ML18018A457

From kanterella
Jump to navigation Jump to search
Forwards Source Term Evaluation for Vol Reduction Sys
ML18018A457
Person / Time
Site: Harris  Duke Energy icon.png
Issue date: 02/24/1983
From: Zimmerman S
CAROLINA POWER & LIGHT CO.
To: Harold Denton
Office of Nuclear Reactor Regulation
References
LAP-83-35, NUDOCS 8303070166
Download: ML18018A457 (15)


Text

REGULIA I'0 Y I VFOR'>>IA I ION O'LSTRI BUT IO>>V< Y STEM (RIDS)

ACCESSIOV NBR: 8303070)66, ODCI.OA'TE.: 8'3/02/24 .VOT~RIZEO': NO OOCKEITr FACILI:50,400 Shear on Ha'r r is Vuc1 ear Power P>>lento Jni t 1 r Cat'ol jna. tr'5000400 50 401 Shearoni terri s Vuc I ear Power Pil ant i U'ni t 2i C'ar olrina 05000491 Au TH. NARK; AUTHOR AFF a LrI A T ION ZIHHER4IAN~ S.R.'la'r orlrina.'t>>>>~erl L Liight. Cor..

REC<IP<,i4AME>> RKCIIP>>IKN>>Tl AFF<ILIIAT I OiV Reoul'a'thongs 0 ENTO>>V "t H ~ R' Oif fice oifi Vucl ear Reactor 0>>ir ector.

SUBJECIT! Forwa'rds source term evaluation for voil r'eduction sYs ~ ,

DISTRIBUTIOV>> CQOEl! 8001$ CDP>>IKS RECEIVED:LITR I KNCLI SIZEf!

TITLE: Lli cans isa Submi t ta li: PSAR/FSAR Amdts L Rail:alted Corresoondence NOTES; LIMNI t

R K C iIP>>I KN'Tr CDPIES RECIIP<IKI4TI COP IE8 IO CDOEVVAPIKI LITER KNC<< I Ol CODE/'NAMEI LITTR- KNCLI NR R I OL>>I A OLI 1, 0 NRR L83 BCI 1 0<

iV R R L83 1 0 I KAOA<98 ~ Pi 01-'KI 1

INTERNALI: ELO/HOS1,. 1. 0 F>>ILEI 1 1

'2 IE'/DKP/EPLBr 36 IKr/OKP>> KPOS 3o>> 1. 3 3" VRR/OE>>/AKIAB>> 1. 0 MRR/OK/CKSr 11, 1 1 NRR/OE>>/EQBI 13< 2. NRR/OKt/ GB>> 2 2

>>VRR/DK>>/HGEB>> 30 1 18 28'RR/OE/RES>>

1 1 VRR/Di>>/4lTEBr 17>> 1 i4R R/OK>>/Q'AB>> 2.1 1 1 NRR/DE'/8ABr, 2A>> NRR/OE'/SES 25>> 1 NR R/0'gF 6/HF EB 40 1 1 NRRJOHFS/LQBr 32 1 )

NR R / DL>>>>>> S 8 P8>> 1. 0 >>VRR/OSI/AK8r 2b 1 1

'4RR/OSil J ASB>> 1>> 1 i4RR JOSI/CPBr 10 1 1 NRR/OS>>1 JCSBr 09 1 1 NRR/OS I/ICSBr 16 1 1

<VRR/OS>>I J 4lEITBr 12: 1. 1 NR R'/OS I I PS Br 1,9 1 1 AB; 22. 1. 1 iVRR/DSX /RGB>> 23 1 1 E F>>IL 04" 1 RG>>42 3.,

R>>> 1. 0 KXTERNALI! ACRS 4'1>> 6 6 Bl4LI( A'>>IOTS>> O>>VLIY3 1 1 0>>>>IB/OSS ( Ai>>IOTS)- 1>> 1 FEMA~REPi D'I Vl 39 1 1 LPOR 03, 1>> 1 iVRCI POR. 02.'VT 1 1 i4SI CI 05>> 1. 1 IS 1 1 TOTALI NUHBER 0. r CDPriKS REQUIRED,: LITTR 52 ENCLI 45>>

~

~ ~

(c,<~g, )>> fr,Ic, 'I I Il I

~<44, i ~ I F' F'o)I ir "L kr i " r PIr I '~r,>I> 'I ) l y P DIPL l " '~t '(>>I Fr

'II <<<<l I 'rl

) I IF I,

i rF I>>F I>FFI ftII I'

'rr~

6' Ii (

~

~ ~ I

~ i I ~ IF F'F' 'r J li i, >j jj ) r I~ N ('V - NN dL'>FF)F.~ R'~..

'Ir'0 I "I >F(, aI'I I5 ll.>>I'"~ 'I4. 0, I 'I>t ft -I lrr ~I I ~OFF>j,tg 7PP I (', f ',R,,I,N FI /IF Ft>F I'l II, I 'll) )I>> jj 3 I ' 'll' I '" I, 'r>> F'L Ii L>> Igh'I jj 4l '.

0 jl,i, I, jiik" )IN I,F;:(I "'F'I,Ij fk QI'WIi'kC

'I F.

F'PF'i> I'F ~ I IC."', l ." jjI [ i>> 'i ~

r 4N I I Ft W) I I

~ jj I 0 J I I 'I Ii) l' I r I >>>>>l I<< ~ II I tr~ JP. << tjf3 Jf, RI'I 'k( I') )

FI

/OFF',5

')

i

<<I, X~>>7 I

2+>4>F + 9 I rrg i N

>> lP')>> 1 FFI i

Ir f 4) I( r lr F ls J( R4 >/>r 4 ll '

<<), I, it i W).'.= I x < X4', LF

'F', Fi I'> I, ')~NAIF I<<Nrg,t l N N i>R W'I '

I X I>>>>>N $ >> ii >>I>>)- II r Fl Ei R 'WW l, I,I, jt. jf( >iI>>l l R'>>I

<(~ I k( ",") -) >>JI q>> t>>(

>j ~ fi)li"

SERIAL: LAP-83-35 Carolina Power & Light Company FEB 34 tg83 Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation United States Nuclear Regulatory Commission Washington, DC 20555 SHEARON HARRIS NUCLEAR POWER PLANT UNIT NOS ~ 1 AND 2 DOCKET NOS ~ 50-400 AND 50-401 SAFETY REVIEW QUESTION RESPONSE SUPPLEMENT

Dear Mr. Denton:

Carolina Power & Light Company (CP&L) hereby transmits one original and forty copies of the following text, tables, and figure:

1. Source Term Evaluation for the Volume Reduction System (VRS)
2. Block Flow Diagram of the Volume Reduction System (VRS)
3. , Table 1, Filter Sludge Activity Calculations (Normal)
4. Table 2, Filter Sludge Activity Calculations (Design)
5. Table 3, Feed Streams to the Volume Reduction System
6. Table 4, Annual Release of Radionuclides to the Environment Only item five of the above has been revised since its previous transmittal. Item six has been included to quantify the negligible impact of the VRS operation towards release of radionuclides to the environment. Items one and two were transmitted by our letter of February ll, 1983 (LAP-83-18).

Items three and four were transmitted by our letter of February 2, 1983 (LAP-83-04). The re-transmittal of this information was requested by your Mr. Prasad Kadambi.

Please contact my staff if you have any questions.

Yours very truly, S. immerman Manager Licensing & Permits SRZ/kj r (6232JDK) cc: Mr. N. Prasad Kadambi (NRC) Mr. Wells Eddleman Mr. G. F. Maxwell (NRC-SHNPP) Dr. Phyllis Lotchin Mr. J. P. O'Reilly (NRO-RII) Ms. Patricia T. Newman Mr. Travis Payne (KUDZU) Mr. John D. Runkle Mr. Daniel F. Read (CHANGE/ELP) Dr. Richard D. Wilson Chapel Hill Public Library Mr. G. 0. Bright (ASLB)

Wake County Public Library Dr. J. H. Carpenter (ASLB)

~ 830224 Mr. J. L. Kelley (ABLB) 8303070lbb 05000400

'"A

PDR ADOCK

-- PDR I II 411 Fayetteville Street o P. 0. Box 1551 o Raleigh, N. C. 27602

p~g k '3')

'fit t &I I

IP k

L tl P I

1 4'

.SOURCE TEL1"EUALUATION FOR THE VOLPiIE REDUCTION SYSTEM (VRS)

Figure 1 presents a simplified block flow an d mass balance of the VRS.

The system will receive radioactive c ive wastes wast from the following sources:

1. Backwash from flushable filters on 1 a,qui d waste process streams
2. Waste evaporator bottoms
3. RO concentrate evaporator bottoms
4. Secondary waste evaporator bottoms
5. Boron Bo recovery system evaporator bottoms Tables 1 and 2 respectively, present the normal and desi n basis activities of the particulate and dissolved r y i ter ac wash. The radionuclide content and volumes a es'1.4;1-3. through of the remaining sources are provided in FSAR Tables'1.4;1-3. throu h 11.4.1-3. These sources oof iquid li u waste are hatched and processed Table 3 presents the annual average age an esignn basis radionuclide input and desi to the VRS. Thou i oug h some particulate radioactivity will bee trapped tra p on the prefilter, it tha all radioactivity enters the VRS.

is assumed that e eed material is preconcentrated throu roug h a venturi ve scrubber and a

'preconcentratoro b e fore b eing sent to the fluid bed dr er i.e Water vapor exiting the preconcentrator is o the Floor Drain System. Non-condensed gases from the owever, a small portion mav be exhausted, ollowing sections'present an evaluation o radionuclides which these sources.

e may be event ll eventua y d ischar h g ed to the environment from Source Term Analysis In order to perform the source term analysisfrom the'RS e , it was distinction between particulate and dissolved radioactivity entering the system. Thee ra ioactivity present in radio p ra or ottoms is dissolved and is assumed to pass directl throu the feed tank prefilter and enter thee VRS.. Th e filter backwash from the etch ais i aisk filters ters present res a more complex situation. A total of 17 types or" etch disk filters (see Table 1) prov'd provi e input to.the Feed Tank pre 'er.

fil

These filters are located in process streams throughout the plant and collect p- " W 9 :

$ ~

particulate material from these streams. When the pressure drop across these filters exceeds a preset value, the filters are backwashed by N2 purge to the filter backwash storage tank. The dissolved radioactivity in the backwash storage tank. The dissolved radioactivity in the backwash is the activity in the etch disk filter at the time of purge. For example, the dissolved radionuclide content of the backflush water of the spent resin sluice filter is assumed to be that of the primaiy coolant. The average content of the water in the filter backwash storage tank is a dissolved'adionuclide weighted average of the dissolved radionuclide concentration in each of the etch disk filters.

The filter backwash storage tank which contains particulate and dissolved radioactivity is passed through a single 44* gallon etch disk filter which collects particulate material above 10M. The carrying water along with its dissolved solids, is passed to the waste holdup tank. After processing by the Equipment Drain System, a portion of this water may be discharged.

When the pressure across the single etch disk filter exceeds a preset value, it is backwashed to the 1000 gallon particulate concentrate tank via N2 purge. The activity entering the filter particulate concentrate tank includes the dissolved radionuclides. The sections which follow describe the mathematical models and assumptions used to calculate these potential sources of liquid and gaseous radioactive effluent.

1. Liquid Effluent It has been empirically determined by Aero)et that for feed material with a dissolved solids content above 10% by weight, the dissolved solids content (including radionuclides) in the condenser overflow will be 200 ppm. Since the weighted average dissolved solids content of the feed material is expected to be 110,000 ppm**, the dissolved radionuclide concentration in the condenser overflow will be 1.8 x 10 of that in the feed material.
  • Calculation of number of backwashes is based on 50 gal to account for 6 gal contained in interconnecting piping.
    • The PCP will ensure that the feed material is always above 10%.

With this radionuclide concentration, the condenser overflow of 4.24 x 10 5 Eg/yr will be routed to the Floor Drain System. This system provides for treatment via a reverse osmosis unti followed by a cation demineralizer. The following decontamination factors were assumed:

Cs Others RO 10 10 10 Demin. 10 10 Total 100 10 100 It was further assumed that 90% of the processed waste is recycled and 10% is discharged to the circulating waste discharge.

Figure 1 indicates that 7.80 x 10 5 @/yr of water is processed through the etch disk filter and sent to the waste hold tank for treatment through the equipment drain treatment system. This system provides for treatment via an evaporator. The following decontamination factors for the evaporator were assumed:

Cs I Others Evap. '10 10 104

'After 'processing,'t is assumed chat 10% is discharged.

2. -. Gaseous Effluent As indicated in Figure 1, about 2.4(4) Fg/yr of water vapor will come off the condenser and be recycled to the dryer. Th'is represents 4% of'he feed material. A small portion of the recycled gas will be routed to the VRS air cleaning unit prior to processing through the HEPA and charcoal filter before discharge.

Radionuclides releases can be obtained by applying the following decontamination factors:

Iodines A DF of 100 was applied between the feed material to the VRS and the input to the VRS air cleaning unit.

A DF of 10 4 was applied between the input to the VRS air cleaning, unit and discharge to the environment at .the plant stack.

Others A DF of 10 4 was applied between the feed material to the VRS and the input to the VRS air cleaning unit.

A DF of 10 was applied between the input to the VRS air cleaning unit and discharge to the environment at the plant stack.

These relationships are based on empirical data.**

    • Topical Report Fluid Bed Dryer Aerojet Solidification System Report No. AECC-1 February 1975.

F I(DOBE I BLOCK FLOW DIACIRAM OF VRS (2 UNIT OPERATION

( I.ISfh)e,/ I SA(KWASH FII.TER Q>> VENTIIRI scRUBBER CKAS BACKTIASH COIIDENSE HEATER FROM K TCH t JTORA6K SCRUBBER. PRE(ONCEHTRATE DISK FILlERSP~

TANK 2000 C>AI FEED TANK

( ~>> F ILTER:'AE-TO YIA&TE'n L. TO PLANT E.TCH STACK/II(PA/

IIOLDT)P TANII~ OYEILFLOW TO I

CHARCOAL FOR DISK FILTE.IC

/,9+ ClAL ISO'VRS FI,OOR DRAIN PROCESSINCI TREATIhENT S'fSTEIA FEED F ILTKR TANK PART ICUL A T 8 7.47 4) KQTR $

~000 GAL $ 32 IS) K6/TR CONCKNTRATK ri. IOOO Catha Q TANKS) / HE PhJ CHARCOAL VIASTE FILTERS

9. C I (3) K /V R EVAPORATOR BOTTOMS TO SOLIDS PACKAGING CHAS/SOLID R/o 1L9(h K /Wa SEPARATOR COIICEIITRATE. FLUID BED DR'f Eg EVAPORATOR BOT TO SEC WASTE. 3I K VR EVAPORATOR BOTTOMS TO SOLIDS I3RS 3 I h K PACKACIINCI S I <) CCTg/ICII .

EVAPORATOR SOT TOMS KOA8CO SKRVICK8 INCORPORATKO CAROLWR POWQ.IL II LICTH T

('ll) PEIIOTES I0 1 55 Q ~lY 2.1.T5 AtPAOZK>>

I C.

CA 5IIEqR~ HARR> S HPP Fic>uf QP TANK IIAS SAMPLING CAPABII ILITY hgZ D*n ~Z AtthOZID htV DATC >>Z APFhOVID T

~ CAKE CN 30 8 2 BLOCk FLOW DWCTRAM OF VRS

>>AT>> IT. G R- CI/Io IT.

FILTER SLUDGE ACTI VITT CAISULATIONS (NQRIIAL)

TABI.E I tilter 8ystea tarticulat ~ Activity uCI/cc Dissolved Activity uCI/cc NBA j of 1-131 ~1-l3 Co-36 C -60 Ca-336 Cr-333 1-131 1>>133 Co-58 Co-60 Cs-134 Cs-137 ~Lf III~ILCS Spent Resin Sluice 1.26(0) 2.06(-l) 6.53(-I) 2.7S(-l) 1.83(0) 1.49(0) 2 86( I) F 18(-l) 1.68(-2) 2.10(-3) '.63(-2) 1.90(-2) 3.179(7) tilter tuel tool Skissacr 2. 16(1) 2. 74 (0) 2. 70(-5) 1. 10(-6) 1.40(-1) 1.10(-6) 1.20(-6) 9.536(7)

Filter Refueling Mater 6.99(0) 8.90(-l) 1.90(-5) 2. 70(-5) 1. 10(-6) 1.460 (-7) I. 70(-6) 1.20(-6) 1. 590(8) tilter Masts Evaporator 1.33(-2) 2. 35(-3) 6.73(-5) 3.29(-7) 1.34(-6) 2.08(-7) 2.57(-6) 4.92(-7) 1.059(6)

Condensata Filter Seal Mater Retllrn 2.60(2) 3.40(1) 2.86 (- I) 4. 18(-1) 1.68(-2) 2. 10(-3) 2.63(-2) 1.90(-2) 6. 352(6) tilter 1.059(6)'.90(-5)

Seal Mater 1.90(2) 2.54( I) 2.86(-l) 4.18(-l) 1.68(-2) 2. 10(-3) 2.63(-2) 1.90(-2) 4.533(6)

In]ection tilter Recycle Evaporator 1.14( 2) 5.80(-2) 2.86(-2) 4.18(-2) 1.68(-3) 2.10(-4) 2.63(-3) 1,90(-3) 1.276(6)

I'eed Filter Recycl ~ Evaporator 3.86(-4) 6.58(-5)

Condenaats Filter Recycle Evaporator 8 48(Q)

~ 3.02(0) 9 68(-I) 7~ IO(-I) 6.62(-I) 6 61(-I) 6.39(-2) 4.68(-2) 7.953(6)

Concentrate filter boric Acid Fll tar 2,55(0) I 81(Q)

~ 3.08(- I) 3.41(- I) 6.62(-I) 6.61(-1) 6.39(-2) 4.68(-2) 6.357(1)

Caa Decay Tarl6 3.99(-I) 1.953(6)

Filter Reactor Coolan t 6.71(1) 8.40(0) 2.86(-I) 4. 18(-I) 1.68(-2) 2.10(-3) 2.63(-2) 1.90(-2) 6.357(7)

Pl I ter Fuel Pool Filter 2.45(-l) I 43(-7) I. 79(-l) 1.27(-2) " 99( 3) 1,9Q( 5) 2.70(-5) 1610(-6) 1.40(-7) 1670(-6) 1.20(-6) 1.574(8)

Secondary Mas:e I. 14(-4) 1.46 3(-S) 2.43(-6) 3. I8(-6) 1.42(-1) I 77(-8)

~ 2 ~ 23(-7) I 61( 7) 6.357(7)

Filter Masts Evapotnt or 4.03(l) 9.32(0) 6.73(-2) 1.08(-2) 1.34(-2) 2.08(-3) 2.57(-2) 1.90(-2) 1.059(7)

Filter Iw63nllry 4 llot 9.46(-3) 2. 19(-2) 9. I 7(-7) 6.30(-6) 1.45(-5) 2~ IO(-5) 3 86(-6) 3.179(7)

Shover Filter tloor Drain I ~ 59(0) 2.20(-I) 8.97(-3) I ~ 66(-3) 1.06(-3) I 46(-4) I ~ 82(-3) I ~ 33(-3) 1.589(8)

Filter

FILTER SlUDGE ACTIVITY CAI.CllIATIPKS (DES IGK)

TABI.E 2 Filter Systea Particulate Activity uCf /cc Dissolved Activity uCL/cc Haas of I-131 1-133 Co<<58 Co-60 Cs-134 Cs-137 1-131 1-133 Co-58 Co-60 Ce-134 C -137 ~Ll 1 ~l Spent Resin Slufcs 1.26(1) ~ "{0) 3.54{-1) 1.49{-1) 7.79(0) 6-33(p) 2.90(p) 4.30(p) 1.5( 2) I 9p( 3) 2 30(0) I 50(0) tilter Fuel Fool Skfieaar 2.01(1) 2.45(0) 1.90(-4) 2.80(-4) 1.00(-6) 1.30(-6) I Sp( 4) 1.00(-3) 9.536(7)

Flit ar Refueling Mat t r 6. 53(0) 7. 95 (- I) L.90("4) 2.80(-4) 1.00(-6) I ~ 30(-6) L.SO("4) L.OP(-3) 1.590(8)

Filter Mast ~ Evaporator. I. 18(-2) 2. 13(-3) 6.82(-4) 1. 11(-4) I 19(-6)

~ 1.88(-7) 2 '5(-4) I 50(-4) 1.059(6)

Conden ~ ate Pfltet'eal Mater Return 2.32(Z) 3.07(l) 2.90(0) 4.30(0) 1.50(-2) 1.90(-3) 2.30(0) 1.50(0) 6.352(6)

Filter Seal Water L.70(2) 2.30(L) 2.90(0) 4.30(0) 1.50(-2) 1.90(-3) 2.30(0) L.50(0) 4.533(6)

In]action Filter Recycle Evaporator 1. 16(-1) 5.07(0) 2.90(- I) 4. 30(- I) 1.50(-3) 1.90(-4) 2. 30(-1) 1.50(-l) L. 276(6)

Peed Pflter Evaporator 3.91(-3) 6,78{-4) 1.059(6)

'ecycle Condensata Pfltar Recycle Evaporator 8,58(I) 3. 10(1) 8.48(1) 5.62(I) 6.70(0) 6.80(0) 5.60(0) 3.70(0) 7.953(6)

Concentrate Ff ltsr boric Acid Pil ter 2.SB(1) 2.03(1) 2,69(L) 2 '9(L) 6 '0(0) 6.80{0) 5.60(0) 3.70{0) 6.357(7)

'Caa Decay Tank 3.48(1) 7.953(6)

Filter Reactor Coolu>t 6.00(1) 7.63(0) 2.90(0) 4.30(0) 1.50(-2) 1+90(-3) 2.30(0) I.SO(0) 6.357(7)

Filter Pusl Pool Pfltar 2.45(0) 3. 35(D) 1. 33(-Z) I.A I (-3) I. 11(0) 7.37(-1) 1.90(-4) 2.80(-4) 1.00(-6) 1.30(-6) 1.50(-4) 1.00(-3) 1.574(8)

Secondaty Masts 1.02(-4) 1.29(-5) 2.47(-5) 3.28(-5) 1.27(-7) 1.61(-8) 1.9S{"5) 1.27(-5) 6.357{7)

Filter Mast ~ Evaporator 3.64(1) 8.44(0) 6.82(-1) 1. I I (-I) 1. 19 (-2) 1.88(-3) 2.25(0) L.50(0) 1.059(7)

Filter Laundry 4 Kot 2.47(-2) 5.65(-2) 2. 39(-6) 1.65("5) 3.78(-5) 5.48(-5) 1.01(-4) 3. 179(7)

Shuuer Filter Floor Drain 1.42(0) 2.00(-I) 9. 09(-2) 1. 71(-2) 9. 44 (-4) 1. 32 (-4) 1.59(-I) 1.71(-2) 1.589(8)

F liter

TABLE 3 FEED STREAMS TO THE VOLUME REDUCTION SYSTEM (2 UNIT OPERATION)

Filter BkWash Waste RO SW BRS Evap Evap Evap Evap Mass (Kg/yr) 7. 47 (+4) 9.67(+3) 7.29(+4) 3.18(+5) 5.81(+4)

Radionuclide (Ci/yr) NORMAL OP ERAT ION Co-58 13.0 (4) 9. 67 (-1) 5. 24 (-1) 6.64(-1). 0.0 Co-60 1.41(3) 1.51(-1) 7. 95 (-2) 8.33(-2) 0.0 I-131 3.16(2) 4.87(+1) 4.33(+1) 1.09(+1) 3.89(+1)-

I-133 1.54(2) 7.80(+0) 6.70(+0) 1.14(+1) 3.95(+1)

Cs-134 7.89(1} l. 87 (+1) 9.12(+0) 1.05(+0) 3.25(+1)

Cs-137 7.10(1) 1. 37 (+1) 6.76(+0) 7.53(-1) 2.15(+1)

DESIGN BASIS Co-58 9. 64(3) 8. 64 (-1) 4.73(-1) 1. 19 (+0) 0.0 Co-60 1.27(3) 1. 36 (-1) 8. 54 (-2) 1. 51 (-1) 0.0 I-131 3.18(3} 4.94(+2) 4. 39 (+2) 2.21(+2) 3. 89(+2)

I-133 2.21(3} 8.02(+1) 6.92(+1) 2.35(+2) 3.95(+2)

Cs-134 3.15(3) 1.63(+3) 7.88(+2) 1.83(+2) 3.25(+2)

Cs-137 2.51(3) 1.08(+3) 5.18(+2) 1.19(+2) 2.15(+2)

TABLE 4 ANNUAL RELEASE OF RADIONUCLIDES TO THE ENVIRONHENT (Ci/yr per Unit)

LI UID RELEASES NUCLIDE DESIGN BASISA'ODAL OPERATION+ TABLE FSAR 11.2.3-1 Co-58 1. 87 (-6) 1.75(-6) 2.3(-3)

Co-60 2.66(-7) 2.30(-7) 5.9(-4)

I-131 1.16(-2) 1.07(-3) 1. 8 (-1)

I-133 6.25(-3) 5.35(-4) 2. 5 (-2)

Cs-134 3.34(-3) 4.45(-5) 4. 6 (-3)

Cs-137 1.42(-3) 3.10(-5) 3.9(-3)

  • Releases due to operation of the VRS.

TABLE 4 (cont'd)

GASEOUS RELEASES FSAR NUCLIDE DESIGN BASISA NORMAL OPERATI0% TABLE 11.3.3-1 Co-58 1. 30 (-8) 1.20(-8) 1. 6 (-2)

Co-60 1.85 (-9) 1.60(-9) 7. 6 (-3)

I-131 8.10(-4) 7.45(-5) 4. 6 (-2)

I-133 4.34 (-4) 3.70(-5) 6. 0 (-2)

Cs-134 2.32(-5) 3.10(-7) 4. 9 (-3)

Cs-137 9.85(-6) 2.15(-7) 8. 2 (-3)

Peleases due to operation of the VRS.

4 . - 4

%I