ML18100A193

From kanterella
Jump to navigation Jump to search

Enclosure 13 - Tn Americas LLC Calculation 11042-0207, Revision 1, Nuhoms 61BTH Type 1 DSC Itcp and Otcp Maximum Weld Flaw Evaluation
ML18100A193
Person / Time
Site: Monticello  Xcel Energy icon.png
Issue date: 04/05/2018
From:
Northern States Power Company, Minnesota, TN Americas LLC
To:
Office of Nuclear Material Safety and Safeguards
Shared Package
ML18100A173 List:
References
CAC 001028, EPID L-2017-LLE-0029, L-MT-18-013 11042-0207, Rev 1
Download: ML18100A193 (35)


Text

ENCLOSURE13 TN AMERICAS LLC CALCULATION 11042-0207, REVISION 1 NU HOMS 618TH TYPE 1 DSC ITCP AND OTCP MAXIMUM WELD FLAW EVALUATION 34 pages follow

Calculation No.: 11042-0207 Form 3.2-1 Calculation Cover Sheet Revision No.: 1 orono Revision 13 Page: 1 of 34 PROJECT NAME: NUHOMS 618TH Type 1 DSCs for Monticello OCR NO (if applicable): 1001150-00 Nuclear Generating Plant PROJECT NO: 11042 CLIENT: Xcel Energy CALCULATION TITLE:

NU HOMS 61 BTH Type 1 DSC ITCP and OTCP Maximum Weld Flaw Evaluation

SUMMARY

DESCRIPTION:

1) Calculation Summary This calculation qualifies Monticello 61 BTH Type 1 DSCs 11 -15 with the maximum flaws in the Inner Top Cover Plate (ITCP) and Outer Top Cover Plate (OTCP) closure welds.
2) Storage Media Description Rev. O and Rev. 1: Coldstor - \areva_tn\11042\11042-0207-000 If original issue, is licensing review per TIP 3.5 required?

Yes D No D (explain below) Licensing Review No.:

N/A Software utilized (subject to test requirements of TIP 3.3): Software Software Log ANSYS Version: Revision:

17.1 35 Calculation is complete Date:

Originator Name and Signature: Samuel Tissot c:275 f)- 03/19/2018 Calculation has been checked for consistency, completeness, and correctness Date:

-=t>~ 0 ~ 03/1 9/2018 Checker Name and Signatu re: Daran Ossinger Calculation is approved for use Date:

Project Engineer Name and Signature: Raheel Haroon J1kl 3/22/2018

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 2 of34 REVISION

SUMMARY

Affected Affected Rev. Description Paaes Files 0 Initial issue All All Revision per OCR 1001150-00 to provide NRC with the 1 1-2, 6 None needed information from RAI ST-1

Calculation No. 11042-0207 Revision No.

orano Calculation Page 3 of 34 TABLE OF CONTENTS Page 1.0 PURPOSE .... .. .. ....... .. ..... ....... .. ... .. .................... ... .... ...... ...... .. ............ ..... ... ......... .. ... ..... ........ ..... ... ......... 5 2.0 ASSUMPTIONS .. ...................... ...... ............... .. ................................. ....... ...... .... .. .. ..... .. .... ...... ............ .. 5 3.0 DESIGN INPUT/DATA .... ............... .............................. ...... .. ....... ........... .... .... ..... .. ............. .... ... .. .... ...... 5 3.1 Flaw Details and Geometry .... ........ .. .. ... .. ..... ... .. .. .. ........................ .. .... .... ... ..... ....... ..... ... ....... ..... .. 5 3.2 Material Properties ...... .. .. ......... ..... ..... ....... ... .. .. ...................... .... ............. ...... .... ....... ....... .... .... ... .. 5 3.3 Design Criteria .... ...... ......... .... ..... ...... .. .. .. .. ..... .. .. .. .. .. .. .................. .. ... ... ... ... .... ..... ..... .. ....... .... ...... . 5 4.0 METHODOLOGY ..... .. .... ... .... .... .. .... ... ...... .. ... .. .. .. ............... ..... .......... .. ... .. ........ ... ..... ...... .... ....... ..... ... .... 6 4.1 Analysis Method and Acceptance Criteria .... .. ............... ........ .. ... ... ..... ....... ....... .. ......................... 6 4.2 FEA Model Details .... ..... ..... ... .... ... ...... .. .. ..... .. .. .. .. ... .... .................. ......... .... ... .. ...... .... ........... ...... .. 6 4.3 Limit Load Solution Details ....... ... .... ....... .. .. .. .. .. ... ....... ..... ....................... ... ... .. .... ....... ......... .... .. ... . 6 4.4 Elastic Plastic Solution Details .................... .. .... ... ... .. .... ... .. ... .... .. .. ... ............ ............. ... .. ... ....... .... 6 4.5 Load Cases ... .... ... ... ..... .. .... ..... .. .. ... ... ......................... ........ .... .. ... .. .. ... .... .. .... .... .... .................... ... . 7

5.0 REFERENCES

.. .... ... .. .... ... .. .. .... .. ... .. .. .. .... .. ... .. ...... .. .......... ........ .................... ..... ... .... .... ....... .... ............. 8 6.0 ANALYSIS AND RESULTS .. .... .. .... .. .. ... .... .. .. .. .. ...... ...... ........... ................. ......... .... ...... ....... .................. 8 6.1 LIMIT LOAD ANALYSIS ...... .. ...... .. ................. ........ .................. .... .. .. .. ...................................... .... 8 6.1.1 2D-Axisymmetric Analyses for Internal Pressure .......................... .. ........ .... .......... ........... 8 6.1.2 3D-Half Symmetric Analyses for Side Drop Loading ............ .... .... .. .. .. .................... .. .. .. ... 8 6.2 ELASTIC-PLASTIC ANALYSIS .. .................. .. ......... ................. ................. ............... .. ... ...... .... .... 8 6.2.1 2D-Axisymmetric Analyses for Internal Pressure .. .. .. .. .... .... .... ................ .... ............. .. ...... 8 6.2.2 3D-Half Symmetric Analyses for Side Drop Loading ............ .... ...... .................... ... .......... 9 7.0 DISCUSSION AND CONCLUSIONS .. ... .... .. ........... ...................... ... .. ..... .... .... ..... ........ ..................... .... 9 8.0 LISTING OF COMPUTER FILES ................................................... ...................... ......... ......... .. .. ......... 10 APPENDIX A ...... .. ... ... ... ......... ... ... ... ... ..................... .......... .. .. ........ .. .. ..... .. ... ... .. .. ... .. .... .. ....... .. ... ........ ...... ... .. 31 LIST OF TABLES Page Table 1- Internal Pressure in the 61 BTH Type 1 DSC (Ref. [5.3]) ............................................. ............... .. 11 Table 2- Maximum Temperatures in the 61 BTH Type 1 DSC Shell (Ref. [5.3]) .. .... .... ... .. .. ....................... . 11 Table 3- Properties of SA-240 Type 304. Ref. [5.3] ........................ ..... ...... .... .... .. .. .... ....... .. ... .. .... .... .. .... ... .. 12 Table 4- Properties of SA-36. Ref. [5.3] .. .. .. ........ .... ... .. .. .... ... ... ...... .... ... ...... ... .. .. .. .... ..... .. ..... .. .... .... .... .... .... 13 Table 5- Summary of Limit Load Analysis for the maximum weld flaws .. .... .. .. .................... ...... ........ ......... 14 Table 6- Summary of Peak Strain Values for Elastic-Plastic Analyses for the maximum weld flaws ....... .. 14 Table 7- Summary of Elastic-Plastic Analysis Results for the maximum weld flaws ...... .... ....... .. ............... 15

Calculation No. 11042-0207 Revision No.

orano Calculation Page 4 of34 LIST OF FIGURES Page Figure 1 - Weld Flaws in Original Model (Ref. (5.31) ... .. .. .. ....... .. .. .. ... ... ... ...... ......... .... .... ... .. .. .. .. ... .... ........ .... 16 Figure 2 - Maximum Weld Flaws based on the allowed design limits .... .. ....... ... .. .. ......... .. .... .... .... ......... .. .... 16 Figure 3 - Overview of the 2D-Axisymmetric Model. ... .. ... .... ... .. .. .. ... .... ...... .... .... .. .. ... .... .... .... .... ... ... ... .... ...... 17 Figure 4 - Mesh Details at the Welds for 2D-Axisymmetric Model. ........ .............. ........... ...... ....... .. ..... ......... 17 Figure 5 - Flaw Locations for 2D-Axisymmetric Model. .......... .... ........... .. .... .... ... .. ... .. .. ...... .. ... .... .... ....... ... .... 18 Figure 6 - Overview of the 3D-Half-Symmetric Model. ...................... ........... ... .. ... ... ... ........ ... ...... ... ... ..... .... .. 19 Figure 7 - Detail Views and Mesh Plots of the 3D-Half Symmetric Model .. ..... .... ...... ............................ ..... . 20 Figure 8 - Isometric Views of 3D-Half-Symmetric Model ....... ... ..... ... ........ .... ... ... .............. .. ... .... ... ..... .. .... ... . 21 Figure 9 - Results of Limit Load for 2D-Axisymmetric Model - Service Level A/8 ..... .. ..... ..... .. .. ..... ....... .. .... 22 Figure 1O - Results of Limit Load for 2D-Axisymmetric Model - Service Level D ... ....... ..... ... ..... .. .. ...... .... ... 23 Figure 11 - Deflection at the Center of the OTCP for the 2D-Axisymmetric Model for Limit Load ..... ..... ..... 24 Figure 12 - Equivalent Plastic Strain at 32 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL A/B Internal Pressure ... .. .. .... ... .. .... ........ ........... .......... ....... ... ..................... ........... ...................... ... ...... .. .... 25 Figure 13 - Equivalent Plastic Strain at 65 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL D Internal Pressure ... ..... ...... ..... ..... ........ ............. ... ... .... ... ..... ... .......... .. ....... ............................ ....... ... ..... 26 Figure 14 - Equivalent Plastic Strain at 100 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL D Internal Pressure .. ... ... ......... ..... .. ... .. ....... .. ....... .... ....... ... ... ... .. .. .... ... .......... ... .... ..... .... ...... ..... .... ... ... .. ... 27 Figure 15 - Equivalent Plastic Strain Plots for 3D-Half-Symmetric Limit Load Analysis - SL D Side Drop with Off-Normal Internal Pressure .. .. ......... .. .... ..... ... .... ... .... ...... .. ..... .. .. .. ....... .. .. ........ ... ... ..... ....... .. 28 Figure 16 - Equivalent Plastic Strain at 75g for 3D-Half-Symmetric Elastic-Plastic Analysis - SL D Side Drop 29 Figure 17 - Equivalent Plastic Strain at 112.5g for 3D-Half-Symmetric Elastic-Plastic Analysis - SL D Side Drop ... ... ... ....... .... ..... ... ..... ...... ........ ......... .... ... ... ..... ... .. .. .. ...... ....... ..... .. .. ...... ... ...... .. ..... .......... . 30

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 5 of 34 1.0 PURPOSE The purpose of this calculation is to evaluate NU HOMS 61 BTH Type 1 (DSCs 11-15) at the Monticello Nuclear Generating Plant (MNGP) per ASME Section Ill criteria with the maximum flaws in the Inner and Outer Top Cover Plates (ITCP and OTCP) closure welds based on the evaluation performed in the reference calculation [5.3] .

2.0 ASSUMPTIONS

1. Assumptions 1 through 6 of Ref. [5.3] are applicable to this calculation .
2. The flaws (at the same locations as Ref. [5 .3]) are allowed to be increased until the design limits criteria are reached .
3. The DSC design in this calculation is typical of MNGP DSCs 11-16, and the modeled baseline flaws are representative of those indications identified by Phased Array Ultrasonic examination (PAUT) of DSC 16 (performed in 2015).

3.0 DESIGN INPUT/DATA 3.1 Flaw Details and Geometry Two cases of flaws are described and analyzed in Ref. [5 .3] . The ITCP weld flaw is the same for both cases, and OTCP increased weld flaw covers both sets (case #1 & case #2 weld flaws) . The results of Limit load for both cases are very similar. Figure 1 shows OTCP & ITCP flaws in the reference model (Flaw case #1 and Flaw case #2) and Figure 2 shows maximized OTCP & ITCP flaws evaluated in this calculation.

3.2 Material Properties The material properties for the DSC structure are identical to Ref. [5.3] . They are duplicated here in Table 3 and Table 4.

3.3 Design Criteria All of the applicable design bases loading conditions are considered in accordance with the requirements of ASME Section Ill Subsection NB Ref. [5 .2]. Section 4.1 details the methods used to perform the code Ref.

[5.2] qualifications. The uncertainties in the PAUT examination are accounted for by using a 0.8 reduction factor on the limit load. This factor is in agreement with ISG-15, conservatively accounts for any additional limitations in the PAUT examinations. This weld uncertainty factor of 0.8 is applied to the minimum of the ASME specified minimum elongation of SA-240 304 (40%) and E308-XX (35%) . Therefore strain limit is taken as 0.8*35=28% Ref. [5 .3] .

Calculation No. 11042-0207 Revision No.

orano Calculation Page 6 of34 4.0 METHODOLOGY 4.1 Analysis Method and Acceptance Criteria The analysis methods, finite element models details and acceptance criteria are the same as discussed in Ref. [5.3]. The ITCP and OTCP weld flaws are maximized and analyzed per Limit load and Elastic Plastic analyses.

The flaws are modeled by disconnected nodes, leaving open edges along elements to represent weld flaws .

Initially, the flaw modeled in Calculation 11042-0205 Ref. [5.3] was increased minimally to confirm the impact of each modeling change. A larger flaw size resulted in higher plastic strain . Second , an unrealistic flaw was created where only one element of the weld was connected . This model resulted in plastic strains which exceeded the ASME code strain limits. Elastic-plastic analyses were repeated with different flaw sizes until the maximum plastic strain was slightly below the ASME code acceptance limit. The preliminary analyses to determine the maximum flaw size are not included here, and only the final flaw configuration (see Figure 2) is presented in this document. Limit Load analyses were only performed for the final flaw configuration .

4.2 FEA Model Details Finite element models of the top half of the 618TH DSC are used based on Ref. [5.3] . The models fall into two basic categories : axisymmetric (20) and half-symmetric (30) . The original evaluation in Ref. [5 .3] uses ANSYS 14.0. The evaluation in this calculation uses ANSYS 17.1 Ref. [5 .1]. APPENDIX A performs the sensitivity analysis between the 2 ANSYS versions. As discussed in APPENDIX A, the default ANSYS 17.1 contacts stiffness's for the 30-Half-Symmetric model were modified to match the default ANSYS 14.0 stiffness's.

The models were modified to increase the weld flaws as described in Section 4.1.

Axisymmetric Model (20)

An axisymmetric model is used as described in Section 4.3.1 of Ref. [5 .3] . Figure 3 to Figure 5 show images of the axisymmetric model with maximum flaws.

Half-Symmetric Model (30)

A half-symmetric model is used as described in Section 4.3.4 of Ref. [5 .3] . Figure 6 to Figure 8 show images of the half-symmetric model with maximum flaws .

4.3 Limit Load Solution Details Limit load solution details are the same as detailed in Section 4.4 of Ref. [5 .3] .

4.4 Elastic Plastic Solution Details Elastic Plastic solution details are the same as detailed in Appendix-A of Ref. [5.3] .

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 7 of34 4.5 Load Cases The analyses performed in this calculation , are based on the conservative design values for internal pressure loading , rather than the actual calculated values of internal pressure. Table 1 summarizes the conservative design values as well as the actual calculated values which are taken from Ref. [5 .3].

Temperatures used for the material properties for each Service Level condition are listed in Table 2.

Four 2D-Axisymmetric analyses for bounding Service Level (SL) A/B and D, and two 3D-Half-Symmetric analyses for bounding SL D are performed in this calculation .

Calculation No. 11042-0207 Revision No.

orano Calculation Page 8 of34

5.0 REFERENCES

5.1. ANSYS Version 17.1. ANSYS Inc. (Including the ANSYS Mechanical APDL Documentation) .

5.2. ASME Boiler and Pressure Vessel Code, Section Ill Subsection NB. 1998 Edition with Addenda through 2000 .

5.3. AREVA Document No. 11042-0205 Revision 3. "61 BTH ITCP and OTCP Closure Weld Flaw Evaluation" 5.4. ASME Section II Part A. Ferrous Material Specifications. 1998 Edition with Addenda through 2000 .

5.5. ASME Section II Part C. Specifications for Welding Rods, Electrodes , and Filler Metals 1998 Edition with Addenda through 2000 6.0 ANALYSIS AND RESULTS 6.1 LIMIT LOAD ANALYSIS 6.1.1 2D-Axisymmetric Analyses for Internal Pressure Two analyses are performed with the 2D-Axisymmetric model: one case for Service Level A/B and the other case for Service Level D. The collapse pressures were determined to be 86 .3 psi for Service Level A/Band 122.2 psi for Service Level D. Figure 9 shows various plots of the plastic strain for Service Level A/B at various locations and levels of loading . Figure 10 shows various plots of the plastic strain for Service Level D. These strain plots are also representative of the behavior of the Service Level D analysis . Figure 11 shows the deflection history at the center of the lid , and indicates the expected plastic instability that occurs as the limit load is approached . Note that both the strains and displacements presented in these figures show only the load (pressure) at which the solution fails to converge.

6.1.2 3D-Half Symmetric Analyses for Side Drop Loading The 3D-half-symmetric model described in Section 4.2 is used to perform the side-drop limit load analysis .

The case includes the side-drop acceleration loading of 75g as well as the off-normal internal pressure of 20 psi. The collapse g-load for side-drop loading was found to be approximately 179.5g . Plots of the plastic strains in the side drop analyses are shown in Figure 15.

The results for Limit load analysis are summarized in Table 5.

6.2 ELASTIC-PLASTIC ANALYSIS 6.2.1 2D-Axisymmetric Analyses for Internal Pressure Two analyses are performed with the 2D-Axisymmetric model: one case for Service Level A/Band the other case for Service Level D. The Equivalent Plastic Strain was determined to be 3.1% for Service Level A/B pressure and 7.4% for Service Level D pressure. Figure 12 shows plot of the plastic strain for Service Level

Calculation No. 11042-0207 Revision No.

orano Calculation Page 9 of 34 A/B. Figure 13 shows plot of the plastic strain for Service Level D. The results for elastic-plastic analyses are summarized in Table 7. As shown by the results, the strain levels remain well below the minimum specified elongation limits of Type 304 steel and Type 308 weld electrodes Ref. [5.4] and Ref. [5.5]. Therefore, material rupture will not occur at the design conditions.

The maximum strains at loads up to 1.5x the specified loading are also extracted. These results are shown in Table 6, which also includes a comparison of the peak strain values to the ductility limit of the material reduced by the weld uncertainty factor of 0.8 discussed in Section 3.4 of Ref. [5.3] .

6.2.2 3D-Half Symmetric Analyses for Side Drop Loading The 3D-half-symmetric model described in Section 4.2 is used to perform the SL D side-drop limit load analysis. The case includes the 75g side-drop acceleration loading only. The maximum strains at loads up to 1.5x the specified loading (112 .5g) are also extracted and compared with the material strain limit.

The equivalent plastic strain was determined to be 11 .1% for 75g and 23.0% for 112.5g presented in Table

6. Figure 16 and Figure 17 show the corresponding plastic strain plots. The results for elastic-plastic analyses are summarized in Table 7.

7.0 DISCUSSION AND CONCLUSIONS This calculation qualifies the NUHOMS 61 BTH Type 1 (DSCs 11-15) at the Monticello Nuclear Generating Plant with maximum weld flaw using a combination of limit load analyses and elastic-plastic analyses. The limit load analyses are used to show that the DSC satisfies the primary stress limits of ASME Section Ill Subsection NB. The elastic-plastic analyses are used to show that the actual predicted strain values are below the material ductility limits. Both the limit load and elastic-plastic analyses account for any remaining uncertainty in the weld (e.g. non-inspected weld regions and PAUT technique limitations) by including an uncertainty factor of 0.8 which is described in detail in Section 3.4 of Ref. [5 .3].

For both OTCP and ITCP, all weld flaws were maximized such that the weld flaw reaches close to acceptable design limits. The maximum modeled weld flaws for OTCP to DSC shell weld are 0.43" and 0.42" in length, which represents about 85% through-wall of the 0.5-inch minimum weld throat. The maximum modeled full-circumferential weld flaws for ITCP to DSC shell weld are 0.16"

  • cos(45°)=0.11 " and 0.14" in length, which represents respectively 58% and 74% through-wall of the 0.19-inch minimum weld throat as shown in Figure 2. All four assumed flaws represent defects spreading over more than one weld bead.

These flaws were located based on DSC #16 PAUT results and are considered representative locations for DSC's # 11 to 15.

Calculation No. 11 042-0207 Revision No. 1 orano Calculation Page 10 of 34 8.0 LISTING OF COMPUTER FILES Finite Element Analyses were performed using AN SYS Version 17 .1 Ref. (5.1 ]. All analyses were performed on HPC v2 Linux platform.

Analysis Date I Load Case File Name Description Type Time 111 Reference .db file for Axisymmetric SL- Note (2>

Limit load 61 BTH_WeldFlaw_ 1F_AX_2_DETACH .db NB Limit load analysis analysis SL- NB AXISYMM_IP _LimitLoad .ext Limit load analysis 06/20/2017

.ext = .inp, .err, .mntr, .out, .db, .rst files for SL- NB 11 :33:31 Reference .db file for Limit load 61BTH_WeldFlaw_ 1F_AX_2_DETACH .db Axisymmetric SL- D Note (2>

analysis Limit load analysis SL- D AXISYMM_IP _LimitLoad_SLD.ext Limit load analysis 06/20/2017

.ext = .inp, .err, .mntr, .out, .db, .rst files for SL- D 12:29:27 Internal Pressure 2D- Reference .db file for Axisymmetric Axisymmetric SL- Note (2>

Elastic- 61 BTH_WeldFlaw_ 1F_AX_2_DETACH.db model A/B Elastic-plastic plastic analysis analysis SL- NB Elastic-plastic AXISYMM_IP_SOOF .ext 06/20/2017 analysis fi les for SL-

.ext = .inp, .err, .mntr, .out, .db, .rst 12:34:31 NB Reference .db file for Axisymmetric SL- Note <2>

Elastic- 61 BTH_WeldFlaw_ 1F_AX_2_DETACH .db A/B Elastic-plastic plastic analysis analysis SL- D Elastic-plastic AXISYMM_IP _625F .ext 06/20/201 7 analysis files for SL-

.ext = .inp, .err, .mntr, .out, .db, .rst 12:39:21 D

Reference .db file for 61BTH_WeldFlaw_ 1GC.db half-symmetric limit Note (2>

Limit load load analysis analysis LIMIT_HALFSYM .ext SL- D Limit load SL D 06/20/2017

.ext = .inp, .err, .mntr, .out, .db, .rst Side Drop analysis fi les. 11 :39:15 unmerge.mac, unmerge2.mac 3D-Half-Symmetric Reference .db file for model half-symmetric Note (2>

Elastic- 61 BTH_WeldFlaw_ 1GC .db elastic-plastic plastic analysis analysis STRAIN_HALFSYM .ext SL- D Elastic-plastic SL D 06/19/201 7

.ext = .inp, .err, .mntr, .out, .db, .rst analysis files . 22:48:11 unmerge.mac, unmerge2.mac Notes:

1

< > The date & time (EST) for the main runs are from the listing at the end of output file .

2

< > ANSYS FE models are taken from Section 8.0 of Ref. (5 .3] .

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 11 of 34 Table 1 - Internal Pressure in the 618TH Type 1 DSC (Ref. [5.3])

Maximum Design Pressu re Calculated used in this Design Condition Pressure Calculation

[psi] [psi]

Normal 7.3 10 Off-Normal 10.9 20 Accident 56 .1 65 Table 2 - Maximum Temperatures in the 61 BTH Type 1 DSC Shell (Ref. [5.3])

Design Maximum Temperature Calculated Design used in This Temperature Condition Calculation (OF]

(OF]

Storage 374 500 Normal Transfer 439 500 Storage 399 500 Off-Normal Transfer 416 500 L

Storage 611 625 Accident Transfer 467 500

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 12 of 34 Table 3 - Properties of SA-240 Type 304. Ref. [5.3)

Sm Su E

Allowable Sv Ultimate Yield Stress for SL A/B Yield Stress for SL D Temp Modulus of

[OF] Stress Yield Stress Tensile Limit Load Analysis Limit Load Analysis Elasticity Intensity [ksi] Strength [ksi] [ksi]

[ksi]

[ksi] [ksi]

70 28,300 20.0 30.0 75.0 30.0 46.0 100 28,138 20.0 30.0 75.0 30.0 46.0 200 27,600 20.0 25.0 71.0 30.0 46.0 300 27,000 20.0 22.4 66.2 30.0 46.0 400 26,500 18.7 20.7 64.0 28.1 43 .0 500 25,800 17.5 19.4 63.4 26.3 40.3 600 25,300 16.4 18.4 63.4 24.6 37.7 625 25,175 16.3 18.2 63.4 24.5 37.5 700 24,800 16.0 17.6 63.4 24.0 36.8

Calculation No. 11042-0207 Revision No. 1 orano Calcu lation Page 13 of 34 Table 4 - Properties of SA-36. Ref. [5.3]

Sm Su E

Allowable Sv Ultimate Yield Stress for SL A/8 Yield Stress for SL D Temp Modulus of Stress Yield Stress Tensile Limit Load Analysis Limit Load Analysis

[OF] Elasticity Intensity [ksi] Strength [ksi] [ksi]

[ksi]

[ksi] [ksi]

70 29,500 19.3 36.0 58.0 29.0 40.6 100 29,338 19.3 36.0 58.0 29.0 40.6 200 28,800 19.3 33.0 58.0 29.0 40.6 300 28,300 19.3 31.8 58.0 29.0 40.6 400 27,700 19.3 30.8 58.0 29.0 40.6 500 27,300 19.3 29.3 58.0 29.0 40.6 600 26,700 17.7 27.6 58.0 26.6 40.6 625(l) 26,400 17.6 27.2 58.0 26.4 40.4 700 25,500 17.3 25.8 58.0 26.0 39.8 Note:

1

< > All values are interpolated from the 600 °F and 700 °F values.

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 14 of 34 Table 5 - Summary of Limit Load Analysis for the maximum weld flaws Design Requirement of Limit Load SI. Temp. Analysis pressure to Collapse Name Loading Pressure No. [F] Criteria Safety Limit load Pressure (psi) Criteria (psi) (psi) 20- Internal 500 1 SLA/B 32 60 86 .3 Axisymmetric pressure 20- Internal 625 2 SLD 65 90 .2 122.2 Axisymmetric pressure Temp. Design Required G-load Limit Load SI. Analysis Name Loading G-load to Satisfy Limit Collapse No. [F] Criteria (g) load Criteria (g) G-Load (g)

Side drop 30-Half- with 20 179 _5(1>

3 500 SL D 75 104 symmetric psi off-normal IP Note:

(1) To be compared with 188.Sg with the original Case #1 weld flaws of Ref. [5.3], see APPENDIX A Table 6 - Summary of Peak Strain Values for Elastic-Plastic Analyses for the maximum weld flaws Specific loading Peak Equivalent Plastic Strain Materia l Load Case Internal Pressure Strain (psi) at 65 psi internal at 100 psi Limit(1>

Pressure internal Pressure 2D-Axisymmetric Internal Pressure 65 7.4% 13.6% 28%

Service Level D Specific loading Peak Equivalent Plastic Strain Material Load Case Side Drop G-Load at 112.5g Strain (g) at 75g loading Limit( 1>

loading 3D-Half-symmetric Side Drop 75 11.1% 23.0% 28%

Service Level D Note:

(1) The weld uncertainty factor of 0.8 (See Section 3.4 of Ref. [5.31) is applied to the minimum of the ASME specified minimum elongation of SA-240 304 (40%) and E308-XX (35%). Therefore strain limit is taken as 0.8*35=28%- See Section 3.3.

Calculation No. 11042-0207 Revision No.

orano Calculation Page 15 of 34 Table 7 - Summary of Elastic-Plastic Analysis Results for the maximum weld flaws Analysis Case Result Plastic Strain Internal Pressure Equivalent Plastic Strain Service Level A at 32 psi Internal 3.1%

2D-Axisymmetric<1) Pressure<1)

Internal Pressure Equivalent Plastic Strain Service Level D at 65 psi Internal 7.4%

2D-Axisymmetric Pressure Side Drop Equivalent Plastic Strain Service Level D 11.1%

at 75g Acceleration 3D-Half-Symmetry Note:

1

< > The 32 psi internal pressure is bounding for Service Levels A and B and includes design internal pressure of 10 psi plus an additional 22 psi to account for inertial loading of the DSC contents onto the lid.

Calculatio n No. 11042-0207 Revision No. 1 orano Calculation Page 16 of 34 OTCP Weld fl a w-2 le ngth- 0.14")

ITCP Weld flaw-2 length* 0.09") ITCP Weld fla w-2 length- 0 .09")

~

Lx

~

u 0

l.x -m IIJ

~

Flaw Case #1 Flaw Case #2 Figure 1 - Weld Flaws in Origina l Model (Ref. [5.3])

1 OTCP Weld flaw-2 (length- 0.42")

ITCP Weld flaw-2 (length- 0.14"')

y Lx

[Figure 2 - Maximum Weld Flaws based on the allowed design limits

Calculation No. 11042-0207 Revision No.

orano Calculation Page 17 of 34 1 ANSYS Release 17.1 Build 17 . 1 JUN 1 2017 15:18 :18 I ELEMENTS PowerGraphics EFACET=l TYPE NUM zv =l DIST=53.812 XF =16.8125 YF =146 . 88 Z-BUFFER y

Lx Figure 3 - Overview of the 2D-Axisymmetric Model ANSYS Release 17 . 1 Build 17.1 JUN 1 2017 15 :17: 26 ELEMENTS PowerGraphics EFACET=l TYPE NUM zv =l

  • DIST=l. 46622
  • XF =32 . 62 62
  • YF =194 . 467 Z-BUFFER y

Lx Figure 4 - Mesh Details at the Welds for 2D-Axisymmetric Model

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 18 of 34 1 ANSYS Re l ease 17 . 1 Build 17 . 1 JUN 20 201 7 1 3:13 : 20 ELEMENTS PowerGraphics 1 EFACET=l TYPE NUM zv =1

  • DIST=l . 46622
  • XF =32 . 5316
  • YF = 194 . 605 Z-BUFFER EDGE y

Lx Figure 5 - Flaw Locations for 20-Axisymmetric Model

Calculation No. 11 042-0207 Revision No.

orano Calculation Page 19 of 34 1 ANSYS ELEMENTS R17.1 TYPE NUM JUN 7 2017 11 : 4 6 : 31 PI.OT NO . 1 Figure 6 - Overview of the 3D-Half-Symmetric Model

Calculation No. 11 042-0207 Revision No. 1 orano Calculation Page 20 of 34 ANSYS Release 17 . F-llSYS RelQMe 17 .

Build 17 . 1 Build 17 . l JUl 20 2017 JU>! 20 2017 09 : 22 :58 09 : 7.2 :32 PWf ID. PWf I,IO. I EIE!-E'n'S EIE!'i!Nl'S

~iphlcs ~~"¥;rph.1cs TYPE I-U1 TYPE t-u'1 YV - 1 YV - 1

  • OIST-6 . 80001 *01 6 . 80001
  • XF
  • 79. 2131 ' XF
  • 29 . 2l31
  • YF
  • 16. 8125 *rr - 16 . e12s
  • Zf"
  • 190 . 502
  • Zf"
  • 190 . 502 Z-aJFFER Z-BOFrER EDGE (a) Lid Region Solid View (b) Lid Region Mesh MlSYS Fel ease I 7
  • Build 17 . 1 Jltl 20 2017 09 :23 :22 PI.Or ID .

==

~~phlcs TYPE t>UI YV - 1

'OIS'fal . 08541

~XF

  • 32 . 9273
  • YF
  • 16. 8125
  • Zf
  • 194 . 861 Z-!:lJTFER EDGE (c) Weld Region Solid View with Flaws Visible (d) Weld Region Mesh Figure 7 - Detail Views and Mesh Plots of the 3D-Half Symmetric Model

I ~

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 21 of 34 ANSYS Release 17.1 Build 17 . 1 JUN 6 2017 15:44:30 PWl' 00. 1 ELEMENI'S Po.*1erGraphics EFACET=l TYPE NlM YN ~ . 476349 YV . 773132 ZV =. 418757

  • DIST=35 . 7087
  • XF =47 . 0577
  • YF eB0 .3613
  • ZF =135 . 742 A-ZS=SS .8571 Z- BUFFER ANSYS Release 17.1 Build 17 . 1 JUN 6 2017 15 : 45 : 12 PWl' 00. l

.ELEM:NTS PowerGraphics EFACET=l TYPE lffi YN ~.476349 YV - . 773132 ZV =. 418757

  • DIST=5.90208
  • XF =91 . 2072
  • YF e99.8789
  • ZF =137 .413 A-ZS=SS .8571 Z-BUFFER Figure 8 - Isometric Views of 30-Half-Symmetric Model

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 22 of 34 l .1.NSYS f"*l*-1.se 17.1 ANSYS f'ele.ase 17.l 1!.uild 17.1 £uild 17.1 JON 20 2017 JOW 20 2017 1 3:26 : 08 13: 2 6:10 YO.ML S0U1.1I0t.l OOnAL OOLmlON S'?EP-2 ~ EP-'3:

SOB

  • 3 GllB *8

'?D{l!..,20 7Ih"E-6S Ei'PU OV fAVG) EPPLEQY' (AVCi)

Po....-r<.r.1pbic* ~rCira.pbic*

EFACr?*l EFAC'r.1'*1 1'.VfrES Ollf(.ft A0U S '"'1U.t l'f<< *.2S 4028 l'fi:< *l.0381S Ste{ =.020528 SIU( *.1381'96 0 0

.002181 .01S"35S

.004S62 . 01071 CJ . 006143 CJ . 0 4 606S

. 00~1 2 3 . Ml .fl

.01141041 .07677S CJ . 013:685 CJ .0'9213 Cl .01S'966 CJ . 107.86 CJ . 0182 4 7 CJ .1'22841

. 02052 8 .1381'96 (a) Equivalent Plastic Strain in Weld Region [in/i n] (b) Equ ivalent Plastic Strain in Weld Region [in/in]

at 20 psi Internal Pressure at 65 psi Internal Pressure ABSYS F.*le.as. 17.1 AHSYS h l

  • a - 17.l Ew.ld 17.1 2 ~.:r1ld 17.l JCJII 20 2017 JON 20 2 017 13:26:11 NO.DAL SOID'1Iotll B'JEP-'11 SOE *34 1'3:26:16 NODAL 60LD'l'Ioti SO£ *34

':rD(E-86. 2658 '11ME*86.26S&

E PPLEQ'9 (A9GJ ap-f,-UfQV (A.VG)

~rGnptn.c_. ~..-.rGro1pbica E FH:r.?*1 l!FACE'?*1 AVIRES-twt A.Vli'E S-Na.t

'tfC< -46.2187 :ttfit

  • 4 6 .2187 SfOC *12. S227 SNX *.42906 ~

- i . 3'9 Hl - ~047674

- 2.78 282 - .0"9!t'34&

D -1.11t23 CJ .14S021 S.S6S6l .1"9069S

  • .*S10*

CJ 8.3"18 .. S D .23836'

.2a6043 CJ

~~:~~!i CJ

~~6

. 429064 y

L" (c) Equivalent Plastic Strain in Weld Region [in/in] (d) EQV Plastic Strain in the Cover Plates at 86.3 at 86.3 psi Internal Pressure psi Figure 9 - Results of Limit Load for 20-Axisymmetric Model - Service Level A/B

Calculation No. 11042-0207 Revision No.

orano Calculation Page 23 of 34 l ANS"/S li*l**** 17 . 1 1.NSi:"S J:el*ase 17. 1 bl1ld 17 .. 1 E.u ild 17.1 JClll 20 2017 J'ati 20 2017 l'S:3S~21 1S:3S:18

...-o.n.u. SOW1IOO NOilAL SOU71I0lf s:? EP&3 S!l'EP-.C E- ... 60£ z6

'J'D(Ea6S 2ffiE*100 E P[-LEQ9 tAVC.) E PfU:Q'il !AVGI f'ouerGNpbl.C S Po4'er<.r,1pb1u E FACE'?*l Ef"ACr.r*l A VfE Eis:ft.;jt AVF-1'.S~.t u,r., * .. 87SSH ffiX *l.83"98.fi 61'(:,C *.086'9 48 SHX *.1807 67 0 0

.00"9661 .0'311'96

.OU 3 22 .06'23'9S CJ .028983 CJ .O'SiSS8"9

.. 0386 -H .l'H78S

.04830 4 .1SS"982 CJ .. OS196S CJ .1871'8 CJ .067626 CJ .21 8'37-4 CJ .. 077287 CJ

  • 149S71

.. 086'9 ... 8 .2807 67 (a) Equivalent Plastic Strain in Weld Region [in/in] (b) Equivalent Plastic Strain in Weld Region [in/in]

at 65 psi Internal Pressure at 100 psi Internal Pressure ANSYS F.el*aM 17.1 ANSY8 ~elease 17.1 P.i.n.ld 17.1 EJ.1 1.ld 17.l JO!I 20 2017 J DS 20 2017 13:3.S.:22 13:35:26 NODAL SOl.D.lIOS' 50DAL S-)1.D]'IOlf 6"?EP.S S"1EP.S Stm *2 .C BD1!: *2-41

'Jiffl:;:o:112. 2 3 4 ".l'IfG:*122. 23-41 l! PPU:Q9 (AVG) E PPU:QV (AVG)

Pov.er<.Npbl.C-9 PouerGrapbic..s EE'AC'F.1'-1 EE:M:E'l'* l AVS:KS""""t AVt.E S-t<.lt DiX *14 . 367S DC< *1 -41 .3675 SK< *3. -4 3'923 st1:c -.121.a,,st 0 0 Ill .3811'56 c:::J

- i ?~!!!:

1 * .S28SS CJ

-  :~:::1~

.OU.272

.OS708't 1.'91068 .071'362 CJ 2. 29282 CJ . 08S6'S-41 CJ 2 .674 9S CJ .099907 CJ 3.0S709 CJ . 11 417'9

3. 4 3'92'3 .1284 H y

L" (c) Equivalent Plastic Strain in Weld Region [in/in] (d) EQV Plastic Strain in the Cover Plates at 122.2 at 122.2 psi Internal Pressure psi Figure 10 - Results of Limit Load for 20-Axisymmetric Model - Service Level D

Calculation No. 11 042-0207 Revision No. 1 orano Calculation Page 24 of 34 1 ANSYS Rele.;;.se 17 - 1 Euild 17.1 JON 20 201 7 13: 26:41 l?l)ST26 20 CY 18 zv =1 DIS'.?=. 75

)<E' =.5 10

'i E' =.5 ZE' =.5 H . Z- BOE'E'ER c

t 12.

c 0

10.

t

"' 6

2. __ ..... )

0 I I I I 0 17 -.l'H . .34-508 S l .. 762 69 .. 0l!S 86-..ZISIS 8-~'25-881 <l 3-135 S0-389 77 .. $ 4 3 I Dterna.l ETessure (psi J (a) Service Level A/B 1 ANSYS Relea.se 17 -1 Euild 17 .l JON 20 2017 13:35:48 l?l)S'.?26 10 CY

9. zv =l DIST=.75

)CE' =.5 B

'i E' =.5 ZE' =.5 c ' I Z - BO E'E'ER

t 6 c

0 t

3

)

I 2

/

1 0

I

- ,L----~-1 1 I I I 0 .li. .,HG: i:8 .. 1!9'.l 73 .. 338 9'7 .. 'J&i 1.l..2 .. .23-1; 12 .,123 36 .. 669 61 .. 11 5 85 .. 5$'1 110 .. 007 Intern-.1 '°'ressure fpsiJ (b) Service Level D Figure 11 - Deflection at the Center of the OTCP fo r the 2D-Axisymmetric Model for Li mit Load (Maxi mu m deflection occurs at the center point of the lids, in the outward axial direction)

Calculation No. 11042-0207 Revision No.

orano Calculation Page 25 of 34 1 .hNSYS JRelea.se 17 .. 1 BL1ild 17 .1 JOI.ii 20 2017 13:55:49 NODU SOLO'.FION S'. FEP=3 SOB =3

'1IBE= 32 EPPLEQ'il fF-NG)

PoMer&ra.pbic.s EF'.ACl!lT = l

.hVRES=fla:t

r:eoc =. 402 689 SIOC =.031187 0

- . 003465 D .00693

-D

.010396

.013861

.017326

.020791 D . 024256 D .027722

.031187 Figure 12 - Equivalent Plastic Strain at 32 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL NB Internal Pressure

Calculation No. 11 042-0207 Revision No. 1 orono Calculation Page 26 of 34 1 ANSYS Relea.se 11_1 EL1ild 17 .. 1 JOI:il 20 2017 13~59:041 NODM, S0L0'1IOl.i!

S'1 1E P=3 SOIB = 6

'.J rnE=65 El?l?LE Q'il {At;;GJt J?o1,1e r-&r-,.pbi c:s EF.ru::E'l =l AVRES=i'ii3:t

oox =1.02634 D

S.ffl[ =.074375 0

. 008264

.016528

. 0241792

.033055

.0411319 D . 049583 D

D

.057847

. 066111

. 074375 Figure 13 - Eq uivalent Plastic Strain at 65 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL D Internal Pressure

Calculation No. 11042-0207 Revision No.

orano Calculation Page 27 of 34 1 ./!Hi/SYS JRelea.se 17 . 1 B1..1ild 17.1 JON 20 2017 13:59~05 N!):IlAL so1.,o*:r I1JN STEP=41 SOE =7

'1 IliE=100 El?PI..EQ'v {.AVG~

l?ot.terGra.pbic.s EF~.cET=l A'vRE S=lria:t

[t'<:.:'. = 1 .. 7 4307

-SiOt =.1356441 0

.015072

.030143 D

D

.045215

.060286

.. 075358

.. 090429 D

D

.. 105501

.. 120572

.. 13564141 Figure 14 - Equivalent Plastic Strain at 100 psi for 2D-Axisymmetric Elastic Plastic Analysis - SL D Internal Pressure

Calculation No. 11042-0207 Revision No.

orano Calculation Page 28 of 34 ANSYS Rl 7.l JUN 20 2017 11 : 50 : 15 PLOT 00 . 1 N'.)[)AL SOLUI'IOO STEP=2 SUB =5 TIME=75 EPPI.EQV (AVG)

OMX =.260322 SMX - . 352799 (a) Equivalent Plastic Strain in Weld Region [in/in] at 75g .

ANSYS Rl 7. l JUN 20 2017 11 :52 :31 PLOT ID. 1 N'.)[)AL SOLlJI'ICN STEP=4 SUB ~25 TIME=l79 .447 EPPLEQV (AVG)

OMX = . 79186 SMX =6. 71289 (b) Equivalent Plastic Strain in Weld Region [in/in] at 179.5g .

Figure 15 - Equivalent Plastic Strain Plots for 3D-Half-Symmetric Limit Load Analysis - SL D Side Drop with Off-Normal Internal Pressure

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 29 of 34 ANSYS Release 17 . 1 Build 17 . 1 JUN 20 2017 09 : 18 : 57 PI.ill NO . 1 NODAL SOLUTION STEP=2 SUB =5 TIME=75 EPPLEQV (AVG )

PowerGraphics EFACET=l AVRES=M3.t DMX =. 085533 SMX =. 11117

- 0

- . 012352

. 024704

. 037057

. 049409 c:::J . 061761

. 074113 c:::J . 086465 c:::J . 098818

. 11117 Figure 16 - Equivalent Plastic Strain at 75g for 3D-Half-Symmetric Elastic-Plastic Analysis - SL D Side Drop

Calculation No. 11042-0207 Revision No. 1 orono Calculation Page 30 of 34 ANSYS Release 17 . 1 Build 17 . 1 JUN 20 2017 09 : 20 : 31 Plill NO . 1 NODAL SOLUTION STEP=3 SUB =5 TIME=112 . 5 EPPIEQV (AVG )

Powe:rGraphics EFACET=l AVRES=Mit DI:v!X =. 143679 SI:v1X =.230213

- 0

- . 025579

. 051158

. 076738

. 102317 CJ . 127896 CJ .153475 CJ . 179055

. 204634

. 230213 Figure 17 - Equivalent Plastic Strain at 112.5g for 3D-Half-Symmetric Elastic-Plastic Analysis - SL D Side Drop

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 31 of 34 APPENDIX A Sensitivity Study of AN SYS Release 14.0 and 17 .1 ANSYS computer program Release 14.0 has been used in stress calculation in Ref. [5 .3) . ANSYS Release 17.1 is used in this calculation . Release 17.1 Ref. [5.1) was installed in accordance with QAP and TIP 3.3 requirements and is verified against empirical Data. The purpose of Appendix A is to determine the effect of using different releases of ANSYS on the same FE model. The following bounding 3D-half-symmetric load cases from the main part of this document are considered for the sensitivity analysis:

1) Elastic-Plastic analysis : Side drop 75g and 112.5g
2) Limit Load analysis: Side drop with off-normal internal pressure A.1 Elastic-Plastic sensitivity analysis Ref. [5.3] Elastic-Plastic analysis on the 3D-half-symmetric FE model uses ANSYS 14.0 and provides a peak equivalent plastic strain of 6.09% for 75g and 12.6% for 112.5g (Line 1 of Table A-1 ). The same AN SYS FE model was resumed in ANSYS 17.1 Ref. [5 .1) and analyzed without any modification. The results for ANSYS 17.1 peak equivalent plastic strain are found to be 5.60% and 11.76% for 75g and 112.5g respectively (Line 2 of Table A-1) . The default surface-to-surface contact stiffness's between the two releases are different and are found to be higher in AN SYS 17 .1 resulting in lower equivalent plastic strains. Therefore the contact stiffness's were reduced by a 4.2873 factor to match the default surface-to-surface contact stiffness's of ANSYS 14.0. As the contact stiffness coefficient FKN used in ANSYS 14.0 is 0.1, the new contact stiffness coefficient in ANSYS 17.1 is 0.1 I 4.2873=0.02332. Once this modification implemented , ANSYS 17.1 provides exactly the same results (Line 3 of Table A-1) as ANSYS 14.0.

Table A-1 : Comparison ANSYS 14.0 vs 17.1 - 3D-half-symmetric Model - Elastic Plastic analysis Peak Equivalent Plastic Strain SI. No. Side Drop at 75g at 112.5g 6.09% 12.6%

1 ANSYS 14.0 Table 7 of (5.3] Table 7 of (5.3) 2 ANSYS 17.1 5.60% 11.76%

3 ANSYS 17.1 modified 6.09% 12.59%

A.2 Limit Load sensitivity analysis Ref. [5.3) Limit Load analysis on the 3D-half-symmetric FE model uses ANSYS 14.0 and provides a limit load of 180.6g (Line 1 of Table A-2) . The same ANSYS FE model was resumed in ANSYS 17.1 Ref. [5.1] and

l Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 32 of 34 analyzed without any modification. The result for ANSYS 17.1 limit load is found to be 188.52g (Line 2 of Table A-2) . The same contact stiffness's modification described in Section A.1 was implemented for the Limit Load case. However, the limit load stayed identical (188 .56g , Line 3 of Table A-2) to the unmodified ANSYS 17 .1 result.

Table A-2: Comparison ANSYS 14.0 vs 17.1 half-symmetric Model - Limit Load analysis Required G-Limit Load Design load to Satisfy Temp SI. No. Side Drop Collapse G-Load Loading G-load Limit load

[OF]

(g) (g) Criteria (g) 180.6 1 ANSYS 14.0 Table 6 of (5 .3]

Side drop with 500 75 104 2 ANSYS 17.1 188.52 off-normal IP 3 ANSYS 17.1 modified 188.56 Although the ANSYS 17.1 runs converge up to 188.5g instead of 180.6g for ANSYS 14.0, Figure A-1 clearly shows that the results (here the maximum displacement in the model) are identical up to the point where ANSYS 14.0 stop converging .

The limit load for the Case #1 weld flaws is thus considered to be 188.5g in this calculation and is the reference for comparison with the increased flaws calculation results presented in Table 5.

A.3 Conclusion Based on the sensitivity evaluations performed in Appendix A, it is concluded that the results are independent of the AN SYS release for the 30-Half-Symmetric model.

Calculation No. 11 042-0207 Revision No. 1 orano Calculation Page 33 of 34 1

I I

I 0.9 I

I

- - ANSYS 14.0 ----- ANSYS 17.1 I 0.8 0.7 0.6 I I

I

~

I C:

o.s  ;

cu E

cu u

"' V V

C. 0.4 0"' /

E E ,/

V

)C 0.3

ii"'

V"

/

0.2

__...V

~~

0.1 0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Accelerati on (g)

Figure A-1 : Comparison ANSYS 14.0 vs 17.1 - Lim it Load analysis

Calculation No. 11042-0207 Revision No. 1 orano Calculation Page 34 of 34 A.4 Listing of computer files Finite Element Analyses were performed using AN SYS Version 17 .1 Ref. [5 .1]. All analyses were performed on HPC v2 Linux platform .

Analysis Date I Load Case File Name Description Type Time 111 Reference .db file for 2

61 BTH_WeldFlaw_1GC .db half-symmetric limit Note <>

Limit load load analysis analysis Side Drop SOLUTION_HALFSYM_SD .INP SL- D Limit load analysis 05/25/2017 Half- SOLUTION_HALFSYM_SD.out files 21 :46 :23 Symmetric 30 WeldFlaw.ext .ext= .mntr, .db, .rst model Reference .db file for half-symmetric 61 BTH_WeldFlaw_1GC.db Note <2>

Input Elastic- elastic-plastic Identical to plastic analysis Ref [5.3] analysis STRAIN_HALFSYM .ext SL- D .ext = .inp, .err, .mntr, .out, .db, .rst Elastic-plastic 06/07/2017 61 BTH_WELDFLAW_MATERIALS analysis files 16:18:02 ElasticPlastic RamOsTrue.lNP Reference .db file for 61 BTH_WeldFlaw_1GC .db half-symmetric limit Note <2>

Limit load load analysis analysis Side Drop SOLUTION_HALFSYM_SD.ext SL- D Limit load analysis 05/28/2017 Half- .ext=.INP , .out, .err files 05:12:40 Symmetric 30 WeldFlaw.ext .ext= .mntr, .db, .rst model Reference .db file for half-symmetric 61 BTH_WeldFlaw_1GC.db Note <2>

Input elastic-plastic Modified Elastic- analysis (See plastic SOLUTION_HALFSYM_SD.ext Section A-1) analysis

.ext=.INP , .out, .err SL- D Elastic-plastic 05/27/2017 30 WeldFlaw.ext .ext= .mntr, .db, .rst analysis files 16:39:11 61BTH_WELDFLAW_MATERIALS ElasticPlastic RamOsTrue.lNP Notes:

1

< > The date & time (EST) for the main runs are from the listing at the end of output file .

2

< > ANSYS FE models are taken from Section 8.0 of Ref. [5 .3].