ML19329C142
| ML19329C142 | |
| Person / Time | |
|---|---|
| Site: | Davis Besse |
| Issue date: | 09/05/1975 |
| From: | Roe L TOLEDO EDISON CO. |
| To: | Schwencer A Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8002120873 | |
| Download: ML19329C142 (17) | |
Text
s NRC DISTRIBl TION FOR PART 50 DOCKET MATERI AL (TEMPORARY FORM)
CONTROL NO:
FILE:
FROM: Toledo Edison DATE OF DOC DATE REC'D LTR TWX RPT OTHER Toledo, Ohio em.1 1 v o.s.7s o A 7s m
TO:
ORIG CC OTHER SENT NaC PDR vvy A. Schwencer 1 Signed SENT LOCAL PDR XXX CLASS UNCLASS PROPINFO INPUT NO CYS REC'D DOCKET NO:
XXX 1
50-346 DESCRIPTION:
ENCLOSURES:
Ltr. re our ltr. of 7-7-75 & 8-7-75 & their ltr. Submitting info relative to the ECCS analysis, o f 7-21-7 5... trans.the following...
Requested info pertaining to Partial Loop Oper-ation, Single Failure Analysis & containment Pressure calculation will be submitted by 9 75...Results of passive failure analysis will be submitted by Jan. 1976....
DO NOT REMOVE PLANT NAMEDavis Besse h.. h.
FOR ACTION /INFORMATION ycg 9 345_
BUTLER (L) ggCHWENCER (L) ZlEMANN (L)
REG AN (E)
REID(L)
W/ Copies W/4 Copies W/ Copies W/ Copies W/ COPIES CLARK (L)
STO LZ (L)
DICKER (E)
LE AR (L)
W/ Copies W/ Copies W/ Copies W/ Copies PARR (L)
VASSALLO (L)
KNIGHTON (E)
SPIES W/ Copies W/ Copies W/ Copies W/ Copies KNIEL (L)
PURPLE (L)
YOUNGBLOOD (E)
LPM W/ Copies W/ Copies W/ Copies W/ ( opies INTERNAL DISTRIBUTION (M EG.FILD
_ TECH REVIEW DENTON LIC ASST A/T IN D wNRC PD"R SCHROEDER GRIMES R. DIGGS (L)
B R AITT.i AN GC, ROOM P 506A MACCARY GAMMILL H. GE ARIN (L)
SALTZMAN
.XiOSSICK/ STAFF KNIGHT KASTNER
- g. GOU LBOURNE (L) LDf. ME LT'
/ ASE PAWLICKl BALLARD P. KREUTZER (E)
.Xil AM BUSSO SHAO SPANGLER J. LEE (L)
P LMiS.
.Ajf0YD
./STELLO '
M. RUMBROCE(L)
MCDONALD W100RE (L)
HOUSTON ENVIRO S. REED (E)
CHAPMAN DEYOUNG (L) y/NOV AK $
MULLER M. SERVICE (L)
DUSE (Ltr)
SKOVHOLT (L) v410SS DICKER S. SHE? PARD (L)
E. COUPE GOLLER (L) (Ltr)
IPPOLITO KNIGHTON M. SLATER (E)
PETERSON P. COLLINS TEDESCO YOUNGBLOOD H. SMITH (L)
HARTFIELD (2) y pENISE J. COLLINS REGAN S. TEETS (L)
KLECKER f EG OPR AAIN AS PROJECT LDR G. WILLI AMS (E)
EISENHUT FILE & REGION (2)
BENAROYA V. WILSON (L)
WIGflNTON g4L'[d MIPC VOLLMER HAR LESS R. INGR AM (L)
M. DUUCAN m XTERN AL DISTRIBUTION
%/2Ar M
LOCALPOR [ M W M--
d
/ TIC (ABERNATHY)
,4 -
(1)(2)(10) - N ATION AL LABS 1 - PDR SAN /LA/NY
,/- NSIC (BUCHAN AN) 1 - W. PENNINGTON, Rm E-201 GT 1 - BROOKH AVEN NAT LAB 1 - ASLB 1 - CONSU LTANTS 1 - G. ULRIKSON ORNL 1
Newton Anderson N EWM AR K/BLUME/AG B ABI AN ACRS -.
..;ENT M..
-A p hO2120 N 3 [
..fh-~- OJ
'O Regulatory Docket File 0
~
$sl Sgp WD 4
r, a
8737
-d roteoO D -*
Docket No. 50-346 G3
,1
% gum EDISON n
,6 r.
e#%
toweu. e. ace September 5, 1975 M,-- 40 d s - N-v..c. ar.
.o...
e,. x
....c.._...
,f ff (4191 259-5242 y 6t.k If_),B rd SEP81975 e6' A. Schwencer, Chief Light Water Reactor Branch 2-3
" lMy*'
D Division of Reactor Licensing 1
WM
//
U.S. Nuclear Regulatory Commission Washington, D.C.
20555
'b
Dear Mr. Schwencer:
In response to your letters of July 7 and August 7, 1975, we are pro-viding the following information relative to the ECCS analysis sup-porting the Davis-Besse Unit i docket.
Our letter dated July 21, 1975, which replied to your letter dated July 7, 1975, stated that the requested information pertaining to Partial Loop Operation, Single Failure Analysis and Containment Pressure calculation would be submitted to the NRC by August 29, 1975. Unfortu-nately, the analyses pertaining to Partial Loop Operation have not yet been completed and will not be available until September 19, 1975. presents our single failure evaluation of the valves in the HPI. LPI and Core Flooding System. Preliminary review of the systems required for long term cooling indicares that passive failures in these systems will not result in reduction of core cooling capability below acceptable levels. Rigid criteria for evaluation of potential passive failures are being developed.
Such failures are considered to be small leaks such as the failure of pump seals or valve packing. Abnormal leakage resulting from these failures is not expected to pose a threat to the safety of the plant. More massive failures are not considered credible due to the reduced pressure in this operating mode compared to design conditions. Results of a passive failure analysis will be sub-mitted in January 1976.
The information pertaining to Containment Pressure calculation is enclosed as Attachment 2 and includes the information requested in your letter dated August 7, 1975.
Very truly yours, I
Enclosure cp 23/9 THE TCLECO EDISCN COMPANY ECISCN PLAZA 300 MACISCN AVENUE TOLEDO, CHIO 43652 a t. 3
.7s
r_
ATTACllMENT 1
(
Valve Position Valve Identification Normal Single No.
Description Position Failure Evaluation A.
liigh Pressure Injection System (FSAR Fig. 6-17)
Other HPI train or subsystem provides Dil7A Suction valve for IIPI Open (also SA Closes or pump from BWST Signal to Open) 100% of design flow.
Dil7B
- HP2A, High pressure injection SA Signal to Closes Other line of affected train provide-more than 50% of design flow and un- )
- HP2B, line valve open affected train provides 100% of design
- llP2C, flow.
or llP2D IIP 1556 Isolation valve in llPI pumps
- 1. Open
- 1. Closes
- 1. No effect on HPI capability. Closed recirculation line (injection phase from BWST) valve increases llPI flow rate slightly.
- 2. Closed
- 2. Opens
- 2. No effect on RPI capability.
(recirculation phase where
" piggy back" operation is being used)
B.
Low Pressure Injection System (FSAR Fig. 6-17)
DlI7A Suction valve for LPI pump Open (Also SA Closes Other LPI train or subsystem provides from BWST Signal to Open) 100% of design. flow.
)
or Dil7B Other LPI train or subsystem provides
,l Dlil A Low pressure injection line Open (Also SA Closes valve signal to Open) 100% of design flow.
or DillB Dill 4A LPI line flow control Open (Also SA Closes Other LPI train or subsystem provides or valve signal to Open) 100% of design flow.
Dill 4B
Valve Identification Valve Position Normal Single i
No.
Description Position Failure Evaluation DH13A' Decay heat removal cooler Closed (Also Opens Would reduce heat removal rate of or bypass line flow control SA signal to that cooler but other LPI train or DH135 valve close) subsystem is not affected and pro-
.vides 100% of design heat removal.
DH12 Isolation valves in DH Closed Opens.
No effect on LPI capability or suction line (from hot leg)
)
DH11 DH1517 Isolation valves in DH suction-Closed Opens No effect on LPI capability or line (from hot leg)
DH1518 DH9A Isolation valve in recircula-
- 1. Closed
- 1. Opens
- 1. The effect, if any, would be only or tion sump outlet line (Also SA on_the connected LPI train. This LH98 signal to would not affect the other LPI train close) or either of the two HPI trains.
(injection phase from BWST)
The effect on the connected LPI train would depend on the relationship of the BWST water level to containment pressure at the time of the single failure.
If the containment pressure equaled or exceeded the pressure exerted due to the BWST water leva i
then outflow from the BWST to this LPI train would be stopped and this LPI pump would be taking suction from the recirculation sump. If con-tainment pressure were less than the pressure exerted due to the BWST water level, then outflow from the BWST in the af fected LPI train suction line would increase because there would be some flow into the recircu-lation sump in addition to the flow to the LPI pump suction. This in-creased flow from.the BWST would empty it faster.
l
Valve Identification Valve Position Normal Single No.
Description Position Failure Evaluation At Lo-Lo level in the BWST, the suction for all ECCS pumps will be automatically-transferred from the BWST to the re-circulation sump.
- 2. Open (also
- 2. Closes
- 2. Stops flow in one LPI train or sub-SA signal system but other LPI train is not to Open) affected and provides 100% of desigi )
(recirculation phase) flow.
DtI2736 Isolation valve in auxiliary Closed Opens No effect on LPI cap 5bility or pressurizer spray line Dil2735 Dil2733 Isolation valve in suction Open (also SA Closes Other LPI train or subsystem provides ur line of LPI pump signal to open) 100% of design flow.
Dil2734 Dil830 Isolation valves in cross-Closed Opens No effect on LPI capability or connect between the two LPI Dil831 trains C.
Core Flooding System FSAR Fig. 6-16 CFIA CF tank discharge line Open (also Closes The result is unacceptable for any large or isolation valve control to LOCA but this failure is not creditable.
CFIB open and inter-lock to pre-vent closing)
CF2A CF tank drain line Closed Opena No effect as there is a normally closed or isolation valve "SA" valve in series with the motor CF2B operated valve. The "SA" valve is the containment outside isolation valve.
CFSA CF tank vent line isolation Closed Opens No effect as there is a normally closed or valve "SA" valve in series with the motor CF5B operated valve. The "SA" valve is the containment outside isolation valve.
ATTACliME:iT 1 Valve Position Valve Identification Normal Single No.
Description Position Failure Evaluation A.
liigh Pressure Injection System (FSAR Fig. 6-17)
DlI7A Suction valve for llPI Open (also SA Closes Other llPI train or subsystem provides or pump from BWST Signal to Open) 100% of design flow.
Dil?B
- llP2A, High pressure injection SA Signal to Closes Other line of affected train providec more than 50% of design flow and un-
)
IIP 2B, line valve Open affected train provides 100% of design IIP 2C, flow.
or llP2D itP1556 Isolation valve in llPI pumps
- 1. Open
- 1. Closes
- 1. No effect on HPI capability. Closed recirculation line (injection phase from BWST) valve increases 11PI flow rate slightly.
- 2. Closed
- 2. Onena
- 2. No effect on llPI capability.
(recirculation phase where
~
" piggy back" operation is being used)
B.
Low Pressure Injection System (FSAR Fig. 6-17)
Dil7A Suction valve for LPI pump Open (Also SA Closes Other LPI train or subsystem provides or from BWST Signal to Open) 100% of design. flow, i
Dil7B DillA Low pressure injection line Open (Also SA Closes Other LPI train or subsystem provides valve signal to Open) 100% of design flow.
or DillB Dill 4A LPI line flow control Open (Also SA Closes Other LPI train or subsystem provides or valve signal to Open) 100% of design flow.
Dill 4B
. Valve Identification.
Valve Position
" Normal Single No.
Description Position Failure Evaluation DH13A Decay heat removal cooler Closed (Also Opens Would reduce heat removal rate of or bypass line flow control SA signal to that cooler but other LPI train or DH13B valve close) subsystem is not affected and pro-vides 100% of design heat removal.
DH12 Isolation valves in DH Closed Opens No effect on LPI capability or suction line (from hot leg)
DH11 1-DH1517 Isolation valves in DH suction Closed opens No effect on LPI capability 4
or line (from hot leg)
DH1518 DH9A Isolation valve in recircula-
- 1. Closed
- 1. Opens
- 1. The effect, if any, would be only 9r tion sump outlet line (Also SA on the connected LPI train. This DH9B signal to would not affect the other LPI train close) or either of the two HPI trains.
(injection phase from BWST)
The effect on the connected LPI train would depend on the relationship of-the BWST water level to containment.
pressure at the time of the single failure.
If the containment pressure equaled or exceeded the pressure exerted due to the BWST water leve
')
then outflow from the BWST to this LPI train would be stopped and this LPI pump would be taking suction from the recirculation sump. It con ~
tainment pressure were less than the pressure exerted due to the BWST water level, then outflow from the BWST in the affected LPI train suction line would increase because there would be some flow into the recircu-lation sump in addition to the flow to the LPI pump suction. This in-creased flow from the BWST would empty it faster.
Valve Identification Valve Position Normal Single No.
Description Position Failure Evaluation At Lo-Lo level in the BWST, the suction for all ECCS pumps will be automatically transferred from the BWST to the re-circulation sump.
- 2. Open (also
- 2. Closes
- 2. Stops flow in one LPI train or sub-SA signal system but other LPI train is not to open) affected and provides 100% of desigi
,)
(recirculation phase) flow.
DH2736 Isolation valve in auxiliary closed Opens No effect on LPI capability or pressurizer spray line DH2735 Dil2733 Isolation valve in cuction Open (also SA
. Closes Other LPI train or subsystem provides or line of LPI pump signal to open) 100% of design flow.
Dil2734 Dil830 Isolation valves in cross-Closed Opens No effect on LPI capability or connect between the two LPI Dil831 trains C.
Core Flooding System FSAR Fig. 6-16 I
CFIA CF tank discharge line Open (also Closes The result is unacceptable for any large or isolation valve control co LOCA but this failure is not creditable.
CFlB open and inter-lock to pre-vent closing)
CF2A CF tank drain line Closed Opens No effect as there is a normally closed i
or isolation valve "S A" valve in series with the motor CF2B operated valve. The "SA" valve is the containment outside isolation valve, CF5A CF tank vent line isolation Closed Opens No effect as there is a normally closed or valve "SA" valve in series with the motor CFSB operated valve. The "SA" valve is the containment outside isolation valve.
N ATTACHMENT 2 The input parsmeters used in B&W-10105 are compared to the actual values for the Davis-Besse Nuclear Power Station Unit 1.
1.
Net Free Containment Volume - Justification should include the total gross internal containment volume and the internal structures and equipment and their volumes which are subtracted to obtain the net free containment volume. A discussion of the uncertainties should be provided.
Answer - Net free containment volume used in B&W-10105 is 2.9757 x 6 3 10 gt. The value of net free containment volume provided by AE is 0 3 2.834 x 10 ft, which is obtained by subtracting the volumes of internal structures and equipment from the total gross internal containment volume. The assumed value in B&W-10105 is thus 5%
greater than the actual value and would accomodate any uncertainties.
The values of the gross containment free volume and the internal structures and equipment are tabled below:
a.
Gross Containment free volume 3,358,135 ft b.
Internal structures and their volumes:
3 1.
Base mat concrete 264,192 ft.
2.
Primary shield walls 11,196 ft 3.
Curbs 1,514 ft 4.
Secondary shield walls Elevation 565-585 26,950 ft 3 Elevation 585-603 29,664 ft 3 Elevation 603-620 20,247 ft 3 Elevation 620-653 43,599 ft 3
5.
Peripheral walls 2,172 ft 6.
Miscellaneous walls 3
Elevation 565-585 1,377 ft 3 Elevation 585-606 395 ft 3 Elevation 606-653 3,529 ft i
^
r' Table cont'd 4
7.
Shielding around fuel transfer 3
tubes 765 ft 8.
Elevators - shaft 4,189 ft 9.
Floors 3
Elevation 653 5,601 ft Elevation 603 & 606 9,396 ft3 Elevation 585 & 578 9,396 tt 10.
Equipment Polar Crane 15,246 ft Miscellaneous cranes 3,050 ft 3
Steam generators 18,578 ft 3 Reactor 6,635 ft 3
Reactor Coolant pumps 3,848 ft 3 Core Flood Tanks 3,456 ft 3 Pressurizer 2,161 ft 3 Pressurizer quench tank 1,028 ft 11.
Piping Main Steam Lines 2,124 ft Miscellaneous piping 6,372 ft 3
12.
Incore instrument tank 5,027 ft 13.
HVAC and miscellaneous 12,000 ft 14.
Water 10,000 ft
~
t 2.
Passive Heat Sinks - Provide the actual passive heat sink structures for each plant. Discuss the method of determining the passive containment heat sinks.
Identify each heat sink by category (i.e., cable tray, equipment supports, floor grating, crane wall, etc.) and provide surface area, thickness, materials of construction, thermal conductivity and volumetric heat capacity, by component category used in the containment transient analysis code.
Answer - The passive heat sink structures assumed in B&W-10105 are outlined below along with a comparison to the actual passive heat sinks for Davis-Besse I as obtained from the AE. Also, thermo-physical properties are included.
A.
Containment Cylinder (Reactor Building Walls)
Actual Values 2
Area = 75925 ft
- Steel Thickness = 0.125 ft.
Paint Thickness = 7.917 x 10- ft Annulus Thickness = 4.5' Concrete Thickness = 2.5' B&W Assumed Values per page 4-7 of B&W-10105 Area = 1.05(75925) - 79721 ft Steel Thickness = 0.125 ft.
)
Paint Thickness = 4.17 x 10~ ft Annulus Thickness = 4.5' l
Concrete Thickness = 2.5' B.
Containment Dome Actual ' Values Area = 26533 ft
-4 Paint Thickness = 4.17 x 10 ft Steel Thickness = 0.06771 ft.
~x Annulus Thickness = 4.5' Concrete Thickness = 2.5' B&W Assumed Values Area - 1.05(26533) = 27860 ft
-4 Paint Thicknees = 4.17 x 10 ft Steel Thickness =.06771 ft.
Annulus Thickness = 4.5 ft.
Concrete Thickness = 2.5 ft.
C.
Internal Steel Heat Sink B&W Assumed Values Total Area = 375000 ft Thickness = 3/8 inch B&W assumed 2 heat sinks, one for carbon steel and one for stainless steel, which had a total surface area equal to that specified in Branch Technical Position CSB 6-1.
Carbon Steel Stainless Steel Area = 362800 ft Area = 12205 ft Steel Thickness =.03125 ft.
Steel Thickness =.03125 ft.
Paint Thickness = 5 mil Concrete Thickness = 1.0 ft.
Actual Values The AE has determined that the values listed in Table 6-la of the FSAR can be increased by 10% and will provide a conservative containment analysis for ECCS calculations. The values listed below are increased by the 10%.
Description Area, ft Steel Thickness, ft Volume,ft Grating Cable Trays and Ventilation Ducts 67638.
.01067 721.7 Painted Steel <0.1'2" Structural Steel, Polor Crane and Miscellaneous 5249.
.0065 34.12
The margins of the actual data to the values assumed in B&W-10105 are:
By Area:
x 100 = 43.9%
375000 375000(0.3125) - 7479.68 By Volume:
x 100 = 36.2%
375000(.03125)
The margins illustrate the conservatism of the steel heat sinks in the model.
D.
Internal Concrete B&W Assumed Values (per Branch' Technical Position)
Area = 160,000 ft Concrete Thickness = 1.0 ft.
Paint Thickness = 5 mils Actual Values The AE has determined that a 10% increase to the values quoted in the FSAR will yield a conservative containment calculation. The 1
1 values below are increased by 10%.
Description Area, ft Thickness,ft Volume,ft Unlined Concrete 96634.
1.5 144951.
Reactor Supports 1610.
.25 403.
TOTAL 98244 145354.
The margin of the actual values to those assumed in B&W-10105 are:
60000 - 98244 By Area:
x 100 = 38.6%
160000 160000(1.0) - 145354 By Volume:
x 100 = 9.2%
160000(1.0)
E.
Thermophysical Properties Thermal Conductivity Volumetric Heat Capacity Material BTU /hr=ft=F STU/ft =F Concrete 0.92 22.62 Carbon Steel 27.0 58.8 Stainless Steel 9.18 54.3 Paint 1.4 32.0 3.
Starting Time of Containment Cooling System (s) - Discuss the factors that show that the start time (s) assumed in the containment response analysis represent the earliest possible initiation of system (s) operation.
Answer - (a) Starting time of containment spray system is assumed to be 43 seconds. This number is based on no loss of offsite power, i.e.,
immediate actuation of sprays. The time includes pump starting time and time to fill up the Lower Ring of the spray headers. The AE has confirmed that this time value represents the earliest possible initiation of containment spray system.
(b) Starting time of fan coolers is assumed to be 0 second, which is consistant with no loss of offsite power. This value represents the absolute earliest possible initiation of fan coolers.
4.
Containment Initial Conditions - Compare the initial values of temperature, pressure and relative humidity in the containment with the range of values that will be permitted during plant operation, i
Answer - The following table compares the initial values of temperature, pressure and relative humidity in the containment assumed in B&W-10105 I
with the range of values that will be permitted during plant operation.
)
B&W-10105 Plant Operation Temperature F 100 50-120 Pressure, psia 13.7 14.7 Relative humidity, %
100 20-70 As can be seen from this table, the values assumed in B&W-10105 are conservative.
\\
5.
Containment Spray Water Temperature - Show that the value of containment spray water temperature used in the containment response analysis is the lower bound temperature consistent with plant operating conditions and that the spray flow rate used is suitably conservative.
Answer - The minimum value of Borated Water Storage Tank (BWST) temperature i
that could exist during normal operation as given by the AE is 50F.
In B&W-10105 this temperature is assumed to be 40F, which is conservative compared to the lowest bound temperature expected.
~
The spray flow rate assumed in the containment response analysis is 2520 gpm per spray. This represents the maximum spray flow rate for a backpressure of 0 psig and is therefore suitably conservative for all pressures above 0 psig.
6.
Fan Cooler Heat Removal Rate - Compare the maximum fan-cooler heat removal rate for each plant with that assumed in B&W-10105. Show that minimum operational values of service water temperature have been used.
Answer - The maximum fan-cooler heat removal rate provided by the AE and that assumed in B&W-10105 are compared in Figure 6-1.
As can be seen from this comparison, the fan cooler heat removal rate assumed in B&W-10105 is equal or greater than that for Davis-Besse 1 at any given containment temperature. Hence, it is conservative.
The service water temperature assumed in B&W-10105 is 40F which is the minimum operational value according to AE.
7.
If any of the above parameters are less conservative for a plant than used in the generic evaluation of B&W-10105, provide the sensitivity of these parameters to the overall containment pressure response. This evaluation should demonstrate the overall conservatism of plant containment parameters to those used in B&W-10105.
Answer - Non,e of the input parameters are less conservative than those used in the generic containment pressure response evaluation of B&W-10105, and, there, the sensitivity of these parameters to the containment pressure response is not necessary.
\\
Description Area,ft Steel Thickness,ft Volume,ft Painted Steel 0.12" to
<0.16" Structural Steel, Polar Crane and Miscellaneous 9657.
.01084 104.68 Painted Steel 0.16" to
<0.24" Structural Steel, Polar Crane, & Misc.
22222.
.01725 383.33 Painted Steel 0.24" to
<0.3 Structural Steel, Polar Crane & Misc.
15923.
.021417 341.02 Painted Steel 0.3" to
<0.4" Structural Steel, Polar Crane, & Misc.
13506.
.0285 384.92 Painted Steel 0.4" to
<0.5" Structural Steel and Polar Crane 6351.
.03759 238.73 Painted Steel 0.5" to
<0.625" Structural Steel Polar Crane & Misc.
26408.
.04217 1113.63 Painted Steel 0.625" to
<0.75" Structural Steel Polar Crane, & Misc.
7635.
.053417 407.84 Painted Steel 0.75" to
<1.0" Structural' Steel Polar Crane, & Misc.
8665.
.06359 551.01 Painted Steel 1.0" to
<1.5" Structural Steel, Polar Crane, & Misc.
3678.
.0887 326.24 Painted Steel >1.5" Structural Steel, Polar Crane, & Misc.
11172.
.23417 2616.15 Refueling Pooling Stainless Steel Liner 12,205.g
.021 256.31 TOTAL 210,309.
7479.68 1.
10% uncertainty is not necessary for this number.
c
m na:dH".in un m' pc p;'Ijp no p:, tya:r 4.p* : n
- lg m.
up r rn w: pn :p: :.ji.up: up:.pn hn
. m an 9.n.
1 pu mi. ti.f: n a.:jn
.:y. ;
1m
- n t L n.
1.::.t.il.:
r
- d t:
.n ut+*
tunn t.. u t un
- . '. =r :":
m.m
.a ~r
.t-r-n.
n.
.m
- tu un a u
nu r tut r*: In_'
un ilt: in:.im nuptn m. n::.: n*.
t" n:r n +: un in. Ta r: :.,:.
t; rp.i t - 3~ u p n..... -.-;'lu itz "p an m: *n
,t tr :: :1
- L;f ::p:
juj j {"{-
t
.n tm th ur rit "r th: mt r
++1r :
u.
n...
- t 1
.u.
t:
- tn t1::tnu n:* lm
- t: ::t-h N NN $ i.ih 55 [?$!N N NN hil1 $f NU kt i UI! ! INNNbN.N b.i5 N'Hi' IINN NN b
!!i b; i'C i !$
- N k r
nj::
i;;,.u ::.. ph :...
- rp:t: pg:i..(*.n ;2n in;-
[jti. in 7
- :t::.:'n
- 1. ;:t..3 f"in-:n: gnn;;; yp!
- :t 17.:
- t.:
- tn tn'.x.i n n itn in, un eip p:
m:.
i.jp j:1::-
3 :
n
..t*7 V:
t.
- n: :hr 1J n
i' i
- t. : :n.m.
- =
.tu t-. ::-
.a m:
-":.a 1
.n.tt.' i:j "- n.. '.7:a.*:'.
- u...
'm:-
- 1,n n' -
- t...
- .m,.. ;.m.. t': ':.
".E F.t.: : h* :-.;- r::-
..-..r..t'.
1-
' r' o,
.:;t.'
-.'. 4..a..n...:m.. ;.'
- n.. n..
v"--
- t-
..* : m; r.:u..*:m..+m 2..y2 "rn:.i.n.:., 'n"t; tm. :t..
m t,.: r.
a M.
t.
.p
~
anr 1:n vh;.:in m.;
!{ti m:. ;;ij *tt.!: : :n:n +t' **:
nu ~FI:n:m +;t: nn 1: m:
tm 1;n :m ::rn up :!"L:m: t;n p; mt.
- t" bn: an:ttn nh.En g:.a t
un ti m: un mi m,.u m :n.
nn nn na
.tr :m nu :n: n'i E
th :+
- m
.n nh ut.
.: 2tn
..s
- u. -. d..
.an....
...... n.
- 1.n. :nr in....t... n..:n.n.. ri..r* :-....+n:tq;.
.t....
c
.. ;. n.. e.. 2.;i;, : =..
..r:: :n.ra.u.. r. n.. u.
... _r..n.-
t:n t};4. =...
..._,.,7.m........._.u..n.
+
,...u.,e..
m.r;.n:.... - r =....
.r.n.._.
2
. -. :;;.n.. 4.t:
..m
.. ; r..
a.
2..
- ID: "=: =nr=- im u:
t.t
- !. in]l;;.-.ni sl:u n n, 1...,m br:
a en
- ... :n-rj;daju: m- :..: nu.:;u ;n m; Eu-:p annp.. n n,h @nn m
t t
ut m!ot m. a" m n-m : -
HL r.u tm na un n
- n *n:
'+
+
m nu un
- n un nu
.n-
- m.. in: :m.n
.tu m. 1:a
..n
- u r
- u apaj m v;;
.p=.
- m-.:n
- a
- p"
- .;g w-
- . g-P
- .t ru:
in. r. n b
.t
.u: a q. c u
2:p:
tre :n. En ; tin n... c:t m:
m un ur vu-t:
m nn tm
- e t
- n. =
n
.jp:
p=n nu r-2:acr" h..~ :..,.. d.: muit ;m :.:;f ttr a::
4 o M c Jjr =
iu tm. :..
- r;-= nn
=m:
au :n: :..:
w
- x nu 8 ytvun n t.n utruu "":
t n+rrnt tri v
t.:
w :- ~~d I
- t~ nn m:.t:r rm nt:
.... m:
"p pn. t... ni n: up
- q":
.c
,a en:
,a
..a r;p-a:j it.p e n.i,:
..- d..
appa un n;;
an =
r.au :-nu rtu tg!
nn :r: =
,. 1..
lia u tm u t:
- 4 n.r
- rn nirut -
.n
..: u.-..'n t
=: m-
- tr t.:.
m.:n
- m..
a m-mr t-
.. o,ta.. n..
..r g :. :.;n. w...n..a.tip. e.. u...
~~
- y. nc n..i
.r '..
A a
t-4..n }0._0
. y2;E.u.ti a. !
i
. i..,
..r
..e
..t
.[3:.
..z.
i... h....
- =...u..n.
d; p.. g..
1..
u Oir t.nt..s :ili 4...i i
' O o
im N
M
- . 42M.
n...t.
n t.
a 2
4 u
'n. m::u...
- g i'- p~:
p't t.. u gn ;3.1 m;. 4... ;y a u.n :
nn =
un gr.n:
n-nn a:v. iq: nu :r. j,n ma
.jm un-
- nj.;. n hn: fir 2:
j4; It;. nr.- !in He. er: ht: azi 2
~
t.
m en tm m nr n..n
.,n 2 m: r..:
+t
. - - e
..a
- 2 :
~
gc d"i;.
pu-nn..n an m:
mr
!-. 2 -
uit r5"up..;muunm c:.:.
.m p
.mtr;r r:r tu:Rr-
- ta nu l.-}' n a.:nd.p*u.;:i; =e:
4 i
9 ::in
- aumr i d tn:
st rt na un.n:Iu;
+
an v: en unn:t ae n ur :
rx :m um.e n r r-
.n nn
,=
j.*. ip. dfi E.. E..F.h.=rii 35 F i.j:..i.n..i. i.r_iEi.5...E.i.ilis.. f..ili-t":ii.M_i.i.M.ii.:i.L.{i@;ig h..n..i.iii..I. E....E..i..il. E.t. i.:i.sifi.i.li.
.iiH. E. i..Ji.E.:iB.
i.i.!!.IHi :p.:. :-
H.. i.l.}w m
,y au o ;nt.m.
- r: =
= :: :==x in[i;m a
- n+ nn-a.. =
.;n a
n,
.; - u:-
-O-1 - up
- o n
n:w:.n3:t H n..: m n
r-z
.n
=
- Odu-
- - - =.:=r nm n- =
n an un m-a r.. =hn
- m -n v
.in.
n..
.p
- tn
' ;t n h,a-m ::'.
tr n v nat :m:i ni ::/. o
.Wp~ 'b. :=
..n
+:m ji.n
- 4
. n,
.a: -
rmfa.. :- rai.nm=y.m
.a rt:t lj;.
q;;t'gn~
r
~
..:n
=f m
a un
- r. ut:r: t tm nn t
- . =- nm n'rn u
.a 7..:
n an=
. mum m:un O
- n
- q a
- j : =...
a;ran = aa-nn m m nn aqu.
ac ; n..n up:
- r:.:.
- p
31 uh m.
nt; e
nn ut:-
n =-
- n. -
- m. u n.a en a
r: :mr
.- m:
- . u -
.:p-
..1 m..:n n
.N_'
U 6.!! R E!
_!Iik_.I5 E5 Eii' Si!Ei 55li@ iSHlII iiMil ESbi 15
$1 i@5 5 iiii Hii T UU t
!!!!. 15
. ~. :
- y
.; m 29:;
n
... : aa n::-
.u.
n.. m : d...-- n....u v
mq nc a= :inr.-mu me a :
- a.
nu Sa
+
n inu =m.1n.
.1:
i;:;=;mu
,p: ut rm On rw nt. tit: he tu-an:
- t. t: u.
- n :.
=
nu : cam =n ji!!p y =F d{55Ei!$ iiEI!E ?+\\ !E t
lisN Yi fdH id!}EU [W IIli $l@E E55i.ilil I[
i a
Ei F 3+ 9 "ii 450
- I' !D5 iiii 3 na
.~n.. a.-u_t: s.)-
n.r..n.. t-E...h.z_m.=..-...n.
p4m.n tm. -.
..s
..4
- -. n..
m......
....=...
- . n. n.. ;. e n e..
0.t
- n, r.,.: t.,n im O
1:. n...rn. :
=.-....rn..
...,n *;m... :... _.r.
a:; :
u.t-m
. 1
.E qn
.....t.
. F -. :a ; P_o :w. =1:..
n:
- n : - 3:.
n n
- il'.n.
- =
- n
.m
- p::
m e n. rv n -!' ;t u a.r an.n;:
.t un
- m
' a..:.e w
- mpu:
m: rm :m un n,.
- ,., ' !c -a n Og'.. P'"t
- Onh' ~mt'r "u
- .! R:f a
^I' b'.%clR:nh m: pi- :n: "n
.. er ot:
r! nn
=1 n
- .M U
.I.
a t :.
i 4.!
- Ml.
- '
.o 1"u' p;s' --
- M.
a n- :tn m
+
+
un nu nn t=
- =~
i mJ. : m: m: ;;
- 'a n n. 2. - !...
r u.. au nuu:jn n.. '.
- r' an.u:
- a.. p.a :q '.
0.
. tan. :arh: :N}:
?. :.g. 5.;.f
.;it a+3:',::
u.:m n
- M.
- ..l;. t
- c.,
tn1 :-" UL d f"
'-'t nn r:
- t 't '! : ' it" In
-? ' ::
.P: "'
tt*!
' !'.'t:*
.t.**'.
- d~I:
- m mi ri3}!Erm : p
-tu nu t
=t ; un an
- n-m :
una. 1:r, t!*
- 1! "MI.
P
.=n
- .M 5. r:
- ii =*"' '.m an un :.-
r
. r..
n,=..
h:h:: $Jid*
- ' :f t'
' Tt* l*'
!:n '@ * !!i m'
'In::n: n. !
- * ' +
IMM. ii"M'i ?!!{EU iIIIREhhi Eli dMtd?# E! :iii Elki ki'.9
- i@"'!i. ****M i
i-i:*r !!E lHi iiii
+
T,..*.'.
- *n**
w n=
mr r w :r--..,.
. I....>
4...w
. ~..
. +
- rr,.
.4..
.l, 1
=
" n t.pz :m.
- m
- 4
.u..
.... c
- u: n). r -
N.:t
...g..
.u-
..+
.o.
m..r an g
t. :m; c' r
t--
-.v :.n...-
- n "7; n.=I:.;;
- f
- - un h:
rn:n:
=-- h. %c :.. tnt.
=9 n..... : r.a
..n. aI.na ud =
.;;--. eln..
,_:. :.r
.i_..
un n:
t
= r
=
+
m
- V :n
.u t
'n.
.x =lv..
un.!n hn q: -- =
- m..:mit un 3+e a: un
.. n:u:
- ..: a en un u n-u. :- =
- nh a :n :
a~
r "e-
- h mb o w:1:.l:;.a Ene....
- nt:
'nncC.
....... --n
r
nn 2
- t-
..G
. n: %.:. _pn an acr:2.
u
- .. :.u:-
.. m..n:'
=
= w
=
pn :;i.:
1 ad
.- m
- _
- x_
m a,:.u. x
- nh na
- ne. r
.: m
..eu ;-
n n' "a c u.n tu.. =n ur r-
~. = :-n.n r n- =
r n:.m.:. :
+-
N.Dii:;I 55 55EE UN$g Ef hii '!IE" INIh5 2k!@5 $$E SIN!N IN5 iIN !!!* E: ?
"U di iM i:!!@i IEEi' 7
4 a -
q
~b,a p.
r1,C.....
=.. ~...=r-.
- m-
- q c n a-
- pfe=n
- n.: :
=
=
ughu,.
- p:
n, a
- o. :*
%.n..:
- .n n.. e =
~
- =n u
r
=
y=
m
,n laj. up:.
.:ja
..a }e:r:.:;p,h =:. tp:f:=n: nj::
aj:
n
- n n;:
nn ::n= ::n m ::.: =
a.:: q;.
.::l:.t.
- y w=
- un =
md= am
an t.t-mt n
n 2.n n.
--+ nn p.
ia n:
a
..:.lm. :q:..o = ---==.
a.,
. a...=2=
- u..=n p:
.ai.:,p::
.... =
au
n
nn nr li~iin....
g 1.- :e y
nj. nn.u.
- a. j, tm n On nu mrun m: e n:: :n-ur=
nn:=t me:
nn r.'==
m ntt e.ar 'm nt:
n
- .n II:I6:h:;
a unnad= an ni;=====
un 2m e c :-
- mdm:
.m..n iiii L up=n ni.gLni.,nnpun;. *\\qm-un an 2:n nn :n am =
- a: r...
=
t= :tede un nu -
=
an.
n.
-
men.c nu:n rn N
R$555NN5Nt!5 NS N sin d![Ed NSkSi! '.NNI5 NNbNfI5 $ I!E NN iEi INIEi} N !!!; $
:i:' !N 'N i!!4!n;q'd.nt :
int
tan an en :1
au = un n.
- c. n;. nu ni:- *a - t-nn annn-untan :ne= nn nn ;nt :
nunn ng :., g:.*:i.=t na
- p
r-- "' *t : C ' n:*J-**:" :ft*n != in* nn *i
- * ~.
1!: n..
tr' t irt :In
'I!: ti *: Tt t!!
-Q n.:
!!!! t$
t ** 't::
n
.N
-q:- : 1 un un
-.:n;[m: ur n un
- n_..:- :n.
+n..4 nun m;
- s w,4 an =
nn m; :nn :;p:
+
4a 2.:
2'.l::
- f_ t:-
gb, ;dn a; p:u n.;p::-u.:un au Ith. :-
t nn n.
n: m
_- n -n:
mz t:n ::n ur en. un
. nn.
I.
un
-~
un p: ur un :a:. nn um:m q,': * =*t tnu1N u
- n. :n =
.. - nu
- a:
.m m. en
- .n ne i*
n-- n:2 :- nn ut.
- ja nu n:i_=*n!
't.p: un Ub: :11: Jh: !*tkaf. !* !!' =
11%f *tn ::1.
t"n*:3 g ?::
.:b !
+m' T:E un !35 :!: ::TL
! ** '* m
- m:
?
- ' L-e r y!.:
mrF=*: pH[Na he v~ "n an m;..u. n:4 u;; in. ;q;u.:
.1a m:
- ,.nn 2p r.41[u.
anau; an an u
,:ut
=:}=:m-a nu :.u.;
m.
~
cue
... _., T..:.=
rh m
t.n
=n-un un et:
n:, n
- - :n.
ttn ut: =
a n
- tta. mr n: m v :: -- 4t+ = :yn;;r =ran=
nn un}= nug.m nn.:rn m
t.- m; a:. :.a}n.
. :p a, "
.. n pn n
m un:ya= pujpn m:(=
un{t:n ::n[.ir.n :a tr: un
- r n
a
- ur e m::e
.a un==
et =
4:. :- ~: n-m: an q$5 i5 Pi: 5:?
I5is W E' IIS 5f@E5IiE15d5;.FU M Uit 15 5 MW 'iE85: ' Nil.? "ijsliFHWH Hi !!?: 1" n: !n...n n; = J = =..n
--.n;q-. :: p:.n nj m ?u nt; cn na an :nttCf' c.n gn :nz -8
- d
.tn
.=
- ;i.,- i.jn.: y: n:
c:ntu ra a
- n rr f d n :er na n.. = hn m. un.
- n. 2-
- ..n =
E:t = nn :nt
- tm un imun e
. =
a
..!! th: :if :diin.NE.li Ji til:
. "h i.
9 PF. H.i 'i, a _i ri!
H,.a:i.!!!.Ei. liii E..l.i..iHi.s..i.i.ii.i.i..i:i..fi l.i.t.:i.mE. l.i. d..i.H. 4.A,9
.' h ! H f.. "...
+
.r.r.
m OW d5 d H E.L,.
M5 e YJS q
- - - - -:{EU H' D2: IEi[Ii9 &
' ^: r Hli:" TFi Riti*< ~m r
4 11
' iM
. t r-
[91 Hi! ! bid:i
- i-Ji rii! ;iiitili Wi: :-
+
d
,,an
- mna. = t;u: um=
nn
.....t.u t =
t'+: ::b
- ni
.m n: mi.:.
m:
i.
.m
!.4 ktn !!11.:t t' !*Ilfn:~. : *i t. !!n l*:*tn;!:1:nt: t: ='td
.! u.
!;n
. " J:';*. *t * '
n.
t' 4
'..g.
- m. :.- ~:a :na..im..a.
".T
, w. I. :.
....: u n.....
g. _.
..o..4
- m.....
.....u.n.n zu.
.; ; !m
., a.n.
. =...
,4
- 4.... tt::.im
. m.+........,.. n;=T-w+a. ;.:, n..
- . u..
- ...
- a....
,t 6
q._....
.. gr.
.. +.
,g..-.
.... y..
4 u
.. b...
- M U
- :
4..
JZ
. : [:
- i "7
- Mi* ;;*:
d: Uln
{m*n
.. g:.... g::"6..
.=..} v ni
- n2 un
!!c ;n: ;;;.: pn :M.
.. n g
n.
.n: e n.
n
.n=
nu un n
m+
!n :m.".
,m-n-
- m.t-
~
~
' g '.
.... "7T
.4..
....4.
....g.,
- l. j !'..
l1!..
I. t M..
- n..
I. ;" *:
- .'. ; l......:.,,. :
....I.,.J..U..
. i. t: :,:_!.
i. n.. t. 'n.. Int..n...
- n.T. O.. :...
!.!.::. 1. :n. i:.n.. 1,. ;.
- y. !!.:!.M.1 l ' *1 t. *. i.:.
. J.. **. *t :.
- a. !.n.
- t..4
'I m
.