ML19261E232

From kanterella
Jump to navigation Jump to search
Amend 67 to Application for CP & Ol,Consisting of Revision 9 to Environ Rept.Includes Addl Info Requested in Wh Regan 790522 & 781011 Ltrs,Revised Matl on Water Usage & Corrections of Errors & Omissions
ML19261E232
Person / Time
Site: Midland
Issue date: 06/29/1979
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML19261E226 List:
References
ENVR-790629, NUDOCS 7907050315
Download: ML19261E232 (98)


Text

MIDLAND 1&2-ER(OLS)

INSTRUCTIONS FOR ADDING REVISION 9

@- TO THE MIDLAND PLANT ENVIRONMENTAL REPORT This Revision 9 to the Environmental Report (ER) of the Midland Plant consists of pages that are to be inserted into your copy of the ER.

Vertical bars in the margin indicate the location of the revisions in text and tables. Pages without bars are either unchanged pages furnished for continuity or contain minor spelling or editorial corrections which do not change the text content. The pages to be removed and inserted are as follows:

REMOVE INSERT Volume 1 Af ter Tab, LOEP-1 thru LOEP-11 After Tab, Letter and LOEP-1 thru LOEP-11 2.4-9/2.4-10 2.4-9/2.4-10 Volume 2 2.6-1/2.6-2 2.6-1/2.6-2 Tb1 3.3-1 (1 of 2)/Tb1 3.3-1 (2 of 2) Tb1 3.3-1 (1 .f 2)/Tb1 3.3-1 (2 of 2) 3.4-1 ther 3.4-6 3.4-1 thru 3.4-6 3.4-7b thru 3.4-12 3.4-7b thru 3.4-11 3.4R-1 3.4R-1 3.6-6a/3.6-6b 3.6-6a/3.6-6b Tb 1 3. 6-4/ %1 3. 6-5 Tb1 3.6-4/Tb1 3.6-5 3.6R-1 3.6R-1 3.9-3/3.9-4 3.9-3/3.9-4 4.2-1/4.2-2 4.2-1/4.2-2 5-i,'5-ii 3-i/5-ii 5.1-5/5.1-6 5.1-5/5.1-6 5.1-/ thru 5.1-10 5.1-7 thru 5.1-10 5.1R-3 5.?2-3 5.1BR-1 5.1BR-1 Tb1 5.1-13 thru Tb1 5.2-16 Tb1 5.2-13 thru Tb1 5.2-16 5.2R-1/5.2R-2 5.2R-1/5.2R-2 Tb1 5.3-1 Tb1 5.3-1 Volume 3 6.2A-i thru 6.2A-iv f.2A-i thru 6.2A-iv 6.2A-3-1/6.2A-3-2 6.2A-3-1/6.2A-3-2 i Tb1 6. 2A-3 _ ,'Tb1 6. 2A-3-2 Tb1 6.2A-3-1/Tb1 6.2A-3-2 7, 1

Tb1 6.2A-3-9/Tbl 6.2A-3-10 Tb1 6. 2A-3-9/Tb1 6. 2A-3-10 . . O s i

{ :0 REVISION 9 - JIINE 1979 1 of 2 790705G\S - .

MIDLAND 1&2-ER(OLS)

O REMOVE INSERT Tb1 12.1-1 (1 of 13) thru Tb1 12.1-1 (1 of 13) thru Tbl 12.1-1 (13 of 13) Tb1 12.1-1 (13 of 13) 13.3-1/13.3-la 13.3-1/13.3-la 13.5-1/13.5-2 13.5-1/13.5-2 Q&R-i thru Q&R-iii Q&Ri thru Q&R-ii.i AEC 2-1 AEC 2-1 thru AEC 2-2 AEC 10-1 AEC 10-1 thru AEC 10-2 AEC 12-1 AEC 12-1 IlYD 5-1 IfYD 5-1 IIYD 6-1 liYD 6-1 PEC 1-1 PEC 1-1 PEC 4-1 PEC 4-1 PEC 6-1 PEC 6-1 O

O RTSISION 9 - JUNE 1979 31' 2 of 2 285 34

MIDLAND 1&2-ER(OLS)

LIST OF EFFECTIVE PAGES CP Co Transmittal Letter NRC Receipt Tendered ER 02/28/78 03/01/78 Docket 04/12/78 04/14/7C Revision 1 - April 1978 05/08/78 05/12/78 Revision 2 - June 1978 06/29/78 07/05/78 Revision 3 - November 1978 11/10/78 11/16/78 Revision 4 - December 1978 12/07/78 12/12/78 Revision 5 - January 1979 01/29/79 02/01/79 Revision 6 - February 1979 02/27/79 03/06/79 Revision 7 - March 1979 03/30/79 03/30/79 Revision 8 - April 1979 04/30/79 05/03/79 Revision 9 - June 1979 06/29/79 Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev VOLUME I i 3 1.1-17 7 (3 of 4) 7 ii 3 1.1-18 7 (4 o 4) 7 iii 0 1.1-19 / ibl 1.1-12 7 iv 0 1.1-20 7 Tb1 1.1-13 7 v 0 1.1-21 7 Tb1 1.1-14 2 LOEP-1 9 1.1-22 7 Fig 1.1-1 2 LOEP-2 7 1.1-23 7 Fig 1.1-2 2 LOEP-3 9 1.1-24 7 Fig 1.1-3 2 LOEP-4 9 1.1-25 / 1.2-1 3 LOEP-5 9 . 1-26 7 1.3-1 7 LOEP-6 9 1.1-27 7 1.3-2 4 LOEP-7 9 1.1-28 7 Tb1 1.3-1 7 LOEP-8 9 1.1-29 7 Tb1 1.3-2 7 LOEP-9 9 1.1-30 7 2-i 0 LOEP-70 9 1.1-31 7 2-i 0 LOEP-11 9 1.1-32 7 2-iri 2 1-i 7 1.1-33 7 2-is 3 1-11 4 1.1-34 7 2-v 4 1-iii 2 1.1-35 7 2-vi 0 1.1-1 2 1.1-36 7 2-vii 0 1.1-2 7 Tb1 1.1-1 7 2-viii 0 1.1-2 7 Tb1 1.1-2 7 2-ix 3 1.1-4 7 Tb1 1.1-3 7 2.1-1 0 1.1-5 Tb1 1.1-4 7 2.1-2 0 1.1-6 7 Tb1 1.1-5 4 2.1-3 0 1.1-7 7 Tb1 1.1-6 4 2.1-4 0 1.1-8 7 !bl 1.1-7 4 2.1-5 1 1.1-9 7 Tb1 1.1-8 4 2.1-6 1 1.1-10 7 Tb1 1.1-9 7 2.1-7 0 1.1-11 7 Tb1 1.1-10 2.1-8 0 1.1-12 7 (1 of 2) 2 2.1-9 1 1.1-13 7 (2 of 2) 2 2.1-10 1 1.1-14 7 Tb1 1.1-11 2.1-11 0 1.1-15 7 (1 of 4) 2 2.1-12 0 1.1-16 7 (2 of 4) 2 2.1-13 -,

s i 2.1-14<{.O 0 REVISION 9 - JUNE 1979 LOEP-1 '

32B

MIDLAND 1&2-ER(OLS)

Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev 2.1-14a 1 Tb1 2.1-19 2.2-10 1 2.1-14b 1 (1 of 2) 1 2.2-11 0 2.1-15 1 (2 of 2) 1 2.2-12 1 2.1-16 0 Tb1 2.1-20 1 2.2-13 0 2.1-17 0 Tb1 2.1-21 1 2.2-14 0 2.1-18 2 Tbl 2.1-22 '

2.2-15 1 2.1-19 1 Tb1 2.1-23 1 2.2-16 0 2.1-20 0 Tb1 2.1-24 1 2.2-17 1 2.1-21 1 Tb1 2.1-25 1 2.2-18 0 2.1-22 1 Fig 2.1-1 0 2.2-19 0 2.1-23 1 Fig 2.1-2 0 2.2-20 0 2.1-23a 1 Fig 2.1-3 0 2.2-21 0 2.1-23b 1 Fig 2.1-4 0 Tb1 2.2-1 0 2.1-24 0 Fig 2.1-5 0 Tb1 2.2-la 7 2.1-25 0 Fig 2.1-6 0 Tb1 2.2-2 2.1-26 1 Fig 2.1-7 0 (1 of 3) 0 2.1-27 1 Fig 2.1-8 0 (2 of 3) 0 2.1-?8 2 Fig 2.1-9 0 (3 of 3) 0 2.1-29 1 Fig 2.1-10 0 Tb1 2.2-3 0 2.1-30 1 Fig 2.1-11 0 Tb1 2.2-4 0 2.1-31 1 Fig 2.1-12 0 Tb1 2.2-5 1 2.1-32 1 Fig 2.1-13 0 Tb1 2.2-6 1 2.1-33 1 Fig 2.1-14 0 Tb1 2.2-7 2.1-34 0 Fig 2.1-15 0 (1 of 2) 0 Tbl 2.1-1 0 Fig 2.1-16 0 (2 of 2) 0 Tb1 2.1-2 0 Fig 2.1-17 0 Tb1 2.2-8 Tb1 2.1-3 0 Fig 2.1-18 0 (1 of 2) 0 Tb1 2.1-4 0 Fig 2.1-19 0 (2 of 2) G Tb1 2.1-5 0 Fig 2.1-20 0 Fig 2.2-1 0 Tb1 2.1-6 0 Fig 2.1-21 0 Fig 2.2-2 0 Tb1 2.1-7 0 Fig 2.1-22 0 Fig 2.2-3 0 Tb1 2.1-8 1 2.1R-1 1 Fig 2.2-4 0 Tb1 2.1-9 0 2.1R-2 0 2.2R-1 7 Tb1 2.1-10 1 2.1R-3 0 2.2R-2 0 Tb1 2.1-11 0 2.1R-4 1 App 2.2A NA Tb1 2.1-12 0 2.1R-5 1 App 2.2B NA Tb1 2.1-13 0 2.2-1 1 App 2.2C NA Tb1 2.1-14 0 2.2-2 5 2.3-1 0 Tb1 2.1-15 0 2.2-2a 4 2.3-2 0 Tb1 2.1-16 2.2-2b 4 2.3-3 1 (1 of 3) 1 2.2-3 1 2.3-4 0 (2 of 3) 0 2.2-4 1 2.3-5 1 (3 of 3) 1 2.2-5 1 2.3-6 1 Tb1 2.1-17 1 2.2-6 0 2.3-7 0 Tb1 2.1-18 1 2.2-7 1 2.3-8 0 2.2-8 1 2.3-9 0 2.2-9 1 NA = Not applicable. This appendix was not written by Consumers Power Company ar its contractors.

5

,(

,,3m3 s

.rc REVISION 7 - MARCH 1979 L0EP-2 L '3(< " '

MIDLAND 1&2-ER(OLS)

Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev 2.3-10 0 2.3R-3 1 Tbl 2.4-3 0 2.3-11 0 App 2.3A Tb1 2.4-4 0 2.3-12 0 2.3A Title Pg 0 Tb1 2.4-5 0 2.3-13 0 2.3A-i 0 Tb1 2.4-6 0 2.3-14 0 Tb1 2.3A-1 0 Tb1 2.4-7 2 2.3-15 0 Tb1 2.3A-2 0 Tb1 2.4-8 2.3-16 0 Tb1 2 3A-3 0 (1 of 4) 0 2.3-17 1 Tbl 2.3A-4 0 (2 of 4) 0 2.3-18 4 Tb1 2.3A-5 0 (3 of 4) 0 2.3-19 0 Tb1 2.3A-6 0 (4 of 4) 0 2.3-20 0 Tb1 2.3A-7 0 Tb1 2.4-9 2.3-21 0 Tbl 2.3A-8 0 (1 of 5) 0 Tb1 2.3 ' 0 Tb1 2.3A-9 0 (2 of 5) 0 Tb1 2.3-2 0 Tbl 2.3A-10 0 (3 of 5) 0 Tb1 2.3-3 0 2.4-1 0 (4 of 5) 0 Tbl 2.3-4 . 2.4-2 1 (5 of 5) 0 Tb1 2.3-5 0 2.4-3 1 Tb1 2.4-10 0 Tb1 2.3-6 0 2.4-4 3 Tb1 2.4-11 2 Tb1 2.3-7 0 2.4-5 1 Fig 2.4-1 0 Tb1 2.3-8 0 2.4-6 0 Fig 2.4-2 0 Tb l. 2.3-9 0 2,4-7 0 Fig 2.4-3 0 Tb1 2.3-10 0 2.4-8 0 Fig 2.4-4 0 Tb1 2.3-11 0 2.4-9 0 Fig 2.4-5 0 Tbl 2.3-12 0 2.4-10 9 Fig 2.4-6 0 Tb1 2.3-13 0 2.4-11 1 Fig 2.4-7 0 Tb1 2.3-14 0 2.4-12 1 Fig 2.4-8 0 Tb1 2.3-15 0 2.4-13 1 Fig 2.4-9 0 Tb1 2.3-16 0 2.4-14 0 Fig 2.4-10 0 Tb' 2.3-17 0 2.4-15 2 Fig 2.4-11 0 Tb1 2.3-18 0 2.4-15a 2 Fig 2.4-12 2 Fig 2.3-1 0 2.4-15b 2 2.4R-1 1 Fig 2.3-2 0 2.4-16 0 2.4R-2 1 Fig 2.3-3 0 2.4-17 0 2.4R-3 0 Fig 2.3-4 0 2.4-18 2 2.5-1 0 Fig 2.3-5 0 2.4-19 2 2.5-2 2 Fig 2.3-6 0 2.4-20 1 2.5-3 0 Fig 2.3-7 0 2.4-21 0 2.5-4 2 Fig 2.3-8 0 2.4-22 0 2.5-5 1 Fig 2.3-9 0 2.4-23 2 2.5-6 0 Fig 2.3-?0 0 2.4-23a 2 Tb1 2.5-1 0 Fig 2.3-11 0 2.4-23b 2 Fig 2.5-1 0 Fig 2.3-12 0 2.4-24 2 Fig 2.5-2 0 Fig 2.3-13 0 2.4-25 0 Fig 2.5-3 0 2.3R-1 1 ib1 2.4-1 0 Fig 2.5-4 0 2.3R-2 0 Tb1 2.4-2 0 Fig 2.5-5 0 3~9 m

lc.)

.o .:-ii REVISION 9 - JUNE 1979 LOEP-3 U'

gj

MIDLAND 1&2-ER(OLS)

Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev Fig 2.5-6 0 Fig 3.1-5 0 Fig 3.4-8 0 Fig 2.5-7 0 Fig 3.1-6 0 Fig 3.4-9 3 2.5R-1 1 3.1R-1 1 Fig 3.4-10 2 2.5R-2 1 3.2-1 1 3.4R-1 9 3.2-2 3 3.5-1 1 VOLUME II 3.2-3 3 3.5-2 0 i 4 Fig 3.2-1 1 3.5-3 1 ii 4 Fig 3.2-2 3 3.5-4 1 iii 0 3.3-1 8 3.5-5 1 iv 0 3.3-la 2 3.5-6 1 v 0 2.3-Ib 2 3.5-7 0 2.6-1 9 3.3-2 6 3.5-8 0 2.6-2 3 3.3-3 0 3.5-9 0 2.6-3 3 Tb1 3.3-1 3.5-10 0 2.6-4 6 (1 of 2) 9 3.5-11 0 2.6-5 6 (2 of 2) 9 3.5-12 0 Fig 2.6-1 3 "bl 3.3-2 8 3.5-13 1 2.6R-1 3 Fig 3.3-1 8 3.5-14 0 App 2.6A NA 3.4-1 9 3.5-15 0 App 2.6B NA 3.4-2 9 3.5-16 1 App 2.6C NA 3.4-3 9 2.5-17 0 2.7-1 0 3.4-4 0 3.5-18 0 2.7-2 0 3.4-5 2 3.5-19 0 Fig 2.7-1 0 3.4-6 9 3.5-20 0 Fig 2.7-2 0 3.4-7 2 3.5-21 1 Fig 2.7-3 0 3.4-7a 2 3.5-22 0 Fig 2.7-4 0 3.4-7b 2 3.5-23 0 Fig 2.7-5 0 3.4-8 9 3.5-24 1 Fig 2.7-6 0 3.4-9 9 3.5-25 0 3-1 2 3.4-10 9 3.5-26 0 3-ii 2 3.4-11 9 3.5-27 0 3-iii 0 Tb1 3.4-1 0 3.5-28 0 3-iv 6 Tb1 3.4-2 1 3.5-29 0 3-v 2 Tkl 3.4-3 2 3.5-30 1 3.1-1 0 Tb1 3.4-4 0 3.5-31 1 3.1-2 1 Tb1 3.4-5 0 Tb1 3.5-1 0 3.1-3 1 Tbl 3.4-6 6 Tb1 3.5-2 3.1-4 0 Tb1 3.4-7 7 (1 of 2) 0 3.1-5 0 Tb1 3.4-8 2 (2 of 2) 0 3.1-6 0 Fig 3.4-1 0 Tb1 3.5-3 3.1-7 0 Fig 3.4-2 0 (1 of 2) 0 Tb1 3.1-1 Fig 3.4-3 3 (2 of 2) 0 (1 of 2) 0 Fig 3.4-4 0 Tb1 3.5-4 0 (2 of 2) 0 Fig 3.4-5 0 Tb1 3.5-5 0 Fig 3.1-1 0 Fig 3.4-6 0 Tb1 3.5-6 0 Fig 3.1-2 0 Fig 3.4-7 0 Fig 3.1-3/

Fig 3.1-4 0 NA = Not applicable. This appendix was not written by Consumers Power Company or its contractors.

[}j h REVISION 9 - JUNE 1979 LGEP-4

}{Q3

MIDLAND 1&2-ER(OLS)

Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID _Rev Tb1 3.5-7 1 Tb1 3.5A-10 0 3.6R-1 9 Tb1 3.5-8 Tb1 3.5A-11 0 3.7-1 0

(! of 2) 0 Tb1 3.5A-12 0 3.7-2 4 (2 of 2) 0 Fig 3.5A-1 0 3.7-2a 4 Tb1 3.5-9 0 Fig 3.5A-2 0 3.7-2b 4 Tb1 3.5-10 1 Fig 3.5A-3 0 3.7-3 0 Tb1 3.5-11 0 Fig 3.5A-4 0 3.7-4 1 Tb1 3.5-12 0 Fig 3.5A-5 0 3.7-5 0 Tb1 3.5-13 Fig 3.5A-6 0 3.8-1 0 (1 of 4) 1 Fig 3.5A-7 1 3.8R-1 0 (2 of 4) 0 Fig 3.5A-8 1 3.9-1 0 (3 of 4) 1 Fig 3.5A-9 1 3.9-2 1 (4 of 4) 0 Fig 3.5A-10 0 '.9-3 9 Fig 3.5-1 0 Fig 3.5A-11 0 3.9-4 1 Fig 3.5-2 9 Fig 3.5A-12 0 3.9-5 1 3.5R-1 1 Fig 3.5A-13 0 3.9-6 0 App 3.5A Fig 3.5A-14 0 3.9-7 1 3.5A Title Pg 0 Fig 3.5A-15 0 3.9-8 1 3.5A-i 0 Fig 3.5A-16 0 3.9-9 1 3.5A-ii 0 Fig 3.5A-17 0 3.9-10 1 3.5A-iii 0 Fig 3.5A-18 0 3.9-11 4 3.5A-1 0 Fig 3.5A-19 0 3.9-12 4 3.5A-2 0 3.6-1 0 3.9-13 9 3.5A-3 3.5A-4 0

0 3.6-2 3.6-3 8

8 3.9-14 3.9-15 1

0 0

3.5A-5 0 3.6-3a 1 Tb1 3.9-1 5 3.5A-6 0 3.6-3b 1 Tb1 3.9-2 0 3.5A-7 0 3.6-4 1 Fig 3.9-1 0 3.53-8 0 3.6-5 1 Fig 3.9-2 0 3.5A-9 9 3.6-6 2 Fig 3.9-3A 0 3.5A-10 0 3.6-6a 7 Fig 3.9-3B 0 3.5A-11 0 3.6-6b 9 Fig 3.9-3C 0 3.5A-12 0 3.6-7 1 Fig 3.9-3D 0 3.5A-13 0 3.6-8 8 Fig 3.9-3E O 3.5A-14 0 3.6-9 8 Fig 3.9-3F 0 3.5A-15 0 Tb1 3.6-1 0 Fig 3.9-3G 0 Tb1 3.5A-1 0 Tb1 3.6-2 Fig 3.9-3H 0 Tb1 3.5A-2 0 (1 of 2) 8 Fig 3.9-4 0 Tb1 3.5A-3 0 (2 of 2) 8 Fig 3.9-5 0 Tb1 3.5A-4 0 Tb1 3.6-3 8 Fig 3.9-6 0 Tb1 3.5A-5 0 Tb1 3.6-4 9 Fig 3.9-7 0 Tb1 3.5A-6 0 Ib1 3.6-5 0 Fig 3.9-8 0 Tb1 3.5A-7 0 lbl 3.6-6 Fig 3.9-9 5 Tb1 3.5A-8 0 (1 of 2) 8 3.9R-1 1 Tb1 3.5A-9 0 (2 of 2) 8 3.9R-2 1 3.9R-3 1 O *

<[ 'l:i0 REVISION 9 - JUNE 1979 79sE' LOEP-5 ^'

MIDLAND 1&2-ER(OLS)

Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev 4-i 0 5.1-8 9 Fig 5.1B-4 0 4-ii 4 5.1-9 9 Fig 5.1B-5 0 4.1-1 1 5.1-10 9 5.1BR-1 9 4.1-2 1 5.1-11 0 App 5.1C NA 4.1-3 1 5.1-12 0 5.2-1 0 4.1-4 6 5.1-13 1 5.2-2 0 4.1R-1 1 5.1-14 0 5.2-3 0 4.2-1 0 5.1-15 0 5.2-4 0 4.2-2 9 5.1-16 0 5.2-5 0 4.2-3 4 5.1-17 0 5.2-6 0 4.2-4 4 5.1-18 1 5.2-7 0 4.2-5 4 5.1-19 0 5.2-8 0 4.2-6 4 5.1-20 0 5.2-9 0 4.2-7 4 5.1-21 1 5.2-10 0 4.2-8 4 Tb1 5.1-1 3 5.2-11 0 4.2-9 4 Tb1 5.1-3 1 5.2-12 0 Tb1 4.2-1 5 Fig 5.1-1 3 5.2-13 0 4.2R-1 1 Fig 5.1-2 3 5.2-14 0 4.2R-2 0 Fig 5.1-3 3 5.2-15 0 4.3-1 1 Fig 5.1-4 3 5.2-16 C 4.3-2 1 Fig 5.1-5 3 5.2-17 C 4.3-3 0 Fig 5.1-6 0 5.2-18 0 4.3-4 6 5.1R-1 1 5.2-19 4.3-5 0 5.1R-2 1 5 2-20 0 4.3-6 1 5.1R-3 9 5.2-2' O 4.3R-1 0 App 5.1A NA 5.2 7 4.4-1 0 App 5.1B 5.2-2a 7 4.4-2 1 5.1B Title Pg 0 5.2-24 7 Tb1 4.4-1 0 5.1B-i 0 5.2-25 7 4 't- 1 0 5.1B-ii 0 5.2-26 0 4.5-1 0 5.1B-iii 0 5.2-27 7 4.5R-1 1 5.1B-1 1 5.2-28 0 5-i 9 5.1B-2 1 5.2-29 0 5-ii 4 5.1B-3 1 5.2-30 0 5-iii 0 5.1B-4 1 5.2-31 1 5-iv 3 5.1B-5 0 5.2-32 1 5-v 4 5.1B-6 0 5.2-33 0 5-vi 3 5.1B-7 0 5.2-34 1 5.1-1 7 5.1E-8 0 5.2-35 7 5.1-2 1 5.1B-9 0 5.2-36 7 5.1-3 1 Tb1 5.1B-1 0 Tb1 5.2-1 0 5.1-4 0 Tb1 5.1B-2 0 Tb1 5.2-2 0 5.1-5 0 Fig 5.1B-1 0 Tb1 5.2-3 0 5.1-6 9 Fig 5.1B-2 0 Tb1 5.2-4 0 5.1-6 8 Fig 5.1B-3 0 Tb1 5.2-5 0 5.1-6b 8 5.1-7 7 NA = Not applicable. This appendix was not written by Consumers Power Company or its contractors.

REVISION 9 - JUNE 1979 LOEP-6 a ff> on

'zysa De{

MIDLAVD 1&2-ER(OLS) f Latest Latest Latest Sheet ID Rev Sheet ID Rev ihet t ID Rev Tb1 5.2-6 0 5.5-7 4 VOLUME III Tbl 5.2-7 0 5.5-8 4 i 4 Tb1 5.2-8 1 5.5-9 4 ii 4 Tb1 5.2-9 0 5.5R-1 1 iii 0 Ib1 5.2-10 0 5.5R-2 1 iv 0 Tb1 5.2-11 0 5.5R-3 4 v 0 Tb1 5.2-12 0 5.6-1 4 6-i 7 Tb1 5.2-13 1 5.6-la 4 6-ii 5 Tbl 5.2-14 9 5.6-lb 4 6-iii 5 Tb1 5.2-15 9 5.6-2 3 6-iv 7 Tb1 5.2-16 9 5.6-3 8 6-v 5 Tb1 5.2-17 0 5.6-4 8 6.1-1 1 Tb1 5.2-18 0 5.6-4a 8 6.1-2 1 Tb1 5.2-19 5 5.6-4b 8 6.1-3 2 Tb1 5.2-20 0 5.6-5 1 6.1-3a 2 Tb1 5.2-21 0 Tb1 5.6-1 0 6.1-7b 2 Tb1 5.2-22 0 Tb1 5.6-2 1 6.1-4 1 Tb1 5.2-23 5 5.6R-1 4 6.1-5 1 Tb1 5.2-24 0 App 5.6A 6.1-6 2 Tb1 5.2-25 5 5.6A Title Pg 1 0 6.1-7 2 Fig 5.2-1 0 5.6A Title Pg 2 0 6.1-8 2 Fig 5.2-2 0 5.6A-i 0 6.1-9 2 Fig 5.2-3 0 5.6A-1 0 6.1-10 0 Fig 5.2-4 0 5.6A-2 0 6.1-11 1 Fig 5.2-5 0 5.6A-3 0 6.1-12 0 Fig 5.2-6 0 5.6A-4 0 6.1-13 0 Fig 5.2-7 0 5.6A-5 0 6.1-14 0 Fig 5.2-8 0 5.6A-5 0 6.1-15 0 Fig 5.2-9 0 App A (1 of 4) 0 6.1-16 0 Fig 5.2-10 0 App A (2 of 2) 0 6.1-17 1 Fig 5.2-11 0 App B Title Pg 0 6.1-18 2 Fig 5.2-12 0 App B (1 of 2) 0 6.1-18a 2 5.2R-1 0 Ap') B (2 of 2) 0 6.1-18b 2 5.2R-2 9 App C Title Pg o 6.1-19 0 5.2R-3 1 Anp C (1 of 7) 0 6.1-20 0 5.2R-4 1 App C (2 of 7) 0 6.1-21 0 5.3-1 8 App C (3 of 7) 0 6.1-22 1 5.3-2 3 App C (4 of 7) 0 6.1-23 1 Tb1 5.3-1 9 App C (5 of 7) 0 6.1-24 1 5.3R-1 0 Ap'.. C (6 of 7) 0 6.1-25 2 5.4-1 1 j C (7 of 7) 0 6.1-26 3 5.5-1 0 '

7-1 0 6.1-27 7 5.5-2 0 5.7-2 0 6.1-27a 7 5.5-3 0 5.8-1 6 6.1-27b 7 5.5-4 0 5.8-2 0 6.1-28 7 5.5-5 0 Tb1 5.8-1 6 6.1-29 7 5.5-6 4 5.8R-1 6 5.9-1 0 2);O 32G REVISION 9 - JUNE 1979 LOEP-7

MIDLAhD 1&2-ER(OLS)

Latest Latest Latest

__ Sheet ID Rev Sheet ID Rev Sheet ID _Rev Tb1 6.1-1 1 6.2A-2-5 0 Tb1 6.2A-3-5 7 Tb1 6.1-2 1 6.2A-2-6 0 Tb1 6.2A-3-6 ,

Tb1 6.1-3 0 6.2A-2-7 0 Tb1 6.2A-3-9 9 Tb1 6.1-4 0 6.2A-2-8 0 Tb1 6.2A-3-10 7 Tb1 6.1-5 0 6.2A-2-9 0 Tb1 6.2A-3-11 7 Tb1 6.1-6 0 6.2A-2-10 8 6.2A-3R-1 1 Tb1 6.1-8 0 6.2A-2-11 0 6.2A-3R-2 7 Fig 6.1-1 3 6.2A-2-12 0 6.2A-4-1 0 Fig 6.1-2 2 6.2A-2-13 0 6.2A-5-1 0 Fig 6.1-3 2 6.2A-2-14 0 6.ZA-5-2 0 Fig 6.1-4 1 6.2A-2-15 0 6.2A-5-3 0 Fig 6.1-5 0 6.2A-2-16 0 6.2A-5-4 0 Fig 6.1-6 0 6.2A-2-17 0 6.2A-5 3 0 Fig 6.1-7 0 6.2A-2-18 '

6.2A-5-6 7 Fig 6.1-8 2 6.2A-2-19 6.2A-5-7 7 Fig 6.1-9 0 6.2A-2-20 0 6.2A-5-8 0 6.1R-1 1 Tb1 6.2A-2-1 0 6.2A-5-9 0 6.1R-2 1 Tbl 6.2A-2-2 0 6.2A-5-10 0 6.1R-3 3 Ibl 6.2A-2-3 1 6.2A-5-11 0 6.2-1 1 Tb1 6.2A-2-4 1 Tb1 6..A-5-1 0 6.2-2 0 Tb1 6. 2A-2-5 L iig 6.2A-5-1 0 6.2-3 2 6.2A-2R-1 1 6.2A-5R-1 0 6.2-3a 2 6.2A-3-1 9 App 6.2A-5A 6.2-3b 2 6.2A-3-2 9 6.2A-5A-1 0 6.2-4 2 6.2A-3-3 0 6.2A-5A-2 0 6.2-5 0 6.2A-3-4 0 6.2A-5A-3 0 6.2-6 0 6.2A-3-5 2 6.2A-5A-4 0 6.2R-1 0 6.2A-3-3a 2 6.2A-5A-5 0 App 6.2A 6.2A-3-5b 2 6.2A-5A-6 0 6.2A Title Pg 0 6.2A ' 6 0 6.2A-5A-7 0 6.2A-i 9 6.2A-3-7 0 6.2A-5A-8 0 6.2A-ii 7 6.2A-3-8 0 6.2A 5A-9 0 6 . 2. . - i i i 9 6.2A-3-9 6.2A-5A-10 0 6.2A-iv 0 6.2A-3-10 7 6.2A-fA-11 0 6.2A-1-1 0 6.2A-3-11 7 Tb1 6.?A-5A-1A 0 6.2A-1-2 0 6.2A-3-12 4 Tb1 6.iA-5A-1B 0 6.2A-1-3 0 6.2A-3-13 7 Tb1 6.2#-5A-1C 0 6.2A-1-4 0 6.2A-3-14 7 Tb1 6.2A-5A-2A 0 6.2A-1-5 0 6.2A-3-15 7 Tb1 6.2A-5A-2B 0 6.2A-1-6 0 6.2A-3-16 7 Tb1 6.2A-5A-3 0 6.2A-1-7 0 6.2A-3-17 7 Tb1 6.2A-5A-4A 0 6.2A-2-1 1 6.2A-3-18 7 Tb1 6.2A-5A-4B 0 6.2A-2-2 0 6.2A-3-19 7 Tb1 6.2A-5A-5 6.2A-2-3 0 Tb1 6.2A-3-1 9 (1 of 2) 0 6.2A-2-4 0 Tb1 6.20 3-2 2 (2 of 2) 0 Tb1 6.2A-3-3 2 6.2A-5AR-1 0 Tb1 6.2A-3-4 1

-n 9 {hh REVISION 9 - JUNE 1979 LOEP-8((1

MIDLAND 1&2-ER(OLS) Latest Latest Latest Sheet ID _ Rev Sheet ID Rev Sheet ID Rev 6.3-1 0 Tb1 7.1-4 0 10-iii 0 6.3-2 0 lbl 7.1-5 0 10-1 0 6.3-3 0 Tb1 7.1-6 0 10R-1 0 6.2-4 0 Tb1 7.1-7 0 10.3-1 0 6.3-5 0 Tb1 7.1-8 0 10.3-2 0 a.3-6 0 Tb1 7.1-9 0 10.3-3 1 6.1-7 0 Tb1 7.1-10 1 10.3-4 1 6.3-8 5 7.1R-1 1 10.3-5 0 6.3-9 5 7.2-1 0 Tb1 10.3-1 0 6.3R-1 1 7.3-1 0 Fig 10.3-1 0 6.3R-2 0 7.3-2 1 Fig 10.3-2 0 6.4-1 0 7.3-3 1 10.3R-1 1 Tb1 6.4-1 0 7.3-4 1 10.9-1 0 Tb1 6.4-2 0 7.3-5 0 10.9-2 1 7-i 0 7.3-6 1 10.9-3 1 7-ii 0 7.3-7 1 10.9R-1 0 7 iii 0 Tbl 7.3-1 0 11-i 0 7.1-1 0 Tb1 7.3-2 1 11-ii 0 7.1-2 0 7.3R-1 1 11-1 4 7.1-3 ) 8-i 7 Tb1 11-1 7 7.1-4 0 8.1-1 7 11R-1 0 7.1-5 1 8.1-la 7 12-i 0 7.1-3 1 8.1-lb 7 12-ii 0 7.1-7 1 8.1-2 4 12.1-1 3 7.1-8 0 8.1-2a 4 Tb1 12.1-1 7.1-0 0 8.1-2b 4 (1 of 13) 9 7.1-10 0 8.1-3 / (2 of 13) 9 7.1-11 0 8.1-4 0 (3 of 13) 9 7.1-12 0 8.1R-1 7 (4 of 13) 8 7.1-13 0 8.2-1 7 (5 of 13) 8 7.1-14 0 8.2-la 7 (6 of 13) 9 7.1-15 0 8.2-lb 7 (7 of 13) 9 7.1-16 0 8.2-2 7 (8 of 13) 9 7.1-17 0 8.2-3 6 (9 of 13) 9 7.1-18 0 3.2R-1 7 (10 of 13) 9 7.1-19 0 9-i 0 (11 of 13) 9 7.1-20 0 9-11 2 (12 of 13) 9 7.1-21 0 9.1-1 0 (13 of 13) 9 7.1-22 0 9.1R-1 0 12.2-1 0 7.1-23 0 9.2-1 0 12.3-1 0 7.1-24 0 9.2R-1 0 12.4-1 0 7.1 25 0 9.3-1 0 12.5-1 0 Tb1 7.1-1 0 9.4-1 2 12.6-1 0 Tb1 7.1-2 0 Tb1 9.4-1 2 12.6-2 0 Tb1 7.7 3 0 9.4R-1 2 13.2-1 0 9.5-1 3 13.2-2 0 9.5R-1 0 13.2-3 0 10-i 0 10-ii 0

                                                                    ,70 a      bvD REVISION 9 - JU.E 1979           LOEP-9          .boU         pp

MIDLAND 1&2-ER(OLS) Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev _ 13.2-4 0 AEC 5-1 2 Tb1 4-1 2 13.2-5 0 AEC 5-2 2 B C 5-1 2 13.2-6 0 AEC 5-3 2 B-C 6-1 2 13.2-7 0 AEC 5-4 2 B-C 7a-1 2 13.2-8 0 AEC 6-1 2 B-C 7b-1 2 13.2-9 3 AEC 7-1 2 B-C 8-1 2 13.2-10 0 AEC 8-1 8 B-C 8-2 2

'3.2-11
.                   0   AEC 9-1             2     B-C 9a-1          2 13.2-12            0    AEC 9-2             2     B-C 9b-1          2 13.3-1              9   AEC 10-1            9     B-C 9b-2          2 13.3-la             7   AEC 10-2            9     B-C 9c-1          2 13.3-1b              7   AEC 11-1            3     B-C 10-1          2 13.3-2             0    AEC 11-2            3     B-C 10a-1         3 13.3-3             0    AEC 12-1            9     B-C 11-1          2 13.3-4              0    AEC 13-1            3     B-C 12-1         2 13.4-1              0    AEC 13-2            3     B-C 13-1         3 13.4-2              0    AEC 13-3            3     B-C 14a-1        2 13.4-3              0    AEC 13-4            3     B-C 14b-1        2 13.5-1              9    Tb1 AEC 13-1        3     B-C 15-1         7 13.5-2              0    Tb1 AEC 13-2        3    END 1-1           4 13.5-3              0    Tb1 AEC 13-3        3    END 1-2           4 13.5-4              0    Tb1 AEC 13-4        3    END 1-3           4 13.5-5              0    Tb1 AEC 13-5        3    END 1-4           4 13.5-6              0    ARC 1-1             3    END 1-5           4 13.5-7              0    ARC 2-1             6    END 1-6           4 13.5-8              8    ARC 3-1             o    END 1-7           4 13.5-9              7    ARC 4-1             3    END 1-8           4 13.6-1              7    ARC 5-1             3    END 1-9           4 13.6-2              0    ARC 6-1             3    lb1 END 1-1 13.6-3              3    ARC 7-1             3      (1 of 2)        i 13.6-4              7    ARC 8-1             3      (2 of 2)        4 13.6-5              7    /.2C 9-1            6    END 2-1           4 13.6-6              3    ARC 10-1            6    END 2-2           4 13.7-1              0    ARC 11-1            4    END 3-1           4 13.7-2              0    B-C  la-1           2    END 4-1           4 13.8-1              0    B-C  la-2           2    END 5-1           5 13.9-1              2    B-C  lb-1           7    END 6-1           5 13.10-1             0    B-C  Ic-1           2    FPM 1-1           7 13.10-2             0    B-C  Ic-2           3    FPM 1-2           7 13.11-1             0    B-C  Ic-3           2    FPM 1-3           7 Q&R i               9    B-c  Ic-4           2    FPM 2-1           7 Q&R ii              9    B-C  Ic-5           2    FPM 3-1           7 Q&R iii             9    B-C  Ic-6           2    HDS 1-1           2 Q&R iv              7    B-C 2-1             2    HDS 2-1           2 Q&R v               5    B-C 2-2             2    H!S 3-1           2 AEC 1-1             2    B-C 3-1             3    HUS 4-1           2 AEC 2-1             9    B-C 4-1             2    HDS 4-2           2 AEC 2-2             9                             HYD 1 '           2 AEC 3-1             2                             HYD 2-1           2 AEC 4-1             2                             HYD 3-1           2 HYD 4-1           3 REVISION 9 - JUNE 1979            LOEP-10 J

Sb2 :b o ( )$,21

MIDLWD 1&2-ER(OLS) Latest Latest Latest Sheet ID Rev Sheet ID Rev Sheet ID Rev HYD 5-1 9 RAD 1-4 5 HYD 6-1 9 RAD 1-5 5 HYD 7-1 3 RAD 2-1 4 HYD 7-2 3 RAD 3-1 4 HYD 8-1 4 RAD 4-1 4 HYD 8-2 4 RAD 4-2 4 HYD 9-1 5 RAD 5-1 4 HYD 10-1 4 RAD 6-1 5 HYD 11-1 3 Tb1 RAD 6-1 5 HYD 12-1 3 RAD 7-1 4 Tb1 HYD 12-1 BAD 8-1 4 (1 of 3) 3 SOC 1-1 2 (2 of 3) 3 S0C 2-1 2 (3 of 3) 3 SOC 3-1 4 HYD 13-1 4 SOC 4-1 2 Tb1 HYD 13-1 4 SOC 5-1 2 HYD 14-1 3 SOC 6-1 3 MET 1-1 2 S0C 7-1 2 MET 2-1 2 SOC 8-1 4 MET 3-1 2 SOC 9-1 3 MET 4-1 3 SOC 10-1 4 MET 5-1 2 SOC 10-2 4 MET 6b-1 2 SOC 11-1 3 MET 7-1 2 SOC 11-2 3 MET 8-1 2 SOC 11-3 3 MET 9-1 2 SOC 11-4 3 MET 10-1 2 SOC 12-1 4 MET 11-1 2 SOC 13-1 4 MET 12-1 2 SOC 14-1 4 MET 13-1 3 SOC 14-2 4 MET 14-1 3 SOC 15-1 3 MET 15-1 3 SOC 16-1 3 MET 16-1 3 SOC 17-1 3 MET 17-1 3 SOC 17-2 3 PEC 1-1 9 SOC 18-1 3 PEC 2-1 4 SOC 13-2 3 PEC 2-2 4 TEC 1-1 2 PEC 2-3 4 TEC 2-1 7 PEC 2-4 4 TEC 3-1 7 Tb1 PEC 2-1 TE^ 4-1 4 (1 of 2) 4 TEC 5-1 3 (2 of 2; 4 PEC 3-1 2 PEC 4-1 9 PEC 5-1 2 PEC 6-1 9 PEC 7-1 2 PEC 8-1 2 PEC 9-1 2 ,, n J3dh RAD 1-1 4 "

                                           /' r 'O i

RAD 1-2 5 RAD 1-3 5 (h% REVISION 9 - JUNE 1979 LOEP-11 b

                                !'IDLAND 1&2-ER(OLS) for a possible " domino" effect in the failure of the upstream dams, the total storage behind all four dams could be treated as concentrated at the dam farthest downstream, Sanford Dam.

A failure hydrograph at Sanford Dam was developed ( and routed by the storage coefficient method ( through the Tittabawassee River to the Midland Plant, using an average velocity of 3.5 ft/s, time increments of 6 hours, and channel storage coefficient of 0.10. The assumed velocity and coefficient are considered appropriate for the PMF condition. Figure 2.4-6 shows the channel routed hydrograph. As presented in FSAR Section 2.4.3, dam fai?ure occurs early on the rising limb of the flood hydrograph and reduces the significance of the routing coefficients. The dam breach is actually a relatively minor contribution to the total peak flow past the Plant. By adding the routed dam failure hydrograph ta the natural PMF at the Plant, a combined peak flow of approximately 262,000 cfs results. The possibility of a simultaneous occurrence of two flood peaks resulting from a seismically induced dam break and a runoff flood was investigated. In Figure 2.4-6, the total peak discharge resulting from the addition of the dam failure peak (63,000 cfs) with the estimated standard project floo<i peak (half of the PMF, ie, 124,000 cfs) yields a total flood discharge of 187,000 cfs at the Plant. The flood level from this combination of events is lower than the PMF level. 2.4.4.5 Maximum Water Level To determine the water level that would result at the Plant site from the PMF @ peak discharge of 262,000 cfs (which includes the upstream dam failure), 2.4-9 m L ;Ou hh 9

MIDLAND 1&2-ER(OLS) O ratir.g curve calculations were made using conservative channel and flood plain flow resistance and downstream water levels. Calculations were made using a US Corps of Engineers originated computer program which incorporates the standard step backwater metbod. From the rating curve and the PMF discharge hydrograph, the pMF stage hydrograph at the plant is developed which shows that the peak water level in the Tittabawassee River under postconstruction conditions would be at about 631 feet usl. 2.4.5 Low Flow Considerations 2.4.5.1 Low Flow in the Tittabaw.%ee River Although the river flow is not related to the continued scfety of the Midland p.*R, it is related to the continuous electrical generating capability. Based on a detailed study of river discharger , a 100-day drought was established as the design criteria for sizing the cooling pond (2) - The quantity of water which may be withdrawn from the river for use as makeup to 1l the pond is a function of the river flow rate as presented in Table 3.e 6. It is anticipated that during an average year the witndrawal rate will be about 46 cfs. Twenty-eight cfs wil'. be required te replace pond losses and 9 the remainder (18 cfs) is available for blowdown. The pond losses consist of an average monthly evaporation rat.e of 27.5 cfs with the remainder allowed for seepage losses. The evaporation losses were determined using empirical methods based on monthly wind speed and air vapor pressure data ( ). The meteorological data were obtained from weather stations at Midland and Saginaw, Michigan. Blowdown is returned to the river. During initial filling 1 of the pond, all river water in excess of 350 cfs in accordance with Table 3.4-6, up to a withdrawal rate of 134 cfs, iswithdrawnuntilthepond4 -

                                                                      .n       g, REVISION 9 - JUNE 1979               2.4-10                           0       '

o -

                                                                   <}3             M"

MIDLAND 1&2-ER(OLS) 2.6 REGIONAL HISTORIC, ARCHAEOLOGICAL, SCENIC, CULTURAL, MD NATURAL FEATURES The following sections contain information relating to earlier archeological activities and to present investigations. Much of the archeological information for the construction permit stage is contained in various letters. i

   ' The content of the letters is summarized in Section 2.6.1 and the letters are provided in Appendix 2.6A.

I i

    ' There are no historic or archeological sites listed in either the State %or National Register of Historic Places in the area of the Midland Plant 3     (refer to Appendix 2.6A). The nearest site listed in the National Register of Historic Places is located about 15 miles (24 km) to the east in Bay City.

The Saginaw Valley and the Midland area are, however, rich in archaeology as l described by Dr James Fitting (refer to Appendix 2.63). 2.6.1 Construction Permit Stage A May 4, 1972 letter from the State Historic Preservation Coordinator indicated that there was not a large archeological site in the area that had not been destroyed by p .ior extensive earth disturbing activities. Consumers Power, in 1977 and 1978, sent letters to Mr Foster, Mr Thompson, Ms Wang, and 9 Mr Pomranky (all associated with Saginaw Val'.ey Chapter of the Michigan Archaeological Society) requesting any information they might have relating to 1971 archeological investigations of the Midland Plant site. 3 Mr Pomranky's reply indicated only a brief investigation of the area and only lafew flint chips found (actually on Dow property). Mr Pomranky did not REVISION 9 - JUNE 1979 2.6-1

                                                                .gg-
                                                                       ~4 jL
                                                                               ~us 33-),

MIDLAND 1&2-ER(0LS) recall any prehistoric occupation sites and did not believe the area warranted any further e::ploration. Ms Wang's response noted the involveaent of State Historic Preservation Coordinator, the Curator of Anthropology at Michigan State University, a Bay City amateur archaeologist and a Midland amateur archaeologist. Her letter stated that 90% of the Plant site had been destroyed before the archaeological investigation was made. A subsequent Consumers Power telephcne discussion with John Woodworth of Midland, Michigan (refer to confirming letter of August 3, 1978, and memo in Appendix 2.6A) provided information on the personnel involved in the survey, the few materials found and the fact that a 10 feet x 10 feet (3 m x 3 m) pit 3 had been excavated through the plow zone with negligible findings. Mr Woodworth had submitted a report to Dr Cleland at Michigan State University who indicated in an April 6,1972 letter his intent to forward the report to the State Historic Preservation Coordinator. The report ias not sent to Consumers Power and at present no copy can be found in the records of Mr Woodworth or the State Archaeologist or the Curator of Anthropology at Michigan State University. Dr Cleland remarks that the site had been destroyed. Several of the letters from the amateur archaeologists and also the May 4,1972 letter from the State Histo.ic Preservation Coordinator assert that tentative arrangements had been made by the amateur archaeologists with Consumers Power to be informed prior to topsoil stripping in the area of the old county farm (the area is now under water within the cooling pond). Consumers Power has no records of any such REVISION 3 - NOVEMBER 1978 2.6-2 },t;r) 339

M12 LAND 1&2-ER(0L3) TA31.E 3.,-1 . at .

;!                                                               'ATER USA &j3}

(1,000s at gallons per Jay) I' ' S ximum Pwar $ 1tmum Pwar Ta m rirv ihut dan' #

          ,)       Average               Maxtawn              Average            %x twa            Average             %ximu Node            Flow Flow                  Flow               F1 w              Flow               F1 w 1                .0.9                 2,130                  40.9            2,130                .0.9             2,130 2                    9..                  .70                  9.4                430                9..               ,A I    3                  31.3                1,730                  31. L           1,730                31.3             1,7 13

'{ * ',MO I 102,0C0 1,960)f IC3,000 1.960 103,0C0 23,000' 28,000 I l 5 174,500 23,000' 174,500 174,500 3 'i 6

        '                   (t)/

11,7 0 0 ' d ) 43,360 (i) 11,700(d) 43,360 (t) 43,360 142,000 1 2,000 11,700(d) 144,000 3 323. 323 323 323 323 323 l 9 I S , 0C O d ) 54,7C0 I 10,200 16,500'U 7,200 13,000 Cf) 3l 10 (t) 203 (t) 203 (t) 303 11 142.700 042,700 735,000 735,000 380,60L 330,600 12 942,700 342,7C0 735.000 735,000 380,600 380,600 13 53,730 53,'30 33,780 53,780 53,730 53,780 la (1) 53,730 (i) 53,730 (i) 53,730 15 (t) 3 (t) 3 -) 3 31 16 (t) 839 339 l (i) si) 339 17 43,430 43,430 (t) (t) (t) 44,430 13 (t) 4,510 (t) *,51) 4,310 (t) 19 53,730 53,730 53,780 53,'30 53,780 53,730 7! 20 o,100 6,900 e,900 6,)00 6,900 $,100 3l 21 2.4 (10') 2. (6C6) 2.4 (10') 2.4 (102) 2.4 (106) 24 (10') Ib/hr Ib/hr ib / fa r Ibihr Ib/hr lb/hr 7'  :: 35 115 35 115 35 115 9: 23 124 779 12. 779 4d '79 7; 24 15.5 30 15.5 30 15.5 30 3i 25 11 314 141 314 c5 814 7! 26 15 30 15 30 15 30 3! 27 0.6 3.0 0.6 3.0 0.6 3.0 23 0.5 1.0 0.5 1.0 0.5 1.0 91 29 124 779 124 779 4 779 30 0.' 1.0 0.5 1.0 0.5 1.0 31 10 20 10 20 5 10 31 32 (t) 19 (t) '9 (t) 19 33 <1 <1 c, <1 <1 <1 3' 34 112 720 11' O 42 720 35 2.. 4.2 2.. 4.2 a.4 4.2 91 30 9 55 9 55 3.4 55 3r 37 (t) 19 (1) 19 (1) 1) 33 13,000 11,000 13, ~.00 13,000 13,000 13,C00 REVISION 9 - JLTr., 1979 s , 4

MIC L\ND 1.2-E R (OLS ) TABII 3.3-1 2 of 2 "4timum Pwa r ' *inimum P%e r( b ) Temporary ShutdowMC) Average Maximwn Average Maximum \verage Maximum Nmia' ' # F1w Flew Flcw Flow Flow Flow 39 13,JC0 13,000 13,000 13,200 13,0C0 13,00G 40 0.4 4.4 0.4 4.4 0.4 4.4 7 41 -1,300 41,20] 20,300 20,300 21,200 21,200

  ;    .2                 41,300          41,300          2$,3C0              20,300      21,200           21,200 i     3                      44              150             4.                 150         7.4               'a 9l      e4                      29               97             19                  97           3               43 l    45                      16               53             16                  53         3.I               27 7;      -o                     2.6              3.5            2.6                 3.5         2.6              3.5 9!      47                       9               74              9                  74         3..               74 44                        1              43               1                 .3            1              44 7l      4)                      64              113             64                 11S          64              118 50                  <0.01            <0.01          <0.01               <0.01       <0.01            <0.01 71      51                      64              293             64                 233          e4             2%

3! 52 v.6  : : 0.6 3.0 0.6 '.0 53 Not Used 54 Nat Used al 55 2.1 (b) 2.1 (h) 1.i (%, 56 0.8 1.4 0.3 1.4 0.3 1.+ 57 0.3 1.4 0.8 1.. 0.3 1.4 9' 58 (t) 3.0 (i) 3.0 (t) 3.0 1: 59 0.2 2 0.2 20 0.2 29 Sf 60 11,800 d) g .. 2,00f. 11,300t4} 142,000 11,3004) 142,000 censumption i 3+9 + 55 18,300 55,200 ;0,500 16,300 7,500 13,300 ai 15 + 16 (i) 842 (i) 842 st) 342 (a) Untr 1 operattag in the valves' wide spen throttle condition with the turotne at bacs end limited load, and Unit 2 cperating to the valves' wide open throttle coodition. 7J (b) Unit 2 operating at 25*. of rated power; Unit I cperating ist the valves' wide open throttle condition with the turbine at bacA end limited load. (c) Unit 2 te:rtpo ra rily shut icwn; Unit 1 operating in the valves' W1Je Open throttle condition with t'se turbine at back end ltatted load. (JI See Table 3.3-2. (e) See Figure 3.3-1. (f) Computed fer the average meteorological cenottions of July 19=0 sad the 3verage stad speed of March 1953. Among the metceorologtcal data vorded at Lacstng, Machtssa, from 1910-1976, the month sf July 1940 has the Taximum Jew potat depresston ano the month af MarcP 1950 has the highess wind speed. Ig) Minimum power sad temporary stutdown are not expected to be of st;f ficient duratica to affect the average flows presented in Table 3.3-2. l (b) Not d e t e r's t ned . 81 (t) Average flow of zero due to intermittent flow. Martmum flow is stated in this Table. }l (j) Osta do not take refueling perioda into account for ettber untt. REVISICN 9 - Ji'NE 1979

                                                                         <z y-oO 6

MIDLAND 1&2-ER(OLS) 3.4 HEAT DISSIPATION SYSTEM The circulating and service water flow schemes for the principal heat removal facilities built for Midland Plant Units 1 and 2 are illustrated in Figures 3.4-1 and 3.4-2. The cooling pond shown in Figure 3.4-3 acts as a natural 9l boundary to isolate the Tittabawassee River from directly receiving the water discharged from heat temoval facilities. The ccoling pond makeup and blowdown 9 systems are provided to maintain the cooling pond TDS within acceptable operating limits. These systems are illustrated in Figures 3.4-7, 3.4-8 and 3.4-9. 3.4.1 Circulating Water System Two half-capacity circulating water pumps are provided per unit, rated 132,135 gpm each for Unit I and 195,200 gpm each for Unit 2. These pumps take suction from the cooling pond and circulate the water through the tube side of the condensers and discharge it back to the cooling pond. The circulating water p;cks up heat in the condensers by condensing the turbine exhaust steam. Heat is dissipated from the cooling poad to the atmosphere by evaporation, radiation, and sensible conduction. The circulating water system and condenser design characteristics are given in Table 3.4-1. The circulating water intake structure is adjacent to the service water pump structure on the cooling pond as illustrated in Figure 3.4-4. Trash racks and stationary screens with a 7/16-inch (11 mm) ma h are provided at the entrance to the pump suction pit. The water velocity at the en.rance is less than 0.5 ft/s (15 cm/s). Water in the circulating water piping reaches a velocity of 8-10 ft/s (2.4 to 3 m/s). REVISION 9 - JUNE 1979 3.4-1 ,b . 5U O k 3a0

MIDLAND 1&2-ER(OLS) hotor-operated butterfly valves are provided in each circulating water pipeline at the circulating was -r pump discharge and the circulating water system discharge structure. These valves are provided for condenser and circulating water pipe maintenance. The valves at the pump discharge are also used for start-up. Each circulating water pump for Unit 1 discharges through a separate 72-inch (183-cm) pipe through each half of the condenser water boxes, and then through two separate 72-inch (183-cm) pipes into the cooling pond. Each circulating water pump for l'ait 2 discharges into a separate 96-inch (244-cm) pipe directly into the low pressure condenser water boxes, then into the high pressure condenser water box and into the cooling pond through two separate 96-inch (244-cm) pipes via the circulating water discharge structures shown in Figure 3.4-4. Cross-connects are provided on both units to allow pump runout through both piping flow paths if one pump is 'I inoperative. Figure 3.4-10 is a detail drawing of the circulating discharge lstructureforUnit1;theUnit2structureissimilarindesign. Sodium hypochlorite is injected into the circulating water to control biological growth on the condenser tube walls as discussed in Section 3.6. Sulfuric acid injection keeps the pH level of circulating water at a value which minimizes scaling and is discussed in Section 3.6. 3.4.2 Service Water System The service water system is considered . .ha.;d system and is cc= prised of two redundant essential service water trains and two turbine building se mice water trains. The cervice water system provides treated cooling water for various components during normal Plant operation and also provides cooling water to the engineered safety features equipment and a backup water supply 1l for several safety-related systems during normal Plant operation or a desjgp ggOU REVISION 9 - JUNE 1979 3.4-2 gg

MIDLAND 1&2-ER(OLS) basis accident. Each essential service water train serves one-half the safety-related cooling components of both units. Each turbine building service water train serves all of the components of one unit's turbine building. Each of the five service water pumps has a capacity of 20,500 gpm. The pumps are the vertical wet pit mi:.ed flow type and are installed in the service water pump house. One essential service water train and one turbine building service water train are serviced by two pumps, with one common spare installed between the two pairs of pumps serving as a backup for both trains. 9lTheemergencycoolingwaterreservoirisprovidedinthebottomofthecold leg of the cooling pond as illustrated in Figure 3.4-3. Upon loss of the main cooling pond, water would be upplied via an 3 pen channel. from the emergency cooling water reservoir to the service water structure. As shown in 9 Figure 3.4-5, this flow of water would also pass through the trash racks and traveling screens before entering the suction po-l. T.vo full capacity screen wash pumps are installed at the service water pump house forebay. The velocity of water flow coming into the structure from the emergency cooling water reservoir is normally less than 0.5 f t/s (15 cm/.s) . The bottom elevation of the intake structure is 3 feet (0.9 m) below the bottom elevation of the emergency cooling water reservoir. The discharge line from the servi e water system is exhausted into the emergency cooling water reservoir by two concrete discharge atructures rising frra tts bottom as shown in Figure 3.4-4. The discharge structures have openings at their tops to promote uniform flow in the emergency cooling water reservoir.

                                                                             -, -, y ~

2h3 1sd REVISION 9 - JUNE 1979 3.4-3 33 <t

1IDLAND 1&2-ER(OLS)

O The service water fstem operates in a closed cycle employing a mechanical draf t cooling tower, as necessary to maintain the service water system design inlet temperature below 95 F (34.4 C). It is anticipated that the mechanical draft cooling tower will be in operation during parts of June, July, August and September. The service water tower is of the counterflow type. The service water system and the service water cooling tower design characteristics are given in Table 3.4-2. When the service water cooling tower is operated during summer months, two full capacity, vertical wet pit type makeup pumps are used, one normally operating and one on standby. During this mode, the service water system is isolated from the cooling pond by losing the sluice gates between the pump house structure forebay and the servicc. water pump pit. Under this condition the service water makeup pump provides makeup water to the system by taking suction from the pump house structure forebay and discharging into the pump pit. Each makeup pump has a capacity of 1,860 gpm for making up the cooling tower evaporation and blowdown loss. Overflow openings are provided on the separation wall between pit and forebay . , allow excess makeup water to flow back to t::? forebay from the pump pit. 3.4.3 Cooling Pond The cooling pond is an artificially created water body with an area of 880 acres (356 ha) and a design volume of 12,600 acre-feet. The pond is used to dissipate the. heat, rejected by the circulating and service water systems, to the atmosphere. Plant heat rejection to the pond will vary from 7.69 x 10 9 Btu /hr under maximum guaranteed load (MGL) with both units in operation (service water cooling tower operating) to 9.05 x 10 Btu /hr for Unit I back

                                                                               -,r-3.4-4 c . a,   M. -
                                                                     /)     pD

MIDLAND 1&2-ER(OLS) end limited and Unit 2 with valves wide open (VWO) (service water cooling tower not operating). The cooling pond is illustrated in Figure 3.4-3. 2lThemainpurposeofthecoolingpondistoprovideaclosedlooptosupplyand receive cooling water for the circulating and service water systems. The cooling pond also provides the source of water for the Plant fire protection system. The cooling pond has an internal baffle dice, which prevents direct flow of the circulating water discharge from the hot tc the cold side of the pond and thus makes effective use of the antire cooling pond surface area. The general circulation patterns in the pond were determined by a physical model study (l) and are shown in Figure 3.4-6. The retention time of the cooling pond can be approximated by the ratio of the circulating water system flow divided by the usable storage of che pond and is equal to about three days. The maximum operating water level in the pond is at elevation 627 feet mst (191 m; and tbe minimum operating level is at 618 feet ms1 (188 m). The surface areas at these elevations are 880 and 860 acres (356 and 348 ha), respectisely. The pond storage volumes are 12,600 and 4,800 acre-feet for the maximum and minimum water levels in the pond, respectively. Of the total volur.e, approximately 7,800 acre-feet are cunsidered usable during the 100-day drought. An additienal 2,600 acre-feet are included to provi^ a 3-foot

  '1.9 m) minimum water depth. The pond bottom elevation varies from elevation 614 to 615 feet ms1 (187.1 to 187.5 m) which results in a minimum operating depth of 3 feet (0.9 m). The remaining storage volume of about 2,200 acre-feet includes the deeper areas in the eastern part of the pond below elevation 615 msl.

REVISION 2 - JUNE 1978 3.4-5

                                                            ,[ 7;
                                                               , qU Q"-

30

MIDLAND 1&2-ER(OLS) O The emergency coeling water reservoir is located in the bottom of the cold end of the cooling pond as illustrated in Figure 3.4-3. The emergency cooling 9 water reservoir contains 272 acre-feet of water, has an area of about 39 acres (16 ha) at elevation 604 feet ms1 (184 m) and a bottom elevation of approximately 596 feet msl (182 m). The usable cooling pond storage volume of 7,800 acre-feet is equal to the estimated evaporative and seepage losses occurring during a 100-day drought. Pond losses due to evaporation have been computed as approximately 8 feet (2.4 m) or about 7,000 acre-feet during a 100-day drought. Pond losses due to seepage are considered minimal (estimated to be about 0.1 cfs). For design pu rpo s e s , a seepage loss of 4 cfs or approximately 800 acre-feet was assumed for the 100-day design drought. During the 100-day drought, river conditions are 2 assumed which do not allow blowdown from the pond nor makeup flows to the pond. This is due to the operating restrictions of each systea as presented in 9l Sections 5.1.2 rnd 3.4.4, respectively. Dunng this period, water for radwaste 2 dilution will be provided by the dilution line as described in Section 3.4.4. The monthl: average pond thermal performance was evaluated asiag a numerical model which simulated the steady-state heat balance of the pond with the atmosphere. The pond was r.: presented *..y two horizontal well-n:ixed layers , a longitudinally advected heated l ayer at the surface and an underlying layer of returning backflow combined with ambient pond water. Heat t. asfer into the pond was the result of solar radiation, long wave atmospheric radiation, and the imposed heat load of the circulating water flow. Heat transfer out of the pond is through evaporation, back radiation, and sensib7e conduction. The pond heat loss due to evaporation was calculated using Meyer's evaporatica equation ( ). REVISION 9 - JUNE 1979 3.4-6 <[ , s OUU >- ' 3G

MIDLAND 1&2-ER(OLS) THIS PAGE INTENTIONALLY LEFT BLANK e -

                                                              > =.-..

f>>Q s .J V REVISION 2 - JUNE 1978 3.4-7b 3g3

tilDIAND 1&2-ER(OLS) 3.4.4 'ocling Pond Pfakeup System Structures Cooling pond makeup water is taken from the Tittabawassee River through the river intake struc ture illustrated in Figure 3.4-7. River water is supplied from the river incake structure to the makeup pump structure shown in Figure 3.4-8 through a single 96-inch (244-cm) diameter pipe. Three cooling pond makeup pumps, each having a nameplate rating of 31,500 gpm (70 cfs) capacity 6 and 40,400 gpm (90 cfs) maximum capacity at river levels exceeding 595 feet j msl, take suction from the common suction chamber of the makeup pump struc. and discharge the river water into the cooling pond 5. cough a 72-inch (183-cm> 7ldiameterconcretepipe. A dilution line (shown as Raosaste Dilution line on Figure 3.3-1) is provided from the coeling pond makeup pumps to the cooling pond discharge structure to provide minimum dilution flows for discharge of 6 l low level radioactive effluents as described in Section 5.2.2.1.1. Floating logs in f ront of the river intake structure prevent admission of 6llargefloatingdebris. Vertical trash racks with 3-inch (7.6-cm) openings and three traveling screens with 3/8-inch (9.5-mm) mesh size are provided for further removal of smaller debris which would otherwise enter the river intake 6 l structure. Disposal of debris is addressed in Section 3.7. The design of the river intake structuce features a natural bypass charnel 9 which is intended to create a sweep flow in front of the traveling screens. The bypass channel should provide an escape route for fish and help reduce accumulation of debris and silt in front of the traveling screens. 6 The makeup water withdrawal regime as a functica of river flow is listed in Table 3.4-6. Furthermore, the average velocity of the withdrawn river water REVISION 9 - JUNE 1979 3.4-8 }(j] Q-3Y

MIDLAND 1&2-ER(OLS) approaching the screens, normal to the screens, should not exceed 1 f t/s (30cm/s). This is accomplished by operating the appropriate number of makeup pumps as illustrated in laole 3.4-7. Due to operational limitations of the 7 makeup pumps, water is recirculated back to the makeup pump suction to prevent river withdrawal above that permitted for makeup acccrding to Table 3.4-6. During initial filling of the pond, river sater in excess of 350 efs is 6 withdrawn until the pond is full. Two makeup pumps normally provide a minimum withdrawal rate of 140 cfs. 3.4.5 Cooling Pond Blowdown Discharge Structu_ry The cooling pond blowdown discharge structure shown in Figure 3.4-9 consists of three parallel 30-inch (76-cm) diameter concrete pipes which havc an invert elevation of 587 feet msl (179 m) at their outfall. The pipes are positioned at the river bank normal to the river flow, and connect to the 66-inch (168-cm) diameter blowdown line at the edge of the Plant fill as shown in Figure 3.4-9. 9lThesystemcapacityis220cfsandtheblowdowndischargeisregulatedby thrre valves located on each of the 30-inch (76-cm) diameter pipes. This scheme provides control of blawdown discharge velocities up to 15 ft/s (4.6 m/s) by allowing shutoff of one or two of the three pipes depending on the Plant discharge. Thus, by maintaining high discharge momentum when possible, more effective mixing of the blowdown with the river flow is 9 l achiaved. A concrete apron and riprap in front of the pipe outfalls protect the ri erbed from potential erosion due to the jet action. 9 eO '$

                                                                              $. jh
                                                                   .ou     -

REVISION 9 - JUNE 1979 3.4-9

MIDLAND 1&2-ER(OLS) 9 9 3 The cooling pond blowdown operation is designed to control the pond total dissolved sol.ds (TDS) concentrations which ciginate from the use of Tittabawasser River water for makeup. TDS contribution from normal Plant 9 op e r a t.i n n , st.:h as sulfuric acid and hypochlorite addition to the circulating water are not aignificant. As evaporation losses of pond water resulting from 3 the heat dissipation process will result in TDS accumulation, the cooling pond blowdown and makeup process will allow for TDS control within the pond aperating requirements as demonstrated by a long-term daily simulation of the cooling pond operation (3) . The cooling pond blowdown shall comply with 9 Michigan Water Quality Standards regarding temperatures, TDS, and mixing zone size. For a discussion of op3 ration of the blowdown discharge system and the associa ced thermal ef fects , re.fer te Section 5.1.2.. 3lTheprincipalparametersinfluencingtheoccurrenceofcoolingpondblowdown and its flowrate are: TDS level in the pond, blowdown temperature, TDS level in the river, river flowrate and ambient river temperature, and the pond water surface elevation. The thermal loading to the river by the discharge of The 9 Dow C'iemical Company is incorporated into the physical mod < 1 study which provides the basis for calculating the maximum c.11owable blowdown flowrates within the thermal constraints of the river. 3 An automatic control system is provided to minimize the TDS concentration in

 , the cooling pond by maximizing blowdown and m n eup flcwrates. The frequent REVISION 9 - JL'NE 1979               3.4-10                 m :g      -+ i
f. ': 0 a 'I

MIDLAND 1&2-ER(OLS) 3 cnanges in the variables, particular1.y river flow, dictate the need for an automatic rather than a manual system. 9 Pond blev,down is used for radwaste dilution when the blowdown flow is 3 adequate. Whe:. the pond blowdown flow is not adequate, the makeup pumps provide the necessary dilution flow and pond blowdown flow is t>mporarily 7 l suspended. O

                                                            <2. t .>  ". ,[']

REVISION 9 - JUNE 1979 3.4-11

MIDLAND 1&2-ER(OLS) 3.4R REFERENCES

1. Alden Research Laboratories, Model Study, Midland Cooling Pond, Cons ume rs Power Company (January 1970), Report prepared for Bechtel Professional Associates Corporation.
2. Bechtel, Incorporated, Cooling Pond Thermal Performance Su mmary Report; 7

Midland Plant Units 1 and 2 (August 1973), Report prepared tur Consumers Power Company.

3. dechtel Associates Professional Corporation, Final Report - Midland Power 9 Plant - Cooling Pond Operation Study (March 1979), Report prepared for Consumers Power Company.

[.  !) i REVISION 9 - JUNE 1979 3.4R-1

MIDL/ED 1&2-ER(OLS) 2 in Sections 3.4.5 and 5.1.2. The effluent limitations are discussed in Section 5.1.1. ae expected cooling pond makeup water quality is given in Table 3.6-3. Evaporative losses of the cooling pond increase the concentration of constituentL contained in the cooling water. The concentrations are maintained at a level compatible with Plant operation by discharging and making up a portion of the circulating water. Expected average and maximum cooling pond blowdown volume and characteristics are given in Table 3.6-4. Also given in this table are the expected average and maximum volume and characteristics of the combined Plant discharge to the Tittabawassee River. As given in Table 3.6-4 and discussed in Section 5.1, the chemical characteristics of the Plant blowdown are within the discharge limits 2 established in 40 CFR 423. The worst case values given in Table 3.6-4 are based on conditions whereby the cuemicals in the cooling pond are concentrated 7lafterhistcricperiodsoflowriverflow(1) resulting in a low operating pond elevaticn. Therefore, the major concern is to limit the TDS concentration of the river below the lischarge pcint to the limits specified in Section 5.1.1. To control TDS within the State limits, the conductivity of both the ambient 2 river and pond water are measured with permanent instrumentation. The blowdown piping has flow measurement and control valves that can limit the blowdown rate to any desired level. The pip 4.ng arrangement is discussed in Section 3.4.5. 7lDuringperiodsofIcwpondlevels, such as historic periods of low river flow, the blowdown will be minimal or zero until river conditions allow the pond to be refilled using the makeup system and blowdown reestablished. In der to

     'EVISION R         7 - MARCH 1979               3.6-6a 2 d[]      d

MIDLAND 1&2-ER(OLS) 2lmaintainPlant operation during dry periods, the pond was sized to permit normal operation during a 100-day drought without makeup or blowdown. During those periods in which the pond cannot be blown down, it is anticipated that the remaining discharges to the river will still be permitted most of the time. During periods of extremely high river TDS, some of the other Plant 9 discharges may have to be restricted. Provisions have been made to discharge the turbine building neutralizir 2 sump and the evaporator building neutralizing wastes to the cooling pond during these periods. The laundry waste and the oily waste systeta ef fle.ents are low TDS and are always discharn a to the river. 3.6.4.1 Sulfuric Acid Addition to the Circulating Water Sulfuric acid is added to the circulating water to prevent carbonate scale deposition on the condenser tube walls by reducing the natural alkalinity 9l(refertoTable3.u-6). 3.6.4.2 Sodium Hypochlorite Injection Slime growth on the condenset tube walls is prevented by injecting a sodium 2 l hypochlorite solution into each condenser inlet water boy for approximately 30 minutes. It is expected that two such injections will be required daily.

                                                     '/ v }, [)3 REVISION 9 - JUNE 1979             3.6-6b

MIDL.AND 152-E3 l 0 L.3 ) TABLE 3.o-e Erf ?LD ChTMICAL C:tAPACTERISTICS 2F COOLING POJO 3LC'-TG-5 AND COMSINED PLANT DISC:LuiGE Pond Blowdown {3) Combtced Plant Discharge (d) A ve r a ge / M a x imura Averare/MaximumlC) P i raee t e r (Node 7 Figure 3.3-1) (Node 90 Etgure 3.3-1) 3 Daily Flow, nillton ga: 11.7/142 11.3/142 6.5-9.5 6.5-9.5 1l pH 900/2,50'3 3!TDS,mg/l 330/2,200

                                                            <100                                      <100 TSS, mg/l Ca, mg/l                                            150/540                                  150/520 Mg, mg/l                                             40/130                                    40/120 Na, ng/l                                             60/210                                    70/270 SO4, mg/ l                                          120/150                                   140/660 3

CL, mg/l 130/410 130/400 (b) 0.13/0.31 P0; , mg/ l 0.18/0.34 Total Res tdual Chlorine, mg/l <<0.2/<<0.3 < < 0. 2/< < 0. 3

                 , mg/l                                  0.05/0.22                                 0.05/0.22 9 l 2n 0.20/1.50                                   1.67/20.4 3 { W3 , eg/l 011 and Grea se, ig/ l                              < 15/< 20                                 < ;5/< 20 t gallan = 3.79 lt ers (a) G lues given for cooling pond blowdown result from evt                    ie c3*centratica of the nakeup wate r wi thdrawn- f rcm the Tittabawassee Rive r.            Chloriaa af wa.er systems and cooling pon.d acid treatment are anticipated to tecrease the val s given as follows:

l Na, 5 mg/l ava - 15 mg/l max C1, 3 mg/l avt - 22 mg/l max 9 l' 50;, 200 mg/l avg - 1100 ig/l sax Asswaing the cooling pond blowdown will be terminated, and the waste streams tdentified in Items 1 and 2 of Table 3.6-2 will be routed to the cooling pand when discharge to the Tittabawassee River would cause the river to exceed permit limitations, then the fr.llowtng 7 increases in chemical concentrations are expected in the cooling pond: Parameter Max Increase TDS, ag/l 70 Na, ig/l 15 3 50 2 'g/ l 40 4 Nii) . is/1

                                                                                                                       .'a b l e (b) These parameters have been detected in the cooling pond useup water supply (refer to 3.6-3). The values given tr. the p resent Table represent evaporstivt conce.trattort o f 6..

easeup water supply values. (5 cfs) and the u nmun 3l ,c) Maximwntastantaneous concentrations waste dischargeere computed using the untmum 5 lowdown flw rates. l

                                                                                        <s

() 77 REVISIuN 3 - JDT 19 79

                                                                                         - I ()

3rl

MIDLAND 1&2-ER(OLS) TABLE J.6-5 PROCESS STEAM SYSTEM BLOWDOWN VOLLME AND QUALITY Daily Volume, gal  !!5,000 max TDS, mg/l 1,750 m4x TSS, mg/l 150 max pH 9.5-10.5 S0 3 mg/l 20-30 PO4 mg/l 30-70 9

                                  . . ,  O wa     e Sf1-

MIDLAND 1&2-ER(OLS) O 3.6R REFERENCES

1. Bechtel Associates Professional Corporation, Final Report - Midland Power 9 Plant - Cooling Pond Operation Study (March 1979), Report prepared for Consumers Power Company.
                                                              -;O
                                                     ).ib 0 353 REVISION 9 - JUNE If79           3.6R-1

MIDLAND 1&2-ER(OLS) the Soil Erosion and Sedimentation Control Act 347. None of the rivers in the project area are listed under the Michigan Natural Rivers Act 231. Notification and approval are required f rom the Tri-City Joint Airport Zoning 9l Board. Tri-City Airport is over 5 miles (8.05 km) from the nearest project transmission line. There is no known zoning ordinan.e in conflict with construction plans. 1 3.9.3 Land Usage The Midland project area is part of the Saginaw Glacial Lake Plain. The terrain is very flat with alluvial clays and fine sandy soils. The Tittabawassee River flows southeast through Midland to join the Shiawassee/Saginaw River south of Saginaw (see Figures 3.9-1, 3.9-2 and 3.9-3A). The Bad River (" Pth and South Branch), Potato, Beaver, Wolf and Swan Creeks and numerous drains converge on the Shiawassee River near St Charles (see Figures 3.9-3C, 3.9-3F and 3.3-3G). The small villages of brant, Nelson, Hemlock and Mapleton are the only communities other than Midland that are within one mile (1.61 km) of the transmission lines. Land usage is predominantly agricultural with most f a rms at least 80 to 160 acres (32 to 65 ha) in size. The dominant crops are corn and navy beans. The area south of Mtdland is intensively cultivated and nearly treeless. Brant Township in Saginaw County is intersected by a number 2!$0 F REVISIGd 9 - JUNE 1979 3.9-3 3 DIS

MIDLAND 1&2-ER(OLS) O of creeks and rivers and associated wetlands with a large percentage of early successional stage vegetation (8,9). The Gratiot-Saginaw State Game Area ts located west of Brant Township. The Shiawassee River State Game Area is located east of Brant and Fremont Townships. Both game areas are shown on Figure 3.9-1. The only other recreational facilities in the area are the Brant Rifle and Pistol Club in the NE 1/4 of Section 10, Brant Township, Saginaw County and the Maple Hill Golf Course 3 miles (4.83 km) east of Hemlock in the NE 1/4, Section 25, Richland Townaaip, Saginaw County. Fraser Airport and Sonefield Agency Airport, shown on Figure 3.9-1, are the two airfields nearest to Plant project transr.ission facilities. 3.9.4 invironmental Assessment 3.9.4.1 Terminal Points The two 345 kV bus tie lines between the Midland Plant Units and Tittabawassee Substation terminate on the south turbine building wall. The two 138 kV start-up lines terminate on independent steel structures located east of the turbine building. All Plant-related transmission lines terminate at the existing Tittabawassee Substation located 1.4 miles (2.25 km) east-southeast of the Midland Plant. The apparent size of the 14-acre (5.67-ha) low-profile substation is reduced by a setback of approximately 1,250 feet (381 m) east from Waldo Road and 500 feet (152.4 m) south from Milner Road (see rigure 3.9-4). The setback also effectively attenuates any equipment geierated noise. Vehicles associated with maintenance ard inspection of *.ce substation are parked onsite away from public roads. Thin. 80-acre (32.4-ha) substation site is adjacent to es J" REVISION 1 - APRIL 1978 3.9-4

                                                         '[0 U

MIDLAND IL2-ER(OLS) 4.2 TRANSMISSION FACILITIES CONSTRUCTION Transmission lines associated with the lidland Nuclear Plant construction consist of two 345 kV lines running 2.3 miles (3.7 km) to Tittabawassee Substation and one 345 kV line running 27.5 miles (44.2 km) from Tittabawassee Substation to interconnect with the existing Xenowa-Thetford 345 kV line. The line route between the Plant and the substation crosses flat land identified as industrial or wasteland. The 27.5-mile (44.2 km) section of line running south out of the substation crosses farmlands mixed with occasional woodlots. Another line associated with the project is a 138 kV start-up line running south along the east side of the cooling pond and east along the north side of Gordonville Road. This line crosses the Tittabawassee River and Saginaw Road approximately 1 mile (1.6 km) scuth of the 345 kV line crossings and then @ continues northeast into Tittabawassee Substation. The clearing at the river is for construction access with a majority of the right-of-way selectively cleared to preserve low growing species. There is an ample amount of roadside trees along Saginaw Road to obstruct views to the line at the crossiLR location. Ro' ting o f t'.c 138 kV start-up line and the two 345 kV lines judiciously utilizes existing vegetation. An insignificant amount of clearing is required

 'setween the Midland Plant and Tittabawassee Substation. The Tittabawassee to Kenowa-Thetf,rd 345 kV line requires clearing only 110.9 acres (45 hc) of ccattered fencerows and woodiots at a width of 142 feet (43.3 m). Additional trees outside the cleared right-of-way which endanger the line are selectively removed.
                                                                 -, c 4.2-1           -)

MIDLAND 1&2-ER(OLS) O The most vi:ually sensitive area affected by new transmission lines is the northern one-third of the Tittabawassee to Kenowa-Thetford right-of-way(l) In this area, the flat terrain is nearly lacking of arborescent vegetation. Agriculture in this area is practiced up to roadsides and ditch banks. The predominance of row crops also has eliminated fencerows and the vegetation that usually is present along fencerows. Although the transmission towers are exposed for long distances, the rural nature of the surroundi- area reduces the effects of this exposure. The remaining portion of the Tittabawassee to Kenowa-Thetford 345 kV line route hao a moderate sensitivity. In some areas the line will be screened by exiv ing woodlots an1 stream valleys. Design, roccing, construction and maintenance of these transmission lines is done in accordance with Environmental Criteria for Electric Transmission Systems (2) developed by the US Departments of Interior and Agriculture, and Guidelines for the Protection of Natural, Historic, Scenic and Recreational Values in the Design and Location of Rights-of-Way and Transmission Facilities (3) publisLed by the Federal Power Commission. In addition, the Applicant has engaged landscape architects to develop guidelines for minimizing impact of transmission lines and facilities on aesthetic values. These criteria have been applied in design of the transmission lines from the Midland Plant to the substation, and from the substation to the Kenowa-Thetford line. 9l Approval of the Corps of Engineers will be obtained approximately 30 day:, prior t<> construction for erecting the transmission lines across the Tittabawassee River. O s-REVISION 9 - JUNE 1979 4.2-2 r[9)5)

CHAPTER S TABLE OF CONTENTS Section Title Page No 5 ENVIRONMENTAL EFFECTS OF PLANT OPERATION . 5.1 -1 5.1 EFFECTS OF OPERATION OF HEAT DISSIPATION SYSTEM. 5.1-1 5.1.1 Efflaent Limitations and Water Quality Standards 5.1-1 5.1.1.1 State. . . . . . . 5.1-1 5.1.1.2 Federal. .. . . . . . . . . 5.1-3 5.1.1.3 License Conditions . . . . .. 5.1-3 5.1.1.3.1 Chlorine .. . . . . . . . .. 5.1-5 8 l 5.1.1. 3. 2 Phosphorus . . .. . . . . .. 5.1-6a 5.1.2 Physical Effects . . . .. ... . . 5.1-7 3 9 l 5.1.3 Biological Effects .. . . . . 5.1-9 5.1.3.1 Entrainment Effects.. . . . . . 5.1-11 9 5.1.3.2 5.1.3.3 5.1.4 Impingement Effects. Thermal Effects. . Effects of Heat Dissipation Facilities 5.1-13 5.1-14 5.1-16 5.1.4.1 Frequency of Fog Occurrence. . . . . 5.1-16 5.1.4.2 Icing Buildup From Pond Fog.. . . . 5.1-19 5.1.4.3 Noise From Service Water Cooling Towers. 5.1-20 5.1.4.4 Effects on Ground Water. . . . . . 5.1-20 5.1R REFERENCES . .... . . 5.1R-1 Appendix 5.1A WATER QUALITY STANDARDS AND REGUI.ATIONS 5.1B CALCULATION METHODS USED IN PREDICTING THERMAL PLUME CONFIGURATIONS 5.1C FOG AND PLUMES FROM POWER PLANT COOLING SYSTEMS IN TlfE TRI-CITIES - SAGINAW BAY AREA 5.2 RADIOLOGICAL IMPACT FROM ROUTINE OPERATION .. .. . 5.2-1 5.2.1 Exposure Pathways. . . . . . ...... . .. . 5.2-1 5.2.1.1 Radiation Exposure to Biota Other Than Man . 5.2-1 5.2.1.1.1 Gaseous Ef:luents.. . . . .. .. . . .. ..... 5.2-1 5.2.1.1.2 Liquid Effluents ... .. . . .. .. .. 5.2-1 5.2.1.2 Radiation Exposure to Man..... .. . . . .. 5.2-2 5.2.1.2.1 Gaseous Effluents. . .. .... . . . 5.2-2 5.2.1.2.2 Liquid Effluents . .. . .. .. 5.2-2 5.2.2 Radioactivity in Environment . .. 5.2-2 5.2.2.0 Meteorological Models.. . . 5.2-2

                                                                                              ],P 0  3 REVISION 0 - JUNE 1979                             5-i

9 Section Title Page No 5.2.2.0.1 Short-lerm (Accident) Diffusion Estimates. .. . . 5.2-3 5.2.2.0.2 Long-Term (Routine) Diffusion Estimates.... .... 5.2-8 5.2.2.0.3 Deposition Rates . .. . .... .... . ..... . 5.2-19 5.2.2.1 urface Water Models . . ... .. . ... . ... 5.2-21 5.2.2.1.1 Modeling of Radionuclide Transport .. .. . ....... 5.2-21 5.2.2.1.2 Sediment Uptake Models .... . .. . . ... . 5.2-26 5.2.2.1.3 Water-Use Models ...... .......... .. .... ... 5.2-26 5.2.2.2 Groundwater Models .. . .. ... . . . .. ... . 5.2-27 5.2.3 Dose Rate Estimates for Biota Other Than Man .. 5.2-27 5.2.3.1 Fauna and Flora..... .... ........... .... ... 5.2-27 5.2.3.1.1 Aquatic Flora and Fauna. .... .... ... . ... 5.2-28 5.2.3.1.2 Terrestrial Fauna...... ... ... ... .... . .. . .. 5.2-28 5.2.3.2 Calculation Models ... . . .... .. ... . . ...... 5.2-30 5.2.4 Dose Rate Estimates for Man.. . . . . ..... 5.2-30 5.2.4.1 Liquid Pathways. ... . .. .. . .. .. ... . . . 5.2-30 5.2.4.2 Gaseous Pathways ... .. .. . . . ... . 5 2-31 5.2.4.3 Direct Radiation ...... . .. . . . .... 5.2-32 5.2.4.3.1 Direct Radiation From the Facility . .... ... .. 5.2-32 5.2.4.3.2 Direct Radiation From the Transport of Radioactive Materials.. .. ....... .... .... ..... ... .. . 5.2-32 5.2.4.4 Population Doses .. .. .... ..... ... . ... . . 5.2-33 5.2.4.4.1 Liquid Pathways.. . ...... . . ..... . . .. . 5.2-33 5.2.4.4.2 Gaseous Pathways .. . ...... . .. . . . ... . 5.2-35 5.2.5 Summary of Annual Radiation Doses. . . .. .. .. . 5.2-36 5.2R REFERENCES ..... ... . . . .... ..... ... 5.2R-1 5.3 EEEECTS OF CHEMICAL AND BIOCIDE DISCHARGES ... 5.3-1 5.3R REFERENCES . ................. .. .... . . ...... 5.3R-1 5.4 EFFECTS sF SANITARY WASTE DISCHARGES . ....... .. 5.4-1 5.5 EFFECTS OF 0?ZRATION AND MAINTENANCE OF THE TRANSMISSIO$ SYSTEM.... . .... ... ....... .. .... 5.5-1 5.5.1 Environmental Effects of Electrical Fields . . 5.5-1 5.5.2 Rignt-of-Way Land Use... ..... . . ...... . . ... 5.5-1 5.c.3 Right-of-Way Maintenance .... ...... ..... ...... 5.5-2 4l5.5.4 Potential Effect on Biota...... .- ...... ......... 5.5-6 5.5R REFERENCES . ...................................... 5.5R-1 5.' OTHER EFFECTS. ....... .. ......... ............. . 5.6-1 3.6.1 Impact of Attracting Waterfowl to Cooling Pond . .. 5 6-1 5.6.2 Impact of Plant Operation on Biological System in Cooling Pond .......... ........ . . . .. .. .. 5.6-2 5.6.3 Impact of Non-Radioactive Solid Wastes Produced During Plant Operation . .. . . . ... . . ... 5.6-4 1l5.6.4 Noise. .... .. ....... . ... . .. .... . 5.6-5 5.6R RErERtNCES .. 5.cR-1 qll) o),dc

                                                                                   /
                                                                                  ~'
                                                                                                             ,n.

REVISION 4 - DECEMBER 1978 5-ii

MIDL\ND 1&2-ER(OLS)

f. Prevent any discharge which would result in increasing the phosphorus concentration ir. the river above 0.05 ppm (see Section V, Pages 18 and 20).
g. In order to assure that the chlorine residual in the river is negligible, the concentration in the pond blowdown must be limited to 0.05 ppm (see Section V, Page 18, and Section V, Page 20).

Only four of the seven license conditions (requirements 7(a), (b), (c) and (d)) were incorporated in the constructior Permits No CPPR-81 and CPPR-82 issued December 15, 1972 by the Atomic Energy Commission (AEC)(2) The remaining three license conditions (7(e), (f) and (g)) relate to operation of the facility. 5.1.1.3.1 Chlorine Recommendations 7(e) and (g) are directly related to each other as the biocide considered for control of nuisance algae in the pond is chlorine. Federal effluent guidelines for free available chlorine are published in 40 CFR, Section 423.12. These guidelines limit the ma:cimum f ree available chlorine concentration discharged to 0.5 mg/l and the average free available chlorine concentration to 0.2 mg/1. The WRC Rules contain no chlorine standards or limitations. Rather, Rule 323.1082 establishes "a mixing zone to achieve a mixture of a point source discharge with the receiving waters . ." This Rule also provides "as a minimum restriction the toxic substance 96 hour TLe for important species of fish or fishfood organisms shall not be exceeded in the mixing zone at any point inhabitable by these organisms, unless it can be demonstrated to the WRC that a higher concentration is acceptable." 5.1-5

MIDLAND 1&2-ER(OLS) O Under the guidance offered by Rule 323.1082, the MWRC had adopted the policy, 8 in State-issued NPDES Permits, of limiting the intermittent discharge of total

  , residual chlorina from stean. electric plants to 0.5 mg/l through June 30, 1977 and to 0.20 mg/l and 0.04 mg/l (dependent upon water temperature) after July 1,  1977. However, the MWRC has provided dischargers the opportunity to demonstrate that chlorine concentrations higher than the July 1,       1977 limits are acceptable. On January 13, 1977, Consumers Power Company submitted a chlorine demonstration study        to the MWRC for all of its generating plants.

As a result of this demonstration study, the MWRC in 1978 established new 3 chlorine limits for Company facilities. The Ccapany believes these new limits are sufficient to allow effective condenser cleaning without the need to dechlorinate or make other operational changes, however, the Company is 9 permitted to use certain dechlorination techniques to achieve the applicable limits. 8 The new limits restrict the discharge of total residual chlorine to receiving waters to 0.20 mg/l as a daily average computed on a monthly basis and to 0.30 9 mg/l as a maximum at existing steam-electric plants when chlorine application time does not exceed 160 minutes in any 24-hour period. Associated with these new limits has been an additional requirement th:* the Company conduct a year-8 long study of the percentage of free chlorine dischargcd eceiving waters at each of its existing steam-electric plants. t . tion of this study, these limits will either be retained or modified b, MWRC. It is expected that the chlorine concentration in the cooling pond blowdown 8lfromtheMidlandPlantwillbewithintheserevisedlimits. If necessary, the pond blowdown will be suspended, as sugges:.ed in Recommendation 7(e), until the biocide (chlorine) degrades to acceptable discharge levels.

                                                                                   ,,f\   " I '
                                                                        ;      {, ij 1,) EG Y REVISION 9 - JUNE 1979                 5.1-6                   ,

7 gl

4

 # s$>                                                  .-

kO(p, *

                                               /4 k$*

V immee ev 4h 4$<*% 4 Wi' v # o

                                               *kvb 49,;a, N

4)

  & 49
    &>i~ g< o,                                                       o   s.
     >* b> ? h                                                       ,?$

f , ff NNk \s % .- s,

 \\'# *gp,                                             /g,4 #gy IMAGE EVALUATION                               N TE.3T TARGET (MT-3) m e2_q    n25 1,0    3 o-~    ua 1

23 IC

                                ,cm ' '] 2 2="

l,l b fil [Il2.0 ii E= 5 1.25 1.4 "I 1 __I!!s=.6 = 4 6" i 4%;/,N ,. R+$sA m,h t

%'9                                                      ,' O,. s      <3 Oy                                                      W(C#W ry s
       ,e                                                 /

A '* er.e;6 / ((j 9,

   $'     ($f                                                   ,$s' f4
  • $>7@d)'
    <>        - - .                              %d<7         ,

TEST TARGET (MT-3)

                             !il fr2 8 d"2 5 1.0     ;;, ~~           .a
                                             ))
                            ,y g on l,l              bhik 1

1.25 1.a 11.6 l __ ___ 6., , d[f 2Os/

                                                 #)      j[f           $
Qi:>

MIDLAND 1&2-ER(GLS) 40 CFR, Section 423.13. These guidelines establish a daily maximum phosphorus concentration of 5.0 mg/l and a monthly average concentration of 5.0 mg/1. MWRC Rule 323.1060 addresses plant nutrients. The Rule states in part:

   " Phosphorus which is or may readily become available as a plant nutrient shall be controlled from point source discharges by the application of methods utilizing best practicable waste treatment technology for control of total phosphorus, with the goal of achieving a monthly average effluent concentration of 1 milligram per liter as P."

5.1.2 Physical Effects Cooling pond blowdown is discharged at the south bank of the Tittabawassee River. The blowdown enters the river as a 30-inch (76-cm) diameter jet (or jets) perpendicular to the river and rapidly mixes with river water through a jet entrainment process. The Dow Chemical Company also discharges its 3 effluent at the south river bank. The Dow Chemical Company discharge is about 300 feet (91 m) upstream from the Plant blowdown discharge structure as shown in Figure 5.4B-1. A thermal plume is formed by these two discharges along the south bank of the Tittabawassee River. Field observation of The Dow Chemical 7 Company discharge and physical model testing results indicate that both The Dow Chemical Company's tertiary po'.i discharge and the Plant blowdown achieve full vertical mixing with river water. Thus the plume is only two dimensional 3 with equal temperature throughout tbe river depth. A physical model is used to determine a set of maximum allowable blowdown flowrates over ranges of blowdown excess temperatures (temperature of the 7l effluent less ambient natural river temperature) and river flows so that the REVISION 7 - MARCE 1979 5.1-7 2 [( , ;;[ [

MIDIAVD 1&2-ER(OLS) 7 size of the resulting thermal plume is within State of Michigan Water Quality Standards (5) . Details of the physical model and test programs are described in Appenoix 5.1B-1 and in the final eport of the physical model study (17) and in the final cooling pond operation study (18) The independent variables used 9 in the physical model test program are: river discharge, Plant makeup flowrate, plant blowdown (blowdown temperature less ambient river temperature) excess temperature; total dissolved solids concentration, flowrate, and excess temperature of The Dow Chemical Company ef tl,ent. Values of these variables land the maximum allowable blowdown flowrates obtained from the model tests are listed in Table 5.1-1. The isotherms for the worst case of each of the river flows tested are shown in Figure 5.1-1 through Figure 5.1-5. In all cases, thermal plumes defined by the 5 F (2.8 C) isotherm will not contain more than 25% of the river cross-sectional area or volume of river flow at any transect on an average temperature basis which is in accordance with the State of 3 Michigan Water Quality Standards (5) and the thermal plume lengths are limited to 1,700 feet (515 m). During normal Plant operation, because of frequent changes in some of the independent variables, especially the river flow, an automatic control system is used to measure the independent variables, to calculate the blowdown flowrate, and to set the valve openings for the calculated blowdown flow. The 9 l cooling pond blowdown shall comply with Michigan Water Quality Standards 3lregardingtemperatures, TDS, mixing zone length, and width. The cooling pond is generally kept full when possible and therefore blowdown may be voluntarily 9 restricted when makeup cannot keep up with pond water losses caused by evaporation and seepage. The operation of the cooling pond is simulated on a daily basis over an 82-year period. The physical model test results together REVISION 9 - JLTE 1979 5.1-8 :yo , )

                                                                                     ~c

MIDLAND 1&2-ER(OLS) 9 with the following restrictions on the timing and the flowrate of blowdown were used in the simulation: 3 a. Set blowdown flowrate to zero if the measured natural river temperature exceeds the allowable monthly maximum temperatures. 9l b. After full mixing, at Freeland Bridge, the combined contribution of 3 TDS fr;m both the Plant blowdown and The Dow Chemical Company effluent shall not cause the river TDS concentration to exceed 500 ppm.

c. Whes discharging, blowdown flowrate should be within the range from 9 5 :fs to 220 cfs.

The simolation results indicate that the blewdown discharge is most likely to 3lbecontinuousduringMarch,AprilandMay. For the remaining months, the blowdown discharge may be intermittent. During periods of blowdown, the 9 thermal plume will not be longer than 1700 feet (515 m) and will comply with the 25% river cross-sectional area or volume of flow limits of the Water Quality Standards on an average temperature basis. 5.1.3 Biological Effects During the operatioe of the Midland Plant, the removal of heat will be accomplished by a closed-cycle system incorporating an 880-acre (356-ha) cooling pond containing 12,600 acre-fect of water. The heat is dissipated from the cooling pond to the atmosphere by radiation, evaporation and convection. Assessment of the impact of Plant operation on the aquatic system is based on the conceptual design of the circulating water system and condenser design REVISION 9 - JUNE 1979 5.1-9 t \ ', ! 9 o gi O) n ii

MIDLAND 1&2-ER(OLS) characteristics (refer to Section 3.4) and the biological analyses of the Tittabawassee River presented in Section 2.2. During Plant operation the ic: pact on aquatic life occurs during the makeup or blowdown phases. Makeup water pumping is limited by the flowrate of the Tittaba;;assee River (refer to w :H @ REVISION 9 - JUNE 1979 5.1-10

MIDLAND 1&2-ER(OLS) Laboratory for Water Resources and Hydrodynamics, MIT, Cambridge, Massachusetts, p 439.

15. H G Houghton and W H Radford, "On the Measurement of Drop Size and Liquid Content in Fogs and Clouds," MIT Papers, Physical Oceanography and Meteorology, 6, No 4 (1938), p 31.
16. Murray and Trettel, Inc, Report on Meteorological Aspects of Operating the Cooling Lake and Sprays at Dresden Nuclear Power Station, (1973),

Report prepared for Commonwealth Edison Company, p 81.

17. Alden Research Laboratories, Investigation of a Thermal Plume in a Shallow River - Hydrothermal Model Studies - Cooling Pond Blowdown Discharge - Midland Nuclear Power Station (April 1979), Research w

9 sponsored by Bechtel Power Corporation for Consumers Power Company,

18. Bechtel Associates Professional Corporation, Final Report - Midland Power Plant - Cooling Pond Operation Study (March 1979), Report prepared for Consumers Power Company.

2IO d- ut i f,; ,l]' REVISION 9 - JUNE 1979 5.1R-3

MIDLAND 1&2-ER(OLS) 5.1BR REFERENCES

1. Alden Research Laboratories, Investigation of a Thermal Plume in a Shallow 9 River - Hydrothermal Model Studies - Cooling Pond Blowdown Discharge -

Midland Nuclear Power Station (April 19 /9), Research sponsored by Bechtel Power Corporation for Consumers Power Company.

2. N Yotsukura and E D Cobb, Transverse Diffusion of Solutes in Natural Streams, Professional Paper 582-C (1972), US Geological Survey.
3. Directorate of Regulatory Standards, Estimating Aquatic Dispersion of Effluents From Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, Regulatory Guide 1.113 (May 1976), US Nuclear Regulatory Commissior.
4. J W Elder, "The Dispersion of Marked Fluid in Turbulent Shear Flow."

Journal of Fluid Mechanics, No 5, pp 544-560, 1959.

5. N Yotsukura ani W W Sayre, " Transverse Mixing in Natural Channels," Water Resources Research, Vol 12, No 4, August 1976.
6. US Geological Survey, " Discharge Measurements at Gaging Stations,"

Techniques of Water Resources Investigations of the USGS, Chapter A8, 1969.

                                                                  ' , r. 7  ,

ik ct)< v s: U REVISION 9 - JUNE 1979 5.1BR-1

MIDLAND 1&2-ER(OLS) TABLE 5.'-13 LIQUID EFFLUENT CONCENTRATIONS ( ) (wCi/cc) Diluted by Cooling 10 CFR 20 Fraction of Radionuclide Pond Blowdown Table II, Col 2 It CFR 20 Br-83 1.42E-13 3.0E-6 4.7E-8 I-130 2.84E-13 3.0E-6 9.5E-8 I-131 3.02E-11 3.0E-7 2.7E-4 I-132 2.76E-12 8.0E-6 3.5E-7 I-133 5.60E-11 1.0E-6 5.6E-5 I-134 4.79E-13 2.0E-5 2.4E-8 I-135 1.29E-11 4.0E-6 3.2E-6 Rb-86 4.30E-14 7.0E-5 6.1E-10 Cs-134 3.57E-10 9.0E-6 4.0E-5 Cs-136 5.62E-12 9.0E-5 6.2E-Cs-137 6.38E-10 2.0E-5 3.2E-5 Cr-51 3.49E-13 2.0E-3 1.8E-10 Mn-54 2.60E-11 1.0E-4 2.6E-7 Fe-55 3.23E-13 8.0E-4 4.1E-10 Fe-59 1.96E-13 6.0E-5 3.3E-9 Co-58 1.07E-10 1.0E-4 1.1E-6 Co-60 2.35E-10 5.0E-5 4.7E-6 gggg Sr-89 7.79E-14 3.0E-6 2.6E-8 9apr Sc-90 2.01E-15 3.0E-7 6.7E-9 Sr-91 8.10E-14 7.0E-5 1.2E-9 Y-91 3.57E-13 3.0E-5 1.2E-8 Y-93 1.64E-14 3.0E-5 5.5E-10 Zr-95 3.65E-11 6.0E-5 6.1E-7 Nb-95 5.21E-11 1.0E-4 5.2E-7 Mo-99 6.75E-11 2.0E-4 3.4E-7 1l Ru-103 3.65E-12 8.0E-5 4.6E-8 Ru-106 6.25E-11 1.0E-5 6.3E-6 Te-125m 4.09E-15 2.0E-4 2.1E-11 Te-127m 4.12E-14 6.0E-5 6.9E-10 Te-129m 2.73E-13 3.0E-5 9.1E-9 Te-131m 1.58E-13 6.0E-5 2.6E-9 Te-132 3.46E-12 3.0E-5 1.2E-7 Ba-140 3.78E-14 3.0E-5 1.3E-9 Ce-141 1.18E-14 9.0E-5 1.3E-10 Ce-143 6.30E-15 4.0E-5 1.6E-10 Ce-144 1.30E-10 1.0E-5 1.3E-5 Pr-143 7.60E-15 5.0E-5 1.5E-10 Np-239 2.00E-13 1.0E-4 2.0E-9 Ag-1]Cm 1.15E-11 3.0E-5 3.8E-7 H-3 6.07E-6 3.0E-3 2.0E-3 TOTAL 2.5E-3 (a) Based on a Plant discharge flowrate of 43 cfs, which is the average 1 of the estimated monthly average Plant discharge flowrates given in Table 5.2-14. ,

                                                                        ') O 7    t '. f i REVISION 1 - APRIL 1978                                          EU#       U'

MIDLAND 162-ER(OLS) TABLE 5.2-14 MONTilLY PLANT DISCIIARGE AND CONCENTRATIONS OF INI'ORTANT RADIONUCLIDES J a n_ Feb Mar April May_ June July _ Aug ,_ Sept Oct Nov Dec Plant Discharge Flow for Near Field Cominit,- tions (cfs) 47.6 47.6 60 88 62 47.6 47.6 47.6 47.6 47.6 47.6 47.6 Radio- 11 - 3 5.5E-06 5.5E-06 4.3E-06 3.0E-06 4.2E-06 5.5E-06 5.5E-06 5.5E-06 5.5E-06 5.5E-06 5.5E-06 5.5E-06 9 nuclide Concen- I-131 7.3E-Il 7.3E-Il 5.7E-11 3.9E-li 5.6E-11 7.3E-11 7.3E-11 7.3E-Il 7.3E-11 7.3E-Il 7.3E-11 7.3E-Il trations in Plant Cs-134 3.lE-10 3.1E-10 2.5E-10 1.7E-10 2.4E-10 3.lE-10 3.lE-10 3.lE-10 3.1E-10 3.lE-10 3.lE-10 3.lE-10 Discharge (pCi/cc)

               *-137 5.8E-10  5.8E-10 4.6E 10 3.lE-10   4.4E-10   5.8E-10   5.8E-10 5.8E-10 5.8E-10 5.8E-10  5.8E-10 5.8E-10
        ~.;

c,0 C C CC hEVISION 9 - JUNE 1979

MIDLAND 1&2-ER(OLS) TABLE 5.2-15 AVERAGE MONTHLY AND iEARLY DILUTION FACTORS AND TRAVEL TIMES IN TITTABAWASSEE RIVER, SAGINAW RIVER AND SAGINAW BAY 9l Dilution Factors (c) Location (a) Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual 9l 1 3 3 5 4 3 3 2 2 2 2 3 3 3 2 8 9 20 19 11 7 5 4 5 5 7 7 9 3 9 10 23 23 13 9 6 5 6 6 8 8 11 4 14 16 37 36 21 14 9 8 9 9 13 13 17 5 15 17 38 37 22 14 10 8 9 9 13 14 17 6 60 69 154 150 89 58 39 32 37 37 53 56 70 7 10 104 230 224 134 86 58 47 56 56 79 84 104 8 270 311 691 673 401 259 175 142 167 167 238 252 312 O Travel Times (Hours) Location (a) Jan Feb Mar Apr May J.me Julv Au3 Sept Oct Nov Dec Annual 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 13 12 10 10 11 14 19 23 20 18 15 14 15 3 26 23 14 14 19 26 41 53 44 39 29 27 30 4 64 55 28 28 43 64 108 141 115 100 72 68 74 5 72 61 31 31 48 72 12t 158 129 112 81 76 83 6 (b) - - - - - - - - - - - - 7 - - - - - - - - - - - - - 8 - - - - - - - - - - - - - (a) See Figure 5.2-11 for location identification. (b) Not available. 9l(c) Dilution factors have been rounded to nearest integer. e') Gd ,i l,r,.; i,o REVISION 9 - JUNE 1979

O MI;1 AA'O 1&2-ER(C1.5 ) TABI.I 5.;-16 MON!!C.Y RA.11CNUCLICE CONCENTRATIONS 1 Ct/cc) 1.ocs- Padio-tien a nucitae Jan Teb Mar Aartl May June Aug Set Ju:v sert Nov rec H-3 1SE-05 18E-C5 ':E-06 .eCE-06 . lee-05 .18E-05 27E-05 .27E-05 .27E-05 .;7E-C5 .18E-05 .1SE-05 e 1-131 ;4E-10 2sE-10 .95E-11 .78E-11 .19E-10 .2eE-10 .37E-10 .37E-10 37E-1C .37E-10 2.E-10 .24E-1C Cs-134 .10E-09 .10E-09 .*2E-10 _eE-10 .80E-10 .10E-09 .16E-09 .46E-09 . lee-09 16E-09 .1CI-09 1CE-09 Cs-137 .19E-09 .19E-09 .77E-10 6E-10 '5E-09 .19E-09 .29E-09 .29E-09 .29E-09 29E-09 .19E-C9 19E-09 2 H-3 .69E-Oe .611-06 .0;E-06 .16E-06 18E-06 79E-06 .11E-05 .14E-05 .11E-05 .1E-C5 79E-Oe 79E-Oo 1-131 91E-11 .81E-11 . 2 8E - 11 .21E-11 L1E-11 .1 CE -10 .15E-10 18E-10 15E-10 15E-10 10E-10 .10E-10 Os-13. .29E-10 .3=E-10 .121-10 .89E-11 a:E-10 E-IC .e:E-10 78E-10 .e2I-10 .6;I 'O . E-10 ...E-10 Cs-137 7;E-10 .6.E-10 . 'E-10 16E-10 .e0E-10 .83E-10 .12I-C9 .14E-09  ;;I-09 .1 2 -09 83E-10 .83E-10 3 M-3 .61E-06 .55E-06 .19E s 13E-06 .31E-06 61E-06 .92I-06 .11E-C5 .92E-Oc .92I-Oo e9E-06 .69E-Oc I-131 .81E-11 731-11 .25E-11 .17E-11 . 31-11 .81E-11 .1 I-10 .251-1C 1;I-10 E-10 .91E-11 51E-11 Cs-13 3.E-10 .311-10 11E-10 7eE-11 18E-10 .3*E-10 .52E-10 .62I-10 .5;E-10 52I-10 .29E-10 '9E-10 Cs-137 .eeE-10 58E-10 .20E-10 .131-10 .3 E-10 .6.E-10 .1;E-09 .97E-10 97E-10

                                                                                                 . 9 7E - 10                                    721-10   7:1-10 e      H-3      .39E-06    .3.E-06      . I-06     .83I-07      .20E-Oc       39E-06   .61E-06      .69E-06    61E-Oc    .c1E-Ge    . 2E-06   ..;E-Ce I 131    .5 E-11    . 6E-11      15E-11       11E 11    .;7E-11        521-11  .81E-11      .91E-11  .81E-11      .81E      5oE-11    5eE-11 Os-134   .;;E-10    .19E-IC    .68E-11      . 7E-11      .11E-10     .;;E-10    .3.E-10     .39E-10     3.E-10      3.E-10    2.E-10    2.E-10 9                 Cs-137   . 1E-10      36E-10     12I-10     .86E-11       21E-10 . 1E-10       .6.E-10        721-10 .o.E-10        6.E-10   .45E-10    *5E-10 5     H-3       .37E-Ge    .3;E-06      11E-C6     .61E-C7     .19E-06      .39E-06      55E-G6    .69E-06  .61E-06     .61E-Oc     ..;E-C6    39E-06 I-131      49E-11   .43E-11    .15E-11        11E-11      051-11       5 E-11  .73E-11      .91E-11  .81E-11      .SIE-11   .StE-11 Cs-13*    .21E-13                                                                                                                      .521-11 18E-10     6eE-11         6E-11   .11E-IC     .;'E-10    .31E-10      .39E-10      *E-AC     3=E-10     2 ;-10
                 *s-137                                                                                                                                  22E-10 i

39E-10 .3 E-10 .1;E-10 .seE-11 CE-10 . 1E-10 58E-10 72E-10 .6.E-10 .e.E-10 . 5E-10 . 1E-10 j 6 H-3 .9;E-07 .80E-07 28E-07 2CE-07 ..?E-07 .95E-07 1.E-06 .1?E-06 .15E-06 15E-)e .1 E-06 .95E-07

                 .-131   .12_-11       111-11  .37E-12      .26E-12      .63E-12        13E-Il  .19E-11      .;3E-11    2CE-11    .2CE-11      '.E-11  .13E-11
   )            Cs-134   .521-11        5E-11  .ItE-11      .11E-11      .27E-11     .53E-11       791-11    .9'E-11     8.E-11                iSE-11
                                                                                                                                  .8.E-11                551-11 Cs-137   .97E-11     .8.E-11      3;E-11    .;1E-11      . 9E-11        1CE-10     15E-IC    .18E-10  .ItE-10     .ItE-10      .1E-10  .lcE-10 i

H-3 .61E-07 53E-07 .19E-07 .13E-07 .31E-C7 .6 E-07 .95E-07 .1;E-C6 .98E-07 .9BE-07 '0E-07 . 6 5 E-C 7

                .-131    .81E-1;       'cE-1;  .2SE-12      .171-1;      . .;I          35E-12     .3E-11    .16E-11 2                                      13E-11     .3E-11   .9:E.     .87E-12 s-13   .34E-11    .3/-11     .11E-11         76E-12      18E-11    .3eE-11      53E-11     .66E-11  .55E-         55E-11   .39E-11 7                                                                                                              .                         37E-11 s-137  .6.E-11    .56E-11    .;CE-11      . lee-11     .32E-11     .67E 11    .10E-10      .1;E-10  .10E-1C     .1CE-10      73E-11  .e9E-11 i

I 8 b3 .20E-07 18E-07 .621-08 .45E-08 .10E-07 21E 07 .31E-07 .39E-07 .33E-07 .33E s7 J3E-v7 .;;E-07 l I-131 .271-12 .23E-1; .82I-13 .58E-13 lee-12 P!-12 .;E-12 .51E-12 .iE-;. .e.E ;; 2 4 .; ."E-l Os-13. .11E-11 .1CE-11 .361-12 .151-12 .6CE-12 .1*E-11 18E-11 .;;I-11 .19E-11 .19E-11 3E-11 1;E-11 l Cs-137 .21E-11 .19E-11 .67E-12 .4eE-12 .11E-11 .22I-11 33E-11 . 1E-11 .35E-11 .35E-11 .2-E-11 23E-11

                                                                                                                            ,l ,,     \gi'
                                                                                                                                        \ \ Q.
                                                                                                                       'L) (U ' I.

RIVISICN 9 - JGT.19'9

MIDLAND 1&2-ER(OLS) 5.2R REFERENCES

1. J F Sagendorf, A Program for Evaluating Atmospheric Dispersion From a Nuclear Power Station, NOAA Technical Memorandum ERL ARL-42 (1975), NOAA, Idaho Falls, Idaho.
2. Directorate of Regulatory Standards, Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors, Regulatory Guide 1.4 (June 1974), US Nuclear Regulatory Coc: mission, Washington, DC.
3. D H Slade (Editor), Meteorology and Atomic Energy, TID-24190, National Technical Iuformation Service, Oak Ridge, Tennessee, 1968, pp 102-103.
4. Directorate of Regulatory Standards, Onsite Meteorological Programs, Regulatory Guide 1.23 (February 1972), US Nuclear Regulatory Commission, Washington, DC.
5. Directorate of Regulatory Standards, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases From Light-Water-Cooled Reactors, Regulatory Guide 1.111 (March 1976), US Nuclear Regulatory Commission, Washington, DC.
6. W B Johnson, et al, Gas Tracer Study of Roof-Vent Ef fluent Diffusion at Millstone Nuclear Power Station, AIF/NESP-007b (1975), Atomic Industrial Forum, Inc, Menlo Park, California.
                                                          '30 0   ti   i LUi    nr. 1:

5.2R-1

MIDLAND 1&2-ER(OLS) O

7. G A Briggs, Plume Rise, Atomic Energy Commission, Oak Riuge, Tennetsee,
          '969.
8. I' A Gifford, " Atmospheric Transport and Disper: .on Over Cities," Nuclear Safety, Vol 13 (September-October 1972), pp 391-402.
9. G R Yanskey, et al, Climatography of National Reactor Testing Station, IDO-12048 (1966), US Atomic Energy Commission, Idaho Operations Office, Idaho Falls, Idaho.
10. S L Hess, Introduction to Theoretical Meteorology, Holt, Rinehart, and Wins ten, New York, NT, 1959, pp 274-279.
11. C A Pelletier and .J D Zimbuck, " Kinetics of Environmental Radiciodine Transport Through the Milk Food Chain", Environmental Surveillance in the Vicinity of Nuclear Facilities, W C Reinig, Editor, Charles C Thomas, Publishers, Springfield, IL, 1970.

I 12. Bechtel Associates Professional Corporation, Final Report - Midland Power 9 Plant - Cooling Pond Operation Study (March 1979), Report prepared for Consumers Posar Company.

13. Directorate of Regulatory Standards, Estimating Aquatic Dispersion of Effluents From Accidental and Routine Reactor Releases for the Purpose of 3l Implementing Appendix I, Regulatory Guide 1.113 (May 1976), US Nuclear Regulatory Commission.

2 O ') () REVISION 9 - JUNE 1979 5.2R-2

t O e e = m - 4 e n= ** *

                                                                                                                       - e e            =                O      e           o     O      e     N          n    p           a     e    e           e M    O      O    O      O    emO   O       O    O     O     4     O    O     O    O     O                e      de   m%     O     f       a    * ==                  4                       ee          n ce    o      ee    .N   O      4    "'     O M.        O     O      O    O      O    O     O       O    O    O     O      O    O    O     O     O                =      0    0     0      O      O     O          O    O    O      o     O    O      O    c     O e e
                                                -            8                                  m          m J

w O O O **O 4 O O 4 O O

                                                                                                     =

O O M O

                                                                                                                       - e O    O     O 4    ==

Q m 4 N N e f o g h=e r'- O e 4 e O - 4 c. e O

                                                                                                                                                                                                                                             ,y ae p

p O M O O N O O d O O O O d O O O N O O O O O O O d O O O O O O O 3 l w g-

                                     .g y         m    -e    - -

p

                                                                       #34 are mag M

g

                                                                                   ==

m.L p - - e pui, M - - p a.ma e 3mm

                                                                                                                                  ==    -

ee- m- - - O **e"'- - - e

                                                                                                                                                                                                       -c                 gg    ga           - -e g           m
                                                ==

se m w es w

                                                                 %r em w

4 w ew m, w es ce w g w og w

                                                                                                                  ==

w M w M w 5%- W w

                                                                                                                                                         ** ====

4 w Pe

                                                                                                                                                                           *ew
                                                                                                                                                                                 =*
  • w w w y.

me-a-

                                                                                                                                                                                                              =

m h, p esua -N

                                                                                                                                                                                                                                      -           p 4

ee O h eh M N M M G1 h 4 O e'h Ow O Ew

                                                                                                                                                                                                                    .           cw    w      w   w     w m    e      a           e           O. e"e                                                                              "
                                                                                                                                                                                                         #    E                 e     4 ee
                                                                                                                                                                                                                                      - - .* *~

4 4 . ~ - ~ - O - ~ 4 - M e'=-

                                                                                                                                                                                                         . 4           ~0    e
                    @                        aum I

m

                    =.                                                  - -

O- - .-

e. p Q

C - - - e mM sse ,=. - .*

                                                                                                          ,=     - =* - P-             ,%

e e e en e-- O e-- p - , O g- m c- - ee -

           ==4==    Q                ya Fe en de e      Ne    - -=       O.

N 4 4 e9 4 m >N W ^8

                                                                                                                                                         - **  m e      4    W       O     O          e    c    -      -     4     ee     4   W WX                                                                                         e-4    ==                ==                          ce     e     4       4    -

no es ee w wO S. a p: w w w w w w w w w w w w w == = = f,

                                                                                                                                                                                                                                . 4 m_

eee e a r e-w w w w

               .e M a.e u

Ow ee em m *

  • o -

e en o ee ew O es e- 4 4 m e-em o e em e

                                                                                                                                                               =m ce n

e C-4 e 4 ce= m e e m aw ee w O, ew

                                                                                                                                                                                                                                            ~

a 4 m e

           *=M WWD 4 tal **

AAN 4 W3 NI 3 - ,% - w2 v3C

   .A g

v ,=*

e. .
               >ee. =

b 3

                           =e es e

e - e e v a

                                                    - - -m .
                                                    ~==w 4
                                                           ==

w ee w ce w we ew

                                                                                         == ~

4

                                                                                               =* -- = .- -.= .==- - - 3:

ct cew

                                                                                                          =

w e N w h=- w 4 as.

                                                                                                                                                       ^ ~ ~-. ~ - -

8, es w ew w 4 == O w.P

                                                                                                                                                                                        ~

h w

                                                                                                                                                                                             . -~m -p .-
                                                                                                                                                                                              ==

w

                                                                                                                                                                                                                         ==

O c= m

                                                                                                                                                                                                                                          -e, .- ==

4 3 3 y , ,=2 M i .% 4 e. Mw em M 4 M 9 em Mm.e Ow as - O

                                                                                                          *=

Gw M

                                                                                                                           ** ==

4 Mwe e O 4 4

                                                                                                                                                                          ==wW  4'     W     *'=w            cw s,

p w g a, w p= gw gw ee M M M M as mw ha N s=e 4

  • 4 se e m e p 4 e-o m= to Q

g-e E% . E 5 u= (

a. 9*

c3 r+

-s
                                                                                                                                                                                                                                                           .=

o . - v 4 , .. ~ - 4 4

      &=
               %=b O

m'a ek E I q w *= O e N @

                                                                       >=

M

                                                                            ==

M S h et em W

                                                                                                                     - ===       @    es    O 3

O' F 9 ..es e 4 *= au sg ce og e ce

                                                                                                                                                                                                                         -e e-4     4 sa C

m h bu O

   **      WI  .Is W'
                       .J  e                                                                                                                -

mJ m W G t C'. m a

           %w-5 8v>.=                                                                                                                       5 .

ve m= e.

          ->F= 4= = - . =

w e i O p

  • e O W *e m y>

s W't e ert O M e m ,,,4= 4z>

                   >=

vj l e M M e 4 .= e'*t m to m M 4 4 e

                                                                                                                                               -     O Wg 4

m sie ===co

                                                                                                                                                                   =
                                                                                                                                                                                - e 4

N A

                                                                                                                                                                                       =

4 4 m g p me

                                                                                                                                                                                                                  ~

ao p mat a C e. e

                                                                                                                                                                                                                                                %     e'J g

44 hb uw.. , O . - c e - ~ . .m . O < O . O W a. , e ce e 4 e- e eme. W e a e 4 0 4 3 e 4 e == *-e . O .- 4 , O A-4 4 . ~ m

          )=                            j      e   co     -           M     M           *=     4-         - *=             #9    N                   ee       e                e             e=         c    e   e                  e=     0    e    ce MJ                            u ee 4     =e            em               q    ph         seg   ees          e    4     -
              -Q   h w

0 m - W de.e,s.f @ W 4 art

                                                                            ==-                O   M     @      4    ,*

4 4 S 9 W 4 e M e,  %'d. . - P. G. .

                                                                                                                                                    -u                                                 e     O   ce     e     4     ,*    4     4    S 3    v         O   M      4     9     M     M           4      4   4     e      h    P     M     4                   O        -    4     9     M       P     N               e          e                 m
                                *e aQ' bl&
                                                                ==               M.

s ce ce h= == == 4 4 eg em e=e 4 h G 4 es W wt{ o88 N R 4 se em e t, . ce . ,. - .

                                                   -                  -                 ~                                                                                      -se                     4 ee               ,.e               ~-
                                 -"Ar G               -
                                                   -                                    m                -

g m m _e ~ m 4 c3 - ~

                                                                                                                                                              -                -                      ~                 ~m                4
                                                   .                  S                 s                2                .c                                 .                 s                      s.                                 e e.
                                                                                                                                                   ---e
                                                                                                                                                                               -                      .                 9                -

O g g @

                                                                                                                                                                        ,                 a
                                                                                                                                                                                                   ==

g- f'J s ( , .]

  ~ . - .. .- ,
                                  - - ., ~. .~ ~ ~g
                                                                                                . ~ - - .~
                                                                                                                                       . , , - ~. . ~ ~_

_ , - . - ~ . . . g 3

   - . . . . . . . . . . . . . .                                                               ~                                                                                 c.. c
                                             .- .- . ,. .- . 3 -.
          .       c     -o        .-                              ,
                                                                                               . _.  ~ ~_
                                                                                                                  ~ .
                                                                                                                  - ~       8 ~. _ .- .- -     , _- ~. - ,
                                                                                                                                      . . . e a 5~ -4 .,.                      8       m                                          3
  . . . . . . . . . . . . . . . .                                                                                                                                               5      a-                                         g
                                                                                                                                                                                                                                  .                8, a

i;

  - ,- . - e- .-- - .
                                                                                               . . .- ~.
                                                                                               ~ .           - ;_.- 2-- .- - .~.-          -   - - -, -- ,. ,                                                3                    %

3 [- -: ~ .- ~I ; ,4 .s -~~.~. ~; ;- - _ -; ., * -, -

                                                             , ~- ;           .                          .                 .               _ ~-      , -                                                                         ,

7:; . :. ;. :-. :-  :  ; ; : ~: ,

                                                                                               .                      _ g:- ;. . - ;. ,.,
             ~                                          ~4 ~           ~                                                                                                       . .                                                1     .
                                                                                               . -                                                              - . . . .                                     3                         .         3
                                                                                                                                                                                                                           -I
                                                                                                                                                                                                .           4                                     _.            .
                                                                                                                                                                                                                           . 8: . -3 ,g. -~t ,g
                                                                                            -; ,.- .. .- ,- ,..- - - .- ~- _,.- -~-
                                                                                                                                                                                                                           . .               t

~~ .- - - ~~ 2 }

                                                                                                                                                                                                                           =           =
                           - :.- -- ~-           - .,- s _, , . .-                                                                                   -
                                                                                               .                                                                     g
  -9                                       . .-                                                                                                                                                                                                         !
                                                                                                     . - - ~- ,- ~ _ ~
         .                                                                                    ~-         .       .         .                                                                    -
  . *- .- ~- , ,- - .- ~-.-

3 ~

                                                                                                     . _ - .    ~ ~-
                                                                                                                                 -~._

_- . -- - ~ .,,

                                                                                                                                                          ,        ,o 2,

2

                                                                                                                                                                                                                                ,3
                                                                                                                                                                                                                                           .,.   .I 32 3g
                                                                                                                                                                                                                                      .3                .

3 W .. d G e

                                                                                                                                                                                                                                                  =
e. e j - j j
                                                                                            -                                                                                                   3           1             -

1^. ~, .

 -   -. - .. R ~ -.        . - . - - - . - - - -.                                                                                                                                                                         } g* }          ; 'g c 1
                                                                                                                   , ~._--.~.--
                                                                                                         , _                                                                                                ~3
  ~
                                             - e-~ . . - - -. -                                                            ~-                                      .,.,.-.                      .,                                         ,.
                                                                                                                               , ._~_      - ,- .- -
-. _    .- ,-- . _ .~- .-
                       ~               ._ ~..           - .  ~- ~. - .          .v .
                                                                                                                                                               ~              2 3 .-
                                                                                                                                                                                                                          ,, ,.., ., . g
                                                                                                                                                                                                                          .. . .                       s I                                                                                                         .

L .

                                                                                                                                                                                                                                 .     &        =. #~          .

l = .

                                                                                                                                                                                                                           . .; . e g

e

e. -

e

             . ~ . - - . ~

_ - ~ , _ - .

                                                                                              ~ . ~ . . .- . ,- ~.~ - . .-
                                                                                                                                                ~             - ~.. ~ .~ s
                                                                                                                                                                                                            .              . .         E.3 ~.. g l                                                                                                             -
. j . . . 3 l g l gp  :

3

                                                                                                                                                                                                                           . . . . .            . . .                3
,- - -                     .    ~- -       ~           ~ ,       ,
                                                                           .       ,_        o
                                                                                             , --._.       -~ .-
                                                                                                                                          ~-
                                                                                                                                               . - ~- , .- - . ~ -. .- .                                                        . .        3     . 3
                                                                                             , -               ~ -               -                                 -                                                            . .       ,, .
                                                                                                                                                                                                                    .t e             .                               .           .
                                                                                                                                                                                                            .       . 2          .          .

3 - f.t

                                                                                                                                                                                             ,'            j 3 - 3 I a *
  • 8 - .- c . ~- .- - ,- . ~- ,- _~ * .,,
                                                                                                                         ~ ,.- -         -

3 _ _, ., . . .. . . . . e _ .E .- - ~.

.                          -                                         ~      ,
                                                                                                                                                                   ,. - .                                                 . . .            y    .
                                                                                            ~

t a58 -. !. . i *

  • e s J. - - . .

. . . . . - - . . ~ . . . . . .

. . , . ~ - , , .
                                                 .    . ~ ~. - ,            ~_
                                                                                           ~. -             ._        - ~_ . . ~          ~. -
                                                                                                                                                    ~.-.--g
                                                                                                                                                         ~                            .

e9

                                                                                                                                                                                              *g3
                                                                                                                                                                                              =
g. ,,

2 3 3. 3

                                                                                                                                                                            -% *'
  • E
                                                                                                                                                                                            .:v :                        2     J.              J            3
      .              -                               ~         .                                    ,          .                               ~             .

g

                                                                                                                                                                                                          ;*       J*

I  ! J.I . .,.g

      .-             ~
                                                                                                               ~
                                                                                                                                               ~             ~-                      3
                                                                                                                                                                                             '8           t $., 1         1 1 &                 L     .,          2 b

8

                                                                                                                                                                                                     .O          .
                                                                                                                                                                                                                                                      . b E
                                                                                                                                                                            .d              a h            wg-                            b           b asg- --

_ d. w .a e. e. as e - . - . . -

     -               ~               .               ~
                                                                                                   -                            ~-
                                                                                                                                              ~              g-i
                                                                                                                                                                             .       g                                         1    o          1              ,    .

3 3 - . .. , .  ; . . . . .

.. -  ;! g p

e e e , e * *

  • O
                                                                                                                                                                                                . i.
  • 3b. 1 .I 8 k

e. g .* - e *% we

     .               -               N c.
                                                                                                   .e 8
                                                                                                                                                                                             .            . .~     .    .w w.l....8w.

em

                                                     *--'~ T w             w        w                      w    w           w-
                                .                                   ,           .         'T                              .                                       77              .       7             v-- - s          s- r w                .

C. %Ib w

APPENDIX 6.2A TABLE Of CONTENTS Section Title Page No 6.2A ENVIRONMENTAL TECHNICAL SPECIFICATIONS . 6.2A-1-1 6.2A-1 DEFINITIONS.. . . .. . . . .. .. 6.2A-1-1 6.2A-2 LIMITING CONDITIONS FOR OPERATION.. .. .. .. 6.2A-2-1 6.2A-2.1 Thermal. . . . . . .. . . . 6.2A-2-2 6.2A-2.2 Hydraulic. . . . .... . .. . 6.2A-2-2 6.2A-2.3 Chemical . . . . . .. .. .... . . 6.2A-2-2 6.2A-2.3.1 NPDES Permit-Related Limits. . . .. 6.2A-2-2 6.2A-2.3.2 Herbicide Usage on Transmission Rights-of-Way. 6.2A-2-2 6.2A-2.4 Radioactive Effluents. . . .. .. .. 6.2A-2-3 6.2A-2.4.1 Objective. . . . . . ... . 6.2A-2-3 6.2A-2.4.2 Specifications for Liquid Waste Effluents. 6.2A-2-5 6.2A-2.4.3 Specifications for Liquid baste Sampling and Monitoring . . . .. . . . . . . 6.2A-2-6 6.2A-2.4.4 Bases for Specifications 6.2A-2.4.2 and 6.2A-2.4.3 . .. .. . 6.2A-2-7 6.2A-2.4.5 Specifications for Gaseous Waste Effluents 6.2A-2-11 6.2A-2.4.6 Specifications for Gaseous Waste Sampling and Monitoring . . . .... .... . . 6.2A-2-14 6.2A-2.4.7 Bases for Specifications 6.2A-2.4.5 and 6.2A-2.4.6 . .. ..... . . .. . 6.2A-2-15 6.2A-2.4.8 Specifications for Solid Waste Handling and Disposal . .... . . . . .. .. 6.2A-2-19 6.2A-2.4.9 Bases for Specification 6.2A-2.4.8 . . 6.2A-2-19 6.2A-2R REFERENCES .. . . . . .... . . .. . 6.2A-2R-1 6.2A-3 ENVIRONMENTAL SURVEILLANCE . .. . .. 6.2A-3-1 6.2A-3.1 Nonradiologic.' Surveillance . . ..... 6.2A-3-1 6.2A-3.1.1 Abiotic Surveillance . . . . .. .. . 6.2A-3-1

6. 2A-3.1.1.1 Aquatic Surveys . . . . . . ... .. .... . 6.2A-3-1 6.2A-3.1.1.1.1 NPDES Permit-Related Surveyr . . .. . .. 6.2A-3-1 9l6.2A-3.1.1.1.2 Erosion.. .. . . . ....... ... . .. .. . .. 6.2A-3-1 6.2A-3.1.1.2 Terrestrial Surveys.. .. ... . . ... ...... 6.2A-3-2 6.2A-3.1.1.2.1 Soil and Precipitation Chemistry . .. .... . 6.2A-3-2 6.2A-3.1.1.2.2 Ground Water ... ... ....... ... . ... . 6.2A-3-3 6.2A-3.1.1.2.3 Fog and Ice Formation. .. . . . . . ... . 6.2A-3-5 6.2A-3.1.1.2.4 Operational Noise.. . ... . .. . ... . 6.2A-3-6 6.2A-3.1.2 Biotic Surveillance. . . .. 6.2A-3-8 6.2A-3.1.2.1 Aquatic Surveys . . ... ..... . .. . 6.2A-3-8 6.2A-3.1.2.2 Terrestrial Curveys.. . . .. .. 6.2A-3-9 6.2A-3.1.2.2.1 Vegetation .. . ..... . .. . . . 6.2A-3-9 6.2A-3.1.2.2.2 Avifauna . .. 6.2A-3-11 oBn;.C c e -ce-r-W~ "'

REVISION 9 - JUNE 1979 6.2A-i ()2g ')

O Section Title _Page No 6.2A-3.2 Radiological Environmental Monitoring. 6.2A-3-15 6.2A-3.2.1 Radiological Environmental Monitoring Program. 6.2A-3-15 6.2A-3.2.2 Land Use Census. . . . 6.2A-3-17 7 6.2A-3R REFERENCES .. . . 6.2A-3R-1 6.2A-4 SPECIAL SURVEILLANCE AND STUDY ACTIVITIES. 6.2A-4-1 6.2A-5 ADMINISTRATIVE CONTROLS. 6.2A-5-1

6. 2A- 5.1 Responsibility 6.2A-5-1 6.2A-5.2 Organization 6.2A-5-2 6.2A-5.3 Review and Audit . . 6.2A-5-3 6.2A-5.4 Action To Be Taken if a Limiting Condition for Operation Is Exceeded. . . . o.2A-5-4 6.2A-5.4.1 Remedial Action. . 6.2A-5-4 6.2A-5.4.2 Investigation. . 6.2A-5-4 6.2A-5.4.3 Reports. . . 6.2A-5-4 6.2A-5.5 Procedures 6.2A-5-5 6.2A-5.5.1 Environmental Technical Specification Procedures . . 6.2A-5-5 6.2A-5.5.2 Procedures for Limiting Conditions . 6.2A-5-5 6.2A-5.6 Plant Reporting Requirements 6.2A-5-5 6.2A-5.6.1 Routine Repcrts. .g. . 6.2A-5-5 6.2A-5.6.1.1 Annual Environmental Operating Report. 6.2A-5-5 6.2A-5.6.1.1.1 Part A, Nonradiological Report 6.2A-5-6 6.2A-5.6.1.1.2 Part B, Radiological Report. 6.2A-5-6 6.2A-5.6.1.1 Radioactive Effluent Release Report. 6.2A-5-7 6.2A-5.6.2 Nonroutine Reports . 6.2A-5-6 6.2A-5.6.2 1 Nonroutine Environmental Operating Reports. . 6.2A-5-8 6.2A-5.6.2.2 Nonroutine Radiological Environmental Operating Reports. 6.2A-5-9 6.2A-5.6.2.3 Nonroutine Radioactive Effluent Reports. 6.2A-5-9 6.2A-5.6.3 Changes in Environmental Technical Specifications . .. . 6.2A-5-10 6.2A-5.7 Records Retention. .. . .. ... 6.2A-5-10 6.2A-5.7.1 Records Retention for Life of Plant. . 6.2A-5-10 6.2A-5.7.2 Records Retention for Five Years . . 6.2A-5-11 6.2A-5.8 Special Requireme1ts . . 6.2A-5-11 6.2A-5R REFERENCES . . 6.2A-5R-1 6.2A-5A Radioactive Effluer.t and Waste Disposal Report
                                                                                ')m f ] 0\

REVISION 7 - MARCH 1979 6.2A-ii

APPENDIX 6.2A LIST OF TABLES Table Description 6.2A-2-1 RADI0ACIIVE LIQUID SAMPLING AND ANALYSIS 6.2A-2-2 RADIOACTIVE GASEOUS SAMPLING AND ANALYSIS 6.2A-2-3 PRESSURIZED WATER REACTOR LIQUID WASTE SYSTEM -- LOCATION OF PROCESS AND EFFLUENT MONITORS AND SAMPLERS REQUIRED BY ENVIRONMENTAL TECHNICAL SPECIFICATIONS 6.2A-2-4 PRESSURIZED WATER REACTOR GASEOUS WASTE SYSTEM -- LOCATION OF PROCESS AND EFFLUENT MONITORS AND SAMPLERS REQUIRED BY ENVIRONMENTAL TECHNICAL SPECIFICATIONS 6.2A-2-5 GAMMA AND BETA DOSE FACTORS FC# MIDLAND 9l6.2A-3-1 OPERATIONAL EROSION SURVEILLANCE 6.2A-3-2 OPERATIONA' ocuCNDVATER SURVEILLANCE 6.2A-3-3 OPERATIONAL FOG AND ICE FORMATION SURVEY 6.2A-3-4 OPERATIONAL NOISE SURVEY g w 6.2A-3-5 6.2A-3-6 OPERATIONAL VEGETATION SURVEY OPERATIONAL AVIFAUNA SURVEY 7 6.2A-3-9 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM -- OPERATIONAL PHASE 6.2A-3-10 DETECTION CAPABILITIES FOR RADIOLOGICAL ENVIRONMENTAL SAMPLE ANALYSIS 7 6.2A-3-11 REPORTING LEVELS FOR RADI0ACTIVITf CONCENTRATIONS IN ENVIRONMENTAL SAMPLES 6.2A-5-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM

SUMMARY

6.2A-5A-1A EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (YEAR) -- GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES 6.2A-5A-1B EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (YEAR) -- GASEOUS EFFLUENTS - ELEVATED RELEASE 6.2A-5A-1C EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (YEAR) -- GASEOUS EFFLUENTS - GROUND-LEVEL RELEASES 6.2A-5A-2A EFFLUENT X4D WASTE DISPOSAL SEMIANNUAL REPORT G' EAR) -- LIQUID EFFLUENTS - SUMMATION OE ALL RELEASES 6.2A-5A-2B EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (YEAR) -- LlQUID EFFIUENTS 6.2A-5A-3 EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (YEAR) -- SOLID WASTE AND IRRADIATED FUEL SHIPMENTS 6.2A-5A-4A HOURS AT EACH WIND SPEED AND DIRECTION 6.2A-5A-4B CLASSIFICATION OF ATMOSPHERIC STABILITY 6.2A-5A-5 SUPPLEMENTAL INFORMATION SHEET 7; g,w cdrc;

                                                                      -  Uij REVISION 9 - JUNE 1979               6.2A-iii

O APPENDIX 6.2A LIST OF FIGURES Figure Description 6.2A-5-1 ENVIRONMEh'TAL ORGANIZATION CH.\RT O

                                                          .e usv
                                                   ,77p)     g 6.2A-iv

MIDLAND 1&2-ER(OLS) 6.2A-3 ENVIRONMENTAL SURVEILLANCE 6.2A-3.1 Non-Radiological Surveillante 6.2A-3.1.1 Abiotic Surveillance 6.2A-3.1.1.1 Aquatic Surveys 6.2A-3.1.1.1.1 NPDES Permit-Related Surveys Abiotic aspects of aquatic environments are surveyed in accordance with specifications set forth in the NPDES Permit. 9l6.2A-3.1.1.1.2 Erosion Objective The purpose of this specification is to insure that performance of the cooling 9l pond dike is not hampered by erosion or burrowing by animals. Specifications 9 a. The cooling pond perimeter dike is inspected in accordance with Table 6.2A-3-1.

b. Deviations are permitted from this inspection schedule if data is unobtainable due to hazardous conditions, unavailability or malfuncticning of equipment. If the latter, every effort will be made to complete corrective action prior to the next sampling period.
c. This program :s initiated at initial criticality of Unit 2.

Ast%

                                                                           ~

(f OItG REVISION 9 - JL7E 1979 6.2A-3-1

MIDLAND 1&2-: R(OLS) Reporting Requirements

a. Results of these inspections are presented in the Annual Report according to Section 6.2A-5.6.1 of these Environmental Technical Specifications.
b. Deviations from the schedule outlined in Table 6.2A-3-1 are described in the Annual Report.
c. Unusual conditions which result in major repairs or actions other than normal housekeeping operations qualify for a 30-day report according to Section 6.2A-5.6.2.(1) of these Environmental Technical Specifications.

Bases The closed cycle operation of the Plant cooling system requires impoundment of the cooling pond with a dike to preclude many potential problems inherent to 9 open cycle cooling. Annual inspection is adequate for confirming the readiness of this dike system. The survey described provides assurance that the cooling pond dike is maintained to perform the intended functions. 6.2A-3.1.1.2 Terrestrial. Surveys 6.2A-3.1.1.2.1 Soil and Precipitation Chemistry Due to the elimination of the blowdown cooling tower, monitoring of soil and precipitation chemistry is not necessary as there will be little or no chemical drift associated with the operation of the cooling pond. e O o gn en n U,c~o REVISION 9 - JUNE 1979 6.2A-3-2

h u E t O 6 - U.s a m O C 7 C~ u b 7

n u

L A m c4 A  %  : m m C .m Z W .J 3 4 > 0 0 C m x E a v i 3 m L % M Z 6 O L.2 I 5 = 6 < Z L N N O = Z m C C  :,1 o C ~ L.2 x v2 4 R.1 C <  %: 6 4 < J A O  := < Z n M V e==e x R.1 L C A

              ~

E "3 Z w 0 C Z 6 C E-* O Y > d & 0 - E C e u,: 0 k

              .        y                                  -z M                                              -

m O 7 g C C d  ; y L

                                     #j p
                                      -  i  ,,} s i  #; , Z e

w w g 88. L - k /' J f

                                                          ~

a 4 s

                     ~ G                                  ~

I Od > w --a w I UC x

                               %EF

MIDLAND l&2-ER(01.S) TAlll.E 6. 2A-3-2 OPERATIONAL GROUNDWATER Sl]RVElI. LANCE Location No of Samples Pa rame te rs Freiluency _ 2 Wells at Eight Loca t. ions 19 Water Level Monthly on Cooling Pond Dike Pon(1 Level Monthly Specific Conductance Annually Total Organic Carbon Annually Ca1eium Annually Sodium Annual 1y Magnesium Annua 11y Chloride Annua 11y Sulfate Annually llicarbonate Annually I rt.a Annual 1y pil Annua 11y Piezometers at Two 20 Level Monthly Locations on Cooling Pond Dike c.) N s

       /    s' REVISION 2 - JUNE 1978
 @                                               @                                               O

H i t,t. Auti lh2 tH(DI%) - TAbit ti.JA-3-9 RAD'OLLM;ICAL LNVIRuhMllel AL MaiNi fuk l MG l'lHM,H AM UPLNATloNAI. I'llASE i I Espusute Pathway / t'o l l e t t s osi f ot a t t or a ~ ' ~ ' ' "- _ Sample McJaa Sea.plaug and rollection Psotefuse Analy*cs 8ames Huaihe r "" ~ $[sc a sh hdi

         $18 t_'?'!'e k.Jaosudane and             5     W, hk, E Setters within 1000 m                     Cont i nuous ase.plang W pprossmately                kadioauJane tastiad ee      l   Weekly for I*l31 To det e s mane s e a bos ne redsonutlade Pas t at ulat e                   N Setter 2-3 ma                                    1 (fm with weekly toilettton.                        Pastatulate filter: Grosa bets weekly,                L t.ntenti st s on at the piedicted S Scttor 10-20 mi                                  Sampl e a s se ,g.p s um a ma t e ly 28'a m I gaema sautopac questerly on                           samanum lotettun, highest population 7l                                                                                                                                             tempositen by location,                               weighted loc at ion and ambaent contcu-I trat&ose outs Je of Plant tullucute.
    ? l Ij! 8 ei t                  9     N, NE , t , SE , W';W, NW Settura                   L'ont a nuoum .lume at t.umulat ion t,y two          C ame=4 do e .gua r t e r l y .                       To detesmane d6:ett redsation Jose W Site Boundssy                                     (or more) theemolumancotent dust-                                                                           from ateo . rat seleases.

N Setter 2-.I mi metere peu location. S, SW Setters 10-20 mi Wal e s bu r s.c Suriate 2 Tattabawassee haver upstream and Composite sample over a one-month Gaanna a s ot op i t- analynne monthly, To detesmine radionusInde conten-duunstseem of the dic harge peanod. Tsataum analysis questesly. tratious resulting from Plant dietharges. I I D8&nktag 2 MidlanJ and Bay City wage: Co puente sample over a one-month Gions beta anJ gameme isotopic To determ6ne done contratutaan tsom mapplaes pessuJ. muntlity, Tsatsum analysis quarterly water consumption. O'A" M 9l Seda*ent 2 Vicinit y of a nt ake an.1 d a ne t.m a ge Semaannual collectaon on the dis- Gaeums isotopic analyens scal- To detect af any builJup of thaage ande of the river, annually discharged radioattive matestal , is occursing to sediment. Ingep p.n i l'uod Produtta 3 NE QusJsent < 3 et Collettsou et bro 44 test vege- t;anuma tsotopic and I-l'Il on edible To detenait ue i f any attumula-t a t t o.i monthly dusing the L t. l a d portion only. tion of dis (harged radaumative i S Setter 10-20 et quarter, as available. material is ou usrana en eJable vegetation. tamh 2 T&ttabawassee Niver upstacam asiJ Sem6 annual tollettlun as Gesuum isotopst on eJable postion To Jetesm6ae if any tuntentsataou ! downstseem of d6stharge avantable. unty. of discharged ra.ltoastive mate- , rtal as ottusaing in tanh. [' .v s s an

           .s d

htVIStoN 9 TAhit t, . 2 A - 'l 9 Jt%t 1979

MIDLAND 1&2-ER(OLS)

                               ~

9 TABLE 6.2A-3-10 DETECTION CAPABILITIES FOR RADIOLOGICAL ENVIRON!1 ENTAL SAMPLE ANALYSIS LOWER LIMIT OF DETECT:0N (LLD){ ) Water Airborne Fish Food Products Sediment (pCi/1) (pCi/m d) _(pCi/kg, wet) (pCi/kg, wet) (pCi/kg, dry) 7 GROSS BETA 4 0.01 NA NA NA 3H 1,000 NA NA NA NA 5"Mn 15 NA 130 NA NA 59Fe 30 NA 260 NA NA Se,60Co 15 NA 130 NA NA 65Zn 30 NA 260 NA NA 95Zr-Nb 15 NA NA NA NA 7 1311 1(b) 0.07 NA 60 NA

  ,    13'.137Cs     10,18         0.01          130             80           150 luCBa-La          15         NA            NA             NA            NA NA = Not Applicable (a) LLD = The smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with G5% probability (or a 5Y probability of falsely concluding that a 7          blank observation represents a "real" signal). It should be recognized that the LLD is defined as a priori (before the fact) limit representing the capability of the measurement system and not as a posteriori (after the fact) limit for a particular measurement.

(b) LLD for drinking water. n ['

                                                                 ,% i v

REVISION 7 - MARCH 1979

e 22 3 3 u 7 7 7 7 s 99 99 s 1 1 1 1 I O l 55 33 a 1 1 22 u t cc yy s c e )c a a u D1 MM t a t 0 S 8 9 9 0 2 e 1 7 8 T& u 9 9 N1 s r 1 1 E! s - - - - a t S I b t t N T m s s OI t e u u RN s v g g I U E o u u V N A A NT EN ) A _ y 9 EL . y g 7 l i P y g r t 9 T t ) rf f ef f s1 D i s 7 eoo d nooE FN r n 7 n e E ( e OA o , o 9 E0 e t 0 e t L h c ,1 ei 1 3d st c7 d s a ND t i4 d t c o ni i o nl Ol u m5 r o a t it C o m mt C o I t i A o9 eCl u s mr i b o r i e T t 1 t u o a et u t a et t CE r A peg g t Ph as APh aa Ei l o f ah e e eu A ,t l )

                                                                                                                                             ,t u l d

TT ,oh t R v un9 , O RF e 3 0 t C f l b o wA i,d

                                                                                                            ,4f 1 5 oei9 go7        1      4f gn t                                                                                                   65 o eo 3          PO             u               1      c ,        oa          a          a e          89               R l 1       1 9            Ri
 )    1                        t                      A0             r                         t              1    0        a             1 0        t S               E    N         a                 n         1 0 e          s          st             n          1 l c        ,

n 1 l a L f i O l t oy 5d a ai of ai7 of ac O o TI S i ge e m i oerl 1 i o e ri ( T t rl t F e eb t l e p t l el R E 1 RA OR c et r eniaf m a mu ct t d py ct t d p aS eci eA a eci ep

   -            FE                              SETP o                      S          S(             SATF( M                      SATF a 2    1               P
 &      -       DO 1    1         E
          .      RD                               r r                         r r        r r            r r                          r r D    2         I     N   yt                    i      e                    i e        i e            i         e                  i        e N    1 UA       r c                   At                          At         At             At                           At A               Q        a a                          a                            a          a                a                          a L    E         EN        mp                       ,W                          ,W          ,W               ,W                         ,W i)   L         R O     i m               d                           1 d              d                            d l

l l l rI n! t nd nd nd nd A P n i f S. L l a n a. a n an a. n T l L a 1 a L a L a 1 a AU VR OT RS PN P O AC ) l DE a N li s - AT l i o er s Sl  ! r p t e TT i p 1 2 i1 2 s l I uA q 88 m88 n i t W - - r - - e l R er RR ERR c a EN R o PP PPP i i PO - PP PP L r I nt CC nCC e

                   ,T     oi               t                             o                           l                             t S    '( i      m           i o o                       i oo                            a                             a EE       t r                mNN                          t NN           e            i                            M SN        a e               r                            c              s              r NN        zP                et.t                         ut t           n              e                             r E O     i                 Pii                            rii            e             t                              a CC        r ,                    mm                     t mm            c              a                             e I         oe                nr r                         s r r        i              M                            l LN      h s                 oe e                         nee          L                                              c I  t n               i    PP                        OPP                          t                              u u e              t                           C                g              c                          N A c                 c - -                             - -       n              u i

u d i d l e 9 L ( r1 2 e1 2 t o as 7 t d a r i n 9 st t nt t r P ce 1 nii eii e - ec onn mnn p y pi E AUU O i Cl U B SL N U J y n n yn yn yn 9 c o o r o r o r o n i i oi oi oi N e . s s rt s rt s rt s O g lA cys c ys a a s a a s aa s I A R i gi i gi el i el i el i S J, . E mr a mr m l u n l u nu l u n I

            ~

D oen n oem c gn u c gn c g na Cq CNr E F t no AEC t no AEC u eo hRC u e o NRC u e o NRC V E R l l 8 9 8 9 8

e 3 9 36 u 7 6 3 9 /7 s 9 9 7 6 99 s 1 1 9 9 1 1 I 1 1 l 4 9 , , 80 a 2  ? 5 1 3 u t t g p g g nc s c u e u u a e u A A S A A JD t a t S e - u  ; s 7' 9 s - - - - - 97 I 1 9 1 t t s pc E ( e

                                                                                     -                                           SD a

c i y_ , , l p) s s s t ) ) p3 r r r R i b b A7 e9 e9 e9 N r ( f ( f 9 v9 v9 v9 D a c 2 o 2 o t 1 i 8 i 8 i8 N e i f i 3 0 0 i R1 R1 R1 t t wom , 7 5 t 5 t m , h a u e on9 c c r5 ef ef ef t d A i et o1 nA nA e1 h o h o h o i r vt Ai ea o e o P n t t t wn s , i i e t t t o o R rS s0 t g t g l a f c f c f c ti oui 2 cd cd aJ oA) oA) oA) i t e rt n ei ei c 3 3 3 ma oc ,un y 3 t u f egol S ir S ri i d me 1 0 r0 o4 0 r0 1 o4 1 0 r0 r c) o4 ei9

)    1                t               rnC u               ,l               ,l        et              b                 b               b        pl 7 S                       a     t ii                J Vl                Vl          h a          nrC              nrC               nrC              p9 L    f                t        sD s y                        a               a    Cd           oaS              o iaS             oaSt p1 O      o             S          e          n gd        er               er                   i       l U l

i l U i liU na ( R 2 uqoc et mer e l t n4 e6 l e6 wn t t t i e t n4 ioo cd3 cd3 cd3 ot n E eri na i e9 i e9l i en3 en3 en3J s u

  -                          RfLEd                  TG1               TG1 ( t                S a(             S a(              S a( ( E              l.

2 1 h - l 1 r r r r r r r r D 2 yt d d i e i e i e i e N 1 r c n n At At At At A a a a a a a a a L E mp r r ,W ,W ,W . W D L l i m d e d e d d d d I l rI nt nt nd nd nd nd N A P a a a a n a n an an T 1 a. W LW L a L . L a L a

                    )

l w o , a r e v k - e cv d o c l e s t i er o i s s c sR r p l a s e us n e i p l r a y c r e o ne uA u w a eo t r i i e q B f a wer s u s l s er ob es p nt n s R o f a ps oc e na nt o nt i ad pwn c u r t ow ot x i a oi n i i a a dt e sb i m o t T t b ns s a t r i c c a e a 2 2 it ae t ur 9 ut t t - - mt zP a r e 6 rt s ee3 3 si i c t v - ti a gl 2 2 nT r , o s o 5 sTw d t - - a oe l n e5 n eu9 9 r e h s e o e g1 or ws r o6 6 Th t n R C gd C eo e D t ue di o vD n d o o - Ac - - i rN - o i - nN N r

i. rB l a s e 9 l w tb t t e t t t t v 7

( ek i ri i gr m i t i i i o 9 i e ve md em r avr md ea ri ve mem r r m r m r g 1 er eoie erit e l.

                                                                                                     --   e    e                 en                      E

_ RC P rRP PbR s pip P Pi N U J y _ n c o s s s n i t t f r f r f r N e s s s yoe yoe yoe 0

         ;]DA
         ~c '.

g i cys mr n gi a od C r a od C r m r s n A pi e m r s n A pi e m r s n A pi e 1 S )b ~_ o 1 oen u a a r g r g r g V t no S u S u S on S on S on E AEC UG UG UCE UCE UCE R l l 8 9 9

4 l 01 .J N l: A D 7 A xv - v: =% l l i- -= O N lC a N ( >

                .a                                                          : c                     -

A U -3 3 3 <l* I *

        .e                                                                           .""

J m O "O O e L U N

7) @ N A@

N .ee G-D 3 @  : *=*

                 =        O                             -                     0"             a U2       N@                                                  O *J N
                 ;t3       @h                               .               O'. 2                     0
                ==         - O                         **                            f.4 04
                                   -                                         .h      = =
                .J         .h                            h                    C D <.

u) OL - 24v

             }W             L 0                          :

I U3 C 9 l L l 0 u3 C O N .h *3 A C C

                .e          n         N2                 %          ";      -e                      -~
                 -*       3         =N      z            *; oC
                                                          .                 .a                      _a
                 %               ed OO                   > T        .J        *
                                                                              -3                     ~3 C        .-* L -E               g
                                                         - ::c      .a      .a                       m
a3 < oe 0" - ~ > >
                .J          6             *:     ~3                  E      <                       <

D-O . .a "O D +* .;

                <         "O      CO-                  4 C :               -                       -

L 6 d 3 .J U3 4 -:

                 %        A      .J     n        C               Jw           %                      %

C CN e.b n %e U R G D a C@ ~ .a C<^m "O "O t 3O4 5 7 MN t ul U v3 4 O L 6 U^ O b O@  :.r. O i.r O m  : ~3  : D 7 - C4- C C n - J  ;

  • a ~. N .O .- ..
7) 1 O *== "O 1 0% O 6 U >_ N .J N .J m; 'n .e C .J D .h %-
    +                                                    O m V; %          Nm                      r~~       n C     C         U2           = = ""* O 7
  • lll'* 3 "I ** -

w .J - C

  • D .J = J a ~3

% M V - O C .J = U "O M ~ 6 X L c(, Z 0 C E "'; u) : L = M 3 0  : O I V3 A 7vW9 '/2 "3 w aZ L 2ll N - 4 1 = N xi =  : z - w ut c = y u 5 7l c u d w - 5 :< O A -= E' "O G "O D

 -a 2   6 -                 C    .J                     = a                  L                       L E    <  L                    *J    7                     "3 "3                ==                      =
    !=                    43                          43                   <                       <

m

               ===                                      $ 6 O                                      Nb
                >                                       b >
       " C                                              n*                           u:

U L V2 3 "O . Z L b Og OM ": V 6

        =                  C O =3                       u) O                                       '.=

0 <Q' -* 3

  • Q ."J  ;

7 I == O "O "O v3 U U% I C3 A  : : X C C C ~' U = n C u C C .s O 3 3 - J -

               .b         **                                   D            4.N      b                 O C~                 A .e        LU             %2                    U                       G D
        -*      E          01 : U                       3 a3                = J                             3
       .J       u          -*    Q v3 %                 C *.J                km        :            a C MQ                 E U "3 0                   a=      .J            .J       "

4 W s NL A t"0 3 > .C -* v2 5 ul

  • CmM t% i~  ;  ;-

be m "'" O O "O C -* C S C 0 W c 1 O O C Q *3 U V v3 i~ .J C C .h m

       .J       O                ul   .J   "O         A                      l C                     i M 0          1 0 -* c                            U                    C                       C
       < V                       6 != c                 I      k                    U             --
               **          u3                                  2            M                       MC                                    O 4          .e    .J     % ;th          .J         e          > C                     > he                                  N v             -*    O.         W           -      O            C 3                     C C                                   &

E e O E : 6 J L "4 - w w > u w ., sa

                           *J   .J   % -*               %     .a            % %e                    %G                                    A A ul C%                     L ut                 atl: C                 < E                                     z D

l t e i i I

                >*                                                                        "3                   "3                         &

Ol 23 A L. 6 Cl - L - L C - O a Z UI >C 0 hC O - C u: - C A

                *A        E           L                E            o       3 -* -                    : - -*                              .C
              <           % u) C                       u 31 G               % .J         C          % .J C                                y:

A < % -~ L ~3-=* C D Q '-* C '~) l \ .l' e 6 *@* w g =0 ..d "O -* E *} G'% , > r.a C = r./: C = ag > -': & .C y > =0 .. '1 i ,, . , y CUW DUZ L < < .J A <C < .h Z m oc &

r: CD O filDI.AND l&2-ER(OLS) C

          'O                                              TABLE 12.1-1     4 of 13 M

Authorization Required P.-i ma ry Status Agency _ _ _.( 1. i c e n s e, Permit or Approval) I upa c t Statute or Authoritv Est Issue Actual Issue STATE OF tlI Cili GAN Water Order and Permit - To widen La rni , Air Act 245, Public Acts - June 25, 1969 Resources Tittabawassee River, :elocate and % ter of 1929, as amended Conun i s s i on Waite and Debolt Drains, by Act 167, PA 1968 construct llul lock '.'rcek Ilridge , railroad bridge and cooling pond Order and Permit No FP-55 Water Order of Determination - Utili- Water Act 245, Public Acts - Or t 15, 1970 Resources zation of Tittabawassee Hiver of 1929, as amended Commission for cooling, condensing and by Act 167, PA 1968

  • process waste water Order No 1426 Water Order and Permit - Helocate Land and Act 245, Public Acts of -

March 22, 1973 Resources liullock Creek Drain Water 1929, as amended by Act Conun i s s i on Order and Permit No FP-314 167, PA 1968 (Amenited Aug 8, 1973) - Aug 8, 1973 Water Pe r:n i t - Discharge of treated Land and Act 245, Public Acts of - June 6, 1974 Resources waste water to the groundwaters Water 1929, as amended by Act Conun i s s i on of the State 167, PA 1968 Permit No M00057 Water Permit - For utilization of Land and Act 245, PA 1929, - April 22, 1975 Hesources sanitary waste holding tanks Water as amended by Act 167, Conun i s s i on PA 1968 Water Approval - Pollution Incident Land and Rule 323.1162, Part 5 - Aug 30, 1974 Resources Prevention Plan Water of the Water Resources Co iuni s s ion Couunission General Rules REVISION 8 - APRIL 1979

1 7 e 9 3 7 u,_ 1 7 7 3 9 9 7 s , 1 1 9 i 2 1

                                      -                                    1                       ,                ,

l 8 7 , a h 2 1 7 u c r b n c s_tc a e a e uA l f F J D t a t S e u s 9 s 7 - - - - i 9 1 t s l i i _E_ H t c r y A es 8 t a t l 7 l a l l i r o r 9) 1 8 l a r o W ,2 t 1 a o r r 7 o l t / rt l c9 e t 6 h a n2 y9 e n aA1 l. n2 1 t r o7 r1 l i o r eo7 u teC9 au eC el , FC9 , t A t 1 r F l i o0 1 9 c en r e n er0 ,n 2A r F o , b b. ,o Ft 5 ) o , 9 i 0 e u ) i

                                                                                                   ,no2    -                       1          y o_           , t 0F e                          b t                                  b i. 0

( t 0 b e 2 u5 v ( u 1 C9 6 u5 A t 0l - i o l 1 l 0 l 1 l - Pl i 3 u 4l 2 eN 2l 4 nP 3l 2 e

    )    1                t                 o9 t                                   o                 o                  o9              ,t i

S. a nPL t l a nP ni i l n.Pl 5 n8 1 f t o Pi c o ot e o P 4 e6 0 o S i r ms i r i ul i i r 2 m9 ( t e ,bi t e t l n t e , a1 h 5 ct t u v ct cl e ct t t E ea cS e ea eo m e a c c sA

       -                            SWA( R                                SW                  SP a             SWA                 A aP 2   1 1   1 I
     )

2 yt_ l i N 1 r c n A a a a L> i

l. imp r r r r r l l l

m e e e e l i e l l rI t t t t nt i t A P a a a a a T W W W W Ia. W

                                                          -                                                                         c
                        )                           - n                                                                           i l                           r o                                                                            t s a                         er                e                                               l             pm v                     epi                  t                                                  a           e e l

a o _h v - a n st er mt n et nlir o s r p ne E RS one i f y i p ot ys i at t o . uA i sb r e , r e t l a a q t y eh yeh cl w i nr n! t er uS met ct t ui l g e ol R o l an na rf e i p i e l nri r eWf oogge g t t s o t i nt o s ea lets af oi Pi onliA e nhl z i m t rE n h n ot o i o i l t r l a p unt o C i s ep l a a e a n f o i f vl i k i s zP nit owiys - o r a n t o i omi ot b s t a t o up r t oe ii ms nc i nnot i e np s tl r p el n u i oonn v I u ri h s aE er mt en n i i a o ol c t n N po a or o a t t l t b - t F ue e C r r eC g a al s a n l i A C. - gl gPt i c ri l e - n 9 i r a yo s sh i ewy s a gs a 7 I ( t a nmrl ihi r panci i ec f p

                                                                                        .t     a                 vne               t                 9 i        ot     i oii              i s                1 mc gA                   t i rl     f t           nl       e                 rt        l mk t

r si t nmu rlia a m pnu r n l eirSi el of enl u a pot ea i _ PDOU mmA s o i C aP q S A cs P t R P A e v - o Y_ n n b n n 8 C s o s o a s o s o

                         "                ei                                      ei                                    ei                   ei      N f                cs                                      c s          s                       cs                    c s     O S               r s                                     r s          a                       r s                   r s     I A           r ui                                   rui                                  r ui                r ui             S s   _                  eom                                    eo uu               e                 e o nu             e o nu           I C ,h                      t s m a eo t

a e o s n m a t s u a eo t s n a e o V 07 D' )~. L E W1( C WRC S WRC WRC F l 8 q 8

4 3 5 7 4 e 7 7 7 9 7 u 9 6 7 9 9 1 9 s 6 7 9 1 1 1 s 9 9 1 , I 1 1 , , 0 ,

                                                             -                    -                    3             7     2              9 l          ,         ,

4 1 2 1 a 5 3 2 h u e e c e t g c y n n r n s c u e a u u a u uA A D i t J J M J t a t S _ e - - u 9 9 s 7 9 79 s - - 97 97 I 1 9 1 9 - - - 1 1 t t t s pc pc E e e e e SD SD y _ s s n s s s t m m e , m m m i a a E m/ E a a  : r e5 e O i4 O e e2 e2 o r6 r C e d3 C r r7 r7 h t 9 t t e t t 9 t 9 t S1 S h a S t h e S S1 S1 u t d c t t A dA 2 d2i dA i a d2 dA dA nP 7 n7 wn n wd n7 nP nP r a 9 a9 o al a9 a a o , 1 1 t i a t l 1 , , s1 s i t nr i a s s6 s6 e e9 A eA ma ot mt eA e4 e4 t k 2 P kP r c) i n rt) kP k3 k 3 3 u a a ei9 s o ei9 a a a

   )   1             t     L t                         ,

L ,pl 7 oC pm7 L , Lt L t S a c 6 6 p9 r 0 b9 6 c c L f t dA 4 d4 t p1 E n7 t u1 d4 dA dA O o S n 3 n3 na o9 ns n3 n n ( a , a i e l i1 i e a a , a , R 6 l t t l t ot n i t ot n l t l t l t E nc c ncJ s u oaAJ s u nc nc nc

     -                     I A                 A       I A( EJ           St P( EJ              I      A            I      A       iA 2   1 1   1 r r D   2         yt                                        i e                  d                     d                   d              d N   1         r c                                       At                     n                     n                   n              n A             a a                                              a               a                     a                   a              a L   E         mp          r                                 ,W                     r                       r                    r              r D                  n      e iJ L                                                   d                    d e                   d e                 d e            d e l   B         r          t                                nd                   nt                    nt                  nt             nt it  A T

P W a 1 aan LW a a I a a W a a I W LW a a n o

                    )                                                                                                                           i l                                                                                                                           t a                                                                                                     e                    c v                                                                                             l       n            f u d o                                                                                                    e     : k            or er                                )         s                    s        s            e             n     r e                 t r pp        n                     A         e e                  e        r           t              n   b e              ns i           i                       4         ne                   ne e                  a             a            r       o n uA                         t      2       i s r                i h v                   c           h       eC           i        o q          y              i         -     l      s e           l t i                   o           C       c             t c er        t                 m     8              av                     R            l                     ak             a R o         i                 r       -       nwa                  nf                    e           d     l        c       c e e                                                          r             e     po             o g iobl a le v                      9                              ood nt        i               P       6                            i          a                        t            l       l      d oi         t r                               s a                  ssB                 d n             a   dl               ei i      m     ce             f        o        st d                 sk                    ni2 c               nu             r r t r          av4              o     N       it n                 i     nd                a a - o             aB                  b5 a e             i2                          mia                  ma nk                       rCl                     9  l           4 zP           eR -            n     t         sT                   sb ae                 eDP e               er -           e - -

i g 8 o i n s n e g CR ge8 n 8 r , d e- i m ar r a ner dk - dd - nk - oe ee9 s r r ee r o eC ee3 - en4 a e4 h s r s6 n) e T vv T s r e7 r u7 h e7 t n D s e4P oi s sr D r n D C r ue a o t 2 - R - ea e C oon s o C o A c - wN x - d g r wv - Nii - eN - N i a E8 e s nd sua a k s a n k 9 L tbt - s t ia t t h e t ct s m t i t t ct 7 ( i ai e9i i sBk i c aB i oiie il i i oi 9 mt m rt r i m6 v e ms r od e e mut r rt d ml mmR rl r r me r pr m ml m rl r 1 eie T oR er nr et i n eue eo eie e u e E PTP ( N( P c aC P sT a PBPPt P pP PBP N U J D+o y _ u > u t u t u t u t u t c a n a n a n a n a n a n n er e er e er e er e er e er e N e g r em ut e r em ut e r em ut e r em ut e r em ut e r em O JQ2~ A B a g B a g B a g B a g B a g luta ge I S R

                            - W an                         R
                                                             - W an             R
                                                                                  - W an                - W an            R
                                                                                                                            - W an       I- W a n

I R R V Nf D of l a Nf a D of l Nfof D la Nf D of l a N D of f la Nf a D oM E R l 8 9 9 8 C U

1 e 7 7 3 u 8 7 92 7 8 s 7 9 1 7 9 7 s 9 1 9 1 9 I 1 ,1 1

                                                           -                -              -              4                          ,

l , 3 2 , 9 , a 3 2 4 1 u e y t t g ny l y s c c u u ia u a uA O A J t J i t t a t S 9 9 9 7 7 7 e 9 9 9 u 1 1 1 s s , , , I - - 1 1 1 3 t y y s l l g E u u u J J A 5 5 y _ 1 1 s s ) s t 3 3 t m m 9 m r n i a a 7 a ) o e t t r e2 e29 e29 i C m- c c o r7 r7 1 r7 7 rE en A A h t 9 t 9 t 99 eat o t S1 S1 y S1 1 t aC , , u r nf t t t A 9 dA dA a dAl 9 I osl c c r 2 nP nP u nPi 2 a A A 9 a a n a r 9 ewd t o 1 , , a ,p 1 h e e n s s s6 s6J s6A t i l e l l e A e4 e4 e4 A vim l l t P k 3 k 3d k 3d P f e ann e e 3 u a a e a e oR t oo W W

   )   1             t          ,

L t L t t l t t ,

                                                                                                                  - e ri S                  a    5                     c               ct             ct     5                  t t di t              l       9    l 9 L   f             t     4             dA              dAi             dAi           4                   ps              va     a6             a6 O     o          S      2               n               n           m   n         m 2                   e et nr                r9            r9

( a , a ,b a ,b D uf E e e1 e1 R 7 t l t l t u l t u t qa d n n E c nc ncS n' S, c S er ni l PA i i A

     -                     A             I      A        I A(        I A                 URD os                 f             l f P 2   1 1   1 D   2        yt         d             d               d               d                                                     d             d N   1        r c          n             n               n               n                                                      n             n A            a a          a             a               a               a                                                      a             a L   E.       mp                 r             r               r              r        r                                              r               r D   l      i       m    d e           d e             d e             d e             e               d                     d e           d e n

t l l rI nt nt nt nt t nt nt i f A P a a a a a a a a a a aa a a T LW LW LW LW W l L W LW n

                   )        y                                                            nna            l ool               a l        c                              er                          iip                 c a     n                 ,            ge                           t t              i v      e g

p r v nu) g d o m ai e el P o er r5 a hI l t vl I l , r p e8 r c a eoP oe s s i p m0 s e sk rP/ et g g uA q e1 t i e ne P/C a a n n

                                   -       a             d s               ee                    eC     h t                    i             i e r         rP             o                     s       d r           l         rP        cS                    r              r t

I o oF b na nC l uS r o o f o ww o i s( A en h6 b6 nt a o a ck pa / h o 5 5 oi l N db c S en l t i n1 n1 i t r m l i t t6 c4 wa d o mo a cya t o - o - ot n! ri i2 i2 a e f i u1 l t a! eet i b v t 3 t 8 zP m r - bi nt n r r a7 a7 i r , er t 8 T mIlu i ne os e d - d - c e s - d a b uv t ns n7 n3 oe aP n7 nn es mo e s oe u5 u5 h s l o7 o o t s oC r l i o4 o7 t Pr o r i t n P , C P S o C P F F ue p o e r & l a t o o A c - m N - r - c - t - r c a - N - N i a u a n ein 9 L ( t r t t t.t t _lo e wd ri t t t t 7 i ii i c i s eiod ii ii 9 mt mm r r mu r r me r i st r mm mm 1 ri r n r'n c vns o r r r r ex ee et ei eon eoio ee e e E P e PP P s Pl PCI R cl C l PP PP N U J g - y - y y t u t u t u t t en ge ge 9 c r n a n a n a n r n ci ov ov n een er e er e er e een i i us l r n l r n e t mo r em r c m r em t mo f e ou o o u o C g cDa t a ei ut e ut e ut e a ei f a c eSi eSi a%A I W gs B a g B a g B a g W gs Ol i G s G s S rC~ - ai - W an -Wa - W an - ai - P v - l i - l i I R nv R R n R R nv R r R a v R a v V N a DtlaiD Nf D of l N f a D of l Nf a D ori N DflaiD Nf e D oS N ci DiD N ci DiD E H 8 l98 l98 9 8

9 3 6 e 9 7 7 34 7 7 9 u 7 9 9 7 7 57 9 7 s 9 1 1 997 9 1 9 s 1 1 1 91 1 _I 9

                                                  ,              ,                         1                ,

3 4 , , , 8 , _l 2 2 01 ,8 5 a 1 l 221 1 l 2 _u i y i t b r l vynn r y s c e p u o a a a p a u A F A J NMJJ A M t a t S e u s s - - - - - - - i t s E 5 5 y _ 1 3 1 3 s t m i t t a r c c e5 o A A r6 h t 9 d t , , S1 e u t t r 1 A c c dA 9 i 2 r A A nP 6 u a 9 q 6 o s s , 1 e 3 l l s1 < 3 e l l e9 A t e e k2 P t e

  )

3 u W W a o l 1 t L t , N u S. a l 9 l 9 c 9 R I f t a6 a6 dA 2 t O o S r9 r9 n 3 i C ( e1 e1 a , m C R 8 n n l t t r P E iA i A nc c e A

    -                    _   MP              MP             I A               A                       P                  M 2    1 h     -

l D N A. 1 2 1 yt r c a a mp l n a i r d n a r d n a 9 I E. r r D I i m d e d e d e e I B rI nt nt nt r t r M A P a a a i a i T l a. W I a. W I a. W A W A

                    )                                                                                           e l

d e a nk d e s v oct e d a g d o i ou u n

                                                                                                        > wa              n er                 ,

tl a s u b i ) r p s cl h s g nr i p g uu gi a r e uA n rBf n 7 et ul q i t o i t 7 gt bi er r s n ai/ ri o R o o nin r m1 aT l b b6 6 o o ur3 h e nt 5 5 Ct i b e/ c e uy oi n1 4 rt p2) sh f r i m o - r - - ec e 1 d it a t r i9 e ,2 vu r n e d l i a e t 2 t s9 tl r i rd w o l l zP a7 al 7 nut f uee ot ai i r , d - wl - ecs b r n T n t x n0 d e6 m n n i e i s u oe u8 nW0 d yo el pr - na h s o1 u 6 nr c pa x r i ( t n F og ea O u et ne u e o r no mrd n o ot i t A c - N gin A on - n ,n i a t n i. t t t ot r t m pa t a7 7 t ss w e 9 l t m 7 ( ii mm i t i i ek i t/i i mr i p 9 r r mim r nr mt ed r ea ms8 m mr e mi 1 e e r a1 r r ov r u e q eoi ef r o eL/ e et i E PP Pt P e P oC r P( 1 P P sR P e N U J

                                                             -                                                           n N O.

C q r;_ ;.

           .         y c

n e l

                              - y ge ov ouo r n  l
                                              - y ge o v ouo r n l

g oy ov r r n d uo e t c - i r r e t p s u uno a or erP n i l t o u l l i n o s 9 N O 9 g eSi eSi lySi s iS ari vl o oos I A G s G s D r h nai P ri i l S

                              -      l i      -     l i      -     l i
                                                                               - eo                     - E t t                 t u    I R av N ci R a v           R av               R r s                  R            nc     r nnu         V N ci            N ci               Nii                    N f          e e  i o o           E DiD             DiD             DiD                DF v                   D omt             ACC             R 9              8                       8                  8                                9

0 e 7 0 9 u 9 7 6 s 1 9 9 s 1 1 I , 0 , , l - 2 - - 7 1 a 1 2 u y t l b g s c u e u uA J F A t a t S e - - u 9 9 9 s 7 7 9 7 9 s 9 97 97 i 1 - 1 9 1 " - - 1 1 t y t t s l pc pc E u ee ee J SD SD y _ t i d r e e 1 o 4 4

                                                                             . t.

t 2 h t 5 5 t i 9 9d 3 , u 1 m 1 1 66 A 2b 1 n n 1 94 u 3 f o) f o 6 1 r 6 s 9 oi9 oi 9 A. o 3 ) 1 t 7 t 1 f l 3 n9 8 a9 8 a oC e o7 A 6 c1 6 c A l f t ei9 P 8i 8i) P t 3 u l t 1 1 l e 1 l 9 s ,

  )    1            t         uac               ,                pn             p7                    ,

n2 S. a i l

                                      ,     6              opu            o p9                    6                    o1 I    f            t            i1         3            N aJ           N a1                      3                  C O      o         S        Ci2             3                                                     2                         7

( Ct e C t e h R 9 C P nn - t S st S s n t ct E AA . c PE a PE u c i c

    -                       l f ( l      f    A            l ( d f              l ( J f                         A                  l f A 2    1 1    1 rr D    2        yt                                                                                i     e            l N    1 r c                                                                               At                   a n

A. a a a a E. mp ,W I D I i m d d t n d i re l l l rI r n n r nd i i t A P i

a. a. a. a. n 'a.

T A I I I 1 a 1 a. W t w

                   )                          c a                                                   n l                          un           -                                        o        g a                        ri           s                                      i - n                       r v        g              t g         i              d s                        t si                       e d o             n               s a          m              a e                       ai y             d v er          i nS           s              on                        ndl                ai r p           nl              o            nt             ri                        m        p         oR i      p        r e             ch           an           l l                         e ,p2              r uA            us                  t        r a          i                         d gu0              l        e q           b e               ou          t l             an                        n n s4           i e ec               i           t o             .P           r o                       oi           0     as
              < o i             l    d                 s      t                   i C t d2               r s

_ c n cd os t n a nt uy os6 un C s - i a o t w oi f c i s6 r a i m N c a i m n t o1 t l P m ys g ub t r l e a r5 sd C s t nny r a a e l g zc - t nii n i aig t t z ar i ai ot s a s rl r st idr o e t sm ne e r or/ h u R

                                                     /

c oia n s r ot r st l e c r s e en e C ni oT h s i() t pr l' e Ch e o r t n s us e s r t Nf ,l

                                                                                                                       - e ue            ot r          A        d     - ea           - i                                ga               v A c            t no                 d r            n              w                 f s nc             l o

i et - aO sit s odii a 9 l t ma o t l c t s nt r ve / ( ipr r r , i e i k r a ut og 9 mie r un el d mnj r o o mc el b c rd 1 eqe di a r a d i e pi P eg r ao eir er rf rl pr E O rR P sp Pt O ot e Ab N l l n J _ n f o o oi - y_ i t s t n n n t a o r 9 c u o o o nt , rf C o

r. l i i i ne r PY oo f s N e

g l l s oos es es a mo ,I T ef yn d d oi O c c s c cs gt p YHI t n v I A P ri iii iii i r s TSC at t a ad r S t m l vn u l vm h a n NN b r nl l r e I d rnm b r n b r m c pa l WD ouud d a p V rCD >s_ l i oo u eo ueo i er oON r c oi t iou E AC" PSC PSC l t DT CTA PCCf l  ! f l S R l l l ll 8 9 l989 89 8

CD G tilDLAND l&2-ER(OLS) r TAllLE 12.1-1 10 of 13 s Authorization Required Primary Status Agency _ (License, Permit or \pproval) Impact Statute or Authority _ _Est issue Actual _ Issue 3lflidlandCo Approval - Construction of I.and azul Act 283, PA 1909 - Aug 21, 1969 Road temporary road for River Road - Water Conun i s s i on Plant outfall structure area flidlanal Co Approval - Resolution to vacate Lanil and Section 18, Chapter 4, - tiarch 25, 1971 Road portions of fliller, Stewart , Water Att 283, PA 1909 Conuni s s i on River and Sasse Roads flidland Co Permit - Construction of access Land and  ?!CLA 224.1 et sey - Nov 15, 1973 Roa I road between fliller and Posey- Water Commission ville Roads Permit No 111473E Flidland Co Approval - By resolution abarulon- Land and Section 18, Chq.ter 4, - April 11, 1974 Road ment and discontinuance of Water Art 283, PA 1909 1l Conuni s s i on portions of Sasse Road flidland Co Permit - Crossing under Gordon- Larut and flCLA 224.1 et sey - July 11, 1974 Road ville Road with brine pipelines Water Conun i s s i on Permit No 7104A tiidland Co Verbal approval to widen access Land and Permit Not Required - June 8, 1977 8 Road road (CP Co Letter No 2335, dated Water Conuni s s ion June 8, 1977) 3l flitiland Co Approval - Relocation of Waite I.ard and t1CI.A 280.2 - Jan 20, 1969 Drain .sud Debolt County Drain and Water f!CLA 280.10 fla rch 8, 1973 C yni s s i on relocation of Bullock Creek Drain 30 e, REVISION 9 - JUNE 1979

4 4 0 7 7 9 7 ) e 9 9 8 33 8 6 9 7 u 1 1 7 7 / 7 9 1 7 s 9 9J 9 1 9 s , , 1 1 U 1 ,d1 I 1 8 , 8 e 1 1 , , , , 1 1 i , l 6 26 0 1 f 7 a l l 1 1 1 3 hi u i i y cd y t r r y vv g l r ol s c p p a oo u u a mu uA A A l f NN A J l ( J f t. a t S _ e u s s I - - - - - - - t s E y 0 t 7 g i r 9 n , 1 i3 o d n1 h rd o t an1 Z e u oa l B y 2 3 pc A_ 6 s a 7 4 ii r_ 5 yef l 9 9 ht o_ 9 tl 1 1 s r 1 nu , nA2 e 0 0 uR s A A w t 21 21 A o n P P o , 3 u . P Ch o T e 'l

        )    1 00                      00 S

t a t i , , c 88 88 , dl t 7 4 d nn L 22 naa O f o S t 22 4 0 4 8 na o ( a lel 3 1 a ni AA AA l l u ii t R 1 LL LI t d g t t dd c E 1 CCI CC c c c

          -                       l t f

l f f l A i foR e i t A A i r e l f OC 2

        &    1 1      -

D 1 yt _ d d d d

   '    N            r c            n                       n d                                n              d           t n                       n
    '        2                                                               n                               a                n                                   a A    1       a    a         a                       a                 a                                               a i

a L D E a r g r r r ,r r r ,r i u d e d e d e d e d e d e d e l L rl nt nt nt nt r nt nt nt r

i. B P a a a a a a a ai a a aa a ai A LW LW LW LWA LW LW LWA T

L l e , t a e t n n v t e t k ii n ) a d o i n n e a ai o , l er a i e e - nW r ar w p e - P r p p W , r mer o ,D t m ne n i ndb ecC t i D ( a es od uA ri n vi nt ne r d s cn q eaah ovk eri nh f s er i a a R o d r nD ni t r r c peo n pr u oaoc n om t ww ol r e i a Td u i w msl o Dh a nt x ob i nt 1 a i l dt c r os e T a - f l oi g# r n f u nemnB i. y t i m n Di l oB al r a t s y - t r e t r ih a e bt ard c c i et a e sct.r nnr A uFB n uc n t T d a zP s nl D noe o a ri e0 i r r i r , oao aiv f yd t t g3 me O e r rbk ht o ok t nl s p r - r h p oe CB ee C c ena o ne e8 et d o h s t n - t D e r - r g ue r eu o os m7 P n er oth C E f ad ue l dC s t d dCCl c y o d o n A c l on e l si r oS - r - N n s ui i ab ak n anr Okdb a al g m 9 L v e ci vob c ney t r t t e nt o 7 ( oD eol r oc l oaD e i o ii rnr i c p 9 t l e r d al l l mp mm ene d u 1 pdil p pd a nl ddi r i i r r d a v pna ui pno i nrd A aWB p i uina i ee ee rhi it n i i A i r FHt aH Pt PP O cR F s a N U J _ ) d - _ y r y o n n

 -                       c n

e C d i o s C d o i n o s C d o i s o t n ed u mno t n C o r p pB a a s ol 9 N g n s n s n s d e di di e O A a ni ani a ni F t aC ne nh nh gp I l i n l i n t rl - a n a sd as np S d an u d an u l i n u l ad y l i l nr l niA I

                 !                                                        d a n                    apit                    d g         d wa           d wn                  V
   ;DO                          i r o                   i      r o        ir o                     eet i        l i n                    o o           oof         E
     .       C ;-               i t DC                    l f DC              i t DC                    HD( C                    i E i

l lTB i l {TZl o R rC~ l t f t 8 3 8 1 8 8

N lD t: 4 N O 4 t ~- M N 4 N DI @ @ 7 7 v3 I - a .= - - ma f 4 j i - N . . . I O - 4 i N M J == N f"=3! I .=s t X U 6 > a 1 .J A U U

<j r ,

9 z 5 Z C Z L C a 3

                       .".e Z

C I

O a N O v3 7N
                               -*           4                        i                         i                  1                  == m                       1 a                                                                                                   .J Z                                                                                                       LU
                           ,W                                                                                                          L O l                                                                                                         :/3 O C

i > t SC

  • A >
                               >                                                                                             .J           a                   .J e            C                     OC                        Q.m                             V           e                  .m
                               -a           :       a               :          a            .:                          .d    0      U               -=      U L            -M                    ==M                        a C                        6 w            a               a        e C            =      -e               :     -=                        N                   CW            -a      OC C      J      -* 30 0 C                       C                       *=                          LU            L           > se         % -, >
                              *.*         N O                     N L C .L                      6           !*        -* a     =     b -
                               =                -                         -.e                       .                   - =                   =   .J   E                   .~.J
                             <              1U                      LU                      -      2                   < O                = 0 V ==                a    C U 6,6
                                            ~ = =                   m -                             A           C             U      CN                2^    ON D
                                          .      .s               a        .a.              N :                 6.n .J =            m             .D. V3 &   c             **

C v3 6 A 6 3 @ *3 Ow ** N O .J =d

                                                < N                 '-*<N                   -       CN          -       -a    :      a=       6 y ap         -         6 L; y            3                       3                            > != %                 C -*                  C        V3 -            C
  • C aM C =M m < ~3 *O < L aW < 1 -

M 7 FG- t= L- - -

  • L L 6 L 6 Lv > L 6 0 m

Z

           .--                a 3
                                          "" U= =                 "O U
:  : C :
                                                                                                    - U
                                                                                                                    = .J xC O       a<
                                                                                                                                            == U O

a<

                                                                                                                                                                       - U
                                                                                                                                                                            = 0 3   %                  .".a          =
  • 5C = 0 C C a ~3 M- 3C N M -3 N a7 m 3 N C C Zf * -* == 6 :

NO .N N .s  : N N .a  : N v i J. =. ..a

                                                  -               -.3             .J        .J L .-                     p         -          =  --   -     g           :         -=

Z N I "O 7 '.J " * " U U SC " .J -* O- J -e """ - .J .J -= "O == W = l -a 6 L -* 6 L ~y g h V 6 CN U C 6% a3 U C 6 N I I E C *A E C *A 4-C 4 E- N c < 3 Cc7 <*-3 C C N 4 **

   -         s
             -a                             6 6                           "O                                     6 L O                   h =J
  • O = "O - U "" *""

2: N 6 U < .J "3 < .J  : y - 7 7 7 7 1 1

   -.                  E       5)
-2 - 6 3
   =       w;          ~E                 =                       ~O       o                =                  "O                     0                      =
   ==                  6     *-a                7                             a 6            = 6                 =""*                 = 6                     = 6 E       .          a                     3                       a3     -3
  • 7- a3 = .3 - a3 =
           <                              .J      "3              43<                           J<                4 5                  a<                    4<

5~ t r l. M

                             -a!                 03 " O                    -                                     6                    l 9                *O 6                       as                                    (,    .s            -* 3
                              >                   =    ~3                  0                                    .s      -            -m                        6 "O       C                  C 3C                     ~                        4            U E                 -a      C                6 .J U L                  i L6                           6 "O                     =            a3 6                U 6                      y C 6 N                  C          D                  .e                        ~            %%                  n L                      U C a 4                 C SC E                          U       "3              "O            6L                 w                                 W
                       =<                  U =                             t                       .-                                       .a                -"

e O' ~ 6 - e 4 .e u o  :  : O O 6 C -- L C C = 0 : C V3 C c . O

                      %C                  9 C E                  H                C                C                    M            =-a                              m C 6                       % ~~                                  :                   A L                     N
                             .J             I U C                   I     .J        J        C 6                 C-                  u)                      N O 6 0 -*                           W                    7 m               mO                   a   7                     "O                        OO
  • E 6 "

J 6 L .J .J 3 .a -. E= C = 3

                      .J 6                  0   .J     =           0 0 93                    U C                U      -s            v3 a3                   Z c C
'3 L = "3 0 ., =- O E-  : -= -* E =

NL 6 % 6 C : 6 La m "O se 6 n O@ v3 C v3 .h - .e 6 -* -* @ - 6 a LO "O O v3 mO u) A E.= Z S> 7 0 0 "O C 6 "O = = 0 Um 6 6 U 4 U2 = 0 a3 C -a 0 -* C C

  • I C U w --
                      .: O                 M ""'      .J           ~3            ~ ~ -     O CC                U~                           A                L C 3C L                  = U                     .J       A                 C C               -              u) a                                   C
                      <       r=           'A    Q = >             v3 U u3 "O                I      -a Z         a     -a            -a            3          CC y        -.a
                              =I           OC          6   +.4     20*                  "3          C                  X             "3          0            0 a C                 O
3. .J .J 6 6 E C .J 6 .J J > - 6 - 7 6 m w ~ U U3 Q ~ .J m 6 -e C- + -
  • n4 C m 7 U C 7 "O O L "O us -= 5 0 E E - 6 u) -= 0 =
                                          = 6 'O           C       = =            -3    =   6        eW         6 "O                 O O         .J           a **  '
                                           ~J               6      -* C 6 ~3                 D U D              D            C       L~          U                    m *;.         A N U2 3L                 ".s. U .a 6               LZL                 L cZ                 <       .J   G           ':0 .a E               2:

_C l t "O "O "O O 7 a l 6 6 6 6 6 6 s 3 m n m 3 .J , a -3 , C

                       ' U                            C-                          C-       -             C             :          O          c.       C                           C j fn )

ll

                          ' 01:          "O OO M 4    "O L2 a3
                                                                          -             U
                                                                                           -=

C-L= 5 --

                                                                                                               .s      C    .J 23  >-
                                                                                                                                    .J       C.J
                                                                                                                                                     =        >
                                                                                                                                                             .J           .a O  Z C

~(

         /      6; -

04 "3

                                                .: 00 L V3 : L
                                                                   =4 "3     u) : L CC L      V3 4 OC 6 v3 :             O
                                                                                                                -9           6 SC C =
                                                                                                                                    *= "3 6 00 U            C =         U
                                                                                                                                                                     .s 6 OC C

Z e-a  : -* < -*

                                                                          =       -a   <    U =-                e      a5 1 --=      a e3 L*                  s : L=                -
                                         "O     3                         3 :               OC 3                - , 6                - U 6 =                  -
  • 6 : ">
  • O C% ~ C Cu  : C C  % 6 -* C 6 6 en C %C .e C 4 Z i~ N O Z E.= N O a* i~ N E-= < < N i= < < N i~ 9 < N Z

9 9 9 7 7 e 6 6 2 7 9 9 u 9 9 7 9 7 1 7 s 1 1 9 1 7 9 s 1 9 , 1 I , , 1 3 8 8 , 4 2 , l 2 2 1 1 , 5 a 1 3 h 2 u y y y c t l l c l g r y s c u u e u u a a d u A J J D J A i t i t n t a a t d S n a e l u d s i s i t I_ f t o s E y t i C d d y _ n a n a h e t l l t i d d ) r ii i t h o t i t s t h f f d e o t of of nu b u o o a q A 9 e 9 e el e 2 2 2 2 m r 0d y 0d y hdR 7 7 7 7 o 9 ot 9 ot t i 9 9 9 9 r o 1 Ci 1 Ci l f l 1 1 1 1 f C ,C f a e A , A of c A A A A d t P2 , P0 , oi P P P P e 3 u ,2 e ,2 e e m v

   )    1               t                   c                c      c pe              ,              ,             ,                ,                  i S                     a     9 r n            9 r n               nih           7            7             7                  7                        e L    f               t     7 e a             7 ea                ahC          4             4             4                 4                        c O       <           S       2 t n            2t n                ns            3             3             3                 3                        e

( R 3 t ad pi pi i nw r t ad d wo t t t t E 1 ch r ch r r oD c c c c s

     -                        ACO               ACO               OT(             A             A            A                  A                      t 2                                                                                                                                                   i
   &    1 m

1 - _ r D 1 yt e d d d d d d d p N 2 r c n n n n n n n A. 1 a a a a a a a a a l I mp r r r r r r r a D E i m d e d e d e d e d e d e d e c l L rI nt nt nt nt nt nt nt i i f l l P a a a a i a a a a a a a a a n A LW LW LW LW LW LW LW a T h c _ e e e ml 4 t b

                                                                                    -             -             -          5      - at                d a
                      )                                                            n             n             n           0     nsi                    nT l

a e e e e 5 enm a v p m1 i 3 i3 m3 m o me r s g i id e ,i d o s i e d0 d0 d nN d nP gh er r p f o n o n pe s e5 e5 ew e o nt i s1 s1 s ot s c , i i p h i s f s di k b n uA nt t s oa d o o d wm dd e mi q er ou r oo w nN d.r N n or nne u i o ot r p na a a al e a ar l d R o t S c ob t t bP C pe c d i a ni n nm t nt un r o d ad oa t t om c n i. od , o ak ,s oi l ct i r i r i ne i ec l i i m t iR o ui s e s e s or st o al t r s g u r rT oP oP opu o sl c a e nn b wl t r r r ,t r l i t zP oi eai s r e , e , e c e ,h a r o i r , C s R na ne l l l u l l t n s i r ov l o l o l or l o c oe - od - g C o i r i r i rt i r s ee h s r a a e ot ot ot s ot s l r t n nco nSt - e S n S n S n S no ea ue o R o a g o o o e or A c id ihd l d - c - c - c g - c c ,p i s aw st o ai r a0 gi 9 L ( s oa s un u vr t n t n t na t n 6 nh 7 i r n i o n ob r i o i o i oh i os0 i s 9 ml i mS o r e mi mi mic mie5 d n 1 ri g r c pyv rt r t rt s rt n l w ea a ef c pai e a ea e ai eaio i o E P rS P oa A wR Pt P t P t d P t l N uT N _. b U d J r _ l n e a a - y e _ ul n _ nd 9 c i ni n e d l d  ! d n g f d f d f d f d At i N O g n i n i nE o r. on on on - I A a c a c NC2;.' O CiN . l dt u i yn i o l dt u i.

                                                      ; n i o l

dt ii a y yl t d i i a yl t d i i a yl t d ii a yi t d i i a E T O S I V E i t CC 't CC iC t Cf l Ct i Ct i Ct i N R 8 9 3

MIDLAND 1&2-ER(OLS) Chapter 3 Alden Research Laboratories, Model Study, Midland Cooling Pond, Consumers Power Company, (January 1970), Report prepa ed for Bechtel Professional Associates Corporation. American National Standards Institute, Nau...a1 Electrical Safety Code, ANSI C2, 1973 and 1977 Editions (July 20, 1973 and February 28, 1977), Institute of Electrical and Electranics Enginners, Inc, New York, New York. Bechtel Associates Professional Corporation, Final Report - Midland Power 9 Plant - Cooling Pond Operation Study (March 1979), Report prepared for Consumers Power Company. Bechtel, Incorporat ed, Cooling Pond Thermal Performance Summary Report; Midland Plant Units 1 and 2, (August 1973), Report prepared for Consumers Power Company. Billington, C, Shrubs of Michigan, Cranbrook Institute of Science, Bloomfield Hills, Michigan, 1949. Braun, E L, Deciduous Forests of Eastern North Amerka. Haft.er Press, New York, New York, 1950. Consumers Power Company (compiler), Midland Plant Units 1 & 2, Applicant's Supplemental Environmental Report (as amended), (October 19, 1971), Consumers Power Company. Consumers Power Company (compiler), Midland Plant Units 1 and 2, Environmental Report Supplement (as amended), (October 26, 1976), Consurers Power Company. REVISION 9 - JUNE 1979 13.3-1  ; .

MIDLAND 1&2-ER(OLS) O Directorate of Regulatory Standards, Calculations of Releases of Radioactive Materials in Gaseous and Liquid Effluents From Light Water Reactors, Regulatory uide 1.112 (April 1976), US Nuclear Regulatory Commissica. O

                                                      ')  Q N ,9(

O REVISION 7 - MARCH 1979 13.3-la

MIDLAND 1&2-ER(OLS) Chapter 5 AIF/NESP-006, National Environmental Studies Project Standard Methodology for Calculating Radiation Dose to Lower Form Biota Prepared for Atomic Industrial Forum Inc, (1975), AIF/NESP. Alden Research Laboratories, Investigation of a Thermal Plume in a Shallow 9' River - Hydrothermal Model Studies - Cooling Pond Blowdown Discharge - Midland Nuclear Power Station (April 1979), R> search sponsored by Bechtel Power Corporation for Consumers Power Company. Batchelder, T L and H C Alexander, Fish Survey of the Saginaw River Watershed With Emphasis on the Tittabawassee River, (1973), Dow Chemical Company. Bechtel Associates Professional Corporation, Final Report - Midland Power 9 Plant - Cooling Pond Operation Study (March 1979), Report preparea for Consumers Power Company. Bechtel Corporation, The Environmental Effects of the Midland Plant Cooling Pond, (1972), Report prepared for Consumers Power Company. 7 Brewer, R and J A Ellis, "An Analysis of Migrating Birds Killed at a Television Tower in East-Central Illinois, September 1955 - May 1957," Auk, Vol 75, (1958). Briggs, G A, Plume Rise, Atomic Energy Commission, Oak Ridge, Tennessee, 1969. Canale, R P and J Squire, "A Model for Total Phosphorous in Saginaw Bay," Journal of Great Lakes Research, Volume 2, No 2 (September 1973). REVISION 9 - JUNE 1979 13.5-1 .n - cyc

                                                                    $Y,'

MIDLAND 1&2-ER(OLS) O The Chester Engineers, Assessment of Current Water Quality Conditions and Factors Responsible for Those Conditions, (July 1976), Report prepared for East Central Michigan Planning and Development Region. The Chester Engineers, Water Quality Inventory and Environmental Water Quality Relationship, Region VII, Areawide Waste Treatment Management Study, (February 1977), Preliminary draf t prepared for East Central Michi gan Planning and Development Region. Cherry, D S, K L Dickson and J Cairns, Jr, The Responses of Fish to neated Water Discharges, (1977), Biology Department and Center for Environmental Studies, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Cochran, W W aad R R 5er, " Attraction of Nocturnal Migrants by Lights on a O Television Tower," . ,on Bulletin, Vol 70 (1958). Consumers Power Company (compiler), Midland Plant Units 1 and 2, Environmental Report Supplement (as amended), (October 26, 1976), Consumers Power Company. Department of Natural Resources, Guidelines for Location, Construction and Maintenance on State Lands of Electric Power or Communication Lines, Liquid or Gas Pipelines, Facilities or Structures in Connection With Such 7 , or Separate Communications Re.ay Towers or Stations, (January 1973), State of Michigan. DeYoung, R C, Directorate of Licensing, US Atomic Energy Commission, letter to R C Youngdahl, Consumers Power Company, December 15, 1972. em O 13.5-2

MIDLAND 1&2-ER(OLS) NRC QUESTIONS AND RESPONSES TABLE OF CONTENTS Question ID NRC Request ER Revision Page No Aquatic Ecology 1 May 22, 1978 2 AEC 1-1 2 May 22, 1978 2, 9 AEC 2-1 3 May 22, 1978 2 AEC 3-1 4 May 22, 1978 2 AEC 4-1 5 May 22, 1978 2 AEC 5-1 6 May 22, 1978 2 AEC 6-1 7 May 22, 1978 2 AEC 7-1 8 May 22, 1978 2, 8 AEC 8-1 9 May 22, 1978 2 AEC 9-1 10 May 22, 1978 2, 9 AEC 10-1 11 October 11, 1978 3 AEC 11-1 12 October 11, 1978 3, 9 AEC 12-1 13 October 11, 1978 3 AEC 13-1 Archaeology 1 May 22, 1978 2, 3 ARC 1-1 2 May 22, 1978 2, 3 ARC 2-1 3 October 11, 1978 3, 5, 6 ARC 3-1 4 October i.1, 1978 3 ARC 4-1 5 October 11, 1978 3 ARC 5-1 6 October 11, 1978 3 ARC 6-1 7 October 11, 1978 3 ARC 7-1 8 October 11, 1978 3 ARC 8-1 9 October 11, 1978 3, 6 ARC 9-1 10 October 11, 1978 3, 6 ARC 10-1 11 October 11, 1978 3, 4 ARC 11-1 Benefit-Cost Analyses and Need for Power la May 22, 1978 2 B-C la-1 lb May 22, 1978 2,3,7 B-C lb-1 1c May 22, 1978 2, 3 B-C Ic-1 2 May 22, 1978 2 B-C 2-1 3 May 22, 1978 2, 3 B-C 3-1 4 May 22, 1978 2 B-C 4-1 5 May 22, 1978 2 B-C 5-1 6 May 22, 1978 2 B-C 6-1 7a May 22, 1978 2 B-C 7a-1 7b May 22, 1978 2 B-C 7b-1 8 May 22, 1978 2 B-C 8-1 9a May 22, 1978 2 B-C 9a-1 9b 9 9c 10 May May May 22, 22, 22, 1978 1978 1978 2 2 2 B-C B-C B-C 9b-1 9c-1 10-1 REVISION 9 - JUNE 1979 Q&R-i 287 6

MIDLAND 1&2-ER(OLS) Question ID NRC Request ER Revision Pare No 10a May 22, 1978 2, 3 B-C 10a-1 11 May 22, 1978 2 B-C 11-1 12 May 22, 1978 2 B-C 12-1 13 May 22, 1978 2, 3 B-C 13-1 14a May 22, 1978 2 B-C 14a-1 14b May 22, 1978 2 B-C 14b-1 15 October 18, 1978 3,4,7 B-C 15-1 Endangered Species 1 Occober 11, 1978 3, 4 END 1-1 2 October 11, 1978 3, 4 END 2-1 3 October 11, 1978 3, 4 END 3-1 4 October 11, 1978 3, 4 END 4-1 5 December 22, 1978 5 END 5-1 6 December 22, 1978 5 END 6-1 Floodplain Management 1 Janua ry 31, 1979 6, 7 FPM 1-1 2 January 31, 1979 6, 7 FPM 2-1 3 January 31, 1979 6, 7 FPM 3-1 Heat Dissipation 1 May 22, 1978 2 HDS 1-1 2 May 22, 1978 2 HDS 2-1 3 May 22, 1978 2 HDS 3-1 4 May 22, 1978 2 HDS 4-1 Hydrology, Water Use and Water Quality 1 May 22, 1978 2 HYD 1-1 2 May 22, 1978 2 HYD 2-1 3 May 22, 1978 2 HYD 3-1 4 October 11, 1978 3 HYD 4-1 5 October 11, 1978 3, 9 HYD 5-1 6 October 11, 1978 3. 9 HYD 6-1 7 Octo.er 11, 1978 3 HYD 7-1 8 October 11, 1978 3, 4 HYD 8-1 9 October 11, 1978 3,4,5 HYD 9-1 10 October 11, 1978 3, 4 HYD 10-1 11 October 11, 1978 3 HYD 11-1 12 October 11, 1978 3 HYD 12-1 13 October 11, 1978 3, 4 HYD 13-1 14 October 11, 1978 3 HYD 14-1 Meteorology 1 May 22, 1978 2 MET 1-1 2 May 22, 1978 2 MET 2-1 3 May 22, 1978 2 MET 3-1 4 May 22, 1978 2, 3 MET 4-1 5 May 22, 1978 2 MET 5-1 REVISION 9 - JUNE 1979 Q&R-ii ') f t Lde ,; i j q. ,

MIDLAND 1&2-ER(OLS) Question ID NRC Request ER Revision Page No 6b May 22, 1978 2 MET 6b-1 7 May 22, 1978 2 MET 7-1 8 May 22, 1978 2 MET 8-1 9 May 22, 1978 2 MET 9-1 10 May 22, 1978 2 MET 10-1 11 May 22, 1978 ' klET 11-1 12 May 22, 1978 '

                                                       '1ET   12-1 13                  October 11, 1978         3       MET    13-1 14                  October 11, 1978         3       MET    14-1 15                  October 11, 1978         3       MET    15-1 16                  October 11, 1978         3       MET    16-1 17                  October 11, 1978         3       MET    17-1 Plant Effluent Chemistry 1                   May  22,  1978         2, 9    PEC       1-1 2                    May  22,  1978         2, 3, 4 PEC      2 -I 3                    May  22,  1978         2       PEC      3-1 4                    May  22,  1978         2, 9    PEC      4-1 5                    May  22,  1978         2       PEC      5-1 6                    May  22,  1978         2, 9    PEC      6-1 7                    May  22,  1978         2       PEC      7-1 8                    May  22,  1978         2       PEC      8-1 9                    May  22,  1978         2       PEC      9-1 Radiological 1                 November   16, 1978      4, 5    RAD      1-1 2                  November   16, 1978      4       RAD      2-1 3                  November  16,  1978      4       RAD      3-1 4                  November   16, 1978      4       RAD      4-1 5                  November 16, 1978        4       RAD      5-1 6                  November 16, 1978        4, 5    RAD      6-1 7                  November 16, 1978        4       RAD      7-1 8                  November 16, 1978        4       RAD      8-1 Socioeconomics 1                    May 22, 1978           2       SOC      1-1 2                    May 22, 1978           2       SOC      2-1 3                    May 22, 1978           2,3,4   SOC      3-1 4                    May 22, 1978           2       SOC      4-1 5                    May 22, 1978           2       SOC      5-1 6                    May 22, 1978           2, 3    SOC      6-1 7                    May 22, 1978           2       SOC      7-1 8                  Octooer 11, 1978         3, 4    SOC      8-1 9                  October 11, 1978         3       SOC      9-1 10                   October 11, 1978         3, 4    SOC    10-1 11                   October 11, 1978         3       SOC    11-1 12                   October 11, 1978         3, 4    SOC    12-1 13                   October 11, 1978         3, 4    SOC    13-1 14                   October 11, 1978         3, 4    SCC    14-1 15                   October 11, 1978         3       SOC    15-1
                                                            -  i uQ 'i ,.,,s REVISION 9 - JUNE 1979               Q&R-iii                            '

F

MIDLAND 1&2 - ER(OLS) 9 AQUATIC ECOLOGY QUESTION 2 What are conservative levels of metal concentrations from the plant discharge and what is the anticipated size of the chemical plume to produce a 1:9 dilution at various flows (from anticipated lowest flows to average flow)?

RESPONSE

2 Corrosion products are addressed in Section 3.6.4.3. Assuming that the

   , corrosion product quantities described in this Sectica are present in the I

lcoolingpondblowdownat the average blowdown rate, this would result in metal concentration incremental increases as follows:

   ,                 Copper         0.2 ppm l                 Zinc           0.07 ppm l

Tin 0.002 ppm 9 Iron 0.3 ppm l Ifoweve r , it is expected that most of these corrosion products will be assimilated in cooling pond sediment. The estimated size of the chemical plume to produce a 1:9 dilution over a range of river flow is as follows: River Flow After Length Along Makeup Withdrawal Bank Area Enclosed (cfs) (ft) (Acres) 770 5,000 7 l 3,450 14,000 25 REVISION 9 - JUNE 1979 AEC 2-1 h[j ')

                                                                                 ,,- qc

MIDIANI) 1&2 - ER(OLS) These estimations are based on isotherms observed in the physical model at the 9 Alden Research Laboratory. Because the effluent from the tertiary pond of Dow Chemical Company was included in the model with an excess temperature of 5 F, the estimated size should be conservative. REVISION 9 - JUNE 1979 AEC 2-2 q Il b ],. {} ll

MIDLAND 1&2 - ER(OLS) AQUATIC ECOLOGY QUESTION 10 Please explain plant operations in regards to water intake, discharge and use of cooling pond water during a 100-day drought (ER, pp. 3.4-5 and 3.4-6). Will river water be able to be used for make-up water? Will normal discharges be made to the Tittabawassee River? If cooiing pond water has to be used during 100-day droughts to maintain normal station operations, thus depleting cooling pond volume with time, to wnat degree will the 5 F discharge plume enlarge over time (e.g., when the cooling pond is 3/4, 1.2, and 1.4 full)? Provide estimate of chemical releases to the Tittabawassee River under these three cooling pond conditions.

RESPONSE

ER Section 3.4.3 has been revised to clarify cooling pond operation, makeup system operation, and blowdown system operation during a 100-day drought. 2lERSection3.4.5hasbeenexpandedto include a statement that blowdown will be maintained witLin the thermal limits discussed in ER Section 5.1. ER Section 3.6 has been revised to clarify that normal chemical discharges excluding pond blowdown are made during the 100-day drought. However, the 9 high TDS discharges can be routed to the cooling pond if river TDS conditions do not permit their discharge to the river. The discharge of chemicals to the Tittabawassee River is presented in ER 2lSection3.6. Both c.aximum and average values for blowdown are provided. As REVISION 9 - JUNE 1979 AEC 10-1

                                                              ]

MIDLAND 1&2 - ER(OLS) 2lintermediatepondconditionvaluesat intermediate pond capacities are within the maximum pond concentration listed in Section 3.6, these intermediate values are nit included. REVISION 9 - JUNE 1979 AEC 10-2 ((h l? . ,-

MIDLAND 1&2 - ER(OLS) AQUATIC ECOLOGY QUESTION 12 Provide a draf t copy of the cooling pond discharge performance study done by ALDEN.

RESPONSE

Six copies of each of the following two final reports were provided to the l Nuclear Regulatory Commission under separate cover on May 21, 1979: i a. Investigation of a Thermal Plume in a Shallow River - Hydrothermal l 9l Model Studies - Cooling Pond Blowdown Discharge - Midland Nuclear l l Power Station, Alden Research Laboratory, April 1979.

b. Midland Power Plant - Cooling Pond Operation Study, Bechtel Associates Professional Corporation, March 1979.

3

                                                                 ,(-
                                                                    /     t REVISION 9 - JUNE 1979                AEC 12-1                       

MIDLAND 1&2-ER(OLS) IIY"kOLOGY, WATER USE AND WATER QUALITY QUESTION 5 The Midland plant has a well-lefined schedule for obtaining makeup water from the Tittabawassee River to the cooling pond; however, a discharge scheme to the river is undefined. Identify the planned diccharge scheme. Incorporate in your response: circumstances under which discharge will occur during low flow, whether discharge will occur when makeup is not occurring, and whether makeup and discharge volumes will be constant during the entire year.

RESPONSE

9 l Refer to revised ER Sections 3.4.5 and 5.1.2 which describe the planned cooling pond blowdown discharge scheme. Makeup and blowdown volumes are not 3 constant during an entire year. During the months of March, April, and May, pond blowdown discharge will most likely be continuous. For the remaining months, the pond blowdown discharge may be intermittent. At any given 9 instant, the pond blowdown flows may be between 5 and 220 cfs or there may be no pond blowdown discharge flow. Normally, pond makeup occurs as necessary when river flow is adequate (refer to ER Section 3.4.4) to offset evaporation 3 and pond blowdown losses and makeup can occur without pond blowdown. At any instant, when the pond is full, poud blowdown can occur without pond makeup in 9 accordance with the operating scheme presented in revised ER Sections 3.4.5 and 5.1.2. O h 9o> s REVISION 9 - JUNE 1979 HYD 5-1 cU, <r,'7 3 7

MIDLAND 1&2-ER(OLS) HYDROLOGY, WATER ESE JtND WATER QUALITY QUESTION 6 At the site visit (September 6, 1978), it was learned that a new model has predicted a different thermal plume. Indicate the expected size of the mixing zone during worst case canditions using the new model.

RESPONSE

Only one physical model is used to predict thermal plumes in the Tittabawassee River. During earlier stages of the physical model test program conducted at Alden Research Laboratory, relatively large blowdown flowrates for given river discharges were used which resulted in long thermal plumes. As the model l study progressed, an analytical simulation of the cooling pond operation employing preliminary physical model test results was made. The simulation 3 indicated that smaller blowdown flowrates are sufficient to control pond total dissolved solid concentration within satisfactory levels. In the final physical model test series, the edge of thermal plumes as defined by location of the 5 F isotherm as determined by the average temperatures obtained by 25 scans of each thermocouple are forced to terminate within the physical model ' by reducing blowdown flowrates. Maximum allowable blowdown flowrates were determined in the laboratory over a range of blowdown excess temperatures for five river discharges covering the range from 920 to 3650 cfs. The 9 anticipated operational cooling pond blowdown discharge scheme and physical effects are described in ER Section 5.1.2. OC3 (J ", - ' cJs i REVISION 9 - JUNE 1979 HYD 6-1

MIDIANI) 1&2-ER(OLS) PIANT EFFLUENT Cl[EMISTRY QUESTION 1 Please explain why the average values of intake, evaporation, and olowdown water flows dif fer markedly in Section 2.4.5.1, p. 2.4-10 and in Table 3.3-2.

RESPONSE

9 The numbers appearing in ER Section 2.4.5.1 and in Table 3.3-2 have been adjusted to reflect the final cooling pond operation study results. 9CJ ,

                                                                 ~ O ,; l _r ' , r[

REVISION 9 - JUNE 1979 PEC 1-1

MIDL\ND 1&2 - ER(OLS) PLANT EFFLUENT CIfEMISTRY QUESTION 4 Please explain why the value of the increment;l increase in sulfate ccncentration given in Table 3.6-4 is not consistent with the sulfuric -_ a use given in Table 3.6-6. What is the basis of the acid use calculation and what parameters were used for water quality?

RESPONSE

I l It is anticipated, but cannot be quantified, that the long exposure in the lcoclingpond(3-6 days) to atmosphere, and cooling pond sediment, rip-rap, and 2 suspended matter will adversely affect the parameters used to determine the Langelier Index. Hence, the value fcr annual sulfuric acid use given in ER Table 3.6-6 for the circulating water system represents t'le maximum rating of the acid injection system. The average and maximum values given in ER Table 3.6-3 were used to compute 9 the 200 ppm average and 1100 ppm maximum increases in pond sulfate concentration given in the foatnote (a) of ER Table 3.6-4. This estimate 2 assumed that the cooling pond has no effect on the parameters used to determine the Langelier Index.

                                                             '} } ) O-REVISION 9 - JUNE 1979               PEC 4-1

MIDLAND 1&2 - ER(OLS) PLANT EFFLUENT CIIEMISTRY QUESTION 6 How were the values for t.te maximum chemical concentrations determined? (ER, Table 3.6-4)

RESPONSE

9 The maximum expected chemical concentrations were based on the maximum TDS consentration determined by the cooling pond operation study. 2 Tittabawassee River water analyses gathered by the Applicant's water quality monitoring program were examined for maximum ratios of parameter concentration 9 to TDS concentration. These maximum ratios were then applied to the maximum TDS concentration to estimate the maximum expected parameter concentration for the cooling pond blowdown. 2 The maximum expected chemical concentrations in the combined Plant discharge were estimated by combining the maximum expected cooling pond blowdown plus 9l footnote (a) values at the minimum blowdown flow with the maximum expected 2l chemical concentrations and flows given in Table 3.6-2.

                                                                  .b    ()' '

REVISION 9 - JUNE 1979 PEC 6-1}}