ML19247E370

From kanterella
Jump to navigation Jump to search
Describes Methodology,Assumptions & Results of Analytical Study Performed to Determine Temps Reached by Equipment (Instrument Transmitter) During Hydrogen Burn in dead-ended Compartment
ML19247E370
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 03/03/1981
From: Matthews P, Parczewski K
Office of Nuclear Reactor Regulation
To: Benaroya V
Office of Nuclear Reactor Regulation
Shared Package
ML19247E371 List:
References
FOIA-82-96 NUDOCS 8103260310
Download: ML19247E370 (23)


Text

t e

q 4

/

l NAR O O 1% f h%

UMi >

" DRAT;DUM FOR-Victcr benaroja, Chici ChCnical Encineerina Et anch

./

N'c I

\\

Division of ' E ngineci-ing

' f[ A l/b[hW 7

FLO:

K. 1. Parczewski i

l'f '

Chemical Engineering Eranch I -i u,3, 1 IOOl A T Division of Enoineering i 'C),

sciQg,%

'HPU:

Philip !'atthews, Section Leader of,x

',Jci l i;#;i\\ \\y Chcmical Technoloav Section Chemical EngineerEng Branch Division of Engineering

SUBJECT:

DETERMINATION OF TEMPERATURES REACHED BY EQUIPMEr;T DUR! fig MYDROGEN BURN IN McGUIRE PLANT Puroose and Conclusion This memo describes the rethodology, assurptions and results of the analytical study which was perf orned to determine the temperatures reached by a typical piece of equipment (instrument transnitter) during hydrogen burn in a deed-ended compartment of the McGuire plant. The results of thir analysis indicate 3200F.

that the temperature reached by the equipment does not excf. w AssumptiC'ns The equipment modelled in the study consisted of a transmitter having a rectangular parallelepipedic casing 10 in. X 10 in. X 7 in. in size, made from 3 in, thick metal plate and internal electronic equipment represented

~i by a 4 in. X 4 in. X 4 in. cube made of a material having the thermal capacity i

of steel, but only about one half of its density (it is assumed that there is about E0 percent of voids present). There is an assumed 3 in gap between the casing and the internals. The transnitter is attached to the center of a vertical wall in a 26 f t. X 26 f t. X 26 f t cubical compartment.

geometrical arrangement used in modelling is shown in the sketch below:

The I

I

( / f f / / / / / /f / //

ki4ial ?odWo n

1 iw. oir gsy t

f -

d c,f ky ugen fisvw t.

/.r-s

,,1,

/

j

/

N k,

f

""d5 M P.

/

t yg j,/

deel b eer-f (/ i%.s tr ew d gr{ ht.dtt nk)

[ ]

o,,,cd c uine

/

.,m p!,

W / H77 /RZ W

~

.G

, _4 L

"">l-0 03 26.0.1y'6 l'

l

.-._.L.____

r. n c,cw.# w,e

,m.,.,c; "

OFFICIAL RECORD COPY

o

+

c r

,a-9 v

t/Ap (), g V ictor wroya The majcr assumptions made in this analysis are:

1.

The compartment is surrounded by a ( in, thick steel liner which simulates a structural heat sink in the analysis.

2.

Initially, the compartment contains air with 10 v/o of hydrogen and the whole system is at 1600F.

3.

Hydrogen starts burning at the cpposite side of the co"partment and the flame propagates towards the wall containing the transmitter.

During this process the flame front occupi25 the whole vertical cross sectional plane of the co"partment.

4 The transfer of thermal energy between the casing ano the compartments environment occurs in two phases:

(a)

In Phase I heat is transferreJ by radiation from the traveling flame front ana by convection from the gas in front of it.

(b)

In Phase II heat is transferred from the hot gas by both radiation and convection.

5.

During both these phases, heat from the hot gas is transferred by radia-tion and convection to the structural liner.

6.

There is neither exchance of heat between the liner cod the containment concrete behind the liner nor between the casing or the internals and the liner.

7.

An infinite thermal diffusivity of all solid materialt is postulated and hence in each individual component uniform temperature is achieved.

8.

The exchange of heat between the casing and the internals occurs by radiation.:nd conduction through the 3 in, gap (no convention transfer is assumcc).

9.

The temperatures of hot gas after a hydrogen burn are based on the output of the CLASIX computer code provided by Duke Power Company (see attached Fig. 1). However, they are readjusted by considering heat loss to the structiral heat sinks (secondary heat sink) represented in the model by the in, steel liner.

Description of Analysis With the assumptions listed in the previous section the following heat transfer mechanisms are postulated; o,..c,

%ch l

j J

.L

.L..___

J.

_f i

OFFICI AL RECORD COPY uc m u

. m m.." " ' - '

+

n S.

t..

N,N

.e m

Victor Lenaroy MAR 0 31961 1.

Heat transf er t>r>turzen compartment 's E nv ironment and the casing (a)

Phase I kri k;

  • Treg (0

where:

- total heat flux during Phase I between compart-Tl rent's environment and the casing th

- heat flux from the flame by radiation f

- heat flux from the cold gas by convection c.g G Note: All heat fluxes are in: Stu/hr ft 4-kp = P. 6 6,,F((46o+0)49 - (4 60 t O ),,

(1) c 4

e 2

> - Stefan-Baltzman constant = 0.1713 X 10-8 Btt/hr ft gq where:

E

- emissivity of flame = 0.2 C - emissivity of casing = 0.8 e

F-view factor = 0.58 The value of the view f actor F is obtained by arithmetically aver-aging two values of F:

one when the flame is still at the opposite wall (F = 0.16) and the other when the flame reaches the equipment (F = 1.0)

O - temperature of flame = 2053 F, based on adialsatic 0

g temperature of burning mixture of air and 10 v/o hydrogen.

O,- temperature of casing, OF 6,, )I.te-

~

he,,=0.32(6 ge This ia an expression for natural convection heat transfer in laminar regime, where:

6

- temperature of cold gas, defined by equation 19, OF g

(b) Phase II h

6 rgh +. pegh (4)

=

T1

0., a W I'

s,n y,,

m >!

4

---...--_,x-__..___

OFFICIAL RECORD COPY

.- i o w

.4 4

m,"

a e

y e

,\\

/(

vittor Benareya 4-MAR 0 e 1931 pT2.

- total heat f lu> during Phase 11 bett.cen vhere:

compartraent's hot gases and the casing

% h - heat flux from the hot gas by radiation to the I

casing

- heat flux from hot ga, by convection to the casing The heat fluxes from the het gas to the casing are based on the average gas temperature obtained by averaging the highest and the lowest gas temperatures reached t etween two successive burns.

The averaging is calculated differently for radiation and convection (equations 6 and 8).

4 1-4vgh= c.s$ e F L(4 6o + 0,c,,) - (4s o + 9 ) -[

(g) c c

where:

6

- emissivity of gas = 0.6 F

- view factor = 1.0 (46 0 + Sra)4 : k2. ((4-60 + 6gh)4+ (460 + S c)4(6) g O h - temperature of hot gas, defined by equation 18, OF g

= O 32. ( O O

(7 )

ca c

'/2,(Og e, +

gh (g}

where; O

S s

2.

Heat transfer between the casing and the internals

)

+

(9)

T re cc where:

- total heat flux between the casing and the T

internals k

- heat flux by radiation

$-c L - heat flux by conduction through 3 in air gep.

o,,o y l'

n avm p,

3 I

' ];_

' e_._

u c. 7,m, m m m.so a."

OFFICI AL R ECORD COPY

sq'

.w Victor Benaroya 0 3 $8; (4 0 + S c)4 - (4 6 0 + 6 )

(to,)

4 4

=c-.e,.c F

c c

Tc where:

E

- enissivity of ir.ternals = 0.8 c

F

- view factor = 1.0 be

- temperature of internals, F

&c ' =

k (e-ed (u) c o.as O

where:

K - thermal conductivity of air = 0.25 Btu /hr f t F.

3.

Heat transfer between compartrient's hot gases and the liner (secondary Ljtsink) n h

bI T

Tgh C$

uk

- total heat flux between compartment's hot gases where:

and the liner (secondary heat sink) 4-L.(4 60 + %,)+- (46 0 + Q)(i3) hrp =

q.-.6 E.E ir g

where:

E

- emissivity of liner = 0.8 g

Orm - average hot gas temperature, defined by equation 6, of O

- temperature of liner, OF L

F

- view factor = 1.0 l 313

)

( (- e )

g)

=

o i3 9, p c

This is an expression for natural convention heat transfer in tur-bulent regime, where 6

- average hot gas te aperature, defined by equation 8, A

of ca nc i p,

-, el.

mr pf e.oc.c n7 b,

e.

OFFICIAL RECORD COPY s

..1..'"

..n p

<y

,e

'/M 0 ev 193[

Victor Ocnaroya 4

/sdjustment of cas tcnperatures given by the CL AS]X ( ode The adjustment consists of including structural heat sirA (the l iner) in addition to the heat sinks considereo originally in tne CLt.31X Code (ventilation and ice condenser) and calculating th f ractio< of heat f rom the gas in the compartment which would go to this sin'..

The frac. ion of heat removed from the gas in the compartr:ent is given by the f(llowing expression:

w Ce-u + e4-Om me) og g_

VL(Geu+6~C)- IGO where: N - fraction of the sensible heat of the gas in the com-partment, as determined by CLA51X Code, which is trans-ferred to the structural hea sinks O

6**

- maximum and minimum temperatures fron I

CLASIX Code, defined in Fig.1 t

@r UO d.t a e = }. Q t 'C s

X*- volume to area ratio (for heat transfer) for the where:

compartment = 4.3 ft.

ja - density of gas = 0.0534 lb/f t3 Q-specificheatofgas=0.25 Btu /lb F

f - time between burns 0.061 hr. (220 sec) n n

tn

)

.\\

TtC th (Oh*-temperatureoflineraftern burn, UF (the wherc:

maximum value of n is 10) k

- volume to area ratio (for heat tran3fer) for I

the-lirter--0.0447-f b i

e,, a yl' s.,

q; s

t-Patt )

L...... < s.1 L _

OFFICIAL RECORD COPY

.i t u n.

u,.o s..

v.

a

M,,

9,

+

%.a.

y, Victor Lcnaroya yg g 3 1991 g

- density of liner - 439 lt,/f t",(steel) 0 C

specific heat of line.

=0.4 Blu/lb F (steel) t 6 p = 6

- (i-N) + i c o N gg 6,,,;,,

6 - N) + I4 o W (ig) e g c. =

The value of f4 and (%)n were determined by solving equations: 6, 8, 12, 13,14,15 arid 16 using iteration techniques. The results are shoen in Fig. 2.

Iney indicate that more than 75% of the heat, which ncrmally would go to the gas in the compartment and raise its temperature, is transferred to the secondary heat sink.

In calculating the temperatures of the casing and the equipment the value of fi = 0.75 is therefore used.

5.

Determination of temperatures reached by the casino lhese temperatures were cz culated by means of the following equations:

[i

,t g

@n M

(.20)

$ri d6 +

C (O.(=160+j

>,;g,,.c,(4 c

s i

th (9h-temperatureofcasingaftern burn, UF where:

t h

volume to area ratio (for heat transfer) for the e

casing = 0.208 ft, y,,

- density of casing = 439 lb/f t3 (steel)

C specific heat of casing = 0.14 Btu /lb F (steel) e f

time needad for the flame to cross the compartment, hr.

i J'

~# #-

(2.1) t, y

flame velocity = 1.7 ft/sec V

[

o...a (,

y s~.

... +

'r v c inu

,o e.,,u,<,*

OFFICIAL RECORD COPY 4

,e

,a s

e s

s

,?-

.a 1: t !<wro.

The values of ( &c)n were detcrmined fcr t ', cena cutive burns by soivino tquations: 2,3,4,5,6,7,8,c. ;.nd El using iteraticn technique:.. The results are shown in fig. 3.

6.

Deternination of temperatures reached by the internals These ter..peratures were calculated using the expression shown belo..:

-[

q n

Oh

+

), A y,,

C c

c (Oc.)-temperatureofinternalsaftern burn, UF where:

A

- volume to area ratio (f or heat transfer) f or the g

internals = 0.0667 ft.

{c

- density of internals = 200 lb/ft.

0F.

C.

- specific heat of internals = 0.14 Btu /lb c

The values of ( Oc. )n were determined f or 10 consecutive burns by solving equations: 9, 10, 11 and 22 by iteration techniques. The results are shown in Fig. 3.

Results The temperatures of the casing and the simulated electronic internals were determined f or all 10 burns postulated by the CLASIX Code to occur in a dead-ended compartment of the containment in the McGuire plant. The maximum th burn is 3200F.

temperatere reached by the transmitter's casing after the 10 The corresponding temperature for the sjmulated internals is: 2040F, (see attached Fig. 3).

%t K. 1. Parczewski Chemical Engineering Branch Division of Engineering cc:

W. Butler R. Vollmer J. Long Z. Posztoczy J. Meyer P. DiBenedetto V. floonan R. Tedesco D. Ross A. Schtwncer L. Rubenstein R. Birkel C. Tintler H, Levin CMEB:Dp{

,,gEEB:DE

,C 9D c"a

"""'"" > l. K a r z ews k il:r#,..r,

,,yBencrhya.

l e

"" > i 3G/81 36/81 3/ 3/91

_...s.""

OFFICIAL RECORD COPY 4

u;. c. m n o

e LH 4,

t

.e..

v.

I t't

.1 f

pw.uw -~

ur

..,-am

-.,-.n-.q-..-

.t.

c.

P.

L;ng-t;,Dt), Cic--tirtai

--.r

-s,

{Lh(((

b LL i f ' '-

I y - _ __

2 H otec d

l l

D&J i

f e

r t

i i

MCtf,6.6 4C W.{.

i.

~*

.I W

f (V, r

d

  • ~e w=

,_.,,e n

A

-. < w a s ~ - ~ ~ m

--e q

Jh

~

i

-i '

, i l

e y

i-e N

i

/

6 6

i,

r i i i

TT-FF 1

- m,-

... i.... i 4

i F.

i.

i.

6 i

/

EM i

g

.i

- 1 i

i.

i 4.

. i

.i.

. i.....

q_.

. 1 i i........

i.

i i

i 4.

..,i.

I "w 2 1,A

.. t l

o M

m 4

h

,, i.

~

b l M. b""Ws 10 W.'I'.

,.. i....

[

1, i

T i.

y 1

6 c

fir _A 5 -

- 5~6 c' F

_. L,_ L.

1 E

i.....

ii.

5.

1' ni 4

I.

. i....

e i.,

ri

--),

s.

i 6

I.

1 Sr f 4

.t i

. i...

.-. 1 s\\ g..

..... 6.i g.4

...i i 4T 0

.i

...f**. v....

i.'.

i, i +..

.f.. i........

...... i e i..

i j

y.

i 33L2

.f

... s. < u o

, o }...

.e e.. e s ;,.

... 4...,.

7.,.

.... i 7.. 4 4 #,,

,....... i....

j.

.p-

.,e

, u o.. s.. 4.. i.... i n...... *.

m

/

,..,. i.

f.

j.

. i.

.7 4..,,.

t m y..

ib2La T L2 h

420 I

As.9

^

S.0 T !'T I SE 0*:hM )

P90R JR$lNM r

[-

er * ~, * ^

6)

.e o' hc r >l.

.i-

,,..s...t.

a.

--.t....

t 5 g.p h p y g 4

wi[;.

- e w-._

w. c o c n. m.,..,',,' u ',, ' ". "

OFFICIAL RECORD COPY

~

'M S kt,tl S'

.n 2'*

ocok o o.st oost 0o37 o og ogs:

gg q W

001j, I.

i 6

. i ti iqi l'i+

tr titi tj 1.

.i

,, i, l

,I it

'! i'. \\1 l 'e t

.i

d.,i 3

n' t.

.i t t i. t t p.1 4 r t.

rti.

Mp

. i r

ti, t.

t.

1

.t.

t t

tt i i

1, i

t,-

2 t

t t

'i*

t t~

t,*

tt t

  • t

' t

'i t,t t

-ti l

f

. {

,r

,,,..t i,j 6.,

{ i T,

.iti t-t -

1 i

I i

t t.

.i 1

i we,.~,

i i i t -. - t 4 i

t tt' i

l '{ - ' '

' 6:i

b. t

+

'ti i

t t, t ?

t,, '1 *

7. t

. t ;i

!,4:

r. 4. +.t t' t {.'

t

!t i~

t-r i

m t

, t.

j r!

.i

,i.t-

..l;

t. ti j

y

,t

+

%y

. t..

1 r, i

!,i t+

3.,

.S3 6

w.. )

ti.!

', + t t p-a ti,i,!',

m. i r

- i H i,

tii
i i

!ttl i ' s,i

i. m.. ;t

,jA 1

i t+.

It -

t >i ist.

. ~ =

6

. t t,

i i 2

ti

.y

.It t,

6,.

it.

. t t. l t: ti tt't

'i -{ f it ri

+t iti i

't t t l

  • !i 1t+t

'l**

i t%a

+t t.

,i+,

.t.

,t-i t, t t*'t-t

..tt ttt:

i.

.t i,,

H

-i t>* 4 N M, e. N. U II t..i * *AtiI'l* -",I'

t. - 't ~t+t-4 i

,il

i. - ' - i.-.[1. i t M

CQ 7 e. t '

,.t,.-

,:,t

, ii

..i t. } i, i>

..i.

1..t 1,...

{,, s.

+,t,

.t.,

p i t...

e, a},.

1

~

,1,,

,1 l

,4 t,

i.$^'.

OL 5

c'~*r--

,l { -

i-{l t i

tt**

t-8 t, r O

L

' tl1

, ', 1.} *" t t

t' +til

[k--

t-t i r i-

, i, t-1 i

i

+

t t

ittt ttti 1'I

^ t

)

i :

7( -

u

{,

It i

t i

H ;r* t+4 j

[

l-i:'

j -, i. :i ' j it

't!

lt*

t t 't * -

't t*

i

<c

+

+t*r t*i i

t t

+

i.

'i t,*

t'

,"i et t -+ t-t p

i.i

- ~='t.

.- OOC 7.

5 t 6

t~. t tit!

t i l.

i '

' t p" it ti i -

D-

.tI i.'t tit t

! ',, i 1 'I i

i-t' ttt t-t t

-t*

<+

  • 'ti

>tt{i t, ' *f

'ti ii,

i i

1 >.

ti

+ -

i '

i+.

i i

,t

-t h

- H; t+

t t i: !

6,!t s

t t'

)

e i + 1

& I+

'+1; i

1 -

t

. !$~

-t44

+++r un

, p _,,

t !t+

i t

- A

't

i.. ',

'v de- ; %

i n'

e-6 i

.-pr i o+ t-t-

.,j4 i

L..

..., l, ; l -*

! itttr

,i.

ji

, m

't-,,

j e${h....,L

' 5 -+ g.

, 5 4.&

,0 l:

9*

-C

{ } t.' t tp- ",'t-eE

~

i !t ttj*

- +'

01-r*

. I.:.-

t..,, 1, ! _ ;

- r.: I,

.t.- { t.,,i

Q t

+-

s r

r+

  • 't n

c

.m 3

p L.,i a

O

-f-

.}-

. ;,, j.

6

,t-

, l,.

d y

.,l.

i i

1-,1 l.

r, i,

t.,!

t, j ;. ;

t

..,f i

y

,g il

...c i;,

t

t.

..i t a

..l.

Ii!i ti j

gg g

jQ I

ge,

r M

lO

. !.,.4'

. ].',

7--..,'

r. e,. -

. +. '

1

..j.,.

t r+ r i

-_-j

!.d

..-'7 r ee; A

4~++j

+

t-

't

-t-

  • t++

tr t-t Z

  • t t t ',

6

+

+

+ +

t..i l t i r

  • l t ' '. +

- i}

't -. rl-' t.,i n'I

.'t-*

-j F *- -

t., * *t e%

iti Q-9 h+

";i !

+ E t~

- ' + '

J it,-

~r -- t..rt.,+ w+. c.

o m

e i

.,t

,t.,

.. L..

p,

4._

m.

.t._

.n.

r_.

N

!U

- r. -

,o DC

,l.ydmg.pa u

. g

1..+i

. ; 4.JA7p j

,l.

i 1

I t -

l

,I:.

...I

,,,v

-,-.c H

t + ri

+-

a l --

w

, i V i '..t t - f ttit

+ pt "-

rt-

-, 4 i.

t-et 1 il ?l}'

p

,e

.j.

'.'t<

s t rt t i

.t-,

i

..,,l l-j 3

L r.

i.

r, ti

+.itn,-

t,

'it-,i 4 bt t

-d i '.-

0

.I i

rl-F-

64-4 3

o

. i t

+

i I

,7 t

t' i

4

,rt.

t.

+.

4

. H,-

t

.,t...

+3,.*

1.

+

,.t!

t to i+

Ob'

. l. 4' c

.a.

J 2*

i

+

in, M,

,,ji

. j t. '.., t.

-.. '.., t t,

..-r. t

..t

+

g

,' i n,.

e

+

s i

1 3

,t.

o.

i t,

, < j.7

,.4

. l ;. -;

_4. i.--

1.;

.q..i.

l1,

..; l1

+

iiii te'.

i it' j

i.

-p

,l,

{

t

.i j

l'

'i

j

}'i i

i>

ii i i i

jit g

I

'l

~

ttI r

l*

j 2

i

  • 't l

~

I*

i i :

s ij8

.l j.

S b:.

i

.u j

5 3.

7 p,..

3 i.,

t

,,)

t.

,y.

j.,-

i c.

t u

.q..

p c

.g F-

,,1 p-g :

t.

i "r'

t<

'- t i

,iH t'*

4

- r-G o tt -

3,a i

4 I,

g,,

. i.{

1-I

,,'i 1t t

i v',,

+i7 y.

r.

i

+

~

O e.1 13 gt-t j

l i

~

i1

.t t

  • r'i i

- ! t >

ii

, o

't. m H.m oo pps -pq

_ a; A A i

k bb MON h NO TOWWI h

j e

m u

6

"[

6.

O 4

6%

(I A M I6 j

3 p

u U

0 O

O o

o

.(m o g.._

_g;

. cq_

'n

'o

.L

, y gg,;;;_.

,t.

. 1 t

pq y p.

. _.. _.. _1.

77 wm as-9-

u p

.l.

76 6

6 i

l

__.-e-E

..g b

b g.

_._.-e.

.go..

p h.-,-.-

7.,...

_ 7..

48' a

. - ~ - _

5 t.-.

3

.._7

, h.,p A.

i.

~

_4 f...

.. i a-.

._.,L s

O

f.. -

4 g

A

.. + -

y

...--r--

=. -.

. s E

_h'

.. d..-

.-m

.p-

.. ~.

f8 P

y

--..g----

h.g p.

..me.

  • .., mis-

.e

..+

w.-

.M-.ep.

b

. e i4-.

4 p

w

=$

1 y

p 5

. i_.

_'. 14

.-L.

1,.-.

L LL.

_ L a-3

.1,

,t _-

w-

.+.

-.A k

f

. r._

p o

_.. c q.

p

_ _ _. _ _....._.. p

.4-..

p

"'T~)

3 -._

f 0 0 --

  • ----3, p

- !y '..

OO O p

^

~

. es..

n-_.

A o

g T-

}

-d A.,

pl

7....

.. j... _-

.f u_

p P

. a..

.\\- - - ---

'I g

g p

5....

, m..

I*4 0

d4 4.,__

1 i..

6.

~

E'

' eD-I.+

g.

s r

j

--~ ~~

~

T.

m

,e 3

m.

..1 y

g p n

ay

.. _. l

.p 5

6 g

}_....

F-_-.+

-- y-

}-

y p

p s:

L.

~

~

. J MI

.g

. P a

___ _J.

n__

o e

P.

.._r-n..

_. =

P o

u e

J -

e p

-L I