ML19344D468

From kanterella
Jump to navigation Jump to search
Environ Radiation Surveillance Program Summary Rept,Third & Fourth Quarters 1979.
ML19344D468
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 01/31/1980
From: Jerrica Johnson
COLORADO STATE UNIV., FORT COLLINS, CO
To:
Shared Package
ML19344D466 List:
References
38951, NUDOCS 8003120446
Download: ML19344D468 (147)


Text

. -_ ---

DfA i

gADIATION l l

' x' .

\  :

,' yf '\is fs

, ,- 's FORT ST. VRAIN 's 's 2, ,'

' NUCLEAR N'

', g R/ / GENERATING STATlON '

'O LLJ ' l 'n 'f' r , i >

I l

PUBLIC SERVICE COMPANY l

.t OF COLORADO

.c

,/ \

s

/ \s E S

\ -

PROGRAM

SUMMARY

REPORT THIRD AND FOURTH QUARTERS 1979 PURCHASE ORDER 38951 l COLORADO STATE UNIVERSITY l FORT COLLINS, COLORADO 80521 ,

7 8003120 N N

o M FORT ST. VRAIN NUCLEAR GENERATING STATION ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM Sumary Report for the period July 1, 1979 - December 31, 1979 f

Prepared by:/s/ i 2- 4 80 Jai E. Johns rofessor, Colorado State University Date' Reviewed by:#/ s/ _ . - "7 r 'M / J . fD Health Physics Department, Fort St in Date Reviewed by:/s/ df / k, .7/h//gp Nuc' lear Project Department - <" '6'/#g / ) Mite /

Approved by:/s/ // O Operations Manager, Fort St. Vrain Date Approved &

Issued by:/s/

. ./ 2 lzglg 9 Nulcear Project Department Date L

~

e '

bb ENVIRONMENTAL RADIATION SURVEILLANCE conducted in the vicinity of the FORT ST VRAIN NUCLEAR GENERATING STATION for the PusLIC SERVICE- COMPANY OF COLORADO Purchase Order No. 38951

SUMMARY

REPORT for the period JULY - ECENER 1979 by James E. Johnson

_ Department of Radiology and Radiation Biology Department of Animal Sciences COLORADO STATE UNIVERSITY Fort Collins, Colorado January 1980

o k Acknowledgements The following have worked hard and conscientiously on this project and are acknowledged here to receive credit for all phases of its operation. For the past half year these have been:

__ Diane Berry Sharon Clow John Combs Charly Domingue Betsy Headrick

_. Larry Hoffman Marion Mcdonald Jim Roberts Sandy Steadman Kati Tengerdy

_ . , Sara Webber April Whicker m

M east G

WW M

N m

y

, ;s.

TABLE OF CONTENTS Page No.

List of Tables List of Figures

_. I. INTRODUCTION II. SURVEILLANCE DATA FOR . JULY THROUGH DECEMBER 1979, AND INTERPRETATION OF RESULTS A. External Gamma Exposure Rates c -- B. Air Sampling Data C. Water, Sediment, and Precipita' ion

__ Sampling Data D. Food Chain Data E. Aquatic Biota F. Beef Cattle G. Sample Cross Check Data H. Conclusion and Summary I. Errata III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM AND SCHEDULE

_. A. Collection and Analysis Schedule B. Sampling Locations m

e M

M 11

(

l w

o LIST OF TABLES Page No.

II.A.1 Gama Exposure Rates Measured by the TLD Technique.

II.B.1 Concentration of Long-lived Gross Alpha Activity in Airborne Particles

a. Third Quarter, 1979 j
b. Fourth Quarter 1979 I II.B.2 Concentrations of- Long-lived Gross Beta  !

Activity in Airborne Particles.

a. Third Quarter, 1979
b. Fourth Quarter,1979-II.B.3 Tritium Concentrations in Atmospheric Water Vapor.

,_ a. Third Quarter, 1979

b. Fourth Quarter, 1979 II.B.3a Tritium concentrations in Air
a. Third Quarter, 1979
b. Fourth Quarter, 1973

__ II.B.3b Tritium Released in Reactor Effluents,1979.

II.B.4 Iodine-131 Concentrations in Air (Composite).

II.B.5 Gamma-ray Emitting Radionuclide Concentrations in Air (Composite).

- II.C.1 Gross Beta Activity in Water II.C.la Gross Beta Activity in Effluent Water, Goosequill

_ (E-38).

II.C.2 Tritium Concentrations in Surface Waters.

II.C.3 Strontium-90 Concentrations in Surface Waters.

l II.C.4 Strontium-89 Concentrations in Surface Waters.

l-l II.C.4a Tritium, Strontium-89-90 in Effluent Water, Goosequill, l (E-38).

II.C.5 Gama-ray Emitting Radionuclide Concentrations in Water.

! -- 111

~~

}

ListofTables(Cont.)

Page No.

II.C.Sa Gamma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill (E-38).

II.C.6 Gross Beta Activity Concentrations in Bottom Sediment.

II.C.7 Strontium-90 Activity Concentrations in Bottom Sediment.

II.C.8 Strontium-89 Activity Concentrations in Bottom Sediment.

II.C.9 Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment.

~~

II.C.10 Gross Beta and Tritium Deposition from Precipitation.

II.C.11 Gamma-ray Emitting Radionuclide Deposition from Precipitation at Location F1.

II.C.12 Gamma-ray Emitting Radionuclide Deposition from -

Precipitation at Location F4.

II.C.13 Radiostrontium Deposition from Precipitation.

~

II.D.1 Tritium Concentrations in Water Extracted from Milk.

II.D.2 Strontium-90 Activity in Milk.

II.D.3 Strontium-89 Activity in Milk.

II.D.4 Gamma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.

II.D.5 Tritium, Strontium-89, and Strontium-90 Concentrations in Forage.

.s II.D.6 Gamma-ray Emitting Radionuclide Concentrations in Forage.

II.D.7 Gross Beta Concentrations in Forage (pCi/kg) and Soil (pCi/kg) -

II.D.8 Gross Beta Soil (pCi/m2 ),

II.D.9 Gamma-ray gitting Radionuclide Concentrations in Soil (nCi/m ).

. II.D.10 Tritium, Strontium-89, and Strontium-90 Concentrations in Soil.

IV

7-

\

= e r

_ List of Tables (Cont.)

Page No.

_ II.E.1 Gross Beta and Radiostrontium Concentrations in Aquatic Biota Sanples.

II.E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples.

II.F.1 Radionuclides in Facility Area Beef Cattle.

II.G.1 Sample Cross Check Data Summary.

_ II.H.1 Data Summary.

II.I.1 Errata III.A.1 Environmental Radiation Surveillan:e Program.

III.B.1 Facility Area and Effluent Sampling Locations for

-- Environmental Media.

III.B.2 Adjacent Area and Downstream Sampling Locations for

__ Environmental Media.

III.B.3 Reference Area and Upstream Sampling Locations for Environmental Media.

p W

v ehe

i U

List of Figures Page No.

, II.A.1 Exposure Rate Measured by TLD at A-35 and F-4, 1979 II.A.2 Exposure Rate Measured by TLD t A-35 and F-4, 1977-1979 3

II.B.1 H as TH0 in Tropospheric Water Vapor, F-1 and F-2 III.B.1 On Site Sampling Locations III.B.2 Off-site Sampling Locations i

vi 1.

i

{

l

/

,s' I. Introduction to Radiation Surveillance Data for the Second Half of 1979.

During the last six months of 1979 the Fort St. Vrain Nuclear Generating Station produced power as follows:

Dates With Number Of Gross Electric Days Without Generation Fbnth Generation Generation HWH June 0 30 0 July 23, 26-28, 30, 31 25 4,522 August 3-17, 20-24, 26-31 5 88,079 September 1 29 1,828 October 2-14, 24-26 15 46,367 November 0 30 0 December 0 31 0 From the above it can be observed that the reactor operated for less than one-half of the reporting period. Therefore, radioactive effluents from the reactor were again minimal. A complete listing of radioactivity released by all effluent routes may be found in the semiannual report to the NRC.

No announced atmospheric nuclear weapons tests occurred during the reporting period or the immediate proceeding six month period. Stratospheric radioactive debris from previous tests however, is still apparent and observed generally during spring and early summer months.

The environmental sampling and analysis program was essentially identical to that used in the previous reporting period. A few minor changes in sampling locations occurred and these are given in Section III.

Essentially all radioactivity data measured on this project are near background icvels and more importantly near the minimum detectable activity (MDA) levels for each radionuclide and sample type. It has been well

  • __ss i 2 I l

documented that even independent of the above reasons, environmental data l exhibit great inherent variability. As a result, the overall variability l

. 1 of the surveillance data is quite large,and it is necessary to use mean values to make any conclusions about the true absolute radioactivity con-centrations in any environmental pathway.

Environmental radiation surveillance data commonly exhibit non-normal frequency distributions. More often than not the data can be satisfactorily treated using log-normal statistics. However, when the number of observations is'small, i.e. less than 10, log-normal treatment is tentative.

When a high percentage of data points are less than MDA or MDC, (the minimos detectable concentrations of activity in that sample type), calculation of true mean values is impossible. Therefore in this report we have chosen to not include mean values with each data table. At the end of this report in Section II.H., Conclusions and Summary, we have listed the calculated arithmetic means and confidence intervals for the entire reporting period as well as for the last year. We also list the geometric means and standard deviations for the last year of data reporting. If the data point measured resulted in a negative value, this value was used in calculating the true mean value in Table II.H.1. This is the current accepted practice by the U. S. Nuclear Regulatory Commission. It should be noted that rm have not used any footnote for values less than MDC. Rather we list the measured value as less than the actual MDC value. Because this value is dependent upon variables such as the background count time and sample size, the MDC ,

value will be different for each sample type and even within sample type.

bbny sets of data were compared in this report. The statistical test used was either a "t"-test or a paired "t"-test. If data sets are noted to be significantly different or not significantly different, the confidence for the statement is at the 95% level (a=0.05).

\.

T7

.- :s .

3 i

. The following is the footnote system used in this report,

a. Sample lost prior to analysis.

r b.- Sample missing at site. -

c. Instrument malfunction.
d. Sample lost during analysis,
e. Insufficient weight or volume for analysis.
f. Sample unavailable.
g. Analysis in progress.

N.A. Not applicable.

-(

h l

L

e e 4

II. Surveillance Data for July through December 1979 and Interpretation of Results.

A. External Gamma-ray Exposure Rates The average gamma-ray exposure rates expressed in mR/ day are given in Table II.A.I. The values were determined by CaF 2:Dy (TLD-200) crystals for each of the 37 locations (See Table III.B.1). The total exposure recorded by each TLD was divided by the number of days that elapsed between pre-exposure and post-exposure annealing to obtain the average exposure rate. The TLD devices are changed monthly at each location.

The data are grouped for Facility (F), Adjacent (A) and Reference (R) zones. See Figures III.B.1 and III.B.2 and Table III.B.1, III.B.2, and III.B.3 for the exact TLD locations.

The TLD data indicate that the mean measured exposure rate in the Facility area was approximately 172 mR/ year. standard deviation for all facility sites was 19 mR/ year. The mean exp>sure rate was 168 mR/ year for the Adjacent area and 175 mR/ year for the Reference area. There were no significant differences between the values for the Facility, Adjacent and Reference areas. The exposure rate is due to cosmic rays, to natural gamma-ray emitters in the earth's crust and to surface deposition of fission products from world wide fallout. The variation in measured values is due to true variation of the above plus the variation due to the method. .

Inspection of the values recorded for the Adjacent area again show a pattern of high values for the station A-35. This pattern has been observed since June of 1978, and has been extremely regular. In June of 1979, we set out additional TLD devices at the A-35 site and collected one per week.

r-

[

  • .s 5

Figure II. A.1 shows the data for site A-35 and for comparison that of F-4. The bimonthly appearance of peak values in the exposure rate has

, occurred without fail since May of 1978. A high peak was observed at the end of the collection period. No peak as expected was observed in December of 1979. It should be noted that due to land owner misgivings the site was changed once to the Miller farm and yet the periodicity was maintained.

When the air sampler at A-35 was changed again on 10/15/79, the TLD devices were left at the Miller farm site for continuity purposes in studying the

( exposure rate variation. Therefore the TLD data listed for A-35 in this report is all for the Miller farm site. Additional TLD devices are now located at the new A-35 location. Until the reason for the exposure rate fluctuation is documented TLD devices will be left at the Miller farm site.

Figure II. A.2 shows data for 1977 and 1978 for comparison purposes.

Attempts to explain the variation were tried in 1979. There was no C correlation of A-35 values between gaseous releases from the reactor when wind direction and stability parameters were included. Film badges placed at the same site did not have sufficient sensitivity to measure the background rate. Lithium fluoride TLD devices at the same location did not show the high peak values. A planned installation of a continuous readout G1 detector rate meter system was prevented due to vandalism and lack

t of owner permission.

It can be concluded that the high values are not due to reactor

-effluents. It also seems likely that the radiation source is of low photon energy. It can only be speculated therefore that the elevated activities are due to well logging operations. Effort to confirm this, however, by conversation with local residents and well logging company has been to no avail.

1 1

l I

l

s-

.')

6 We will continue our attempts to explain these apparent phenomena.

Starting January 1980, two TLD chips will be placed in each packet to provide duplicate values for exposure rate at each site. The mean value of the two chips will be reported unless the values differ by mor'e than one standard deviation from the mean of other sltes on that date.

This procedure will also minimize methodological errors in the TLD technique, i

m

i o }

7 Table II. A.1 Gamma Exposure Rates Measured by the TLD Technique (mR/ day).

- Facility Area Average a y anna sure a es M Locations July Aug. Sept. Oct. Nov. Dec.

F 1 .45 .44 .46 .42 .40 .59 F 3 .40 .40 .46 .45 .43 .61 F 4- .49 .38 .46 .43 .41 c F 7 .43 .43 .48 .39 .41 .60

- F 8 .46 .47 .53 .48 .45 .47 F 9 .43 .43 .49 .40 .48 .59 F 11 .42 .37 .49 .43 .41 .58 F 12 c .42 .48 .52 .48 f F 13 .42 .43 .53 .57 .46 .62 F 14 .47 .51 .49 .41 .36 .50 F 46 .42 .51 .49 .44 .52 .55 F 47 .41 .39 .50 .44 .47 .60 F 51 .53 c .50 .47 .61 .54 Mjacent Area Locations A 5 .46 .37 .49 .47 .55 .65

~

A 6 .41 .38 .50 .41 .46 .56 A 27 .42 .41 .48 .41 .49 f A 28 .41 .39 .48 .44 .45 .52 A 29 .50 .42 .49 .42 .41 .46 A 30 .41 .43 .51 .48 .49 .54 A 31 .38 .37 .45 ,40 .42 .46

_ A 32 .40 .40 .48 .46 .40 .51 A 33 .42 .41 .50 .44 .48 .51 A 34 .46 .49 .58 .48 .50 .51 A 35 .48 .82 .56 .40 .46 .91 A 36 .45 .48 .50 .45 .49 .51 Reference Area Locations R 15 .39 .81 .51 .68 .42 .46 R 16 .52 .54 .56 .47 .60 .53 '

R 17 .40 .39 .41 .42 .49 .54 R 18 .41 .41 .43 .41 c .45 R 19 .42 .38 .48 .39 c 47

- R 20 .49 .48 .49 .46 c .46 R 21 ,42 .42 .46 .46 c .48 R 22 .45 .46 .46 .46 .50 .44 R 23 .44 .48 .49 .47 .40 .50 R 24 .56 .50 .55 .54 .50 .45 R 25 .48 .43 .51 .46 .44 .57 R 26 .41 .40 .47 .45 .47 .49 c Instrument malfunction

- f Sample unavailable

= .

l I

y I 1 t'

d e

s, C r

u 4 I

s a

Nse e i t N _

5_

t S I a

R o w -

e T r

u s a oD t g V 0

f4 p

s L _.

E T A.

I I

I T

ig - C f O A

I

- P E

- S I

.t g

- ~w E t

A

  • y

- I

_! L

_ U J

2 _

6 9

_ I 7

9 t s s _ 1 e

r s ' _ , o t t tu S g

J e

c u

d o

r P

MI r

l e

l Y i A M M

h.

I

_ R 5

_ P A

3 4

A f

-. I A. 6_

R

_ _. A M

-. A I

_ O L

_ F I

e

_ r o

a 4 i S

t

_ d a

_ 4 n

A a v

_ J a G

- d l

_ _ _ ' L- . . .

O 5 s

  • 5 5 0 s. 0 s. 0 '
9. Z. u. o.

3 3 2 2 i 1 '0 U a o

,  :. e

i -

  • U II O -

//

9 w

- x

\

N, m l - e 42 y t> I j - x 9

i i I

0 - m o j I

f I

l a C' < -

I m

e l

- o

\ - m l

< i - <

I I _ , R e

S  !

w ,

x h -

a I y - E a'

2e - <

e 7

%* \

=7

  • ' - x

~ =,

of i ie fl ~

a4 .

- I - ,-

4 P

d - o R

)

R d.

9 m

o W 9 o N

ifD/> fur

  • y

) 9 O

o d

i i

g _ _ _ _

  • 4 10 II.B. Air Sampling Data
1. Gross alpha and beta activity.

The concentrations of gross alpha and beta activity measured on air particulates for the Facility and Adjacent sampling sites are listed in ,

Tables II.B.1 and II.B.2. Although mean values for the four facility sites are higher than for the three adjacent sites, these differences are not statistically different for either gross alpha or gross beta cir concentrations.

The third quarter values showed very little evidence if any of an increase due to injection of stratospheric debris from previous atmospheric weapon testing.

As discussed in the previous 3ection there was no correlation between air concentrations measured at A-35 and the periodic exposure rate values measured there.

, s 1 I I I i 1 1 )  ! I I I I I I I I I Table II. B.1 Concentrations of Long-Lived Gross Alpha Activity in Airborne Particles (fCi/m3 ), ,

a) Third Quarter,1979 l Date Facility Areas Adjacent Areas l Collected 1 2 3 4 5 6 35 1979 '

l

    • c July 7 12.0 (1.5)* 27.6 (2.4) 25.8 (2.9) 17.6 (2.0) 10.4 (1.5)

July 14 23.5 (2.3) 40.6 (3.7) **

14.1 (2.0) 11.0 (1.8) 6.6 (1.2)

July 21 7.9 (1.2) 9.0 (3.8) 2.9 (1.2) 12.0 (1.9) 10.6 (2.1) 6.4 (1.2) 5.7 (0.9)

~

July 28 9.3 (1.4) c 15.0 (2.1) 27.6 (2.8) 14.6 (2.2) 9.3 (1.6) 5.5 (0.9)

Aug. 4 7.6 (1.3) 15.0 (2.5) 14.6 (2.4) 11.3 (1.8) 11.5 (1.9) 6.5 (1.3) 6.0 (1.3)

Aug . 11 7.5 (1.1) a 16.6 (2.3) 22.1 (3.3) 10.6 (2.2) 7.3 (1.4) 3.2 (0.7)

Aug. 18 1.8 (0.5)' 1.2 (0.6) 3.0 (0.9) 3.8 (1.1) i.9(0.6) 4.9 (0.9) 0.8 (0.3)  ;:

Aug. 25 2.7 (0.5) 2.7 (0.5) 5.0 (0.8) 7.1 (1.1) 8.4 (1.0) 3.1 (0.7) 24.2 (2.2)

Sept. 1 4.9 (0.8) 14.2 (2.1) 8.5 (1.5) 6.2 (1.1) 5.9 (1.1) 4.8 (0.9) 6.0 (1,0)

Sept. 8 2.5 (0.6) 16.2 (1.9) 23.4 (2.7) 36.9 (2.6) i 5.8 (1.4) 3.3 (0.7) 2.1 (0.8)

Sept.15 7.1 (0.9) 16.8 (1.7) 16.9(1.9) 7.9(1.2) 11.1 (1.6) 3.2 (0.6)

Sept. 22 *** 10.0 (1.4) 22.7 (2.3) 10.4 (1.4) 15.6 (1.9) 7.6 (1.1)

Sept. 29 ***

. 2.2 (0.9) 23.0 (2.3) 7.0 (1.3) 3.6 (0.7) 9.3 (2.0) i Quarterly -minimum 1.2 Quarterly -minumum 0.8 (42 samples) -maximum 40.6 (33 samples) -maximum 24.2

-average 12.8 -average 7.5 3 -15 All concentrations are expressed in femtocuries per cubic meter of air: 1 fC1/m = 10 tLjj,j,

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.)
    • Excessive dust loading, analysis uncertain.
      • Electricity turned off a Sample lost prior to analysis, c Instrument malfunction.

1 I I I I I I I I I i 1 1 1 I i i l 1-Table II. B.1 3 s,.

Concentrations of Long-Lived Gross Alpha Activity in Airborne Particles (fCi/m ),

b) Fourth Quarter, 1979

~~Date Facility Areas Adjace.it Areas Collected 1 2 3 l 4 5 6 35 Oct. 6 c 6.4 (1.0)

  • 4.8 (1.0) 4.0 (0.8) 9.0 (2.0) 5.1 (1.1)

Oct. 17 p10.7 (1.5) 27.5 (2.4) 8.5 (1.4) 3.3 (0.7) 7.4 (1.5) 3.0 (0.6)

Oct. 15 5.' .; . 8 (1.8) 7.3 (1.9) 9.4 (2.3) 9.0 (2.2) 11.5 (2.5) 3.1 (0.8)

Oct. 20 f 'i.' (1.4) 9.8 (1.6) 11.0 (1.7) 9.0 (1.5) 8.8 (1.8) 4.9 (1.1) 6.4 (1.0)

Oct.-27 lr J (1.1) 7.1 (1.1) 6.8 (1.0) 5.8 (0.9) 7.8 (1.2) 5.6 (1.0) 3.4 (0.6)

Nov. 3 M (0.7) 3.9 ).8) 3.2 (0.6) 3.2 (0.6) 3.6 (0.7) 1.8 (0.4) 5.4 (0.6)

Nov. 11 3.2 (0.7) 4.8 (0.9) 2.7 (0.5) 2.7 (0.6) 2.1 (0.5) 1.2 (0.3) 1.7 (0.6)

Nov. 17 3.7 (0.7) 4.9 (0.9) 3.4 (0.6) 3.7 (0.7)

~

8.5 (1.2) 1.6 (0.4) 29 (0.9)

Nov. 25 3.6 (0.7) 22 (0.6) 20 )0.4) 2.1 (0.5) 2.9 (0.6) 2.3 (0.4) 3.0 (0.6)

Dec. 1 3.1 (0.9) 3.7 (1.0) 1.5 (0.4) 3.5 (0.9) 3.5 (0.9) 1.2 (0.5) 6.2 (1.3) g Dec. 9 1.1 (0.3) 0.6 (0.3) 1.2 (0.3) 0.3 (0.4) 3.6 (0.7) 1.4 (0.4) 1.9 (0.6)

Dec. 15 2.6 (0.5) 3.4 (0.8) 4.4 (0.8) 27 (0.7) 2.9 (0.6) 2.4 (0.6) 7.7 (1.5)

Dec. 26 3.3 (0,5) 3.0 (0.6) 3.4 (0.6) 3.0 (0.6) 3.4 (0.6) 2.2 (0.4) 4.4 (0.8)

Dec. 30 t, . 7 (0.3) *** 0.7 (0.4) 0.8 (0.4) 1.0 (0.4) 0.2 (0.2) 1.6 (0.7)

Quarterly

-minimum 0.6 Quarterly -m'nimum 0.2 (54 samples) -maximum 27.5 (39 samples) -maximum 11.5

-average 4.8 -average 4.0 All concentrations are expressed in femtocuries per cubic meter of air: I fCf/m = 10-15ggf,j,

  • Uncertainties (in parenthesis) are for the 95% confidence interval, (1.96 S.D.)
    • Pump removed from field 9/29/79. New site being located.
      • Sample left in field
a. Sample lost prior to analysis.

.c. Instrument malfunction.

I I I I I ) 1 I I ) i I ) i 1 1 1 1 I c.

Table II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles (fCi/m3 ), y a)' Third Quarter,1979 Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 35 1979 July 7 11 (1) 8 (1) 18 (2) 9 (1) 11 (1) 8 (1) c July 14 12 (1) 17 (1) 26 (2) 21 (1) 25 (2) 19 (1) 11 (1)

July 21 15 (1) 40 (10) 28 (1) 23 (2) 16 (1) 14 (1) 10 (1)

July 28 14 (1) c 19 (1) 23 (1) 19 (1) 19 (1) 9 (1)

Aug. 4 16 (1) 26 (2) 25 (2) 20 (1) 21 (1) 11 (1) 11 (1)

Aug. 11 11 (1) a 23 (1) 32 (2) 16(2) 9(1) 7(1)

Aug. 18 5 (1) 6 (1) 6 (1) 11 (2) 6 (1) 3 (1) 3 (1)

Aug. 25 9 (1) 15 (1) 13 (1) 16 (1) 6 (1) 2 (1) 33 (2)

Sept. 1 13(1) 26 (2) 21 (1) 17 (1) 16(1) 11 (1) 12 (1)

Sept. 8 7 (1) 11 (1) 15 (2) 5 (1 )- 11 (1) 6 (1) 7 (2)

Sept.15 9(1) 15(1) 15 (1) 13 (1) 12(1) 5(1) ***

Sept. .'2 *** ***

25 (2) 22 (1) 16 (1) 17(1) 9 (1)

Sept. 29 *** 30 (2) 23 (1) 16 (1) 26 (1) 10 (1) , 20 (3)

Quarterly -minimum 5 Quarterly -minimum 2 (48 samples ) -maximum 40 (36 samples) -maximum 33

-average 17 -average 12 All concentrations are expressed in femtocuries per cubic neter of air; 1 fC1/m = 3 10-15 p Ci/ml .

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.)

'** Electricity turned off a Sample lost prior to analysis, c Instrument malfunction.

1 I I I I I i 1 1 1 1 I i 1 1 1 1 1 I Table II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles (fCi/m3 ), ,

b) Fourth Ouarter, 1979 Date Facility Areas Adjacent Areas Collected 1 2 3 l 4 5 6 35 Oct. 6 **

l c 18 (1)* 15 (1) 11 (1) . 17 (1) 12 (1)

Oc t. 13 16 (1) 15 (1) 18 (1) 8 (1) 12 (1) 8 (1)

Oct. 15 24 (2) 28 (3) 29 (3) 25 (3) 21 (2) 6 (2)

Oct. 20 15 (1) 19 (2) 17 (1) 14 (1) 15 (1) 8 (1) 7 (1)

Oct. 27 16 (1) 17 (1) 12 (1) 12 (1) 12 (1) 10 (1) 8 (1)

Nov. 3 11 (1) 14 (1) 10 (1) 10 (1) 9 (1) 6 (1) 14 (1)

Nov. 11 29 (1) 34 (2) 17 (1) 24 (1) 22(1) 15(1) 29 (1)

Nov. 17 14 (1) 14 (1) 9 (1) 13 (1) 8 (1) 5 (1) 13 (1)

Nov. 26 10 (1) 10 (1) 6 (1) 9 (1) 8 (1) 6 (1) 12 (1) -

Dec. 1 14 (1) 17 (2) 8 (1) 14 (1) 12 (1) 7 (1) 13 (1)

Dec. 9 8 (1) 4 (1) 8 (1) 6 (1) 9 (1) 5 (1) 9 (1)

Dec. 15 12 (1) 17 (1) 10 (1) 10 (1) 13 (1) 6 (1) 16 (1)

Dec. 26 10 (1) 11(1) 12 (1) 9 (1) 13 (1) 6 (1) 16 (1)

Dec. 30 9 (1) 11 (1) 9 (1) 8 (1) 5 (1) 13(1)

Quarterly Quarterly (54 samples) - minimum 4 (39 samples) - minimum 5

- maximum 34 - maximum 29

- average 14 - average 11 All concentrations are expressed in femtocuries per cubic meter of air: 1 fCi/m3 = 10-15 Ci/ml.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Pump removed from field 9/29/79. New site bein9 located.
      • Sample left in field.

c Instrument malfunction

1 i i I )

I I I I 1 1 1 1 I i I )

Table II. B.3 Tritium Concentrations in Atmospheric Water Vapor (pCi/1). .

a) Third Quarter,1979 Facility Areas Adjacent Areas Date 3 4 5 6 35 Collected 1 2 l 1 7-7-79 741 851 f <290 <290 <290 413 (276) (277) (273) 7-14-79 405 858 <283 458 <283 <283 <283 (265) (270) (266) 7-21-79 1,480 2,680 <283 <283 <283 <283 <283 (277) (290) 7-28-79 293 620 353 <283 294 334 488 (264) (268) (pu;) (264 (265' (267) 8'-4-79 855 1,240 320 347 561 387 585 (271) (275) (254) (265) (267) (265) , (268) 8-11-79 961 690 470 384 315 354 <287 g (275) (273) (270) (269) (268) (269) 8-18-79 <287 352 <287 <287 <287 <287 <287 (269) 8-25-79 892 489 <287 384 287 403 447 I

(275) (270) (269) (268) (269) (270) 9-1-79 <261 <261 <261 <261 <261 <261 <261 9-8-79 <261 418 <261 <261 <261 <261 <261 (245) 9-15-79 <256 609 <256 <256 <256 257 <256 (243) (239) -

9-22-79 934 1,100 353 555 334 512 204 (246) (248) (240) (242) (240) (242) (239) 9-29-79 876 2,130 473 941 913 e e (245) (259) (241) (246) (246)  !

  • Uncertainties (in parentheses) are for the 95% confidence Interval, (1.96 5.D.).

e Insufficient weight or volume for analysis.

f Sample unavailable

I l I l l l 1 ) l l l l l } l l l . .

Table II. B.3 .

Tritium Concentrations in Atmospheric h ter Vapor (pci/1).

b) Fourth Quarter 1979.

Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 l 35 1,050 1,450 < 623 **

'10-6-79 462 574 615 (247)* (252) (241) (241) (243)

<206 e **

10-13-79 848 647 274 369 (245) (274) (239) (240) 10-20-79 1,840 4,250 <265 <265 <265 459 287 (263) (287) (250) (248) 10-27-79 540 267 343 <265 <265 <265 <265 (251) (248) (248) 11-3-79 <265 586 <265 <265 <265 490 <265 (251) (250) 11-10-79 <256 <256 357 <256 <256 <256 <256 (240) 11-17-79 <256 626 718 <256 <256 <256 <256 (243) (235) 11-26-79 264 419 272 <256 375 <256 <256 E

(

12-1-79 < < <.261 < $k> < 261 < 261 12-9-79 <261 < 261 <.261 319 265 < 261 s261 (244 (244) 12-15-79 553 624 353 <300) 497 639 607 (283) (283) (281) (282) (283) (283) 12-22-79 1,190 678 629 716 816 1,350 940 (288) (283) (290) (290) (285) (290) (286)

( ) ( )

<305 < 495 < 300 < 300

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Pump removed froJn field 9/29/79. New site being located.

e Insufficient volume for analysis.

4 Il 1

Fig. II. B. 1.

Tritium in A tmospheric Water Vapor _

]  : e c-2

_ A____4 F-1 _

Iig 1 Ii\

\ g 4 s1g -

~

l\i f <

i li _

_ I I

g a

I f I I \ [

I 1 gl i I \

6 i

l I l I I  ?

\  ; g

_\ l  ;  ;

I LI I ' I -

I i f'lI l I

)\

\

ig

I < l l

1 > I -

Il gg I

l 1 1 1 1

\l gg 1

l 1 I I I I I I I I 11 1 I

i I 4

a I 1 ;g 1 I "I & I I I 1 A I I lg I 1 Il l Ig i I Il l 1 g i I 1 I 1 g I i i l I h i 1.g i  : i l i jv jr ,r j 7r f j ir I I I I I I 2

1g JUL AUG SEP OCT NOV DEC

2 18

2. Tritium Activity. Tropospheric water vapor samples are collected continuously on Silica Gel at all seven air sampling stations (four in the Facility area and three in the Adjacent area). The specific activity of tritium in water in weekly samples from these stations is listed in Table II.B.3. The air concentration of tritium for the same weekly samples is listed in Table II.B.3a.

The variation of the measured tritium specific activity in tropospheric water vapor has consistently been large at all facility and adjacent air sampling sites. Figure II.B.1 shows the values for F-1 and F-2 sites for the second half of 1979.

The facility sites F-1 and F-2 are closest to the main water effluent pathway from the reactor (See ;1gure III.B.1). Inspection of Table II.B.3 indicate that for a given date, with a few exceptions these two sites show higher values than those not on the liquid batch release route. This observation has been noted for some time, and the high values are assumed to be due to tritiated water evaporation from the discharge ditch or the pond impoundments. The total reactor effluent release of tritium is given in Table II.B.3.b. A high correlation with individual batch release tritium specific activity does not occur, but this is to be expected because of temperature, humidity, flow rate, release time and other variables.

Elevated concentrations of tritium in the local terrestrial or aquatic food chains does not result, however, due to the great dilution from the hydrosphere.

At iocation F-4 a hygrothermograph has been operational for most of the second half of 1979. Using the temperature and relative humidity data from the hygrothermograph it is possible to convert specific activity of tritiated water collected on Silica Gel (pCi/ liter) to activity per unit volume or air (pCi/m ). This'is critical if calculation of immersion dose from tritiated i

19 water vapor were ever necessary.

Two equations are used in the conversion of pCi/ liter of water to pCi/m3 of air. The first equation is used to determine the vapor pressure of water (1):

logIOP = A - B (C+ t) , where : P = vapor pressure (mm Hg) t = temperature (C)

A = 9.10765 B = 1750.286 C = 235.0 The tempert ure used is the integrated weekly value taken from the hygrothermograph. The conversion is completed in the second equation which is the " Ideal Gas Equation:"

PV = nRT, where: P = vapor pressure (atmospheres)

V = volume (liters) n = number of moles of gas R = 0.08206 liter-atmospheres / mole- K T = temperature in K The number of grams of water per cubic meter of air is then determined.

The value of "n" obtained is for saturated air. The relative humidity is therefore integrated over the week and this percentage of the saturated air value is taken. The final value is reported in pCi/m . This procedure has been applied to data collected for the third and fourth quarters of 1979 and listed in Table II.B.3a. These values are functions of both specific activity of tritium in water and the concentration of water in the air and show essentially the same location and time variations as the data in Table II.B.3.

A

. (1) H. A. Lange, Handbook of Chemistry. 19th edition, revised. McGraw-l \ Hill Book Co., New York, 1967. pp. 1436-1450.

Table II.B.3a Tritium Concentrations in Air (pCi/m )

a) Third Quarter, 1979 Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 35 7-7-79 < 9.25 < 10.6 f < 3. 62 < 3. 62 < 3.62 < 5.16 7-14-79 < 3.69 < 10. 2 < 3.42 < 5.54 < 3.42 < 3.42 < 3.42 7-21-79 < 19.1 < 34.6 < 3.66 < 3. 66 < 3.66 < 3.66 < 3.66 7-28-79 < 3.18 < 6.72 < 3.83 < 3.07 < 3.19 <3.62 <5.29 8-4-79 . < 7.87 < 11.4 < 2.95 < 3.19 <5.16 < 3.56 <5.39 8-11-79 < 12. 3 < 8.36 <6.04 < 4.93 <4.05 <4.55 <3.69

< 3.14 < 3.14 < 3.14 E!

8-18-79 < 3.14 < 3.85 < 3.14 < 3.14 8-25-79 < 9.07 < 4.97 < 2.92 < 3. 91 <2.92 <4.10 <4.55 9-1-79 < 2.80 <2.80 < 2.80 < 2.80 < 2.80 < 2.80 < 2.80 9-8-79 < 2.88 < 4.00 < 2.88 < 2.88 < 2,88 < 2.88 < 2.88 9-15-79 < 2.26 <5.39 < 2.26 < 2.26 < 2.26 <2.27 < 2.26 9-22-79 < 8.05 < 9.48 < 3.04 < 4.78 < 2.88 <4.41 <1.76 9-29-79 c c c c c c c c Instrument malfunction

.f Sample unavailable

4 e

t r

Table II.B.3a Tritium Concentrations in Air (pCi/m )

b) Fourth Quarter, 1979 Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 35 3.45 **

10-6-79 5.81 8.02 2.36 3.18 3.40 10-13-79 4.53 3.46 1.46 1.97 < 1.36 e 8.91 20.5 < 1.28 < 1.28 < 1.28 2.22 1.39 10-20"79 10-27-79 3.02 1.49 1.92 < 1.48 < 1.48 < 1.48 < 1.48 11-3-79 <0.917 2.03 < 0.917 < 0.917 < 0.917 1.70 < 0.917 11-10-79 <0.962 <0.962 1.34 < 0.962 < 0.962 < 0.962 < 0.962 11-17-79 <0.768 :1.88 2.15 < 0.768 < 0.768 < 0.768 < 0.768 03 11-26-79 0.487 0.773 0.502 < 0.473 0.692 < 0.420 < 0.420 c c c c c c c 12-2-79 c c c c c c c 12-8-79 c c c c c c 12-15-79 c c c c c c c c 12-26-79 c c c c c c c 12-30-79

    • New site being located c Instrument in for repair e Insufficient volume for analysis

Table II.B.3a Tritium Concentrations in Air (pCi/m )

b) Fourth Quarter, 1979 Date Facility Areas Adjacent Areas Collected 1 2 3 4 -5 6 35 3.45 **

10-6-79 5.81 8.02 2.36 3.18 3.40 10-13-79 4.53 3.46 1.46 1.97 < 1.36 e 8.91 20.5 < 1.28 < 1.28 < 1.28 2.22 1.39 10-20-79 10-27-79 3.02 1.49 1.92 < 1.48 < 1.48 < 1.48 < 1.48 11-3-79 <0.917 2.03 < 0.917 < 0.917 < 0.917 1.70 < 0.917 11-10-79 <0.962 <0.962 1.34 < 0.962 < 0.962 < 0.962 < 0.962

<0.768 1.88 2.15 < 0.768 < 0.768 < 0.768 < 0.768 11-17-79 O!

11-26-79 0.487 0.773 0.502 < 0.473 0.692 < 0.420 < 0.420 c c c c c c c 12-2-79 c c c c c c c 12-8-79 c c c c c c c 12-15-79 c c c c c c c 12-26-79 c c c c c c c 12-30-79

    • New site being located c Instrument in for repair e Insufficient volume for analysis

22 Table II.B.3b Tritium released (C1) in Reactor Effluent:

2nd Half of 1979 Mode July Ayg Sept, Oct .Nov Dec Total Continuous Liquid effluent, turbine 0.144 0.888 0.190 2.94 0.082 0.083 4.33 sump and reactor sump Gaseous., stack 0.157 0.087 0.976 0.381 0.300 0.116 2.02 Batch Liquid 12.1 16.8 16.8 20.8 11.4 1.96 79.9 Total 12.4 17.8 18.0 24.1 11.8 2.16 86.2 6

1

[

i l

~ \

.* . I 23 l

3. Activity of gamma-ray emitting radionuclides in air. l Table II.B.4 lists the concentrations of I-131 observed in air by activated charcoal sampling and gamma-ray spectrum analysis. The sample counted is a composite from all seven air sampling stations. All charcoal samples are counted approximately 20 days post collection to allow Rn-222  !

decay and minimize decay of I-131. The I-131 concentrations presented  !

l are the result of decay correction back to the midpoint of the sampling period. Decay correction to the midpoinc of the sampling period is appropriate as any I-131 in air does not. arrive at the samp!ing station at a constant rate, but rather in pulses short compared to tr.o collection period. This is the case whether the I-131 source term is weapons testing fallout or reactor stack effluent. The air concentrations of I-131 during the second half of 1979 were generally greater than the first half of 1979.

The highest values were in September and October,a period during which the reactor was not operating and I-131 inventories should have been minimal.

Table II.B.5 lists the results of the gamma-ray spectral analyses of weekly composites of the membrane air filters in each sample head. The concentrations of. the three radionuclides were generally low and showed no correlation with the I-131 data. All samples are counted after decay of Rn and Tn daughters.

The radioruthenium data is listed in the tables as Ru-106. However, it is true that the activity measured is often a mixture of Ru-103 and I Ru-106. Both isotopes have gamma-rays at essentially the same energy and they cannot be separated by Na.;' ) spectral analysis. No separation by half-life determination was attempted on the data. Since the half-life of Ru-103 is 40 days and that of Ru-106 is one year, in periods soon after i

an atmospheric test, a high proportion is expected to be Ru-103, and at later times predominately Ru-106. Since the ruthenium isotopes have 1

l l

24 negligible biological availability, neither have any consequence in calculation of population dose and efforts to separate them are noc warranted.

I I

25 Table II. B.4 Iodine-131 Concentrations in Air (Taken From Composites of Activated Charcoal at all Air Sampling Stations and Determined by Gamma Spectrometry).

J Sample Ending Dates I (fCi/m ) I 7-7-79 < 4.76 7-14-79 14.6 (26.5)*

7-21-79 < 4.33 7-28-79 < 4.72 8-4-79 < 4.34 8-11-79 249 (13.3) 8-18-79 < 5.68 8-25-79 < 387 9-1-79 < 3.41 9-8-79 84.3 (25.9) 9-15-79 < 5.17 9-22-79 < 4.60 9-29-79 < 4.59 10-6-79 < 3.98 10-13-79 < 4.27 10-20-79 21.3 (10.6) 10-27-79 322 (26.6) 11-3-79 62.8 (4.30) 11-10-79 51.6 (14.1) 11-17-79 52.6 (11.6) 11-24-79 401 (12.6) 12-1-79 < 4.24 12-9-79 < 3.12 12-15-79 < 3.95 .

12-26-79 < 1.96 12-30-79 < 5.90 Allconcentrationsareexpresygdinfemtocuriespercubic 3

meter of air: 1 fC1/m = 10~ PCi/ml.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.) .

.r 26 Table II. B.5 Gaauna-ray Emitting Radionuclide Concentrations in Air (Taken from Composites of all Air Sampling Stations) (fCi/m 3 ).

Sample Ending 106 137 Dates Ru Cs Zr & Nb 7-7-79 < 1.60 < 0.356 < 0.154 7-14-79 < 4. 91 < 1.09 < 0.42 7-21-79 < 4.49 < 1.01 0.839 (0.946) 7-28-79 < 4.84 <1.09 < 0.468 8-4-79 < 4.92 <1.00 < 0.435 8-11-79 <5.89 < 1.32 < 0.570 8-18-79 101 (10.3)* 12.5 (1.62) 19.4 (1.04) 8-25-79 < 4.05 2.13 (0.816) 0.798 (0.351) 9-1-79 < 3.22 < 0.723 < 0. 312 9-8-79 < 4. 68 2.26 (0.544) 0.651 (0.489) 9-15-79 14.1 (3.25) < 0.518 < 0.233 9-22-79 < 1.94 4'.83 (O.485) . 1 41 (0.381) 9-29-79 < 4.76 2.70 (0.943) 1.32 (0.700) 10-6-79 < 4. 74 .10.5 (0.894) 2.17 (0.649) 10-13-79 < 4.11 9.36 (0.785) 1.91 (0.525) 10-15-79 < 4.60 29.7 (1.17) 3.46 (0.707) 10-20-79 6.23 (5.75) 2.50 (0.929) 2.10 (0.553) 10-27-79 < 3.45 1.34 (0.726) 1.22 (0.398) 11-3-79 < 3.45 1.18 (0.709) 0.800 (0.359) 11-10-79 16.1 (4.63) < 0.844 < 0.364 11-17-79 < 1.11 8.56 (0.332) 0.244 (0.151) 11-24-79 17.8 (3.75) < 0.690 < 0.297 12-1-79 15.6 (5.46) < 1. 02 < 0.438 12-8-79 14.9 (3.92) < 0.723 0.377 (0.315)-

12-15-79 16.3 (5.08) 1.04 (0,873) 1.11 (0.405) 12-26-79 8.81(2.61) 1.16 (0.455) 0.690 (0.186) 12-29-79 28.5 (3.05) 0.465 (542) 0.398 (0 217)

Allcongentratgnsareexpressedinfemtocuriespercubicmeterofair: 1 1 fCi/m = 10- pCi/ml.  !

  • Uncertainties (in parentheses) are for the 95% confidence interval, ,

(1.96 S.D.). '

l l

,, ,' 27 1 l

l II.C.1 Radionuclide Concentrations in Surface Water Table II.C.1 lists the gross beta activity in surface water and potable water supplies in the vicinity of the reactor. Values are given for both the suspended and dissolved solids fraction of the total water .

sample. The suspended solids fraction contains algae and sediment particles which have very high concentration factors for radionuclides and consequently is considerably higher than the dissolved solids fraction. These values are given for samples collected monthly. Potable water retains a negligible suspended solids fraction and consequently the gross beta values for potable water are significantly lower.

Values of gross beta concentrations in surface water fluctuated within upstream, downstream and effluent sites but the mean upstream and l the mean downstream values were very similar. The mean upstream value was 15 pCi/L and the mean downstream values was 21 pCi/L. There was no significant difference between these mean values. Mean values were slightly greater than those measured during the first half of 1979. The gross beta concentratis in both potable water sources are lower but more variable than in surface water. The concentrations should be lower due to water purification which removes suspended solids and the variation is probably due to mixing of different reservoir sources.

Weekly samples, although not required by the Technical Specifications, were collected at E-38, the farm pond on the Goosequill ditch. This is the principal effluent route for liquid discharges from the reactor and a monthly sample may not be adequate to reflect periodic discharges. Gross beta concentrations are shown in Table II.C.la. The mean concentration was 19.5 pCi/L and the standard deviation was 6.4. The mean was not

! significantly different from downstream or upstream values. Although the effluent has high tritium concentrations, the tritium is lost in preparation for gross beta analysis.

t-oo .

28 Table II.C.2 lists tritium in surface water and potable water supplies for each monthly collection for the second half of 1979. The mean values for Upstream, Downstream and Potable water locations for tritium are not significantly different even though there were wide variations.

No reason can be given for these wide variations, particularly for the potable water supplies.

Significantly high tritium values were again observed at effluent sampling sites in the last half of 1979. (See Table II.C.4a) . This is i directly attributed to liquid effluent releases by Fort St. Vrain. Downstream j locations did not reflect any significant increases in tritium concentration, therefore no dose commitment calculations are warranted.

The E-38 weekly grab samples have always been taken at the inlet l l

from the ditch to the Goosequill farm pond. Beginning in early 1980 a continuous water sampler will be installed at the outlet of the farm pond.

This procedure will have two distinct advantages. Since the reactor discharge is very periodic a continuous sampler will insure against missing any peak water value and sampling at the outlet will allow dilution and mixing in the pond. The outlet water concentration will be more useful in predicting resultant down stream concentrations.

Table II.C.3 and II.C.4 lis'ts Sr-90 and Sr-89 concentrations in surface water at the same sampling locations. Table II.C.4.a lists the same radionuclides as well as tritium in reactor effluent water samples collected weekly at E-38.

The concentrations of Ru-106, Cs-137 and Zr-Nb-95 in surface and potable water are given in Table II.C.S. The same radionuclides were measured in the veekly. samples collected at E-38 and this data is shown l l

in Table II.C.5.a. l l

l' _

-e 29 The fission product concentrations in all cases over the 6 month

~

Period were not significantly different from background and indicate,as expected, negligible release of fission product activity from the reactor by the surface water route.

i 1

i i

1 0

4 4

-.m._ ,4, . , _ -- . , , , - . _ _ - - ,

E 30.

Table II. C.1 Gross Beta Activity in Water for Samples Collected July 2R_ 1970 .

Sampling Suspended Solids Dissolved Sol'.ds Total Water Locations pCi/kg pCi/kg Concentration pCi/1 Effluent E 38: Farm Pond 65,600 11,200 11.1 (Goose quill) (15.100 )* (3.830) (2.30)

E 41: Slough to 336,000 18,000 14.8 St. Vrain Creek (87,200) (3,840) (2.47 )

Downstream D 37: Lower Latham 116,000 57,100 7.74 Reservoir (25,100) (14,000) (1.25)

D 40: S. Platte River 95,600 9,200 13.8 Below Confluence (20,600)) (2,400) (2.40)

D 45: St. Vrain 116,000 6,840 12.4 Creek (25,700) (2,060) (2.37)

Upstream U 42: St. Vrain 151,000 8,810 12.8 Creek (43,000) (2,190) -

(2.47)

U 43: S. Platte 178,000 14,700 15.5 River (39,200) (3,250) (2.44)

Potable F 49: Visitor's 38,600 N.A. 1.93 Center (10,200) (0.509)

D 39: Gilcrest 7,850 8.14 City Water N.A. (2,070) (2.15)

N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l I

e

    • s 31 Table II. C.1 Cross Beta Activity in Water for Samples Collected Augu st 25. 1979 .

Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration-pCi/l Ef fluent E 38: Farm Pond 103,000 14,800 18.8 (Coosequill) (191;gnn) * (p.Qpni ,(2.47)

E 41: Slough to 134,000 14,300 27.1 St. Vrain Creek (14,800) (2,310) (p_gg3 Downstream D 37: Lower Latham 158,000 10,l00 17.3 Reservoir (36.000) (l_9RO) -

(2.56)

D 40: S. Platte River 96,300 11,000 19.8 Below confluence (121.2001 (2.430) (2.46)

D 45: St. Vrain 69,800 7,690 17.2 Creek (11,100) (1,930) (2.38)

Upstream i U 42: St. Vrain 4,870 6.12 a

Creek (1.660) -

(2.08)

U 43: S. Platte 106,000 15,500 23.4 River (11,700) (3,090) (2.44)

P_otable F 49: Visitor's 31,800 2.17 Center

"*** (7,680) (0.522)

D 39: Gilcrest City Water N.A. a a N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
a. Sample lost prior to analysis .

32 r s taktivityinWaterforSamplesCollected gne h. 99 lo7e Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pC1/kg Concentration.

pCi/1 Effluent E 38: Farm Pond 70,300 15,500 20.2 (Goose quill) (12.400)* (2.880) (2.46)

E 41: Slough to 189,000 14,700 20.7 St. Vrain Creek (30,900) (2,720) (2.48)

Downstream D 37: Lower Latham 137,'000 6,830 13.6 Reservoir (28.500) (1.910) -

(2.39)

D 40: S. Platte River 103,000 3,130 11.1 Below Confluence (17,400) (1,840) (2.19)

D 45: St. Vrain a a a Creek Upstream U 42: St. Vrain 112,000 8,610 15.3 .

Creek (18,000) (2,560) -

(2.29)

U 43: S. Platte 110,000 10,500 22.2 River (17,900 (1,930) (2.44)

Potable F 49: Visitor's N.A. 37,600 1.84 Center (10,400) (0.508)

D 39: Gilcrest 11,500 12.5 City Water N.A. (2.16) (2.36)

N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
a. Sample lost prior to analysis ,

-I _ _ _

    • s .

33 Table II. C.1 Cross Beta Activity in Water for Samples Collected October 20. 1979 _.

Sampling ,

Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l Effluent E 38: Farm Pond 44,700 14,100 30.0 (coosequill) (4,630) * (2,420) (2,44)

E 41: Slough to 000 900 19.8 St. Vrain Creek 226,000)

(45, 12,260)

(2, (2.57)

Downstream D 37: Lower Latham 66,700 7,760 19.8 Reservoir (9.190) (1.8101 (2.38)

D 40: S. Platte River 68,500 9,880' 19.8 Below Confluence (9,240) (2,340) (2.34)

D 45: St. Vrain 63,800 5,500 16.1 Creek (9,960) (1,600) (2.35)

Upstream U 42: St. Vrain 304,000 10,000 17.3 Creek (62,400 (2,050) . (2.50)

U 43: S. Platte 37,100 29,300 29.8 River (10,600) (3,250) (2.94)

Potable F 49: Visitor's 32,800 2.23 N.A. (7,770) (0.528)

Center D 39: Gilcrest 9,500 11.1 City Water N.A. (1,980) (2.31)

N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l l

e i

34 l

Table II. C.1 Cross Beta Activity in Water for Samples Collected November 17, 1979 Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pC1/1 Effluent E 38: farm Pond 148,000 14.500 17.2 (Goose quill) (32,800)* (2,870) (2.50)

E 41: Slough to 553,000 11,300 16.9 St. Vrain creek (109,000) (2,440) (2.45)

Downstream D 37: Lower Latham 26,900 10,l00 13.3 Reservoir (20,200) (2,000) (2.68)

D 40: S. Platte River 80,200 9,910 17.7 Below confluence (13,200) (2,280) (2.40)

D 45: St. Vrain 8.42 creek 186,000)

(36,400 (1,6401,560) (2.18)

Upstream U 42: St. Vrain 218,000 <1,520 8.38 creek (38,500) -

(2.13)

U 43: S. Platte 31,900 12,700 44.6 River (2,100) (2,540) (2.27)

Potable F 49: Visitor's 28,500 2.08 center N.A. (7,150) (0.522)

D 39: Gilcrest 2,080 2.49 City Water N.A. (1,580) (1. 90)

N.A. Not applicable.

  • Uncertainties (in parentheses) a're for the 95% confidence interval, (1.96 S.D.).

{

4

. s* s 35 Table II. C.1 Cross Beta Activity in Water for Samples Collected December 30. 1979 .

Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration-pCi/l Effluent E 38: Farm Pond ** 277,000 14,300' 18.2 (Goosequill) (65,100)* (2,600) (2.56)

E 41: Slough to 269,000 15,000 17.8 St. Vrain Creek (73,200) (2,670) (2.60)

Downstream -

D 37: Lower Lathan 117,000 8,680 16.3 Reservoir (26,900) (1,840) -

(2.53)

D 40: S. Platte River f f f Below Confluence D 45 - St. Vrain f f f Creek Upstream U 42: St. Vrain 34,200 9,680 24.4 Creek (3,560) (2,410) ,

(2.28)

U 43: S. Platte 46,200 15,800 29.5 River (4,630) (2,820) (2.40)

Potable 41,400 2.82 F 49: Visitor's N.A. (26,500) (12.6)

Center D 39: Gilerest City Water N.A. f f N.A. Not applicable.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Collected 12-26-79 f Sample unavailable due to weather .

s* s 36 Table II.C.1.a Cross beta activity in effluent water, Goosequill Pond , E-38.

Tnird Quarter 1979 Total Water Collection Date Suspended Solids- Dissolved Solids Concentrations pCi/kg* pCi/kg* pCi/1 7-7-79 99,100 (20,900)* 9,940 (3,270) 7.35(1.24) 7-14-79 84,300 (23,900) 40,700 (10,600) 11.9 (2.38) 7-21-79 110,000(23,300) 58,100 ( 8,450) 22.5 (2.61) 7-28-79 65,600 (15,100) 11,200 ( 3,830) 11.1 (2.30) 8-4-79 49,100 (12,000) 12,900 ( 3,000) 14.1 (2.44) 8-11-79 42,100 ( 6,300) a 9.15 (1.17)

~8-18-79 35,000 ( 4,820) 23,500(6,000) 18.4 (2.28) 8-25-79 '103,000 (18,300) 14,800(2,920) 18.0 (2.47) 9-1-79 58,000 ( 5,820) 15,000 ( 2,920) 25.6 (2.42) 9-22-79 70,300 (12,400) 15,500(2,880) 20.2 (2.46) 9-29-79 71,000 (12,500) 13,500 ( 2,380) 20.8 (2.53)

Uncertainties (in-parentheses) are for the 95% confidence interval.

a Sample lost prior to analysis b b

l*.-

I l

37  !

Table II.C.I.a.

Gross beta activity in effluent water, Goosequill Pond , E-38.

Frmeth (barter; 1Q70 Total Water Collection Date Suspended Solids. Dissolved Solids Concentrations pCi/kg* pCi/kg* pCi/1 10-6-79 102,000 (18,400)* 15,900 (2,620) 21.9 (2.57)

~

10-13-79 116,000 (20,400) 15,200 (2,690) 20.7 (2.52) 10-20-79 44,700 (4,630) 14,100 (2.420) 30.0 (2.44) 10-27-79 138,000 (34,400) 13,100 (2,120) 20.1 (2.66) 11-3-79 47,800 (9.220) 18,700 (2.960) 22.2 (2.61) 11-10-79 55,900 (16,500) 23,300 (3,120) 23.5 (2.78) 11-17-79 148,000 (32,800) 14,500 (2,870) 17.2 (2.50) 12-9-79 834,000 (79,500) 25,100 (3,450) 35.4 (2.50) 12-15-79 66,300 (7.9'0) 11,800 (2,700) 22.1 (2.32) 12-26-79 277,000 (65,100) 14,300 (2,600) 18.2 (2.56) +

Uncertainties (in parentheses) are for the 95*. confidence interval. , ..

,4 e

{

't I

Table II. C.2 .

Tritium Concentrations in Surface Waters (pC1/1).

  • l l

Samplir.g Monthly Collection Dates Locations 7 79.74 R 79 74 4 77 70 }n 9n_70 11_17_79 ig-3n_79 Effluent E 38: Farm Pond 8,080 2,570 4,060 2,830 3,960 648 **

(Coosequill) (317) (263) (278) (270) (?A1) (290)

E 41: Slough to <261 6,210 19,728 2,820 < 307 498 St. Vrain Creek (298) (405) (266) (?RR)

Dcunstream D 37: Lower Latham <261 932 448 545 688 4 04 Reservoir (246) (250) (245) (290) (pgn)

D 40: S. Platte River 332 923 1,020 941 < 300 f E$

Below Confluence (f44) (246) (248) (247)

D 45: St. Vrain <261 770 a 309 < 300 f Creek (244) (244)

Upstream u 42: St. Vrain < 261 < 265 483 .642 < 300 617

~

Creek (250) (243) (289)

U 43: S. Platte < 261 618 939 470 < 300 < 307 River (243) (247) (242)

Potable F 49: Visitor's < 261 611 419 536 < 300 303 Center (243) (249) (247) (286)

D 39: Gilcrest City < 261 a 419 512 < 300 f Water (249) (247)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

a Sample lost prior to analysis f Sample unavailable due to weather

    • Collected 12/26/79

Table II. C.3 Strontium 90 Concentrations in Surface Waters (pCi/1). '

Sampling Monthly Collection Dates Locations 7-28-79 8-25-79 9-22-79 10-20-79  ! 11-17-79 12-26-79 Effluent E 38: Farm Pond 2.83 * < 1.79 2.74 1.24 3.00 1.03 **

(coosequill) (2.22) (3.26) (1.16) (0.894) (0.818)

E 41: Slough to 3.92 <1.79 < 1.90 1.64 8

St. Vrain Creek (3.19) (.980) g) < 0.567 (9

Downstream D 37: Lower Latham 1.96 < 2.14 6.55 1.57 2.10 0.561 Reservoir (1,20) (1.10) (1.10) (0.693) (0.752)

D 40: S. Platte River 0.'725 < 0.899 < 2.31 1.38 2.93 Below Confluence -(0.108) (1.17) (0.848) f ,

D 45: St. Vrain 1.96 <l.22 a 1.81 2.12

  • Creek (1.16) (1.18) (0.911) f Upstream u 42: St. Vrain 2.59 < 2. 51 2.31 3.21 4.61 1.06 Creek (1.42) (1.05) (1.32) (1.51) (0.818)

U 43: S. Platte 0.800 < 0.1'46 < 0.979 2.56 1.77 1'83 River (1.40) (1.00) (1.15) (1.09)

Potable F 49: Visitor's 3.27 3.99 < 1.23 2.08 0,590 1.59 Center (1.35) (5.03) (1.00) (0.679) (.905)

D 39: Gilcrest City 1.37 2.31 < 0.773 a

Water (1.42 a (1.03) f

  • Uncertainties (in parentheses) are for the 95% confidence interval. (1.96 S.D.).
    • Collected 12-26-79 a Sample lost prior to analysis f Sample unavailable due to weather d Sample lost in analysis

3 Table II. C.4 .

Strontium 89 Concentrations in Surface Waters (pC1/1).

Sampling Monthly Collection Dates Locations 7-28-79 8-25-79 9-22-79 10-20-79 11-17-79 12-26-79 j Effluent E 38: Farm Pond <l.93 <1.24 < 2.14 < 0.816 < 0.868 <0.731 **

(Coosequill)

E 41: Slough to <2.72 <1.54 < 1.14 < 0.815 < 1.20 <0.584 St. Vrain Creek Downstream D 37: Lower Latham <3.84 <1.91 < 1.52 <1.03 < 0.737 < 0.670 Reservoir D 40: S. Platte River <1. O <1.81 < 1. % < 3.16 o

< 0.847 f Below Confluence D 45: St. Vrain < 0.980 <1.11 a <1.05 <0.833 f Creek _

Upstream u 42: St. Vrain <1.23 <2.61 < 0.885 <1.35 <1.20 < 0.695 Creek U 43: S. Platte River <1.05 <1.50 < 0.764 < 0.891 < 0.838 < 0.962 Potable F 49: Visitor's <1.18 <3.22 , < 0.827 < 0.586 < 0.785 Center D 39: Gilcrest City a < 0.905 < 0.579

< 0.800 a I

Water

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Collected 12-26-79 a Sample lost prior to analysis f Sample unavailable due to weather

41 Table II.C.4..a Tritium, Strontita 89, and Strontiwn 90 Concentrations in Effluent Water, Goosequill Pond , E-38.

a) Thira and Fourth Quarter, 1979 Collection Tritita Strontium 89 Strontium 90 Date (pCi/1) (pC1/1) (pCi/1) 7-7-79 3,690 (299)* 5.44 (7.40) < 0.472 7-14-79 1,190 (274) < 0.0669 1.54 (1.68) 7-21-79 a 1.77 (6.77) < 0.352 7-28-79 8,080 (317)

< 1. 93 < 2.83 8-4-79 10,500 (333) 16.8 (16.7) < 1.14 8-11-79 36,800 (501) < 0.884 < 0.155 8-18-79 837 (245) 2.48 (1.17) < 0.818 8-25-79 2,570 (263) < 1.54 < 2.60 9-1-79 775 (245 < 1.02 1.38 (1.16) 9-8-79 471 (241) < 4.29 16.8 (7.80) 9-22-79 4,060 (278) < 2.14 2.74 (.3. 26) 9-29-79 27,399 (450) < 3.45 < 0.567

'10-6-79 10,900 (340) < 0.870 1.31 (0.889) 10-13-79 2,060 (263) <16.77 23.9 (18.5) 10-20-79 3,830 (270) < 0.816 1.24 (1.16) 10-27-79 32,200 (478) < 0.609 < 0.588 11-3-79 2,130 (216) < 0.816. 1.68 (1.08) 11-10-79 1,450 (256) < 0.801 1.72 (0.992) 11-17-79 3,960 (281) < 0.868 3.00 (0.894) 12-9-79 1,160 (295) 1.06 2.34 (0.951) 12-15-79 833 (290) 0.985 1.52 (0.811) 12-26-79 648 (290) 0.721 '

1.03 (0.818)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S. D. ) .

a Sample lost prior to analysis

Table II. C.5

  • Camma-ray knitting Radionuclide Concentrations in Water for Samples Collected July 28,1979 .

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137 cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Earm Pond < 25,500 < 7,984 4,430 < 2,730 < 842 < 362 < 4.53 1.13 0.390 (Coosequill) (2770)* (1.16) (.427)

E 41: Slough to < 49,500 <15,300 < 6,560 < 2,770 < 860 . < 368 < 4.53 < 0.803 0.366 St. Vrain Creek (0.432)

Downstream D 37: Lower Latham <41,200 17,900 8,050 < 2,260 < 702 < 302 < 4.53 < 0.803 < 0.290 Reservoir 0,300 (4,500)

D 40: S. Platte River <12,400 <3,870 < 1,650 < 2,130 818 < 282 < 4.53 0.990 < 0.290 $5 Below Confluence (533) (0.598)

D 45:,S' i

< 2,190

,cr e <12,300 < 5,300 < 2,660 < 821 < 353 < 4.53 <

< 0.803 < 0.290 Upstream U 42: St. Vrain <76,500 <23,600 < 10,100 < 2,120 < 655 < 281' < 4.53 < 0.803 < 0.290 Creek U 43: S. Platte - <SR320Q. < 25,400 < 55,770 < 3,030 <935 River

' < 441 < 4.53 < 0.803 1.83 (0.564) ,

Potable

< 39,100 12,700 < 5,190 < 5.86 < 0.968 c 0.350 F 49: Visitor's (9,530)

Center N.A. N.A. N.A.

D 39: Gilcrest City < 3',730 1,290

  • 648 < 5.05 1.15 0.581 Water N.A. N.A. N.A. (904) (535) (0.810) (0.479)
  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

=

Table II. C.5' .

Camma-ray knitting Radionuclide Concentrations in Water '

for Samples Collected Auaust 25, 1979 .

I Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/l)

Locations 106 Ru 137.cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond <14,400 <4,430 4,860 <3,100 < 958 < 411 < 4.53 < 0.803 4.87 (Goosequill) (2,340) * (0.315)

E 41: Slough to <25,900 - <8,000 <3,440 <2,310 <719 < 306 < 4.53 0.879 < 0.290 St. Vrain Creek (0.859)'

Downstream c112,000 <34,800 <14,900 <2,100 < 649 < 279 < 4.53 2.0S < 0.290 D 37: Lower Latham (0.859)

Reservoir D 40: S. Platte River <20,900 14,100 <2,760 <2,780 < 823 <366 < 4.53 1.72 < 0.290 .

Below Confluence (5.070) (0.821) '>

D 453,St. Vrain a a a

<2,530 1,080 339 <4.53 1.12 0.349

' creek (641) (458) (0.611) (0.472)

Upstream a a a <2,530 1,080 339- < 4.53 1.12 0.349 U 42: St. Vrain (641) (458) (0.611) (0.472)

U 43: S. Platte <21,400 20,600 <2,820 <3,370 2,640 < 444 < 4.53 4.16 < 0.290 River _

'iS;240) (799) (0.831)

Potable

.<43,000 <13,300 <5,700 < 5.46 <0.968 < 0.350 F 49f Visitor's N.A. N.A. N.A.

Center D 39: Gilcrest City Water

  • N.A. N.A. N.A. a a a a a a
  • Uncertainties (in parentheses) are for the 95% confidence interval. (1.96 S.D.).

N.A. Not applicable.

o Table II. C.5 Gamma-ray knitting Radionuclide Concentrations in Water

  • for Samples Collected September 22. 1979 .

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137.Cs "95 Zr&Nb 106 Ru 137 Cs 106 Ru 137 Cs 95 Zr&Nb 95 Zr&Nb I"*"*

< 24,900 18,800 3,680 2,480 771 643 < 4.53 2.17 < 0.290 E'38: Farm Pond (6,200)* (3,000) (592) (139) (119) (0.594)

(Coosequill)

E 41: Slough to < 52,100 < 16,200 < 6,900 4,790 < 841 645 < 4.53 < 0.803 0.718 St. Vrain creek (2,850) (545) ,

(0.885)

Downstream D 37: Lower Lathan 106,000 4 5,300 < 6,440 < 2,370 2,530 1,250 5.59 3.11 1.20 Reservoir (50,100 ) (610) (425) (3.66) (9.07) (0.624) ,

< 25.900 < 8,060 < 3,440

  • D 40: S. Platte River < 770 424 < 102 <4.53 <0.893 <0.290 Below Confluence (254) (0.507)

D 45:,St. Vrain a a a a a a a a a

" Creek .

< 33,600 17,100 < 4,'460 7,330 1,930 978- < 4.53 2.65 0.862 U 42: St. Vrain (8,220) (1,540) (368) (275)

Creek (0.'833) (0.431)

U 43: S. Platte < 29.400  : 9,140 < 3,900 4,110 1,800 1,830 5.14 2.87 2.29 River

- - ~ - - -

(2,770) (673) (545) (4.14) (1.09) (0.767)

Potable 87,900 42,300 26,000 4.21 2.03 1.27 F 49: Visitor 's l61,800)( 14,900) [11,900) (2.96) (0.713) (0.569) c,,,,, .. . .. . .. .

D 39: Gilcrest City < , 00 1 <3M < 4.73 Water N.A. N.A. N.A. ) ( 6)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

a Sample lost prior to analysis

Table II. C.5

  • Camma-ray Emitting Radionuclide Concentrations in Water l for Samples Collected October 20, 1979 .

l Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Locations 106 Ru 137.Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent 21,200 3,510 2,580 < 2,560 < 798 573 6.97 1.49 E 38: Fa d 1.24 g) (3,590)' (906) (498) (398) (2.47) (1.24) (0.373)

E 41: Slough to 146,000 <25,800 16,100 4 6,220 <1,940 2,610 < 4.53 1.33 1.96 St. Vrain Creek (82,300 (12,100) ~(1,050) (1.06 ) (0.661)

Downstream 54,900 < 6,240 1,430 4.980 769 360 8.12 1.58 1.08 D 37: Lower Latham (20,100) (2,870 ) (728) (171 ) (111) (2.32) (0.581) (0.315)

Reservoir D 40: S. Platte River 51,700 < 7,360 43,120 < 2,600 <W < 922 5.95 < 0.803 1.07 N Below Confluence (23,500 ) (3.35) (0.516)

D 453,St. Vrain < 18,300 < 5,690 <2,420 9,600 < 829 < 352 11.3 < 0.803 < 0.290

' Creek (2,790) (3.46)

Upstream 430,000 102,000 23,700 < 2,390 6,140 1,670 < 4.53 7.74 U 42: S Vrain 2.00 (84,200) (20,100) (15,200) (615) (414) (0.635) (0.443)

U 43: S. Platte < 22,400 17,100 5,050 4,130 3,130 2,030 < 4.53 4.07 2.11 River $,970) (4,260) (2,990) (756) (489) (0.791) (0.545) 135,000 <10,700 < 4,540 11.5 < 0.968 < 0.350 F 49: Visitor's (36,300)

Center N.A. N.A. N.A. (3.07)

D 39: Gilcrest City 4,450 3,700 1,900

  • 5.23 4.34 2.24 Water N.A. N.A. N.A. (2.300) (SM) (374) (2.70) (0.691) (0.440)
  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

1 Table II. C.5 -

Camma-ray knitting Radionuclide Concentrations in Water for Samples Collected November 17, 1979 ,

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Uater (pCi/1)

Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent .

<63,600 <19,800 <8,440 3.110* 877 693 < 4.53 1.24 0.807 E 38. rm Pond (2,780) 9 ,e g ) (715) (362) (0.843) (0.449)

E 41: Slough to 101,000 <7,210 10,700 61,300 < 6,330 2.780 16.4 < 0.803' 3.08 St. Vrain Creek (23,900) (3,870 ) (20,700) (3,530) (3.14) (2.76)

Downstream 144,000 <45,600 <6,630 6,170 <652 < 277 14.4 < 0.803 < 0.290 D 37: Lower Latham (49,500) (2,080) (3.47) -

Reservoir D 40: S. Platte River <1,180 < 367 174 13,600 < 1,080 1,740 < 4.53 c< 0.803 1.45 Below Confluence (208) (3,520) (604) (0.209) ;g; D 45:,St. Vrain <33,200 <10,300 < 4,360 c 2.290 < 755 522 < 4.53 0.804 1.60

' Creek (410) (0.658) (0.421)

D'****" <2'9,100

<9,070 9,460 <586 679 < 77.7 < 4.53 1.01 < 0.290 U 42: St. Vrain I (4,900) (196) (0.374)

Creek U 43: S. Platte

<64,400 30,50) 12,500 4,940 < 755 < 321 6.04 0.920 0.614 River

~

'^~~'l -(21,200) (11,800) (2,410) (2.26) (0.868) (0.585)

Potable 78,600 <4,960 e 2,110 7.12 < 1.07 < 0.389 F 49: Visitor's

,900) (1.62)

Center D 39: Gilcrest City 6,740 < 244 324 8.06 c 0.993 0.388 Water -

N.A. N.A. N.A. (1,010) (173) (1.21) (0.207)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

N.A. Not applicable.

Table II. C.5 .

Camma-ray Baitting Radionuclide Concentrations in Water

  • for Samples Collected December 26, 1979 .

Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pC1/l)

Locations 106 Ru 137 Ca 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent 269,000* < 11,400 6,720 < 2,750 < 898 < 381 < 4.53 < 0.803 0.301 E 38: Farm Pond (48,300) (6,600) (0.322)

(Coosequill)

E 41: Slough to 259,000 < 29,000 < 12,200 8,840 < 915 < 389 13.8 < 0.803' < 0.290 St. Vrain Creek (86,600) (2,760) (3.45)

Downstream 188,000 < 19,000 < 8,100 7,720 < 831 < 353 16.7 < 0.803 < 0.290 D 37: Lower Latham (57,500) (2,520) (3.75)

Reservoir D 40: S. Platte River Below Confluence f I I I I I I I I D U:,S

,C e f f f f- f f I f f Upstream -

U 42: St. Vrain < 54,500; 17,400 < 7,290 5,900 < 823 < 349 5.00 < 0.803 < 0.290 Creek (2,520) (3,26)

U 43: S. Platte 16,800 < 2,250. < 957 < 2,530 < 828 < 351 < 4.53 < 0.803 < 0.290 T6.860L

- ~'

River Potable F 49: Visitor,a 34,100 <4,540 < 1,930 10.6 < 0.803 < 0.290 N.A. N.A. N.A. :13,600) (4.24)

D 39: Gilcrest City Water f f f 7 N.A. N.A. N.A. f 7

  • Uncertainties (in parentheses) are for the 95% confidence interval. (1.96 S.D.).

N.A. Not applicable.

f Sample unavailable due to weather

Table II.C.5.4 Gamma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.

  • Collection __ Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Date 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr4Nb 7-7-79 13,500 9,100 3,800 <3,360 < 1,040 < 445 < 4.53 < 0.803 < 0.190 (10,300) * (2,640) (1,390) 7-14-79 < 33,600 42,400 14,400 < 2,800 < 864 < 371 <4.53 3.12 1.05 (8,760) (4,170) (0.885) (0.531) 7-21-79 <19,400 6,400 < 2,570 < 4,830 <1,500 < 639 < 4.53 < 0.803 < 0.290 (5,100) 7-28-79 <25,500 < 7,954 4,430 < 2,730 < 842 < 362 < 4.53 1.13 0.390 (2,770) (1.16) (0.427) 8-4-79 <12,100 <3,740 1,710 <2,690 < 832 < 357 <~4.53 0.892 < 0.290 (1,750) (0.791) 8-11-79 <9,670 4,820 < 4,280 <1,270 840 <168 < 4.53 1,58 < 0.290 (2,410) (422) (0.300) 8-18-79 <1,220 < 375 < 161 < 5,020 < 1,550 1,870 < 4,53 < 0.803 < 0.290 (644)

, 8-25-79 <14,400 <4,430 4,860 < 3,100 < 958 < 411 < 4.53 < 0.803 4.87 (2,340) (0.315) 9-1-79 48,570 < 2,680 < 1,140 < 3,100 1,070 469 < 4.53 1.03 0.388 (785) (406) (0.845) (0.450) 9-8-79 <6,130 41,910 < 814 15,100 < 931 < 417 < 4.53 < 4.53 < 4.53 (2,920)

  • Concentrations (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

1 Table II.C.S a ramma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38. .

Collection SuspendeJ Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)

Date

~

106 Ru 137 Cs 95 Zr4Nb 106 Ru 137 Cs 95 Zr4Nb 106 Ru 137 Cs 95 Zr4Nb 9-22-79. <24,900 18,800 3,680 2,480 771 643 < 4.53- 2.17 < 0.290 (6,200) (3,000) (592) (139) (119) (0.5 94) 9-29-79 <20,700 <6,440 < 2,750 <3,200 6,300 1,500 < 4.53 5.80 1.89 (762) (631) (0.803) (0.603) 10-6-79 <31,700 <9,860 < 4,200 < 819 520 914 < 4.53 < 0.803 0.303 (273) (2 04) (0.356) 10-13-79 <12,100 11,800 3,870 < 2,840 1,150 < 377 < 4.53 1.68 < 0.290 (4,150) (2,320) (712) (0.636) -

10-20-79 21,200 3,510 2,580 < 2,560 < 798 573 6.97 1.49 1.24 $5 (3,590) (906)' (4 98) (398) (2.47) (1.24) (0.373) 10-25-79 <18,000 5,860 < 2,380 < 2,150 1,090 < 285 < 4.53 1.49 < 0.290 (6,420) (542) (0.610) 11-3-79 32,500 < 5,110 1,780 < 719 < 224 < 95.2 < 4.53 < 0.803 < 0.290 (16,500) (2,170) 11-10-79 < 12,000 <3.970 <1,680 2,770 631 712 < 4.53 < 0.803 < 0.290 (1,130) '289) (152) 11-17-79 < 63,600 < 19,800 <8,440 3,110 877 693 < 4.53 1.24 0.807 (2,780) (715) (362) (0.843) (0.449)

  • Concentrations (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

t Tabla II.C.S. a Gamma ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.

  • Collection Suspended Solids (pCi/kg) Dissolyed Solids (pCi/kg) Water (pCi/1)

Date 106 Ru 137 Cs 95 ZI6Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb 12-9-79 337,000 < 36,500 < 15,500 8,740 < 1,080 893 14.0 < 0.003 0.918 (112,000) (3,290) (462) (3.54) (0.484) 12-15-79 30,100 < 3,310 1,680 8,020 < 956 < 406 13.3 < 0.803 < 0.290 (10,400) (1,570) (2,990) (3.39) 12-26-79 269,000 < 11,400 6,720 < 2,750 < 898 < 381 < 4.53 < 0.803 0.301

( 48,300). (6,600) (0.322)

E l

  • Concentrations (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l

e* .

[ 51 i

II.C.2. Radionuclide Concentrations in Sediment Sediment is the major compartment for radionuclide contaminants f

l ir, ;resh water system due to the high concentration factors for fission products in the sediment mineral matrices. Although the samples are always i

collected at the same point, it is impossible to collect a sample with a 3

known surface area to volume ratio as for soils. The sample itself is i

a result of sediment movement downstream and is therefore a function of 5

)

water flowiate which fluctuates greatly during the year. Table II.C.6 1 '

list gross beta activity in sediment samples from the sampling sites in the water courses. The mean values for effluent, upstream, and downstream j samples were nearly identical and were not significantly different (See i

Table II.H.1) and indicate that the sediments sampled are very homogeneous.

l Table II.C.7 and II.C.8 list the Sr-90 and Sr-89 concentrations in the same sediment samples respectively. Table II.C.9 shows the concen-r tration in sediment of the fission products Ru-106, Cs-137, and Ir-Nb-95.

b Although occasional high values appear, the mean values for these sample types (Table II.H.1) indicate no significant difference for any of the fission products in each of the sampling locations.

It should be noted that the sand fraction of the sediment samples

{ is removed and only the silt plus clay mineral fraction is analyzed.

These two particle size fractions should contain essentially all of the radioactivity, both natural and any due to reactor effluents.

O

Table II. C.6 Cross Beta Activity Concentrations in Bottom Sediment (pCi/kg).

Sampling Monthly Collection Dates

"*'I ""

7-14-79 8-25-79 9-22-79 10-20-79 11-17-79 121n 70 Effluent E 38: Farm Pond 31,600 31,100 30,600 33,200 32,800 f (Coosequill) (1,500) * (1,400) (1,430) (1,520) (1,500)

E 41: Slough to 34,700 33,400 36,700 29,900 34,900 -32,800 St. Vrain Creek (1,550) (1,500) (1,530) (2,450) (1,550) (1,420)

Downstream 29,300 31,100 27,700 29,700 31,100 2 D 37: Lower Latham (1,460) (1,490)

Reservoir (1,420) (1,450) (1,380) .

D 40: S. Platte River 34,600 32,400 36,900 38,[00 37,600 m Below Confluence (1,590) (1,480) (1,530) (1,620) (1,620) f "

D 45: St. Vrain 33,000 31,200 32,600 30,500 33,000 Creek (1,500) (1,430) (1,460) (.1,460) (1,510) f Upstream U 42: St. Vrain 26,700 30,400 23,600 33,000 29,200 31.100 Creek (1,350) (1,440) (1,270) (1,530) (1,430) (1,450)

U 43: S. Platte 33,500 33,600 38,000 36,200 38,300 ~35,800 River (1,530) (1,490) (547) (1,610) (1,620) (1,560)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

f Sample unavailable due to weather '

o Table II. C.7 .

Strontium 90 Activity Concentrations in Botton Sediment (pCi/kg).

Sampling Monthly Collection Dates Locations 7-14-79 8-25-79 9-22-79 10-20-79 11-17-79 12-30-79 Effluent E 38: Farm Pond 130 (119) 277 (221) 228 (197) 931 (232) d f

_(Coosequill)

E 41: Slough to St. Vrain Creek < 187 < 206 394 (204) 581 (173) 449 (168) 291 (171)

Downstream D 37: Lower Latham < 145 391 < 128 197 (162)

Reservoir (386) 187 (159) 337 (193) $

D 40: S. Platte River Below Confluence < 147 379 (292) < 182 552 (171) 272 J182) f D 45: St. Vrain 413 (179)

Creek 489 (858) 4 142 945 (667) 280 (178) I Upstream U 42: St. Vrain < 295 < 173 < 186 530 (185)

Creek 413 (201) 581. (174)

U 43: S. Platte < 243 River 194 (223) 218 (205) 776 (183) 288 (190) 347 (370)

Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.),

d Sample lost during analysis f Sample unavailable due to weather

Table II. C.8 Strontium 89 Activity Concentrations in Bottom Sediment (pC1/kg).

1 Sampling Monthly Collection Dates 7-14 79 R 25-79 9-22-79 10-20-79 11-17-79 12-30-79 Effluent E 38: Farm Pond < 110 <177 < 180 < 268 d f~

(Goosequill)

E 41: Slough to St. Vrain creek < 104 < 144 < 185 < 205 .601 (523) < 160 Downstream D 37: Lower Latham 391 (635) < 150 < 120 < 189 1,430 (521) 826 (400)

Reservoir g

e on ce < 115 < 138 < 144 385 (762) 793,(574) f cIe < 342 204 (462) < 182 < 189 475 (557) f Upstream cr$ek < 228 161 (598) < 159 < 211 <199 875 (299)

U 43: S Riv r < 227 < 162 < 147 < 225 1,970 (602) 1,870 (822)

  • Uncertainties (in parentheses) are for the 95% confidence interval. (1.96 S.D.).

d Sample lost during analysis f sar.ple unavailable due to weather

.g Table II. C.9 -

Gamma-ray Emitting Radionuclide Concentrations in Botton Sediment (pCi/kg) for Samples Collected July 14,1979 .

Sampling 106 95 Ru Cs Zr & Nb Locations Effluent E 38: Farm Pond (Coosequill)

< 3,760 < 655 < 235 E 41: Slough to <3,760 < 655 265 St. Vrain Creek (586)*

Downstream D 37: Lower Latham < 3,850 < 671 < 241 Reservoir D 40: S. Platte River < 3,760 < 655 < 235

~

y, Below Confluence un D 45: St. Vrain Creek <3,760 < 655 < 235 Upstream u 42: St. Vrain <3,760 < 691 255 Creek (506)

U 43: S. Platte <3,760 < 655 < 235 River

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l l

e Table II. C.9 -

Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected August 25, 1979 .

Sampling 106 137 95 Ru Cs Zr & Nb Locations Effluent E 38: Farm Pond < 5190 < 994 < 355 (Coosequill)

E 41: Slough to St. Vrain Creek < 6010 < 1000 < 392 Downstream D 37: Lower Latham < 3740 < 716 < 256 Reservoir g D 40: S. Platte River 1.3%

Below Confluence < 4250 < 730 (514)*

D 45: St. Vrain 14,700 < 716 < 256 Creek (7,020)

Upstream u 42: St. Vrain 16,300 < 716 < 256 Creek (6,980)

U 43: S. Platte 18,900 < 716 < 256 River (6,930)

  • Uncertainties .(in parentheses) are for the 95% confidence interval, (1.96 S.D.).

Table II. C.9 Gamma-ray Emitting Radionuclide Concentrations in Botton Sediment (pCi/kg) for Samples Collected September 22, 1979.

Sampling 106 137 95 Locations Ru Cs Zr & Nb Effluent E 38: Farm Pond 19,900 777 < 256 (coosequill) (6,310)* (838)

E 41: Slough to < 4,200 1,510 337 St. Vrain Creek (854) (546)

Downstream D 37: Lower Latham Reservoir < 4,120 < 729 262 m -

D 40: S. Platte River Below Confluence < 4,120 < 729 < 262 D 45: St. Vrain 17,300 < 777 < 277 Creek (7,160)

Upstream U 42: St. Vrain 14,300 < 716 315 Creek (6,700) ( 464)

U 43: S. Platte < 8,060' < 1,390 945 River (856)

  • Uncertainties (:In parentheses) are for the 95% confidence interval, (1.96 S.D.).

Table II. C.9

  • Camma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected October 20, 1979 .

Sampling 106 Locations Ru Cs Zr & Nb Effluent E 38: Farm Pond < 4,800 < 826 < 297 (Goosequill)

E 41: Slough to r < 4,200 < 721 619 St. Vrain Creek ll (403)

  • Downstream D 375 Lower Latham < 7,240 <1,250 471 Reservoir (580)

D 40: S. Platte River ui Below Confluence < 4,280 < 736 < 264 m D 45: St. Vrain < 4,280 < 736 Creek < 262 4,460 < 729 < 284 U 42: St. Vrain (6,918)

Creek U  : S. Pl gtvet < 4,593 < 790 '

< 284

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e

_____.______m.____.____ __ _ _ . _

i

~

Table II. C.9

  • Gamma-ray Emitting Radionuclide Concentrations in Botton Sediment (pCi/kg) for Samples Collected Novamher 17. 1979 .

Sampling 106 1 Locations Ru Cs ' Zr & Nb Effluent E 38: Fara Pond < 26,600 < 4,420 < 1,610 (Coosequill)

E 41: Slough t

< 6,730 < 1,120 < 408 St. Vrain Creek Downstream 5,210 < 800 < 287 D 37: Lower Latham (7,230)*

Reservoir ui u)

D 40: S. Platte River Below Confluence < 10,200 < 1,710 < 624 D 45: St. Vrain < 4,370 867 280 Creek (852) (543)

Upstream

< 4,580 811 < 278 U 42: St. Vrain (876)

Creek U 43: S. Platt

< 6,600 < 1,100 < 402

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

Table II. C.9 .

Camma ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) ft- c uples Collected December 30. 1979 .

Sampling 106 95 Ru Cs Zr & Nb Locations Effluent E 38: Farm Pond f f f (Coosequill)

E 41: Slough t

< 4,310 < 743 < 267 St. Vrain Creek Downstream D 37: Lower Latham < 7,270 < 1,240 < 451 Reservoir m

D 40: S. Platte River Below Confluence f f I D 45: St. Vrain Creek I I I Upstream U 42: St. Vrain < 4,780 < 810 < 295 Creek U 43: S. Platte River < 4,330 < 734 < 268

  • Uncertaincies (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

f Sample unavailable due to weather.

+

.e ,

61 II.C.3 Precipitation Gross beta and tritium deposition values are given in Table II.C.10.

Precipitation collectors of size sufficient to produce a significant sample are located at two locations, F-1 and F-4. Values are expressed as depo-sition (i.e. pC1/m 2) as only this value can be correlated to food chain transport. Studies of world-wide fallout have shown that forage and subsequent milk or mest values can be reasonably predicted from deposition values. The deposition measured is the sum of dry and precipitation deposition as the collectors are washed down each time. The tritium deposition is calculated as the product of the concentration measured in the water and the total volume. The total deposition then appeared high for this reporting period because of the large total precipitation volumes. In fact the concentrations measured were just above the MDC and less than measured for the first half of 1979. This was true although the tritium released from the reactor was greater in the second half than the first half. The explanation is that the major source of tritium has always been from world wide fallout due to weapons testing. The increment due to reactor effluents is negligible compared to weapons fallout even when the latter is decreasing.

The mean deposition for the 6 month period was not statistically significant 9

between the two sites. It should be noted that no significant differences have ever been observed for F-1 and F-4. Since these collection sites are at opposite directions from the reactor this observation supports the fact that observed deposition values are due to world-wide fallout and not tc, reactor effluents.

Table II.C.11 and II.C.12 list the precipitation deposition of Ru-106, Cs-137 and Zr-Nb-95. The mean values at F-1 and F-4 were not significantly different although there was a noticeable increase in the deposition at i both sites during the last quarter of the year. This was not observed for I

tritium or the strontium radicisotopes.

62 Note that radioruthenium data is listed in the tables at Ru-106.

However, it is true that the activity measured is often a mixture of Ru-103 and Ru-106. Both isotopes have gamma-rays at essentially the same energy and they cannot be separated by NaI(TI) spectral analysis. No separation by half-life determination was attempted on the data. Since the half-life of Ru-103 is 40 days and that of Ru-106 is one year, in periods soon after an atmospheric test, a high proportion is expected to be Ru-103 and at later times predominately Ru-106. Since the ruthenium isotopes have negligible biological availability, neither has any consequences in calculation of population dose and efforts to separate them is not warranted.

Table II.C.13 lists the deposition of the strontium radioisotopes.

There were no significant differences in Sr-90 between the mean values for F-1 and F-4 locations.

O O

I f

a s

1

Table II. C.10 Gross Beta and Tritium Deposition from Precipitation at Locations F1 and F4.

g,, 7, Cumulative Cross Beta Deposition (pCi/m ) Tritium Volume

  • End n DeposiS)'"

D_ (liters) Suspended Solids Dissolved Solids Total (pCi/m F1 F4 F1 F4 F1 F4 F1 F4 F1 F4 8-11-79 50 50 32.4 40.2 45.9 16.5 78.3 56.7 3,840 3,090 (11.2)*' (13.8) (6.18) (5.80) *(12.3) 13.9) (2,751) ((2,570) 8-18-79 100 100 112 54.1 33.6 36.4 146 93.5 4,150 4,650 (17.0) (19.4) (7.06) (8.35) (16.0) (19.7) (3,860) (3,620) as w

9-29-79 50 50 262 47.7 38.3 50.2 300 97.9 3,013 3,500 (18.7) (14.0) (5.98) (7.46) (17.5) (15.2) (2,790) (2,630) 12-1-79 50 50 12.3 g 4.92 g 4.92 g < 3,432 g

  • Samples are analyzed at the end of each monib if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • December sample includes precipitation from October and November a Analysis in progress e

e Table II. C.11 Camma-ray Emitting Radionuclide Deposition from Precipitation at Location F1.

Sample Total

  • Suspended Solids (>Ci/m ) Dissolved Solids (pCi/m ) Total (pC1/m )

106

( t s) Ru Cs Zr-Nb Ru Cs Zr-Nb Ru Cs Zr-Nb 8-11-79 50 <25.0 < 7.71 <5.34 < 32.2 < 9.93 < 4.27 < 25.0 < 7.71 < 4.27 8-18-79 100 <-24.8 < 21.6 < 3.30 < 11.7 < 36.8 < 15.2 < 10.6 < 58.4 < 16.6 9-29-79 50 55.1 13.4 7.44 116 17.2 13.5 171 30.6 20.9 (11.9) (2.84) (2.02) (36.0) (8.70) (6.31) (33.9) (3.16) (5.89) 12-1-79 50 49.9 9.55 <3.39 107 < 3.25 4.79 157 6.69 5.61 E (25.1) (6.47) (13.7) (2.00) (4.94) (7.07) (3.88)

  • Sa.mples are analyzed at the end of each month if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval. (1.96 S.D.).

December sample includes precipitation from October and November

1 Table II. C.12 Gamma-ray Emitting Radionuclide Deposition from Precipitation at Location F4.

Sample Total

  • Suspended Solids (pC1/m ) Dissolved Solids (pCi/m ) Total (pCi/m ) .

106 D te ) Ru Cs Zr-Nb Ru Cs Zr-Nb Ru Cs Zr-Nb 8-11-79 50 <25.2 12.9 < 3.45 a a a < 25.2 12.9 < 3.45 (6.29) (6.29) 8-18-79 100 <23.6 26.5 < 23.13 < 30.2 32.7 < 4.tJ < 23.6 59.2 4 3.13 (8.22) (10.4) (13.2) 9-29-79 50 104 37.3 36.1 102 24.9 8.97 206 62.2 61.0

  1. 10.0) (2.45) (1.60) (31.3) (7.74) (5.53) (29.2) (7.21) (6.26) 12-1-79 50  ; g g .g g g g g g i
      • 4
  • Samples are analyzed at the end of each month if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • December sample includes precipitation from October and November a Sample lost prior to analysis g Analysis in progress

Table II. c.13 Radiostrontium Deposition from Precipitation at Locations F1 and F4 (pCi/m ).

Sample Ending Strontium 89 Strontium 90

)

a es F1 F4 F1 F4 F1 F4 8-11-79 50 50 < 8.82 < 10.1 11.1 (18.2) 29.3 (27.0) 8-18-79 100 100 < 9.23 < .7.91 17.9 (12.5) 25.3 (18.8) 9-29-79 50 50 < 7.15 < 10.6 14.8 (11.4) 16.3 (12.3) 12-1-79 50 50 < 9.32 9. 23.2 (11.3) 9

  • Samples are analyzed at the end of each month if sufficient volume has accumulated.
    • Uncertainties (in parentheses) are for the 95% confidence interval
      • December sample includes precipitation from October and November. . (1.96 S.D.).

g Analysis in progress "o

os ,'

67 II.D. Food Chain Data

1. Milk. Tritium concentrations in milk are summarized in Table II.D.I. There was no significant difference in mean tritium values in water extracted from milk at the only dairy in the Facility area (F-44) and the Adjacent Composite and the Reference Composite mean values for the last half of 1979 (see also Table II.H.1). Tritium mean values for Facility, Adjacent and Reference sites were 424, 450 and 497 pCi/1 respectively and were similar to values observed the first half of 1979.

Tritium concentrations in milk should respond rapidly to changes in tritium concentrations of the water intake to the cow due to the short biological half-life for water in the cow (about three days for the lactating cow). As noted in previous reports, tritium activity per liter reflects the tritium in the water extracted from the milk and not the activity per liter of milk. Whole milk is approximately 87% water

( 3-4%, depending on the cow breed, pasture, and feed). Skim milk accordingly has a higher water content. It may be assumed though that the remaining solids in milk (proteins, carbohydrates, and lipids) also contain some tritium due to exchange of tritium with hydrogen on these large molecular structures. This tritium concentration will be very much lower than in the water fraction and is not significant.

Tables II.D.2 and II.D.3 list the Sr-90 and Sr-89 concentrations in milk. There was no significant difference between the three sampling zones. As expected the mean value for Sr-89 was less than the MDC.

The concentrations of I-131, Cs-137 and K-nat in milk are given in Table II.D.4. Although there is some relationship between measured I-131 and Cs-137 concentrations in milk and those in air (Table II.B.4), the ,

1 correlation is low due to feeding practices discussed below. K-nat, as

os. ,' 68 l measured by K-40 is very constant in milk. The mean literature value is 1.5 g/L. K-nat is measured and reported therefore only as a quality control measure of Cs-137 and I-131 measured in the same sample by gamma-ray spectrometry.

Although high values for 1-131 and Cs-137 were observed for the 9-22-79 l l

collection period, the values were high for all three sampling zones. No l explanation can be given for these values.

Due to the availability of a large NaI(TI) scintillation crystal, shield and pulse height analyzer that has been dedicated to only counting project milk samples we have lowered our MDC for I-131. A counting time l

\

of 3000 minutes per sample with a slight reduction in background has ,

achieved a MDC value of approximately 0.6 pC1/L. This is preferable to any chemical concentration process and nearly all milk sample data reported here were for 3000 minutes counting time.

It should be noted here that a close relationship between forage deposition and milk concentrations should be expected for the strontium radioisotopes, for Cs-137 and for I-131 only if the cows are on pasture or fed green cut grass or alfalia. This unfortunately is not the general feeding practice at the dairies around the reactor.

Nearly all cattle feed is hay grown either locally, from Nebraska or the North Park region of Colorado. It can at times be even cuttings from the previous year. This makes correlation of milk concentrations very difficult. On the other hand, if elevated I-131 or tritium concentrations are noted, the surface deposition must have been reasonably related in time and location.

s

Table II. D.1 .

Tritium Concentrations in Water Extracted from Milk (pCi/1).

Sample Ending Dates, 197 9 Facility Area 44 Adjacent Composite

  • Reference Composite
  • Pasture Season July 7 < 283 1,220 274 *
  • 382 265 l July 14 1,080 (273) 845 270 675 (I 269;'l July 21 858 I271) 502 267 502 / l July 28 836 /270 < 283 588 ( 268 267ll

- Aug. 9 842 f270 614 269 349 265 l 796 I245 241 Aug. 11 Aug. 18 721 244 684 923 243 246 484 752 ((f l Aug. 25 358 fl240 l 484 241 508 (244i 241 f .

Sept. 1 325 (248 < 265 ' 967 (246)

Sept. 8 277 (280) 662 (282) 547 (251) .

Sept. 15 f 336 (280) 539 (282) .

Sept. 22 245 (280) 334 (281) 539 (282)

Sept. 29 692 (243) <300 < 300 Post Pasture Season Oct. 6 < 300 *** < 300 < 300 Nov. 13 < 300 308 (280) 559 (289)

~

Dec. 9 408 (287) *** < 307 310 (286)

  • Adjacent Composite Locations: A6, A28, A31, A50, A 36, A48.

Reference Composite Iecations: R16, R17, R20. R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Collected October 4 and December 10 f Sample unavailable

s

~

Table II. D.2 Strontium 90 Activity in Milk (pC1/1).

  • E Facility Area 44 Adjacent Composite
  • Reference Composite
  • p 9 Pasture Season July 7 4.62 (1.35)** 4.55 (1.21) 2.18 (1.20)

July 14 4.90 (1.75) d 5.52- (2.67)

July 21 5.36 (4.83) 6.88 4.08) < 6.13 July 28 15.5 (11.5) 16.9 9.27) 7.31 (3.07)

August 4 3.46 (2.30) 8.38 3.94) 5.24 (2.00)

August 11 1.59 (.955) 2.27 (1.52) 3.65 (2.58)

August 18 11.9 (4.27) 14.7 (6.22'i 18.5 (8.11)

August'25 13.8 (7.99) 5.12 (4.021 < 3.04 Sept. I < 8.70 4.17 (1.70) 17.0 (12.0)

Sept. 8 4.41 (1.84) 2.06 (1.50) 1.77 (R888)

Sept 15 f 33.0 '(23.7 ) 1.94 (1.05)

Sept 22 14.9 (12.1) 2.37 (1.41) 12.0 (10.9) y o

Sept 29 2.44 (1.75) 3.29 (2.03) 3.83 (2.27)

Post Pasture Oct. 6 ***

2.86(0951) 2,82 (1,10) 3,30 1,00'i Nov. 3 4,00 (1.01) 4.09 (1,10 3.59 1.23 Dec . 9 ***

5.31 (1.10) 3.30 (1.11)) 4.67,(.17)h

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17. R20 R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Collected 10/4/79 12/10/79 d Sample lost during analysis f Sample unavailable

4 6

i Table II. D.3 Strontium 89 Activity in Hilk (pCi/1).

D , 99 Facility Area 44 Adjacent Composite

  • Reference' Composite
  • Pasture Season July 7 < 1.11 < 1. 02 < 0.907 July 14 <1.30 d < 1.77 July 21 < 2.67 < 2.49 < 2.37 July 28 < 6.85 <5.32 '

< 1.28 August 4 < 1.34 < 2.23 < 1.88 August 11 <0.816 <1.03 < 1.47 August 18 < 4.37 <5.39 <. 0.145 August 25 < 6.19 < 3.40 < 2.59 Sept. I < 8.52 <1.56 < 9.53 ;f Sept. 8 < 2.30 <1.02 <'0.821 Sept. 15 .f 43.82 < 0,741 Sept. 22 < 7.49 <1.28 < 7.27 Sept. 29 <1'.69 <1.51 < 1.64 Post Pasture Oct. 6 *** < 0. 970 < 0,964 < 1.12 Nov. 3 < 0.779 < 1.118 < 1.13 Dec. 9 < 1.00 <1.03 < 1.28

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Collected 10/4/79 12/10/79 f Sample. unavailable d Sample lost during analysis

n'

~'

o 72 I l

l Table II. D.4 Camma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.

C I (PCi/1) Cs (pCi/1) Nat. K (g/1) 7-7-79 Facility 11.4 (1.58 ** 6.82 (1.13) 1.54 (0.0177)

Adjacent 8.95 (1.43 5.24 (0.933) 1.54 (0.0138)

Referenca 2.32 (2.05 0.624 (1.03) 1.48 (0.016'.)

7-14-79 Facility 1.08 (1.16) 2.98 (0.823) 1.50 (0.0116)

Adjacent 8.58(1.42) 6.26 (1.02) 1.64 (0.0157)

Reference 11.3 (1.52) 5.92 (0.835) 1.50 (0.0117) 7-21-79 Facility <0.151 < 0.142 1.51 (0.014)

Adjacent 14.2 (1.54) 6.17 (0.e40) 1.64 (0.0120)

Reference < 0.104 < 0.104 1.27 (0.0116) 7-28-79 Facility 5.45(1.07) 4.49 (0.826) 1.57 (0.0117)

Adjacent 6.42(1,49) 5.42 (0.802) 1.40 (0.116)

Reference 2.82 (1.82) 4.36 (0.915) 1.49(0.0137) 8-4-79 Facility < 0.124 < 0.115 1.41 (0.014)

Adjacent < 0.106 2.75 (0.792) 1.34 (0.0111)

Reference < 0.103 < 0.102 1.49 (0.0111) 8-11-79 Facility 11.2(1.45) 8.38 (0.784) 0.702 (0.0102)

Adjacent < 0.114 1.62 (0.903) 1.68 (0.0123)

Reference 1.28 (1.40) 3.29 (0.908) 1.39(0.0135) 8-18-79 Facility < 0.104 < 0.104 1.36 (0.0115)

Adjacent < 0.124 < 0.117 1.59(0.0121)

Reference 4.25 (1.54)  :< 0.104 1.05 (0.0111) 8-25-79 Facility 4.16 (1.30) 5.07 (0.844) 0.966 (0.0111)

Adjacent < 0.149 < 0.140 2.18 (0.0144)

Reference < 0.114 1.81 (0.107) 1.54 (0.0116) 9-1-79 Facility 2.68 (1.01) 3.21 (0.850) 1.49 (0.0117)

Adjacent < 0.0989 < 0.0928 1.89 (0.0111)

Reference < 0.0899 4.00 (0.817) 1.37 (0.0109)

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.

Reference Composite Locations: R16, R17, R20, R22, R23, R25.

    • Uncertainties (in parentheses) are for the 95". confidence interval, (1.96 S.D.).

v ,' l 73 l

l Table II. D.4 Camma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.

l C ec d I (PCi/1) Cs (pCi/1) Nat. K (g/1) 9-8-79 Facility <0.104 <0.104 1.23 (0.0114 **

' Adjacent < 0.140 < 0.131 1.72 (0.0131 Reference < 0.167 < 0.151 1.61 (0.0145 9-15-79 Facility f f f Adjacent < 1.103 < 0.103 1.43 (0.0123)  !

Reference 0.235(1.53) 1.40 (0.906) 1.28 (0.012) 9-22-79 Facility 46.6 1.98 3.76 ( 0.895) 1.62 (0.120)

Adjacent 51.1 2.86 2.49 (1.08) 1.86(0.0165)

Reference 50.8 2.15 3.76 (0.895) 1.61 (0.0120) 9-29-79 Facility 57.9 (1.96) 15.9 (1.24) 0.897 (0.0153)

Adjacent < 0.112 < 0.112 1.60(0.0145)

Reference d d d 10-6-79 Facility < 0.108 21.5 (1.15) 1,43(0.0142)

      • Adjacent < 0.108 < 0.107 1.54(0.0143)

Reference d d d 11-13-79 Facility < 0.117 < 0.113 1.41(0.0134)

Adjacent < 0.114 < 0.110 1.56 0.134)

Reference < 0.121 < 0.118 1.44 0.136) 12-9-79 Facility 0.679 1.23) 0.294 (0.874) 1.59 (0.0128)

      • Adjacent 1.63 1.49) < 0.124 1.54 (0.0132)

Reference 20.9 2.81) 4.31 (8.43) 1.42(0.0118)

  • Adjacent Composite Locations: A6, A28, A31, A50, A36, A48.
  • Reference Composite Locations: R16. R17, R20, R22, R23, R25.
    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Facility milk collected 10-4-79 and 12-10-79.  ;

-d Sample lost during analysis. '

f Sample unavairable.

l

  • 74 II.D. Food Chain Data
2. Forage. Table II.D.5 lists the tritium specific activity in water extracted from forage samples as well as Sr-89 and Sr-90 concentrations in the forage dry matter. Tritium values that were obtained were similar to those reported in past reports. There were no significant differences in mean tritium values between Facility, Adjacent and Reference locations.

The tritium in forage water was statistically the same as the concentration in milk.

Table II.D.6 lists Ru-106, Cs-137 and Zr-Nb-95 activities in forage samples for the second half of 1979.

Gross beta concentrations in soil and forage collected at the same locations are given in Table II.D.7.

From Table II.H.1 it is observed that mean values for all radio-nuclides in each sample type are very close to those measured in the first half of 1979.

Cattle forage samples, i.e. fresh cut grass or alfalfa hay is the sample of choice for several reasons. Forage integrates atmospheric wet and dry deposition over a large surface area per unit weight and also is a direct link in the dairy and beef food chain transport of H-3, Cs-137, and the strontium radioisotopes. Such samples are collected when possible.

However, due to feeding practices, vagaries of weather and other factors, often silage or cut hay samples must be collected. These samples may or may not be harvested locally and may represent different fallout periods.

This often presents difficulties in data interpretation.

I 4

1 1 1 i

y i

75 Table II. D.5 Tritium, Strontium 89,andStrontig90Conegtrationsin Forage for Samples Collected

Facility 4+ 744 (273)* < 22.1 109 (26.2) 44 + 681 (272) 167 (124) 226 (42.5)

Adjacent 6+ 736 (273) 167 (124) 226 (42.5) 28 + _799 (274) <14.5 98.6(13.1) 31 + 426 (270) <32.0 179 (29.6) 36 + 813 (274) <24.7 241 (18.5) 48 + 695 (273) <16.2 61.3(17.1) 50 + 772 (273) < 85. 3 283 (90.9) r Reference 16 + 647 (272) < 23.9 212 (15.4) 17 + 600 (272) < 20.3 254 (18.0) 20 + 669 (272) < 26.5 16.7 (28.6) 22 + 564 (271) < 26.7 225 (22.8) 23 +' 695 (273) < 52.7 237 (55.3) 25 + - 1,167 (278) < 39.1 92.0 (46.5) -

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

+ Silage or dry hay

76 -

Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected an,n,,e + in, 1o70 A#***

Tritium Strontium 89 Strontium 90 (pci/1) (pCi/kg) (pCi/kg)

Facility 4+ e < 25.7 93.6 (32,71

  • 44 + e < 28.5 213 (27,9) 4 Adjacent 6+ e < 15.1 114 (16,0) 28 + e < 36.8 163 (16,8) 31 + < 256 < 30,0 92.6 (32,9) 36 + e < 25,5 83.2 (32,.')

- 48 + < 256 < 24.3 92.0 (22.8) 50 + < 256 < 26,9 33.0 (325)

Reference 16 + < 256 < 24.3 189 (23.8) 17 + 3,230 (270) < 30.9 236 (36.9) 20 + e 4 23.8 123 (25.8) 22 + 853 (246) < 22.4 277 (210) 23 + e 4 18.0 158 (172) 4 25 + e 15.5 231 (31.8) -

+ Silage or dry hay.

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e Insufficient volume for analysis i

l

77 Table II. D.5 Tritium, Strontium 89, and Strontium 90 Cor centrations in Forage for Samples Collected September 29, 1979.

Areas Tritium Strontium 89 Strontium 90 (pci/1) (pCi/kg) (pCi/kg)

Facility 4+ e < 87.8 320 (43.4) 44 + e < 12.6 188 (11.1)

Adjacent 6+ e < 20.1 166 (132) 28 + e < 12.9 135 (10.8) 31 + 660 (289) < 15.2 129 (11.6) 36 + e < 26.0 280 (18.5) 48 + e < 12.1 103 (12.5) 50 + e < 12.5 21.8 (15.3)

'. Referenc e 16 + 536 (189) < 14.0 91.1 (14.9) 17 + e 745 (1,870) 119 (11.2) 20 + e < 22.3 227 (16.6) 22 + e < 19.4 163 (13.6) 23 + e < 19.6 119 (15.0)

'25 + <169 < 208 183 (21.3)

+ Silage or dry hay.

  • -tIncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S.D.) .

e Insufficient volume for analysis

o' .' 78 Table II. D.6 Camma-ray Emitting Radionuclide. Concentrations in Forage (pCi/kg) fdr Samples Collected July 21.1979 .

Areas Ru Cs Zr & Nb Facility 4 + < 55. 9 106 (17.7)

  • 54.5 (19.7) 44 +

85.8 (54.7) 72.4 (12.2) 53 7 (15.1) i Adjacent 6 + < 56.7 65.6 (16.4) 44.2 (18.5) 28 + < 43. 6 154 (13.8) 57.2 (15.9) 31 + < 41.0 57.4 (12.5) 62.8 (14.9) 36 + 187 (30.6) 294 (7.27) 84.3 (8.52) 48 +

186 (61.6) 68.4 (14.0) 62.6 (17.7) 50 + 249 (22.8) 53.3 (5.22) 44.8 (5.49 )

Reference 16 + <69. 0 60.5 118 (14.1) (15.5) 17 + <19.7 116 (7.42) 26.9 (8.45) 20 +

(63.0 94.3 (18.8) 51.3 (17.1) 22 +

< 42.7 60.5 (12.4) 26.1 (14.0) 23 +

< 65.1 88.1 (18.8) 60.9 (21.5) 25 + <34.1 43.2 (10.1) 36.2 (11.6)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

+ Silage or dry hay i

79 Table II. D.6 Gamma-ray Emitting Radionuclide. Concentrations in Forage (pC1/kg) fdr Samples Collected Annnet 18.1979 .

I 06 137 95 Areas Ru Cs 2r & Nb Facility 4 + < 22.7 85.8 (8.41)

  • 34.3 (7.64) 44 + < 56.3 < 17.8 < 7.49 Adjacent 6 + < 59.4 58.2 (16.4) 28.6 (14.6) 28 + < 59.7 57.7 (17.1) 20.7 (16.4) 31 + < 74.7 < 23.6 < 9. 94

+

~

36 < 77.2 32.6 (21.3) 24.9 (20.7) 48 + 165 (33.7) 111 (7.99) 90.2 (7.78)

+ < 36.1

  • 50 81.5 (10.9) 62.4 (9.73)

Reference 16 + 72.7 (61.8) 132 (15.2) 57.9 (13.1) 17 + < 44.2 110 (13.2) 49.4 (11.4) 20 + < 63.0 94.3 (18.8) 51.3 (17.1) 22 + 71.8 (53.7) 106 (12.7) 132 (12.3) 23 + < 37.9 83.2 (15.3) 53.4 (14 o) 25 < 57.7

+ < 18.2 26.3 (15.8)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

+ Silage or dry hay

l- .* .

80 i '

Table II. D.6 Gamma-ray Emitting Radionuclide. Concentrations in Forage (pCi/kg) for Camples Collected September 29, 1979 .

Areas 106 Ru Cs Zr & Nb Facility 4+ 420 (109)* 118 (25.2) 179 (32.8) l 44 + 79.1 (40.7) < 10. 3 22.1 (12.9)

Adiacent 6 + 272 (80.6) < 21.4 32.6 (23.7)

-l 28 + 282 (94.7) < 24. 7 67.3 (28.3) l 31 + 92.9 (91.2) < 24.0 52.0 (26.1)

I 36 + 217 (67.3) 284 (17.3) 84.0 (21.8) 48 + < 97.8 < 31.8 23.9 (33.9) f 50 + 126 (30.9) < 6.06 .16.9 i (8.89)

Reference 16 + 189 (76.0) < 19. 9 46.4 (21.6) 17 + 176 (92.7) < 24.5 111 (26.4) 20 +

212 (68.0) < 16.3 < 6.85 22 + 171 (85.5) < 22.0 < 9.24 23 + 176 (62.6) < 15.3 39.6 (17.8) 25 + 291 (95.0) 39.2 (21.9) 43.9 (28.2)

  • Uncertainties (in parentheses) are for the 95% confidence

. interval, (1.96 S.D.).

+ Silaga or dry hay l

9

.* ,*~

81 Table II. D.7 Gross Beta Concentrations in Soil and Forage (pC1/kg) for Samples collected Third Quarter, 1979.

1 Sampling July ** Auaust ** Setember **

Soil Forage Soil Forage Soil Forage Facility

, 4 30,800 32,200 34,100 15,400 31,400 32,300 (1,500)* (543) (1,490) (364) (1,440) (724) 44 -28,200 22,800 30,200 22,800 31,500 35,700 (1,460) (432) (1,430) (408) (1,540) (773)

Adjacent 6 27,000 18,800 30,400 15,900 25,700 18,800 (1,340) (339) (1,440) (346) (1,340) (317) 28 24,700 16,800 27,100 20,700 26,400 21,400 l (1,260) (282) (1,360) (394) (1,410) (358) 31 25,900 11,600 30,100 15,900 27,200 20,800 (1,400) (247) (1,400) (318) (1,400) (368) 36 27,300 30,800 24,500 18,700 24,800 18 000 t (1,400) (528) (1,300) (391) (1,270) (419) ,

48 31,900 12,900 30,800 22,800 30,800 26,700 (1,530) (296) (1,430) (408) (1,490) (427) 50 26,400 15,600 28,000 17,600 28,200 27,000 (1,400) (308) (1,370) (371) (1,340) (432)

Reference 16 20,700 19,100 23,700 18,000 23,000 16,400 (1,210) (364) (1,300) (390) (1,240) (307) 17 21,800 19,500 20,500 16.200 18,800 20,800 (1,280) (387) (1,200) (364) (1,190) (352) 20 28.100 22,900 29,500 29,800 30,500 16,900 i (1,380) (394) (1,400) (536) (1460) (316) 22 29,300 20,900 23,200 27,500 29,700 25,200 i (1,430 (400) (1,280) (473) (1,370) (385) i 23 23,100 21,900 27,500 16,000 28,200 24,700 l (1,310) (400) (1,370) (472) (1,430) (417) 25 24,700 20,800 23,500 18,300 25,700 25,900 ,

(1,360) (358) (1.290) (346) (1,390) (425)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
    • Forage collected 7/21/79, 8/18/79, 9/29/79 Soil Collected 7/14/79, 8/28/79, and 9/29/79

e

    • . 82 II.D. Food Chain Data 3, Soil. Table II.D.8 presents gross beta activity of soil per unit surface area for the third and fourth quarter of 1979.

Soil samples are collected at the same time and location as forage samples. A core borer is used to collect the sample. The sample depth 2

is 10.3 cm and the area is 102 cm . Gross soil density is approximately 1 g/cm3 .

There was no significant difference in the gross beta activity values between the Facility, Adjacent and Reference collection areas. The gross beta cencentrations are extremely constant because the measured activity is due primarily to naturally occurring radionuclides.

The ectivities of the fission products Ru-106, Cs-137 and Zr-Nb-95 per unit surface area are given in Table II.D.9 for the same period. This analysis is performed by Ge(Li) spectrometry due to the predominant concentration of the naturally occurring radionuclides. Escentially only Cs-137 can be measu' red in the local soil. This is because the recent deposition of Ru-106

.and Zr-Nb-95, the short-lived fission products, is minimal compared to the past deposition of Cs-137. Cs-137 has a half-life of 30 years and is trapped by ion exchange in the top 2-3 cm of soils with clay minerals. For this reason soils that are disturbed or turned over for agricultural purposes will have widely varying Cs-137 concentrations. Most of the soil sampling sites in the surveillance progre, fall in the latter category.

Tritium, Sr-89 and Sr-90 in soil are shown in Table II.D.10.

Tritium specific activity in soil is statistically the same as that in other environmental samples, e.g. water, forage and milk. The concentrations of the strontium radioisotopes was quite variable. Sr-89 was essentially zero and the mean concentration of Sr-90 was 243,340 and 382pCi/kg for the Facility, Adjacent and Ref9rence zones respectively. These mean values are not significantly different.

1 l

1

30 .

83 The numbers given in parentheses next to all values above the minimum detectable concentration are the 95% confidence intervals for each measured value. This number is calculated solely on the basis of counting statistics. Obviously this uncertainty is only a part of the total expected variation that must be assigned to any measured analytical value. The total variation must include the true environmental (often called sampling) variation as well as the analytical or methodological variation. The variation due to counting is only part of the methodological variation. While the true environmental variation cannot be determined directly the methodological variation can be measured. An experiment was conducted previously in which a single large soil sample was thoroughly homogenized and 10 aliquots taken for Sr-90 analysis. The standard deviation as a percentage of the mean value (coefficient of variation) was 63%. This is the methodological standard deviation which in the experiment included counting statistics. The environmental variation is expected to be considerably greater. This is due to the fact that Sr-90, like Cs-137, is deposited largely on the soil surface, and when the surface is disturbed the surface layer is often greatly diluted or not even part of the sample collected. For these reasons the variation in reported Sr-90 and Sr-89 soil concentrations, although large, should be expected.

6

.o .

84 Table II. D.8 Gross Beta Activity in Soil per Unit Surface Area (pCi/m ) for Samples Collected Third Quarter, 1979 Sampling Locations July 14 August 25 September 29 Facility 4 3.97 (0.193)* 4.40 (0.192) 4.05 (0.185) 44 3.63 (0.189) 3.90 (0.185) 4.06 (0.198)

Adjacent 6 3.48 (0.172) 3.93 (0.185) 3.31 (0.173) 28 3.19 (0.163) 3.50 (0.175) 3.40 (0.182) 31 3.34 (0.180) 3.88 (0.181) 3.51 (0.181) 36 3.52 (0.181) 3.16 (0.169) 3.21 (0.164) 48 4.11 (0.197) 3.94 (0.184) 3.97 (0.192) 50 3.44 (0.180) 3.61 (0.177) 3.64 (0.172)

Reference 16 2.67(0.157) 3.06 (0.167) 2.97 (0.160) 17 2.82 (0.165) 2.64 (0.155) 2.43 (0.154) 20 3.62 (0.178) 3.80 (0.182) 3.93 (0.189) 22 3.78 (0.184) 2.99 (0.165) 3.83 (0.177) 23 2.98 (0.169) 3.55 (0.176) 3.64 (0.185) 25 3.19 (0.175) 3.03 (0.166) 3.31 (0.180)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

-o ,

85 Table II. D.9 Camma-ray Emitting Radionuclide Activity per Unit Surface Area of Soil (nCi/m )2 for Samples Collected July 14, 1979 Sampling 106 Ru Cs Zr & Nb Location Facility 4 <575 166 (101)

  • 88.0 (127) 44 376 (742) 84.4 ( 74.4) <22.7 Adjacent 6 1,760 (663) <61.5 83.1 ( 82.6) 28 1,080 (755) 76.8 ( 74.3) <22.4 31 <365 <62.8 <22.8 36 <592 <93.8 <33.8 48 <716 <126 72.6 (201) 50 < 2,890 < 489 < 178 Reference 16 <365 <62.8 <22.8 17 <365 <62.8 <22.8 20 <365 <62.8 <22.8 22 <365 <62.8 <22.8 23 <365 78.0 ( 74.2) <22.8 25 957 (669) <61.5 94.4 ( 81.1)

I

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

se l' 86 Table II D.9 Gamma-ray Emitting Radionuclide Activity per Unit Surf ace Area of Soil (nCi/m2 ) for Samples Collected August 25. 1979 .

Sampling 106 95 Ru Cs Zr & Nb Location Facility 4 <365 87.2 ( 73.7)

  • 606 ( 86.6) 44 375 (704) <63.5 <22.4 Adjacent 6 <533 <61.5 <21.9 28 <533 <93.3 378 (109) 31 5700 ((910) 636 (202) 404 (232) 36 <384 <67.0 <23.7 48 628 (670) <62.7 <22.6 50 423 (666) <63.1 <22.6 Reference 16 < 3,890 < 1,750 341 (730) 17 <365 <63.5 43.4 ( 84.4) 20 <365 91.2 ( 73.8) 481 ( 84.5) 22 <452 196 ( 92.5) 547 (106) 23 <858 <150 <53,1 2, 453 (725) <67.5 <23.9 4

i 4

  • Uncertainties (in parentheses) are for the 95% confidence  !

interval, (1.96 S.D.).

=

87 Table II. D.9 Camma-ray E:nitting Radionuclide Activity per Unit Surface Area of Soil (nCi/m )2 for Samples Collected September 29, 1979 ,

Sampling 106 137 95 Location h G Zr & Nb i

Facility 4 <586 <100 91.6 (87.2)

  • l 44 711 (819) 123 (91.5) <31.3 Adjacent 6 <349 <60.0 42.3 (45.9) 28 <524 96.0 (93.2) <31.7 31 438 (678) <64.8 <23.1 36 <372 <64.0 60.9 (44.2) l 48 458 (720) 304 (78.8) <23.5 50 1,960 (830) <98.2 <35.1 Reference 16 <380 <66.4 <23.9 17 729 (619) <62.7 <22.6 20 <304 <52.1 <18.1 22 1,480 (658) <69.0 <24.6 23 <345 <63.7 28.5 (52.9) 25 645 (826) <91.2 <32.5
  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

88 Table II. D.10 Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Collected July 14. 1979 .

Sampling Tritium Strontium 89 Strontium 90 Location (pCi/1) (pC1/kg) (pCi/kg)

Facility 4 515 (271)* < 124 376 (1141 44 595 (271) < 96.4 232 (99.2)

Adjacent 6 487 (270) < 118 341 (120) 28 e < 87.1 343 (81,4) 31 769 (273) < 88. 9 276 (96,4) 36 . 535 (271-) < 124 503 (134) 48 '729 (273) < 112 356 (120) 50 606 (272) < 199 < 1,480 Ref erenc e 16 686 (272) < 99.9 469 (110 17 864 (274) < 97.5 526 (179) ,

20 669 (272) < 99.4 506 (172) 22 749 (273) < 103 247 (160) 23 550 (271) < 153 640 (163) 25 314 (268) e257 844 (475)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e Insufficient volume for analysis t

89 Table II. D.10 Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Collected August 25, 1979 .

Sampling Tritium Strontium 89 Strontium 90 Location (pCi/1) (pC1/kg) (pCi/kg)

Facility 4 < 261 < 138 399 (222)

  • 44 <261 < 99.6 222 (137)

Adjacent 6 < 261 < 170 532 (156) 28 < 261 < 105 355 (232) 31 < 261 < 81. 9 173 (141) 36 < 261 < 161 575 (213) 48 <261 142 (264) 137 (102 50 <261 < 103 436 (146)

Reference 16 < 261 < 122 367 (171) 17 < 261 <179 644 (179) 20 < 261 < 99.4 257 (127) 22 < 261 < 127 761 (132) 23 <261 < 96.7 402 (145) 25 < 261 < 99.2 233 (119)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

l l

90 Table II. D.10 Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Cc11ected Sertember 29, 1979 .

Tritium Strentium 89 Strontium ?O (pCi/1) (pC1/kg) (pCi/kg)

Facility 4 382 (249)* < 75.0 141 (92.0) 44 298 (248) < 75.5 89.4 (80.2)

Adjacent 6 e < 81. 3 129 (91.1) 28 211 (247) < 85.1 171 (86.3) 31 220 (247) < 136 624 (413) 36 562 (251) < 83.0 197 (86.5) 48 e < 80.8 107 (103) 50 < 76.9 136 (82.3) 536 (251)

Reference 16 2,010 (266) < 82.9 179 (92.2)  !

17 449 (250) < 94.0 < 112 20 610 (251) < 87.4 109 (133)  ;

22 310 (248) < 92.3 258 (104) 23 482 (250) < 71.0 93.0 (98.2) 25 371 (249) < 135 275 (159)

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

e Insufficient volume or weight for analysis.

l

.o' ,'

91 II.E. Aquatic Biota Table II.E.1 shows gross beta and strontium concentrations observed in aquatic biota collected during the second half of 1979. Sample collection problems were experienced during this reporting period only in June due, to high run off. Gross beta concentrations in the sample types are higher than r

any particular fallout fission product because of the presence of the naturally occurring radionuclides e.g. K-40. Strontium-89 and Sr-90 gross beta concentrations were essencially the same as previous reporting periods and those from the downstream locations were not significantly different from the upstream locations. As expected Sr-89 concentrations were less than MDC in almost all cases.*

Table II.E.2 lists Ru-106, Cs-137 and Zr-Nb-95 concentrations. No explanation can be given for the great variation in the measured concentrations but downstrea: values were not statistically greater than upstream indicating no increase due to reactor effluent.

The high MDC values for seston are due to the fact that such samples are counted by a Ge(Li) spectrometer system rather than the NaI used for most other sample types. This is because seston, which is principally algae, collects and concentrates particulate radioactivity and high resolution is necessary for radionuclide measurement of fission product activity in the presence of Ra-226 and Th-232 natural radioactivity. Note that seston concentrations are higher than for the other sample types for all of the radioactivity analyses.

o Table II. E.1 Analysis of Composite

  • Aquatic Biota for Samples collected .bly 1q74 .**

Sampling locations Gross Beta Strontium 89 Strontium 90 pCi/Kg PCi/Kg pCi/Kg Fish Upstream 7-15-79 1,030 (143) < 14.8 67.9 (13.2)

Downstream 7-15-79 9,040 (325) d d Effluent 7-15-79 9,780 (350) < 38.2 94.6 (56.7)

Benthic Organisms Upstream 7-15-79 9,360 (532) < 54.8 185 (38.5)

Downstream 7-15-79 9,040 (487) < 37.1 184 (43.2)

Effluent 7-15-79 9,110 (488) < 72.8 223 (94.6) g Vascular Plants Upstream 7-21-79 21,000 (360) < 18.2 95.4 (14.3)

Downstream 7-21-79 24,000 (411) < 49.1 289 (42.4)

Effluent 7-21'-79 22,600 (4G9) < 25.4 79.7 (22.6)

Seston Upstream 7-15-79 28,600 (1,310) < 85.7 < 89.1 Downstream 7-15-79 39,800. (958) < 41.1 186 (42.5)

Effluent 25,400 (1,230) 7-15-79 < 78.0 < 103

  • Upstream Composite: U 42, U 43.

Lownstream. Composite: D 40, D 45.

    • Uncertainties d Sample lost in(in narentheses) are for the 95% confidence intervals, analysis

Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected August, 1979 .

Cross Beta Strontium 89 S trontiu" 90 Sampling locations pCi/Kg pCi/Kg pCi/Kg Fish Upstream 8-11-79 10,600 (380) < 146 169 -(146)

Downstream 8-11-79 11,200 (350) < 35.3 56.4 (44.9)

Effluent 8-11-79 8,570 ( 96.6) < 29.4 40.8 (40.0)

Benthic Organisms Upstream 8-15-79 8,470 (467) < 45.7 180 (36.4)

Downstream 8-15-79 8,640 (461) < 87.6 103 (106)

Effluent 8-15-79 9,500 (476) < 50.8 179 (47.1)

?>

Vascular Plants Upstream 8-25-79 10,000 (242) < 34.2 216 (26.3)

Downstream 8-25-79 15,700 (338) < 79.9 544 (63.5)

Effluent 8-25-79 15,200 (354) < 19.4 72.4 * (16.4)

Seston Upstream 8-30-79 26,500 (954) < 43.7 78.4 (62.4)

Downstream 8-30-?? 30,900 (125) < 155 355 (273)

Effluent 8-30-79 27,800 (930) < 152 151 (183)

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals.

Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected Sept **har 1979 .

Gross Beta Strontium 89 Strontit.m 90 Sampling locations pCi/Kg pCi/Kg PCi/Kg Fish Upstream 9-18-79 12,000 (424) < 43.3 63.1 (50.4)

Downstream 9-9-79 9.480 (365) < 96.8 140 (153)

Effluent 9-9-79 9,890 (322) < 191 < 209 Benthic Organisms Upstream 9-12-79 12,300 (676) < 66.6 211 (63.6)

Downstream 9-9-79 12,400 (379) < 64.1 176 (59.9)

Effluent 9-9-79 13,800 (647) < 115 173 (110)

Vascular Plants Upstream 9-22-79 13,500 (342) < 18.8 128 (12.8)

Downstream 9-22-79 13,300 (308) 40.9 192 (37.3)

Effluent 9-22-79 12,600 (274) 60.8 444 (49.9)

Feston Upstream 9-18-79 31,000 (1,280) < 46.8 127 _(119)

Downstream f f f Effluent 9-9-79 20,600 (754) < 147 400 (166)

I

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40 D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals. -

f Sample unavailable

I, Table II. E.1 Analysis of Composite

  • Aquatic Biota For Samples collected fourth nnarter .

ross Beta

  • Strontium 39 Strontium 90 Sampling locations PCi/Kg PCi/Kg pCi/Kg Fish Upstream 10-7-79 9,670 (326) < 188 267 (241)

Downstream 10-7-79 12,000 (401) < 192 494 (283)

Effluent 10-7-79 134,000 (5,190) < 58.4 <76.0 Benthic Organisms Upstream 11-18-79 11,400 (629) < 179 261 (216) ,

Downstream 10-15-79 9,460 (584) < 72.8 216 (75.2)

Effluent 11-7-79 9,250 (259) < 151 291 (143)

Vascular Plants $

Upstream 12-30-79 15,200 (427 ) <12.8 87.7 (12.5)

Downstream 12-30-79 9,910'(258) <11.8 59.4 (13.1)

Effluent 12-30-79 16,000 (398) <15.6 72.5 (20.7)

Seston Upstream 11-18-79 33,000 (129) 152 (221) <84.7 Downstream 10-7-79 28,600 (366) 676 (346) 20.2 (64.2)

Effluent 10-7-79 24,500 (873) f f

  • Upstream Composite: U 42, U 43.

Downstream. Composite: D 40 D 45.

    • Uncertainties (in parentheses) are for the 95% confidence intervals.

f Sample unavailable

Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples ,

(pCi/ka,) for Samples Collected July 1979 .**

06 Sampling Locations

  • Ru Cs Zr & Nb Fish f Upstream 7-15-79 < 252 178 (64.4) 67.5 (40.4)

Downstream 7-15-79 < 252 < 77.9 < 33.5 Effluent 7-15-79 < 252 < 77.9 < 33.5 Benthic Organisms Upstream 7-15-79 < 252 120 (63.9) 104 (40.0)

Downstream 7-15-79 < 283 150 (71.4) 45.4 (43.9)

Effluent 7-15-79 <336 < 103 < 44.6 ,

a l

j Vascular Plants Upstream 7-21-79 < 246  %.7 ( 63.4) < 32.5 Downstream 7-21-79 < 272 216 (70.0) 59.4 (69.0)

Effluent 7-21-79 181 (48.2) 137 (11.3) 165 (11.1)

Seston U- .eam 7-15-79 < 7,510 < 1,280 < 457 stream 7-15-79 < 12,200 < 2,090 < 745 Effluent 7-15-79 < 7,510 < 1,280 594 (901)

+

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

. Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

Table II. E.2 Camma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples .,

(pCi/kg) for Samples Collected Auoust 1979 .**

6 Sampling Locations

  • Ru Cs Zr & Nb Fish Upstream 8-11-79 504 (297) 240 (64.2) 498 (92.0)

Downstream 8-11-79 1,290 (310) < 77.9 281 (110)

Effluent 8-11-79 606 (299) 293 (65.0) 647 (93.0)

Benthic Organisms Upstream 8-15-79 8,010 (172) 1,460 (36.6) 3,580 (46.8)

Downstream 8-15-79 1,880 (124) 213 (26.7) 552 (33.5)

Effluent 8-15-79 2,360 (426) 193 (91.1) 684 (115)

. S Vascular Plants Upstream 8-25-79 < 345 < 110 < 46.2 l Downstream 8-25-79 < 393 < 125 < 52.5 .

! Effluent 8-25-79 < 337 < 108 < 45.1 i Seston i

Upstream 8-30-79 892 (804)*** 1,040 (183) 1,580 (207) l Downstream 8-30-79 1,700 ( 423)*** < 91. 5 2,590 (181)

! Effluent 8-30-79 < 23,200 < 4,033 < 1,430 a .

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • t'ncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Counted on the 4 x 8 Na I crystal

Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples .

(pCi/kg) for Samples Collected September 1979 .**

Gampling Locations

  • Ru Cs Zr & Nb s

Fish Upstream 9-18-79 1,890 (407) <120 < 50.6 Downstream 9-9-79 855 (298) < 81.5 < 77.9 Effluent 9-9-79 < 79.8 263 (27.0) 119 (29.5)

Benthic Organisms Upstream 9-12-79 476 (203) < 40.6 221 (62.3)

Downstream 9-9-79 1,680 (380) 218 (85.4) 412 (108)

Effluent 9-9-79 *** 31,700 (15,200) < 1,510 < 539 Vascular Plants o$

Upstrea" 9-22-79 < 349 206 (89.7) 291 ( 137)

Downstrea" 9-22-79 < 370 <118 56.5 (123)

Effluent 9-22-79 < 378 <120 < 50.6 Seaton Upstream 9-18-79 <.8,630 < 1,490 1,470 (2,380)

Downstream f f f Effluent 9-9-79 1,600 (25,400) 2,390 (718) 1,460 (2,840) l

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45. .

Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Counted on the Ge-Li Spectrometer system f Sample unavailable

i o

Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples .

(pCi/'<g) for San 91es Collected fourth Quarter , *

  • 6 Sampling Locations
  • Ru Cs Zr & Nb Fish Upstream 10-7-79 *** 43,200 (14,400) < 1,510 < 538 I Downstream 10-7-79 <426 < 136 117 (108)

Effluent 10-7-79 < 143 < 45.7 < 19.1 Benthic Organisms Upstream 11-18-79 1,480 (282) 81.5 65.5 (46.2)

Downstream 10-15-79 184 (157) 209 (38.0) 171 (29.2)

Effluent 11-7-79 < 505 < 160 l < 67.5 i

Vascular Plants e

Upstream 12-30-79 293 (110) < 19.4 44.9 (27.8)

Downstream 12-30-79 624 (319) < 90.3 111 (79.5)

Effluent 12-30-79 1,290 (169)- < 37.5 25.4 (42.7)

Seston Upstream 11-18279 9,230 (14,700) < 1,580 < 559 Downstream 10-7-79 < 23,200 < 4,010 2,960 (3,950)

Effluent 10-7-79 < 17,000 < 3,100 1,290 (2,770)

  • 6
  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

. Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
      • Counted on the Ge-Li Spectrometer system

,o ,' .

100 II.F. Beef Cattle. Two head of beef cattle that graze the Facility area are counted each quarter in the CSU whole-body counter. The animals are washed carefully and counted for 20 minutes each. This method is far more sensitive than counting meat samples and is the method of choice for detecting Cs-137 in the meat food chain to humans. If thyroid I-131 contamination were significant this would be detected from the whole body count. Detectable I-131 concentrations have never been observed.

Table II.F.1 gives values for the second half of 1979 for whole body counting of beef cattle. The animals are selected each quarter at random; however, the animal number is reco'rded and the animal may be retrieved and recounted if necessary. The Cs-137 concentrations are nearly identical to those observed during the first half of 1979. Variation in Cs-137 concentration only reflects a different cutting and/or source of hay and pasture for the animals.

The Cs-137 concentration is expressed as pCi per gram of K in the whole animal. This is done to more easily compare the counts between animals.

K and Cs are both intracellular cations and by normalizing the Cs-137 activity to K, differences due to fat percentage in the animals are eliminated, i.e. the K concentration of fat free muscle is very constant.

Table II.F.2 shows concentrations of Cs-137 and H-3 in a muscle sample from facility area animal slaughtered at the end of the pasture season. The concentration of Cs-137 in this animal was particularly low and probably indicates a high grain feeding program before slaughtsr.

The biological half-life of Cs-137 in beef or dairy animals is approximately 25 days. Grain is generally lower in Cs-137 than hay or pasture grass. The low tritium concentration shows no effect of the reaction effluents.

l 1

L

101 Table II. F.1. Radionuclides in Facility Area Beef Cattle In-vivo Gamma ray activity in Fort St. Vrain Area beef cattle. .

i i  :

September 15. 1979 l Third Quarter Values i 131 j 137 i 7 Cs oCi/a K

. I

! Cow 1 None Detected 10.4 I Cow 2 None Detected 7.07

December 1,1979 ourd Quarter M ues

! Cow 1 20.3 l' None Detected  !

  • l i Cow 2 None Detected 22.6  !

I i Table II. F.2.

Radionuclides in Beef Sample frora Local Herd.

Animal Slaughtered, Fourth Quarter,

  • Hamburger I7 Cs pCi/Kg X g/kg Tritium pCi/l 3.76 (0895) Im62 (0.012) 314 (258)

Bone 89 j 90 Sr pCi/Kg ,

Sr pCi/Kg i i

<126 368 (151)  !

  • Uncertainties (shown in parentheses) are for the 95% confidence interval (1.96 S.D.). 1 1

l l

102 II.G.1 Sample Cross Check Data 4

Since 1975 we have participated in a national EPA sponsored laboratory intercomparison analytical program. We analy:o air filters as well as milk and water samples for the important radionuclides. The results obtained, since the last report are given in Table II.G.I.

Inspection of Table II.G.1 reveals few aberrant measured values i.e. greater than the 3 sigma control limit. Only 7 of the 47 separate determinations exceeded the 3 sigma control limit. We reinvestigated all of those and in most cases determined the source of error.

Other cross check possibilities exist for this program. We have participated with the reactor health physics group in a TLD intercomparison.

We analyze many duplicate samples with the state health department and we currently are participating in an international cross check program sponsored by the I.A.E.A. (International Atomic Energy Agency) in Vienna. A major 1

analysis of these cross check values as well as an analysis of all the experience with the EPA program is currently being prepared.

l 1

i

103 Table II.G.I. EPA Cross-Check Data Summary Radio CSU Actual Precision Control Limits 8 deviation Date nuclide Value Value (1 sigma)' (3 Sigma) from known Air filters, pCi/filte r.

6-29-79 Sp 13 10 10 3*b 15 5

190 0

Cs 39 10 Gross a 10 9 5 15 11 Gross a 28 30 5 15 7 10-5-79 12 10 1.5 5 20 9%r 13 Cs 10 12 5- 15 17 Gross a 9 10 5 15 10 Gross s 29 31 5 15 6 Milk, pCi/1 89 1.5 60 4-27-79 Sr 17 42 5 90 19 Sr 44 54 1 3 131 I 125 96 1.5 5 30 162 154 2.8 24 5 1[ CsBa - - -- -- --

K 1584 1560 26 78 2 a9 7-27-79 Sr 0 -

5 5 15 -

90 1.5 36 Sr 7 11 5 131 53 I 26 17 5 15 137 5 15 33 Cs 16 12 140 0 0 -- --

Ba -

K 1556 1630 81 250 5 89Sr 25 15 11-2-79 0 5 -

90Sr 22 17 1.5 5 29 131 I 681 637 32 96 7 51 49 5 15 4

] Cs Ba - - - - -

K 1830 1470 76 229 25 Water, tritium pCi/1 6-15-79 1350 1540 337 1010 12 8-10-79 1376 1480 335 1005 7 10-5-79 1402 1560 337 1010 5 l

1,04 Table II.G.I. EPA Cross-Check Data Summary Radio CSU Actual Precision Control Limits % deviation Date nuclide Value Value (1 sigma) (3 Sigma) from known Water, Al pha and Beta aCi/1 5-25-79 Gross d 27 18 5 15 50 Gross g 17 22 5 15 4 7-20-79 Gross a 11 9 5 15 22 Gross a 9 12 5 15 25 9-21-79 Gross a 10 5 5 15 100 Gross g' 35 40 5 15 13 11-30-79 Gross a 11 12 5 15 8 Gross a 20 27 5 15 35 Water , Gamma pCi/l 80 6-6-79 134 Co 55 47 5 15 17 Cs 77 71 5 15 8 SI 10-5-79 Cr 165 113 5 15 46 80 Co 7 6 5 15 17 85 Zn 4 - - - -

106 Ru 7 - - - -

13"Cs 11 7 5 15 57 137 Cs 21 11 5 15 91 Water, Sr 89 and 9C pC1/1 89 5/4/79 Sr 3 23 5 15 83 90 Sr 40 30 0.5 1.5 33 i

e

e* .' 105 II.H. Summary and Conclusions Table II.H.1 presents the primary summary and analysis of data collected during the second half of 1979. The tabular data may be used for comparison to other operating power reactors. For each sample type the number of samples analyzed in the reporting period and the maximum and minimum values for each sample type are given. From log-nonnal analysis of each data set for the last 12 month period the geometric mean and standard deviation is presented. The arithmetic mean is also calculated back for the entire year and for the reporting period. It should be noted that the tabular data presented in the body of this report contain only positive calculated values. Any calculated values less than zero or less than the minimum detectable concen-tration (MDC) are listed as less than the actual MDC for that sample analysis.

However, the actual result was used in the calculation for the arithmetic mean values for the last six months. Therefore all values, negative as well as positive, were included. This procedure is now generally accepted and gives a closer approximation to tne true mean value. Because of this procedure, however, the values listed in Table II.H.1 cannot be calculated directly from tSe tabular values in the report. It must be emphasized that while it is true that no sample can contain less than zero radioactivity due to the random nature of radioactive decay it is statistically possible to obtain sample count rates less than the background and hence a negative l

result. .

l The log-normal probability treatment is to plot all data for each

! sample type over the last full year on log-probit coordinates. The samples are ranked by increasing activity concentration and the cumulative percentage  ;

of rankings are plotted on the probit abcissa versus the activity concen-tration on the log ordinate. The geometric mean value ig, is determined l directly from the 50th percentile point. The geometric standard deviation l l

106 is simply the slope of the line, which can be calculated from the ratio between the 84.1 percentile and the 50 percentile. In a normal distribution the arithmetic standard deviation is an additive parameter to the arithmetic mean (i o), whereas in the log-normal distribution the geometric standard deviation E,is a ultipicative parameter to the geometric mean (i g g)*

i.e., the area between i divided by 2, and i multiP lied by should s s g contain 68) of the frequency values. The log-normal statistical treatment is difficult when the number of samples in the group is small. For this reason only the last full year of data points is treated by this method.

With the log-normal analysis, no bias results from using less than MDC values.

From the values presented in Table II.H.1 and the tabular data of the report the following observations and conclusions may be drawn:

1. It must be emphasized that the reporting period included a partial operational stage and the first major refueling operation conducted at the reactor. The potential for off-site contamination was obviously high for the latter operation. However there is no evidence that any radioactivity released in reactor effluents produced statistically significant off-site concentrations above background in any of the sample types measured during the period. The principal radionuclide released from the reactor was Titium and this conclusion may be substantiated by observing tritium concentrations l

in all sample types. Gross beta concentrations also strongly support the l conclusion. The specific radionuclide concentrations are considerably more variable due to sampling and methodological error but likewise show no systematic evidence of off-site contamination. The above conclusion implies that radiation dose to nearby inhabitants due to reactor operations

[ was not different from naturally occurring background radiation dose.

I

eo .' 107

2. The log-normal troatment of all the data revealed that for most of the data such analysis is appropris'.e. However, sigmoid distributions were quite often observed. Sigmoid distributions can be resolved into bimodal or even trimodal log-normal distributions. This is generally interpreted to mean that there is more than one significant activity source.

It was again noted that for il of the data analyzed over the past year by the log-normal treatment, those sample types that are reservoirs or sinks for activity, e.g. , soil, sediment and TLD, tended to be described by a single distribution. Those sample types which are less stable and fluctuate, e.g., air and precipitation tended to be bimodal or trimodally distributed.

3. As in every previous report, it was again apparent that the variability observed around the mean values was great. This variability is due to counting statistics and methodological error, but principally due to true environmental variation. It must be recognized and accounted for in analysis of any set of environmental data before meaningful conclusions can be drawn.
4. Environmental radioactivity data has been collected on this project since 1969. The radiation turveillance program has not significantly changed since that time. During this period the reactor began power production.

Probably no more extensive or complete radiation surveillance program exists for any reactor in the U.S. A. A detailed and thorough analysis of all past data collected at the Fort St. Vrain site has been initiated and will be completed for inclusion in the next semiannual report.

l 1

~

1

  • l Table I ! .11.1. Mean Valuos for all Sample Types.

i Number of Minimum Maximusi l Samples Value Observed Value Obscryed i g

o , _

E x l

Analyzed 6 Months 6 Months ,

3 j Sample Type Area 6 Months 1 Year 1 Year 6 Months TI.D Facility 74 .36 .61 .445 1.19 .451 .471 lixt erna l Adjacent 71 .37 .91 .440 1.21 .448 .474 (mit/ day) Re fe rence 72 .38 0.81 .453 1.32 .479 .545 Composite 217 .36 0.81

.446 1.24 .459 .497

?

Air Faci 1ity 92 0.6 40.6 4.66 2.35 6.63 8.56 Gross a Adjacent 72 0.2 24.2 3.63 2.05 4.60 5.60 (fci/m3) Composite 164 0.2 40.6 4.21 2.25 5.80 7.33 Air Facility 102 4 40 16.20 1.65 18.2 15.48 Gross S Adjacent 75 2 33 11.81 1.68 13.53 11.8

  • E (fCi/m ) 3 Composite 177 2 14 0 14.21 1.70 16.28 13.53 Air Facility 102 16 4,250 390 2.56 533 465 Tritium Adjacent 73 42.4 1,350 337 2.23 398 231 (pci/1) composite 175 16 4.250 476 2.42 476 367 Air composite 26 7.62 540 19.0 4.70 30.4 99.7 131g ,

3 (fCi/m )

Air Composite 27 6.23 101 4.65 2.75 <1.11 < 1.11 106Ru (fci/m 3) d 4

'e Table 1 I .11.1. Mean Values for all Sample Types.(Cont'd.)

Number of Minimum Maximum samples Value Observed Value observed i o E E Analyzed 6 Months 6 kbuths i i Sampic Type Area 6 bbnths 1 Year 1 Year 6 )hnths-Air composite 27 .144 29.7 1.27 2.85 2.04 3.00 137c3 (fci/m )

3 Air composite 27 .244 19.4 .467 3.62 .571 .814 sszr (fci/m3) water Effluent 30 7.35 35.4 13.7 1.70 15.2 19.5 Gross 6 Downstream 15 7.74 19.8 11.4 1.53 12.4 15.0 (pci/1) tipstream 12 6.12 44.6 13.0 1.78 15.4 20.8 Potable 10 1.84 12.5 2.93 2.44 4.26 4.73 g; composite 67 1.84 44.6 10.15 2.23 12.8 16.4 u) water liffluent 27 109 70,500 3,273 5.93 17,566 9,073 Tritium Downstream 14 17 1,020 420 2.78 553 523 (pci/1) Upstream 12 81 939 325 2.40 417 348 Potable 10 94 611 508 2.53 820 291 composite 63 17 70,500 1,025 5.61 8,091 4,117 water liffluent 28 .187 23.9 1.33 3.21 2.55 3.24

'J ust Downstream 15 .561 6.55 1.12 2.39 1.31 2.10 (pci/1) Upstream 12 .474 4.61 1.41 2.03 1.62 2.31 Potahic 9 .326 3.99 .821 3.42 1.05 1.71 composite 64 .187 23.9 1.20 2,86 1.86 2.58

o Tahic I1.11.1. Mean Values for all Sampic Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i o Analyzed 6 kbnths 6 Pbnths 3 8 i i Sampic Type Area 6 kbnths 1 Year 1 Year 6 bbnths Water liffluent 28 .121 16.8 1.15 2.82 < .532 < .584 89sr Downs t ream 15 .736 3.16 1.08 20.01 < .588 < .670 (pci/l) Upstream 12 < .695 .452 1.02 1.74 < .560 < .695 Potahic 9 .395 :881 .730 2.36 < .503 < .579 composite 64 .121 16.8 1.0% 2.40 < .503 < .579 Water Effluent 28 .031 16.4 3.81 3.16 1.37 <4.53 106Ru Downstream 15 .795 16.7 3.79 1.98 1.36 2.73 (pCi/l) Upstream 12 .020 6.04 3.26 3.17 <4.53 <4.53 Potabic 10 3.33 11.5 2.74 2.77 2.17 5.02 Composite 65 .020 16.7 3.51 2.80 .863 <4.53 Water Effluent 28 .007 5.80 1.01 3.08 .821 <.803 .

137Cs Downstream 15 .104 3.11 .692 3.58 .825 .368 E5 (pCi/1) Upstream 12 .074 7.74 1.15 3.08 1.78 2.01 Potabic 10 .824 4.34 .873 1.98 .445 .455 Composite 65 .007 7.74 .924 3.03 .931 .205 Water

  • liffluent 28 .059 4.87 .589 3.57 1.25 <.290 95Zr Downs t ream 15 .286 2.97 .509 2.44 .406 .0137 (pCi/l) Upstream 12 .071 2.29 .624 2.90 .935 .819 Potable 10 .388 2.74 .461 1.86 .261 .316 Composite 65 .059 4.87 .552 2.89 .828 <.290 Sediment liffluent 11 29,900 34,900 33,600 1.12 33,800 32,900 Gross s Downstream 16 27,700 38,500 32,500 1.10 32,700 32,600 (pCi/kg) Upstream 12 23,600 38,300 31,200 1.26 31,800 32,450 Composite 39 23,600 38,500 32,400 1.17 32,700 32,600

Tabic 11.11.1. Mean Values for all Sample Types. (Cont'd.) .

Number of Minimum Maximum Sampics Value Observed Value Observed i o N E Analyzed 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months sediment liffluent 10 27.3 931 185 2.55 261 338 90Sr Downstream 16 30.1 945 190 2.46 202 2%

(pci/kg) upstream 12 144 776 231 1.74 212 335 -

Composite 18 27.3 945 200 2.26 222 319 Sediment liffluent 10 21.9 601 152 2.34 < 104 < 104 09Sr Downstream 16 21.0 1,430 226 2.83 164 288 (pci/kg) Upstream 12 50.5 1,970 235 2.38 6.33 278 Composite 38 21.0 1,970 203 2.57 16.0 158 Sediment liffluent 11 1124 19,900 3820 2.53 <3720 <3760 locitu Downstream 16 805 17,300 3720 2.58 <3730 <3740 C (pCi/kg) Upstream 12 3859 18,900 4070 2.49 1740 3825 Composite 39 805 19,900 3850 2.51 <3720 <3740 Sediment liffluent 11 293 1,510 781 1.67 627 461 137Cs Downstream 16 1.83 951 378 3.96 322 163 (pCi/kg) Upstream - 12 55.6 811 448 2.57 360 147 Composite 39 1.83 1,510 495 2.95 426 243 Sediment liffluent 11 18.4 619 327 2.81 88.8 <235

%rZ Downstream

  • 16 69.1 1,300 216 2.22 216 199 (pCi/kg) Upstream 12 28.4 945 231 2.83 126 30.4 Composite 39 18.4 1,300 251 2.44 148 6.60 Precipitation F-1 . 4 1.42 300 35.8 7.86 94.0 131

(;ross B F_4 3 56.7 97.9 52.8 3.51 89.5 82.7 (pCi/m2 ) Composite 7 1.42 300 43.0 5.43 91.8 110.5

S Table 11.11.1. Mean Values for all Sample Types.(Cont'd.)

Number of Miniatma Maximum Samples Value Observed Yalue Observed i o Analyzed 8 8 6 Months 6 Honths 3 3 Sample Type Area 6 Months 1 Year 1 Year 6 Honths Prec ipi ta t i on F-1 4 2,906 4,150 1,650 3.53 3,370 3,'480 Tritium F-4 4 9 9 9 g ^g g (pci/m 2) Composite 8 g, g g . g g g Precipitation F-1 4 129 171 35.2 3.48 39.2 81.5 106Ru F-4 3 8.33 206 10.7' 5.66

  • 7.39 19.1 (pci/m 2) Composite 7 8.33 206 20.1 4.83 20.1 54.8 Precipitation F-1 4 6.69 58.4 14.8 3.41 ~.24.3 29.0 mCs F-4 3 12.9 62.2 13.7 3.18 21.8 44.8 (pci/m 2) Composite 7 6.69 62.2 14.3 3.20 23.1 35.8 Precipitation F-1 4 5.6 20.9 6.55 6.37 8.93 8.41 0 1.99 61.0 5.01 3.15 9.66 "

95Zr F-4 3 18.35 (pci/m2) Composite 7 5.61 20.9 5.77 4.58 9.28 12.67 Precipitation F-1 g g 9 9 9 9 9 90Sr F-4 g g 9 9 9 9 9 (pci/m 2). Composite g g 9 9 9 9 9 Precipitation F-1 g g g g g g g 89sr F-4 g g g g g g g (pCi/m2 ) Composite g g g g g g g Hilk Facility 15 59.2 1,080 377 2.75 440 424 Tri t ium Adjacent 16 19 1,220 356 2.65 467 450 (pci/1) Re fe rence 16 118 967 424 1.67 435 497 Composite 47 19 1,220 385 2.35 447 458 g Analysis in progress

Table 11.11.1. Mean Values for all Sample Types. (Cont'd.) -

~.

Number of Minimust Maximuni Samples Value Observed Value Observed i o -

N 8 Analyzed 6 Months 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Mill Facility 14 1.59 15.5 3.99 2.43 5.35 6.97 90Sr Adjacent 14 2.06 33.0 3.98 2.54 5.65 7.90 (pCi/l) Iteference 15 1.77 18.5 3.77 2.50 4.51 6.11

  • Composite 43 1.59 33.0 3.91 2.46 5.16 '5.98 Milk Facility 14 <.779 <8.52 2.48 2.20 <.779 <.779 89Sr Adjacent 14 <.964 .131 2.00 2.52 <.840 <.964 (pCi/1) Re ference 15 <.145 <3.53 1.99 2.84 <.145 <.145 Composite 43 <.145 <9.53 2.14 2.51 <.145 <.145 Milk Facility 15 .697 57.9 1.62 9.38 2.58 <0.104 131 1 Adjacent 16 1.63 51.1 1.20 9.46 1.41 <0.0989 C (pCi/l) Reference 14 .235 50.8 1.16 9.32 .628 <0.0899 Composite 45 .235 51.9 1.31 9.21 1.53 <0.0899 Mill Facility 15 .294 21.'5 2.81 6.63 5.27 .872 137Cs Adjacent 16 1.62 6.26 1.35 6.13 2.28 <.0928 (pCi/l) Reference 14 .624 13.76 1.47 5.16 1.57 .555 Composite 45 294 21.5 1.78 6.05 3.07 .324 Mill Facility 15 .247 1.62 1.43 1.23 1.46 1.41 Nat. K Adjacent 16 1.40 2.18 1.59 1.10 1.59 1,63 (g/1) Ite fo rence 14 1.06 1.89 1.46 1.10 1.47 1.46 Compos i t e 45 .247 2.18 1.49 1.lo 1.51 1.50 Forage Facility 2 681 744 346 3.76 504 713 Tri t ium Adjacent 10 101 813 491 1.71 506 496 (pci/1) iteference 11 282 3,230 543 1.88 609 833 Composite 23 101 3,230 492 1.98 552 676

Tab 1e IT.11.1. Mean Values for a11 Sample Types. (Cont'd.)

~.

Number of Miniraan Maximum Samples value Observed Value Observed i o g g . _

Analyzed 6 Months 6 Months x x Sample Type Area 6 Months 1 Year 1 Year 6 Months Fo rage Facility 6 <12.6 167 36.8 2.15 <12.6 <12.6 89sr Adjacent 18 <12.1 167 27.5 1.84 <12.1 <12.1 (pci/kg) Reference 18 <13.7 745 39.2 2.84 <13.7 <14.0 composite 42 <12.1 745 33.4 2.35 <12.1 <12.1 Forage Facility 6 43.6 320 203 1.61 223 192 90Sr Adjacent 18 21.8 283 139 1.98 171 145 (pci/kg) Reference 18 91.8 277 163 2.08 215 180 compositc 42 21.8 320 156 1.,99 197 166 Forage Facility 6 2.47 420 41.3 3.62 21.3 26.9 106Rn Adjacent 18 6.69 282 60.0 2.76 51.5 66.0 (pci/kg) Reference 18 26.6 291 55.4 2.46 24.3 34.9  %

composite 42 2.47 420 54.9 2.72 35.5 47.1 Forage Facility 6 72.4 118 78.8 2.80 104 55.0 137Cs Adjacent 18 5.62 294 55.0 2.77 82.4 71.1 (pci/kg) Re ference 18 6.94 132 SG.7 2.81 72.1 53.9 composite 42 5.62 294 55.9 2.78 81.1 61.4 Forage Facility 6 22.1 179 60.3 4.49 249 48.7 95Zr Adjacent 18 16.9 90.2 34.4 1.82 40.1 47.5 (pci/kg) Re ference 18 26.1 132 31.1 2.14 38.3 46.7 composite 42 ,16.9 179 35.7 2.36 69.1 47.3 Forage Facility 6 15,400 35,700 22,300 1.39 23,400 26,900 Gross (i Adjacent 18 11,600 30,800 18,900 1.35 19,700 19,500 (pci/kg) Reference 18 16,000 29,800 19,700 1.25 20,200 21,200 composite 42 15,400 35,700 19,700 1.32 20,500 21,300

Table 11.11.1. Stean Values for all Sample Types.(Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed i o N 8 Analyzed 6 Honths 6 Months i i Sa_mple Type Area 6 kbnths 1 Year 1 Year 6 )bnths Soit Facility 6 28200 34100 25050 1.94 28100 31030 Gross 6 Adjacent 18 24500 31900 27200 1.12 27300 27600 (pCi/kg) Re ference 18 18800 30500 25300 1.18 25600 25080 Composite 42 18800 34100 26060 1.32 26700 27020 Soil Facility 6 3.63 4.40 3.92 1.09 3.93 4.00 Gross 8 Adjacent 18 3.16 4.11 3.51 1.12 3.53 3.56 (pCi/m 2) Re ference 18 2.43 3.93 3.27 1.18 3.31 3.24 Composite 42 2.43 4.40 3.46 1.16 3.49 3.49 Soil Facility 6 37.5 711 350 2.15 <346 109 106Ru Adjacent 18 6.97 3700 271 5.71 <326 <349  ::

(nCi/m2 ) Re ference 18 124 1480 321 2.71 106 137 Composite 42 6.97 3700 303 3.81 2.53 52.8 Soil Facility 6 11 9 166 98.3 2.19 121 89.9 137Cs Adjacent 18 .0606 636 136 4.07 97.0 71.6 (nCi/m2 ) Reference 18 19.7 1750 84.0 2.22 125 133 Composite 42 .0606 1750 79.2 3.00 112 101 Soit Facility '

6 4.06 606 21.6 4.92 65.1 116 95 Zr Adjacent 18 7.26 404 31.7 2.56 4.69 <21.9 (nCi/m2 ) Re ference 18 1.54 547 25.5 3.29 46.3 76.3 Composite 42 1.54 606 27.3 3.16 31.2 44.4 Soit Facility 6 97 595 414 1.72 414 270 Tritium Adjacent 17 211 769 434 1.94 452 248 (pCi/1) Re ference 18 13.7 2,010 453 2.23 523 444 Composite 41 13.7 2,010 439 2.03 478 342 we _

e

Table II .II.1. blean Values for all Sample Types. (Cont'd.)

~.

Number of Minimum flaximum Samples Value Observed Value Observed i o N 8 Analyzed 6 > baths 6 Months i i Sample Type Area 6 bbnths 1 Year 1 Year 6 >bnths Soil Facility 6 <75 106 107 1.34 < 75.0 < 75.0 89sr Adjacent 18 9 142 123 2.12 < 76.9 < 76.9 (pci/kg) neforence 18 30 45 106 2.56 < 12 < 71.0 composite 42 9 -142 113 2.21 < 12 < 71.0 Soil Facility 6 89 399 262 2.01 335 243 90Sr Adjacent 18 129 712 228 3.92 441 340 (pci/kg) Hererence 18 68 644 260 2.27 356 382 composite 42 68 712 245 2.89 389 344 Aquatic Biota Upstream 4 1,030 12,000 7,060 2.59 8,875 8,325  :'

Fist. Downstream 4 9,040 12,000 10,030 1.12 10,090 10.430 Gross 6 Effluent 4 8,570 134,000 14,900 2.70 28,200 40,410 (pCi/kg) Composite 12 1,030 134,000 10,400 2.29 16,400 19,720 Aquatic Biota Upstream 4 8,470 12,300 9,570 1.24 9,750 10,380 Benthic Downstream 4 8,670- 12,400 9,780 1.18 9,890 9,890 Gross o liffluent 4 9,110 13,800 9,440 1.29 9,690 10,420 (pci/kg). Composite 12 8,470 13,800 9,580 1.22 9,770 10,230 Aquatic Biota Upstream 4 10,000 21.000 17,100 1.36 17,700 14,900 vascular Plants Downstream 4 9,910 24,000 11,700 3.34 16,600 15,900 Gross 6 Effluent 4 13,600 22,600 22,100 1.52 23,900 16,900 (pCi/kg) Composite 12 9,910 24,000 16,400 2.16 19,400 15,900 Aquatic niota Upstream 4 26,500 33,000 28,400 1.11 28,600 29,800 Seston Downstream 3 28,600 39,800 32,400 1.15 32,700 33,100 Gross n lif fluent 4 27,800 20,600 16,100 2.55 20,270 24,600 (pCi/kg) Corapos i t e 11 28,600 39,800 24,400 ~ 1.81 26,900 28,800

Table 11.!!.1. Mean Values for all Sample Types.(Cont'd.) -

~.

Number of Miniatus Maximum Samples Value Observed Value observed i o E U Analyzed 6 Months 6 Honths i i Sample Type Arca 6 Months 1 Year 1 Year 6 Months Aquatie niota lipst ream 4 < 14.8 < 188 65.0 2.56 < 14.8 < 14.8 Fish Downstteam 3 < 35.3 < 192 73.5 2.16 < 31. 5 < 35.3 39sr -

Effluent 4 <29.4 <191 48.5 2.97 < 27.2 < 29.4 *

(pCi/kg) Composite 11 <14.8 <192 60.0 2.52 <14.8 < 14.8 Arpiatic niota lipstream

~

4 < 45.7 < 179 82.5 1.79 < 45.7 < 45.7 ncnthic Downstream 4 < 37.1 < 87.6 62.4 1.45 < 37.1 < 37.1 89sr Efflnent 4 < 50.8 < 151 89.5 1.62 < 50.8 < 50.8 (pCi/kg) Composite 12 < 37.1 <179 77.6 1.61 < 37.1 < 37.1 Aquatic niota upstream 4 <12.8 < 34.2 25.6 1.67 ' < 12.8 < 12.8 vascular Plants Downstream 4 < 11.8 < 79.9 58.8 3.59 < 11.8 < 11.8 0 09sr < 15.6 "

Effluent 4 < 15.6 < 60.8 41.0 3.15 < 15.6 (pCi/kg) Composito 12 < 11.8 < 79.9 39.5 2.84 < 11.8 < 11.8 Aquatic Biota Upstream 4 < 43.7 152 53.2 2.38 < 11.8 < 43.7 seston Downstream 3 < 41.1 676 18.8 2.20 < 41.1 < 41.1 89sr Effluent 3 < 78.0 < 152 82.7 2.25 < 78.0 < 78.0 (pci/kg) Composite 10 < 41.1 676 86.6 2.78 < 11.8 < 41.1 Aquatic niota lipst ream 4 63.1 267 121 1.97 146 142 Fish Downstream 3 56.4 494 125 2.78 187 230 90Sr Effluent 4 40.8 209 86.8 1.70 98.3 99.8 (pci/kg) Coniposite 11 40.8 494 107 2.04 139 151 Aquatic niota lipstream 4 180 261 211 1.16 213 209 nenthic Downstream 4 103 216 164 1.38 170 170 90sr Effluent 4 173 291 212 1.27 217 217 (pCi/kg) Conipos it e 12 103 291 195 1.E8 201 199 Aquatic Biota upstream 4 66.6 127 128 1.90 152 132 vascular Plants Downstream 3 20.2 355 189 2.02 231 271 90 Sr liffluent 3 98.8 400 111 2.81 166 167 (pci/Lg) Composite 10 20.2 400 139 2.24 183 190

Table 11.11.1. Mean Values for all Sample Types.(Cont'd.) .

Number of Minimina Maximum Samples Value Observed Value Observed i o N E Analyzes! 6 Months 6 Months E i Sample Type Area 6 Months 1 Year 1 Year 6 Honths Aquatic Itiota upst ream 4 66.6 127 87.3 1.28 64.4 51.4 Seston -

1)ownstream 3 20.2 355 140 3.74 213 187

'30Sr Effluent 3 98.8 400 88.5 4.71 165 217 *

(pci/kg) Composite 10 20.2 400 100 2J76 136 142 Aquatic Biota Upstream 4 504 43,200 816 6.96 6,550 11,400

. l'ish nownstream 4 40.7 1,290 273 3.91 302 454 los itu Effluent 4 < 79.8 606 191 2.30 < 79.8 < 79.8 (pci/kg) Composite 12 40.7 43,200 349 4.55 2,240 3.830 Aquatic liiota Upstream 4 476 8,010 786 4.51 2,031 2,490 Downstream 4 184 1,880 637 3.32 925 925 C Benthic 106 Ru 4 230 31,700 702 9.01 5,260 7,830 "

Effluent (pci/kg) Composite 12 184 31,700 710 5.15 3,029 3,750 Aquatic niota Upstream 4 < 246 293 223 1.91 < 88.5 < 246 vascular Plant Downstream 4 < 272 624 385 1.57 < 252 - < 272 los nu Effluent 4 181 1,290 488 2.72 379 151 (pci/kg). Composite 12 181 1,290 348 2.17 < 88. 5 < 246 Aquatic Biota Upsticam 4 891 9,230 5,098 2.49 < 6,720 1,110 Seston Downstream 3 1,700 22,200 3,930 5.69 5,440 7,080 106 ttu Effluent 10,000 16,000 7,640 3.49 < 7,510 < 7,510 4

(pci/Lg) Composite 11 892 22,200 5,450 3.36 < 6,720 1,680 Aquatic Biota Upstream

  • 4 178 511 120 2.53 85.7 168 1:ish I) owns t ream 4 <77.9 12.8 22.8 6.58 < 33.9 < 77.9 137 lif fIuent 39.3 88.1 Cs 4 263 293. 10.4 54.4 (pci/Lg) Composite 12 <77.9 511 47.1 6.58 34.3 65.1 Aquatic Hiota ups t ream 4 120 1,460 158 3.86 293 325 lien t h i e Downs t ream 4 150 218 195 1.19 198 198 137Cs lif fluen t 4 84.8 193 152 3.63 < 103 < 103 (pci/kg) Composite 12 84.8 1,460 165 2.90 125 131

Table 11.11.1. Flean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximuni Samples Value Observed Value Observed i o

' Analyzed E 8 6 Honths 6 Months i i Sample Type Area 6 Months 1 Year 1 Year 6 Honths Aquatic liiota tips tream 4 96.7 206 80.9 2.44 37.4 35.2 vascular Plant Downstream 4 < 90.3 216 120.0 1.52 < 79.1 < 90.3 137 Cs 4 7.19 IIffluent 137 101 4.42 133 < 108 (pci/kg) Coreposite 12 7.19 216 99.5 2.69 50.9 < 90.3 Aquatic niota Upstream 4 . 208 1,040 814 2.25 233 206 Downstream 3 113 976 274 3.22 371 310 gton Cs liffluent 4 638 947 l',535 2.60 38.6 152 (pci/kg) Composite 12 113 1,040 747 3.07 205 215 Aquatic niota Upstream 4 23.4 498 80.4 3.48 152 221 Fish Downstream 4 13.0 287 46.4 Sszr 3.37 83.4 124 liffluen t 4 119 64 7 68.3 3.43 126 177 c.

(pci/kg) Composite 12 13.0 647 63.6 3.30 121 174

  • Aquatic niota upstream 4 65.5 3,580 239 4.84 823 993 Denthic Downstream 4 45.4 552 205 3.07 295 95 2r 295 11ffI uen t 4 164 684 108 3.19 148 171 (pCi/kg) Composite 12 45.4 3,580 167 3.54 412 486 i Aquatic niota tips t ream 4 18.0 291 42.4 2.98 61.6 93.5 vascular Plants Downstream 4 56.5 111 66.8 2.10 61.8 54.2 95Zr I!f fluent 4 25.4 165 74.8 3.69 142 2.65 (pci/kg) Composite 12 18.0 291 59.6 2.85 88.6 50.1 Aquatic niota Upstream 4 453 1,580 776 1.74 430 815 Seston Downstream 3 438 2,590 1,025 2.57 1.100 1,696 35Zr liffluent 4 594 1,460 1,213 1.50 < 91.5 619 (pci/kg) Composite 11 438 2,590 970 1.86 422 984 llee f F-44' 4 10.4 22.6 16.8 1.56 18.1 15.1 137Cs '

pCi/g Nat K

.. . .. . _ . . = . - . - - . _

... l*

120 II.I. ERRATA The following tables have been completed to contain the results of sample analyses that were in progress at the writing of the last report.

The addition of these new data did not change any of the conclusions given in the previous report and the values were used in calculatinF the mean values for the last full year in Table II.H.1.

Table II.D.5 should be replaced in the report for the last half of 1978. The Sr-89 and Sr-90 values for A-50 and all of the reference zone were miscalculated.

1 i

t e

Table II. C.7 .

Strontium 90 Activity Concentrations in Botton Sediment (pCi/kg).

Sampling Monthly Collection Dates Locations 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent 117 <193 a <228 298 <166 E 38: Farm Pond (coosequill) (194 )* (366) 212 <146 708 <512 298 281 E 41: m ug a Creek (189) (272) (366) (296)

Downstream D 37: wer ham

<179 <107 <215 <248 a ( 99) }

D 40: S. Platte River 512 <130 a <155 231 f Below Confluence (263) (202) a 289 D 45: St. Vrain f <144 <850 <295 Creek (288)

Upstream U 42: St. Vrain Creek <198 <144 .a <305 <303 <!63 U 43: S. Platte <224 a 226 <261 < 257 d

River (220) 1

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.),
a. Sample lost prior to analysis.
f. Sample unavailable.

d Sample lost during analysis

Table II. C.8 Strontium 89 Activity Concentrations in Botton Sediment (pC1/kg).

Sampling Monthly Collection Dates L cati ns 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent E 38: Farm Pond <l97 898 a <277 <429 <129 (Coosequill) (401)*

E 41: Slough to <158 769 <242 <521 <429 <188 St. Vrain Creek (317)

Downstream D 37: Lower Latham <152 595 .a <199 <178 <172 Reservoir (226)

D 40: S.Platte River <l45 733 h <l39 <189 f y Below Confluence (200)

D 45: St. Vrain f 809 a <233 ,<502 <231 Creek (314}

Upstream U 42: St. Vrain <l68 624 a <276 <195 <144 Creek (366) i U 43: S. Platte River <l52 d a <165 <l94 <210

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).

a Sample lost prior to analysis.

f Sample unavailable.

d Sample lost during analysis

es l 123 Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected September 16, 1978

Facility 4 923 (299)* 20.8 (91.0) <13.1 44 + 977 (300) <20.9 131 (18.3)

Adjacent 6+ e 794 (861) <16.8 28 + 516 (295) < 97. 3 552 (49.1) 31 + 718 (296) 85.2 (108) 144 (25.3) 36 + 998 (301) <40.2 '

102 (50.9) 48 + 1,377 (304) <1.79 <12.3 50

  • e

<6.48 30.0 (6.36)

Reference 16 + 476 (295) <.34.0 224 (25.8) 17 + 476 (295) < 30.6 106 (21.3) 20 982 (300) <101 275 (71.6) 1 22 + e -143-(102) 62.5 (23.6) 23 + e 178 (126) 209 (29.9) 25 + e < 91. 5 643 (48.5) 1 1

I

' i

  • Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).

+ Silage or Dry Hay.

e Insufficient volume or weight for analysis.

1

-en ,' s -

124 Table II. D.S Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected May 12.,1979 .

Facility 4 <273 d d 44 467 (258)* <31.2 184 (28.9)

Adjacent

~

6 334 (256) <47.0 359 (52.7) i, 28 861 (262) <61.4 145 (80.7) 31 570 (257) <22.1 190 (20.2) 36 406 (257) < 35.8 134 (28.3) 48 e <21.6 86.0 (23.1) 50 637 (260) < 38. 7 185 (30.7)

Reference 16 393 (257) < 43. 3 178 (43.0) 17 673 (260) <13.7 85.4 (16.4) 20 e 61.8 (26.6) < 12.7 22 <273 <18.9 133 (16.3) 23 527 (257) < 146- 1,485 (114) 25 581 (259) < 30.7 115 (25.5) -

  • Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).

e Insuffic'ient weight or volume for analysis, d Sample lost during analysis l

125

. Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected Jane 9, 1979 .

Tritium Strontium 89 Strontium 90 (pC1/1) (pCi/kg) (pCi/kg)

Facility 4 526 (278) * <36.1 263 (27.0) 44 583 (277) <36.8 442 (24.8)

Adjacent 6 376 (277) <27.9 267 (19.0) 28 <295 31.5' (39.6) 150 (24.5) 31 572 (277) <20.2 137 (15.4) 36 891 (282) <18.7 600 (19.9) 45 617 (279) d d 50 465 (278) <70.2 90.0(17.6)

Reference 16 426 (277) < 60.5 388 (50.9) 17 <295 < 33.5 226. (26.9) 20 482 (278) <24.6 184 (18.6) l l

22 416 (277) 38.1 (24.1) 107 (14.8)  !

-23 762 (281) 390 (50.4) 179 (20.3) ,

25 <295 < 18.4 126 (14.1)

I

  • Uncertainties (in parentheses) are for the 95% confidence l

interval, (1.96 S.D.).

, l d Sample lost during analysis l ll

Table II. E.1 Cross Beta and Radiontrontium Concentrations in Aquatic Biota Samples (pC1/kg) for Samples Collected May. 19.79 _*

~.

Sampling Locations

Fish 8,650  !

Upstream 5-16-79 (384) <95.8 240 (198)

Downstream 5-16-79 9,270 (388) <104 205 (l'52) 5-16-79 9,160 (690) '

Effluent < 52'. 4 114 (74.4)

Benthic Organisms Upstream 5-16-79 7,220 (469) <128 226 (63.4) f f Downstream f 6,800 Effluent 5-16-79 (431) d d ,_.

m Vascular Plants Upstream 5-26-79 23,600 (443) .< 52,8 159 (49.5)

Downstream 5-26-79 857 (117) <58.1 150 (60.6)

Effluent 5-26-79 40,400 (670) <27.0 201 (33.8)

Seston Upstream 5-25-79 27,200 (1,080) < 72.1 , < 77.9 Downstream f f f f f f Effluent

  • . Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses)'are for the 95% confidence interval, (1.96 S.D.),

f Sample unavailable, d Sample lost during analysis

Table II. E.1 Cross Bste and Radiostrontiua Concentratican in Aqustic Biota 1 Samples (pCi/kg) for Samples Collected June 1979 _.**

Sampling Locations

  • Gross Beta Strontium 89 Strontium 90 Fish l f f f Upstream f f f Downstream Effluent 6-15-79 10,300 (415) < 143 < 132 Benthic Organisms Upstream f f f .

f Downstream f f f f Effluent f Vascular Plants Upstream 6-9-79 19,200 (416) < 23.6 .46.4 (31.7)

Downstream 6-9-79 25,400 (492) < 29.4 122 (26.0)

Effluent 6-9-79 34,400 (596) < 33.7 270 (16.7)

Seston .

Upstream f f f f f f Downstream

.f f f Efflutat

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

  • Effluent: E 38.
    • Uncertainties (in parentheses)'are for the 95% confidence interval, (1.96 S.O.),

f Sample unavailable.

I I -

  • gas

) .

)

3 1 ).

b 2 5 N 5 6 7 1 3 3 D.

& f f ( ( 3 3 S f f I f f f r < < 6 Z

2 9

s 7 2 e 0 8 1 l 1 (

p m ,

a l S a v

a r t* e o t i* n B . i c e i c t n a e u

q

) d 7 i A s 4 4 1 f C f f 8 f f I 9 .

f f f n n 7 2 8 9

(

o i 7 7 c 1 < < <

s 2  %

n 5 5 o 1 9

- i 9 t 7 e a9 r1 h t

t .

n e r e n o c u f n J o . . e C 5 r e 4 a 3

dd i e 4D )

s l t 5 U , e cc 0 s ue u f f 0 f I I 8 2 5 f f f ,4 e nl R 5 8 5 5 2 h ol 6 2 2 2 4D t io dC

< < < < n 1 U e a  : r Rs e e a

t p .

gl ei np im t s n le i

t a s op8.i(b a tS om3

2. mr i L po mCEe s l i

a EEo o i v

.y f

  • Cm t a I a) a: n n s 9 meti u I rg s arna

- k n 7 m s 9 9 9 et et e ea/ o 5

- s t 7 7 7 rsurl l mi i i n - - - t nl ep baapmC t 1 n a 9 9 9 swfh m a 6 a l - - - pof n a TC( c g P 6 6 6 n UDEUS o h r o L c O r t *

  • f g

i a s

  • F m c m l m e m n a i a u a S a i m e t h m e t c m e t m e t l a r n t a r n s a rt n a r n p e t e n e t e a e e e t e m r s u e r s u V r s u r s u a t n l B t n l t n l t n l S s w f s wf f s w f s w f p o f p o p o f p o f U D E U D E U D E U D E

I Table II. E.2 -

Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected May, 1979 .

Sampling Locations

  • Ru Cs Zr & Nb Fish Upstream 5-16 '9 <142 < 43. 9 49.2 (29.5)

Downstream 5-16-79 < 98. 2 < 30.3 50.1 (22.6)

Effluent 5-16-79 <100 < 31.1 43.0 (23.2)

Benthic Organisms Upstream 5-16-79 4 03 169 (127) 146 ((49.9)

Downstream f f f Effluent 5-16-79 445 < 261 177 (82.7)

Vascular Plants U

Upstream 5-26-79 <89.7 <27.8 <11.8 Downstream 5-26-79 <255 <79.1 <33.5 Effluent 5-26-79 <297 <92.3 <39.1 Seston Upstream 5-25-79 < 10,400 <1,790 <650 Downstream f , f f Effluent f f f t

  • Upstream Composite: U 42, U 43.

Downstream Composite: D 40, D 45.

Effluent: E 38.

    • Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S .D.-) .

f Sample unavailable.

Table 11.11.1. Mean Values for all Sample Types. (Cont'd.)

Number of Minimum Maximum Samples Value Observed Value Observed 2 q Analyzed 6 Months 8 8 3 6 Months 3 Sample Type Area 6 Months 1 Year 1 Year 6 Months Aquatic Biota Upstream 3 <28.8 <28.8 59.7 (1.66) <28.8 <28.8 Fish Downstream 3 <31.5 <31.5 75.6 (1.86) <31.5 <31.5 89Sr Effluent 3' <27.2 <27.2 33.4 (1.58) <27.2 <27.2 (pci/kg) Composite 9 <27.2 <31.5 53.2 (1.85) <27.2 <27.2 Aquatic Biota Upstream 1 <128 < 128 147 2.12 < 68.1 <128 Benthic Downstream 0 NA NA 148 2.22 166 NA 89Sr Effluent 0 NA NA 135 (3.36) < 113 NA (pCi/kg) Composite , 1 <128 < 128 144 (2.25) < 68.1 < 128 Aquatic Biota ' Upstream 5 <23.6 <23.6 63.7 (2.75) <23.6 <23.6 Vascular Plants Downstream 6 <29.4 751 57.2 (2.77) <29.4 166 89sr Effluent 6 <27.6 458 67.4 (3.21) <27.6 <27.6 (pci/kg) Composite 16 <23.6 751 62.6 (2.80) <23.6 <23.6 g Aquatic Biota Upstream 4 <11.8 1,920 356 (6.27) 384 768 Seston Downstream 4 <133 1,680 470 (3.18) 504 525 89Sr Effluent 2 26.9 2,590 150 (5.62) 586 1,310 (pci/kg) Coinposi te 10 <11.8 2,590 304 (4.79) 479 745 Aquatic Biota Upstream 3 68.3 240 150 (2.04) 184 126 Fish Downstream 3 <38.6 205 127 (1.87) 145 110 90Sr Effluent 3 71.5 114 114 (1.43) 121 93.0 (pci/kg) Composite 9 <38.6' 240 129 (1.76) 150 110 Aquatic Biota Upstream 1 226 226 241 (1.42) 253 226 Benthic Downstream 0 NA NA 142 (1.87) 162 NA 90Sr Effluent 0 NA- NA 369 (1.42) 181 226 (pCi/kg) Composite 1 226 226 233 (1.79) 198 226 4 91.9 (2.00) 112 Aquatic Biota Upstream 46.4 331 169 vascular plants Downstream 4 122 258

. 152 (1.49) 183 158 90 Sr Effluent 4

20.3 270 87.9 (3.98) 119 177 12 98.5 (2.60) 132 168 (pr..Ia. Composite 20.3 331

i Table II.!!.1. Mean Values for all Sample Types.(Cont'd.)

~

Number of Minimum Maximum Samples Value Observed Value Observed i o g , _

Analyzed 6 Months 6 Months S x x Sample Type Area 6 Months 1 Year 1 Year 6 Honths Forage Facility 3 <31.2 <36.8 45.1 (3.29) <20.9 < 31.2 89Sr Adjacent 11 <18.7 <31.5 44,0 (3.27 < 6.48 < 18.7 (pci/kg) Reference 12 <13.7 390 48',8 (2.33) <13.7 <13.7 Composite 26 <13.7 390 45.4 (2.80) < 13.7 < 13.7 Forage Facility 3 <13.1 603 3 i.6 (5.66) 202 296 90Sr Adjacent ol <12'3

. 552 169 (3.00)' 252 213 (pci/kg) Re ference L2 <12.7 1,485 203 (2.46) 295 267 Composite 26 <12.3 1,485 166 ( 3.09) 265 248 Forage Facility 4 <38.3 29.6 62.4 (1.82) 18.0 ' 13.0 b 106Ru Adjacent _12 <11.9 61.0 -

61.2 (3.20) 107 142 (pci/kg) Reference 12 <22.8 90.2 59.3 (2.50) 37.2 8.4 Composite 28 <11.9 90.2 60.6 (2.67) 74.9 66.5 Forage Facility 4 92.5 235 152 (1.53) 164 179 137Cs Adjacent 12 <15.3 430 89.0 (2.42) 124 109 (pci/kg) Reference 12 <17.1 327 87.1 (2.52) 125 99.4 Composite 28 <15.3 430 95.4 (2.37) 130 135 Forage Facility 4 29.3 2,030 83.8 (3.31) 260 549 95Zr Adjacent 12 13.3 63.2 43.0 (2.08) 56.2 29.0 (pCi/kg) Reference 12 8.47 55.5 33.2 (2.66) 46.5 25.7 Composite 28 13.3 2,030 42.3 (2.60) 81.6 102 Forage Facility 4 12,900 31,200 17,400 (2.11) 20,600 18,200 Gross 6 Adjacent 12 8,860 32,700 16,900 (2.08) 20,200 20,100 (pci/kg) Reference 12 12,800 32.100 16,000 (1.63) 17,600 18,800 composite 28 8,860 32.700 17,000 (1.99) 20,000 19,200

, 132 III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM SCHEDULE III.A. Environmental Radiation Surveillance Schedule Table III.A.1 outlines the collection and analysis schedule for the radiation surveillance program. This is identical to Table 5.9-1 in the Technical Specifications.

The surveillance program provides for collection and analysis of environmental samples within an area extending to a twenty-mile radius from the reactor site. A concentrated area of sampling within a one-mile radius is designated the " Facility" zone; the area from one to ten miles, the " Adjacent" zone; while the " Reference" zone extends from ten to twenty miles. The data obtained from the Facility zone are statistically compared to those from the Adjacent and Reference zones to test for any significant differences in values. A similar rationale is used for surface waters and sediments. These are partitioned into " Effluent" (Farm Pond and Slough), " Downstream" and " Upstream" locations for statistical analysis.

The sampling locations are shown in Figures III.B.1 and III.B.2.

Table II.B.1, III.B.2, and III.B.3 give some detail of the sampling sites in the Facility, Adjacent and Reference zones respectively.  ;

1 The following changes in sampling locations were made during the l last half of 1979:

1

1. Effective 10/6/79 A-48 location was changed to the Bill Ray dairy, )

17376 Weld County Road 465. (The previous A-48 dairy went out of business) .

2. Effective 10/15/79 air sampling station A-35 was changed to the Walter Maier home 9704 State Highway 66, Platteville, CO. TLD devices have been left at the old A-35 site to document the long standing fluctuations noted there.

' s W -

s c

s yt 0 y bO .

0, .

Y la 1 .

n dL  ; n Y a eT r

e L n 9f*

Y 0

o L , -

h ns K a &o L 9 s ,a s

R n lt ee o t

im 'a f i dE 0 9m H &sds la tsE s a

yanE 0 r t T

e rf 8u T e eo erW r

Y & rtY r .

N 0elig l cn toamR s

. ta e tes vet ScL sO 8r p ui s uniA e s de 9 e t G

r yl eftia, l

i gK

.L 8 d pR ns E u

tp M.

Smnw a e or lp aU u r uY lp u

aa dn a

tf e s

n. EE S r a aT .s ss ut mg ,4 Q b. tsL 7at . s, 3 / a eot s mmh 2e lpoiag 2 o a, pi 7es nY b i s tnW ley s sn l t e leg T tey te v mL dmo n up o u u lp itumA i

a gU vl e a .7t n l nh du

. s eir e v2rA vnN vt e a

.- e atr m c r Lna aee t ef Loy LeiO t Ln a L eH n .

0 n g

aT rN a co he p c o i ly p LY

t. Y; O.

tale r

fo0 mvr oL e uf r oY rL rt i onl t

r o lu e M. r o0 o pse p 0 c i

f Yc s f9 eHit t

2 e f uc vO g la u H b To s s t sndH soa sLi s .

R it c AM saad smir li s T a& saolT e

e a cF aKw a&

C. F A s omt t

n t e N s sNp e9 m8 t e cyN eym ml e

m! Ee r e9 m8 t

.C0 r aa r c i

is -O oOmo r ar ou al m usn st.O ar no at h

ar u ts e

C gc s f f M GMc sS r SpaM Sbf r Swt o SS D v 1

y d o le E o iu t b a

H L b q s e .b C nd e il r a ). o

- S o z it c o ir d

a n j et nsa t r

p M A h n de nh s

o A y u t

to. at r n a

R b a p ao o  ;

G - s . r en r h s a

e o ase t g O S a t

b s

yl n n e

r le b

R E r.  % a it i i n yi z A.n P S e 0 ic6m .s pos a h la Y ase 1 e v

l t

at r

t. e o c :s s ia E

L ler o  : s s i

a . o r ese a) r ecig nc ei if v a

C A t s e o s

. a s Ft s c b dmaf n eFo .ee r s r

o g )4 ; s N N fi

  • rY. r pY s
er Y.

dg a e e( e r o .

A A o f

3 u sL s gf o yL e slct nnto mnnd :eer f e i iuY.

t adrYn.

u oi du n ei c i oH ut e i t H yiH t gowO t

cnmL laGT Y D es 2 pT x lps r T L u o in et t

s l tsL odaj 4 a uH l N g a le eN . y. oN p nf N H b. ar r gt o ios r i a. l .

pnpl f ts s l

E A t v eO 1l aO ao O T

. 1 o gl t,erYtsa t ma nl gT E E n e le eL kY a ongT V S e iM v vM mnM le f

nr i Lf hlant E c L ve r uw N v f rpi msyeLe f o tnit c er cpr i f R owH t

as O o ul a e a e rt uA t

r n te ro e nc uA a U C pe o l uO L Te a t t c L e u A.

sd t r

nbAt oiadU f tasU S N s it mL rnN w et pa* M. rY sYx camUl, e sdYO E a c uT ooO c ss l a o L y

Lr o p 0 o N e. o u Y. O s sc t c N U sn A f t f la s0r N e. s Lo O Q o cl la s aon M. r e

i al e b

e sH nHp p a f f ey A.H y i s teaHis I

E Y

Lo f

ea s r

h p

m w s aT eN a T a, m&eA;n 9 pao l latTw nli r i

s) wTw r T R is R3 mhe s m aw s

or mO mN m8me s aiNe o3Ne p1 0a cOh t is

, A F E/ alpt l o go SMa u O e.

rc M (i

. a r a r e a

m.Oh I

D m

e T1 Saf i m dl a l

G t GSsAs 9FMo osMot G

N la Rf t

a nh e & cm A u Aon n as p f s o n m( s 9 i R IL P ca t

Uo Ois i

m u a 8 r

sa eg L M n l'

u it m S s r A yt a i m . yo T A o S p bo i t

i r

r t,

ag d

n lac N u dr en t

a a ni h e

f d t E d e ini s o te n m mne b a u M a s

% mi r y s

ity s m

r ub r

N b 3 el v o s

u tc t c2)

O n t a  ; . i r

a e . e(

a en Y Y t c G it pY p R h da a m ir s s .s vd L L T a iL V

t s a d u.

K dH iY c

Y m

a )

1 mf am ms N

s e EnT f g

l aC E L

/

Rr EaN i

cL L f

o . ea l l ev yT mni .e

ml o WrO e eR p

S E E R s c .

dY nL lb f ad e ;A l

l aal gDb i

dn o'lai

.t L 1

e gec rt l M, T T s1 yl aR lin aa s U l

e as t ltei s R R la e E v t -

a uQ adaav l.

r A n ev mT ae ad e i

v r o i f e A o ec f ot U ull sm f .

e tn y.

ymo U aL s e n t

L v is e

- A n A r eup Q Q ota r i

tA i am b Tl n be p a.

trU Yu e o s sY o vr n n f s

. it m

o ,Q Ls o a os uL c e. etco ap io a R g, s e r R I A c i i r 1 I

t ese tct a tem. En i s

y A G1E I ba g le t i

bu Tr p la ty 1T mdr lop st r R n R A s, s

s i

ci c sc a i

l A

E omt r aar oer o r e p U e. o c a

i U

L GDc Np Gs Of i.

N F O B .

A O

- ) .

)

  • s e E 3' )

. o r

s

'yr R U r 1

D F

4 e

t e T )s S e n O fao. c n 9 &

t I.

s p o )

Aov u lp s <d . s o . s o o. r a 4 1

& r tn R mt X'. )

Et eho i c

F F S c) ) T b a a s r : Oa io c S l r  : r) s s n ni s ns IN&n

. e r

a &lS o L s o. E f

ce c. f es

)n on . )n s e s tan n es ti. n Arpo ic n

o I

Ds, wo p

- s Aat -

Nna PSral gt Hnt s ae i o oio wo i to.

ai o wo i Hatr a i

ts l

a i

Cmog op i af s d E e o o

GCcO E3' Omt bc u.c o

rlo tiloc a mt u

a E

e ta Rtbc ao t.t pca co i

e c

a c ta Coc DI.lo a

c )

c lo I air Ter c a At on vN T LJ 3

Veei TMpc( a7 a r i r7 Tt t Ao2 cl

'e2 f

r u7to OS(

l C.41 o

fc 1 k

t. 3 Usdc ni s

( XT( T( P( S( 0(F M1 Q2 ad l (

E A W F

(

A(

, J i

.DM7 - ].l

- r r

- i'

Table 111.8.1. Facility area and effluent sampling locations for environmental media. .

Loc. Media Sampled at Location No. TLD AIR M S Location and Description (see Fig. II.B.1)

H2O AQB Oistance and Direction from Reactor; Coments F 1 * **

0.8 mi. N; potato cellar; TLD on pole at NE corner barn; precipitation >

F 2

  • on hill E of barn 1.1 mi. NNE; cabin.

F 3- *

'F 4 * **

  • 0.7 mi. SE; old dairy barn; TLD on 1st pole N of drive.

0.8 mi. S; first shed along drive; precipitation in corral; forage and F 7

  • soil S of shed.

0.8 mi. NNE; pole by gate at corner of Goosequill Rd.

F 8 0.6 mi. NE; 2nd pole S of cattle-guard on hill.

F 9

  • 0.8 mi. SSE; 2nd pole W of pump house.

F 11

  • 0.9 mi. SSW; 0.3 mi. W of intersection of 191s and 34.

F 12 0.8 mi. SW; 7th pole N cf intersection.

F 13

  • 0.6 mi. WSW; pole neares c intersection.

F 14 1.0 mi. NW; pole nearest corner.

F 44 *

  • 1.1 mi. E; F 51
  • Leroy Odenbaugh dairy.

0.3 mi. N; Ted Horst farm, pole SW of house.

F 46

  • 1.0 mi. SW; O F 47
  • 2nd pole N of intersection, near Aristocrat Angus office.
  • 0.4 mi. E; pole near driveway to pump house.

F 49

  • 0.1 mi. W; E 38 *
  • tap outside Visitors Center (well water) 1.3 mi. NNE; Goosequill pond.

E 41

  • 0.2 mi. NW; .

Concrete slough above nd below point of entry of plant water.

Codes: F = Facility area (within one mile).

E = Effluent surface streams.

to) TLD

' = Thermoluminescent Dosimeter for measuring external gamma exposure.

O AIR M

= Air sampling location; ** = atmospheric precipitation collected.

= Milk sampling locations.

H0 = Water samplino locations; silt also sampled from surface sources.

, M A8

~

= Aquatic biota sampling locations.

S = Soil ac.d Forage sampling locations.

f .

355 5 2E33 P

l Table III.S.2 Adjacent area sampling locations for environmental media.

! Loc. Media Sampled at Location Location Description (see Figs. II.B.1 and II.B.2)

No. TLD AIR M S H20 AQB Distance and Direction from Reactor; Comments l

l l A5 *

  • 4.5 mi. NNE; Lloyd Rumsey farm; 2 mi. N,1.5 mi. W of Peckham.

A6 * * *

  • 5.5 mi. S; Clifton Wissler farm; 2 mi. W, 2.5 mi. S of Platteville; TLD on Pole 30 ft. N of parlor..

A 27

  • 5.0 mi. NW; I mi. S 'of Colo. 56,1 mi. E of I-25, pole on NE corner.

A 28 * *

  • 6.0,mi. NW; Virgil Podtburg dairy; Colo. 60, 2 mi. W of Johnstown; TLD on last pole on NE corner.

A 29

  • 3.5 mi. NNW; 3 mi. S; 1.6 mi. E of Johnstown, TLD on pole by the stand of trees.

A 30

  • 3.5 mi. NE; 1 mi. S of Colo. 256 on Colo. 60, pole on NE corner.

A 31 * *

  • 6.0 mi. ENE; 1.5 mi. E of Peckham; TLD on pole in front of house.

A 32

  • 4.0 mi. E; 3 mi. N of Platteville; 1.2 mi. E of US 85; NW pole.

A 33

  • 5.0 mi. SE; Niles Miller Dairy; 0.2 mi. S, 0.5 mi. E of Platteville.

A 34

  • 6.5 mi. SW; 1 mi. E of I-25 at Colo. 254; pole on SW corner.

A 35 *

  • 3.5 mi. SSW; Walter Maier farm; 9704 State Hwy 66; k mi. w of Jt. Col.66 & Rd 21 A 36 * *
  • 8.0 mi. W; Bob Johnson dairy; 2 mi. W of I-25 on Colo. 56, then 1.5 mi. S. TLD 0.5 mi. W. N, A 48 *
  • 6.0 mi. NNE; Bill Ray Dairy 17376 Weld Cty Rd 46; E of US 85 on Rd 46 A 50 *
  • 4.5 mi. SE; 0.8 mi. E of Platteville.

D 37

  • 12.5 mi. ENE; Lower Lathan Res.; 2.5 mi. E of LaSalle.

D 39

  • 5.0 mi. ENE; Gilcrest water from U.S. Post Office D 40
  • 5.5 mi. ENE; South Platte River at Colo. 60.

D 45

  • 1.0 mi. N; St. Vrain Creek at Jct. Rd. 19b, 0.2 mi. from discharge.

= Adjacent area (one to ten miles from reactor).

M odes: A 0 = Downstream potable or surface waters.

p 9 All other symbols same as fnr Table III.B'.1.

G 9 -

22) .

W 5sE3 L

i

. 1.

Tat le III. B.3. Reference area and upstream sampling locations for environmental media Lea. Media Sampled at Location Location Description (see Figs. II. B.l. and II. B.2.)

No. TLDl AIR H S II,0 AQB Distance and Direction from Reactor: Comments. __

R 15

  • 11.5 mi. NW; 4.2 mi. W of I-25 on Colo. 60; TLD on pole W of farm driveway.

R 16 * *

  • 11.8 mi. NNW; Mountain View Farms; N side of Colo. 402 W of I-25.

R 17 * *

  • 11.8 mi. NNE; Bob Schneider Dairy; 1 mi. S of US 34 on RD 25; '

on pole 0.5. mi. N of parlor on RD 25.

R 18

  • 10.0 mi. NNE; on pole on SE corner of intersection of 65th Ave. and

~

37th Street (Greeley).

R 19

  • l' . mi. NNE; US 34 at 47th Ave. (Greelei); pole on SW corner, opposite

. golf course.

R 20 * *

  • 11.1 mi. ENE;' Wally Kaufman dairy; 0.5 mi. E; 1.6 mi. S of LaSalle; TLD l on pole W of parlor.

R 21

  • 11.9 mi. E; 5 mi. E of US 85 on Colo. 256; then 1 mi. S; TLD on pole on SW corner.

R 2'2 * *

  • 11.1 mi. SE; Hagans Bros. Dairy; 4.2 mi. S of Platteville; 4.2 mi. E of --

i R 23 * *

  • US 85; TLD on 1st pole E of drive. $

11.5 mi. S; Alvin Dechant Dairy; 2.2 mi. W; 0.3 mi. S of Ft. Lupton; 4

TLD on 1st pole W on drive.

R 24

  • 12.2 mi. SSW; I-25 at Colo. 52; pole '.W. of the f rontage road; NW corner.

R 25 * *

  • 11.7 mi. WSW; Angelo Vendegna Dairy; 4 mi. N of Colo. 52 on RD 1.

R 16

  • 12.2 mi. WNW; On US 287, 2.5 mi. of Colo. 56, 2nd pole S on RD 2E.

'"UE9 U 42 * * .1.5 mi. WSW; St. Vrain Creek at bridge, RD 34.

([22)'U43 *

  • 0.'6 mi. E South Platte River, at dam and inlet ponds.

6 9 E3E0

( 9 Codes R = Reference area (greater than 10 miles from reactor).

gggg; U = Upstream from effluent discharge points'.

[ g g) All other symbols as in Table II.I B.1.

W ,

EEED b

137 Figure III.B.1. On-site Sampling Locations.

l r s =

/ l

(

/ '

. U l s / JL t

\'% / ,- ']I

/

/ s i M N ~ l

'O l'\

/ l 's k\

/

/

I h \

' -D i \

\

/ .

. f !i

\

l

"Ep 1 aearm A

\*

,..a 4 \

/ swa- g c3 i ne, N

\ 'p- .u -- -.i k

\ >

?.i

[r ,

/.@  ;

\  ! l  ; 1 /  !

NWl l l

/

\

\ l (*

F-4 /

"I \ x -__

On-site and close-in sampling locations.

F = facility area, E = effluent stream, U = upstream, D = downstream.

\ i u .] a

/

138 Figure III.B.2 Off-site Sampling Locations.

l!O~

r_ j. EM -

-r L i i

C' ,

l i

\

l s _ ~

l -

L b ~ ;. ~o[x,[ I o I d_

u cuq,>. v ql ,

Ng; . arr'c'1,, j g

_. ) . .

l t

f LovtLA80 I

/ g i

l R-181 EVAN3 7 h' -

i

, JC AA LLE

% j_ b -

_Z a

gb417- u rts u t,N f/

g 7

g,;

erntwovo g 9 9 r'*% l lrge w Au, a yp ;O

~

C A /- , ,

g

_f-E >. stentsr-7 l 3 M


e -

@.__1 r d- I-

[g P' h ']p_. _ _. ._ _. T ]

o s !si u. d / i __ l l _ _ _ _

J {!

my e /cI.),a i

- wittoN. R gg, c r m _ _ .__ e _8__. m, gu g <

, l O PLATTE E' G TI

-..s.r a .~y

  • yeL -1

~p* ij g l

'~'

M I,f__.A_p">Qe ($ , ! j.__j---~,- r- 3 g

~ 4_ i. _ i

!4._ .4 _.1. ._ _ 3g _ l

~

l

' d * - - +-

i L s\

l l

--b-M l -

er -

T- - ' i I  !

- - , _ _ _ _ _. g ,_._

d

_k ___/ _ .

I I f

\ )_f,'1rT. Lupron I

g. t s' 1 W'( l / \ \

0 $ miles 10 miles SCALE