it can be noted that the maximum 3 permissible air concentration for the general public is 2500 fCi/m# (40CFR190) .

l Table II.B.5 lists the results of the gamma-ray spectral analyses l

l j of weekly composites of the membrane air filters in each sample head. The l

lC concentrations of the three radionuclides were generally low and showed some correlation with the I-131 data. Mean values were higher than in the first half of 1980 due to the Chinese weapon fallout. All samples O are counted after decay of Rn and Rn daughters.

The radiorgtheniwr dita is listed in the tables as Ru-106.

!!owever, it is trucithat the activity measured is often a mixture of O Ru-103 and Ru-106. Both isotopes have gamma-rays at essentially the same energy and they cannot be separated by NaI(TI) spectral analysis.

No separation by half-life determination was attempted on the data.

O Since the half-life of Ru-103 is 40 days and that of Ru-106 is one year, in periods soon after an atmospheric weapon test, a high propor-tica is expected to be Ru-103, and at later times predominately Ru-106.

O Since the ruthenium isotopes have negligible biological availability, neither have any consequence in calculation of population dose and l cfforts to separate them are not warranted.

o

._. . .- _ _ _ - - =. __. .

.1

-24 iO Table II. B.4 Iodine-131 Concentrations in Air (Taken From Composites of Activated Charcoal at all Air Sampling Stations and Determined y spectrometry).

'O 131 3 Sample Ending Dates 1 (fCi/m )

7-5-80 < 2.51 O 7-12-80 < 2.51 7-19-80 78.0 (6.45)*

7-26-80 18.3 (9.13)

) 8-2-80 3.63 (8.04)

O 8-7-80 80.7 (13.5) 8-16-80 81.6 (15.9) ,

8-23-80 100. (22.1) 8-30-80 < 2.41 40 9-6-80 < 2.53 9-13-80 20.8 (22.6) 9-20-80 10.9 (11.5) 9-27-80 < 2.89 O 10-4-80 < 3.33 10-11-80 28.6 (10.5)

I 10-18-80 6.21 (10.7) 10-25-80 18.2 (10,5)

O 11-1-80 51.8 (14.0) l 11-8-80 < 3.21 11-15-80 47.6 (17.1)

. 11-22-80 118. (11.2) 0 11-29-80 < 4.01

, 12-6-80 < 4.39 12-13-80 51.8 (9.48) 12-19-80 19.1 (11.1) 10 12-27-80 55.7 (C.o0) 1 All concentrations are3 expresg in femtocuries per cubic meter of air: 1 fCi/m = 10- pCi/ml.

10

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

!O

-2s-O Table II. B.5 Gamma-ray Emitting Radionuclide Concentrations in Air (Taken from

. Composites of all Air Sampling Stations) (fCi/m ).3 3

Sample Ending 106 95 Dates Ru Cs Zr & Nb O 7-5-80 < 2.60 0.609 (0.577)* 0.970(0.830) 7-12-80 < 2.64 0.624(0.526) 0.674 (0.791) 7-19-80 < 2.64 0.636(0.528) 1.18 (0.733) 7-26-80 4.88 (3.88) 0.763(0.546) 1.32 (0.698)

O 8-2-80 < 2.64 < 0.587 0.550(0.754) 8-10-80 < 2.33 2.60 (0.452) 1.19 (0.558) 8-16-80 < 1.18 0.345(0.287) < 0.356 8-23-80 < 2.20 < 0.489 1.04 (0.466)

O 8-30-80 < 1.37 0.425 (0.300) 0.348(0.291) 9-6-80 < 0.845 0.245(0.223) 0.458 (0.198) 9-13-80 < 1.92 < 0.427 0.652 (0.330) 9-20-80 < 1.83 < 0.406 0.467 (0.311)

O 9-27-80 23.7 (2.11) 4.11 (6.32) 6.32 (0.244) 10-4-80 < 3.48 1.27 (0.710) 1.31 (0.504) 10-11-80 < 4.80 < 1.07 < 0.457 10-13-80 < 3.91 4.70 (0.823) 1.15 (0.486)

'O 10-25-80 6.58 (4.92) < 0.847 < 0.384 11-1-80 3.80 (3.69) < 0.589 1.47 (0.318) 11-8-80 3.48 (4.11) < 0.729 1.68 (0.337) 11-15-80 16.3 (3.09) < 0.491 5.82 (0.269) 0 11-22-80 19.7 (4.61) < 0.567 4.25 (0.351) 11-29-80 14.7 (10.8) < 1.27 4.50 (0.473) 12-6-80 23.4 (12.6) < 1.42 11.3 (0.519) 12-13-80 29.9 (6.91) < 1.15 12.8 (0.630) 0 12-20-80 17.8 (6.81) < 1.17 11.0 (0.575) 12-27-80 11.7 (4.95) < 0.866 8.89 (0.397)

I Allcongentratgnsareexpressedinfemtocuriespercubicmeterofair:

, 1 fCi/m = 10" pCi/ml.

  • Uncertainties (in parentheses) are for the 95% confidence interval, l (1.96 S.D.). '

l l

l II.C.1 ' Radionuclide Concentrations in Surface Water Table II.C.1 lists the gross beta activity in surface water and  !

potable water supplies in the vicinity of the reactor. Values are given j for both the suspended and dissolved solids fractions of the total water  !

l sample. The suspended solids fraction contains algae and sedimust particles +

which have very high concentration factors for radionuclides and consequently l

is considerably higher than the dissolved solids fraction. These values l

are given for sampics collected monthly. Potable treated water retains

!) a negligible suspended solids fraction and consequently the gross beta values for potable water are significantly lower.

Values of gross beta concentrations in surface water fluctuated 3 within upstream, downstream and effluent sites but the mean upstream and the mean downstream values were very similar. The mean upstream value was 6.8 pC1/L, and the mean downstream value was 6.9 pCi/L. There was no 3 significant difference between these mean values. Mean values were slightly less than those measured during the first half of 1980 even though there was increased gross beta deposition due to the Chinese O fallout. The gross beta concentrations in both potable water sources are lower but more variable than in surface water. The concen+. rations should be lower due to water purification which removes suspended solids O and the variation is probably due to mixing of different reservoir sources which vary due to different run'ff areas.

! Weekly sampics, although not required by the Technical Specifications, i

O were collected at E-38, the farm pond on the Goosequill ditch. This is i

! the principal effluent route for liquid discharges from the reactor and i

! a monthly sample may not be adequate to reflect discharges. Gross O beta concentrations are shown in Table II.C.la. The mean concentration

[

q> was 9.6 pCi/L and less than in the first half of 1980. liigh values were observed on several occasions and presumably due to the effluent 9 release patterns. Although the effluent also has high tritium concen-trations, the tritium is lost in preparation for gross bet, analysis.

Table II.C.2 lists tritium in surface water and potable water 9 supplies for each monthly collection for the first half of 1980. The mean values for Upstream, Downstream and Potable water locations for tritium are not significantly different even though there were wide 9 variations. No reason can be given for these wide variations, particularly for the potable water supplies. Evidentally these sources are comprised partly from tributary water and partly from well water.

Significantly high tritium values have always been observed at effluent sampling sites and this was true for the second half of 1980.

(See Table II.C.4a). This is directly attributed to liquid effluent releases by Fort St. Yrain. Downstream locations did not reflect any significant increases in tritium concentration, therefore no dose commitment calcula-tions are warranted. No increased fission product concentrations were

~'

observed either.

Table II.C.3 and II.C.4 lists Sr-90 and Sr-89 concentrations in surface water at the same sampli..g locations. Table II.C.4a lists 9 the same radionuclides as well as tritium in reactor effluent water sampics collected weekly at E-38.

The ; concentrations of Ru-106, Cs-13 and Zr-Nb-95 in surface and potable Etter are given in Table II .C.S.

  • The same radionuclides were 5

measured in tI m wecily samples co11ceted at E 38 and this data is shown

! e in Table II.C',5a. ,

e t i

n 9

4 4

0

~)

I-f

9 Table II. C.1 Cross Beta Activity in Water for Samples Collected July 12. 1980 .

Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l g Effluent E 38:. Farm Pond 11,700 8,990 6.73 (c~osequill) (2,940)* (2,950) (1.43)

E 41: Slough to 10,500 6,140 4.24 St. Vrain Creek (10,200) (2,320) (1.37)

Downstream D 37: Lower Latham 10,900 3,840 7.61 Reservoir (1,960) (1,400) (1.48)

D 40: S. Platte River 13,700 2,560 6.13 j Below Confluence (4,510) (886) (1.48)

D 45: St. Vrain 21,800 5,250 11.2 Creek (2,900) (1,520) (1.62)

Upstream i U 42: St. Vrain 20,500 3,870 10.8 Creek (2,440) (1,500) (1.60)

U 43: S. Platte 12,200 9,390 8.15 River (2,200) (2,930) (1.46)

Potable F 49: Visitor's N.A. 7,590 3.42 Center (5,720) (4.42)

D 39: Gilcrest 5,470 6.48 City Water N.A. (1,820) (6.42)

N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

'/

O Table II. C.1 Cross Betc. Activity in Water for Samples Col.lected August 10, 1980 .

!O Sampling Suspended Solids Dissolved Solids Total Water ,

Locations - pCi/kg pCi/kg Concentration '

pCi/1 Effluent

'O 9,430 , 5,660 6.69 E 38: Farm Pond (7,030)

(coosequill) (1.440) (1.47)

E 41: Slough to 5,320 8.49

< 11,800 (1,060)

St. Vrain Creek (1.54)

!O Downstream 11,200 6,140 8.48 D 37: Lower L2 tham (2,970) (1,510)

Reservoir (1.54) i D 40: S. Platte River 10,600 3,690 6.12 seiow confluence (5,520) (1,100) (1.47) 40 I  :

D 45: St. Vrain 11,700 3,230 6.77 Creek (3,260) (1,050) (1.49)

Upstream O u 42: se. vrain 11,400 2,860 7.50 f ,e_ek e (5,720) (730) (1.55) '

U 43: S. Platte < 24,900 6,450 4.79 River (2,020) (1.40)

Potable F 49: Visitor's N.A. 12,200 0.769 Center (5,310) (0.334)

D 39: Gilcrest 2,730 3.44

. City Water N.A. (1,140) (1.43)

'! O N.A. Not ap211 cable. -

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

O l

O 9

1

!O

l

}

l Table II. C.1 l Gross Beta Activity in Water'for Samples Collected Seotember 13. 1980 l Sampling Suspended Solids Dissolved Solids Total Water ,

Locations pCi/kg pCi/kg Concentration pCi/l Effluent E 38: Farm Pond 13,100 , 8,130 7.06 fcoosequill) (15,900) (1,870) (1.47)

( E 41: Slough to <53,100 5,880 2.19 ,

l ' St. Vrain Creek (3,470) (1.31)

D Downstream D 37: Lower Latham <19,500 6,020 6.48 Leservoir (1,390) (1.47) l l D 40: S. Platte River 6,028 5,390 5.68 j Below Confluence (8,010) (1,490) (1.44)

D 45: St. Vrain 12,100 2,780 4.14 Creek (11,400) (1,130) (1.41)

Upstream U 42: < 17,400 2,320 2.85 Q St. Vrain (1,150)

Creek (1.38)

U 43: S. Platte < 24,500 8,380 6.90 River (3.890) (1.46)

Potable O. 50,000 5.34 F 49: Visitor's *

(21,000'.

Center N.A. (2.24)

D 39: Gilcrest 3,740 4.13 City Water N.A. (1,310) (1.45)

O N.A. Not applicaMe.

  • Uncertainties (in p:?rentheses) are for the 95% confidence interval, (1.96 S.D.).

l l

D i

l

dp Table II. C.1 Cross Beta Activity in Water for Samples Collected October 11, 1980 ,

O Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l g Effluent 30,500 9,430 10.3 E 38: Farm Pond (12,000) * (1,750) (1.57)

(Coosequill)

E 41: Slough to < 3,090 7,100 ~9.52 St. Vrain Creek (1,100) (1.59)

O Downstream 52,000 5,600 7.60 D 37: Lower Latham (42,100) (1,290) (1.52)

Reservoir 78,700 4,950 6.92 D 40: S. Platte River g Below Confluence (32,400) (1,380) (1.49)

D 45: St. Vrain 140,000 3,670 6.35 Creek (63,200) (1,110) (1.49)

Upstream U 42: St. Vrain

< 3,020 3,620 2.73 O (1,160) (1.40)

Creek U 43: S. Platte < 17,700 0,020 4.91 River (1,810) (1.43) -

Potable J

F 49: Visitor's N.A. a a Center D 39: Gilcrest 3,930 7.11 City Water N.A. (1,380) (5.11)

J N.A. Not applicable.

  • Uncertainties (in parentheres) are for the 95% confidence interval, (1.96 S.D.).

a Sample lost prior to analysis a

0 w/

O l

Table II. C.1 l November 8, 1980 l Grcss Beta Activity in Water for Samples Collected ,

IO Total Water Sampling Suspended Solids Dissolved Solids j Locations pCi/kg pCi/kg Concentration PCi/1

"'#1"*"*

{O 39,500 5,130 11.9 i E 38: Farm Pond i (coosequill) (19,300) * (857) (1.68)

E 41: Slough to 35,600 5,250 9.87 St. Vrain Creek (31,900) (925) (1.74)

Downstream D 37: Lower Latham 21,900 6,810 8.97 Reservoir (23,400) (1,320 (1.55)

D 40: S. Platte River 22,600 6,550 6.49

,O Bei w Confluence (23,400) (1,670) (1.47)

, D 45: St. Vrain .22,100 5,170 6.23 t

Creek (10,700) (1,530) (1.47)

Upstream 36,000 5,370 6.31 U 42: S ' Vr 1 iO (21,100) (1,510) (1.47) r ek U 43: S. Platte 84,500 8,660 10.4 River- (40,700) (1,550) (1.57)

Potable

O F 49: Visitor's < 13,200 3.50

"*A*

Center (5.06)

D 39: Gilerest 4,410 7.56 City Water N.A. (1,420) (5.23)

'O N.A. Not applicable.

  • Uncertainties (in parentheses) are for th 95% confidence interval.

(1.96 S.D.).

O
O

(

  • l o

1 g ' 33-4 Table II. C.1 Cross Beta Activity in Water for Samples Collected December 13, 1980 ,

1

O Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/1 Effluent
O E 38: Farm Pond 36,500 6,030 7.89 (Goosequill) (22.800)* (1.360) (1.52)

E 41: Slough to 43,100 5,560 6.46 St. Vrain Creek (23,500) (1,540) (1.47) fO Downstream

. D 37: Lower Latham 23,760~ 5,140 6.65 Reservoir (13,800) (1,380) (1.48)

I D 40: S. Platte River 52,500 6,570 5.97 Below Confluence (32.700) (1.410) (1_ddi 40 l D 45: St. Vrain < 100,000 7,350 7.11-Creek (1,660) (1.49)

Upstream lO C 42: St. Vrain 20,300 7,420 8.28

! Creek (24.000) (1.510) (1 52) i U 43: S. Platte 63,600 8,740 7.58 i River (61,100) (1,930) (1.49)

P table O

F 49: Visitor's N.A. 3,460 0.910 C'"'*# (0.359) j (1.370) l D 39: Gilcrest 5,070 7.56 City Water N.A. (1,620) (5.22)

O N.A. Not applicable.
  • Uncertainties (it. parentheses) are for the 95% confidence interval, (1.96 S.D.).
O-40 i

i

O

g O

Table II.C.I.A.

Gross beta activity in effluent water, Goosequill Pond . E-38.

Third Quarter, 1980 O Total water Collection Date Suspended Solids Dissolved Solids Concentrations pCi/kg* pCi/kg* pCi/1 7-5-80 8,460 (9,080)* 9,220 (5,030) 2.92 (1.32) 7-12-80 11,700(2,940) 8,990 (2,950) 6.73 (1.43) 7-19-80 9,930 (7,350) 7,150 (2,270) 5.23 (1.40) 7-26-80 12,000 (4,300) 7,580 (1,900) 1.66 (0.595)

O 8-2-80 15,100 (8,890) 6,150 (1,880) 5.67 (1.42) 8-10-80 9,430 (7,030) 5,660 (1,440) 6.69(1.47) 8-16-80 9,820 (3,170) 7,890 (1,800) 8.51 (1.50) 8-23-80 35,800 (10,100) 15,300 (2,500) 21.1 (2.84) 8-30-80 12,800 (10,600) 9,200 (2,180) 8.49 (2.28) 9-6-80 < 13,600 6,710 (1,630) 4.23 (1.42) 9-13-80 13,100 (15,900) 8,130 (1,870) 7.06 (1.47) 9-27-80 20,900(18,100) 9,520 (1,670) 10.0 (1.56)

O O

  • Uncertainties (in parentheses) are for the 95's confidence interval.

O O

)

i Table II.C.I.A.

- Gross beta activity im effluent water, Goosequill Pond , E-38.

b) Fourth Quarter, 1980 Total Water Collection Date Suspended Solids Dissolved Solids Concentrations pCi/kg* pCi/kg* pCi/1 10-4-80 < 3,690 9,470 (1,860)* 8.38 (1.53) 10-11-80 30,500 (12,000) 9,430 (1,750) 10.3 (1.57) 10-18-80 20,900 (6,350) 7,340 (1,660) 8.92 (1.54) 10-25-80 46,90'0(26,200) 9,920 (1,780) 10.1 (1.56) 11-1-80 49,100(35,500) 5,720 (1,110) 9.30(1.57) 11-8-80 39,500(19,300) 5,130 ( 857) 11.9 (1.68) 11-15-80 25,400 (25.100) 3,120 ( 820) 6.69 (1.54) h 11-29-80 142,000(50,900) 7,590 (1,790) 8.13(1.50) i 12-6-80 98,600 (83,900) 6,270 (1,280) 8.54(1.54)

I 12-13-80 36,500 (22,800) 6,030 (1,360) 7.89(1.52) h '

12-19-80 < 19,400 12,400 (1,450) 15.9 (1.72)

).

f I '

l l

  • Uncertainties (in parentheses) are for the 95% confidence interval.

)

u u -u -

u --

u-- u- - u -

u- -- o oq Table II. C.2 Tritium Concentrations in Surface Waters (pCi/1).

Sampling Nonthly Collection Dates 7-12-80 tidO-80 9-13-80 10-11-80 11-8-80 12-13-80 Effluent E 38: Farm Pond 485 < 251 < 251 37,000 359,000 36,000 (Goosequill) (222)* (637) (3,780) (614)

E 41: Slough to 746 1,290 338 l'.,300 176,000 14,100 St. Vrain Creek (224) (236) (227) (378) (1.990) (397)

Downstream

< 426 < 251 277 861 < 260 506 D 37: Lower Latham Reservoir (226) (276) (264)

D 40: S. Platte River 447 375 359 948 872 984 Below Confluence (221) (227) (227) (277) (267) (268) g D 45: St. Vrain 1,620 < 251 908 1,850 1,070 840 Creek (233) (232) (285) (278) (267)

Upstream u 42: St. Vrain 450 < 251 < 251 1,610 9,C50 623 Creek (221) (283) (148) (265)

U 43: S. Platte < 426 < 251 < 342 934 502 < 294 River (277) (272)

Potable

< 294 F 49: Visitor's < 426 < 251 932 a 616 Center (277) (272)

D 39: Gilcrest City 664 < 251 330 1,029 3,530 < 294 Water (223) (226) (278) (265)

  • Uncertainties (in parentheses) are for the 95% confidence inter.al, (1. 9 6 S .'; . ) .

a Sample lost prior to analysis.

O O O O O O O O O O 't l

l l

l Table 11. C.3 Strontium 90 Concentrations in Surface Waters (pci/1).

' Sampling Monthly Collection Dates Locations 7-12-80 8-10-80 9-13-80 10-11-80 11-8-80 12-13-80 Effluent E 38: Farm Pond 0.680 < 2.03 1.94 1.40 < 0.624 0.998 (coosequill) (0.662)* (0.863) (0.787) (0.723)

E 41: Slough t < 1.88 < 1.25 2.18 1.21 2.33 0.856 St. Vra? ack (0.158) (0.860) (0.721) (0.673)

Downe D 37: e

< 1.11 3.05 3.91 1.58 0.736 0.828

e. _.

(1.88) (0.953) (0.822) (0.630) (0.686)

D 40: S. ~ -tte River < 1.64 < 1.34 3.46 < 0.768 1.13 0.853

.sw Confluence (0.956) (0.721) (0.707) h' 1

D 45: St. Vrain 2.15 3.16 3.40 2.09 1.63 1.18 Creek (1.56) (2.43) (0.889) (0.850) (1.14) (0.703)

Upstream U 42: S *" < 1.25 5.06 2.32 2.41 1.30 1.65 Cr$e (2.85) (0.997) (0.861) (0.699) (0.814)

U 43: S. Platte < 1.98 < 4.87 1.24 2.30 < 0.'/86 1.01 River (0.903) (0.932) (0.754)

Potable F 49: Visitor's < 1.34 < 3.43 3.22 a < 0.801 2.05 Center (0.953) (0.860)

D 39: Gilcrest City < 1,47 < 1.79 < 0.815 0.803 1.23 < 8.670 Water (0.791)

(0.690) _

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

a Sample lost prior to analysis. ~

Table II. C.4 Strontium 89 Concentrations in Surface Waters (pCi/l).

Sampling _,

Monthly Collection Dates 7-12-80 8-10-80 9-13-80 10-11-80 11-R-80 12-13-RO Effluent E 38: Farm Pond < 0.565 < 1.72 < 0.714 < 0.641 < 0.553 < 0.609 (Coosequill)

E 41: Slough to < 1.63 < 1.09 < 0.757 < 0.700 < 0.576 2.03 St. Vrain Creek (1.03)

Downstream D 37: Lower Latham < 0.978 < 1.62 < 0.716 < 0.650 < 0.546 0.758 Reservoir (1.02)

D 40: S. Platte River 1.69 < 1.16 < 0.728 < 0.646 < 0.589 0.729 L.

Below Confluence (6.47)* (1.02' i' D 45: St v '"

ek < 1.30 < 2.01 <.0.690 < 0.673 < 0.959 < 0.613 Upstream U 42: St. Vrain 3.99 < 2.37 < 0.816 < 0.641 < 0.564 < 0.G37 Creek (1.09)

U 43: S. Platte 7.67 < 3.95 < 0.262 < 0.707 0.853 < 0.675 River (7.91) (1.70)

Potable F 49: Visitor's 1.63 6.34 < 0.680 a < 0.672 < 0.678 Center (3.80) (7.67)

D 39: Gilcrest City < 1.26 < 1.54 1.34 < 0.664 < 0.570 < 0.588 Water (1.50)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.),

a Sample los't prior to analysis.

)

l Table II.C.4.A O

Tritium, Strontium 89, and Strontium 90 Concentrations in Effluent Water, Goosequill Pond , E-38.

a) Third Quarter, 1980 Collection Tritium Strontium 89 Strontium 90 O Date (pCi/1) (pCi/1) (pC1/1) 7-5-80 485 (222)* < 0.691 < 0.784

/-12-80. 485 (222) < 0.565 0.680 (0.662)

C 7-19-80 < 1.17 < 1.36 544 (222) 7-26-80 339 (220) 2.03 4.28 (2.35) 8-2-80 760(224) 6.83(3.77) < 1.18 D 8-10-80 < 1.72

< 251 < 2.02 8-16-80 619 (229) 6.58 (2.87) < 1.03 8-23-80 690 (230) < 4.28 < 1.85 0 8-30-80 t

9.300 (359) < 0.819 1.06 (0.977 9-6-80 15,700 (422) < 0.549 < 0.629 9-13-80 1,670(284) < 0.714 1.94 (0.863)

O 9-27-80 1,590 (284) < 0.664 < 0.759 l

D

  • Uncertainties (in parentheses) are for the 951 confidence interval, (1. 96 S D.,) .

D D

, Table II.C.4.A

,3 Tritium, Strontium 89, and Strontium 90 Concentrations in Effluent Water, Goosequill Pond , E-38.

b) Fourth Quarter, 1980 l

l

! Collection Tritium Strontium 89 Strontium 90 O Date (pCi/1) (pCi/1) (pCi/1) 10-4-80 4,540 (312)* < 0.581 0.967 (0.691) 10-11-80 37,200 (632) < 0.641 1.40 (0.787) 10-18-80 1,790 (285) < 0.670 1.57 (0.853) 10-25-80 669 (274) < 0.652 0.839(0.776) i 11-1-80 975 (268) < 4.14 6.78 (5.22) 11-8-80 359,000 (3,780) < 0.553 < 0.624 i 11-15-80 < 294 < 0.579 0.889 (0.686) 11-29-80 2,980 (288) < 0.738 2.36 (1.41) 12-6-80 20,000 (455) 2.36 (1.39) < 0.802 12-13-80 36,200 (614) < 0.609 l 0.998 (0.723) 12-19-80 20,600 (559) < 7.63 1.85 (1.11)

O l

l lO O

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S. D.) .

O l

l C

e e . . e e e 3

Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected July 12, 1980 .

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent

  • *I
  • Go se ill)

( 0)* ( 9 0) ( ) ( 8) 33)

E 41: Slough to 5,650 10,300 2,560 0.853 2.05

< 14,100 (5,840) < 4,180 < 1,300 (1,150) < 0.706 St. Vrain Creek (4.640) (0.633) (1.02)

Downstream D 37: L wer Latham < 6,330 < 1,970 < 2,520 < 783 < 2.00

( ) ( ) ( 5) (0, 5) g D 40: S. Platte River < 17,400 < 5,410 < 2,310 < 3,510 < 1,090 < 470 < 2.19 < 0.683 < 0.349 Below Confluence D 45: St rain < 8,360 < 2,600 < 2,860 < 889 4

< 2.23 < 0.692

( 5) (6 ) ( y)

Upstream U 42: St. Vrain 2,160 1,830 817 3.74 S.30

< 6,520 < 2,030 < 2,550 < 2.55 Creek (2,180) ((649) (576) (1.87) ('c .17)

U 43: S. Platte 2,480 2,700 1.38 1.96

< 8'020 < 2'490 < 5,900 < 1,830 < 2.19 River (2,530) (1,810) (1.24) (1.54)

Potable F 49: Visitor's < 35,900 37,800 41,900 < 2.81 2.95 3.28 N.A. N.A. N.A. (9,320) (11,300) (0.729) (0.880)

Center D 39: Gilcrest City < 3,000 1,910 495 < 3.70 2.37 < 0.486 Water N.A. N.A. N.A. (7EDI (787) (0.930)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected August 10, 1980 .

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) . Water (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb

""I"*"'

< 31,500 < 9,800 < 4,190 3,180 1,440 1,600 2.29 1.24 1.28

  • fGo$s uill) (3,360)* (791) (679) (2.45) (1.03) (0.960)

E 41: Slough to < 66,900 66,600 62,700 <1,600 < 496 1,030 <1.59 2.91 3.71 St. Vrain Creek (17,500) (17,900) (323) (1.03) (0.941)

Downstream 14,600 9,660 8,500 <2,920 < 908 1,140 2.53 2.39 2.70 D 37: Lower Latham ' ' ' *

(* }

Reservoir L D 40: S. Platte River 22,300 < 6,930 < 2,960 <2,060 1,500 507 <2.28 1.76 0.903 '

Below Confluence 515 (425) (1.03) (0.951)

D 45: St. Vrain < 12,300 4,750 3,870 <1,830 < 569 467 <2.18 1.09 1.34 Creek (3,080) (2,630) (465) (0.853) 0.932 Upstream < 24,U00 < 7,470 < 3,190 <1,210 < 375 447 <2.17 0.697 1.07 U 42: St. Vrain (250) (1.03) (0.729)

Creek U 43: S. Platte 52,200 53,400 54,500 <3,590 <1,110 1,790 2.00 1.50 1.41 River (46,100) (10,600) (9,780) (759) (2.90) 0.675 (0.590)

Potable <2,580 970 855 <2.18 0.821 0.723 F 49: visitor's

  • ^* *^* (644) (381) (0.545) (0.321)

Center D 39: Gilcrest City <2,090 1,970 327 <2.58 2.43 0.403 Water N.A. N.A. N.A. (517) (425) (0.638) (0.524)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

U O ~U U

' ~

U~ U U .O U - ~~~ ~ ~U v t

Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected September 13, 1980 .

Sampling Suspended Solids (pci/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond < 58,700 < 18,300 8,960 < 3,020 2,010 783 < 1.79 2.04 0.942 (Goosequill) (11.000)* (767) (483) (0.977) (0.658)

E 41: Slough t

< 843,000 < 263,000 < 111,000 < 1,730 746 602

< 0.816 0.617 0.538 St. Vrain Creek (571) (332) (0.736) (0.514)

Downstream D 37: Lower Latham < 319,000 < 99,500 < 41,900 < 2,030 < 630 428 < 2.58 < 0.804 0.505 Reservoir (296) (0.781) g D 40: S. Platte River 418 0.418 Y

< 30,500 < 29,500 < 4,000 < 2,260 < 702 < 2.20 < 0.685 Below Confluence (355) (0.686)

D 45: S < 12,900 6, 6.

Vrain < 41,300 < 651 < 271 < 0.811

( ) ( ) ( ) ( )

Upstream u 42: St. Vrain < 108,000 < 33,700 21,400 < 663 462 553 < 0.875 < 0.720 1.19 Creek (19.800) (213) (125) (0.540) g1y, < 133,000 < 41,500 '

< 3;060 < 950 < 405 < 2.19

( ) ( ( 0.' 7)

Potable F 49: Visitor's 52,900 ,26,500 6.04 3.03 N.A. N.A. N.A. < 40,000 (10,500) 111,100) < 4.60 Center (1.20) (1.27)

D 39: Gilcrest City 821 724 0.970 0.855 Water N.A. N.A. N.A. < 2,190 (545) (322) < 2.58 (0.644) (0.380)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not a,1plicable.

Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected October 11, 1980 .

4 Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond < 34,100 < 10,600 14,100 2,810 < 802 < 344 < 1.51 0.485 0.630 (Goosequill) (4,890)* (2,680) (0.847) (0.552)

E 41: Slough to 38,700 < 10,700 10,500 2,240 < 455 < 195 5.55 < 0.448

' 0.744 St. Vrain Creek (37,700) (6,650) (1,520) (3.47) (0.534) ,

Downstream D 37: . Lower Latham <221,000 < 69,000 36,400 < 2,700 < 844 770 < 2.21 0.745 1.01 Reservoir (19_R00) (502)

(0_461) (0 ERA) g D 40: S. Platte River 328,000 < 42,700 < 18,300 2,790 < 684 '

Below Confluence 531 8.12 0.562 0.664 (144_000) (?_7AO) (411) (4_01) (0 R101 (0 6041

, D 45: St. Vrain < 53,700 39,400 52,600 6,820 Creek (227,000) 185,000 8,870 < 1.65 1.06 < 0.220 (32.900) (2.450) (612) (456) (0_716)

Upstream U 42: St. Vrain 62,600 14,400 14,000 2,190 404 297 2.43 0.749 0.617 -

Creek (29,800) (7,160) (5,190) (1,230) (296) (219) (1.49) (0.432) (0.263)

U 43: S. Platte <132,000 ' 41,100 < 17,300 < 3,390 <1,060

' River 540 1.38 < 0.286 0.514 (628) (2.02) (0_807)

Potable i

F 49: visitor's N.A. N.A. N . ?. .

(3 5 0)

,3 0) < 3,920 3 (l53 ) (;07) 1

< 0.343 D 39: Gilcrest City 3,380 538 283 3.73 0.593 0.311 Water N.A. N.A. N.A. (1,220) (293) (217) (1.35) (0.323) (0.240)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A.

Not applicable. '

7 U w e e e e e e '

s e Table II. C.5 Camma-ray Emitting Radionuclide Concentrations in Water for Samples Collected November 8, 1980 .

Sampling l Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent k E 38: Farm Pond < 48,700 < 15,200 14,900 3,9N 2,180 1,300 3.43 1.90 1.68 (coosequill) (9,780) (1,500) (358) (283) (2.44) (0.578) (0.463)

E 41: Slough to 16,400 5,360 4,420 2,380 1,630 1,310 21.3 8.79 7.19 St. Vrain Creek (1,700) (433) (237) (1,280) (322) (221) 3.13 (0.788) (0.499)

Downstream D 37: Lower Iatham < 76,800 69,200 < 10,300 8,130 287 165 9.71 1.68 < 0.206 Reservoir (20,100)_ (874) (216) (132) (2.28) (0.509) 1, D 40: S. Platte River <138,000 < 43,100 < 18,500 < 2,730 1,730 2,340 8.41 1.63 2.34 I Below Confluence (676) (651) (3.64) (0.829) 1.66 D 45: St. Vrain < 47,700 < 14,900 < 6,400 < 2,410 < 754 507 2.60 <0.676 0.565 Creek (374) (3.38) (1.61)

Upstream U 42: St. Vrain < 69,100 < 21,600 < 9,260 2,160 2,060 < 201' 1.82 1.80 < 0.193 Creek (1,700) (416) (2.68) (0.663)

U 43: S. Platte <310,000 166,000 < 41,700 < 1,980 892 1,600 < 1.98 1.61 1.74 River (76,200) (489) (453) (0.726) (0.501)

Potable F 49: Visitor's < 17,900 19,700 6,660 < 1.59 1.74 0.591 N.A. N.A. N.A. (4,770) (2,840)

Center i (0.422) (0.251)

D 39: ci1 crest City < 2,330 3,670 2,010 < 2.58 4.19 2.30 Water N.A. N.A. N.A. (590) I'66) (0.673)  ; (0.532)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

t) _

(; GD G G S 9 GD db db Table II. C.5 Cranma-ray Emitting Radionuclide Concentrations in Water for Samples Collected December 13. 1980 .

Sampling  ! Suspended .olids (pci/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locat.ons 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond <114,000 < 35,300 < 15,300 < 1,640 1,770 629 < 1.52 < 0.472 1.72 (Coosequill) (451) (306) (0.499)

E 41: Slough to < 32,800 10,900 4,400 2,690 1,670

< 541 < 1.06 < 0.599 1.06 St. Vrain Creek (10.600) (1.340) (329) (228) (0.322)

Downstream D 37: Lower Latham < 40,100 < 12,400 < 5.370 < 211 < 65.2 3.810 < 0.261 < 0.081 4.88 Reservoir (72.7) (0.194) L D 40: S. Platte River < 28,900 < 8.950 < 3,870 < 2,940 2,190 1,870 < 0.478 1.94 1.57 I Below Confluence (751) (504) (0.605) (0.376)

D 45: St. Vrain < 250,000 <77,600 < 33,600 < 2,570 4,890 2,200 < 2.18 4.55 1.93

' Creek ((677) (482) (1.17) (0.470)

Upstream U 42: St. Vrain 1,880,000 671,000 444,000 3,460 4,630 3,330 33.1 15.4 10.5 Creek (65,000) (16,700) (7,770) (2,600) (669) (446) (2.68) (0.690) (0.419)

U 43: S. Platte < 278,0C0 < 86,300 < 37,300 < 2,600 1,660 1,230 < 2.18 2.29 1 38 River (660) (436) (0.849) (0.419)

Potable F 49: Visitor's N.A. N.A. N.A. a a a a a a D 39: Gilcrest City 287 307 207 0.271 0.291 0.196 Water N.A. N.A. N.A. (169)l (42.5: (29.7) (0.160) (0.0402), (0.0281)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

a Sample lost prior to analysis.

O O O O O O O O O O O Table II.C.S.A.

Gamma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.

Collection Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Date 106 Ru 137 Cs 95 Zr4Nb 106 Ru 137 Cs 95 Zr4Nb 106 Ru 137 Cs 95 Zr4Nb 7-5-80 74,000 16,100 20,500 5,530 < 1,720 978 < 2.16 0.858 1.68 (43,900)* (9,300) (14,100) (1,560) (1.04) (1.34) 7-12-80 < 10,800 5,980 5,670 < 5,510 < 1,710 3,260 < 2.64 1.65 2.73 (2,770) (2,930) (1,520) (0.868) (1.33) 7-19-80 43,500 < 9',200 < 3,940 < 4,240 1,430 1,260 3.06 < 0.679 0.435 (33,700) (l',050) (1,220) (4.68) (1.29) 7-26-80 24,000 < 5,370 5,070 < 3.25 1,150 867 2.86 1.16 1.33 (19,600) (5,270) (812) (874) (3.78) (0.842) (0.963) 8-2-80 < 14,600 < 4,530 < 1,930 < 3,230 < 1,000 1,340 < 0.876 < 0.272 0.967 (668) (0.548)h' 8-10-80 < 31,500 < 9,800 < 4,190 3,180 1,440 1,600 - 2.29 1.24 1.28 (3,360) (791) (679) (2.45) (1.03) (0.960) 8-16-80 < 7,090 < 2,210 3,480 < 2,980 1,750 511 < 1.35 1.69 1.10 (2.090) (750) (580) (0.714) (0.637) 8-23-80 17,100 < 2,730 4,310 < 2,300 < 713 584 1.63 0.628 1.12 (11,200) (2,320) (456) (2.77) (0.651) (0.541) 8-30-80 < 37,100 16,600 < 4,990 < 14,300 < 4,460 4,170 < 6,12 4.01 < 0.812 (9,080) (2.680) (2.14) 9-6-80 < 156,000 79,100 75,200 < 3,010 1,070 857 < 2.20 2.02 1.78 (39,600) (26,800) (751) (501) (0.847) (0.629)

  • Concentrations (in parentheses) are for the 951, confidence interval, (1.96 S.D.). -

O O O O O O O O O O O Table II.C.5.A.

Gamma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.

Collection Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Date 106 Ru 137 Cs 95 Zr4Nb 106 Ru 137 Cs 95 ZrGNb 106.Ru 137 Cs 95 Zr4Nb 9-13-80 < 58,700 < 18,300 8,960 < 1,730 746 602 < 0.861 0.617- 0.538 (11,000)* (571) (332) (0.736) (0.514) 9-20-80 < 18,000 < 5,620 4,540 < 2,940 1,960 < 607 < 0.859 1.66 0.755 (4,310) (734) (0.649) (0.560) 9-27-80 < 40,000 < 12,400 7,390 < 2,860 1,030 467 < 0.861 1.32 0.826 (5,600) (714) (387) (0.839) (0.465) 10-4-80 21,500 < 4,050 < 1,740 < 3,760 < 1,170 < 498 3.59 0.869 ' O.408 (13,400) (3.73) (0.949) (0.506) 10-11-80 < 34,100 < 10,600 14,100 2,810 < 802 < 344 < 1.51 0.485 0.630 .

(4,890) (2,680) (0.847) (0.552) $

10-18-80 26,100 < 3,750 < 1,610 2,080 < 294 < 126 4.60 < 0.294 < 0.126 (13,800) (1,100) (2.04) 10-25-80 < 80,100 < 25,000 19,300 1,610 936 1,220 3.28 1.15 1.15 (13,800) (1,350) (322) (250) (1.84) (0.451) (0.299) 11-1-80 < 197,000 < 61,600 46,400 1,700 < 331 < 142 < 0.624 0.730 0.562 (31,900) (1,280) (0.527) (0.338) 11-8-80 < 48,700 < 15,200 14,900 3,990 2,180 1,300 3.43 1.90 1.68 (9,780) (1,500) (358) (283) (2.44) (0.578) (0.463)

  • Concentrations (in parentheses) are for the 95% confidence interval, (1. 96 S.D. ) .

O

io o. o- o .o -o- o .o. o T fo; L

1 1

Table II.C.5 A.

Gamma-ray Emitting 'Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38. .

Collection Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Date 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb l 11-15-80 < 72,600 < 22,500 < 9,740 10,900 < 1,210 945 4.98 < 0.676 4.57 (3,990) (626) (3.59) (0.564) l 11-29-80 139,000 69,900 < 6,720 a a a- a a a (63,000) (16,000)

< 243,000 < 75',700 < 32,500 -a a a 12-6-80 a a a_

12-13-80 < 114,000 < 35,300 < 15,300 '< 1,640 1,770 629 < 1.52 < 0.472 ' 1,72 (451)~ (306) (0.499) 12-19-80 < 23,100 < 7,200 < 3,090 < 2,370 1,110 3,310. < 0.'778 0;411- 2.19 L 3

(602) (462) (0.482) (0.319) ?

4 4

4 l

  • Concentrations (in parentheses) are for the 95% confidence interval, (1.96 S.D.),

a Sample lost prior to analysis. ,

.O.

II.C.2 Radionuclide Concentrations in Sediment

g. Sediment is the major compartment for radionuclide contaminants in a fresh water ecosystem due to the high concentration factors for fission products in the sediment mineral matrices. .Although the samples 9 _

_are always collected at the same point, it is impossible to collect a sample with a known surface area to volume ratio as for soils. The sample itself is a result of sediment movement downstream and'is therefore g a function of water flowrate which fluctuates greatly during the year.

Table II.C.6~11sts gross beta activity in sediment samples from the sampling sites in the water courses. The mean values for effluent, O Upstream, and downstream samples were nearly identical and were not significantly different (see Table II.H.1) and indicate that the sediment samples are very homogeneous. The gross beta activity is predominately O naturally occurring radionuclides from the uranium and thorium decay series and K-40.

Table II.C.7 and II.C.8 list the Sr-90 and Sr-89 concentrations g in the same sediment samples respectively. Table II .C.9 shows the concen- -

tration in sediment of the fission products Ru-106, Cs-137, and Zr-Nb-95.

Although occasional high values appear, the mean values for these sample O types (Table II.H.1) indicate no significant difference for any of the fission products in-each of the sampling location.

It should be noted that the sand fraction-of the sediment samples 9- is removed and only the silt plus clay mineral fraction is analyzed.

These two particle size fractions should contain essentially all of the l radioactivity, both natural and any due to reactor effluents.

O O

Table II. C.6 Gross Beta Activity Concentrations in Bottom Sediment (pCi/kg).

Sampling Monthly Collection Dates

t. c tions I 7-12-80 8-10-80 I

9-13-80 10-4-80 11-8-80 12-13-80 Eirinent E 38: Farm Pond i 40,500 , 34,800 42,300 34,800 33,400 37,900 (coosecuill) i (1,190) (1,540) (1,700) (1,580) (1,450) (1,620)

E 41: Slough to  ! 37,300 34,500 29,800 25,900 28,900 32,500 st. Vrain Creek i! (1,140) (1,510) (1,490) i (1,370) (1,430) (1,540) nor,t ream n 37: 1.ower T.atham . 33,100 29,2'30 27,000 27,800 30,700 31,200 j<.es e rvo i r  !,! (1,070) (1.380) (1,400) (1,400) (1,480) (1,500) h' D 40: S. Platte River 34,400 48,200 h 36,700 36,400 34,600 Below confluencei (1,560) (1,720) (1,600) (1,580) (1,550)

D 45: St. Vrain l 48,600 34,100 33,600  ! 28,900 29,000 36,400 l

Creek I (1,290) (1,530) (1,560) (1,430) i (1,460) (1,620)

Upstream U 42: St. Vrain  ! 41,000 27,400 31,100 30,100 31,400 35,300 Creek (1,680) (1,350) (1,500) (1,430) (1,390) (1,560)

U 43: S. Platte 41,400 36,700 30,500 33,500 36,300 31,400 (1,190) (1,610) (1,480) l River y (1,550]  ; (1,570) (1,390)

  • Uncertainties (in parentheses) are for the 95% confidence inte val, (1.96 S.D.).

h Sample collection omitted

O O O O O O O O O O O Table II. C.7 Strontium 90 Activity Concentrations-in Bottom Sediment (pCi/kg).

Sampling Monthly Collection Dates Locations 7-12-80 8-10-80 9-13-80 10- 4-80 11-8-80 12-13-80 Effluent E 38: Farm Pond 172 205 174 318 197 < 176 (Goosequill) (136)* (143) (153) (199) (265) -

E 41: Slough to 153 262 336

< 261 < 216 158 St. Vrain Creek (133) (136) (334) (147)

Downstream D 37: Lower Latham 243 < 148 160 < 143 < 211 139 ,

Reservoir (172) (153) (179)

D 40: S. Platte River 309 168 421 < 402 Below Confluence (200) (146) < 156 (305)

D 45: St. Vrain 518 176 Creek < 191 < 143 < 279 < 227 (174) (171)

Upstream u 42: St. Vrain 338 < 133 < 265 279 < 256 218 Creek (152) (248) (158)

U 43: S. Platte 230 258 135 River (149) < 313 < 229 < 150 (177) (476) ~

g Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

h Collection omitted.

Table II. C.8 Strontium 89 Activity Concentrations in Bottom Sediment (pCi/kg).

Sampling Monthly Collection Dates L cations 7-12-80 8-10-80 9-13-80 10-4 -80 11-8-80 12-13-80 Effluent E 38: Farm Pond 187 < 123 152 < 158 < 216 < 152 (coosequill) (507)* (457)

E 41: Slough to 364 < 266 < 184 < 128

< 11g < 117 St. Vrain Creek (799)

Downstream D 37: Lower Lathan < 148 < 132 < 122 283 < 178 < 124 .

Reservoir (348) y D 40: S.Platte River < 170 < 125 h < 238 < 231 < 138 Below Confluence D 45: St. Vrain 641 396 364 < 231 < 198

< 139 Creek (804) (617) (358)

Upstream u 42: St. Vrain < 126 < 117 836 < 197 < 210 < 144 Creek (814)

U 43: S. Platte < 126 < 125 < 153 < 257 < 187 < 139 River

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

h Sample collectior. omitted

0- - 0 O e 0 e e o e e e Table II. C.9 Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected July 12, 1980 .

i Sampling 106 1 95 Locations Ru Cs Zr & Nb Effluent E 38: Farm Pond < 3,750 < 635 < 232 (Goosequill)

E 41: Slough to < 3,750 < 635 < 232 St. Vrain Creek

< 3,710 4,480 337 D 37: Lower Latham (829)* (335)

, Reservoir D 40: S. Platte River < 3,700 < 651 < 232  ?

Below Confluence D 45: St. Vrain

< 3,700 < 651 351 Creek (369)

Upstream < 3,700 1,630 379 U 42: St. Vrain (988) (473)

Creek U 43: S. Platte < 3,750 1,610 274 River (860) (413)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

O O O O O O O O O O O Table II. C.9 Gamma-ray Emitting Radionuclide Concentrations in Bottom Sodiment (pCi/kg) for Samples Collected August 8, 1980 .

Sampling 106 1 95 Ru Cs Zr & Nb Locations Effluent E 38: Farm Pond 5,970 < 1,010 < 365

, (Coosequill) (7,999)*

E 41: Slough to < 5,930 < 1,030 < 372 St. Vrain Creek Downstream D 37: Lower Latham < 6,570 < 1,140 < 404 Reservoir l,,

r.n D 40: S. Platte River < 2,640 < 447 < 163 '

Below Confluence D 45: St. Vrain < 5,270 < 913 < 331 Creek Upstream U 42: St. Vrain < 5,530 < 959 < 347 Creek U 43: S. Platte < 5,650 < 979 < 355 River

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

- - _. _ . _ . . .. m . _ . .- .. __ _ . _ ._

w l

Table II. C.9

  • Camma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected September 13, 1980 .

, Sampling 106 g 137 95 Locations. Cs Zr & Nb Effluent E 38: Farm Pond < 3,700 722 < 238

~(Goosequill) (750)* -

E 41: Slough to St. Vrain Creek < 6,590 < 1,123 < 426' Dr.ma tream D 37: Lower Latham < 5,320 < 906 < 343

, Reservoir D 40: S. Platte River Below Confluence h h h D 45: St. Vrain Creek < 5.154 < 877 < 332 Uystream U 42: St. Vrain < 3,700 < 631 < 238-f, reek U 43: S. Platte < 5,274 < 397 River < 340

  • Uncertainties (in parentheses) are for the 95% confic'ence interval, (1.96 S.D.).

h Sample collection omitted.

4

Table II. C.9 ,

~ Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected October 4,1980 - .

Sampling 106 137 95
Locations h Cs Zr & Nb-

~

I Effluent-E 38: Farm Pond < 4,820 < 821 < 296-(Goosequill)

E 41: Alough to < 8,3'82 < 1,420 '< 529 Vrain Creek U ""**'*** ~

3 < 4,720 < 802 416 i - D 17: Lower Latham

. Reservoir (592)* i en 4 D 40
S. Platte-River '

'E

Below Confluence < 5'760 < 1,030 - < 368 -

D 45: St. Vrain

< 3,650 Creek

< 648 < 233.

i j Upstream

< 3,850 < 65:i < 236-

U 42
St. Vrain Creek U 43: S. Platte < 3,850 < 655 < 237-River
  • Uncertainties (in parentheses) are for the 95% confidence interval, -(1.96 S.D.).

i k

i F

, g w _ .+ g-- _- . .___m_ .. .

Table II. C.9 -

Gamma-ray Emitting Radionuclide Concentrations in Bott.om Sediment (pci/kg) for Samples Collected November 8,1980 .

Sampling 10e 137 95 Locations h Cs 2r & Nb .

^

,Ef fluent _

E 38: Farm Pond < 4,930 < 876 1,400 (Coosequi11) (561)*

E 41: Slough to 6,520 < 670 < 241 St. Vrain L*eek (6_ pan)

Downstream D 37: Lower Latham 5,260 < 786 '496

, Reservoir (6,800) (481) ,

D 40: S. Platte River < 4,400 < 783 336 Below Confluence (476)-

D 45: S. Vrain < 3,650 < 648 < 233 Creek Upstream U 42: St. Vrain < 5,440 < 968 < 348 Creek U 43: S. Platte 4,680 < 721 < 259 River i (6,500) __

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).

U U U e e e e e o e e Table II. C.9 '

Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Saw.ples Collected December 13. 1980 .

sampling 106 137 Locations Ru Cs Zr & Nb Effluent E 38: Farm Pond < 3,590 731 < 226 (Goosequill) (715)*

E 41: Slough t < 3,750 < 633 St. Vrain Creek

< 235 Downstream D 37: Lower Latham < 3,810 723 < 240

, Reservoir (740)

D 40: S. Platte River Below Confluence

< 5,470 < 925 < 344 'f D 45: St. Vrain 10,800 1,850 563 Creek (5,770) (732) (353)

Upstream U 42: St. Vrain < 5,280 < 895 < 333 Creek U4: S

< 7,110 < 1,200 ( )

River l

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

)

II.C.3 Precipitation Gross beta and tritium deposition values are given in Table II.C.10.

)~ Precipitation collectors of size sufficient to produce a significant sample sre located at two locations, F-1 and F-4. Values are expressed as deposition (i.e. pCi/m ) as only this value can be correlated to food h

t chain transport. Studies or world-wide fallout have shown that forage and subsequent milk or meat values can be reasonably predicted from l deposition values. The deposition measured is actually the sum of dry and precipitation deposition as the collectors are washed down monthly or after a large rain or snowfall. The tritium deposition is calculated

as the product of the specific activity measured in the water ard the

) total volume.

l From the table it can be observed that both the gross beta and tritium deposition increases significantly in the period between 10-4-80

)

and 11-15-80. This was the period which included the major fallout j from the October 17, 1980 Chinese weapon test. It is important to note j that the values for F1 and F4 were not statistically different. This further substantiates the conclusion that the increased deposition was due to the fallout cloud and not due to reactor effluent. The mean tritium value for F1 was not different than the mean value from F4.

)

Since the F1 collector is near the liquid effluent pathway it would be expected to collect some increased tritium deposition from the evaporation as discussed in II.B.3. Ilowever, the mean of the values observed at F1 before the influx of Chinese weapon test was not greater than the mean of the values observed at F4 during the same periou. This further reinforces the conclusion that the tritium evaporation from the effluent routes is

) The values small compared to events such as the most recent weapon test.

$)

observed at F1 and F4 during the high fallout period were nearly identical.

It should also be noted that they were considerably smaller than observed D in 1973 and 1974 after previous Chinese atmospheric tests. This implies a difference in weapon type or design.

No significant differences have ever been observed between F1 and

) F4. These collection sites are at opposite directions from the reactor and in the predominant wind directions.

Table II.C.11 and II.C.12 list the precipitation deposition of D Ru-106, Cs-137 and Zr-Nb-95. The mean values at F-1 and F-4 were not significantly different.

i Table II.C.13 lists the deposition of the strontium radioisotopes.

D The values are extremely variable as the concentration in the water is extremely low and due to the large water volume collected small 1

uncertainties in the concentrations produce large variations in the total O deposition estimate.

l l

l l

O O

3

g

~ ' ~

,Q gf~ -

.g. .g f - ~ ~ - - g- ~ ~ ~ T Q ' Eg ~~- - 1) ~ ~~'7Q Table II. C.10 Gross Beta and Tritium Deposition from Precipitation at Locations F1 and F4.

Sample Cumulative Gross Beta Deposition (pCi/m ) Tritium l Volume *

,f",f (liters) Suspended Solids Dissolved Solids Total Deposig)

(pCi/m ion F1 F4 F1 F4 lF1 F4 F1 F4 F1 F4 7-12-80 49 52 94.6 <-4.74 61.2 28.7 156 33.2 287 < 238 (8.72) (5.34) (4.38) (9.94) (7.62) (162) 8-10-80 56 56 7.70 10.9 20.8 9.73 28.5 20.6 < 238 < 238 (7.41) (7.07) (4.63) (3.98) (8.52) (7.81) 9-20-80 100 100 < 9.76 < 9.16 45.2 67.7 48.1 73.9 492 < 303 0' (29.4) (28.6) (29.9) (28.9) (272) 10-4.-80 50 50 < 5.09 < 4.73 20.3 11.9 22.7 13.3 < 303 890 (14.7) (13.4) (15.0) (13.8) (276) 11-15-80 50 50 16.6 6.72 202 152 219- 159. 1,170 1,050 (6.99) (6.27) (20.9) (18.5) (19.7) (17.5) (279) (278) 12-13-80

      • 100 100 188 33.9 68.1 69.5 86.9 103 a 330 (13.5) (13.1) (9.40) (8.99) (16.2) (15.6) (26 (262)
  • Samples are analyzed at the end of each month if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Composite 9-6-80 and 9-20-80, 11-29-80 and 12-13-80, respectively.

Y _g____ _ _ W _ _g__ _ .__:U ~U RU UE

.- g - ~ V ~~

.JJ..

1 Table II. C.ll Gamma-ray Emitting Radionuclide Deposition from Precipitation at: Location F1.

Sample Total

  • Suspended Solids-()Ci/m ) Dissolved Solids (pCi/m ) Total (pCi/m )-

, Dates ( te s) Ru Cs Zr-Nb Ru Cs Zr-Nb Ru' Cs Zr-Nb 7-12-80 49 < 24.3 14.6 5.81 120 < 9.93 22.1- 89.9 12.3 27.9 (6.15)** (7.66) (37.5) (8.70) (46.7) (10.81- (11.6) j 8-10-80 56 < 15.9 < 4.99 < 2'.14 < 36.6 < 11.3 < 4.79 < 15.9- < 4.99 4.90 (8.02) 9-20-80 100 < 9.32 < 2.89 3.89 < 31.8 < 9.97 < 4.28 < 9.32 < 2.89- < 1. 23 '

(2.09) .
C' 10-4-80 50 32.1 12.0 3.48 < 26.5

. < 8.29 7.47 25.5 14.3 11.0 -

(20.2) (4.83) (3.82) (4.94) (33.8) (8.08) (5.76) -

11-15-8C 50 < 7. 98 7.76 13.3 39.7 7.33 13.7 26.4 16.1 '27.0-(2.67) (2.36) (12.6); (3.23) (1.58) (16.7) (4.17) ,(2.79) 12-13-8C 110 26.7 12.9 7.07 a a a' 26'.7 12.9 :7.07 '

(18.8) (4.84) (2.45) (18.8) (4.84) .(2.45) ,

  • Sa.mples are analyzed at the end of each month if sufficient volume has accumulated.

, ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.). -t

      • Composite 9-6-80 and 9-20-80, 11-29-80 and 12-13-80.

a Sample los't prior to. analysis.  ;

1 e

Table II. C.12 Camma-ray Emitting Radionuclide Deposition from Precipitation at Location F4.

Sample Total

  • Suspended Solids (pCi/m ) Dissolved Solida (pCi/m ) Total (pCi/m )'

Dates ite ) Ru Cs ' Zr-Nb Ru Cs ' Zr-Nb Ru Cs Zr-Nb 7-12-80 52 < 24.4 < 7.57 11.5 < 33.3 .~ 0. 8 16.1 < 24.4 4.90 27.6 (7.73)* * (7.93) (8.68) (9.95) (11.6)'

8-10-80 56 < 6.66 < 2.08 1.82 < 33.6 < 10.4 14.3 < 6.66 11.1 16.1 (2.57) (7.07) (7.67) (6.82) 9-20-80 100 681 < 13.8 21.1 56.5 < 10.1 4.33 737 <10.1

      • 25.4 (57.4) (12.8) (38.2) (95.6) (11.8) ss 10-18-81: 50 25.9 < 5.15 < 2.21 < 27.4 9.68

?

11.- 45.2 10.5 11.7 (18.2) (6.93) ( 5. 6. ') (31.3) (7.91)

(6.46) 11-15-8C 50 22.5 < 6.46 < 2.77 359 < 1.90 < 0.822 382 <1.90 2.02 (20.4) (10.4) (21.8), (3.00) 12-13-8C 100 < 50.2 < 15.6 < 6.78 < 56.0 54.7 99.3 < 50.2

      • 58.4. .

101 (14.6) (10.6) [19.0) (11.8)

  • Samples are analyzed at the end of each month if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Composite 9-6-80 and 9-20-80, 11-29-80 and 12-13-80, respectively.

._ __ =

1 rs Table II. C.13

. Radiostrontium Deposition from Precipitation at Locations F1 and F4 -(pCi/m ).

~

t i

"" E "**

Sample Ending Strontium 89 ' Strontium 90 F1 F4 F1 F4 F1 F4 7-12-80 49 52 < 9.54 < 6.89 < 11.0 11.7 -(8.35)**

8-10-80 56 56 8.76 (27.0) < 22.6 < 8.12 < 26.3 i

9-20-80*** 100 100 < 14.8 < 13.9 < 17.3 < 16.2 10-4-80 50 50 < 7.47 < 7.23 74.1.(12.3) 8.'64(8.59) 11-15-80 50 50 10.7 (21.8) < 9.25 < 9.31 .< 11.6 s.

7 100 100 1.40 (1.43) 2.56 (1.57) < 0.888 < 0.966 12-13] .

  • Samples are analyzed at the-end of each month if sufficient volume has accumulated.
    • Uncertaintics (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Composite 9-6-80 and 9-20-80,11-29-80 and 12-13-80',respectively.

)

I I . D. Food Chain Data l l

1. Milk. Milk is the most important radiation dose commitment a pathway for 11-3, I-131, Cs-137 and Sr-89,90. Tritium concentrations in milk are summarized in Table II.D.1. There was no significant difference in mean tritium values in water extracted from milk at the only dairy in the Facility area (F-44) and the Adjacent Composite and the Reference Composite mean values for the second half of 1980 (see Table I1.11.1).

Tritium arithmetic mean values for Facility, Adjacent and Reference sites b were less than MDC, 387 and 188 pCi/1 respectively and were essentially l

the same as values observed during the first half of 1980. This was the case even though the tritium deposition to the area was elevated due

) to the Chinese weapon fallout.

Tritium concentrations in milk should respond rapidly to changes in tritium concentrations of the forage water intake to the cow due to

)

L the short biological half-life for water in the cow (about three days for the lactating cow). Ilowever, the increased deposition of tritium occurred in late fall when essentially all of the forage intake was cut b hay from the previous summer. Therefore no equilibrium with fallout tritium should have been expected.

l As noted in previous reports, tritium activity per liter reflects D

f the tritium in the water extracted from the milk and not the activity per liter of milk. Whole milk is approximately 87% water ( 3-4%, depending on the cow breed, pasture, and feed). Skim milk accordingly has a

) higher water content. It nay be assumed tnough that the remaining solids in milk (proteins, carbohydrates, and lipids) also contain some tritium due to exchange of tritium with hydrogen on these large moleculer

) structures. This tritium concentration will be very much lower than in the water fraction and is not significant for dose considerations.

C)-

. Tables ~ II.D.2 add II.D.3 list the Sr-90 and Si-8'9 concentrations in" milk. There was.no significant difference between the three sampling I

' C)

, zones. As expected the mean values -for Sr-89 wereless than MDC.

i-

. The' concentrations of I-131, Cs-137 and K-nat in milk are given in Table'II.D.4.

O-

~

The arithmetic mean values (Table II.ll.1) for the reporting period were very similar to those observed in the first half of 1980.

, .They were not significantly different an/ were certainly not due to IC) reactor effluent. The source of the I-z 31 measured, if real,. is unknown.

-K-nat, as measured by K 40 is very constant in milk. The mean w

cliterature value is 1.5 g/L. K-nat is measured and reported therefore

' C) only for a quality control measure of Cs-137 and I-131 determined in the -

same sample by gamma-ray spectrometry.

Due to the availability of a large NaI(TI) scintillation crystal, iC) shield and pulse height analyzer that has been dedicated to only counting' 1

. project milk samples, we have lowered our MDC for I-131. A counting time 4

of 3000 minutes per sample with a slight reduction in background has

C) 5 achieved a MDC value of approximately 0.6 pCi/L. This is preferable L

to any chemical concentration' process and nearly all milk sample data reported here were for 3000 minutes . counting time. Differences in counting-l C) time produce different MDC values.

It should be noted here that a close relationship 'between forage deposition and milk concentrations should be expected for tritium, the IC) i strontium radioisotopes, for Cs-137 and for 1-131 only if the cows are on pasture or fed green cut grass or alfalfa. This unfortunately is ,

not the general feeding practice at the dairies around the reactor.

C)
Nearly all cattle feed is hay grown either locally, from Nebraska or

!' the North Park region of Colorado. It can at time be even cuttings 10.

t

'O' from the previous. year. This makes correlation of milk concentrations with air concentrations very difficult. On the other hand, if elevated

'O I-131 or tritium concentrations are noted, the surface deposition must.

have been reasonably related in time and location.

O 4

.o

.O

O O

4

'O

.O iO i

4 i

O 1 ~

l'

Table II. D.1 Tritium Concentrations in Water Extracted from Milk (pCi/1).

D e 9 Facility Area 44 Adjacent Composite

  • Reference Composite
  • Pasture Season July 5 565 (222)** < 246 264 (219)

July 12 366 (220) 692 (224) 547 (222)

July 19 255 (219) 895 (226) < 246 July 26 642 (223) 808 (225) 353 (220)

August 2 408 (221) 360 (220) < 246 August 10 < 246 < 246 < 246 August 16 < 246 420 (215) ***

August 24 447 (247) 554 (248) < 251 August 31 < 251 296 (226)

September 6 316 (226) &

< 251 < 251 < 251  ?

September 13 321 (226) 262 (226) < 251 September 20 < 251 < 251 465 (228)

September 27 427 (272) 660 (274) 392 (271)

Post-Pasture

_ Season October 4 < 303 589 (293) 525 (273)

November 1 < 294 < 294 357 (262)

December 6 670 (265) < 294 < 294

  • Adjacent Composite Locations: A6, A28, A31, A50, A 36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Values uncertain due to equipment contamination.

!OT U ~O U~~~ W -~~U-~ ~U ~ RJ ~ ~ ~ W~ V

~

V L

/

Table II. D.2 Strontium 90 Activity in Milk (pCi/1).

  • '8 -Facility Area 44 Adjacent Composite
  • Reference Composite
  • D e 980 Pasture Season e

July 5 < 2.69 < 2.89 <'2.25 July 12 2.83 (1.15)* 3.39.(3.22) < 0.685 July 19 4.54 (3.03). < 6.08 < 8.98 July 26 < 1.38 1.20 (1.15) 4.11 (1.94)

Aug. 2 3.40 (1.50) 9.95 (5.55) 14.1 (5.10)

Aug. 9 9.08 (2.47) 7.51 (2.09) 4.69 (3.73)

Aug. 16 3.14(1.54) 2.44 (1.17) -1.12 (1.08)

Aug. 23 1.66 (1.03) 5.47 (1.77) 5.31 (1.27) -,

Aug. 30 6.59-(2.37) 2.32 0.945) .1.50 (1.07) s' Sept 7 5.89 (1.61) 4.14 1.04) 13.5 3.11)

Sept 13 3.57(9.26) 3.14 1.47) 3.45 1.93) l Sept 20 < 1.14 < 2.16 2.62 1.96)

Sept 27 3.72 (1.16) 3.54 (0.918) 2.45 (2.15)

Post Pasture Season Oct. 4 2.14 (1.04) 1.41 (1.23) 1.46 -(1.49)-

Nov. I < 1.14 1.34 (1.27) < 2.94 '  ;

Dec. 6 < 9.36 . < 2.67 1.75 (1.74) '

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48, i Reference Composite Locations: R16, R17, R20, R22, R23, R25.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96'S.D.). ,

9 Analysis in progress.

4

Table II. D.3 Strontium 89 Activity in Milk (pCi/1).

l 4

Facility Area 44 Adjacent Composite

  • Reference Composite'*

D 90

Pasture Season July 5 3.82 (8.68)* < 2.53 3.03-(7.45)

. July 12 < 1,04 3.66 (3.12). 4.38-(2.49)

July 19 < 2.50 < 5.36 < 8.03 July 26.

42.8 _(18.7) 1.47 '<~1.67 Aug. 2 < 1.27 < 4.59 < 4.02 Aug. 9 < 1.97 < 1.66 < 3.25

.Aug. 16 1.50 (4.24) < 1.05 3.89 (3.10)

Aug. 23 < 0.916 3.54c(4.79) < 1.01 O Aug.'30 < 2.06 1.02 (3.06) < 1,24 Y Sept 7 4.43 (3.76) < 0.894 <.3.24 Sept 13 < 0.838 < 1.89 < 2.24 Sept 20 < 1.56 < 2.73 < 1.66 -

Sept 27 < 1.39 < 0.857 14.6 ('5.84 )

Post Pasture Season

Oct. 4 < 1.t9 2.15 (2.88) 1.40(3.55)  !

) Nov. I 1.72 (1.98) 6.11-(3.95 6.74 (5.38)

Dec. 6 31.9 (18.7) 5.72 (5.13)) < 1. 54 -
  • Adjacent Composite Locations: A6,~A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23 R25.

    • Uncertainties (in parentheses) are -for the 95% confidence interval, (1.96 S.D.).
g. Analysis in progress.

4 1'

I Table II. D.4 Gamma-ray Emitting P.adionuclide Concentrations in Compesite Milk Samples.

C ec d I (pCi/1) Cs (pCi/1) Nat. K (g/1) 7-5-80 Facility 2.30 (1.12 6.78 0.865)

Adjacent 14.2 (1.89 4.50 0.866) 1.30 (0.117))

1.59 (0.0121 Reference 46.9 (1.76) 8.61 1.03) 1.55 (0.0153) 7-12-80 .

Facility 6.49 (1.49) 1.95 (1.15) 1.59(0.0184)

Adjacent 1.62 (1.91) 0.741 (0.882) 1.52 (0.0127)

Reference 1.80 (2.21) 0.189 (0.856) 1.36 (0.0120) 7-19-80 Facility 23.6 (1.65) 7.29 (0.762) 1.54 (0.0116)

Adjacent 6.56 (1.56) 2.15 (0.935) 1.58 (0.0154)

Reference < 0.139 < 0.140 1.34 (0.0126) 7-26-80 Facility 17.1 (1.55) 4.87 (0.715) 1.77 (0.0109)

Adjacent 11.4 (1.11) 5.62 (0.722) 1.50 (0.0108)

Reference 17.9 (1.89) 5.57 (0.737) 1.53 (0.0111) 8-2-80 Facility 18.4 (1.69) 5.68 (0.843) 1.37 (0.0119)

Adjacent 12.0 (1.51) 4.54 (0.822) 1.55 (0.0117)

Reference < 0.139 < 0.140 1.34 (0.0126) 8-10380 Facility 17.4 (2.76) 3.60 (0.825) 1.45 (0.0117)

Adjacent 51.5 (1.44) 9.97 (0.842) 1.85 (0,0124)

Reference 64.1 (2.03) 20.9 (0.859) 1.97 (0.0124) 8-16-80 Facility 4.49 (1.40) 1.54 (0.833) 1.52 (0.0118)

Adjacent 54.3 (1.81) 9.40 (1.08) 1.81 (0.0146) l Reference < 0.123 < 0.116 1.58 (0.0123) 8-23-80 Facility 6.59 (1.39) 10.7 (1.03) 1.50 (0.0146)

Adjacent 9.36 (2.33) 10.0 (1.04 1.53 (0.0147)

Reference 99.8 (3.32) 29.3 (1.05 1.66 (0.145)

I 8-30-80 Facility 0.143 0.134 1.35 (0.127)

Adjacent 1.10 (2.62) 0.869 (0.926) 1.40 (0.0127)

Reference 7.84 (2.07) 3.27 (0.847) 1.35 (0.0119)

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23, R25.

      • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.0.).

Table II. D.4 Gamma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.

Col ec ed I (PCi/1)' Cs (Wi/1). Nat. K (g/1) 9-6-80 Facility < 0.112 26.8 (0.879 1.44 (0.0120)*

Adjacent 55.4 (7.88) 2.29 (1.08))***1.38 (0.0157)

Reference 42.3 (9.53) 4.85 (1.11) 1.45(0.0163) 9-13-80 Facility- ~28.1 (5.15) 3.89 (0.914) 1.44 (0.0121)

Adjacent. 48.5 (5.90) 5.90 (1.15) 1.52 (0.0171) i . Reference- 85.6 (7.84) 6.38 (1.08) 1.51 (0.0156) 9-20-80 Facility 32.1 (4.70) 4.59 (1.08) 1.49(0.0158)

Adjacent 35.3 (6.37) 9.42 (1.15) 1.49(0.0169)

Reference 0.207(5.69) 2.10 (1.02) 1.37 (0.0156) 9-27-80 Facility 36.5 4.34) 6.07.(1.09) 1.52 0.159 Adjacent 32.2 5.07) 1.55 0.157 .

Reference 39.2 4.21) 6.40 (1.08)).

8.81 (0.978 1,48 0.145 10-4-80 Facility 20.3 (2.72) 4.21 (0.965) 1.38 (0.0143)

Adjacent 88.7 (3.38) < 0.108 1.49(0.0119)

Reference 68.9 (5.23) < 0.111 1.49(0.0121) 11-1-80' Facility l < 0.105 < 0.104 1.47-(0.0119) i Adjacent j

< 0.154 < 0.152 1.51(0.0147) j Reference 28.0 (2.28) 9.12 (1.13) 1.52 (0.0168) i 12-6-80 i Facility 18.4 (2.87) 15.4 (1.10) 1.53 (0.0157)

Adjacent 14.5 (3.46) 13.8 1.11) 1.44 (0.0159)

Reference 19.7 (3.44) 14.0 0.921) 1.43 (0.0123) i

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

()

II.D. Food C:.ain Data

2. Forage. Table II.D.5 lists the tritium specific activity n

in water extracted from foi age sample, as well as Sr-89 and Sr-90 concentrations in the forage dry matter. Tritium values that were obtained were very similar to those reported in past reports. There n

were no significant differences in mean tritium values between Facility, Adjacent and Reference locations even though the Facility mean value was again the highest. The tritium in forage water was somewhat less

- C) than the concentration in milk. This indicates that the forage sampled is not the principal local cattle feed.

Strontium-90 and Sr-89 concentrations were also not significantly different for the three sampling zones. Sr-89 values were less than MDC as little tropospheric input or reactor effluent of this radionuclide was expected during the sampling period. Strontium-90 values were quite

- C) consistent and prabably reflect soil uptake from Sr-90 deposited from previous weapon debris fallout.

Table II.D.6 lists Ru-106, Cs-137 and Zr-Nb-95 activities O

in forage samples for the second half of 1980. No significant differences were observed.

Gross Feta concentrations in soil and forage collected at the F) same locations are given in Table II.D.7.

From Table II.ll.1 it is observed that mean values for all radio-nucliites in each sample type are very close to those measured during O

the first half of 1980.

Cattle forage samples, i.e. fresh cut grass or alfalfa hay is the sample of choice for several reasons. Forage integrates atmospheric g.

we . and dry deposition over a large surface area per unit weight and also is a direct link in the dairy and beef food chain transport of 11-3, Cs-137, and the strontium radioisotopes. Such samples are collected when possible.

' C)

O liowever, due to feeding practices, vagaries of weather and other factors, often silage or cut hay sampics must be collected. These

~O samples may or may not be harvested locally and may represent different fallout periods. This often presents difficulties in data interpretation.

O O

o f

O o

-.O i

O o-

O Table II. D.5 m, Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected July 26, 1980 .

8 Tritium Strontium 89 Strontium 90 g (pCi/1) (pC1/kg) (pCi/kg) -

Facility 4 e < 8.26 50.6 (10.9)*

g 44 e < 7.45 55.3 (10.1)

Adjacent 6 e < 10.7 117(12.8) 28 e < 11.2 44.4 (13.8) 31 e < 19.8 104 (25.1) 36 e 8.09(37.2) 37.6 (8.16)

< 5.91 48 e 120 (9.45) 50 1220 (229) < 9.80 116 (12.6)

O Reference 16 < 246 < 4.80 74.8 (6.75) 17 < 246 167 (126) 57.3 (27.2)

O 20 < 246 102(27.1) 63.3 (7.53) 22 e < 5.99 75.8 (8.69) 23 e 19.5 (47.9) 137 (9.77)

,0 25 e < 8.05 64.7 (11.2)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S .D . ) .

.-O e Insufficient volume for analysis O

i L.

l Table II. D.5 a# Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected August 30, 1980 .

Tritium Strontium 89 Strontfum 90

^ *** '

(pCi/1) (pCi/kg) (pCi/ks,)

]

Facility l

4 e. h h 3 44 1,180(235)* < 21.4 80.6 (19.1)

Adjacent 6 e < 11.3 81.7 (14.0)

O 28 e < 4.38 73.4 (7.42) 31 775 (231) < 16.5 68.9 (20.0) 36 304 (226) < 16.0 76.1 (20.1)

'D 48 , . e < 59.9 54.0 (20.6) 50 e < 10.3 115 (13.7)

.D Reference

! 16 1,049 (233) < 18.2 111 (22.4) l 17 e < 12.9 131 (15.2)

J 20 ** ** **

22 < 251 < 18.9 76.9 (21.7) 23 < 251 < 8.11 192 (12.7) 3 25 e < 9.01 73.9 (11.3)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.) .

O e Insufficient weight or volume for analysis.

    • New site being located.

h Sample collection omitted.

O

O

_78-Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in O

Forage for Samples Collected Septpebor 2n_1990 .

^ Tritium Strontium 89 Strontium 90 0 (pci/1) (pci/kg) (pci/kg)

Facility 4 e < 25.3 71.9 (31.3)*

O 44 < 251 < 13.4 77.3 (14.2)

Adjacent 6 e < 8.00 187 (12.4)

O 28 e 75.2 (47.5) 48.7 (13.0) 31 < 251 17.7 (58.9) 73.4 (17.0) 36 < 251 < 12.5 84.7 (12.9)

O 48 47'(228) < 16.3 266 (22.0) 50 e < 28.4 59.2 (18.6)

'O Reference 16 606(229) < 17.7 98.9 (17.6) 17 ,

< 251 < 21.2 84.2 (19.0)

() 20 ** ** **

22 e < 20.0 102 (19.1) 23 505(228) < 30.0 129 (27.7)

O 25 e 63.5 (62.5) 116 (17.5)

  • Unc-rtainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
O e Insufficient weight or volume for analysis.
    • New site beinq located iO l l

O Table II. D.6 9 Gamma-ray Emitting Radionuclide Concentrations in Forage (pCi/kg) for Samples Collected . vuly 26,1980 .

g Areas Ru Cs Zr & Nb Facility 4 < 73.1 81.4 (19.9)

  • 39.7 (20.2) g 44 < 59.0 < 18.3 22.9(13.6)

Adjacent 6 < 64.1 < 19.8 55.0 (19.1) 9 '

28 , 289 (123) < 49.3 40.4 (15.6) 31 < 56.4 < 17.7 < 7.59 36 < 82.1 78.8 (22.2) 25.9 (18.7) 48 < 55.3 95.9 (16.6) 52.2 (13.7) 50

< 49.9 30.6 (14.8) 17.1 (12.5)

Reference 16 < 22.7 < 7.07 17.3 (10.6) 17 40.7 (60.6) 43.4 (13.1) 114 (17.4) 20 < 55.1 93.1 (16.5) 74.4 (17.6) 22 < 59.9 < 18.8 13.1 (14.8) 23 . < 54.9 34.9 (15.3) 31.4 (7.57) 25 < 94.9 69,7 (25.0) 49.4 (20.1)

I

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

g

f

~

, l 1

l l

Table II. D.6

'g Camma-ray Emitting Radionuclide Concentrations in Forage (pci/kg) for' Samples Collected August 30, 1980 _.

I Areas Ru Cs Zr & Nb Facility 4 h h h 44 < 37.7 13.1 (10.9)* 44.2 (10.4) 3 Adjacent 6 < 50.2 < 15.6 51.9 (10.1) 28 < 151 66.2 (42.0) 26.3 (38.9) 31 < 33.6 28.5(10.9) 56.2 (10.4) l 36 < 70.2 42.2 (19.3) 57.9 (18.9)

D < 56.6 48 71.0 (16.7) 74.7 (16.0) l 50 181 (113) 324 (28.3) 435 (27.1)

Reference 16 < 91.2 < 28.4 91.1 (23.7)  :

I 17 < 39.7 12.3 (11.6) 44.9 (11.1) 20 ** ** **

22 < 62.0 35.1 (17.6) 54.5 (17.2) 1 23 < 75.7 71.5 (21.4) 43.3 (19.7) l 25 < 94.5 77.0 (25.0) < 80.9 (23.4)

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).

) ** New dairy *being located.

h Sample collection omitted.

O Table II. D.6

[) Camma-ray Emitting Radionuclide Concentrations in Forage (pC1/kg) for Samples Collected September 20, 1980 .

g Areas Ru Cs Zr & Nb Fa_cility 4 < 87.3 104 (24.7) 411 (E2.5) qp 44 < 37.8 13.6 (11.2) 30.8 (8.52)

Adjacent 6 < 47.5 51.3 (13.5) 31.3 (9.94)

O '

28 < 48.6 17.4 (13.3) 28.3 (10.3) 31 < 55.5 44.7 (15.8) 42.7 (11.8) 36 < 61.4 26.1 (17.3) 22.8 (9.46)

O 48 < 58.8 33.9 (17.0) 29.3 (13.3) 50 < 25.8 < 8.04 30.4 (6.86) e Reference 16 < 43.3 < 13.5 20.3 (9.20) 17 < 33.4 24.7 (9.71) 37.0 (7.49)

O 20 ** ** **

22 207 (68.4) < 18.0 29.7 (12.1) 23 < 52.3 80.9 (15.1) 37.8 (10.8) e 25 < 17.1 40.9 (6.18) 32.3 (4.69)

  • Uncertainties (in parentheses) are for the 95% confidence

'q, interval, (1.96 S.D.).

    • New dairy being located.

e l

l

j II.D. Food Chain Data l

3. Soil. Table II.D.8 presents gross beta activity of soil per D unit surface area for the second half of 1980.

Soil samples are collected at the same time and location as forage sampics. A core borer is used to collect the sanple. The sample depth D is 10.3 cm and the area is 102 cm . Gross soil density'is approximately l

i 1 g/cm3 .

i l

l l There was no significant difference in the gross beta activity D values between the Facility, Adjacent and Reference collection areas.

l The gross beta concentrations are extremely constant because the measured l

l activity is due primarily to naturally occurring radionuclides. Mean D values are not different than those collected and analy:cd since the j

inception of the project, i The activities of the fission products Ru-106, Cs-137 and Zr-Nb-95 P per unit surface area are given in Table II.D.9 for the same period. This t

analysis is performed by Ge(Li) spectrometry due to the predominant con-centration of the naturally occurring radionuclides. Essentially only D

Cs-137 can be measured in the local soil. This is because the recent deposition of Ru-106 and ir-Nb-95, the short-lived fission products, is l minimal compared to the past deposition of Cs-137. Cs-137 has a half-O life of 30 years and is trapped by ion exchange in the top 2-3 cm of soils with clay minerals. For this reason soils that are disturbed l or turned over for agricultural purposes will have widely varying Cs-137 D concentrations. Most of the soil sampling sites in the surveillance l

program fall in the latter category.

Tritium, Sr-89 and Sr-90 in soil are shown in Table II.D.10.

Tritium specific activity in soil is statistically the same as that in l

3 l

l

) other environmental samples, e.g. water, forage and milk. The concentrations l:

of the strontium radioisotopes were quite variable. The mean Sr-89 value was strongly influenced by a few sampics and the arithmetic mean l concentration of Sr-90 was 180,173 and 273 pCi/kg for the Facility, l l

Adjacent and Reference zones respectively. These mean values are not  !

> significantly different and not different than those observed in D:e l

1 j previous reporting period.

l The numbers given in parentheses next to all values above the

)

minimum detectable concentration are the 95% confidence intervals for each measured value. This number is calculated solely on the basis of counting statistics. Obviously this uncertainty is only a part

)

l of the total expected variation that must be assigned to any measured analytical value. The total variation must include the true environmental (often called sampling) variation as well as the analytical or methodological

)

variation. The variation due to counting is only part of the methodological variation. While the true environmental variation cannot be dtternined directly the methodological variation can be measured. An experiment was

)

conducted previously in which a single large soil sample was thoroughly homogenized and 10 aliquots taken for Sr-90 analysis. The standard deviation I as a percentage of the mean value (coefficient of variation) was 63L This

) is the methodological standard deviation which in the experiment included counting statistics. The environmental variation is expected to be ,

considerably greater. This is due to the fact that Sr-90, like Cs-137,

)

is deposited largely on the soil surface, and when the surface is disturbed the surface layer is often greatly diluted or not even part of the sample collected. For these reasons the variation in reported Sr-90 and Sr-89

)

soil concentrations, although large, should be expected.

i r

p

J Table II. D.7 Gross Beta Concentrations in Soil and Forage .'pci/kg) for O Samples Collected Third Quarter,1980 .

Sampling July 26, 1980 August 30, 1980 September 20, 1980 cation Forage Soil Forage Soil Forage Soil Facility 4 32,700 13,000 h h 3?,800 30,000 (1,460)* (333) (1,490) ( 660)

O 44 33,300 22,000 31,900 16,500 32,100 6,600 (1,400) ( 356) (1,520) (271) (1,420) ( 150)

Adjacent 6 29,700 21,000 31,400 23,000 30,100 15,500 O (1,380) ( 340) (1,530) ( 353) (1,470) ( 246) 28 24,300 21,000 25,800 17,800 30,700 14,100 (1,230) ( 317) (1,360) ( 278) (1,370) ( 261) 31 32,500 21,000 30,400 17,400 30,000 19,700 (1,460) ( 469) (1,460) ( 319) (1,300) ( 383)

,, 36 19,200 5 200 3

26,400 19,100 25,900 15,700 v (1,070) ( 157.) (1,390) ( 289) (1,390) ( 306) 48 29,900 21,000 30,000 26,800 29,300 26,500 (1,430) ( 322) (1,450) ( 422) (1,250) ( 413) 50 30,200 24,000 29,700 25,400 33,600 20,000 (1,400) ( 387) (1,480) ( 404) (1,460) ( 369)

O Reference 16 23,800 16,000 28,100 19,500 30,500 21,700 (1,200) ( 267) (1,430) ( 304) (1,480) ( 332) 17 20,000 16,000 18,300 19,600 16,700 17,300 (1,060) ( 340) (1,210) ( 331) (1,140) ( 304)

O 20 20,700 23,000 ** ** ** **

(1,120) ( 330) 22 30',300 27,000 28,300 22,300 33,400 21,700 (1,420) ( 386) (1,460) ( 436) (1,550) ( 338) 23 27,900 17,000 31,800 23,900 31,700 17,000

'g (1,350) ( 298) (1,530) ( 375) (1,480) (334) 25 23,900 8,100 27,700 7,580 22,300 21,000 (1,270) ( 266) (1,360) ( 207) (1,300) ( 380) l

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

O h Sample collection omitted.

    • New site being located.

1

O Table II. D.8 Cross Beta Activity in Soil per Unit Surface Area (pCi/m ) for O Samples collect ed Third Quarter,1980 .

Sampling

,O Locations Jul*/ 26,1980 August 30, 1980 September 13. 1980 Facility 4 4.21(0.188)* h 4.23 (0.192)

O 44 4.29(0.180) 4.11(0.196) 4.14 (0.183)

Adjacent 6 3.83(0.179) 4.05 (0.197) 3.88 (0.189)

.o 28 3.13 (0.158) 3.33 (0.176) 3.97 (0.177) 31 4.19(0.188) 3.92(0.189) 3.87 (0.168) 36 2.48 (0.138) 3.41(0.180) 3.34 (0.179)

,O 48 3.85(0.184) 3.87 (0.188) 3.78 (0.161) 50 3.90(0.181) 3.83 (0.191) 4.33 (0.189)

O Reference 16 3.07(0.155) 3.63(0.184) 3.93 (0.191) 17 2.58 (0.137) 2.36 (0.156) 2.15 (0.147)

O 20 2.67 (0.145) 22 3.91 (0.183) 3.66(0.188) 4.31 (0.200) 23 3.59(0.174) 4.10(0.197) 4.09 (0.191) iO 25 3.09(0.163) 3.58 (0.179) 2.87 (0.168)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • New. site being located.

lO h Sample collection omitted.

lo l

io Table II. D.9 Cama-ray Mtting Radionuclide Activity per Unit Surf ace iO Area of Soil (nCih.2) for Samples Collected July 26, 1980 .

Sampling l 106 Cs Zr & Nb Ru u Location l l

I Facility  ;

4 < 22.7 5.80 (4.58)* < 1.40

!O 44 < 34.0 < 5.78 < 2.12 l

t Adjacent l 6 < 55.7 < 9.46 < 3.47

? 28 < 19.4 < 3.28 < 1.20 31 < 28.0 8.17 (4.98) < 1.74 l 36 < 37.2 < 6.48 < 2.28 iO 48

< 33.6 < 5.84 < 2.06 l

50

< 23.6 5.34 (4.41) < 1.47

O l Reference i

l 16 < 19.2 < 3.34 < 1.18 l

17 < 28.8 < 4.88 < 1.78 l

0 20 < 33.1 < 5.77 < 2.04 22 < 31.1 < 5.27 < 1.93 23 < 37.3 < 6.34 < 2.32 O 25 < 38.3 < 6.67 < 2.36 l

  • Uncertainties (in parentheses) are for the 95% confidence in t e rva.1, (1.96 S.D.).

O '1

O Table II. D.9 Gamca-ray Ecitting Radionuclide Activity per Unit Surf ace O_

Area of Scil (nCi/c )2 for Samples Collected August 10, 1980 .

Sampling 106 95 Ru Cs Zr & Nb g Location l

Facility 4 h h h 44 a < 25.6 < 1.30 < 1. 51 Adjacent 6 < 19.7 4.59(4.07)* < 1.20 g

28 953 (58.0) 19.1 (5.26) 14.3 (6.95) 31 < 25.8 < 4.10 < 1.51 36 < 29.0 < 4.95 7.50 (6.57) 48 19.8 (37.8) < 3.36 < 1.18 50 < 40.0 < 6.95 4.16 (7.10)

O gererence 16 35.4 (48.8) 11.3 (4.97) 13.8 (6.81) 17 < 19.1 < 3.32 < 1.17 O 20 22 < 26.0 < 4.43 < 1.57 23 < 30.5 < 5.28 < 1.87 0 25 < 25.3 < 4.35 < 1.53

. Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

O ** New site being located.

h Sample collection omitted.

O

Table II. D.9 Gamma-ray Emitting Radionuclide Activity per Unit Surf ace Area of Soil (nCi/m 2) for Samples Collected September 13, 1980 .

r' 95 Sampling , 106 Cs Zr & Nb b Location l Ru l

Facility 4 < 27.0 < 4.59 < 1.66 3 44 < 19.2 < 3.32 1.71 (3.26)*

Adjacent 6 < 25.4 < 4.33 2.51 (4.23) 28 71.2(34.8) 10.2 (3.91) 4.90 (3.52) 31 < 26.4 < 4.49 < 1.62 l

36 < 28.8 < 4.90 < 1.77

}

l 48 < 19.2 < 3.32 2.25 (2.95) 50 < 22.7 < 3.87 < 1.40 O

l Reference 16 < 19.9 < 3.38 < 1.22 17 < 19.7 < 3.41 2.03(2.80) 20 l

22 < 20.4 < 3.53 1.82 (3.26) 23 , < 28.2 < 4.84 < 1.71 25 < 31.2 < 5.35 < 1.88 i!

Uncerta nties (in parentheses) are for the 95% confidence intcrval, (1.96 S.D.).

    • New site being located.

O

) Table II. D.10 Tritium, Strontium 89, and Strontium 90 concentrations in

} Soil for Sr_mpics Collected July 26, 1980 .

Sampling Strontium 89 Strontium 90

) Location Tritium (pCi/1) (pCi/kg) (pCi/kg) i Facility, 4 298(221)* 247 (348) 406 (170)

) 44 < 247 293 (356) 74.4 (66.6) i Adjacent l

l < 98.3 < 114

)

l 28 6 292(220)

< 247 128 (176) < 135 31 < 247 < 162 315 (204) g 36 < 247 < 113 225 (137) l 48 < 247 < 231 210 (277) 50 < 247 289 (557) < 273 b

Reference 16 374 (221) < 163 204 (189) 17 392 (221) < 129 390 (154) 20 364 (221) < 163 318 (189) 22 < 247 < 154 461 (196) 23 < 247 < 232 300 (276) 25 259 (220) < 117 480 (153)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l D

Tabic II. D.10

m. Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Collected Auqust 10. 1980 .

m Sampling Tritium Strontium 89 Strontium 90 V Location (pCi/1) (pCi/kg) (pCi/kg)

Facility 4 h h. h

O 44 645 (237)* 174 (637) < 112 Adjacent L,, 6 290 (234) < 135 376 (175) 9 ,

! 28 e < 69.1 200 (92.0) l 31 731 (238) 149(577) < 103 l

36 357 (234) < 66.8 149 (84.3)

C l 48 516(236) < 108 < 137 l

50 1,610 (247) < 202 273 (255) g Reference l 16 < 303 < 126 298 (158) 17 624 (237) < 100 204 (116) lO 20 l

I 22 470 (235) < 90.6 < 110 23 495 (236) < 84.4 234 (106) 25 378 (234) < 135 268 (173)

  • Uncertainties (in parentheses) are for the 95% confidence g interval, (1.96 S.D.).

e Insufficient volume or weight for analysis.

    • New site being located.

h Sample collection omitted.

O

O Table.II. D.10 hitium, Strontium 89, and Strontium 90 concentrations in O Soil for Samples Collected September 13, 1980 .

t Sampling Tritium Strontium 89 Strontium 90 O tocation (pci/1) (pci/kg) (pci/kg) .

Facility 4 107 (329) 107(87.3) 613(237)*

0 44 259(233) 429 (718) 244 (198)

Adjacent 6 536 (236) 97.4(378) < 100 P- 28' 493 (236) 752 (293) 131 (78.8) 31 411(235) < 140 452(191) 36 < 260 < 77.0 159 (98.8)

'O 48 < 260- 30.1 (40.4) 12.1(11.0) 50 297(234) 248 (400) < 106 ,

O Referenc e 16 506 (236) < 96.2 325 (137) 17 374 (234) < 103 < 81.5 10 20 ** ** **

22 < 260 394(457) < 131 23 902(240) ,.

131 (356) 155 (105) 0 25 < 206 558 (342) 515(92.3) ,

1

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • New site being located.

!O

, II.E. Aquatic Biota Table II.E.1 shows gross beta and strontium concentrations 20 observed in aquatic biota collected during the second half of 1980.

Sample collection problems were again experienced during this reporting period due to high flow rates. Benthic organisms and seston were either 50 impossible to co11eet or the sample size collected was too small for analysis. It should be noted that co11cetion of aquatic biota has been subcontracted to a private commercial fisheries company. Gross jO beta concentrations in the sample types are higher than any particular fallout fission product because of the presence of the naturally occurring radionuclides, e.g. K-* The strontium-89, Sr-90, and gross beta 10 concentrations observed we. entially the same as in previous reporting periods, and those from t downstream locations were not significantly different from the upstrea 'ocations.

O Table II.E.2 lists Ru-106, Cs-137 ano . ..u-95 concentrations.

No explanation can be given for the great variation in the measured concentrations. Due to the low number of samnles no statistical aO - comparisons are reliable.

The high MDC values for seston are due to the fact that such sampics are counted by a Ge(Li) spectrometer system rather than the Nal used for most other sample types. This is because seston, which is

]O principally algae, collects and concentrates particulate radioactivity, and high resolution is necessary for radionuclide measurement of fissior.

O product activity in the presence of Ra-226 and Th-232 natural radioactivity.

Seston radionuclide concentrations are generally higher than for the other sample types for all of the radioactivity analyses.

iO

O

O O O O O O O O O O O-

Table II. E.1 Analysis of Composite
  • Aquatic Biota For Samples collected July, 1980 .*

Sampling locations Gross Beta Strontium gg Strontium ~90 pCi/Kg PCi/Kg pCi/Kg F, is_h.,

Upstream 7-30-80 9,120 (263)** < 46.0 46.9 (33.9)

Downstream 7 10-80 8,000 (267) 375 ( 482) < 82.9 Effluent 7-30-80 6,930(262) 182 (329) < 51.9 t

Benthic Organisms Upstream f f f Downstream f f f ,

Effluent f f f Vascular Plants Upstream 7-12-80 6,400 (121) < 6.76 21.3 (6.66)

Downstream 7-12-80 22,400 (400) 73.9 ( 92.2) < 28.6 Effluent 7-12-80 16,400 (278) < 9.60 18.5 (10.3) i

! Seston Upstream f f f Downstream f f f Effluent

  • I f f
  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals.

f Sample unavailable.

4

. _ . _ _ . . . = . _ . . . . . .. _ .. _ . _ . _ _ _ . . . _ .. ._ . .. _ . . . _ _ _ . _ _ . . . . . . ... - . _ _ . . _ _ . . ,_ . _ . - _ __

Table II. E.1- Analysis of Composite

  • Aquatic Biota For Samples collected August,1980 .**

Gross Beta Strontium gg Strontium 90 Sampling locations pCi/Kg pCi/Kg pCi/Kg i

Fish Upstream 8-21-80 -

21,800 (427)** e e Downstream 8-21-80 f f- f Effluent 8-21-80 8,730 (382) < 109 106 (108)

Benthic Organisms Upstream f f f Downsaream f f f Effluenc f f f i Vascular Plants Upstream 8-10-80 27,000(496) < 13.4 94.6 (16.8)

Downstream 8-10-80 f f f Effluent 8-10-80 25,000 (593) < 28.9 84.4.(28.2)

Seston ,

Upstream 8-21-80 29,500(740)- e e Downstream f f f ,

Effluent f f f

l

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

    • in parentheses are for the 95% confidence intervals.

e Uncertainties Insufficient we(ight or volume)for analysis, f Sample unavailable. ,

Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected Santomber . 19AO .**

' Gross Beta Strontium gg Strontium 90-Sampling locations pCi/Kg pCi/Kg

~

_pCi/Kg Fish Upstream .. 9-21-80 f f f Downstream 9-21-80 8,260 (334)**' 146 (146) 43.8 (33.5)

Effluent 9-21-80 11,900 (440) 290-(190) 46.4'(38.6)

Benthic Organisms Upstream - f f f  ;

Downstream f f f Effluent f f f

?

t Vascular Plants

, Upstream . 9-13-80 14,400 (313) < 18.0 39.7 (17.0) i Downstream. 9-13-80 12,500 (290)- < 21.1 29.9 (23.7) -

Effluent 9-13-80 9,210 (193) < 10.4 13.9 (11.8)

Seston Upstrear. f f .f Downstream f f f Effluent f f- f

  • Upstream Composite: U 42, U 43. - .

Downstream Composite: D 40, D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals. j f Sample unavailable.

Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected 4th Guarter. 1980 .**

Sampling locations Gross Beta Strontium gg Strontium 90 '

pCi/Kg pCi/Kg pCi/Kg Fish

! Upstream 10-29-80 13,700 (452)** < 29.0 96.1 (33.5) l Downstream 10-29-80 11,900 (403) 167.(153) 47.5 (43.3)

Effluent 10-29-80 9,200 (359) 191 (199) 63.2 (57.7)

Benthic Organisms Upstream. f f f Downstream f f f

. Effluent f f f

.h.

Vascilar Plants

. Upstream 10-11-80 7,490 (192) < 5.90 56.2 (8.14)

Downstream 10-11-80 8,970 (267) < 11.8 61.6 (13.2)

Effluent 10-11-80 7,500 (180) < 7.46 35.9 (7.73) i Seston i

Upstream 10-29-80 43,200 (1,140) e e Downstream 10-29-80 29,400 (1,130) e e

. Effluent 10-29-80 19,800 (608) e e

  • Upstream Composite: U 42 U 43.

Devnstream Composite: D 40, D 45. .

l ** Uncertainties (in parentheses) are for the 95% confidence intervals.

e Insufficient weight or volume for analysis.

f Sample unavailable.

O O O O O O O O O O O Table II. E.2 Gam =a-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected July 1980 .

106 Sampling Locations

  • Ru Cs Zr & Nb Fish Upstream 7-30-80 374 (296)** < 79.6 57.3 (73.5)

Downstream 7-30-80 < 251 < 78.0 < 33.4 Effluent 7-30-80 538 (296) < 79.6 106 (74.2)

Benthic Organisms Upstream f f f f f f Downstream '

f f f Effluent ,

S, Vascular Plants Upstream 7-12-80 < 17.2 15.8 (6.41) 10.6 (9.52)

Downstream 7-12-80 < 90.6 59.2 (25.4) 84.3 (34.4)

Effluent 7-12-80 < 59.5 < 18.5 < 7.92 Seston Upstream f f f Downstream f f f f f f Effluent

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties f Sample unavaila(blein parentheses) are for the 95% confidence interval, (1.96 S.D.).

O O O O O O O O O O O Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected August, 1980 .**

106 Sampling Locations

  • Ru Cs Zr & Nb F.fsh Upstream 8-21-80 < 249 4,290 (69.7)* < 33.2 Downstream 8-21-80 f f f Effluent 8-21-80 < 252 < 78.4 < 33.5 Benthic Organisms Upstream f f f.

Downstream f f f f f f Effluent a

Vascular Plants Y

Upstream 8-10-80 < 327 < 102 < 42.9 Downstream 8-10-80 f f f Effluent 8-10-80 < 250 87.2 (64.7) 175 (72.1)

Seston Upstream 8-21-80 e e e f f Downstream 8-21-80 f f f Effluent 8-21-80 f

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses are for the 95% confidence interval, (1.96 S.D.),

e Insufficient weight or volume)for analysis.

f Sample unavailble.

O O O O O O O O O 0 v Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Sar .es (pCi/kg) for Samples Collected September, 1980 .**

106 Sampling Locations

  • Ru Cs Zr & Nb Fish Upstream 9-21-80 f f f Downstream 9-21-80 < 24.6 < 7.64 < 3.26 Effluent 9-21-80 < 247 < 76.6 108 (49.7)* .

Benthic Organisms Upstream f f f Downstream f f f Effluent f f f E

Vascular Plants E Upstrean 9-13-80 < 162 95.7 (44.5) 79.5 (31.2)

Downstream 9-13-80 < 336 208 (86.7) 111 (66.7)

Effluent 9-13-80 < 346 287 (90.1) 218 (69.9)

_Seston Upstream f f f Downstream f f f Effluent f f f

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

f Sample unavailable.

F 0 0 0 0 0 0 0 0 0 0 0 Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pci/kg) for Samples Collected 4th Quarter, 1980 .**

Sampling Locations

  • Ru Cs Zr & Nb '

Fish Upstream 10-29-80 0.119 (0.111)* 0.133 (0.028) 0.154 (0.016)

Downstream 10-29-80 < 153 < 47.5 78.4 (21.3)

Effluent 10-29-80 < 249 < 77.4 97.1 (33.1)

Benthic Organisms Upstream f f f Downstream f f f Effluent f f f 8

Vascular Plants Upstream 10-11-80 < 444 < 138 -< 58.2 Downstream 10-11-80 < 321 632 (90.0) 333 (56.2)

Effluent 10-11-80 < 522 < 162 < 68.4 Seston Upstream 10-29-80 e e e Downstream 10-29-80 < 2,200 1,190 (559) 1,580 (326)

Effluent 10-29-80 < 300 219 (75.1) 108 (43.6)

  • Upstream Composite: U 42, U 43.

Downstream Comrosite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e Insufficient weight or volume for analysis, f Sample unavailable.

-101-O II.F. Beef Cattle. Two head of beef cattle that graze the Facility area are counted each quarter in the CSU whole-body counter. The animals are O washed carefully and counted for 20 minutes each. This method is far more sensitive than counting meat samples and is the method of choice for detecting Cs-137 in the meat food chain of humans. If thyroid I-131 contami-O nation were significant this would be detected from the whole body count.

Detectable I-131 concentrations have never been observed.

Table II.F.1 gives values for the second half of 1980 for whole O

V body counting of beef cattle. The animals are selected at random; however, the animal number is recorded and the animal may be retrieved and recounted if necessary. The Cs-137 concentrations are considerably O lower than those observed during the last quarter of 1979 and the first half of 1980. Variation in Cs-137 concentration reficcts a different cutting and/or source of hay and pasture for the animals.

O The Cs-137 concentration is expressed as pCi per gram of K in the whole animal. This is done to more easily compare the counts between aniuals. K and Cs are both intercellular cations and by normalizing the O Cs-137 activity to K, differences due to fat percentage in the animals are eliminated, i.e. the K concentration and Cs concentration of fat free muscle is very constant.

6 V Table II.F.2 shows Cs-137, K,11-3, Sr-89 and Sr-90 concentrations in beef sampics co11ceted from the local cattic herd that graze the pastures just north of the reactor. The sample was collected from an animal O slaughtered at the end of the growing season. The concentrations measured are considered to be background values.

O D

-102-O

,0 Table II. F.1. Radionuclides in Facility Area Beef Cattle In-vivo Gamma ray activity in Fort St. Vrci: 'rea beef cattle.

O Third Quarter Values 9-27-80 131 137 Cs pCi/q K 7

Cow 1 none 2.66

. Cow 2 detected 3.80 0

11-15-80 Fourth Quarter blues Cow 1 none 5.14 Cow 2 detected 6.15 O

Table II.F.2.

Beef Sample Analysis, Fourth Quarter,198'0

  • Hamburger 1

Cs pCi/Kg K g/kg Tritium pCi/l 1

< 0.172 2.69 (0.0186)* < 259' Bone 89 90 5r pCi/Kg Sr pCi/Kg

< 0.108 0.256 (0.0915)

^O

  • Uncertainties (shown in parentheses) are for the 95" confidence

.O interval (1.96 S.D. ).

O

i

~1 3' lO l- II.G.1 Sample Cross Check Data l

l Since 1975 we have participated in a national EPA sponsored lO laboratory intercomparison analytical program, we analyze air filters as well as milk and water samples for the important radionuclides. The

! results obtained since the last report are given in Table II.G.I.

O Inspection of Table II.G.1 reveals a number of aberrant measured ,

t values i.e. greater than the 3 sigma control limit. Ten of the 40 l

l separate determinations exceeded the 3 sigma control limit. We reinvesti-l O gated all of those and in most cases determined the source of error.

Since the most previous report we have:

1. Corrected the gamma water calibration constants for Cr-51 O and Co-60, based upon previous EPA cross check results. The data in this report reflect the change.
2. Recalibrated the milk geometry for I-131 by using an I-131 O stock solution which had undergone both primary and secondary activity standardization.

90

3. Investigated the chemical recovery of the Sr milk procedure.

O From' a series of EPA milk cross check samples we have calculated the mean chemical recovery of carrier strontium to be 351,.

The calculated coefficient of variation (o/i) was 51%. This '.

O high variability in the recovery parameter is certainly part of l

of the reason for occasional aberrant values. We are attempting to solve this problem currently.

O Table II.G.2 lists the results of a cross check study between this program, the Colorado Department of flealth and the Public Service Co. coanting laboratory at the reactor. Water samples are now collected

,0 O

- - __ . - . _ = - _ - . . . -. .- -

-104-monthly by personnel at the Colorado Department of 11ealth and then split between the three groups. The results for the study to date are in general in good agreement with the exception of a few samples.

l Table II.G.3 lists the results of a cross check study on l

Sr-90 in air filters produced by the International Atomic Energy l

Agency (I AEA) in Vienna, Austria. We analyzed 6 identical filters and the coefficient of variation was only 6%. The mean estimate was l

within two standard deviations of the I AEA value.

I t

l I

l l

i i

D -105-Table II.G.I. EPA Cross-Check Data Summary  :

1 w

Radio CSU Actual Precision Control Limits *. deviation

-') Date nuclide Value Value (1 sigma) (3 Sigma) from known Water, Alpha and Beta pCi/l 7-18-80 Gross a 31 36 9 27 - 14 3 + 13

" Gross 8 43 38 5 15 l 9-19-80 Gross a 47 32 4.I 14.1 + 16 Gross 8 15 21 2 . 9, 8.6 29 11-21-80 Gross a 21 16 2.9 8.6 + 31 e

Gross 8 20 13 2.9 8.6 + 34 i

i Water, 3amma pCi/l H

"' 15 - 46 6-6-80 51Cr 7 13 5 60Co 12 5 5 15 + 140 65Zn 19 23 5 15 - 17 l

106Ru 10 37 5 15 -73 134Cs 41 11 5 15 + 270

, , , 137Cs 9 17 5 15 -47.

p. '

10-3-80 SICr 80 86 2.9 8.6 -7 60Co 12 16 2.9 8.6 - 25 ssZn '2 25 2.9 8.6 - 52 106Ru 23 46 2.9 8.6 + 50 134Cs 13 20 2.9 8.6 - 35 t,) 137Cs 22 12 2.9 8.6 + 83 f

i Water, Strontium 89 and 90 f) l 9-5-80 89Sr 2 '. 24 2.9 8.6 - 13 905r 16 15 1.3 2.6 + "7 l

f iO O _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ _ _ _ .._ _ _. _ ._ _ _ _ _

, .. .- ~ .- . . . - . . - ._ . - . ..

-106-O Table II.G.I. . EPA Cross-Check Data Summary Radio CSU LActual ' Precision' Control Limits  % deviation "O Date nuclide Value Value (1 sigma) (3 Sigma) from known Air Filters, pCi/ filter 6-27-80 90Sr 5 8- 1.5 4.5 - 38 137 Cs. 19 12 5 15 + 58 .

'() Gross a 22 24 6 12 -

8 ~

Gross 8- 33 28 5, 15 + 18 9-26-80 90Sr 2 0 - - -

137 CS 8.6 9 10 2.9 - 10 Gross a .22 24 3.3 10 -

8 lO . Gross 8 14 10 2.9 8.6 + 40 Milk, pCi/1 89 10 ~ 7-25-80 Sr 54 55 5 15 -

2 131 Or 7 17 1.5 4.5 - 59

I 0 0 - - -

137 Cs 67 35 5 15 + 91 "O

-K 1832 1550 78 234 + 18 O' 10-31-80 alSr g

46 23 2.9 8.6 + 100 '

Sr 1 0 - - -

131 I 8 18 2.9 8.6 - 55

' 137 '

Cs 20 21 2.9 8.6 -

5 40 K 2100 1620 28 85 + 30 iO Water,'Tritum PCi/l 8-15-80 3H 1687 1210 329 987 + 39.

10-10-80 3H 2859 3200 208 625 - 11 f0 jO <

!O l

l O.

1

-107-l Table II.G.2 Crosscheck Analyses on Split Water Samples Determined l by Colorado State University, Colorado Department of I

!!calth and Public Service Company of Colorado. I

^'

q Gross Beta Tritium Collection Sample pCi/L pCi/ L Date Location CSU CGI PSC CSU CMI PSC 10/30/80 E-38 18.9 <8.0 14.9 15,700 15,300 15,500 7)

E-41 9.59 24 16.0 <287 <350 409 U-42 13.6 <8.0 14.6 <287 <350 409 j 11/18/80 E-38 16.9 J0.0 21.6 31,000 <350 29,200 E-41 17.0 14.0 67.3 714 <350 1,140 U-42 10.3 16.0 13.5 1,040 <350 526

-[ 12/5/80 E-38 <1.20 15.0 12.1 44,200 40,400 42,500 E-41 17.2 25.0 14.1 877 <350 427 U-42 11.7 78.0 7.9 1,330 <350 427 m

.)

1 i

((,S'

-108-4 Table II.G.3 I.A.E.A. Sr-90 Cross Check Results IS Sample Type: Air Filters i i Sample No. CSU Value Actual Value

.g 90Sr, pCi

-1 9.10 2 9.21 3 9.46

, 9 4 9.02 5 10.0 6 8.47

g Y= 9.21 10.2 o = 0.51 0.8
q 9

l9 I

9 l

_ .. _ __ . _ _ . . _ __~ . _ . . _ - _ . . . _ . _ __ __ . . . _ , _ . . . . _ . _ .. .

-109-II.H. Summary and Conclusions

[

l Table II.H.1 presents the primary summary and analysis of data

?)~

^

collected during the last half of 1980. The tabular data may be used for l l

l comparison to other operating power reactors. For each sample type the l

number of sampics analyzed in the reporting period and the maximum and O minimum values for each sample type are given. From log-normal analysis of each data set for the last 12 month period the geometric mean and standard deviation is presented. The arithmetic mean is also calculated n

[# back for the entire year and for the reporting period. It should be noted l

that the tabular data presented in the body of this report contain only positive calculated values. Any calculated values less than :ero or less than the minimum detectable concentration (MDC) are listed as less than i

i the actual MDC for that sample analysis. However, the actual result in all cases was used in the calculation for the arithmetic mean vahes 9' for the last six months. Therefore all values, negative as well as positive, were included. This procedure is now generally accepted and gives a closer approximation to the true mean value. Because of this l

!O procedure, however, the values listed in Table II.H.1 cannot be calculated l

directly from the tabular values in the report. It must be emphasized that while it is true that no sample can contain less than zero radioactivity

O due to the random nature of radioactive decay it is statistically possible i

i to obtain sample count rates less than background and hence a negative l

rt .11 t .

.O The log-normal probability treatment is to plot all data for each l

sampic type over the last full year on log-probit coordinates. The samples are ranked by increasing activity concentration and the cumulative O

O

4 -110-percentage of rankings are plotted on the probit abcissa versus the activity concentration on the log ordinate. The geometric mean value O i g, is determined directly from the 50th percentile point. The geometric standard deviation is simply the slope of the line, which can be calculated from the ratio between the 84.1 percentile and the 50th percentile. In 0 a normal distribution the arithmetic standard deviation is an additive parameter to the arithmetic mean, i.e. (i o), whereas in the log-normal distribution the geometric standard deviation a, is a multiplicative g

O parameter to the geometric mean (i

  • og ), the area between i gdivided by 8,

nd i g ultiplied by should contain 68% of the frequency values.

E The log-normal statistical treatment is tentative when the number of samples in the group is small. For this reason only the last full year of data points is treeted by this method. h'ith the log-normal analysis, no bias results from using either actual values or less than MDC values.

O From the values presented in Table I1.11.1 and the tabular data of the report the following observations and conclusions may be drawn:

1. The Chinese weapon test fallout, which appeared in November and 3 December had pronounced effects on several of the parameters measured in this program. The fallout input was particularly noticed in the air sampling program. The concentrations of gross beta activity in air increased approximately 5 fold. This fallout input is extremely valuable in assessing the possibic impacts of release of fission prc.c.ucts from the reactor. Although the air concentrations increased by a factor of J 5, it is important to note that the external gamma exposure rate did not change. Thus the ground surface deposition did not sufficiently increase. Gross beta concentrations in surface soil samples support this conclusion. It is also important to note that the principal sample types in possible food chain transport of radioactivty to humans did not l increase. Milk and meat food chains would account for greater than 80%

i l, -111-of the radiation dose commitments to humans in the case of an increase in environmental radioactivity. Since milk concentrations did not 0 increase it ca.t be concluded that a deposition of reactor effluents far greater than the Chinese fallout deposition would have to occur before any significant dose to humans could be calculated. A complete sensitivity O analysis should be performed for all existing data in this program so that proper perspective can be given to the general public regarding the possible dose from reactor effluents or accidental releases.

O 2. A comparison of Table II.H.1 with the same table in previous reports implies that there is no evidence that effluents from reactor operation has produced statistically significant off-site concentrations of radio-O nuclides in any sample type. This is true even though the power generation of the reactor was greater than in previous reporting periods.

3. The log-normal treatment of all the data revealed that for most 8 of the data such analysis is appropriate. However, sigmoid distributions were quite often observed. Sigmoid distributions can be resolved into bimodal or even trimodel log-normal distributions. This is generally O interpr" , to mean that there is more than one significant activity source . It was again noted that for all of the data analzyed over the past year by the log-normal treatment, those sample types that are O reservoirs of sinks for activity, e.g., soil, sediment and TLD, tended to be described by a single distribution. Those sa.mple types which are less stable a:td fluctuate due to outside sources, e.g. , air and precipi-O tation tended to be bimodal or trimodally distributed.
4. As in e"ery previous report, it was again apparent that the variability observed aro2nd the mean values was great. This variability is due to O

O

-112-(3-counting statistics and methodological error; but principally due to true environmental variation. It must be recognized and accounted for n' -

in analysis of any set of environmental data before meaningful conclusions can be drawn.

5. .It can be again concluded that the radiation dose from reactor

) operations to nearby inhabitants or other parts of the nearby ecosystems is negligible compared to natural background radiation dose and the dose from atmospheric weapon testing fallout.

10

~ C)

C)

O O

~ C)

.O

!O

I Table II.H.1. Mesa Values for all Sample Types.

Number of Minimum Maximum .

Samples Value Observed .Value Observed 2 "

8 8 - -

Analyzed 6 Months 6 Months ,

x x Sample Type -Area 6 Months _

1 Year 1 Year 6 Months-TLD Facility 77 0.26 0.75 0.449 1.22 0.458 0.518 External Adjacent 72 0.42 0.76 0;452' 1.21 -0.461

~

_0.520 (mR/ day) _ Reference 71 0.41 2.21 0.467 1.37 0.500 0.547 Composite 220 0.26- 2.21 0.456 1.27 0.472 0.528 t

t Air Facility 99 ,

1.8 9.7 3.58 1.95 4.36 5.83 Gross a Adjacent 61 1.1 9.6 2.92 2.15 3.87 4.57 (fCi/m3) Composite 160 1.1 9.7 3.30 2.05 4.16 5.34 -

Air Facility 102 174 18.6-9 2.59 27.0 41.2 Gross 8 Adjacent 76 5 246 13.7 2.79 25.6 39.1 r (fCi/m3) Composite 178 5 246 16.4 2.70 26.4 40.3 Air Facility 103 < 296 4,610 340 3.05 474 669 Tritium Adjacent 76 . < 247 8,430 250 2.61 285 474 (pci/1) Composite 179 < 296 8,430 299 2.89 396 '554 Air Composite 26 < 2.41 100 10.6 3.57 < 2.59 12.0 1311 3,-

(fCi/m )

Air Composite 26 < 2.33 29.9 4.03 3.77 9.85 3.43 106Ru -

(fCi/m3) ,

i e

O -O- O o O O O O .O O- O. -

4 Table II.H.1. Mean Values for all Sample Types.(Cont'd.)

Number of Minimum . Maximum Samples Value Observed Value Observed x #

8 8- - -

Analyzed 6 Months 6 Months- ,

x x Sample Type Area 6 Months 1 Year 1 Year 6 Months' Air Composite 26 < 1.15 4.70 0.768 2.34 0.528 0.443 137Cs (fCi/m3 )

Air Composite 26 < 0.457 12.8 0.621_ 4.90 1.68  ?.89 95Zr .

(fCi/m3) ,

Water Effluent 29 0.177 21.1 8.40 2.15 10.5 7.82 Gross 8 Downstream 18 4.14 11.2 7.22 1.75 8.36 6.94 (pCi/1) Upstream 12 2.73 10.8 6.91 1.55 7.52 6.76 ,

Potable 11 0.769 7.56 3.56 2.60 5.37 4.55 Z 3 Composite 70 0.177 11.2 6.85 2.14 8.65 6.90 i' Water Effluent 29 . < 251 359,000 1,590 7.62 15,700 ~25,200 Tritium Downstream 18 44.5 1,850 386 2.21 419 708 (pci/1) Upstream 12 < 342 9,050 349 2.60 591 1,100 Potable 11 148 3,530 365 2.16 445 757 Composite 53 < 342 359,000 689- 5.11 6,990 10,900 Water Effluent 27 < 1.18 6.78 0.741 2.73 0.862 1.14 SOSr Downstream 18 0.102 3.91 0.887 2.88 1.08 1.73 (pci/1)

~

Upstream 12 < 1.98 5.06 0.731 4.14' O.930 1.61 Potable 11 < 1.34 4.22 0.609 2.79 0.654 1.00 Composite 68 < 1.98 6.78 0.751 3.00 '0.900 1.36

_.-J

O O O O O O. O O O O O Table II.!I.I. Mean 1 ' lues for all Sample Types. (Cont 'd.)

Number of Minimum Maximum Sampics Wilue Observed Value Observed i o Analyzed 6 Months 3 8 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Water Effluent 26 < 4.14 6.83 1.20 2.36 < 4.14 < 4.14 MSr Downstream 11 < 1.62 2.16 1.40 2 15 < 1.62 < 1,62.

(pci/1) Upstream 12 < 0.641 7.67 0.925 2.37 0.382 0.400 Potable 11 < 0.571 6.34 0.916 2.20 < 0.680 < 0.680

omposite 60 < 4.14- 7.67 1.13 . 2.30 < 0.680 < 0.680 Water Effluent 27 < 6.12 21.3 1.83 2. 21~ < 2.12 < 6.12 106Ru Downstream 18 < 2.21 9.71 2.15 2.56 < 2.21 < 2.21 (pci/1) Upstream 12 < 2.25 33.1 1.75 2.50 < 0.638 < 2.25 Potabic 11 < 4.60 3.73 1.81 2.47 < 4.60 < 4.60 Composite 68 < 2.21 33.1 1.89 2.37 < 2.21 < 2.21 water Effluent 28 < 0.294 21.3 0.928 2.94 1.51 1.77 0; 137Cs Downstream 18 < 0.683 4.55 0.911 3.21 1.?' 1.05

< 0.286 '

(pci/1) Upstream 12 15.4 1.23 2.89 1. ,9 2.52 Potable 11 0.291 4..- 0.967 5.17 5.47 1.64 Composite 69 < 0.683 21.3 0.975 3.30 2.1C 1.69 Water Effluent 28 0.116 7.19 0.554 3.04 0.865 1.54 95Zr Downstream 18 < 349 4.88 0.681 2.88 < 349 < 349 (pCi/1) Upstream 12 < 0.193 10.5 0.662 3.17 1.02 2.04 potable 11 0.135 3.28 0.415 2.67 0.654 1.13 Composite 69 0.116 10.5 0.576 2.96 < 349 < 349 Sediment Effluent 12 25,900 42,300 34,300 1.12 34,500 34,400 Gross s Downstream 17 27,000 48,600 34,000 1.20 34,500 34,100 (pci/kg) U;,s t ream 12 27,400 41,400 33,600 1.11 33,800 33,800 .

Composite 41 25,900 48,600 33,900 1.15 34,300 J4,100

0 0 0 0 0 0 0 0 0 0- 0-Table II.H.1. Mean Values for all Sample Types.(Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i o g 8 g Analyzed 6 Months' 6 Months ,

i Sample Type Area 6 Months 1 Year 1 Year 6 Months __

Sediment Effluent 12 101 336 148 2.06 125 202 90Sr Downstream 16 54.8 518 106 2.93 80.3 181 (pCi/kg) Upstream 12 . 38.0 338 131 2.30 99.9 171 Composite 40 38.0 518 124 2.50 99.2 184 Sediment Effluent 12 < 158 364 144 2.02 < 158 158 89Sr Downstream 16 < 139 641 194 2.60 < 182 139 (pci/kg) trustream 12 < 126 836 209 2.50 28.1 126 Con.posite 40 < 139 836 182 2.42 < 182 139 Sediment Effluenr 12 < 8,380 6,520 3,780 1.67 < 8,380- < 8,380 '

106Ru Downstream 17 < 3,700 10,800' 3,570 1.97 < 3,700 < 3,700- ;p (pCi/kg) Upstream 12 < 3,700 5,032 3,410 2.04 < 3,700 < 3,700 '

Composite 41 < 3,700 10,800 3,580 1.89 < 3,700- < 3,700 Sediment Effluent 12 < 670 1,110 423 2.53 244 465 137Cs Downstream 17 < 913 4,480 521 2.87 < 654 487 (pci 'kg) Upstream 12 < 968 1,630 520 1.95 < 654 299 Composite 41 < 913 4,480 489 2.51 12.8 425 Sediment Effluent 12 < 480 1,400 187 2.60 < 231 125 95Zr Downstream 17 < 343 1,511 221 2.26 48.5 128 (pci/kg) -

Upstream 12 < 340 449 155 2.13 5.83 54.0 composite- 41 < 343 1,511 191 2.33 21.0 105 Precipitation F-1 6 22.7 219 45.3' 2.66 63.2 93.5 Gross S F-4 6 13.3 159 38.5 2.58 58.1 67.1 (pci/m2) Composite 12 13.3 219 41.4 2.56 60.4 80.4

O O O O O O O O O 'O . O Table II.H.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum' .

Samples Value Observed Value Observed xg # - -

Analyzed 6 Months' 6 Hunths 8 x x Sample Type Area 6 Months 1 Year- 1 Year 6 Months Precipitation F-1 6 205 1,170 430 2.52 669 . 466 Tritium F-4 6 < 238 1,050 458 2.52 578 445 i (pCi/m2) Composite 12 < 238' 1,170 445 2.32 619 455

Precipitation F-1 6 < 9.32 93.7 28.2  ! 5.18 52.2 6.52-106Ru F-4 6 < 24.4 2,620 37.9 6.33 247 532 (pci/m2) Composite 12 < 24.4 2,620 33.4 5.61 163 269 Precipitation F-1 6 < 2.89 37.8 13.8 4.38' 46.6 4.32 137Cs F-4 6 < 1.90 58.4 12.3 2.73 18.9 15.4 (pci/m2) Composite 12 < 2.89 58.4 12.9 3.31 30.8 9.88 ,

C Precipitation F-1 6 < 1.23 46.2 8.64 4.01 7.91 5.08  ?

95Zr F-4 6 2.02 27.6 11.5 5.70 24.5 47.5 (pci/m2) Composite 12 s 1.23 46.2 10.2 4.80 17.4 26.~3 1

Precipitation F-1 6 0.617 106 5.50 4.32 15.5 20.8 90Sr F-4 6 < 26.3 12.3 6.62 2.95 5.36 6.45 (pci/m 2), Composite 12 < 26.3 106 6:09 3.44 9.92 13.6 Precipitation F-1 6' < 10.9 10.7 - 8.70 2.06 < 10.9 < 10.9 09Sr F-4 6 < 6.89 6.55 10.0 2.51 4.38 < 6.89 (pci/m2) -

Composite 12 < 10.9 10.7 9.41 2.27 < 10.9 < 10.9 Milk Facility 16 < 246 670 248

  • 2.39 46.4 < 246 Tritium Adjacent 16 11.9 895 198 3.68 330 387 (pci/1) Reference 16 < 251 547 235 2.10 208 188 Composite 48 < 246 895 22C 2.70 197 150 1

-w

^

O O ~U^ O- o o O O O O: O Table II.H.1. Mean Values for all Sample Types.(Cont'd.)

Number of Minimum Maximum -

Samples Value Obserwd Value Observed 2'g O g p g Analyzed- 6 Months' 6 Months ,

~

Sample Type Area 6 Months 1 Year 1 Year 6' Months Milk Facility 16 0.493 6.59 2.34 2.22 2.82 3.16 90Sr Adjacent 16 0.128 9.95 1 .;'4 3.17 2.64 3.40 (pCi/1) Reference 16 ,

0.589 13.5 .2 06 2.84 3.38 4.26 Composite 48 0.128 13.5 1.97 2.73- 2.95 3.61 Milk Facility 16 < 2.50 42.8 1.90 2.87 < 1.50 < 2.50 89Sr Adjacent 16 < 4.59 6.11 1.76 2.13 < 4.59 < 4.59 (pci/1) Reference 16 < 4.02 14.6 2.35 2.41 < 4.02 < 4.02 Composite 48 < 4.02 42.8 2.01 2.4,4 < 4.02 < 4.02-Milk Facility 15 < 0.143 36.5 4.27 7.38 8.11 9.40 i 1311 Adjacent 15 1.10 88.7 8.17 4.89 19.2 29.1 O (pci/1) Reference 16 < 0.139 99.8 4.95 10.1 20.7 31.2 i

' Composite 46 < 0.143 99.8 5.61 7.24 16.1 23.4

~

Milk racility 15 < 0.134 26.8 2.61 5.87 5.94 6.36 137Cs Adjacent 15 0.869 26.8 3.88 3.86 6.67 6.80 (pCi/1) Reference 16 < 0.111 29.3 1.91 7.53 4457 6.37 Composite 46 . < 0.111 29.3 2.68 5.71 5.71- 6.51 Milk Facility 15 1.30 1.77 1.44 1.22 1.47 1.48 Nat. K Adj.: cent 15 1.40 2.53 1.23 3.95 1.54 1.61 (g/1) ~

Reference 16 1.34, 1.97 1.53 1.17 1.48 1.51 Composite 46 1.30 2.53 1.39 2.27 1.50 1.51 Forage Facility 2 . ~227 1,180 615' 2.40 759 704 Tritium Adjacent 6 215 1,220 467 1.79 545 539 '

(pCi/1) Reference 9 < 246 1,049 279 2.81 305 207 Composite 17 < 946 1,220 365 2.47 440 382

Table II.ll.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum. Maximum Samples Value Observed Value Observed i o Analyzed E 8 6 Months 6 Months ,

. A i Sample Type Area 6 Months 1 Year 1 Year 6 Months:

- Fa rage Facility 5 < 21.4 < 7.45 9.81 1.86 < 21!4 < 21.4 :

89st Adjacent 18 < 59.9 ~75.2 11.0. 2.11 <-11.0 < 59.9 4

(PCi/kg) Reference 15 < 8.11 167 16.0. 2.31 < :8.11 2.31 Composite 39 < 59.9 167 12.7 2.20' < 59.9 < 59.9 Forage Facility 5 50.6 80.6 66.0 1.68 73.4 67.1 90Sr Adjacent 18 37.6 540 83.0 2.01 107 -123 (pCi/kg) Reference .!6 57.3 192 83.6 1.74 94.2 99.2

~

Composite 09 37.6 540 81.0 1.86 97.6 106 Forage Facility 6 < 73.1  : 86.3 61.2 1.59 < 73.1' < 73.1 106Ru Adjacent 18 < 82.1 289 63.8 2*04 < 56.1 < 82.1 O (pci/kg) Reference 16 < 95.9 207 47:6 1.76 < 95.9 < 95.9 1' Composite 39 < 82.1 289 56.0 1.89 < 56.1 < 56.1 Forage Facility 5 < 18.3. 104 24.6 4.02 42.0- '40.8 i

137Cs Adjacent 18 < 40.3 324 27.2 4.60 57.7 83.6 (pci/kg) Reference 16 < 18.0 93.1 21.4 4.00 33.4 37.0 Composite 39 < 40.3 324 .25.1 4.14 59.0 46.2 Forage Facility 5 22.9- 411 37.1 3.26- 82.6 110' 1 95Zr Adjacent

~

18 < 7.59 435 34.2 2.13. 45.6 5747-(pCi/kg) Reference 16 17.3 114 26.7 3.17. 39.6 48.2 Composite 39 < 17.59 435 ~31;0 3.07 50.3 55.7 Forage Facility r 6,600 30,000 12,000 1.97 14,400 17,600 Gross es Adjacent 18 5,200 27,800 18,300 1.38 19,200 19,700 (pci/kg) Reference 16 7,580 27,000 18,300 1.43 19,200- 18,600 Composite 39 5,200 27,800 17,400 1.51 18,600 19,000 om o mee m we a m.eom.

L i

Ta b l e . I 1.11.1'. Mean Values for all Sample Types. (Cont'd.).

Number of Minimum Maximum-Sampics Value Observed Value Observed i o Analyzed 6 Months 8

6 Months- i i Sample Type Area 6 Months 1. Year 1 Year 6 Months Soii Facility 5 31,900 33,300 31,700 l'.05 31,700 .32,500' ,

cross 6 Adjacent 18 19,200 33,600- 26,800 1.32' 27,600 28,800 (pci/kg) ite rcrence 16 16,700 33,400 25,800 1.19 26,100 25,900 ,

Composite 39 _16,700 33,600 26,900 1.25 27,500 28,100 ..

Soil' Facility 5 4.11 4.29 -4.07 1.05 4.07 4.19

Gross S Adjacent 18 2.48 4.33 3.47 1.32 3.56 3.72 (pci/m 2) Iteference 16 2.15 4.31 3.32 1.19 3.37. 3.35' Composite 39 2.15 4.33 .3.47-1.35 3.54 3.63 Soil Facility 5 < 25.6 18.3 43.6 11.3 < 2,570 < 2,570 ,

locitu Adjacent 18 < 25.8 953 38.8 6.53 < 341 -54.5 -t.

(nci/m2) Ite ference 16 < 25.3 35.4 73.8 5.14 < 472 < 472  ?

Composite 39 < 25.3 953 51.7 6.53 < 341 < 341 Soil Facility .5 < 4.30 5.80 10.2 6.05 < 100 1.10 137Cs Adjacent 18 < 4.30 19.1 6.83 7.28 2.61 3.05 (nci/m2 ) itercrence 16 < 4.35 11.3 10.2 6.60 29.8 < 4.35 compositc 39 < 4.35 19.1 8.53 6.72 < 100 0.428 Soil Facility 5 < 1.51 1.71 4.13 3.80 < 35.7

< 1.51

'35Zr Adjacent 18 < 1.51 14.3 4.03 4.64 < 20.1 1.89 (nci/m2 ) Ite ference 16 < 1.53 13.8 4.43 4.01 0;812 0.084 composite 39 < 1.53 14.3 4.21 4.18 < 20.1- 0.861 Soil Facility 5 91.4 645 251- 2.98 357 381 Tritium Adjacent 17 < 247 1,610 228 2.97 251 .295-(pci/1) Iteference 16 < 247 902 253 3.22 274 311 Composite 38 < 247 1,610 241 3.02 275 313

U U U U O O O O m -)

s Table I1.11.1. Mean Values for all Sample Types.(Cont'd.) .

. Number of Minimum Maximuni Samples Value Observed Value Observed 2 o N 8 Analyzed 6 Months 6 Months i i Snnple i

Type Area 6 Months 1 Year 1 Year 6 Nonths Soit Facility 5 107 429 157 2.24 200 250 a'3s r Adjacent 18 < 135 752 85.2 3.50 < 135 < 135 (pci/kg) lte rcrence 16 < 100 558 107 2.19 < 100 < 100

  • Compositc 39 < 135 752 101 2.79 < 135 < 135 Soil Facility 5 70.0 406 87.6 3.22. 125 180

'30sr Adjacent 17 12.1 452 96.3 2.94 132 173 (pci/kg) Re ference 16 21.0 515 154 2.50 200 273 composite 38 12.0 515 117 2.82 161 2.16 Aquatic Biota Upstream 3 9,120 21,800 10,900 1.58 11,900 14,900 Fish Downstream 3 8,000 11,900 10,300 1.22 10,500 9,380 ,L Gross s liffluent 4 ~6,930 11,900 9,600 1.25 9,800 9,190 l2 (pCi/kg) Composite 10 6,930 21,800 10,200 1.33 10,600 11,000 '

Aquatic Biota Upstream 0 - -

9,140 NA 9,140

  • NA Benthic Downstream 0 - - - - - - ,-

Gross a liffluent 0 - -

8,870 NA 9,080 NA" (pci/kg). Composite 0 8,960 1.24 9,100 NA Aquatic Biota Upstream 4 2.700 14,400 7,170 2.26 9,380 7,750 "ascular Plants Downstream 3 8,970 22,400 10,600 2.60 14,000 14,600 Gross a liffluent 4 7,500 25,000 11,500 2.58 15,600 14,500 (pci/kg) composite 11 2,700 25,000 9,500 2.39 12,900 12,100 Aquatic Biota Upstream

  • 2 29,500 43,200 34,300 1.23 34,700 36,400 seston Downstream ~1 29,400 29,400 26,600 1.15 26,800 29,400 Gross 6 liffluent 1 19,800 19,800 18,500 1.10 18,500 19,800 (pci/kg) coraposi te 4 19,800 43,200 26,700 1.36 27,800 30,500

Table ! I .!!.1. Mean Values for all Sample Types.(Cont'd.)

Number.of Minimum. Maximum Sample Value Observed Value Observed 3 9 Analyzed- 6 Months a g .p g 6 Months ,

Sample Type Area 6 Months 1 Year 1-Year 6 Months Aquatic Biota Upstream 2 < 46.0 12.3 25.5 1.80 < 20.9 < 46.0 81.0 Fish Downstream 3 146 375 3.00 88.8 229

" S r Effluent 4 '

3.75 290 58.2 4.91 69.4 166 (pci/kg) Composite 9 < 46.0 375 53.9 3.54 56.3 149.

Aquatic Biota Upstream 0 - - < 201 NA < 201' 'NA esenthic Downstream 0 - - - -

89 Sr 0 - -

378 1.33 < 308 NA Effluent fPCi/kg) Compositc 0 - -

306 1.52 < 308 NA Aquatic Biota Up' im 4 < 13.4 3.03 15.4 4.94 < 13.4 < 13.4 vascular Plants Downstream 3 < 11.8 73.9 26.4 2.55 < 11.8 < 11.8 80 Sr < 28.9 L Effluent 4 1.58 29.4 8.93 < 28.9 <-28.9 (pci/kg) Composite 11 < 11.8 73.9 22.8 5.43, < 11.8 < 11.8 y Aquatic Biote Upstream 0 - - - - - -

Seston Downstream 0 - - - - - -

89Sr Effluent 0 - - - - - -

(pCi/kg) Composite 0 - - - - - -

Aquatic Biota Upstream 2 46.9 96.1 60.4 1.47 64.0 71.5 Fish Downstream 3 43.8 82.8 43.8 1.97 51.0 58.0 90Sr Effluent 4 44.9 106 58.2 1.33 51.2 65.1 (pci/kg) Composite 9- 43.8 106 53.1 1.60 54.1 64.2 Aquatic niota Upstream 0 - -

< 149 NA < 149 NA .

isen t lu e Downstream 0 - - - - - -

M) s r Lffluent 0 122 3.93 < 323 NA (pci/kgj composite 0 - -

131 2.65 < 323 NA Aquatic niota Ilpst ream 4 21.3 94.6 57.3 1.88 66.7 53.0

s. g n I .o I-l ani s Iownstieam _3 15.3 61.5 54.1 3.29 104 35.6
  • Sr I.rfluent 4 13.9 84.4 29.1 1.95 35.6 38.2 (pci/kg) Couposite 11 13.9 94.6 44.4 2.34- 66.6 42.8

Table 11.11.1. Mean Values for all Sample Types.(Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i o 8 I Analyzed 6 Months 6 Months i i Sample Type Area 6. Months 1. Year 1 Year 6 Honths Aquatic Biota Upstream 0 - - - - - -

Seston Downstream 0 - - - - - -

90Sr Effluent 0 - - - - - -

(pCi/kg) Composite 0 - - -

Aquatic Biota Upstream 3 < 249 374 63.9 33.8 < 249 ~< 249 Fish Downstream 3 < 24.6 . 2.48 61.0 7.89 < 24.6 < 24.6' 106 Ru Effluent 4 < 252 538 109 4.10 < 80.0 '97.2 (pci/kg) Compos.te g ,

10 < 24.6 . 538 78.5 9.34 < 249 < 249 Aquatic Biota Upstream 0 - - < 1,780' .NA <1,780 -

Benthic Downstream 0 - - - - - -

106 Ru Effluent 0 - -

232 1.16 < 259 -

(pCi/kg) Composite 0 - -

458 3.25 < 259 -

y Aquatic Biota _ Upstream 4 < 327 95.2 135 7.99 < 327 < 327 Vascular Plant Downstream 3 10.8 175 63.1 3.87 22.9 86.5 106 Ru Effluent 4 < 522 94.9 158 2.38 < 522 < 522 (pci/kg). Composite 11 < 327 175 114 4.41 < 327 < 327 Aquatic Biota Upstream 'l 656 656 656 'NA 656 656 Seston Downstream 0 - - - - - -

106 Ru Effluent 1 < 300 < 300 < 300 NA < 300 < 300 (pci/kg) Composite 2- < 300 < 656 < 443 1^.74 < 300 < 300 ,

Aquatic Biota Upstream 3 0.133 4,290 59.8 4SI.1 912 1,450 lish Downstream 3 < 7.64 33.2 63.2 7.83 137 < 7.64 137:st Effluent 4 26.9 41.7 56.1 1.96 51.1 34.4 (pci/kg) Composite 10 < 7.64 4,290 59.4 8.99 319 340 m ... t i , to u t .:

e tipst re.nu 0 - - 2;720 - 2,720 -

hen t i. . . lu.nstream 0 - - - - - -

' . . .' ' . 11:toent 0 - -

729 1.72 783 -

i i.d / L u composite 0 - - 1,130 2.34 1,430 -

_ - - _ _ _ _ _ _ _ _ " _ _^ __~T ~ ~ ~ ~ ~~~~~~~ _ _ _ _ _ _ - _ _ -

O O .O O O O O O O O O Table I1.11.1. Mean Values'for all Sample Types.(Cont'd.)

Number of Minimtmt Maximum Samples Value Observed Value Observed i a N E i Analyzed 6 Months 6 Months i Sample Type Area 6 Months 1 Year 1 Year 6 Months Aquatic Biota Upstream 4 < 102 95.7 20.5 5.02 < 102 < 102 vasentar Plant Downstream 3 59.2 632 148 2.55 218 300 137 Cs Effluent 4 < 162 287 55.2 4.67 72.7 86.4 (pci/kg) composite 11 < 102 632 52.0 4.77 < 102 < 102 -

1,190 1,190 1,190 NA 1.190 1,190 Aquatic niota Upstream 1 Downstream 0 - - - - -

Segton 219 219 219 NA 219 219 Cs Effluen t 1 (pCi/kg) Composite 2 219 1,190 . 510 3.31 705 705 Aquatic niota Upstream 3 < 33.2 57.3 11.3 11.4 < 33.2 .< 33.2 Fish Downstream 3 < 3.26 78.4 28.3 5.14 < 3.26 < 3.26 95Zr Effluent 4 25.0 108 .64.9 2.02 72.4 84.0 .

(pci/kg) Composite 10 < 3.26 108 30.3 5.46 < 3.26 < 3.26 Aquatic Biota Upstream 0 - -

216 NA 216 -

$i Benthic Downstream 0 - - - - - -

35Zr Effluent 0 - -

278 1.98 312 -

(pci/kg) Composite 0 - -

256 1.66 279 -

Aquatic niota Upstream 4 < 42.9 79.5 48.8 2.46 < 39.5 < 42.9 Vascular Plants Downstream 3 84.3 333 74.0 3.02 41.6 176 95:r Effluent 4 < 7.92 218 72.3 3.41 47.1 125 (pci/kg) composite 11 < 42.9 333 62.4 2.80 < 40.8 < 40.8

" Aquatic Biota 1,580 1,580 1,580 NA 1,580 1,580 Upstream . 1 seston Downstream 0 - - - - - -

Ef fluent 1 108 108 108 NA 108 108 95Zr Composite 2 108 1,580 413- 6.67 844 844 (pci/kg)

Deef F-44 4 2.66 6.15 ~

9.96 2.20 12.6 9.44 137g3 pCi/g Nat K

_______________m_ - _ _ _ _ _ - _ _ _ .

- - -__ _ __ ------ ,- - .._.- _ - -- .------,.-.------_...,.----..,-----,---nn.. - - ,.,,,n ,.

i

-us-t l i

II*I* 3JJele  :

1 l

l i

C )

i C

C-C C

C ~

C l

C

't Table II. C.3 Strontium 90 Concentrations in Surface Waters (pci/1).

Sampling Nonthly Collection Dates Locations 2-4-80***- 2-23-80 3-30-80 4-20-80 5-31-80 6-21-80 Effluent E 38: Farm Pond 0.111 < 1.33 1.53 < 1.41

_(coosequil. .l) < 1.37 < 2.71 (0.983)

(1.20)

E 41: Slougi rai Creek < 1.77 < 0.815 < 1.11 < 1.55 < 1.47 < 0.964 Downstream D 37: Lower Latham . 1.66 < 0.798 < 1.11 < 1.12 < 1.66

  • < 1.01 Reservoir (1.14)

D 40: S. Platte River Below Confluence < 1.17 < 0.998 < 0.763 < 2.06 < 1.52 < 3.66 i eg D 45: St rain

< 1,74 < 1.11 < 1.80 < 5.38 < 0.998 < 2.04 Upstream u 42: St. Vrain . 0.771 < 0.768 < 0.902 < 0.924 < 1.43 < 1.49-Creek (0.763)

U 43: S. Platte River

< 1,43 < 0.887 < 1.53 < 1.03 < 0.791 < 4.90

. Potable

F 49
Visitor's . < 0.831 < 0.887 < 0.992 < 0.802** < 1.91 < 1.08 Center

, D 39: Gilcrest City 1.07 Water < 0.902 f- < 0.910** < 0.824 < 0.967 (1.01)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 . S .D . ) .
    • Collected 4-26-80.

f Sample unavailable.

      • January sample collected Feb.4 due to weather.

O O O O O O O O O O O Table II. C.4 Strontium 89 Concentrations in Surface Waters (pCi/1).

Sampling Monthly Collection Dates Locations 2-4-80*** 2-23-80 3-30-80 4-20-80 5-31-80 6-21-80 Effluent E 38: Farm Pond 0.971 2.20 < 1.02 < 1.16 < 1.67 < 2.32 (coosequill) (2.35)* (3.18)

E 41: Slough to 2.50

< 0.707 < 0.966 I 00 < 1.24 1.11 St. Vrain Creek (3.33) (2.'87 ) (1.60)

Downstream D 37: Lower Latham 4.23 1.08 < 0.963 2.78 1.71 < 0.888 Reservoir (1.66) (1.81) (2.22) (2.14)

D 40: S. Platte River 3.41 4.03 Below Confluence < 0.673 < 1.72 < 1.33 < 3.16 $

(3.21) (2.40)

D 45: St. Vrain 4.59 2.37 Creek < 1.55 < 4.51 < 0.870 < 1.74 (4.84) (2.67)

Upstream U 42: St. Vrain < 0.652 < 0.669 < 0.788 < 0.755 < 1.22 < 1.30 Creek U 43: S. Platte

< 1.21

  • 1.10

< 1.31 < 0.703 < 3.82 River (2.27) (2.16)

Potable F 49: Visitor's < 0.710 < 0.761 < 0.856 < 0.678** < 1.63 < 0.914 Center D 39: Gilcrest City 5.13 1.45

< 0.791 f < 0.780** < 0.770 water (3.29) (1.59)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Collected 4-26-80.
      • January sample collected Feb.4 due to weather.

f Sample unavailable.

-128-Q I

l .,

. Table II.C.4.A Q Tritium, Strontium 89, and Strontium 90 Concentrations in Effluent Water, Goosequill Pond , E-38.

Second Quarter, 1980

!. Collection Tritium- Strontiu:n 89 ' Strontium 90 l3 ~ Date (pCi/1) .

(pCi/1) (pCi/1)

'4-5-80' < 264 < 1.01-

~

< 1.17 l- 4-12-80 < 229 < 1.05

;1.45'(1.27)* '

'O 4-20-80' 24,400(441) < 1.16- 1.41 (0.850) 4-26-80 69,100'(883)' < 0.902

i. < 1.10

.5-5-80 957 (211) < 0.878 < 1.01

3 5-10-80 15,600 (355) < 1.45 i

' -< 1.73 l ..

I 5-17-80 90,100 (1,090) < 1.56 '

1 < 1.81 5-24-80 805 (210) < 3.25 - 3.79 t3 5-31-80 6,300 (264) < 5.39 < 6.33 6-8-80' 1,650 (215) 3.28 (3.10) < 2.37 6-15-80 9,590 (293) 1.22 (1.61) < 0.964-

[3 6-21-80 1,230(257) 1.84 (2.43) < 1.45 6-28-80 < 277 < 0.598 < 0.717 l3 l

C

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S. D.) .

O' t

tu 9bActivityConcentrationsinBottomSediment (pCi/kg).

1 Sampling Mora hly Collec tion - Dates Locations 2-4-80 2-23-80 3-30-80 4-20-80 5-31-80 6-21-80 Effluent E 38: Farm Pond 227 < 144 182 < 151 '

< 181 ~320 (coosequill) (189)* (168) (356)

E 41: Slough to 182 130

< 135 < 152 < 143 < 159 St..Vrain Creek (148) (139)

Downstream D 37: Lower Latham < 143 < 138 < 156 < 157 < 151 < 145 h Reservoir y D 40: S. Platte River Below Confluence < 171 < 150 < 174 < 183 < 5.50 < 184 D 45: St. Vrain Creek < 175 < 144 < 170 < 265 < 147 < 179 Upstream u 42: St. Vrain f f < 155 < 192 d < 152 Creek U 43: S. Platte 215 < 222 < 156

< 166 < 145 < 170 River (199)

Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

d Sample lost during analysis.

f Sample unavailable.

97- T9-- 9 9 9 9 9 U _9T - 3.- -

g i

Table II. C.8 Strontium 89 Activity Concentrations in Bottom Sediment (pCi/kg).

Sampling Monthly.. Collection Dates .

Locations 2-4-80 2-23-80 3-30-80 ~4-20-80 5-31-80 6-21-80 -

Effluent E 38: Farm Pond < 149 < 128 < 145 283' < 206 < 210

. (Goosequill) (477)* '

E 41: Slough to 123 215

< 157 < 135 y.124 < 140 St. Vrain Creek (342) (430)

Downstream D 37: Lower Latham 338 < 130 <-138 -143 ~1 84- < 128 A-

]

Reservoir (324) (316) (276) y' 600 179 < 150 < 155 32.3 D 40: S.Platte River < 161 Below Confluence (142) (455) .(11.4)

D 45: St. Vrain 935 207 Creek- < 145 < 213 < 167 < 151-(726) (364)

Upstream j U 42: St. Vrain f f < 136 < 159 d' < 134 Creek U 43: S. Platte . .. 173 River < 157 < 144 < 130 < 192 < 178 ~(355)  !

,.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S'.D.).
d Sample lost during analysis.

f Sample unavailable.

N

__ _ _ _ _ _ _ , . - . ~ . , . , . , , . - - - , ..

O W u-~ U U

~

O u u O u ~U' Table II. D.2 Strontium 90 Activity in Milk (pCi/1).

"" "'8 Facility Area 44 Adjacent Composite

  • Reference Composite
  • 7980 Pre-Pasture.

Season January 5.54 (1.98)** 3.30(1.15) 14.8 (6.15)

February 3.74 (1.03) 2.83 (1.05) 4.05 (2.57)

March 1.77 (1.26) 2.69 (2.03) 1.55 (0.921)

April 2.66 (2.04) 1.55 (1.59) < 3.95 Pasture Season May 4 < 1.40 < 2.24 < 2.56 ,L May 10 < 4.30 2.34 (1.91) < 2.84 $'

May 17 d 1.15 (1.07) < 2.70 May 24 < 0.878 < 0.994 1.09 (1.02)

May 31 3.44 (1.91) 2.13 (6.61) < 10.1 June 8 < 5.55 1.52 (0.925) 2.92 (1.44)

June 15 1.93 (1.35) 2.93 (1.40) 1.17 (1.35)

June 21 1.85 (1.30) < 1.34 < 1.49 June 28 1.04 (1.39) < 0.907 < 1.70

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: 216, R17, R20, R22, R23, R25.

    • Uncertainties (in parentheses) are for the 957 confidence interval, (1.96 S.D.).

d Sample lost during analysis.

_ _ _-._. . . . . _ _ _ . _ _ _ _ _ . ..._m . _ _ _ _ _ _ _ _ .. . _. . _

sg .

V P

Table II. D.3 Strontium 89 Activity in Milk (pCi/l).

Facility Area 44 Adjacent Composite

  • Reference Composite
  • D 980 Pre-Pasture Season '

January < 1.60 < 0.912 < 4.65 February < 0.749 0.828 (2.27)** 10.2 (7.12)'

March < 1.39 < 1.70 -< 0.779 April < 1.74 < 1.38 < 3.39 Pasture Season May 4 1.19 (2.00) < 1.97 < 2.14 . L May 10 < 3.63 < 1.72 < 2.44 it!

May 17 d <-1.57 < 2.44 May 24 < 1.21 < 1.43' < 0.965 May 31 < 1.63 < 5.87 < 8.78 June 8 < 4.74 < 1.37 < 1.17 June 15 < 2.08 < 1.97 < 1.25 June 21 < 1.99 < 1.89 < 1.33. 1 June 28 < 1.32 .< 0.860 < 1.48

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: .R16,.R17, R20, R22, R.23, R25..

    • d Uncertaintied'ur(ing Sample lost anafysis.in pare theses) are for the 95% confidence interval, (1.96 S.D.).

4

_ _ _ _ _ _ . . _ _ _ . . _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ , e, - - - , - - ,

-133-O Table II. D.5 Tritium, Strontium 89, and Strc4ntium 90 concentrations in O Forage for Samples Collected May 24, 1980 .

Areas

O Facility

  • 4.** e < 4.85 84.0 (6.73)*

t 44 e < 5.00 23.7 (6.31)

Adjacent t

6 e < 8.44 188 (13.5) t O 28 e < 6.67 31.9 (5.51) 31 e < 4.84 61.4 (7.91) 36 e < 5.75 85.3 (9.45)

O +4 8 e < C.75 106 (11.6)

I SO e < 11.0 46.1(11.3)

Reference O ,

16. e < 18.1 92.8(19.1) 17 e < 3.77 48.0 (6.08) 20 e < 5.70 163 (9.40)

O i

22 e < 7.86 97.9 (9.85) 23 e < 17.7 140 (16.8) 25 e 29.9 (31.4) 33.4(14.3)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S .D. ) .

O + Silage or dry hay.

e Insufficient volume for analysis.

f Sample un available.

    • Collected May 31, 1980.

O

) -134-Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected June 15, 1980 .

1

^ ** Tritium Strontium 89 Strontium 90 (pCi/1) (pCi/kg) (pCi/kg)

! Facility t4 f f f t 44 870(208)* < 7.94 144 (12.7)

Adjacent 1

i t6 e < 23.4 85.5(18.4) p t 28 795 (210) < 6.42 31.7 (8.54) t 31 376 (203) < 6.88 147 (11.6) l t 36 496 (204) < 7.60 39.4 (9.11) t 48 e < 22.9 144 (12'. 7 )

t 50 e < 5.11 63.0 (7.70)

Reference t 16 393(203) < 14.6 125 (16.0) t 17 e < 8.98 79.6(12.9) t 20 e < 20.4 132 (17.3) t 22 846(207) < 16.7 140 (16.8) t 23 510 (204) < 18.5 42.3(14.9) g t 25 612 (205) 11.9 (23.9) 69.4(10.6)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S.D.) .

)

  • Silage or dry hay.

e Insufficient volume for analysis.

f Sample unavailable.

D

n -135-

.v Table II. D.6 Camma-ray Emitting Radionuclide Concentrations in Forage O (pci/kg) for samples collected May 24, 1980 .

Areas Ru Cs Zr & Nb

~O Facility 4 e e e 44 < 46.2 87.8 (12.2) 21.1 (7.48)

O Adjacent 6 < 48.5 < 32.3 28.8 (12.2)

O 28 < 36.1 12.7 ( 9.88) 13.9 ( 9.22) 31 < 72.6 < 22.6 30.0 (17.5) 36 < 56.1 < 17.5 18.3 (14.0)

O 48 < 77.0 59.1 (20.7) 33.9 (13.0) 50 < 54.7 < 17.5 42.0 (15.0)

Reference

16. < 91.0 < 28.3 38.3 (22.9) 17 < 33.8 19.9 ( 9.54) 10.6 ( 8.25) 20 < 41.1 77.7 (12.5) 34.3 (10.6)

O 22 < 45.7 43.0 (14.0) 43.4 (12.6) 23 < 50.4 80.4 (15.0) 70.7 (13.9) 25 < 70.9 31.0 (20.9) 14.6 (17.6)

O

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Collected May 31, 1980.

O e Insufficient weight or volume for analysis.

O

-136-l Table II. D.6 Gamra-ray Emitting Radionuclide Concentrations in Forage (pCi/kg) for Samples Collected June 22, 1980 .

Sampling 106 95 Ru Cs Zr & Nb Location Facility 4 h h h 44 131(39.8)* < 10.5 9.06 (7.17)

Adjacent 6 < 40.1 < 12.5 < 5.35 28 130(26.2) 41.3 (6.52) 57.9 (4.76) 31 < 60.7 56.7 (17.2) 27.8 (19.4) 36 < 576 41.1 (16.8) 43.1(18.8)

48 < 64.3 29.9 (18.4) 46.7(20.8) l 50 < 54.9 < 17.1 44.0 (27.3)

I Reference l

16 33.0(15.0) 26.7 (3.28) 49.0 (5.40) 17 < 40.0 < 11.2 11.6 (7.85) 20 < 70.4 22.8 (19.7) 65.6 (22.7) 22 < 68.8 < 21.4 < 9.21 23 < 64.6 < 20.1 < 8.65

)

25 < 34.7 < 10.8 < 4.65

  • Uncertaints i parentheses) are for the 95% confidence interval, h Sanple col (l D.).

)- omitted.

)

-137-

.O Table II. D.10 g Tritium, Strontium 89, and Strontium 90 concentrations in Soil for Sampics Collected June 15,1980 .

Sampling Tritium Strontium 89 Strontium 90

.-O tocation (pci/1) (pci/kg) (pci/kg)

Facility, 4 h h h O 44 581(207)* < 102 < 119 Adjacent 6 714 (209) < 90.9 < 106 28 324 (205) < 76.5 < 85.7 31 e < 102 < 118 36 e < 84.0 130 (103) 48 263 (204) < 86.8 < 99.0 50 < 230 < 76.4 < 88.0 0

Reference 16 774 (209) < 88.9 < 104 17 662 (208) 168 (201) < 145 O 20 e < 82.5 159 (102) 22 e < 90.7 < 110 23 e < 70.2 < 78.4

O 25 e < 116 < 137
  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.). l O e Insufficient volume for analysis.

h Sample collection omit'ed.

O ,

1

t Table 11. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected First Quarter,1980.**

Gross Beta Strontium gg' . Strontium 90 Sampling locations pCi/Kg pCi/Kg pCi/Kg Fish Upstream 4-4-80 6,980 (234) < 20.9 71.2 (23.8)

Downstream 4-4-80 10,740 (366) < 24.2 41.3 (22.9)

Effluent 4-4-80 7,960 (288) < 31.9 56.7 (38.7)

Benthic Organisms Upstream f f f Downstream f f f l

Effluent 4_4-80 7,160 (414) <.308 < 224 4

.l y Vascular Plants Upstream 4-5-80 3,310 (124) < 4.50 62.1 ( 5.08)

Downstream 4-5-80 2,270 (117) ,

< 3.52 44.8 ( 5.03)

Effluent 4-5-80 2,420 (159) < 3.42 41.6 ( 5.11) -

Seaton Upstream f f f Downstream f f f Effluent f f f

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals, f Sample unavailable.

- . _ - . -~._ . . - - - _ . - . .

]-

[. ,.

i 1 Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected June 19.1980 .

Gross Beta Strontium 89 Strontium 90 Sampling locations pCi/Kg pCi/Kg pCi/Kg Fish ,

Upstream - 6-21-80 8,210 (214). < 35.9 41.7 (31.5) ,

Downstream 6-21-80 10,900 (312) < 36.5 78.1 (29.0)

Effluent 6-21-80 11,700 (331) < 52.2 < 57.4 1

Benthic Organisms Upstream.. f f f Downstream f f f Effluent 6-21-80 11,000 (509) < 464- < 323 ' ,

i 1

C e .

Vascular Plants ,

Upstream 6-21-80 22,000 (353) < 35.1 126 '(39.2)

Downstream 6-21-80 24,000 (431) < 35.8 368 (48.7) [

Effluent 6-21-80 33,000 (547) 113 (109) < 25.7 -

Seston  !

Upstream f f f i Downstream f f~ f f Effluent f f f L

  • _ Upstream Comp atte: U 42, U 43.

Downstream Composite: D 40, D 45.

I ** Uncertaintics (in parentheses) are for the 95% confidence intervals. '

1 f Sample unavailable.

I 1

-O O- 0 0 0 0 0 0- U- U U l

l l

Table II. E.1 Analysis of Comt.osite* Aquatic-Biota For Samples collected June 10. 19An .*

l Cross Beta Strontium gg  : Strontium 90 Sampling locations pCi/Kg pCi/Kg pCi/Kg Fish Upstream f f f Downstream 6-30-80 13,200 (496). < 35.0 < 34.5 Effluent 6-30-80 12,200348) < 88.0 < 54.9 - i Benthic Organisms Upstream 6-30-80 9,140 (427) < 201 < 149 Downstream f f f Effluent f f f ,

?

Vascular Plants i Upstream *** *** ***

l Downstream *** *** ***

. Effluent ,

    • s *** ***

Seston Upstream 6-30-80 31,600 (1,280) e e Downstream 6-30-80 24,100 (1,500) e e Effluent 6-30-80 17,200 (1,390) e e

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45. -

    • Uncertainties (in parentheses) are for the 95% confidence intervals.
      • Monthly sample reported in June 19, collection.

e Insufficient w6fght or volume.for analysis.

f Sample unavailable.

_ __ . . . _ . .___ _ . . _ _~ . . _ _ - _ .__. .. _ _ . - .. . _ __ . ._, ._

Table II..E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected June 19, 1980 Sampling Locations

  • 6 95 Ru Cs Zr & Nb Fish bpstream < 241 278-(58.2)**- <-32.2 Downstream < 253 421 (62.0) < 33.8 Effluent < 248 145 (59.4) ~ 143 (39.3) 4 Benthic Organisms j

. Upstream f f f e

j Downstream f f f-6-21-80 t-Effluent < 209 496 (54.1)_ 171.__ (28.1)

Vascular Plants -.

4 Upstream 6-21-80 3,300 (102) < 23.9 48.9(42.0)

Downstream 6-21-80 < 130 81.1(35.3) < 17.4 ,

Effluent 6-21-80 < 74.0 86.1(22.9) 107 (42.8)

Seston Upstream f f-

. f* l Downstream f f f Effluent f f f i

  • Upstream Composite: U 42, U 43. i Downstream Composite: D 40, D.45.

Effluent: E 38.

    • f Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

Sample unavailable.

i u _ - - --

r- -n , n ,- - e - , - - . <-e --

-U U e U U U e e G G 6 Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected ,1ung 10. 1980 **

Sampling Locations

  • Ru Cs Zr & Nb Fish Upstream f f f Downstream < 995 1,480 (246) 239 (136)

Effluent < ?.52 < 78.6 < 33.6 Benthic Organisms Upstream < 1,780 2,720 (435) < 238 Downstream f f f Fffluent f f f 8 Vascular Plants 7 Upstream *** *** ***

Downstream Effluent Seston Upstream e e e Downstream e e e Effluent e e e

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Monthly sample reported in June 19 collection.

e Insufficient weight or volume for analysis.

f Sample unavailable.

> J .> t : O O O O O Table II .II. I . Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i o N U Analyzed 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Air composite 25 < 0.730 3.89 1.07 3.26 1.86 0.623 137CS (fCi/m3)

Air composite 25 < 276 6.05 .512 3.41 0.630 0.432 952r (fci/m 3)

Nater Effluent 31 3.71 51.2 14.1 1.69 16.1 12.9 cross s Downstream 19 1.80 34.6 9.86 1.95 11.7 9.53 (pci/1) Upstream 12 3.68 13.8 11.8 1.93 14.5 8.27 Potable 11 0.671 28.5 3.48 2.60 5.49 6.18 /.

Composite 73 0.671 51.2 10.1 2.25 13.1 10.3 y Water Effluent 32 < 229 90,100 1,580 6.29 8,030 7,190 Tritium Downstream 18 < 264 968 314 2.27 287 131 (pci/1) Upstream 12 < 264 373 257 2.03 217 86.5 Potable 11 < 264 641 292 1.70 208 134 composite 73 < 229 90,100 609 4.81 3,650 3,220 water liffluent 12 < 0.982 1.53 1.12 2.70 0.952 0.198 90sr Downstream .8 < 1.66 5.00 0,994 2.68 0.827 0.372 (pci/1) Upstream C < 1.04 0.924 1.21 2.88 1.17 0.302 Potable 11 < 0.902 1.07 0.719 3.25 0.940 0.309 composite 47 < 1.66 5.00 0.994 2.84 0.947 0.304 e

l Table 11.11.1. Mean Values for all Sample Types. (Cont'd.) .

Number of Minimum Sktximum Sampics Value Observed Value Observed i o Analyze <1 6 Months 6 Months 8 E i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Water Effluent < 1.16 2.78 89st 12 1.25 1.67 < 1.20 0.527 Down s t rea m 18 < 4.51 4.59 1.58 1.85 < 4.51 0.422 (pci/1) tips t ream 12 < 0.755 3.68 1.04 1.77 < 1.20 0.364 Potable 11 < 0.856 5.13 0.837 2.08 < 1.18

  • 0.244 Composite 53 < 4.51 5.13 1.19; 1.91 < 4. 51 0.395 water Effluent 37 < 2.12 4.96 2.58 2.38 < 0.679- < 0.679 10%u nownstream 18 < 1.30 28.6 2.61 2.73 < 0.697 < 0.697 (pci/1) opstream 12 < 2.59 8.96 2.04 3.79 < 0.638 < 0.638 Potable 11 < 2.59 0.470 2.47 2.86 < 0.725 < 0.725 composite 78 < 2.59 28.6 2.48 2.70 < 0.638 < 0.638 I

Water Effluent 37 < 0.635 8.56 1.01 2.98 0.385 1.15 3 137 Cs Downstream 18 < 0.803 10.0 0.951 3.28 1.12 2.49 '

(pCi/1) upstream 12 < 0.641 6.15 1.23 3.10 1.74 2.59 Potable 11 0.029 91.8 0.951 5.04 5.14 9.30 Composite 78 < 0.803 91.8 1.02 3.31 1.44 8.01 water Erfluent 33 < 272 5.00 0.402 2.78 < 0.105 0.365 95Zr Downstream 18 < 0.158 7.74 0.491 2.70 0.515 0.9?3 (pci/1) Upstream 12 < 0.748 1.18 0.418 2.89 0.418 0.001 Potable 11 < 0.344 0.704 0.347 2.02 0.248 0.177 Composite 74 < 0.748 7.74 0.414 2.66 0.198 0.416 Sediment Effluent 12 31,000 38,800 33,700 1.07 33,800 34,700 Gross 0 Downstrea, 18 20,800 55,400 33,400 1.17 33,800 34,900 (pci/kg) Upstream 10 30,300 36,600 32,800 1.12 33,000 33,600 composite 40 31,000 55,400 33,300 1.13 33,600 34,500

_ _--E --

, m . . . - m. -- - - - - -

TaMr. I I .!!.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i a Analyzed N N 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 ;'.onths sediment Effluent 12 < 144 227 157 2.66 173 47.6 90sr Downstream 17 < 150 150 138 2.95 159 < . 150 (pci/kg) Upstream 8 < 170 215 199 2.36 192 < 170 composite 37 < 144 227 158 2.70 172 13.0 sedio.cnt Effluent 12 < 149 283 177 3.29 241 < 149 89sr Downstream 18 < 213 3,213 266 3.79 398 282-(pci/kg) Upstream 9 < 130 173 175 3.52 280 36.8 Composite 39 < 213 3:213 211 3.57 320 129 sediment Effluent 11 < 3,510 3,660 3,890 2.14 < 3,270 < 3,270 locRu Downstream 12 < 3,750 14,200 3,890 2.28 < 373 < 371 i (pci/kg) Upstream 8 < 3,740 6,700 4,950 2.16 < 3,720 < 3,720 $'

composite 31 < 3,750 14,200 4,170 2.19 < 373 < 373 Sediment Effluent 10 < 642 < 651 457 2.57 202 < 557 137Cs Downstream 16 < 654 < 1,210 353 4.28 < 542 -

542 (pci/kg) Upstream 8 < 654 < 1,190 437 1.96 < 642 < 642 Composite 34 < ';54 1,210 418 3.11 < 542 < 542 ,

sedirnent Effluent 12 < 231 265 227 2.70 < 206 < 206 93Zr Downstream 18 < 193 732 214 2.03 < 193 < 193 (pci/kg) Upstream 10 < 237 255 217 2.02 < 227 < 227 compositc 40 < 231 732 219 2.20 < 227 < 227 Precipitation F-1 6 < 35.5 21.5 15.1 6.18 43.9 15.9

(;ross B F-4 10 3.41 112 18.5 2.35 24.8 10.8 (pci/m 2) Composite 16 < 35.5 112 16.8 3.93 33.7 12.6

o o. o- o -u o o o o o

u7 .

Table 11.!!.1. Mcan . Values for all Sample Types. (Cont'd.)_ l 4

Number of Minimum Maximum Samples Value Observed Value Observed i o N 8 4 .

. Analyzed 6 Months. 6 Nonths i -i.  !

, Sample Type Area 6 Months 1 Year 1 Year. 6 Months  !

Milk Facility- 12 0.511 5.54- 3.48 2.34 4.85 2.37

.90Sr Adjacent 13 0.241 3.30 2.56 3.60 4.85 1.69 i (pci/1) Reference 13 < 2.70 14.8 2.66 2.93 4.27 2.12  !

composite 38 < 2.70 14.8 2.86 2.95 4.65 2.05~

Milk Facility '12 < 1.60 1.19 1.98 2.06 < 6.19 < 1.60 MSr Adjacent. 13 < 5.87 1.11 1.55- 2.16 < 3.82 < 5.87 (pci/1) Reference 13 < 4.65 10.2 1.75 2.43 < 9.53 . < 4.65

composite 38 < 5.87 10.2 1.75 2.22 < 9.53 < 4.65 j Mi1k Faci 1ity 11 < 0.106 39.9 1.53- 9.40 -2.08 6.90

! 131 I Adjacent 13 < 0.111 44.5 1.39- 8.93 2.95 9.44 i (pCi/l) Reference 13 < 0.136 42.3 1.47 7.92 2.25 5.78 $

composite 37 < 0.136 44.5 1,46 8.51 2.44 7.40  ;

MiIk Faei1ity 11 < 0.170 30.2 1.32 7.99 3.07 5.14 137Cs Adjacent 13 < 0.106 31.9 1.02 7.65 2.30 6.51 f (pCi/1) Reference 13 < 0.100 24.3 1.24 6.78 1.42 2.35 compositc 37 < 0.100 31.9 1.18 7.30 2.25- 4.64-MiIk Faci 1ity 11 0.710 2.47 1.26 1.54 1.35 1.47 Nat. K Adjacent 13 1.45 1.90 0.188 1.60 1.61 1.58 j (g/l) Reference 13 0.955 1.94 1.46 1.15 1.47 1.53  !

l composite 37 ,

0.710- 2.47 1.44. 1.32 1.48 1.53-t Forage Facility 1 870 870 761 1.13 765 870 Tri tium Adjacent 3 376 795 479 1.87 510 556 '

. (pCi/1) Reference 5 50.7 846 548 2.36 724 482 l composite 9 50.7 '870 535 2.07 641 550 4

O O O O O O O O O O O Table II.II.1. 14ean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximuni Samples Value Observed Value Observed 2 o N N Analyzed 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Fo rage Facility < 4.85 Msr 3 < 5.00 20.3 3.38 < 28.5 < 4.85 Adjacent < 23.4 < 11.0 2.25 < 26.9 (pci/kg) Re fe rence 12 16.1 < 23.4 12 < 17.7 29.9 22.2 2.61 < 22.3 < 17.7 ,

composite 27 < 17.7 29.9 19.1 2.54 < 26.9 < 26.9 Forage Facility 3 23.7 144 127 2.16 156 83.9 90sr Adjacent 12 31.7 188 97.5 2.02 121 85.8 (pci/kg) Re ference 12 12.5 163 120 2.00 143 87.6 composite 27 12.5 188 110 2.02 135 86.4 Forage Facility 2 < 46.2 131 52.1 4.46 32.3' 48.4 NRu Adjacent 12 < 576 130 62.0 4.01 42.8 < 576 Refe rence  %

(pci/kg) 11 < 70.4 46.5 60.3 2.13 16.1 < 70.4 y composite < 576 131 60.0 3.19 30.2 < 576 Fo ra ge Facility 2 2.28 87.8 36.0 4.17 52.5 45.0 137Cs Adjacent 12 < 22.6 59.1 29.8 4.61 49.7 25.8 (pci/kg) Re fe rence 11 0.113 80.4 28.7 4.47 44.8 28.6 Composite 25 < 22.6 87.7 30.0 4.40 47.9 28.6 Forage Facility '2 9.06 21.1 29.5 2.81 40.3 15.1 9scr Adjacent 12 < 5.35 57.9 35.4 1.93 39.5 27.4 (pci/kg) Re ference 11 < 4.65 70.7 26.6 3.26 38.9 26.2 i composite 25 < 5.35 70.7 30.6 2.60 39.3 25.9 Fo rage Facility 3 3,000 15,500 17,200 2.10 20,900 89,700

(;ross 6 Adjacent 12 1,700 29,400 17,000 1.64 18,400 16,700 (pci/kg) Re ference 12 6,340 27,000 20,000 1.32 20,700 20,000 composite 27 1,700 29,400 18,300 1.58 19,700 17,300

(, , b x G v ( U v 9 9 4 Table I1.11.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i E

o AnalyzaC 6 Months 6 Months E i i Sample Type Area 6 Mcaths 1 Year 1 Year 6 Months Soil Facility 3 49.5 252 92.9 1.65 < 75.0 118 895r Adjacent 12 < 206 166 73.4 3.07 < 76.5 <.

76.5 (pci/kg) Reference 12 < 68.0 191 91.0 1.96 < 68.'0 8.75 Composite 27 < 206 252 83.1- 2.41 < 68.0 9.53 Soil Facility 3 < 80.7.

. 104 122 3.32 173 32.9 90Sr Adjacent 12 < 124 130 135 3.87 229 65.0 (pci/kg) Reference 12 < 145 430 192 2.63 270 102 Composite 27 < 145 430 155 3.25 240 78.0 Aquatic Biota Upstream 2 6,980 8,210 6,460 2.51 8,080 7,600 Fish D nnstream 3 10,740 13,200 10,900 1.14 10,900 11,600 i Gross B EGluent 3 7,960 12,200 14,500 2.71 27,700 10,600 $'

(pci/kg) Composite 8 6,980 13,200 10,200 2.24 16,000. 10,200 Aquatic Biota Upstream 1 9,140 9,140 10,000 1.17 10,100 9,140 Benthic Downstream 0 f f f f f f Gross 8 Effluent 2 7,160 11,000 9,920 1.24 10,100 9,080 (pCi/kg). ' Composite 3 7,160 11,000 9,920 1.19 10,100 9,433 Aquatic Biota Upstream 2 3,310 22,000 12,100 2.01 14,200 12,700 Vascular Plants Downstream 2 2,270 24,000 11,900 2.41 14,900 13,100 Gross B Effluent 2 2,420 33,000 13,.500 2.46 17,100 10,200 (pCi/kg) Composite 6 2,420 33,000 12,500 2.19 15,400 14,510 Aquatic Biota Upstream 1 31,600 31,600 30,000 1.09 30,100 31,600 Sesun Downstream 1 24,100 24,100 30,300 1.23 30,900 24,1C0 Gross B Effluent 1 17,200 17,200 22,800 1.21 23,100 17,200 (pCi/kg) Composite 3 17,200 31,600 27,300 1.23 27,800 24,300 f Sample unavailable, ,

Tabic 11.11.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed value observed i o Analyze.1 6 Months 6 Months N 8 2 i Sample Type Area 6 Months 1 Year 1 Year 6 Months

. Aquatic niota Upstream 2 < 20.9 < 35.9 _48.6 2.79 < 188 < 30.9 Fish Downstream 3 < 36.5 < 35.0 52.2 2.20 < 192 < 36.5 ao sr Effluent 3 < 52.2 13.1 40.7 3.05 < 191 < 52.2 ,

(pci/kg) composite 8 < 52.2 13.1 46.6 2.57 < 192 < 191 Aquatic niota . Upstream 1 < 201 < 201 90.3 2.00 < 179 < 201 Benthic Downstream 0 f f f f f f 89Sr Effluent 2 < 308 < 464 145 2.32 < 72.8 < 308 (pci/kg) composite 3 < 308 < 464 98.8 2.09 < 72.8 < 72.8 Aquatic Biota . Upstream 2 < 4.50 < 35.1 16.9 2.13 < 34.2 < 4.50 vascular Plants Downstream 2 < 35.8 < 3.52 24.9 3.15 < 79.9 < 35.8 L a9 sr Effluent 2 < 3.42 113 23.8 3.35 < 60.8 36.2- @'

(pci/kg) compos it e 6 < 35.8 113 21.6 2.74 < 79.9 < 35.8 Aquatic niota . Upstream f f f f f f f seston Downstream f f f f f f f 89sr liffluent f f f f f f f (pci/kg) composite f f f f f f f Aquatic niota.. Upstream 2 41.7 71.2 91.2 2.01 113 56.3 Fish Downstream 3 41.3 78.1 89.8 2.59 142 53.7 90sr liffluent 3 < 54.9 56.7 57.1 1.32 48.0 32.6 (pci/kg) Composite 8 < 54.9 78.1 77.6 2.00 101 46.5 Aquatic niota.. Upstream 1 < 149 < 149 194 1.23 163 < 149 Benthic Downstream 0 f f f f f f 90sr Effluent 2 < 323 46.6 177 2.01 117 < 323 (pci/kg) composite 3 < 323 46.6 179 1.59 147 272 Aquatic niota . Upstream 2 62.1 126 110 1.53 119 94.1 vascular Plants Downstream 2 44.8 368 176 2.75 250 206 90 Sr lif fluen t 2 25.7 41.6 76.4 2.63 123 33.7 (pci/kg) composite 6 25.7 368 114 2.38 164 111 f Sample unavailable.

O O O O O O O O O O O Table 11.11.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum >!aximum samples Value Observed Value Observed 2 o E E Analyzed 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Aquatic niota Upstream f f f f f f f Seston Downstream f f f f f f f 30Sr Effluent f f f f f f f (pci/kg) composite f f f f f f f Aquatic niota Upstream 2 < 244 399 1,000 7.32 7,490 < 244 Fish Downstream 3 < 995 357 403 3.23 < 995 < 995 106 Ru 80.8 Effluent 3 < < 252 189 2.08 < 79.8 < 80.8 (pci/kg) composite 8 < 995 399 406 4.28 < 2.040 < 995 Aquatic niota Upstream 1 < 1,780 < 1,780 1,200 3.79 1,580 < 1,780 .

Benthic Downstream 0 f f 637 3.32 925 f 0; 106 Ru <

Effluent 2 209 < 259 882 7.20 5,170 < 209  ?

(pci/kg) composite 3 < 1,780 < 259 897 4.51 2,840 < 209 Aquatic niota Upstream 2 < 273 3,300 447 2.69 328 1,540 vascular Plant Downstream 2 < 287 25.1 237 3.12 < 272 < 287 1 Nu Erfluent 2 < 74.0 < 287 293 2.56 < 378 < 74.0 (pci/kg). composite 6 < 272 3,300 314 2.72 < 272 376 Aquatic Biota Upstream f f f f f f f Seston Downstream f f f f f f f 10Nu Effluent f f f f f f f (pci/kg) composite f f f f f f f Aquatic niota upstream < 77.7 278 2 196 1.94 146 104 Fish Downstream 3 15.6 1,480 101 5.44 239 639 137cs 3 < 78.6 Effluent 145 121 1.97 81.7 73.3 composite 8 < 77.7 1,480 (pci/kg) 131 3.05 156 373 Aquatic niota Ups t ream 1 2,720 2,720 275 6.44 804 2,720 nenthic Downstream 0 f f 195 1.19 198 f 137Cs Effluent 2 496 1,070 325 3.40 108 783 (pci/kg) composite 3 496 2,720 268 3.51 364 1,760 f Sample unavailable

o . .

Table II.ll.1.. Mea: Values for all Sample Types.(Cont'd.)

, Number of Minimum , Maximum Samples Value Observed Value Observed- E g o g g g Analyzed 6 Months 6 Months .

Sample Type Area 6 Months 1 Year 1 Year 6 Months

  • Aquatic Biota Upstream 2' < 2 3 . 5- 1.23 32.8 6.38 < 23.9 < 23.9 Vascular Plant Downstream 2 81.1 113 118 1.41 . < 125 97.1 >

137 Cs Effluent 2 4.39 86.1- 41.1 4.74 < 125 45.2 (pci/kg) Composite 6 -

< 23.9 113 54.1 4.24 < 23.9 10.6 ,

Aquatic Biota Upstream f* f f f f . f f, gton Downstream f f f f f f f Cs Effluent f f f f f f f (pci/kg) Composite f f f f f f f Aquatic Biota ';pstream 2 < 32.2 20.1 72.8 3.90 150 8.59 ,

Fish Downstream 3 < 33.8 239 74.8 3.00 1 108 88.5 -

95Zr Effluent 3 < 33.6 143 70.4. 3.39 125 56.9 f (pci/kg) Composite 8 < 33.8 239 72.7 3.18 127 56.7 Aquatic Biota Upstream 1 216 216 259 4.74 - 837 1,530 4

Benthic Downstream 0 f f. 205 3.07 295 f

. 952r Effluent 2 171 452 172 2.86 218 312

! (pci/kg) Composite 3 171 452 207 3.25 445- 613 Aquatic Biota Upstream 2 < 39.5 48.9 45.7 2.72 29.7 <

39.5

, vascular Plants Downstream 2 < 40.8 < 17.4 49.0 1.83 < 40.8 < 40.8 952r Effluent 2 < 40.8 107 58.9 1.99 < 10.8 < 40.8 (pci/kg) Composite 6 < 40.8 107 50.9 2.10 < 40.8 < 40.8  ;

Aquatic Biota Upstream f f f f f f f Seston Downstream f f f f f f f 9tr liffluent f f f f f f f

(pci/Lg) composite f f f f f f f twe r F- 41 2 17.8 20.1 15.2 1.59 16.4 19.0 i 117s pt:i /g Na t K

, - +

.--s

-152-

)

III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGIW1 SOlEDULE III.A. Environmental Radiation Surveillance Schedule Table II. A.1 outlines the collection and analysis schedule for the radiation surveillance program. This is identical to Tabic 5.9.1 in the Technical Specifications.

) The surveillance program provides for collection and analysis of environmental sampics within an area extending to a twenty-mile radius from the reactor site. A concentrated area of sampling within a one-

) mile radius is designated the " Facility" :one; the area from one te ten miles, the " Adjacent" :one; while the " Reference" :one extends from ten to twenty miles. The data obtained from the Facility zone are

) statistically compared to those from the Adjacent and Reference zones to test for any significant diffe rences in values. A similar rationale is used for surface waters and sediments. These are partitioned into

) " Effluent" (Farm Pond and Slough), " Downstream" and " Upstream" locations for statistical analysis.

The sampling locations are shown in Figures III.B.1 and III.B.2.

) Table II.B.1, III.B.2, and III.B.3 give some detail of the sampling sites in the Facility, adjacent and Reference zones respectively.

The following changes in sampling locations were made during the

) second half of 1980.

1. The R-20 dairy went out of business. R-20 was changed to County Road 43. This is the Richard Stroh dairy farm. The

) distance to the reactor is approximately the same as the previous R-20 location and in the same sector. The effective date of this change was September, 1980.

J

)

l

r I

k s 153

2. R-23 dairy was changed to the Dick Silver dairy, 9842 County liighway 52, Fort Lupton, CO. This new location is approximately I

h I mile from the previous R-23 location. The effective date of change was December, 1980.

For both of the above changes, the TLD location was not changed.

It was decided that since the new locations were so close to the previous ones and since we have had such a long standing data base at the previous locations, it was prudent not to change at this time.

) 3. The A-48 dairy also went out of business. This dairy could not be replaced as there are no other dairy farms in the vicinity.

D D

t D

i l

l D

D D

TABLE U . A.1. ENVIRONMENTAL RADI ATION SURVEILLANCE PROGRAM SCHEDULE

  • Exposure Routes o, SAMPLING FREQUENCIES AND ANALYSES - by Action Levels, Med.a & Sample Types _ based upon actual en.as=, eons as percentages of release rates authorized by 10 CF R 20 (No ot zone'/ Locations)* Action Level 1: Less than 3% Act+on Levet "1: 3% to 10%

l Action Levet 3: Greater than 10%

EXTERNAL EXPOSURE TLD Crups Average mR/ day determined by OUARTERLY cumulative esposures; Average mR/ day determined by if-13 A-12. R-12) collection and analysis in rotation of 1/3 of all TLDs MONTHLY. MONTHLY arietysss of all Tt Os.

ATMOSPHE R E Ment,anc filters for Grm 5 eta. . , y vinter, ytt:E KLY; Same as for Level 1. plus gross Gross alpha and beta.every fetter; par tici,lates. char coal pnma H.sectrum of filter and alpha on one weekly set of gamma spectrum of f. Iter and car ts.ars for iodine cartridge composites. MONTHLY. fitters. MONTHLY. cartridge composites, all WE E KLY, 4F-4 A-3)

Tribum ounde Specific activity of tritius en atmospheric water vapor by passive absorption and hou*d scmtallation countmg.

(F -2) OUARTERLY MONTHLY t l g WEEKLY WATER I '

Potable water Gross beta, trits.,m and gamma spectrum analyses: Facility area and naarest of f 4ste supply (F-1. A-1) (shattow weris at town of Gilcrest,6 maes northeasti.

1 -- OUARTERLY MONTHLY MONTHLY, plus Sr 89 & 90 analyses Precepitation No collect 6cn or analyses of Gross beta. MONTHLY Gross beta, tritium and Sr 89 & 90, (F-2) precipitation at Level 1.

MONTH LY; gamma spectrum of - r composite, OUA R TE R LY.

Surface water & salt Gross beta. tritium 2 ard gamma Same as for Level 1. but Same as for Levet 2. plus (F-3. A-4) spectrum. QUARTERLY. MONTHLY. .

Sr 89 & 90 analyses, MONTHLY. >=

- tn FOOD CH At NS #

So.1, forage & crops Tritium and gamma spectrum analyses of forage and crops in the most probable routes to man.

a (F -2. A-6. R-6) GU A R TE R LY, as avaitable MONTHLY during growmg season Sarne as Level 2, plus Sr 89 & 90 t .e., spring. summer and fan). (i.e., appron. April to October). plus concurrent soil samples anatyred for the same nuctides, MONTHLY during growing season.

Beef cattle No analysis of beef at Levet 1. Gamma spectrum, tritium and Same as for Level 2, plus total TF-1) Sr 89 & 90 anaryses on one meat l

' body count of 2 to 4 arumats 1 sample from beef raised in Facifity from Facihty Area. QUARTE RLY.

Area; ANNU A LLY, at end of grazing season (i.e., late fait).

Mis k Tritium, gamma spectrum and Sr 89 & 90 analyses on cc.mposite: Same as for Level 2, but tF-2. A-6. R-6) Facahty Area only, QUARTERLY. Facility. Adjacent and Reference Areas; WEE KLY durmg pasture season, MONTHLY darmg pasture season, otherwise, MONTH LY.

otherwise OU A RTE R LY.

AQUATIC BIOTA "

(2 streams, above Gross beta and gamma spectrum analyses of composites of each of 4 categories: Same as for Level 2, plus and below lit suspended organisms, (2) benth c organisms. (31 wascutar prants and (4) fish. Sr 89 & 90 analyses, dachaege points) OUARTE RLY, as available. MON THLY durmg summer, (F.2. A-2) otherwise QU AR TE R LV, as avaitable.

i "Tabte $ 9-1. sn Technucal Spec >tications.

1 Legend.

F - Facility Zone

, A - Adjacent Zone i

R - Retenerice lone

2. Tritsum Analysis of Surface Water Only i

N

Table III.B.I. Facility area and effluent sampling locations for environmental media.

Loc. Media Sampled at Location location and Description (see Fig. II.B.1)

10. i TLD AIR M S H90 AQB Distance and Direction from Reactor; Comments F 1 j
  • ** 0.8 mi. N; potato cellar; TLD on pole at NE corner barn; precipitation I on hill E of barn ,

F 2 l

  • 1.1 mi. NNE; cabin.

F 3 i *

  • 0.7 mi. SE; old dairy barn ; TLD on 1st pole N of drive.

T4 * **

  • 0.8 mi. S; first shed along drive; precipitation in corral; forage and soil S of shed.

F 7

  • 0.8 mi. NNE; pole by gate at corner of Goosequill Rd.

F 8

  • 0.6 mi. ME; 2nd pole S of cattle-guard on hill.

t 9

  • 0.8 mi. SSE; 2nd pole W of pump house.

F 11

  • 0.9 mi. SSW; 0.3 mi. W of intersection of 1915 and 34.

F 12 * '

O.8 mi. SW; 7th pole N of intersection.

I 13

  • 0.6 :ai . WSW; pole nearest intersection. 1 F 14
  • 1.0 mi. NW; pole nearest corner. y F 44 *
  • 1.1 mi. E; Leroy Odenbaugh dairy.

F 51

  • 0.3 mi. N; Ted Horst farm, pole SW of house.

4G i

  • 1.0 mi. SW; 2nd pole N of intersection, near Aristocrat Angus office.

F 47  :

  • 0.4 mi. E; pole near driveway to pump house.
  • 0.1 mi. W; tap outside Visitors Center F 49 i

E 38 *

  • 1.3 mi. NNE; Goosequill pond.

E 41

  • 0.2 mi. NW; Concrete slough above and below point of entry of plant water.

Ccdes: F = Facility area (within one mile).

E = Effluent surface streams.

TLD = Thermoluminescent Dosimeter for measuring external gamma exposure.

AIR = Air sampling location; ** = atmospheric precipitation collected.

M = Milk sampling locations.

HO 2 = Water sampling locations; silt also sampled from surface sources.

AQB = Aquatic biota sampling locations.

S = Soil and Forage sampling locations.

O C O O O C O t t Table 111.B.2 Adjacent area sampling locations for environmental media. ~

Loc. I:qdia Sa_mpled at_ Location _

No. TLD AIR M S Location Description (see Figs.11.B.1 and II.B.2)

' H2O AQB Distance ano Direction from Reactor; Comments A5 *

  • 4.5 mi. NNE; A6 ' * * *
  • Lloyd Rumsey farm; 2 mi. N,1.5 mi. W of Peckham.

5.5 mi. S; Clif ton Wicsler farm; 2 mi. W, 2.5 mi. S of Platteville;

  • TLD on pole 30 ft. N of parlor.

A_27 5.0 mi. NW; 1 mi. S 'of Colo. 56, I mi. E of I-25, pole on NE corner.

A 2d ' * *

  • 6.0 mi. NW; Virgil Podtburg dairy; Colo. 60, 2 mi. W of Johnstown; TLD 1
  • on last pole on NE corner.

A 29 3.5 mi. NNW; 3 mi. S; 1.6 mi. E of Johnstown. TLD on pole by the stand A 30

  • of trees.

3.5 mi. NE: 1 mi. S of Colo. 256 on Colo. 60, pole on NE corner.

A 31 *

  • 6.0 mi. ENE; A 32
  • 1.5 mi. E of Peckham; TLD on pole in front of house.

4.0 mi. E; A 33

  • 3 mi. N of Platteville; 1.2 mi. E of US 85; NW pole.

K~34

  • 5.0 mi. SE; Niles Miller Dairy; 0.2 mi. S, 0.5 mi. E of Platteville.

6.5 mi. SW; I mi. E of I-25 at Colo. 254; pole on SW corner.

A 35

  • 3.5 mi. SSW; A 36 * *
  • Mike McDermott; 9476 Hwy 66; h mi. w of Jt. Col.66 & Rd 21  ;,

8.0 mi. W; Bob Johnson dairy; 2 mi. W of I-25 on Colo. 56, then 1.5 g:

mi. S. TLD 0.5 mi. W. '

A 50 * * ~

5.0 mi. SE; 'l3.8 mi. E of Platteville. - -

D _2 7 12.5 mi. ENE; Lower Lathan Res.; 2.5 mi. E of LaSalle.

0 9.-

  • 5.0 mi. ENE; 0 40 *
  • Gilcrest water from U.S. Post Office 5.5 mi. ENE South Platte River at Colo. 60.

D 45 *

  • 1.0 mi. N; St. Vrain Creek at Jct. Rd.19S, 0.2 mi. from discharge.

Codes: A =

Adjacent area (one to ten miles from reactor).

0 = Downstream potable or surface waters.

All other symbols same as for Table III.B'.1. .

Table III. D.3. Reference area and upstream sampling locations for environmental media Loc. Media Sampled at Location Location Description (see Figs. II. B.l. and II. B.2.)

No. TLD AIR M S H2O AQB Distance and Direction from Reactor: Comments. __

R 15

  • 11.5 mi. NW: 4.2 mi. W of. I-25 on Colo. 60; TLD .on pole W of farm driveway. '

R 16 * * *

  • 11.8 mi. NNW; Mountain View Farms; N side of Colo. 402 W of I-25.
  • d 17 * *
  • 11.8 mi. NNE; Bob Schneider Dairy; l'mi. S of US 34 on RD 25; on pole 0.5. mi. N of parlo'r on RD 25.

R 18

  • 10.0 mi. NNE; on pole on SE corner of intersection of 65th Ave. and-37th Street-(Greeley). -

R 19

  • 13.3 mi. NNE; US 34 at 47th Ave. (Greeley); pole on SW corner, oppos.ite golf course.

R 20 * *

  • 11.1 mi. ENE;. Dick Stroh dairy: 2.mi. E:.1.6 mi. S of LaSalle; TLn on. nole W narlos R 21
  • 11.9 mi. E; 5 mi. E of US 85 on Colo. 256; then 1 d. S; TLD on pole on h SW corner.  ?

R 2 i * *

  • 11.1 mi. SE; Hagans. Bros. Dairy; 4.2 mi. S of Platteville; 4.2 mi. E of US 85; TLD on 1st pole E of drive.

R 23 * *

  • 11. 5 mi. S ; , Dick Silver; 3.5 mi. W of Ft. Luoton,TLD on 1st pole W. ori drive R 24
  • 12.2 mi. SSW; I-25 at Uolo. 52; pole ~.W. of the frontage road;

, ~ NW corner.

R 25 * *

  • 11.7 mi. WSW; Angelo Vendegna Dairy; 4 mi. N of Colo. 52 on RD 1.

R 26

  • 12.2 mi. WNW On US 287, 2.5 mi. of Colo. 56, 2nd pole S on RD 2E.

U 42 *

  • 1.5 mi. WSW; St. Vrain Creek at bridge, RD 34.-

U 43 *

  • 0.6 mi. E South Platte River, at dam and inlet _ ponds.

Codes: R = Reference area (greater than 10 miles from reactor).

U = Upstream from effluent discharge points.

All other symbols as in Table II.I B.l.

r w -

v- -+~-me-w- _ _ . _ _ . - - - . _ . _ . _

l

O -1s8-Figure III.B.1. On-site Sampling Locations.

O

O / s M.

~

3 \, il) - 1

\ 69 ,

1[

o ,-

- - . Is

.- I N

/ e t

O / N . 1 o l\

7 l F-1 1

\

l O'\

O lf .

. }-- % \

l /

/

l O O eonos-- - A t rGG----- E, k

/ ,, v "'

a v glitria' t j

greacron 8 nW' ..

l o a l f._ - __ J

' ' -- - _ _.  :? .

O  ;

\ \@ j'\ 9 /

/

I

\ '

/

' e /

l /

F-4 V /

N 2-7 N~-____ /

lO "-site and close-in sampling locations.

F = facility area, E = cffluent stream, U = upstream, D = downstream.

O

O -159-Figure III.B.2. Off-site Sampling Locations.

\

[9

~

l l

-~ ^'{

er f l I 8 l

rj. -rq f . F-

~~

~

L g o,i,j~ o  ;

p ,,, .

v o w y -

,.S  % 4g ..

h4s ...

mw,, -,n

,.-t s f~%# ./W,~~ , -

o car-10' s'

.~

?- - -

4, , p_

9 9 m ...!

n = =o3 4,g j.

)>c w -

> ky --- o z nc>

i K'xo g -

__x _ _,i ..,.

.t o 'MD as  % r 1 m

u-o 4i __ 4 p .+4. ..__7.[_3.q-_. _.

-- 9_ .

eq  !=; g__., _ i . _ _

___k___.. ,k g;," " ~ " *

] ,

.M!L =_q . .1 '

M {j

(

o I'l o n,.rre _ i m @l ~~t<c. -1 p e, sp&<"r l i

r l

iT--^i r- i y

~

o

&m ...1 ,

.x, o, =:= 1 Ws n_1, ;7,

___ # j _ 2. _ . .- T 44, a, _.1. ._ _ 3 g __

r i i t_ l l I

,,3 j y .t - -- - F r- - - >- , F-4 Y --

~ / D_____L_j_s,,1._f I  !

7  !

1 d < -

-o - 2

/

rg.Y\ f.

_ N ~~V I

) ' _ .]

f _ g4 F4I e,

rr. Luprom

_ . u ._ >

i I

y_

j 'l. . _ '

~

)T~ l Tl l ~l  ! T g 0 _ _

S mile s lomiles SCALE i

I l0 o

. _ _ _