ML19308D654

From kanterella
Jump to navigation Jump to search
App 1 Analysis for Facility.
ML19308D654
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 05/31/1976
From: Albersheim S, Katterhenry A, Schlegcl R
NUS CORP.
To:
References
NUS-1721, NUS-1721-APP-01, NUS-1721-APP-1, NUDOCS 8003120702
Download: ML19308D654 (180)


Text

-

NUS- 1721 Revision 1 APPENDIX I ANALYSIS CRYSTAL RIVER NUCLEAR UNIT i'

Prepared For FLORIDA POWER CORPORATION By S . R. Albersheim A. A. Katterhenry R. L. Schlegel

! May 1976 NUS CORPORATION Environmental Safeguards Division 4 Research Place Rockville, Maryland 20850 Approved: /[O [u --

Approve D '

Q Terrold W. Corfway Manager Ic/seph J. DiNunno ,

Vice President and Radiological / Land Use General Manager 800sygg79 q

D c-

~- TABLE OF CONTENTS

.. Page No.

- 1.0 SUMHARY AND CONCLUSIONS 1

i. 2.0 DOSES FROM LIQUID EFFLUENTS 4 l -*

3.0 DOSES FROM GASEOUS EFFLUENTS 7 l

APPENDICES APPENDIX A' RESPONSES TO REQUEST FOR INFORMATION i (Enclosure 2 of NRC Letter) A-1 APPENDIX B JOINT FREQUENCY DISTRIBUTIONS OF WIND SPEED AND STABILITY CLASS B-1 i

.e

.t"

.s' I

1 s

t

, i

?

P h

-. - LIST OF TABLES I

Table No. Title Page No. ~

l Maximum Individual Doses 9 2 Population Doses 10 3 Radioisotopic Source Data for Liquid Releases 11 1

4 Commercial Fish and Seafood Catches Within 50 Miles 12 4

-5 Radioisotopic Source Data for Airborne Effluents 13 6 Release Rate' and Release Heights of Gaseous Effluents 14 7 Area Population, Vegetable Production, Milk Production, and Meat Production 16

, Al Data Used for Radioactive Source Term Calculation A-9 A2 Radioactive Waste Data for Source Term Calculation A-15 A3 Miscellaneous Waste Processing System Data for Source Term Calculation A-16 A4 Primary Waste Processing Data for Source Term

., Calculation A-17 A5 Directions, Distances and Meteorological Parameters for Residences Within 5 Miles A-18 A6 Distances to Nearest Site Boundary, By Direction A-19 A7 Monthly Mean Wind Speeds at the 33-Ft Level Crystal River and Tampa International Airport, Florida (January 1,1975 - December 31, 1975) A-20 ,

l A8 Evaporator Concentrate Waste Analysis A-21 v

i 11 l l

h- -

a LIST OF FIGURES Figure No. Title Page No.

Al Primary Waste Processing A-22 A2 Miscellaneous Waste Processing A-23 A3 Crystal River 33-Ft. Monthly Wind Roses

' with Associated Mean Wind Speeds i

(January 1,1975 - December 31, 1975) A-24 j'

A4 Monthly Wind Roses with Associated Mean Wind Speeds for Tampa, Florida (January 1, 1975 - December 31, 1975) A-26 A5 Annual Wind Roses with Associated Mean Wind Speeds for the 33-Ft. Level at

, Crystal River and Tampa, Florida A-28 4

h

, be g

,, iii

___y .- , -n

, . ~

1.0

SUMMARY

AND CONCLUSIONS i

The Crystal River facility has been evaluated with respect to its ability to meet the rec .rements set forth in Section II of Appendix I to 10CFR50.

Specifically,Section II of Appendix I( } sets forth the following design j obj ectives:

1 A. The calculated annual total quantity of all radioactive material above background to be released from each light-water-cooled nuclear power reactor to unrestricted areas will not result in an estimated annual dose or dose commitment from liquid effluents for r any individual in an unrestricted area from all pathways of exposure

[ in excess of 3 millirems to the total body or 10 millirems to any organ.

B.l. The calculated annual total quantity of all radioactive

, material above background to be released from each light-water-cooled nuclear power reactor to the atmosphere will not result in an estimated annual air dose from gaseous effluents at any location near ground level which could be occupied by individuals in unrestricted areas in excess of 10 millirads for gamma radiation or 20 millirads for beta radiation.

, 2. Notwithstanding the guidance of paragraph B.1:

i (a) The Commission may specify, as guidance on design objectives, a lower quantity of radioactive material above background to be released to the atmosphere if it appears that the use of the design objectives in paragraph B.1 is likely to result in an estimated annual external dose from gaseous effluents to any individual in an unrestricted area in excess of 5 millirems to the total body; and (b) Design objectives based upon a higher quantity of radio-active material above background to be released to the atmosphere than the quantity specified in paragraph B.1 will be deemed to meet the requirements for keeping levels of radioactive material in gaseous effluents as low as is reasonably achievable if the applicant provides reasonable assurance that the proposed higher quantity will not result in an estimated annual external dose from gaseous effluents to any individual in unrestricted areas in excess of 5 millirems to the total body or 15 millirems to the skin.

C. The calculated annual total quantity of all radioactive iodine and radioactive material in particulate form above background to be released from each light-water-cooled nuclear power reactor in effluents to the atmosphere will not result in an estimated annual dose or dose commitment from such radioactive iodine and radioactive t

1 L

L

r-I*

f F'

material in particulate form for any individual in an unrestricted area from.all pathways of exposure in excess of 15 millirems to any organ.

<- The evaluation shows that potential. doses meet these obj ectives. Maximum indi-vidual doses have been estimated under normal operating conditions and the

, typical meteorological characteristics. These maximum doses occur at the j nearest residence, s>out 3 miles from the plant. The doses from liquid effluents are calculated to be:

I e 0.0034 mrem whole body, and e 0.039 -mrem to the thyroid (maximum dose to an organ).

From airborne releases, the doses are calculated to be

i a

e 0.085 mrad / year gamma air dose at the site boundary, e 0.26 mrad / year beta air dose at the site boundary, e 0.027 mrem / year whole body to the maximum individual, and e 0.082 mrem / year to the thyroid from radioactive iodine and radioactive material in particulate form.

  • Population doses (the total integrated dose to persons within 50 miles of the site) have also been calculated; these are:

I

, e 0.5 person-rem / year, whole body, and

[ e 2.5 person-rem / year to the thyroid.

Detailed results are shown in Table 1 for maximum individual doses and in Table 2 for integrated population doses.

Radioactive cource terms were calculated in a manner consistent with Draft Regulatory Guide 1.BB.( } Specific data used are given in Appendix A.

Also shown in Appendix A are flow diagrams of the primary waste processing

.s

! f'

,l s__

i i

r- and the miscellaneous waste processing systems. Meteorology information

> used in the calculation of doses was consistent with Regulatory , Guide 1.111.(

For liquid effluent discharge, no dilution of the liquid effluents beyond the condenser cooling water discharge canal was assumed. For calculating doses to the maximum individual, this procedure is considered realistic,

' inasmuch as seafood is taken directly from the discharge canal and the shallow area it traverses. For population doses, this procedure is conserva-tive -- doses resulting from liquid effluent release are overestimated.

'j

  • Dose calculations were done in a manner consistent with Regulatory Guide 1.109(4) (formerly Draft Regulatory Guide 1.AA). The NRC LADTAP and GASPAR computer codes were used.

No effluent release data are available since the unit is not yet operational.

These results indicate that the maximum radiation dose as calculated for off-site individuals from all normal sources is well within the requirements of Appendix I to 10CFR50.(1) Similarly, the integrated dose from all normal sources as a result of normal operation of the nuclear plant will have a negligible effect on population radiation burden.

't I

h e

m 3

l_

~, < .

{

. r. 2.0 DOSES FROM LIQUID EFFLUENTS Doses ffom liquid pathways have been calculated including both maximum individual doses and integrated population doses. Models given in Regulatory Guide 1.109 (March 1976) were used, and the doses were calculated using the LADTAP code. Source terms were calculated using the GALE ( code. Source term data are shown in Table 3. Dose factors, bioaccumulation factors and shorewidth factors as given in Regulatory Guide 1.109 and in the LADTAP code were used, as were use factors for fish and seafood consumption.

[

-Radioactive liquid wastes from the Crystal River facility are released to the Gulf of Mexico, a salt-water body. Hence, there are no liquid pathways through the consumption of potable water or through the ingestion of food crops irrigated by the effluents from this facility. Doses were calculated,.

therefore, for the pathways of aquatic foods and recreational uses (shore-

' line activities, boating and swimming).

The cooling water discharge from the two Crystal River fossil-fired generating units and the nuclear unit receives and dilutes the liquid waste discharges.

q The cooling water enters the Gulf of Mexico through a 1 -mile long discharge canal. Cooling water is withdrawn from the Gulf through an intake canal i which extends into.the Gulf about 3 miles but is dredged for an additional 3.5 miles. The intake and discharge canals are separated by a spoil bank which extends outward 6.5 miles.

All of the calculated doses for liquid effluents above have been based on the assumption that there is no dilution of liquid wastes beyond the canal; l 1.e., doses have been calculated assuming that individuals, fish and seafood are exposed to the concentrations of radioactivity existing in the discharge canal. Credit was taken for dilution by the fossil-fired units as well as the nuclear unit; however, an annual average flow rate of 85% of the design flow rate was assumed.

I .

L 1* 4
i
r_ , .

v-.

As discussed in the Environmental Report,(5) there is a large amount of sport fishing in the discharge canal and the relatively shallow area around it.

This is particularly true in the winter months. Seafood (oysters, etc.) may also be taken in the discharge canal area. Considering these factors, it is clear that since the calculations of maximum dose were based on discharge canal concentrations, the assumption is realistic; at least some individuals can be expected to receive their intake of seafood from the discharge canal and its immediate area. Similarly, some could realistically be expected to

- receive other exposures (boating, etc.) on the basis of discharge canal concen-trations.

I The data for commercial fish and seafood catches within 50 miles were taken from government current fisheries statistics. These data are summarized in Table 4. There are no known data on sport fish or sport invertebrate catches.

The value used for the sport fish was based cn estimates by State of Florida officials that the total sport fish harvest could be conservatively estimated at three times the commercial harvest. There is a significant amount of sport fishing in the v'cipity of the plant. This is discussed in the Crystal River Environmental Report, Supplement 1, response to Question 3. (5) This response

contains an estimate of sport ' fishing activity (number of boats and average catch) in the plant discharge area during the peak winter months. Using this data, it may be estimoced that the sport fish catch in the discharge area is of the order of 10% of the total sport fish catch within 50 miles.

There is little sport invertebrate harvesting done in the immediate vicinity of the plant site, as discussed on page III-34-37 of Reference 5. In the absence of any available data on sport invertebrate harvest, it was assumed that the value is 10% of the commercial invertebrate catch.

t Recreational usage (boating, swimming, shoreline use) was based on data obtained from local authorities. These data indicate 264,150 uses per year within 50 miles of the plant. For dose calculations, the usage factors were swimming - 300,000 person-hours per year; shoreline use - 300,000 person-hours per year; and boating - 600,000 person-hours per year.

[

L.

5

7 6

f ..

, , The results, in terms of maximum individual doses from liquid effluent, mrem / year to the whole body, and 3.9 x 10-2 mrem / year to are 3.4 x 10 the thyroid. The thyroid would be the organ receiving the maximum dose.

The GI and lower intestinal tract dose is calculated to be 1.7 x 10 - mrem / year, and the doses to other organs would be less than 10- mrem / year.

In terms of integrated population dose from liquid effluents, the results are whole body - 0.27 person-rem / year, and thyroid - 1.8 person-thyroid-rem / year. The thyroid would be the organ receiving the maximum integrated dose.

i The sport fish pathway is by far the largest contributor to the integrated

, population dose from liquid effluents. A significant portion of the sport fish catch is from the discharge canal or the surrounding area. Taking credit for dilution would not reduce the population dose from those fish by a large factor. Dilution credit would, however, result in a large reduction in doses from sport fish caught at distant locations and doses from other pathways. Overall, credit for dilution would be expected to I

reduce the total integrated population dosas by about an order of magnitude.

m

, 6

' i L_

h u

rw u.

3.0 DOSES FROM GASEOUS EFFLUENTS Doses from gaseous effluent releases have been calculated, considering both the maximum dose received by an individual and the integrated population dose to persons within 50 miles of the site. Source terms were calculated using the CALE computer program and input data as presented in Appendix A.

Radioisotopic. source terms are shown in Table 5. The dose calculations were performed by the NRC CASPAR code, using the models of Regulatory Guide 1.109.

Dose factors, annual air intake, intakes of food products, and parameters for calculating radionuclide concentrations in food products as given in Regulatory Guide 1.109 and in the GASPAR code were used.

, Dose contributions from the following pathways were calculated:

1. immersion in the plume,
2. ground contamination, e
3. inhalation, and t

, 4. consumption of vegetables, meat and milk.

The maximum individual dose calculation included consideration of occupation of the nearest residences, which are located between 3 and 4 miles frcm the

_ plant. Vegetable gardens exist at some nearby residences, and the total vegetable intake of the individual receiving maximum exposure was assumed to be from these gardens. There are no meat animals or milk-producing

, animals within 5 miles of the plant. Calves are raised at a nearby ranch.

However, they are only pastured there for a few months and are then removed to another location for several additional months prior to being marketed for human consumption. Because of the long time lapse between the possible ingestion of contaminated feed and the time of human beef consumption, no dose contribution from this source has been considered.

l L

7 k

D e

<~

l 1..

p.

f..

_, For calculation of the integrated population doses, the 50-mile region was divided into 160 subregions (segments) formed by sectors centered on the 16 cardinal compass points and annuli of 0-1, 1-2, 2-3, 3-4, 4-5, 5-10, 10-20, 20-30, 30-40, and 40-50 miles. For each of these segments the estimated population for the year 2000 (plant midlife) was input, as shown in FSAR(

Figure 2-6. Current data on meat, milk and vegetable production were also input. Grazing was assumed for the full year.

Appendix A details the meteorological methodology and calculation. In summary, the data were based on a full year of field measurements, taken

{ and reduced in accordance with Regulatory Guide 1.23.(6) Straight-line X/Q's were used, with appropriate depletion and terrain correction factors, j in accordance with Regulatory Guide 1.111.( } Because of the location and characteristics of the release points, ground level releases were assumed.

Table 6 lists and describes the release points.

Data on population, milk, meat and vegetable production in each subregion are shown in Table 7. The production data are based on county-by-county production information.

l The results of the dose calculations indicate that the maximum individual 4

whole body doses from airborne effluents would be 0.027 mrem / year. This dose would be accrued by a reside ir 3.1 miles east of the plant, and the thyroid dose would be 0.082 mrem / year. Maximum air doses at the site boundary are calculated to be 0.085 mrad / year gamma and 0.26 mrad / year beta.

These results are well within the guidelines of Appendix I to 10CFR50.(1)

The integrated population doses from airborne effluents would be:

)

e integrated whole body dose - 0.24 person-rem / year, and I e integrated thyroid dose - 0.69 person-rem / year.

L.

i

-i 8

m:'4 m ~

%? T'

l-.

'r-

-l,.

- TABLE 1

, MAXIMUM INDIVIDUAL DOSES From Liquid Effluents Whole Body Dose Thyroid Dose Pathway Mrem /yr Mrem /yr

-2 Fish 2.1 x 10' l.8 x 10

-2 Invertebrate 8.3 x 10- 2.1 x 10

-4 Shoreline Use, Boating, Swimming 4.0 x 10 4.0 x 10" il

'I From Airborne Ef fluents (Dosa to Child Shown - Higher than Teen or Adult Dose) i

'i Whole Body Dose Thyroid Dose .

. Pathway Mrem /yr Mrem /yr

-3 Plume 4.0 x 13' 4.0 x 10 Ground 1.3 x 10- 1.3 x 10-

-2 Vegetables 2.1 x 10- 7.4 x 10 Inhalation 8.9 x 10- 2.9 x 10-1 Note: No milk er meat doses because no production within 5 miles of plant.

l 1_ l l

9 1

4 i

. - TABLE 2 i POPULATION DOSES Whole Body Dose Thyroid Dose Pathway Person Rem /yr Person Rem /yr Fish consumption 0. 25 1.53 Invertebrate consumption 0 . 0 12 0 . 25 Shoreline Use, Boating, Swimming 0.0051 0.0051 Plume immersion 0.065 0.065 I

Ground contamination 0.0056 0.0056

, Inhalation 0.030 0.065 Vegetable consumption 0.088 0.40 I

Milk consumption 0.014 0.10 Meat consumption 0.034 0.051 i

e f

f i

!i 10 m

TABLE 3 RADI0 ISOTOPIC SOURCE DATA FOR LIQUID RELEASES

! Nuclide Curie / year Cr 51 1.10E-04 Mn 54 1.00E-03 Fe 55 1.10E-04 Fe 59 6.00E-05 Co 58 5.00E-03 i Co 60 8.80E-03 i

Np 239 5.00E-05 Br 83 3.00E-05 Sr 89 2.00E-05 Sr 91 1.00E-05 Mo 99 2.90E-02 Tc 99M 2.00E-02 Te 127M 2.00E-05 Te 127 3.00E-05

.. Te 129M 8.00E-05 Te 129 5.00E-05 I 130 6.00E-05 Te 131M 4.00E-05 1 131 1.00E-01 Te 132 8.90E-04 I 132 1.30E-03

' I 133 1.60E-02 I 134 1.00E-05 Cs 134 1.60E-02 l I 135 3.20E-03 Cs 136 1.20E-03 Cs 137 2.70E-02 l Ba 140 -

1.00E-05 H 3 5.00E+02 11

'^~

i

~~

TABLE 4 COMMERCIAL FISH AND SEAFOOD CATCHES WITHIN 50 MILES Fish Invertebrates lb/yr lb/yr 1972 (Fef. 7) 3,780,000 4,203,000 1973 (Ref. 8) 3,916,000 3,364,000

, 1974 (Ref. 9) 4,293,000 4,588,000 t

Value Used in Dose Calculation 4,000,000 4,000,000 1

i W

'l I 1 Includes Taylor. County, beyond 50-mile radius.

L 12

4 t

_. TABLE 5

, RADI0 ISOTOPIC SOURCE DATA FOR AIRBORNE EFFLUENTS h Nuclide Ci/yr Kr 83M 0.

Kr 85M 4.00E+00 Kr 85 <

3.40E+02 Kr 87 1.00E+00 Kr 88 8.00E+00

! Kr 89 0.

Xe 13tM 5.10E+01 Xe 133M 3.90E+01 Xe 133 5.50E+03 Xe 135M 0.

Xe 135 2.00E+01

, Xe 137 0.

Xe 138 0.

I 131 5.00E-02 i I 133 5.10E-02 Mn -54 4.50E-04 Fe 59 1.50E-04 Co 58 1.50E-03 Co 60 6.80E-04 Sr 89 3.30E-05 Sr 90 6.00E-06 Cs 134 4.50E-04 Cs 137 7.60E-04 H 3 5.10E+02 C 14 8.00E+00 e'

[

13 e

b '

, - - - em4 , . _, .m.

_ _ _ . . _ _ ~ - - --

3 , ;

TABLE 6 RELEASE RATES AND RELEASE HEIGHTS OF GASEOUS EFFLUENTS (A) Auxiliary and Fuel Handling Building Vent, Waste Disposal Vent and Reactor Building Purge Vent (FSAR, Figure 2-48, Release Point #1)

Location: On the side of the containment 0120 Release Height: 181 ft above the 95 ft datum Top of Containment: 190 ft, 6 in, above the 95 ft datum Top of Units 1 & 2: 196 ft above the 95 ft detum Waste Disposal Vent Pipe: Release Rate - 5 to 50 cfm (3/4 in. I.D. pipe) into Auxiliary & Fuel Handling Buildings Ventilation Exhaust System Auxiliary & Fuel Handling Buildings Ventilation Exhaust System: Release Rate - 157,000 scfm (90 in. by 78 in.)

Z Reactor Building Purge Vent Pipe: Release Rate - 50,781 scfm (30 in, by 78 in.)

Temperature - Ambient (B) Condenser Vacuum Pump Vent (FSAR, Figure 2-48, Release Point #2)

Location: On the Turbine Building Roof Release Height: 123 ft above the 95 ft datum Release Rate: 1,000 scfm @l5 in. Hg; 25 scfm @l in. Hg Vent Size: 15 in. I.D.

Temperature - Approximately 100 F (C) Gland Steam Exhauster Vent (FSAR, Figure 2-48, Release Point #3)

Location: On the Turbine Building Roof Release Height: 123 ft above the 95 ft datum Release Rate: 400 to 780 ccfm Vent Size: 7.5 in. I.D.

Temperature - Approximately 100 F i

i i  ! t 4. < l-TABLE 6 (Continued)

RELEASE RATES AND RELLASE HEIGHTS OF GASEOUS EFFLUENTS (D)- Turbine Building Roof Vents (FSAR, Figure 2-48, Release Points #4A, 4B, 4C)

Location: On the Turbine Building Roof '

Release Height: 116 ft above the 95 ft datum (each)

Release Race: 174,000 scfm (each)

-Vent Size: 20 ft by 60 ft (each)

Temperature - Ambient U

i s

1 0 3 ;f G 43 3 tt' 4 M 3 nt* >= P- e= P= P.= P= P= Pm 4 4C@

uoooooooo ooo o u o o ts o o o o o3o

+ + + + + + + + + +++ + + + + + 0 6 .+ + + +

3 aa esJ .64 de .hJ S tej 43 kl tal &# .aJ 2 nee las taJ he ha ha 4m2 .aJ laJ ta8 taJ taJ g r ** 1

  • J 17 se sW1 P= 3 o og ag >= N nW9 N e art ,g4 em M . @ ee
  • =
  • o 3 .* .t% 1) *t 'A D FA O == >= o T e aa 1 M N et 3 >= o ON@ @

e.- e . . P*e Fe 9-

. .*% N. e. . . e . . . e o. N. .C.,

. O. e. N. O. &. Ne M e eu f%.f . . . . . N. .e e.

  • L .3 *O 3 's as == @ t > G u u e a # == G .* ,e =e N N N P o o o o o N & =*

"T 23 3 3 *T -3 3 33 MMe OeeO4 C4 ett 4 >=

Z e n u n o r.o o rw o o O es o . P= 6 onne,ooooo ooo o

y o++e

-#* 44

+ + + + + +

4 taa .aJ

+++

.aJ .a4 .a3 o+++++++++

  1. taJ teJ saA las taa 4A .aJ as .63

+ + +

aA taa 4A p 8 7 8^6 ta.8 Ea 4.*a

@@ aJ 4s '.*A.e 4 J J 7 ** O e3 o oG&

g o G N # ** >= 0*-*..* %G == 4. o .*d4 & e033o ** C' P- # 'C 7 N3 C u .* .'%* -e a

e9 #. 0 #. e P= P= . . s 3. ee fu. M. . e . o . N.1. O.  ? . . o C. *a. en e nt.' P=

. e e . . . '8't. s**

. .P=

O w' ..*N O P- r; et n a s as N r%s N == 0 se "3 P= m *= sa c9 o C O r* 3 C O e e es e e e e s 8 M .m .e m .n r omrs-ro, c s .A n -so M s4 aeaeC oa e o P=

% o r:r r> o s: o e o s. n u c . < . o rs ooc

a. + + + + + + + + + +++ o+ + + 6 + + + + + + + +

had T 44 a La.* 43 d' 43 La. end .ad .be a.s 1 te) ta.' 46 .aA aw .63 al de km3 LaJ aJ tad 8 tt' # CN@ == 8Es en P= f LP e6 o C e.J n t . t* ea4e C o o TJ

"'e%O *t ? .* % D == .r1 .t' - U 0. ru Fmm 'n **1 4 Pm L n. 6f' O :t a)

=-= S A sn == .* *E, O e P= ret C e C

      • =*% e e e e e o e o e e e . e . . e e .n e ee O 'O.1' t'P J. #

e e e f. o e e e . e e o. =e= ega e 1.,

f%s f* == 4 =* # a.e ne @ .*se .. N ,3 ng N 3 e& o C". (* Nt e

  • L* *********%**% 3 't 3M
o. G. Ce , tO t,.
    • % M -F 4 to GDC D C 4D O f%e C, 0 o f o, 9 D & P=

"C . O o e3 r3 r3 es o o o oOn . n rp *1 o o s s a s e s o o C, O oe + + + e + + + + + + + E* + + + D e e e e + + + +

  • 881 4 .al Las 43 da eJ .aJ abl nad La3 teJ aA '8% '.a naJ .aJ taa .kl ha ta. is. aA 43 44 aJ Z a -e -* o o o n o o o c. o es oo*

o 0. c o c .e.N= P- ea ca oP=e.o o3 e.o u p % ,*- e z coe e S e >= P= r5 7 4oE o@ 3@ P' N@ 1.s y NO C.s e o. "=e e e e e e e e e e e e e na e O. r* e C e o e e #. G. e e . . e e e o

, y NN O7 4 .= .* ** 4 o e o c o -e As sE - .* == N ** :? 1 8 P= a o C O O = == N 0 0 0 0 3 5 8 0 B O 3, M M M en 3 3 3 tF M ea -t a e o e di a 4. &@ .t* P=

C o.++,ooooo e o ch o Q

+ + +++

oo

+ + o+ e o+ o+ o+ C+ n+ o+ C C, o

+

oo

+ +

% N aJ .e. A w a a. 4J w tea .a. .a. 'u .a .a w 4J ia a. aJ ua 4. .a la

% sceeoea oa euacacoucc cn

e. .e. ..c. m P=

0 e e o, s -e ras e m m 2 P= e. ** -s o eN

'.d C. n N eeq p.. . o. o. o. c. en. . . . . . 7 P= .* 4 a . . N. o. .-o o. o. .e p. . .cC. 't.r iL. e . . . . . . . .

u m - e .s s - -* * .e sn o o n c c u ~ e - ou n: rt - 3 c o u c o c P= =

g 0 ee e a e e 0 e s e e w nNrmemmmm e e o c~ o o n es o N3 ao ewerweere ra oc d

G3 Z e+ + + + + e e + + + + . c* o+ o+ r. + ec eo +o +c +o + +

n asna .a .a .a ha .J as.a ha as o ua .a .a sa 4 w nas aJ taJ .ma aA

  • C O - c c. O e ir its -r its an o -e - o o re o o o o o o oe N NO l='*

H 0. N N N == h

    • O P= an e *o = P=o p r* -e

-4 +4 oO OO u p e. oe <> . e. ea a. m . a.s . m. . . . . . o. ou. r . . s. u. n.a N. N. ,. ru. . e . . . . e. m.

Q e6 em ** fu 8'b N O r%s et o o o o c M fu N f%s M r= P= m em et -o o o o o o=*3 a N ^8 ***N****

0 e e e a a NN N N**

e 0 0 e e e O 'o'o

g o c.

e+ +

iJ' .a. k8 oe'nao

+ + + + +

enJ .aJ is, ta .aa

+ +

neJ ka

.oo + +

@ laA las o

+

44 ooo

+ + +

a.a 4, Las oo

+ +

las La ooc oo o s" 9 oo o uoo o3 W 9.oo oo ooeoo e -s e tu eu N NNN ru a A 3 P= 3 A3 e . nr.' *. P= . o. o. . e ...e . C. P=.  ? it.' Ip*. . nt.* . tt.s .t.' @. . . . . . . . nt.* 3

<C rs e C P= 0rsLMooooooo3 m ** o en c + =n m o n o o c o n

  • N H 9 8 9 0 4 0 9 0 0 e 5 0 0 0 0 4 0 W -e fb -e N NNN M Q ooo o ooo o w 3

. + + + +

.a e +++

iaa na w

+

y 8

.a..a u.

o <> o o u r.- o ma a

  • r3 & o ng e. tu m egs p

'8" "a ** M Z

O

. . . C. O. . . . . . .. .....

o C' f%J en MC o t- CoOoCC O o f(

. . ti.l 6f.5 #. . . . .

o o M pm ** O r'

.......o.

ooc e o o En o o ==

P"8 9 9 0 0 8 9 9 9 9 0 8 0 0 0 0 0 0 9 0 0 0 9 9 8 9 8

$** 5

  • C
  • a ea xn Q e 4 o e= e.

o et A . . . . . . . . . . ....... . as . . . e . . e e e . . . .....

r o u r. < > n u a.. e o o n . . c e n c o n sts / o em n es c o r> < e n c o n e a s o o u m 8 0 0 9 0 0 9 4 8 8 0 0 0 0 0 8 o 't 0 9 0 0 0 e e t B e 0 e 8 0 0 e o e ** 8 D$ l.t e- kl Fu u e pN o

O

=a 3 . n0 o. Q .

  • e en si e e Om

-e - v ag

.a e . . . e . . . e e

. . . . . . ..,..no...........<.

...e .e . 40 a% . . . .

n... ...e .,e .

. . . . c.

...e . . *

  • 90 o . . n r. c. o r, f+'

9 9 0 0 9 0 9 0 9 0 0 0 0 8 4 0 e*

na

.* 9 O 9 8 0 t e e f 9 0 t O 8 8 8 .*

N N' ' *;.,

r e.e e .O..

+ *

.a. e e e e- . + k '4d A et se ) 48 .e I

    • .* 4  % F 0  % Q 4J fD lae c .,',.'* C n*l o. = t. e - 6J c.g

.I r3 o . . . . .e e . . . ...... .> .a e s . . . . . . . .... ... > p as 4 o s 3 o o e, 42 o C U C o e s u o ) O o e- Jr a f* O t) o C. 84 e f a o o u O O 4J E 6- g y e- t 0 0 0 0 0 e f 9 0 0 e t 9 9 0 ** 9 3 0 0 0 0 0 0 0 8 0 0 E 9 0 0 **

W nn. tus La. la e se e a e e a en in la na. u km t t 8 4 #3 O .3 D >= tY 7 7 lal / tal t#' faa tel t#l tri 4 en 4 / T se at / 8 89 T 7 E '/ - 7

.r'./

. er' ** 7 / 4.s us e m eee s e i >. La . // int

/ /ia Las est nataain est e eners enmf 'e < z / - us 18 te) O OO en O OO U Y e- >- S

. _ . 16

e 0 TABLE 7 (Continued)

AREA POPULATION. VEGETABLE PRODUCTION, MILK PF0 DUCTION, AND MEAT PRODUCTION C3 5'AL E!*8- 4 S!?! *It e 85 G CT!3N. LITER 5 074 C.;-l. 1.-2 2.-3 l.-4 c.-S. 5.-10 19.-20 20.-30. $0.-40. 40.-S0. TCTAL s -C. =a.

1 -0 =c. -1 -n. -0 -0 3.240E + 06 3.240E*:n N%t-!. -r, -0 =0.

=0. -n. -C. e.320t+0% 2.2/Ct+06 2.652L+C6

%! ~. =*. *0 =0. -r -0 2.SSOE+0S 5.6 Mot +05 1.19Ct+Co 1.7ect+0e 3.773t+0e Est-r. -

. -C. =0. -0 -3 3.e 00f + 0S 6.520t + 05 1.190t+Ce 1.533t+06 s.415Eece E =*. = . -C. -0. -f. -0. -n. 6.Ctet

  • 05 1.Coct+C6 1.620L*0e 1.2o2E*06 FSt-r. '

. -. -0. -0 -r, -r. -0. 6.eCCt+C5 1.490E+06 d.15CE+06 5E -0. -0 -0. -r. -e. -c. 2.03nE+05 7.34cE+05 3.99Ct+06 4.927E+co S5E-r. -7 =0 -c. -0 -o. - r. , 6. lle L+ 05 e.5SC E

  • 05 9.610t + 0 6 1.108E+07 5 *. ~. =0 -1 =0 -0. -C. 1.020E*05 1.190F+06 4.810t+06 6.302E*06 53==*. . *. -G. =0. -S. =0 -2 -0. -0 -0 O.

5- -:. . -T. -c. -T. .i . -n. -C. =0 =0, D.

  • 5- . .~. -0 =*. -0 -9 -C. -C. -0 -0 C.

. -!. . -l, -r. -T. -e. -r. -0. -c. =0, O.

-s- *. -c. -0 -c. *

. =0 =0 -C. -C. -C. C.

.* -P. .. -C. =0. -C. -5 -C. -0 -C. =0 O.

Asa . -?. =0 -c. '. =0. -C. -0 =c. 1.050E+06 1.050E+0e

,T1.

  • P.

O. O.

pes 5!Yvt /"e*2)

. . 6. 5.950L+0S 2.93ME*06 7.5 tit +36 1.132L+ 0 7 4.2 3 7E + C 7 2.12C-C3 s.

9 5!*5 a v. . . A - -Est peC% , TICS. nM 0?3 0.0-1. l.-2 2.-l. 3.-4 a.-5 5.*tc. 10.-20 20.-30 30.-40 40.-50. TOTAL sst a.

s -r,

. -0 -c. -c. 1 690t+0% o.760t +05 1.130L+06 1.5tCE+06 3.090t*0n 6.bg5t+C6

-0 -c. -r. 1.69 0 t + 0 5 a.7ect+05 1.130E+0e 2.2 3CF + 0 e S. 580t + 0e 9.SoSt + 0e sE . . -3 -c. -?. l.Stof+C5 o.15Ct+05 9.950t+05 1.30;L+06 2.91CE+06 S.909t+Ce E st . . '. -0. -0. 5.193E+06 4. 410 8 + 0 S 9. 2n0 E + 0 S 1.lt:F+0e 1.670L+06 4.391F+;6 e . . -L. -0. -0 5.190E+04 2.150t+C5 1.04 f*06 2.fGrE+0e 1.P40t+06 S.149L+C6 F5s-. .- .'. -o. -0. 5.393t+04 2.150t+C5 3.S90E+0S 1.060t+ne 2.740t+0e S.3d8E+c6 SE -;. -;. -0 =0. -0 A.300t+04 2.150t+0S r.660t+05 2.35CL+Go 4.ao0E+06 7.907E+Ce Sif -0 -r. ~. -0. -0 1.60St+04 1.070t+0S 1.95CL*0e 2.13CL+06 6.400E+06 1.ltlE+C7 3'. -r. =0 -0. -C. 8.970t+03 3.Sdot*04 1.950L+06 1.280E+0e 3.200t+06 6.415t+C6 55.=*. -0 -t, -6 -0 -0. -o. -C. -0 =0 G.

S. .. 9 -0 -n. -0 -0. o. -0 -0 -0 O.

  • , -0 -C. =0. -1 -0. -0 -0 -0. -0 O.

- -T. -

". -C. =0. -0. -n. -0 -0 =0 =0 O.

as-sa -r,

. -?.

-3

-B. - t. . -0 -a. -C. -c. -0 -0 C.

-r. -9 -;. -c. -0

v. . . . 7.520t+C5 e.170L+05 1.740L+05 1.543E+C6

-r, -c. -n.

  • 1.ldOL+05 u.S10E+CS l.130L*06 1.3ecE+0e 1.lo0E+06 4.213t+Co 1 :* r. .

. O, n. c. a.d4%t+0S 5.647f+06 1.225L+07 1.07tt+C7 1.102L+07 6.H47E+07 JE*S!T*; /'+*ii = 3.~2L-t3

    • Current figures.

e REFERENCES

1. Title 10 Code of Federal Regulations Part 50, Appendix I, U.S. Nuclear Regulatory Commission (April 1976).

, 2. "Calculacion of Releases of Radioactive Materials in Liquid and Gaseous

Effluents from Pressurized Water Reactors (PWR's)," Draft Regulatory Guide 1.BB, U.S. Nuclear Regulatory Commission (Sept. 9, 1975).

[ 3. "Methodo for Estimating Atmospheric Transport and Dispersion of Gaseous i Effluenti in Routine Releases from Light-Water-Cooled Reactors,"

Regulatory Guide 1.111, U.S. Nuclear Regulatory Commission (March 1976).

1 7

, 4. " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I," Regulatory Guide 1.109, U.S. Nuclear Regulatory Commission (March 1976).

5. Florida Power Corporation, Crystal River Unit 3 Environmental Report (January 1972).
6. "Onsite Meteorological Programs (Safety Guide 23)," Regulatory Guide 1.23, U.S. Atomic Energy Commission (February 1972).
7. " Florida Landings - Annual Summary 1972," Current Fisheries Statistics No. 6120, U.S. Department of Commerce (Aug. 1, 1973).

l

8. " Florida Landings - Annual Summary 1973," Current Fisheries Statistics No. 6419, U.S. Department of Commerce (1974).
9. " Florida Landings - Annual Summary 1974," Current Fisheries Statistics No. 6719, U.S. Department of Commerce (Jan. 16, 1976).
10. Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant: FSAR (through Amendment 48), Docket No. 50-302, U.S. Nuclear

. Regulatory Commission (Mar. 26, 1976).

i m.e L.

, 18

F i

r-I L

-f B

i APPEND 1X A I

i RESPONSES TO REQUEST FOR INFORMATION (Enclosure 2 of NRC Letter) i f

9.

I l

l 4

1 l

l j

l l

l r l t

6 4

I l

?

APPENDIX A

{' RESPONSES TO REQUEST FOR INFORMATION (Enclosure 2 of NRC Letter)

Request 1 Provide the information requested in Appendix D of Draft Regulatory Guide 1.BB or 1.CC, as appropriate.

Response

,'- This information is given in Tables Al through A4 and in Table A8; also in Figures Al and A2.

Request 2 1

~i i Provide, in tabular form, the distances from the centerline of the first nuclear unit to the following-for each of the 22 degree radial sectors centered on the 16 cardinal compass directions.

a. Nearest milk cow (to a distance of 5 miles)
b. Nearest meat animal (to a distance of 5 miles)
c. Nearest milk goat (to a distance of 5 miles)
d. Nearest
e. residence (to a distance of 5 miles)2 (to a distance Nearest vegetable garden greater than 500 ft of 5 miles)
f. Nearest site boundary.

For radioactive releases from stacks which qualify as elevated releases as defined in Draft Regulatory Guide 1.DD, identify the locations of all milk cows, milk goats, meat animals, residences, and vegetable gardens, in a similar manner, out to a distance of 3 miles for each radial sector.

Response

There are no milk animals within 5 miles. The only meat animals within 5 miles are calves and young cows which are removed from the area for several months l for additional growth prior to slaughter and human consumption. These animals are not considered significant. No other meat animals are within 5 miles.

A-1 l l

l

I -

I~

l

p. Direction and distance to residences within 5 miles are shown in Table AS. ,

1 Some of these residences have vegetable gardens, and it is assumed that vegetable gardens may exist at all of these residences.

The nearest site boundary data are shown in Table A6.

There are no releases which qualify as elevated releases.

Request 3 Based on considerations in Draf t Regulatory Guide 1.DD, provide estimates of relative concentration (X/Q) and deposition (D/Q) at locations speci-fled in response to Item 2 above for each release point specified in s response to Item 1 above.

Response

l 1

Estimates of relative concentration (X/Q) and deposition (D/Q) for ground

level releases for onshore flows for specified distances are presented in Table AS. These values were based on the straight-line method in accordance with Regulatory Guide 1.111 guidelines. Terrain correction factors based on i

open terrain were used for all onshore flow computations. Calculations of X/Q and D/Q were not performed for winds from the ESE counterclockwise through NNE as these directions are offshore flow.

i Request 4

!' Provide a detailed description of the meteorological data, models and parameters used to determine the X/Q and D/Q values. Include informa-tion concerning the validity and accuracy of the models and assumptions

,I for your site and the representativeness of the meteorological data used.

Response

, Annual average atmospheric dilution factors were determined for the Crystal

[ River site based on onsite data for the period January 1, 1975, through L_

A-2 1

4 December 31, 1975. Equation (1), which is consistent with the guidance contained in Regulatory Guide 1.111,(A1) was used to obtain X/Q values for ground level releases. Stability was based on AT data.

175 ft - 33 ft Calms were distributed based on the directional frequency of winds in the 0.6 to 1.5 mph range and were assigned a wind speed af 0.25 mph.

n f f ~~ )

= E (1)

(X/Q)3

  • i=1 zg ("ij j where:

i.

1

= relative ground level concentration X normalized (X/Q)j by source strength Q for sector j , seconds per cubic meter, S

zg = effective vertical dispersion parameter for stability class i, meters, i

1 \ = average inverse wind speed for stability class i k 'l l for sector j , seconds per meter, f =

fraction of time (based on all observations) stability class i occurs within sector j, j x = downwind distance, meters, n = number of stability categories, seven.

f An effective sigma z parameter S is,used to account for building wake i

effects as follows:(A1) 2 S = a + (2) z z n N

I' A-3

7-L with the constraint that S S . ] bio

  • 1 *i In equation (2),

o = vertical stability parameter for stability class 1, i

meters, c = building shape factor (0.5), dimensionless,

=

! H the height of the containment, meters.

Figure 1 of Regulatory Guide 1.111 provided the values of a .

z Calculated X/Q values were adjusted accordingly for topography by multiplying the right side of equation (1) by the appropriate open level terrain correction factors. Open level terrain correction factors as shown in Figure 2 of the NRC Regulatory Guide 1.111 were considered appropriate, since the Crystal River plant is located on the west coast of Florida on level terrain approxi-mately 4000 feet from the Gulf of Mexico. Examination of Figure 2-13a of the FSAR depicting topographic profiles out to 5 miles and Figure 2-2 showing the general topography for a 50-mile radius indicates there are no significant terrain effects that would affect onshore flow.(A2) The effects ,

of onshore-offshore flow of air are discussed in Response 7.

-}

Request 5 If an onsite program commensurate with the recommendations and intent of Regulatory Guide 1.23 exists:

, n. Provide representative annual and monthly, if available, joint frequency distributions of wind speed and direction by atmospheric stability class covering at least the most recent one year period of record, preferably two or more years of record. Wind speed and direction should be measured at levels applicable to release point elevations and stability A i t_

6 I

should be determined from the vertical temperature gradient between measurement levels that represent conditions into which the effluent is released.

b. Describe the representativeness of the available data with respect to expected long-term conditions at the site.

Response

a. Monthly and annual joint frequency distribution of 33 ft wind direction 175-33 ft are Presented in vs. wind speed by stability class based on AT Appendix B for the period January 1,1975 - December 31, 1975. These data are considered representative for ground level releases,
b. Monthly wind roses with associated average wind speeds for the 33 ft level derived from onsite measurements for the period January 1, 1975 -

December 31, 1975 are presented in Figure A3. Monthly wind roses with associated average wind speeds based on concurrent NWS data for Tampa are presented in Figure A4. -The annual wind roses with associated average wind speed for 33 ft onsite measurements and Tampa data are presented in Figure A5 for the period January 1,1975 - December 31, 1975.

Also presented in Figure A5 is the annual wind rose for Tampa for the ,

ten-year period J.inuary 1, 1966 - December 31, 1975. The annual wind rose based on one-year onsite data compares favorably with the ten-year data period for Tampa.

4 The monthly mean wind speeds for 33 ft onsite data and Tampa data are presented in Table A7. The annual mean wind speed for 33 ft onsite data was 7.9 mph and 8.3 mph for Tampa for the period January 1, 1975 -

December 31, 1975. The annual mean wind speed for the ten-year data period for Tampa was 8.7 mph. The frequency of calms based on 33 ft

. data is 0.1 percent and for Tampa it is 5.6 percent for the period

' January 1, 1975 - December 31, 1975. The NWS station wind speed sensor has a starting threshold of approximately 3.5 mph as compared to 0.6 mph for the Crystal River C11 met wind speed sensor. The higher frequency of A-5 g

offshore flow only during weak pressure gradient winds. In the Florida region, the sea breezes are most pronounced in spring and summer. (A3) Studies of the sea breeze in Florida have shown that the sea breeze can penetrate r

30 miles inland, but usually extends no more than 10 miles inland. The off-o shore flow that develops during the night under weak pressure gradient systems is not as vigorous and as well formed as the daytime onshore flow.

Investigation of coastal diffusion has indicated that significant changes occur in the diffusion rates of the atmosphere as the air passes from over-water to overland. Mechanical and thermal turbulence induced by the surface j begins immediately at the shoreline and builds upward and inland. Studies i

have shown that stable air from the water changes to neutral or unstable conditions within a relatively short distance from the shoreline.(A4) At a distance of 4000 feet from the shoreline the entire tower (175 feet) would be included in the boundary layer of all onshore flows and therefore representa-tive of dispersion conditions for low level releases of ef fluents. For cases of ground level releases, as in the Crystal River Nuclear Power Plant,.down-

., wind onshore flows can be characterized by overland diffusion rates. For annual X/Q values, the straight-line air-flow model is considered conserva-tive, particularly when terrain adjustment factors are included.

Request 8 I

Provide a map showing the detailed topographical features (as modified by the plant) on a large scale, within a 10-mile radius of the plant and a plot of the maximum topographic elevation versus distanca from the center of the plant in each of the sixteen 22 degree cardinal compass point sectors (centered on true north), radiating from the center of the plant, to a distance of 10 miles. '

i 5

19sponse Topographical maps are. included in Figures 2-2, 2-3, 2-14a, and 2-14b of the FSAR. Cross section profiles are also given in Figures 2-13a, b, c, and d.

I I

As discussed in FSAR Section 2.3.2.4, the topography in the area around the site is extremely flat and featureless.(A2) f A-7 4

e .

.4 M-t.'

7 Re< pest 9 - .

1 Provide the dates and times of radioactivity releases from intermittent j i

sources by source location based on actual plant operation and, if ,

.: available, appropriate hourly meteorological data (i.e., trind direction  !

. and speed, and atmospheric stability) during each period of release. I i

Response

There have been no releases, ?.a the plant is not yet operational.

I h

4 i

f i ,

d 1

i e

ja -

- A-8 4 m w a w- -

9 y ' .-- + w y, y -w- , yem-w m e=4- +=v w 9* w =-

-1' p+ = - -

- ^

- ._ - . - _ . . '____ ~._.._ .__ _ i __. _ ., _ __ _ _. _ . .

7 TABLE Al DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION Request Response

1. General
a. The maximum core thermal power (Mw(t)) evaluated for safety considerations 2544 Mw(t) in the SAR
b. (1) The total mass (1bs) of uranium and plutonium in an equilibrium core 93,100 kg UO 2, r (metal weight) 82,100 kg metal (2) The percent enrichment of uranium in reload fuel 2.86 (3) The percent of fissile plutonium in reload fuel Use of plutonium in reload fuel is not currently planned 1 c. If methods and parameters used in estimating the source terms in the No change from 1.BB primary coolant are different from those given in Regulatory Guide 1.BB, describe in detail the methods and parameters used
d. The quantity of tritium released in liquid and gaseous effluents Liquid - 500 Ci/yr; (Ci/yr/ reactor) Gaseous - 510 Ci/yr
2. Priraary System
a. The total mass (1bs) of coolant in the primary system, excluding the 46,500 lbs pressurizer and primary coolant purification system, at full p'ower
b. The average primary system letdown rate (gpm) to the primary coolant

^

45 gpm purification system

c. The average flow rate (gpm) through the primary coolant purification 0 -

system cation demineralizers

d. The average shim bleed flow (gpm) 1160 gal / day, or 0.806 gpm 4

~

- , . _ . . . - .1. J_ C.,,

, j -

  • .; , , _ ..l TABLE A1 (Continued)

- DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION Request Response

3. Secondary System
a. The number and type of steam generators and the carryover factor used 2 - Once-through; in your evaluation for iodine and nonvolatiles Carryover fraction 1.0 6
b. The total steam flow (1bs/hr) in the recondary system 10.6 x 10 lbs/hr
c. The mass of steam in each steam generator (1bs) at full power 13,800 lbs
d. The mass of liquid in each steam generator (lbs) at full power 41,200 lbs 6
c. Tho. total mass of coolaut in the secondary system (1bs) at full power. 2.5 x 10 lbs

> For recirculating U-tube steam generators, do not include the coolant 1 in the condenser hotwell o

f. the primary to secondary system leakage rate (1bs/ day) used in the 100 lbs/ day

. valuation

g. Tescription of the steam generator blowdown and blowdown purification None systems. The average steam generator blowdoien rate (1bs/hr) used in your evaluation
h. The fraction of the steam generator feedwater processed through the 0.75; condensate demineralizers and the DF's used in your evaluation for DF's per RG 1.BB the condensate demineralizer system
1. Condensate demineralizers

- (1) Average flow rate (lbs/hr) 5 in service - 1.6 x 106 lbs/hr each at 100% power; 1.28 x 106 lbs/hr average at 80% CF (2) Demineralizer type (deep bed or powdered resin) Deep bed 1

7 TABLE A1 (Continued)

DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION ,

Request Response (3) Number and size (ft ) of demineralizers 6, each 200 ft (4) Regeneration frequency 5 demineralizers on a 25-day cycle, or 1 demineralizer each 5 days (5) Indicate whether ultrasonic resin cleaning as used and the waste None liquid volume associated with its use (6) Regenerant volume (gal /eveat) and activity 5000 gal acid and caustic, which may be sent to the liquid waste system if 3, there is significant

~*

4 secondary system activity.

Otherwise, it goes to an evaporation pond. Rinse and backwash water are also sent to the evaporation pond

4. Liquid Waste Processing Systems
a. For each liquid waste processing system (including the shim bleed, steam generator blowdown and detergent waste processing systems),

provide in tabular form the following information:

(1) Sources, flow rates (gpd) and expected activities (fraction of See Table A2 primary coolant activity, PCA) for all inputs to each system (2) lloldup times associated with collection, processing, and See Tables A3 and A4 discharge of all liquid streams (3) Capacities of all tanks (gal) and processing equipment (gpd) See Tables A3 and A4 considered in calculating holdup times

L.--.:

~ ~

, , . - . . - - . -  :.T . . ... - - - , - . . . . . . .-

TABLE Al (Continued) '.

DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION T2 quest Response (4) Decontamination factors for each processing step See Tables A3 and A4 (5) Fraction'of each processing stream expected to be discharged See Tables A3 and A4 over the life of the plant (6) For demineralizer regeneration, provide: time between None regenerations, regenerant volumes and activities, treatment of regenerants and fraction of regenerant discharged. Include parameters used in making these determinations (7) Liquid source term by radionuclide in Ci/yr for normal operation From GALE including anticipated operational occurrences S b. Provide piping and instrumentation diagrams (P&ID's) and process flow Ref. FSAR, Figs. 11-1,

." diagrams for the liquid radwaste systems along with all other systems 11-2, 11-3, 9-2 influencing the source term calculations

5. Gaseous Waste Processing System
a. The volumes (ft /hr) of gases stripped from the primary coolant 140 ft / day
b. Description of the process used to hold up gases stripped from the Pressurized storage tanks; primary system during normal operations and reactor shutdown.

If pressurized storage tanks are used, include a process flow diagram Ref. FSAR, Figs, 11-2, of the system indicating the capacities (ft3), number, and design and ll-2A, Table 11-5 operating storage pressures for the storage tanks

c. Describe the normal operation of the system, e.g., number of tanks Anticipated no tank held in held in reserve for back-to-back shutdown, fill time for tanks. reserve; 1 tank filling for Indicate th'e minimum holdup time used in your evaluation and the 45 days, 2 tanks in holdup -

basis for this number 90 days each; Assumed 1 tank in reserve; 1 holding (48 days), 1 filling (48 days) - basis per RG 1.BB

)

l-TABLE Al (Continued)

DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION Request Response

d. If HEPA filters are used downstream of the pressurized storage tanks, 100 per RG 1.BB provide the decontamination factor used in your evaluation
e. If a charcoal delay system is used, describe this system None
f. Provide piping and instrumentation diagrams (P&ID's) and process flow Ref. FSAR, Figs. 11-2, diagrams for the gaseous radwaste systems along with other systems 11-2A influencing the source term calculations
6. Ventilation and Exhaust Systems For each building housing systems that contain radioactive materials, the y steam generator blowdown system vent exhaust, gaseous waste processing g system vent, and the main condenser air removal system, provide the following:
a. Provisions incorporated to reduce radioactivity releases through the Buildings:

ventilation or exhaust systems Auxiliary Building -

charcoal and HEPA; Containment (high-vol. purge) -

charcoal and HEPA; No Steam Generator Blowdown -

once-through SG's; Gaseous Waste Process Vent -

charcoal and HEPA; Condenser Air Removal -

no provisions L

b. Decontamination factors assumed and the bases (include charcoal 10 (charcoal);

adsorbers, HEPA filters, mechanical devices) 100 (HEPA); per RG 1.BB .

c. Release rates for radiciodine, noble gases, and radioactive particulates I (Ci/yr), and the bases GALE

-. .1__ _ _ . .-

TABLE Al (Continued)

DATA USED FOR RADIOACTIVE SOURCE TERM CALCULATION Request Response

d. Release point description including height above grade, height above and See Table .6 of main report relative location to adjacent structures, relative temperature difference between gaseous effluent and ambient, flow rate, velocity, and size and shape of the flow orifice 6
e. For the containment building, provide the building free volume (ft ) and 2.0 x 10 ft .

a thorough description of the internal recirculation system (if provided) No internal recirculation including the recirculation rate, charcoal bed depth, operating time system for cleanup of air-assumed, and mixing efficiency. Indicate the expected purge and venting borne radioactive materials.

' frequencies and duration, and continuous purge rate (if used) The reactor building contains a main cooling and filter system and a reactor compart-

> ment cooling and filtering 1

system. These systems, which cool and recirculate air in the containment, are not equipped with either HEPA or charcoal filters. Further information is given in FSAR, Section 9.7

7. Solid Waste Processing Systems
a. l'rovide in tabular form the following iaformation concerning all inputs Reference FSAR Table 11-4.

to the solid waste processing system: rource, volume (cu ft/yr/ reactor), See Table A8 and activity (Ci/yr/ reactor) of principal radionuclides, along with bases for values used

b. Onsite storage provisions (location, capacity) and expected onsite Reference FSAR Section 11.2.5.1 storage times for all solid wastes prior to shipment (page ll-9c)
c. Provide piping and instrumentation diagrams (P&ID's) for the solid Reference FSAR Figures 11-3 radwaste system and ll-3A

g~- g -~  ;

TABLE A2 RADIOACTIVE WASTE DATA FOR SOURCE TERM CALCULATION Flow Rate Fraction System Sources (gal / day) Activity ( Discharged

', Primary Waste Shim Bleed 1161 1.0 0.85 Processing Equipment Drain 84 1.0 0.85 Miccellaneous Containment Sump 40 1.0 1.0 Waste Processing Auxiliary Building Floor Drain 200 0.1 1.0 Sampling 35 1.0 1.0 T' Lab Drains 400 0.002 1.0

.. C Miscellaneous Sources 700 0.01 1.0 Condensate Demineralizec Regen. Wastes 1000 (2) 1.0 Unprocessed Laundry and Shower 450 (3) 1.0 Sources Turbine Building Floor Drains 7200 (2) 1.0 (1) Fraction of primary coolant activity.

(2) Calculated by computer.

(3) Per Reg Guide 1.BB.

D

TABLE A3 MISCELLANEOUS WASTE PROCESSING SYSTEM DATA FOR SOURCE TERM CALCULATION Decontamfr.ation Factors - '

Holdup ,

Cr.pacity Time _I_ Cs,Rb Others Miscellaneous Waste 1 @20,600 gal 3.5 days (collection) 1 1 1 Storage Tank Miscellaneous Waste 12.5 gal / min 0.9 days (process) 10 10 10 Evaporator 3, Evaporator Condensate - -

10 10 10 J, Demineralizer -

m Evaporator Condensate 1 @8,230 gal 0.2 days (discharge) 1 1 1 Storage Tank 9

, . . _ _ . .. ._ ~ - . . . _ . __ __ _ _ . _ -. . . . . . . . . .

TABLE A4 PRIMARY WASTE PROCESSING DATA FOR SOURCE TERM CALCULATION Decontamination Factors Holdup Capacity Time _I_ Cs,Rb Others RI::ctor Coolant 3 075,900 gal 49 days (collection) 1 1 1 Bleed Tanks Cation Demineralizer - -

1 10 10 3

Reactor Coolant Evaporator 12.5 gal / min 3.8 days (process) 10 -

10 10 Y

x Condensate Demineralizer - -

10 10 10 Evaporator Condensate 1 @8,230 gal 0.15 days (discharge) 1 1 1 Storage Tank

l-7 g_ TABLE A5 DIRECTIONS, DISTANCES AND METEOROLOGICAL PARAMETERS FOR RESIDENCES WITHIN 5 MILES f

Distance to Nearest X/Q D/Q Direction Residence and Carden (sec. M-3 ) (M -2 )

(

-10 N > 4 miles 5.2 x 10- 3.9 x 10

-10 NNE > 4 miles 4.3 x 10~ 4.3 x 10

-10 NE > 3 miles 8.7 x 10~ 9.3 x 10 f -

-10 ENE > 3 miles 7.7 x 10 8.7 x 10 1.0 x 10- 1.5 x 10 -9 E > 3 miles

-10 ESE > 4 miles 4.2 x 10" 5.2 x 10

-10 i SE > 4 miles 4.4 x 10- 3.9 x 10

-10 SSE > 4 miles 6.2 x 10~ 2.7 x 10

-10 NNW > 4 miles 5.1 x 10- 3.1 x 10 4

I 4 .

l k.- \

if A-18

y w.

(-

,1 -

r-i!

, , _ . Tall!E A6

DISTANCES TO NEAREST SITE BOUNDARY, BY DIRECTION

!~

Distance Distance D irec tiar.. (feet) Direction (feet) f.

I N 4,397 S 9,049 NNE 4,515 SSW 7,812 NE 4,928 SW 7,349 ENE 4,465 WSW 7,451 E 7,090 W 8,225 ESE 6,936 WNW 8,120 SE 8,278 NW 5,341 4 SSE 9,823 NNW 4,567 5 9 s

I e

6 4

I

.' A-19 l.

a

  • 4 . . - - - __ _a. :s .

~,

i t

~ l l,

.-. TABLE A7 i j MONTHLY MEAN k'IND SPEEDS AT THE 33-FT LEVEL ,

CRYSTAL RIVER AND TAMPA INTERNATIONAL AIRPORT, FLORIDA (January 1, 1975 - December 31, 1975) l- Crystal River Tampa 33 ft 22 ft Month (mph) (mph)

-I

!' - January 8.8 8.2

[_

February 8.5 8.1 March 9.6 9.1 f

April 8.6 9.2 May 7.4 7.9 i

June 7.2 7.4 July 7.8 7.8 August 6.2 7.2 o

i September 6.8 7.9 1*

October 7.5 8.4 i

'* - November 8.6 8.9 i

'I December 8.3 8.4 i

4 1

4

'W,*'-

._v A-20 I

r n

[

(- .

i F TABLE A8 EVAPORATOR CONCENTRATE WASTE ANALYSIS Activity Radionuclide (Ci/yr)

[ Co 58 105.0 I 131 58.9 Cs 137 23.9 Cs 134 15.3 Co 60 7.3 t

f

Mn 54 6.0 Cs 136 4.9 i

Fe 59 <0.2

,f Nb 95 <0.2 1 .

t 4 .

NOTE: Resin shipments.from the Oconee 'iuclear Station contained 757 Ci of mostly Co-58 and Co-60. This is representative of B&W plants.

J l'

This data.is from-the Oconee Nuclear Station for 1974 and is representative of B&W plants.

5 i

5- -

} ,l A-21 be -

-- - - ~ - - ' -' ~

, '--~i, ~~~ ; ~l 1

Letdown Flow From Reactor Coolant System g

Mame-up g por.t scatio n R ecycN  ;

Make up to Reactor (15'/.)

o.m n Reano Coolant Coolant System (M nea seo) Shim Bleed  %

D.~; 5esi  ?

gT p p. cal o' *)

, Make-up Tank I

y, Lw3De>rator 1

U _ _

Cation ,,,_, c,, ,, n con 3.nsat, cora.

- ~ __, _,

t4 fG Denim t m ,at , 0.y stor m

  • Seal

?

  • l lf-Leakage 4 Discharge (85%)

H eado< Coolar.'

Equipment 9 teed Tanks Drain i

i Figure A1. PRIMARY WASTE PROCESSING

t

_- eg r

a 8

- 3 .

c' s

3 g-r e ot a t

s a

r ne o eg pcak a nr v ot oan ECST .

G N

I S

S E

C e

O r

ot a R t

a n r

s P o eni pdnm a E w oe T ECD S

A W

~

S U

O E

- N A

L r

o L

E t

a

, eo r

C ct sp S s a I i a v MWE M

- L 2

A e

r u

g i

F e

g

. e ct s s r ak i a to a n MWST g ni

iz
lar t k un e a NT

_' y r t .

n g e s e

s n

e d lp ni ,c e m

l b a cr gs n Bp m a r s u el ai p x S a LD i o MS Rc a u mu ,i t

AS dnem n m.

QS CC oh

>I N W

N 1 em ee h 9M i l { ..: e_

i >

U$f$$

eo Ce ~

M

=

l$ - = gj '

j"s~sa

=38=d

.y ,. & o=

m 8 i 3r<"E t e7*

=

, o =33 3

?

.h

\

,i

=

e

$a. 6 e

w I

e i I -

\

25 - =

l$ -

r f C w

U 4.aJ a.

w e

g- gg

  • Bn w Z

. d E-o E

2 w

/

^

~

hN r m

... o 1 i g f f Qg\,46 y@ l ls -

- -~

a> )

25

? YW Ie l

9r-I e o A

. m -

.' w ?,l .

s r

d2

.e g, -

a . -

g,3

- i

. 2]~5J a

t 3 Ta '

I a coin

- d$553 C

a O

I a o S I n t

4 i

I. a

. e i '

b t

. W 9

i

/'

' t- f g

g .

? 4 -

l $

! # # d a

4

% (L a o ,

2 x wI f, d l l w I i 1 ,

[ > 8 O <

[ bd l2 lA u

WQ

! / E 2 m '

bl A M 9&

ME '

b. ,

N N

O o

l l

i k

I i

FM k

D Q .

8'*'+

, U9 es s

g 4

3

.

  • a k sn c- c1R

=ge o 2

.? ..

E

  • t a i am T b "g 3$ .

-g i t a kg *

- 33 Da 3g 4

? - h* 2 R  ! 5<

C&

e G

o 4 0 u 2 E 2 C e

ii 4

! 3

2 Le i q 3 . '

i I s e

i

  • A $E , t e, S 5% * .

I f

\  !

n

\ a

/

I m

hj

,(1 l

V  %

i

~ j 5 m r ,

' x ,

/

e c r a:

  • l 1

g O sa l '

" H 1

_ .-* 8

$J a

7 ME o a

/ - ,

43 C 4 q C ?

Z C HW l

~ l 1 7 Q \

4

-- u be i

-_,_,.m. .

F u

4 4

p ,.

0 i *

  • 4#1 t w 9A b' C G OS

$ a g a4 0"

'~ 8 -

6 X

W d

d e m$ 3 :?

m28g

~ .

- w -

'

  • S**

L, ,

t g g e. .E a u -.

> .

  • o*@

~

  • m, m A Si a ni ti 4 D= mE

' g o. '

  • a P 3 e 4

.? bggEoUg

$ 233Ch

' $ 1 aC

\ O O

T f' 4 0

o t

e 3

E E

t~ i l 4

. p

- ., e

}

5 4

  • m a y 9 i

l ,

i

t. . .! .

e

>l

^

g e _ g F '" ' " '

A

?

I 7 8 I

.Y \ .

.I I

a

! n' ** 'd w

r c' 4 LJ x

a aj

. Q.

  • i)

, t . e * . e 2 % ,

wJ .: 4 e 7 % i A a e b O H

\ .

q a T i 3  % .

d T a I

k #  :- .a

( sf -

. O ul

< . H 0.

4 t- A s) 35 C , - * - '- m RJ C

3. - ,

El . .. , m2 H H 5

o :n I

o7 I 7 j -

.# hb i y lr 0

4 n

s < #

a l

l l

6_.

I t

u..

p_ . - ,_. . . . - - - . __ _ _ _ . ~ . . _ . . _ __, _ _ ,

i

. . - _ . ._, . . . ~ - -_ ,

__.q s

s i l i N N Y  % O N

- V

\

t s t s b

../ .h

,, ,, a ghk,,# ,, e n I'

gg . ', - ' 0k D

. e 0 1 PC W  ? 5.m g *~~-l

- e3[ ; ,

5

,# ' 'n*

i

,7 4 4 4 +

Ss v s4- 3s a s

s4-s 33-FT. TAMPA (January 1,1975 - December 31, 1975) (January 1.1975 - December 31. 1975)

N h Y et

  1. / b

= e.

t 5 l'

g to

- <te araacnw maxe .ptmun -._.'.t

--. +w ,1.o v.to a e,m 4.6 P, 44- ,,,,

j I

/. ,

e to6 N w

4 '

4 s,

s sq.

Figure A-5 Annual Wind Roses with TAMPA Associated Mean Wind Speeds for the 33-Ft. level (January 1,1966 - December 31. 1975) at Crystal River and Tampa, Flortda

r-1 I.

i.

r- REFERENCES l

t r v- . ,

j A1. " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous ,

d Effluents in Routine Releases from Light-Water-Cooled Reactors,"

Regulatory Guide 1.111, U.S. Nuclear Regulatory Commission (March 1976).

[ A2. Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant: FSAR (through Amendment 48), Docket No. 50-302, U.S. Nuclear s' Regulatory Commission (Mar. 26, 1976).

I t

A3. Environmental Data Service, " Climate of the States, Florida,"

Climatography of the U.S., No. 60-8, U.S. Department of Commerce

f. (August 1967).

A4. Van der Hoven, Isaac, " Atmospheric Transport and Diffusion at Coastal l' Sites," Nuclear Safety, Vol. 8 (5), pp. 490-499 (1967).

l  %

')  !

i j 1

l1 I

4

- s.

t a

t t

0 m-A-29 bene

r-I t

i 6

' APPENDIX B JOINT FREQUENCY DISTRIBUTIONS OF WIND SPEED AND STABILITY CLASS t

l i

e 4

e i

t

$ "' b " 6 e

' ~ ~'

L , s , ,

J SEAS 01 INDEX 1 = Mak, ADR,MAY SE1S&4 INDEM * = JUH,JUL s AUG SEAS 04 INDEN 3 e SEP,0CT,NOW SEASON IN3FE 4 = 3 E C,J A N. FE 9 WING SPEED GROJP OESCRI P TI ON GROUP WINGS 7CE3 R A >GE (M3 D e.... eeeeeeeeeeeeeeeeeese i LESS THAN 0.5 2 9.50- 3.5 3 3.51- 7.5 -

. 4 7.51-12.5 S 12.51-15.5 6 16.51-24.0 7 e24.0 WIN 3 SDEED Ga.0UP EQJIVALENTS (Moi) CALM 1-3 4-T 8-12 13-18 18-24 GT 24 Y

M*H LT 0.5 0.5-3.5 3.5-T.5 T.6-12.5 12.6-19 5 18.b-24.0 GT 24.0

,s M'3 LT 0.2 0.2-1.5 1 5-3.3 3 4-5.6 S . 7 - 8. 3 d.4-10.9 GT 11.3 KT3 LT 34 0.4-3.0 3.1-6.5 6.6-13.8 10.9-16.1 16.2-21.3 GT 21 4 T E MPE RATURt LAPSE R ATE STAnILITY CL ASS IFIC ATION IN3EX ?ANGE DESCAIPTION e............... ..............

1 L1-10.4 E X T RE ME L Y UNSIABLE 2  ?-10.4 UNSTABLE

-3 t -9.3 SLIGHTLY UNSTA3LE 4 2 -8.2 9EUTD AL S t -2.7 SLIGHTLY ST ABLE 6 2 8.2 STA8LE 7 t 22.C EXTREPELY STABLE 9

M

-1 re=

f f

e t

4 W

0-t O i em e @ N eweO & N @ d 4 & a & Of@ N MeeeMdMeMNNNJMNJ#

    • N en M e WM J eeM N e= O aoneemocooonecocee M

.J k e MC e CD e et &

a 8= l<J 4 e M G3 N e K .J 9 e WD WP e >2 :e ** e e a e o e .e N 4 e e O N O c e J e W uJ ** N e 't Z .;

e >.e o LaJ

  • E 68% e M Ed N e A 2 he e P e WO taJ ee se e .J M E 8 e he 89 2 e eU c ** e e @ e e J 4 'O m N N N e d ce N e W e & Ld ** ee ce M @

"> e TW e LaJ me en e >o M >

be o W

<1 o JM

.J e .J 3 eN W e eM J ee O O e W & G w e a' W X eDoe M e ece4 ee N N N 4 N e o e e # N e ist 4 w N d J es wees we Asse se we se N fP M e "o N O o QQ O $

2 e W W g

M e OW W am 0 2 e hJ CL 4 M

-e EH M & en t-

  • T N 3 M L6 e MQ P4 e o W e M I. Z 4 O ED 80 e1.0 N O t c M m 4
  • c -e e c 1 3 M e >e ee ,e N M M we ,e ,e we .e ce ce .e ** we we N O M e 2 2 N 4 Z C

M k W e C

e O me Z e W M " O O 2 J ee N @ m we J M c .* M N ee.* N c J J @ Z w W we m J

>= W at M Q 8=

W W La. O O O 7

9 O M LS M .s O 2 O O t= et O e-o (A =uW id W be 3 2 2 2 *= >e M 4 ** Ia.f 2 LJ F M Id M M2M T27 O T M 3 & 2 2 W id W M M M M t/t 3 2 3 2 7 Z k Las >e

    • 4 Y O

t

. B-3 _

e

. e w

l I

i e

l

.+eg i

e f'

I 6

5 a

J .J 4 4 0= >=

O O

> J @ PS @ pe o @ M J C3 h. C3 J C3 N M 43 >= O C3 e4 ee O C3 N e se O we es e C3 O C3 @

, ed we se e4 es e4 CD i "

en an e e M 4 M #

fD N (2 N O a O C3 O O C3 C3 C3 O CD C3 O C3 O O C3 c3 c3 O a o o e o o e o c3 o o c3 C3 CD o C3 CD c3 6 k C e C e

et & e (D &

Lab 4 e saJ 3 W. N e M N 2 .J 9 e 2 .J 8 M3 LaJ P e M3 LaJ @

M2 3e ** O to da C3 C3 C3 c3 N -e C3 C3 m e e9 Ca o @ e M2 D ** C3 O C3 C3 a cm e a ,e o Ca ts es es es a ce 4 LaJ e 4 LaJ

.,J 2 .J e

' .J Z J Q >e e Q ke w cs e s* 1 LfL > taJ e > Gd N em 2 we a w2 a- e EP ke M w es e e-e O w .4 e4 J me 2 8 e .J ** 2 9

  • =e em M e M 6.- M 2 mU c wee-o O 8'I @ C3 C3 O ofS N v4 C3 CD CD we 881 O C3 # e 4 4 LaJ N e CO O e4 4 LaJ =*

C3 e e E3 c3 e es e O C3 o C3 c3 e a se e "4 a= W e he &

M >4 e MM a= O > e M e-

>= taJ q e td d

>= M e >= M aN d 43 WM I og c e

e e3 TM a= N I == c O N EL 4

  • W iL 6 w 2 e a C3P= @ C3e3 N M N W e LaJ LaJ w

J c3 >$ we M afh 'd taJ F en e o we cec 3C3 ,eem C3 o e4 cm e 43 m c3 .P MD e4 es nn e D w M & e O ec Q g a 4O O g 2 J LaJ td a JW taJ ke taJ tJ = e LaJ W O e (L (L M e e CL CL M m

fL M M W e CL M M be 2 km e &

3 2 k 3 4 LaJ Q Q0 O e e.s O a e O M

3= 2 I.#C3N OC3**ce4+9oC3m.@ Meecec3m 2 e >- 2 2J c o c3 cm o o ,e o c3 O c3 C3 C3 O c O *e 2 ke >e N e he >4 M 2 2 6 e 2 2 L C Q 3

W e 3m e O O

>4 X 2 2

>1 w M 8

w 6

J e4 e c3 o c3 o o e o es em c3 a c3 ca c o o E -e Q c3 c3 c3 C3 o C3 C3 e u C3 C3 c3 o C3 C3 c3 2 4 J

> n .,J M 4 3-U U

& lA O 4 O Q 2 2 e O M o M e-o .s f3 we Q O ** .J M 4 O 6= 4 C dL 2 O taJ LaJ taJ 3 2 2 2 > .Oe 2 O tas 4 e e LaJ Z taJ 2 LaJ taJ taJ W 3 2 2 2 e e.e M stJ M M2M 222 C & be LaJ Z LaJ P M faJ M M2M 222 O &

2N M 2 2 LaJ taJ taJ M M M M M 2 2 2 2 2 Z >= taJ 2& 2 2 taJ LaJ LaJ M M M M En 223222> e.J iL >*

Q 3 CL B4 one

FPC - CRYSTAL kIVER 33 FT CICOS (DEL Tl JAN 1975 TENP. LAPSE RATE STABILITY CLASS C WING SPEED WERSUS DIRECTION (IN NUN 3ER OF OBS.I WINO WIND SPEED (NPNI AT 10 ':ETER LEVEL DIRECTION 1-3 4-7 8-12 13-15 19-24 *24 TOTAL NME O O O 9 0 0 0 NE o 1 2 1 0 0 4 ENE D 1 1 0 0 0 2 E o 1 1 6 0 0 2 ESE O 0 1 0 0 0. 1 SE O 1 0 0 0 0 1 .

SSE O 2 2 1 0 0 5 S 0 0 0 1 0 0 1 SSW D 1 3 0 0 0 4 SW G 1 0 0 0 0 1 WSW 0 1 1 0 0 0 2 W 0 2 1 0 0 0 3 WNW G 2 1 O O O 3 NW G 1 1 0 1 0 3 NNW D 0 0 0 0 0 0 N O 1 1 0 0 0 2 T0iA. 0 15 15 3 1 0 14 PERIO33 0F CALN (40. OF N0uRS) - O eveeeeeee ooveeeeeeeeeeeeeeeeeee........

Y

  • TE M P . L AP5E RATE ST ABILITY CL ASS O WIN 3 SPEED VERSUS JIRECTION (IN NUNBER OF OBS.I WIND WIND SPEED INPNI AT 10 NETER LEVEL DIRECTION 1-3 4-7 8-12 13-18 19-24 >24 TOTAL NME 1 1 9 0 0 0 11 NE o 6 35 6 0 0 47 ENE O 6 20 3 0 0 29 E O 6 0 0 0 0 6 ESE 1 4 1 0 0 0 6 SE o 7 5 2 0 0 14 SSE D 1 4 2 1 0 8 S C 1 3 9 5 0 18 SSW 1 2 8 2 2 0 15 SW 2 11 5 0 0 0 18 WSW 0 7 4 0 0 0 11 W D 3 2 2 0 0 7 WNW D 3 4 5 2 0 14 NW 0 5 4 3 6 0 18 ,

NNW 0 2 5 1 0 0 a N O 4 11 2 0 0 17 TOTAL 5 69 125 3T 16 0 24T PERIOOS OF CALN (NO. OF HOURS 5 - 0 1

l'

~ ~

i ,

. a

_..). . _l FPC - CRf STAL 3,3VER 33 FT WINOS (3EL T) J AN 1975 TEM *. LAPiE PATE STABILITY CLASS E WItc SPEED WFRSus DIRECTION (IN NUMBER OF OBS.I WINO WIND SPEED (NPHI AT 10 1LTER LEVEL DIRECT ION 1-3 4-7 8-12 13-18 19-24 >24 TOTAL NNE O 1 4 0 0 0 5 -

NE 2 4 11 0 0 0 17 ENE 1 6 6 0 0 0 13 E 5 8 2 0 0 0 15 ESE 1 4 a 0 0 0 13 SE O 5 10 2 0 0 17 SSE D 1 2 10 0 0 13 S 1 11 21 16 0 0 49 SSW 1 7 4 2 0 0 14 SW 0 1 2 2 0 0 5 WSW 1 0 0 2 0 0 3 W 1 3 0 0 0 0 4 *

, WNW  ? 7 0 0 0 0 9 NW 0 3 2 0 0 0 5 NNW 1 6 4 0 0 0 11 N  ? 3 3 0 0 0 8 TOTA. 16 TO F9 34 0 0 201 PERIODS OF '; ALM (NO. OF HOURS) - 0

.Y.

TEMP. L A P3E RATE STARILITV CLASS F WIND SPEED VERSUS DIRECTION (IN NUMBER OF 08S.5 WIND wit 0 SNED (MPHI AT 10 1ETER LEVEL DIRECTIn1 1-3 4-7 8-12 13-19 19-24 >24 TOTAL NNE 2 6 1 0 0 0 9 NE  ? 9 F 0 0 0 18 ENE 1 11 4 0 0 0 16 E 3 12 0 0 0 0 15 ESE 1 3 1 0 0 0 5 SE 1 3 0 0 0 0 4 SSE O O O O O O O S O 1 0 0 0 0 1 SSW 1 0 0 0 0 0 1 SW O O O O O O O WSW O 0 0 0 0 0 0 W 0 0 0 0 0 0 0 WNW D 0 0 0 0 0 0 NW 0 0 0 0 0 0 0 NNW 1 2 0 0 0 0 3 N 3 4 1 0 0 0 8 TOTAL 15 51 14 0 0 0 80 PERIDOS OF CALM (NO. OF HOURSI - 0

r- %

c, t

t l'

l i.

1 s

e

>=

O e=@eeem4oeooeeeoNee WW d f

f =

I m a

@ N

.C AoccoeoceomcomCOOe 4

O QM

, W #

  • eri fu r s.

M3 W@

MP *D .4 o e e e o a e e e e o e o a O c e 1 4 W sz s-U-

= a m W Ld N h. T m. et

-a W-n.

. s- c.

- to M z ..U e, v. W

-~ $-oeo....e...me.... '

l M-

. O a De leJ W

-m .*

.J e3 mN W &M Zw e O & IL I

- E e m o - .e a e o a cm o o cm o o e e A W, L,ad -

M O &. o o .

2 JW W D

- W W -

2 .s a. m em m w 9= E k 3

&MDoCO0Co.OMM m - - 4 N @ J. . .M. , 1 M 2 2 u. I O l GL L.a e

> O

- 7 (L M =

8 S 4 ,fu m m we N o o e o a e a u N .4 en E

' 4 .e .J 6- - as M U W k U ,

3 0 C m

- a m O. O t- -

4 C O 2UW ad tak taJ 2 2 2 2 >= ~

k e ta' r W z mWe mzm z2z e r 2T22WWWMMMMM 2 2 2 2 2 2 >= W *

~ g Q

'~

B-7

+

-,r -

n >~ . ' + - - w w er v-

-r - - - - - -- - - - - - - - - -- - - , - _ . -

  • 1

. 4 1 24 H301 SUMMAD.Y OF WIND SDZED DISitIBJTION FAC - CRYSTAL RIVED. 33 FT WIHOS (DEL tl F E 3 19 75; TOTAL NUM9ER OF EEADINGS 6.18000E+02 TOT AL NUMBER OF RFA01NGS WITHTJT CALMS 6.18000Et02 WIND SPEED DISTRIBUTION, NO OF OBS.

LT .5 .50-3.5- 3.51-7.5 7.51-12.5 12.51-18.5 18.51-24.0 GT 24.0 0 53 246 220 97 12 0 Y

SUMME3 OVEF ALL DIOECTIONS WIND SPEE) JISTRIrJTION VERSuS TIO. LASSE RATE STABILITY CLASS (NO OF 085.3 A B C 3 E F G 1 0 0 0 0 0 0 0 2 C 1 1 7 6 21 17 3 24 7 16 52 59 46 32 4 62 2 8 73 64 7 4 5 30 3 4 45 15 0 0 6 1 0 1 6 2 0 0 7 0 0 0 0 0 0 0 Y

e

6

,- p D*

t t.

F t

l I

aJ w

t-O

, >= c IA e J h. @ J J @ J @ N e e e eo M J en M N N e an N M s LA 4A J .e N .*

=

f M e f W EA J i M 23 N 4- 0 A cococcooccOcconoc M

dk e MC

, o m

' e 4 tV s be Ld 4 e CA 61 N

  • T J 8 8 4AJ 3 kJ @

e t= 2 *J ** c o e e e o e o N c c

  • c e .e O N D W LJ es

' O WZ J e M S 4d

  • J.

, @ # (A LaJ N D M 7 h. an

@ $ WO W ce

.4 * .J M E4

, D b M ED * *O O ee m N N O ** O O e J J N N J e M e A Ld

  • EL %d

-e M ** ** @

(L e TW 5

9 LaJ M em 6 he O em ho 9 W e .J M J e .J 3 aN I hJ e eH Z *e O C 4 & CL 8 t

w e NW E e we we ** @ eD e un M J 4 J c e J M @ c J D ad > w e4 N N ' we AN we N As e N ars M G > N O O OO O 9 4 2 e 4J ed ew e O LJ sd ,= 8 2 8 Ld CL 11 M e TH M & =

b.
  • E N 3 M 4 9
  • 3Qa.

M ri e Z J J J @ @ @ N @ M J J')N M O C 4 N 3 O

2 ar 3

M D M M weweN 4**we .e ce ** M 4 *e ** M C M e 2 2 N LL Z O

T ts nah e O h O M 2 o El M w O 9 7

.J .e .A GD to a N ** c c we M e ce N 4 m ** M E w e +4 O J b- 4 4 M O b.

Da er W k O O O 2

8 O M t.3 ee e C"1 2 O O t- 4 O M O 2 O esa td ed to 2 2 2 2 6- M M 4 M sd 2 LsJ Z M Id M sn 2 M 722 O raf to 2 & Z Z LaJ Ld Ld M M (M M M 2 2 2 2 Z Z *= e* 8 M M EL E O

b B-9 4

- - -- ~, -. ._, . _ ,,

t FPC - CRYSTAL RIVER 33 FT WINDS (3FL TB FEB 1915 TEMP. L APSE RATE STABILITT CLASS A WIND SPEED WERSUS DIRECTION (IN NUMBER OF OBS.)

1 WIN 3 WING SPEto (MP F) AT 10 MET ER LEVEL DIRECTIO1 1-3 4-7 8-12 13-15 19 ~ 4 *24 TOTAL NNE C 3 0 0 0 0 3 NE O 3 3 0 .0 0 6 ENE o 1 2 0 0 0 3 E 0 1 4 0 0 0 5 ESE O O 3 1 0 0 4 SE O O 4 0 0 0 4 SSE O O 1 - 0 0 0 1 S 0 0 1 F 0 0 8 SSW D 0 5 12 1 0 18 SW G J 1 7 0 0 8 WSW D 1 1 1 0 0 3 W 0 13 14 0 0 0 27 WNW 0 2 16 2 0 0 20 NW 0 0 5 0 0 0 5

. NNW D 0 1 0 0 0 1 N O O 1 0 0 0 1 TOTAL 0 24 b2 30 1 0 117 PERIO3S OF CALM (43. OF HOUPSI - 0 y ........................................

5 TEMP. L A PS E RATE STABILITY CLASS B WING SPEED WERSUS DIRECTION (IN NUMBER OF OBS.)

WINO WING SPEED (MPH) AT 10 1ETER LEVEL DIRECTION 1-3 4-7 s-12 13-15 19-24 >24 YOTAL NNE C 0 0 0 0 0 0 NE O 2 0 0 0 0 2 ENE O 1 1 0 0 0 2 E D 0 0 0 0 0 0 ESE o 0 0 0 0 0 0 SE 1 0 0 0 0 0 1 SSE o 0 0 0 0 0 0 S 0 1 0 0 0 0 1 SSW n 0 0 1 0 0 1 SW 0 0 0 1 0 0 1 WSW 0 1 1 0 0 0 2 W D 1 0 0 0 0 1 WNW 0 0 0 0 0 0 0 NW 0 1 0 0 0 0 1 NNW D G 0 1 0 0 i N 0 0 0 0 0 0 0 TOTAL 1 7 2 3 0 0 13 i

PERIO3S OF CALM (10. OF HOURS) - 0

1 F8C - CRfSTAL RIVER 33 FT WIN 05 (DEL TI FER 1975 TEMP. L AP5E RATE ST ABILITY CLASS C WINO SPEED WERSuS DIRECTIO1 (IN NU43ER OF 085.3 WIN 3 W A N) SPEED (MPHI &T 10 METEA LEWEL DIRECTION 1-3 4-7 8-12 13-15 19-24 >24 TO TA L NME O O C 0 0 0 0 NE O O 1 0 0 0 1 ENE 1 1 0 1 0 0 3 E D 1 0 0 0 0 1 ESE o 1 0 0 0 0 1 SE o 0 0 0 0 0 'O SSE O O 2 0 0 0 2 S 0 1 1 0 0 0 2 SSW D 3 1 1 0 0 5 SW 0 0 1 0 0 0 1 WSW 0 4 0 0 0 0 4 W D 3 0 0 0 0 3 WNW 0 0 1 0 0 0 1 NW 0 1 0 2 1 0 4 NNW D 0 0 0 0 0 . 0 N O 1 1 0 0 0 2 TOTA- 1 16 8 4 1 0 30 PERIO3S OF CALM (N0. OF HOUPSI - 0 O

TEMP. L AP5E RATE STABILITY CL ASS D WIN 1 SPEED VERSuS 3IRECTION (IN NUMBER OF OBS.I

~

WINO WINO SPEED (MPHI AT 10 METER LEVEL OIRECTION 1-3 4-7 8-12 13-1S 19-24 >24 TOTAL NNE o' 2 0 0 0 0 2 NE 1 1 7 2 0 0 11 ENE 0 1 11 6 0 0 18 E o 2 0 0 0 0 2 ESE o 2 1 0 0 0 3 SE O O 2 0 0 0 2 SSE O 2 2 0 O O 4 S 0 5 to 4 0 0 19 SSW 0 8 12 14 1 0 35 SW 2 5 7 5 0 0 19

. WSW

  • 0 4 1 1 0 0 6 W 1 12 5 2 0 0 20 WNW D 4 5 1 0 0 11 NW 3 1 5 4 6 0 23 NNp 0 1 2 2 1 0 6 N O 2 2 0 0 0 4 TOTAL T 52 F3 45 8 0 185 PERIODS OF CALH (40. OF HOURS) - 0

I' i

. 1 ! , }

FDC - CR Y S TA L RIVER 33 FT DINOS (3EL Tl FEB 19F5 TEMP. lap 5E RATE STABILITY CLASS E WIND SPEED WEtSUS DIRECTION (IN NUMBER OF OBS.)

WINO WIN 3 SPEED (MPHI AT 10 1ETER LEVEL DIRECTION 1-3 4-T 8-12 13-is 19-24 >24 TOTAL NNE o 0 6 0 0 0 6 NE O 3 8 0 0 0 11 ENE O 3 3 0 0 0 6 E 1 1 1 0 0 0 3 ESE o 6 4 0 0 0 10 SE o 6 10 0 0 0 16 SSE O 5 0 0 0 0 5 5 0 6 11 7 0 0 24 SSW G 3 6 6 0 0 15 SW i 1 2 1 0 0 5 WSW 1 2 1 0 0 0 4 W 0 4 1 0 1 0 6 WNW 0 10 5 1 0 0 16 NW 1 5 4 0 1 0 11 NNW 2 2 0 0 0 0 4 N O 2 2 0 0 0 4 TOTAL b 59 54 15 2 6 146 PERIO3S OF CALP (N3. OF HOURS) - 0

, eveeeeeeeeeeee.........................e

?

~

TEHo. L APSE RATE ST ABILITY CLASS F WING SPEED VERSUS DIRECTION (IN NUM3ER OF 08S.)

WINO W I N3 SPEED (MPHI AT 10 NETER LEVEL DIRECTION 1-3 4-7 8-12 13-15 19-24 *24 TOTAL NNE 1 5 5 0 0 0 11 NE 3 2 0 0 0 0 5 ENE 1 s 2 0 0 0 11 gE 6 7 0 0 0 0 13 ESE O 5 0 0 0 0 5 SE o 6 0 0 0 0 6 SSE O 2 0 0 0 0 2 S 0 0 0 0 0 0 0 SSW 1 0 0 0 0 0 i SW 0 0 0 0 0 0 0 WSW D 0 0 0 0 0 0 W 0 0 0 0 0 0 0 WNW 2 0 0 0 0 0 2 NW 1 2 0 0 0 0 3 NNW 3 3 0 0 0 0 6 N 3 6 0 0 0 0 9 TOTA. 21 46 7 0 0 0 T4 PERIOOS OF CALN (NO. OF HOURS) - 0

0

==

WW f

i l

6 e .

P W

>=

O

> e e m o # e e e e a e e c ** e d M es que la em O

M 4 G1 N c aeoeeoaooeaeoecoeo k

  • C C tY Id #

m N 7 J0 M3 LaJ @

M2 >+4eoeoOOooeoeaeoeae 4 LaJ JZ J UM w &

m > nd N m. E t. e e MO taJ we se JM 2 4 M> M e

W EU

.W

$descoscoccocemosom La. >M t/9 M

= O M he Ed W be M

.J 43 == N W cr M 2 ** a O (W (L 0

    • W taJ 2eeNNeGeeeOOOeoeOeJ ttt w e*

N b O as O c e 2 J td W M W W m 2 *4 Q M

&M M (E

> 2 P= 3 la WD m0 0 P= 2 2J#MONNmO DOomeQOc@N Z M M M 4 *1 M 2 2 ta.

O Q(

ad e

> M M 2 A M w 0

J *e d J M M N c o e o o o o a we o o N 2 W we J k 4 M U W ta.

49 O 2

8 Q M M e m o o >=

2 4 C (L 2 O id tas taJ taJ 2 2 2 M M 6 M Ad 2 taJ Z MtaJM M2M 222 O M

- 2 "If 2 2 taJ td taJ M M M M M 2 2 2 2 2 2 >= W M (L Q

.~

B-13 L

l 1

__ _ _ _ __ . . - . = _ _ _ __

g- g 24 H0ut

SUMMARY

OF WIND SPEED DISTRIBJTION ,

FPC - CRYSTAL RIWER 33 FT WIN 05 (DEL Tl MACH 1975 TOTAL NUM3ER OF READINGS 5.92000E*02 ,

TOTAL NUMBER OF READINGS WITHOUT CALMS 5.92000E*02 oseeeeeeeeeeeeeeeeeeeeeoseoeseee........

WIND SPEED DISTRIBUTION, NO Or og3, LT .5 .5n-3.5 1.51-T.5 7.bi-12.5 12.51-18.5 18.51-24.0 GT 24.0 0 24 1 'i 4 279 103 12 0 evee.coevosoeeeeeeeeeeeeeeeeeeeeeeeeeee.

Y SUWED OVER ALL DIRECTIONS WIND SPEED DISTRI30 TION VERSUS Tt1P. L4PSE RATE STABILITY CLASS (NO OF OBS.)

A B C 3 E F G 1 0 0 0 0 0 0 0 2 0 1 2 1 3 5 12 3 1e 4 4 38 59 32 19 4 80 10 16 74 89 7 3 v 5 37 4 7 45 10 0 0 6 4 0 1 5 2 0 0 7 0 0 0 0 0 0 0 4

e e

1

.i

-- . - _ ~ - . _ . ,

4 --

FPC - CQYSTAL RIVES 33 FT CIN05 (DEL TI CAR;1 1975 e..........eo ................ ........

SUMMED OVER ALL TEMP. LASSE RATE STARILITIES WIND SPEED VERSUS DIRECTION (IN NUMSER OF OB S. )

WIND WIN 1 SPEED EMPH AT 10 NETER LEVEL DIRECTION 1-3 4-7 8-12 13-13 19-24 >24 TOTAL NNE 4 11 21 0 0 0 36 NE 4 12 55 3 0 0 54 ENE 5 7 25 2 0 0 39 E 9 18 30 2 0 0 50 ESE 2 15 14 0 0 0 31 .

SE 2 20 17 0 0 0 39 SSE O 9 7 6 0 0 22 S 0 10 9 15 4 0 38 SSW 0 3 27 34 4 0 68 SW C 6 25 13 1 0 45 WSW 2 7 14 2 0 0 25 W 1 13 21 12 0 0 47 as WNW 1 10 12 8 1 0 32 Li NW G 7 2 4 2 0 15

  • 7 6 1 0 0 15 NNW 1 N 2 19 14 1 0 0 36 TOTA. 24 174 279 10 3 12 0 592 PERIO)S OF CALM (N3. OF HOURS) - 0 NISSI9G OATA ENO. OF HOURS - 152 f

a

7 ___

3

.  ! s FPC - CRYSTAL RIVER 33 FT WINDS (DEL I) HARCH 1975 TEMP. LAPSE RATE STABILIIf CLASS A WIh8 SPEE0 WERSus JIRECTION (IN NUMBER OF OBS.)

WINO WIN 3 SPcED (Ma h) At 101EIER LEVEL DIRECTION 1-3 4-7 8-12 13-15 19-24 *24 TOTAL NNE O 2 4 0 0 0 6 NE D 3 8 2 0 0 13 ENE o 0 4 0 0 0 4 E O 2 6 2 0 0 10 ESE O O 6 0 0 0 6 SE c 0 3 0 0 0 3 SSE O O 3 3 0 0 6 S 0 0 2 5 1 0 8 SSW D 0 1 11 1 0 19 SW O 1 4 0 1 0 6 WSW D 1 8 0 0 0 9 W 0 5 16 6 0 0 27 WNW 0 1 b 6 1 0 13 NW D 0 0 1 0 0 1 NNW D 0 1 0 0 0 1 N O 3 3 1 0 0 7 ,

TOTA. C 18 80 37 4 0 139 PERIODS OF C A L *; (13. OF HOURS) - 0 e

TcHD. LAPSE RATE STABILITY CLASS B WING SPEED WERSUS 3IRECTION (IN NUMBER OF OBS.3 WIND WIND SPEED (MPHI Ar 10 MET ER cEVEL DIRECTION 1-J 4-7 6-12 13-15 19-24 >24 TOTAL NNE D G 1 0 0 0 1 NE O 1 4 0 0 0 5 E9E o 0 0 0 0 0 0 E O O 1 0 0 0 1 ESE O 1 0 0 0 0 1 SE O O O O O O O SSE O O 1 1 0 0 2 S 0 0 1 0 0 0 1 SSW D 0 1 1 0 0 2 SW D 1 1 0 0 0 2 WSW 1 0 0 0 0 0 i W 0 0 0 1 0 0 1 ,

WNW 0 0 0 0 0 0 0 NW D 0 0 0 0 0 0 NNW 0 0 0 1 0 0 1 N O 1 0 0 0 0 1 TOTAL 1 4 10 4 0 0 19 PERIO3S OF CALM (NO. OF HOURSS - 0 -

FDC - CRYSTA. RIVER 35 FT WINOS (3EL Tl MARC 4 1975 TEMP. LAP 5E RATE STABILITY CLASS C WIh3 SPEED VERSUS 3IRECTION (IN NUMBE9 OF 085.3 WI NO WING SPEED (MPHI AT 10 METER LEVEL DIRECTION 1-3 4-7 s-12 13-13 19-24 >24 TOTAL NNE O O 2 0 0 0 2 NE G 1 3 1 0 0 5 ENE 1 0 0 0 0 0 1 E O O 2 0 0 0 2 ESE O O O O O O O SE O O O O O O O SSE P 0 0 1 0 0 1 S 0 6 0 0 0 0 0

  • SSW G 0 2 3 0 0 5 SW 0 0 1 1 0 0 2 WSW 1 2 2 0 0 0 5 W 0 1 1 0 3 0 2 WNW G 3 0 0 0 0 0 NW 0 0 1 1 1 0 3 NNW 0 0 0 0 0 0 0 N 0 O 2 0 0 0 2 TOTAL 2 4 16 7 1 0 30 PERIO3S OF CALM (N3. OF HOURS) - 0
  • /

TEMP. LAPSE AATE STABILITY CLASS D WINO SPEED WERSUS DIRECTION (IN NUMBER OF 085.1 WIND WIH) SPEED (MPto AT 10 ME TEk LEVEL DIRECTION 1-3 6-7 8-12 13-13 19-24 324 TOTAL NNE O 1 T 0 0 0 8 NE O 2 14 0 0 0 16 ENE o 0 3 2 0 0 5 E o 4 5 0 0 0 9 ESE o 2 u O O 0 2 SE O 3 8 0 0 0 11 SSE O 2 1 0 0 0 3 S 0 1 1 7 1 0 10 SSW D 3 6 17 3 0 29 SW 0 1 16 11 0 0 28 WSW D 1 4 0 0 0 5

'W 0 3 0 5 0 0 8 WNW 0 5 5 2 0 0 12 NW D 5 0 1 1 0 7 NNW 1 3 1 0 0 0 5 N O 2 3 9 d 0 5 TOTAL 1 3a F4 45 5 0 163

  • PERIO3S OF CALM (N3. OF HOURS) - 0 Y

-- - - ~

,i

~-~

- ~,

FDC - llRf ST A. RIVER 33 ET WICOS (DEL Tl MARSM 1975 TEMP. L A PS E RATE STABILITY CLASS E WING SPEE0 VERSUS '3IRECTIO4 (IN NUMBER OF OBS.I WIND WIN 3 SPEED (MPHI AT 10 METEP LEVEL DI RECT I ON 1-3 4-7 8-12 13-15 19-24 >24 TOTAL NME 2 4 3 0 0 0 9 NE O 2 6 0 n 0 8 ENE o 1 13 0 0 0 14 E . 0 6 16 0 0 0 22 ESE O 6 8 0 0 0 14 SE D 5 5 0 0 0 10 SSE o 3 2 1 0 0 6 S e 7 5 3 2 0 1T SSW 0 0 11 2 0 0 13 SW D 3 3 1 0 0 7 WSW n 3 0 2 0 0 S W 1 4 4 0 0 0 9 WNW D 4 2 0 0 0 6 NW 0 1 1 1 0 0 3 NNW G 3 4 0 0 0 7 N O 7 6 0 0 0 13 T9TAL 1 59 $9 10 2 0 163 PERIO3S OF CALM (40. OF HOURS) - 0 TEMP. L APSE nATE STA 91LITY CLASS F WING SPEED WERSUS DIRECTION (IN NUMBER OF 085.)

WIND WIN 3 SPEE0 (MPHI AT 10 METER LEVEL OIRECTION 1-3 4-7 8-12 13-15 19-24 >24 TOTAL HNE D 3 2 0 0 0 5 NE 1 1 0 0 0 0 2 ENE O 3 4 0 0 0 7 E o 3 0 0 0 0 3 ESE 2 4 0 0 0 0 6 SE O 9 1 0 0 0 10 SSE D 4 0 0 0 0 4 S 0 1 0 0 0 0 1 SSW D 0 0 0 0 0 0 SW D 0 0 0 0 0 0 WSW G 0 0 0 0 0 0 W 0 0 0 3 0 0 0 WNW 1 0 0 0 0 0 1 NW D 1 0 0 0 0 1 NNW D 0 0 0 0 0 0 N 1 3 0 0 0 0 4 TOTAL 5 32 7 0 0 0 44 PERIO3S OF CALM (43. OF HOURS) - 0

'L*%'

h W

e 6 9

i i

b 8.

  1. 4 t

".t i

I 4

>=

0

>mmeMNmaweeoeee,e##

M 9

m o

) d ID N O A eeoeoaeooeooeoeoa th

'f C 6

eeto 4 m t%s E 8 9 M3- ad @

M2 3 d e e oe o a o e a e o e e o me m 4 lAJ JK J M QM N w W EP > taJ es b 1P ee

, MO Las **

Y

.J M T S Q M >= g M T SQ medOOSOO09OWoa50Cmee 4 4 tu E be &

MM m O be

'!, 8" W W

e. M

' $' J. e3 N

.i ;- W aM z- m O rw n8

  • Id W E e N e et e u n c o m c o c o u e O M MD w (n (L O 4O O 8 Z JW W

'4

. M W W m 2 e IL EL M (L (n M W W E N 3 4 tal O O 9 O l y= Z 2 # e4 N M Fv3 N M e 4 e o o o o o ,e M P I j M M ee c4 I I M 3 3 4

'4 O

0" id e

> n M 2 O M w t

.J ee N M .t e o fu e e o o e o o u o ** N E 4 ee J k 4

. tn Q W LL Q Q T

. 8 O M M s ri O Ok 4 O te Z Q tak Id W td 3 3 3 3 >= M k M W 3 l2 2 M Ld M (n S tn Z3Z C M

4 3MrzWWWMMMMM3332ZZW M

W i

O s..

B-15 c

o m

g-~~  ;-

. i -

24 H3U4 SUMMA <Y OF WIND SPEED DISTRIBJTION FPC - CRf STAL RIWEP 31 FT WINDS EDEL T) apt 1975 TOT AL NUMBER OF RE A DINSS 5.99000Ee02 1

TOT AL NUH3E.10F REa0INGS WITHOUT CAL MS 6.99000Ee02 WIND SPEED OISTRIBUTION, NO OF 08S.

LT .5 .30-3.5 3.51-7.5 T.51-12.5 12.51-18.5 18.51-24.0 GT 24.0 0 45 242 321 81 8 2 e...........e... ........... ...........

Y' N SUMMED OVER ALL DIRECTIONS WING SSEED DISTRIBUTIOt1 VE RSUS T E1P. LASSE RATE STABILITY CLASS INO OF 08S.3 A B C D E F G 0 0 0 0 0 0 0

.1 2 0 1 C 7 18 9 10 3 17 2 5 42 104 53 19 4 73 14 27 95 100 12 0 6 39 iT 1 0 5 14 4 6 6 0 0 2 0 0 0 0 0 0 1 1 0 0 T

1

l 3 ,

FPC - CRYSTAL RIWER 33 FT WINOS (DEL Te A>Q 1975 e......eeeeeeeeeeeeeeeeeeeeeeeee........

SUMMED OVER ALL TEMP. L APSE R ATE ST A BILITIES WIND SPEtD WERSUS DIRECTION (IN NuttBER OF OBS.)

WINO WIND SPEED (MPH) At 10 METER LEVEL DIRECTION 3-3 4-T 8-12 13-15 19-24 >24 TOTAL NME 1 10 24 1 0 0 36 NE 6 8 34 1 0 0 49 ENE 4 22 16 1 0 0 43 E 5 36 15 1 0 0 63 ESE 6 16 6 0 0 0 28 SE 1 18 3 5 G 0 27 SSE 4 19 13 2 0 0 38 S 1 9 17 7 0 0 34 SSW 1 5 31 14 0 2 53 SW 2 to 27 21 1 0 61 WSW  ? 13 18 0 0 0 33 W 3 is 27 3 0 0 51

, WNW 1 14 33 6 6 0 60 h NW 2 8 18 8 1 0 37

  • NNW 4 9 11 2 0 0 26 N 2 27 28 3 0 0 60 T3TA- 45 242 321 81 8 2 699 PERIO35 0F CALM (40. OF HOURS) - 0 NISSIC 1ATA (NO. OF HOURS) - 21 0

I t 3

, a o t FPC - C%fSTat RIVER 33 FT WIN 05 (DEL Tl APP 1975 TE92 lap 5E RATE STABILITY CLASS C WIND SPEED WERSUS DIRECTION (IN NU1 bel 0F OBS.)

WING WING SPEED (MPHI AT 10 METER LEVEL DIRECTIO1 1-3 4-F 8-12 13-19 19-24 >24 TOTAL NME O O 1 0 0 0 1 NE 0 0 1 0 0 0 1 dNE O 0 2 0 0 0 2

. E O 1 0 1 0 0 2 ESE O 1 0 0 0 0 1 SE D 0 0 1 0 0 1 SSE O 1 0 0 0 0 1 S G 0 2 1 0 0 3 SSW D 0 3 2 0 0 5 SW D 1 5 0 0 0 6 WSW D 0 3 0 0 0 3 W G 0 3 0 0 0 3 WNW G 1 5 1 0 0 7 HW D 0 1 0 0 0 1 NNW D 0 1 0 0 0 1 N 0 0 0 0 0 0 0 TOTAL 0 5 2T 6 0 0 38 PERIO3S OF CtLM (13. OF HOURS) - 0

g. ........................................

TEMP. L APSE PA TE ST ABILITY CL ASS 0 WIND SPEED WERSUS DIRECTION (IN NUMBdR OF 00S.8 WING WINO SPEED (MPHI AT 10 MEIER LEVEL OIRECTIO1 1-3 4-7 6-12 13-1s 19-24 >24 TOTAL NNE O 9 9 1 0 0 10 NE G 1 8 0 0 0 9 ENE 2 1 3 1 0 0 7 E G 4 9 0 0 0 13 CSE 1 0 1 0 0 0 2 SE C 0 2 1 0 0 3 SSE D 5 5 1 0 0 11 S 0 5 5 4 0 0 14 SSW 1 5 12 5 0 1 24 SW D 4 1C 18 1 0 33 WSW 1 3 6 0 0 0 10 W 2 5 5 2 0 0 14 WNW 0 7 8 1 0 0 16 NW D i 6 4 1 0 12 NNW 0 0 1 0 0 0 1 N 0 1 5 1 0 0 7 TOTA. 7 42 95 39 2 1 186 -

PERIOOS OF CALM (NJ. OF hours) - 0

z FPC - CRY ST AL RIV E2 33 FT WI NDS (3 EL 78 ADR 1915 YE18 LAPiE RATE STABILITY CLASS E WIND SPEED vtkSUS JIRECTION (IN NUMBER OF 085.9 WIN 3 WI k] SPEED (MPHI LT 10 MET ER LEWEL DIRECTIori 1-3 4-7 8-12 13-15 19-?4 >24 TOTAL NNE O 4 5 0 0 0 9 NE 1 3 21 0 0 0 25 ENE 1 i 7 0 0 0 16 g 0 13 3 1 0 0 iT ESE 3 7 5 0 0 0 15 SE O 10 1 0 0 0 11 SSE 1 10 4 1 0 0 16 S 1  ? 6 2 0 0 11 SSW G 0 3 3 0 1 7 SW 2 4 9 2 0 0 17 WSW 1 8 4 0 0 0 13 W 1 6 2 1 0 0 10 WNW 1 4 1 0 0 0 6 NW 2 6 8 4 0 0 20 NNW 4 3 9 2 0 0 23 M 0 11 12 1 0 0 24 TOTAL 18 10 4 100 17 0 1 240 PERIO3S OF OALM (N3. OF HOURSI - 0 V ........................................

TEMP. L A P5 E RATE STABILITY CLASS F WIND SPEED WERSUS 3IRECTION (IN NUMBER OF 08S.)

a WIND WIllo SPEED (MPHI AT 10 METER LEWEL DIRECTIO4 1-3 4-7 8-12 13-15 19-24 >24 TOTAL NNE 1 6 3 0 0 0 10 NE D 1 1 1 0 0 3

, ENE' 1 to 2 0 0 0 13 E 1 9 0 0 0 0 12 ESE 1 7 0 0 0 0 8 I SE O 6' O O O O 6 ,

SSE 1 2 0 3 0 0 3 S 0 1 0 0 0 0 1 SSW 0 0 0 0 0 0 0 SW C 0 0 t 0 0 0 WSW D 0 0 0 0 0 0 W G 0 0 0 0 0 0 WNW D 0 0 0 0 0 0 NW D g 0 0 0 0 0 0 NNW C 1 C 0 0 0 1 N 2 10 6 0 0 0 18 TOTAL 9 53 12 1 0 0 75 .

PERIGOS OF CALH (10 OF HOURS) - 0 .

s- w e

i e

l I

_J as t=

j . O

>= 0 iD N @ N M M e o e o e e .4 m M @

Ehe l m 4

t

  • f M 4 e N O A O O O O O O O e O O O e en C e e c3 o k i O LS &

W 2 m N F .J G M "3 W@

M2 D .4 e a e o o es a e o es es es a o e e a 4 GAA

.J 2 .J OM

= .sf in > W 1 A em 1P en art '

@ MO tal ed

    • JM T I M be M

& G3 o O .4 E3 e e e o es e cm e o a e e o e cm es Cs 4 taa 4 t- &

MM

= n e-(i e= sti as b= M

_J eD W 4M ' .=I **

N a O M & G w uJ W E e e e e es a se CD cm cp a c3 es e o e O O l fA D **

th 4 O eC C 6 2 .J W sn M W W am X e CL & M 05 to ' M Y t- E em 3 O

t- z .Qt 4 las S s o N N e. - N .4o e o o e o w a e e z ,

e m M M .4 i M 2 3 L l C

g U e D O M 2 Gr M e

  • 4

_J w o 4csNwe**N eC3o e o oc3cso e E e we .I De EE M U kt k O C 2

e O M M s ei O O *= - 4 O CL 2 O t.J W W W 2 2 3 2 >= M W M W 2 kJ 2 M W to M2M Z2Z C &

2 Of 2 2 W W W M M M f4 M 2 2 2 2 2 2 >= W l M &

Q

g. s-25 9,

- _ . . . _ ._ ._ _ ,_ _ .- __ .. ..m. . _ _ _ . .. . . _ . . .

24 H0ut 3U* Air 0F WIll0 SPE50 DISTRI3JTION

DC - CRYSTAL RIVi- 33 FT. WINDS (0?L Tl MAf 1975 TOTAL tau"3fR OF READINGS T.29000E+02 TOTAL NJ13dd OF M A GINGS dl TH10T CALMS 7.25900Et02 eeeeeeeeeeeeee......seeeeves,...........

WIND SPEED OISTRIBJTION, NO OF OBS. t LT .5 .30-3.9 3 51-7 5 7.51-12.5 12.51-18.5 1a.51-24.0 GT 24.1

+ 70 319 300 35 1 0 oseeeeeeeeeeeooseeeevoevoeoevoe**eseevoo

< Y

$' SJd1El CVIC ALL 1IRECTIONS WIND SDIs0 OIST<IBJ TION VE; SUS TE42 LASSE RATI STABILITY CLASS (NO OF OBS.)

4 3 C D I F G 1 0 0 0 0 0 3 1 2 0 0 1 4 15 29 14 3 25

  • 15 65 115 F4 21
  • 11L 16 22 94 43 11 i S 17 1 2 13 2 0 0

. 6 0 1 0 0 0 0 0 J

T C Q 0 0 0 0 0 1

4

.I i

1

L

. A T

O T58568461752191615 125T4822246143132 1 7

. S I.

ES 4 IB 2 TO >00000000000000000 I

LF IO B

. AR TE 4 SB 2

. M L -

. EU E9

. TN V100000000010000001

. A E e RN L e I e E( R 5 e S E F e PN T9 9 e AO E1 1 e LI N -

e T 3 f e .C 0 100010113337222005 A PE 1 3 1 .e 1R 1

. EI l . T3 T

_ T . A

. LS L . LJ I 2 E . AS H1 4

_. 3 . R P - _

( . RE 462F9155414263415S0 5

. EV ( 11 111123T32 0 1 S e V 3 _

O e O0 D -

M e E E _

I e 3E E I - _

J C e EP P S _

e MS S R ) .

T e M T U s _

F e J3 3 - O t e SN N4909631o78 n7527019 H U V e I I 12436t 131 11 1 0 _

J e W W 3 F 1 O _

P r _

E .

. O 1

9 V

3 3

N

( O

- N L 1417s4 *1021D11 1180 M (

A 1 i 7 L T A A S C T V A t F n C O N

- O S I 3  %

C DT A' . O I P NCE E E E W W W W T I S F IENEN SES SWS NWN O R S WRNNEEESSSSSWWWNNNT E I I

  • P M D

y0 I

- - ~ --

FCC - CRYSTAL RIVED 33 FT WINGS (DEL Tl MAY 19F5 TEMP. LAP 3E kATE STA91LITY SLASS A WINO SPELO vcRSUS 3IRECTION (IN NUMBER OF 085.8 f

WIND WIPO 5 PEED (4 PHI AT 10 ME T E R LE VEL DIRECTION 1-3 4-1 8-12 13-15 19-24 >24 TOTAL ANE O 1 0 0 0 0 1 NE O O O O O O O ENE D 1 1 0 0 0 2 E- 0 2 4 0 0 0 6 ESE o o 2 0 0 0 2 SE G 0 0 0 0 0 0 SSE u O 2 0 0 0 2 S C 1 4 3 0 0 8 SSW D 0 to 3 0 0 13 SW D 0 3 5 0 0 8 WSW 0 6 14 4 0 0 24 W C 10 48 0 0- 0 58 -

WNW n 2 18 1 0 0 21

4W 1 S 1 0 0 10 NNW 0 0 0 0 0 0 0 N O 1 0 0 0 0 i TOTA. P 25 114 17 0 0 156 PIRIO3S OF CALM (NO. OF HOURS) - D y ........................................

TEMP. LAPSE RATE STABILITY CLASS 9 WIto SPEED WERSUS DIRECTION (Ih NUMBER OF OBS.)

WIND WIPO SPEE0 (MPHI AT 10 METER LEVEL DIRECTIO'4 1-3 4-7 6-12 13-15 19-24 24 TOTAL NNE P 0 0 0 0 0 0 NE O O 1 0 0 0 1 ENE O C 1 0 0 0 1 E G 0 0 0 0 0 0 ESE D 0 0 0 0 0 0 SE O O 1 0 0 0 1 i'

SSE O 0 1 0 0 0 1 S 0 0 1 0 0 0 1 SSW D 1 1 0 0 0 2 SW D G 1 0 1 0 2 WSW G 1 5 0 0 0 6 W 0 0 1 0 0 0 1 WNW D 2 0 0 0 0 2 NW 0 0 1 1 0 0 2 NNW D 0 1 0 0 0 1 N 0 0 0 0 0 0 0 TOTA. 0 4 15 1 1 0 21 ,

PER103S OF CALM (N3. OF H3 ORS) - 0

FFC - CtfSTAL DIV!4 33 FT WINDS (3EL Tl MAY 1975 TEM 7 L A Pic RATE STABILIlf CLASS C WIN 3 SPEED WE RSUS JIRECTIO1 (IN Nd19ER OF 085.3 WINO WI N3 SPEED (MPHI AT 10 METER LEWEL DIRECTION 1-3 4-7 8-12 13-15 19-24 >24 TOTAL HNE 1 0 0 0 0 0 1 Ne 0 0 0 0 0 0 0 ENE O O 2 0 0 0 2 E 0 1 2 0 0 0 3

' 0 0 1 ESE f 1 G 0 SE O 0 0 0 0 0 0 SSE 0 0 1 0 0 0 1 S 0 0 3 0- 0 0 3 SSW 0 0 2 0 0 0 2 SW D 0 3 2 0 0 5 WSW P 3 1 0 0 0 4 W C 7 4 0 0 0 11 WNW G 2 1 0 0 0 3 Nw L G 3 0 0 0 3 NNW 0 1 0 0 0 0 1 N 0 0 0 0 0 0 0 TOTA. 1 15 2? 2 0 0 40 PERIGOS 3F CALM (40. OF H3UdSi

- 0 Y

g ........................................

TEMa. LAPSI RATE STA91LIIf CLASS 0 WIN 3 SPEED WERSUS DI<ECTION (IN NUMBER OF 09S.)

WING WINO SPEED (MPHI AT 10 METER LEVEL DIRECTION 1-3 4-7 R-12 13-15 19-24 >24 TOTAL NME 1 2 1 0 0 0 4 NI O O 3 0 0 0 3 ErlE o 1 3 0 0 0 4 E 1 5 1 1 0 0 8 ESE O 2 2 0 3 0 4 SE 2 12 13 1 0 0 28 SSE 1 3 S 1 0 0 13 S C 4 2 0 0 0 6 SSW G 6 1 0 0 0 7 SW 1 7 14 6 0 0 28 WSW D 3 15 2 0 0 20 W 0 o 12 1 0 0 19 W4W i 3 8 1 0 0 13 NW D 4 6 0 0 0 9 NNW 1 2 3 0 0 0 6 j N 0 6 2 0 0 0 8 TOTAL 8 65  % 13 0 0 180 PERIOOS OF CALM (NO. OF HOUaS) - 0 l

FPC - CRYSTAL RIVER 33 FT WINOS (DEL Tl 14Y 1915 TEMP. LAP 5E RATI STABILITY CLASS E WIhD SPiE0 VERSUS DIRECTION (IN NUN 3ER OF OBS.)

WINO WIN) SPEED (MPHI AT 10 MERER LEVEL DIRECTION 1-3 4-7 S-12 13-15 19-2 4 >24 TOTAL NNE. 0 3 0 0 0 0 3 NE 4 5 3 0 0 0 12 ENE 2 5 5 0 0 0 12 E 3 12 2 0 0 0 1F ESE 2 17 1 0 0 0 20 SE D 30 4 0 0 0 34 SSE u 7 2 0 0 0 9 S 0 2 1 0 0 0 3 SSW 1 1 0 0 0 0 2 SW C 0 1 0 0 0 1 WSW 0 4 3 1 0 0 8 W 1 12 8 1 0 0 22 dNW D 2 7 0 0 0 10 NW i 3 3 0 0 0 7 NNW 0 E 1 0 0 0 7 N 4 5 2 0 0 0 11 TOTA. 15 115 43 2 0 0 1T8 PERIO3S OF CALM (13. OF H3 U+ SI - 0

? .........................................

o TE"D. L A P3 E RATE STABILIIY CLASS F WI h3 SPEED VEkSUS SIRECTIOM (IN NUMBER OF OBS.)

WINO WIh3 SPEED (MPHI AT 10 MET EE LEVEL DIRECTION 1-3 4-7 8-12 13-15 19-24 >24 TOTAL NNE 3 2 1 0 0 0 6 NE o 5 0 0 0 0 11 ENE 3 10 7 0 0 0 26 E 9 19 1 0 0 0 29 ESE 4 9 1 0 0 0 14 SE 1 15 0 0 0 0 16 SSE D 0 0 0 0 0 0 S D 0 0 0 0 0 0 SSW 1 0 0 0 0 0 1 SW D 1 0 0 0 0 1 WSW 0 0 0 0 0 0 0 W 0 0 0 0 0 0 0 WNW D 0 0 0 0 0 0 NW 0 0 0 0 0 0 0 NNW 0 1 O O O 0 1 N 2 6 1 0 0 0 9 TOTAL 29 T4 11 0 0 0 114 PERID3S OF CALM (40. OF HOURS) - 3

f' t

i i

5 4

r i~

l 1

i e f

I t

l I

t-J 4

0-f O

> e og e 89 >= M o e e e e e e e e N @

ed M en t e

, M J l @ N

o aeamacaeoaooaooaoa 6

O

[f

-t CW W J

' en me i 2 Jt M3 ta., @

M2 >4eooooeoeaeooeoeoe

  • W i .J Z .J

{ UM

. w og i in > taJ h - ' he e- et

@ MO We we 3M 2 0 M m. set

> &O es e o e m o a o s s e e o m o o n e

. 4 4W tt >W 4

MM O m-

=.

e see er

>M I .J 43 mN i+ t Bad EL M I ** **

- 8 O M se e

' l.

e.d

. n.aa I. e e e tJ e4 e e o e e e e G c o o u ce M CL 4O C 4

'{ E JW W m.

j M Ed taJ 2 e CL CL M dL M - M w t- 2 >= -3 6 see e me n

> *J" JJmo@AJJnooocoopoce4 I W1 M M N M A 2 ts.

O P.

ea s e

> O M -

2 e- m =

0

.J .s c ce N LA M ed a o e o a u o O O N J Z 4 e4 .J

> ex M 43 IV to O Q T

l C M M - e m O O t- 4 O CL T U t.1 til tai taa 2 2 2 2 t- M 6 M W 2 ed 2 M taJ M M2V 222 O -

tY 2 & 2 2 W W taa M M M M M 2 2 2 2 2 2 e., to

  • M &

'O sL

. - B-31 G #

i- -

, R i : E: , , . . ;: ii

, 3

. 0550000 5

_ 0. 0 9G 1

4 0 2 t.

F T 0 G

._ ol i

t 0800000 271

. SF

. S . S

. B 01 . A

. O . L C

_ . 4

. r 2 .

- . o - . Y

. 1 . T 5 . O 5 . I 0349510 N

7 . . L 246 9 . 8 II 1

._, 1 . , 1 3 2 2 . N . A

_ 2 0 0 . O . ST 1

  • 6 . I 3 . NS J E E . T 5. 2 . O J 0 0 . J 9 . IE 0 0 . . B 1 . TT

) 0 0 . I - . CA 0121700 T 0 0 . R 1 . ER 161

_ N 1 1 . T 5 . s 3 O L . . . S . . 1E I i 7 7 . I  ? . 0S T D . ) 1 . o J ( . . La

- 9 S . 0 . LL 1 S M . F 5K A 4 D L . E 9 .

T S

T N

I W

A C.

P S

22 1

3v r

VfC 0043130 1 2 G . T . O 1 . OI

_ T 0 . N 5 .

. 0 F 3 . I . DS

_. F H . W 7 . ZU

_. E 1' T . . NS P 3 I . . N<

S W . 57 . Ue h . 2 . SV 0026150

' 0 C S S . 73 . 1 4 W S G . - . Nrs I I H u 1 O W D T l 5 8

I 0 0 T F L t A 1 J' 3 A i E B T F < l V S . -

57 o

  • f F F 6 i 0008500

& a O 0 1 s 29 t

C - . - iA d R 2 1 n U - I *- 5 S 3 S 0 C' M M E 4 D J J

_. 0 F N' N F.

3 53 - S H L L .

1 k A 4 T T T N 2 O O L I T T W ~

1 214567

- s ,

,,. . od"

. . s -

{ I

' . 1i13s

_pl -

o a

4 s.* -

r t

r , -

1.

.J m

e=

e e e .*M .e o m @ .4 m e 4 A N 4 N @ o est s in en in d .6 4 N m M N sn N .*.4 am M e id M 3 M CD N pe Q A o O c c C O O O e m O cts Q O c o H

d LL e MQ r o m l e as tv

'l- o kta t #

, o M en as e F- .J e e td S taJ O' C e >Z D .4 o a o o o e s3 r3 4 e n o n o e o .4 o 4 w

{ vz a

.e ~ -

to e to w &

i  % o M te s m o aF e- eri

.* e as Q taJ ee e .J w E e w e- e- m

z .o o .e .4 .e - e .e .-. e .* a m .* u. o .e a

-, e. a .. -a N e

-m e TM e td n==e

- e >m >

  • >=
  • as e .J M

.J e JD em N ta, e- 4M- I .e C C"' a ft ti e L- *- e T ad E ecs J P A se Q N J .e e .4 .*te c .**. J sn o e eo= w .e as e se .4 N N m an we * .e l M e D N  ;

C oO C 8 l r a e. - w d -

~ o w - e

, 2 . .ouaw a M 2 e ZM  %^ h en t- e hm D M m- e ,F n ~

e u. z n ez.e. . . N m N N m .e e .. . . .c.r e N z 2 l m- o =.e e-e .e .4 M 4 m @ es .4 N .e N O M e 2 2 M LA I C

n SL Le e O D O en Z e a m w 7 e T

.J ee .O @ 4A O a @ c * .* O N .4 J O N h. Y =

44 .4.* 4 .J 9= sf 4 67 C.' >*

A

> as 1

W LL (**

C C r

e O M 43

e . -e m
.

(J ci >- O me B 2 C1+d 48 .o td 2 2 2 2 .e

- e4 m th w ene 2 bJ Z M taJ M M2M ~Z 2 7 O rY M 2 & Z Z td Ld bl M M M M M 2 2 2 2 Z Z t- LaJ >8 oo di I O

B-33 g%

u

~$

l I

P**

t F,

I'

. ["s t

4 e

i e I t e a 4

J J ,

W W t- >=

t O C

' l' >= w e # 4 og ** O O N ** es IA 05N O N fri t= O O N M w O O O N O 4 4 O O O we>=

4A M oe N *e e4 I E

'! M J M 4

' f' CD N O N

', O A O O O C3 O O O O O O O O O O O O O Q A O O Cp C O O O O O O C:p C3 O O O O C3 EL 66 Q

  • O
  • e 1 6W
  • C' rY he # 6 tas 4

' (E N E f%8 9 F J e

  • I ae M3 ** * &
  • M3 la O' MZ 'J> ee O C3 O es r3 C3 #9 C3 es O m M O O es O rs
  • MZ se r1 m O Cs O r3 r3 O O O C3 O ci O C3 O O 4 tel
  • 4 6e e

> f.

JZ J
  • JZ J u-w . n-

~' ( e i D w W

% b t6J e > hj a= 2 h. ** 6 >= 2 w W*

d.*

.e >4 O pa .4 e e.e c w -e JM EO 6 3 >4 Y t

' teJ >e ein M 6 M g= P3

-i Z eo o .e C3 O O O O O O O O O -3 e O 4 O O iA e mo O OC3OeOOOO OOO.4C OOOe 3 e i.s e e a t.s

  • ') t= fle 9 t= . tr M >4 D Mee m *% e= 6 93 6 t= les W e 9.9 6

>= V 6 >M A e3 == N -

  • e3 .= 8%s I h.8 JM Z ** O D sa: M Z ee O t O W fL 9 6 fv fL 8 A w .eW Z e C3 O N O C3 ee O em N ** eie u J so O .e en - e se aJ 3 es c O N fri e u O O N $2 M M C O O O .t GA "Je w LA 885 fP 9 MD er e.e M 4
  • O 3 eC C e o ec c 0 t ." a e.J 'es
  • J ad w

-j w taJ le t . 6 IJ kJ 2 9O $L M 9 ek & M

'L 'o M r*

  • aM M or

>= T Pm 3

  • T A 3 46 - =4s e S I O * *is M mo O e- Z -2 J **O N.$=4O O F.C3 O O .t eA N O es 4. I
  • e= Z ."' J 'JJ J e O O u'J 3 O e i og C O O u we N Z M* M W N 6 >4 >4
    • 5 2 1 et D T 7 th Q Q tV
t. e e e "JD O O

=4 7 Z n P' w M w 0 0

.D *e O O O C3 O O O v c c O L' F3 O c O C' E -e L.4 CS O O c3 6 2 O O O O O O O *3 C* O O Z 4 e J t= 4 4

%* L' O W Er b (3 n O P

9 O M Q M w e m w a m O b= W O C >= 4 Q

  • S-Q a' Z Q LaJ td LJ td 2 2 2 2 >= og 2 0 '* B ha hJ hs 2 2 2 2 >= e 16 +4 h 7 ha Z M h5 M M2M Z72 C (t >4 us Z ins 7 L1 s e t ta M 2 sn ZZZ c Y 2 Qf 2 E La ad :aJ M M M M M 2 2 2 2 Z Z 6=
  • LJ ** t

' >4 g 2 Ye Z Z s J e.J **J M M M M to 2 2 2 Z Z Z t=

e a O C i ..

B-34 f

h

e=e s .

t s

r=~ =

4

.2-i f~

b

~

J J 4 4

>= s=

e O O M we c3 N M e4 es we O M M M N ee M N O O b= J M J es c3 ** 80 4 O es LA ** eD N N @ ea e M ,e ,e we we e4 N == N iD ee

, e .

M 4 m J ED N (D N O A O C3 O O O O O es o c3 c3 O O O O O O C eOOOOOOOOOOOOc3OOOO ta. ta.

O e O e

t: M e CW taJ J e ed 3 m N e G1 N v 7 J e 6 7 ae M3 Lu @ 6 MD 10 @

M 7" s we O O c3 es c3 O O O c3 O c3 O c3 c3 O c3 c3 e MZ D e4 c3 O O O O O es O O O c3O cmc 3c3 O c3 4 Ed e et td JZ J e JZ J Q em o O ew sn = g a w 4, N 3= 40 e > ts t 8'P am 7 to fre e tT h e9 e4 MO nd we e MO LaJ es eM T I

  • JM F 6 e hJ em >= M e M h. M Z OO O e4 c3 c3 GB C3 O O c3 c3 ** O O O O O c3 O e4 6 03 O o *e O we ce O O e4 c3 o c3 ** O N c3 4 c3 O N
  • d a 3 sg tas 4 'd ens
    • t= sw 6 >= &

MM e M aw

= m e= e n n

b= id 4 e fel 4

' b. M e e= M q 4 "3 == N e 4D == N l = tt M I ** C2 e .L M I ** O f3 Of IL 8 e IV MG e em 4 4 taa 1 O U O e4 M == e4 C3 O N N N N O M e4 C3 m e :5L E C N N D J *1 M J M M J O e4 J c3 e4 N e4 MD w N e f## D w me e4 et M & D Q.

1"J es O O 8

  • 4O O 5
4. .J eaJ 68 e J taa LU M isa ed == e taJ d ,=

2 e& LL M e o Q. l'L M Q. t/* M fr o 11 t/1 M Q*

>= 3" N *3 e E P= 3 La. *aJ m m0 C e il O C 0 0

  • = 7 Z d *e O *e N O O es c3 O ** e4 M ce o e4 O J I e >= Z %J ** 'A *9 # N A J == La D 4 @ N M e4 4 N I M M M ee * >= M @

M 2 3 La.

  • 2 T La.

C C W

tas e .

. D ri O

    • 2 Z E M w M =

I 5

.4 es ss O C3 O O u O O O O c5 O O O t 3 C, O T ** ** W em om N 4-O O O c wen O W u D ee Z et .J e4 .J

> et 4 M C O T lb LL U O O Z 7" t Q M C M

    • e m 64 e r')

V, O e'= . e4 O m >= 4 C k 2 O tse 34 5 l43 st e 3 2 T E b= >4 7 Q l.ae ist 6.J Laj 3 3 2 2 t- M A ed ed Z Las 7 M td M e,i 2 M ?32 . O r/ M su M o 3 L* Z2Z O Y T Y 2 2 Id Ld taa M M M M M T 2 2 2 2 = > tal >4 3 rytu**Z 7ed 8 2.9 La 49 M M M M M 2 3 2 7 Z 2 >= 48 r M A M &

Q '3 B-35 i

t n n

f, p -- ,

F8C - N fS74L (1WE8 33 'T UI 40 , (J L Tl JJNE 137$

TEMP. LAP 5E WATE ST A3ILITY CL ASS I WINJ SPEE*) WERSJS 3I<ECT10N tIfl Nil 91E t OF 095.1 WINO dIra SPEED (MA41 Ar 10 1E T ER LEWEL DIRECTION 1-1 4-7 6-12 13-11 19-2 4 24 TOTAL

  • NME 2 12 2 1 0 0 17 NE 2 s a 0 0 0 to INE 2 17 5 0 0 0 .24 C 6 24 1 1 0 0 31 ESE 5 10 It 0 0 0 16 SE 2 25 2 0 0 0 20 -

SSE O 5 0 0 0 0 6 S 1 4 1 1 0 0 F

-SSW t 6 2 0 1 0 10 SW 0 2 4 0 0 0 6 WSW 0 6 7 0 0 0 13 4 0 13 20 1 0 0 34 WNW c 7 12 1 0 0 20 NW 1 1 2 0 0 0 4 NNW C 2 1 0 0 0 3

, N 1 2 1 1 0 0 5 TOTA. 23 144 54 6 1 0 243 Pd410JS '1 F CALM (1). OF N004Si - 0 TEMP. L APSE Fai- ST ABILIIV CLASS F WIN 3 SPEE0 WFRSUS DIRECT 101 IIN NUM3ER OF 095.9 WINO WIto SPEEU (MPHI AT 10 METED LEWEL JIMECTION 1-3 4-7 4-12 13-15 19-24 24 TOTAL

' NNi 3 4 C 0 0 0 1 NE 1 5 2 0 0 0 to ENE 1 7 6 0 0 0 14 E / 21 0 0 0 0 28 ESE 10 lb 1 0 0 0 2T SE 3 19 0 0 0 0 18 SSE O 1 0 0 0 0 1 S 0 0 0 0 0 0 0 SSW 0 0 0 0 0 0 0 SW S G 0 0 0 0 0 WSW D 0 0 0 0 0 0 W u 4 1 0 0 0 1 WNW I O O O 9 0 1 NW 0 0 0 0 0 0 0

'- NNW L C 0 0 0 0 0 N 0 1 0 0 0 0 1 TOTA. 2a TO 10 0 0 0 108 PERIOJS OF CELN (13. OF HOURS) - 0

e=

't

i. 9 s

- m-

.f i

e.

i l l.

e i

f *' .

I am$

4 0-O a > c e M O' 4 m e e e e e e e e a .e e i , N en e

i M J tr! N t C A mecomecomecconoco te.

1 , o i

r-? tS W

- t w 4 m- N 7 .8 9

, -M3 4Af @

J m2 3e ** a e a e e e e e e o e o e o o e o e to

.J K ' .J UM" in W A - > tsa m wF em e w wQ taa **

JH ve  :

isA M em P1 F

m

, S.u. U . $MemeccomeccameOOSe me n' ,

, MM m P4 b.

e- sat sv i f >= d.

.h n 'S mN s es fY v1 I *e u ti t A 0 w *d w Y. e sa e e n C G e o m u c o c c u e m I ' M s/t D g 'w r O eC -C 8 >

z .J ta - s-

-e ta i tea e 3 eL L M CL e ta c' w E A 3 O

13.

aug

-Q ist De .

-. f. .Gs o o N n. v == c o e o a o a o , e a

>4 ,4 r

m ~S X law C

X-i e D O 2

s=.*;

c m =

0

.4 ==e L' c se P , == 0 3 2 O O O C" C1 C Ce e ft E

<f .J a t- 4 e V U

'Y k O O Z~

s O s,1 w e n Q OI , 4* O ft 2 O'* tat sa a nel tal 3 3 T 3 k* >e

- k t e trJ F ad 7 - V **fti 'M3P 77E 7 F 2Y M 2 2 h3 leJ LJ M M M O M 2 Y T 2 2 2 e. e.g L

F

~

B-37

'h

._'J l

w . -, . - - -- .-----.-,.,s, ,m,.

r,,-, 4 -, , ,--- ,

. .. a . . - - -;. , 1 . _ _ , . _ , _ , _ , . _ ___ __ ,, , ._ ,

2r 4301 7JiwAtt SF WIN 3 SPJf3 OIST413JII3tt Fac - cof 2T AL NIVER 33 Fi WIN 05 (3EL Tl JJ.Y 1975 TOTAL N'J M A I S OF EIAGINGS 6.04000E*02 TOTAL itJM1Id OF wi4 DIf4GS dITHOUT 3A.MS ' 5. 010'0 0 E

  • 0 2 eseeeeeeeeeosoeeeeeeeeeeeeeeeeeeeeeeeee.
    • WING SPEED 01STRI90T10th NO Or 985.

LT .i .5'J-3.5 3.51-7.5 7.51-12.9 12.51-11.5 19.51-24.0 GT 24.0 3 Yo 243 280 43 2 0 eeeeeeeeeeeeeeeeeeeeeesseeeeeeeeeee.....

T w SUMMfd OVIP ALL 3IRECTIOM

  • WIN 3 Solt.D nIST H"JTIuta vc; SUS T198 LAPSE RATE S T A3 IL ITY CLASS (NO OF 08S.9 4 3 C 1 2 F G 1  ; O C 9 1 1 1 2 4 0 1 8 9 13 2 3 19 6 15 55  % 25 8 4 71 9 32 90 TO 2 0 5 9 3 4 21 4 0 0 6- 1 u G 1 J 0 0 7 0 0 0 0 0 0 0 l

e -. ,

.J' o

I f

I l

\*

f

  • f I

k a

el s=

, O

>se@MJME@NNJ@JeNese

    • N @ @ J J N fu N hm IP en N *e e'

=

M e

'4J M J M G' N

, D= 0 A O O O O O c3 e o o e o t3 O C3 o O O M

J La.

e MC e CD

. e et O' j e >d J e Mm N e v .,J t e 44J 3 taJ @

  • t- 2 aus ** es .4 c3 o e o o e ce cs c3 o r3 o es o N e 4 ist e GZ .J

+

e M f @

  • sa w a N . M w
  1. P e A 2 t- s*

es e as O taJ va e J te E e s > e to M .

.J e eU C*eoae ecweo oMJ@e43 se ee 3 e CL La' *"* N J 9- e FY L e td M

= e a= e e. ,?

e= o er e .J M t .J e .J 3 oN time e 4M Z *e M O e tk (L I w a .af est 3* e P81 M ee N # M J @ N A m N c:a en m =* 43 O e las 3D w N es se eeseweM N M N ** J M e 3m N we O e CO O e E o taa L.a M e C ase tsa . 4 I

O e

  • J (L tL M

, e v eo M ct -

to e E A 3 fM 4 o 3m "4 e O o e 41 i Z J A 9 N N *e CP N C N M N er M J >' N Na I 3 P* e M ** ee y M N og ,, we e.e ,e we .9 C

.* e T T fd L. I C

b ta, een e c

} O

-e 2 e llL *1 w n t P we ce J M C" N N fd O e . W. p we se u ee r3 4 L =

at e J e= 4 (9 ej *!.

o.

> af

'T L O

. U O 7

4 O 'o LD M e m 7 O O0 e4 O ad ft 2 O ed LJ be 3 2 t 2 e- M M 4 . e o est 7 ed 2 M 'u fe

'J M2M ZTC C &

sg M

3 Y Z Z tea t*J hJ M M M M M 2 2 T 2 2 2 H M i M (L E

i. *3 i

.. B-39

(',

i 4 - - - - m ~ ,. -

FFC - CFYSTAL PIVER .4 3 FT t:INDS l')EL Tl JdLY 1175 TE12 lap 5E FATE STABI'ITY . CLASS 4 WIhD Spd(n dilSUS JI<2CTION (I N NUM3ER OF 085.3 WIto . WIta S AEc.L IN2 H LT 10 METER LEVEL DI Pf C T I O~4 1-3 4-7 5-12 13-11 19-24 *24 TOTAL NNE O 2 2 0 0 3 4 NE O 1 1 0 0 ,

0 2 I:4E 1 3 6 0 0 0 10 I 1 1 5 0 6 0 10 CS I O 1\ 3 0 0 0 4 SI L 3 1 0 0 0 4 SSE C 1 2 0 0 0 2 S 0 1 3 0 0 0 4 SSW 1 1 5 1 1 0 9 SW G 3 4 5 0 0 12 WSW G 4 13 2 0 0 19 W 1 12 17 0 0 0 30 WNW D 1 11 0 0 0 12 NW D 1 2 0 0 0 3 Ni4 W 1 u 0 0 0 1 N D 2 1 0 0 0 3 TOTA. . 33 77 9 1 0 129 PERIO3S 3F CALM (1). JF H3J73) - O e....................e......... ...... .

Y

$ T!W. LAP 5E <4TI ST ABILITY CLASS B W!tS SPFE0 VERSUS 314FCTION (IN NUM9ER OF 005.5 WIrl3 WI NG SPEED (MAH) LT 10 1ETEG LEWEL DIRECTIOtt 1-3 4-7 8-12 13-19 19-24 *24 TOTAL Ntti 0  ? ( 0 0 0 0 G G 0 0 0 0

4E O ENE o 0 1 0 0 0 1 E O O 1 0 0 0 1 ESE o n 1 0 0 0 1 SE O c 0 1 0 0 1 SSE D 1 0 0 0 0 1 S 9 0 2 0 0 0 2 SSW D 0 0 1 0 0 1 SW 0 3 1 1 0 0 2 WSW D 0 2 0 0 0 2 W G 1 0 0 0 0 1 WNW G 1 0 0 0 0 1 NW D 1 1 0 0 0 2 NNW D G C S 0 0 0 N O O O O O O O
TOTAL 1 A 9 3 0 0 16 i PERIU)5 OF CALM E t
3. 0F HOURS) - 0

- - ~

._N  ; ,. . . . ~ ~_ ___ ___ ___ , _, . , . _ _ _ _ _

FDC - C4YSTAL FIVd? a3 FT CINO3 (3LL Tl JJef 137h TEHd. 6APSc e.A T : STABILITY CLSSS C wit 0 SPLED VE *SJS JItFCTION (IN NUN 3E4 0F 00S.)

WIN 3 _

Alt 41 PEED (Mht At 10 METIE LEVEL UI42CTION 1-3 *-7 5-12 13-11 19-24 *24 TOTAL NNI C J L 0 .0 0 0 NE O 2 0 0 0 0 2 E1E O 3 5 0 0 0 8 E O- 1 3 0 0 0 4

  • E e. E . 0
  • 6 0 0, 0 to Si C  ? 1 0 0 0 3

'SSE G- 0 2 0 0 0 2 S 0 2 2 0 3 0 4 SSW- 0 J. 1 1 0 0 2 SW D 2 2 2 0 0 6 WSW G 1 3 1 0 0 5 W J 1 3 G 9 0 4 WNW G 0 2 0 0 0 2 tiW 4 'O 1 0 0 0 1 N1W 1 3 1 0 0 0 2 N J o 0 0 0 0 0

' TOTA. 1 in 32 4 0 0 55 PE8tIO3S OF r: AL M trn. OF HOURS) - 0

..............es,....... ee.............

. TiMP. L A P9E K AIE ST A BILIT Y CLASS 0 wit 0 SPEED VERSUS DIRECTIO1 (I N NU13ER OF OBS. )

WIND wit 0 SPEED (MPH) AT 10 1ET ER LEV EL

, DIRE C TI ON 1-3 4-7 6-12 13-15 19-24 *24 TOTAL

  • etN E C 1 (' O O 0 1 NE 1 2 d 0 0 1 0 4 ENE O , 1 0 0 0 5

? 1 1 5 0 0 0 9 ESE O 7 2 0 J 0 9 SE 1 s b 0 3 0 9 SSE D 9 7 0 0 0 15 0 0 h 4 0 0 0 9 SSW 1 0 2 1 0 0 4 SW 3 4 21 16 0 0 44 WSW D 6 35 4 0 0 48 W 0 4 n 0 0 0 11 .

' 0 0 3 WNW 1 1 1 0 NW G 2 1 0 0 0 3 NNW D C 0 0 0 0 0 N O 1 0 0 0 d 1 TOTAL 8 Sb 90 21 1 0 1F5 PERIO35 Or CALM 143. OF H3uPS) - G

7 -- (

.i

_ _,1 FCC - CRfSTAL PAVER 33 FT DINOS (1E TI JULY 1375 TEMP. LAPSJ LATE STABILITY CLASS E Wild SPEEu WE RSUS 3IRECT131 (IN NUH3E81 0F OBS.)

WIN 3 WI NJ SPIED ( H 7 HI AT 101ETEA LEVEL DIDICT!0:4 1-3 *-7 8-12 13-11 19-?4 *24 TOTAL

.NNi 1 1 0 0 0 0 2 .

, NE O '3 .2 8 0 0 5 -

ENE 1 27

  • 0 0 0 36 .'

E. 2 21 2 0 0 0 25 ISE 2 o 3 0 0 0 11 .

SE 1 20 1 0 0 0 22 SSE 1 3 3 0 n 0 7 5 0 1 4 0 0 0 5 SSW- 0 1 4 1 0 0 6 SW D 4 9 0 0 0 13 WSW D 1 il 2 0 0 20 W D 1 A 0 0 0 10 WNW f; Q 6 0 0 0 6 NW L 0 .0 1' O O 1 NNW C 2 2 0 0 0 s N 0 3 0 0 0 0 3 TOTA. e 94 70 4 0 0 176 PERIO3S OF CALP (N3. OF HOUJS) - 1 to IEMP. LAP % DATI STABILITY CLASS F h MIN 3 SPEED VE* SOS 3IRECTION (IN NUH3ER OF 09S.)

WIN'l WIN 1 SPEED suPH) Ar 10 METEE LEVEL DIRE C T I ON 1-3 4-1 8-12 13-19 19-24 524 TOTAL NNi C 1 1 0 0 0 2 NE  ? o 0 0 0 0 6 ENE 1 5 0 0 0 0 6 E 5 P 0 0 0 0 13 ESE 3 2 1 0 0 0 6 SI O 4 0 0 0 0 4 SSE 1 0 0 0 0 0 1 S 0 1 0 0 0 0 1 SSW 0 0 0 0 0 0 0 SW q 0 0 0 0 0 0 WSW D 0 0 0 0 0 0 W D 0 0 0 0 0 0 WNW D n 0 0 0 0 0 NW D 0 0 0 0 0 0 NNW 0 0 0 0 0 0 0 N O 1 0 0 0 0 1 TOTAL 15 2r 2 0 0 u 40 Piv.IOOS OF CALH (NJ. OF HOURS) -

1 4

e

4 - -

f @b I

(~

p.~

f I

'S f

l~

J W

an.

O b= N N e M M N e e e O e e e e e o e

! '8 i

i

  • M 4

!  !' e N o Amonemonamono mmeno k

i O 9

OW l W 4

, - N E J 9 M3 WP t M2 3M m e e C3 m m e m e ts m e e m c o m 4 W

' \ J2 .J l UM i @

  • In 4 N > W m t. T em. e ed MO W **

JM F 0 s > M be M ,

j J mu O,eemmeesecomescocee t M 4W *

% 8= W I' -

MM am M t=

to Ld W e= M J d3 am N 1 W WM I ee we I n W & 4 I w LJ est en s E e C3 e e en e e e e o e e e e o o e e w

M &

C eO O 9 2 .J W sd M taJ ed

  1. & & M

, M . &M b=

M N

N E 3 (e. LJ S OI O s 2 aT. 4 N N e we ** N O O O O C3 m O O O e e 2

' M M M M 2 '2 6 sd O

'Bd e 2 m M

Of M 2

w e

J os e O e O N O CB O es C3 es c e C3 O C3 N E

  • J b*

M 4 n.

U N k O O 2

9 O M w _s O

s. O O t= 4 O

& 2OW td Ld W 2 2 2 2 t= M k M ad 2 W 2 M 'd M M2M 222 O M i

2&22WWWMMMMM M

2 2 2 7 2 2 D= id Q.

? O *-

1 s=u i._

t .

4 I

W

7 q -q 24 HJut SUMMA 9Y OF WING SPEED DISTRIBJTION FSC - CRf STAL RIVER 33 FT WINDS (DEL Tl 4U3 1375 TOTAL NUMBER OF READINGS r.12000Et02 TOT AL NUM9ER OF READINGS WITH3UT 2 ALMS 7 12000E*02 e.......................................

NING SPEED DISTRI30 TION. NO OF OBS.

LT .5 .50-3.5 1.51-7.5 7.61-12.5 12.51-18.5 18.51-24.0 GT 24.0 l 0 104 422 180 5 1 0 I

SUMMED OVER ALL DIRECTIO1S Y WIND SOEE.) DISTRIRJTION VERSUS TEMS. LAPSE RATE STABILITY CL ASS (NO OF OBS.B

$ 4 8 C 3 E F G 1 0 0 0 0 0 0 0 2 2 0 4 15 37 38 8 3 32 16 17 73 150 121 13 4 10 8 15 50 28 8 0

' 5 0 0 0 3 1 1 0 6 0 0 0 0 1 0 0 7 0 0 0 0 0 0 0 e

)

1

-3 - --.3 FPC - CRYSTAL AIVER 33 FT DINOS (DEL TI AUG 19T5 oweeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee SUMMED OVEE ALL TE9P. LASSE RATE STABILITIES

, WIN 3 SPEED WERSJS GIRECTION (IN NU93EEt OF OBS.)

WIND WIN 3 SPEED (NPHI AT 10 METER LEWEL DIRECTION 1-3 4-1 3-12 13-18 19-24 524 TOTAL NNE 2 7 3 0 0 0 12 NE , 9 16 13 0 0 0 38 ENE 12 57 14 0 0 0 S3 E 21 87 F 0 0 0 115 ESE 20 59 to 2 0- 0 91

. SE 10 40 5 0 0 0 55 SSE 4 16 6 1 0 0 27 S s 11 4 1 0 0 21 SSN 1 9 5 0 0 0 16 SW 5 20 21 0 0 0 46 WSW 4 13 23 1 0 0 41 W 1 52 34 0 0 0 S7 WNW 1 10 23 0 0 0 34 NW 2 6 9 0 0 0 17 NNW 4 8 1 0 0 0 13 N 3 11 1 0 1 0 16 y TOTAL 10* 422 1SO 5 1 0 712 PIRIO3S OF CALM (13. OF HOURS - 3 NISSI4G OLTA (NO. OF HOURS) - 32 4

4 4

4

[~~ j~ . n  ! ! 8 FFC - CR fSTAL RIVFP 33 FT WINDS (DEL Tl AUG 1975 Timp. LAPiE R1TE STABILITY CLASS A WING SPEED VE45US JIRECTION (IN NUMBER OF 085.8 WIN 3 W I N) SPEED (MP HI AT 10 METER LEVEL DIRECTION 1-3 4-7 8-12 13-19 19-24 >24 TOTAL NNE S 0 0 0 0 0 0 NE O 0 0 R 0 0 0 ENE O 0 4 0 0 0 4

  • E- 0 a 3 0 0 0 11 ESE O 2 1 0 0 0 3 SE O O O O O O O SSE o 0 3 0 0 0 3 S 0 0 0 0 0 0 0 SSW D 1 0 0 0 0 1 SW D 2 2 0 0 0 4 WSW 0 4 5 0 0 0 12 W D 12 26 0 0 0 38 WNW 1 2 19 0 0 0 22 NW 1 0 4 0 0 0 5 NNW 0 0 0 0 0 0 0 N O 1 0 0 0 0 1 TOTA. 2 32 70 0 0 0 134 PERIO3S OF CALM (M). OF H3URS) - O e,seeeeeeeeeeveneeeeeeeeeeeeeeeeee......
  • TEMa. L APSE R ATE ST ABILIT T CLASS B WING SPEED VE RSUS DIRECTIO4 (IN NUMBER OF OBS.)

WIND WIND SPEED (MPHI LT 10 NET Ek LEVEL UIRECTION 1-3 4-7 8-12 13-19 19-24 >24 TOTAL NNE O O C 0 0 0 0 NE 0 0 1 0 0 0 1 ENE o 0 0 0 0 0 0 E O 2 0 0 0 0 2 ESE o 0 1 0 0 0 1 SE e 0 0 0 0 0 0 SSE O O O O O O O S 0 3 0 0 0 0 3 SSW 0 0 2 0 0 0 2 SH 3 1 1 0 0 0 2 WSW D 0 1 0 0 0 1 W D 5 0 0 0 0

  • 5 WNW 0 3 2 0 0 0 5 NW 0 2 0 0 0 0 2 NNW C 0 0 0 0 0 0 N 0 0 0 a 0 0 0 TOTA. 0 16 8 0 0 0 24 PipIOM OF CALP m . OF HOUOSI - 0 a
l i

. t FDC - CR7ST AL PIWER 33 FT C]IN05 (OLL Tl 4'J G 19 7 5 TEMP. LAPSE RATE ST ABILITY CL A3S C WIN 3 SPEED WERSUS 3IRECTION (IN NUMBER OF OBS.)

' WINO WIPO SPEED (17HB AT 10 METER LEVEL DIRECTION 1-3 4-7 8-12 13-15 19-24 >24 TOTAL NNE O 2 0 0 0 0 2 NE 1 0 0 0 0 0 1 ENE 2 0 0 0 0 0 2 E D 2 0 0 0 0 2 ESE D 1 0 0 0 0 1 SE O 0 0 0 0 0 0 SSE O 1 0 0 0 0 1 S 0 2 1 C 0 0 3 SSW 0 0 2 0 0 0 2 SW 1 2 3 0 0 0 6 WSW D 1 4 0 0 0 5 W D 2 3 0 0 0 5 WNW D 3 1 0 0 0 4 NW 0 0 2 0 0 0 2 NNW G 1 0 0 0 0 1 N O O O O O O O TOTA. 4 17 16 0 0 0 37 PERIO3S OF CALM (N3. OF HOURS) - O e........................ ..............

, TEMP. L A PSE RA TE ST ABILITY CLASS 0 A WIN 3 SPEED WERSUS SIRECTION (IN NUM3ER OF OBS.)

  • WINO WIN 3 SPEED (MPHI AT 10 METER LEWEL DIRECTION 1-3 4-7 8-12 13-19 19-24 324 TOTAL NNE O C 1 0 0 0 1 NE o 2 2 0 0 0 4 ENd 2 3 1 0 0 0 6 E 1 7 2 0 0 0 10 ESE 2 7 4 2 0 0 15 SE 1 4 3 0 0 0 8 SSE 2 7 3 0 0 0 12 S 2 4 3 0 0 0 9 SSW D 6 2 0 0 0 8 SW 1 15 15 0 0 0 31 WSW 2 2 8 1 0 0 13 W D 6 2 0 0 0 8 WNW D D 0 0 0 0 0 NW 1 3 3 0 0 0 7 NHW 1 4 0 0 0 0 5 N . u J 1 0 0 0 4 TOTat 15 73 50 3 0 0 141 PERId3S OF CALM (N1 OF HOURS) -

0 i

- . _. _. , . .___s . . _. _ _ . ,

_ _ , , ._.__s t . i 1 FPC - CRYSTAL RIVER 33 FT WINOS (CEL TI AUG 1975 TEMP. L AP5E RATE ST ABILITY CLASS E WIN 3 SPEED WERSUS DIRECTION (IN NUMBER OF OBS.)

WING WIPO SPEED (M2HI AT 10 1EriR LEVEL DIRECTION 1-3 4-7 S-12 13-15 19-24 e24 TOTAL NME 2 5 2 0 0 0 9 NE 3 12 8 0 0 0 23 ENE 3 19 5 c. 0 0 28 E 5 22 1 4 0 0 28 8

ESE 8 19 3 0 0 0 30 SE 3 is 1 0 0 0 22 SSE 1 5 0 1 0 0 7 S 2 2 0 0 0 0 4 SSW 0 2 0 0 0 0 2 SW 3 0 0 0 0 0 3 WSW 2 6 2 0 0 0 10 W 1 27 3 0 0 0 31 WNW 0 2 1 0 0. 0 3 NW 0 1 0 0 0 0 1 NNW 2 3 1 0 0 0 6 N 2 7 0 0 1 0 10 TOTA. 37 15 0 28 1 1 0 217 PERIO3S OF CALM (90. OF HOURS) - O eseeeeeesesseseeeeeeeeeeeeeeeeee. .... .

  • ts
  • . TEMA. L AP3E RA TE ST ABILIT Y CLASS F wit 0 SPEED dERSOS 3IRECTION (IN NUM3ER OF OBS. )

WINO WIto SPEED (MPHI AT 10 METER LEVEL j OIRECTION 1-3 h-7 8-12 13-15 19-24 >24 TOTAL NNE O O O O O O O NE 5 2 2 0 0 0 9 ENE 4 35 3 0 0 0 42 E 13 40 1 0 0 0 54 ESE 7 24 1 0 0 0 32 SE 4 17 1 0 0 0 22 SSE 1 3 0 0 0 0 4 S 1 0 0 1 0 0 2 SSW 1 0 0 0 0 0 1 SW n J 0 0 0 0 0 WSW 0 0 0 0 0 0 0 W D 0 0 0 0 0 0 WNW' O 0 0 0 0 0 0 NW D 0 0 0 0 0 0 NNW 1 0 b 0 0 0 0 1 N 1 0 0 0 0 0 1 TOTAL 39 121 S 1 0 0 158 PERIO3S De CALH (17 OF HOURS) - 0 1

9 2

m -

I f.

I' I

, . t=

i

  1. e i

4 8

4 I

s r -

e d

J 4

to 2- O 7 wooweemoemoooooomw N

6 i , en, M &

C3 N O A o e @ o o e 3 e en e cs e es e o e e W

O t) Q s taJ 4 set fu -

i T J t M3 taJ O'*

M 1P >*8CJcme e oesesesoeseesee ecmen af tsJ JZ of QM'"'

I/

in > hJ A w 1P t et f% M f"1 Id ,e H Jm T 1 g M b #9 O t!) L1 O eas e e eseses o e e es e esesasesas a

! 9 4 hJ "

wg b es I

7 94

. . r3 6 m- et a n'

>= M J et 3 mN t:J _3M Iw g f5 N fL e

    • aJ W 2 EF3 Cs Q O rt O e O Cs a 63 O Q c g3 Cs Cs e em D ein Vt &

O at O Q g F .J h a naa

    • e4J tas a 2 e4 1 M fl. t/l M E

> 7 p.

3

4. Lu q

>= t"t i O M

Z J c C O @ @ we O Cs es O C O Q c c O 883 Z M ee ce Y 2 2 L Q

tr 4 e

% O

  • ~ 3 x *a w I

-

  • c., O se N P3 N o e o cs G Cs c3 o o e e E G

)- .J

' at i< Q U la Q O 7

t O M N _J O i

, t.) O t= et O C. .

4 K U taJ 'W. tai Lab 2' 2 2 2 n= M M td 2 kJ 7 e td M M2M Z2Z O tv 2 E Z 2 bl W kJ M t/l M M M 2 2 2 2 2 2 t= id M &

Q^

B-49 f

  • -ar
  • O t

t .  ! +

24 H0ut

SUMMARY

OF WIN 3 SPEED DISTRI8JTION FPC - CRTSTAL RIWdW 33 FT WINGS (DEL Tl SE*T 1975 TOTAL NUM3fR OF READINGS 7.19000E*02 TOT AL NUM36R OF READINGS WITH3UT CALMS T.19000E+02 ,

WIND $ PEE 3 01'f.RISOTION. NO 0: OBS.

LT .5 .50-3.3 1.51-T.5 7.51-12.5 12.51-18.5 18 51-24 0 GT 24.0 0 So 3/5 2J7 20 5 1 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeovese w SUMME0 OVIR ALL DIRECTIO1S O*

WIN 3 spied DISTRIRJ TIDH Vt.RSUS TE1P. LAPSE RATE STASILITY CLASS (NO OF OBS.I A 9 C D E F G 1 0 0 0 0 0 0 0 2 1 1 5 16 23 29 11 3 45 to 16 S6 150 50 10 4 T3 11 24 7F 46 1 8 5 1 2 1 10 6 0 0 6 0 0 C 3 2 0 0 7 0 'O O O 1 0 0 s

O t

  • =

~ . - - . -

r-k W

m

?'

5

,e -

a d

t J

e

>=

g- O

>= d Lf4 4 N d @ @ O P e J e N N # J @

f . N e 65 e 4 4 4 N e4 he m N est N N en se 4 ed ee N 1

m

! M e taJ M J f NO N

, be Q A O O O O O O O e4 O O O O O O O O +4 ee o eJb

.eO

$ G3

  • et M
  • h= LaJ J

$ M Me N 6 2 .,8 9

  • Id 3 ka @

f

  • b= 2 > we O O O O O O N N we O O O O O O O sa et hi
  • *V 2 J e e.ie M S 'd ** ZE N 6 (A LJ fut 6 4 2 a si
    • e eQ Laa .e 6 J ke F G ein e he m a o eQ O .4 O tJg O O 4 4 m) N O N .4 O .4 O O ,e O U e & tat *

N

  1. A 6 E fr I'
  • taJ >4 an D to P'9 b b $ e 9 J CA d O

.J ~h om N l's O eM z e4 O f' 9 fF & 4 4, == e sr u F e @ d e4 se # N J M n P3 @ rA O N en P. N we 9 tel 9a w en N we ,4 as se se he ** Ao m M 9 D N O e CC C a e

I 2 e se t kJ be 9 f'i ltj l *J am l

'l 2 D L' ft (L (A

' S TM M fV e.

m e L N e

7 m b 7O 9 0 f"i Y M

e M2

>e (z 4 M c 4 m o =* a G e .e O m a e io s en z 'a

  • 4 e4 P @ 4 W3 N e4 *4 N N ** N N O l

- .e 2 2 m . ,z

(* : o

' aJo 6

,+

D e c e

n 7 - e a wi . c J

l 2 C2 N e eelP364 N N N e- J O M N P N M L w M

+4 N e4 s- J e3 47 M (* >=

> n

& 14. O O- r')

1*

4 C' #1 0 e-o .s r'3 7

4. O O> et Q ke (L T O 'al 14 hJ tas 2 2 2 2 > pe M 4 **td 2es2 a M ed M M 2 In 222 O fv M 2 T 2 2 taJ nnJ LaJ M M M M M 222222> 'eJ *=e me fL 2
L' s_n l,_

-r- - - 4 -- - v --- -

e =-

=M.

r-r r

r-A-

?

  • r f

i f' a 4

4

.A .J W W 0- D=

, O Q

> # M d N O N N we N O ** Pm O in M d O M O J M d N ce O N N O ** M C O O O J as es ed es se N n# N ed m a e e M O M A CD N tD N O A O O O O O O O O O O O O O O C3 O O Q A O O O O C3 O C3 O O O O O C3 O O O O 6 LL Q o O e

4 (Y e OW

  • sJ J e td 4

' en N e at no 3

7 .J B e F .J 8 M3 hJ 05 e M3 Bd @

M2 a +4 c5 O O et c3 O c3 O C3 O O O en o O O en

  • M2  % e4 es em c3 C3 C3 C3 C3 c3 O n c3 O O O c3 e3 o er Rd e 4 LaJ f a2 .J e J2 J

[ () M e UM*

l @ w (E o I s N w se e e > hJ m 6. 2 6. e o e- F m. as

.e MC .a ,e e Mn uJ e

.s >e rI e 3M F e be e-e to M e M t= M

& OO O *e O ed O O O O O O OC3 O C3 O O O O **

  • OO C **
  • e O N E3 O O O O O O O O O p C O O N be er h3 *e e 4W M >= W e 6 tY (A e-o e M ke em m to e O >m t= er e era er te.s p ga e to M

.a W

er 3 eN A- *4 O e

e W "4 4Y M

= N Z og C:

} tt M O o n. e e av ae s = id eaa X O M (P Q nn N .4 N we we O 4 N A LA M M M e '*J taa X O O N N N N ee O O ** O O *e o O O c3 4 (A D w we .e N e fo D w we to 4. o a O es O e I e 4O O e Z .2 J nsa e .J sa td M hJ .e s e e W taJ

$J e CL & M e

  • Q. O- ir-
  • a to M W e aM M PA to y h. 3 e r Pm 3 6 id O m8 O e td O O I c3 e= 2 2 -t ** M O #= ** we O c3 ,* O @ A M et c5 ** n 2 * *Z 2 F e O ** M O O O N ce c ce N O O O O *J I M >4 ke en # e M ke v4 M 2 2 6 4 2 2 6 O C Ch L.s e e

% *) f%

M 2 2 C. M w M w I O

.A ce C O C3 C3 O CJ Q O C, O ed O O O O O ** 2 == C7 La C3 4 o u r3 O O u c3 o O O C u ce Z 4 .J .J 8- eg M M U L.'

8Y LL La O O C-T 2 9 Q #a O M

    • a m >4 J m O O b= at O O D- 4 O

% 2 O bl sJ a taJ taJ 2 2 2 2 >- ke 2 O Id tai td sea 2 2 2 2 e- >e La. e-o 'd 2 h t 2 M est M to 2 e 227 O of >elas 2 hJ Z M LaJ M M 2 (M 222 C (Y 2 W 2 2 d ed hJ M (M M M M 2 2 2 2 2 2 t= uf 2 CL 2 2 Id LaJ f.aJ M to M M M 2 2 2 2 2 2 e- ** t M G. M C-O 3

, w B-52 e,

~_

l.

. _ . . _: _ J. t . ._ . . 1 4

F3C - CRYSTAL WIWEE 33 FT WINGS E3EL is SEPT 1175 TEMP. lap 5E RATI STABILITY CLASS C WIN) SPEED WERSuS J1tECTIO1 (IN NUM3E.1 0F 09S. I WIN 1 d!to SPEE3 (MPHI 4r 101Er En LEVEL JIRECTION 1-3 4-7 8-12 13-15 19-24 324 T3TAL HNE 1 0 1 0 0 0 2 NE O 1 4 1 0 0 6 ENE D 1 2 0 0 0 3 E O 1 0 0 0 0 1 ESE 1 2 3 0 0 0 6 Si 1 1 1 0 0 0 3 SSE o 2 0 0 0 0 2 S 0 2 0 0 0 0 2 SSW 0 0 0 0 0 0 0 SW i 0 3 0 0 0 4 WSW G 1 3 0 0 0- 4 W G 1 0 0 0 0. 1 WNW 1 1 2 0 J 0 4 NW D 1 1 0 0 0 2 NNW D 0 0 0 0 0 0 N O 2 4 0 0 0 6 TOTA. 5 16 24 1 0 0 46 PERIO35 OF CALM (13. OF HOURSI - 0 7 ........................................

C TEMP. LAP 5E PATE STABILIf f CLASS 0 WIPO SPcEO WERSUS DIpECTIO4 (IN NUMBER OF 00S.9 WI N7 WIto SPEED (MPHI AT 10 METIE LEVEL DIRECTION 1-3 ,-7 8-12 13-15 19-24 >24 TOTAL

  • N1E O 4 2 0 0 0 6 NE 1 11 ?5 0 0 0 3F ENE 1 5 4 0 0 0 10 E 2 6 2 0 0 0 10 ISZ 1 10 0 1 0 0 12 SE O 4 3 4 0 0 11 SSE 1 5 0 1 2 0 9 S 1 0 0 0 1 0 2 SSW 1 4, 3 0 0 0 8 S:t 1 9 10 2 0 0 22 WSW 2 9 0 0 0 0 10 ,

W 0 2 0 0 0 0 2 WNW 4 1 1 1 0 0 F NW D 4 5 0 0 0 9 NNW D 3 2 0 0 0 5 N 1 10 20 1 0 0 32 l TOTA. 15 46 71 1J 3 0 132 PIi!O)3 JF MLH (1). OF HOUiSI - 0

FPC - O'tf S TAL v!VER 31 FT WItOS (3EL Tl S F.# T 1315 TE M D. L APSE MAfi ST ABILITY CLASS E WINJ SPEED WERSUS DI<ECTION (IN NUM3ER OF OBS.)

WING WItu SPEED (U MI Ai 10 METER LEWEL SIRECTION 1-3 4-7 9-12 13-19 19-24 324 TOTAL NNE 1 4 3 0 0 0 12 NE 2 22 16 1 0 0 41 INE 3 24 3 0 0 0 34 E 5 30 2 0 0 0 37 ESE 3 17 2 0 0 0 22 SE 1 16 6 0 0 0 23 SSE 1 1 1 2 0 0 5 S 1 5 2 2 1 1 12 SSW 9 0 5 0 1 0 6 SW D 2 0 0 0 0 2 WSW 1 4 2 1 0 0 8 W 1 3 2 0 0 0 5 WHW G 1 0 0 0 0 1 NW 1 3 1 0 0 0 5 HNW 3 11 1 0 0 0 15 N 1 7 0 0 0 0 8 TOTA. 23 158 46 6 2 1 236 DER 103S Ge CALM IN3. OF HOU3S9 -

0 y ........................................

U TEMP. LAP 3E RATE STABILTTY CLASS F hItd S2EED WERSJS DIRECTION (IN NUMBER OF OBS.I WINO WT'O SPEED (MPH) AT 10 METER LEVEL DIRECTIO1 1-3 *-7 8-12 13-15 19-24 >24 TOTAL NNE G

  • 0 0 0 0 2 NE 3 a 0 0 0 0 4 tNE 7 '40 0 0 0 0 25 E 11 14 0 0 0 0 25 ESE 6 4 0 0 0 0 10 SE 0 5 0 0 0 0 5 SSE O C 1 0 0 0 1 S 0 1 0 0 0 0 1 SSW 1 0 0 0 0 0 1

, SW D 0 0 0 0 0 0 W9W D J 0 0 0 0 0 W C 0 C 0 0 0 0 WNW D D 0 0 0 0 0 NW 1 0 0 0 0 0 1 dNW D 1 b 0 0 0 1 N O 4 0 0 0 0 4 TOTA'. 29 50 1 0 0 0 SD PERIO75 vf CALP (NJ. OF PCU-Sb - 0

.m i

9 e

. f, *

.f.

+.

e b

(

l l

J 4

D-O me o e M ee d ** e e e C e e e e e e we d N L

=

e M #

I Q N O A o cs e m o p e e a o c o m e c o m th '

C

(

CW t #

m no E Jt M3 taa 05 M2 Jn ** O e C3 e C3 e a o o n e C3 e e o o es a 168

.J E J sJ M 4A ** af

% > es e M6 to 2 %e e

    • ~ wc .aa e Jw T s be w to M

' O e (J O og c e o e e e o e a a e es e c3 e e en La d "

M et N m

Mw

- C' e-

>= La 4 0= M J er 3 en N sJe ty H J. we c 6 O fV R. 9

  • seJ &aJ E era e e 83e3 Q RJ G C3 m C3 e f9 O O u es o a 3D w M '4 O gO n 9

- 3 .,n ' aJ se e w naJ es t .

' e llL Q. M 2 - OM e- 3 to N

C 3

% een c M e Q b- E Z t C O srb N N ** C O f3 o C c3 C3 7 o C3 Q Z M We me we

. M T 2 6 1' o ut tas - e 4 > C we 2 o M .=

9 7'- J ee O C3 c3 fP N fJ CD c C3 C O C3 E3 C3 O C3 ed E 4 9e .J hm 4 g M V

. *Y ik O O

?

9 O M

== e n 4 'O&

f b* 4 3 7 o ses 4.s e.J e.e 2 2 2 2 e- w

- 6 *e t*8 7 (d Z M 'O M wi 2 (M Z2N O FV 2-TwZ 2 taJ tu td M M M M M 2 2 Y Z Z 2 t= tel Q.

a O

~~

. . 5-55 .

I n-

'{ l s **<

4 y , - - -- -- , , y-, ----

  • y. v, s

1 s

, 9 0146CD0 5 2

5. 0 93 4 0 F

F T O

_ G

_ , O

. N

( 0250000 281 SF

. S . S

. B 05 . A

. O .

4 .

L C

2 .

0 - . Y 1 . T

. O 5 . I 1090530 5 . N .

7 . L 206 8 . IE 1

. 3 . , 1 . S 4 1 2 2 . N . A' 0 0 . . O . ST I * * . I 5 . NS 0

E 0

d 0

T 5. 2 . O d 8 . IE e 0 . B 1 . TT I 0 0 . I - .

T 0 9 CA 051S130 l

. R 1 . ER 5S

  • 4 3 . T 5 . R 3 O L . S . . IE I E T 7 . I 2 .

D SS

- T

(

. O 1 .

  • 0 J . .

B LA S . D . LL I 5 M . E 55 . A R 3 L . E .1 . .

T N A . P 23 . G P S I O . S C39?4G0 1 . i1  ?

I W . - .

O . V cC 7 D 1 . OT I U . N .

0 r 3 . I 5. - . DS

. H . W 7 . f U i 1 T . .

p 3 MS I . . M s S W . 55 . JI M . 3 . SW 04 E S S .

C1380u0 73 .

r V G G . - . NS i I N N 1 O w M I I 5 I D D T

L 4 A 3 J 0 A I ~

R T R

  • I Y. *. 6 .t a

f P

F O

f O

5. 5 r C4 L1 1 e0

_ 3 S o41 w C - 1a 1 M D R 0 U - i i 9 5

S l i 3

C H N t d d J E

0 f F N N 2 3

4-L L 51 S

. A A 9 4 T T 2 O O T N L I T T W 1234567 4 T$ '

! 1. ' -

I i

.t. w e

s

?*

I t

i I

l l

} {'

l I

i

.6 6

t=

+ e 6= 4 km & 4 9 e n 4 en Om e & e @ @ *e @

.O a en N es we es m N N N rp m me se N t

an i

M e ed M 4

, we e N MO A m o m e c c o o a c o m o -s o m e

>e

.J th e MO e D

!

  • WW

} e > taJ &

e ih m N t e E .J e o td 3 W@

o t= F *e ce a a e es a r3 O N M C O O O D O O en o e laJ

, e n' 2 J i e me

, e esJ w  %

! en o en - a .J

% e rL 2 m. e em a 4O id we es e .J me y e e t= m

  • = eO O ,,

" ,e e e e e O M N J ee S O *=e o O O er i e O e & aae N n e T tv e ad be

.= e n= O t=

e= a e e .J gn J e -83 a= N

  • 6.J e 4W I es ce O e T fL 8 w e 6. ess E e IF # e u N N & D en tJ J E @ M & C A i e 6m w

.t N e A ne es ed me es se N es M e > e4 M O e QQ C 0

, 2 e hJ 4.J

>e e O Lae 9 aJ m $

21 o teJ & 4 M e EM M O m em o E N 3 M

w. e 3M t'4 I O sv e V2 .1 t t' t 'f% @ % M C O O N M ch G M @ C h Z 2
  • 9 e >e M >1 J e # es we ce ce nM C
  • 1 e 2 2 M w I a4 C

ts

'80 e c

% r me 2 e 2 m w -C 0 7.

.J e *e # @ *) f7 O M en O e3 N ** *e N 7 e4 @ +0 K e-ee en .J em q et M C D=

> e W tL l"

  • i O O g
i. 4 O M sa l me e r9 7 o o e- -

e o >e tA 2 O hJ taJ ha eJ n 2 . 2 2 2 t= ee M 6 ke nas T 68 7 M fd M M2M 22C C T M 2 tr 2 2 laJ taJ hl M M M M M 2 T 2 2 2 2 * *d W

    • (L E 4' Q f-1 -

s-57 rw, 9 _ . . - . . -

FFC - CRf STAL RIVEP 33 FT WINDS (DTL Tl DCT 1975 TE17 LAPii AATE STABILITY CLASS A WIto SPEED WE45US JIRECTIO1 (IN NUMBE4 OF OSS.)

WI'n WIPO 9 PEED IN P HI AT 10 METER LEVEL DIRECTIO1 1-3 6-7 R-12 13-15 19-24 >24 TOTAL NNE 1 5 9 1 0 0 16 NE D 12 lb 3 0 0 49 tNi 0 9 19 7 0 0 35 E 1 3 16 0 0 0 20 ESE O O 7 0 0 0 7 SE 0 0 4 0 0 0 3 SSE o 0 2 0 0 0 2 S G 0 0 0 2 0 2 SSW G 0 0 0 0 0 0 .

SW D 1 0 0 0 0 1 WSW D 2 4 0 0 0 6 W 0 8 if 0 G 0 23 MNW S 5 to 0 0 0 15 NW 0 1 8 0 0 0 9 NNW 2 1 1 0 0 0 4 N 0 7 13 0 J 0 20 TOTA'. 4 54 141 11 2 0 212 PERIODS OF CALH (NJ. OF HOURS) - e Y -

= ........................................

TEno. L AP5E PATE ST A9ILIT Y CLASS 3 WItu SPEED WERSuS 3IRECTION (IN NUM3ER OF 09S.)

WIND WIND SPEED (1 PHI AT 10 1ETER LEWEL DIRECTION t-3 4-7 n-12 13-15 19-24 >24 TOTAL NNE C C C 0 0 0 0 NE C 0 1 0 0 0 1 ENE o 0 1 0 3 0 1 E O O O O O 0 0 ISE O O O O O O O SE C 0 1 0 0 0 1 SSE O ~ 0' O O O O O S 0 0 0 0 0 0 0 SSW D 0 0 0 0 0 0 SW G 9 C 0 0 0 0 WSW D 0 0 0 0 0 0 W b i 1 0 0 0 2 WNW 0 0 2 0 .0 0 2 MW 0 0 1 0 0 0 1 N'4 W 1 0 0 0 0 3 1 N O 2 1 0 0 0 3 TOTA. 1 3 R 0 0 0 12 PERIO3s Jr G A L ** t in , u f N]UPS) - e 6

q FTC - C@fSTAL kIdE9 33 FT WIh3S (DLL Tl 30T 1975

. TEMP. iAP5E RATI ST ABILITY CLASS C WI N) SPEED d?RSUS JIRECTIO1 (IN NUM ER OF 085.1 WIND WIN 3 SPiiD (MPHI 4T 101ETE A LEvFL DIRECT I ON 1-3 4-? 8-12 13-18 19-2 4 *24 TOTAL NNE O O O O 0 0 0 NE 1 5 5 0 0 0 to ENE e 0 2 1 0 0 3 E o 0 1 0 0 0 1 ESE O 2 5 0 0 0 7 SE C 0 3 0 0 0 3 SSE G 0 1 1 0 0 2 S 0 0 0 2 0 0 2 SSW 0 0 1 0 0 0 1 SW f 3 C 0 0 0 1 WSW 0 0 0 0 0 0 0 W 1 0 0 0 0 0 1 WNW 0 0  ? 0 0 0 2 '

NW G 1 0 0 0 0 1 NHW 3 1 C 0 0 0 1 N O 2 1 0 J G 3 TOTA. 3 9 22 4 0 0 38 Y.

v PERIO3S OF CALM (N1. OF H300Sl - O ee eeee eeeeeeee ee ee eeee eeee eeee es eeeeee, o

TEM?. L A Pic P. ATE STABILITY CLASS 0 WIto SPEED WERSUS DIRECTIO1 (IN NUN 3ER OF ORS.)

WIND WI'0 SPZZD (12H) AT 10 1ETER LEWEL '

OIRECTIO* 1-3 ,-7 6-12 13-15 19-?4 >24 TOTAL NNE C 2 5 0 0 0 8 i4E O 9 34 J 0 0 51 c.N E 3 > 2 0 0 0 10 I 1 4  ? O O O 7 ESE O 2 0 0 0 0 2 SE O O 2 0 0 0

' 2 SSE 1 0 2 2 0 0 5 S 0 0 0 0 0 0 0 SSW 0 0 0 2 3 0 5 SW s 0 2 0 0 0 2 WSW D 0 0 0 0 0 0 W 0 3 1 0 0 0 4 WNW 0 3 1 0 0 0 4 NW 0 7 3 0 0 0 10 NNW O 2 3 0 0 0 5 N 0 14  :

0 0 0 19 TOT 4 5 51 58 7 3 0 134 PERIO39 De CALH (13. OF H00sSt -

0 i

. . _ . _ _ . _ _ _ ~ . _ - . . _ _ . , _, ._ _. ._

FPC - CRfSTAL JIWFR 33 FT WINOS (DEL Tl 0 T 1975 Tino. LA85E FATE ST43ILITY CLASS E WIPO SPEED diRSUS 3IRECTIut (Id NUM3ER OF OBS.)

WINO WIN) SPEED (MPHI AT 10 METE A LEWEL OIRECTION 1-3 4-1 9-12 13-19 19-24 >24 TOTAL N1E 2 9 11 0 0 0 22 NE 1 9 25 2 0 0 35 ENE 4 ?t 14 0 0 0 44 2 2 19 1 0 0 0 22 ESE O 2 0 0 3 0  ?

SE 2 2 3 0 0 0 7 SSE o 0 1 0 0 0 1 S 0 1 C 0 0 0 0 SSW D 0 0 2 0 u 2 SW 1 1 0 1 0 0 3 WSW 1 1 0 0 0 0 2 W 0 3 1 0 0 0 4 WNW 2 2 C 1 0 0 5 NW D 3 1 0 0 0 4 NNW 2 10 0 0 0 0 12 '

N 3 22 5 0 0 0 30 TOT A'. 2C 109 50 6 0 0 195 DERIO35 3r CALM (41. OF HDURS) - 1 a

N TE90 L 4 p3 E RATE STA811LITY CLASS F dI N) SPEED WERSUS DIRESTIOM (IN NUMBER OF OBS.I WING WIN 1 SPEED (PPH) AT 10 METER LEVEL OIRECTIO1 1-3 4-7 8-12 13-19 19-2 4 324 T3TAL NME 2 3 1 0 0 0 11 NT 4 13 1 0 0 0 18 ENE h 13 7 0 0 0 46 E S 15 0 0 3 0 20 ESE D 1 0 0 0 0 1 SE 1 1 3 0 0 0 2 SSE G 0 0 0 0 0 0 S 0 0 0 0 ,0 0 0 SSW 0 0 0 0 0 0 0 SW 0 0 0 0- 0 0 0 WSW G 0 0 0 0 0 0 M 0 0 0 0 0 0 0 .

WNJ 0 0 0 0 0 0 0 N4 0 1 0 0 0 0 1 NNW 1 1 0 0 0 0 2 N 3 17 1 0 0 0 16 TOTA.  ?? 85 10 0 G 0 til PERIO)S OF CALM (13. OF H3USSI - 0

4

,g - _ _ , , .

6 s.o f"

4 i

k 4

O 4

>=

0

> p M e 4 O es en O e e es e e e e e ame l se M i

4

=

0

  • a M 4 (D N Q A CD G W G C3 e C3 O C3 C3 83 O C3 O C3 es O O

La M W 4 M he i 2 J 8 M3 W@

M2 'sp W es e3 O O O O O O e ce c3 e o c3 C3 O C3 4 W g J2 J L3 M 8

em gg

@ De W-A em 2 h. em e MQ W ee on .e M 9 i M to 885 De ID L3 O" M O O e e O O O O O G e e C3 E3 O G3 E3 '

(1 W est f"% t- &

MM m fi he

>= W W

  • hM

.J e3 mN W 'WM 2 ee U C & ft 6 w - WW r e fu v.e P3 O O Ce O O e c3 as c3 O O es esen en % w M  %

O eO O I 2 aN W M W W =

32 e IL 0, si a t/' M C4

>= F N *3 k WC m0 0 M

  • - Z 2 4 @ N ft J C3 O O O O ca c3 O c3 O O O J 2 M M v4 N

, 885 2 2 h JL O

e.e e

'Jn e M

2 C M w I

.J ** *e e3 E3 es O D C3 O O C3 O O O C3 O C3 W 3 4

  • J

>= eg M Q D.

W k (3 O 7

0 O M M e v"1 l O O e= a O i

& 2OW W W W 2 2 2 2 e- M 4 MW2W2 M tJ M M2M 222 C &

2W M 2 2 W Id W M M M 61 M 2 2 3 2 2 2 >= W (L

Q 3-61 l

t- l

)

i .

,J' t 24 HOUR

SUMMARY

OF WIND SPEED DISitISJIION F PC - CRY S T A L RIVER 33 FT NINDS (DEL Tl NOW 1975 TOTAL NJMBER OF READINGS 5.88000E*02 TOTAL NJM3IR OF <CADINGS dITH30T OALMS 5.88088E+B2 e w es see ee eeeee es es sees s eee ee eeeeeeee eees WING SPEED DISTRIBUTION, NO OF OBS.

LT .5 .30-3.5 3.51-7.5 7.51-12.5 12.51-18.5 18 51-24.0 GT 24.8 0 29 253 352 45 6 2 eseeeeeeeeeeeeeeesosewoosesseeese..... .

  • Tf SJMNED OWER ALL DIRECTIONS O i WIN 3 SpEE1 DIST11DutION VERSUS TE1P. LA3SE RATE STABILITY 0. ASS (NO OF 085.8 A B C 1 E F G 1 0 0 0 0 0 0 0 2 0 .0 1 11 4 8 5 3 35 4 8 34 94 43 35 4 11T 5 if 52 94 47 20 5 22 0 5 9 8 2 0 6 1 1 1 2 1 0 0 7 2 0 0 0 0 0 0 4

s 1

I I

i 4

f'r 4

i e

I 1

f a

et tm O

t= @ M d W # e es @ e m m e ed @ d @ e N ens en a m N ce e.s e ,eN m m s e

{ e --- .

m M e

'd M J M fP N be Q A Q O O O O 63 O O e O O O O N O O N M

JL e MQ g a E o et &

o e- W 4-6 Mm N 4 e T .J 8 o W3 W@

e >Z > *e a e O e O O O e O O O O ee'n O O .6 t

e 4 hJ e WZ .a

  • I e M o Ww &

W e M W

h. o a7 ee

@ o et C W ce

    • e .J M T t a b. M

> e eu O we O A e ,e N ee N ce e O O e N 4 4 4 4 O e &W "'*

.4 ,e #

7 e t 91f

  • e W e=e a o e= M >=

>= e e e J en

.J e .J 3 mN

+ W e 4M Z *e O I

O e T fL 4

, g - = o rt ha sin @ N N e ese > w T e e

' en es OeOe@s NM se N we cee M e s 80 e4weN.e .4 en M M e > M H e CO C 4 e 2 e W W M e OW 'd a I' 3 o hJ (L 6 m l

o ? En M 0 m W e T N "3 M 46 0 e

3m f5 0 O M MZ Z # e @ d ** N N' N M we N 4 @ @ e N & M Z 3 m o >.s M ,e m e N ,e 44NA O M e 3 2 N u. I fr C

L6

'd e C D O ke n: Z e m w n 4 7

.J se M we N #9 ** .4 c e O O O m N N N d @ Z w e N .J et sa M Q >

> er T LL C U C T

4 O M e.S

== e n 7 O O a= ' at o M

& Z O Its W W LaJ 2 2 2 2 >= *e M b MiC Z W Z M laJ M M2M Z77 m & M X CYwe Z Z hl be td M M M M M 2 3 Y Z Z Z D= hl M

& Z C

. . B-63 . .

'-= 4 s-

. I i i FFC - CRYSTAL RIVER 33 FT UIN05 (3EL Tl NOW 1975 TEMP. LAPSE RATI STABILITY CLASS A WING SPEED WERSUS DIRECTIOg (IN NUMBER OF 00S.1 WING WIN 3 SDEED ( M P HI AT 10 1ETER LEVEL DIRECTIO4 1-3 4-7 0-12 13-13 19-2 4 e24 TOTAL NNE O_ 1 0 0 0 0 1 NE D 4 13 6 0 0 23 ENE D 4 F3 to 0 0 37 E D 5 50 1 0 0 36 ESE O O 17 2 0 0 19 SE D 7 5 1 0 0 9 SSE D 0 5 1 0 0 7 S 0 0 5 1 0 0 6 SSW 0 0- 4 0 0 0 4 SW 0 1- 1 0 0 0 2 WSW D 1 0 0 0 0 1 W 0 6 4 0 0 0 10 WNd 0 s. 4 0 0 0 8 NW 0 6 4 0 1 2 13 NNW 0 1 0 0 0 0 1 N O O O 0 0 0 0 TOTAL 0 35 117 22 1 2 177 PERIOJS OF CALM (NO. OF HOURS) -

0 m eeeeeeeeeeeeeeeeeeeeeeeee.....eeeeeeeee.

S-TEMP. LAPSE RATE STABILITY CLASS B WIN 3 SPEED WERSUS 3IIICTION (IN NU13ER OF 09S.)

WINO WIND S P Ei.0 (M*HI At 10 METER LEVEL DIRECTION 1-3 4-7 0-12 13-15 19-24 >24 TOTAL NNE L

  • G 0 0 0 0 NE O O 2 0 0 0 2 ENE O 2 0 0 0 0 2 E O 1 0 0 0 0 1 ESE O O O O 0 0 0 SE G a 1 0 0 0 1 SSE D 0 0 0 0 0 0 S 0 0 0 0 0 0 0 SSW G 1 1 0 0 0 2 SW 0 0 C 0 0 0 0 WSW J 0 3 0 3 0 0 W D 0 0 0 0 0 0 WNW C 0 1 0 0 0 1 NW 0 0 0 0 1 0 1 NNW 0 0 0 0' 0 0 0 N 0 0 0 0 0 0 0 TOTA. 0 4 5 0 1 0 10 PERIO3S OF CALM (13. OF H3URSS - G

i , i i

o FPC - CRf STAL AIVER 33 FI WINDS (3EL Tl NOV 1915 TEMP. L AP3E RATE ST ABILITY CLASS C WING SPEED VtRSl?S DIRECTION (I N NU N 3 E R OF OB S. )

WIND WIN 3 SPEED (MPHI AT 10 NETER LEWEL DIRECito1 1-3 4-7 6-12' 13-1$ 19-24 >24 TOTAL NNE O O O O O O O NE O O 2 1 0 0 3 ENE O O 3 0 0 'O 3 E O 1  ? O O O 3 ESC 0 1 0 0 0 0 1 SE D 1 0 0 0 0 1 SSE O O 1 1 0 0 2 S 0 0 2 0 0 0 2 SSW D 0 3 1 0 0 4 SW ,

0 1 1 0 0 0 2 WSW D 2 0 0 0 0 2 W 0 0 1 0 0 0 i WNW D 0 1 0 1 0 2 NW D 1 1 2 0 0 4 NNW D 1 0 0 0 0 1

  • g N 1 0 0 0 0 0 1 <

TOTA. 1 8 17 5 1 0 32 PERIGJS OF CALH (HO. OF HOURSS -

0 y ........................................

O TEMP. LAPSE RASE STABILITY CLASS D WING SPEED WERSJS DIRECTION (IN NUMBER OF OBS.)

WIND WIN) SPEED (MPHI AT 10 NETER LEWEL DIRECTION 1-3 4-7 8-12 13-18 19-2 4 >24 TOTAL NME 1 0 3 0 0 0 4 NE O 1 13 0 0 0 14 ENE 1 5 5 0 0 0 11 E 1 13 6 0 0 0 20 ESE O 4 3 0 0 0 7 5E O 1 4 0 0 0 5 SSE O 2 0 0 0 0 2 S 0 2 4 0 0 0 6 SSW D 0 0 0 0 0 0 SW 0 0 1 0 0 0 1 WSW 0 1 1 0 0 0 2 W 2 0 3 1 0 0 6 WNW 2 0 4 2 0 0 8 N'i 0 1 4 2 2 0 9

%' 1 0 t 4 0 0 6 N 3 4 0 0 0 0 7 TOTA'. 11 34 5? 9 2 0 138 PERIO)3 0F CiL1 (13. Or H3URSS . - 0

i j

. t .

FDC - CRY S TA L RIVEQ 33 FT WINGS (3EL Tl MOV 1915 TEMP. L APSI RATE STA9ILITY CLASS E WIND SPEED WEtSUS JIRECTION (I N NUMBER OF OBS.I WINO' WIN 3 SPEED (MPHI AT 10 gETER LEVEL DIRECTIO1 1-3 4-7 8-12 13-15 19-24 >24 TOTAL NNE O 3 7 0 0 0 10 NE O 7 35 0 0 0 42 ENE 1 29 25 0 0 0 51 E 2 31 1 0 0 0 34 ESE O 11 8 0 0 0 19 SE D S 2 0 0 0 7 a SSE D 0 0 0 0 0 0 S O 1 0 0 0 0 1 SSW D 0 0 0 0 0 0

, SW G 0 0 0 0 0 0 WSW D 0 0 0 0 0 0 W 1 n 0 0 0 0 1 WNW 0 1 1 0 0 0 2 NW 0 2 3 0 1 0 6 NNW 0 3 1 8 0 0 12 N 0 S 11 0 0 0 16 TOTAL 4 94 94 8 1 0 201 PI4103S OF CALM (NO. OF HOURS) - 0 I ............ 4..........................

  • e TEHp. L A PSE RA TE ST ABILITY CL ASS F WIhu SPEED WERSUS JIRECTION (IN NUMBER OF 085.9 -

64INO WIta SPEED (MPHI AT 10 METER LEWEL DIRECTION 1-3 4-7 8-12 13-18 19-24 >24 TOTAL NNE 2 1 7 0 0 0 10 NE O 2 18 0 0 0 20 ENE 2 to 13 0 0 0 33 E 9 5 1 0 0 0 6 ESE o 1 1 0 0 0 2 SE 1 1 0 0 0 0 2 SSE O O O O 3 0 0 S e 0 0 0 0 0 0 SSW 0 0 0 0 0 0 0 SW D 0 0 0 0 0 0 WS't 0 0 0 0 0 0 0 W D D C 0 0 0 0 WNW D 0 0 0 0 0 0 NW 2 0 0 0 0 0 2 NHW 1 6 3 2 0 0 12 N 0 9 4 0 0 0 13 TOTA'. 8 43 47 2 0 0 100 PERIO1S Or CALM ( 4,1. OF H3U<SB - 0

m I

t i

f

  • 1

.J 4

>=

, O l > # @ EP m @ M c3 e e e e e c3 e N N e w w@

m O

SO d CD N O A e e e o c3 a c3 c3 c3 c3 c3 e c3 c3 e s3 o LL Q

43 O!

en .t M N 2 .J B M3 W@

84 2 :D w a c3 m e O c3 O c3 c3 e CB C3 C3 e c3 e c3 4 LaJ

.J Z .J OM

= CE m > LaJ A hT te

@ MC taJ w we .J w y* a M hm M 3D EO O

" w e c3 e O c3 c3 O c3 e e e c3 cl3 c3 e clB n O 4 taJ 2 9= N MM m O b.

Da tai er

>= M

.J 43 mN hab (E in 2w a

  • O T & G w maJ t J Z = w M es g3 a c3 43 c3 c3 o e c3 r3 CD w # cJ fA D w we N M &

O 4O c 0 2 .A W naJ M W taJ m D *4 & M

&M M tv W

s wp ge 2

b

~ .r M m m m m M o o = = = = m o w e m 3

O r

M M M M .2 M 2 k

& Q tu e

> r3 M

or M 2,

=

0

.8 4 we c3 w M c3 4 C3 c3 c3 C3 cm e o e e e o m 2

.** .J d 4

> O W (L Q Q 2

0 0 _

M M

M Q O >= 4 t

O

& 2OsJ a BaJ LaJ W 2 2 2 2 >= M la. M LaJ 2 !as 2 M LaJ M in 2 M Z27 O N 2 &M 2 2 lai LaJ taJ M M M M M2 2 2 2 2 2 b= taJ Q &

) . . _ . _

_ 5-67 ,

i em

f W

2se N3Ut SudMAAy OF wit 0 SPEED DISTRIBJTION FPC - CRYSTAL RIVER 33 FT WIHOS OEL Tl DE: 1975 TOTAL NJM3ER OF (EADINGS 6.39000E602 TOT AL NUM3ZR OF RE ADINGS WITHOUT C ALMS 5.39000Et02 I

Wipe SPEED DISTRIBUTION, NO OF ORS.

LT .5 .50-3.5 3.51-7.5 7.51-12.5 12.51-18.5 18.51-24.0 GT 24.0 0 56 239 262 73 4 0

........ooeveeeeeeeeeeeeeeeeeeeeeese ee.

Y

$I SUMMED DVIR ALL DI tECTIONS WIND SPEED DISTMI6JTION VERSUS TE1P. LAPSE RATE STABILITY CLASS (NO OF OBS.)

A 3 C 3 E F G 1 0 0 0 0 0 0 0 2 6 0 0 5 8 14 23 3 29 2 7 34 60 63 44 4 51 s 14 48 97 30 14 5 19 S 7 31 15 2 0 6 1 0 0 1 2 0 0 7 0 0 0 0 0 0 .0 t

e S

MMM ._ ,

  • s >

FPC - CITSTA. 410ER 33 FT WIN 05 (DEL Tl OEC 1975 I

i SunMED OVEit A6L TEMP. LA*SE RATE STABILITIES WIM SPEED WER$US 3ItECTION (IN NUNBER OF 08S.I WIN 3 DIRiCTION WIND SPEED (4 PHI AT 10 NETER LEVEL 1-3 4-7 8-12 13-15 19-2 4 NNE 24 TOTAL 7 26 16 3 0 0 54 NE 6 12 15 2 0 0 35 ENE 2 23 57 2 0 0 84 E 13 39 ?3 1 8 ESE 4 0 F6 7 12 6 SE '

0 0 29 1 15 5 2 0 0 23 SSE O 14 13 8 S

1 0 36 1 11 3 5 2 SSW 0 28 D 9 12 9 0 0 30 SW i 6 4 1 0 0 12 WSW 1 4 2 1 0 0 8 W 4 16 8 0 0 0 28 Y WNW 1 S 17 7

$ NW 2 0 0 33 10 16 19 1 0 48 NNW 4 il 12 5 N

0 0 34 9 26 59 7 0 0 $1 TOTA. 56 239 252 78 4 0 639 PERIGOS OF CALM.(NO. OF HOUDS) - C HISSIMG 1ATA ( tl0. OF HnU2SI - 13 t, Y

o

i FCC - CQVST AL PIWER 33 FT CJINOS (DEL Tl DEC 1975 TENA. LAP 5L RATE ST4BILITY CLASS A WI e SPEED WERSUS JIRECTION (IN NUMBER OF 08S.3 WIND Wine SPEED (NPH) At 10 NETER LEVEL DIRECTIO1 1-3 9-7 8-12 13-15 19-24 >24 TOTAL NNE C 1 1 0 0 0 2 NE O 1 2 0 0 0 3 ENE o 0 4 0 0 0 4 E 1 0 1 0 0 0 10 ESE o 0 1 0 0 0 1 SE C 0 0 1 0 0 1 SSE O J 0 0 1 0 4 S o 2 '

o 1 0 0 7 SSW D 1 3 4 0 0 8 SW G 2 0 0 0 0 2 WSW D 0 1 0 0 0 1 W 2 8 6 0 0 0 16 WNW 1  ? 10 2 0 0 15 NW 1 1 3 7 0 0 12 NNW D 3 5 0 0 0 0 N 1 9 2 3 0 0 11 TOTA. 6 29 51 18 1 0 105

, . PEP.IO35 0F CALM (NJ. 0~ POURS) - 0 4

o es.eesseeeeeevoeveeeeeeesseesseeeeeeeee.

TEMP. LAPSE RATE STABILITY CLASS 8 WIfJe SPEED WERSUS DIRECTIO1 (IN NU13ER OF 08S.I WIND W I N) SPEEO (NPHI AT 10 1E T ER LEWEL DIRECTION 1-3 4-7 8-12 13-18 19-24 >24 TOTAL NNE D '

1 0 0 0 i HE O ( 1 1 0 0 2 ENE O 1 1 0 - 0 0 2 E O O 1 0 0 0 1 ESE O O O O O 0 0 SE O O O O O O O SSE O r 1 2 0 0 3 S 0 C. 0 0 0 0 0 SSW 0 0 0 0 0 0 0 SW 0 t C 0 0 0 0 WSW 0 0 0 0 0 0 0 W D 0 1 0 0 0 1 WNW D 0 0 0 0 0 0 NW G O' O 2 0 0 2 .

NNW D C 1 0 0 0 1 N 0 1 1 0 0 0 2 TOTAL 0 2 8 5 0 0 15 PERIO3S OF C4LM (N7. OF HOURS) -

0

m -e.

mq ~

- 1. - j FEC - C4f STA L wIvid 33 FT WINUS (3fL Tl 3EC 1975

.YdFA. LAPsi nATI STABILITY CLASS C WINJ SPEED VE"tSUS 014FCTION (17e NUMBEP OF 08S.9 WI.43 WING SPEED (naH) AT 101ETIA LEVEL DIRECTION 1-5 *-7 S-12 13-13 19-24 *24- TOTAL NHI 0 1 C 0 0 0 1 NE D 0 1 0 0 0 1

CHE O O to 2 0 0 6 E 'O 1-  ? O G G 3 ..

ESE O O O 3 0 0 3 SI f  ? 0 0 0 0 2 SSE 0 2 0 0 0 0 2 S 0 0 0 0 0 0 0 SSW D 0 0 0 0 0 0 SW D 0 0 0 0 0

  • 0 WSW D 0 1 0 0 0 1 W n 1 0 0 0 0 1 WNW D 0 C 0 0 0 0 NW 0 n 1 2 0 0 3

_ N1W C 1 1 0 0 0 1 N 0 0 4 0 0 0 4 TOTA. C 7 14 7 0 0 28 PE3IOJS OF CALF (N9. OF HOURS) -

C es g ........................................

T EH o. L APSI PA TI ST ABILITY CL ASS 0 WT.O SPEED WE RSUS JIRECTION (IN NUM3ER OF ORS.)

WIND WIN) Soc 20 (MPH) AT 10 1ET EE . LEV EL OIR{C T I 0t4 1-3 *-7 a-12 14-19 19-24 *24 TOTAL NNE 1 1' tC 1 3 0 17 Hi 6 1 5 0 0 0 1 INE o 2  ? O O O 4 i

E 1 1 2 1 0 0 5 i

ESd 1 0 2 2 0 0 5 SC 1 P 1 1 0

' 0 5 SSE 9 1 1 2 0 0 4 S 0 1 1 1 0 0 3 SSW D = 3 2 0 SW 0 9 C  ? 2 1 0 0 5 WSW G J 0 1 0 0 d 4 u 1 0 0 0 0 1 WNW D 1 5 5 0 0 11 NW D 4 9 7 1 0 21 NNW u 3 3 3 N

0 0 9 i 1 9 7 2 0 TOT 4 0 15 5 14 49 31 1 0 119 PEsIOJS OF CALM fO. OF HOU3S) - 0

. . - . --~ -- ~ - - -~~ m ~ ~ - - - , -~- -- c

\ s .i F FC *? Y S T A. . t I v F C I? FT teIN05 OE. Tl O'O 11f5 TEMd. LAP 3E DATF STABILITY CLASS E WIN 3 SPTc0 Vin 503 OI4ECTION (IN NUMBCP OF OBS.)

. WINO sd I N) S e>EEt : (MPHI AT 10 MET IF. LEVEL GIMECTION 1-3 4-7 6-12 13-13 19-?4 >24 TOTAL M42 1 9 c .0 0 0 10 NE 1 3 9 0 0 0 12 Et4E O 3 22 0 0 0 25 E O 4 7 0 0 0 16 iSE o 1 2 1 0 0 4 SE e 0 4 0 0 0 4 SSE n 11 4 1 0 0 16 S C T 2 2 2 0 9 SSW G .i 4 3 0 0 10 SW D  ? 2 0 0 0 4 ,

WSW 1 1 0 0 0 0  ?

W  ? 4 1 J 0 0 9 WNW 9 3 2 0 0 0 7 t44 J S 3 1 0 0 9 Nt4W - 2 's 2 2 0 0 11 N 1 1 25 2 0 0 34 TOTA. i 60 37 15 2 0 192

  • i4I03 S OF CAL,M (43. OF N30'SI -

0 7 ........................................

i TiMP, LAP 3: kATE STAdILIff CLAS? F WIN 3 SPcCD drRSUS 3IRECTIJ1 (IN NUd3ER OF 09S.)

WING MI ND SpcdD (MPHI AT 10 McTZR LEWEL DIRECTION 1-? 4-7 S-12 13-15 19-24 524 TOTAL NNI u tw 1 3 0 0 15 MI  ? 2 2 1 0 0 8 ENE 1 d 11 0 0 0 20 E  ? 16 2 0 0 0 20 ESE 1 2 7 0 0 0 10 SI O 3 0 0 0 0 3 SSE O 6 0 0 0 0 6 S 1 4 2 1 0 0 8 SSW 0 1 2 0 0 0 3 SW 1 0 0 a 0 0 1 W3W 0 a 0 0 0 0 0 W C C C 0 0 0 0 WNW 0 0 0 0 0 0 0 NW 1 fl 0 0 0 0* 1

NNW  ? 2 0 0 0 0 4

! N 3 5 2 0 J 0 10 T O T A .- 14 62 30 2 0 0 109 PERIrns or C.i t w #47 Or w'u a : 8 - n i

e

A 3 s - Aa . ,.

4

?*

{_

e t

t t

,~

pm 4 <

f i

i l ,

e a

h I

I eJ e

t- '

,. -O 4

l w d e .4 ** e o es e o o o tri ee

> eo e M n eu

) .

+

m i

  • i M 4 1 m N

, O -aocsoooooeseoooooooo

' La O

j

., C .W o >#

r .- . gp - N T .a 9 '

fM 3 LaJ EP MT D ** c cs o o o te o c3 m o e o es cs o o es 4 LsJ

-(

t 32 .J O ke e .

  • s,c

+ a th . D= Lal

% wP >e

. CD one 3 . Le8 e4 ee .J M F S

og >

U T f)

OM tai at 1+ I m94oooeoeooooooooooo ri > Y MM

= P'9 e-he =ee I

8 t- M ' W . .-

, a 43 .N su . a; f4 Iw cm e ti fV & 8 i = eaa *J w

F ec ** Q M o o o Q o et u c3 Q c Q w a J te D ee se M .&

C en O . C l 4

Z .s 'J tas ,

M Ld . *d .

I 1 e& ,&.

i M

ft *1.M (k e= 1 k.

+

4* lie O 8'i e b" 8

>2 2 4 BJ in l'P N J GO ** e=e c +3 o C S f3 r.' N J I

m. M M es .*

V 3 x. k O

r N hs '.

D O M

j ." *t 2

0 - -

-=.

r J ** +4 P1 e4 m fu ca e o c,a e o e cs o r2 e es E 4 N J as em- p

  • V Lk u- Q y

e o M' me e en t) Ok Et ' O 4

(L 2 Q 'il .'el tal .'aJ 3 3 .T- E e= M  ;

4 mie +J Z tas 7 t/* 0 9 M M 3 (1 r27 3 nY y W 7 E 'd td t*

  • M M t!' M (f9 7 3 2 ? E Z > - f**

M -

-0 1-e t.

w-8-73 I

!?

i-I i

I

_ , _ , . _ . . . . .__ _ - . . _ . -- _ . . _ _ . . . , ._. . - . . - ~ _. _ _ . _ , . _ . , _ _ _ , -.

2 4 H 3 UR S'J "M A PY 0 F WINJ SPEE D DIST411JTI0t4 CDC - CRYSTAL eIVE: 33 FT WIN 05 DEL T 1/1/75-12/31/75 7

TOTAL NUH 11R OF PL A 3 TNGS 8.19200E+03 T O T A t,, 14UHIR OF RE A11NGS WITHOUT ; ALMS 8.19 400 E* 0 3 ee ee e e e e e eee ee e.... .. e ee e e e e e e..... ..

, WIND SPEE0 31STRIBUTION, NO Or 085.

LT .5 .30-3.5 1.b1-7.5 7.$1-12.5 12.51-18.5 18.51-24.0 GT 24.0 9 6a2 3435 1330 651 91 5

.e........................ .............

Y SUH1?O OWEG ALL 91RECTIO:4S 5 WINS 3Pi-1 DIS T F I9U T I 0t1 VE 3 S US TE9P. LLPSE RATE :iT ARILITY CLASS (NO OF OBS.)

A 6 C D c F G 1 0 0 0 9 2 4 2 2 17 5 1R 99 186 231 126 3 361 al 164 661 1216 713 281 4 1911 10 9 216 922 839 159 55 5 187 23 44 207 124 0 0 o 22 3 4 41 11 0 0

, 7 0 0 e i 2 0 0 1

I e

l 1

I

...~

~ ~ ~

_ . - _. .. .. : .- -- .- - - . . - -. ---- - l-- - - - . - _ e .- ~

FPC - CRY 3T AL RIVEk 33 FT Wits 0S DEL T-1/1/75-13/31/75 SUM 1E3 OVEk ALL TEMP. L 43SE A ATE S T ABILITIES WIND SPEE9 #ERSUS JIRECTION (IN NUMBER OF OdS.)

WINO WlhD SPEED (MPHI tr 10 METEk t EVEL DIRECTIO1 1-3 4-7 8-12 13-19 19-2% >24 TOTAL

-NNE 49 165 153 6 0 0 383 NE 72 236 457 39 1 0 s05 ENE 79 483 387 40 0 0 989 E 143 552 281 13 0 0 909 ESE $6 250 148 12 3 0 526 SE 35 31 6 127 19 0 0 497 SSE 14 117 104 42 4 0 281 S 11 103 133 99 17 1 353 SSW 13 78 173 110 16 2 332 SW 21 106 193 92 3 0 415 WSW 17 134 213 25 0 0 389 W to 271 350 27 1 0 668 WNW 20 124 278 35 10 0 470 NW 21 99 163 59 27 2 351

, N'J W 35 113 70 26 1 0 245 L N %7 258 190 in 1 0 511 w TOTA. 592 3435 3330 651 Si s 8184 PIRIO3S OF CALM (13 OF HOURS) - 8 ,

HISSING laTS t 40. OF HOURS) - 558

m L L A A T T O O T88506962060387110 T29566120229132578 42345236940328260 1 11 11211211 9 111 132 6 1 1

) )

S 4 S 4 s B 0

2.03000000000002002 O 2

O0000000000000000 F F O . O AR 9R 2 4 . E 4 9 2 . 3 2 H L - . M L -

SU E9 '

SU E9 5 SN V10000001541 0074002 SN V1 O0000000113001003 7 A s E 2 . A E

/ a Lt L . Lt L 1 CI . CI 3 ( . (

/

2 Y

f g ni1

. Y TN E

E T8 1 iO E1 IO E1

- LI M - . LI 1-5 IT 3 . 1 T 3 7 6C 01153634744777b6057 . 9C 0103000230530203203

/ 3E 1 1 12 231 11 8 . AE 2 1 TR 1 T 4 h SI SI 1 D T . 3 t E A l a i TS - f S AU L ES H 21 0 A. J

- S

) 2 N1 0

! R o - J S -

O EE N99342796776eP10221 cE M* ?2C3 t47435487422a 3v I 29S34122415 175 131 . 5V ( 11 1 1 3 S P 21 0 . 0 1 J AD D 1 - . a0 O -

N LF E . LE E I E E ) . E  ! )

s e .P P S .P P S PS S / ' S S R i 1. 7 u .

  • 7 U r EO Gi o . tD o O T N 4 707766464045?3731 i r . T t t 4" J?561026334164059 H 3  ! I 1373 13031 26 . I I 1 3 3 w W' 1 3 F . W W F O O s

g . .

g 3 y 1 0

4 p 3 (' 3 (

t 11 c13oLCC 1 L 1322?17 M 1 ;1 d1D1O0D410DC1ti H a 1 L L T A A C L y

M r 1

  1. I O

. .O 3 W S I L 3  ! . 3 c ST A r DT A O p NCE E- E E W W w a T I NCE E E E W W W W T, I s I ( 4 EN SES SWS l WM 9 I E t EN SES SWS NWH <

f la R N N E E E S S S S S W W W 4' Ni t T d WRtNEEESSSSSWWWNNNT O E

I P I P

D J

? ,

.