ML19312D913

From kanterella
Jump to navigation Jump to search
Water Quality & Biological Conditions in Wheeler Reservoir, Annual Rept,1979.
ML19312D913
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 04/28/1980
From: Mullins J, Schneider R, Taylor M
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML19312D911 List:
References
NUDOCS 8005050351
Download: ML19312D913 (185)


Text

' '

8005050351 O

TENNESSEE VALLEY AUTHORITY DIVISION OF WATER RESOURCES l

WATER QUALITY AND BIOLOGICAL CONDITIONS IN WHEELER RESERVOIR DURING

. OPERATION OF BROWNS FERRY NUCLEAR PLANT JANUARY l,1979 - DECEMBER 31,1979 Docket Numbers Unit I 50-259 I Unit 2: 60-260 Unit 3:50-296 l

I

t.  !! . _ _ _ __.

i i

l, TENNESSEE VALLEY AUTHORITY i DIVISION OF WATER RESOURCES

)

1 WATER QUALITY AND BIOLOGICAL CONDITIONS IN WHEELER RESERVOIR DURING OPERATION OF BROWNS FERRY NUCLEAR PLANT JANUARY 1, 1979 - DECEMBER 31, 1979 a'

l 1

Western Area Office E & D Building i

Muscle Shoals, Alabama April 1979

,~

G f

. . _ _ . .~. . ,_

COMPILED BY Mahlon P. Taylor PREPARED BY Mahlon P. Taylor James R. Mullins Robert W. Schneider Frank Taylor s

dl d

,T'P'-E OF CONTENTS Chapter g I INTRODUCTION .................................. 1 II PLANT OPERATION DURING THE REPORTING PERIOD ... 4 III RESULTS OF OFFSITE WATER QUALITY SURVEYS ...... 16 IV RESULTS OF AQUATIC BIOLOGICAL MONITORING ...... 29 V RESULTS OF FISHERIES STUDIES .................. 70 VI TRANSMISSION LINE RIGHT-OF-WAY MAINTENANCE .... 134 APPENDIX A--

SUMMARY

OF RESULTS OF TEMPERATURE ANALYSIS

  • FOR EVALUATION OF TiiERMAL STRESSES DURING THE REPORTING PERIOD (JAN.1,1979, TILROUGli DEC. 31, 1979) .............................................. A1 APPENDIX B-LISTING OF WATER QUALITY DATA SUMMARIES (JAN.1,1979, TIIROUGil DEC. 31, 1979) .............. B1 APPENDIX C--BIOLOGICAL DATA (JAN.1,1979, THROUGH D EC . 31, 19 7 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1 4

6 i

LIST OF ILLUSTRATIONS Page Figure 1 Monitoring Locations - Wheeler Reservoir ............ 3 Figure 2 Units 1, 2, and 3 Reactor Power During January 1979 through December 1979 .................. 6 Figure 3 Temperature Differential Between Thermal Control Monitors at Primary Upstream Control Station (TRM 297.6) and the Average Downstream Control Station (TRM 292.6 LMP) for the 5' Depth, Based on 15-Minute Interval Hour Moving Averages ...... 14 Figure 4 Average Daily Temperature Differentials Between an Upstream Control Station (TRM 297.6) and Selected Downstream Stations ........................ 17 Figure 5 Temperature Differential Between TRM 297.6 and TRM 292.5 (LMP) for 1979; Expressed as Percentage of Time at the Given Differential ................... 23 Figure 6 Daily Average Discharge From Guntersville and .

Wheeler Dams and the Calculated Daily Average Flow Past Browns Ferry Nuclear Plant ................ 25 Figure 7 Frequency of Phytoplankton Abundance Above and Below Browns v erry Nuclear Plant Before and During Operat un .................................... 32 Figure 8 Percentages of Major Groups of Phytoplankton During the Winter and Spring of all Years Samples Showing Preoperational Versus Operational and Control Versus Below BFNP ........................... 36 i

Figure 9 Percentages of Major Groups of Phytoplankton During the Summer and Fall Showing Preoperational Versus Operational and Control Versus Below BFNP .... 37 Figure 10 Results of Winter 1979 Phytoplankton Genera Index of Change ..................................... 40 Figure 11 Results of Spring 1979 Phytoplankton Genera Index of Change ..................................... 41 Figure 12 Results of Summer 1979 Phytoplankton Genera Ind ex o f C ha n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 13 Results of Fall 1979 Phytoplankton Genera Index of Change ........................................... 43 Figure 14 Chlorophyll a Comparison by Years Between Control and Below BFNP-for Winter and Spring 1969 - 1979 .... 45 11

1 LIST OF ILLUSTRATIONS (Continued) l Pse Figure 15 Chlorophyll a Comparisons by Years Between Control and Below BFNP for Summer and Fall 1969 - 1979 ...... 46 Figure 16 Phytoplankton Productivity During the Winter and Spring Seasons Showing Preoperational Versus Operational and Control Versus Below BFNP ........... 48 Figure 17 Phytoplankton Productivity During the Summer and Fall Seasons Showing Preoperational Versus Operational and Control Versus Below BFNP ........... 49 Figure 18 Corbicula Densities (Number /m ) by Year for Winter and Spring Sample ............................ 54 Figure 19 Corbicula (Number /m ) by Station for Preoperational and Operational Samples ............................. 55 Figure 20 Corbicula (Number /m ) by Year for Summer, Fall, and All Seasons Samples ............................. 56 Figure 21 Corbicula (Number /m ) by Station for Preoperational and Operational Samples ............................. 57

- Figure 22 Hexagenia Densities (Number /m ) by Year for Winter and Spring 1969 - 1979 .............................. 58 Figure 23 Hexagenia (Number /m ) by Station for Preoperational and Operational Samples ............................. 59 Figure 24 Hexagenia (Number /m ) by Year for Summer and Fall 1969 - 1979 ......................................... 60 Figure 25 Hexagenia Densities (Number /m ) by Station Preoperational and Operational Samples .............. 61 Figure 26 Chironomidae Densities (Number /m ) by Year for Winter and Spring Samples (Winter 1969 Through Spring 1979) ........................................ 62 Figure 27 Chironomidae Densities (Number /m ) by Station for Preoperational and Operational Samples .......... 63 Figure 28 Chironomidae Densities (Number /m ) by Year for Summer and Fall ..................................... 64

- Figure 29 Chironomidae Densities (Number /m ) by Station For Preoperational and Operational Samples .......... 65 a

111

LIST OF ILLUSTRATIONS (Continued) .

fage.

Figure 30 Oligochaeta Densities (Number /m ) by Year for Winter and Spring (Winter 1969 through Spring) . . . . . . . 66 Figure 31 011gochaeta Densities (Number /m ) by Statian for Preoperational and Operational Samples .......... 67 Figure 32 Oligochaeta Densities (Number /m ) by Year for Summer, Fall, and All Seasons ....................... 68 Figure 33 Oligochaeta Densities (Number /m ) by Station for Preoperational and Operational Samples .......... 69 Figure 34 Transmission Facilities, Browns Ferry Area .......... 135 l

l 0

W W

b iv 1

LIST OF TABLES Page Table 1 Analytical Methods of Chemical Parameters Measured in Wheeler Reservoir....................... 5 Table 2 Browns Ferry Nuclear Plant Water Treatment Chemical Usage 1979................................. 13 Table 3 Summary Table for "t" Statistic for Operational Water Quality Data.................................. 27 Table 4 Total Phytoplankton Numbers Frequency of Occurrence in Increments of 500,000 Cells / Liter......................................... 31 Table 5 Gill Net Catch, Station I, TRM 293.0, Winter Quarter, February 6-9, 1979......................... 74 Table 6 Gill Net Catch, Station II, TRM 299.0, Winter Quarter, January 23-26, 1979....................... 75 Table 7 Gill Net Catch, Station III, TRM 294.0, Winter Quarter, January 31-February 2, 1979................ 76 Table 8 Gill Net Catch, Station IV, TRM 294.0 (Mid-Channel, Heated Discharge), Winter Quarter, February 6-9, 1979.................................. 77 Table 9 Gill Net Catch, Station I, TRM 293.0 Spring Quarter, May 15-18, 1979..................... 78 Table 10 Gill Net Catch, Station II, TRM 299.0 Spring Quarter, May 1-4, 1979....................... 79 Table 11 Gill Net Catch, Station III, TRM 294.0 Spring Quarter, May 1-4, 1979....................... 80 Table 12 Gill Net Catch, Station IV, TRM 294.0 (Mid-Channel, Heated Discharge), Spring Quarter, May 15-18, 1979............................ 81 Table 13 Gill Net Catch, Station I, TRM 293.0 Summer Quarter, July 10- 13 , 19 7 9 . . . . . . . . . . . . . . . . . . . . 82 Table 14 Gill Net Catch, Station II, TRM 299.0

"- Summer Quarter, July 3-6, 1979...................... 83 ,

Table 15 Gill Net Catch, Station III, TRM 294.0

. Summer Quarter, June 26-29, 1979.................... 84 V

LIST OF TABLES (continued)

Page Table 16 Gill Net Catch, Station IV, TRM 294.0 (Mid-Channel, Heated Discharge) Summer Quarter, July 10-13 , 197 9 . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 17 Cill Net Catch, Station I, TRM 293.0 Fall Quarter, November 13-16, 1979................ 86 Table 18 Gill Net Catch, Station II, TRM 299.0 Fall Quarter, October 24-26, 1979................. 87 Table 19 Gill Net Catch, Stction III, TRM 294.0 Fall Quarter, November 6-9, 1979.................. 88 Table 20 Gill Net Catch, Station IV, TRM 294.0 (Mid-Channel, Heated Discharge), Fall Quarter November 6-9, 1979................................ 89 Table 21 Summary of Winter Quarter Gill Net Sampling; ~

Preoperational (1969-1973) and Operational (1974-1979)....................................... 90 Tabic 22 Summary of Spring Quarter Gill Net Sampling; Preoperational (1969-1973) and Operational (1974-1979)....................... 91 Table 23 Summary of Summer Quarter Gill Net Sampling; Preoperational (1969-1973) and Op era tio nal (197 4-19 7 9 ) . . . . . . . . . . . . . . . . . . . . . . . 92 I

Table 24 Summary of Fall Quarter Gill Net Sampling; Preoperational (1969-1972) and Operational (197 3-19 79) . . . . . . . . . . . . . . . . . . . . . . . 93 Table 25 Trap Net Catch, Station A, TRM 283.0 Winter Quarter, March 7-9, 1979................... 95 Table 26 Trap Net Catch, Station B, TRM 293.0 Winter Quarter, March 7-9, 1979................... 96 Table 27 Trap Net Catch, Station B, TRM 287.0 Winter Quarter, March 7-9, 1979...................

97 Table 28 Trap Net Catch, Station A, TRM 283.0 #'

Spring Quarter, April 17-20, 1979................. 98 Table 29 Trap Net Catch, Station B, TRM 293.0 Spring Quarter, April 17-20, 1979................. 99 l

l vi l

i

LIST OF TABLES (Continued)

Page Table 30 Trap Net Catch, Station B, TRM 287.0 Spring Quarter, April 17-20, 1979.................. 100 Table 31 Trap Net Catch, Station A, TRM 283.0 Fall Quarter, December 4-7, 1979................... 101 Table 32 Trap Net Catch, Station B, TRM 292.0 Fall Quarter, December 4-7, 1979................... 102 Table 33 Trap Net Catch, Station B, TRM 287.0 Fall Quarter, December 4-7, 1979................... 103 Table 34 Summary of Tagging Operations to Date, Wh eeler Re se rvo ir , 19 7 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Table 35 Common and Scientific Names of Fish in Ro tenone Samples , Wheeler Reservoir, 1979. . . . . . . . . . 107 Table 36 Area Populations for Major Fish Groups, Wh ee le r Re s e rv o ir , 19 7 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

~

Table 37 Size Distribution per Hectare by Species from 1 Cove Rotenone Samples, Wheeler Reservoir,1979. . . . . 110 Table 38 Size Distribution of Major Fish Groups Wh ee le r Re se rvoir , 197 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 39 Comparison of Rotenone Survey Results in Three Coves of Wheeler Reservoir, 1961-1979.......................................... 114 I Table 40 Taxonomic List of Fish Species Impinged At Browns Ferry Nuclear Plant, January - December, 1979........................... 115-Table 41 Species and Species Groups Percent Composition of Impinged Fish at Browns Ferry Nuclear January-December, 1979............................. 117 Table 42 Estimated Quarterly Fishing Pressure Wheeler Reservoir, Alabama July 1, 1970-December 30, 1979..................... 119

~

i Table 43 Fishing Pressure Estimates by Period Wheeler Reservoir, Alabama January 1, 1978' December 30, 1979.................. 120 vii

LIST OF TABLES *

(Continued)

Page Table 44 Seasonal Fishing Pressure Per Hectare for Each Sampling Area, Wheeler Reservoir, Alahama, 121 January 1, 1978-December 30, 1979 .....................

Table 45 Percent of Total Estimated Fishing Pressure for Each Sampling Area by Season, Wheeler faservoir, 122 Alabama, January 1, 1978-December 30, 1979 ............

Table 46 Estimated Total Sport Fishing Catch by Species, Wheeler Reservoir, Alabama, January 1, 1979-123 December 31, 1979 .....................................

Table 47 Estimated Sport Fish Harvest Per Hour and Per Hectare, Wheeler Reservoir, Alabama, January 1, 1979-December 31, 1979 ................................ 124 Table 48 Estimated Total Sport Fishing Catch From Each Sample Area by Species, Wheeler Reservoir, Alabama, January 1, 1979-December 31, 1979 ..................... 125 Table 49 Estimated Number and Biomass of Sportfim.. Harvest Per Hectare by Species, Wheeler Reservoir, Alabama, January 1, 1979-December 31, 1979...................... 126 ,

Table 50 Estimated Harvest Rate of Sport Fish From Each Sampling Area, Wheeler Reservoir, Alabama, January 1, 1978-December 1979 ......................... 127 Table 51 Fishing Pressure Estimates by Period, Wheeler Reservoir, Alabama, January 1, 1978-December 30, 1979 .................................................. 128 Table 52 Estimated Entrainment at Browns Ferry Nuclear Plant, 1979 ........................................... 130 Table 53 Numbers and Percent Entrained by Family of Larval Fish Collected During 1979 ............................ 132 i

viii

I. INTRODUCTION The Tennessee Valley Authority (TVA), by law a resource development agency, generates electricity as a part of its recponsibility for the physical, social, and economic development of the Tennessee Valley region and as a part of national defense. The TVA system supplies the power requirements of an area of approximately 80,000 square miles containing about 6.7 million people and interconnects at 29 points with neighboring utility systems. The addition of Browns Ferry Nuclear Plant (BFNP) to TVA's existing power system is a key element to provide the increasing supply of electricity needed for the Tennessee Valley region.

Browns Ferry Nuclear Plant is located in Limestone County in northern Alabama on the nor. _ ank of Wheeler Reservoir at Tennessee River mile (TRM) 294 (figure 1). It is about 10 air miles northwest of Decatur,

. Alabama, and 10 miles southwest of Athens, Alabama. The plant occupies an 840-acre tract and consists of 3 separate units with electrical nameplate ratings of 1152 megawatts each. It has the following physical structures:

reactor containment buildings, turbine building, radwaste building, service building, transformer yard,161-kV and 500-kV switchyards, stack, sewage treatment plant, and mechanical draft cooling towers.

This report is submitted in conformance with Section 5.6.1 of the Environmental Technical Specifications for the Browns Ferry Nuclear Plant; Unit 3 (July 2, 1976) Docket No. 50-296 and Units 1 and 2 (August 20, 1976)

Docket Nos. 50-259 and 50-260. It covers the reporting period from January 1, 1979, to December 31, 1979, and is the fourth annual report; five semi-annual reports and three annual reports have been submitted previously.

Quarterly monitoring periods are defined as follow:

1

First - January 1 through March 31 (Winter)

Second - April 1 through June 30 (Spring) ,

Third - July 1 through September 30 (Summer)

Fourth - October 1 through December 31 (Fall)

Unit I was placed in commercial operation on August 1, 1974, unit 2, March 1, 1975, and unit 3 began operation September 12, 1976. Reactor, Thermal power levels for this reporting are shown in figure 2.

Unit 3 was licensed to operate by the NRC on July 2, 1976.

Relicensing for units 1 and 2 was effective on August 20, 1976. Since units 1, 2, and 3 operate as an integrated system, technical specification requirements for units 1 and 2 are retroactive to July 2, 1976, to correspond with the effective date of technical specifications for unit 3 for reporting purposes.

The original specifications, bases, and methodology may be found in " Water Quality and Biological Conditions in Wheeler Reservoir During Operation of Browns Ferry Nuclear Plant (unit 1), August 17, 1973-February 17, 1974,"

TVA, Division of Environmental Planning, April 1, 1974. Current specifications and bases are in Appendix B of the facility operating license for units 1,

2, and 3 of the technical specifications. The specific reporting requirements for the technical specifications.are complied as follows
Sec. 2.0, Appendix B (Limited Conditions for Operation are addressed in Cp. 2); Sec. 4.1.1, Appendix B (Abiotic Surveillance is addressed in Cp. 3); Sec. 4.1.2, Appendix B (Biotic Surveillance is addressed in Cp's, 4 and 5); and Sec. 3.2.2, Appendix B (Transmission Line R"ght-of Way Maintenance is addressed in Cp.

6). Analytical methodologies are in table 1 of this report.

~

I

  • (

2:

L

. . . e .

E '

g x d *li/

WH ELER ] "<'yh .

r k j

/[v-; )J / -N- ATHENS g:a/

- e' 8, tg )

s e.- *ebe w a v;q~k.,,*\,Fg:

y '~ 4 ,o y :, u*

n;;1<r~

Y mr A BROWNS FERRY NUCLEAR PLANT

' .<3 'l .

vna s aAg Rb gf, f '[~

l't

=

.f'h"Y A ' "[

E EXISTING TEMPERATURE MONITOR F' lK

. 505 9 WATER AND BIOLOGICAL SAMPLING STATION R >.."..f (w: . -

f c ., .

q' 9.. ,7jQ A FISH SAMPLING AREA  %. ,

~ ~

@ BIOLOGICAL SAMPLING STATlON DECATUR \ ($

FIGURE I '8-l' $[#0.L -

'4 J

<;[ .[ } Y,1,Wh MC.NITORING LOCATIONS

~

b_ WHEELER RESERVOIR i SCALE.S OF nt!LES L . *.

II. PLANT OPERATION DURING HIE REPORTING PERIOD Makeup Water Treatment Plant (Spent Demineralizer Regenerants)

January was the only month during the reporting period when spent demineralizer regenerant was discharged to the river. During this month.

7.35 E + 05 gallons were discharged from the unlined pond. The pH of releases was maintained within the technical specification limit of 6.0-9.0.

Thermal Discharge Environmental Technical Specifications require a 15-minute 2-hour moving average of three monitors at TRM 292.5 for thermal compliance and plant operation. The computed maximum temperature :: sing this averaging technique did not exceed 90 F (Appendix A). "

Average daily temperature differentials for the 5-foot depth at control monitoring stations are summarized in figure 3: Temperature differentials in this figure were computed by subtracting the temperature of upstream control monitors from the average temperature of three downstream monitors. Therefore, a positive temperature differential indicates temperature downstream of BFNP was higher than upstream.

Chlorine The raw water chlorination system was operated on 45 days during the reporting period. Residual chlorine did not exceed 0.05 mg/l in the system. Chlorine use was as follows:

e 4

TABLE 1 ANALYTICAL ME1110DS OF CHEMICAL PARAMETERS MEASURED IN WHFE!.ER RESERVOIR Reportina Period: .lanuary 1,1979-December 11, 1979 P!a ra,mr t e r. , , _ _ Methml and ReferTee" Preservatinn_ _Terhntepga Detection Limita Temperature Therml e t e r-The rmomet er in attu 0.1 C i litaantved osyaen Membrane EPA, 1974, p. 56 in situ 0.1 ma/l Tit ration-Winkler EPA,1974, p. 51 Determine immediately ROD 5-day, 20 C incubation DO depletion measured with YSI Iced I mg/l (undel 54RC) membrane or Titration-Winkler EPA, 1974, p. 11: Standard Methode 14th ed., p. 543 a

CUD Titrimetric-K 0 reflus Sulfuric acid (1 + 4) I ma/1 2 7 EPA, 1974, p pH Potentionmetric In situ or EPA, 1974, p. 239 Determine immediately Not applicable Total Alkalinity Potentiometric Titration Determine immediately I ag/l i

Standard Methode leth ed., p. 278 Specific Conductance Self-contained meter None 0.5 geho/cm EPA. 1974, p. 275

! So.llum Atomic abaarption None 0.1 me/l EPA. 1974, p. 147 None I mg/l Sulfate Turhidtmetric EPA, 1974, p. 277 None I mg/l Chloriden Titrimetric EPA. 1974, p. 29 l

NH -N Colorimetric Sulfuric acid (1 + 4) 0.01 mg/l 3 EPA, 1974, p. 168 1 al/8 oz.

Colorimetric Sulfuric acid (1 + 4) 0.01 mm/!

NO2 + NO3-N EPA, 1974, p. 207 1 al/8 oz.

Orannic-N Colormetric Sulfuric acid (1 + 4) 0.01 mg/l EPA, 1974, p. 182 1 al/8 oz.

Pilterable rentdue Cravimetric None 10 mg/l EPA. 1974, p. 266 N. int l i t e rs,h i c ren t duc Cravimetric None I aa/l EPA. 1974, p. 26R Total reatouc Cravimetric or sum of filterable plus nonfilterable None 10 mg/l residues EPA, 1974, p. 270

n. Methode for Chemical Analysis of Water and Wantes EPA-625-/6-74-003,1974.

Standard Methoda for the Examination of Water and Wastewater, leth Edition,1975.

o b

- m

9 e

lTT1 9 l8 9 9 A 4 I # _l,,8 l8 8 0 9 l8 8 8 f} WM'I # f"? F T'f' T -T* F I T ' ? ? ' T IT I g 4

- "-%g ->

'A 3 h

H i2 f--' N w_ . . _ ~~

M d

1 t4 - l19 "a

M -

  • n p  ;

f i ,- -f a m

'p- - ,

, - l 2.

,s i

- *=

- . r -.

~

.L  ;-  :-

. . 3

y

,m  :- ,

9 ,,.

a a

a

  • a -

a a a n a

g a -

m 2 . N. -l G

. i a

. e g

-q .

.g I

e -

e N 3 s

q;

- x _ q N -

u%

t N-D . N .

. i. . i . l

, . . . .} .;- .

.(- ,

a n -

a a a  : n a a  :

. - ret cerr-r i - . . ' i- - i e-t-rt i - 1 - u

_J g' ~~g

,'r ----- -

L---

1._xl2 .

12 m E 4

.% R 4 2 -2

. 3 d

N

- =

. L ~.

.l.. =

. . . . , , __ < i

.w

)

I

, a.4 a Qa 4 4.4.;a.ta.Q 4 4.4 AM I ,,-  ;- *Af a -

a i a e 6 - a a a n 1N3383d-83 mod 8013tf3H l

6

  • -,-,.e , t-, very;rv v r T--r'

. . ~i- i + T *

  • T-* -' ' i '

g Js.a s

4

. . *G f

Jf F

'.a 1 in 1

d=

L x.

i -

Ti 4

. 2

[ N

  • ~

n N  : .  :=

- x _  ; _

,i

,;. .;. .;. 4 .;. .;,: ,,. .;. .;. 4 3a .;  :

- =

a a a a e a a  :

g e _

g -

L
, ~  :.

~

a T ._ l a

( .

l a l a w g g

-~

e -

g

~

.l; - N i: w

.x .

,; l .;. .;. .;. .;. .j : ,l . .;. .;. .;. .;. .j :

a a a

a a a  : a a  :

~

7s a -

a a 7a

. N  : .

7 -

5 -

(N - d

~

.x.

l l C~  :

y-

2

_ .- _ _i .

4

. . g

,. .;. 4  ;.  ;. .,,g ,, .;. .;. .;. .;. gg a a a a a a a a

~

IN3:)M3d-83 mod WQLDV3M g * * ]g *

]9 3'{

7 men mM A.A

-vr' r r -' v ' + t + + e-' r-e-v ' i - -

  • Xr '- T-' '-r ' inv ' T+- i -

-j,

,A .

s - -

-a i

- D . , _ _ T i

.x -

-Q 1

~~ ._ .

-a n

. k  :.

- i d

., h . ,

s -

N 2

P P

l  : .

.,a

,,. .;. .;. .;. .;. .,g ,

4

.i. .;. 4 a a a a = g a a a a

m n

- . - =

g -

e

.i . . .

.d -

a a

.  :. N l

15 1 5 H

- a g.

- - a - - a

-  :-  :-  :..a ,, f-  :- s- ,

a 3 a a = g s a a 3

a m

-n

_= -n a

=

\

! "  :. :F g  :.

a 2 ..a l - 4 q .. 3 4

x T i -L qi 4 I

- = 41 =.

[S

-2

.m a

+ - a -

V-r s W

,a ., i-  ?- '%,. .

s a

  • g a a a = g a a IN33tGd -H3 Mod HQ10tf38 oe AL 3

AD ]D D

. =

8

. .........i........,..... 7,,3....r** i e ' ' t '

  • r4 ,

,a

,____ 2 m =, ga 7--

a 1 i 4- i =

  • de -

de

=

j

[- *) , . [

1  :.

h "a -

n

_~...  :

i . - . . .  ;

m .__ ..._- .

y.. . .

- - - - , g _ g l4 4

3= ,.

as - ~q -s 1

]

+ - a -

4a is. x k 4

.;. 4

=

= a a a a a a a a

-,,, r r -',, r , ** r *,, r* *m , -

a -

1.a e

.. 4 e ~n 4

  • 1

. . 4 n in -

- .  ::== . N

- x  : s  ; d b t- . , .

5 s ----

s W
= -.  :

_ . _ .=

(.;. E

,. . ,r . 4

- a =

a a a e a a a a  :

,,c, c ,7,,,vt ,q,

- , q ,-vr m er,-er,- ,

a

" ' m.. )a [ '4

+ 4 x ,

4*

6 f J,e e -4 e 3

i 4 1

- 4 4 . a.

ag

+ ag <

. 4

& 4 '

C b

  • 8 1-  ! i=

r -r g

r . . . . . ,

p 2. . 4 r.

p . i.

15 a

y:- -

  • 4 1,

6

. t i

V . . . . . . . - J

[44; 4.. a. 4 ; 4 ....;t4..a;44 Q ,g_ f a.4 44.;.us a.4 ; o .. .uj.4 .q

- a a =

a i a i a a

  • 1NIW3d - H3 mod 801:N38

-........,.............y, g.........

....,....,..,.3,, .

4

. - _. -g.

. . 3

- *

  • y o 44 . 4e

- g -

-  :  ; .lg

.- 4 ,

le

. 4 an

= 4 k -

1.  := . .

3 e

f. f 1

,O . G b e a

h 7J .

4 4 1 L 1 c 4 m

a

-; +

t aC $

. e . e uj u .f . . u f.,4 m j . gn ,

u j. . . . f.& u . j .. . 6 a  : a a - a a  : a

- . .m m i v . . . . .i , , . .. , e , . . . , - -,- . -,r e , - , ,1 . r r 1 , .-vre

. 4 .

. j 6_, y

> -G .m 4G b d D

. a . ,

,e '

4e b - - . ..T' T :=:s

b. 4 .

6 .' 4 p

p ,4 -

_.._y e _.

3 3 _ . _ . . . .

g b.

. _4.-

~

, u t_ . 'M w - -

< e . e a .a A a a _. -. 4 A ...A 6, ,

&.-d 46& ..L.-.. & . . 4. 4 &

q

. . & 6.4

- e a -

a i i i n a i i .

-....................,q,

- , g . - . -. . i . . . . r. . - v45 1a .,__ .

1a 3

D " I M )

~M ~~ 14

- - . . 4 I Io *

-g

-n 4

. . 1

-* f 7*

1

.$ "2

. *7. _ . _ .

gm=- G 9

. = *

. == F **

7- I f_- , $3

_ .t -

-w p

4=

a

= 4

.._J'

,b-._. _ __4 . . '. 4 . . . 4 . . . . ; . . 3

,[ .. . . g . . . 4 . . . 4 . . . . g . . .. Q ,.

a a i i n s a a a l

. LPG 3hGd - M M q -

g j

, 10 t

l

x- 3,.

.a

,. . ,- Q _ .

,e t% . w e

t  : th= .  :

t a, . . s . .

4" r

+

L b -

r

" 5 I -

de 4

-s a

A=

t y

, . x .-

i* e -

- aa s _s

,,.... . .g-  ; .  ;- ,: fy_. .2 . . . 2 ... . 2.. . 4 . ...d:

a a a a a a a a a

. , ,, v , 1 -,-,...,,,- .r......,,,,

a r 5 ^

a 4

3 z

e -

.e

. . 1.

N -

a -

a -

8 m L -

.~ - a.

. p l r5 t- %

.  :.  :  :. N

n t 1
. t '

- a - -a p 4 i  : .  : .

_- -f- fW i- , ,. , , -J . 2 . f . . .. u j. t . . . . j_ . 3,4 a a a

  • n .

a a a e n .

. .,. .tr. ,- ..-

. . . . i . ,, r t v-. . r , - - , r + -$, l L -

4 C . 3.

r~ x e -

ze.

.~~ _ . . . . _ _ _ _ :n 4

a

}~

. . :4  !

2 -

ze I

!w.m

. d. .

- - . r-a.

~

. l t

N  :. 4

, ;. . . . f -. -  ;- f - w ,. , m g u.. . s . . . . g . . . . g . Q..

a e a - -

a a a i a i a

.LNDN - 83 mod WQL:N3W

'D

  • P 'D R'D Ny@ R
    1. aJ J)] b

Month Number days Quantity May 1 400 lb C1 June 17 1.5 ton C$2 +

10,700 gal 10% Na001 July 2 2000 gal 10% Na0C1 October 7 3500 gal 10% Na0C1" November 18 7000 gal 10% NaOC1 Chemical Usage Table 2 shows water treatment chemical usage for BFNP during the reporting period.

Potential Environmental Stress From Condenser Cooling Water Discharge In addition to the four instream thermal monitors used for plant control, a series of fixed temperature monitors is located in Wheeler Reservoir above and below BFNP. A summary of the temperature differential -

between the upstream control monitor (TRM 297.6) and monitors located at three stations downstream from BFNP (TRM 292.5, 286.4, and 275.C) is shoJ.

In figure 4.

Figure 5 shows percent of time a given temperature difference was within the specified range during the reporting period as determined from the upstream temperature station and the average of the three downstream stations. Figure 6 shows mean daily streamflows in the vicinity of the plant during the reporting period. These data are based on actual mean daily discharges from Guntersville and Wheeler Dam and computed mean daily streamflows at bFNP.

A summary of hourly temperature data by month is in Appendix A.

Detailed hourly data are too voluminous for inclusion in this report but r,a on file in the office of the Western Area Office, Division of Water Resources, 1

! EDB, Muscle Shoals, Alabama. .

12

= a . . . .

TABLE 2 BROWNS FERRY NUCLEAR PLANT WATER TREATMENT CHEMICAL USAGE 1979 Description Grade, Amount Used Per Quarter Chemical Concentration, etc. 1/1-3/31 4/1-6/30 7/1-9/30 1 /1-12/31 Aluminum Sulfate Commercial 3000 lbs -

2000 lbs 1600 lbs Ammonium Hydroxide Reagent -5 gal 3 gal 3 gal 4 gal Coagulation Aids Wisprofloc 20 100 lbs - -

250 lbs Magnifloc 575 C 0 lbs -

500 lbs 500 lbs Hydrazine 35% 7 gal 3 gal 3 gal 5 gal H

Q Soda Ash 58% - 100 lbs -

200 lbs Sodium Hydroxide 50% 11.4 tons 11.8 tons 15.7 tons 17.3 tons Sodium Hypochlorite 10% 305 gal 350 gal 190 gal 300 gal Sulfuric Acid 93% 14.6 tons 13.7 tons 16.7 tons 22.2 tons

8 7 -

6 -

E -

4 - . A lili: a!',  !:

s - ,,

', i  : ' ,s

, , . ,s

-s e- ,i I'[!virl' 2 ., i i' I,~ l

. f. .<,b, , : ,

a '

.s.

n' "'

3

  • ,n
  • \ :

,. .m

%.I \

.e in,n,/:

Y

'i

, .i , :, ,,

\ 'l .f'yg

['

n E

hj.1 % j\ ~ ,e II

  • j 3 '
  • 5 j'~, ,f ,sfyl},'f ,1 i j' *~'U ., , , '~ p,,5 '. . Y l, . ' '55 g, \,;^)

'^

g -

v yv v - y pj <vgj r ii j r g

-1 - y ,

o n

-2: - $

-3 -

-4 -

~5 -

-6 -

l -7 -

l l _g i e i dANUARY FEBRUARY MARCH APRIL MAY UUNE Figure 3. Temperature differential between thermal control monitors at primary upstream control station (TRM 297.6) and the average downstream control station (TRM 292.6 LMP) for the 5' depth, based on 15-minute interval-2-hour moving averages.

l . . . . . .

I

8 7 -

6 -

f 5 -

,',l}

f ,k

E s  !\

l!s \, I 'r'

! ,*, \ k. i' ,\,'i'},.,s

\lsd\n rb  ?

2 'h)It*N l0  :

5

,1

/ '

't j#. f j,,ai.ri'"'r: ,

i,

,I 6 i(I* j %, *,- ~,' ! 'j,

,~iai'.

S* '

E L

\ ,ln* ds,. ~

3 G;f,1 p 1 h b, r

  • r s), ~s <

p %i a a,$ * /) l  !

. s,noJ -)

>* sg 's O -* 'J **

me ,; . ,; 5 .

y ,

1 g

y __

- c

-2 -

d

-3 -

-4 -

-5 -

-6 -

-7 -

3 I I I

~8 duly AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER Figure 3 (Cont.) Tamperature differential between thermal control monitors at primary unstream control station (TRM 297.6) and tne aves y.e downstream control station (TRM 292.6 LMP) for the 5' depth, based on 15-minute interval-2-hour moving averages.

s a

III. RESULTS OF OFFSITE WATER QUALITY SURVEYS Water quality data for winter, spring, summer, and fall quarter.s j

of 1979 from stations both upstream and downstream of BFNP are in Appendix B. They include maximum, minimum, mean, and standard deviation of horizontal J

and vertical observations at each station. Table 3 is a summary table of "t" statistic comparisons of means for chemical parameters measured at each station during this reporting period. The hypothesis tested was that samples were taken from the same population, more specifically that the mean value for one station was not statistically different from the mean value at l other station.

Table 3 shows a difference in various chemical parameters that is i

inconsistent with respect to station and par

  • meter. These differences which I

1ed to the rejection of the null hypothesis were attributed to limnological features such as thermal stratification, seasonal biological activity, ,

geological considerations, and influence of tributaries and not power plant i

! operation.

1 During the period covered by this report, available data indicate l

no adverse alteration of water quality (established water quality standards were not exceeded) in Wheeler Reservoir due to the operation of Browns Ferry Nuclear Plant.

! 16

l 1

- 275.9 Average Temperature et Station (Vertical) l 4-

.A

- g-a AA. a l A i l q yy v' y v

~

VANUARY FEBRdARY MANCH APR'IL MY UUbE k S-Avurage Temperature at Station (Surface to 10' Depth) l 1

e 4- f k k 0 e-- n >

!. b,. n o . A A . /L M N/

jyw ymyv g f~ VANUARY FEBRdARY MARCH APR'IL NY UUNE

! l 5 l

4. Average Temperature at Station (Bottom 3 Sensors) g . d A A . A . h ,---__

kn wb A[b[  ; ki

~, -

'"fvy VANUARY (y'U7 "I" FEBRUARY NARCH APRIL g7 v NAY g.

UUNE Figure 4. Average daily temperature dif ferentials between an upstream control station (TRM 297.6) and selected downstream stations.

17

275.8 .

[ 6-AverageTemperatureatStation(Nertical) 4 .

~

b A .

Wy

,i

. u

~

VWU \f T

~

AUGUST SEPTENBER UCT0bER NOVE58ER DECE5SER OUbY o.

{ e b ~

Average Temperature at Stations (Surface to 10' Depth)

]

l y

@ 4-b c

! 2--

_. > =A. A

.o g N I l' Y V

{" y I

~

AUG ST SEPTESSER OCT05ER NOVE5SER DECEdSER UULY a

6--

Average Temperature at Stations (Bottom 3 Sensors)

, 4_

Tr-g 4 A b A

- ., s yr

~ -

~~ w

~

VUbY AUGYST SEI'YEb5fk OCTCS~EN NOVE582R DECE5SER -

~

" Figure 47 (CAntinued1 18

, S.

  • l Average Temperature at Station (Vertical) l e 4 .

l l

g_ U

' .h o

\'l \

l j VANUARY FEBRUARY MARCH APRIL NAY UUf4E l

  • l 6

5 E- Average Temperaturo at Stations (Surface to 10' Depth) 4 -

8

) /l 4%

- yf v6 h \ ) \ \

t t F! \

~

dANUARY FESRdARY NARCH APRIL MY UUNE ,

e r  :

E l

S-h l Average Temperature at Stations (Bottos 3 Sensors) 4-h a b ll h

[ vi ,

~

I

. VANUARY FESRdhRY MARCH APRIL NAY UUbE

' ' ~

Figure 4 (Continued) l 19

266.94 ,

S.-

Average Temperature at Station (Vertical 4 -

l 2 -

l e-Td y l-b

~

I

~

NY AUGbST SEPTEbSER uviupr.M NOVE5 pen DECE[ M e

4

.H 5-Average Teitperature at Station (Surface to 10' Depth) f

  1. ~

I 3'

t h ]

i I

.k _ . . . .

DECE5pER g- WLY AUGOST SEPTEMBER OCTopER NOVE5SER r,

i 5-S Average Temperature at Station (Bottom 3 Sensors) 4-NY E-J  % i y

I

~

MY AUGYST SfPTAVER OC7DiBER NOVE5SER DECfi4SER

~

~ F1gure 4 (CoEtiniaed) ~

20

l . g.

292.5 Average T;1perature at Station (Vertical)

+-

E -

a A /N i y y ,

~

dANUhRY FEBRUARY MANCH APNIL NY dubE 2

CJ j

S-

'8 Average Temperature at Station (Surface to 10' Depth)

S 4 -

5

. E I S -

ae B Ws V V h V U

~

VANUARY FEBRUARY MARCH APR'IL MAY JUNE D

o E

3 S-(

Average Temperature at Station (Bottom 3 Sensors) 4 -

S -

o A

,' I v v

_a -

VANUARY FESRUARY NARCH APRIL NAY UUNE Figure 4 (Continued) 21

292.5 ,

Average Temperature at Station (Vertical) 4 -

E W

. h.

~

VUbY AUGYST SEPTEb8ER OCTOBER NOVE58ER DECEdOER m

.E s.-

S g Average Temperature at Station (Surface to 10' Depth)

~R 4 -

'b I' -

e

!*\ LV -

N& -

.c_ _. ,i 3

=

~2 SEPTE5BER OCTOSER NOVE5SER DECE5pER k Vui.Y AUGOST

$ca e 6--

1

[ Average Temperature at Station (Bottom 3 Sensors) r.

t

.- l h *

-2 AUG ST SEPTESSER OCTOBER NOVEdOER DECE5SER VUbY Figure 4 (Continued) .

I 22

Average of All Sancors 100 100

- 1 I 3 '

8E -

8E -

6E - 6E -

4E - 40 -

2E - 2E -

0 - ' - D Average J ~ - -

of Sensors Betve Surface and 10' Depth J "-

100 100 ,

' 3 8E - 8E -

y 3 SE - SE .

I j7'

$ 4E -

/ 4E .

l7 e . . . o . . I....,

Avarage of Botton Three Sensors y

5 100 100 8 I I

  1. ' 8 8E - 8E -

BE - BE - 7 4E - 4E -

i 0 - - - ET7 - - - - - - - / 3-4-3-2J10 1 2 3 4 5 4-3-2-1012345 Temperature Dif ferentials (OF)

Temperaturt Differentials (OF)

IST QUARTER 2ND QUARTER Figure 5. Ternperature dif fecential between TRM 297.6 and TRM 292.5 (LMP) for 1979 Expressed as percentage of time at the given differential 23 1

Avarar,e of All Sensors 100 100 I I I 8E - 8E- l 6E l

6E -

{

4E - l 4E -

2k -

[ 2k -

A a S s Betw e Surface and ID' D 1 1 3 3 8E - 8E -

3 SE .

1 i

6E .

p 4E -

l7 4E -

/

2k - N - -

C '77 / / - - - - --

0 Average of O

Botto Three Sensors -

- 100 100 5 I I 5 8E - 8E -

l 6E -

lh 6E -

4E -

i 4E -

2E - 2E -

~ M 0 " "

0 >

4-3-2-1012345 4-3-2-1012345 Temperature Differentials (OF)

Temperature Differentials (oF) 3RD QUARTER 4TH QUARTER Figure 5 (Continued) ,

l 24

h g

. 2 o t 3

O ]3 j

w -

1-s M S

? I

.Eo S  :

2 i

1.:

sc uw

. J . . . . . gp' 13

= e-g~

I~51

.p.

43

.~

=

r.

. . . . . . k?

si 3a:-a m

8 8 8 8 8 8 o 8 8 8 o (got x pawsad M outm) mu e um e t

I 25

1 l

l I

___ L l 250 . - ' ' '

200 - M -

ISO - -

100 - .

50 - .

O' ' * ' ' '

4m

  • IFNP 200 - -

Q8F = 0.56 QW* O.44 0 G 15 0 - ~

'~ r

~

j 50 - _

250 . - - ' '

WEILER 200 -

R 150 -

10 0 .

50 -

m FEBRUARY MARCH APRIL MAY M Figure 6 continued. Daily average discharge from Cuntersville and Wheeler Dans and the calculated daily average flow past Breame Ferry Nuclear Plant.

e

. we %

e e

2G

Tuu 3 StM1ARY TABLE FOR "t" STATISTIC FOR OPERATIONAL WATER QUALITY DATA 8 (Continued)

ROD Total Dissolved Non-Filterable DO 5-day COD pH Alkalinity Conductivity Sodium Sulfate Chloride NH2 -N (N0s+N02)-N Org-N Solide Solids _

Third Quarter 1979 Tennessee River Mile 2d3.94 vs. Tennessee River Mile 295.67 3.44 1.47 1.23 3.53** l.7I -0.34 1.13 -1.16 2.33 -0.30 -4.38** 3.9t** 0.36 0.00 Tennessee River Mile 283.94 vs. Tennessee River Mile 291.76

  • 0.63 -3.22** 0.39 2.09 -2.90*

-0.21 -0.55 0.40 1,44 1.17 8.88 0.45 -0.99 T naessee River Mile 291.76 vs. Tennessee River Mile 295.87 3.19'* 0.68 1.60 2.86** 2.38 - 3. 85*** 2.19 -0.52 -1.63 -0.99 -1.95 2.37 -1.63 2.58 Tennessee River Mile 277.98 vs. Tennessee River Mile 288.78

-1.58 1.08 4.43***

Tennessee River Mile 277.98 vs. Tennessee River Mile 293.70 0.65 1.63 2 3. 45***

Tennessee River Mile 277.98 vs. Tennessee River Mile 307.52 3.88** 3. 8 7*+ 33.02***

Fourth _juar.t.er 1979

, T_e.n__nes_s_ee Riv._er_M_ile 283.94 vs. Tennessee River Mile 295.87

-1.63 2.30 -1.49 -2.38* 0.25 -0.95 -2.44* 0.50 -0.67 0.34 0.85 0.67 -0.47 Tennessee River Mile 283.94 vs. Tennessee River Mile 291.76

  • 0.53 -0.70 -1.00 -2.95*

e -I.00 1.94 1.08 2.03 -0.12 -0.12 -0.28 0.28 0.35 Tennessee River Mile 291.76 vs. Tennessee River Mile 295.87

-l.15 0.26 -3.60* -4.52*** 0.25 -0.77 -4.28* 0.15 -1.13 -7.75*** l.30 1.74 1.56 Tennessee River Mile 277.98 vs. Tennessee River Mile 288.78

Tennessee River Mile 277.98 vs. Tennessee River Mile 307.52

  • 2.78*

4.19***

  • $lanificaet at the 0.05 level.
    • Stanificant at the 0.01 level.
      • Stanificant at the 0.001 level (i.e., the dif ference between the means is 8reater than could be espected by chance I time in 1,000).
a. All sample values were equal.
b. Undefined.

9 21 9

e TABl.E 3 SU)9 TART TABl.E FOR "t" STATISTIC FOR OPERATIONAL WATER QUALITT DATA Olssolved Ren-F ilt e rable B00 Total Solide Do }-day C00 yN Alkallatty Conductivity SJo un Sulfate Cbleride WM g (NO +N0m)-N Org N Solids _

4 Fir 3LqujLrttr,_ll!!

I' = teee River Mile 2ss.94 vs. Tennessee _ River Mile 295 J

-1.06 0.53 1.63 1.04 1.04 0.75 9.73 0.69 -0.53 1.05 1.07 1.t% -0.10 1.97 Tennessee River Mile 283.94 vs. Tennessee River Mile 291.76 0.49 2.00 1.78 2.16 1.31 1.12 0.12 0.48 -0.85 -1.80 -l.92 -1.73 0.99 1.33 Tennessee River Mile 291.76 vs. Tennessee River Mile 295.87 0.61 1.15 O.52 0.19 1.22 -0.38 -0.52 -I 12 1 1.41 -l.23 8.04 1.52 0.98 0.26 Tennessee River Mile 277.98 vs. Tennessee River Mile 288J8 3.11** -0.98 3.76**

Tennessee River Mile 277.98 vs. Tennessee River Mile 293.70

, 3.73** -2.44* -2.87+*

Tennessee River Mile 277.98 vs. Tennessee River Mile 307.52

-4.5a*** J.61 -l.Il second gu_arter 1979 Tennespft,Rige,L M6te,283.94 vs._ Tennessee _ R y r_Mlle 295 y f -0.86 0.98 2.96*

-0.04 2.25 2.81** -2.93* -1.04 -1.08 1.53 -0.75 j 2.61* 0.69 0.69

  • 1 Tennessee River Mlle 283.94 vs. Tennessee River Mile 291.76 1,67 1.67 -2.06 0.72 -1.57 0.79 0.20 -2.60* 0.73 -2.99*
  • 0.72 -2.76* 1.52 0.67 3.!?*

-0.82 0.62 1.22 -0.24 2.74* 1.37 -1.14 -1.55 Tennessee River Mile 277.98 vs. Tennessee River Mile 288.78

-0.08 0.26 4.27***

Tennessee River Mile 277.98 vs. Tennessee River Mile 293.70

, -4.53*** -0.98 -0.98 Tennessee River Mlle 277.98 vs. Tennessee River Mile 307.52

-3.61** 3.21** 6.04***

  • Sisalfacent at the 0.05 level.
    • 51ssif teent at the 0.01 level.
      • Sistificent at the 0.001 level (i.e., the dif ference between the means is greater than enuld be espected by chance I time la 1,000).
a. All semple values were equal,
b. Undefined.

.. 28 1 1 e

e

IV. RESULTS OF AQUATIC BIOLOGICAL MONITORING l e

Introduction Aquatic biological indicators have been selected for detecting biological changes in Wheeler Reservoir attributable to the operation of BFNP. Sampling for phytoplankton, zooplankton, and benthos has been conducted quarterly since January 1969, usually during January, .^.pril, July, and October, at eight stations. These stations art shown in figure 1 and are as follows:

Tennessee River Ndle Controls 307.52 301.06

. 295.87 Below BFNP 293.70 291.76 288.78 283.94 277.98 Benthic samples were collected randomly as near as possible to each station. Plankton samples were' collected at specific depths in the river channel near each station. Although BFNP was not operational during portions of this period of monitoring due to repairs, the biologi-cal monitoring continued as planned.

This is the ninth report summarizing water quality and biologi-cal conditions in Wheeler Reservoir since BFNP began operation and includes data for winter, spring, summer, and fall of 1979. Some biological data from the previous reports are included where necessary. These data are compared with data collected before operation began. Specifically

' 29

data are examined from five downstream and compared to three upstream stations to determine whether changes have occurred in aquatic biological communities as a result of operating BFNP.

Standard operating procedures for all sample collection and laboratory methods are on file in TVA's Division of Water Resources, Weat ern Area Office, Muscle Shoals, Alabama. Specifications and bases (1.6., reasons for monitoring) concerning the biological monitoring program can be found in the Environmental Technical Specifications for BFNP.

Phytoplankton Abundance -- The frequency of occurrence of phytoplankton 5

densities in increments of 10 cells / liter at both upstream and downstream stations before and during operation of BFNP is shown in figure 7.

These results are also shown in increments of 500,000 cells / liter in ,

table 4.

Winter, spring, summet, and fall samples are used in table 4 and figure 7 to establish a frequency range for the entire preoperational monitoring phase. Operational data for fall of 1973 and all seasons during 1974 through 1979 are combined for the same reason. At this time,148 preoperational averaged observations are compared with 200 operational averaged observations. Table 4 and figure 7 show that the most frequently occurring increment for the preoperational phase (above i

and below BFNP) and the operational phase (above BFNP) is the O to 5 x 105 cells /1 increment. Below BFMP in the operational sampling, the majority of cell densities f all into the greater than 2,700,000 cells /1 .

30

l

. TABLE 4

[?TAL PHYTOPLANKTON NUMBERS FREQUENCY OF OCCURRENCE IN INCREMENTS OF 500,000 CELLS / LITER (Data Taken From Figure 7)

Range Groups (Cells /1) x 10 5 0-5 5-10 10-15 15-20 20-27 >27 Percentage Occurrence Preoperational - Control 48 26 9 6 6 5 I Preoperational - Below BFNP 30 30 10 5 15 10 i Operational Control 31 28 11 5 9 20 Operational Below BFNP 26 8 10 6 12 41 I

e o

e 1

31

I2 - PREOPERATIONAL-CONTROL (ALL SEASONS-54 STATION SAMPLES) 8 - -

4 -

l _

0 I I I I I O O I

  • F PREOPERATIONAL-BELOW BFNP 3

I2 -

(ALL SEASONS-94 STATION SAMPLES) g _

i i 8 -

l cn 4 _ -

uJ ~

O W

$ I2 - OPERATIONAL-CONTROL g5 (FALL,1973; ALL SEASONS,1974,1975 g-8 1976,1977,1978 AND1979-75 STATION V O 8 -

u. _

SAMPLES) o 4 - - -

O

~1 iib I I I I II I I o

51 O

E 20 -

_+. .

18 -

-k-16 - OPERATIONAL-BELOW BFNP (FALL,1973;ALL SEASONS,1974,1975, 12 - 1976,1977,1978 AND 1979-125 STATION SAMPLES) 8 -

4 -

O I i i li llIF -f- ~h I I I I l l l

1.0 1.5 2.0 2.5 3.0 >3.0 0 0.5 MLLION PHYTOPLANKTON CELLS FIGURE 7 FREQUENCY OF PHYTOPLANKTON ABUNDANCE ABOVE AND BELOW BROWNS FERRY NUCLEAR PLANT BEFORE AND DURING OPERATION l

i 32

category due to high counts in recent summer months (1977, 1978, and

. 1979). The next highest category for operational sampling below BFNP is the less than 500,000 celle/1 group.

Winter and spring phytoplankton standing crops have been similar through the entire monitoring period at areas both upstream and downstream of BFNP because the water is homogenously mixed by seasonal flow regulations and lack of temperature stratification. The winter phytoplankton counts during 1979 above and below BFNP were the highest (2.4 million cells /1) since 1969. Relatively high counts also occurred during 1970 and 1977. Cell counts during 1978 were low and were comparable to those during 1976 above and below BFNP during the winter months.

Nutrient concentrations were not unusualif high du ing any of these years and the water was extremely cold (approximately 42 F in 1976, 40 F in 1977, 41 F in 1978 and 1979) during the winters. Secchi disc measurements were over 1 meter in most locations in 1977 thus allowing for excellent light penetration but less than 1 meter in 1976, 1978, and 1979.

The spring phytopl < ton samples of 1969, 1970, 1972, 1976, 1977,1978, and 1979 tend to reflect summer conditions because of unusually high ambient water temperatures during these years compared to other years. Surface temperatures of approximately 58 F in 1974 and 54 F in 1975 were less than 64 F in 1976, 69 F in 1977, 63 F in 1978, and 65 F in 1979 in the control area as well as below BFNP.

These temperatures were probably due to meteorological and hydrological conditions during and preceeding the sampling period of 1977 through 1979. Spring phytoplankton counts during 1979 were the largest recorded 33

above and below EFNP. These results are tabularized in Appendix C (winter ,

and spring phytoplankton tables). Although annual and seasonal fluctuations have occurred, these have been similar to both downstream and upstream stations; hence, it is concluded that total phytoplankton numbers were not affected by the operation of BFNP during the winter and spring of 1979.

Phytoplankton samples collected throughout summer and fall monitoring periods of 1969-1979 have shown a larger standing crop of phytoplankton below BFNP than in the control area except during the summer of 1978. The other two control stations were less than the stations below BFNP. Phyto-plankton abundance in Wheeler Reservoir during the summer of 1978 was over seven times greater than any summer from 1969-1976 and over 60 percent greater than 1977 samples. This increased abundance was likely due to extreme summer water temperatures and other factors such as meteorological and hydrological factors causing ideal growing conditions especially, for cyanophytes. Water temperatures were highest in July 1977 and 1978 since ,

sampling began in 1969. Temperatures averaged over 6 F warmer than the normal July temperature for the past 9 years. These were naturally occurring water temperatures since they were observed throughout Wheeler Reservoir.

On July 12, 1977, the water temperature at the time of sample collection was higher above BFNP than below at certain locations. Temperatures were similar above and below BFNP during July 1978. Nutrient _ values (N&P) during July 1977 and 1978 were also low indicating uptake by the abundant phyto-plankton. The surface water temperatures were approximately 4-5 F cooler on July 5, 1979, than they were during 1977 and 1978. Total phytoplankton numbers during the summer of 1979 increased over the previous years below.

I 34

(

- BFNP. The pattern shows an increase from control at TRM 307.52 to the reservoir area below BFNP. Since 1979 was a cool wet year, reservoir water e

temperatures were relatively low and flows relatively high. At least two reasons for the downstream increases exist: (1) increases due to plant operation or (2) high flows produced velocities in the upstream reach too great for large crops of phytoplankton to develop; however, decreased velocities in the lacustrine portion of Wheeler Reservoir provided favorable conditions and phytoplankton numbers increased substantially at stations in this reach. Because of the numerous interacting factors, delineation of the exact cause is not possible. Phytoplankton abundance in Wheeler Reservoir during the fall of 1979 did not indicate any extreme variation from other fall samples. From these results it is concluded that total phytoplankton numbers were not af fected by the operation of BFNP during the fall of 1979.

The results are tabularized in Appendix C (summer and fall phytoplankton tables).

Composition -- Figure 8 shows percentages of Chrysophyta, Chlorophyta, and Cyanophyta in the total phytoplankton community for winter and spring of each year and the differences between control stations and stations below BFNP. Larger than usual blue-green algae percentages (36 percent above and 12 percent below BFNP) were found during the spring of 1977. The percentages of blue-greens above and below BFNP were again normal for the spring seasons of 1978 and 1979. Additional data concerning each station are tabularized in Appendix C (winter and spring percentage tables).

e 35

WINTER ,

SPRING .

PREOPERATIONAL , . OPERATIONAL ,

PREOPERATIONAL . OPERATIONAL CHRYSOPHYTA 10 0 -

I' n- 7 /~ / 2_ f -

80_ n- 7 20

/ ,

100 -

80- CHLOROPHYTA y 60 -

^

$ 40 _

~

~

'" b' P1 b }bzn

{}s_ en m m E 3 E

O f en FB m E e m 3 1 100 -

MNMA 80 - CYANOPHYTA O BELOW BFNP 60 _

40- _

20 -

7 _

E -- W WTW" d FD W W' '

OD V

1979 1969 1970 S71 1972 1973 1974 1975 1976 1977 1978 879 1969 870 19 71 1972 1973 1974 1975 G76 1977 878 FIGURE 8 PERCENTAGES OF MAJOR GROUPS OF PHYTOPLANKTON DURING THE WINTER AND SPRING OF ALL YEARS SAMPLED SHOWING PREOPERATIONAL VERSUS OPERATIONAL AND CONTROL VERSUS BELOW BFNP e e e e e 9

FALL SUMMER ,.

PREOPERATIONAL . , . OPERATIONAL '[ PREOPERATIONAL , . OPERATIONAL .

10 0 - CHRYSOPHYTA 80 -

- ~

60 40-f- -

7_ ~~~_

k b 6 m,PA,h1 b k h E tzn Efl @

0 3fl

' CHLOROPHYTA g

% 60-p_

& 40f h PD,,,k'h_7, b h~ eh m b h m en [ I [ E Pfl E l 3-I O

100- aCONTROL

'8

, CYMYTA -

80- _ []BELOW BFNP 60 _

40 -

20 1  %

O b T -

rf' .

1969 STO 871 1972 973 874 975 S76 S77 1978 1979 1969 1970 1971 1972 1973 1974 1975 1976 S77 1978 1979 SUMMER FIGURE . 9. PERCENTAGES OF MAJOR GROUPS OF PHYTOPLANKTON DURING THE AND FALL SHOWING PREOPERATIONAL VERSUS OPERATIONAL AND CONTROL VERSUS GdLOW BFNP

Figure 9 shows percentages of Chrysophyta, Chlorophyta, and Cyanophyta in the total phytoplankton community during summer and fall ,

each year as well as dif ferences between control stations and stations below BFNP. Largest blue-green algae percentages (81 percent above and 85 percent below, 1977; and 82 percent above and 83 percent below, 1978) existed in the summers of 1977 and 1978. The percentages decreased somewhat in 1979 to 54 percent above and 79 percent below BFNP. These changes were not due to the operation of BFNP because changes were similar above and below BFNP. Additional data concerning each station

+

are tabularized in Appendix C (summer and fall percentage tables).

Diversity -- Chrysophyta (diatoms), Chlorophyta (green algae),

and Cyanophyta (blue-green algae) are the major groups of phytoplankton examined for diversity. An index of change based on presence / absence of genera was established within each group for the winter, spring, summer, .

and fall. The purpose of this index is to determine whether the genera present and number of genera present for each group (Chrysophyta, Chlorophyta, and Cyanophyta) have changed because of operation of BFNP.

The index of change formulas and definitions are described by i

Taylor (1975). Figures 10 (winter), 11 (spring), 12 (summer), and 13 (fall) show plotted values above and below BFNP for each major group of phytoplankton. Conclusions from the results of these values are described

! below in categories a through c:

a. if the plotted value is normal or above, the index of change is.the same or greater than before operation of BFNP.

38

b. If the plotted value below BFNP is below normal, the index is less
  • than before operation of BFNP (see c or d for final consideration).
c. If the plotted value below BFNP is below normal and the plotted value for control is 'aelow normal and similar to the plotted value below BFNP (<l), the decrease in the index is not caused by operation of BFNP.
d. If the plotted value below BFNP is below normal and the plotted value for control is above normal and greatly different (>1), the index decrease may be because of operation of BFNP and needs to be investigated more thoroughly,
e. Whenever the plotted value for control is >l over the plotted value below BFNP whether above or below normal, the investigator assumes e

the index below BFNP may be changed because of operation of BFNP

, and needs to be investigated more thoroughly.

Data plotted in figures 10 through 13 are taken from Appendix C (Genera Diversity by Station for each season). Only in two cases did the results fall in category e. For the summer results (figure 12) the plotted value for Cyanophyta in the control area is 1.7 and 0.6 below BFNP. This is due to three new genera appearing at TRM 301.06 in the control area (Anabaena, Aphanothece, and Eucapsis), whereas other stations had only one new genus, except TRM 277.98 and 283.94 which had none. These three genera had already been found at the other stations, therefore, this is not due to the operation of BFNP. Figure 13 shows that the plotted value for Chrysophyta in the control area is 1.7 and e

39

~

8 CHRYSOPHYTA CHLOROPrI(T A CYANOPHYTA 7 _ _

6 _ _

5 _ _

4 - _

3 2 A

. e -

I _ -

0 NORMAL g

_i _

1 _

_2 -

3 __ -

-4 - -

_5 _

A BELOW BFNP, _

_6 _ e CONTROL _

.7 - _

_8

  • RESULTS OF WINTER 1979 PHYTOPLANKTON GENERA INDEX OF CHANGE .

O FIGURE 10 i

l I

t 40 -

8 CHRYSOPHYTA CHLOROPHiTA CYANOPHYTA i

7 -

6 _

_ l l

. 5.- _ l 4 _ _

l 3 _ _

2 - -

I .-

g -

0 NORMAL p l

_ l -

A l 2 - _

3 _ _

_4 - -

)

_5 _ A BELOW BFNP _ ,

_6 _ e CONTROL _

7 -- _

_8 RESULTS OF SPRING 1979 PHYTOPL ANKTON GENERA INDEX OF CHANGE FIGURE ll t

4 b

41

, 8- CHRYSOPHYTA CHLOROPI' TA -

CYAN 0PHYTA 7 _

i -

i G _

b _ _

4 ._ _

3 _

2 _. ,

A

  • I. -

A A f40RMAL e O e

) _i - _

i

+

.2 .- ,_

3 ._. _

-4 - ._

_5 _. A BELOW BFNP ,_

i

! __ 6

  • CONTROL _ y i

i ._ 7 _

i 8

j RESULTS OF SUMMER 1979 PHYTOPLANKTON GENERA INDEX OF CHANGE I .

4

! FIGURE I2.

i.

1 i

e

+

-O 42-i

.4 I

8 CHRYSOPHYTA CHLOROPHY TA CYANOPHYTA 7 _.

6 _ _ l

5. _ _

4 _ _

3 _ .

A

  • 2 _

l _

A NORMAL O

._ I - _

-2 -

/ -

._ 3 _ _

-4 - -

_5 _. A BELOW BFNP _

> _6 _ e CONTROL -

7 _

  • 8 RESULTS OF FALL 1979 PHYTOPLANKTON GENERA INDEX 0.F CH ANGE 4

FIGURE 13 G

43

0.2 for below BFNP. The reason for this difference is that five new genera were found in the control area, whereas only three new genera were found below BFNP, therefore this is not due to the operation of BFNP.

From these analyses, it is concluded that the genera index of change was not affected by the operation of BFNP during 1979.

Biomass -- Biomass or weight was calculated from chlorophyll a extraction and is another means of expressing standing crop in a unit volume at a given time. Figure 14 shows biomass comparisons for the winter and spring each year as well as dif ferences between values for control stations and stations below BFNP. Additional chlorophyll a data are shown in Appendix C (winter and spring chlorophyll data) . Phyto-plankton biomass during the winter of 1979 was sbmilar above BFNP and ,

below BFNP. The relationship between data for control stations and stations below BFNP remains similar due to the normal homoger.iety expressed in previous paragraphs (water homogeneously mixed by seasonal flow regulations and lack of temperature stratification) . The spring s-asons of 1976 through 1979 showed hi 6 her chlorophyll a concentrations below BFNP than above with similar patterns occurring at both above and downstream stations. These results are also raflected in the phytoplankton productivity studies.

! Figure 15 shows biomass comparisons for the summer and fall each year as well as differences between values for control stations and stations below BFNP. The 1978 and 1979 summer seasons are not represented on the figure because these samples were improperly analyzed. The fall l

44 t

l2- l l

PREOPERATIONAL CPERATIONAL ii 10 - 0.76 9 - I I

8 -

I l

7 - / \

I \

~ 0.66 s

/ \

\

5 -

/\0.68 I \

\

\

/ \ l \

4 -

\

/ \ / \

g / \ i t I I \

3 - \

\ / I

/ I ~~ '

2 -

0 31 N 1.07 i

a s / g 7 7 MO i - 'N s # O.62 \ M O.27

% /

_J I 0 07 I l

)6 1

63 l l i i O I I d

' b s

E O PREOPERATIONAL OPERATIONAL e 12 -

BELOW BFNP SPRING IO -

g_

- - - CONTROL 8-7-

6- 7 21 5 - 342 6.01 4 - 0.51 ^ s3.05 3 -

,/ \ s 0.54 / 'N 3.34 's 2 -

' 's -

's ,

^

s / N O I I l l 1 I O2 l 1 i 1969 1970 19 71 1972 1973 1974 1975 1976 1977 1978 1979 FIGURE 14 CHLOROPHYLL a COMPARISON BY YEARS BETWEEN CONTROL AND BELOW BFNP FOR WINTER AND SPRING l969-1979 9

tu

12 -

SU M R 80-

\

9- ,

8 -

7 -

2.00 6 -

/\

/ \

^ ^

E \ '

/

J # 151V

/

\ 2.64 3,16 8 29 5.08 11.0 9 586 F t-

\ w w

_d3

/

2 -

212 , </ ______________._..s,

'~,,

,s' s 1

I I I ' I O

g 10 -

9 - FALL e - "

BELOW BFNP 7 - - --CONTROL 465 g _

5 - ^ 3.08 4.56 f g

~

  1. \

247 0.83 2.81 A / s 3 -

's 2.25 s s, s / \

\ /

/

's N /

2 -

's N, Ng0.71 l.44 /

/

  • s

's

/ \

\ /

/

's 137 "'~ \ OM 1

I I I l I \' l '

I I O 1973 19 M 1975 1976 1977 1978 1979

1969 1970 19 71 1972 FIGURE 15 CHLOROPHYLL o COMPARISONS BY YEARS BETWEEN CONTROL AND BELOW BFNP FOR SUMMER AND FALL 1969 -1979 L

E D

46

e 1979 chlorophyll samples below BFNP showed a 131 percent 1.ncrease over samples in the control area which was normal since fall chlorophyll samples are typically larger below BFNP than above. These results are also reflected in the phytoplankton productivity studies. Additional chlorophyll a data are tabularized in Appendix C (summer and fall chlorophyll data).

, Productivity -- Productivity is the rate of accumulation of new organic matter or stored energy; that is, productivity is the observed change in biomass plus all losses, except respiration, divided by the time interval as determined by the carbon-14 method. Figures 16 and 17 show phytoplankton productivity comparisons for preoperational versus operational and control versus below BFNP. Additional pertinent

, data are tabularized in Appendix C (productivity data).

Data expressed as milligrams of carbon per square meter per day are available only from winter 1972 to the present; before 1972, solar radiation data were not available for daily calculations of phytoplankton productivity. The homogeniety of the water mass and the lower productivity values during the winter and spring months are expressed clearly in figure 16. High summer values reflect she abundance of phytoplankton typically found in the reservoir forebay area. i 1

l l

Zooplankton l Resident Species--The common species found during preoperational 4

and operational sampling are as follows: 4 cladocerans (Bosmina longirostris, Daphnia retrocurva, Diaphanosoma leuchtenbergianum, and Leptodora kindtii);

5 copepods (Cyclops bicuspidatus, Cyclons vernalis, Diaptomus pallidus, l 47 I

i

5 SPRING 3 WINTER BELOW BFNP TROL BROW W NR 400_ ' , (522), , , , , ,

- (457) l (1092) _ .

-1584) e PREOPERATIONAL 3 (382) (7 t4) n 9 (e) 350 -

A OPERATIONAL

~

d

.[ (413) i  ;, ,[ (4;9)

I o(2,604)

- MAXIMUM' --(357) :

- I a(1770) a MEAN )EXAMP E , g,)

" MINIMUM ' o I --

y 250- _

o I

> l -- --

a i " (921)

O I

  • 2 150-
  1. ' " I n(647) a

. l .. .

iOO -

" o I i o .

.g I

50 - 1 1

I E g li ^

O II&

' ' ' {' I . . ' ' ' . .

E E g 3

- . ' ' ' - c - ' ' ' ' ' ' ' ' ' ' '

1972 73 74 75 76 77 787972 73 74 75 76 77 78 79 72 73 74 75 76 77 78 7972 73 74 75 76 77 78 79 FIGURE 16 PHYTOPLANKTON PRODUCTIV:TY DURING THE WINTER AND SPRING SEASONS SHOWING PREOPERATIONAL VERSUS OPERATIONAL AND CONTROL VERSUS BELOW BFNP

. . S = , e

N FALL E# # UN ,

, I, , ,

8000 ' i i (11,778) l 1

1 7000-a 8 I

l e PREOPERATIONAL i A OPERATIONAL A '

6000-1 I

MAXIMUM '

5000 - l a uem i hENIMUM

, ) EXAMPLE MAXIMLAt 4000- a . -mum,

'a 1 l a

n

$ 3000 -

I

~ .

l JL g

~

t ..

I 2000- ..

n l .

l u a 3000 _0 o a I . n

~

I AL

-- l . 4k

^

JL l<> JL g

' ' 8 8 h

  • n -

i ' 8 8 1

8 ' '

JL

' ' ' '8 A A hn

' I I OL8 ' 8 8 1972 73 74 75 76 77 78 79 72 73 74 75 76 77 78 79 72 73 74 75 % 77 78 79 72 73 74 75 76 77 78 79 FIGURE 17 PHYTOPLANKTON PRODUCTIVITY DURING TK SUMMER Af0 FALL SEASONS SHOWING PREOPERATIONAL VERSUS OPERATIONAL AND CONTROL VERSUS BELOW BFNP.

l Diaptomus reighardi, and Eucyclops agilis); and 7 rotifers (Branchionus

. 1 caudatus, Conochilus unicornis, Keratella cochlearis, Keratella j crassa, Brachionus argularis, Brachionus budapestinensis, and Brachionus ,

calyciflorus).

Species List--As shown in the zooplankton species identification list table 10, (Appendix C), 37 cladoceran, 29 copepod, and 57 rotifer species or genera (not including immatures) have been identified in Wheeler Reservoir. Table 11, Appendix C, compares the number of species by major groups (Cladocera, Copepoda, and Rotifera) for preoperational versus operational and control versus below BFNP. Table 11, Appendix C indicates that comparable numbers of different species have been found upstream and downstream of BFNP during the operational period of the plant.

Enumeration--Table 12, Appendix C, shows total zooplankton per cubic meter during the 28 sampling periods from the winter of 1973 through the fall of 1979. In 1979, zooplankton densities were lowest during winter and spring. Compared to 1978, zc olankton counts were less during all seasons above and belcw BFNP. The zooplankton community was not affected by the operation of BFNP during any of the four seasons in 1979.

Benthic Macroinvertebrates Corbicula manilensis (Asiatic clam), Hexagenia bilineata (mayfly), Chironomidae (midges), and Oligochaeta (aquatic worms) are the principal components of the benthos community in Wheeler Reservoir.

Since th se organisms spend most of their life cycle in a localized area l -

50 I

they are considered to be excellent biological indicators of environ-mental stress.

' Corbicula manilensis--Corbicula has a semiplanktonic larval ,

stage followed by a benthic adult stage of about seven years. Corbicula is motile but has a very localized habitat range. Figures 18, 19, 20, and 21 show Corbicula densities by years and stations and compare control versus below BFNP as well as preoperational versus operational. These data are tabularized in Appendix C. Corbicula densities in the winter of 1978 and 1979 were less than all other winter densities above and below BFNP except in 1971 when the densitiee below BFNP were lower.

Densities in spring of 1979 were also lower above and below BFNP than any other year. Summer and fall densities in 1979 are also low compared to previous years both above and below BFNP. Corbicula densities have generally declined since 1976 (figures 18 and 20), but since this trend

, .is apparent both above and below BFNP, it is concluded that the operation of the plant has not affected the Corbicula population in Wheeler Reservoir.

Hexagenia bilineata--Extreme seasonal variability is expected in Hexagenia populations because, each summer, nymphs emerge from the water to become adults and lay eggs, and a new crop of nymphs hatches j and becomes established in late summer or early fall.

Figures 22, 23, 24, and 25 show the Hexagenia densities by years and river miles and distinguish between control versus below BFNP and preoperational versus operational. Additional Hexagenia data are tabularized in Appendix C. Since 1969, Hexagenia densities peaked in 1

Wheeler Reservoir during 1975 and 1976 and have generally declined since 1

e l

l Si 9

that time. The Hexagenia hatch during the summer of 1976 was the largest in Wheeler Reservoir since sampling began in 1969. The 1980 hatch may be the largest since 1976 as indicated by an increase in the ,

fall 1979 densities. Hexagenia densities were not affected by BFNP during 1979 as densities found below BFNP were similar to preoperational densities (excluding peak in 1975-1978).

Chironomidae--Genera common in Wheeler Reservoir benthos include: Ablabesmyia, Coelotanypus, Procladius, Chironomus, Cryptochironomus Xenochironomus, Parachironomus, Epoicocladius, and Glyptotendipes.

Figures 26, 27, 28, and 29 indicate the Chironomidae densities by years and stations and distinguish between control versus below BFNP and preoperational versus operational data. Chironomid densities although large during 1979, were lower than densities during 1978 both above and below BFNP during the winter and spring seasons. The largest popula- .

tions below BFNP during the summer and fall since 1969 were observed during 1978 and in the fall of 1979. These data are tabularized in Appendix C (chironomid data) . Chironomidae densities were not affected by the operation of BFNP during 1979, as' indicated by large numbers found below BFNP during operation as shown in figures 26, 27, 28, and

29. Chironomid densities are consistently greater below BFNP (figures 27 and 29) compared to low densities observed at stations above BFNP.

I 011gochaeta--Aquatic earthworms are abundant in Wheeler Reservoir and occur in clumped distributions wherever silty substrate and organic detritus are available. Mixed populations of _Limnodrilus claparedianus

52 t

e and Branchiura sowerby1 are normally collected in the same samples, e and these two species are combined as an oligochaete indicator. If new species are collected in the future, they will be noted and evaluated.

Figures 30, 31, 32, and 33 show the seasonal Oligochaeta densitf2s by year and station and compare control versus below BFNP and preoperational versus operational. From 1972 through 1976 011gochaeta densities were greater than had been recorded during the first three years (1969-1972) of this monitoring program. During 1977 these levels declined both above and below BFNP to the levels observed prior to 1972. The 1978 and 1979 samples were similar and indicated an increase over the 1977 densities.

Oligochaetes were not affected by operation of BFNP during 1979 as indicated by similar densities observed below and above BFNP.

Densities of oligochaetes in '979 (all seasons) were also similar to densities observed in 1969-3 J prior to fluctuations in abundance observed between 1972 and 1976.

9 5

53

BELOW BFNP 500 - --- CONTROL WINTER - - - - - - ALL STATIONS 400 -

PREOPERATIONAL OPERATIONAL i '

300 -

i i

200 -

,,'~,

s s g\

g 10 0 O.

l l

_.s_a-l

,-s l

s l

~' N_.'-

90 w

2 500 -

400 -

SPRlNG PREOPERATIONAL OPERATIONAL 300 -

i i i I 200 -

, d. ,,,.__, ,

N~~_______-,'-'

\ _ _ _ ,,_ s , ,

10 0 -

- ' 4 ':; -

N__----s -

l I I I I I ' '

O I 1979 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 FIGURE 18 CORBICULA DENSITIES (NUMBER /m2) BY YEAR FOR WINTER AND SPRING SAMPLE l

i i

54

500 -

WINTER 1979 400 - OPERATIONAL,1979

- - - PREOPERATIONAL , 1969-73 300 -

E 200 - -

y / 'N

\

W 100 -

~~__'

5 * '

' i i i 3

O i i -

<t

_J 3 500 -

BELOW B FNP +--

  • CONTROL iB SPRING 1979 w f 4%-

U U 300-200-

/

' 's N

~

i00

  • i O I .

275 280 285 290 295 300 305 310 TENNESSEE RIVER MILE r

FIGURE 19 CORBICULA (NUMBER /m )BY STATlON FOR PREOPERATIONAL AND OPERATIONAL SAMPLES.

$00 -

SUMIER BELOW BFNP

-- -CONTROL


ALL STATIONS -

300 - PREOPERATIONAL OPERATIONAL y

\ -

200- '\ '

. ~ ,

y,

' . . . _, - , ',,,. - N, ,,

\ N l

l ioo_

\ ,___-_______~.4- ____-

o I -- I ' ' I I ' ' ' I l

\

4oo _

k FALL 300 _. PREOPERATIONAL OPERATIONAL i i i 8

, E 200 - A \

,- ..,\ -

N, t .-

1 O ioo__ ------------_.___--j,/

s us s ,

s,'sp 1

' ' ' I I i ' ' ' ~

O c.oo -

ALL SEASONS 300-PREOPERATIONAL OPERATIONAL e .e i i 200-

'N, g _________________ .

s _______- -

ioo_ s u___ ----- _._ ---ssss ,-

i ' ' ' ' ' ' ' I '

o 1979 1969 1970 19 71 1972 1973 1974 1975 1976 1977 1978 FIGURE 20 CORBICULA (NUMBERhn)BY z YEAR FOR SUMMER, FALL,AND ALL SEASONS SAMPLES.

l 56

OPERATIONAL,1979 500 -

BELOW BFNP e

  • CONTROL ---- PREOPERATIONAL,1969 - 1973 400_ SUMMER 300-

- 200- ,, / ~ ~ - ~ ~ N s Q

j N 's,s 2

a O

i  ! I i

f % __

. i ,

e i

3

<t e =j 500 -

BELOW BFis).e_- % CONTROL OPERATIONAL,1979

- - - PREOPERATIONAL,1969- 1972

_ FM o

U 300 -

2M- ,- s s iOO _

O i O i* i i

  • i 3--- 0 i 275 280 285 290 295 300 305 310 TENNESSEE RIVER MILE FIGURE 21 COR81CULA (NUMBER /m r )BY STATION FOR PREOPERATIONAL AND OPERATIONAL SAMPLES.

BELOW BFNP

- - - CONTROL ,

--- -- - ALL STATIONS .

PREOPERATIONAL OPERATIONAL SOO -

WINTER ,

400-300-

_____ s 200 -

^

's

~ , /N k /,4

, ,',' / \ / \ \'N 100- ,5,h p'

, \s 7 N/ \ _

' I I '9 I I i ' '

3 0 E

5 z

La O

PREOPERATIONAL OPERATIONAL T g ._

SPRING 400-300-

~,,

p 200- ,-

N

,-,' /,_

- ,s N

_- / g , _

O I I l~ ~ ~ l ~+ ~~~l l I I ' ' A 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 FIGURE 22 HEXAGENIA DENSITIES (NUMBER /m2) BY YEAR FOR WINTER AND SPRING 1969-1979.

e l

l 58 i

l 700 -

WINTER 1979 BELOW BFNP - -+- CONTROL OPERATIONAL,1979 500- - - - PREOPERATK)NAL,t969-1973 400-

~

E 300-s T

200 -

E ~

g i00 _

,' N_____

z ' '- __

2 0 '  :- 'i ' e E 700 -

CONTROL 400 -

OPERATIONAL ,1979 300 -


PREOPERATIONAL,1969- 1973

{

0:

g 200 -

2 3 goo _

',-% N b e ' ' ~w~ _ __ _- -__ __ _

g O I I i - -

3 I W 600 -

500 -

BELOW BFNP 4----

l ---* CONTROL e

400 -

OPERATIONAL 1979


PREOPERATIONAL ,1969 - 1973 300 -

200 - '

j 100 -

3 u __ _._

- ~

O I I l l I~ l - l 275 280 285 290 295 300 305 310 TENNESSEE RIVER MILE FIGURE 31 OLIGOCHAETA DENSITIES (NUMBER /m2) BY STATION FOR PREOPERATIONAL AND OPERATIONAL SAMPLES.

PREOPERATIONAL OPE 3ATICNAL i

i SOO - , i SUMMER _

400 -

BELOW BFNP ALL STATIONS 300 -

-- - CONTROL ,

'----- 3 o ~,

,t, ' s, 200 ',

,e N

---.' v,,,a

,,/~~ s N

iOO - / ~. -

I

_c _. _

I

, /

I I I ' ' I ' '

I O

PREOPERATIONAL OPEHATIONAL .

50g - , , ,

- FALL _

g 400 300 -

i .- r g

.200 -

..: K ... ,,,-

s ~ s

/ ,- s ,

E oO i ,' /

'N,.

~.......

'~ ,...->/ < ~ .- -- ~,-

'- I ' '

~ ~~ l I I I I I

O PREOPERATIONAL OPERATIONAL .

500 - , . .

ALL SEASONS 400 -

300 ,. s s

's

/  %

- ~~..- ,

\

200 -

s

,,' ', b

- N. \,

iOo -

,_ , - - - _._,- N I I I I I I I ' '

l I O 1974 1975 1976 1977 1978 1979 1069 1970 19 71 1972 1973 FIGURE 32 OLIGOCHAETA DENSITIES (NUMBER /m2) BY YEAR FOR SUMMER, FALL, AND ALL SEASONS.

9 68

I . . . . . .

i l

l l

700 BELOW BFNP 4- --* CONTROL

- SUMMER Soo -

eMtATitsk llit

--- PESPERAT198&L.1969-ISI3 C

E 300 N

E g 200 -

,s A 2 -------- '

's s__

Y ' ' ' ' ' '

l C 0 800 -

o a _

BELOW BFNP 4-- --* CONTROL

' 2 e O s

to 600 -

GPERAT10ER.1979 500 -

--- PRESPE RAiltO AL .1940 -1972 400 -

300 -

goo -

/s

~

s' ~-m

- -""" - - = = = = - - - - - - - .

0 ' ' '

280 285 290 295 300 305 340 275 TENNESSEE RIVER MILE 2

FIGURE 33 OLIGOCH AETA DENSITIES (NUMBER /m ) BY STATION FOR PREOPERATIONAL ~AND WPERATIONAL SAMPLES.

V. RESULTS OF FISHERIES MONITORING .

Introduction .

These investigations were designed and initiated to assess possible plant impacts on movement, distribution, relative abundance, creel harvest, species composition, and survival of fish in Wheeler Reservoir. Fisheries monitoring was conducted by Western Area Field Operations, Fisheries Unit using standard sampling and evaluation procedures.

Specific descriptions of sampling gear, stations, and procedures are outlined in the Browns Ferry Preoperational Report (May 1978), available from the Fisheries and Aquatic Ecology Branch, Norris, Tennessee.

Quarterly gill net sampics were collected at four locations in the vicinity of Browns Ferry Nuclear Plant. Trap nets were fished at three stations during winter, spring, and fall quarters. Catches from .

both gear types provided data for species composition and relative abundance. Selected species from trap net catches were tagged and released to determine movement patterns in the reservoir. Cove rotenone samples conducted during late August and early September of each year serve as a basis for determining standing stocks, species composition, and reproductive success. A weekly creci census was conducted to establish catch rates, species composition, biomass and hours of fishing pressure in six designated areas in Wheeler Reservoir. Data from all sources were collected to assess plant impacts on the sport fishery in Wheeler Reservoir.

70

Ichthyrplankton data were collected weekly during the period March-August from two reservoir transects and the intake basin.- Infor-O mation on.s,secies composition and distribution of fish eggs and larvae in the reservoir was compared to data collected prior to plant operation to define normal yearly variation and to assess effects of plant operation.

This was the third year in which 3-unit plant operation was maintained for the majority of the period when larval fish and eggs are present in the reservoir.

Weekly counts of all fish impinged on each intake screen during a 24-hour period were made. Estimation of the total number of impinged fish on the intake screens will permit an assessment of fish losses from normal plant operation.

O e

e 71

Gill Net Results A total of 4,622 fish weighing 1,725.42 kg encompassing 23 taxa .

was collected in gill nets from four sample stations during 1979. Total catch for each quarterly sample at all stations was:

Winter - 722 fish weighing 227.55 kg Spring - 1,871 fish weighing 701.59 kg Summer - 1,189 fish weighing 428.88 kg Fall - 834 fish weighing 367.40 kg l

Gizzard shad and channel catfish were dominant in samples at all stations during all quarters. Sauger and skipjack herring were prominent in c the winter and fall samples, whereas golden redhorse were prominent in spring and summer samples.

Catch rates were generally low at stations 2 and 3 during all .

quarters in 1979. Because both station 2 (TRM 299.0), the designated control station, and station 3 (TRM 294.0 overbank) are located outside the zone of thermal influence, lower catch per effort (C/E) can be attributed to factors other than plant induced effects. The C/E at station 3 during 1979 ranged from 40 percent to 83 percent lower than in 1978. At station 1 (TRM 292.5), C/E was lower during spring and summer quarters of 1979 than during these same periods in 1978. Fall and winter quarter data at this station were similar between 1978 and 1979. Catches at station 4 (TRM 294.0), the diffuser discharge station, continued to show an increase during the summer quarter of 1979 than during the summer quarter of previous years. High catches observed at station 4 may be attributable to attraction of fish to

' the diffuser discharge structure. The C/E values at this station during spring, fall and winter quarters of 1979 were very similar to 1978 catches.

72

Low temperatures, low reservoir elevation accompanied by high flow conditions, and dense algal concentrations may have resulted in the generally low catch rates observed in 1979. Low water temperatures affect metabolic rates of fish and often result in reduced movement of fish. Since gill nets are passive sampling gear (i.e., gill nets capture only fish that swim into the net) reduced fish movement often results in low catches. During times when low reservoir elevation, high flows, and algal blooms coincided, the effectiveness of gill net sampling was hindered. Dense algal and periphyton concentrations cause excessive clogging of net, and in some cases, this additional weight caused nets to collapse.

Quarterly gill net data for 1979 are shown in tables 5 through

20. Tables 21 through 24 are comparisons of preoperational and operational gill net catches summarized by quarter at stations 1 through 4.

e e

73

I TABLE 5 .

' CILL NET CATCH, STATION 1, TRM 293.0 WINTER QUARTER, FEBRUARY 6-9, 1979 1

I 40 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

i 1

Lepisosteus oculatus 1 0.02 0.70 0.02 Dorosoma cepedianum 235 5.88 41.13 1.03 Alosa chrysochloris 31 0.78 14.05 0.35 Hiodon tergisus 2 0.05 0.59 0.01 i

I Minytrema melanops 41 1.02 14.52 0.36

, Ictiobus bubalus 2 0.05 0.36 0.01 Moxostoma erythrurum 4 0.10 1.15 0.03 Morone chrysops 80 2.00 17.24 0.43 i Morone mississippiensis 14 0.35 2.50 0.06 ,

1 t

! Lepomis microlophus 3 0.08 0.073 0.02 Microptarus punctulatus 2 0.05 0.86 0.02 Pomoxis pnnularis 4 0.10 1.13 0.03 l

l

Stizostediqn canadense 1 0.02 0.60 0.01 i

i Total 420 10.50 95.56 2.38 i

l l

D e

1. 74
  • TABLE 6 GILL NET CATCH, STATION II, TRM 299.0 i WINTER QUARTER, JANUARY 23-26, 1979 36 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 21 0.58 5.09 0.14 Hiodon tergisus 2 0.06 0.80 0.02 Minytrema melanops 1 0.03 0.41 0.01 Aplodinotus grunniens 9 0.25 3.16 0.09 l

Morone chrysops 8 0.22 3.55 0.10 Stizostedion canadense 37_ 1.03 19.11 0.53 Total 78 2.17 32.12 0.89 e

e 75

TABLE 7 .

GILL NET CATCH, STATION III, TRM 294.0 WINTER QUARTER, JANUARY 31-FEBRUARY 2,1979 l

37 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 1 0.03 0.23 0.01 Minytrema melanops 1 0.03 0.54 0.01 Moxostoma erythrurum 3 0.08 2.63 0.07 Aplodinotus grunniens 1 0.03 0.20 0.01 Morone chrysops 1 0.03 0.20 0.01 Morone mississippiensis 2 0.05 0.41 0.01 Pomoxis annularis 1 0.03 0.23 0.01

.o Stizostedian canadense _jl 0.08 1.27 0.03 Total 13 0.36 5.71 0.16 .

.\

l l .

l 76

, TABLE 8 GILL NET CATCH, STATION IV, TRM 294.0

]

(MID-CHANNEL, HEATED DISCHARGE)  !

1 l WINTER QUARTER, FEBRUARY 6-9, 1979 16 NET NIGHTS (TABLE 2)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorsoma cepedianum 21 1.31 4.70 0.29 Alosa chrysochloris 130 8.13 63.04 3.94 Minytrema melanops 1 0.06 0.41 0.03 Ictalurus furcatus 9 0.56 3.24 0.20 Moritne chrysops 1 0.06 0.64 0. 04 Stizostedion canadense 49 3.06 22.13 1.38 o Total 211 13.18 94.16 5.88 i

j i

.]

i I O e-

... 77 i

TABLE 9 ,

GILL NET CATCH, STATION I TRM 293.0 SPRING QUARTER, MAY 15-18, 1979 40 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

4 0.10 5.15 0.13 Lepisosteus osseus

' Lepisosteus oculatus 6 0.15 5.00 0.12 Dorosoma cepedianum 96 2.40 16.09 0.40 Alosa chrysochloris 9 0.22 3.60 0.09 Hiodon tergisus 8 0.20 1.95 0.05 Minytrema melanops 9 0.22 3.29 0.08 Ictiobus bubalus 4 0.10 0.88 0.02 Moxostoma crythrurum 84 2.10 45.63 1.14 Ictalurus furcatus 9 0.22 7.26 0.18 ,

i Ictalurus punctatus 258 6.45 159.70 3.99 i

Pylodictis olivaris 4 0.10 2.10 0.05 l

Aplodinotus grunniens 54 1.35 10.45 0.26

' Morone chrysops 5 0.12 1.06 0.03 Morone mississippiensis 9 0.22 1.66 0.04 Lepomis macrochirus 6 0.15 0.70 0.02 Lepomis microlophus 36 0.90 5.44 0.14 j

i Micropterus salmoides 2 0.05 0.57. 0.01 Pomoxis annularis 9 0.22 2.61 0.07 Stizostedion canadense 16 0.40 7.89 0.20 281.03 7.02

  • Total 628 15.67 78

TABLE 10 GILL NET CATCH, STATION II, TRM 299.0 SPRING QUARTER, MAY 1-4, 1979 37 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus osseus 4 0.11 5.15 0.14 Lepisosteus oculatus 1 0.03 0.80 0.02 Dorosoma cepedianum 117 3.16 21.40 0.58 Alosa chrysochloris 6 0.16 2.94 0.08 Minytrema melanops 5 0.14 1.91 0.05 Moxostoma erythrurum 105 2.84 56.56 1.53 Ictalurus furcatus 1 0.03 3.00 0.08 I Ictalurus punctatus 11 0.30 5.99 0.16 e Aplodinotus grunniens 3 0.08 0.67 0.02 l Morone chrysops 1 0.03 0.45 0.01

)

l Morone mississippiensis 6 0.16 1.30 0.04 Lepomis microlophus 2 0.05 0.27 0.01 Stizostedion canadense 5 0.14 3.74 0.07

-i Total 267 7.23 103.18 2.79 l

I e

79

TABLE 11 GILL NET CATCil, STATION III, TRM 294.0 i

SPRING QUARTER, MAY 8-11, 1979 .

40 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus oculatus 8 0.20 7.25 0.18 Dorosoma cepedianum 489 12.22 89.28 2.23 Alosa chrysochloris 25 0.62 15.22 0.38 111odon tergisus 6 0.15 1.33 0.03 Minytrema melanops 58 1.45 23.22 0.58 Ictiobus bubalus 1 0.02 0.45 0.01 l

Moxostoma anisurum 10 0.25 4.94 0.12 s

Moxostoma crythrurum 139 3.48 85.41 2.14 Ictalurus furcatus 7 0.18 4.28 0.11 ,

Ictalurus punctatus 42 1.05 23.62 0.59 Pylodictis olivaris 1 0.02 0.80 0.02 Aplodinotus grunniens 20 0.50 4.95 0.12 Morone chrysops 15 0.38 3.44 0.09 Morone mississippiensis 9 0.22 1.35 0.03 Lepomis macrochirus 3 0.08 0.29 0.01 Lepomis microlophus 11 0.28 1.55 0.04 Pomoxis annularis 1 0.02 0.23 0.01 5.28 0.13 Stizostedion canadense 11 0.28 Total 856 21.40 272.89 6.82 i

e 80

TABLE 12 GILL NET CATCH, STATION IV, TRM 294.0 (MID-CHANNEL, EEATED DISCHARGE)

SPRING QUARTER, MAY 15-18, 1979 17 NET NIGHTS (TABLE 2)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 66 3.88 10.98 0.65 Minytrema melanops 1 0.06 0.41 0.02 Moxostoma erythrurum 11 0.65 6.48 0.38 Ictalurus furcatus 3 0.18 3.30 0.19 Ictalurus punctatus 17 1.00 11.26 0.66 4.85 0.29 Aplodinotus grunniens 7 0.41 1*

Stizostedion canadense 15 0.88 7.21 0.42 l

Total 120 7.06 44.49 2.61 j

l i

I e

9 81

TABLE 13 i

GILL NET CATCH, STATION I, TRM 293.0 SUMMER QUARTER, JULY 10-13, 1979 .

a 40 NET NIGHTS Species No. C/E (fish) Wc. (kg.) C/E (wt.)

4 Lepisosteus oculatus 4 0.10 4.81 0.12 Dorosoma cepadianum 83 2.08 17.32 0.43 Alosa chrysochloris 17 0.42 8.16 0.20 Hiodon tergisut 9 0.22 2.65 0.07 Minytrema melanggs 15 0.38 5.62 0.14 Moxostoma erythr:trum 12 0.30 6.14 0.15 Ictalurus furcatua 8 0.20 4.06 0.10 Ictalurus punctatut 86 2.15 43.46 1.09 Pylodictis olivaris 1 0.02 0.48 0.01

  • 1' Aplodinotus grunniens 30 0.75 7.07 0.18 Morone chrysops 4 0.10 1.18 0.03 Morone mississippiensis 2 0.05 0.41 0.01 Lepomis macrochirus 8 0.20 0.89 0.02

! Lepomis microlophus 19 0.48 2.58 0.06 Pomoxis annularis 2 0.05 0.42 0.01 Stizostedion canadense 5 0.12 2.46 0.06 Total 305 7.62 107.71 2.68 i

l .

82

I* TABLE 14 l

GILL NET CATCH, STATION II, TRM 299.0 SU)etER QUARTER, JULY 3-6, 1979 (32 NET NIGHTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus osseus 2 0.06 6.65 0.21 j

2 Dorosoma cepedianum 149 4.66 31.39 0.98 l

Alosa chrysochloris 13 0.41 6.10 0.19 i

Minytrema melanops 8 0.25 3.13 0.10 l

Moxostoma erythrurum 28 0.88 13.97 0.44 I

Ictalurus furcatus 9 0.28 4.71 0.15 l

Ictalurus punctatus 31 0.97 17.82 0.56

],

Aplodinotus grunniens 30 0.94 7.51 0.23

  • Morone chrysops 10 0.31 2.84 0.09 Lepomis macrochirus 4 0.12 0.45 0.01 Lepomis microlophus 17 0.53 2.59 0.08 Stizostedion canadense 4 0.12 1.95 0.06 Totals 305 9.53 99.11 3.10 1

e 4

83

TABLE 15 .

GILL NET CATCH, STATION III, TRM 294.0 SUMMER QUARTER, JUNE 26-29, 1979 40 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E '.6.)

Lepisosteus osseus 1 0.02 4.72 0.12 Lepisosteus oculatus 11 0.28 9.51 0.24 Dorosoma cepedianum 132 3,30 23.32 0.58 Alosa chrysochloris 21 0.52 10.77 0.27 Hiodon tergisus 5 0.12 1.46 0. 04 Minytrema melanops 16 0.40 6.73 0.17 Ictiobus bubalus 1 0.02 1.56 0. 04 Ictiobus cyprinellus 3 0.078 1,42 0. 04 Moxostoma anisurum 7 0.18 4.75 0.12 ,

Moxostoma crythrurum 41 1.02 25.14 (. 63 Ictalurus furcatus 27 0.70 16.94 0.42 Ictalurus punctatus 58 1.45 35.80 0.90 Aplodinotus grunniens 70 1.75 14.46 0.36 Morone chrysops 2 0.05 0.53 0.01 Morone mississippiensis 1 0.02 0. ~.3 0.01 Lepomis microlophus 2 0.05 0.28 0.01 Pomoxis annularis 1 0.02 0.20 0.00 Stizostedion canadense 6 0.15 3.16 0.08 Total 405 10.13 160.98 4.04

+

TABLE 16 GILL NET CATCH, STATION IV, TRM 294.0 (MID-CHANNEL, HEATED DISCl!ARCE)

SUMMER QUARTER, JULY 10-13, 1979 16 NET NIGHTS l

(TABLE 2)

Species No. C/E (fish) Wt. (kg.) C/E/ (wt.)

Dorosoma cepedianum 41 2.56 8.83 0.55 Alosa chrysochloris 2 0.12 0.70 0.04 Minytrema melanops 1 0.06 0.42 0.03 Moxostoma erythrurum 5 0.31 2.75 0.17 Ictalurus furcatus 46 2.88 17.67 1.10 Ictalurus punctatus 10 0.62 4.41 0.28

. Aplodinotus grunniens 35 2.19 10.70 0.67 Morone chrysops 3 0.19 1.02 0.06 l Morone mississippiensis 1 0.06 0.23 0.01 l

1 Stizostedion canadense 30 1.88 14.35 0.90 i Total 174 10.87 61.08 3.81 I

O 85

TABLE 17 .

GILL NET CATCH, STATION I, TRM 293.0 FALL QUARTER, NOVEMBER 13-16, 1979 3

39 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus osseus 1 0.03 0.82 0.02 Lepisosteus oculatus 1 0.03 0.82 0.02 Dorosoma cepedianum 47 1.20 9.53 0.24 Alosa chrysochloris 80 2.05 31.44 0.81 Hiodon tergisus 4 0.10 1.04 0.03 Minytrema melanops 12 0.31 5.96 0.15 Moxostoma crythrurum 10 0.26 7.87 0.20 Ictalurus furcatus 4 0.10 1.31 0.03 Ictalurus punctatus 4 0.10 1.08 0.03 ,

Pylodictis olivaris 1 0.03 0.23 0.01 Aplodinotus grunniens 6 0.15 1.31 0.03 Morone chrysops 13 0.33 4.29 0.11 Morone mississippiensis 1 0.03 0.20 0.01 Lepomis macrochirus 1 0.03 0.10 0.00 Lepomis microlophus 10 0.26 1.16 0.03 Micropterus salmoides 13 0.33 8.67 0.22 Pomoxis annularis 8 0.20 1.48 0.04 Pomoxis nigromaculatus 1 0.03 0.10 0.00 Stizostedien canadense 33 0.85 19.39 0.50 l

Total 250 6.42 96.80 2.48 -

86

TABLE 18 GILL NET CATCH, STATION II, TRM 299.0 ,

  1. FALL QUARTER, OCTOBER 24-26, 1979
21 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus oculatus 5 0.24 4.30 0.20 Dorosoma cepedianum 42 2.00 7.95 0.38 Alosa chrysochloris 6 0.29 2.75 0.13 Hiodon tergisus 4 0.19 1.00 0.05 Minytrema melanops 1 0.05 0.45 0.02 Ictiobus bubalus 1 0.05 3.90 0.19 Moxostoma erythrurum 16 0.77 8.82 0.42 Ictalurus furcatus 2 0.10 1.75 0.08

. Ictalurus punctatus 37 1.76 21.43 1.02 Aplodinotus grunniens 1 0.05 0.20 0.01 Morone chrysops 1 0.05 0.55 0.03 Lepomis gulosus 1 0.05 0.20 0.01 Lepomis macrochirus 1 0.05 0.10 0.00 Lepomis microlophus 5 0.24 0.53 0.03 Stizostedion canadense 6 0.29 3.71 0.18 Total 129 6.18 57.64 2.75 O

87 1

TABLE 19 GILL NET CATCH, STATION III, TRM 294.0 FALL QUARTER, NOVEMBER 6-9, 1979 .

40 NET NIGHTS Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 34 0.85 6.93 0.17 Alosa chrysochloris 52 1.30 24.66 0.62 Hiodon tergisus 2 0.05 0.52 0.01 Minytrema melanops 8 0.20 4.29 0.11 Ictiobus bubalus 1 0.02 1.80 0.04 Moxostoma erythrurum 12 0.30 12.00 0.30 Ictalurus furcatus 15 0.38 4.33 0.11 Ictalurus punctatus 12 0.30 9.04 0.23 Pylodictis olivaris 1 0.02 0.36 0.01 .

Aplodinotus grunniens 11 0.28 2.70 0.07 Morone chrysops 16 0.40 4.80 0.12 Lepomis microlophus 7 0.18 0.80 0.02 Micropterus salmoides 1 0.02 .0.45 0.01 Pomoxis annularis 11 0.28 2.58 0.06 l

Stizostedion canadense 80 2.00 51.75 1.29 Total 263 6.58 127.01 3.17 l

r 88

TABLE 20 GILL NET CATCH, STATION IV, TRM 294.0

  • (MID-CHANNEL,IlEATED DISCHARGE)

FALL QUARTER, NOVEMBER 6-9, 1979 18 NET NIGHTS (TABLE 2)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus osseus 1 0.06 1.26 0.07 Dorosoma cepedianum 1 0.06 0.20 0.01 Alosa chrysochloris 52 2.89 20.35 1.13 Hiodon tergisus 2 0.11 0.49 0.03 Ictalurus furcatus 31 1.72 9.25 0.51 Ictalurus punctatus 2 0.11 0.68 0.04

. Aplodinotus grunniens 2 0.11 0.40 0.02 Morone chrysops 1 0.06 0.27 0.01 Pomoxis annularis 1 0.06 0.13 0.01 Stizostedion canadense 99 5.50 52.92 2.94 Total 192 10.68 85.95 4.77 9

SS i

l

TABLE 21

SUMMARY

OF WINTER QUARTER GILL NET SAMPLING; PREOPERATIONAL (1969-1973) AND OPERATIONAL (1974-1979)

Preoperational (values = 5 for 1969-1973) Operational i kg Station Year N C/E Vt. (kg) C/E Station AN SE C/E SE I 10.05 4.63 3.50 1.91 I 1974 418 10.45 165.53 4.14 1975 308 8.10 137.46 3.62 1976 253 6.32 90.09 2.26 1977 594 14.85 185.74 19.49 1978 416 10.40 93.75 2.34 1979 420 10.50 95.56 2.39 II 10.09 1.17 3.84 0.61 II 1974 231 6.42 96.03 2.67 1975 NO SAMPLE 1976 433 10.82 134.62 3.36 1977 39 1.39 12.19 0.44 g 0.52 o 1978 45 1.61 14.44 1979 78 2.17 32.12 0.89 III 8.14 4.06 3.09 1.55 III 1974 292 7.30 124.41 3.11 1975 414 10.61 161.95 4.15 1976 151 3.77 47.15 1.18 1977 40 1.67 12.78 0.65 1978 22 1.22 7.87 0.43 1979 13 0.35 5.71 1.54 IV 1975 38 1.90 13.09 0.65 1976 160 8.00 55.24 2.76 1977 406 25.37 147.02 9.19 1978 239 11.95 117.05 5.85 1979 211 13.19 94.16 5.89

TABLE 22

SUMMARY

OF SPRING QUARTER GILL NET SAMPLING; PREOPERATIONAL (1969-1973) AND OPERATIONAL (1974-1979)

Preoperational (values = i for 1969-1973) Operational SE Station Year N C/E wt. (kg) C/E Station AN SE C/E i kg 0.80 1974 985 24.62 269.18 6.73 I 18.83 3.92 6.05 I 7.51 1975 997 26.24 285.57 1976 1,344 33.60 435.75 10.89 1977 376 9.40 140.26 3.51 1978 932 23.90 360.97 9.26 1979 628 15.70 281.03 7.03 0.98 1974 164 4.10 92.37 2.31 II 11.81 3.81 3.61 II 1975 405 10.12 87.35 2.18 1976 835 20.87 312.82 7.82 1977 324 8.53 146.00 3.84 g 1978 343 8.57 186.90 4.67 9 103.18 2.79 1979 267 7.22 5.88 3.44 1974 686 22.87 158.61 5.29 III 22.98 16.52 III 2.41 1975 423 10.57 96.33 1976 829 10.72 254.16 6.35 1977 546 13.65 185.22 4.63 1978 1,787 44.67 470.74 11.27 1979 856 21.40 272.89 6.82 IV 1975 180 10.59 54.99 3.23 1976 538 26.90 159.46 7.97 1977 204 12.00 87.86 5.17 1978 469 23.45 150.23 7.51 1979 120 7.06 44.49 2.62

TABLE 23

SUMMARY

OF SUMMER QUARTER GILL NET SAMPLING; PREOPERATIONAL (1969-1973) AND OPERATIONAL (1974-1979)

Preoperational (values = i for 1969-1973) Operational C/E C/E Station EN SE C/E i kg SE Station Year N wt. (kg) 8.29 1.90 1974 316 7.90 101.75 2.54 I 29.42 6.34 I 1975 735 19.34 164.56 4.33-1976 897 22.43 240.70 6.02 1977 823 21.10 300.94 7.72 1978 735 18.38 270.56 6.76 1979 305 7.62 107.71 2.69 2.83 64.82  ? ~4 II 23.18 14.64 3.44 1.27 II 1974 85 1975 114 2.85 45.46 .

1976 179 5.42 82.26 2.*

e 1977 167 4.39 87.42 2.30 N

1978 345 10.15 167.53 4.19 1979 305 9.53 99.11 3.10 41.90 11.15 9.77 3.25 III 1974 643 16.08 174.92 4.37 III 1975 1,111 27.78 178.01 4.45 1976 990 24.75 272.47 6.81 1977 2,346 58.65 703.40 16.59 1978 2,367 59.18 597.00 14.93 1979 405 10.12 160.98 4.02 IV 1975 99 5.82 36.18 2.13 1976 246 12.30 103.84 5.19 1977 307 17.06 137.99 7.67 1978 91 8.27 37.85 3.44 1979 174 10.88 61.08 3.82

TABLE 24 SLM!ARY OF FALL QUARTER GILL NET SAMPLING; PREOPERATIONAL (1969-1972) AND OPERATIONAL (1973-1979)

Preoperational (values = i for 1969-1973) Operational iN SE C/E i kg SE Station Year N C/E wt. (kg) C/E Strtion I 9.88 1.53 2.80 0.37 I 1973 476 11.90 166.22 4.16 1974 252 8.55 138.97 3.47 1975 252 6.70 94.28 2.38 1976 486 12.15 178.74 4.47 1977 464 11.60 215.74 5.39 1978 305 7.63 145.71 3.64

' 1979 250 6.41 96.80 2.48 II 7.98 1.87 3.16 0.64 II 1973 169 4.23 96.72 2.42 1974 129 3.23 43.62 1.09 1975 237 5.93 89.55 2.24 1976 323 8.08 126.07 3.15

$ 1977 547 15.63 231.00 6.60 1978 485 12.13 209.04 5.33 1979 129 6.14 57.64 2.74 III 8.10 9.73 7.01 2.37 III 1973 304 7.60 117.60 2.90 1974 822 20.55 246.78 6.17

, 1975 475 11.86 159.73 3.99 1976 610 15.25 253.58 6.34 1977 742 18.55 335.36 8.38 1978 897 22.43 355.78 8.89 1979 263 6.57 127.01 3.17 IV 1974 156 9.75 49.94 3.1?

1975 183 10.17 77.22 4.29 1976 320 16.00 143.58 7.18 1977 198 9.90 91.68 4.58 1978 218 12.82 103.43 6.08 1979 192 10.67 85.95 4.78

Trap net observations The primary purpose of the trap netting survey was to obtain fish ,

for tagging and movement investigations. Water temperature is the criterion used to determine when quarterly samples will be collected. Spring quarter samples are collected when the reservoir surface temperature reaches 15' C (59' F), how scr no samples are taken when water temperatures exceed 24* C (75* F). Wheele "e-ervoir water temperatures normally approach 75* F in late spring and remain at_;e 75* F until mid October; consequently, no summer quarter samples are taken. The rationale for establishing temperature criteria was based on low survival rates of tagged fishes. At temperatures greater than 75* F tagged fish are highly susceptible to fungal infection.

Since this condition was observed in the vicinity of BFNP, fish tagging

~

during summer quarters was omitted.

Winter quarter catches were dominated by freshwater drum which comprised 67 percent of the total number and 38 percent of the total weight.

Spring catches were dominated by gizzard shad which comprised 75 percent of the number and 63 percent of the total weights. Fall catches were dominated by white crappie (39 percent of total number and 33 percent of the total weight) along with redear sunfish (18 percent of total number and 23 percent of total weight) and bluegill (18 percent of total number and 9 percent of total weight).

94

TABLE 25 TRAP NET CATCH, STATION A, TRM 283.0 WINTER QUARTER, MARCH 7-9, 1979 NET 12 (2 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Aplodinotus grunniens 49 24.50 3.63 1.81 Pomoxis annularis 10 5.00 0.81 0.40 Stizostedion canadense _jl 1.00 0.68 0.34 Total 61 30.50 5.12 2.55 l

e i

a I

.95

TABLE 26 TRAF NET CATCH, STATION B, TRM 293.0 WINTER QUARTER, MARCH 7-9, 1979 NET 21 (2 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

l Dorosoma cepedianum 10 5.00 1.27 0.63 Hiodon tergisus 2 1.00 0.36 0.18 Minytrema melanops 1 0.50 0.36 0.18 Moxostoma erythrurum 1 0.50 0.41 0.20 Ictalurus furcatus 2 1.00 1.09 0.54 Ictalurus punctulatus 12 6.00 6.98 3.49 Pylodictis olivaris 7 3.50 11.43 5.71 -

Aplodinotus grunniens 36 18.00 13.93 6.97 Lepomis macrochirus 4 2.00 0.59 0.30 Pomoxis annularis 11 8.50 9.85 4.92 Total 92 46.00 46.27 23.12 l

l 96

TABLE 27 TRAP NET CATCH, STATION B, TRM 287.0 WINTER QUARTER, MARCH 7-9, 1979 NET 22 (2 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Ictalurus furcatus 1 0.50 0.36 0.18 Ictalurus punctatus 12 6.00 9.35 4.68 Pylodictis olivaris 1 0.50 1.36 0.68 Aplodinotus grunniens 133 66.50 17.63 8.81 Morone mississippiensis 1 0.50 0.19 0.10 Lepomis microlophus 1 0.50 0.20 0.10 Pomoxis annularis 24 12.00 9.94 4.97 Total 173 86.50 39.03 19.52 l

l 97

TABLE 28 TRAP NET CATCH, STATION A, TRM 283.0 .

SPRING QUARTER, APRIL 17-20, 1979 NET 12 (4 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 11 2.75 2.41 0.60 Minytrema melanops 1 0.25 0.27 0.07 Ictalurus furcatus 1 0.25 0.36 0.09 Ictalurus punctatus 3 0.75 1.67 0.42 i

Pylodictis olivaris 1 0.25 0.64 0.16 Aplodinotus grunniens 5 1.25 0.68 0.17 Pomoxis annularis _j[ 2.25 0.63 0.16 -

Total 31 7.75 6.66 1.67 l

l l

l L

l 98

TABLE 29 TRAP NET CATCH, STATION B, TRM 293.0 SPRING QUARTER, APRIL 17-20, 1979 NET 21 (4 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Lepisosteus oculatus 1 0.25 1.95 0.49 Dorosoma cepedianum 169 42.25 20.69 5.17 Minytrema melanops 1 0.25 0.45 0.11 Ictalurus punctatus 2 0.50 0.82 0.20 Aplodinotus grunniens 11 2.75 3.63 0.91 Morone mississippiensis 2 0.50 0.27 0.07 Lepomis macrochirus 2 0.50 0.18 0.04 Lepomis microlophus 12 3,00 2.62 0.66 Pomoxis annularis 12 3.00 1.09 0.28 Total 212 53.000 31.70 7.93 I

r t

e t

99

TABLE 30 TRAP NET CATCH, STATION B, TRM 287.0 ,

SPRING QUARTER, APRIL 17-20, 1979 NET 22 (4 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 118 29.50 14.97 3.74 Ictalurus furcatus 1 0.25 0.59 0.15 Ictalurus punctatus 1 0.25 1.86 0.47 Aplodinotus grunniens 26 6.50 3.36 0.84 Morone mississippiensis 2 0.50 0.37 0.09 Lepomis microlophus 1 0.25 0.09 0.02 ,

Pomoxis annularis _j[ 1.75 0.55 0.14 Total 156 39.00 21.79 5.45 -

t f

I l

,100'

~

TABLE 31 TRAP NET CATCH, STATION A, TRM 283.0 FALL QUARTER, DECEMBER 4-7, 1979 NET 12 (4 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 12 3.00 1,81 0.46 Alosa chrysochloris 1 0.25 0.30 0.07 Minytrema melanops 5 1.25 2.75 0.69 Ictiobus bubalus 4 1.00 10.25 2.56 Moxostoma erythrurum 7 1.75 6.83 -1.71 Aplodinotus grunniens 2 0.50 0.35 0.09 Morone chrysops 5 1.25 1.18 0.30 Morone mississippiensis 3 0.75 0.42 0.10 Lepomis macrochirus 29 7.25 2.70 0.68 Lepomis microlophus 26 6.50 6.31 1.58 Pomoxis annularis 131 3'.75 15.64 3.91 Pomoxis nigromaculatus 1 0.25 0.15 0.04 Total 226 56.50 48.69 12.19 i

e 101

TABLF 32 ,

TRAP NET CATCH, STATION B, TRM 292.0 4

FALL QUARTER, DECEMBER 4-7, 1979 NET 21 (4 LIFTS)

Species No. C/E (fish) Wt. (l;g.) C/E (wt.)

Dorosoma cepedianum 84 21.00 8.62 2.16 Alosa chrysochloris 5 1.25 1.28 0.32 Hiodon tergisus 11 2.75 2.47 0.62

\

Ictiobus bubalus 4 1.00 3.05 0.76 Moxostoma crythrurum 2 0.50 1.36 0.34 Pylodictis olivaris 2 0.50 4.45 1.11 Aplodinotus grunniens 17 4.25 8.37 2.09 .

Morone chrysops 2 0.50 0.45 0.11 Morone mississippiensis 3 0.75 0.65 0.16 .

Lepomis macrochirus 24 6.00 2.43 0.61 Lepomis microlophus 46 11.50 10.97 2.74 Pomoxis annularis 66 16.50 12.02 3.00 Pomoxis nigromaculatus 7 1.75 0.67 0.17 Total 273 68.25 56.79 14.19 e

102

TABLE 33 TRAP NET CATCH, STATION B, TRM 287.0 FALL QUARTER, DECEMBER 4-7, 1979 NET 22 (4 LIFTS)

Species No. C/E (fish) Wt. (kg.) C/E (wt.)

Dorosoma cepedianum 23 5.75 3.01 0.75 Hiodon tergisus 1 0.25 0.10 0.02 Minytrema melanops 2 0.50 1.15 0.29 Ictiobus bubalus 3 0.75 1,41 0.35 Ictalurus punctatus 1 0.25 0.30 0.07 Aplodinotus grunniens 38 9.50 3.43 0.86 Morone chrysops 21 5.25 5.85 1.46 Morone mississippiensis 1 0.25 0.10 0.02 Lepomis macrochirus 151 37.75 12.27 3.07 Lepomis megalotis 1 0.25 0.08 0.02 Lepomis microlophus 127 31.75 29.47 7.37 Pomoxis annularis 243 60.75 38.38 9.59 Pomoxis nigromaculatus 11 2.75 1.53 0.38 Total 623 155.75 97.08 24.25 O

1 103

Tagging and movement results Tagging operations were initiated at BFNP in 1969. Originally .

17 species of fish were collected for tagging purposes. In 1974 the number of species tagged was reduced to six. These species are white crappie, white bass, smallmouth buffalo, channel catfish, blue catfish and flathead catfish.

A total of 176 fish were tagged in 1979. White crappie comprised 74 percent of the total tagged fish. Three specimens, one channel catfish and two white crappie, were recaptured in 1979. The channel catfish was tagged and released at TRM 293.0 on November 20, 1979, and was recaptured at the diffuser discharge gill net station at TRM 294.0 on December 3, 1979. One white crappie was tagged and released near the mouth of Goldfield Creek (TRM 284.0) on November 20, 1979, and was recaptured at Elk River Mile (ERM) 7.0 on December 3, 1979. The other white crappie was tagged and released at TRM 287.0 on November 30, 1979, and recaptured at TRH 283 on December 29, 1979.

The cummulative total number of fish tagged from the BFNP tagging operations is 10,814. Recaptures and returns from fishermen accounted for 366 fish or 3.4 percent of the total number tagged.

Due to the low percentage of returns and recaptures, movement patterns were not well defined in the vicinity of BFNP.

104

Tabic 34 Summary of tagging operations to date, Wheeler Reservoir, 1979.

,. Total tagged Total Total Percent Species this year tagged returns returns Paddlefish 0 25 0 0.00 Smallmouth buffalo 6 1,461 14 0.96 Bigmouth buffalo 0 42 0 0.00 Blue catfish 2 8,004 19 2.37 Channel catfish 26 2,985 51 1.71 Flathead catfish 7 862 70 8.19 White bass 4 1,674 55 3.29 Bluegill 0 15 0 0.00 1

Redear sunfish 0 57 0 0.00 1

Spotted bass 0 8 1 12.50 Largemouth bass 0 29 0 0.00 Smallmouth bass 0 4 0 0.00 White crappie 131 2,173 130 5.98 Black crappie 0 18 3 16.67 a

Sauger 0 174 16 9.19

Walleye 0 1 0 0.00 Freshwater drum 0 482 7 1.44 1 Totals 176 10,814 366 3.38 l

}

O 105

Rotenone In the continued assessment of fish populations in Wheeler Reservoir, three cove rotenone samples were made in the summer of 1979 (one less than previous years) . Results showed a typical warm water fish assemblage composed of 42 species (table 35). Numbers of game, commercial, and prey fish species in 1979 samples were similar to those in previous studies (table 36) . The average number of fish collected per hectare decreased more than 16 percent from 1978. However, this decrease was attributed mainly to elimination of the cove at TKH 280.1 which, in 1978, contained higher numbers than the other three coves.

Biomass determinations f rom each cove were higher in 1979 than in 1978.

This resulted in an overall increase of 36 percent greater biomass than ,

found in 1978, but these levels were still lower than those of 1977.

Numbers and biomass per hectare of young-of-year, intermediate, -

and harvestable fish of each species are reported in table 37. Numbers and biomass of young-of-year were less than half that collected in 1978.

Ilowever, intermediate and harvestable groups increased greatly in number and biomass in 1979. In 1976 threadfin shad comprised over 56 percent of young-of-year fish numbers in rotenone samples from Wheeler Rese rvoir. Following the severe winter of 1977 threadfin shad stocks were reduced to less than 0.05 percent of the total number of young-of-l year fish in rotenone samples. In 1978 threadfin shad stocks recovered to comprise approximately 32 percent of the total number of young-of-year, and over 25 percent in 1979. Conversely, gizzard shad increased from 0.19 percent of the total young-of-year in the 1976 samples to over 64 percent in 1977. In 1978, 55 percent of the young-of-year fish were l

-. ins

TABLE 35 COMMON AND SCIENTIFIC NAMES OF FISH IN ROTENONE SAMPLES WHEELER RESERVOIR, 1979 COMMON NAME SCIENTIFIC NAFE GAME White Bass Morone chrysops Yellow Bass Morone mississippiensis Wr.rmouth Lepomis gulosus Green Sunfish Lepomis cyanellus Bluegill Lepomis macrochirus Longear Sunfish Lepomis megalotis Redear Sunfish Lepomis microlophus Smallmouth Bass Micropterus dolomieui p Spotted Bass Micropterus punctulatus O Largemouth Bass Micropterus salmoides M White Crappie Pomoxis annularis Black Crappie Pomoxis nigromaculatus Yellow Perch Perca flavescens Sauger Stizostedion canadense COMMERCIAL Spotted Gar Lepisosteus oculatus Longnose Car Lepisosteus osseus Skipjack Herring Alosa chrysochloris Carp Cyprinus carpio Smallmouth Buffalo Ictiobus bubalus Bigmouth Buffalo Ictiobus cyprinellus Spotted Sucker Minytrema melanops Silver Redhorse Moxostoma anisurum Golden Redhorse Moxostoma erythrurum Channel Catfish Ictalurus punctatus Flathead Catfish Pylodictis olivaris Freshwater Drum Aplodinotus grunniens

TABLE 35 (CONT.)

COMMON AND SCIENTIFIC NAMES OF FISH IN ROTENONE SAMPLES WHEELER RESERVOIR, 1979 COMMON NAME- SCIENTIFIC NAME PREY Gizzard Shad Dorosoma cepedianum Threadfin Shad Dorosoma getenense Stoneroller Campostoma anomalum Silver Chub Hybopsis storeriana Golden Shiner Notemigonus crysoleucas Emerald Shiner Notropis atherinoides Bullhead Minnow Pimephales vigilax Tadpole Madtom Noturus gyrinus Blackspotted Topminnow Fundulus olivaceus p- Mosquitofish Gambusia affinis O Orangespotted. Sunfish Lepomis humilis

  1. Fantail Darter Etheostoma flabellare Stripetail Darter Etheostoma kennicotti Logparch Percina caprodes River Darter Percina shumardi Brook Silverside Labidesthes sicculus e p . a e g

TABLE 36 AREA POPULATIONS FOR MAJOR FISH GROUPS, WHEELER RESERVOIR, 1979 Fish Number of Number of Fish Weight of Fish Sample Area Group Species Hectare Acre Kg/ha Lbs/ac Second Creek Game 13 9,045.0 3,660.4 111.7 105.0 Commercial 10 400.0 161.9 155.9 139.1 Prey 12 13,874.0 5,614.7 239.4 213.6 Total 35 23,319.0 9,437.0 513.0 457.7 Elk River Game 10 13,498.3 5,462.6 236.8 211.3 Commercial 8 445.0 180.1 169.0 150.8 Prey _10 9,505.0 3,846.6 190.9 170.4 Total 28 23,448.3 9,489.3 596.7 532.4 Lawrence County '

Park Game 12 2,857.9 1,156.5 57.7 51.5 p Commercial 11 435.0 176.0 184.6 164.7 2 Prey 14 13,487.1 5,458.1 296.3 264.3 W Total 5 16,780.0 6,790.7 538.6 480.5 All Areas Game 14 8,467.1 3,426.5 137.4 122.6

- Commercial 12 426.7 172.7 169.8 151.5 Prey 16 12,288.7 4,973.1 549.4 216.1 Total 42 21,182.4 8,572.3 549.4 490.2

TABLE 37 SIZE DISTRIBUTION PER HECTARE BY SPECIES FROM COVE ROTENONE SAMPLES WHEELER RESERVOIR, 1979 YOUNG-OF-YEAR INTERMEDIATE HARVESTABLE TOTAL NUMBER WEIGHT (Kg) NUMBER WEIGHT (Kg) NUMBER WEIGHT (Kg) NUMBEF WEIGHT (Kg)

SPECIES 315.11 2.71 0.00 -

7357.03 217.09 7672.14 219.79 GIZZARD SHAD THREADFIN SHAD 4329.97 20.63 0.00 -

0.00 -

4329.97 20.63 BLUEGILL 2392.83 7.84 1807.51 31.40 484.60 30.67 4684.94 69.91 1193.94 4.02 1206.76 21.64 56.00 2.64 2456.70 28.30 LONGEAR SUNFISH 214.41 1.01 80.00 1.35 82.33 11.25 376.75 13.61 REDEAR SUNFISH 174.84 0.55 89.84 1.53 16.22 0.88 280.90 2.95 GREEN SUNFISH 183.59 0.66 73.16 1.22 17.02 1.30 273.76 3.18 WARMOUTH 60.95 0.61 76.08 3.34 66.27  ? ? . ';s 203.30 27.25 FRESHWATER DRUM 74.65 0.50 82.10 2.33 21.37 10.39 178.11 13.22 LARGEMOUTH BASS 132.27 1.01 0.00 -

0.00 - 132.27 1.01 LOGPERCH 3.16 0.39 84.49 34.36 87.65 34.76 SPOTTED SUCKER 0.00 -

66.33 0.24 0.33 0.02 0.00 - 66.67 0.26 YELLOW BASS 64.22 0.13 0.00 -

0.00 - 64.22 0.13 BULLHEAD MINNOW

[ 40.22 0.24 13.22 0.24 2.46 0.47 55.90 0.95 g SPOTTED BASS 24.57 0.17 15.24 0.37 4.90 0.84 44.71 1.38 SMALLMOUTH BASS 0.00 -

1.76 0.67 42.62 57.30 44.38 57.96 SMALLMOUTH BUFFALO 0.00 - 0.79 0.12 38.70 20.31 39.49 20.43 GOLDEN REDHORSE 25.84 0.06 0.00 -

d.00 - 25.84 0.06 BLACKSPOTTED TOPMINNOW 0.24 T 22.71 0.09 1.35 0.01 24.30 0.10 ORANGESPOTTED SUNFISH 8.70 0.44 15.51 2.26 24.21 2.70 WHITE CRAPPIE 0.00 -

0.37 14.62 0.26 2.24 0.12 0.00 - 16.86 WHITE BASS 3.89 3.33 0.02 6.86 0.52 5.49 3.34 15.68 FLATHEAD CATFISH 0.42 13.05 0.42 0.00 -

0.00 - 13.05 COLDEN SHINER 0.02 11.05 0.02 0.00 -

0.00 - 11.05 EMERALD SHINER 5.02 2.25 0.15 0.67 0.18 5.68 4.69 8.60 SPOTTED GAR 1.00 0.01 0.00 - 7.56 4.49 8.56 4.51 CHANNEL CATFISH 7.86 5.45 7.86 5.45 SILVER REDHORSE 0.00 -

0.00 -

0.01 7.32 0.01 0.00 -

0.00 - 7.32 BROOK SILVERSIDE 3.43 0.08 1.90 0.20 1.00 0.20 6.33 0.48 SAUGER 0.71 0.01 5.29 0.26 0.24 0.04 6.24 0.32 SKIPJACK HERRING 2.81 0.02 0.00 -

0.00 - 2.81 0.02 SILVER CHUB

. . . . . e TABLE 37 (CONT.)

SIZE DISTRIBUTION PER HECTARE BY SPECIES FROM COVE ROTEN0NE SAMPLES WHEELER RESERVOIR, 1979 INTERMEDIATE HARVESTABLE TOTAL YOUNG-OF-YEAR WEIGHT (Kg) NUMBER WEIGHT (Kg) NUMBER WEIGHT (Kg) NUMBER WEIGHT (Kg)

SPECIES NUMBER 0.00 0.00 -

2.71 5.06 2.71 5.06 BIGMOUTH BUFFALO -

0.00 2.56 T STRIPETAIL DARTER . 2.56 T 0.00 - -

T 1.67 T 0.00 -

0.00 - 1.67 MOSQUITOFISH 0.00 - 0.00 -

1.19 4.10 1.19 4.10 CARP 1.09 0.00 - 0.67 0.10 0.33 0.99 1.00 LONGNOSE GAR T 0.71 T 0.00 - 0.00 - 0.71 FANTAIL DARTER 0.00 - 0.67 0.11 0.67 0.11 BLACK CRAPPIE 0.00 T 0.00 - 0.56 T 0.00 -

0.56 YELLOW PERCH T 0.33 T 0.00 -

0.00 - 0.33 TADPOLE MADTOM T 0.24 T 0.00 -

0.00 -

0.24 STONER 0LLER 0.24 T 0.00 - 0.00 - 0.24 T g RIVER DARTER P 9359.30 41.38 3499.55 66.53 8323.60 441.54 21182.45 549.45 g TOTALS T = Less Than 0.01 Per Hectare 9

gizzard shad. Gizzard shad numbers decreased to comprise approximately 3 percent of the young-of-year in 1979. Percent composition, by number, of major groups remained relatively constant over the past two years (tabic 38). However, commercial and game fish biomass decreased while prey species biomass increased.

A comparison through time of the numbers and biomass per hectare for the three sites indicated that, in 1979, numbers in the Elk River cove continued a three-year decline while biomass increased (table 39). The sample from Second Creek showed a modest increase in both parameters while at the Lawrence County Park Cove only in biomass increased. Table 39 indicates that, while there is much variability in the year-to-year samples, the fish community in Wheeler Reservoir .

remains relatively stable.

Impingement A list of fish species impinged on intake screens at Browns Ferry Nuclear Plant in 1979 is presented in tabic 40. The percent composition of impinged fish showed a considerable decrease of freshwater drum and increases for Lepomis sp. and shad (table 41) from 1978. As in previous years, shad and skipjack herring comprised a greater percentage of the total number of impinged fish than all 11 other families combined.

i

{

112

TABLE 38 SIZE DISTRIBUTION OF MAJOR FISH GROUPS WHEELER RESERVOIR, 1979

                • PERCENT BY NUNBER ******* * * * * * * *
  • PE RCENT BY WEI GIIT * * * * * *
  • YOUNG INTER- HARVEST- YOUNG INTER- HARVEST-FISH CROUP OF YEAR MEDIATE ABLE TOTAL OF YEAR MEDIATE ABLE TOTAL GAME 20.7 16.0 3.3 40.0 2.8 11.1 11.1 25.0 COMMERCIAL 0.3 0.4 1.2 2.0 0.1 1.0 29.7 30.9 PREY 23.2 0.1 34.7 58.0 4.6 0.0 39.5 44.1 TOTAL 44.2 16.5 39.3 100.0 7.5 12.1 80.4 100.0

)

t 4

113

TABLE 39 ,

COMPARISON OF ROTENONE SURVEY RESULTS IN THREE COVES OF WHEELER RESERVOIR, 1961-1979 SAMPLE AREA NO. FISH POUNDS FISH COVE YEAR SIZE (ACRES) PER ACRE PER ACRE LAWRENCE COUNTY PARK 1968 3.70 2,175 190.0 1969 2.94 4,917 491.0 1970 3.54 5,724 684.0 i 1971 3.54 21,836 472.0 1972 3.54 5,444 508.0 1973 3.54 4,347 267.0 1974 1.96 5,300 417.0 1975 3.54 10,516 256.0 1976 2.94 24,177 1,459.3 1977 3.50 6,751 432.0 1978 3.50 6,809 321.7 1979 3.50 6,791 480.5 SECOND CREEK 1961 1.65 2,988 168.0 1969 2.36 37,345 965.0 1970 2.75 6,518 985.0 -

1971 2.75 5,440 657.9 1972 2.75 6,024 854.0 1973 2.75 9,782 252.0 .

1974 2.75 2,584 192.0 j 1975 2.75 3,198 236.0 1976 2.37 9,448 410.3 1977 2.50 6,848 683.3 1978 2.70 5.365 398.6 1979 2.50 9,437 457.7 ELK RIVER 1961 1.25 5,520 370.0 1969 1.55 28,804 1,033.0 1970 1.60 8,123 429.0 1971 1.60 10,398 453.1 1972 1.60 15,399 400.0 1973 1.60 19,331 333.0 1974 1.60 8,722 393.0 1975 1.58 10,174 358.0 1976 1.56 13,891 406.9 1977 1.50 23,055 1,027.5 1978 1.60 13,067 326.5 1979 1.50 9,489 532.4 114

. TABLE 40 TAXONOMIC LIST OF FISH SPECIES IMPINGED AT BROUNS FERRY NUCLEAR PLANT JANUARY-DECEMBER, 1979 Scientific Name Common Name Polyodontidae Polyodon spathula Paddlefish Lepisosteidae Lepisosteus oculatus Spotted gar Lepisosteus osseus Longnose gar Lepisosteus platostomus Shortnose gar Clupcidae Alosa chrysochloris Skipjack herring Dorosoma cepedianum Gizzard shad Dorosoma petenense Threadfin shad Hiodontidae liiodon tergisus Mooneye i

Salmonidae

- Salmo gairdneri Rainbow trout Cyprinidae Notemigonus crysoleucas Golden shiner Notropis volucellus Mimic shiner Notropis atherinoides Emerald shiner Pimephales vigilax Bullhead minnow Carassius auratus Goldfish Ilybopsis storeriana Silver chub Cyprinus carpio Carp Catostomidae Minytrema melanops Spotted sucker Ictiobus bubalus Smallmouth buffalo Ictiobus cyprinellus Bigmouth buffalo Moxostoma duquesnei Black redhorse Moxostoma erythrurum Golden redhorse Moxostoma anisurum Silver redhorse Ictaluridae Ictalurus furcatus Blue catfish Ictalurus nebulosus Brown bullhead Ictalurus punctatus Channel catfish Ictalurus melas Black bullhead Ictalurus natalis Yellow bullhead

. Pylodictis olivaris Flathead catfish 115

TABLE 40 (CONT.)

Scientific Name Common Name i .

i Percichthyidae Morone chrysops White bass

  • Morone mississippiensis Yellow bass Centrarchidae Lepomis cyanellus Green sunfish Lepomis macrochirus Bluegill l

Lepomis megalotis Longear Lepomis microlophus Redear Pomoxis annularis White crappie Pomoxis nigromaculatus Black crappie Micropterus salmoides Largemouth bass 3

! Micropterus dolomieui Smallmouth bass

) Micropterus punctulatus Spotted bass Percidae Percina caprodes Logperch Stizostedion canadense Sauger Sciaenidae .

Aplodinotus grunniens Freshwater drum i

1 i

I i

I .

l 116 l

t i

. TABLE 41 Species and Species Groups Percent Composition of Impinged Fish at Browns Ferry Nuclear Plant January-December,1979 SPECIES OR GROUP PERCENT Dorosoma, Alosa 87.5 Ictaluridae 0.45 Micropterus salmoides TR.

M. dolomieui TR.

M. punctulatus TR.

f Pomoxis g. 2.4 Lepomis g. 2.2 i

Aplodinotus grunniens 4.8 i Other 2.7 1

9 e

G

= .

117 i

Results of Creel Survey Creel census data from Wheeler Reservoir during 1979 are

  • wummarized in tables 42-50. Total estimated fishing pressure has followed a cyclic pattern since 1974. In 1979 fishing pressure was 26 percent lower than in 1977. Fishing pressure fluctuated considerably throughout 1979 (table 51) . Minimum pressure efforts occurred in January, February and December. Estimated success rate was 0.6 fish per l

hour and 0.27 kg per hour. White crappie was the dominant species 4 harvested in terms of number and biomass. Channel catfish, smallmouth bass, and largemouth bass were also prominent species frequently encountered in census surveys.

Due to the randomness incorporated in the design of the creel census surveys, localized plant related effects on the Wheeler Reservoir fishery were not detected. ,

l 118

TABLE 42 ESTIMATED QUARTERLY FISHING PRESSURE WHEELER RESERVOIR, ALABAMA JULY 1, 1970-DECEMBER 30, 1979 Calendar Year 1978-1970 1971 1972 1973 1974 1975 1976 1977 1979 Winter (Jan.-Mar.) 40,606 155,221 135.016 22.077 68,386 19,988 57,761 53,132 Spring (Apr.-June) 247,771 152,658 238,257* 89,653 229,070 85,405 189,829 145,584 Sutumer (July-Sept.) 102,864 113,477 71,549 105,883 43,570 76,532 52,393 91,844 57,018 p Fall (Oct.-Dec.) 47,577 31,946 36,412 19,601 22,934 24,164 12,118 68,523 43,464 M

  1. Total 150,441 433,800 415,840 498,757 178,234 389,152 169,904 407,957 299,198

i

TABLE 43 FISHING PRESSURE ESTIMATES BY PERIOD WHEELER RESERVOIR, ALABAMA JANUARY 1, 1978-DECEMBER 30, 1979 4 Fishing l Inclusive Pressure Period Dates (hrs) 1 Je . 1 - Jan. 31 4,116 1

2 Feb. 1 - Feb. 29 4,599 3 Mar. 1 - Mar. 31 44,417 4 Apr. 1 - Apr. 28 75,675 5 May 1 - May 31 40,754 6 June 2 - June 30 29,155 7 July 1 - July 31 15,868 8 Aug. 1 - Aug. 30 20,004 9 Sept. 1 - Sept. 30 21,146 .

10 Oct. 1 - Oct. 31 16,773 11 Nov. 1 - Nov. 29 21,697 i

12 Dec. 1 - Dec. 30 4,994 4

120

TABLE 44 SEASONAL FISHING PRESSURE PER HECTARE FOR EACH SAMPLING AREA WHEELER RESERVOIR, ALABAMA JANUARY 1, 1978-DECEMBER 30, 1979 l

Hours of Pressure Per Hectare Sample Area 1-1 & Entire Season 1-2 2-1 3-1 3-2 4-1 Reservoir Winter 3.22 1.22 1.21 2.02 7.28 2.68 Spring 1.77 10.68 6.88 10.00 20.91 7.34 Summer 0.34 3.00 3.29 3.76 10.81 2.87

)

Fall 0.67 2.15 1.91 1.41 12.18 2.19 1

Y 1

l t

f e

9 121

-~

TABLE 45 PERCENT OF TOTAL ESTIMATED FISHING PRESSURE FOR -

EACH SAMPLING AREA BY SEASON WHEELER RESERVOIR, ALABAMA JANUARY 1, 1978-DECEMBER 30, 1979 I

Sample Area 1-1 & 1-2 2-1 3-1 3-2 4-1 Season 47.8 6.2 10.7 15.2 20.0 Winter 9.6 19.8 22.1 27.5 21.0 Spring Summer 4.7 14.2 27.1 26.3 27.7 Fall 12.1 13.3 20.6 13.0 40.9 9

l l

f 122

TABLE 46 ESTIMATED TOTAL SPORT FISHING CATCH BY SPEClES WHEELER RESERVOIR, ALABAMA 4 JANUARY 1, 1979-DECEMBER 31, 1979 9

Percent Percent Rank Rank Species Number Biomass (kg) by Number by Biomass by Number by Biomass Blue catfish 4,832 2,928 2.82 3.62 6 5 Channel catfish 34,114 21,553 19.90 26.63 2 2 Flathead catfish 114 26 0.07 0.03 12 12 White and Yellow bass 6,681 2,200 3.90 2.72 5 6 Bluegill sunfish 4,370 826 2.55 1.02 7 8 Other sunfish 33 4 0.02 Tr. 13 13 H

g Smallmouth bass 10,890 6,917 6.35 8.55 3 3 Spotted bass 194 48 .11 0.06 11 11 Largemouth bass 7,554 5,011 4.41 6.19 4 4 White crappie 98,350 39,455 57.38 48.76 1 1 Black crappie 3,397 1,510 1.98 1.87 8 7 Sauger 414 91 0.24 0.11 10 10 Drum 467 346 0.27 0.43 9 9 Totals 171,410 80,925

- - - - - - .-. . ..- =-_- - - . - _ - . _ - - . .

]

TABLE 47 ESTIMATED SPORT FISH HARVEST PER HOUR AND PER HECTARf.

MIEELER RESERVOIR, ALABAMA j JANUARY 1, 1979-DECEMBER 31, 1979 i

Catch per Hour Catch per Hectare j Species Number Biomass Number Biomass

}'

Blue catfish 0.016 0.010 0.24h 0.148 Channel catrich 0.114 0.072 1 719 1.086 i

i Flathead catfhh TR. TR. 0.006 0.001 White and Yellow bass 0.022 0.007 0 337 0.111

\

! Bluegill sunfish 0.015 0.003 0.220 0.042 j Other cunfish TR. TR. 0.002 TR.

Smallmouth baao 0.036 0.023 0 549 0 349 Spotted tens 0.001 TH. 0.010 0.002 largemouth bass 0.025 0.017 0 381 0.253 l Miite crappie 0 329 0.132 4 957 1 989 i

Black crappie 0.011 0.005 0.171 0.076 ,

Sauger 0.001 TR. 0.021 0.005 Drum 0.002 0.001 0.024 0.017 Total 0.573 0.270 8.640 4.079 l

i i

l

\

i 9

124 -

I

..w- - v-- w w .,ev-+ ---t ,, +--,y,y,3 ,-m,, p -4, .y-e- .7y77 ,-- y , ,. ,y , ,p.

> TABLE 48 ESTIMATED TOTAL SPORT FISHING CATCH FROM EACH SAMPLE AREA BY SPECIES k' HEELER RESERVOIR, ALABAMA JANUARY 1, 1979-DECEMBER 31, 1979 NUMBERS BIOMASS ,

Areas Areas Species 1-1 2-1 3-1 3-2 4-1 1-1 2-1 3-1 3-2 4-1  ;

f Blue catfish 84 2,142 647 100 1,859 66.8 1,662.3 359.5 135 704.1 Channel catfish 3,447 15,613 8,270 3,517 3,267 1,866.4 10,244.5 5,275 1,982.3 2,184.5 Flathead catfish 17 97 0 0 0 3.6 22.3 0 0 0 Wite and Yellow bass 813 1,087 1,009 1,163 2,609 163.6 19 2.7 627.3 515.9 710.9 Bluegill sunfish 615 3,014 647 94 0 85.5 601.4 117.7 21.4 0 Other sunfish

  • 33 0 0 0 0 3.6 0 0 0 0 414 659 2,166 2,879 4,772 269.5 480.5 1,632.7 2,136.8 2,398.2

{Smallmouthbass c.

Spotted bass 0 194 0 0 0 0 48.6 0 0 0 Largemouth. bass 237 2,415 1,720 466 2,716 151.4 1,434.5 1,135.5 575.9 1,713.6 Wite crappie 30,946 5,097 14,130 16,245 31,932 12,646.8 1,993.6 6,156.4 6,040.9 12,617.7 Black crappie 231 0 1,108 214 1,844 68.2 0 412.3 97.3 932.7 Sauger 103 0 0 0 311 43.6 0 0 0 47.3 Drum 102 97 0 164 104 58.6 20.5 0 149.1 117.7 Totals 37,042 30,415 29,697 24,842 49,414 15,428 16,701 15,716 11,655 21,427 l

  • Includes longear, greenspotted and orangespotted sunfish, warmouth, etc.

4

~- =.

Oi o o O o N O e4 H (\1 Os CO O O* OJ W= O. O. M.

e4 OJ O O. o. M. o. . .

o o O e4 O O O OJ j O.

  • g O o O E o 6 o t- r4 o NO CO tn o O
  • o (\1 o O O o 4 gj g g d E4 d d d d d d d d c4 c

N m

  • CO e4 o c4 o 4 CO in o o 0%

= o, o, Q w v0 0 r4 O

  • o. O O

o O o O O O o o c4 U h to O O O W W4

p. 03 I b CO o W e4 CO in o o -

u -

o H

c4 N*

0 m* m

b. o. o. O. O.

e4 OJ. o. o. N.

, O O o O O O O o o OJ 511 I La N O e4 OJ H to o N O e4 c4 in U e4 4 *

  • W. O.

O. 0.%

ts2 g e4 O m O. O. O. o. O. (c I

  • OJ
  • Ea o O O o O e4 O E4 o c4 M m ri O O W W Oc e

< v4 H

(n

  • W v4 v)

M o o 4 o :t H Os N H 0%

M 0% % o r4 e4 O O* 4 W e4 O e4 o. o. N. O.  %. O.

  • i I * = o. O O o O OO et O O O OJ
n .

4 O O o .

e u) M 4 NN U W

J Hh MM in o to o N N e4 o e4 in oW m r4 CO o O*

  • e4
o. O. CO. O. o. O.

OJ A.t. p. m n N O et o Cc O.

O O O H g g g O 8 o O o O o .

H m m 4 t

d4 -

o "'

E 9 1 g" d a s"H B2 8 9 9 o O 9

o O O

"9 O

9 o d H g O O g hff O g

M $ fl "

o M h H m

  • O. N. O. O. O. b. h. o.

n.

d r4 c4 t- M .

H e *

  • La O O o O O O O o o N O O g

4 m DJ O e4  % e4 H H t-l

  • t- *
  • A* O. O. O. o. O. in. O. O. O. CO.

' H j g H g

m E4 O O g O o O e4 O O O H g

H H

(n W

m U3

?

$ A x m a m a m m r4 ;t r4 ra ua o +  % 0  % 2 m m o e

'r4 d  % P H d U2 ,o to ,6 r4 r4 =

0 02 +2 co r4 s r4 g3 0, a 4  % b M d ho h h m # e H s e O

E u

E u

6 r4 C3 c8 e4 U3 0 'd O O U

  • El O G 4 c3 C .c 0 to 54 H +2 e o .M o ag
  • D C +2 P G v v4 +2 tD p u tD C Q W d 0 A O 4 & m p P M 6 C C M 8 m &3 9 M M 8 12b

TABLE 50 l

ESTIMATED llARVEST RATE OF SPORT FISil FROM EACll SAMPLING AREA WilEELER RESERVOIR, ALABAMA JANUARY 1, 1978-DECEMBER 30, 1979 Ilarvest Sampling Area Number /Ilour Kilogram /ilour 1-1 & 1-2 0.78 0.33 2-1 0.66 0.36 3-1 0.48 0.25 3-2 0.36 0.17 4-1 0.66 0.29 All areas combined 0.57 0.27 9

O G

127

TABLE 51 .

! FISHING PRESSURE ESTIMATES BY PERIOD WHEELER RESERVOIR, ALABAMA

+

JANUARY 1, 1978-DECEMBER 30, 1979 i Fishing

- Inclusive Pressure Period Dates (hrs) t 1 Jan. 1 - Jan. 31 4,116 l 2 Feb. 1 - Feb. 29 .,599 i 3 Mar. 1 - Mar. 31 44,417 1

4 Apr.1 - Apr. 28 75,675

, 5 May 1 - May 31 40,754 6 June 2 - June 30 29,155 7 July 1 - July 31 15,868 -

8 Aug. 1 - Aug. 30 20,004 9 Sept. 1 - Sept. 30 21,146 1

4 10 Oct. 1 - Oct. 31 16,773 i

11 Nov. 1 - Nov. 29 21,697 12 Dec. 1 - Dec. 30 4,994 i-i t

I e

I l

i l 123 l

Entrainment Methods for estimating transport and entrainment of ichthyo-plankton at BFNP as modified in 1978 (TVA 1979) were continued in 1979.

Weighting factors employed to estimate egg and larval transport were refined in 1979 to incorporate varying current velocities recorded across the sample transect. This methodology is described by Buchanan and Barr (1980). Hydraulic entrainment by BFNP in 1979 averaged 9.0 percent throughout the period sampled.

Ejyy[ -- The number of fish eggs transported past BFNP in 1979 9

was estimated to be 2.30 x 10 with 8.2 percent of these estimated to be entrained (table 52). This is more than twice the entrainment estimate in 1978 (3.7 percent). Greater densities of freshwater drum eggs were recorded from samples at the plant transect (TRM 294.5) which is used to estimate transported eggs and larvae. This indicates considerable freshwater drum spawning is occurring adjacent to BFNP but not as much spawning occurs upstream at the TRM 294.5 transect. This condition artifically inflates the entrainment percentage by virtue of lower estimates of transported eggs from samples at TRM 294.5. Additional discussion of this subject is presented in Buchanan and Barr (1980).

Larvae - Entrainment of fish larvae, unlike that observed for eggs, has shown a decreasing trend for three-unit operation at BFNP 10 (1977-1979). Total transport of larval fish in 1979 was 2.97 x 10 with 4.5 percent estimated to be entrained (table 52). This is a decrease from 5.4 percent in 1978. Hydraulic entrainment also decreased ,

. I in 1979 (9.0 percent) from an average of 13.3 percent in 1978. The 9

estimate of total larvae entrained in 1979 (1.34 x 10 ) was less than one-half the number estimated to have been entrained in 1978.

l 129

TABLE 52

ESTIMATED ENTRAINMENT AT BROWNS FERRY NUCLEAR PLANT, 1979 l

l FISH EGGS

1. Entrained 1. 1.88 E8

, 2. Transported 2. 2.30 E9 l 3. Percent Entrained 3. 8.2 FISH LARVAE s

1. Entrained 1. 1.34 E9 l
2. Transported 2. 2.97 E10 i

~

3. Percent Entrained 3. 4.5 l

1 i

f l

1 130

Entrainment of clupeids (the dominant taxa) was estimated to i

  • be 4.4 percent (table 53). With the exception of Cyprinodontidae (topminnows) for which only two specimens were collected, Percidae (13.9 percent) and Sciaenidae (8.6 percent) had the highest estimated entrainment.

i S

1 I

131

TABLE 53 i NUMBERS AND PERCENT ENTRAINED BY FAMILY OF LARVAL FISH

  • COLLECTED DURING 1979 Family Total No. Percent Entrained Unidentifiabic fish larvae 1484242 5.5 Petromyzontidae 7416 -

)

Clupeidae 1185224570 4.4 Hiodontidae 260808 4.6 i Cyprinidae 22640663 7.9 Catostomidae 16867534 3.1 Ictaluridae 1121914 6.4 Cyprinodontidae 23865 26.0 Percichthyidae 50641411 5.3

, Centrarchidae 7647604 3.7 i

Percidae 5608511 13.9 Sciaenidae 57114978 8.6 Atherinidae 11046 -

e e

132 l

l

REFERENCES

  • Buchanan, J. P. and W. C. Barr. 1980. Fish Entrainment and Impingement at Browns Ferry Nuclear Plant, Wheeler Reservoir, Alabama, for the years 1978 and 1979. Supplement to: Effects of the Browns Ferry Nuclear Plant Cooling Water Intake on the Fish Populations of Wheeler Reservoir. Volume 4 of Biological Effects of Intake, Browns Ferry Nuclear Plant, January 1978.

1 Taylor, M. P. 1975. "A Method for Monitoring Power Plant Effects On Phytoplankton by an Genera Index of Change." Am. Soc. Limrol.

Oceanogr. 38th An. Meeting. (Abstract Publish.)

Tennessee Valley Authority. 1979. Water Quality and Biological Conditions in Wheeler Reservoir During Operation of Browns Ferry Nuclear Plant, January 1, 1978-December 31, 1979.

Muscle Shoals, Alabama: Division of Water Resources, Water Quality and Ecology Branch.

O e

e 133

VI. TRANSMISSION LINE RIGHT-OF-WAY MAINTENANCE The transmission lines connected to Browns Ferry Nuclear Plant are ' l indicated in figure 34. Since herbicides were not applied on these transmission l

J i line rights-of-way during the reporting period, this section is inapplicable.

l O

i i

i 1

o S

134

),

1 .

E 1, d a aS n

a

e. g i-E n
1e S

MN

\

i

\

., a A4no ys et

'% % \

~

it

\\

I l

, ii t\

ii 11 1 t k 's st

'i i , '

li n

y 9

's /

l,i

's 9 #<

Y,g it x ,1,f. -$

_3_ g ._'

4 y/ :_f s i

%e

/, ,

f ,

\ s le

% e ,l \

135 1

.- . . . . . = _ . _ . . _ . - . . - .- _ __.- -. _ . - .- .

1 4

!, APPENDIX A

SUMMARY

OF RESULTS OF TEMPERATURE a ANALYSIS FOR EVALUATION OF

}

1 THERMAL STRESSES DURING THE

)

i REPORTING PERIOD i

I '

1 '

JANUARY 1, 1979, THROUGH DECEMBER 31, 1979 I

1 i

i

}

i J

'l 1 -

e 1

s 1

+

4 1

4 O

. ,j l

I

PROW 15 FERRY r40CLE4a PLANT AVE Aar.E w AT ER T EMPE R ATJRE JAN 1. 1979 TH4U JAN 31._1979

$7atirts w agrar AVG 13 10 11 4 14 S I A ll Lt. (( ti . AVG 33 3?

3 5 1 8 7 A lVE R HILf 31 24 34 25 292.5% 292.5L 2 '3 21 28 27 2 92. 5 p 292.5M 297.6 296.1 275.0 286.04 293.6 294.5 295.7 u tt:T H 'avi*r 40.M ?1.li 49.07 so.7) .49.11 .

48.81 47.70 50.33 51.03 48.43 51.50 d4 l N i o.UM 34.53 37.8) 3d.3; 39.60 3 8.' 0 J" 38760 37.8C 37'.10 37.60 38.13' 34.30 AV E43 GE 42.27 42.55 41.84 42.'4

. 41.63 41.94 41.53 41.94 42.36 41.84 40.98

. Of I - 207.et .59 .31 .to .To .20 .' f 5 - .26 .68 .16 .70-Of f - 290.09 13 .61 .10- .53 .26- .41- 42 .10- .96-

p. SUPF TO 1) FT 42.29 42.5e 41. 74 42. 51 41.67 41.94 41.56 42.05 42.51 41.02 40.96 DT I - 297.61 .61 .99 .11 .84 .27 .11- .38 .84 .15 .71-DI ( - 296.C8 .34 .62 .16- .57 .27- .38- . .11 .57 .12- .98-BCTTO4 TtiR E F 42.26 42.49 41.Ct 42.33 41.63 41.95 41.52 _41.87 42.26 41.87 41.03 O ii 4 - 297.68 i

.63 .d6 .33 .70 .32 . f t- .2% .63 . 2 4- .60-p OT 4 - 216.38 .it .54 .01 .3P .32- .43- .09- .31 .08- d2-Number of days the temperature differential fell within the specified range -

- 247.6 t-SI

- 2'*7.o t-41 '

1.03

- 247.0 t-3) 1.03

- 257.6 t-21 1.00

- 2 37 .6 t -! ! 1.03 4.33 4.33 6.00

, - 297.6 0 1.3J 2.01 10 00 2.00 10.03 12.00 10.03 3.00 9.00 13.00

- 257.6 1- 1 29.13 12.14 21.95 17. M 31. D 19. D 13.00 11.03 22.00 22.03 -7.00

- 2 97 .$ 1-2 1.D l o. M 12. M 2. M 2.00 3.03 6.00 1.00 247.6 2-3 2.03

- 297.S 3- 4 . 1.33

- 247.6 4-5

- 257.6 5-6

- 207.6 >6

- . - . . - - - . _ . __ ._ - - - - .- .- - - - - ~ _ . -

SACaNS FEMRY NUCLEAR PLANT AVERACE mATEN TEPPERAluRE fEB le ISTS IPHL FE8 28 1979 SIAllCh AUP8ER: AVG 13 1C 11 4 14 3 5 1 8 7 51ATICA CODE AVG 33 3C 31 24 34 23 25 21 28 27 miter FILtr 2s2.5A 2+2 5F 252.5L 292.5M 2sl.c 296.C 275.C 4do.04 293.o 295.7 254.5 _

CChTH M .1X I Mo M 62.63 91.60 48.10 4R.eC 46.50 4e.33 45.EC SS.7C 53.53 46.'73 51.80 3GC Mif.irum J f."13 58.~Q 36.4% 3 e 3G Jr.7J J T. 4c JT 60 32.Sc. 56.90 34.4C'

~'

avCuaCE 42.59 43.53 41.35 42.80 41.45 41.C4 41.26 43.48 43.21 41.30 41.20 UT t - 2%7.el 1.14 2.05 .C6- 1.s3 .41- .is- 4.c3 L.76 .L>- .zn-Di ( - 296.01 1.55 2.46 .35 1.84 .41 .22 2.44 2. 17 .26 .16 6 hLRF 10 10 FI 42 59 43.*r 41.J4 42 50 41 49 41.L) 46.*: *J.e> *J.36 *L.gs 4 &M u DT I - 257.63 1.10 1.58 .13- 1.47 .44- .C4- 2.16 2.07 .23- .31-O! ( - 296.J) 1.54 2.42 .31 1.91 .4% 40 z.6u z.st .za .3 BCTTCM ikkEE 42.59 43.56 41.45 42.76 41.36 41.05 41.15 43.35 42.90 41.33 41.26 of a - 297.68 t.23 2.2o .c9 a .w .3t- .al- t.ss i.34 .o3- .10-

.n of_1 - 246.JI 1.54 2.51

.40 1.71 .31 .I0 2.30 1.85 .28 .21 _ , ,

N

' ~' ' '

Number of days the temperature differential fell within the spec'ified range

- ev 7.2 < -6 *

- 2 s 7.0 -o-t-58

- 247.o t si --

- 297.6 t-3) 1 - 297.6 t-28 4.GG

- 297.6 t-il . 6.00 6.CC 5.CC

- 297.6 0 2.00 2.00 18.CC 2 0J 1J.00 11.GU d.UU ARJ d C' Ud 8.00

- 297.o C-1 8.CC 1.00 9.00 ~3 .00 28.CC 9.CC 7.CC 3.00 4.00 8.00 4.00

- 297.6 1-2 16.C0 10.G0 1.00 to.CO. 4.cc u.UU to.Co GC U

- 297.0 2-J 1.C0 13.CC 5.CC 9.00 16.00 , 3.CG 257.c 3-4 1.00 1.JO 6.00 3.C0

- 297.6 g-5

- 291.6 5-o 1.00 2,97.6 26 . . . ._. . . . . . .

. O . 0 9 .

7 0 07 29 981 4 21 03 7

25 9

200 0 02 1 4 00 2

40 2

25 00.000000 11 0000 1108 1

00 63 2 6 45 5 5 1

. 5 33533 92 9112 3 3 54 07 18 8 3 24 366.I59 43 00 9 0 %74374 47 1 4 2 5 44 4 4

. ~

6 03941 325387 0003 0 9 1 1 53237 88 1892 00 00 0 7 23 .

9 9 353 11 31 22 1 24 48 3 1 2 6 45 5 5 1

. e g

1 3 n 4 . a R 0 331~e309 28 65 r 303 03 A

M 5 5 26 339.'932156 81 d

000 00

- 8 2

46312 645 422312 5 5 e 4 31 11 12 i

U f R -

i H c ~

T

- - e 9 0 33325 87 08 45 p 0 0000 7 3 3 . 4093322 6611 s 00300 9 25 .

351 2 e 1 1 7 1 522 21 2 645 5 5 h 11

. _. t 1 _

n

- - - i R

A 0 3087 83 39 h 0 03 52 t M 4 4 1 36 335.'3 63 i 0,0 3 9 841 1 1 w 263 2 5 45 5 5 2 l

l e

f E 6 3 05 7 1 32 9 3 R 4 4 . 9 89 30 38 2 l U 27 . a 0 T 9 7 41 2 1 i 1 A 2 5 45 5 $ t 3 R n

. E e P - r M

E e

  • f T M 3 0 2'7 4 1337 54 f 03 03 1 15 1

~ 9 9 26 91 i 03 03 4 1 3 . 8 8.~8 12 2 d E

T A

2 9

2 1

6 45 42 5

12 5

1 e 8'.57 W r u

E t C - - - - a A L 30830830578 r 03 R

E 0 05 1 3 1

. 7 9.3 4 9 0 3 5 29 e p

00 V 2 041 1 6 54  :

91 A 6 45 5 4 n 9

2 e 11 T

t N e A

L P h P 5 1 )3 52 87 0239 t 03 00 3 3 173 37 3372 46 00 00 R 1 32 s A 9 253 11 311311 y 13 89 E

L 2 e 45 5 5 a 1 C

d W f  %

A - - o y G G5 _ 0 60 52 54 71 01 00 00 R V V 1 37 T1 77 38 37 r 0303 R A A2 .

. . . . e E 9 .

1 52 1 2 13 1 b 46 92 F 2 6 45 5 5 m 1 u

k M

N W

O ) )) 31 R 5 43 21 B - 4 1 T1 3 31 - - - - -

60 F6 E 60 6I t t It 0

0. E - - - - - - - 1 23 45 6 76 07 6R 76 6 54 32 1 - - - - - - 6

. 19 22 19 2

9H99 2T 22

<- - - - - 012 34 5>

R t ME O 66 66 6666 66 66 E 3 u UG - - T - - M - - 6. A.

S E w "A O 77 77 77 77 77 77 77

  • D: t tR I t FI I T I4 95 95 59 55 99 99 59 U OE x r. E R T 22 22 22 2222 22 22 N CL A iV TT LT TCfT

- N NM I M MA OD SD OB OD -- - - -- -- -- - - --

O C > 3J I

IR H 4C -

T TE T .

A AV h TI c 1} S R E

APR 1, 1979 TH4U AP4 33, 1979 e RGkh5 F EMY .dCLEAR PLANT AVEF AGE e AT E& TEMPE5ATJRc 5 1 8 7 la :1 4 14 3 ST AT ICh kJMJcR: At, 13 21 28 27 31 24 J, 21 25 SI ATICA CCLc: AVG 33 3C 24L.3 275.0 286.34 293.6 294.5 295.7 292.5A 292.5P 2 92 5 L 2i2.5/ 297.6 CIVEk MILE:

76.30 71.43 72.50 73.16 74.40 72.10 73.00 72.40 72.90 73.50 MCATH MAXIMLM 4 d .'sT $7.53 55.6) 55'.~86 ~ ~ 55.10 58.40 55.86- 56.50

.;. Mllel F LM 52.2) 5 6.2 J 64.05 63.88 62.05 AVERACE 63.22 63.8J e2 15 ~~~ t 3. 72 o1.55 61.29 ~~~ ~62.11 M 2.33 .53

.oc 2.17 .~2 6- .56 UT I - 297.61 1.07 2.23 .82 2.76 2.59 .76 Di 4 - 296.01 1.93 2.51 .se 2.43 .26 62.13 64.2d 62.37 63.66 61.de 61.49 57.83 64.67 64.98 SUPF 10 10 FT 63.51 .39- .95 2.79 3.13 .25 49

  1. - 07 t - 25,7.6 3 1.63 2.40 2.JC . 64

.39 1.34 3.18 3.49 DT 4 - 290.01 2.J2 2.79 .68 2.39 61.85 63.46 61 18 61.13 61.51 53.52 62.92 8[T704 THREE 42.29 63.38 2.34 1 74 .67 2.28 .05- .33 1.49 2 20 1.79 . 72

{ DT I - 297.61 OT ( 296.03 1.52 2.25 . ,

2.33 .05 .39 2.39 __

Ib=har of days the temperature _dif ferestiql fell within the sa-cif fM r=ya

~

- 297.6 < -6

- 257.6 t-51

- 297.6 4-48

- 297.6 t -3 3

- 257.0 4- 21

- 297.6 t-il 28.00 4.00 13.03 6.C0 1 00 12.00

- 257.o C

- 297.6 0- 1 5. )) 1.00 18.00 4.M 33.33 2.33 -23.03 6.03 T.03 8.03 7.60

~

- 297.6 1-2 12.30 10.00 $!61) 8.00 16.00 15.03 1.33

- 297.0 2-3 13.33 14.00 1.33 13.13 7.M 6.00

5. 63 f.23

- 297.6 3- 4

- 297.6 4-5

- 297.e 5-6 _

- 297.6 >o

' d- *

' a e .-

I * * ^ . . . .

44Y 1, 1979 Titu MAY 31, 1979 B ROANS F Ek4 Y %UCLEAR PLANT AVEP ACL m AT EP T EFPE RATJRE 4 14 3 5 1 8 7

_ STAilCN bdMBEk: AVG 13 I r. 11 28 27 AVG 33 30 31 . 24 34 23 25 21 51AllLA LLat: 296.3 275.0 286.04 293.6 294.5 295.7 AIVER MILE: 292.54 292.5P 292.5L 252.5M 297.6

=

75.80 79.10 82.00 80.40 30.3G 82.43 86.70 80.00 8C.60 79. 80 63.75 MChTH MAXIMUM 63.53 63.90 63.60 65 50 65.10 MihlMLM 62.53 64.60 57.43 $5.53 72.14 70.57 72.15 70.23 70.10 73.51 72.12 AVERACE 71.67 71.94 70.93 1 . 91 .34 1.92 .13- .28 1 89

> Di ( - 297.68 1.44 1.F1 .70 2.04 .47 2.35 .13 .41 2.02 DT t - 296.0) 1.57 1.3'+ .63 72.D6 73.02 73.95 70.69 72.23 73.05 71.25 72.40 70.91 70.55

.22-e . SURF Te 1) fi

.34 1. 49 .36- 1.15 2.11 3 04 DT l' - 297.63 1.32 2,14 .14 C>

.36 1.51 2.47 3.40

'" ;DT I - 290.08 i.68 2.50 .70 1.55 70.82 70.26 71.72 69 52 69.67 68.82 71.16 80T iun THREE 72.45 70.54 75.10 .T4 5.58 2.20 .15 . 70- 1. 64 1 3D DT 4 - 29F.65 2.93 1.02 .99 2.78 .87 _5.43 2.05 .15- __

.85- 1.49 __1.15 _ _

DT I - 296 9)

Number of days the temperature differen_tial f all wi,hin t the spec,1 fied range

_ . - ~ . - _ -

~~--

_ g,y,s z _s

- 297.6 t-51

- 297.6 t -4 )

- 297.6 t-33 3.60

- 297.6 t-21 3.00 1.00

- 297.6 t -i l 8.D3 1.00 6.00 1.33 4 33 23.33

- 25t.o 0 31.00 8.33 15.33 6.03 4.00 13.00

- 29 7.e 0-1 T.30 6.00 16.00 6.00 IT.J3 11 00 11.C5 9.JO 4.D0 9.00 12.03 T.03

- 257.6 1-2 1.00 11.00 14.00 1.00

- 257.6 2- 3 c.00 13.30 13.03 1.00 3.00 4.03 1 0D

- 2 S- 7 .6 3-4

- 257.6 4-5

- 257.0 5- 6 297.6 >6 __ _

d b

es . ... ,.

~

. . . L. ,

+- ... .

.. n s

.,, g ,4 , , , , ,, ., , , , , ,

JUNE 1, 19 79 TbRU JUNE 33, 19T9 6nwaNS FERRv NvCLEAn PLANT AVERAGE MATER TEhPERATURL 3 5 1 8 7 AVG 13 1C 11 4 14 Zr ST AT ICM N.MoEs: 31 24 34 23 25 21 25

~6TATICM cuDc: avg 33 3F - 286.04 293.6 294.5 29 5. 7 292 5L 292.5M 297.6 296.0 275.0 RitER MILE: 292.5A 292.5P C

39.30 di.dC 89.30 87.10 87.00 85.60 96.83 87.5C 90.50 88.90 ~ ~~~~ ra.ru MCNiH max 1 MUM ic.6 tT so.JU e9.3U ts.Ju te.Ju dINIMUN 63DF -~TI a3-~~ 7G'IT~~'il.>a 77.51 78.93 78.70 77.06 7e.34 1o.80 77.47 78.76 7E.3C 76.35

.ro AWLAAGE ~~.US - -'~ I.Z F z.os z.*v DI i - 297.61 2.g4 2.30 --~ ~ ~I . IT- ~~ 2 746 1.16 2.58 2.35 .71 1.99 2.45 1.12 2.41 .CS-

> 3T t - 2 90.0) ( I .'I 9- 76.53 15.29 IV.91 DJ.40 tr.zs

~

5dkF 10 10 FI 78.89 (ii . 7 (7.95 7 9.02 3.21 . 09 1.83 .69- 2.10 2.72 01 ( - 297.o3 1. TO 2.52 .76 J.vu .se

.29 4.#9 J.41 0 01 t - 296.J3 4 .19 3.41 1743 2.34 77.95 77. 38 76.51 78.33 75.43 75.60 75.56

  1. 8CTTCM M6E 51.91 7T.42 4 34 a.72 a.we z.90 .Is .15 01 L - l's . 6 3 1.63 5.V9 .C4- 2.35 1.78 .91 1.82 2.73 .17-

~ ~ ^of 8 - 296.33 1.51

__Jumber. of days the. tecperature dif ferent_ial f all within the specified range

- --- .-- . -. . - - r:=- -

liiT.6(76

~~

- 297.6 t - 5 ) __

- 297.6 t +1

~ ~ ~

- 297.6 t-34 . - - - - _

- 297.6 I-23 a.co

- 297.6 t-il 21 00 3 00

- 297.6 0 4.00 9.CC 16.00 4.03 8.03 1.00 30.C0 4.00 v.uu tu.vu

- 297.6 0-1 7.UD 4.09 14.ca s.vu

~

- 29T.6 1-2 8.JJ T. 3 0-- ~~T2700~-- 1.00 4.00 12.00 16.00 15.03 14.00 5.00~ 16.00 3.UU

- 49T.o 2-3 10.uu

~~

3.00 1.00 5 00

- 297.6 3-4 1.03

- 297.6 4-5

- 297.o 5-6

- 297.6 >o __

G e "8.8*

~

"y .

Y g .

9 . . 4 9 .

e s *

  • e e BRGhNS FERRY .wuCLE AR PLANT AVER AGE m AT ER T EMPERATURE JULY 1.1979 T140 JULY 31e 1979 3 5 1 8 7 AVG 13 13 11 4 14 STATICN AUMBER: Z3 Z3 21 ~'-- 28'~ ~ 7 7-~~

~5TATICh CCOE: AVG 3T -~~~~'-' W ~ ~ 31 24 34 275.0 286.04 293 6 294.5 295.7 292.5A 292.5P 292.5L 292.59 297.6 296.3 RIVER MILE:

85.60 54.80 87.80 87.23 87.10 86.00 MChTH M Ax lMug 89.33 89.30 89.03 88.70 ~ -- 7 5.63 ~ ~~

rT;3 5 '-- 78 ~.10 - ~ ~ 76.10 --'-' ~~ T r . w 47;W 75UU 76WU- 7 7. 40 "- r r.67 a -- FINT NUW ~~ 79.56 79.45 81.01 81. 7 F 81.98 79.91 AVERAGE 81.52 82.01 80.57 81.99 2 . 42

~~

.~ 3 5 -

~ ;117 - ~I;45-~--'-- 2.71 ~ ~

DT L - 257!6T -- 1. 9 5- ' --- " 2. 45- ' - - I . 01 ~ ~ ~ ~ 2. 4 3 -- --

1.56 2.32 2.53 46

> 2.0F 2.56 1.12 2.54 .11 DT I - 296.09 79.3I~ 8T.33 B'Z!2D- - 83.44~~- ~ ~~ ~~ ~80.06 SUPT TO 13 FT '5178T' 8 2. 63'--- ~~ 8 0. B 7 ~ ~ 8 2.14 ~ BIG 1z

.31- 1.91 2.09 3.32 .06-07 I - 297.63 1.75 2.48 .75 2.02 ~ ~ -

.25 l'. 0 6- ~2;33- .31-~~~~~~~~ -- ' ~7. 2 2 " --- 7. 3 9 ~ ~ 3 ~. 6 3 -~

o DT~l - 2 46.01- 2 TOC -2.79 81.72 T9.04 79.15 79.99 81.37 80.85 79.54 N 807 TOM THREE 54.30 81.18 z.~3 5 -' ' I . 81 - ~ ~ ~ ~- ~ ~ ~ ~ ~ ~ - ;50 1.60----- - 2;14- ~ - ~ ~ ~ ~ - - ~- 2 6K --~ . I T--~~- ~ . M OT F 297 61 2.57 .11- .84 2.24 1.70 .39 DT I - 296.08 1.53 2.03 Number of days the temperature dif ferential fell within th,e__ specified range _

~

'~

- 29 G6 d"-6 . _ _ .

- 257.6 .-6-t-53.. . - . . - - - . . . . ..

- 297.6 t-33 .-

_ 3.00

- 297.6 t-18 20.60 ~ --- - ~ ~- ~~~ 9 .5 3 -

- 2V7.6 0 ~ ~ ' ' ' 7'.10 9.00 13.33 29 03 9.33 7.33 1.03

- 297.6 7- 1 13;03 a .U3-~~-~ -~~I I ;1)U~ ~~ - 7. 0 0 - ---

17-33 9;D0~ ~B 00 ~ 12!D 0~

1.00

- 29T.6 1-z 5.30 9.03 9.00 18.03 12.00

. _ _ _ - 297.6 7 ,. , 2-3.-

- 10.03 gy ._15.00 '5;O0

"~-

-' - 8 . 0 3 ~ ~ ~ ~~-- - - - - ' ' "

~ --~ 2. C 3 ~ ~ ~ 6. 00 -'

. 297.6 4-5 - - - - - . - - .

- 257.6 >6 . _ _ _ _ _ _ , , _ . _ ._

- w -

  • = qe w' e e d 1

l l

l l

AUG 1, 1979 74RU ate 31, 1979 SRCa'45 FEkRY .UCLEAR PLANT AVER ACE si AT ER TEMPERATURE 4 14 3 5 1 8 7 ST AT ICN NUMB ER: A VG 13 10 11 34 23 25 21 28 27 ST ATICh CODE: AVG 33 30 31 24 296.0 275.0 286.04 293.6 294.5 295.7

_ RIVER' MILE: 292.5A 2 92. 5 P 292.5L 292.5M 297.6

_q 3 . .. . _ . . - . - . . . . - ~ . . . . .

90.50 89.10 91.33 91.23 90.20 90.30 90.86 91.30 90.80 90.50 -

MCNTH MAXIMUM 81 16 78. 90 79.30 79.80 80.90 803 3 56.00 MihiMUM 64.43 82.f0 79.83 83.91 83.84 81.80 AVERAGE 83.33 83.58 82.47 S3.85 81.55 81.63 83.12

.05 1.57 2.36 2.29 .25

> @~ .297.63 1.75 2.03 .92 2.30 .20 2.25 .05- 1.52 2.31 2.24 1.98 .87 J .' t - 296.01 1.70 82.82 84.36 82.37 81.92 84.39 84.84 85.35 82.01 SWF V7 11 FT 83.67 84.13 1.99 .15- 2.32 2.77 3.28 .06-O ryy . ?,97.61 1.63 2.06 .75 2.47 2.92 3 43 .09

  • 1.75 2.21 .93 2.14 .15 7 4'6.01 81.09 81 36 81.9T 93.06 82.69 81.26 C* 'A (4 3E 55.44 83.02 83.32

.27 .88 1.97 1 60 .17 68.' . 173?4) 1.38 1.93 2.23 .10-1.96 .27- .61 1.70 1 3' DT I - 2 N O3 ___ 1.20 1.66 Number of days the temperature differential fell within the specified range

- 297.6 <-6

- 297.6 t-51

- 297.6 t-4)

. - 297.6 I-3) 2.03

- 257.6 t-23 1.00

- 297.6 8-1) 1.00 8.00 2.00 12.00

- 297.6 0-2.33 31.03 19.00 3.03 1.03 13.00

- 297.6 C-1 5.30 17.03 8.03 9.00 T. 0C -

14.33 7.00 24.00

- 29's.6 1- 2 15.33 8.00 4.00 16.00 '20.00

- 297.6 2-3 11.JJ 14.00 19.30 3.33 6.00 2.00

- 297.6 3-4 5.00

- 297.6 4-5

- 297.6 5-6 __

~- - 297.6 >6 _ _ _

O

% W

~

. . A el r.

f 4 . 9 T e

. . . . e e SEPT 1, 1979 THRU SEPT 30, 1979 dRCnNS FERRY NdCLEAR PLANT AVERAGE WATER TEMPERATURE 4 14 3 5 1 8 7 AVG 13 10 11 STATICN NUMBER: f4 23 -

~

25 21 28 27 STATICh W : AVG 33 3C l'~

1 ~ 34 293.6 294.5 295.7 292.5A 292.5P 292.5L 292.5M 297.6 296.0 275.C 286.04 RitER MILE:

_8_3_. 7_0 ._ _ .

NCNTH MAXIMOM 8_5_ _.7 6 85.70

- 8 6. C 0_ 8 5._6 0_ _ ._. 2 4. 4 0_. . . 8 4_. 6 0. - _.._8_4__. 9 0__ _ _ 20_._ _ . .

8. _7__ __8_5 . 4 0 _._ _ . __ _.

76.70 77.81 76.44 76.25 77.08 77.67 77.98 75.74 AVERAGE 77.42 77.76 1~5C~ ~

.6F -~~1.d .70-DT t - 297.63 .98 1.32 .26 1. 3T- ~ ~" - ' - -- 197-- ~ ~~ 1.73 .51-1.56 .19 .83 1.42

> DT I - 296.06 1.17 1.51 .45 77.48 7 Off 78. 83~

75 78 SdRF IO 10 FT 77.59 77.91 76.89 77.94 - -~~ % 770 -~ ~76.48 .92-

.22- .78 1.28 2.13 DT I - 297.63 .89 1.21 .19 1.29 235- - .70-u og g - 296.J3 1.11 1.43 .41 G51 -- ~~22 - --- ~ ~-~ DU-- -- l 50

  • 77.34 76.12 76.16 76.68 77.33 77.31 75.65 BOTTOM THREE 51.51 77.21

. 56- 1.21 1.T9 ~ .47-DT 4 - 297.61 .77 1.09 1. 22 '~~ .04 1.18 .04- .52 1.17 1.15 .51-DT ( - 296.0) .74 1.05 Number of days the temperature differential f ell within the specified range , ,_ _ , , _

- 297.6 (-58

- 297.6 t-43

- 297.6 t-33 1.00 125

" ~ ~

1 0 6~~-~ zW

- 297.6 t-23 11.00

- 297.6 t-18 1.00 9.00 11 00 18. 0 D' 8.CC

- 297.6 0 9.00 30.00 11.00 10.00 11.00 5.00 8.00

- 297.6 0- 1 12.03 7.00 13.00 17.0C 5.00 14-~05 IT.TC 17.00 2120

- 297.6 1-2 17.00 3.00 5.00 2.00 _1 00 2 00

- 297.6 2-3

- 297.6 4-5

- 297.6 5-6 .

- 297.6 >6 4

8RCau FERnv N CLEAR PLANT AVEHAGE =ATER TEMPERATURE GCT 1.__1975 TFRU. GCT 31 .1979_ ._. _. .

5 1 8 7 AIOilCh AUM8ER: 13 1C 11 4 14 -3 AVG 23 - 2 5- ' ~ ~ ~ 21--- ~ ~ 78 2 7~~ ~ -

STATICh CCCEI AVG 33 30 ~~31 ~24 ~ ~ ~ ~ 3 4' '

294.5 29 5.7 292.5A 292.5P 292.5L 292.5M 297.6 296.0 275.C 286.04 293.6 AlbER MILL:

75.56 76.5 _0 7 4. 6_0_ ..__.._7 5_. 60 . . 7 5 8 C. _ _7 5.._7_0_ _ __ _7 7._0 0 . _7_8_. _6 0._ .. . __7 5_. 8 0__ .

____ 76._,00 $7, c MONTH MAKIMUM 3.9) p 68.67 68.68 66.31 67.99 68.23 67.14 68.58 67.12 67.07 -67.14 . 81;-~ ~

AVERAGE

.86 1. 11 -- CT ~ ~ G 4 6 .05- .62 1.55-'- ~ 1754 '-

' fIlT2 47 61-' .67 1.60 1.61 .76-CT t - 296.3) .91 1.16 .C7 1.51 .C5 '- ~ ~ ~ ~ 66.30 68.69 67.24 ~ 67.24 47.56 68.93 69.4F SURF 10 10 FI 68.15 68.63 67.15 2.23 .94-y .C9- 1 45 .72 1.69 -~~~

CT I - 297.6) .91 1.39 'G4f" .94-m .0F -~ 7 .45-~

~ - ~ ~ --

.72-- 2.23

~

OT 4 - 296.0) .91 1 39 68.45 68.02 66.34 68 29 66.91 66.86 67.54 8GTIOM iPREE 45.C3 66.81

.05 ~ - .~61 ' -~ ~ T. M '~~ - ~~ ~G1T-~ - . 57 ---'-

DT ( - 297.68 42 .10- --- - G 3 8 ' ~ 1.16 .52-1 43 .05 .68 1.59 Di ( - 296.03 .46 .05-lhmber of days _tha .tamparature differential fell within _the specified range

- 297.6 < -6

- 297.6 t-58

- 29 C6~;5-E-43

_ _ _ _ ._ _1._0 0_ _

_ __297._6 t-387 __.

6.00

- 297.o (-13 4.00

- 297.6 0 2.0J 5.00 16.00~~ - ~~ ~ ~~~~~- ~ ~ ~22.00-~~~'~~T.~CC 7.00 6.00 23.03 8.00 14.00 7.00 31.CO 9.00 17.CC 6.00

- 297.6 C-1

1. 0 5 ~-~ ~T9 .~0 0 '

~ -- ~~ ~~

~ ~ ~ ~ 9. 0 0 ~~ ~ ~I 7. 0 0 ~ ~ ~ ~ 177C D-- ~~ ~ 4. 0 0----

- 297.6 1-2 8.03 12.00 7.00 7.00

- 297.6 2-3 1.00 6.C0 -~~5.C0 ~ ~ ~

~~' ~ ' ' ~ ~l .~0 0 - ~ ~ - - -

~ ' ~ ~ ~ ~ - ~ ~ - - ~ - ~ ~ ~

- 29T.6 3-4

- 297.o 4-5

- 297.6 5-6

- 297.6 >6 _ _, _ _ , , , , , , _ _ _ _ _ , _ _ _ _ _

9 . . . . .

I NOV 1, 1979 THRU NOV 30, 1979 BECmNS F ERRY .suCL E AR PLANT AVEGAr,E WATLF TEMPERATURE 3 5 1 8 7 11 4 14 STATICA huMBER: AVG 13 ~ 10 23 25' ~ 21 28~ ~27 31 24 34' STATICA CCCE: AV G 33 30 275.0 286.04 293.6 294.5 295.7 292.54 292.5P 292.5L 242.5M 297.6 296.0 QIbER FILE: _ . _ . . . . . _ _ _ . _ . . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _

/ . . _ _ . -

67.50 64.90 64.70 65.50 66 40 69.80 66.10 PC AT H M AX I"UM 67 20 67.53 66.60

56. 65 ~ ~ ~

. ~

PINIML4 ~ .

58.71 57.34 ~ 57.76' 57.~ 7 2 ~ ~ 58.30~ ~58. 35 '

AVERACE 58.14 57.95 57.49 .38 .96 1.01 .69-

, .14 1.37 .42 DT t - 297.63 .73 .61

.04- .54 .59 1.11-

.28- .95 .42- -~ -

56. 8 8- - -- -

OT E - 296.0) .28 - .19 57.48 ~58.81 57.39 ~ 57.83 57.80 58.56 ~ -- ~ 59.0 2 ~

SUR8 TO~ IS FT ~58.10 58.03 .44 .41 1.17 1.63 .51-p

.71 .64 .09 1.42 . 73 1.19 .95-p DT ( - 297.63 44- .03- ~'

DT I - 296.0) .27 .20 .35- .98 -

~~~57.69 ~- ~57.73-

~

5~8.09- 5'. 7 0- ~~ ~ ~ 56'.23 4

38.67 57.53 58.49 57.23~ .50 .97-I ~ ' ~ R CT T G W THREE 1.29 49 .53 .89 07 t - 297.61 .54 .33 .04 . 40 .01 1.46.

.16- .80 4 9.-

DT t - 296.01 .21 -

hr of days the temperature differential fell within the specified range . . _ . . . . _ _.

- 257.6 t-58 .

- 2 97.6 E - 41

- 4.00 3.00

- 257.6 t-28 ~

"3. 00 '~ ~ 1 00 ~~~ - ~ ~~ ~ 13.00 ~ " ~~- -

- 297.6 t ' ~ ~

T~ ~6. 00 - ~ ~ ~ 12. 00 ~ 9.00 4.00 ' ~ ~ ~ 5'.00 -

20.0? 13 00 11.00 13.00

- 297.6 c 19.00 25.00 5.00 30 00 4.C3

- 257.6 C-1 25.00 23.00 4. .C 3 - - . .-16.03. -

.- .16. 0_0 ._- . _ . . .

5. 3 0. .. . 7.00 - - . . . . -

_ 297.6 1-2

- 257.6 1- 4 _ _ _ . _ . . _ . _ ._ _

- 297.6 4-5 ..

- 257.6 5 6

- 297.6 >6 ew 4

l l

f l

DEC 1, 1979 TH4J DEC 31, 1979 BR0hNS F ER4Y suCLEAR PLANT AVERAGE m AT ER T EMPERATJRE 4 14 3 5 1 8 7

._. STAT ICN AUMBEst: AVG 13 10 11 _

AVG 33 30 31 24 34 23 25 __ 21 28 27 _

514T104 CODES 275.0 286.04 293.6 294.5 295.7 292.5A 292.5P 292.5L 292 5M 297.6 296.3 RIVED MILE: --- - - - - - - - --

- = - - ~

- .=_ - = -----. - . - - - _ -

l 7----==_-----:---- . . . . _

r _ - _ _ _ _ . _ _ _ _ _ . _. - - - - . . _ _ - - . .

53.20 52.30 53.30 52.50 53 10 56.60 52.90

. NCNTH MAKIMUM 53.70 53.80 54.10

__46.00_...__.% t00_.___A .2 20_.__ M ,20. __ _ 40,30__

-__ MINIMUM. . 45 96_. ._. 3 5.9 0 _. 45.00__._ _ 47.00._____45.00 49.83 47.51 49.81 48.41 49.97 48.28 48.52 48.50 49.61

> AVERAGE 49.39 .77-1.11 1.53 .13 1.69 .24 .22 1 33 1.55 DT ( - 297.63 1.29 .11- 1 45. .24- .02- 1.09 1.31._. _ __. 1.01- ._

_ _ _ _ _ DI_1_._296.01. ... 87

..53.05 48.31 48.52 48.62 49.75 50.40 47.41 H SURF 10 10 FT 49.42 49.81 48.41 1.44 2.09 .90-1.50 1.74 .21 .31 W DT I - 297.68 1.11 .10

_ ___ D L I_ _296.01____ _ ... 9 0 . _. 1 29__ _ . . . _. 11 _. . _1 5 3 . _ . 21 _ .10____ _1 23__..._1 88_.. _ _ . _ _ _ _ . . . . 1.11 _ _ _

49.78 48.16 ...48.55_ . _ 48.52 49.47 49.19 47.76 BCTTOM THREE 33.17 49.74 1.03 .60-1.36 1.58 1.62 .39 .36 1 31 DT ( - 297.68 .92 _ .64_ _.79-

_ __...01_f.- 296.0) 80 1.19 1.23 .39- .03 _

~~ '

1humber of days the temperatura diffe6ential fell uitkin tha specified sense

- 297.6 < -6

- 297.6 t-53 .__ __ _______S.00 _ . _ _

_ 2ii7.6__3-t _4 L _ . __.____..___ _ ._________.__ _ ___._________ _____ _ __.._.______________ _ ____ ____

- 297.6 4-31 3.00

- 297.6 t-2) 1.03 7.00

- 297.6 t-il. 15.00 12.00 9.00 14.00 1.00

- 297.6 0 10.33 3 00

- 257.6 0- 1 13 00 11.03 17.03 31.33 18.33 9.00 7.00 12.03 . 2.00 .__26.00 3.03 -

7.00 13.03 19.00 2.00 297.6 1_- 2 _ _.17.33 1.00 7.00 4.00 1 00 7.00 5.00 297.6 2-3 1.00

- 297.6 3-4 1.03

- 2.97.6 .4-5 . _

- 297.6 5-5

~- 297.6 >6 7 - e na 9 . . 9 . .

APPENDIX B LISTING OF WATFR QUALITY DATA AND SUMMARIES JANUARY 1, 1979, THROUGH DECEMBER 31, 1979 O

l I

a ua - - - . - m aum-A6 - V4 _A .,

_m.-.-_a - - .

I r

8 1

i i

l i

FIRST QUARTER 9

(

f f

I f

i i

(

4 . '

l I

h i

j l

-. , - --_, _ , -,. h

J

[ O e

e O i

  • O I C O l N D m

e O E 4 e e ZP J

@O =

  • u em WN U 45 Om mN E Nm W OWEE &

N>EWW W

@NW>> Q > c 000000000 OOOOO@NeNm OWmm= m>UI 000000000 COOOOmMNee md WN @mmF 000000000 000 samme@m OWJ > OONO e e e e e o e e e O e oO& emmmm

  • W4WW W OD E 000000000 COOe@@ emNm m WW W OOku mmmmmmmee ememmem *N e meum mmW 2mm mmmmmmmmm Ommm mmmOm
  • m.. O W mme U E e

~ ~ - N4 JNWW>O A 5"gt; ,4 7-ryn---

- WO22mn O00000000 OOO@@ men @c OeImWWmO O C00000000 con @mmmNmN m3OWWm O OOOOOOOOO OOOPmmmemm el D C00000000 OOOe *meNmo on m metateemm Omm emmmOmo o e e e o e e e e e e e ee@ eOeON NNNNNNNNN @NNeeNUOOO e e e e 000000000 OOOOm&Omem m W C00000000 0000 e@CmNm O kr O00000000 COceO&cmed MODW eNNNNNOON OeN e@mN40e OO>u e e e a e e o e e O e emm omNOc Q da emmmmmmmN *ehmmoe eNN MW @@@@@@mmm @@mm6@mNO e a e 000000000 OOOOmO4mme O COOOOOOOO OOOOmommNe O C00000000 COON *Occee mQ mececeOO& Om@ *@mmmom

  • OO O e
  • e e e e e o e oe eme eOmme O E ammmmmmmo emOOmmmNN@

mmmmmmmmm @mmmemoeOO e e e O00000000 OOOOOhmme@

O C00000000 OOOOO40@mm muk> 000000000 OOOOc@ MONO OWE 2 000000000 0000 +4momm OWWW OOOmmmmmm com *@@ Neem OWWW e e o e e * * * * * *

  • m CD e e N e CD T 444mmmmme @emmNmneOO e o e U 000000000 NCEw 000000000 CJOZ C00000000 0124 000000000 OEWm o e o e e e e o e og mmmmmmmmm MMW mmmmmmEOS I &

T m m mmenemoem M > M Y OOOmmNmme

  • k W OOOOOOOOO 4 WWMM W W W C0000000O ET 3 UOnW K O W WDD G 2 >

N WEE W 40 O m W emomONeem Emm 8 Zm2W2 N EW> mWiOOmmmmm EMZEE4m4WW W mO4 NNmmmmmmm DemDDWe>Ok 2 > Q mmmmmmmmm ZEEmWE> mum m

E C00000000m O 4 mmmmmmmmmog O N WE NNNNNNNNNNW N 4 >OO MmmmmmmmmmW e ,

a em> 0000000000m O

> Ou NNNNNNNNNNw N M @@@@@@@@@@D @

N NNNNNNNNNNO N l- Ci

A 0 O 0 0 3 0 0 00000IL2GL ,

O 3l 0 C 0 0 0 0 0 00C00LL996 E0d1 0 0 0 0 0 0 0 0C00 *Gt5L9 0 0 0 0 0 0 0 0O0 *t9 *0tE G0N/

  • 0 * *
  • 0 *099 *9 *IE 01 S * *
  • G t *G *I 5092L
  • 051d G G t 30 I I t 6 G G s LG626E62 *8 s1 n 01 0 0 0 0 0 0 0 000000E0O9 039/ 0 0 0 0 0 0 0 0000 *0 EGG 1 0 001S 0 0 0 3 0 0 0 000000EEE2
  • C * *
  • C *0
  • ELL 9 6 E0- h
  • C 0' 0 O 0' 0* C2C *LLt 0 O1S C C
  • 0 0 L5S O C C 0 I 0 0 *lC00OE *G
  • 9 0 3I I I 6 1 I 1 1 L!61LIEGO2 '

3 0 8O3 2 S 0C6000I196 S 0 C 0 00 6 0 0 C 6 V 5 0 0 0 00 6 0 0 006005l061 0 ' N6 1 0N 1 0 0 0 00 6 0 0 006352t2E4 00 I

  • 3 9 / C 0 0 00 6 0 0 0C6L09E906 41 SE 09NS E 6 9 tG 6 0 G 366Id6I9G2

) W9 05 d I 1 1 Il 9 l l *t9 't1OEZ1

  • * *
  • 0 *
  • 9 *0l * *O0 '0 9a G2 H 0
  • I1 i 0Tdd d lad 33 3 0 O 0000069229 9BvAA 0 0 0 0 0C 0 339l l ) EI 0 0 0 0C 0 0 C 0000266969 59th E0V1 C C C CC C C C 0CC04t9165 031 1 9h1/ 0 C C CC 0 O O 0OO26L1261

'4933 3 0309 6 6 L 60 9 G L 0LL0t2L699 6 33 3 C21 W 5 5 G 59 6 6 6 *6G * *LE129 0- * * * * * *

  • G *
  • G6 '0 * *0 G5a SSJs * *
  • 0 3 SST Nh 041633AO L43LhhlC C 6 C CCCCE64921 1 3ChhlC - C C 6 CC 0t hI33EC Ct1 0 0 6 CC C 6 C C0CC66G126 EMC11l 1 h71 0 0 6 0C O 6 0 00O064GG91 9h1/ 0 0 6 00 O 6 0 00CJ22bGs5 0+03 L l 6 00 L 6 0 0LOL192utL 0E1 h I l 1 96 I L G *IGL660vG1 H *
  • 0 03
  • O O 8
  • o*0000 *0 NN ' * * ' * * * * * * '

3 C C C C C C C CCCCCECG6C 00 0 0 0 O 0 0 0 00000DtL06 4! 1 0 0 0 3 0 0 0 00000I266I 6a1/ 0 0 0 0 0 0 0 0000 *L5EL2 C C C 000 *EG6tE2 .

0C3S C C 0 J 3l w ' * * * * * ' * *

  • 6G * * *66 H 8 6 1 L E E E 19EE2GG2 * '

3 0 0 C O 0 0 C C00000E190 531 0 C 0 C 0 0 O C00000E986 a 6101 C 0 0 0 0 0 C c000 *0E921 6V1/ O  ? 0 0 0 0 O 000

  • 0 0 E 111 03 - S * * * * * *
  • 0
  • 2E *EG56 014W 9 0 9 0 E t E
  • 0' E 19 9 * *16 00 1 1 1 1 l t l L1l11192 *
  • 55 0 0 0 0 0 0 0 00000tLB12 6 3 0 3 0 3 0 0 00002iGL20 2w11 0 0 0 0 0 0 0 00000l6626 6n0/ 0 0 0 0 0 0 0 0000 *51269 0I1S 9 9 L 6 2 4 2 062 *099661 0O *h * ' * * * * * * *
  • 60 * * *66 Ct 9 S 9 S 2 2 2 lS2826G2 * '

Sh 3 000O0O0O00OO0C0OO00O000 20hD 000C0C0C0CCC000CC00C000 0laN 00000000000000000000000 0dnT 00% 00000000000000000000 0WdS * * * * * *

  • 01 9 9 C 9 9 9 9 0' 0 C C C 0 C C E E 9 0 E E E G S3l 11l1 1I146 66666tll11lLLL H a H 1 G09EO1EG05ECEIE509ECE a A h i 1 000112E0CC112EECC0112EE 5
d 3 00000000000000000000000 i n

33d5 3 3 3 00000000000000000000000 3nn Hk O

30V3 N A a 0 J S VQ O l 3WW S 3 C 'D90240260546I9O25CZGO 9II - NIN3N

/ W3A E cEE6465550000l1Z22EEEt WINWkV3V3W I I0V 0 a00000000111Il1I11 lilt avian 3VL01

_ N I O 1 '1111111I1111!1II1iIii NWWSSMAS35 S

- W O90O000000000O00O000D0O1 0 3

r I 11I111111111I11l111I1!08 /

_ / 3W //// ////////////////////3 b V 100 I111111111111II1I111II!1L

_ d Va1 C000000000000CO0CC00CC004 O

_ A Od /////////////////// /////5 /

_ 1 6666666666666666666666660 6

/ LLLLLLLL1L11LLL1LLLLLLLL0 L e

~ "3 e

S e

> 0 00000000000000000000000 OOOOOmeeNm cDUZ 00000000000000000000000 OOOOOm@@mm

@>cE 00000000000000000000000 000e=Nomme OUNO e o e o e e o e * * *

  • e e e e * * * * * *
  • O e eO@ e eOmm O3 m 000000000S0000000000000 oOONece*@m OOWW NNNNc4Necseemmm44444NNN MNmeccN@@
  • E4m nummmmmmmmmmmmmmmmmmmmm Nmmm mNMOm e

U E O O OO O O O OOOOOOme>N O 8 O O

O O

00 on O

O O

O O

O 000O ocName OOOO*N@mee O mW*J O

@ eJON O O O 00 O O O COO *Me@Nem e Oguo e e e e e e e e O e eme e ammN O O GE N e e em m

  • 4 eemNNe@ em e e O WW e m e ce o e o ecmmmemeeN O O N @

d 00000000000000000000000 OOOO#eGe@m O e 4 O 00000000000000000000000 OOOONomOPm O

  • R@ J O 00000000000000000000000 0004 *e@eNo 00 m
  • W eZ 3 00000000000000000000000 000 *eNNNmo em em OA e mmecoceceg egege@NNeeces e@eemumeOO 3 4@ O e e e e e e e e o e e o e o e e e e o e e o e M e o&c
  • Neem eM GN Z G@DDDDebNNNNNNNNGe&@bDG NDNmme*eO
  • e mm n 04ME &

N DEww w CE4DD O J O O O O O O O OOOOONmW@@

Owem= c w O O O O O O O OOOOOcMNee M4EW m DJ O O O O O O O OOOOOcceNe OwJ > mow % O O O O O O O 0000 *NN ce

  • Edww w OQau O O O O O
  • O O eo*Mer me

@ ww w OO2K e *

  • e e O e eoo@c*@@mm ock Weue O @ S N 3 @ = @ Nmhoc@ e e e e O w d44 a OeJeww>O NewhEE>O O O O COOOOmmNe@
  • wCEEmO O O O O OeEmwwmO O O O O O O O O OOOOOW4D@m MEOppm m >J Q O O O O O O OOOONo@m>M MOWN O O O O O O O OOOemmocek 0000 @ @ c e > c e O@ee ode @mm Os E e e e o e e e e e emoommmN c m o m m m m m NmemNMO e eO e e Y

OOOcomOOOOOOccccccNOcON OncONNNmmm m > OOcNoeOOOOOONNNNMmmONee OmNoe@ Nome Q 4E CONMONOOOOOOceem&@eemNe ukeemeNe@@

RO3w NNGeoeONeeNNOUDmmm@ Nmed O eONNGNOne OO>v e e e o *O e e e e o e e o e o e e o e o e o eO esoe emmm O da @@ 44000@NNm=@@@NNNNmc4N mu@mmen eem Aw @@@@ mOmO@@@@@@@@@@@@@@@@ NmWN @mmoe o

a m O0000000000000000000000 OOOO@cecem O 00000000000000000000000 OOOO@eccNm O J 00000000000000000000000 OOOmeco@@m AO N fece@@ecedefeeemeC@ONee O@e ' GOO @Ne OO O e o e e e e o e e e o e o e o e o e e e o e o e o eNe edONO O E NNNNNNNNmmmmmmmmmmmNNNN MNm>MNNeem mmmmmmmmmmmmmmmmmmmmmmm NmmNmm e eO e e 00000000000000000000000 OOOOOcm@Om C 00000000000000000000000 OOOOceNOO4 maam 00000000000000000000000 CoocNcNNhm owe 2 00000000000000000000000 000 e e@meme OWww ccOOOOOOOcccOOOOOOOOOOO eOO@mmONme 04>u e e e o e e o e o e o e o e e e e e e e o e o mo emN emmed 2 ceccecceecceccccccccccc Neemdee oOO e o W 00000000000000000000000 NGEM 00000000000000000000000 OJOE C0000000000000000000000 OAW4 00000000000000000000000 OEwe e e e e e o e e o e o e e o e e

  • e
  • e o e o 04 Decee44COOOOOOOmememece' AHN mmmmmmmeceeeeceNNNNNNNN Z W g h g

w mmcoemommcoemommmcodmom OOOmmNMOOOmmNmMOOOmmNmm a, y g 4 .

g g 88888888888888888888888 o w

rg g e $8gg 40

w O

M W ONe4ONaONeoch@meONcONeo emm 8 2*EEE

% Ew> mmmmeeecccOOOOmmNNNmmme EMEEE4mewe

> mc4 OOOOOOOOOOmmmmmmmmmmmmm 34=33we>Op E > O mmmmmmmmmmmmmmmmmmmmmam EEEMMEDMud e C E 00000000000000000000000m O 4 mmmmmmmmmmmmmmmmmmmmmmmOE  %

N WE  %%%%%%%%%%%%%%%%%%%%%%%%w e 4 MOO mummmmmmmmmmmmmmmmmmmmmm>

A em> 000000000000000000000000k O

> 04  %%%%%%%%%%%%%%%%%%%%%%%%4 N y

> @@@@@@@@@@@@@@@@@@@@@@@@ 3 8 O o*

% NNNNNNNNNN~NNNNNNNNNNNNNO N .

U E

O e e O O O N m m

v m 4 '

@

  • 26 J ON m e u 4m Wm O 4m mM mN Z em &

OMEk &

N>EWW W COOOONomem WNe>> c > O 000000 OWmmm m>UI 00C000 OOOOO4NomN MdNN @>my nonnno nonnmememN OWJ > OUNO e e e e o e o e e eO e 4mme eE4WW W OD 4 000000 OCOONm eOwc m WW W OONU esmeee ememmed eN e WWuw zem mmmmmm Ammm meeOm 4ew

  • O W med U E OeJ@WW>O NeWN77>n
  • WO72mn ConnOO ononnen@@@

O*TmWWmc O C00n00 ononm4@@me m20*>m O C00000 OOOOO40mWN er D 000000 000m emNmmm Oa W meteet Ome *Oemmm4 O e o e e e e e e sem *Oeom i

NNNNNN 46MembOOOOe e e e nonnno non@N@ eem4 m > C00000 000@ e@mmNN O E2 000000 OOOme@eN@@

MODW Oemmme OOm ehmmem@

OOMU e e e e e e O e emm*mmte O da ceNNNN e4N4Nm e emm MW @@@@@@ 4&@mm@mmoe e a N 000000 OOO@@CN@mm O C00000 OOO@NO4mmm n J 000000 OOO@eONmNO MO N Om4444 004* *NONme CO O e e e o e e oe e em *meem .

O E N-mmme eNaONMName ammmmm 4mm6mmoeOOe e e 000000 COOOOO@ Mom O 000000 OOOOmO@cEO

~MkW OOOOOO OOOONO@mNE OWEZ C00000 OOOmem@mem O>WW OOnome OOm emNeNNm n4WW e e e e e e o e ee& *NNem 2 4Ademm mammmma en 9 e e U 000000 NCEw 000000 OJOX C0000O CaE4 000000 OEmm e e e e o e 04 mummmm mWW essees x &

T mmmnen N > N Y *

  • OOOm-N 4 a W C00000 4 WWEm W W us ococco Er D UO4W E O w KDD o 2 >

N WEE m 40 C W W Nmbome mmm iZNZ12 N EWF memOOO Ew2EE4M4W4

> MO4 mmmNNN D4mDDW4WCW Z > 0 mmmmme ZEEmmE> mum m O E 000000m mmmmemog O 4

N WE NNNNNNNW N e i

m WOO mmmmmmm> e j O A wke OOOOOOCE N I

> OR NNNNNNNd M @@@@@@@D @

i

' N NNNNNNNO 6 O 'E

e N O 000000000 000000 OOOOommeNm A>UI 000000000 COOOOO .OOOOOm@ONm

@>cE C00000000 000000 'OOO *emm>@w OWNQ e * * * * * * *

  • e e e e o e O e *Omo emoc 03 m 000000000 000000 *OO@e@N eme COMU eceefeNNN NNNNNN cNemmc@m@ e e 24m mmmmmmmmm mmmmmm mmmN mmmono u E O OO O O OOOOOONe@@

O O OO O O 0000 eOwWND 9 mgma O on O o OOOOOOmm4m

@ eJo% o OO O O 000 emNONeo

@ 0400 e o e *

  • O e *DN *NPN4 O O 4K @ me D 4 eDANoee ee@

e O WV e se e e efcNaemmoe

  • O O N M M 0600000000000006 OOOO@emNON O 4 4 O 0000000000000000 OOOONNeeOS e
  • ZN J O 0000000000000000 OOOm e4@ @e@

m@ *

  • U 9Z Q 0000000O00000000 000 e@Oec@m CO Wm 04 o cefe meeeeec@Nmee ecm@NOe@mN J <@ O e o e e e o e e e e e e e e o e 4 e eNO oNeem SE @N I NNNNNN@@@mCNcOC@ mamamC o *O e om >

04E4 a N>Zww w OOOOOONN@m 4m4DD O J OO O O Owmmm e w OO O O OOOOOO4Nmm enMM M >J OO O O OOOOOO49eh Owa > MOWN 00 O O C000 *e4Nmm

  • E4Ww w OOs0 00 Q O 000 *mNmeNN N ww w Ou2 K e * *
  • e e eme*@@me N c@NmNN e *
  • e N NM WMUw O CN @

O w Mme J OmJ@ww>O NewNZZ>O O OOOO@CNece a wOZZmo OO O Oermwwmo O OO O O OOOO@QN@NN m30>>m m wJ OO O O OOOO@emNae MO4% OO O O OOOOONe@ed e

OOOO Om E De e e e

o e ODemece@N@e e e e e o emmm c mm m o emm4@moe eoe e Q000000000000000 OOOOm@hDet m m C0000000000000OO OOO4m@44em O MZ 0000000000000000 000 *ee44mW

  1. MO3m eeememNOOOOOOO4N ON&oemamNa OOpu o e e e o *
  • e
  • e e e e * *
  • e e oNe eONem O 43 ***NNNe4444444%@ 4@Nemes ***

MW @@@@@@@@@@@@@@@@ m@@m @mmoe 4 o n000000000000000 OOOOmNe904

  • O 0000000000000000 OOOO444@mm O J 0000000000000000 'OOON
  • m D 4'@ h mc  % m@c444PCOOOOGONe Oe4 em@@@mm OO O e o e o e o e o e e o e e e e e e e EON e4m@e O E maammmmNNNNNNNNN ONmPNmeNmc mmmmmmmmmmmmmmmm mmmmNma eOO e o e 0000000000000000 00000C0000 O 0000000000000000 0000000000 m m O. > 0000000000000000 0000000000 Owr 2 000000000000000C 0000 *C0000 O*ww 0000000000000000 oOO e400000 04>u o e o e o e o e e o e e e e o e 4 e e4N eOOOO 3 4444444444444444 ~44@e4OOOO e e e e U 0000000000000000 NCEV 0000000000000000 OJOZ 0000000000000000 Oamd 0000000000000000 Orwm e o e e o e e o e e o e e e o e 04 444444000009e*e9 MW> mmmmmm44444CCWee Z M Z m m e C 4 0 m m e N b a m c o d.

E *

  • OOOmmNOOOomOOomm " > " 1 0

M i $ 8888888888888888 O 6 WD3 rr 5 0

$O""

Z >

l

> WEE e 40 O M . W NchoeNONedeONe40 em= I ZmZwZ N Lw> NNNmmmeeeeecocco &4 ZEE 4 mews i

> =O4 mmmmmmmmmmmmmmmN 34m3Dwe>Om i Z > O mammmmmmmmmmmmmm ZKKeeE> mum l

@ I E 0000000000000000m O 4 mmmmmmmmmmmmmmmmom O l

N WE  %%%%%%%%%%%%%%%%%w e j

4 >OO mmmmmmmmmmmmmmmmm>

a em> 00000000000000000W Q i

> 06  %%%%%%%%%%%%%%%%N4  % l

> @@@@@@@@@ @ @@@@@ D @

N NNNNNNNNN N NNNNNO N e

  • Q*

1 1

e I

I

1 J0 0 0 00300212G9 O31 O0 0 0 0C00009666 End1 CC 0 0 0000 '09E61 G0M/ OJ 0 0 0000009tE2 9 * *

  • 0 * * *G *96G4 01 *6Et09 *
  • 451W E 6' 0 t t *1l91192
  • I
  • I e

30 t1 1 d1 01 00 0 0 0000000010 039/ 00 0 0 0000 *00060 0 0n19 00 0 0 00000000G0 6 E0- h 0C C

  • 0 *0 *0G0000 9 O15 * *
  • C CC *CE * *06G *G
  • 3 L5S 0C C 0 *00Lt2G 6 0 31 66 6 1 t16Et62G02
  • 3 0 a03 2 S 0 006C600L9G S 60 06 G 9 V 5 60 06 0 006O600i9G G
  • hL 1 0h 1 60 C6 0 006O60Gl29 I9 t ' 3 9 / 60 06 0 E

006C001691 0G6 ggt 1E0G 9G S1 0SN9 6G 26 I *l9G9I0EEI 0 y6 0a d 1l t 9 'O

  • 0 ' G
  • 0 *0 *30 98 g2 H 0 0
  • 01 i
  • 0Vdd d 1Ad33 3 0 O0000O6dLG 93vAA 0 00 00 039ll CEl 00 00 0 C0009C02LE S9tt E0v1 CC CC C CCCC%C14SG O0 C coo 92224LE 031
  • aV33 1

3 Sh1/

O309 Lt ,C t0 L oLvLGG096L L 33 3 C21W GG GG G *GG * *G012C C- * * * *

  • G * *2I *000C 12a SS3d * * '
  • 0 3 SS9 Mh 0E1633AO Lt3LhhlC C CC0CC6C1(2 3CNhlC - 06 CC 1

0t H133EO Ct1 06 CC C 0CCCC6C96S EM011l I H71 06 00 0 0000C6E60E 9N1/ 06 00 0 00000664E9 0+0S 06 0E 0 0E026E009E JE1h l 9 9l 9 *[ 9%E90EEI d *0 0

  • 0 G
  • 0* *0000 * * * *

'O NN *

  • 3 CC C C CCCCCCCC1C 00 00 0 0 0000000090 6! 1 00 0 0 0000000010 6a1/ 00 0 0 0000 *G00G0 o 0C3S C0 C 0 0C0 *IlG0t 5 0l W * * * * * * *tt *ZG92 H 19 9 0 *91E2L ' *C 3

00 0 0 000000EO1G G31 00 0 0 000000EG9L e t101 00 0 0 0000 *0EE09 6V1/ 00 C 0 00000 GEL 29

  • *
  • 0 * * *L 0J - S 0l4W 60 6' 0 *69tE 9' EGE2 E L*0 t 9*

n0 11 1 1 t11tI1 *

  • S5 O0 0 0 0

0000O02Z29 0000C0bE99 6 J0 3 2H11 00 0 0 0000GG2E61 6n0/ 00 0 0 C00L 'L6Z69 0I1S t4 G t 0t6 *9I9E29 CC *h * * * * * * *GC '661t Ct Sl S E 66922l * ' *

  • Sh 3 OO00G0 COO 000000O 2ChD CC00C0CCCC0000CC 0loN 0000000000000000 0duV 0000000000000000 *****

3dd9 0t S2l 9SSS99C0C0C'tt44t EEEEEE 999999999s H a H 1EG090IEGL01EG0S 1 000I12CCCC10C0I 1 B A #

h i V 33ad v d 3 0000000O00000000 3 3 3 0000000C00000000 Hk n 30Vd a 0 3 ann O h A G

l 3HW S WO 2G1CGL02t9S0Z490 9II - NI N3N

_ S 3 222EEE64v6t5GGG0 WENkkVNV3W

/ h3A

_ 1 I01 t11IlI11i1i1lIl2 nV! nn3VI01 N l 0 !11IiI11l1l1iIi1 NWNSSWAS35 G 0 W 000000000O0000O0( 0 V 111111111l1111t101 /

_ / 3W /////////////////3 6 V 100 1I1I1111It11111111 0 d va1 0C0C0C00O00000000k /

_ A 0d /////////////////t 6 L 66666666666666666n 1

/ LLLLLL1LLi1LLLLLLD e

a o3 a

e G

W D

e O O O e

N M M

O O 4 e e 2N J N@ m o W em @m U M@

Ma eN Z Om >

Cakk &

N>Lww w emWD> Q > O C000000000000 OOOOOmmemM Owemm chWI n000000000000 OOOnom@ men mews @>cr nnnnnnonnnonn Onn emNdNhm OWJ > OWNO e e e o e * *

  • e o e e e O e onO e emmN
  • weww w C3 a COO 00OC000 goc eOONm@N oce O ww w ncbu MNNNN>ccccccc m>camcond e MmW @@us Zem mummmmmmmmmmm memN memON W MMe u E
  • 8NJ@ww>O NewkFF>n a WnF2mn nOOnnnnnnnnno onOnecNmNe Cer-wwmo n C00000000000n OnOnmmecee m30>>m O 0000000000C00 COOOO4mNeN eZ 3 OOOOOOCOOOOOO OCO e ee@cee OL M emmecommmeree eemNe@OcOc O e e o e o e e o e m eOO emcNm m e .o .e .e .e NNNNNNN m .oNm.N
  • eO e nonnnnnnnnnnn nnnnenem,n a > C000000000000 COOemmcNec O aZ 0000000000000 000 *NNewcm mO3m eNcOOOeeeeEms COomeNmONN OO>W e * * * *
  • e o e e e o e e e omm ee@ON O 4m @ me m 4 4 e e e e e N N N m e P N s's m o enc MW @@@ @@@@@@@ @@@ mPEm @Mmo*

a

  • 0000000000000 OOOOmeNeme O C000000000000 OOOO@cheme O J MODOOOOOnOOOO nOOm emmcNe MO  % NebOOOmmemece CON eeNeNNe W

00 c e o e e e e o e o e e e o e e oNm eemOc D E MmmNNNummmmmm ANmcNmcNNe

    • m m en og m m ein m en me en m me m m m e.e == O eOO e e e C000000000000 0000000000 U 000000U0UOOUU 0000000000 mm&> C000000000000 0000000000 OWTT 00000000n0n00 0000 enOOOO Owww 000000000n000 00 0 e80 0 0 0 0 0 OWpu o e * * * * *
  • e e o
  • e m o eme eOOOO t 3 edeemedeemede meoNeconne

! e e e e U C000000000000 NOEd O000000000000 OJOZ C000000000000 Oate C000000000000 Orwm o e e o e o e e o e o e e 04 ceccccWemmesm MWh odoceeWeemeOm Z m E mmenomamenemn F > > Onn==NonommNm W > a 4 4 w C000000000000 e wwam W W W Cn00000000000 FY 3 UOew

& O E N33 n 2 >

> WEK M 40 O M W ONeemOmONcONe mma 1 2=242

% EEN mmmmmecOOOmmm ENZEEgmew4

> mOe @@@@@@Ommmmmm Dem33me>Op 2 > Q O O O O O O m m mm m m es ZEEMMEDMUM e

& C000000000003- O g mammmmmmmmmmmog O N WE NNNNNNNNNNN%%%w N e >OO m m m m m m m m m m m ,.m m > e a em> O O O O O O O C O n O 'J O O N O N OE  %%%%%%%%%%%%%%e N

> @@@@@@@@@@@ @@@3 @

% N N N N N N M M N N F* N N N O N

+

0/

e e

> c 0000000000 000000W0m@

@>OZ 0000000000 0000004@@@

@wc1 0000000000 000 e404Nec QUNO * * * *** e * *

  • O e eOO e emm4 03 m O000000000 e O O aD e m a eeN Oc>w ececceNNNN ONOONcOO4
  • Z4m mmmmmmmmmm mmmm mmmOm ,

U K O 00 OOOOOOOOmo O O OO COOOOOOONc 7 mgmJ 9 90 0000 *OOONm

@ 9J0% O DO 000 000005N

@ O400 e ** O e *Nm oCONN O O 4E 9 ee

  • c m m c0 e e *Ne e O mQ e te meemeem*C e e O O N W M 0000000000 COO @@@meme O N 4 O 0000000000 OOO@e@meme 4 e Ze J O 0000000000 OOO@N@ embe Mc m e u eZ S 0000000000 OOON *Ne@@@

er me Os @ evDeeemmmm one *GNA4Nm O 4@ O e o e e e o e e e e O e eN@ emmem 43 QN Z NNNNNND&4m m@NNeN

  • eO e e

om m 04mm a NDEWW W C000000000 Czg>> O w O O OwSmm e w O O 0000000000 M4Eg m >J O O 0000000000 Owa e mow % O O C000000000

  • meww w OOJO O O COO * *O0000 4 ww w Ou2Z e e o e s e aD e0000
P O X WWOA O N N NNNm@NOOOO* * *
  • O w MM4 J O*Jmww>O New@ ZZWO C000000006 m wcZZmo O O OeZmwwmO O Q O C000000000 m2O>>m m >J O O 0000000000 MO4% O O OOOOcOOOOO CODO N N ONNeNNOOOO Oc Z * *
  • e * *
  • eOOOO e m m NmemDmOOOO e e o e 0000000000 OOO@@@Noed m N 0000000000 000@ *@m4@4 O EZ 0000000000 OOON@NecN@

MO3w 40eeseemNN 04e ecceN40

OO>v e o e o e e e o e e e e eOces@me O 4W N4eeee4 Nee ONeeme o em@

Ww @@@@@@@@@@ m@c@m@eNO e e a

0000000000 OOOONON4Ne O 0000000000 OOOONO@NN@ ,

O J 0000000000 0004 e4NDND RO N NOCCCC@@@@ ONO *eN@m4N OO O e e o e o e e o e e e e oNeemNmm o E NN**mmOmmm ONommmmmmm mummmmmmmm mmmmmm e eO e e

0000000000 COOOOO4NN@

O 0000000000 OOOOOOeN@N mwak 0000000000 OOOOOOONNN Owrz 0000000000 0000 eONece OpWw OOOOOOcce@ oOe*N#4cem O as >= v e * * * * * * *

  • e oe eem *4Ne@

3 4444440@@@ M4@@m@O eOO e o e U 0000000000 Norg 0000000000 OJOZ C000000000 OaM4 0000000000 Orw@ e e e e o e e e e e On ceaseeNNNN MMW feeeeemmC@

Z  %

I wmecommmeo M > M Z N OOOmmNOOOm WWEE 4 4 w 0000000000 4 UQ4W W w W 0000000000 Er 3 M Q w M33 G Z >

O

> wZE M (O

@ w #ONDON@ONe Mmm 9 7m7LT

% Lw> Nmmmececco EMZEEdugwe

> -O4 0000000000 34=3Dwe>ON Z A O mmmmm***mm ZEEmmEDWum w O E C000000000m 4 mammmmmmmmos O N

% WE NNNNNNNNNNNw e 4 00 mmmmmmmm mmm> O A ,4Ek OOOOOOOOQQCm  %

P Ow N%%%%%%%%%%4 @

M @@@@@@@@@@@3 N

% NNNNNNNNNNNO r

t a

. Gd i

i .

l l

  • > O O 0000000N00 Owd O O OOOOOOOONO m3wJ O O COOOOOOmNO

@OZN O O 000O ocONNO Om O *

  • O * * *O eio c c o LMWE @ & *@@NOCONmc wO m m Nammcm e eoe
  1. Em o OJ O O OOOOOOONNO Owe % O O C000 *OOONO O O3mo o O OOOOOOOmmo

@ mO S F

  • O O eo *OOONeo e OwM M e no ena e oOen O NMM O n *OO@ men eN e e O wm a e NaemmecNoe C O EQU N M M @ On onmOOOOmen O N 4 e @ 00 OO@OOOOOme e* 2e J O2 J @ 00 OOmOOOOOme me > e y e  % e OO nOpoecoOmo

@@ M (- 0020 @ GN Q@@@@Nmomm O ge om E N mm em>memoemN Ok CN Z O O

  • e m oc*O eOO *O Om > e
  • e o e e Cgma a NDEww w SkWh> O O 00 0000000000 Qwemm OnJ O On 0n00000000 Meww EOed n nn onnomOnOOO OWJ > eT>% O CO OCONeOOOOO
  • meww w QuCO e ce Gee @NeOOOO e ww W ONWF m ec ecc escOOOO

@OW MWuu Os *

  • e m
  • om o eOOOO O w Mme FF *
  • e
  • Omamww>O N e ue m F 7 k n m wnFZmn e o nm annonenNNe Germwwmo neJ O Oe nnOnnenNNe m30>>m MIe4 O Ce O n n o n @ n e N e=

42WN O OP OOOO4& NEON 00 00 m Op 6moeO&Ocmc f Om>F M ed emeNNNONmm 1

  • Qu m *O *OOOO eO 22 * * * * * * *
  • w n n ennnnnnNmn 40 0 0 0000000000 em J Q O OOOOOOONDO g OWJ% O O OOOO eC.O N N O Coud O O 000 emcomeO OJ E * * * * *em ocN@c 2 N @ NGNmmN
  • eO e U
  • O O 0000000000

, ew> O O 0000000000 e>OJ n O 0000000000 74>% O O OOOO eOOOOO OmeO *

  • O * * *moOOQO OJeE C e *@@@etOOOO 30 m m Namm4mOOOO MM e e o e o O COCOQooNGm y 7 O O UOOOOO@New NErw O O OOOOmommee enON O O OOccmepeep Om>O N e CeN e eNeOOP Oner e
  • emm echme Od e e NeemWennnO M7 *
  • e e U 0000000000 NOYW OOOOOOOOnO OJO2 0000000000 Dame COOOOOOOOO Ogam e o e e e a e e e o 04 feeeeeNNNN MHW eeeeee@MMD I a y f y mm@nemm**n y y y 4 a w OOOmwNOOnm q gggg w w w 0000000000 gy 3 gogg g a g C000000000 m33 a z y

> w1E M 40 0 M w OONmONEONe emm 4 Zm2w2

% EEh Nmmmeeecem EM2EEe&gwe

> mOe O000000000 Dem33me>Op 2 > O mammmmamam ZEEMMEDMUM m

L OOOOOOOOOOm O g ammmmmmmmmOR O N WE  %%%%%%%%%%%w N e >Oc mmmmmmmmmmm> e a em> OOOOOOOOOOOw O

> OE  %%%%%%%%%%%d  %

> @@@@@@@@@@@D &

N NNNNNNNNNNNO N W

L we a

O s m

e C

  • O i

e O O N m m

O N 4 ,

6 e 20 J MO m e u "A MN O eO GM Gm Z Om >

04MM L W>EWW W CMW>> O > O C0000000000 0000000000 Owemm m>ur O0000000000 0000000000 mdww @>mr C0000000000 000 omannon OWJ > OuNO e e e e e e e e e e e oe EON eO000 l

  • K4WW W CD E C0000000000 *CGmeOOOOO e WW W Ocku mmmmmmmmmme Mmm@NOOOOO mmam MOOOO NmW mmum 24m mammmm mmmme e o e e m W med u E OmJ WW>O NmW 7250 OnnemenOOO
  • W F2mc OnOnOOOOnno CaTmWWmo O 0000000000n OOOmmmOOOO m30>>m O C0000000000 OOOPmeOOOO e1 3 00000000000 COOme@OOOO OL D eteeeeeeeee eee eNMOOOO O e * * *
  • e e a e e e m o emO eoOOO NNNNNNNNNNN MNNe@NOOOO e e e e nonnonenOno nonommOOOm m W 00000000000 0004 ememme O NT C0000000000 000 eMONDOD mO3W NNNNememcee CNSmmDmeme OO>u o e o e e e e *
  • e e o e emm emmNe O 4K mmmmNNNNNeg mmNONM e emm WW @@@@@@@@@@@ m e m m P P e. m o e e

a .

00000000000 OCOON# Neem O 00000000000 OOOObemO4C O J OOOOOOOOOOO OOON etNmen MO N @@@@@@@@eem Q@@ *NNeeNm 00 C e e e e e e e e e o e e o e@m eCeNm -

O E mmmmmmmmmmm mmmNmmNmme mmmmmmmmmMn mmmmmmoeCO e e e O000000000O OOOOOe@e@N O 00000000000 OOOOmmmeNm MEA > C0000000000 COOONemWme OWER 00000000000 COOmemNome CWWW C0000000000 *Cm*O@Neme -

Od>u e o e e e o e o e e e m o eee oNmNe M &&&&AmDDe&& m @ m e m sh n eOO e e o O C0000C00000 NCEW 00000000000 CJ02 00000000000 e

! O&Eg CO000000000 OEmW e e e o e e o e o e o Ow eeesseNNNNN DWW NNNNNNMmmmm Z E Z mmmOsmmmmoe r > > OOOmmNDOOmm . m > w 4 a w 00000000000 e WWEK W W W 00000000000 Er 3 uOew

& O a m33 e 2 >

> WEE m 40 Q D W ONe@CNN@wmm Emm 0 Zm2EE N EL> OOOOmmmmNNN EMEEE4E4WW 6 mod mememem@mme Dem33We>O>

2 > O 00000000000 EEEmmE> mum m 0 E C0000000000m mmmmmmmmmmmog O 4

  • N WE NNNNNNNNNNNNW N 4 500 mummmmmmmmmm> e O

& www OOOOOOOOOOOOw N

> OL N%%%%%%%%%%%e

> @@mm@@@@@@@@D @

N l N NNNNNNNNNNNNO .

l L 10

i, O

4 O

SECOND QUARTER e

4

{

! 8

O i *

! C O

5 8

\ N @

W O @ 4

  • e 2@ J 0 m
  • u > c 000000000 OOOOOWmNN@

i 7' m MN m>u: 000000000 OOOOONmeNm O MN @wer nnoeconon coneONmOmO j og SN Z nuNO e o e o e e o e e O e *Om eemob Nm > 03 E OOOOOOOOC COOeNN seNe OMMM L OOWU mmegetese eemNmm@ em o NDEWW W 24m mmmmmmmmm @mmm mneom CE4DD Q U E e 1 Owemm

@4WW OWJ > C00000000 Coco @N@mmm

  • N4WW W O onocococo OCoceN>Nm@

c WW W O C00000o00 OOOONNNoe@

mmW MMUE *Z D 000000000 OOOmehemmm C W MM4 CA M egemNNNNN OeN ocNPNmN ONWNWWDC O e e e e e e o e e e e em>eO@mm NeWNFT>O NNNNNNNNN @NNeeNOOOO m WO22mc e e e

  • CeZmWWmo m3OWNm m

annonenOn onnemNPNmc C

> OOOOOOOOO COO @ eethOf 22 000000o0C OOO@megeON MODW C00000000 000 eNeONee COku o e o e e e e o e C e em> eme@c O em NNNN@egem eNm@mee *mm mW &

emmeemmem PemN@mNMO e C00000000 OOO@@emeNm \

O C00000000 coo @Cemme@ l O coooOOOOO OooeNeoNm>

l mO C00000000 COOmseteme

, W OO O NNNN4*eem ONmobehe@m i

O E e e e e e e e e e e o e@ceNmem CCemmmmme PWWh@moeOOe l e e .

COOommONNO i

O mMa>

000080000 C000 0000 COOOhmmNNe t

, C00000000 OOOcemem@N I OWE OkWW 2 COOoOOccm OOmecemONm 1 e e e e e e o e e O e eNmeNemm 04>u eeeeeemme eemeNeeNmm 2 mmmmmmmmm @mmmNmneno e e e W C0o000000 OSEE Otud C0000000O 888888888 OEWG e o e e e e o e e C4 mmmmmmmmm MWk Cemetemme Z M E

2 mmecemcem 4 &

> OOnamNmme W

E > W CC0000000 4 WWEE W W W C00000000 Er 3 uC4W W O E ED3 O 2 >

> WEE M 40 O M W Ombom6@mm Smm 8 Zm212

) N EL> memOOOOmm EM2EE4E4W4

> MO4 NNNmmmmmm 34m33We>Ok t

2 e

> c mmmmmmmmm ZEEmmE> mum E COOOOOOOOm O 4 mem e mmmmmOM Q N UA E NNNNNNNNNNW N 4 500 eeeeeeeeeek N L 4MW OOOOOOOOOOM O

> OE N%%%%%%%%%4  %

e > @@@@@@@@@@D @

N NNNNNNNNNNO N e

n 1.

l I

5 O 00000000000000000000000 COooOcecee

@>WZ 00000000000000000000000 0000000-4m e*@E 00000000000000000000000 000 *@meedm *

  • e e e
  • e e o e e e e * * * *
  • e e e e e OeDomoneene e *O4 e emme i OUNC 03 M 0O000000000000000000000 OOMW E4m dededeemmMmee#Nememesme mummmmmmmmmmmmmmmmmmmmm MemNedeem Nmmm ommm em W E O O O 0C O O O COOOOceeme O O O O OO O O O 0000 e@Neot O mWmJ O O O OO O O O OOoomhedsm e eJC% O O O OO O O O OOO *e@mmte e e e o e e O e ee@ ogee @

c Q4WO N e

e

@ em N m m emN@eee see O O (E @ # @@emme@NO e e O "Y e e e ** @ e o o N @ COOONeobee

  • C0000000000000000000000 0o000000000000000000000 OOOO4mmmec O 9 4 O 0004 eMeom>

0 e Ze a o Q0000000000000000000000 *@meNNe OO ~e U 9Z Q C0000000000000000000000

@@@@eceetemmNNmO@e@@@@e 0* @0 0 Node @emo em Mm og vi e**e********eeeoee***** mo eNN *OpmN O 4@ O NNNm=NOOOO 4 E, EN ,Z NNNMMNNNNNNNNNNNNNNNNNN e e e e 04MM L NDEWW w O O o COOOOONmme

  1. E4DD o J O O O O ee

@ w O O O O O O o COOOOOd@04 Owe =~

A4EM m >J O O O O o O O OOOO *C40 9WWww

  • o8$3 9 8 8e 8e 8 8e 8 8989*9**ES e~ eO~O@ eee e ww w Ov2K ~ @ 4 N m @Na m e e em

@@M Meuw O m e 4 4 4 O w Amq J QadewWWO NewN32po O O O DOOOOmNemN m wCESmO O O O O OeInwwmo O O O O o o O O OOOOOhmome m >J O o O O Q O O OOOO4@@@ON M2Owwm O O O O O OOOO4eNm@e mO4% O O e CenO eNeNe@

OOOO m e N m e N Oe E e e a e o e o e e e em emmee

@ m m m m m m m MmnemmoeOOe e e 4

OO4emmeOOOOoo@mOOeemmee OOmNamemeN m > 44@@@@eOOOOOONNOOf@@@ee OONNo@CeNN O MZ PemmmmeOOOOOONeoommmm@@ 00@ eemNe@e mO3w m mNNNNNOOOOOOMMOONNNNNN OOme@Medde OOpu oeoeee****eoeeeoeeeeeoe e e e O P= *dNmN O 4m OOpe@@Nedee@emOmmeeGGNN mmOOHN e em@

WW PPSGeW@@@GWeeC@ece@@Ce@ Ne@N GNNO e e e

A 00000000000000000000000 OOOO@N4mM@

O 00000000000000000000000 OOOO@meeeN O J 00000000000000000000000 000@ e>Neme mc  % 00000000000000000000000 000 *NeNNNm 00 u NNmmOOPe4decemNmmmmOOpp eNNmommoem

  • o E e e e e o e o e e o e e o e o e e e e o e o e mo eOm eemme epepePe@@@@@@e@eee@@eem Ne@NMCO e# Ce o.

000o000000000000000000O oOOedeeON4 O 000000000000C0000000000 OOcemomeN@

mML> 00000000000000000000000 OOON edm@@@

OwEZ eeNOOOOOOOOO@cC@@Oemmoo COO eOmeN&e OMww e e * * * * * * * * * *

  • e *
  • e e o e e e e e o emm o@e@m 04MW @@@@@@@dedee@@@@@@@@@@@ me@@e@mMN@

2 mmmmmmmmmmmmmmmmmmmmmmm ~mmmem

  • 80 0 e *

~8E, OJOR 88888888888888888888888 C00o00Q0Q00000000000000 Oame 00000000000000000000000 eeoeeeeeeeeeeeeeeeeeeee OELe 04 444ce44coOOOOOOmecemece mmmmmmmeeeeeeeeNNNNNNNN MW>

Z M

~

Z m m @ O 4 M o m m @ O e m O m k m @ 5'4 M 'O m E > E I * * 'oOOmmNmOOOmmNMMOOOmmNAM 8 Er 5 285" M

O s -8888888888888888.888888 MDD WEE G

m Z

40 O

M W @ON@O@OO@NO@NONO@NOf>O@ emm t Zartz e@@@oommmmege@@OOOmmmNN ExxgEngewd N Em> 34m33wdMQp

> mod meeeOOOOOOOOOOOmmmmmmma ZEEAMEDMUM 2 N O COOOmmmmmmmmmmmmmmmmmmm e O E 00000000000000000000000m mammmmmmmmmmmmmmmmmmmmmom O 4 s N WE %s%%%%%%%%s%%%%ss%%%%%%%w N 4 wCO eteeeeeeeeeeeeeeeeeeeeeen O

& WEP OOOOOOOOOOOOOOOOOOOOOOOCE B 12  %

N Qw s%sNsss%sss%%s%%%%%%%s%s4 e eeeeeeeeeeeeeeeeeeeeeeers NNNNNNNNNNNNNNNmMNNNNNNNO N e

e l

l l

e

> 0 C O O O O O OOOOOeNeem

'Owd O O O O O O O OOOOOmmemm MDEJ O O O O O n O OOOOONNoem mOE% O O O O O O O 0000 eseONO

. Om O O O O O O O 000 *Nmbeed Om>O O E

N e

e e

e e

e e

e e

e e

e *

  • eMeee N e N e e m . e. eOe N e e

Oa O O O O O O O COCOQmeceN Owe % C O O O O O O 0000 eseNee O CDm@ O O O O O O O OOOOOmoeOm e mO S E O O O O e o e O eO eONedNN e Omm o e e e O n O On e n in e emNe O NmW O O O O m O O emONeem se o e O wm e e e e m a m NmedeedNON O O mou o N @

M e e O DO e O O OOnoneeNmN O e e e e e O PC e O O OOOOQeemed O e Ze J O2 4 e p Q SO e O O OOOOOedeeN 82 O

34 em 8.23 Ok E e

F e

$8 de F

e 8

e Rm 8R8R2285*$

emmceNONem ek eN Z O O O O DO O O e e*O eOOOO oO mm > e o e e e e o e e e e e e Oeks &

N>EWw w eme>> 0 . O O O CO O O O COOOOOOpec Owemm Omd O O O DO O O O COOOmoomem Owd Meww moed dEk%

O O

n O

O O

OO DO O

O n

O n

O conomommem Oncemcopee emeww w OWOO e e > me e m c OmMeeOmNem e mm W ON>E c m e Oc e e e seme seOmem ec& MMuw Os e o e o e e e e m o eeN *OOOO w Mee 8edeww>O NeWNER>O 22 e o e o m WOREmn B n n n On & O e OceOOOSNee DeEmWwmo Oed O O O 00 e o e OOOOOmmmmN m2O>>m mred O O O QC e o e OOpomNecem eE>% O O O CO e O tv QOeONomNew 00 0u m o O mN e O OOeNNNm>Om Om>E = m N mm a m e eNeemmOmmm Z * * * *

  • O e C eaoe e eOO eO 23 e e o e e a w n n o n n n n annonmeece W OO O O O O O O O COOOCeNmmm em J O O O O O O O DOOOOHNDeO P&JN O O O O O O O C000 *NeeeN COud O O O O n O O 000 emmemmO Ga E e e e e e e e e e Z c c e e e e e Neemmee N e e N. ce m* N*

u O O O O O O O OOOOOOmoce ew> 0 0 O O O O O OOOOOOmcNa ebOJ O O O O O O O C000 eOmmmN Pe>% O O O O O O O COOOOOm>me e e o e e e 8g3WeX g N N m N N m o

N O e e em emmem emmeONmeeN O m m a m m m a Namemm e eO e W e O O O O O O O COOOOcmeeO e O O O O C O O COComeceeN NE>J O O O O O O O COOOeNeNON PDON O O O O O O O COOm eeNOON Om>. e ~ O m m m OO- eNeem>m OO .E

,o e. e e o e e e .moemmmm Oe e e e m m .e Nemm~meoce mE e e u 00000000000000000000000 OS.e C EM 8888888*I88 8 *88 GEme 0 0 0 0e e0 0 0 8. eO.08.88888$O.8800 e e 0C000 e e e e e e Ce eedecedOOOOOOOOmmememem mWh mmmmmmmeeeeeeeeNNNNNNNN Z m 2 mmmOemommmeemOmmmmOdmem E > > O O O m m N m O O O m m Nm m O O O m m N m m M > N e a w C0000000000000000000000 e ww&M w w w C0000000000000000000000 EE D uCew m O E EDD o I >

> WEE M ec O M w mONmOmOOmMOmMONOcMomkom g== 4 2mEm2

% EEk ememOOmmmmeeemmOOOmmmmN EMEEEemews

> mOe PrepOOOOOOOOOOOmmmmmmmm DemDDwe>C>

Z > O OOOOmmmmmmmmmmmmmmmmmmm SEEmmE> mum e

t O0000000000000000000000m O g mammmmmmmmmmmmmmmmmmmmmog O e

wE  %%%%%%%%%%%%%%%%%%%%%%%%w  %

>OO eeeeeeeeeeeeeeeeeeeeeeef> N a em> 000000000000000000000000w 0

> Q&  %%%%%%%%%%%%%%%%%%%%%%%%e  %

> ePPPPDPDeepFDDDePDeSePDDD P W  % NNNNNNNNNNNNNNNNNNNNNNNNO N-L ' '

'1 J e

O m .

to O

e O O O N m

  • m o c0 4 7 e 2N .J GN m e U 4m M G)

O 4 co m OC G) N Z mm &

C 4 Oc QC Q.

N>EWW W 40 cc 4 > > c >= O 0COOOO OOOOOOOOOO O W an w m m>UZ OO000O C000000000 Me&w m > m T' 00nOnn OOnDeOOnon O W .J W OUNO e e e e e e C e e em oOOOO o og a W W W Om oc 00000O 0000000000 to WW W OOWW mmmmmm e m m (D m m O O O O 4e& 24= mmmmma 4mmW mC000 O W M m u. u.

Wm U E * * *

  • Oe.J&WW>0 i New>77WO

- WO27mo OOOOnn OOOOOmemmm OeTmWWmn O OOOOOn OOOOe4ONm4 m205Fm O OC000O C O C o co e c0 N m m

! e2 3 OOCOOO COOc e 4 4 4D m m j O CL M mmmmNN omN e4NNmMm O e e o e e e e e emm oOmON NNNNW5 CNNemNOC00 e e o e noOnon Onomotenmm m P- OOC 00O OComo&emCN O oc 2 OOO000 OCommmmmme MODW OOC 000 OOO e4eNWom O c k- U e a e e e e o e e N tD eme&e

  • O 4m 4444ee e 4 e m m m M ED O m WW (D CD CD 40 CD to e ED G) @ e 10 e eO e Q e oOCOOO OOOOOONmmN -

O DOOOOO OOOOmOmNNN Q .J OOO00O OOC 04Ommom mQ N 00000O C O O m e m o to CO N CO O 4444ee C4e ecd O N m e e O E e e e e e e e e emm o O G) O m CD G) CD CD G) CD 4 CD ED e e to O O O O e e e e 000000 OOOQmbomme O OOCOOO C O O O N @(D N N e m ac Q. > OO000O 0000 omemmm owr 2 00000m O O m m O P N e cD e OWWW e e e e e e O e e eN enoNm 04ku 44444m e e m m m m e N a tD 2 mammmm emmmmmaeon o e e U C0000O NOTw OC000O OJO2 O0000O

O Q. oc 4 OOOOOO l

O E u. so e e e e e e O4 m e -e a m m m mt > eeeeee E E ,

I > ****** w > u 4

W m

W W

W gggggg TF 4

D WW==

WO4W m o u oooooo oc D 3 0 2 >

> WEE M 4O O M W NmNCOO co m m 1 2 m 2 u. 2 N K u. > mf3 m e e m E M 2 E E 4 Oc 4 W 4 .

>= mC4 mmmmmm 3 4 M D D W 4 >= C H 2 > Q m a n .4 m m ZEEMMEDMUM so E OOOOOOm O 4 m m m m m m o oc Q N WX NNNNNNNW N .

4 500 eeeeecew M Q. 4M& OOOOOOON O l > cW NNNNNNN4 N l M &@@me@@D @

N NNNNNNNO N

e N O C000000000000000 OOOOOOON@@

cDWI 0000000000000000 COOOOcGedo emcE 0000000000000000 000 e4NOcee OWNO e o e e e * **e * *e o e e

  • O e eCoe ecce e O3 E 0000000000000000 eOONNmeenm OOmu E4m mmmmmmMNNNd4444e mammmmmmmmmmmmmme N mummm e m e Rm N m. m ,o W E ,

O O

mgma 8

O 88 OO 8

O 8

O 8888 OOOONOOmmN 883:*

@ eJON O O O 000 eNCONN4

. 04vo e O. O. ecc OOem O O 4E N e. .e .e Oe .eNem cNmm

"" ' * * ****~' '*

  • 8 8 N A H 0000000000000000 OOOcecomee O 4 4 O 0000000o00000o00 OOOOONmNem ce EN J O C000000000000000 OOOce44mNm mW m
  • W eT 3 00o0000000000000 000 e eOmeme ec Mm OL @ ememNNecccccetee *cNGNemOed O 4@ O eeeeeeoeoeeoeoee 4 e emM emamm wNNmeMO +00

@N eN E m MNNNNNNNNNNNNNNN e e e Om 04MM L NDEww w O O OOOOOONNee

  1. E4DP Q J O O Owamm c w O O C O OOOoCoefNN M4ME m >J O O O O OOOOOOmmte Ow m mown O O O O 0000 empNee
  • E ww w OOdu e O O O O soecNecPN N ww w OuzE 4 e e e seeNO eO oc e NNE MWUw O m c N 4 ememe@Ne*N O w MMg w Omdewwpo NfwNEEmo O O OOOO@Onc7c a WOKEmo O O
  • Ese " 2 mO44 N 8 O

8 O

8 o

8 O

8888F8C OOOOmOOme>

N**

0030 N m OcNNemOeOO Os E e N. e. e e e o e o~mm>

c m n a m ,o mmcemoe e e O.

m m ccedeCOOOOOOOOOm NNmmp@OOOOOOOOQc comoemNecM OOcc@mmpNe y

O EE ccNNecOOOOOOOOOm Dom *Qmedmm CONeecNeep mO3w NNNNedOOOOOOOOON OOpu e e e e e * * * *

  • e e e e o e e e semeNNee O em m egeemm e eme Aw mmcom@emmmmmmmme@@PDPPSPPG

@@@@@ MPCm Pmmoe e

A -

C000000000000000 OOOOepecem o 0O00000000000000 OOOOnee@Nm O J 0000000000000000 0000 oNNoeN mc  % C000000000000000 000 ocemeco OO O @@emedemmmmmmmmo eeeeeeeeeeeeeeee seecmomeeN ee etmeMNNe O E WeC@@@@@@DPPP@@P m& Cameo eOO e e e C000000000000000 COOOONCeNN O o000000000c00000 COOOmmeNmc MWAm 0000000000o00000 OOON e@NeOp OWEE COOcc camOO@eecce Coe emmOmeN e e e e e e e e e e o e e e e e e e seescree Owww 04MW NNNMeededecccccc eNcemememm 3 mmmmmmmmmmmmmmmm mmmNem e eO e e U 00000 00000000000 NOEW C000000000000000 OJOE C000000000000000 OAm4 00000 00000000000 OEwe eeeeeeeeeeeeeeoe Oe MWM g4qgegQOgoffeece mmmmm Ge 49G#SGS E E E

3

  • mmcO4 0mm@NamcO4m OOommNOOOOOOommN E > M

$ 8888888888888888 W3 E 3 O

085" E >

m O w WE M 40 O M

M W SONcONeeNecONcON 8"M 8 EMEEE

% EwN OmmwN NNNNNMeetcp EWEEEggew4

> MO4 PPPPPPP@@PPPPPPP G4m33we>ON E > 0 0000000000000000 ZEEmeE> cum a O E

g C0000 00000000000m mmmmmmmmmmmmmmmmog O

%%%%%%%%%%%%%%%%%w  %

% wE >

4 wCD eteeseeeeeeeeeeeew O 4 4EW OOOOQQQOOOOOOOOOOM  %

N Om  %%%%%%%%%%%%%%%%%4

, >$ kk L 1, i

e

> O O O O 0000000m=>

OwJ O O O O OOOOOOONNO MDmJ O O O O COOOOOOeem

@Ogg O O O O C000 eOOmmM u O e O e C eo*e*Oceo 8mm>E

  • N e C eN oCOO e emM e wo 7 m @ m emetemN=
  • e Nm Oa O O O O OOOOOOOOmO OwmM O O O O C000 eOOOeO O D3mg O O O O OOOOOOOOco e mOs r O e O O O eoeccOOOO e Omm o O e e OneOm e opem O Mme O O O O eOObeNm em e e O wm P m @ p ememmPNcON
  • O O cow N W

@ O On O e COeOBOOnnn O e e e O 00 O e OOeceObeMO

@e 2N J O2 W O OO O e OceceOmoeO me = e y e  % O DO O m OO Omeempo ec Mm Ouzu m km O & Om emmonde O => Og E a == m e emeckmOmNm em CN Z O e e e e O ceO eO e eCO e

eO e e e Om > e Oegg &

MDEww w.

mue>> O O OO O O OOOOOce>>e Owemm OmJ O OO O O OOOOmOOOee MekW MOed a nn O O OOOONOMOcc Owd > d2m% O CO O O COOmmmocek

  • Weww w OwOg P Om m O OmeceQOmmm M wm w ON>E # de o e e e cece eenomO MNW MMum Os e e e ce emm e0000 m Mme 23 e e e e 8 M w e w s' ;.e c Newbr*wn m wn23mO e n ne e e noeOOOONee Oegmwwmc Oes O Op p e OOecnonroe M3n>>m mK4J O Op e e OOpOOSEeNM d2>% O O e e OOeDeeckNM 00 00 M m @ P OM@NOOmemM Om>E a me > e emememommm Z e #O O O c80 *O 00 oO 32 e e e e e e e e w n a o n nonnonnnOO OO O O O O C000000000 e em J O Q O O C000000000 ema% O O O O C000 *O0000 O O O O 000 *O00000 80WO a

E E

  • e eOO *OOOO e@@Nm&OOOO y e e o e O O O O OOOOOOOONO
  • mw> O O O O OOOOOOOOmc 5:Ed 8e 8e 8e 8e 8888 e eme.O E88S8 8 mJ ,3 O, O. ~em>c N,,

~

m

~

=

m m

N m emme,m~ m e

~

e dO e . O.

e NE>J 8

O 8

O 8

O 8

O 888888"S*

OOOOf@cce>

eDOg C O O O Coome>NNNe

~ ~ c e O~ emmekee Om>.,

OO e e e

,e e e om e e .o . e d .e m~mm .e -o m. . me O.

w-y O000000000000000 NOrw C000000000000000 OJOx C00000O00000000O Came 0000000000000000 CEmm e e o e e o e e e e o e e e e e Om edededOOOOceaeee MWk mmmmmmedeemmemme Z R

^

Z m m eO'e'Om mmm mm eO d m E = > OOOmmNOonOOOOmmN N P E e & W 0000000000000000 e WWEE W w W COOOOOOuOOOOOOOO FE 3 Woew M O w w"3a e E >

> WEE M 40 O m w WONmONm4MemONOON emm 4 EMEEE

% EE> OmmmNNNNNNmecece Enzggegewe

- > mOe PPPPPPPPPPPPPPPP Dem33we>OW E > O 0000000000000000 EKEMMEDMUM

! e 0 r C000000000000000m O M mmmmmmmmmmmmmmm MOM

!  % wE  %%%%%%%%%%%%%%%%%w  %

e >OO eteeeeeeeeeeeeeeek >

& em> OOOOOOOOOOOOOOOOQm O e > Om  %%%%%%%%%%%%%%%%%e  %

> PPPPPPPPPPPPPePPPD P

% MMMMMMMMMMMMMMMMMO M e

L 1s l

l e

O e

m O

e O O O

  • N m W

O O 4 e e zh a Nm -

  • u

@m O

mm q@

Nm CN I Om >

C4NE &

N>Eww w O24D> O > Q 00000000000 COOOOmmNec Owemm m>um C0000000000 COnonOnonMO CQQOQemmme 600 emmNmee mw&& @wer CWJ > OuNO e * * * * * * *

  • e e O e som o emem oggww w Q3 g COC000CCOCO *OO@ men emO O ww w OOwu NNNNmmmmmmm mNmmNeCom o EmW WWUw zem ammmmmmmmmm mmmm men ed O w med u r QNJ@ww>O NewNEEWO M wCE2mo noncocononO COOOmeNNem

'Oermwwmo O C00000000no COOnemmeom m30>>m O C000000000O OOOONemmeO er 3 00000000000 0006 emmcmN O& m mmmmeeNNmNN emm *NmeemN O e e e e e e e e e e e m e eOp eNmNe NNNNNNNNNNN mbbmmMO 800 e e e C O O n n m e n r% 3 0 nonmNemmmN m > 0444CNmOOOO C004 *ONmem O NZ O@m@CmNOOOO COOOOmemNm monw OmmmONNOOOO COc emmcece W OOku * * * * * * * * * * * * * *@N *Nemm o qu mOOOPmommNN mmMmm@ e *Nm mm @@@mm@@mmme ammmmmmmoe

  • 4

. OOOOOOOODOO OOOmOememD '

O C0000000000 COOmmmeomm O J C0000000000 Coommemmme MO N 00000000000 COOe emmmm@

CO O mNNN@@membN emN eN@ONmW O E * * * * * * * * * * * ** *me*mNN4

@@@@mememme m @ m @ m m o e'O O e e e C0000000000 COCOOme@em j O C0000000000 OOCUm@Namm mgas C0000000000 OOOmeCeOOP I Owr 2 mNomommOOmm Omm *WN40mm )

Opww e e e e e o e e e o e e e eNm ammOm  !

Od>u emmedecedem meeNNmmeem i y m cem m m m m m m m m mmmmNm e e in e y O0000000000 NCEw 0000000000O OJOz 00000000000 O&ge C0000000000 Oggg e e e e e e e e e e e og mmmmmmmmmme mW> @444mmmmmme Z E 2 mmehmmmo D"O E > > OOOOOOOm E > g W a w OOOOOOOO"N"000 gg 4 WWEE gogg w w w C0000000 OOO 3

M O g E33 O 2 >

> WEE m 40 O M 'w NmemamWOmWO eemmmmmteen m>=

EMZEEdsqwe 1 2m212 e N EEN

> mcw mammOOOOOOO 34m33We>CW 2 > O CoCommmmmmm ZEEmmE> mum E COOOOOOOOOOM C 4 mmmmm mmmm mmog o

, N wE NNNNNNNNNNNNw N 4 >CO eteeeeeeeeee> b A qu> OOOOOOOOOOOON O

> Ow NNNNNNNNNNNNe N

> m@@@@@@@@mm@D @ l N NNNNNNNNNNNNO N

~ ~~

m . -

> c 0000000000 COOOOOOPee cDUZ 0000000000 OOOOOOOMPP P>cE 0000000000 000 eGOOPoe QuNO e o e e e o e e o e O e som o eePP C3 m 0000000000 oOONONO eOS e ComW mmmmmmedee C e m e N MNme e ce a ,e 24m *mmmmmmmmm mamm W E O

O agmJ 8

O 88 OO 888882258A OOOO edp4N@

@ eJO% O OO 000 *eec@9e n 04uG e e e O e somemMNm O O 4E >> eMeec@mcam

>v 4, meem.ee *O e g g e, N M M OmOOOOOOOO OnOPPP4NPO O N 4 O 0000000000 OOOPcPNNem ee Ze J O C00000000O OOOPePNmmm me m W eZ Q 0000000000 OOOM emenem ec me 04 m emmmmNNece eNN eOeNeeN O (P O e e e e e e e e o e O e *ecemmNe em em Z MMNNNNNNNN mNNMcNO eOOe e o Om >

04MM L N>Eww w nu4>> 0 J O O OOOOOOOmmO Owema c w m

O O OOQOOOONeo

@ 4KE >J O O G853 8 8e OOOOOOteU 889988:2 POM 9.eWWW ww w

@@Us Ov2E O e 4 e O~ o e N4emccNm em e~ e O w Mme a OmJmww>O Mewe2EMO m wCZ2mo O O OOOOOOPmNO CeZmwwmo o O O OOOOOOPeOO m20mma a >J O O COOOOOPe>O MOWN O O OOOOdOPNc0 0000 O e OeDePNeemo Om E e e e e e o e e>NNN c = m NamNNa0 e e o e PPPPPPN>mm ONecoceONc m > egeeefNNe4 ONem eMemMm ,

O MZ ceccccQOgg OOcnomq4ee mO3m NNNNNNmmmm OmN emopeme OOpu e e e e e e o e e e o e eCeedmec O em >>NNNNNNmm ONNPPP e eNN MW nenecePPPP MPeeNecNO e e 0000000000 OOOPOPemee o 0000000000 OOOpeP>com OOOPOPeeeN O J C000000000 MO  % 000000000O OOOcemmmee 00 G PPPPPPeace sep *Ommm40 0 E e e o e e e *

  • e e C e o m e e se m m
  • GenemePPPP meePeee eO e e O000000000 OOOO4CN>cN O 0000000000 OOOONomode MMA> C000000000 COON eNemmm owe 2 ceccccemme Oce emNOmed O>ww e e o e e e e e e e e o eNN em@cm Ge>W eeeeeemmmm GemecemmNm

= mammmmmmmm mamm~m e o O.

e

~8Ew OJOR 8888888888 0000000000 Okke 000000000O CEma e e e e e e o e e e 04 ceveceNNNN MN> efeeffneme Z E E mmcoemmmcg E > > OOOmmN0000 M > M K

S$

Q w 8888888888 m3 E 3 085" S I >

> WEE M 40 O M w NckOcNe>Pm amm # EmEEE,

% Ea> OOOmm*NNNm EMEEE454we

> =O4 0000000000 34=3Dwe>Om Z > 0 mmmmmmmmmm EEEMMEDMWM e

E 0000000000m O 4 mmmmmmmmmmou O N WE  %%%%%%%%%%%w N 4 >OO eeeeeeeeeee> O

& 4KW OOOOOOOOOOOm  %

P Qw  %%%%%%%%%%%4 N N N e i

I L 1J I

l l

e a

> O O 0000000h40 Owd O O OOOOOOOOmo m3md O O OOOOOOOm>O 902% O O

= Om o O O OOOC.OOONeO COO *cOOOO Ce>E

  • e e
  • emeecNa@

wo @ N NNeme@ e o e o Em OJ O O COOOOOOOOO Owe % O O 0000 eCOOOO O 03mu O O Cr_70C00000 m mOeE O O OL eOOOOOO e Omm o e O e .ON 80000 O New O O eccedOOOOO e O wm e @ NeemmeOOOO O O mou e ee o N e W Q @@ CopOOemmee O N e c O Pe OOmOccmeme eo Em J OE J O @@ OOPOccmeNe mm =e u e  % C e OOeDeq=mmq ec We OQE@ O @ Cor@Nwomme C em Og E m NN em>NNeOmmQ mW SN Z O e CO meO eOOOO 80 o e e e e Om > e e e '

ceNE a N PEww w eme>> 0 O OO COOOComm>@

Owemm Omd O DO COCoeOmeee MeMW mOed O On OOOOmOccmO Owd > eEk% o CO CocemomONe

  • meww w Owou m Nm OmmemNDOem e ww w DN=E 4 ec odee eenmmo DON MMuw Os e e o M e ow n eOOOO O w mme EE e o e e OmJmmW>O NeweFFhO m WOREmn 8 & MO OOSOOem@ee Cernwwmo Oed m 20 ComOnememe M3Op>m mZed & PO COPOO@meNe 4E>% e 20 Coromememe C+Ou @ @Q COe@NeOmme Om>E N Ma em>NNeommO E O O e moo e0000 so EE *
  • e o e e e e w O O C000000000 W OO O O C000000000 em J O O 0000000000 cam % O O 0000000000 Ocuo O O COO e eOOOOO OJ K e o e e 80 0 e0000 E @ @ NOemOOOOOO y e e e e O O COOOOOONeo cw> c O COOOOOOceo e>OJ O O COOOOOOmeO ee>% o C 0000 ocoNeo O. m ~eemeO e o e 8 et e m ~ cm~.O N .c c, O m = Nam ~mm e m o o. .

NEkJ 8

O 8

O 8888882E00 OOOOOOpdee 30 O O Opc Em>%. N . C O .O ee N. m m . N. e CO e O. N m.m D e, m

.E e .e ~.N .m e e n. e u C000000000

~SEE' 8tme 0000 8888*88*88 00 OEwe e C. O. e De egedeONNNN MW> eeeeeeeeme g g -_ _ . . _ _ . .

E mmmodmmmme E > > OOOmmNOOOO E b E e & W C000000000 e ww&E W W W C000000000 EE 3 WOeW .

  • O E m33 9 I >

> WEE M ec O m m NmNOmNm>Dm emm S EmEwE 1

% Ewk OOOmmmNNNm EMEEEemewe i

> =ce 0000000000 3em33me>O>

E > c ammmmmmmmm EEEMMEDMuM C000000000= O k mmmmmmmmmmOg O l

t

% WE  %%%%%%%%%%%w e >OO eeeeeeeeeeek N

& em> OOOOOOOOOOOw o i

> Os  %%%%%%%%%%%e  % i

> @@@@PDDDDDDD P l e  % NNNNNNNNNNNO N j L 1J l

O m

CD O

e O O O N M M

O N 4 6 e 2m J

-O m

  • U '

&m M f*

O 40 4E (D m I O ew &

C 4 CE OC CL CD > I W W W (DE4>> O > cOOOOOOOOOOO O O O O O at% N O r* e OWemm m :> u r OOOOOOOOOOn O O O O C e m ow f* CD M4&& Ch k at4e Yo OOnOooOOOOn nne e04 m m m m e OWJ >= 00NO e o e * * * * *

  • O e eOO e N N Ch P=

o gg 4 W W W 03 E OO00OOOOOCO e C O f* r* e *Nmm O WW W O O k= U NNNNNNMMMMm m m N m m N P" e*

  • N tr% or m W M M U LL WWe 24m mmmmm*=mMmm m mmmm MNOUm U E
  • OmJ WW>O f* m W 77wn m W 22mo OOOOOOOnOno n O O mCDP*
  • N e m oermWWmo O ConoO000000 COOosmNmNNm m 2 O >= W m O COOO0000000 O O O Chr* N e m m O e2 D 000O0COOOCO O C 0 f* . N m e m in O CL M N N r*CD 4 mr* m m m N e c0 N e m O 4 m ID e C e o e e o e e *
  • e e e e eNN eeNN4 6 6 f* f* 6 f* f* f* f* f* 6 m f* f* to 4 h O eOO e o e nti m m m e m 4 tt% nti m em n 4 m P= P= 04 O CP (D N e=s O E2

>= eeeeeemeeee O O e C> eP* m e N e f* m m os e & a r* P* Ch Us OmeoemNc0mm mO3W OO>U NNNNNNNNNNN ONN

  • m @ m (D (D CD e e e e e e *
  • e o e e o e Ltg N e e m m Lt\

O 4E 4 m itsLt)Lts6t)Os 4 4 m e m Os e e a it) * *mm MW (D 10 ED (D ED CD ED ED ED CD ED m CD E @ 10 CD m m O e (L e c OOOOOOOOOOO O O O CB Ch m O O - P=

n 00000000000 0 0 O pitse e m m m mc

.J OOnOoOOOOOO O O O cb Os m N Oh m4 OO N OOOOC000000 0 0 O m e 4 4 O r* e O

O E

CD f* f* P* f* N m CD CD f* f* e m r* e e P* e N m 4

  • e e e e *
  • e * * * * * * *4e *--mm cD (D cD (D ED cc CP ED (D CD GQ m & CD CP CD (D O eOO e o e O

OOOOOOOOOOO O O O O O e CD m m e C0000000000 OOOOO4@eme m E CL W OOOO0000000 000O e m tD 4 4 e owr 2 its its its Lti O O Lts o e e irg O O nts e f* 4 its m Os e O>WW e * * *

  • e o e * * *
  • e e a Lt) e e m its O O4 2

>= U e e e e sti Lt% e st% e e e m Lts e 4 m e in N m P*

e e m m m m m a m ** m ew .= m == N e-o O eO&

e e e U C0000000000 NOTW OOCOOOOOOOO OJOZ C0000000000 OAE4 00000000000 O E E c0 e e e e e e e e e e Om e e c e e e tw 96 96 t* N MWW I E NNNNNNmmmmm Z m mnr4 0 4 m ow m m O 4 l r m > OOnamNOOOmd & > E 4

l W

CL W W C0000000000 4 W W CE E Cr O W E

OC000000OOn EF 3 UO4W

>=

&33 o Z >

WEE M 4O O M W CD C N nfs O 4AntiF* @ m m N EE>

10 m m 8 2mZW2

>=

m e e e mit)O O O m m E x 2 E E 4gg 4 W 4 Z

mO4 c0 CD cD ED CD CD e @ @ O' tb 3 4 m 3 3 W 4 W O >=

>= O O0000000000 2EEMME> MUM m

E OOOOOOOOOOO- O e 4 m m m m m m m m m m m O gg O N WE NNNNNNNNNNNNW N 4 >OO e e e e s e e s e e e e >= f*

CL

> 4 Cr >= O0OooOOOOOOOu o 04 NNNNNNNNNNNNw N N

tb mtb @ @Cbm(bCP@ @ m D @ =

t* t* f* f* t* t- 96 f* t* f6 P= r* O r*

NY

4 .- 4.,- -- - .4 -.s.,6~. w. -1 s -M. L. 4a..6 A- --.--2 -A-w - .- gh de-- ----zb- # - - a-+- - -

4 0

e t

I i

I i  ;

I I.

n 1

1 i

l THIRD QUARTER W

e l

t I

l l.

4 a

1 a

't 4

e

'[

> 0 I

1 I

)

017003 0594 34 47 35.0 087 20 10 .0 2 WHEELER RESERVOIR 01077 ALABAMA TENNESSEE RIVEP BASIN 040890 TEN 4ESSEE RIVER 277.98

/TYPA / AMB NT/STRE AM 131TVAC 0000 FEET DEPTH CL A SS 00 00002 00010 00330 00301 00433 00095 OATF TIME DEPTH HSAMPLDC DATER 00 00 PH CNDUCTVt FROM OF 4 FROM TEMP SATUR AT 25C TO DAY FEET RT BANK CENT MG/L PERCENT SU MICR04HO 79/37/05 1607 0001 83.0000 28.5000 8.80000 112.820 8.50000 220.000 79/07/05 1610 0003 83.0000 28.5000 8.70000 111.538 8.50000 220.300 79/07/05 1612 0005 83.0000 28.5000 8.70000 111.539 8.50000 220.T00 79/07/05 1615 0010 83.0000 28.5000 8.80000 112.823 8.50000 220.300 79/07/05 1620 0016 83.0000 28.0000 7.00000 88.6075 7.80003 220.300 79/07/05 1622 0023 83.0000 27.0000 5.90000 72.8395 7.60003 220.000 79/07/05 1624 0030 83.0000 27.0000 5.20000 64.1975 7.20003 220 000 79/07/05 1626 0036 83.0000 26.5000 4.20000 $1.8519 7.20000 220.000 79/07/05 1628 0043 83.0000 26.0000 3.40000 41.4634 7.00000 240.300 79/07/01 QUARTER NUMBER 9.00000 9.00000 9.00003 9.00003 9.00300 MAXIMUM 28.5000 8.80000 112.820 8.50033 240.000 f MINIMUM 26.0000 3.40000 41.4634 7.00000 220.300 SUM 248.500 60.6999 767.677 70.8000 2000.00 SUM-SQUAR 6869.25 446.309 72024.5 560.279 444800 MEAN 27.6111 6.74444 85.2974 7.86666 222.222 VARIANCE .987305 4.61526 817.963 .415009 44.4609 STANO DEV .993632 2.19832 28.6003 .644212 6.66790 COEF VAR .0359867 .318531 .335297 .0818912 .3300356 STAND ERR .331211 .776105 9.53333 .214737 2.22263 79/10/00

> Q C0000000000000000000000000 OOOOONemmN c>uZ 00000000000000000000000000 00000@e00e PreE 00000000000000000000000000 000 e 4O 4 ocke OUNO e e * *

  • e e o e e e * * * * * * *
  • e e e e * *
  • O e EON eNeme
  • OD E C0000000000000000000000000 eOONONe eme OOpu eeeceeceemmmmmmeeeeeece4Ne dee4eNeNN e ~~me ammeN nem ammmmmmmmN~~~~~~Nammm===mm u E o 8 8 8 88 OO 8O 8

O 8

O 888898000$

OOOONemMmN O mMmd O O O O C00 O

O e e~4e e eNomN e ,o Ne e 00 e eJO.N 04u O 45 O.

7 O.

O O.

N e e Ne O e O.

m e o

ee>e4eO en e O e e C, Wu m e c #6 e e ma mmm e d e eN O O N e OOOOcemoem e 00000000000000000000000000 OOOONemomm O e do 00000000000000000000000000 0000 em440e O

  • 2e JO 00000000000000000000000000 OO m e ueX Q 00000000000000000000000000 000 oce@4em em em Oh e dececephe44eeNmmm44eegmece semNmmePON O e e e o e e e e e e e o e o e o e e e e e e e e e e 4 e em> eNeep O 4e og GN Z eteeceNNNemececNNecemeNNNN NeNName *O0 e o mm w Q4%g A N D E, w w w O O OOOOC40 Nee es4>> Q J O O O O O Cesamm e w O O O O O O O 00000@@@m h4NN m DJ O O O O O O O OOOOONNNN rwa wmOWN O O O O O O O 0000 see>N e

em4ww wCOJO O

  • O e O O O O ouemem>mN P ww wou2E o O e o e * * *O eNee * *Ne e M*A#eema o e dem WWuw Q e a e m p N Q w WW4 J OeJDWW>O NewkIENO O O O O O O O OOOOOeON97 e, wCEEmO OOOOONmmN4 Ger=wwmOO O O O O O O O m3ON>m m NJ O O O O O O O OOOOmeccom MO4% O O O O O O O OOOO4mmm44 0000 m m ee H e O O OcomeemmmN OS E
  • e e e e a e e e se emmNm e m m m m m m m Nmm>mm e e e e m
  • NNNme>7meeNNANeemeete ONee P F @ e @ @ e N m e m m o m m e N N N t-d e emem OceOORONee Ommee memo e Oem eNoemNe O m2 mmMecNamm@NNm4NemePeecmOem mO3w e o e o e eeOP e e e e eeNe e e o e eNPe@ O *Pa*N eNec OOpu m ae m e Pe m o e emePe>e e emmmNN e e e e emeOcemoe4 O ng mmmOOOm@4NummoemcummmONNee 4N4eN44mN e em amammmeNemmmmmp>4mmmmmebec NmeN 9eN ee A e 00000000000000000000000000 OOOO4mmeem O 00000000000000000000000000 OOOONe@OND O J C000000000000000000000000O OOON eeNONe mo  % 0O000000000000000000000000 000 eacecem 90 u emmeeNNememmeeeemooopcNece seeNNomNme O E e * *
  • e * * * * * * * *
  • e o e e o e e e e e e e 4 e e@ce **Nm ,

seemeCN4MPPPeeke@@@ Pee 4Aem NPmmmNmm o e O0000000000000000000000000 OOODNNeNNN O C0000000000000000000000000 COOeeOeope am&N 00000000000000000000000000 OOcedeceON OWEZ 4eccecce@cecomecOOOOmemNNO Oct

  • Nee 4Ne O>ww e e o e e o e e a e e e e e o e e e e e e o e o e e o e oeN *meec 04>u NNNNNNNN4 pep @emekee@NNNNNN @@eNONeNNm 3 NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNN e B Cg e u 00000000000000000000000000 NQEM 00000000000000000000000000 OJQ2 00000000000000000000000000 OLgG C0000000000000000000000000 Orwe e e e e e e e e e e e o e e e e e e e e e e e e e e 04 44444444& COOOOOOOmeeeeeece WWp mammmmmameeeeeeeeNNNNNNNNN Z g Z dec'O40meonmeO4mommmeO4meom

~

E ,

COOmmNNNmOOommNmmOOommNNem a y a K

S O w 88888888888888888888888888 ggQ

= = 5 G

08%"

2 >

> w&E e 40 C e w OcNOeNPameONcONeemeNOcNeme emm 6 2=E42

% EmN mmmNNNNmmmeeeecceQOOmmmmNN EM2EE4m4w4 N mod 00000000000000000m===m=m== De=3Dwe>Op 2 N O mmmmmemmmmmmmmmmmmmmmmmmmm ZEEeeE> mum e

l E @@ceneccebeeeeeeeeeecceecem O 4 OOOOGOOOOOOOOOOOOOOOQQQOOOOK O

% wE  %%%%%%%%%%%%%%%%%%%%%%%%%%%w N 4 >QQ NNNNNNNNNNNNNNNNNNNNNNNNNNNm o

& 4Em OOOOuoOOOOOOOOOOOOOOACOOOOOg a N Qw  %%w%%%%%%%%%%%%%%%%%%%%%%%%4 0 2,=  %

l N

eeeeeeeeeeeeeeeeeeeeeeeeeeem NNNNNNNNNNNNNNNNNNNNNNNNNNNO l

l e

e

> 0 C O O O O O COOOOOOmeN Owd O O O O O O O OCOOOOONON MDmJ O O O O O O O OOOOOOOcee

  • DOE % O O O O O O O GOOOOOOmme Om D O om>g W O O O O O 000 e oOOemm e e o e e e e e e emee o ete WO m m N m N N e NeNNMmNm o e 4>

CJ O .O O O O O O COOOOmNNam Owe % O O

  • O O O O O C000 eeeeee Q O3mp O O O O O O O COOOOm>ceO e mOS E n O O O O O O C00 ocheemN e Omm o e o e e e o O e end o emNG O MMM O O O O O O O eOOOmme seo e O va n e e e e e e e NemeceNeON O O ECU e N @

M O O Q CO O O O OOOOOOcedm O e e e O O O OO O O O OOOOOceeme O e Ep J OE J O O O OO O O O COOOmNeemm 00 em m e u e  % C O O DO O O O nOOeNmmeLN em 002@ N . m N Ne m N e DeNeemomme O ge Og E m N N NN N N m *Nm emNONmo dw GN K Q e e e e o e e e e*om o eOO eO mm > e e e Cemk &

NDEww w eme>> O e e e OO O e O OOOOpemece Owemm OMJ e e e OO O P Q OOOOpemecN Mews mOed S m e On n e n MMOnpeehde Owd > dI>% e e @ OO O e O OOOOeNmkme eyeww w OwOg e e r ec O @ m CeOp>dmmen m WW W ON>E > > d me e e m emeddeCmmm cem meum og O O O oO O O e e en*O000 en w Mme 8edeww>O Newh7F>n Er e o e e e e o e e e o e a wnErmo 4 O e n On a n n nonnnnNemm OeZmwwmo Oed n e o on O O n OOOOnOSedO m3Ow>m wred O e O OO O O O DOOOcceem>

@Em% O e O CO O O O OOOOm>@eNm Cocu o e Q OO O O m OmoeNmomNm Ompy m a N ce N N = emNmNeomNm E O O O OO O O e eeQ eOOOO eO EZ e o e e e e e e e e o e e 4 w a n O n a n n annonOnnno CO C O O O O O O C000000000 em J O O O O O O O 0000000000 ewa% o O O O o O O C000 eOOOOO Onuu o O O O O O O n00 ocOOOOO QJ K e e o e e e e e e och eOOOO E e e e e e e e NeemmeOOOO W e e e e e

O O O O O O O COOOOmbekn ew> 0 O O O O O O OOOOONmemm 9%OJ O O O O O Q O COOOOeNOde Pe>% O O O O O O O 0000 esecco e o e e o 8mto Jet m

O m O m m

N m e

m e C e e em eMeme ROm a m m m m e N O d & O c. c. e Nmmnem Q N.

NE>J 8

O 8

O 8

O 8

O 8

O 8

O 8

O 8888R*EOs0 OOOOcememe eDO% O O O O O O O COOm emeNme Ompu e e M N m e e 00 eT e e e e e Om> eNOmeme e e e e eck eNeem Oe e e e e e e e Neemmee en e My e U C0000000000000000000000000 NOrw On OO O C000 O COCOO O O OJOE OO OO O OOOO O C0000 O O O&we CO CO O C000 O 00000 O O OZws e e e e e e e e e e e o e e e o e e e e o e e e e e De deeddeddenOOOOOncememememe mW mmmmmmmmmeeeeeeeeMNNNNNNNN I E t i

E mmeOeOmdOmmeOdmommmeOd'mdOm 1 E h m >

= = = OOOmmNNNmOOOmmmmmOOOm=NNmm &

ww==

E OOOOoOOOOOOOOOOOOOOOOOOOOO =

=

g = C0000000000000000000000000 ,EE g yOgm l

> > Z W ec O m W OONOckemmeONcONeeme>Ockeme Sam I EmEEE l

% Eg> mmmNNNNmmmeeecceeOOOmmmmNN EMEEZemews i

> =Oe OOOOOOOOOOOOOOOOOmmmmmmmmm De=DDwe>O>

I > O mmmmmmmmmmmmmmmmmmmmmmmmmm EXEmmE>Mwe I

% WK ssssssssssssssssssssssssssa.

%%%%%%%%%%%%%%%%%%%%%%%%%%%w 8

e

>OO NNNNNNNNNNNMNNNNNNNNNNNNNNN> 0 ek> OOOOOOOOOOOOOOOOOOOOOOOOOnom m Om  %%%%%%%%%%%%%%%%%%%%%%%%%%%e  %

  • preepeperepepperecepeppeepe3 e

% NNNMNMMMNNNMNNMMNNNNNNNNNNMO N l

= CJ e

1

C17006 C6C9 34 44 48.0 087 11 17.0 2 WHEELER RESERVOIR 01379 ALABAMA TEN 4ESSEE RIVER B ASI N 040890 TEN 4ESSEE RIVER 288.78

/TYP A/ AMBNT/STRE AM 131TVAC 0000 FEET DEPTH CL A SS 00 00002 00010 00300 00301 00403 30095 OATE TIME DEPTH HSAMPLOC WATER 00 00 PH CNOUCTVY FROM OF t FROM TEMP SATUR AT 25C TO DAY FEET RT BANK CENT MG/L PERCENT SU MICR04HD 79/07/05 1503 0031 41.0000 29.50C0 9.50000 125.003 e.70000 210 300 79/07/05 1505 0003 41.0000 33.00C0 9.60000 126.316 8.60003 210.000 79/07/05 1507 0005 41.0000 29.5000 9.60000 126.316 8.60000 210.000 79/07/05 1510 0010 41.0000 29.5000 8.50000 111.842 8.30033 210.000 79/07/05 1515 0016 41.0000 27.5000 6.50300 82.2785 7.80003 210.300 79/07/05 1517 0023 41.0000 27.5000 6.40000 81.0126 7.30000 210.300 79/07/01 QUARTER MUMBER 6.00000 6.00000 6.00003 6.00003 6.00300 MAXIMUM 30.0000 9.60000 126.316 8.70000 210.300 MINIMUM 27.5000 6.40000 81.0126 7.30003 210.000 SUM 173.500 50.1000 652.764 49.2999 1260.00 PS SUM-50UAR 5023.25 430.030 73377.6 406.629 264600

  • MEAN 28.9167 8.35000 108.794 8.21666 210.000 VARIANCE 1 24297 2.33911 472.187 .309766 .0000300 STANO DEV 1.11489 1.52941 21.7299 .556566 .0000300 COEF WAR .3385551 .183164 .199734 .0677362 .0000000 STAND ERR .455150 .624381 8.87118 .227217 .0003300 79/10/00

(

. ~.

> c C0000000000000000 OOOOOOOc4N c>v1 00000000000000000 OOOOOOONee preE 00000000000000000 000 *eOOONO OyNO e e e e o e e e o e e e e e o e e O e *Oe oQe*O g C0000000000000000 eOONmoseem O8 0

4

a NNNNNNeededecceec NNeheeeoce mmmmmmmmmmmmmmmmm mmm~ mNeO~

w E o O

O mwmJ 8

C 88 OO 8

O 8

O 888888*8 0000 eONANm e eJON O 00 O O C00 *>coeme m 04vd e * * *

  • O e ePe ehe@m O O 4E m me m O eeOONm e emN e O >U e ce e e ceeNeeNmO
  • O O .
  • N O M C0000000000000000 OOOOcemped O 4 4 O OOOOOOOOOOOOOOOOO OOOON9c4Nm ee 3N J O 000000000000 000 OcON eNamco me =
  • u e3 3 000000000000 000 000 e ccmee de MM 04 m cceeccamOO80 ese ecee PNoec o WP O e e e e e e e e e e e e e e e o e > e eMO em m e c CE GN Z eteeN>emeeMcNNNNN meMmmN
  • eQO e o Om =

Q4MM L NDEWW w eme>> O J O O O O COOOOONNem Owemm c w O O O O OOOOOOeNmm M4ME m >J O O O O O OO Geek OwJ > mow % O O O O O O

  • 4Nmc eE4wW W COsw O O O O O em McNN N ww w Ou2E e o e e o e eme ePeme NNM MMUw O P N N e ePNmNN e e e e O w MM4 J OmJpWWDO Neww22>O w wo22mo O O O O OOOOOONaNN
  • EOd** 2 mO4%

-J 8 O

8 O

8 O

8 O

888882-85*

COOO4NeNec i

i C000 ee N O O OcON edeNNm 1 Oe g e e e e e e eeo e eNe I e m m m m emmemmmm e e ede@e=MNeme40mehm Qemmecemm@

m > NemcNOdPc4N40eNeN OMNcNee&Ne O ME PNcNOmObe9PNOePmm Ocm *mMMPOc

, mO3w e e *Odee *NNcoceceO O eOmoeNN@m O O *= u eOm o e ecm o e em e e e e e e se seee seeM O em OmmemeOOceNDONNee NmPemeN op e Mw mmmecemmPP@mOPPGN mmMm @@PON

& a e C0000000000000000 OOOO4ceMNm

. O 00000000000000000 COOommNMem O J 00000000000000000 0004 eNmNee MO  % 00000000000000000 000 emeOOMP OO O comeONmNoecoekcOc eNeome@Ome O E

  • e * * * **
  • e e o e e e * *
  • k e omoeeNem ese4 Nee @SNNeNNNN4 medmm> e eO e e

l O0000000000000000 OOOOeNNNec I C 00000000000000000 0000 se=NOe wgap 00000000000000000 OOOONeemmm OWEZ OOceccccemocccOOc

  • e e e e e e e e e e e e e e e e OOcofeemcN e e opp emmeN O*ww 0 4,> u .@ @ P N N N N N N N N N

~~~~~~~~~~~~~~~~~

N N N N 4 Ne<@NNc.NNm mu~em~ eO e e

~8Ew 88888888888888888 OJOI 000Q0000000000000 O&gg 00000000000000000 OEwe e e e e e e e e e e e e e e e o e 36-2 E

            • 23333:55335 E

Z mmcO40mmeN O m m"c D e m

> > OOOmmNOCoomOOOmmN N > W S: 88888888888888888 ED E 5 d855 .

M M W C E NcNOcNcNONemeNONe WE e==

0 e

3 40 9 2m2&E

>0

% Es> mmmeefccOOOmmmWNN gaggggggwe

> mO4 PPPPPPPPCOOOOOOOO 34=33We>ON 2 > C OOOOOOOOmmmmmmmmm EEEMMEDWWM e

E cecccccecccccccccm O O

4 OOOOOOOOOOOOOOOOOOm  %

% WE  %%%%%%%%%%%%%%%%%%w 4 >OO NNNNNNNNNNNNNNNNNN> 0

& em> OOOOOOOOOOOOOOOOOCm =

> Ow  %%%%%%%%%%%%%%%%%%4 MM N N N e 4 .s e

f

~ . . _ _ _ . _ _

e

> 0 C O O DOOOOONeeN OwJ. O O O O COOOOOdeNe m3md O O O n OOOOCCeONe

@OXs O O O O C000 #De@em

@ O O O O COO eeveNme 8m M>E

  • e e o e e eNN e e oNe wo e e @ > emeNm@mm *
  • e EM Oa O O O O 000000000O Owe % O O O O 0000 eO0n00 O ODau O O O O C000000000 P MOS F O O O O C00 eOOnonn e OmM e e e e oe oneoOnon a MMM O O O O ennNennnOO e O wm e e e e esemNeOOOO e o e
  • O O ECW N M M n no O O COOOOOmmNe C 4 e c O CO O O COOOOOOeme ee MN J 03 J O OO O O OOOOdommec me *
  • W e  % O 00 O O COONegem>O ec Mm ogZo O ee c > OceCaomote O er om E N Nm N m eNm *NNoema em GN Z O e o e e e eo em e eOO e so e o Om a Q4mm a

>>Eww w eme>> O O DO O O COOOOOOeeO Owemm Omd O DO O O ononOOneNm Meww mned n on n n anOOeOmmee Oww > e2as O 00 O O OOOOde>ONO ogeww w OWQu m ee m e CemNoeONeN N ww w nN>E m em m m emm>munNum NNw mMuu de

  • e e e e ee e e e eOO eo w e e *

,8mdeww>O NewNFF>n MMe 22 m WOWE=O e n nn O O nnnnOOONmm GermwwmO Oew O no o O OnOnonomem m2O>mm mrad O 00 O O COOOOpemme dEks O 00 O O OOOOOONNNe O0 00 O GO O O COONeecePN Om>E N Ne m a eeNmomQweO Z O Go O O COO eO000 *O 23 e e e e o e e e e e e a w O n n n nnnnonnnnn OO O O O O C000000000 em J O O O O C000000000 PMW% O O O O OCOO e00000 =

O O O O C00 eOOOOOO 80WU J & e e e e *

  • eOO =0D00 e#fNmeOOOO Z e @ e f e e e e W

O O O O OCLCOOOOeO ew> O O O O OOOOOOOOeO .

3324 8e 8e 8e 8e 8882 O e e

$8838 e.* eOOee 8mBJOE g m m N m eNm@LmNfeN 30 m a a m e m p e c .= e oce MM e O O O O COOOOO4Of>

P O O u O OOOOOQbeen NEWJ O O O O OOOONOmmme P30% O O O O COOemoemme Om>G N P m P OmW e *Peemm 00 oE e e e e e e opeeName 04 e e e a ememmenenn e e MR e W 00000000000000000 NOFw 0000000 000000000 0000000 0000Q0000 8 DOR See 0000000 000000000

  • OEme e o e e e o e o e e e o e e e o e og dedeaeOOOOceedede MWW mmmmmmeeeeeeeeeem Z m Z mmeCeommeNammmoem E *
  • OOOmmNOOOOmOOOmmN E > E 8 & W 00000000000000000
  • WWEE W y W 00000000000000000 g Eg 3 goswp e w E 40 O M w Ne>Ock@NONemeNOtwe emm S EMXm2

% Em> mmmeeecmOOOmmmNNN EMEFEeM4W4 k MOW @@@@@@@eO00000000 Se=Q3We>cp 2 > O COOOOOOOmmmmmmmmm REEnMEDMUM 4 $$$$8S$$$$$$$$$$85. 8 s wE ssssssssssssssssssN s a WOO WNNNNNNNNNNNNNNNNN> 0 a === C00000000900000000m m

> Om sssssssssssssssssse s

> PPPDDPPPDD@ppp@meP3 @

s NNNNNNNNNNNNNNNNNNO N

)

017008 0e24 34 42 10.0 087 07 39.0 2 WHEELER RESERVOIR 01379 ALABAPA TENNESSEE RIVER B ASIN 040890 TE44ESSEE RIVER 293.70

/TYPA / AMBNT/STRE A4 131TVAC 0030' FEET DEPTH CLASS 00 00002 00010 00330 00301 00403 00095 OATE TIME DEPTH HSAMPLOC WATER 00 00 PH CNOUCTVY FROM OF

  • FROM TEMP SATUR AT 25C TO DAY FEET RT BANK CE4T MG/L PERCENT SU MICRO 1HO 79/07/05 0922 0001 65.0000 29.5000 7.50000 96.1539 7.80000 160.300 79/07/05 0924 3033 65.0000 29.5000 7.50000 96.1539 7.80033 160.300 79/07/05 0926 0005 65.0000 28.0000 7.40000 93.6708 7.80000 160.300 79/07/05 0928 0037 65.0000 27.5000 7.30000 92.4053 7.70000 160.300 79/07/05 1200 0001 88.0000 29.0000 7.20000 92.3077 7.40000 160.000 79/07/05 1202 0033 88.0000 29.0000 7.10300 91.0256 7.40000 160.000 79/07/05 1205 0005 89.0000 29.0000 6.90000 88.4615 7.40000 170.000 79/07/05 1210 0010 88.0000 28.5000 6.90000 88.4615 7.40030 170.000 79/07/05 1215 0016 88.0000 28.5000 7.20000 92.3077 7.40000 160.000 79/07/05 1217 0023 E8.0000 27.5000 6.90000 87.3417 7.40000 160 300 79/07/05 1220 0030 E8.0000 27.5000 6.90000 87.3417 7.40000 170.000 6 79/07/01 QUARTER NUMBER 11.0000 11.0000 11.0003 11.0000 11.0000 MAXIMUM 29.0000 7.50000 96.1539 7.80000 170.000-MINIMUM 27.5000 6.90000 87.3417 7.40033 160.000 SUM 311.500 78.7999 1005.63 82.B999 1790.00 SUM-SQUAR 9824. 75 565.079 92039.3 625.129 291500 MEAN 29.3182 7.16363 91.4209 7.53636 162.727 VARIANCE .364844 .0585693 10.3500 .0364990 21.8250 STAND DEV .604023 .242011 3.21714 .191047 4.67172 COEF VAR .3213299 .0337833 .0351904 .0253501 .0287389 STAND ERR .182120 .0729690 .970005 .0576029 1.40958 79/10/00

e

> c 00000000000 OOOcceceme c>UZ 0000000000O OOOOOmNPPe P>cE 00000000000 000 sommees OWNQ e e o e e e o e o e e oe eOS e teep 03 m 00000000000 eOOoeme emN .

COMW C0000044444 modomemom o E4m NNNNNNmmmmm mNmN men e4 v E O

O mgmJ 8

O 88 DO 8888835R*"

0000 secNcN P edG% O DO 000 odeme@O e 04u@ *

  • e oe someMomN O O ME N em emmmeee oce e MW m me meMmemeNOm e

O N @

@ 00000000006 OOOOPmmece O N 4 O 00000000000 OOOOmmomPe ee Em a O 00000000000 OOOONac>NN me = e W cr O000000000O OOOe eseNPN ec me OA teceNNCOcem *ON eme=OPm O 4@ O e o e e e e e e o e e m e emm*Pmme em CN Z NNNNNNGGNNN meNeeNO eOOe e e Om -

Q4EM &

N>Eww w em4>> Q J O O OOOOOOONeO Owema c w O O C0000000eo

@4MM m >J O O OOOO OOm>O 92Www e ww w 28d3 8 8e 8889eR8388 e o PC. meow OuEE N 4 e m ee o c k m. ce

~Nemmee O w WM4 J OmJmWWDO NewmEZ>O a woEEmo O O OOOOOOOPmm OeEmwwmo O O O OOOOOONe>O m2O>>m m NJ O O OOOOOOONem MOWN O O OOOOmeOhmo 0000 m O OmomNOcONO Om E e e e * ****ONec c m m NmmNNHOOOO e e e e m>ONNNemNmN OWNNeemMNm a

O KZ

> N4ckPOOmmem NmONOPMNeNm CoacseeNew OmmePeNNOP mO3w meeNemcecON OcN emN ecce OQ>u o e e o e e e o e e e e e e =* m o e e N *e O 4m meNNeeNmeeO mWONSMoom o Mw PPPMNNPPNNN mPNPNema em A

00000000000 OOOPPNNNmO O 00000000000 OOOPeNNNoe O J 00000000000 OOOPeNNmeN MO N 00000000000 000e *NNcNP OQ O ecmmNweeNO. ePeeONmemm O E o e e e * * *

  • e o e es e oem o e N == N NNM444NNeep MNcNc4 e e e o O0000000000 OOOOePNeNe O 00000000000 OOOOmomamN MEA > 00000000000 OOON ePeemm OwEZ OcccOOmOGOm OcO eeMONee e e e e e e e e e e o e o eeeomcOe 8><w>w u NNNedeNNNN4 mNemeemcNm 2 NNNNNNNNNNN MNNNNN e soe e U 00000000000 NOEM 00000000000 OJOZ C0000000000 OLM4 00000000O00 OEwe e e o e e e e e e o e C4 eeeee*NNNNN

@$> egeeffememe Z M E amcoemamcNO E *

  • OOOmmNOOOOm " > "

E S dw 88888888888 O M w

E 3

E 3

O 588" Z

WO O

M W EONcONONede emm 1 2=212

% Kw> Nmmmeecoccc EM2EE4 mew 4

> mC4 mmmmmmmmmmm 34mD3W4MQ>

Z > Q m m m m m m m m a ss a ZEEMWEDMWe e

E cecccccccccm O 4 OOOOOOOOOOOOK O

% WE  %%%%%%%%%%%%w  %

4 >QQ NNNNNNNNNNNNm o L 4KM OOOOOOOOOOOOK m

> Qw  %%%%%%%%%%%%4  %

> PPPPPPPPPPPPD P

% NNNNNNNNNmMNO N ,

NJ i

[

e

> 0 0 0000000000 OwJ O 3 0000000000 m3EJ O O C000000000 eOX% O O 0000000n00 O O O OOOO eOOOOO 8mm>E o

  • e *
  • ec*C000 e wO @ m NmnemmOOOO m> e e o e Od O O 0000000N00 Owe % O O C000 eOOOeo O 03md O O OOOOOOOmeO e mot r n O OOO acOONuo e OmM e e O e one * *Omo O New O O eQONecn og e e O wm e @ Neemmechoe O O mou o N M M O DO OnOQehmmme O N 4 e O 00 OOOO@dmNeN e* Em a O2 J O CO OOOOpemNem me =
  • u o  % O 90 OOOcceONmm 40 Me O@EO O og OceteeOOpm

% 49 ON E m um emmedmOOMO

@k eN E O e

  • e mo e eO eOOOO Om > e e e o e 04mm &

MDEww w eme>> O O OO COOOOmeONO Owemm Omd O no OC3OOOmmeeN Meme mOdd n nn nnnommmeed OWJ > dE>% O OO OnonNmemNe

  • m4Wm w OWQu c OO OOceDeCece a ww w ON>E m NN #NmemmONmm

. OW M M u to Oe e e o m e e e e eOO eO P w Mme EE

  • e o

=J#eww>O

  • eweWT>n
  • WnEEmO $ n ne neOnOnnOne eramwmo new n Om nenOnnnono 93ON>m meed O OP ODOOOOOOON 4Ek% O Om O@OOmceOOm O*DW O Qe OromeOOOOM Om>E N ek eNNmocomem X O 00 MOO *D000 eo 32 e e e o e e e e e e w n O nononnnN>n CO O O OOOOOOOMDO em J O O OOOOOOOmMO D @ma% O O OOOOOOONdO Ocu@ O O COO e ocemNe Ds E e e
  • e emee e emo E @ e Ne@medeN em u

O O COOOOOONc0

  • mwk O O 0000000060
  • E<G 8e 8e 8888988 28 8mIdeK 30 N

m m

n O e e e e e O O ** O eNumemchec NumNNm e eoe Me e O O COOOOOOOcp P Q O uCCOOOppte NE>J O O OOOOeOmeeO PDON O O COOOMOOm>O Ommu e > ONcw edoeno CD or e e e e e eN eNamm me e e Neet'eenen e MW e e u C0000000000 NCEw OOOc OQOOO OJOR 0000 00000 Otse C000 00000

  • OKEs e e e e e e e o e o e De eeeeeeNNNNN MW> eeeeeemmeme E a E mmeOemmmm>O E w > OOOmmNOOOOm a > w e g w 000F 0000000 e wwmm a

u w w OOC,JOOOOOO EE D voeW O s N33 o 3 >

wXE e 40 O M W eONOONONeem emm I EmEEE

% EEN Nmmmeememme EMEEEem4we k "Od mmmmmmmmmmm De=33WWMOW X > O mmmmmmmmmmm REEmmK> Mum I

% -E ssssssssassa.

%%%%%%%%%%%%w 8

4 >OO NNNNNNkNNNNNm O L Mum OOOOOOOOOOOON N

> OE  %%%%%%%%%%%%e  %

> @@@@e@@@@@&D3 P

% NNNNNNNNNNNNO N e

)

e

O ED O

e O O O N M m

O N 4 N e 2m .J

, mo m e u l

f** m W r'=

O 40 4E 40 m I Cm >=

C4EE Q.

CD>EWW W ED E 4 > > O > O C0000OOOOOO O O C 0 0 O N m P* e Q W dC = > m>uZ 00000000000 0 0 0 0 0 e m a Oc0 Me&M @kmF OOOOOOOOOOO OOO eeminmNe

! OWJ > OuNO e e e e e e e e e e e O e eO@ e N NEDr*

I *E4WW W u3 QL 00O00000000 e O c ED @ e

  • N ED O I CD WW W OO>u mmmmmmeeeee mememmP= emo f% m W WMum 2 g om en m em m m en om m em == mmem mNmOm o

M W MM4 u E OmJ WW>O r* m W FFmO m W 2 2 .=e n OnOOOODO000 0 0 0 @ @ P* e m O m OeImWWmo O C0000000000 OOO@cmemem M 2 O > >=

  • O OOOOOOOOOOO O O O @ m ID CD e e P= d eZ 3 OOC 00000000 COON e m e o r* m Oa eememmmNNemm oNm of* M a m m N O' e e o e e o e e o e e m o e 40 m oOeOm N f* f* f* N N f6 f* f* f* P*

mf* 6r* O N O eO. O Oe P* e @ e N e g e @ P= m O O P= O e CD O m 4 O m m > eeO4NE300NM@ Oe@O e e m f* m e O E2 N O N CD m e m N (D m f* O N r* 4 m 4 O P* O N mO3W OmmO4mmmm@4 OOe e 4 @ m m r= e o O O >- U e * * * *

  • e e o e e o e o m CD e e O r* N e C 4 oc cD m e m O ED e e @ 4 m a ID m f* @ m e o f*
  • MW memememeete meeONenmeOm Q. o OOOOOOOOOOO O O O O O & 4 4 m cp .

O OOO00000000 000OmoeNmm O J OOOOOOCO000 000O@@@O@O MO N 00O00000000 C O O m

  • O 4 P'* 4 4 OO L3 P= m e m a @ m e o c0 r* e f* f* e m N O N P= ED O E e e o e e * * * * * * *
  • e4@ e M m P* @

eseetmeeemm mememe o eOO e e OOOOOOOOOOO OOOOmoOOOO O C0000000000 OOOOr=C0000 m E Q. >- 00000000000 Coom*O0000 OWE 2 meeememeccm OmmeemOOOO O>WW e e e e o e e o e e e e e emN eOOOO Cebu de444444444 M 4 4 @ P= 4 0 0 0 0 3 NNNNNNNNNNN em N N Nr* N O O O O e e o e U C0000000000 NCEw OOOOOOOOOOO OJO2 OOOOOOOOOOO Q Q. E 4 000O0O000O0 O E w s0 e e o e e e e o e o e O4 e e e e e e P= P= f* r* r*

MWW NNNNNNmmmmm Z k I mmmoemmmmOe F m W O O O enom N O O O m em E > M 4 (L W OOC 00000000 4 WWEE W W W OOC 00000000 EE 3 UO4W W O a &33 O 2 >

>= WEE m 4O O M W N e f* O O f* m f* @ em m ab m m i 2m2w2 N EL> m e m O O O m e=e M N N EM2EE4E4ud .

W em O 4 (D ED 00 @ @ @ @ @ @ @ @ 34em33W4>O>

2 > O 00000000000 ZEEmmE1 mum 40 E meemmmmmeeem O O

4 OOOOOOOOOOOOE N WE NNNNNNNNNNNNW N

  • 4 >cO r* P= r* f* r* P=f* r*f6 f* P* P= > O Q. WE> OOC 00000COOOw m

> Om N N N N N N N N N %. N N 4  %

> @@@@@@@@@@@@3 @

N f* P= r= f* r= f*f* r*f* P* r* P* O f*

3 e

FOURTH QUARTER s

I J

I W

e 5

e

u m

o e O

e O O O

  • N @

W O m 4 e e Z@ J 20 m e u d' m WN O 46 Ou mN Z Nm W C4Ek 1 N>EWW W OMW>> O > O 000000000 OOOOONDemo Owomm (>uz 000000000 OOOOO4moem MWNW &>mr OOOOOOOOO MOO emacome CWJ > OUNO e e e e e e e e e o e eos e eOND em4WW W OD a C00000000 OOOmmDO *OD m WW W OOpu mmmmmmmme semDmCOOm o mmW MWuw 24m mmmmmmmmN mNam men se O W mme v E ONaNWW>O NewNXXWO M WOEZmn 6O0000000 OOOmmmmmee CeZmWWmc d 000000000 OOOmmeneem m30>>m O 000000000 OOC &m&mNNe eZ 7J C00000000 COOme&Om6m OL A DDDDDDDDD ODD *@0000*

O e o e e e e o e e e e emm eOOOO NNNNNNNNN @NNDONOOOO e e e e memmNammN OmNmmeemmo m W OmeDemD7m OOm@ e4meme O E2 cemNowNmb 04No4&Ofom mODW e e e e ammhe O se em enemm

  • CO>U Nmemm
  • e *
  • Ob emmo emme O em OOOOOmbem eOmomOm se e WW mammm@@@@ emm&@wNeom L
  • C00000000 CoCemmO4NN O C00000000 OOO&NemO@O O J 6O0000000 OOOmmmeNOm MO N 000000000 OOOmemmNmo OC c @NemmmO@c OmeeNNNNee o E e e e o e e o e o e e emN emeem wwwwwwwee eemene.soe 000C00000 OOOOC@mmmm O C0000000O OOOOOWNmmo agAH C00000000 0000 ememom OWE 2 OOOOOOomm OOmoceNOwe O>WW e e e o e e e e e oe e@e oeNmM Owku OOOOOOOm@ eOPNmmeNmW 3 NNNNNNNemm mNmmmmo eOO e e e u C00000000 NCEw 000000000 OJOZ C0000000O Cage 00000000O CEgg e e e e e e e e e 04 mmmmmmmmm mwk emmmmmmme Z E 7

I

> > mmenemoem & > M OOOmmmmm, 4 A W C00000000 " WWEE W W W 000000000 EF D UC4W K C w EMD O 2 >

> WEE M 40 Q m W OONmONeem Emm 8 Zm212 N ER> OOOOmmmmm Ex2EEgm4W4

  • > mow Nmmmmmmmm DemD We>OW Z > O Mmmmmmmmm ZEEMWE> MUM m

E C00000000m O 4 mmmmmmmmmog O N WE NNNNNNNNNNW N

. e >OO 00000000005 m a (g> mmmmmmmmmmy O

> 01 NNNNNNNNNN4  %

W emm@@@@emen O N NNNNNNNNNNO E

> O 000000000000000000000000 OOOOOm70mN cDWI C00000000000000000000000 OOOoomNece PPcE 000000000000000000000000 000 e@mec@O

  • OWNQ **e****e**eeeeeeeeoeeeee O e e=OO emmem
  • OONem *De@

O3 M C00000000000000000000000 emePeem *NP OO*W ede@e444NNNNNNNNe mmmmmmmmmmmmmmmmmmmmmmmm 4444444 NmmW mNeoe Z4m

  • W E O O O CO O O O OOcc3Oemm@

O O O O 00 O O O OOOOOcNNme o mgmJ O O O OO O O O 0000 *Necco eJO% O O O OO O O O OOOemm494c 7

04WO e e e e e e e e Q e emeeemW@

O 4K O P @ @@ O O e *O@mNe@@NN O N NN m M N CmNN4N * *O e e MW m N e Q

N m 00004440@@

W C00000000000000000000000 000000000000000000000000 OOOOmemmW@

O e 4 O OOOceeme>N O e Ze J O 000000000000000000000000 000 ** NDNN 00 m e W eZ 3 000000000000000000000000 +4 cam NNee em em 04 v

e ec@ccccceeeeeeeeeeee@4@@

eeeeeeeeeeeoeeeoeeoeeeee e e esmeCcQO O 4@ NNNamMOOOO ed @N Z NNNNNNNNNNNNNNNNNNNNNNNN o e e e mm m O4MM L N>EWW W O O O O O COOOONONe@

@M4D> O J O O O OOOOOcmNNN e W O O O O O O OW@mm M4MM m >J O O O O O O O OOOOO@ Poem OWJ > MOW % O O O O O O OOOO *Nment W CQJd Q w 0 O O O e O O oO

  • N s' 4 N N O
  • M4WW o e e e m o eM eNme e eme e WW W OW3K N

e c 4 e n e NmeceNNN em ccM @@uw O 4 O w Mme J OeJeWWDO NeWNZZWO O O O O O O O OOOoome@Nm m WOZZmo O O O O O O QOOookumem OezmWWmc O O O O saOOOccmeNm

>J O O O O O m2Ow>m a O O O O O O O OOOW@@eece MOWN @ @ 4 O@ee *emOmO OCO@ 4 4 @ 4 04 E e e e e e e e e o emeemmee e m m m m m m m >mmmmmoeOO e e e OPNcam, Ne eseccccc4Pe@OOOONNNNNNm> OOeNNON eN w m > Mme@444e@@@Nommm@@@@mmme OGm*OmmOsm O MZ eccccccc4GGHOmmmOOOONNNm OOrepePe *

  • e eneP@@@eeccee oeeemONe@m mO3w e@ e@O e eeOO O O *= W e* *
  • e * *e@@@N 6 e o e e o e e e e e o O 4M @@444444OO000@@@NNNNmmmO eOOmNme en e Na@N Pe@ eN MW @@@@@@@@mammOe@@@@@@@@@@ M L

000000000000000000000000 COOOmmeece o O00000000000000000000C00 00000@Nomm O J 00000000000000C000000000 OOOmecCNON MO  % 000000000000000000000000 000 e@em@eN OO o mmOOOOOO e@@NNammecocccce * *eO@mceON ,

O E e o e e o e e eO e e e e o e e o e o e e e e e eO oOeeN@mm

@@@@@@@@meeeeeeeNNNNNNNN NmMNm@ e e e

  • 00000000000000O000000000 OOOOeOOOmO O 000000000000000000000000 COOOmchemN mML> 000000000000000000000000 000@ *Neeoc OWEZ Orww PPeeePeececcOOOONNNNNNNN OccemomeNe e o e e e e e e e e e o e e o e e e e o e e e e e e em m ocm=M 04mu emeeeeemeOOOOOOOOOOOOOOO eOP@eocNue 2 m m m m m m m m m N N N eJ N N N N N N N N N N N NNaeeNO eOO e e e W 000000000000000000000000 NOKg O00000000000000000000000 OJOZ 000000000000000000000000 00000000000000000000000O 8LM4 tw@ e o e e e e e e e e e e e e e o e o e e em@@@

eee 04

@HN 4444@e44COOOOOOODD@@N>>>

nummmmmmeeeeeece>NNN Z M z e m c o d o m o m m c O'4 m O'm - m c O 4 m o'm M > M E *

  • OOOmmNNNOOOmmNmmOOOmmNmm Sd 5 do""

w 888888888888888888888888 Er M O M33 0 2 >

> WEE M 40 O e W WONe4DONDONOONeo#CNe@ONc @m= aZmzwZ

% Em> OmmmmmNNNmmmeeeecOOOOmmm EnZEr434w4

> mod C0000000000000000m==m*m= 34mD3WWFOm Z > O mmmmmmmmmmmmmmmmmmmmmmmm ZEEMMEDMum

@ O E 000000000000000000000000m mmmmmmmmmmmmmmmmmmmmmmmmOM O 4  %

% WE  %%%%%%%%%%%%%%%%%%%%%%%%% W m 4 >OO 0000000000000000000000000>

nummma mmmmmmmmmmmmmmmmummu O 6 4Mw N Om  %%%%%%'%%%%%%%%%%%%%%%%%%%4 h N O

eeeeeeoceeeeeeeeeeeeeeeeo3 WMNNMMNNNNNNNNNNMMNNNNNNNQ @

i e

1

l 1 0 0 0 0 0 0 0 00000LL99G O31 0 0 0 0 0 0 0 00000GL21L E0d1 0 0 0 0 0 0 C 000009GL0I G0N/ 0 0 0 0 0 0 0 0000 *2G66G

. 01 S 0

  • 0 0 0 0 0 0 *0
  • G 4 2 01 I

-- 051W

  • I * * * * * *I *Gt * * *t
  • 30 L I 2 6 6 L G L12bt96E *I s1 01 0 0 0 0 0 0 0 00000E9166 039/ 0 0 0 0 0 0 0 0000 *t169L 0 001S 0 0 0 0 0 0 0 00000 IGE 65 6 E0 - W * * *
  • 0 0 *C *0L *E99 9 0I 5 0' C C 0 C C'
  • 0C *06 *0 *12 0 155 0 0 0 0 O 0 0 *OC1tG2I1
  • 4 0 31 1 1 1 1 I 1 1 LIL9961I 't 0 0 a03 2 5 S 0 0 0 0C 0 0 0 00000O9C9G 0 6 9 G 0 0 0 00 0 0 0 00000G9094 0
  • N6 1 0N 1 0 0 0 00 0 0 0 0000122992 00 I
  • 3 9 / 0 0 J 00 0 0 0 000E2920GE 91 SE 03NS L 9 L 69 6 9 9 06tE290G0G 0 V9 03 W I 1 I 1t 1 t t *tI *2t0I60 9W G2 H 0 * * * * * * *
  • 9 * *I ' *0O00 I1 i * * *
  • 0V58 d 16W33 3 9MVAA 0 0 0 C 0O 0 0 0 0000OO09L9 03Gll OEl 0 0 C 0C 0 0 0 0000EG9tGI SVta EOv1 C C C CC C C C CCCC422Ct1 C3l 1 9N1/ o o C C0 0 O o C0CG2940E0
  • af33 3 010S t b G 90 5 L t o06t0G90O6 6 33 3 021W E E 6 9
  • 4 E E * *E *
  • G 12 G 6 5G3 SSJd 0- * * * *I * *
  • G1 *tE *0 * *0 0 3 SSV NN *
  • 0t1633A0 1t31NhlC 1 30NNl0 - 6 6 C C0 C 0 0 CCCCC6I6IE 0DH133E0 0t1 6 6 0 00 0 0 0 0C0CC6I9GG EM011l 1H91 6 6 0 00 0 0 0 0000C6t2EG 9N1/ 6 6 0 00 0 0 0 0000EL22lt 0o0S 6 6 0 00 0 0 G 0G0E991Gtz 0E1W 9 1 G 69 l 9 l
  • I 6 9 510 E t t H 0 0 O 00
  • 0
  • W *0 '0000 *0 NN * * ' * * * * * ' * *
  • 3 C C C C C C C CCCCCCCCCC s 00 0 0 0 0 0 0 0 00O0000000 61 1 0 0 0 0 0 0 0 00O0000000 651/ 0 0 0 0 0 0 0 00Q0 *00000 0C3S 0 0 0 0 0 C 0 00Q *200000 0l W * * * * * * * * *2G *0000 H 9 9 9 9 9 9' 9 1994290000 3 * * *
  • e 0 C 0 0 0 0 0 00000*L19G G31 0 0 0 0 0 0 0 00000IL95E t101 0 0 0 0 0 0 0 0000 *LGtL4 6T1/ 0 0 0 0 0 0 0 000 *0G9IEI 0d - S * * * * * *
  • 0 * *20 *2G0L 0 i6W 9 b E E t L G *LE0Gt * *tG n0 1 t I l t I I 1IlIIt2I *
  • S5 0 0 0 0 0 0 0 000O0I692I 6 3 0 0 3 0 0 0 000J6L60LZ 2k11 0 0 0 0 0 0 0 0000EG299E 6n0/ 0 0 0 0 0 0 0 0006 *99402 0I1S t E 6 G 6 9 9 0t9 *t66Gl9 0O *W * * * * * ' * * * 'tL *92G6 CT G G 4 t 4 t t LGtEItC 'CC Sh ' *
  • 3 0000000Q0O0000000000O000 20hD 0000C0CC0C0C00000000C000 0loN 000000000000000000000000 0duV 000000000000000000000000 0Wd9 * * * * * * * * * ' * ' * *'*********

0W 99999991C0000000SG00SSS0 S31 11111111t6666666LL11LLL1 H 8 H 1EG09CE9IEG09ECE1EG09ECE k l 1 0001I222C001I2EE000112EE a A B V a 3 000000000000000000000000 v 33Md 3 3 3 hk 0 30V3 3 0 3 000000000000000000000000 80n 0 N A 1 3WW 5 VQ O

% 3 SO2499029CZG02499026002G 9II - NI NdN _

/ NdA OI1111222EEE66666000011I WINWWVWV3W 1 *I0V CC0000000C0C000061II111I OVIOO3WI01 _

N A O IIII111III1III151111111I NWWSSWAS35 S _

W V

O0O0OO0OOO0O0OOO0000O0001 0 -

I1I1II1ItI1I1IIt1111I11108 0

/

v 3W /////////////////////////3 /

1O0 00000000000000000000000001 1 d Tu1 111111111I111111111111111k 0 .

A Od /////////////////////////V /~

1 66666666666666666666666660 0 e

/ LLLLLLLLLL1LLLLLLLLLLLLL10 .

9 d,

O CD O

e o O O N M

  • O cc 4

& a ZN J ON m e u 4m M EC O 4 (D wE ED N I mm >

Q42E Q.

N>LWW W (D & 4 > > Q > O O00OOO OOOOOOOOOO O W do m m @>UZ O00000 OC00000000 MdNN @kmF OOOOMO OOO eeOOOOO O W .J > O u ea c e e o e e e C e eOm oOOOO e av 4 W W W CD QL 00000O OCONNOQC00 cD WW W 00 a. O NNNNNN eNNowNOOOO 4ea Wmu6 24m mmmmmm emem mOOOO O W mms L.' E e * *

  • OeJ&WW>O NeWW77>O m WOF2mo OMOOOO O 0 0 0 O tb N m m e OeZmWWmo O C0000O O C 0 0 4 04 NNoe M2OMMm C OOO00O O C 0 0 c @ @CD O m
    • I D C. C O C O O OOC 4 e @ O ED m o O Q. M 444444 O44 e4eO@me D e o e e e e e e ema eOOOO MeNNNN 4NNemeOOOO e e e e eNOOmm oemmNeMN@N m > N (C o m 4 4 ON4N *N@mbm O EZ mOOMNN O m N ic m m e 0 4 CD mODW e e O & CD CD O e CD ECD 4 4 CD (C 4 OOWW Nm e e o e ON *Nm o ce N N N
  • O 4& O C O CD M f* *ON&@@ e e-N MW umO@@@ 4 m @ O O 175 maoo e Q. m OOOCOO OOOOC4N@me
  • O C0000O O O O O C 4 O W N ED O J COOOOO O O O O m 4 4 N ee e mQ N COOCOO O000 e 4 4 m CO 4 00 L3 emNmoO OeO
  • e w= 4 4 6 4 O E e e e e o e e e emO eNmm4

@ @ @ @ @ 0' 4@@mm@O *CO e e o 000000 0000000000 O COOOOO OCOOOC0000 M M Q. > 000000 0000 *O0000 OWE 2 00000O 000 eOOOOCO O>WW e e o e e o O e eOO eooOO Od>U OOOOOO eCONeCOO00 3 NNNNNN eNNwNNOOon o e e e U OOO000 NCEw OOOOOO O 4 0 3. OOOOOO 00.24 00000O O E W ao e e e e e e Od wmmmmm m et > eeeeee Z K Z mmmOec F * *W OOOmmN E > "

4 Q. ogoooo 4 WWEE W W W oooooo YY D UC4W W Q W &DD G Z >

N WEE W 4O O M W f* O N O O m eD m m 8 2m262 N EW> ecocOO EMZEE4E4W4

  • W MO4 mmeemNN D4mDDWWWC>

2 > Q m eem w e m ZEEmmE> MUM so K OOOOOOm O

  • m a m m m m O gg o N WE NNNNNNNW N 4 > C' O O O O O O O O p- m .

cL 4m> mMmmceema O

> QW NNNNNNN4  %

> @@@@@@@D C N N N N N N f* O ED N

e in

e

> Q C0000000000000000 OOOOOPemem cDOE 00000000000000000 OOOOONeece mace 00000000000000000 000 *Oce4Ne OuNO e o e o e e e e e e o e e e e e e 0 - som eNNmp e 03 & 0000000 *Occam OO-v MNNNNN. 0 0 0 0 0. 00. 0 0. 0 NN.Ne.,emom m N ,e m o

=4m mmmmmmmmmmmmm-mmm mmm~ Om v E o O

O mWmJ 8O 88 00 8

O 8

O 8888880*k*

000O oome@N

@ edON O 00 O O 000 eONOcem e C4WO e e e e e oe eeN *>mee O O 4E e @@ = O emeeNP e sec e O ww N NN e m emNmeNamoe O O e N A d 6O000000006000300 OOOOceNehN O O 4 O OOOOOOOOOOOOQC000 OOOOM Neck =

c e 2N J O O O O O O O O O O O O O O rJ O O O GOOmmeo4NN me =

  • u eZ P 00000000000000000 000 e emecco

@c Mm OA m 4Q444@cccccccc@ec edeaccNr@N O 4@ O e e e e e e e e e e e e e e e e e N e eN4 0090m eE EN Z NNNNNNNNNNNNNNNNN mWNm@NOOOO Om a e e e e 04mW 4

>>Eww w GE4p> Q w O O O O OOOOOONNmN QWemm e w O O O O COCOJo@mmm

. -m4Km m - -- >*J O e - t>= ~@ O '"*U O O O O O 4 N O e 9:WWW N ww w 08$3 OviE 8 8 8e 8 8 8 8 9 ,' Ce Ee Ro~e ';

-~=w reum O .e -

e a , e ,o m~mc~m e e O WM4 W Cmd@WW>O M ewN2ZMO a wor 2mo O O O O OOOO&Omeee Germwwmc m20p>m O O O O O COOOPOeNam m >J C O O O 0000@O4000 MO4% O O O O OOOOMOedem O000 m e e c Osmomeomeo om E e e e e o e eeNum e m m m a ,eM m .e .e moe e e eeNOmmemmmmeeeeee OmememeOme 6 M M eNNM44%mmmm>NN000 OeOO@MDO7m O M2 mmNmNNmmmmmmmmmmm OmmoNewONA mO3W e e speeNammmNNNmmm oem@Oecee@

OOMU eNN e e e e e e e e o e e e e e se epee em@N O 4W OOOGNNOmmmmOCOmm@ NOpcmme oce WW &

ammerme@@@@@PPeso maem PNeom e

O0000000000000000 OOOOme&OeN O 00000000000000000 OOOONm44NO O J 00000000000000000 OOOP eNee@@

MO  % 00000000000000000 000 odeNNew OO G deNmOOmNNNNmmmNNN edNeemeOON O E

  • e e o e * *
  • e * * * * *
  • N e eeN e e e > > > c e a e . .e . e e .e ->c--e.eO
  • N @ c m.

00000000O00000000 OOOO7mm@Nm O 00000000000000000 OOOOme@44N MWAk 00000000000000000 0000 *@more OWEZ OOcOOOmececeffefe 000 *NNmM44 Omww e e e + e e e e e e e o e * * * * *

  • ech oNmON OsmW 00000000000000000 %OOeOOeNac

= NNNNNNNNNNNNNNNNN *NNmMNO eOO e e e u C000000000000000O NOKd C0000000000000000 OJOx 00000000000000000 Came CO000000000000000 OEwe e e e e e e o e e a e e e e 04 444444 OOOOOeeeece MWM mmmmmm4@@eceWeece Z W 2 m m c o c o m m d N O ., m e o @ g E

  • N OOOmmNOOOOmCop g > g
  • 4 4 W "
  • WWEE W W W 00000000000000 EE 3 O UO4W M

O W OOOOOOOOOOOOOO"$$$ EDO M E

4C O

WEE M W NchocNcNewmOcNOcN mm 1 2=242

% Ka> NNNmmmeeepcOOOmma MZEE4Etw4

> mO4

> m PPPPPPPPerPOOOOOO 4m33w4>Ok Z

e OOOOOOOOOOOmmmmmm. EEEeeE>mwe E .% O O O O O O O O O O O O O O O O m O 4 mmmmmmmmmmmmmmmmmog O N WE  %%%%%%%%%%%%%%%%%%w  %

4 MOO 0000000000000r 3000> m

& 4m> mmmmmmmmmmmmm .mmmm S

> Ch N%%%%%%%%%%%%%%%%%a 4  %

. $ k k k Nkk h e o o e

e d

> 0 0 0 0 OOOOOOONme Owd O O O O OOOQOOOOce m3EJ O n O O OnOOOceceN eO2% O O O O C000 eMNmee Om u O * *

  • O 80 e == e emco e Cm>E
  • e e e emocemeem*

wO e m m m emecemNe*N Em 04 O O O O OOOOOON>cm Owe % O O O O OOOO eodNMm O 03mu O O O O OOOOcedeOM

@ mot r O e e o O eneO eekee e Omm e n O O DO eOmN ecm>

e O Nmm D D m m enOmNOm 69 e e O wm e m a a emeeemepoe O O mou.

  • N @

m O DO O O COOOOOOmme O e e e O CO O O COOOOOOeNO ee EM 4 O2 J O CO O O OOOOeOMmOm me m e u e  % O OO O n OOOOeNmOme ec mm QuEu e me e N GemeeMOmec O WP Om E m a m m m emmmmmom>O em mN E O e e e o e ee o e e eOOOO Om > e *

  • e OekE &

MPEww w mue>D O O CO O O OOOOOONeem Owmmm Oma o 00 O O COOceOOmmo meww MnwJ n On O O OOOONOmNNn Owd > ey>% O CO O O OOONeemmee

  • wwww w OWOu m Om e N OmkeNeNmbe M ww w ON>E e ee m m edmo semmNe NNm emum Os * *
  • e o ee eNm *O e *O w med XX e e 8maeww>O NewkWWWO m wnEFmn 9 O en n O 000009094n DermWwmO Oed O DO O O nOOOOmocem m3Oppm pred O PO O O COOOOtheep a er>% O DO O O OOOcerecem Cocu O PO O N ONOcemcecm Om>K e Me e M ememNNONem

. E O CO O e eeO e0000 eo ZE e e e e e e e o e e w n n n n annnanonnn CD C O O O 0000000000

  • em J O O O O 0000000000 WMa% O O O O OOOO eDOOOO OCUu O O O O C00 eeDOOOO OJ E e e e e e e eee eOOOO E

y e e e e edeNmeOOOO

. e e o e e

O O O O OOOOOONeem ew> O O O O OOOOOOdmod e>OJ O O O O OOOOOceNem Pe>% O O O O 0000 eNmacQ e o e 8m3e JeE 30 m

m N e m

N e oe e ok opNew eNNNNe e em e H M emmeemeN en mm O O O O COCOOommNm 7 O O O u OOOOcGecce NEkJ C O O O OOOOOmereN 73O% O O O O DOOM eNecOO Ompu O N P ONP 00 er e *

  • O. e o eOCe m o.mmN c N c N.

D e, e m , e e e e # N m e n. e n. n.

U 00000000000000000 OSEN 8.-4 Ewe

$8$8 08 e e O e e e O.8.8*$.$$8"E*888 O

e 8. e8000 e e Ce deededOOOOOeeeeee mW> mmmmmmeddecemmeme Z N E m m e n d o m'm e N O m m e e d m F > > OOOmmmOnOOmOOOmmm k > g e

W L

W w OOOOOOOOOOOGaOOOO Er e wwEm 3 UOew w a s w 0 0(J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K30 e E >

> WEE m so O M w NcNockcNemmomNoeN emm oE= Ear

% Em> NNNmmmeeeceOOOmmm EWErgemewe

> mce @@@@@@&PerPOOOOnO De=33We>O>

2 N O OOOOOOOOOOOmmmmmm ErremE> mum 00000000000000000=

h mmmmmmmmmmmmmmmmmou 8

% mE  %%%%%%%%%%%%%%%%%%w  %

e >OO C0000DO0000000000C> m L sum mmmmmkmummmmmmmmmmu O

> Om  %%%%%%%%%%%%%%%%%%e  %

> ep@per@@@DDD@@@@@@D O

% >>>>>MMMMNNNNNNNNNe e *

. ds

017003 C624 34 42 10.0 087 07 39.0 2 WHEELER RESERVOIR 01379 ALABAMA TENNESSEE RIVER' B ASIN 040890 TE44E55EE RIVER 293.70

/TYP A/ AMSNT/STRE AM 131TVAC 0000 FEET DEP1H CLASS 00 00002 00010 00300 00301 00400 00095 OATE TIME DEPTH HSAMPLOC WATER 00 00 PH CNDUCTVY FROM OF 4 FROM TEMP SATUR AT 25C TO DAY FEET RT BANK CENT MG/L PERCENT SU MICR09HD 79/10/10 0907 0001 65.0000 20.6000 8.40000 93.3333 7.50003 160.300 79/10/10 0909 0003 65.0000 20.5000 8.30000 92.2222 7.50000 160.300 79/10/10 0911 0005 65.0000 20.5000 8.20000 91.1111 7.50000 160.300 79/10/10 0913 0007 65.0000 20.4000 8.20000 89.1304 7.50000 160.300 79/10/10 0915 0010 65.0000 20.4000 8.20000 89.1304 7.50003 160.000 79/10/10 0917 0013 65.0000 20 1000 8.10000 88.0434 7.50000 160.000 79/10/10 1028 0001 88.0000 21 5000 9.40000 106.819 7.60000 180 000 79/10/10 1030 0003 88.0000 21.5000 9.40000 106.813 7.60000 180.300 79/10/10 1032 0005 88.0000 21.5000 9.30000 105.682 7.60000 180.300 79/10/10 1035 0010 89.0000 20.5000  ? '0000 102.222 7.60000 180.300 79/10/10 1040 0016 88.0000 20.0000 9.10000 98.9133 7.60000 180.000 79/10/10 1042 0023 89.0000 19.5000 9.10000 98.9130 7.60000 180.300 79/10/10 1045 0030 88.0000 19.5000 9.10000 98.9133 7.60000 180.300 79/10/01 QUARTER NUMBER 13.0000 13.0000 13.0003 13.0000 13.0000 MAXIMUM 21.5000 9.40000 106.819 7.60000 180.000 MINIMUM 19.5000 8.10000 88.0434 7.50000 160.300 SUM 266.500 114.000 1261.25 98.1999 2220.00 SUM-SOUAR 5468.69 1003.06 122947 741.819 380400 MEAN 20.5000 8.76922 97 0191 7.55384 170.769 VARIANCE .456753 .280660 48.4583 .0026652 107.698 STAND DEV .674353 .529774 6.96120 .0516256 10.3778 COEF VAR .3328953 .0604128 .0717507 .0068343 .0607707 STAND ERR .197032 .146933 1.93069 .0143184 2.87927 80/01/00

i

> O 000000000000 OOOOOOmme@

c>ug 000000000000 OOOOOONmoe

@>et Q00000000000 000 *OONNeN OuNQ e e o e e e e o e o e e oe EON eNNdO O8>m uO O. O O O O. Oo>NNNNN oooo COOODO eOO NNoem e N e N* N em m e.

Enm mmmmmmmmmmmm unum mNeon o

v E O

O mgmJ 8

O 88 8888888888 e0000 e esc O 8O 6 888O0mOOOO8 m

O O.v.%

O gE P e e e PP O e e e~ eOOOO e@@Ne@OOO g g wu N NN mNNCNNOO,0g ,

N @

@ 0000000000OO COOPePOOOO oe O N ze a e

O O 8000000000 sf RSSS$g$30$080 0008meOOOO 00 O

oOO meOOOo 0$

o . J. O e e e e . e oe S. e e3eS S. ~ 23 e om.

458888 oOoo em eN Z NNNNNNNNNNNN mhMP4NOOOO

  • e *
  • Om C4MM L N>Eww w SE4DD O d O O OOOOOOONeo Owemm e w O O OOOOOOOOmo Aesk m >J O O 0000000meo OwJ endww w

> mown oQsg O

e O

e 0000 *eONmo oe e em eOONC 4 ww w Qu2E O m emO-NQeNec

@OM @@us O M m N*mNNm a eO e O MM4 w e w

Omamwwpo NeweZ2wo n WOZEmo O O OOOOOOONam OeImwwmo O O O 000 OONmOO M2Ow>m = >J O O COO OOOmmO MOg% O O 000 econ 40 OOOG e m O@meNeemec Om E e * * * * * *eeNam e m m NmmNemoe e e e

me&##cOmmmmM OOca@@MNOb a > PeceeeMeed de OMedee@ e4@ '

O EZ eNNNNNmNNNNN OmN emoemem mO3w ee**eePeseem O@ememmPNN OO>u o e

  • e o e e e * *e o e
  • emoe e e me m O em m O O O O O e ?* N N N N NeOmmee og e Mw P@@@@PPO*PPP m@em emmom

& .e 000000000000 000004ee4N O 000000000000 OOOONeeNNm O J 000000000000 OOON04mONm mc % 000000000000 000 e e4Ne-N OO O eceeeenOOOOO emeemNeene O E * * * * * * *

  • e o e
  • N
  • EON e4Nm>

WeeceePP@@ @@ NPemeCO eOO e e e O00000000000 OOOOOONmed O 000000000000 OOOOOONmee agap 000000000000 0000 eONNe>

OwEz eeccececcede OeeeeONNeO Omww e o e e e e e e e e e e e e semeNNNe og>w CememePee@ @@ NeeNm@NcNm 3 mmmmmmmmmmmm ammNem e eO e e

u 000000000000 NQEg 000000000000 udOR 0000000000OO Otte 000000000000 Otwe e e o e o e e e e o e C4 NNNNNNeget ee MWN Cemesweecece Z M 2 mmeNOmmmeO E > > OOOOmmOOOm 4M M > g

  • 3 BE55 W

O $8888888888 W 88 W WEE M G E 40 O

M w ONedeceONeON emm 9 EmEwE

% LWP eeeeeccOOCum EMZEE4 mew 4

> =Qe PS&PPPPOOOOO 34m33WeNQM g > Q OOOOOOOmmmma ZEEmmE>eue E C000000000OOm O 4 mmmmmmmmmmmmON O

% WE  %%%%%%%%%%%%%w  %

4 >QQ 000000000000G> a

& gm> mmmmmmmmmmmmmm O

- > QW  %%%%%%%%%%%%%4  %

l N

% gNNgNgNNNggNgO eP P ePe e D O C

l ,

i

.i.,

l l

e

> 0 0 COOOOOObeo Owd O O C000000000 MDad O O OOOOOOOmeO e EOR % O O OOOO eOONNO Om @ O O 000 emeOO*C OM>E e e e e een EON &@

WO e > NcNamb o eO e e g>

CJ O O 0000000000 Owe % C O OOOO eOOOOO O ODm@ O O C000000000 m MOS E O n OOO 900000n m OmM e e ne EON eOnOO O NMm o o eOOmenOOno f O wm @ @ NeemMPOOOO o e e e O O mou N M M O D O OOOOPNmeme O N e e O CO OOOOeememe OE J O C 0 OOOOpemmem 4

  • Em J O O OOOOeeceNO O

me em m e Me u e OGEO

& ee OmeNe@OOMN O e9 OE E m mm emme>mONmm em GN Z O e e o me e *O e eOO e e

  • C e

Om >

Gems &

NDEww w eme>> O O OO OOOOOmmmee Owemm OMJ O OO OOOOOmmNam

@eWW mned O OO DOOnemmenm Owd > er>% O 00 COOmmmemme

  • meww w owCO N Ne CemeNeenMN e ww w ON>E m* mW oN m em e e N e m mo em e op e e e som emum OS e e e w MMe 22 8mdMww>O NewmW7>O m Op capanmmNmm m wn22mO 9 Onenommede Oermwwmc Oed e ce M30 ppm mEWJ @ Oe OOPOOmmmem 4X>% e OP OOPOemNNme C0 0@ e me Ompeemoces Om>E N me em>NNpOmmo X O *O meoeOOOO 80 12 e e e e e e e e a w n n nnOOnnnonn OO O O 0000000000 em J O O C000000000

@wJ% O O 000O000000 O O C00 e eDOOOO Scu@

J E

E e

e e e o eNN eOOOO Neemb4OOOD e o e e u

i e

o o O000000000 ew> 0 0 0000000000 5: 4 8e 8e 8888988888 C e e eN eQOQQ 8mI JeK 9 e m

e m

seesteOOOO RO M N u m N m m O. Oe Oe O.

NEmd 8

O 8

O 888888?m8:

OOOOmoceeN PDO% C O COceeutoken Om>G e e Ocee edeONO e o eOp e O k ee e DO eZ e e De e e NeemeenOnD M2 e e e o U 000000000000 OSEE Onwn 888g88888888 OOO C00O0000 QEme o e e e e e e e e e e e On NNNNNNeeeded MWW G e m m e m e e e e'e e l E E l

2

> > mmeNOmmmenem M > M E

e & W OnOOmmOOCmmN e Ww&M W

C 0 0 0 0 0 0 0 0 0 0 0- FE D Ucew W W C00000000000 E D s MDD o E M

> eQ. O

> WEE M w ONedeOGONOON emm S EmELE

% EE> eeeeemeOOOmm EMEEEemewe

> MOW @@SSPPPOOOOO DemDDwe>OW X > 0 OOOOOOOmmmmm EEEMMEDMum

  • e Q E 000000000000m emmmmmmmmmmmOg O e  %

% WE  %%%%%%%%%%%%%w m j e >OO 000000000000C> O A em> mmmmmmmmmmmmmw  %

i

> OE  %%%%%%%%%%%%%e O l

> PPPD@D@DDP@DPD e l

% NNNNNNNNNNNNNO L UJ e

l 1

0 W

G e O G V ,

N m M

O N 4 N e ye a o

mO m e u Pm WN O 40 4M mm Z Om >

04kk &

W>Lww w ONe>> O > C 00000000000 0000000000 Owmmm m>uZ C0000000000 0000000000 MdNN mwer OOOOOOOOOOO OOO e&OOOOO OwJ > OuNO e e e o e e e e o e e O e EON =O000 omgww w on A 00000000000 e00Nm00000 m ww w OONU NNNNNNNNNNN mNNemMOOOO NmW WWuw 2em mmmmmmmmmmm mmmm mOOOO e e e e m W Mme u E Oma ww>o New 77>O m W F7mo 00000000000 OOOmmmOOOO Oer-wwmo O C0000000000 OOOmmmOOOO ATOWWm O 00000000000 OOOPmPOOOO eZ 3 00000000000 OOOm e@OOOO Ca M 44444444444 e44 emmOOOO O a e e o e e o e o e e m o emm oOOOO NNNNNNNNNNN mMNO4NOQOC e e e e mmNNNNmmmNN OmNmNNokNO m > NNmmmm@NNem O@me*@ONSW O NZ mm444Nmmm44 OmN e4moeO4 MO3W 44mmmeN44mm ONemOOceem OO>u e e e e o e e e o e o e e see eOm&4 O em meceememmee m*G m O m m m W O N mm e@@@m@@@@@@ meem@@ e eO e a

  • e C0000000000 COOmemmmmm O OOOOOOOOOOO COO 7NemmNe O C0000000000 coommmmmme mO C0000000000 COOm eemmem OO o em6664emm6N e&4 em64 Nee .

O E e e e e o e e e e e e m e ese eOmON CECWWC@ECCE mmCPCCOOOO e o e e C0000000000 COOommeNPO O CC000000000 OOQUNeemNm mE45 00000000000 CoomememON OWE 2 00000000000 00m *Omom4N Osww e e e e e e e e e e o e e sem ammNm Owku OOOOOOmOOOO wommmmNmoe T NNNNNNmNNNN mNmNemo e e O. O6, '

'J OOOOOOOOOOO NCEW 00000000000 f>JOZ C000000O000 Oak 4 00000000000 CEmm e e e e e e e e e e e Om ***eteNNNNN MNk NNNNNNmmmmm I m I .mcO4mmmmO4

( F > > OOOmmNCOOmm N > E

! 4 a W C00 00000000 = ww2E w w W 00000000 Er D uC=w

& O E .C 0 0 MS3 0 2 >

> WEE M 40 C W W NemNONONeem Emm 1 2m212 N EE> mmmmeeOOOOO Ex2EE4mewe

> MOW mmmmme@@eme 34m33WWWCW Z > O 00000000000 ZEEMME>Wum m

E 00000000000m O ,

4 mmmmmmmmmmmOE o N WE NNNNNNNNNNNNw N 4 >CO OOOOOOOOOOOOH m A (m> mammmmmmmmmme O

> OR NNNNNNNNNNNNd N

> emememeemmeeD C '

N NNNNNNNNNNNNO m

.I

APPENDIX C BIOLOGICAL DATA, BROWNS FERRY NUCLEAR PLANT O

e

  • i e

APPENDIX C BIOLOGICAL DATA, BROWNS FERRY NUCLEAR PLANT Table of Contents Table Number Winter Spring Summer Fall i

I. Phytoplankton A. Enumeration

1. Populations by year.................. 1 21 37 53
2. Populations by station............... 2 22 38 54 B. Diversity (genera and major groups)
1. Genera diversity by station.......... 3 23 39 55
2. Percentage of major groups by year... 4 24 40 56
3. Percentage of major groups by station for each year........................ 5 25 41 57
4. Major groups by numerical genera diversity at each station............ 6 26 42 58 C. Chlorophyll
1. Concentrations by year............... 7 27 43 59
2. Concentrations by station............ 8 28 44 60

. D. Productivity

1. Summary 1972, 1973, 1974, 1975, 1976,1977,1978, and 1979 by stations and season........................... 9 9 9 9-II. Zooplankton
1. Species by stations.................. 10 10 10 10
2. Diversity of major groups............ 11 11 11 11
3. Enumeration by all seasons and stations from winter 1973 through f a ll 19 7 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 12 III. Benthos A. Corbicula
1. Populations by year.................. 13 29 45 61
2. Populations by stations.............. 14 30 46 62 B. Hexagenia
1. Populations by year.................. 15 31 47 63
2. Populations by stations.............. 16 32 48 64 C. Chironomidae
1. Populations by year.................. 17 33 49 65
2. Populations by stations.............. 18 34 50 66 D. 011gochaeta
1. Populations by year.................. 19 35 51 67
2. Populations by stations.............. 20 36 52 68 C 01

4 s

Table 1 j ,

j PHYTOPLANKTON POPULATIONS BY YEAR (WINTER -' 1969-1979)

BROWNS FERRY NUCLEAR PLANT Phv'oplankters/1 (mean values) l Control Percentage Increase l Year All Stations (Above BFNP) Below BFNP Below or Above BFNP i

Preoperational 1969 2,560,437 2,632,750 2,517,050 5 - Above l 1970 1,704,644 1,503,867 1,825,110 21 - Below 1971 213,313 N/A N/A 1972 222,376 192,135 240,251 25 - Below 1973 92,233 120,419 75,322 60 - Above operational j 1974 70,494 81,315 64,002 27 - Above .

1975 41,841 35,792 45,470 27 - Below 1976 366,451 308,039 401,497 30 - Below j 1977 1,459,633 1,399,532 1,495,695 7 - Below l 1978 500,030 585,611 448,681 31 - Above

! 1979 2,453,063 2,510,690 2,418,486 4 - Above i

n. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52 j b. .TRM 295.97, 301.06, 307.52 l c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 I

r

-C 02 .

p -y.ys- . . , + - - -

e . . . . .

Table 2 PHYTOPLANKTON POPULATIONS BY STATION - 1969-1979 (WINTER)

BROWNS FERRY NUCLEAR PLANT Phytoplankters/1 (mean values)

Preoperational Operational TRM (1969-1973) 1974 1975 1976 1977 1978 1979 277.98 894,130 31,247 55,469 433,374 1,115,115 412,354 2,395,435 283.94 1,060,138 51,394 31,637 366,012 1,322,196 401,241 2,454,620 288.78 938,537 53,175 35,061 447,521 1,751,971 492,125 2,791,040 291.76 1,052,257 93,192 44,922 388,336 1,836,337 465,138 1,918,840 C[ 293.70 1,104,488 91,000 60,262 372,242 1,452,854 472,546 2,532,495 295.87" 1,068,223 67,428 30,678 292,291 1,016,779 447,146 2,629,060 301.06 1,075,956 76,198 41,635 329,152 1,553,655 666,221 2,158,695 307.52 1,192,699 100,320 35,061 302,674 1,628,161 643,467 2,744,315

a. Control stations

-_. __. - . . - . .-. - - . . - - - - . - - . . - - - - -~ .- - - --

Table 3 o

DIVERSI1T OF PHTTMIANKTON CENERA, BROWS FERRY NUCLEAR PIANT C. TINTER)

Phytoplankton Genera Collected Phytoplankton Cenera Collected During During Every Freoperational Every Preoperational Sampling Period, -

Phytoplankton Genera round For First Time Sampling Period (69. 70. 72, 73) But Not Found in Winter. 1979 During Winter Operatfonal Sampling. 1979_ ,

M CHRYSOPhTTA CHIDROPHYTA CHRYSOPHYTA CHLOROPHYTA CHRYSOTHYTA CHl.OROPHYTA CTANOPHYTA 277.98 Melostra rudorina Navicula Oocystis Synedra Pyraminonas ,

Tetrastrum 283.94 Cyclotesta Cyclotella Rhoteosphenia Dactylococcus Melostra Pyram1monas Navicula Synedra 288.78 Cyclotella cyclotella Kirchneriella ,

Melostra Pyramimonas

. Navicula Synedra O l 291.76 Cyclotella Scenedessus Ouadrigula l Melostra Franceia Navicula O S>nedra w e -

293.70 Cyclotella Cyclotella Pyram1monas M ostra Navicula Synedra i

295.87 Cyclotella cosmarium Cyclotella cosmerium Terrastrum Lyngbya  !

Helostra Scenedessus Navicula

  • Synedra 301.06 Cyclotella Cyclotella
  • Nitzschte Carteria Melogira Polyedriopsis j

. Navicula Quadriaula a Synedra Utothrix t

307.52 Melostra cyclotella synure '

Arthrodessus Lyngbya Navicula $timeoclonium t Synedra ,

Cyclotella f

9

, , . . . . I

o 6. .

Table 4 MAJOR GROUPS OF PHYTOPLANKTON POPULATIONS BY YEAR - 1969-1979 NINTER)

BROWNS FERRY NUCLEAR PLANT Percentage Phytoplankton Population by Major Groups Chrysophyta Chlorophyta Cyanophyta All All All Year Stations

  • Above Below" Stations" Above Below# Stations # Above Below#

Preoperational 1969 47 49 45 47 46 48 6 4 7 .

1970 55 49 59 41 46 37 4 5 4 1971 64 M N/A* 29 M N/A' 6 M N/A

'1972 84 86 83 9 9 9 7 5 8 0 1973 82 82 83 15 16 15 2 3 2 l

$ Operational 1974 78 78 79 12 11 14 7 9 5 1975 69 75 65 24 16 29 4 5 3 1976 50 59 45 17 13 19 32 28 35-1977 79 79 79 10 8 11 11 14 9

. 1978 58 58 58 26 27 26 15 14 15 ,

- l 1979 61 59 63 19 22 18 19 18 19 l

a. TRM 277.98, 283.94, 288.78,'291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52 a c. TRM 277.98, 283.94, 288.78, 291.76, 293.70
d. TRM 277.98, 283.94, 288.78, 291.76 only l
e. Not applicable because data are available for only four stations below BFNP and these data are shown as indicated by "d."

P Note: M - Sample missing i

Table 5 PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIM KTON BY RIVER MILE AND YEAR - 1969-1979 (WINTER)

BROWNS FERRY NUCLEAR PLANT Major Group Percentage Present i Preoperational Operational TRM Major Groups 1969 1970 1971 1972 1973 X 1974 1975 1976 1977 1978 1979 X Chrysophyta 63 60 68 86 65 83 65 39 89 56 60 65 277.98 50 44 34 32 11 9 26 11 30 12 2 24 18 16 Chlorophyta 21

  • 9 3 2 48 4 19 22 16 Cyanophyta 6 4 8 68 88 96 70 73 75 44 80 52 70 66 283.94 Chrysophyta 42 54 Chlorophyta 43 43 27 8 4 25 21 17 18 12 26 17 19 O 4 0 5 5 4 36 8 20 13 14 Cyanophyta 15 3 5 88 80 66 87 64 49 78 58 67 67 288.78 Chrysophyta 43 53 65 C) 52 42 28 4 20 29 9 28 19 11 32 18 20 Chlorophyta

'd 8 0 5 3 5 31 11 9 15 12 Cyanophyta 5 5 7 Chrysophyta 56 64 88 75 65 79 64 48 77 62 71 67 291.76 43 54 41 30 9 23 31 11 31 24 15 24 17 20 Chlorophyta 6 3 2 3 5 3 27 7 13 11 11' j Cyanophyta 3 3 293.70 Chrysophyta 48 69 M 82 78 69 72 57 45 73 61 46 59 Chlorophyta 47 27 M 12 21 27 16 38 21 11 25 17 21 Cyanophyta 5 4 M 6 1 4 11 2 33 16 14 36 19 I

295.87 Chrysophyta 50 50 M 82 82 66 75 78 63 84 68 48 69 46 46 M 8 16 29 14 11 11 6 24 22 15 Chlorophyta M 10 2 5 7 9 25 9 8 29 15 Cyanophyta 4 4 M 92 83 69 85 72 53 70 53 64 66 301.06 Chrysophyta 49 51 46 43 M 6 16 28 6 14 13 11 30 21 16 Chlorophyta M 3 5 7 33 19 16 13 16 Cyanophyta 5 6 2 1 f . ,

- - ... _ . .- _ _-.._ _ ... _- . . . - .. . . _ . _ . - - . - - . - _ ~ . . . _ . .. .. _ . . - .

. s . a , e i'

Table 5 ,

(continued) i PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIANKTON BY RIVER MILE AND YEAR - 1969-1979-(WINTER)

BROWNS FERRY NUCLEAR PLANT Major Group Percentage Present Preoperational Operational ,

TRM Major Groups 1969 1970 1971 1972 1973 X 1974 1975 1976 1977 1978 1979 X j 307.52 Chrysophyta 49 46 M 84- 80 65 72 75 60 81 54 64 68 Chlorophyta 47 49 -M 12 15 31 12 23 14 6 26 22 '17  ;

Cyanophyta 4 5 M 4 5 4 13 0 25 13 17 13 14 o

r

.n Note: M = Sample missing [

i  % .

i i

-.---r- , - - -

Table 6 .

NUMERICAL CENERA DIVERSITY FOR MAJOR GROUPS OF PHYTOPLANKTON BY RIVER MILE - 1969-1979 (WINTER)

BROWNS FERRY NUCLEAR PLANT Number of Genera Preoperational Operational TRM Major Groups 1969 1970 1972 1973 1974 1975 1976 1977 1978 1979 277.98 Chrysophyta 10 7 12 7 5 6 12 9 9 11 Chlorophyta 7 5 3 2 2 7 14 13 15 19 Cyanophyta 1 1 1 1 1 2 4 2 5 4 Total 18 13 16 10 8 15 30 24 29 34 283.94 Ch rysophyta 7 6 12 5 7 8 13 9 9 12 Chlorophyta 5 6 2 1 3 3 15 9 14 14 Cyanophyta 1 1 3 0 1 1 5 4 6 3 Total 13 13 17 6 11 12 33 22 29 29 288.78 Chrysophyta 7 6 12 10 5 5 15 11 8 12 Chlorophyta 5 6 2 4 2 6 14 12 14 14 ,

Cyanophyta 1 2 1 0 1 1 4 4 4 4 Total 13 14 15 14 8 12 33 27 26 28 291.76 Ch rysophyta 9 5 13 10 6 5 13 11 8 11 .

Chlorophyta 7 6 2 3 4 6 13 12 16 15 Cyanophyta 1 2 2 1 1 1 5 3 4 3 Total 17 13 17 14 11 12 31 26 27 29 293.70 Chrysophyta 9 6 10 9 5 5 13 10 8 10 Chlorophyta 5 6 6 5 4 5 10 13 16 13 Cyanophyta 1 2 2 1 2 1 4 3 5 3 Total 15 14 18 15 11 11 27 26 29 26 295.87 Chrysophyta 10 7 15 5 8 5 11 8 10 12 Chlorophyta 8 7 4 3 3 2 10 8 14 15 Cyanophyta 2 2 2 1 2 1 4 3 5 5 Total 20 16 21 9 13 8 25 19 29 32 301.06 Ch rysophy ta 8 4 8 10 6 5 14 11 10 9 Chlorophyta 3 4 2 4 3 3 13 11 17 18 Cyanophyta 1 1 1 1 2 1 4 3 5 4 Total 12 9 11 15 11 9 31 25 32 31 307052 Chrysophyta 8 6 11 10 7 4 15 10 10 13 Chlorophyta 5 5 2 2 2 4 10 14 18 17 Cyanophyta 2 2 1 1 2 0 4 5 5 6

. Total 15 13 14 13 11 8 29 29 33 36 l

i C CJ

Table 7 CHLOROPHYLL CONCENTRATIONS BY YEAR (WINTER)

BROWNS FERRY NUCLEAR PLANT l Surface Phytoplankton Chlorophyll" (mg Ch1#/m ) (mean values) 4 All Control Percentage Increase C

Year Stations" (Above BFNP) Below BFNP Above or Below BFNP Preoperational 1969 6.14 5.71 -6.37 12 - Below i

1970 2.25 2.04 2.35 15 - Below 1971 2.23 N/A N/A N/A 1972 0.49 0.44 0.51 16 - Below I

1973 1.56 1.94 1.32 47 - Above j

t j Operational 1974 4.84 5.27 4.59 15 - Above

l. 1975 0.87 0.47 1.10 134 - Below i

1976 1.00 1.17 0.90 30 - Above 1977 10.70 11.18 10.42 7 - Above 1978 2.36 3.03 1.96 55 - Above I i

1979 1.56 1.65 1.58 4 - Above 4

a. TRh 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 4

9 O'

l C C 'J

.- - ._ ~

)

i Table 8 -

! CHLOROPIIYLL CONCENTRATIONS - 1969-1979 (WINTER) j BROWNS FERRY NUCLEAR PLANT l Surface Phytoplankton Chlorophyll"- (mg Chi "/m ) (mean values)

Preoperational Operational TRM (1969-1973) 1974 1975 1976 1977 1978 1979 277.98 2.93 4.63 0.42 0.81 8.39 1.61 1.72 1,

283.94 2.47 4.75 2.37 0.81 8.39 1.80 1.54

.288.78 2.79 4.11 0.98 0.94 12.09 2.28 1.30

! 291.76 2.31 5.36 1.03 0.96 12.13 1.65 1.50 t 293.70 2.71 4.08 0.72 0.98 11.09 2.46 1.80 2 295.87^ 2.83 4.80 0.35 1.12 10.66 2.72 1.72 301.06" 2.48 4.93 0.35 1.26 11.78 2.58 1.37 307.52" 2.34 6.06 0.70 1.13 11.09 3.78 1.85

a. Control station .

I 4

I i

l

  • I C 10

- - < - - - , , - , ,- - r ,-

~..- _ __ , ._ _ _ _ __ -

Table 9

SUMMARY

- DAILY PRIMARY PRODUCTIVITY BROWNS FERRY CARBON-14 PROGRAM mg C/m / day Preoperational Operational 1972 1973 1974 1975 TRM Winter Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall 277.98 27 280 2,202 896 27 40 1,899 279 16 177 3,784 407 20 22 1,661 356 283.94 21 300 2,720 682 25 74 2,539 1,251 16 155 5,496 632 15 16 1,935 338 C3 288.78 17 223 1,167 240 17 123 452 831 20 145 2,957 353 17 20 887 159' 291.76 19 378 1,143 400 23 87 227 254 20 153 2,491 175 19 40 691 53 293.70 30 220 587 236 26 95 157- 356 18 82 1,872 253 24 30 374 90 295.87 19 282 511 157 24 102 220 244 20 135 2,129 109 16 38 419 29 301.06 18 270 445 134 25 111 52 143 23 137 1,789 94 20 33 294 102 307.52 18 217 350 61 19 87 89 301 23 142 425 56 22 37 127 16 Mean 22 271 1,141 '351 23 90 704 432 19 141 2,618 260 19 30 798 144 i

2

Table 9 (continued)

SUMMARY

- DAILY PRIMARY PRODUCTIVITY BROWNS FERRY CARBON-14 PROGRAM o

mg C/m'/ day Operational 1976 1977 1978 1979 TRM Winter Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall 277.98 16 1,092 2,072 1,506 115 986 5,092 959 304 2,604 5,728 1,613 26 921 2,716 415 283.94 11 708 2,705 1,225 79 874 3,393 793 263 2,580 7,020 1,553 25 494 3,545 530 288.78 10 471 3,803 562 102 839 4,545 844 422 2,300 7,076 1,754 30 469 5,307 1,666 g

291.76 16 251 1,271 442 123 563 3,309 521 401 191 7,116 2,257 30 596 4,333 972 293.70 1,048 1,926 435 116 1,355 4,779 571 522 1,176 5,571 1,510 32 372 2,373 275

(( 17 295.87 15 157 888 314 108 445 6,126 325 437 584 11,778 1,679 34 209 2,350 2,013 515 251 103 474 1,991 417 357 451 8,390 1,254 36 229 797 1,314 301.06 16 117 307.52 20 125 156 121 88 524 1,358 225 446 419 1,059 608 36 108 546 66 Mean 15 496 1,668 607 -104 758 3,825 582 394 1,288 6,717 1,529 31 425 2,746 906

Table 10 OCCURRENCE OF ZOOPLANKTON SPECIES, BROWNS FERRY NUCLEAR PLANT Tennessee River Mile 278 284 289 292 294 296 301 308 Cladocera Acroperus harpac 0 0 0 3 0 0 0 0 Alona sp. I 1 0 3 3 0 0 0 ,

Alona costata Sars 3 0 0 3 3 3 0 0 Alona gutta 3 0 3 0 3 0 0 0 Alona inte rmedia 3 0 0 0 0 0 0 0 Alona quadrangularis Leydig 2 0 1 1 3 2 1 2 Alona rectangula 0 3 3 3 3 3 0 0 A_lonella sp. 0 0 3 3 3 0 0 3 Bosmina longirostris (0.F. Muller) 1 1 1 1 1 1 1 1

'Camptocercus rectirostris Schodler 0 0 3 0 3 0 2 1 Ceriodaphnia lacustris Birge 1 1 3 3 1 3 3 3 Ceriodaphnia quadrangula (0.F. Muller) 0 1 1 1 3 3 3 3 Ceriodaphnia reticulata 3 0 0 3 0 0 0 0 Chydorus sp. 3 1 3 1 1 1 1 1 Daphnia ambigua 3 3 3 3 0 0 0 0 Daphnia laevis 0 0 3 0 3 0 0 0 Daphnia parvula Fordyce 1 1 1 3 1 3 3 3 Daphnia pulex Leydia 3 0 3 0 3 3 3 3 Daphnia retrocurva Forbes 1 1 1 1 1 1 1 1 Daphnia galeata (Mendotae) 3 0 3 3 3 3 3 3 Diaphanosoma leuchtenbergianum Fischer 1 1 1 1 1 1 1 1 Eurycercus sp. 3 0 3 3 1 0 3 1 i*

Gastropus sp. 3 0 0 0 3 0 3 3

) Holopedium gibberum Zaddach 1 1 1 1 1 1 3 1 l Ilyocryptus spinifer lierrick 1 1 1 3 1 1 1 1 Latona setifera 0 0 0 0 3 0 0 0 j Leptodora kindtii (Focke) 1 1 1 1 1 1 1 1 l Leydigia quandrangularis (Leydia) 3 3 0 1 0 3 3 0 Macrothix 3 0 0 3 3 0 0 0 Moina micrura Kurz 3 3 3 3 3 3 3 1 Moina minuta Hansen 3 3 3 3 3 3 3 0 Pleuroxus denticulatus Birge 3 0 3 1 3 3 0 1 Pleuroxus hamulatis Birge 3 0 0 3 3 3 3 0 l Scapholebris kingi Sars 0 3 0 3 3 3 3 1 Sida crystallina (0.F. Muller) 3 3 1 1 1 1 1 1 Simocephalus (immature) 2 1 1 3 1 1 2 1 Sir;cephalus serrulatus 3 3 3 3 3 3 3 3 Simocephalus vetulus Schodler 0 3 2 0 0 0 3 0 Ceriodaphnia (immature) 3 3 0 3 0 0 0 0 Daphnia (immature) 3 3 3 3 3 3 3 0 Copepoda Argulus sp. 3 0 3 3 0 0 0 0

< Attheyella illinoisensis (S.A. Forbes) 0 3 3 3 3 3 3 3 Calanoida 3 3 3 3 3 3 3 3 Canthocamptus robertcokeri M.S. Wilson 0 3 3 3 3 3 3 3 Canthocamptus staphylinoides Pearse 2 0 0 0 0 2 0 3 Cyclops bicuspidatus thomasi S.A. Forbes 1 1 1 1 1 1 1 1

Table 10 (Continued)

Tennessee River Mile 278 284 289 292 294 296 301 308 .

Cyclops varicans rubellus Lilljeborg 3 3 3 0 3 3 3 3

, Cyclops vernalis Fischer 1 1 1 1 1 1 1 1 Diaptomus birgei Marsh 2 0 0 0 0 0 0 0 Diaptomus dorsalis 3 3 0 3 0 0 3 0

Diaptomus mississippiensis marsh 0 0 0 0. 0 3 3 3 Diaptomus pallidus Herrick 1 1 1 1 1 1 1 1 Diaptomus reighardi Marsh 1 1 1 1 1 1 1 1 Cyclopoda 3 3 3 3 3 3 3 3 Diaptomus sanguineus S.A. Forbes 3 1 0 1 3 3 1 3 Epischura fluviatilis 0 0 0 0 0 0 0 3 Ergasilus sp. I 1 1 1 1 1 1 1 Elaphoidella biden Coronata 0 3 3 0 0 0 0 0 l Eucyclops agilis (Koch) 1 1 1 1 1 1 1 1
Eucyclops priaophores 0 0 0 0 3 0 0 0 Eucyclops speratus (filljeborg) 3 0 3 3 3 3 0 0 Ha rpa cti coida 3 3 0 0 3 0 0 3 Macrocyclops albidus (Jurine) 3 3 3 3 0 3 1 3 Mesocyclops edax (f.!A. Forbes) 1 1 1 1 1 1 1 1 Nauplii 3 3 3 3 3 3 3 3 Nitocra lucustrir Fischer 3 1 1 1 1 1 1 3 Osphranticum laborectum 0 3 0 0 0 0 0 0 Paracyclops fimbriatus Fischer 3 3 0 0 0 3 0 0 4

Paracyclops fimbriatus poppei Rehberg 3 0 3 3 3 1 0 0 Parastenocaris sp. 0 0 0 0 3 0 0 0 ,

Tropocyclops prasinus (Fischer) 1 1 1 3 3 1 1 1 Rotifera Asplanchna sp.# 1 1 1 1 1 1 1 1 l Asplanchna herricki 3 3 3 3 3 3 3 ~3 Asplanchna priodonta 0 0 0 0 3 3 3 0 Bdelloida 0 3 0 3 3 0 0 0 Branchionus angularis Gosse 1 1 1 1 1 1 1 1 Branchionus bennini (Leisslung) 0 0 0 3 3 3 3 0 Branchionus bidentata Anderson 1 3 1 3 1 1 1 1 Branchionus budapestinensis Daday 1 1 1 1 1 1 1 1 Branchionus calcyciflorus Pallas 1 1 1 1 1 1 1 1 Branchionus caudatus Barrois & Daday 1 1 1 1 1 1 1 1 Branchicnus havanensis Rousselet 1 1 3 1 1 3 3 1 Branchionus quadridentatus Herman 3 1 3 3 1 1 3 1 Branchionus rubens Ehrenburg 2 0 0 0 0 0 0 0 Branchionus urceorolaris Muller 3 0 3 0 0 3 3 3 Cephalodella sp. 3 3 3 3 3 1 3 3 Collotheca sp. 3 3 3 3 3 3 3 3

Collotheca pelagica 3 3 3 3 1 3 1 1 Conochiloides sp. I 1 1 1 1 1 1 1

, Conochilus hippocrepis (Schrank) 3 3 3 3 3 3 3 3 -

Conochilus unicornis Burckhardt 1 1 1 1 1 1 1 1 Contracted Rotifera 3 3 3 3 3 3 3 3 Dissotrocha sp. 0- 0 0 0 0 0 0 3 Epiphanes macroura Barrois & Daday 3 3 3 3 3 3 3 3 C 1 A.

Table 10 (Continued)

Tennessee River Mile 278 284 289 292 294 296 301 308 Euchlanis sp. 3 1 1 1 3 3 3 1 Filinia sp. 1 3 1 3 3 3 1 1 Filinia longiseta 3 3 3 3 3 3 0 3 Hexarthra sp.' 1 1 3 3 1 0 3 3 Kellicottia bostoniensis (Rousselet) 1 1 1 1 3 1 1 1

.P Kellicottai longispina 0 0 0 3 0 0 0 0 Keratella americana (Ahlstrom) 3 3 0 3 3 0 3 3 Keratella cochlearis (Gosse) 1 1 1 1 1 1 1 1 Keratella crassa Ahlstrom 1 1 1 1 1 1 1 1 Keratella earlinae Ahlstrom 3 3 1 3 1 1 1 1 Keratella quadrata 0 0 0 3 3 3 0 0 Keratella valga (Ehrenberg) 3 3 2 0 0 0 0 3 Lecane sp. 3 3 3 3 3 3 3 3 Lepadella sp. 0 3 0 2 0 3 2 3 Macrochaetus sp. 3 0 0 0 0 3 0 0 Monostyla sp. 3 3 1 3 1 3 1 3 Monostyla crenata Harring 0 0 0 0 0 0 0 3 Monostyla quadridentata Ehrenberg 0 0 0 0 0 0 0 0 Notholoca sp. 3 3 3 3 3 1 3 0 Platyias patulus (Muller) 1 1 3 3 1 3 1 1 Platyias quadricornis (Ehrenberg) 1 0 3 3 3 0 0 0 Ploesoma sp.' 1 1 1 1 1 1 3 1 Ploesoma hudsoni 3 3 3 3 3 0 0 0 Ploesoma truncata 3 3 3 3 3 3 3 3 Polyarthra sp. I 1 1 1 1 1 1 1 Pompholyx sulcata Hudson 0 0 0 0 0 0 0 0 Ptygura sp. 0 3 0 0 0 0 0 0 Rotaria 3 0 0 3 3 0 3 3 Rotaria neptunia 3 3 3 3 3 3 3 3 Synchaeta sp.* 1 1 1 1 1 1 1 1 Synchaeta stylata 3 3 3 3 3 3 3 3 Testudinella sp. 0 3 0 3 0 0 0 0 Triochocera sp. I 1 1 1 1 1 1 1 Triochotria sp. 3 3 3 3 1 3 3 1

0. Organism not identified at TRM indicated.
1. Organism identified at TRM indicated in both preoperational and operational monitoring.
2. Organism identified at TRM indicated in only preoperational monitoring.
3. Organism identified at TRM indicated in only operational monitoring.
a. Includes Asplanchna priodonta Gosse, Asplanchna Amphora Western, and Asplanchna herricki.
b. Includes Filinia major (Celditz) and Filinia longiseta.

. c. Includes Hexarthra intermedia Wisniewski, Hexarthra mira (Hudson),

and Hexarthra hollis.

d. Formerly Keratella gracilenta Ahlstrom.
e. Includes Lecane leontina and Lecane luna.
f. Includes Ploesoma hudsoni (Imhof) and Ploesoma truncantum (Levander).
g. Includes Synchaeta stylata Wierzejsky. -

C 15

d i

l s

! Table 11 NUMBER OF ZOOPLANKTON SPECIES BY MAJOR GROUPS BROWNS FERRY NUCLEAR PLANT ALL SEASONS 1973, 1974, 1975, 1976, 1977, 1978, AND 1979 Control (Above BFNP)" Below BFNP i

Species Collected During Only Preoperational Monitoring (Winter, Spring, Summer 1973)

Cladocera 0 0 Copepoda 0 2

, Rotifera 0 1 Species Collected During Only Operational Monitoring (Fall 1973, All Seasons 1974-1979)

~

Cladocera 15 22 Copepoda 12 17 J Rotifera 21 25 Species Collected During Pre-1 operational and Operational Monitoring (All Seasons, 1973-1979)

Cladocera 15 18 Copepoda 13 10 Rotifera 27 28
a. TRM 296, 301, 308
b. TRM 278, 284, 289, 292,.294 i

C 16 ,

Table 12 ZOOPLANKTON DENSITIES BROWNS FERRY NUCLEAR PLANT (Organisms /m )

Preoperational Operational 1973 1974 TRM Winter Spring Summer Fall Winter Spring Summer Fall 277.98 1,821 2,155 191,959 23,684 1,506 735 208,372 12,527 283.94 -

2,121 100,572 17,826 1,194 923 203,530 8,780 288.78 4,320 1,866 27,394 8,931 3,067 873 79,827 6,658 291.76 3,389 2,830 11,835 19,962 1,514 662 53,560 5,537 p, 293.70 4,773 1,342 23,499 5,144 1,254 753 39,593 4,891 4

295.87 4,656 2,029 8,744 2,521 1,727 719 33,335 8,702 301.06 4,526 2,043 5,077 1,624 2,522 607 18,640 3,145 307.52 4,454 1,722 18,029 3,402 3,098 1,010 11,088 6,310 Mean 3,991 2,013 48,389 10,387 1,986 785 80,993 7,069

Table 12 (continued) 200PIANKTON DENSITIES BROWNS FERRY NUCLEAR PIANT (Organisms /m )

1 Operational 1975 1976 Fall Winter Spring Suunner Fall TRM Winter Spring Summer 8,895 2,690 45,323 355,219 95,956 277.98 1,975 1,793 184,544 212,561 3,725 2,690 4,541 114,543 46,801 283.94 1,011 2,259 22,530 1,698 2,964 4,093 114,306 29,003 a 288.78 1,319 1,207 28,829 1,835 2,353 4,464 39,343 7,098 291.76 1,709 1,891

>* 31,711 2,605 1,524 5,756 94,587 5,305 e 293.70 1,350 1,860 11,842 2,243 2,204 1,158 9,431 2,037 295.87 2,113 2,039 14,204 1,484 2,300 1,961 8,114 2,136 301.06 1,486 941 12,725 1,773 3,050 1,802 8,309 1,907 307.52 1,418 918 64,868 3,032 2,472 8,637 92,988 23,780 M:an 1,548 1,613 h

i

\d I Table 12 (continued)

ZOOPLANKTON DENSITIES BROWNS FERRY NUCLEAR PLANT (Organisms /m )

Operational 1977 _ _ , , ,

1978 TRM Winter Spring Summer Fall Wiitter Spring Summer Fall 277.98 34,988 242,928 104,263 11,429 14,249 26,899 352,562 110,568 283.94 68,257 232,123 116,427 6,619 30,666 68,019 410,442 69,074 288.78 75,848 37,586 340,877 9,022 13,224 12,697 832,428 50,396 291.76 65,946 46,140 109,479 3,405 17,470 14,838 184,043 44,193 0

293.70 70,009 37,726 83,933 3,263 15,297 13,506 163,434 15,087 295.87 55,529 41,864 47,345 2,631 19,238 14,253 51,112 39,407

['

301.06 54,340 50,934 77,953 1,923 21,852 9,065 41,6~88 9,229 307.52 37,636 25,018 57.8]0, 2,119 14,038 6,165 17,044 9,326 Mean -57,819 89,290 117,260 5,058 18,254 20,680 256,594 43,410

_ m._. . . _ . . . _ _ . _ . _ _ _ __ . . . _ . . _ . . . _ _ . _ . _ _ _ _ _._. . . . _ . _ . _ _ . _ _ _ . . _ _ . _ _

Table 12 (continued)

ZOOPLANKTON DENSITIES BROWNS FERRY NUCLEAR PLANT (Organisms /m ) ,

Operational .

1979 TRM Winter Spring Suramer Fall 277.98 6,471 4,473 246,894 61,490 .

O 283.94 4,855 1,975 421,236 36,552 M 288.78 '8,577 4,288 290,341 3,856 g-291.76 5,959 5,683 263,271 8,169 293.70 6,584 2,986 108,403 3,193 1 295.87 4,444 747 13,779 5,862 l 301.06 7,694 1,466 8,011 2,668 307.52 5,051 1,672 3,682 1,042

! Mean 6,204 2,912 169,452 15,354 i

O P- I -$ $ $

Table 13 ANNUAL CORBICUIA DENSITIES BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Winter All Seasons Percentage Percentage All Below Increase All Below Increase a

Year Stations Control BFNP Below BFNP Stations

  • Control BFNP" Below BFNP Prcoperational 1969 111 68 133 96 164 147 172 17 1970 111 58 132 128 112 57 139 144 19'71 71 60 76 27 103 54 127 135 1972 128 91 146 60 153 72 192 167 y 1973 105 44 142 223 Data included in preoperational and operational ha Operational' 1974 161 58 223 284 153 72 202 181 1975 145 100 173 73 150 97 182 88 1976 163 136 179 32 180 117 219 87 1977 183 85 242 185 Same as winter 1977 (_only samples taken) 1978 95 40 128 220 93 45 122 171 1979 76 26 106 398 Same as winter 1979 (only samples taken)
e. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.78, 288.78, 291.76, 293.70

Table 14 CORBICULA POPULATIONS BY STATIONS (WINTER) i BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Preoperational Operational TRM All Seasons Winter 1974 1975 1976 1977 1978 1979 277.98 83 57 88 44 81 105 109 118 283.9'. 119 68 241 143 143 210 71 47 288.78 209 196 191 183 262 346 237 237 i

291.76 187 157 - 400 283 232 368 142 75 293.70 149 100 191 211 179 183 80 53 295.87" 108 85 132 195 216 187 40 9

' a 301.06 46 55 20 80 135 54 34 29 8

307.52 64 45 22 24 58 15 45 40

a. Control stations J

e l

1 C 22 l

1 Table 15 j HEXAGENIA POPULATIONS BY YEAR (WINTER)

BROWNS FERRY NUCLEAR PLANT Hexagenia /m (mean values) a c Year All Stations Control Below BFNP Preoperational 1969 80 101 69 1970 57 49 61 1971 31 44 24 1972 146 178 130 1973 53 14 73 Operational 1974 145 19 220 1975 248 180 289

'. 1976 223 79 310 1

1977 214 181 234 1978 101 63 124 1979 44 70 27

a. TRM 277.98, 283.94, 288.78, 291.76, 243.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 l

i T

I I

e I

C 23

Table 16 HEXAGENIA POPULATIONS BY STATIONS (WINTER)

BROWNS FERRY NUCLEAR PLANT Hexagenia /m (mean values)

Preoperational Operational TRM (1969-1973) 1974 1975 1976 1977 1978 1979 277.98 4 2 2 4 62 0 4 i 283.94 4 129 86 288 102 l'6 0 4

288.78 33 467 388 502 330 29 9 291.76 154 290 582 375 430 198 33 293.70 99 211 388 379 245 375 91 295.87" 105 56 467 119 410 43 80 301.06" 59 0 68 109 134 78 131 307.52" 41 0 6 10 0 67 0 4

a. Control stations 1

l l

e e

Table 17 CHIRONOMIDAE POPULATIONS BY YEAR (WINTER)

BROWNS FERRY NUCLEAR PLANT 1 Chironomidae /m (mean values)

All Control Percentage Increase c

Year Stations" (Above BFNP) Below BFNP Below BFNP Preoperational 1969 137 101 155 53 1970 154 136 166 22 1971 95 68 109 60 1972 227 103 288 180 1973 119 21 178 748

- Operational 1974 115 29 167 476 1975 176 57 247 333 1976 119 21 178 748 1977 45 17 62 265-1978 180 52 257 394 1979 153 38 223 487

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52 -
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 l

)

e

'j C 25-

Table 18 CHIRONOMIDAE POPULATIONS BY STATION (WINTER)

BROWNS FERRY NUCLEAR PLANT Chironomidae /m (mean values)

Operational TRM Preoperational 1974 1975 1976 1977 1978 1979 277.98 204 218 352 260 132 296 283 283.94 213 227 173 209 109 562 321 288.78 156 187 390 256 16 177 207 291.76 168 132 192 103 31 80 205 293.70 100 70 130 62 22 171 98 295.87" 130 52 58 34 39 58 51 301.06" 89 22 78 14 12 51 51 307.52" 26 14 34 16 0 47 11

a. Control stations i

l e

o C' 2G L

. . . . e .

Table 19 OLIGOCHAETA POPULATIONS BY YEAR, BROWNS FERRY NUCLEAR PLANT Oligochaeta /m (mean values)

Winter All Seasons Percentage Percentage All Below Increase All Below Increase Year Stations" Control BFNP Below BFNP Stations

  • Control BFNP Below BFNP Preoperational 1.969 15 12 17 42 76 44 93 111 1970 13 10 14 40 56 28 71 154 1971 19 12 21 75 51 41 55 34 1972 47 32 55 72 161 107 186 74 1973 301 54 449 731 Data included in preoperational and operational Operational 1974 182 78 244 213 221 93 298 220 1975 349 260 402 55 312 118 428 263 1976 248 116 328 183 207 117 261 123 d

1977 13 17 10 70 Same as winter 1977 (only samples taken) 1978 86 23 123 435 87 35 139 297 1979 33 10 46 360 Same as winter 1979 (only samples taken)

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70
d. Increase above BFNP

5 I

Table 20

] 3LICOCHAETA POPULATIONS BY STATIONS (WINTER)

BROWNS FERRY NUCLEAR PLANT 011gochaeta/m (mean values)

Preoperational Operational TRM All Seasons Winter 1974 1975 1976 1977 1978 1979 i

277.98 103 73 86 291 198 13 87 89 4 283.94 95 101 340 390 623 26 123 45 1 288.78 174 165 376 418 477 0 221 34 i

291.76 122 69 138 632 259 2 138 42

, 293.70 148 61 273 281 84 11 47 20 295.87" 74 33 106 428 97 38 29 11 301.06" 67 15 93 225 173 9 23 15 l 307.52" 27 20 30 126 78 5 16 4

a. Control stations i

k 4'

4

\

C 20

i Table 21 PHYTOPLANKTON POPULATIONS BY YEAR (SPRING - 1969-1979)

BROWNS FERRY NUCLEAR PLANT Phytoplankters/1 (mean values)

Control Percentage Increase c

Year All Stations" (Above BFNP) Below BFNP Below or Above BFNP Preoperational 1969 1,068,781 599,333 1,350,450 125 - Below 1970 1,001,493 583,400 1,252,350 115 - Below 1971 223,109 259,756 201,122 29 - Above 1972 719,899 814,308 663,254 23 - Above 1973 78,391 68,524 84,312 23 - Below ll

. Operational 1974 202,008 204,659 200,418 2 - Above 1975 151,083 164,169 143,231 15 - Above

  • 1976 2,542,101 845,490 3,560,067 321 - Below 1977 1,708,778 901.504 1,370,714 52 - Below 1978 2,377,662 821,443 3,311,393 303 - Below 1979 5,084,366 3,540,125 6,010,910 70 - Below
a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 4

9 C 23

_ __ . . . _ . . __ _ _ _ _ . _ . . . . . _ _ _ _ . = _ . . _ . _ . . __._ . ._._ _. _ _ _ _ . _ _ _ .-_ . _ _ _ . _ _ - - . _ _ _ _ _ _ _ _ _ _

Table 22 PHYTOPLANKTON POPULATIONS BY STATION - 1969-1979 (SPRING)

BROWNS FERRY NUCLEAR PLANT I

Phytoplankters/1 (rnean values)

Preoperational Operational 1974 1975 1976 1977 1978 1979 TRM (1969-1973) 277.98 797,625 210,501 105,595 3,754,986 3,080,736 4,514,056 6,248,400 283.94 1,077,970 217,084 91,214 2,149,698 1,437,962 4,481,116 7,127,875 288.78 536,773 257,651 144,628 2,765,462 1,340,489 3,662,892 5,324,475 O . 291.76 488,709 194,059 173,663 2,925,430 1,087,655 1,689,629 6,556,375 293.70 652,411 122,795 201,055 6,204,760 4,018,869 2,209,271 4,797,425 CO C 295.87 8

573,701 195,157 132,027 897,899 521,935 871,538 4,143,375 301.06" 423,322 204,476 153,945 743,410 823,399. 942,446 3,711,575 307.52 8

398,235 214,343 206,533 895,456 1,359,178 650,346 2,765,425

a. Control stations

e s e a e e Table 23 DIVERSITY OF PHYTOPIANKTON CENERA, RROWNS FERRY NUCLEAR PIANT (SPRINC)

Phytoplankton Genera Collected Phytoplankton Genera Collected During During Every Preoperational Every Preoperational Sampling Period. Phytoplankton Genera Found For First Time Sampling Period (69. 70. 72. 73) But Not Fouri In Winter. 1979 During Vinter Operational Sampling. 1979 TRM CHRYSOPHYTA CHIDROPHYTA CHRYSOPHYTA CHLOROPHYTA CHRYSOPHYTA CHLOROPHYTA CYANOPHYTA 277.98 Cyclotella Cyclotella Anabaena Mc1ostra Navicula

  • Synedra 283.94 Cyclotella Scenedessus Cyclotella .

Melostra Synedra 288.78 Melontra scenedeamua carteria Meriamopedia Navicula Synedra 291.76 Cyclotella Scenedeamus Cyclotella carteria O Melostra Navicula Synedra b.' 293.70 Cyclotella Cyclotella crucigenta Melostra e -

Navic g Synedra 295.87 Cyclotella cyclotella Kirchneriella Melosh Navicula ,

Synedra 301.06 Cyclotella Cyclotella _Chaetocaroa Carteria Melostra .

Navicula "

Synedra 307.52 Helostra Navicula e

e

Table 24 MAJOR GROUPS OF PHYTOPLANKTON POPUIATIONS BY YEAR - 1969-1979 (SPRIiGG) 6 i

. BROWNS FERRY NUCLEAR PLANT I

' Percentage Phytoplankton Population by Major Groups

Chrysophyta Chlorophyta Cyanophyta All b c a b c a b c a Above Below Year Stations Above Below Stations Above Below Stations Preoperational 1969 55 49 58 34 33 34 12 18 9 1970 47 49 46 45 43 46 8 8 8 -

t 1971 83 83 83 10 10 10 7 7 7 a 1972 88 89 87 6 4 7 6 6 6 1

1973 88 92 85 9 7 11 3 3 _4

.c t.

Operational. 1974 90 91 90 7 6 8 2 2 2 1975 86 88 86 9 8 9 4 4 5 1976 71 80 66 21 16 24 6 4 7.

4

, 1977 55 38 65 23 25 39 21 36 12 1978 64 56 68 31 38 26 5 4 5 1979 72 62 77 19 26 16 4 5 3 l

a..-TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52

.b. TRM 295.87, 301.06, 307.52 j c. ~TRM 277.98, 283.94, 288.78, 291.76, 293.70 t

  • e e 4 ,

Table 25 PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPLANKTON BY RIVER MILE AND YEAR - 1969-1979 (SPRING)

BROWNS FERRY NUCLEAR PLANT Major Group Percentage Present Preoperational Operational TRM Major Groups 1969 1970 1971 1972 1973 x 1974 1975 1976 1977 1978 1979 x 277.98 Chrysophyta 42 49 80 90 85 69 92 87 50 74 73 78 77 Chlorophyta 52 44 12 5 11 25 6 9 24 14 22 14 15 Cyanophyta 6 7 8 5 4 6 2 4 11 10 5 5 6 ED 283.94 Chrysophyta 52 30 80 87 89 68 91 84 71 66 69 79 77 Chlorophyta 42 66 14 7 5 27 8 10 22 21 24 15 17 Cyanophyta 6 4 6 6 6 6 1 6 6 10 7 2 5 288.78 Chrysophyta 61 55 83 91 82 74 93 87 69 51 71 73 74 Chlorophyta 25 36 9 3 13 17 6 7 26 33 22 20 19 Cyanophyta 14 9 8 6 5 8 1 6 5 15 7 4 6 291.76 Chrysophyta 64 51 84 82 83 73 84 93 69 64 65 79 76 Chlorophyta 28 39 8 12 15 20 13 4 24 21 30 14 18 Cyanophyta 8 10 8 6 2 7 3 3 7 15 4 3 6 293.70 Chrysophyta 69 47 86 ~ 87 88 75 90 78 63 72 64 78 74 Chlorophyta 22 43 9 8 9 18 6 16 28 16 32 16 19 Cyanophyta 9 10 5 5 3 6 4 5 9 12 3 2 6 295.87 Chrysophyta 34 59 84 89 91 71' 87 89 78 61 49 63 71 Chlorophyta 39 34 11 4 7 19 9 6 19 25 45 25 22 Cyanophyta 27 7 5 7 2 10 4 5 4 14 5 5 6 301.06 Chrysophyta 58' 47 83 88 95 74 92 91 83 33 47 66 69 Chlorophyta 25 44 12 4 5 18 5 7 13 32 45 22 21 Cyanophyta 17 9 5 8 0 8 3 3 5 33 6 5 9

l l

Table 25 (continued)

PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIANKTON BY RIVER MILE AND YEAR - 1969-1979 (SPRING)

BROWNS FERRY NUCLEAR PIANT Major Group Percentage Present Preoperational Operational TRM Major Groups 1969 1970 1971 1972 1973 i 1974 1975 1976 1977 1978 1979 i 307.52 Chrysophyta 55 41 81 90 90 71 94 84 79 20 71 57 68 Chlorophyta 36 51 7 4 10 22 5 13 17 18 25 30 18 O Cyanophyta 9 8 12 6 0 7 1 3 4 61 1 5 13 o

L e e e t 4 e

l Table 26 NUMERICAL CENERA DIVERSITY FOR MAJOR GROUPS OF PHYTOPLANKTON BY RIVER MILE - 1969-1979 (SPRING)

BROWNS FERRY NUCLEAR PLANT I -

Number of Genera -

i Preoperational Operational TRM Major Groups 1969 1970 1972 1973 1974 1975 1976 1977 1978 1979 277.98 Chrysophyta 11 7 11 8 5 5 11 9 10 9 Chlorophyta 8 4 9 3 4 5 11 19 21 10 Cyanophyta 1 1 2 1 1 1 4 5 5 3 Total 20 12 22 12 10 11 26 33 36 22 283.94 Chrysophyta 7 7 16 6 5 7 13 13 10 9 Chlorophyta 4 6 10 2 7 4 13 20 25 14 Cyanophyta 1 1 2 1 1 1 4 5 6 1 Total 12 14 28 9 13 12 30 38 41 24 288.78 Chrysophyta 10 5 13 5 7 5 11 8 11 9 Chlorophyta 5 4 10 3 6 4 13 19 21 11 Cyanophyta 1 1 2 1 1 1 3 5 5 2 Total 16 10 25 9 14 10 27 32 37 22 291.76 Chrysophyta 7 6 12 7 8 5 15 11 12 9 Chlorophyta 5 4 13 5 7 2 12 22 18 12 Cyanophyta 2 1 3 1 2 1 5 5 4 1 Total 14 11 28 13 17 8 32 38 34 22 293.70 Chrysophyta 7 6 14 7 5 6 9 16 11 9 Chlorophyta 9 4 9 3 2 6 15 25 18 12 Cyanophyta 3 1 2 1 1 2 4 4 4 1 Total 19 11 25 11 8 14 28 45 33 22 295.87 Chrysophyta 5 6 13 4 6 6 14 14 14 9 Chlorophyta 6 4 8 2 4 2 10 19 17 11 Cyanophyta 4 3 3 1 2 'l 2 4 3 1 Total 15 13 24 7 12 9 26 37 34 21 301.06 Chrysophyta 6 6 15 5 4 5 10 10 11 8 Chlorophyta 4 5 6 1 5 6 3 24 17 11 Cyanophyta 1 1 2 0 1 1 4 5 4 1 Total 11 12 23 6 10 12 17 39 32 20 307.52 Chrysophyta 6 6 13 2 5 7 12 10 C Chlorophyta 6 4 4 2 4 7 10 18 10 Cyanophyta 1 1 3 0 1 1 2 7 3 1 Total 13 11 20 4 10 15 24 35 21 19 Euglenophyta and Phyrrophyta not included because of sparse populations.

C 3i

A Table 27 CHLOROPHYLL CONCENTRATIONS BY YEAR (SPRING)

! BROWNS FERRY. NUCLEAR PIANT Surface Phytoplankton Chlorophy11a (mg Ch1 */m ' (1ean values)

All Control Percentage Increase Year Stations" (Above BFNP) Below BFNP" Above or Below BFNP Preoperational 1969 8.97 1.47 11.96 714 - Below I

1970 5.62 3.34 6.76 102 - Below t

1971 1.77 1.41 1.95 38 - Below i 1972 1.47 1.75 1.32 33 - Above 1973 3.49 3.81 3.30 15 - Above Operational 1974 1.78 1.78 1.78 0 ,

1975 0.04 0.12 0 12 - Above 1976 5.57 1.90 7.91 316 - Below .

1977 2.66 0.57 3.91 586 - Below 1978 8.51 4.00 11.21 180 - Below 1979 3.88 1.89 4.94 161 - Below

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70

(

l e

C 3d i

I . - . . - -

Tabic 28 CHLOROPHYLL CONCENTRATIONS - 1969-1979 (SPRING)

BROWNS FERRY NUCLEAR PLANT Surface Phytoplankton Chlorophyl1# -(mg Ch11'/m ) (mean values)

Preoperational Operational TRM (1969-1973) 1974 1975 1976 1977 1978 1979 277.98 5.63 1.22 0.00 8.67 5.74 14.81 6.16 283.94 6.38 1.52 0.00 3.44 5.20 19.91 5.20 288.78 2.82 2.01 0.00 5.37 1.52 8.59 4.51 291.76 3.06 1.68 0.00 2.61 1.67 5.37 5.11 293.70 2.93 2.47 0.00 19.47 5.45 7.37 3.22 295.87^ 2.25 1.41 0.35 3.02 0.17 4.51 1.95 301.06" 2.36 1.95 0.00 0.65 0.00 3.57 2.09

, 307.52" 1.34 1.99 0.35 2.04 1.56 4.29 1.65

a. Control station e

C 3?

Table 29 ANNUAL CORBICULA DENSITIES (SPRING)

BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Spring All Seasons Percentage Percentage All Below Increase All Below Increase Year Stations" Control BFNP" Below BFNP Stations

  • Control BFNP" Below BFNP Preoparational 1969 191 164 204 24 164 147 172 17 1970 131 66 164 148 112 57 139 144 1971 134 76 163 114 103 54 127 135 a

1972 151 72 185 157 153 72 192 167 o 144 269 Data included in preoperational and operational c 1973 109 39 Operational 1974 122 73 152 108 153 72 202 181 1975 147 100 175 75 150 97 182 88 d d d 1976 171 121 201 66 167 127 190 48 1977 106 66 130 97 144 76 186 145 1978 50 42 55 31 1979 35 6 52 767

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.78, 288.78, 291.76, 293.70
d. Only winter and spring data collected for 1976

)

i*

Table 30

' " CORBICULA DENSITIES BY STATION (SPRING)

BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Preoperational Operational Spring 1974 1975 1976 1977 1978 1979 TRM All Seasons 102 64 95 139 76 34 40 277.98 83 109 84 119 149 102 0 34 283.94 119 l 76 288.78 209 157 199 187 304 165 20 262 272 212 244 131 185 56 291.76 187 i

218 141 183 167 174 38 56 l 293.70 149 i

295.87 108 114 147 133 183 103 40 7 j

  • 5 301.06" 48 29 40 83 119 63 74 a 32 85 60 31 11 7 i 307.52 64 114 I a. Control stations i

4 l

)

1 0

L c co

i Table 31 HEXACENIA POPULATIONS BY YEAR (SPRING) w a

i BROWNS FERRY NUCLEAR PLANT l

Hexagenia /m (mean values) a Year All Stations Control Below BFNP" Preoperational 1969 101 105 99 1970 93 113 84 1971 51 41 56 f

1972 78 45 94 4

1973 72 23 96 1

Operational 1974 144 41 207 1975 222 143 355 1976 275 154 347 l 1977 199 122 246 l

, 1978 70 53 80 i 1979 38 4 73 1

I 1

a. TRM 277.98, 283.94, 288.78, 291.76, 243.70, 295.87, 301.06, 307.52 l
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 l

t a

i C {J l

l

__. . ~ . . __, - .,__._ . _ _

Table 32 HEXAGENIA POPUT.ATIONS BY STATIONS (SPRING)

BROWNS FERRY NUCLEAR PLANT Hexagenia /m (mean values)

Preoperatiotial Operational TRM (1969-1973) 1974 1975 1976 1977 1978 1979 277.98 2 28 141 24 13 0 0 283.94 18 6 270 558 176 4 11 288.78 99 523 465 415 385 85 114 291.76 161 427 465 544 310 183 112 293.70 123 50 6 193 344 127 129 295.87" 89 114 429 395 366 69 9 301.06" 68 8 0 38 2 87 2 307.52" 29 0 0 30 0 4 2

a. Control stations e

e 1

C c.z

Table 33 CHIRONOMIDAE POPULATIONS BY YEAR (SPRING)

BROWNS FERRY NUCLEAR PLANT t Chironomidae /m (mean values)

All Control Percentage Increase c

Year Stations (Above BFNP) Below BFNP Below BFNP Preoperational 1969 128 64 161 151 1970 114 63 139 120 1971 109 38 144 278 1972 122 77 144 87

, 1973 111 29 151 420 i

Operational 1974 120 15 182 1,113 i

2 1975 111 17 167 882 1976 103 27 148 448 1977 57 16 82 413 1

l 1978 230 86 316 267 1979 128 vi 187 523

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52 '
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 I

f O

C 42

, +-- e

-. - .= _ _ . _ - .- ..

4 4

! Table 34

-c

! CHIRONOMIDAE POPULATIONS BY STATION (SPRING)

' i I

BROWNS FERRY NUCLEAR PLANT Chironomidae /m (mean values)  ;

Operational TRM Preoperational 1974 1975 1976 1977 1978 1979  ;

277.98 210 251 257 284 161 364 178 283.94 156 178 165 147 77 749 223 288.78 141 233 245 206 70 266 290 291.76 119 206 147 90 64 158 147 293.70 122 44 20 14 40 45 98 a 40 56 39 230 31 295.87 75 24 t

301.06" 68 10 4 6 6 20 13 307.52" 21 12 8 20 2 9 45

a. Control stations

-1

]

A t

l l

1 s

1 C 43

Table 35 OLIGOCHAETA POPULATIONS BY YEAR, BROWNS FERRY NUCLEAR PLANT Oligochaeta /m (mean values)

Spring All Seasons Percentage Percentage i All Below Increase All Below Increase c c Year Stations

  • Control BFNP Below BFNP Stations
  • Control BFNP Below BFNP Preoperational 1969 120 48 156 230 76 44 93 111 1970 117 55 148 170 56 28 71 154 1971 64 40 76 90 51 41 55 34 1972 89 79 93 20 161 107 186 74 0 1973 234 119 292 250 Data included in preoperational and operational jl Operational 1974 205 29 310 969 221 93 298 220 1975 314 53 470 786 312 118 428 263 I d d d 1976 201 135 240 78 224 125 306 145 1977 103 65 127 95 58 41 69 68 ,

1978 100 45 132 193 87 35 139 297 1979 54 24 72 200

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52 b.. TRM 295.87, 301.06, 307.52 .
c. 150( 277.98, 283.94, 288.78, 291.76, 293.70
d. Only winter and spring data collected for 1976

. . . > c .

Table 36 OLTCOCHAETA POPULATIONS BY STATIONS (SPRING)

BROWNS FERRY NUCLEAR PLANT 011gochaeta/m (mean values)

Preoperational Operational TRM All Seasons Spring 1974 1975 1976 1977 1978 1979 277.98 103 151 388 766 280 58 158 54 283.94 95 77 402 584 342 133 114 60 288.78 174 153 172 471 330 201 185 138 291.76 122 161 396 308 147 87 156 73 293.70 148 221 193 223 103 154 47 34 295.87^ 74 95 86 95 133 90 85 54 301.06 67 76 0 16 177 95 40 14 307.52" 27 16 0 48 96 9 11 4

a. Control stations

)

e e

C 45

i Table 37 l PHYTOPLANKTON POPULATIONS BY YEAR (SUMMER - 1969-1979)

  • BROWNS FERRY NUCLEAR PLANT i

I Phytoplankters/1 (mean values)

Control Percentage Increase Year a c-All Stations (Above BFNP) Below BFNP Below BFNP Preoperational 1969 3,411,396 3,211,056 3,525,600 10**

1970 1,658,747 827,083 2,157,745 161**

1971 784,194 557,951 919,940 65**

1 1972 1,162,483 662,164 1,462,675 121**

1973 3,147,888 1,490,716 4,142,192 178**

I Operational 1974 2,305,399 931,503 3,129,736 236**

1975 2,059,134 798,193 2,815,699 253**

1976 3,486,475 700,777 L,157,895 636** ,

1977 19,160,398 12,332,229 23,257,298 89**

i 1978 29,746,733 42,076,863 22,348,655 88***

! 1979 16,988,190 3,542,065 25,055,865 607**

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 i d. 0* p > 0.01 based on results of t-test between two means
e. Increase above BFNP i

1 I

C 46

_ __ ~ __ , .. - -

_,. .. . . . _ . _ _ . _ . . . _ - _ _ _ _ _ _ . . _ - ___ _ ._ __.._..___.________m . _ _ _ _ _ . _ _ _ _ _ _ ~ _ _ _ _ . _ .

. . . . e

  • Table 38 ,

i PHYTOPLANKTON POPULATIONS BY STATION - 1969-1979 (SUMMER)

BROWNS FERRY NUCLEAR PLANT Phytoplankters/l (mean values) ,

Operational  !

TRM Preoperational 1974 1975 1976 1977 1978 1979 277.98 3,172,660 3,952,326 6,687,402 5,797,035 20,560,903 24,145,081 32,898,557 283.94 2,693,424 4,995,809 3,542,564 7,339,679 12,505,134 25,448,816 21,822,569

'288.78 3,073,504 2,990,385 1,490,106 6,363,632 37,146,971 23,651,104 27.203,400 4

O 291.76 1,949,574 2,228,399 1,541,603 2,526,607 24,770,292 27.719,679 33,811,104 293.70 1,318,990 1,481,762 816,819 3,762,519 21,303,192 10,778,596 9,543,696

+

M 295.87* 1,645,121 1,023,477 1,259,469 1,070,213 26,126,546 110,822,846 5,584,296 301.06* 1,171,408 1,198,222 825,584 872,150 5,803,371 14,020,800 3,577,696 8

307.52 1,238,854 572,811 309,525 159,967 5,066,771 1,386,945 1,464,204

a. Control stations 4

i l

  • Table 39 DIVERSITY OF PHTTOPIAVKTON CENERA - BROWNS FERRY NUCLEAR P1AVT t

SIMfER - 1979 Phytoplankton Cenera Collected During Phytoplankton Genera Collected During Every Summer Preoperational Sampling Every Sussmer Preoperational Satopling Phytoriankton Cenera Cc11ccred Por The

. Period (69, 70, 72, 73) Period, But Hot Foun.1 buring Summer First Tir* Doriac TV ""-~3 We' t ana l Operational Samplina (1979)

M ,C1mT50PHTTA CHtOkOP1fYTA CTANOPHTTA CHRY5GinTiA N "MIA CTANOFMTTA Sc

@ylint(1979)

T50PRTTA CHLOROFHYTA CYANOPHYTA ,

277.98 ' Cyclotells

  • Merismopedia Scenedessus_ Cywbella

' Melostra Braeteacoccus Synedra Calonesis volvocaceae

. 283.94 Cyclotella Chlore11a Navicula r) Melostra Scenedesmus Rhotcosphenta volvocaceae hvicula Staurastrum Synedra O 288.78 Cyclotella Chlore11a CC Helostra Ophiocytfum Euastrum Staurastrum Anabaencesis hvicula Tabe11 aria Ordogonium Synedra Bractescoccus 291.76 Cyclotella Chlore11a b rismopedia Navicula Rholeosphenia Bractescoccus Aphanothece Melosira Scenedessus hvicula Stauramtruta i Synedra 293.70 Cyclotella Chlore11a Merismopedia Melostra Scenedessus Diatoma Aphanothece Stau ra s t rum Tetraedon 8 295.87 Cyclotella Chlore11a b riempoedia Navicula tiolostra Scenedesmus Diatoma Ulothrix Aphanothece Navicula Meridion Synedra 301.06 Melostra Chlore11a Navicula Navicula Cosmarium Cymatoplev:a Anabaena Synedra Scenedessus Aphanothece a

Eucapsis 307.52 Melostra cosmarium .

Navicula hvicula Scenedessus Chaetoceros Apanothece Cosmarium Synedra 4

e e e o 6 e

Table 40 MAJOR GROUPS OF PHYTOPIANKTON POPULATIONS BY YEAR - 1969-1979 (SUMMER)

BROWNS FERRY NUCLEAR PLANT Percentage Phytoplankton Population by Major Groups Chrysophyta- Chlorophyta Cyanophyta All b c

^ a b c

^ a b c a Above Below Year Stations Above Below Stations Above Below Stations i

Preoperational 1969 12 11 13 36 48 29 51 41 58

?

1970 66 68 65 14 11 16 20 21 23 a 1971 44 54 39 7 7 7 48 39 '54 1972 62 59' -64 24 27 22 14 14 14

$ 1973 22 13 27 32 32 32 45 55 -39 Operational 1974 34 24 40 39 42 37 20 26 17 1975 24 21 25 29 29 30 46 48 44 1976 41 47 37 25 27 24 34 25 39 I

1977 5 5 4 12 14 11 84 81 85 1978 4 5 4 13 13 13 83 82 83 1979 15 23 11 14 23 9 70 54 79

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 ,

\

Table 41 PERCENTAGE DTVERSITY FOR MAJOR GROUPS OF PHYTOPIMKTON BY RIVER MILE AND YEAR - 1969-1979 (SUMMER)

BROWNS FERRY NUCLEAR PLANT i

Major Group Percentage Present Preoperational Operational  ;

TRM Major Groups 1969 1970 1971 1972 1973 X 1974 1975 1976 197/ 1978 1979 X 277.98 Chrysophyta 14 73 31 61 32 42 32 18 29 3 6, 4 15 Chlorophyta 30 15 9 22 37 23 49 25 26 12 14 8 22 Cyanophyta 56 12 60 17 31 35 16 56 44 83 80 88 61 283.94 Chrysophyta 12 57 41 64 31 41 30 26 37 5 4 5 18 o Chlorophyta 36 18 10 19 34 23 47 40 24 14 12 10 25  ;

Cyanophyta 52 25 49 17 35 35 20 34 39 81 82 83 57 '

(n 288.78 Chrysophyta 8 64 42 71 33 44 43 33 35 3 4 14 22 i O Chlorophyta 37 14 6 17 25 20 26 26 18 8 17 12 18 i' Cyanophyta 55 22 52 11 32 34 15 39 47 90 79 72 57 291.76 Chrysophyta 10 56 40 68 22 39 53 22 41 4 3 16 23 ,

Chlorophyta 25 20 6 21 32 21 27 28 21 9 10 6 17 l Cyanophyta 65 24 54 11 46 40 15 49 37 88 87 78 59 293.70 Chrysophyta 20 75 40 55 19 42 44 ~28 43 -4 4 15 23 Chlorophyta 18 11 6 31 32 20 35 29 27 13 12 9 21 i Cyanophyta 62 14 54 14 49 39 17 41 29 84 84 76 55 E

295.87 Chrysophyta 8 76 54 51 17 43 30 14 41 3 1 27 19 Chlorophyta 34 7 7 35 30 23 47 25 18 12 2 18 20 Cyanophyta 58 17 39 14 53 36 16 60 40 86' 97 55 59 301.06 Chrysophyta 14 39 45 58 13 34 30 30 40 7 2 20 22 Chlorophyta 27 19 6 24 28 21 39 28 28 14 10 17 23 Cyanophyta 59 42 49 18 59 45 26 40 31 80 88 62 55

. . . . 3 .

e = , . c .

Table 41 (contintrod)

PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIANKTON BY RIVER MILE AND YEAR - 1969-1979 (SUMMER)

BROWNS FERRY NUCLEAR PIANT Major Group Percentage Present Preoperational Operational 1970 1971 1972 1973 X 1974 1975 1976 1977 1978 1979 X TRM Major Groups 1969 67 9 48 11 19 59 6 12 21 21 307.52 Chrysophyta 12 89 63 8 22 37 31 40 35 35 17 26 34 31 Chlorophyta 83 6 29 11 54 21 37 45 5 78 62 44 45 Cyanophyta 5 5 o

U1 V'

Table 42 .

NUMERICAL CENERi DIVERSITY FOR MAJOR GROUPS OF PHYTOPLANKTON BY RIVER MILE - 1969-1979 (SUHMER)

BROWNS FERRY NUCLEAR PLANT Number of Genera Preoperational Operational TRM Major Groups 1969 1970 1972 1973 1974 1975 1976 1977 1978 1979

.277.98 Chrysophyta 10 4 11 5 8 13 11 9 15 14 Chlorophyta 8 9 17 21 27 30 29 40 41 39 Cyanophyta 2 4 8 6 5 6 6 11 13 13 Total 20 17 36 32 40 49 46 60 69 66 283.94 Chrysophyta 10 5 13 8 13 14 12 12 10 12 Chlorophyta 5 8 18 20 25 24 28 38 39 38 Cyanophyta 1 4 8 6 4 4 5 11 14 13 Total 16 17 39 34 42 42 45 61, 63 63 l

2 288.78 Chrysophyta 4 6 13 7 15 8 7 13 10 16 Chlorophyta 8 5 16 16 22 16 e2 41 35 40 Cyanophyta 3 0 7 5 4 3 5 11 12 13 -

Total 15 11 36 28 41 27 34 65 57 69 291.76 Chrysophyta 6 6 13 10 9 4 11 15 10 15

Chlorophyta 10 9 13 14 20 17 24 36 35 36 Cyanophyta 2 5 7 6 4 3 4 10 11 11 Total 18 20 33 30 33 24 39 61 56 62 293.70 Chrysophyta 4 6 12 8 8 9 13 12 9 11 Chlorophyta 9 7 17 18 18 13 27 38 32 30 Cyanophyta 4 3 7 5 4 4 4 10 11 9 Total 17 16 36 31 30 26 44 60 52 50 295.87 Chrysophyta 6 7 12 11 9 9 12 15 9 13 Chlorophyta 7 7 14 20 18 18 19 34 30 31 Cyanophyta 3 5 6 6 4 4 5 12 11 10 Total 16 19 32 37 31 31 36 61 50 54 ,

301.06 Chrysophyta 5 6 12 5 8 8 9 9 8 13 Chlorophyta 8 5 14 19 21 16 23 28 31 28 Cyanophyta 3 3 6 4 5 4 5 9 7 9 Total 16 14 32 28 34 28 37 46 46 50 307.52 Chrysophyta 5 5 If S 5 7 8 8 7 9 Chlorophyta 7 4 13 18 14 12 10 33 22 26 Cyanophyta 3 3 5 4 6 3 2 10 6 8 .

Total 15 12 34 30 25 22 20 51 35 43 Euglenophyta and Pyrrophyta not included because of sparse populations.

I i

C 52 '

Table 43 CHLOROPHYLL CONCENTliATIONS BY YEAR - 1969-1979 (SUMMER) 4

! BROWNS FERRY NUCLEAR PLANT Surface Phytoplankton Chlorophyll" (mg Chi "/m ) (mean values)

All Control Percentage Increase Year Stations" (Above BFNP) Below BFNP Below BFNP Preoperational 1969 2.39 1.06 3.18 200 - Below 1970 2.95 1.89 3.48 84 - Below 1971 7.33 6.00 8.00 33 - Below 1972 3.49 1.73 4.37 153 - Below 1973 3.81 1.84 5.00 172 - Below Operational 1974 6.81 1.63 9.92 509 - Below 1975 4.95 1.75 6.83 290 - Below 1976 8.09 1.16 12.25 956 - Below 3.68 0.02 5.88 293 - Below 1

1977 1978 DATA NONAPPLICABLE (see text) 1979 DATA NONAPPLICABLE (see text) l'

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 2

1 b

C 53

l P

4 l

3 Tabic 44 I e

, CHLOROPHYLL CONCENTRATIONS - 1969-1979 (SUMMER) l BROWNS FERRY NUCLEAR PLANT g i

Surface Phytoplankton Chlorophyll"- (mg Chi8/m ) (mean values)

Preoperational Operational TRM 1974 1975 1976 1977 1978 1979 277.98 6.76 16.22 10.56 14.66 11.63 D D A A 4

283.94 5.72 16.08 13.05 15.60 3.32 T T A A i 288.78 4.26 9.01 4.85 17.01 8.26 291.76 4.21 6.59 3.70 5.24 3.62 N N 0 0

! 293.70 4.53 1.68 2.15 8.74 2.34 N N I l

A A j 295.87" 3.77 4.04 1.98 0.81 1.71 P P i

  • P P ,

301.06" 2.43 0.43 1.81 1.48 0 L L l I I

307.52" 1.88 0.43 1,46 1.09 0 C C A A e B B L L
a. Control stations E E (see text) i I

)

i i

I 4

C 54

. - . . - _. .. -. . .. .. . . . . _ . . -__- _ ~. -. - .

  • e . a .

Table 45 ANNUAL CORBICULA DENSITIES (SUMMER)

BROWNS FERRY NUCLEAR PIANT Corbicula/m (mean values)

Summer All Seasons Percentage Percentage All Below Increase All Below Increase a

Year Stations" Control BFNP' Below BFNP Stations Control BFNP Below BFNP d

Preoperational 1969 243 288 220 31 164 147 172 17 1970 99 31 133 329 112 57 139 144 O 1971 113 31 154 397 103 54 127 135 1972 151 54 200 270 153 72 192 167 w

1973 119 65 150 131 Data included in preoperational and operational Operational 1974 196 95 257 170 153 72 202 180 1975 127 93 148 59 150 97 182 88 1976 178 93 229 215 1977 77 65 110 69 1978 125 48 172 259 93 45 122 171 1979 50 49 51 4

s. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.78, 288.78, 291.76, 293.70
d. Incre;:se above BFNP

Table 46 CORBICULA POPULATIONS BY STATIONS (SUMMER)

BROWNS FERRY NUCLEAR PIANT Corbicula/m (mean values)

Preoperational Operational TRM All Seasons Summer 1974 1975 1976 1977 1978 1979 277.98 83 91 92 173 97 13 138 107 283.94 119 220 133 48 159 178 87 45 288.78 209 224 453 195 387 89 252 22 291.76 187 169 318 139 264 154 247 11 293.70 149 154 288 185 240 117 136 69 295.87 108 136 223 131 153 47 98 110

~

301.06 46 63 26 97 56 2 18 13 307.52 64 62 36 52 71 16 27 25 I B 9

C SG

I i

\*

Table 47 l6 HEXAGENIA POPULATIONS BY YEAR (SUMMER) l BROWNS FERRY NUCLEAR PLANT i

i ,

Hexagenia /m (mean values)

! Percentage Increase Year All Stations" Control Below BFNP Below BFNP Preoperational 1969 10 9 11 22

1970 7 1 10 900 l 1971 21 8 27 237 1972 89 37 ,

116 213 1973 53 3 78 2,500 i

Operational 1974 108 62 137 121 j 1975 141 64 187 192

+

1976 178 67 244 264 1977 65 42 79 88 1978 66 17 95 458

, 1979 76 91 68 34*

i

a. TRM 277.98, 283.94, 288.78, 291.76, 243.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70
  • Increase above BFNP i

t f

i i

e C 57

Table 48 e

IIEXACENIA POPULATIONS BY STATIONS (SUMMER)

BROWNS PERRY NUCLEAR PLANT llexagenia/m (mean values)

Operational TRM Preoperational 1974 1975 1976 1977 1978 1979 277.98 9 22 121 26 0 0 7 283.94 20 40 83 423 2 0 5 288.78 44 179 300 310 103 152 143 291.76 91 173 266 312 199 241 143 293.70 72 269 167 151 89 83 40 295.87 13 185 183 177 114 31 273 301.06 15 0 4 24 2 16 0 307.52 0 0 4 0 9 5 0 o

l O

C 58

i 1

2 e 1

i Table 49 j CHIRONOMIDAE POPULATIONS BY YEAR (SUMMER)

\

I BROWNS FERRY NUCLEAR PLANT f Chitonomidae/m (mean values) (

, All Control Percentage Increase l l Year Stations" (Above BFNP) Below BFNP" Below BFNP 4

t Preoperational 1969 54 31 68 119 4

1970 29 26 30 15 j 1971 79 38 100 163 1972 86 37 112 203 1973 81 53 95 79 i

Operational 1974 66 23 91 296 l*

1975 76 29 103 255

, 1976 74 43 93 116 1977 90 32 1,37 328 1978 102 28 146 421 1

, 1979 83 39 110 132

a. TRM 277.98, 283.9,4, 288.78, 291.76, 293,70, 205.87, 301.06, 307.52

. b. TRM 295.87, 301.06, 307.52

c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 l

l t

l

?

t j

l=

j C 59

Table 50 CHIRONOMIDAE POPULATIONS BY STATIONS (SUMMER)

BROWNS FERRY NUCLEAR PLANT Chironomidae /m (mean values)

Operational TRM Preoperational 1974 1975 1976 1977 1978 1979 277.98 97 110 147 83 140 286 172 283.94 116 110 92 70 118 203 133 288.78 75 74 150 90 133 94 128 291.76 68 58 92 121 201 128 76 293.70 52 104 36 102 94 20 40 295.87 34 60 18 80 61 65 88 301.06" 44 2 2 36 ~7 13 9 307.52" 43 6 68 12 9 7 20 a, Control stations 6

C C0

e e e . p . l Table 51 OLIGOCHAETA POPUIATIONS BY YEAR, BROWNS FERRY NUCLEAR PIANT Oligochaeta /m (mean values)

Summer All Seasons Percsntage Increase Percentage All Below Above or All Below Increase C

Year Stations" Control BFNP Below BFNP Stations" Control BFNP C Below BFNP Preoperational 1969 62 52 66 27 76 44 93 111

. 1970 74 41 90 129 56 28 71 154 1971 66 61 6a 13 51 41 55 34 1972 273 164 336 105 161 107 186 74

'O d 1973 125 133 122 9 Data included in preoperational and operational

- [) Operational' 1974 327 144 436 203 221 93 298 220 1975 298 90 421 368 312 118 428 263 -

1976 286 154 365 137 1977 111 52 146 180 1978 97 33 119 261 87 35 139 297 1979 193 65 269 314

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52
b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 283.94

'd. Increase above BFNP

e. Only winter, spring, and summer samples available for 1973 preoperatioaal data

I i Tabis 52 OLICOCIIAETA POPULATIONS BY STATION (SUMMER) i l BROWNS FERRY NUCLEAR PLANT 011gochaeta/m (mean values)

Operational

TRM Preoperational 1974 1975 1976 1977 1978 1979 277.98 115 346 516 276 28 132 155 283.94 115 320 409 604 205 138 558 1 288.78 182 545 457 493 159 160 327 291.76 130 442 409 389 162 129 103 293.70 178 527 316 62 175 34 203 295.87^ 97 233 147 199 131 65 132

~

301.06 99 134 89 224 6 31 59 307.52" 27 66 38 40 18 4 5

a. Control stations i

l f

l e

i C -G2 .

Tahic 53 PIIYTOPl.ANKTON POPULATIONS BY YEAR (FALL - 1969-1979)

BROWNS FERRY NUCLEAR PLANT i

~

Phytoplankters/1 (mean values)

Control Percentage Increase c

Year All Stations" (Above BFNP) Below BFNP Below BFNP Preoperational 1969 1,486,396 837,667 1,876,433 124 1970 582,012 441,800 579,739 31 1971 470,870 420,756 500,938 19 1972 605,864 345,360 762,167 121 Operational 1973 977,206 777,701 1,096,910 41 1974 866,347 547,651 1,057,565 93 4 1975 1,156,939 727,340 1,414,698 95

, , 1976 3,878,108 2,176,616 4,899,003 125 1977 1,111,481 799,218 1,298,839 63 1978 6,057,501 4,120,107 7,219,938 75 1979 2,417,978 1,840,795 2,764,288 50

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52

, b. TRM 295.87, 301.06, 307.52 l TRM 277.98, 283.94, 288.78, 291.76, 293.70 c.

'l l

r i

e l

j C CJ l

Table 54 PHYTOPLANKTON POPULATIONS BY STATION - 1969-1979 (FALL)

BRO'w'NS FERRY NUCLEAR PL\NT Phytoplankters/1 (mean values)

Preoperational Operational TRM (1969-1972) 1973 1974 1975 1976 1977 1978 1979 277.98 752,354 1,186,973 844,349 1,658,704 5,818,956 1,352,550 4,631,135 3,377,010 283.94 1,812,004 1,447,525 1,888,381, 2,092,176 6,324,829 1,398,059 6,045,826 3,637,757 g 288.78 962,345 1,559,605 998,153 2,352,944 5,080,028 2,033,323 8,718,021 2,368,021 291.76 615,906 778,981 843,116 422,927 3,645,702 922,338 9,634,695 2,439,459

[ 293.70 506,786 511,464 713,464 546,73b 3,675,499 787,925 7,070,012 1,999,192 295.87 583,257 738,962 382,388 436,623 1,912,424 547,688 6,106,439 2,428,346 301.06^ 519,225 821,739 550,025 1,555,298 2,538,936 1,148,821 3,228,178 2,397,125 307.52 431,704 772,403 710,540 190,098 2,078,487 701,146 3,U25,704 696,913

a. Control stations

. , = ,

4 a

, s. g + GI

  • Table 55 DEERSITY OF PinTOPI.ANKTON - 1969-1979 (FALL) - BROWNS FERRY NUC1. EAR PIANT Phytoplankton Genera Collected During Every Fall Preoperational Sampling Phytoplankton Genera Collected During Every Fall Period, But Not Found During Fall Phytoplankton Genera Collected for the First Time 1

Preoperational *ampling Period (1969, 1970, 1972) Operational Samplir.g (1979) During the Fall Operational Sarpling (1979)

M ChRYSCPHYTA CdLOROPHYTA CYANOPHYTA CHRYSOPHYTA CHLOROPHYTA CHRYSOPHYTA CHLOROPHYTA CYANOPHYTA 277.98 Melostra Actinastrum Merismopedia Staurastrum ophiocytium Navicula Chlorogonium Cloeothece Chlore11a Selenastrum Synedra Cosma rium Scenedesmus Staurastrum 283.94 Cyclotella Ankistrodesmun Merismoped*a Navicula Cosmarium Ophiocytium Acanthosphaera Clocothece Melostra Chlore11a Conium Navicula Cosmarium Selenastrum Syned ra Scenedesmus Spermatozoopis 288.78 Cyclotella Chlore11a Merismopedia Cyclotella Staurastrum Surirella Selenastrum Aphanocapsa' Melostra Scenedese.us Nivicula Staurastrum Synedra a

C)91.76 Cyclotella Actinastrum Merisnopedia Staurastrum Acanthosphaera Melostra Cloeothece Scenedesmus Conium Navicula Staurastrum Polyedriopsise Syne ra Selenastrum Spondylosium Tetrastrum 293.70 Cyclotella Chlore11a Merisspoedia Cyclotella Acanthosphaera Aphanocapsa Melostra Cosmarium Closteridium Navicula Clocothece Scenedesmus Closterium Synedra . Spermatozoopsis

- '95.87 Cyg1pto11a Actinastrum Merismopedia Cyclotella Cosmarium Dinobryon Acanthosphaera Cloe ,thece Nivicula Chlore11a Melostra Cosmarium Borrvococus Synedra Carteria Closterium Euastrum Conium ,

301.06 Meiostra Cosr.a rium Merismopedia Cosmarium Attheya Planktosphaeria Aphanocapsa Kavicula Scenedesmus Ophiocytium Synedra Spermatozoopsis Clocothece 307.52 Melostra cosmarium Merismopadia Cosmarium Dichotomoccus Treubaria Aphanothece Navicula Scenedesmus Ophiocytium Synedra Rhoicosphenia 9

e 6

. 'l ,

Table 56 MAJOR GROUPS OF PHYTOPIANKTON POPULATION 3 BY YEAR - 1969-1979 (FALL)

BROWNS FERRY NUCLEAR PLANT Percentage Phytoplankton Population by Major Groups Chrysophyta Chlorophyta Cyanophyta

^ All A c a b c a b c a b Year Stations Above Below Stations Above Below Stations Above Below Preoperational 1969 22 20 24 36 42 33 41 37 43 83 82 12 12 12 6 5 6 1970 82 0 1971 58 61 56 7 6 7 35 33 36 1972 63 63 63 22 18 24 15 19 13 m

o 36 23 44 29 30 28 35 47 27 Operational 1973 1974 42 25 52 25 19 28 31 54 16 1975 40 34 43 23 23 23 36 41 33 1976 22 15 26 17 16 18 60 68 56 1977 8 7 9 22 24 20 68 69 67 l

8 10 26 26 27 7 8 6

- 1978 9 1979 39 20 51 21 27 17 38 51 31 I

a. 'TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52 -
b. TRM 295.87, 301.06, 307.52

'.c TRM 277.98, 283.94, 288.78, 291.76, 293.70

. . .- . 4 .

. _ _ _ . - _ ___ _ _ = _ _ _ . _ _ _. _ .

_ _ _ _ . _ . _ ___ _ _ _ _ . . _ _ _. _ ~ . _ _ _ _

  1. . ( .

e e Table 57 PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIAhTTON BY RIVER MILE AND YEAR - 1969-1979 (FALL)

B_ROWNS FERRY NUCLEAR PLANT Major Group Percentage Present Preoperational Operational TRM Major Groups 1969 1970 1971 1972 X 1973 1974 1975 1976 1977 1978 1979 X 277.98 Chrysophyta 47 78 52 61 59 51 49 31 17 12 15 46 32 Chlorophyta 33 15 9 29 21 29 36 38 18 23 21 19 26 Cyanophyta 20 7 39 10 19 20 10 30 65 64 61 33 40 a 283.94 Chrysophyta 7 82 53 61 51 38 47 35 26 9 15 65 34 Chlorophyta 41 9 6 26 20 31 36 20 20 20 11 15 22 Cyanophyta 52 9 41 13 29 31 14 45 54 70 74 18 44 m

s; 288.78 Chrysophyta 26 82 56 61 56 38 56 28 28 9 41 38 34 Chlorophyta 33 13 8 19 _ 18 26 29 21 14 19 19 16 21 Cyanophyta 41 5 36 20 25 36 13 50 59 71 40 45 45 291.76 Chrysophyta 18 82 56 57 53 44 49 59 28 8 53 42 40 Chlorophyta 38 14 9 28 22 27 18 22 19 17 6 20 18 Cyanophyta 44 4 35 15 24 29 31 17 52 64 31 38 37 293.70 Chrysophyta 21 83 65 73 60 48 60 62 31 9 63 63 48 Chlorophyta 19 11 5 18 13 30 23 17 18 23 6 17 19 Cyanophyta 60 6 30 9 26 22 15 20 50 67 31 19 32 295.87 Chrysophyta 14 77 56 61 52 30 39 37 20 9 62 22 31 Chlorophyta 49 16 5 14 21 25 18 27 15 32 7 27 22 Cyanophyta 37 7 39 25 27 45 41 34 65 58 31 50 46 301.06 Chrysophyta 20 84 58 70 58 28 27 29 15 6 56 14 25 Chlorophyta 36 .12 7 24 20 18 24 25 16 22 9 19 19 Cyanophyta 44 4 35 6 22 54 45 45 68 72 35 66 55

.-.~ __.. .__ ,_- -

i s i i

Table 57 (continued)

  • l PERCENTAGE DIVERSITY FOR MAJOR GROUPS OF PHYTOPIANKTON BY RIVER MILE AND YEAR - 1969-1979 (WINTER) +

l BROWNS FERRY NUCLEAR PLANT i,

Major Group Percentage Present Preoperational Operational TRM Major Groups 1969 1970 1971 1972 X 1973 1974 1975 1976 1977 1978 1979 X 307.52 Chrysophyta 27 88 70 59 61 11 8 35 11 6 29 25 18 Chlorophyta 42 9 5 17 18 46 14 17 17 17 9 35 22 Cyanophyta 31 3 25 25 21 43 77 44 71 77. 62 38 59 o

t b

4 P

=

  • O . 4, .

Tabic 58 O NUMERICAL GENERA DIVERSITY FOR MAJOR GROUPS OF PHYTOPLANKTON BY RIVER MILE - 1969-1979 (FALL)

BROWNS FERRY NUCLEAR PLANT Number of Genera Preoperational Operational TRM Major Groups 1969 1970 1972 1973 1974 1975 1976 1977 1978 1979 5 13 7 7 9 7 7 8 26

. 277.98 Chrysophyta 6 11 10 6 15 17 13 19 28 24 26 Chlorophyta 4 4 5 3 8 10 4 9 Cyanophyta 3 3 19 14 32 28 25 31 43 31 38 46 Total 14 8 10 5 10 9 8 30 283.94 Chrysophyta 5 7 6 8 14 16 17 25 29 26 27 10 Chlorophyta 5 4 4 7 6 10 7 Cyanophyta 2 3 5 13 18 33 29 31 34 46 41 45 47 Total 7 5 9 11 12 11 22 288.78 Chrysophyta 6 6 9 10 15 11 17 28 24 24 13

- Chlorophyta 9 5 2 5 5 3 4 8 7 4 9 Cyanophyta 3 Total 18 13 24 27 19 30 47 43 39 44

  1. Chrysophyta 6 6 12 6 6 7 13 8 11 28 291.76 Chlorophyta 8 5 14 13 11 9 27 25 29 12 5 4 4 2 6 9 8 9 Cyanophyta 3 3 Total 17 14 31 23 21 18 46 52 48 49 Chrysophyta 7 12 7 8 8 13 8 12 27 293.70 5 Chlorophyta 7 7 11 14 10 10 30 24 27 10 3 2 5 4 4 3 7 7 6 8 Cyanophyta 15 16 28 25 22 21 50 39 45 45 Total 11 4 5 7 14 10 12 28 295.87 Chrysophyta 5 7 Chlorophyta 6 6 10 13 9 13 29 21 23 13 4 3 5 8 9 9 Cyanophyta 2 2 5 5 Total 13 15 26 22 18 23 48 39 44 50 7

11 6 4 6 10 12 7 26 301.06 Chrysophyta 6 5 ,

i 7 7 8 12 10 18 26 27 27 14 Chlorophyta 5 4 4 9 8 7 9 Cyanophyta 2 3 3 15 15 22 23- 18 . 28 45 47 41 49 Total 4 7 6 13 9 6 23 307.57 Chrysophyta 8 7 5 7 6 8 15 11 5 20 22 27 11 1 Chlorophyta 3 3 4 3 9 6 8 7

, Cyanophyta 3 3 Total 18 16 16 22 22 13 42 37 41 41 1 O

C CS

Table 59 CHLOROPHYLL CONCENTRATIONS BY YEAR - 1969-1979 (FALL) ,

BROWNS FERRY NUCLEAR PLANT Surface Phytoplankton Chlorophyll" (mg Ch1 E/m3 ) (mean values)

! All Control Percentage Increase a

Year Stations (Above BFNP) Below BFNP" Below BFNP i

' Preoperational 1969 4.70 3.09 5.56 80 1970 1.77 1.30 2.01 55 i 1971 1.27 0.37 1.74 370

! 1972 1.61 0.65 2.09 222 l Operational 1973 2.60 1.19 3.44 189 l

j 1974 3.17 2.65 3.48 31

~

1975 3.60 1.40 4.21 201 1976 6.20 3.33 7.92 139 4

1977 0.46 0 0.74 74 1978 7.59 4.69 9.34 99 1979 4.28 2.35 5.43 131

, n. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52

b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 e

4 l

r C 70

i l

Table 60 0 CHLOROPHYLL CONCENTRATIONS - 1969-1979 (FALL)

BROWNS FERRY NUCLEAR PLANT Surface Phytoplankton Chlorophyll" (mg Chi */m ) (mean values)

Preoperational TRM (1969-1972) 1973 1974 1975 1976 1977 1978 1979 277.98 4.19 1.02 4.44 7.11 14.00 1.32 7.01 7.78 283.94 3.73 7.37 5.66 6.43 10.50 1.22 11.92 8.57 288.78 2.43 4.39 3.18 3.27 5.86 1.20 9.38 3.71 291.76 1.98 1.39 2.37 1.77 4.28 .40 10.53 3.12 293.70 1.43 3.04 1.77 2.46 4.24 .18 7.86 3.95 295.87" 1.75 1.50 2.11 1.20 3.34 0 5.79 2.91

- 301.06" 0.93 0.91 1.78 2.41 3.15 .16 5.33 2.61 307.52" 1.13 1.17 4.06 0.59 3451 0 2.96 1.53

, e I a. Control station o

9 l

C 71

Table 61 ANNUAL CORBICULA DENSITIES (FALL)

BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Fall All Seasons Percentage Percentage All Below Increase All Below Increase Year Stations Control BFNP" Below BFNP Stations Control BFNP Below BFNP Preoperational 1969 111 68 132 94 164 147 172 17 1970 105 75 121 61 112 57 139 144

g 1971 104 100 106 6 103 54 127 135 1972 181 69 237 243 153 72 192 167

-J d

Operational 1973 171 224 144 56 Data included in preoperational and operational 1974 134 61 178 192 153 72 202 181

~

1975 181 94 234 149 150 97 182 88 1976 210 117 266 127 180 117 219 87 1977 14 10 16 60 95 46 125 172 1978 101 51 131 157 93 45 122 171 1979 39 16 54 238 50 24 66 329

, g an e e e

Table 62 CORBICULA DENSITIES BY STATIONS (FALL)

BROWNS FERRY NUCLEAR PLANT Corbicula/m (mean values)

Preoperational Operational TRM All Seasons Fall 1973 1974 1975 1976 1977 1978 1979 277.98 83 73 79 102 66 120 0 7 22 283.94 119 108 44 223 185 170 58 241 16 288.78 209 227 270 201 308 439 2 45 56 291.76 187 168 207 211 294 315 11 207 165 293.70 149 163 101 152 316 384 9 156 9 295.87" 108 136 385 132 157 192 15 129 16 301.06" 46 44 157 14 68 102 11 16 2 307.52" 64 42 81 36 58 56 5 9 29 d

a. Control stations ..

a C ?J

4 1

1 '

a Table 63 i ,

HEXAGENIA POPULATIONS BY YEAR (FALL)

,' BROWNS FERRY NUCLEAR PLANT Hexagenia /m (mean values)

Year All Stations Control .Below BFNP 1

Preoperational 1969 53 18 71 1970 43 66 31 1971 111 147 93 1972 244 242 244

\

Operational 1973 248 275 234 l

1974 227 176 258 1975 311 214 369 i 120 306 i 1976 237

! k 1977 150 183 131 1978 78 64 86 1979 122 .69 154 1

i i

1 i

l J i i

i.

J e

' C 74

P i

'o Table 64

, t.

HEXAGENIA POPULATIONS BY STATIONS (FALL)

BROWNS FERRY NUCLEAR PLANT i

) _

Hexagenia /m (mean values) i Operational l TRM Preoperational 1973 1974 1975 1976 1977 1978 1979 l

277.98 14 6 10 8 4 0 0 0 283.94 6 4 45 582 49 71 38 34 288.78 79 403 161 457 373 20 9 206 291.76 200 554 584 602 531 41 147 166 293.70 260 95 388 197 575 143 238 362 295.87 156 532 233 626 254 457 109 47 301.06 147 141 290 14 103 82 82 99 307.52 19 90 4 2 4 9 2 60 J

l 1

i 1

i l

I l

4 e  ;

,  ?

l Table 65 CHIRONOMIDAE POPULATIONS BY YEAR (FALL)

BROWNS FERRY NUCLEAR PLANT Chironomidae /m (mean values)

All Control Percentage Increase C

i Year Stations" (Above BFNP) Below BFNP Below BFNP Preoperational 1969 156 127 171 35 4

4 1970 91 32 121 278 3 1971 161 109 186 71 I 1972 119 32 162 406 i

i Operational 1973 106 56 132 136 1974 101 27 146 441 ,

1975 86 25 122 388 i

71 23 100 335, 4

. 1976 l

1977 139 54 190 252 2

1978 144 35 209 497 i

1979 137 24 205 754'

!' a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52

b. TRM 295.87, 301.06, 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70 4

1 f '.

I e k

c r, e

I 1

1

! Table 66 I U.

j CHIRONOMIDAE POPULATIONS BY STATIGNS (FALL) i BROWNS FERRY NUCLEAR PLANT

Chironomidae /m2 (mean values) ,

4 Operational '

TRM Preoperational 1973 1974 1975 1976 1977 ' 1978 1979 277.98 206 191 76 157 214 147 203 337 )

l 283.94 170 143 128 40 60 425 285 309 4 288.78 162 133 257 171 19 172 390 244 291.76 138 172 169 163 165 120 98 44 293.70 129 6 98 79 44 85 71 92 295.87" 105 44 54 60 35 38 58 14

~

301.06" 72 80 26 8 22 81 29 15 307.52" 33 36 2 8 11 43' 18 42 id

a. Control stations J

i I

i l

1 C 77

i Table 67 OLIGOCHAETA POPUIATIONS BY YEAR, BROWNS FERRY NUCLEAR PLAh7 011gochaeta/m (mean values)

Fall All Seasons Percentage Percentage All Below Increase All Below Increase U

Year Stations" Control BFNP Below BFNP Stations" Control BFNP" Below BFNP Preoperational 1969 111 68 133 96 76 44 93 111 ,

1970 23 9 31 244 56 28 71 154 4 1971 47 29 56 93 51 41 55 34 1972 231 152 270 78 161 107 186 74 Operational 1973 210 204 213 4 Data included in preoperational and operational 1974 172 123 202 64 221 93 298 220 1975 288 69 420 509 312 118 428 263 ,

1976 92 63 110 75 207 117 261 123 1977 43 23 55 139 67 39 84 115 1978 66 39 182 110 87 35 139 297  ;

1979 26 12 95 192 77 28 106 267

a. TRM 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, 301.06, 307.52 i
b. TRM 295.87, 301.06. 307.52
c. TRM 277.98, 283.94, 288.78, 291.76, 293.70

. i s- e w .

J 1

'o Table 68 OLICOCHAETA POPULATIONS BY STATIONS (FALL)

BROWNS FERRY NUCLEAR PLANT i

Oligochaeta /m (mean values)

Preeperational Operational TRM All Seat pns Fall 1973 1974 1975 1976 1977 1978 1979 277.98 103 70 155 90 286 138 33 72 40 283.94 95 71 32 205 108 97 36 29 9 1

288.78 174 198 455 300 452 155 79 212 83 g

291.76 122 135 240 245 787 114 -38 69 27 l

1 293.70 148 133 171 169 466 47 87 27 14 295.87* 74 70 387 74 107 130 34 85 8

  • a 14
301.06 67 -70 105 179 73 96 18 31 307.52" 27 50 79 116 26. 22 16 2 14 d
a. Control stations i

t 4 .

4 l c ;s

- - . - . , . --. - - .