ML19269B707

From kanterella
Jump to navigation Jump to search

Pulstar Reactor Appendix a Technical Specifications
ML19269B707
Person / Time
Site: North Carolina State University
Issue date: 09/25/2019
From:
North Carolina State University
To:
Office of Nuclear Reactor Regulation
Shared Package
ML19269B705 List:
References
EPID: L-2017-RNW-0026
Download: ML19269B707 (53)


Text

PULSTARREACTOR APPENDIXA TECHNICALSPECIFICATIONS NORTHCAROLINASTATEUNIVERSITY RALEIGH,NORTHCAROLINA27695

LICENSENO.R120 DOCKETNO.50297

<date-DRAFTRev1>

Page2of53

<date>

Contents 1.

INTRODUCTION.............................................................................................................................................4 1.1.

Purpose.........................................................................................................................................................4 1.2.

Definitions....................................................................................................................................................4 2.

SAFETYLIMITSANDLIMITINGSAFETYSYSTEMSETTINGS..............................................................................9 2.1.

SafetyLimits(SL)..........................................................................................................................................9 2.2.

LimitingSafetySystemSettings..................................................................................................................13 3.

LIMITINGCONDITIONSFOROPERATION......................................................................................................15 3.1.

ReactorCoreConfiguration........................................................................................................................15 3.2.

Reactivity....................................................................................................................................................16 3.3.

ReactorSafetySystem................................................................................................................................18 3.4.

ReactorInstrumentation............................................................................................................................20 3.5.

RadiationMonitoringEquipment...............................................................................................................21 3.6.

ConfinementandMainHVACSystems.......................................................................................................23 3.7.

LimitationsofExperiments.........................................................................................................................25 3.8.

OperationswithFueledExperiments..........................................................................................................28 3.9.

PrimaryCoolant..........................................................................................................................................30 4.

SURVEILLANCEREQUIREMENTS...................................................................................................................31 4.1.

Fuel.............................................................................................................................................................31 4.2.

ControlRods...............................................................................................................................................32 4.3.

ReactorInstrumentationandSafetySystems............................................................................................34 4.4.

RadiationMonitoringEquipment...............................................................................................................35 4.5.

ConfinementandMainHVACSystem........................................................................................................36 4.6.

PrimaryandSecondaryCoolant.................................................................................................................37 5.

DESIGNFEATURES.......................................................................................................................................38 5.1.

ReactorFuel................................................................................................................................................38 5.2.

ReactorBuilding.........................................................................................................................................38 5.3.

FuelStorage................................................................................................................................................38 5.4.

ReactivityControl.......................................................................................................................................38 5.5.

PrimaryCoolantSystem.............................................................................................................................38 6.

ADMINISTRATIVECONTROLS.......................................................................................................................41 6.1.

Organization...............................................................................................................................................41 6.2.

ReviewandAudit........................................................................................................................................45 6.3.

RadiationSafety.........................................................................................................................................47 6.4.

OperatingProcedures.................................................................................................................................48 6.5.

ReviewofExperiments...............................................................................................................................48 6.6.

RequiredActions.........................................................................................................................................49 6.7.

ReportingRequirements.............................................................................................................................50 6.8.

RetentionofRecords..................................................................................................................................52

Page3of53

<date>

Figures Figure21-Power-FlowSafetyLimitCurve...............................................................................................................11 Figure51-NCSUPULSTARReactorSiteMap............................................................................................................40 Figure61-NCSUPULSTARReactorOrganizationChart............................................................................................44

Tables Table31-ReactivityLimitsforExperiments..............................................................................................................16 Table32-RequiredSafetyandSafetyrelatedChannels...........................................................................................19 Table33-RequiredRadiationAreaMonitors...........................................................................................................21

Page4of53

<date>

1. INTRODUCTION 1.1.

Purpose TheseTechnicalSpecificationsprovidelimitswithinwhichoperationofthereactorwill assurethehealthandsafetyofthepublic,theenvironmentandonsitepersonnel.Areas addressedareDefinitions,SafetyLimits(SL),LimitingSafetySystemSettings(LSSS),Limiting Conditions for Operation (LCO), Surveillance Requirements, Design Features, and AdministrativeControls.

IndividualspecificationsinSections2,3,and4shallincludethefollowinginformationinthe formatshown:

Applicability:Thisisastatementthatindicateswhichcomponentsareinvolvedandwhen theyareinvolved; Objective:Thisisastatementthatindicatesthepurposeofthespecification(s);

Specification(s):Thisstatementprovidesspecificdata,conditions,orlimitationsthatbound asystemoroperation.Thisstatementisthemostimportantstatementinthetechnical specifications; Basis:Thebasisisastatementthatprovidesthebackgroundorreasonforthechoiceof specifications(s),orreferencesaparticularportionoftheSafetyAnalysisReportthatdoes.

Although each of the preceding statements provides important information, only the Specifications(s)andapplicabilitystatementgovern.

1.2.

Definitions 1.2.1. Channel:Achannelisthecombinationofsensor,line,amplifier,andoutputdeviceswhich areconnectedforthepurposeofmeasuringthevalueofaparameter.

1.2.2. ChannelCalibration:Achannelcalibrationisanadjustmentofthechannel,suchthatits outputcorrespondswithacceptableaccuracytoknownvaluesoftheparameterthatthe channelmeasures.Calibrationshallencompasstheentirechannel,includingequipment actuation,alarmortripandshallbedeemedtoincludeaChannelTest.

1.2.3. ChannelCheck:Achannelcheckisaqualitativeverificationofacceptableperformanceby observationofchannelbehavior,orbycomparisonofthechannelwithotherindependent channelsorsystemsmeasuringthesamevariable.

1.2.4. ChannelTest:Achanneltestistheintroductionofasignalintothechannelforverification thatitisoperable.

1.2.5. ColdCritical:Theconditionofthereactorwhenitiscritical,withnegligiblexenon,andthe fuelandbulkwaterarebothatanisothermaltemperatureof70F.

Page5of53

<date>

1.2.6. Confinement:Confinementisanenclosureoftheoverallfacilitythatisdesignedtolimit thereleaseofeffluentsbetweentheenclosureanditsexternalenvironmentthrough controlledordefinedpathways.

1.2.7. ControlRod:Acontrolrodisadevicefabricatedfromneutronabsorbingmaterialthatis usedtoestablishneutronfluxchangesandtocompensateforroutinereactivitylosses.A controlrodcanbecoupledtoitsdriveunitallowingittoperformasafetyfunctionwhenthe couplingisdisengaged,i.e.hasscramcapability.

1.2.8. ExcessReactivity:Excessreactivityisthatamountofreactivitythatwouldexistifall reactivitycontroldevicesweremovedtothemaximumreactiveconditionfromthepoint wherethereactorisexactlycritical(keff=1)atreferencecoreconditionsorataspecifiedset ofconditions.

1.2.9. Experiment:Anyoperation,hardware,ortarget(excludingdevicessuchasdetectors,foils, etc.)thatisdesignedtoinvestigatenonroutinereactorcharacteristicsorthatisintended forirradiationwithinthepool,onorinabeamtubeorirradiationfacility.Hardwarerigidly securedtoacoreorshieldstructuresoastobeapartofitsdesigntocarryoutexperiments isnotnormallyconsideredanexperiment.Specificcategoriesofexperimentsinclude:

a.

Tried Experiment: Tried experiments are those experiments that have been previouslyperformedinthisreactor.Specifically,atriedexperimenthassimilar size,shape,compositionandlocationofanexperimentpreviouslyapprovedand performedinthereactor.

b.

Secured Experiment: A secured experiment is any experiment, experimental facility,orcomponentofanexperimentthatisheldinastationarypositionrelative tothereactorbymechanicalmeans.Therestrainingforcesmustbesubstantially greaterthanthosetowhichtheexperimentmightbesubjectedbyhydraulic, pneumatic, buoyant, or other forces which are normal to the operating environmentoftheexperiment,orbyforceswhichcanariseasaresultofcredible malfunctions.

c.

NonSecuredExperiment:Anonsecuredexperimentisanexperimentthatdoes notmeetthecriteriaforbeingasecuredexperiment.

d.

MovableExperiment:Amovableexperimentisonewhereitisintendedthatallor partoftheexperimentmaybemovedinornearthecoreorintoandoutofthe reactorwhilethereactorisoperating.

e.

Fueled Experiment: A fueled experiment is an experiment which contains fissionablematerial.

1.2.10. ExperimentalFacilities:Experimentalfacilitiesarefacilitiesusedtoperformexperiments.

Theyinclude,butarenotlimitedto,beamtubes,thermalcolumns,voidtanks,pneumatic transfersystems,incorefacilities,outofcorefacilities,andthebulkirradiationfacility.

1.2.11. Limiting Condition for Operation: Limiting conditions for operation are the lowest functionalcapabilityorperformancelevelsofequipmentrequiredforsafeoperationofthe

Page6of53

<date>

facility(10CFRPart50.36).

1.2.12. LimitingSafetySystemSetting:Limitingsafetysystemsettingsfornuclearreactorsare settingsforautomaticprotectivedevicesrelatedtothosevariableshavingsignificantsafety functions.Wherealimitingsafetysystemsettingisspecifiedforavariableonwhicha safetylimithasbeenplaced,thesettingmustbesochosenthatautomaticprotectiveaction willcorrecttheabnormalsituationbeforeasafetylimitisexceeded(10CFRPart50.36).

1.2.13. MeasuredValue:Themeasuredvalueisthevalueofaparameterasitappearsonthe outputofachannel.

1.2.14. Operable:Operablemeansacomponentorsystemiscapableofperformingitsintended function.

1.2.15. Operating:Operatingmeansacomponentorsystemisperformingitsintendedfunction.

1.2.16. pcm:Aunitofreactivitythatistheabbreviationfor"percentmillirho"andisequalto105 k/kreactivity.Forexample,1000pcmisequalto1.0%k/k.

1.2.17. ReactorBuilding:TheReactorBuildingincludestheReactorBay,ControlRoom,Ventilation EquipmentRoom(VER),MechanicalEquipmentRoom(MER),andthePrimaryPipingVault (PPV).TheNuclearRegulatoryCommissionR120licenseappliestotheareasintheReactor BuildingandtheWasteTankVault.

1.2.18. ReactorOperating:Thereactorisoperatingwheneveritisnotsecuredorshutdown.

1.2.19. ReactorOperator:Areactoroperator(RO)isanindividualwhoislicensedtomanipulate thecontrolsofthefacility.

1.2.20. ReactorOperatorAssistant:Areactoroperatorassistant(ROA)isanindividualwhohas successfullycompletedaninhousetrainingprogramtoassistthelicensedreactoroperator withnonlicensedactivitiesduringreactoroperation.

1.2.21. Reactor Safety System: Reactor safety systems are those systems, including their associatedinputchannels,thataredesignedtoinitiateautomaticreactorprotectionorto provideinformationforinitiationofmanualprotectiveaction.

1.2.22. ReactorSecured:Thereactorissecuredwhen:

a.

Eitherthereisinsufficientmoderatoravailableinthereactortoattaincriticalityor thereisinsufficientfissilematerialpresentinthereactortoattaincriticalityunder optimumavailableconditionsofmoderationandreflection;

b.

Orthefollowingconditionsexist:

i.

Allcontrolrodsarefullyinserted,and ii.

ThereactorkeyswitchisintheOFFpositionandthekeyisremovedfrom thelock,and

Page7of53

<date>

iii.

Noworkisinprogressinvolvingcorefuel,corestructure,installedcontrol rods,orcontrolroddrivesunlesstheyarephysicallydecoupledfromthe controlrods,and iv.

Noexperimentsarebeingmovedorservicedthathave,onmovement,a reactivityworthexceedingonedollar.

1.2.23. ReactorShutdown:Thatsubcriticalconditionofthereactorwheretheabsolutevalueof thenegativereactivityofthecoreisequaltoorgreaterthantheshutdownmargin.

1.2.24. ReportableEvent:AReportableEventisanyofthefollowing:

a.

ViolationofSafetyLimits.

b.

Releaseofradioactivityfromthesiteaboveallowedlimits.

c.

Operation with actual Safety System Settings (SSS) for required systems less conservativethantheLimitingSafetySystemSettings(LSSS)specifiedinthese technicalspecifications.

d.

OperationinviolationofLimitingConditionsforOperation(LCO)establishedin thesetechnicalspecifications.

e.

Areactorsafetysystemcomponentmalfunctionwhichrendersorcouldrenderthe reactorsafetysystemincapableofperformingitsintendedsafetyfunctionunless themalfunctionorconditionisdiscoveredduringmaintenancetestsorperiodsof reactorshutdown.Note:Wherecomponentsorsystemsareprovidedinaddition to those required by the technical specifications, the failure of the extra componentsorsystemsisnotconsideredreportableprovidedthattheminimum numbersofcomponentsorsystemsspecifiedorrequiredperformtheirintended reactorsafetyfunction.

f.

Anunanticipatedoruncontrolledchangeinreactivitygreaterthanonedollar(730 pcm).Reactortripsresultingfromaknowncauseareexcluded.

g.

Abnormalorsignificantdegradationinreactorfuel,orcladding,orboth,coolant boundary,orconfinementboundary(excludingminorleaks),whichcouldresultin exceedingradiologicallimitsforpersonneland/ortheenvironment,asprescribed inthefacilityEmergencyPlan.

h.

Anobservedinadequacyintheimplementationofadministrativeorprocedural controlssuchthattheinadequacycausesorcouldhavecausedtheexistenceor developmentofanunsafeconditionwithregardtoreactoroperations.

1.2.25. SafetyLimit:Safetylimitsfornuclearreactorsarelimitsuponimportantprocessvariables thatarefoundtobenecessarytoreasonablyprotecttheintegrityofcertainofthephysical barriersthatguardagainsttheuncontrolledreleaseofradioactivity(10CFRPart50.36).

1.2.26. Shim Rod: A shim rod is a neutron absorbing rod having an inline drive which is mechanically,ratherthanmagnetically,coupledanddoesnothaveaSCRAMcapability.

Page8of53

<date>

1.2.27. SeniorReactorOperator:Anindividualwhoislicensedtodirecttheactivitiesofreactor operators.Suchanindividualisalsoareactoroperator.

1.2.28. ShutdownMargin:Shutdownmarginistheminimumshutdownreactivitynecessaryto provideconfidencethatthereactorcanbemadesubcriticalbymeansofthecontroland safetysystemsstartingfromanypermissibleoperatingconditionwiththemostreactive controlrodfullywithdrawnandexperimentsconsideredattheirmostreactivecondition, andthatthereactorwillremainsubcriticalwithoutfurtheroperatoraction.

1.2.29. TotalNuclearPeakingFactor:Theratioofthelocalpowerdensityinthefuelpintothe averagepowerdensityofthecore.

1.2.30. TrueValue:Thetruevalueistheactualvalueofaparameter.

1.2.31. University Management: University Management is the Chancellor, Office of the Chancellor, and other University Administrator(s) having authority designated by the ChancellororasspecifiedinUniversitypolicies.

1.2.32. UnscheduledShutdown:Anunscheduledshutdownisdefinedasanyunplannedshutdown ofthereactorcausedbyactuationofthereactorsafetysystem,operatorerror,equipment malfunction,oramanualshutdowninresponsetoconditionsthatcouldadverselyaffect safeoperation,notincludingshutdownsthatoccurduringtestingorcheckoutoperations.

Page9of53

<date>

2. SAFETYLIMITSANDLIMITINGSAFETYSYSTEMSETTINGS 2.1.

SafetyLimits(SL) 2.1.1. SafetyLimitsforForcedConvectionFlow Applicability Thisspecificationappliestotheinterrelatedvariablesassociatedwiththecorethermaland hydraulicperformancewithforcedconvectionflow.Theseinterrelatedvariablesare:

P ReactorThermalPower W

ReactorCoolantFlowRate H

HeightofWaterAbovetheTopoftheCore Tinlet ReactorCoolantInletTemperature Objective Theobjectiveistoassurethattheintegrityofthefuelcladismaintained.

Specification Undertheconditionofforcedconvectionflow,theSafetyLimitsshallbeasfollows:

a.

Thecombinationoftruevaluesofreactorthermalpower(P)andreactorcoolant flowrate(W)shallnotexceedthelimitsshowninFigure21underanyoperating conditions.Thelimitsareconsideredexceededifthepointdefinedbythetrue valuesofPandWisatanytimeoutsidetheoperatingenvelopeshowninFigure 21.

b.

Thetruevalueofpoolwaterlevel(H)shallnotbelessthan14feetabovethetopof thecore.

c.

Thetruevalueofreactorcoolantinlettemperature(Tinlet)shallnotbegreaterthan 120F.

Page10of53

<date>

Bases ThesteadystateheattransferdesignoftheNCSUPULSTARreactorisbasedonfivecriteria:

NoBulkBoilingCriterion Underforcedconvectioncoolingwith downward flow, no coolant bulk boilingisallowedinanychannel.

FlowInstabilityCriterion There should be no coolant flow instability in any fuel channel that couldleadtoasignificantdecreasein fuelcooling.

DNBRCriterion Theratioofthecalculatedheatfluxat thepointofdeparturefromnucleate boiling(DNB)tothemaximumsteady stateheatfluxisgreaterthan2.0.

FuelTemperatureCriterion Themaximumtemperatureofthefuel islessthan4352°F.

CladdingTemperatureCriterion The maximum temperature of the claddingislessthan2200°F.

Thesafetylimitsensurethatallcriteriaaresatisfiedinthehottestchannelandensurethat fuelcladdingintegritywillnotbelostwhenallvaluesarejointlymaintainedwithinthe SafetyLimits.

Page11of53

<date>

Figure21-Power-FlowSafetyLimitCurve

Page12of53

<date>

2.1.2. SafetyLimitsforNaturalConvectionFlow.

Applicability Thisspecificationappliestotheinterrelatedvariablesassociatedwiththecorethermaland hydraulicperformancewithnaturalconvectionflow.Theseinterrelatedvariablesare:

P ReactorThermalPower H

HeightofWaterAbovetheTopoftheCore Tinlet ReactorCoolantInletTemperature Objective Theobjectiveistoassurethattheintegrityofthefuelcladismaintained.

Specification Undertheconditionofnaturalconvectionflow,theSafetyLimitsshallbeasfollows:

a.

Thetruevalueofreactorthermalpower(P)shallnotexceed1.0MWt.

b.

Thetruevalueofpoolwaterlevel(H)shallnotbelessthan14feetabovethetopof thecore.

c.

Thetruevalueofreactorcoolantinlettemperature(Tinlet)shallnotbegreaterthan 120F.

Bases ThecriterionforestablishingaSafetyLimitwithnaturalconvectionflowisestablishedas thefuelcladtemperature.TheanalysisofnaturalconvectionflowgivenintheSafety AnalysisReportshowsthatat1.0MWtthemaximumfuelcladtemperatureiswellbelow thetemperatureatwhichfuelcladdamagecouldoccur.

Page13of53

<date>

2.2.

LimitingSafetySystemSettings 2.2.1. LimitingSafetySystemSettings(LSSS)forForcedConvectionFlow Applicability This specification applies to the setpoints for the safety channels monitoring reactor thermalpower(P),coolantflowrate(W),heightofwaterabovethetopofthecore(H),and poolwatertemperature(T).

Objective Theobjectiveistoassurethatautomaticprotectiveactionisinitiatedinordertopreventa SafetyLimitfrombeingexceeded.

Specification Undertheconditionofforcedconvectionflow,theLimitingSafetySystemSettingsshallbe asfollows:

P 2.0MWt(max.)

W 900gpm(min.)

H 17feet(min.)

T 117F(max.)

Bases TheLimitingSafetySystemSettingsthataregiveninSpecification2.2.1representvaluesof theinterrelatedvariableswhich,ifexceeded,shallresultinautomaticprotectiveactions thatwillpreventSafetyLimitsfrombeingexceededduringthemostlimitinganticipated transient.ThesafetymarginthatisprovidedbetweentheLimitingSafetySystemSettings and the Safety Limits also allows for the most adverse combination of instrument uncertaintiesassociatedwithmeasuringtheobservableparameters.

TheanalysispresentedintheSafetyAnalysisReportforallcredibleaccidentscenarios indicatethatiftheinterrelatedvariableswereattheirLSSS,asspecifiedin2.2.1above,at theinitiationofthetransient,theSafetyLimitsspecifiedin2.1.1wouldnotbeexceeded.

Page14of53

<date>

2.2.2. LimitingSafetySystemSettings(LSSS)forNaturalConvectionFlow Applicability Thisspecificationappliestothesetpointsforthesafetychannelmonitoringreactorthermal power(P),theheightofwaterabovethecore(H),andthepoolwatertemperature(T).

Objective Theobjectiveistoassurethatautomaticprotectiveactionisinitiatedinordertopreventa SafetyLimitfrombeingexceeded.

Specifications Undertheconditionofnaturalconvectionflow,theLimitingSafetySystemSettingsshallbe asfollows:

P 250kWt(max.)

H 17feet(min.)

T 117F(max.)

Bases TheLimitingSafetySystemSettingsthataregiveninSpecification2.2.2representvaluesof theinterrelatedvariableswhich,ifexceeded,shallresultinautomaticprotectiveactions thatwillpreventSafetyLimitsfrombeingexceeded.Thespecificationsgivenaboveassure thatanadequatesafetymarginexistsbetweentheLSSSandtheSLfornaturalconvection.

Thesafetymarginonreactorthermalpowerwaschosenwiththeadditionalconsideration relatedtobulkboilingattheoutletofthehotchannel.Thiscriterionisnotrelatedtofuel clad damage (for these relatively low power levels) which was the criterion used in establishingtheSafetyLimits(seeSpecification2.1.2).Itisdesirabletominimize16Ndose atthepoolsurfacewhichmightbeaidedbysteambubbleriseduringupflowinnatural convection.AnalysisofcoolantbulkboilinggivenintheSafetyAnalysisReportindicates thatthelargesafetymarginonreactorthermalpowerassumedinSpecification2.2.2above willsatisfythisadditionalcriterionofnobulkboilinginanychannel.

Page15of53

<date>

3. LIMITINGCONDITIONSFOROPERATION 3.1.

ReactorCoreConfiguration Applicability Thisspecificationappliestothereactorcoreconfigurationduringforcedconvectionor naturalconvectionflowoperations.

Objective Theobjectiveistoassurethatthereactorwillbeoperatedwithintheboundsofestablished SafetyLimits.

Specification Thereactorshallnotbeoperatedunlessthefollowingconditionsexist:

a.

Amaximumoftwentyfivefuelassemblies.

b.

Anynumberreflectorassembliesofeithergraphiteorberylliumoracombination oftheselocatedonthecoreperiphery.

c.

Unoccupiedgridplatepenetrationsplugged.

d.

Aminimumoffourcontrolrodsguidesareinplacewithoperablecontrolrods.

e.

Theworthofafuelassemblywhilebeingloadedintothereactorgridplateshallnot resultinakeffofgreaterthan1.01626.

f.

Thetotalpinpowerpeakingfactorinanyfuelassemblyshallnotexceed3.0.

Bases Specifications3.1.athrough3.1.drequirethatthecorebeconfiguredsuchthatthereisno bypasscoolingflowaroundthefuelthroughthegridplate.

Specifications3.1.drequirescontrolrodsareoperabletoensurethatshutdownmargin requirementsaresatisfied.

Specification3.1.eprovidesassurancesthatafuelloadingaccidentwillnotresultinaSafety LimittobeexceededasdiscussedintheSafetyAnalysisReport.

Specification3.1.fprovidesassurancesthatfuelintegrityismaintainedasdiscussedinthe SafetyAnalysisReport.

Page16of53

<date>

3.2.

Reactivity Applicability Thisspecificationappliestothereactivityconditionofthereactorandthereactivityworths ofcontrolrodsandexperiments.

Objective TheobjectiveistoassurethatthereactorcanbeshutdownatalltimesandthattheSafety Limitswillnotbeexceeded.

Specifications Thereactorshallnotbeoperatedunlessthefollowingconditionsexist:

a.

Theshutdownmargin,withthehighestworthcontrolrodfullywithdrawnandwith experimentsattheirmostreactivecondition,relativetothecoldcriticalcondition, isgreaterthan400pcm.

b.

Theexcessreactivityisnotgreaterthan4800pcm.

c.

Thedroptimeofeachcontrolrodisnotgreaterthan1.0second.

d.

Therateofreactivityinsertionofthecontrolrodsisnotgreaterthan200pcmper second(criticalregiononly).

e.

Theabsolutereactivityworthofexperimentsortheirrateofreactivitychangeshall notexceedthevaluesindicatedinTable31.

f.

Thesumoftheabsolutevaluesofthereactivityworthsofallexperimentsshallnot begreaterthan3000pcm.

Table31-ReactivityLimitsforExperiments ExperimentType Limit Movable 300pcmor200pcm/sec, whicheverismorelimiting Nonsecured 1000pcm Secured 1600pcm

Bases

Page17of53

<date>

TheshutdownmarginrequiredbySpecification3.2.aassuresthatthereactorcanbeshut downfromanyoperatingconditionandwillremainshutdownaftercooldownandxenon decay,evenifthehighestworthcontrolrodshouldbeinthefullywithdrawnposition.

The upper limit on excess reactivity by Specification 3.2.b ensures that an adequate shutdownmarginismaintained.

TheroddroptimerequiredbySpecification3.2.cisthetimeintervalmeasuredbetweenthe instantofatestsignalinputtotheSCRAMLogicUnitandtheinstantoftherodseated signal.

The maximum rate of reactivity insertion by the control rods which is allowed by Specification3.2.dassuresthattheSafetyLimitswillnotbeexceededduringastartup accident(linearrampreactivityinsertion)asanalyzedintheSafetyAnalysisReport.

Specification3.2.eisintendedtopreventinadvertentreactivitychangesduringreactor operation caused by the insertion or removal of an experiment. It further provides assurancethatthefailureofasingleexperimentwillnotresultinareactivityinsertion whichcouldresultinconsequencesgreaterthanthoseanalyzedintheSafetyAnalysis Report.

Specification3.2.flimitsthetotalreactivityassociatedwithexperimentstoensurethatan adequateshutdownmarginismaintained.

Page18of53

<date>

3.3.

ReactorSafetySystem Applicability Thisspecificationappliestothereactorsafetysystemchannels.

Objective Theobjectiveistorequiretheminimumnumberofreactorsafetysystemchannelswhich mustbeoperableinordertoassurethattheSafetyLimitsarenotexceeded.

Specification Thereactorshallnotbeoperatedunlessthereactorsafetysystemchannelsdescribedin Table32areoperable.

Bases TheStartupChannelinhibitfunctionassuresthataminimumsourcemultiplicationcount ratelevelisbeingdetectedtoassureadequateinformationisavailabletotheoperator.

ThereactorpowerlevelSCRAMsprovidetheredundantprotectionchannelstoassurethat, ifaconditionshoulddevelopwhichwouldtendtocausethereactortooperateatan abnormally high power level, an immediate automatic protective action will occur to preventexceedingtheSafetyLimits.

TheprimarycoolantflowSCRAMsprovideredundantchannelstoassurewhenthereactor isatpowerlevelswhichrequireforcedflowcoolingthat,ifsufficientflowisnotpresent,an immediateautomaticshutdownofthereactorwilloccurtopreventexceedingaSafety Limit.TheLogNPowerChannelisincludedinthissectionsinceitisoneofthetwochannels whichenablesthetwoflowSCRAMswhenthereactorisabove250kW(LSSS).

Thepoolwatertemperaturechannelprovidesforshutdownofthereactorandprevents exceedingtheSafetyLimitduetohighpoolwatertemperature.

ThepoolwaterlevelchanneltogetherwiththeOverthePoolradiationmonitor,provides twodiversechannelsforshutdownofthereactorandpreventsexceedingtheSafetyLimit duetoinsufficientpoolheight.

Topreventunnecessaryinitiationoftheevacuationandconfinementsystemsduringthe returnofthepneumaticcapsulefromthecoretotheunloadingstationorduringthe removal of experiments or radioactive material from the reactor pool, the automatic initiationoftheevacuationandconfinementsystemfortheOverthePoolmonitormaybe bypassedforthespecifiedtimeinterval.

ThemanualSCRAMbuttonandtheReactorKeyswitchprovidetwomanualSCRAMmethods tothereactoroperatorifunsafeorabnormalconditionsshouldoccur.

Page19of53

<date>

Table32-RequiredSafetyandSafetyrelatedChannels MeasuringChannel Function a.

StartupPowerLevel(1)

InhibitsControlRodwithdrawalwhen neutroncountis2cps b.

SafetyPowerLevel SCRAMat2.0MW EnableforFlow/FlapperSCRAMsat 250kW c.

LinearPowerLevel SCRAMat2.0MW d.

LogNPowerLevel EnableforFlow/FlapperSCRAMsat 250kW e.

FlowMonitoring(2)

SCRAMwhenflappernotclosedand Flow/FlapperSCRAMsareenabled f.

PrimaryCoolantFlow(2)

SCRAMat900gpmwhen Flow/FlapperSCRAMsareenabled g.

PoolWaterTemperatureMonitoring Switch ALARMat117F h.

PoolWaterTemperatureMeasuring Channel SCRAMat117F i.

PoolWaterLevel SCRAMat17feet j.

ManualSCRAMButton SCRAM k.

ReactorKeyswitch SCRAM l.

OverthePoolRadiationMonitor(3)

Alarm(100mR/hr)

(1)Requiredonlyforreactorstartupwhenpowerlevelislessthan4watts.

(2)EithertheFlapperSCRAMortheFlowSCRAMmaybebypassedduringmaintenancetesting and/orperformanceofastartupchecklistinordertoverifyeachSCRAMisindependently operable.Thereactormustbeshutdowninordertousethesebypasses.

(3)TheautomaticinitiationoftheevacuationandconfinementsystemfortheOverthePool Monitormaybebypassedforlessthanfiveminutesduringthereturnofapneumatic capsulefromthecoretotheunloadingstationorremovalofexperimentsorradioactive materialfromthereactorpool.

Page20of53

<date>

3.4.

ReactorInstrumentation Applicability Thisspecificationappliestotheinstrumentationthatshallbeavailabletothereactor operatortosupportthesafeoperationofthereactor,butarenotconsideredreactorsafety systems.

Objective Theobjectiveistorequirethatsufficientinformationbeavailabletotheoperatortoassure safeoperationofthereactor.

Specification Thereactorshallnotbeoperatedunlessthefollowingareoperable:

a.

16NPowerMeasuringChannelwhenreactorpowerisgreaterthan500kW

b.

ControlRodPositionIndicationsforeachcontrolrod

c.

Differentialpressuregaugefor"BaywithRespecttoAtmosphere" Bases The16NChannelprovidesareferencepowerlevelindicationwhileadjustmentsarebeing madetootherpowerlevelchannels.

Controlrodpositionindicationsgivetheoperatorinformationonrodheightnecessaryto verifyshutdownmargin.

ThedifferentialpressuregaugeprovidesthepressuredifferencebetweentheReactorBay andtheoutsideambientandconfirmsairflowintheventilationsystemforbothnormaland confinementmodes.

Page21of53

<date>

3.5.

RadiationMonitoringEquipment Applicability Thisspecificationappliestotheavailabilityofradiationmonitoringequipmentwhichmust beoperableduringreactoroperation.

Objective Toassurethatradiationmonitoringequipmentisavailableforevaluationofradiation conditionsinrestrictedandunrestrictedareas.

Specification ThereactorshallnotbeoperatedunlesstheradiationmonitoringequipmentlistedinTable 33isoperable.(1)(2)(3)

a.

ThreefixedareamonitorsoperatingintheReactorBuildingwiththeirsetpointsas listedinTable33.(1)(3)(4)

b.

StackGasandStackParticulatebuildingmonitorscontinuouslysamplingairinthe facilityexhauststackwiththeirsetpointsaslistedinTable33.(1)(3)(4)

c.

TheRadiationRackRecorder.(5)

Table33-RequiredRadiationAreaMonitors Monitor AlertSetpoint AlarmSetpoint ControlRoom 2mR/hr 5mR/hr OverthePool 5mR/hr 100mR/hr WestWall 5mR/hr 100mR/hr StackGas 3000Ar41EC(6) 3300Ar41EC(6)

StackParticulate 8000Co60EC(6) 8500Co60EC(6)

(1) For periods of time not to exceed ninety days, for maintenance to the radiation monitoringchannel,theintentofthisspecificationwillbesatisfiedifoneoftheinstalled channelsisreplacedwithagammasensitiveinstrumentwhichhasitsownalarmaudible orobservableinthecontrolroom.

(2)TheautomaticinitiationoftheevacuationandconfinementsystemfortheOverthePool Monitormaybebypassedforlessthanfiveminutesduringreturnofapneumaticcapsule fromthecoretotheunloadingstationorduringremovalofexperimentsorradioactive materialfromthereactorpool.

Page22of53

<date>

(3)StackGasandStackParticulatemonitorsetpointsarebasedontheeffluentconcentration (EC)quantitiespresentintheventilationflowstreamasitexitsthestack.Refertothe SafetyAnalysisReportsetpointbasesfortheradiationmonitoringequipment.

(4)TheautomaticinitiationoftheevacuationandconfinementsystemfortheStackGasand StackParticulateMonitorsmaybebypassedforlessthanfiveminutesimmediatelyafter startingthepneumaticblowersystem.

(5)Duringrepairand/ormaintenanceoftherecordernottoexceed90days,thespecified areaandeffluentmonitorreadingsshallberecordedmanuallyatanominalintervalof30 minuteswhenthereactorisnotshutdown.

(6)ECvaluesfrom10CFRPart20AppendixB,Table2.

Bases AcontinuousevaluationoftheradiationlevelswithintheReactorBuildingwillbemadeto assurethesafetyofpersonnel.Thisisaccomplishedbytheareamonitoringsystemofthe typedescribedintheSafetyAnalysisReport.

Evaluationofthecontinuousdischargeofairtotheenvironmentwillbemadeusingthe informationrecordedfromthestackgasandstackparticulatemonitors.

Whentheradiationlevelsreachthealarmsetpointonanysingleareaorstackexhaust monitor,thebuildingwillbeautomaticallyplacedinconfinementasdescribedintheSafety AnalysisReport.

Topreventunnecessaryinitiationoftheevacuationconfinementsystemduringthereturn ofapneumaticcapsuleorduringremovalofexperimentsorradioactivematerialfromthe reactor pool, the OverthePool Monitor may be bypassed during the specified time interval.

Page23of53

<date>

3.6.

ConfinementandMainHVACSystems Applicability ThisspecificationappliestotheoperationoftheReactorBuildingconfinementandmain HVACsystems.

Objective Theobjectiveistoassurethattheconfinementsystemisinoperationtomitigatethe consequencesofpossiblereleaseofradioactivematerialsresultingfromreactoroperation.

Specification Thereactorshallnotbeoperated,norshallirradiatedfuelbemovedwithinthepoolarea, unlessthefollowingconditionsaremetandequipmentisoperable:

a.

Alldoors,excepttheControlRoom,andbasementcorridorentranceareself latching,selfclosing,closedandlocked.(1)

b.

Controlroomandbasementcorridorentrancedoorareselflatching,selfclosing andclosed.(2)

c.

ReactorBuildingisunderanegativedifferentialpressureofnotlessthan0.2"H2O with the normal ventilation system or 0.1" H2O with one confinement fan operating.(3)

d.

Confinementsystem(4)(5)(7)

e.

Evacuationsystem(6)

(1)Doorsmaybeopenedbyauthorizedpersonnelforlessthanfiveminutesforpersonnel andequipmenttransportprovidedaudibleand/orvisualindicationsareavailableforthe reactoroperatortoverifydoorstatus.

(2)Doorsmaybeopenedforperiodsoflessthanfiveminutesforpersonnelandequipment transportbetweencorridorareaandReactorBuilding.

(3) During an interval not to exceed 30 minutes after a loss of differential pressure is identifiedwithMainHVACoperating,reactoroperationmaycontinuewhilethelossof differentialpressureisinvestigatedandcorrected.

(4)Operabilityalsobedemonstratedwithanauxiliarypowersource.

(5)Onefiltertrainmaybeoutofserviceforthepurposeofmaintenance,repair,and/or surveillanceforaperiodoftimenottoexceed45days.Duringtheperiodoftimein whichonefiltertrainisoutofservice,thestandbyfiltertrainshallbeverifiedtobe operableevery24hoursifthereactorisoperatingwiththeReactorBuildinginnormal ventilation.

Page24of53

<date>

(6)ThepublicaddresssystemcanservetemporarilyfortheReactorBuildingevacuation systemduringshortperiodsofmaintenance.

(7)Whentheradiationlevelsreachthealarmsetpointonanysinglearea,orstackexhaust monitor,listedinTable33,thebuildingwillbeautomaticallyplacedinconfinementas describedintheSafetyAnalysisReport.

Bases Intheeventofafissionproductrelease,theconfinementinitiationsystemwillsecurethe normalventilationfansandclosethenormalinletandexhaustdampers.Inconfinement mode,aconfinementsystemfanwill:

maintainanegativepressureintheReactorBuildingandinsureinleakageonly purgetheairfromthebuildingatagreatlyreducedandcontrolledflowthrough charcoalandabsolutefilters controlthedischargeofallairthrougha100footstackonsite Theallowanceforoperationunderatemporarylossofdifferentialpressurewheninnormal ventilationisbasedontherequirementofhavingtheconfinementsystemoperableand thereforereadytorespondintheunlikelyeventofanairbornerelease.

Page25of53

<date>

3.7.

LimitationsofExperiments Applicability This specification appliestoexperimentsinstalledinthereactoranditsexperimental facilities.FueledexperimentsmustalsomeettherequirementsofSpecification3.8.

Objective Theobjectiveistopreventdamagetothereactororexcessivereleaseofradioactive materialsintheeventofanexperimentfailure.

Specification Thereactorshallnotbeoperatedunlessthefollowingconditionsgoverningexperiments aresatisfied:

a.

Allmaterialstobeirradiatedshallbeeithercorrosionresistantorencapsulated within a corrosion resistant container to prevent interaction with reactor componentsorpoolwater.Corrosivematerials,liquids,andgasesshallbedoubly encapsulated.

b.

Irradiationcontainerstobeusedinthereactor,inwhichastaticpressurewillexist orinwhichapressurebuildupispredicted,shallbedesignedandtestedfora pressureexceedingthemaximumexpectedbyafactorof2.Pressurebuildup insideanycontainershallbelimitedto200psi.

c.

Coolingshallbeprovidedtopreventthesurfacetemperatureofanexperimentto beirradiatedfromexceedingthesaturationtemperatureofthereactorpoolwater.

d.

Experimentalapparatus,materialorequipmenttobeinsertedinthereactorshall be positioned so as to not cause shadowing of the nuclear instrumentation, interferencewithcontrolrods,orotherperturbationswhichmayinterferewith safeoperationofthereactor.

e.

Concerningthematerialcontentofexperiments,thefollowingwillapply:

i.

Noexperimentwillbeperformedunlessthemajorconstituentofthe materialtobeirradiatedisknownandareasonableefforthasbeenmade toidentifytraceelementsandimpuritieswhoseactivationmayposethe dominantradiologicalhazard.Whenareasonableeffortdoesnotgive conclusiveinformation,oneormoreshortirradiationsofsmallquantities ofmaterialmaybeperformedinordertoidentifytheactivatedproducts.

ii.

Attemptswillbemadetoidentifyandlimitthequantitiesofelements havingverylargethermalneutronabsorptioncrosssections,inorderto quantifyreactivityeffects.

iii.

Experimentsinvolvingmaterialthatisconsideredtobeexplosive(1),either whilecontained,orifitleaksfromthecontainer,shallbedesignedto maintainsealintegrityevenifdetonated,topreventdamagetothereactor

Page26of53

<date>

coreortothecontrolrodsorinstrumentationandtopreventanychange inreactivity.

iv.

Each experiment will be evaluated with respect to radiation induced physical and/or chemical changes in the irradiated material, such as decompositioneffectsinpolymers.

v.

Experimentsinvolvingcryogenicmaterials(1)withinthebiologicalshield, flammable(1),orhighlytoxicmaterials(1)requirespecificproceduresfor handlingandshallbelimitedinquantityandapprovedasspecifiedin Specification6.2.3.

f.

Crediblefailureofanyexperimentshallnotresultinreleasesorexposuresinexcess oftheannuallimitsestablishedin10CFRPart20.

(1) Defined as follows (reference Handbook of Laboratory Safety Chemical Rubber Company,5thEd.,2000,unlessotherwisenoted):

Toxic:

Asubstancethathastheabilitytocausedamagetolivingtissuewhen inhaled, ingested, injected, or absorbed through the skin (Safety in AcademicChemistryLaboratoriesTheAmericanChemicalSociety,7thEd.,

2003).

Flammable:

Havingaflashpointbelow73Fandaboilingpointbelow100F.Theflash pointisdefinedastheminimumtemperatureatwhichaliquidformsa vaporaboveitssurfaceinsufficientconcentrationsthatitmaybeignited asdeterminedbyappropriatetestproceduresandapparatusasspecified.

Explosive:

Any chemical compound, mixture, or device, where the primary or commonpurposeofwhichistofunctionbyexplosionwithsubstantially simultaneousreleaseofgasandheat,theresultantpressurebeingcapable ofdestructiveeffects.Thetermincludes,butisnotlimitedto,dynamite, blackpowder,pelletpowder,initiatingexplosives,detonators,safetyfuses, squibs,detonatingcord,ignitercord,andigniters.

Cryogenic:

Cryogenicmaterialismaterialwithanormalboilingpointbelow243F (referenceNationalBureauofStandardsHandbook44).

Bases Specifications3.7.a,3.7.b,3.7.c,and3.7.dareintendedtoreducethelikelihoodofdamage toreactorcomponentsand/orradioactivityreleasesresultingfromexperimentfailure;and, serveasaguideforthereviewandapprovalofnewanduntriedexperiments.

Specification3.7.eensuresthatnophysicalornuclearinterferencescompromisethesafe operationofthereactor,specifically,anexperimenthavingalargereactivityeffectofeither signcouldproduceanundesirablefluxdistributionthatcouldaffectthepeakingfactorused inthesafetylimitcalculationand/orsafetychannelcalibrations.

ReviewofexperimentsusingthespecificationsofSection3andSection6willensurethe insertionofexperimentswillnotnegatetheconsiderationsimplicitintheSafetyLimitsand

Page27of53

<date>

therebyviolatelicenseconditions.

Page28of53

<date>

3.8.

OperationswithFueledExperiments Applicability Thisspecificationappliestotheoperationofthereactorwithanyfueledexperiment.

Objective Theobjectiveistopreventdamagetothereactororexcessivereleaseofradioactive materialsintheeventofanexperimentfailure.

Specifications Fueledexperimentsmaybeperformedinexperimentalfacilitiesofthereactorwiththe followingconditionsandlimitations:

a.

Specification3.2pertainingtoexperimentreactivityworthshallbemet.

b.

Specifications 3.5and3.6pertainingtooperationoftheradiationmonitoring systemandventilationsystemshallbemetduringreactoroperationorifmovingor handlinganirradiatedfueledexperiment.

c.

Specification3.7pertainingtolimitationsonexperimentsshallbemet,withthe exception that containers used for vented fueled experiment shall meet specification3.8.d.iv.1.

d.

Fissionablematerialsusedinfueledexperimentsshallmeetthefollowing:

i.

Fissionablematerialphysicalformshallbesolid,powder,orliquid.

ii.

Fissionratelessthanorequalto9.6x109fissionspersecond.

iii.

Totalnumberoffissionslessthanorequalto1.8x1016.

iv.

Ventedfueledexperimentsshallmeetthefollowing:

1.

Fissiongasesandhalogensmaybereleased.Allothermaterials shallbecontained.

2.

Monitoringoftheexhaustflowrate.Maximumflowrateshallbe lessthanorequaltothree(3)litersperminute(lpm).

3.

Minimum decay time of thirty (30) minutes before being exhaustedbythereactorbuildingventilationsystem.

4.

Filtrationofexhaustforparticulatesandhalogens.(1)

5.

Monitoringoftheexperimentexhaustgasforradioactivity.

Page29of53

<date>

6.

Monitoring for halogens in the stack particulate radiation monitoringchannel.

e.

Specification5.3pertainingtocriticalitycontrolforfueledexperimentsinstorage shallbemet.

f.

Specifications6.2.3and6.5pertainingtothereviewofexperimentsshallbemet.

(1)Filterremovalefficiencyshallbecertifiedbythesuppliertobe0.95orgreateratflow ratesat3lpmorless.

Bases ThelimitationsgiveninSpecification3.8ensurethat:

a.

Fueledexperimentsperformedinexperimentalfacilitiesatthereactorprevent damagetothereactororexcessivereleaseofradioactivematerialsintheeventof anexperimentfailure.

b.

Radiationdosesfromaccidentalorplannedreleasesofairborneactivitydonot exceedthreepercent(3%)oftheannuallimitsgivenin10CFRPart20.

Specification3.8.aprovidesreactivitycontrolduringirradiation.

Specification3.8.bprovidesforradiationmonitoringandventilationsystemoperation, includingactuationoftheconfinementmodeofoperationshouldanaccidentalrelease occurduringirradiationandhandlingofafueledexperiment.

Specification3.8.cand3.8.d.iprovideforexperimentalcontrolstopreventreleaseof fissionablematerialsandfissionproducts.

Specification3.8.d.iilimitsradiationdosefromthereleaseoffissionproductstoaTotal EffectiveDoseEquivalent(TEDE)of0.003reminpublicareasoutsidethereactorbuilding,a TEDEof0.15reminsidethereactorbuilding,andaTotalOrganDoseEquivalenttothe thyroid(TODE)of1.5reminsidethereactorbuilding.

Specification3.8.d.iiilimitstheproductionoflonglivedfissionproductsforsafetyand securityconcernstolevelsbelowthosegivenforCategory2QuantitiesofConcernin10CFR Part37.

Specification 3.8.d.iv provides controls forplannedreleasesfromventedexperiments neededtoensurethatradiationdosedoesnotexceedthreepercentoftheannualradiation doselimitsgivenin10CFRPart20.

Specification3.8.eensuresthatfueledexperimentsarestoredinsubcriticalconfigurations.

Specification 3.8.f ensures that fueled experiments are reviewed, approved, and documentedasrequiredbySpecifications6.2.3and6.5.

Page30of53

<date>

3.9.

PrimaryCoolant Applicability Thisspecificationappliestothewaterqualityandflowpathoftheprimarycoolant.

Objective Theobjectiveistoensurethatprimarycoolantqualitybemaintainedtoacceptablevalues in order to reduce the potential for corrosion and limit the buildup of activated contaminantsintheprimarypipingandpool.

Specification Thereactorshallnotbeoperatedunlessthepoolwatermeetsthefollowinglimits:

a.

Theresistivityshallbe500kcm.

Bases Theminimumrequirementforresistivityisbasedonreducingthepotentialforcorrosionin theprimarypipingorpoollinerandtoreducethepotentialforactivatedcontaminantsin thesesystems.

Page31of53

<date>

4. SURVEILLANCEREQUIREMENTS Allsurveillancetestsrequiredbythesespecificationsarescheduledasdescribed;however,some systemtestsmaybepostponedattherequiredintervalsifthatsystemoracloselyassociated systemisundergoingmaintenance.Anypendingsurveillancetestswillbecompletedpriorto reactor startup. Any surveillance item(s) which require reactor operation will be completed immediatelyafterreactorstartup.Surveillancerequirementsscheduledtooccurduringextended operationwhichcannotbeperformedwhilethereactorisoperatingmaybedeferreduntilthenext plannedreactorshutdown.

Theintentofthesurveillanceinterval(e.g.,annually,butnottoexceedfifteenmonths)isto maintainanaveragecycle,withoccasionalextensionsasallowedbytheintervaltolerance.Ifitis desiredtopermanentlychangethescheduleddateofsurveillance,theparticularsurveillanceitem willbeperformedatanearlierdateandtheassociatedintervalnormalizedtothisrevisedearlier date.Innocaseswillpermanentschedulingchangeswhichyieldslippageofthesurveillanceinterval routinescheduleddatebemadebyusingtheallowedintervaltolerance.

4.1.

Fuel Applicability Thisspecificationappliestothesurveillancerequirementforthereactorfuel.

Objective TheobjectiveistomonitorthephysicalconditionofthePULSTARfuel.

Specification

a.

Allfuelassembliesshallbevisuallyinspectedforphysicaldamagebienniallybutat intervalsnottoexceedthirty(30)months.

b.

Thereactorwillbeoperatedatsuchpowerlevelsnecessarytodetermineifan assemblyhashadfuelpincladdingfailure.

Bases Eachfuelassemblyisvisuallyinspectedforphysicaldamagethatwouldincludecorrosionof theendfitting,endbox,zircaloybox,missingfasteners,dents,severesurfacescratches,and blockedcoolantchannels.

BasedonalonghistoryofprototypePULSTARoperationinconjunctionwithprimary coolantanalysis,biennialinspectionsofPULSTARfueltoensurefuelassemblyintegrityhave beenshowntobeadequateforZircoloy2(Zr2)cladfuel.Anyassemblythatappearsto haveleakingfuelpin(s)willbedisassembledtoconfirmandisolatedamagedfuelpins.

Damagedfuelpinswillbeloggedassuchandpermanentlyremovedfromservice.

Page32of53

<date>

4.2.

ControlRods Applicability Thisspecificationappliestothesurveillancerequirementsforthecontrolrodsandcontrol roddrivemechanisms(CRDM).

Objective The objective is to assure the operability of the control rods and to provide current reactivitydataforuseinverifyingadequateshutdownmargin.

Specification

a.

The reactivity worth of each control rod shall be determined annually but at intervalsnottoexceedfifteen(15)months.

b.

Thereactivityworthofallcontrolrodsshallbedeterminedforanynewcoreorrod configuration,priortoroutineoperation.

c.

Controlroddroptimesandcontrolroddrivetimesshallbedetermined:

i.

Annuallybutatintervalsnottoexceedfifteen(15)months.

ii.

Afteracontrolrodassemblyismovedtoanewpositioninthecoreorafter maintenance or modification is performed on the control rod drive mechanism.

d.

Thecontrolrodsshallbevisuallyinspectedbienniallybutatintervalsnottoexceed thirty(30)months.

e.

Thevaluesofexcessreactivityandshutdownmarginshallbedeterminedmonthly, butatintervalsnottoexceedsix(6)weeks,andfornewcoreconfigurations.

Bases Thereactivityworthofthecontrolrodsismeasuredtoassurethattherequiredshutdown margin is available and to provide a means for determining the reactivity worths of experimentsinsertedinthecore.Themeasurementofreactivityworthsonanannualbasis providesacorrectionfortheslightvariationsexpectedduetoburnup.Thisfrequencyof measurementhasbeenfoundacceptableatsimilarresearchreactorfacilities,particularly theprototypePULSTARwhichhadasimilarslowchangeofrodvaluewithburnup.

Controlroddriveanddroptimemeasurementsaremadetodeterminewhethertherods arefunctionallyoperable.

Visualinspectionsinclude:detectionofwearorcorrosionintheroddrivemechanism, identification of deterioration, corrosion, flaking or bowing of the neutron absorber material,andverificationofrodtravelsetpoints.Controlrodsurveillanceprocedureswill documentpropercontrolrodsystemreassemblyaftermaintenanceandrecordedpost

Page33of53

<date>

maintenancedatawillidentifysignificanttrendsinrodperformance.

Page34of53

<date>

4.3.

ReactorInstrumentationandSafetySystems Applicability ThisspecificationappliestothesurveillancerequirementsfortheReactorSafetySystem (RSS)andotherrequiredreactorinstruments.

Objective TheobjectiveistoassurethattherequiredinstrumentationandSafetySystemswillremain operableandwillpreventtheSafetyLimitsfrombeingexceeded.

Specification

a.

AchannelcheckofeachmeasuringchannelintheRSSshallbeperformeddaily whenthereactorisinoperation.

b.

AchanneltestofeachchannelintheRSSshallbeperformedpriortooperation eachday,orpriortoeachoperationextendingmorethanoneday.

c.

A channel calibration of the 16N Channel shall be made semiannually, but at intervalsnottoexceedsevenandonehalf(71/2)months.

d.

Acalorimetricmeasurementshallbeperformedsemiannually,butatintervalsnot toexceedsevenandonehalf(71/2)months,todeterminethe16Ndetectorcurrent associatedwithfullpoweroperation.

e.

Achannelcalibrationofthefollowingchannelsshallbemadesemiannuallybutat intervalsnottoexceedsevenandonehalf(71/2)months.(1)

i.

PoolWaterTemperature ii.

PrimaryCoolingandFlowMonitoring(Flapper) iii.

PoolWaterLevel iv.

PrimaryHeatExchangerInletandOutletTemperature

v.

SafetyandLinearPowerChannels (1)Achannelcalibrationshallalsoberequiredafterrepairofachannelcomponent thathasthepotentialofaffectingthecalibrationofthechannel.

Bases ThedailychanneltestsandcheckswillassuretheReactorSafetySystemsareoperableand will assure operations within the limits of the operating license. The semiannual calibrationswillassurethatlongtermdriftofthechannelsiscorrected.Thecalorimetric calibrationofthereactorpowerlevel,inconjunctionwiththe 16NChannel,providesa continual reference for adjustment of the Linear, LogN and Safety Channel detector positions.

Page35of53

<date>

4.4.

RadiationMonitoringEquipment Applicability Thisspecificationappliestothesurveillancerequirementsfortheareaandstackeffluent radiationmonitoringequipment.

Objective Theobjectiveistoassurethattheradiationmonitoringequipmentisoperable.

Specification

a.

Theareaandstackmonitoringsystemsshallbecalibratedannuallybutatintervals nottoexceedfifteen(15)months.

b.

Thesetpointsshallbeverifiedweekly,butatintervalsnottoexceedten(10)days.

Bases ThesesystemsprovidecontinuousradiationmonitoringoftheReactorBuildingwithacheck ofreadingsperformedpriortoandduringreactoroperations.Therefore,theweekly verificationofthesetpointsinconjunctionwiththeannualcalibrationisadequateto identifylongtermvariationsinthesystemoperatingcharacteristics.

Page36of53

<date>

4.5.

ConfinementandMainHVACSystem Applicability Thisspecificationappliestothesurveillancerequirementsfortheconfinementandmain HVACsystems.

Objective Theobjectiveistoassurethattheconfinementsystemisoperable.

Specification

a.

Theconfinementandevacuationsystemshallbeverifiedtobeoperablewithin seven(7)dayspriortoreactoroperation.

b.

Operabilityoftheconfinementsystemonauxiliarypowerwillbecheckedmonthly butatintervalsnottoexceedsix(6)weeks.(1)

c.

Avisualinspectionofthedoorsealsandclosures,dampersandgasketsofthe confinementandventilationsystemsshallbeperformedsemiannuallybutat intervalsnottoexceedsevenandonehalf(71/2)monthstoverifytheyareoperable.

d.

Thecontrolroomdifferentialpressure(dp)gaugesshallbecalibratedannuallybut atintervalsnottoexceedfifteen(15)months.

e.

Theconfinementfiltertrainshallbetestedbienniallybutatintervalsnottoexceed thirty(30)monthsandpriortoreactoroperationfollowingconfinementHEPAor carbon adsorber replacement. This testing shall include iodine adsorption, particulateremovalefficiencyandleaktestingofthefilterhousing.(2)

f.

The air flow rate in the confinement stack exhaust duct shall be determined annuallybutatintervalsnottoexceedfifteen(15)months.Theairflowshallbe notlessthan600CFM.

(1)Operationmustbeverifiedfollowingmodificationsorrepairsinvolvingloadchangesto theauxiliarypowersource.

(2)Testingshallalsoberequiredfollowingmajormaintenanceofthefiltersorhousing.

Bases SurveillanceofthisequipmentwillverifythattheconfinementoftheReactorBuildingis maintainedasdescribedintheSafetyAnalysisReport.

Page37of53

<date>

4.6.

PrimaryandSecondaryCoolant Applicability Thisspecificationappliestothesurveillancerequirementformonitoringtheradioactivityin theprimaryandsecondarycoolant.

Objective Theobjectiveistomonitortheradioactivityinthepoolwatertoverifytheintegrityofthe fuelcladdingandotherreactorstructuralcomponents.Thesecondarywateranalysisisused toconfirmtheboundaryintegrityoftheprimaryheatexchanger.

Specification

a.

Theprimarycoolantshallbeanalyzedbiweekly,butatintervalsnottoexceed eighteen(18)days.Theanalysisshallincludegrossbeta/gammacountingofthe driedresidueofaone(1)litersampleorgammaspectroscopyofaliquidsample, neutronactivationanalysis(NAA)ofanaliquot,andresistivitymeasurements.

b.

Thesecondarycoolantshallbeanalyzedbiweekly,butatintervalsnottoexceed eighteen(18)days.Thisanalysisshallincludegrossbeta/gammacountingofthe driedresidueofaone(1)litersampleorgammaspectroscopyofaliquidsample.

Bases Radionuclideanalysisofthepoolwatersampleswillallowdetectionoffuelcladfailure, whileneutronactivationanalysiswillgivecorrosiondataassociatedwithprimarysystem componentsincontactwiththecoolant.Thedetectionofactivationorfissionproductsin thesecondarycoolantprovidesevidenceofaprimaryheatexchangerleak.

Page38of53

<date>

5. DESIGNFEATURES 5.1.

ReactorFuel

a.

ThereactorfuelshallbeUO2withanominalenrichmentof4%or6%inU235, zircaloyclad,withfabricationdetailsasdescribedintheSafetyAnalysisReport.

b.

Totalburnuponthereactorfuelislimitedto20,000MWD/MTU.

5.2.

ReactorBuilding

a.

ThereactorshallbehousedintheReactorBuilding,designedforconfinement.The minimumfreevolumeintheReactorBuildingshallbe2.4109cm3.

b.

TheReactorBuildingventilationandconfinementsystemsshallbeseparatefrom theBurlingtonEngineeringLaboratoriesbuildingsystemsandshallbedesignedto exhaustairorothergasesfromthebuildingthroughastackwithdischargeata minimumof100feetabovegroundlevel.

c.

The major openings into the Reactor Building are the truck entrance door, personnelentrancedoors,andairsupplyandexhaustducts.

d.

The Reactor Building is located within the Burlington Engineering Laboratory complexonthenorthcampusofNorthCarolinaStateUniversityatRaleigh,North Carolina.RestrictedAreasasdefinedin10CFRPart20includetheReactorBay, VentilationRoom,MechanicalEquipmentRoom,PrimaryPipingVault,andWaste TankVault.ThePULSTARControlRoomispartoftheReactorBuilding.Thefacility licenseappliestotheReactorBuildingandWasteTankVault.Figure51depictsthe licensedareaasbeingwithintheoperationsboundary.

5.3.

FuelStorage Fuel,includingfueledexperiments,shallbestoredinageometricalconfigurationwherekeff isnogreaterthan0.9forallconditionsofmoderationandreflectionusinglightwater.In caseswhereafuelshippingcontainerisused,thelicensedlimitforkeffofthecontainershall apply.

5.4.

ReactivityControl Reactivitycontrolisprovidedbyfourneutronabsorbingblades.Eachcontrolbladeis nominallycomprisedof80%silver,15%indium,and5%cadmiumwithtinnickelcladding.

Theseneutronabsorbingbladesaremagneticallycoupledandhavescramcapability.One ofthecontrolrodsmaybeusedforautomaticcontrolofreactorpower.

5.5.

PrimaryCoolantSystem Theprimarycoolantsystemconsistsofthealuminumlinedreactortank,16Ndelaytanks, pump,heatexchanger,andassociatedstainlesssteelpiping.Thenominalcapacityofthe

Page39of53

<date>

primarysystemis16,000gallons.Toallowforisolation,valvesarelocatedadjacenttothe biologicalshieldandatmajorcomponentsintheprimarysystem.

Bases Specification 5.1.a ensures that the reactor fuel type is consistent with the analysis presentedintheSafetyAnalysisReport.

Specification5.1.bistoensuretheintegrityofthefuelcladding.

Specification5.2.aensuresthattheassumptionsmadeinSection11and13oftheSafety AnalysisReportregardingradionuclideconcentrationsinthereactorbayremainvalid.The specificationof2.4109cm3islessthanthemeasuredfreevolumeof3.1109cm3forthe reactor bay. A smaller free air volume allows for expansion of experiments and conservativelyoverestimatestheconcentrationofreleasedradioactivity.

Specification5.2.bensuresthateffluentcalculationsinSection11and13oftheSafety AnalysisReportremainvalid.

Specification 5.2.c limits the number of major openings to ensure the integrity of confinement.

Specification5.2.ddesignatestheoperationsandsiteboundaries.

Specification5.3ensuresthatreactorfuelandfueledexperimentsarestoredinasubcritical configurationatalltimesandunderallconditions.

Specification5.4istoensurethatthecontrolrodsareasdescribedintheSafetyAnalysis Report.

Specification5.5istoensurethatthereissufficientcoolantandshieldingforreactor operationandinpoolexperiments.

Page40of53

<date>

Figure51-NCSUPULSTARReactorSiteMap

Page41of53

<date>

6. ADMINISTRATIVECONTROLS 6.1.

Organization ThereactorfacilityshallbeanintegralpartoftheDepartmentofNuclearEngineeringofthe CollegeofEngineeringofNorthCarolinaStateUniversity.Thereactorshallberelatedto theUniversitystructureasshowninFigure61.

6.1.1. OrganizationalStructure

ThereportingchainisgiveninFigure61.Thefollowingspecificorganizationallevels(as definedbyANSI/ANS15.12007)andpositionsshallexistatthePULSTARFacility:

Level1-Administration ThislevelshallincludetheChancellor,theDeanoftheCollegeofEngineering,andthe NuclearEngineeringDepartmentHead.Withinthreemonthsofappointment,theNuclear EngineeringDepartmentHeadshallreceivebriefingssufficienttoprovideanunderstanding ofthegeneraloperationalandemergencyaspectsofthefacility.

Level2-FacilityManagement ThislevelshallincludetheNuclearReactorProgram(NRP)Director.TheNRPDirectoris responsibleforthesafeandefficientoperationofthefacilityasspecifiedinthefacility licenseandTechnicalSpecifications,generalconductofreactorperformanceandNRP operations,longrangedevelopmentoftheNRP,andNRPpersonnelmatters.TheNRP Director evaluates new service and research applications, develops new facilities and supportforneededcapitalinvestments,andcontrolsNRPbudgets.TheNRPDirector worksthroughtheManagerofEngineeringandOperationstomonitordailyoperationsand withtheReactorHealthPhysicisttomonitorradiationsafetypracticesandregulatory compliance.TheminimumqualificationsfortheNRPDirectorareaMasterofSciencein engineeringorphysicalscienceandatleastsixyearsofnuclearexperiencerelatedtofission reactortechnology.Thedegreemayfulfilluptofouryearsoftherequiredsixyearsof nuclearexperienceonaoneforonetimebasis.Withinthreemonthsofappointment,the NRPDirectorshallreceivebriefingssufficienttoprovideanunderstandingofthegeneral operationalandemergencyaspectsofthefacility.TheNRPDirectorisafacultymember andreportstotheNuclearEngineeringDepartmentHead.

Level3-ManagerofEngineeringandOperations TheManagerofEngineeringandOperations(MEO)performsdutiesasassignedbytheNRP Directorassociatedwiththesafeandefficientoperationofthefacilityasspecifiedinthe facilitylicenseandTechnicalSpecifications.TheMEOisresponsibleforcoordinationof operations,experiments,andmaintenanceatthefacility,includingreviewsandapprovals ofexperimentsasdefinedinTechnicalSpecification1.2.9and6.5,andmakingminor changestoproceduresasstatedinTechnicalSpecification6.4.TheMEOshallreceive appropriatefacilityspecifictrainingwithinthreemonthsofappointmentandbecertifiedas aSeniorReactorOperatorwithinoneyearofappointment.Theminimumqualificationsfor

Page42of53

<date>

theMEOareaBachelorofScienceinengineeringorphysicalscienceandatleastsixyearsof nuclearexperiencerelatedtofissionreactortechnology.Thedegreemayfulfilluptofour yearsoftherequiredsixyearsofnuclearexperienceonaoneforonetimebasis.TheMEO reportstotheNRPDirector.

Level4-OperatingandSupportStaff ThislevelincludeslicensedSeniorReactorOperators(SRO),licensedReactorOperators (RO),andotherpersonnelassignedtoperformmaintenanceandtechnicalsupportofthe facility.SeniorReactorOperatorsandReactorOperatorsareresponsibleforassuringthat operationsareconductedinasafemannerandwithinthelimitsprescribedbythefacility licenseandTechnicalSpecifications,applicableNuclearRegulatoryCommissionregulations, and the provisions of the Radiation Safety Committee and Reactor Safety and Audit Committee.AllSeniorReactorOperatorsshallhavenuclearexperienceandshallhavea highschooldiplomaorhavesuccessfullycompletedaGeneralEducationDevelopmenttest.

Amaximumoftwoyearsequivalentfulltimeacademictrainingmaybesubstitutedfortwo yearsoftherequiredthreeyearsofnuclearexperienceasapplicabletoresearchreactors forSeniorReactorOperators.OtherLevel4personnelshallhaveahighschooldiplomaor shallhavesuccessfullycompletedaGeneralEducationDevelopmenttest.AllLevel4 personnelreporttotheManagerofEngineeringandOperations.

ReactorHealthPhysicist TheReactorHealthPhysicist(RHP)isresponsibleforimplementingtheradiationprotection programandmonitoringregulatorycomplianceatthereactorfacility.TheRHPshallhavea highschooldiplomaorshallhavesuccessfullycompletedaGeneralEducationDevelopment testandhavethreeyearsofrelevantexperienceinappliedradiationsafety.Amaximumof twoyearsequivalentfulltimeacademictrainingmaybesubstitutedfortwoyearsofthe requiredthreeyearsofexperienceinradiationsafetyasapplicabletoresearchreactors.

TheRHPreportsdirectlytotheNuclearEngineeringDepartmentHeadandisindependent ofthecampusRadiationSafetyDivisionasshowninFigure61.

6.1.2. Responsibility

ResponsibilityforthesafeoperationofthePULSTARReactorshallbewiththechainof commandestablishedinFigure61.

Individualsatthevariousmanagementlevels,inadditiontohavingresponsibilityforthe policiesandoperationofthereactorfacility,shallberesponsibleforsafeguardingthepublic andfacilitypersonnelfromundueradiationexposuresandforadheringtoallrequirements oftheoperatinglicense,theTechnicalSpecifications,andfederalregulations.

Inallinstances,responsibilitiesofonelevelmaybeassumedbydesignatedalternatesorby higherlevels,conditionalupontheappropriatequalifications.

6.1.3. MinimumStaffing

Theminimumstaffingwhenthereactorisnotsecuredshallbe:

Page43of53

<date>

a.

Alicensedreactoroperatororseniorreactoroperatorshallbepresentinthe ControlRoom.

b.

AReactorOperatorAssistant(ROA),capableofbeingatthereactorfacilitywithin five(5)minutesuponrequestofthereactoroperatoronduty.

c.

ADesignatedSeniorReactorOperator(DSRO).Thisindividualshallbereadily availableoncall,meaning:

i.

Has been specifically designated and the designation is known to the reactoroperatoronduty.

ii.

Keepsthereactoroperatorondutyinformedofwherehemayberapidly contactedandthetelephonenumber.

iii.

Iscapableofgettingtothereactorfacilitywithinareasonabletimeunder normalconditions(e.g.,30minutesorwithina15mileradius).

d.

AReactorHealthPhysicistorhisdesignatedalternate.Thisindividualshallalsobe oncall,underthesamelimitationsasprescribedfortheDesignatedSeniorReactor OperatorunderSpecification6.1.3.c.

6.1.4. SeniorReactorOperatorDuties

ThefollowingeventsshallrequirethepresenceofalicensedSeniorReactorOperatoratthe facilityoritsadministrativeoffices:

a.

Initialstartupandapproachtopower.

b.

Allfuelorcontrolrodrelocationswithinthereactorcoreorpool.

c.

Relocationofanyincoreexperimentwithareactivityworthgreaterthanone dollar(730pcm).

d.

Recoveryfromunplannedorunscheduledshutdownorsignificantpowerreduction.

6.1.5. SelectionandTraining

Alloperatorswillundergoaselection,trainingandlicensingprogrampriortounsupervised operationofthePULSTARreactor.Alllicensedoperatorswillparticipateinarequalification program, which will be conducted over a period not to exceed two (2) years. The requalificationprogramwillbefollowedbysuccessivetwo(2)yearprograms.

Page44of53

<date>

Lineofdirectcommunication Lineofadviceandliaison

NuclearReactorProgram(NRP)includes:

  • Director,NuclearReactorProgram
  • Manager,EngineeringandOperations
  • OperatingandSupportStaff ReactorHealthPhysicist(RHP)reportstotheHead,DepartmentofNuclear EngineeringandservesboththeNRPandDepartmentofNuclear Engineering.

Communication on reactor operations, experiments, radiation safety, and regulatory compliance occurs between the NRP, RHP, Reactor Safety and AuditCommittee,RadiationSafetyCommittee,andcampusRadiationSafety DivisionasdescribedintheTechnicalSpecificationsandfacilityprocedures.

Figure61-NCSUPULSTARReactorOrganizationChart

Page45of53

<date>

6.2.

ReviewandAudit TheRadiationSafetyCommittee(RSC)hastheprimaryresponsibilitytoensurethattheuse ofradioactivematerialsandradiationproducingdevices,includingthenuclearreactor,at the University are in compliance with state and federal licenses and all applicable regulations.TheRSCreviewsandapprovesallexperimentsinvolvingthepotentialrelease ofradioactivematerialconductedattheUniversityandprovidesoversightoftheUniversity RadiationProtectionProgram.TheRSCisinformedoftheactionsoftheReactorSafetyand AuditCommittee(RSAC)andmayrequireadditionalactionsbyRSACandtheNuclear ReactorProgram(NRP).

RSAChastheprimaryresponsibilitytoensurethatthereactorisoperatedandusedin compliancewiththefacilitylicense,TechnicalSpecifications,andallapplicableregulations.

RSACperformsanannualauditoftheoperationsandperformanceoftheNRP.

6.2.1. RSCandRSACCompositionandQualifications

a.

RSCshallconsistofmembersfromthegeneralfacultywhoareactivelyengagedin teachingorresearchinvolvingradioactivematerialsorradiationdevices.RSCmay alsoincludenonfacultymemberswhoareknowledgeableinnuclearscienceor radiationsafety.RSCmembershipshallincludetheUniversityRadiationSafety Officer,RSACChair,RHP,andamemberoftheNRP.

b.

RSACshallconsistofatleastfiveindividualswhohaveexpertiseinoneormoreof thecomponentareasofnuclearreactorsafety.TheseincludeNuclearEngineering, Nuclear Physics, Health Physics, Electrical Engineering, Chemical Engineering, Material Engineering, Mechanical Engineering, Radiochemistry, and Nuclear RegulatoryAffairs.

AtleastthreeoftheRSACmembersareappointedfromthefaculty.Thefaculty membersshallbeasfollows:

I.

NRPDirector II.

One member from an appropriate discipline within the College of Engineering III.

Onememberfromthefaculty TheremainingRSACmembersareasfollows:

IV.

ReactorHealthPhysicist(RHP)

V.

MemberfromthecampusRadiationSafetyDivisionoftheEnvironmental HealthandSafetyCenter VI.

Oneadditionalmemberfromanoutsidenuclearrelatedestablishment maybeappointed

Page46of53

<date>

AtthediscretionofRSAC,specialist(s)fromotheruniversitiesandoutsideestablishments maybeinvitedtoassistinitsappraisals.

TheNRPDirector,RHP,andamemberfromthecampusRadiationSafetyDivisionofthe EnvironmentalHealthandSafetyCenterarepermanentmembersofRSAC.

6.2.2. RSCandRSACRules

a.

RSC and RSAC committee member appointments are made by University Managementfortermsofthree(3)years.

b.

RSCshallmeetasrequiredbythebroadscoperadioactivematerialslicenseissued totheUniversitybytheStateofNorthCarolina.RSCmayalsomeetuponcallof thecommitteeChair.

c.

RSACshalleachmeetatleasttwo(2)timesperyear,withintervalsbetween meetings not to exceed six months. RSAC may also meet upon call of the committeeChair.

d.

A quorum of RSC or RSAC shall consist of a majority of the full committee membershipandshallincludethecommitteeChairoradesignatedalternatefor thecommitteeChair.MembersfromthelineorganizationshowninFigure61shall notconstituteamajorityoftheRSCorRSACquorum.

6.2.3. RSCandRSACReviewandApprovalFunction

a.

ThefollowingitemsshallbereviewedandapprovedbytheRSC:

i.

Allnewexperimentsorclassesofexperimentsthatcouldresultinthe releaseofradioactivity.

ii.

Proposed changes to the facility license or Technical Specifications, excludingsafeguardsinformation.

b.

ThefollowingitemsshallbereviewedandapprovedbytheRSAC:

i.

Determinations that proposed changes in equipment, systems, tests, experiments,orprocedureswhichhavesafetysignificancemeetfacility licenseandTechnicalSpecificationrequirements.

ii.

All new procedures and major revisions having safety significance, proposedchangesinreactorfacilityequipment,orsystemshavingsafety significance.

iii.

Allnewexperimentsorclassesofexperimentsthatcouldaffectreactivity orresultinthereleaseofradioactivity.

iv.

Proposed changes to the facility license or Technical Specifications, includingsafeguardsinformation.

c.

ThefollowingitemsshallbereviewedbytheRSCandRSAC:

i.

ViolationsofthefacilitylicenseorTechnicalSpecifications.

Page47of53

<date>

ii.

Violationsofinternalproceduresorinstructionshavingsafetysignificance.

iii.

Operatingabnormalitieshavingsafetysignificance.

iv.

ReportableEventsasdefinedinSpecification1.2.24.

DistributionofRSCsummariesandmeetingminutesshallincludetheRSACChairand DirectoroftheNuclearReactorProgram.

AsummaryofRSACmeetingminutes,reports,andauditrecommendationsapprovedby RSACshallbesubmittedtotheDeanoftheCollegeofEngineering,theNuclearEngineering DepartmentHead,theDirectoroftheNuclearReactorProgram,theRSCChair,Directorof Environmental Health and Safety, RSAC Chair, and the Manager of Engineering and OperationspriortothenextscheduledRSACmeeting.

6.2.4. RSACAuditFunction Theauditfunctionshallconsistofselective,butcomprehensive,examinationofoperating records,logs,andotherdocuments.Discussionswithcognizantpersonnelandobservation ofoperationsshallalsobeusedasappropriate.TheRSACshallberesponsibleforthisaudit function.Innocaseshallanindividualimmediatelyresponsiblefortheareaperforman auditinthatarea.Thisauditshallinclude:

a.

Facility operations for conformance to the facility license and Technical Specifications,annually,butatintervalsnottoexceedfifteen(15)months.

b.

Theretrainingandrequalificationprogramfortheoperatingstaff,biennially,butat intervalsnottoexceedthirty(30)months.

c.

Theresultsofactionstakentocorrectthosedeficienciesthatmayoccurinthe reactorfacilityequipment,systems,structures,ormethodsofoperationsthat affectreactorsafety,annually,butatintervalsnottoexceedfifteen(15)months.

d.

TheEmergencyPlanandEmergencyProcedures,biennially,butatintervalsnotto exceedthirty(30)months.

e.

RadiationProtectionannually,butatintervalsnottoexceedfifteen(15)months.

Deficienciesuncoveredthataffectreactorsafetyshallbeimmediatelyreportedtothe NuclearEngineeringDepartmentHead,DirectoroftheNuclearReactorProgram,andthe RSC.

TheannualauditreportmadebytheRSAC,includinganyrecommendations,isprovidedto theRSC.

6.3.

RadiationSafety TheReactorHealthPhysicist(RHP)isresponsibleforimplementingtheradiationprotection programandmonitoringregulatorycomplianceatthereactorfacility.TheRHPreports directlytotheNuclearEngineeringDepartmentHeadandisindependentofthecampus RadiationSafetyDivisionasshowninFigure61.

Page48of53

<date>

6.4.

OperatingProcedures Writtenproceduresshallbeprepared,reviewedandapprovedpriortoinitiatinganyofthe following:

a.

Startup,operationandshutdownofthereactor.

b.

Fuelloading,unloading,andmovementwithinthereactor.

c.

Maintenanceofmajorcomponentsofsystemsthatcouldhaveaneffectonreactor safety.

d.

Surveillancechecks,calibrationsandinspectionsrequiredbythefacilitylicenseor TechnicalSpecificationsorthosethatmayhaveaneffectonthereactorsafety.

e.

Personnelradiationprotection,consistentwithapplicableregulationsandthat includemanagementcommitmentand/orprogramstomaintainexposuresand releasesaslowasreasonablyachievable(ALARA).

f.

Administrativecontrolsforoperationsandmaintenanceandfortheconductof irradiationsandexperimentsthatcouldaffectreactorsafetyorcorereactivity.

g.

ImplementationoftheEmergencyPlanandSecurityPlan.

Substantive changes to the above procedures shall be made effective only after documentedreviewandapprovalbytheRSAC,theNRPDirector,andbytheManagerof EngineeringandOperations.

Minormodificationstotheoriginalprocedureswhichdonotchangetheiroriginalintent maybemadebytheManagerofEngineeringandOperations,butthemodificationsshallbe approvedbytheDirectoroftheNuclearReactorProgramwithinfourteen(14)days.

TemporarydeviationsfromproceduresmaybemadebytheDesignatedSeniorReactor OperatorasdefinedbySpecification6.1.3.cortheManagerofEngineeringandOperations, inordertodealwithspecialorunusualcircumstancesorconditions.Suchdeviationsshall bedocumentedandreportedtotheDirectoroftheNuclearReactorProgram.

6.5.

ReviewofExperiments 6.5.1. New(untried)Experiments Allnewexperimentsorclassofexperiments,referredtoasuntriedexperiments,shallbe reviewedandapprovedbytheRSC,theRSAC,theDirectoroftheNuclearReactorProgram, ManagerofEngineeringandOperations,andtheReactorHealthPhysicist,priortoinitiation oftheexperiment.

Thereviewofnewexperimentsshallbebasedonthelimitationsprescribedbythefacility licenseandTechnicalSpecificationsandotherNuclearRegulatoryCommissionregulations, asapplicable.

Page49of53

<date>

6.5.2. TriedExperiments AllproposedexperimentsarereviewedbytheManagerofEngineeringandOperationsand theReactorHealthPhysicist(ortheirdesignatedalternates).Eitheroftheseindividualsmay deemthattheproposedexperimentisnotadequatelycoveredbythedocumentation and/oranalysisassociatedwithanexistingapprovedexperimentandthereforeconstitutes anuntriedexperimentthatwillrequiretheapprovalprocessdetailedunderSpecification 6.5.1.

IftheManagerofEngineeringandOperationsandtheReactorHealthPhysicistconcurthat theexperimentisatriedexperiment,thentherequestmaybeapproved.

Substantivechangestopreviouslyapprovedexperimentswillrequiretheapprovalprocess detailedunderSpecification6.5.1.

6.6.

RequiredActions 6.6.1. ActiontobeTakeninCaseofSafetyLimitViolation IntheeventaSafetyLimitisviolated:

a.

Thereactorshallbeshutdownandreactoroperationsshallnotberesumeduntil authorizedbytheNuclearRegulatoryCommission.

b.

TheSafetyLimitviolationshallbepromptlyreportedtotheDirectoroftheNuclear ReactorProgram,orhisdesignatedalternate.

c.

TheSafetyLimitviolationshallbereportedtotheNuclearRegulatoryCommission inaccordancewithSpecification6.7.1.

d.

ASafetyLimitviolationreportshallbepreparedthatdescribesthefollowing:

i.

Circumstancesleadingtotheviolationincluding,whenknown,thecause andcontributingfactors.

ii.

Effectofviolationuponreactorfacilitycomponents,systems,orstructures andonthehealthandsafetyoffacilitypersonnelandthepublic.

iii.

Correctiveaction(s)tobetakentopreventrecurrence.

ThereportshallbereviewedbytheRSCandRSACandanyfollowupreportshallbe submittedtotheNuclearRegulatoryCommissionwhenauthorizationissoughttoresume operation.

6.6.2. ActiontobeTakenforReportableEvents(otherthanSLViolation)

In case of a Reportable Event (other than violation of a Safety Limit), as defined by Specification1.2.24,thefollowingactionsshallbetaken:

a.

Reactorconditionsshallbereturnedtonormalorthereactorshallbeshutdown.If itisnecessarytoshutdownthereactortocorrecttheoccurrence,operationshall

Page50of53

<date>

notberesumedunlessauthorizedbytheDirectoroftheNuclearReactorProgram, orhisdesignatedalternate.

b.

TheoccurrenceshallbereportedtotheDirectoroftheNuclearReactorProgram, andtotheNuclearRegulatoryCommissioninaccordancewithSpecification6.7.1.

c.

TheoccurrenceshallbereviewedbytheRSCandRSACattheirnextscheduled meeting.

6.7.

ReportingRequirements 6.7.1. ReportableEvent ForReportableEventsasdefinedbySpecification1.2.24,thereshallbeareportnolater than the following work day by telephone to the Nuclear Regulatory Commission OperationsCenterfollowedbyawrittenreportwithinfourteen(14)daysthatdescribesthe circumstancesoftheevent.

6.7.2. PermanentChangesinFacilityOrganization PermanentchangesinthefacilityorganizationinvolvingeitherLevel1or2personnel(refer toSpecification6.1.1)shallrequireawrittenreportwithinthirty(30)daystotheNuclear RegulatoryCommissionDocumentControlDesk.

6.7.3. ChangesAssociatedwiththeSafetyAnalysisReport SignificantchangesinthetransientoraccidentanalysisasdescribedintheSafetyAnalysis Reportshallrequireawrittenreportwithinthirty(30)daystotheNuclearRegulatory CommissionDocumentControlDesk.

6.7.4. AnnualOperatingReport Anannualoperatingreportforthepreviouscalendaryearisrequiredtobesubmittedno laterthanMarch31stofthepresentyeartotheNuclearRegulatoryCommissionDocument ControlDesk.Theannualreportshallcontainasaminimum,thefollowinginformation:

a.

Abriefnarrativesummary:

i.

Operatingexperienceincludingasummaryofexperimentsperformed.

ii.

Changes in performance characteristics related to reactor safety that occurredduringthereportingperiod.

iii.

Resultsofsurveillance,tests,andinspections.

b.

Tabulationoftheenergyoutput(inmegawattdays)ofthereactor,hoursthe reactorwascritical,andthecumulativetotalenergyoutputsinceinitialcriticality.

c.

ThenumberofemergencyshutdownsandunscheduledSCRAMs,includingreasons andcorrectiveactions.

Page51of53

<date>

d.

Discussionofthecorrectiveandpreventativemaintenanceperformedduringthe period,includingtheeffect,ifany,onthesafetyofoperationofthereactor.

e.

Abriefdescription,includingasummaryoftheanalysesandconclusionsofchanges inthefacilityorinproceduresandoftestsandexperimentscarriedoutpursuantto 10CFRPart50.59.

f.

Asummaryofthenatureandamountofradioactiveeffluentreleasedordischarged totheenvironsbeyondtheeffectivecontrolofthelicenseeasmeasuredatorprior tothepointofsuchreleaseordischarge,including:

Liquid Waste (summarized by month)

i.

Radioactivityreleasedduringthereportingperiod:

1.

Numberofbatchreleases.

2.

Totalradioactivityreleased(inmicrocuries).

3.

Totalliquidvolumereleased(inliters).

4.

Diluentvolumerequired(inliters).

5.

Tritiumactivityreleased(inmicrocuries)

6.

Total(yearly)tritiumreleased.

7.

Total(yearly)activityreleased.

ii.

Identificationoffissionandactivationproducts:

Whenevertheundilutedconcentrationofradioactivityinthewastetankat the time of release exceeds 2105 µCi/ml, as determined by gross beta/gammacountofthedriedresidueofaonelitersample,asubsequent analysis shall also be performed prior to release for principle gamma emittingradionuclides.Anestimateofthequantitiespresentshallbe reportedforeachoftheidentifiednuclides.

iii.

Dispositionofliquideffluentnotreleasabletothesanitarysewersystem:

Anywastetankcontainingliquideffluentfailingtomeettherequirements of10CFRPart20,AppendixB,toincludethefollowingdata:

1.

Methodofdisposal.

2.

Totalradioactivityinthetank(inmicrocuries)priortodisposal.

3.

Totalvolumeofliquidintank(inliters).

4.

Thedriedresidueofonelitersampleshallbeanalyzedforthe principlegammaemittingradionuclides.Theidentifiedisotopic compositionwithestimatedconcentrationsshallbereported.The tritiumcontentshallbeincluded.

Gaseous Waste

i.

Radioactivitydischargedduringthereportingperiod(incuries)for:

Page52of53

<date>

1.

Gases

2.

Particulates,withhalflivesgreaterthaneightdays.

ii.

TheAirborneEffluentConcentration(AEC)usedandtheestimatedactivity (incuries)dischargedduringthereportingperiod,bynuclide,forallgases andparticulatesbasedonrepresentativeisotopicanalysis.AECvaluesare givenin10CFRPart20,AppendixB,Table2.

Solid Waste

i.

Thetotalamountofsolidwastepackaged(incubicfeet).

ii.

Thetotalactivityinvolved(incuries).

iii.

Thedatesofshipmentanddisposition(ifshippedoffsite).

g.

A summary of radiation exposures received by facility personnel and visitors, includingpertinentdetailsofsignificantexposures.

h.

Asummaryoftheradiationandcontaminationsurveysperformed withinthe facilityandsignificantresults.

i.

Adescriptionofenvironmentalsurveysperformedoutsidethefacility.

6.8.

RetentionofRecords Records and logs of the following items, as a minimum, shall be kept in a manner convenientforreviewandshallberetainedasdetailedbelow.Inaddition,anyadditional federalrequirementinregardstorecordretentionshallbemet.

6.8.1. Recordstoberetainedforaperiodofatleastfive(5)years

a.

Normalreactorfacilityoperationandmaintenance(butnotincludingsupporting documentssuchaschecklists,logsheetsetc.,whichshallbemaintainedfora periodofatleast1year).

b.

Principalmaintenanceactivities.

c.

ReportableEvents.

d.

Surveillanceactivitiesrequiredbythetechnicalspecifications.

e.

Reactorfacilityradiationandcontaminationsurveysotherthanthoseusedin supportofpersonnelradiationmonitoring.

f.

Experimentsperformedwiththereactor.

g.

ChangestoOperatingProcedures.

h.

RSCandRSACmeetingminutesandauditreports.

Page53of53

<date>

6.8.2. Recordstoberetainedforatleastone(1)certificationcycleofsix(6)years

Records of retraining and requalification of certified operating personnel shall be maintainedatalltimestheindividualisemployed,oruntilthecertificationisrenewed.

6.8.3. Recordstoberetainedforthelifeofthefacility

a.

Gaseousandliquidradioactivewastereleasedtotheenvirons.

b.

Resultsofoffsiteenvironmentalmonitoringsurveys.

c.

Radiation exposures for monitored personnel and associated radiation and contaminationsurveysusedinsupportofpersonnelradiationmonitoring.

d.

Drawingsofthereactorfacility.

e.

Fuelinventoriesandtransfers.