ML17310A515

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Changing Surveillance Frequency from Monthly to Quarterly for Channel Functional Tests for RPS & ESFAS Instrumentation
ML17310A515
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 08/05/1993
From:
ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
To:
Shared Package
ML17310A514 List:
References
NUDOCS 9308130140
Download: ML17310A515 (61)


Text

TABLE 2.2-1 0U4 ~

su<

XIO m REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS I

Q) R7

~D I ao <

FUNCTIONAL UNIT TRIP SETPOINT ALLOWABLE VALUES o4 c I. TRIP .GENERATION I

XO ~ I as~ A. Process I UIQ ~

OG OQ 1. Pressurizer Pressure - High < 2383 psia < 2388 psia

'OO Pressurizer Pressure - ~~~I ~> -HR2-psia (2)

~

tJQIQI 2. Low > 1837 psia (2)

KlO R 3. Steam Generator Level - Low > 44.2% (4) > 43.7% (4)

~

4. Steam Generator Level - High < 91.0% (9) < 91.5% (9)

~

5. Steam Generator Pressure - Low > 919 psia (3) ~ s t +> 842 psia (3)
6. Containment Pressure - High < 3.0 psig < 3.2 psig

~

7. Reactor Coolant Flow - Low
a. Rate < 0.115 psi/sec (6)(7) < 0.118 psi/sec (6)(7)
b. Floor > 11.9 psid (6)(7) > 11.7 psid(6)(7)
c. Band < 10.0 psid (6)(7) < 10.2 psid (6)(7)
8. Local Power Density - High < 21. 0 kW/ft (5) < 21.0 kW/ft (5)
9. DNBR - Low > 1.24 (5) > 1.24 (5)

-B. Excore Neutron Flux

1. Variable Overpower Trip
a. Rate < 10.6%/m>n of RATED < 11.0%/min of RATED THERMAL POWER (8) THERMAL POWER (8) m TD
b. Ce i l ing < 110.0% of RATED < ill 0% of RATED THERMAL POWER (8) TIIERMAL POWER-(8)

Wl

c. Band ~.g/ ~< ~% of RATED )3/ < +fhAX of RATED C7 TIIERMAL POWER (8) THERMAL POWER (8)

l

~

l

TABLE 4. 3-1 REACTOR PROTECTIVE IHSTRUHENTATIOH SURVEILLANCE RE UIREHEHTS

'C m

rQ C7 m CllANtlEL HODES IH MtllCtl CHANNEL CllANNEL. FUttCT IOtlAL SURVE I LLAtlCE FUtlCT IOHAL UNIT CllECK CALIBRATIOH TEST I. TRIP GEtlERAT ION A. Process

1. Pressurizer Pressure - High S R 1, 2
2. Pressurizer Pressure - Low S R 1, 2
3. Steam Generator Level - Low 5 R 1, 2
4. 'team Generator Level - High S R 1, 2
5. Steam Generator Pressure - Low S R ] 2 3A 4A
6. Containment Pressure - High S R QW 1, 2
7. Reacto~ Coolant Flow - Low S R QW 1, 2

- High (2, 4), (4, 5) (6)

~

8. Local Power Density S 0 R R 1> 2
9. ONBR - Low ~

S D (2, 4), R (4, 5) R (6) 1, 2 H (8), S (7)

B. Excore Neutron Flux

1. Variable Overpower Trip D (2, 4), H (3, 4) 1, 2 0 (4)
2. Logarithmic Power Level - High R (4) Q% and S/U (1) 1, 2, 3, 4, 5 and "

C. Core Protection Calculator System

1. CEA Cal cul ators R Q%, R(6) 1,2
2. Core Protection Calculators D (2, 4), R (4, 5) 9+/-(9), R (6) 1, 2 H (8), 5 (7)

~ ~

TABLE 4.3-1 (Continued)

( REACTOR PROTECTIVE INSTRUHENTATION SURVEIl.LAHCE RE UIREHEttTS Cl m

Cl IAtttt E L HODES IH MHICtt CHANNEL

"-'- CHANNEl. FUHCT IONA L SUAVE ILLAttCE FUNCTIONAL UNIT CHECK CALIBRATION TEST

0. Supplementary Protection System Pressurizer Pressure - High 1, 2 I I. RPS LOGIC A. Hatrix Logic N.A. N.A. 1, 2, 3", 4", 5" B. Initiation Logic N.A. N.A, 1 2 3>> 4>> 5>>

I I I. RPS ACTUATIOtt OEVICFS A.'eactor Trip Breakers N.A. ~ '.A. H, R (10) 1, 2, 3", 4", 5" B. Hanual Trip H.A. ) N.A. 1, 2, 3" 4" 5"

~ ~ ~

/

TABLE 4. 3-1 (Continuedl TABLE NOTATIONS eactor tri With reactor trip breakers br system capable of CEA withdrawal and n fuel ue 'h in the closed position and the CEA drive in the reactor vessel.

Each STARTUP or when required with thee react t reactor tr ip bbreakers closed and the CEA drive system capable of rod in the previous 7 days.

withdrawal o wi rawal, if not performed (2} Heat balance only (CHANNEL FUNCTIONAL TEST not included}, above 15K of RATED THERMAL POMER; adjust the linear power level, the CPC delta T power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater th 2 . 0 TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each ma or t t an prior o proceeding to the next major test power plateau.

(3) Above 15K of RATED THERMAL POMER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.

(4) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(5) After each fuel loading and prior to exceeding 70K of RATED THERMAL POMER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

(6) This CHANNEL FUNCTIONAL TEST shall include thee injec injectiion o f simulated 1 d p rocess siignals snto the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

(7) Above 70K of RATED THERMAL POMER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate. The flow measurement uncertainty may be included in the BERRl term in the CPC and is equal ua t o or greater than 4X.

(8) d-Above 70K of RATED THERMAL POWER, verify that thee t o t a 1 s t eady-state RCS flow ow rate ra as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coo'lant um differential pressure instrumentation a d th 1 floo mmeter a 'usted pump curves or calorimetric calculations.

Th ANNEL FUNCTIONAL TEST shall include verificati AN ca ion tth att the corrrect current values of addressable constants are in ins t a lled in each OPERABLE CPC.

(10)- east once per 18 months and following maintenance or adjustment At lea of the reactor trip breaker s, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervolt'age and shunt trips PALO VERDE - UNIT 1 3/4 3-16 AMENDMENT NO. 27

~ ~

I ld

TABLE 3.3-4 FHGIHEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATIOH TRIP VALUES m

ESFA SYSTEM FUNCTIONAL UNIT TRIP SETPOINT ALLOWABLE VALUES C7 m

I. SAFETY INJECTION (SIAS)

A. Sensor/Trip Units

1. Containment Pressure - High  :< 3.0 psig < 3.2 psig

- 4%2 psia (1)

~

2. Pressurizer Pressure Low > 1837 psia <aZi >

B. ESFA System Logic . Hot Applicable Hot Applicable C. Actuation Systems 'ot Applicable Hot Applicable I I. COHTAINMEHT ISOLATION (CIAS)

A. Sensor/Trip Units

1. Containment Pressure - High < 3.0 psig < 3.2 psig.

- Low ~ (1)

Z. Pressurizer Pressure > 1837 psia ~iszr ~i QB. psia B. ESFA System Logic Not Applicable Hot Applicable C. Actuation Systems Hot Applicable Hot Applicable III. CONTAINMENT SPRAY (CSAS)

A. Sensor/Trip Units Containment Pressure High - High < 8.5 psig < 8.9 psig B. ESFA System Logic Hot Applicable Hot Applicab1e CD Actuation 'Systems Hot Applicable Hot Applicable IV. MAIN STEAM LINE ISOLATION (MSIS)

A. Sensor/Trip Units

1. Steam Generator Pressure

- Low > -919 psi C~b

2. Steam Generator Level - High < 9I.OX HR(2) < 91 5X HR(2)-
3. Containment Pressure - High < 3.0 psig < 3.2 psig B. ESFA System Logic Hot Applicable Hot Applicable C. Actuation Systems Hot Applicable Hot Applicable

~ ~

/

t

TABLE 4. 3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREHENTS CHANNEL >'lODES FOR MHICH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEH FUNCTIONAL UNIT CHECK CALIBRATION TEST IS RE UIRED I. SAFETY INECTION (SIAS)

A. Sensor/Trip Uni ts

1. Containment Pressure - High S 1, 2, 3, 4 2~ Pressurizer Pressure - Low S 1, 2, 3, 4 B. ESFA System Logic
1. Hatrix Logic NA 1, 2, 3, 4
2. Initiation l.ogic HA 1, 2, 3, 4
3.  ! lanua1 SIAS
  • HA 1, 2, 3, 4 C. Automatic Actuation Logic (eiSCCCLP+ %tA+gtO~y M% 0 g%)

I I. COIITAlttttEttT ISOLATIVltl PCIAST T w(aQ(g)

A. Sensor/Trip Uni ts

l. ontainment Pressure - High S 1, 2, 3
2. Pressurizer Pressure - Low S 1 2 3 B. ESFA System Logic
l. 11atrix Logic 1, 2, 3, 4
2. Initiation Logic HA NA 1, 2, 3, 4
3. Manual CIAS NA THA 1, 2, 3, 4
4. Hanua1 SIAS NA NA 1, 2, 3, 4

h 4~ ~

~ ~

Ih 1.'h

\

I h

~

s f~

~

~

~I

~ 1 4

.5 h 'I kQ Q l~

~h hh h

TABLE 4.3-2 .(Continued)

ENGIHEEREO SAFETY FEATURES ACTUATIOH SYSTEH.INSTRUMENTATION SURVEILLANCE RE UIREflEHTS CklANNEL t10DES FOR WklICkk CHANNEl.. CHANNEI. FUNCTIONAL SURVEILLANCE ESFA SYSTEH FUNCTIONAL UN!T CklECK-" . CALIBRATION TEST %II I I. COHTAINllEHT ISOLATION (Continued)

C. Automatic Actuation Logic

/chic,o p%'u.~cpap ec.l.a q~)

%y A.cpu.a.Q~~ S~4qe~q %~%ay a ~v> (~) <s?,

III. COHTAIHkkEHT SPRAY (CSAS) 1 A. Sensor/Trip Units

1. Containment Pressure--
ligh - kligh 1, 2, 3 B. ESFA System Logic
1. Matrix Logic NA HA 1,2,3,4
2. Initiation Logic HA 1, 2, 3, 4
3. Hanual CSAS NA NA 1, 2, 3, 4 C. Automatic Actuation Logic

( ~c.~)4 ~v~qreep ca4~aQ k,Z,'5 K~cv.284~~ 8~4)coop QLE~f4 K,2,E, 6

~ ~ ~

4 4 'I h

4,

~ 4 p

'4 I

p 4

')

p 4 rI, p

~4 happ 4

pg n

/'

'I i=

44 44 4 "4 4

s4 I

a

~4

' kl

~ ~

a 4 I I~

4 4! ~ J g ~

4

TABLE 4.3-2 (Continued)

(

m ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREliENTS C7 m

I CHANNEL MODES FOR WHICH

,~

CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEH FUNCTIONAL UNIT CHECK CALIBRATION TEST IS RE UIREO IV. HAIN STEAM LINE ISOLATION (HSIS)

A. Sensor/Trip Units

1. Steam Generator Pressure-Low S 1, 2, 3, 4
2. Steam Generator Level - High S 1, 2, 3, 4
3. Containment Pressure - High S 1, 2, 3, 4 B. ESFA System Logic
1. Matrix Logic NA 1, 2, 3, 4
2. Initiation Logic NA 1, 2, 3, 4
3. Hanual llSIS NA NA 1, 2, 3, 4 C. Automatic A4gption Logic

(~~<.aq4>>4qcoep c'4ags) h.~4~~4<<~ '5~4~<<~~ ghee~> <,Z,S,u,

TABlE 4.3-2 (Continued)

I ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM INSTRUHENTATIOH SURVEILLANCE RE UIREHENTS CHANtlEL NODES FOR WllICll CllANHEL CHANNEL FUNCTIONAL SURVEILLAtlCE ESFA SYSTEH FUNCTIONAL UNIT C)IECK CALIBRATION TEST t V. RECIRCULATION (RAS)

A. Sensor/Trip Units

~ .

Refueling Water Storage Tank - Low 1, 2, 3 B. ESFA System Logic 4

1. Matrix Logic HA 1, 2, 3, 4 IL
2. Initiation Logic NA 1, 2, 3, 4 I
3. 11anual RAS HA 1, 2, 3, 4 C. Automatic+Aa9tgtion Looic ~

~)2,'5,6 ~

~ ~

VI. AUXILIARY FEEOWATER (VG-E)((IFAf-1) W(L) ( g) I 1)

A. Sensor/Trip Units

1. Steam Generator Ol Level-Low 1, 2, 3
2. Steam Generator h Pressure SG2 > SGl 1, 2, 3

la.

L E

k I

~ ~

~ ~

IE II 4

L) 8 ~

I P ~

TABLE 4.3-2 (Continued)

ENGINEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS CHANNEL MODES FOR WHICH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CHECK T T TT E TEST EtTII E VI. AUXILIARY FEEDWATER (SG-1)(AFAS-1) (Continued)

B. ESFA System Logic

1. Matrix Logic HA NA 1, 2, 3, 4
2. Initiation Logic NA NA 1, 2, 3, 4
3. Manual AFAS NA NA Q4- 1, 2, 3, 4 C. Automatic Actuation Logic NA HA M(1) (2) (3) 1, 2, 3, 4 VII. AUXILIARY FEEOWATER (SG-2)(AFAS-2)

A. Sensor/Trip Units

l. Steam Generator N2 Level-Low 1, 2, 3
2. Steam Generator 6 Pressure SGl > SG2 1, 2, 3 B. ESFA System Logic
1. Matrix Logic NA HA 1, 2, 3, 4
2. Initiation Logic HA HA Q~ 1, 2, 3, 4
3. Manual AFAS NA HA 1, 2, 3, 4 C. Automatic Actuation Logic NA NA M(l) (2) (3) 1, 2, 3, 4 VIII. LOSS OF POWER (LOV)

A. 4. 16 kV Emergency Bus Under-voltage (Loss of Voltage) 1, 2, 3, 4 B. 4. l6 kV Emergency Sus Under-voltage (Degraded Voltage) 1, 2, 3, 4

~ ~

3/4. 3 INSTRUMENTATION BASES 3/4.3. 1 and 3/4.3.2 REACTOR PROTECTIVE ANO ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentat,ion and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

Response time testing of resistance temperature devices, which are a part of the reactor protective system, shall be performed by using in-situ loop current test techniques or-another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA deviation ,

and periodic checking of penalties. Administrative controls on changes addressable constant values (see also Technical Specifications 3 '.

6.8. 1) ensure that inadvertent misloading of addressable constants into the 1 and CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable. If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. If the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DNBR and LPD penalty factors and increased DNBR and LPD margin to restrict reactor operation to a power level that will ensure safe operation of the plant. If the margins are not maintained, a reactor trip will occur.

a. ru a> a~

p g<a.yu c.wc,ygo>

r '4~ c4o.vv a.(

5-pq~a~ a h %opia.e Q c a.go~ r c 6<- Q7-b ~ Rps/EsFb-5 KN'kv j 4 ~~c L ~<<~ <g<+

4 6 Kvbhv m cw~, ~e. Q QQH,-3+ ~, Svqq4,~$

c ~%~~4a ~~ %3 7c,- gQ- Zoo- Q,aw. bl ~

PALO VERDE - UNIT 1 B 3/4 3-1 AMENDMENT NO. 27

~ g

/

TABLE 2.2-1 REACTOR PROTECTIVE INSTRUHENTATION TRIP SETPOINT LIHITS FUNCTIONAL UNIT TRIP SETPOINT ALLOWABLE VALUES I. TRIP GFNERATION A. Process

1. Pressurizer Pressure - High . < 2383 psia < 2388 psia
2. Pressurizer Pressure - Low > 1837 psia (2) > 4828 psia (2)
3. Steam Generator Level - Low > 44.2X (4) > 43.7X (4)
4. Steam Generator Level - High < 91.0X (9) < 91.5X (9)
5. Steam Generator Pressure - Low > 919 psia (3) > 9kB- psia (3)
6. . Containment Pressure - High < 3.0 psig < 3.2 psig
7. Reactor Coolant Flow - Low
a. Rate < 0.115 psi/sec (6)(7) < 0.118 psi/sec (6)(7)
b. Floor > 11.9 psid(6)(7) > 11.7 psid (6)(7)
c. Band .< 10.0 psid(6)(7) < 10.2 psid (6)(7)
8. Local Power Density - High < 21. 0 kM/ft (5) < 21.0 kW/ft (5)
9. DNBR - Low > 1.24 (5) > 1.24 (5)

B. Excore Neutron Flux

l. Variable Overpower Trip
a. Rate < 10.6X/min of RATED < 11.0X/min of RATED THERHAL POWER (8) THERHAL POWER (8)
b. Ceiling < 110.0X

~ of RATED < 111.0X of RATED THERHAL POWER (8) THERHAL POWER (8)

c. Band P,f

~

/ < 9rSX of THERHAL POWER RATED (8)

~>8 f ( Bh&X of RATED THERMAL POWER (8)

~ ~

TABLE 4. 3" 1 REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE RE UIREMENTS CHANNEL, "' MODES IN WHICH FUNCTIONAL UNIT CHANNEL CHECK CHANNEL CALIBRATION FUNCTIONAL T ~EE SURVEILLANCE I. TRIP GENERATION A. Process

1. Pressurizer Pressure - High S R Q +I. 1, 2
2. Pressurizer Pressure - Low S R 1, 2
3. Steam Generator Level - Low S R Qw 1, 2
4. Steam Generator Level - High S R 9 +t- 1, 2
5. Steam Generator Pressure - Low S R QR 1, 2, 3*, 4*

6~ Containment Pressure - High S R -Qw 1, 2 7~ Reactor Coolant Flow - Low S R QW 1, 2

8. Local Power Density - High S D (2, 4), R (4, 5) Q4; R (6) 1, 2
9. DNBR - Low S 0 (2, 4), R (4, 5) Q +I; R (6) 1 2 H (8), S (7)

B.. Excore Neutron Flux

l. Variable Overpower Trip 0 (2, 4), M (3, 4) 1, 2 0 (4)
2. Logarithmic Power Level - High R (4) Q R and SlU (1) 1, 2, 3, 4, 5 and "

C. Core Protection Calculator System

1. CEA Calculators R >W R (6) 1, 2
2. Core Protection Calculators D (2, 4), R (4, 5,) QW(9), R (6) 1, 2 H (8), S (7)

TABlE 4.3-1 (Continued)

I REACTOR f'ROTECTIVE INSTRUHENTATION SURVEILLANCE RE UIREHENTS (m

CD CD CllANNEL " HOOES IN WHICH m

FUNCTIONAL UNIT CllANNEL CllECK ClNNNEL CALIBRATION FUNCTIONAL E ~R

'URVEILLANCE O. Supp1ementary Protection System Pressurizer Pressure - lligh 1, 2 Z

11. RPS LOGIC lf

{1 A. Hatrix Logic N.A. N.A. r, 2, 3", 4A 5'A g]

B. Initiation l.ogic N.A. N.A. l, 2, 3") 4A" 5A

-l I I I. RPS ACTUATION OEVICES

{)

Css I A. Reactor Trip Breakers N.A. N.A. H, R(ZO) 1, 2, 3*, 4" 5" Vl B. Hanval Trip N.A. N.A. I, 2, 3", 4* 5*

y-,-o~',MFO.=;ii lot~.'l".

TABLE 4. 3-1 Continued)

REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REOUIREMENTS TABLE NOTATIONS With reactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.

(1)- Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, in the previous 7 days.

if not per no erformed ormed (2) Heat balance only (CHANNEL FUNCTIONAL TEST not included), above 15K of RATED THERMAL POWER; adjust the linear po~er level, the CPC delta T power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2 . During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.

(3) Above 15K of RATED THERMAL POWER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.

(4) .Neutron detectors may be excluded from CHANNEL CALIBRATION.

(5) After each fuel loading and prior to exceeding 7QX of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

(7) Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant that each CPC indicated flow is less than Qr flow coefficients such equal to the actual flow rate. The flow m-asurement uncertainty may be included in the BERRl term in the CPC and is equal to or greater than 4X.

(s) Above 70K of RATED THERMAL POWER, verify that the total steady"state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coo ump differential pressure instrumentation and the ultrasonic f queer w meter< djusted pump curves or calorimetric calculations 4xP Th CHANNEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.

(1O) At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervoltage and shunt trips.

- AMEND.".ENT NO. 39 PALO VERDE UNIT 2 3/4 3-16

TABLE 3.3-4 ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM INSTRUMENTATION TRIP VALUES ESFA SYSTEM FUNCTIONAL UNIT TRIP SETPOINT ALLOWABLE VALUES I. SAFETY INJECTION (SIAS) s A. Sensor/Trip Units

1. Containment Pressure - High < 3.0 psig < 3.2 psig

> 1837 psia (1) ie,zy

2. Pressurizer Pressure Low > %22- psia B. ESFA System Logic Not Applicable Hot Applicable C. Actuation Systems Hot'Applicable Hot Applicable I I. CONTAINMENT ISOLATION. (CIAS)

A. Sensor/Trip Units

1. Containment Pressure - High < 3.0 psig < 3.2 psig
2. Pressurizer Pressure - Low > 1937 psia ~equi > BIB& psia B. ESFA System Logic Not Applicable Hot Applicable C. Actuation Systems Not Applicable Hot Applicable III. CONTAIHNFHT SPRAY (CSAS)

A. Sensor/Trip Units Containment Pressure High - High < 8.5 psig < 8 9 psig B. ESFA System Logic Not Applicable Hot Applicable C. Actuation Systems Not App1 i cable Hot Applicable IV. HAIN STEAH LINE ISOLATION (HSIS)

A. Sensor/Trip Units

1. Steam Generator Pressure - Low > 919 psia ~i< > 9+& psia
2. Steam Generator Level - High < 91.0X NR(2) < 91.5X NR")
3. Containment Pressure - High < 3.0 psig < 3.2 psig B. ESFA System Logic Not Applicable Not Applicable C. Actuation Systems Not Applicable Hot Applicable

' ~ ~

TABLE 4.3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM IHSTRUMEHTATIOH SURVEILLANCE RE UIREMEtlTS m

ID CllANHEL MODES FOR WICH m ClNNHEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CllECK CALIBRAT ION TEST IS RE UIRED I. SAFETY INJECTION (SIAS)

A. Sensor/Trip Units "i 'l 1~ Containment Pressure - High S R 1, 2, 3, 4 U reed

~l

2. Pressurizer Pressure - Low S R 1, 2, 3, 4 B. ESFA System Logic
1. Matrix Logic N.A. N.A. 1, 2, 3, 4 5
2. Initiation Logic H.A. H.A. 1, 2, 3, 4 r
3. Manua1 SIAS N.A. N.A. 1, 2, 3, 4 C. Automatic. Actuation Logic 4-.A-.

(wc <p t a~Syeoepr4;e qS) ~

S

'TI4 <)2,3,s I I. COHTAINIIEHT I%SO ATIOR (CfA~ K,2, 3,"i A. Sensor/Trip Units

1. Containment Pressure - High 1, 2, 3
2. Pressurizer Pressure - Low 1, 2, 3 B. ESFA System Logic
1. Matrix Logic N.A. H.A. 1, 2, 3, 4
2. Initiation Logic N.A. N.A. 1, 2, 3, 4
3. Manual CIAS N.A. N.A. 1, 2, 3, 4
4. Manua1 SIAS N.A. H.A. 1, 2, 3, 4

'i ~ ~

~ ) I ~>>

f*,

I ll

~ <

I e

1%

M r>>

J.

~:

~ ~l

~ f, 4,j hf P

,4i" e

b 1

I>>

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM IHSTRUNEHTATIOH SURVEILLANCE RE UIREHEHTS CHANNEL NODES FOR WHICH CllANHEL CHANNEL F UNCT IOHAI. SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CHECK CALIBRATION TEST IS RE UI RED I I. COHTAI HHEHT ISOLATION (Continued)

C. Automatic Actuation Logic ++.

( o.v.~4 ~~~ge~~p coke.q v) un ~zg

~~4~~4~~~ m~c a~p q~k~g~

III. CONTAINMENT SPRAY (CSAS)

%s ~a A. Sensor/Trip Units

1. Containment Pressure--

High - High 1, 2, 3 B. ESFA System Logic

1. Hatrix Logic N.A. N.A. 1, 2, 3, 4
2. Initiation Logic N.A. N.A. 1, 2, 3, 4
3. Hanual CSAS N.A. N.A. 1, 2,'3,4 C. Automatic Actuation Logic 4-.A

(~vo+"p C Ov&qroopr4oqw) cv.rv rio~ So+re o( g+q

~ ~ ~ ~

I

~.

4 I t, k

~

l gl II ~ "

~ \

II l

C

~ I

~

l v

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEH INSTRUHEHTATIOH SURVEILLANCE RE UIREHEHTS CHANNEL NODES FOR MlllCH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CHECK CALIBRATIOH TEST IS RE UIRED IV. HAIN STEAM LINE ISOLATION (HSIS)

A. Sensor/Trip Units

1. Steam Generator Pressure-Low S 1, 2, 3, 4
2. Steam Generator Level - High S 1, 2, 3, 4
3. Containment Pressure - High S 1, 2, 3, 4 B. ESFA System Logic
1. Hatrix Logic H.A. H.A. 1, 2, 3, 4
2. Initiation Logic N.A. H.A. 1, 2, 3, 4
3. Hanual HSIS H.A. N.A. 1, 2, 3, 4 C. Automatic Ad@ation Logic

( ew.~p4 a"~coup ceil~~)

Kc.+IJ zAww~ Ro'Ic,pcoepg+yz

J

~ ~

TABLE 4.3-2 (Continued)

EHGINEEREO SAFETY FEATURES ACTUATION SYSTEH IHSTRUHENTATION SURVEILLANCE RE UIREHENTS CllhHNEL NODES FOR WllICfl CllANNEL CflANHEL FUNCTIONAL SURVEILLANCE ESFA SYSTEfl FUNCTIONAL UNIT CffECK . CALIBRATIOH TEST IS RE UIREO V. RECIRCULATION (RAS)

A. Sensor/Trip Units Refueling Water Storage Tank - Low 1, 2, 3 8: ESFA System Logic

1. Hatrix Logic H.A. N.A. 1, 2, 3, 4
2. Initiation Logic H.A. N.A. 1, 2, 3, 4
3. Hanual RAS H.A. N.A. 1, 2, 3, 4 C. Automatic<A ation Logic -N-.A.

g (zg ~~ 2i 3,W w(iQ(p) SGl 1, 2, 3

44/I 4

r'DI ll 4

C 4 lt tt 4

~ ~

4 l 4

I D t

4

't

~ t 4g

TABLE 4.3-2 (Continued)

ENGIHEEREO SAFETY FEATURES ACTUATION SYSTEH IHSTRUHEHTATIOH SURVEILLANCE RE UIREHEHTS CiiANHEL NODES FOR MHICN CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEH FUNCTIONAL UHIT CHECK CALIBRATION TEST IS RE UI RED VI. AUXILIARY FEEOMATER (SG-l)(AFAS-1) (Continued)

B. ESFA System Logic

l. i1atrix Logic N.A. N.A. 1 2 3, 4
2. Initiation Logic H.A. N.A. 1, 2, 3, 4
3. Manual AFAS H.A.. 'H.A. QW 1, 2, 3, 4 C. Automatic Actuation Logic N.A. H.A: H(1) (2) (3) 1, 2, 3, 4 VII. AUXILIARY FEEDMATER (SG-2)(AFAS-2)

A. Sensor/Trip Units

1. Steam Generator //2 Level-Low 1, 2, 3
2. Steam Generator
b. Pressure SGl > SG2 1 2 3

'B. ESFA System Logic

1. Hatrix Logic H.A. H.A. 1, 2, 3, 4
2. Initiation Logic N.A. N.A. 1, 2, 3, 4
3. ifanual AFAS N.A. H.A. 1, 2, 3, 4 C. Automatic Actuation Logic H.A. N.A. H(1) (2) (3) 1, 2, 3, 4 VIII. LOSS OF POMER (LOV)

A. 4. 16 kV Emergency Bus Under-voltage (Loss of Voltage) 1, 2, 3, 4 B. 4. 16 kV Emergency Bus Under-voltage (Oegraded Voltage) 1, 2, 3, 4

/ I,

~ < ~ ~

I

'FOR IN-QRM'0M N' 3/4.3 INSTRUMENTATION BASES 3/4.3. 1 and 3/4.3. 2 REACTOR PROTECTIVE AND ENGINEERED SAFETY FEATURES H UN The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliabH ity, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

Response time testing of resistance temperature devices, which are a part of the reactor protective system, shall be performed by using in-situ loop current test techniques or another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA deviation penalties. Administrative controls on changes and periodic checking of addressable constant values (see also Technical Specifications 3.3.1 and

6. 8. 1) ensure that inadvertent misloading of addressable constants into the CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable. If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. If,the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DNBR and LPD penalty factors and increased DNBR and LPD margin to restrict reactor operation to a power level that will ensure safe operation of the plant. If the margins are not maintained, a reactor trip will occur.

The value of the DNBR in Specification 2. 1 is conservatively compensated for measurement uncertainties. Therefore, the actual RCS total flow rate determined by the reactor coolant pump differential pressure instrumentation or by calorimetric calculations does not have to be conservatively compensated for measurement uncertainties.

tt e. ch~wNe(v g ae e. )/o cV a. v<e~~ah)C c' ok i sets/ht oa'v,sysQevs

% S 0b '6sa 4 thwvv t 'gh.ww,ts

4) iLg,s pt'st f<<Larw~esm tww Q~ hLgc 5 pp'04 tL eve tctaps c. ss 4 ('L'pest'w news-aai-a, neo/aas 'm Kv.c QQ ress t ~ axvei. Evd c vwv<, a. h ceN-sap-a A+www l gsw 4 be@.cv ow Q 3C Seh m

s s ~ooi (gv. Gsv, PALO VERDE - UNIT 2 B 3/4 3-1 AMENDMEHT NO.

~ 1 ~ ~

d

TABLE 2.2-1 REACTOR PROTECTIVE INSTRUMENTATIOH TRIP SETPQIHT LIMITS FUHCTIOHAL UNIT TRIP SETPOINT ALLOWABLE VALUES TRIP GEHERAT ION A. Process

1. Pressurizer Pressure - High < 2383 psia < 2388 psia
2. Pressurizer Pressure - Low > 1837 psia (2) > 482& psia (2)
3. Steam Generator Level " Low > 44.ZX (4) > 43.7X (4)
4. Steam Generator Level - High < 91.0X (9) < 91.5X (9)
5. Steam Generator Pressure - Low > 919 psia (3) > 4k& po)o (3)
6. Containment Pressure - High < 3.0 psig < 3.2 psig
7. 'eactor Coolant Flow " Low
a. Rate < 0.115 psi/sec (6)(7) < 0.118 psi/sec (6)(7)
b. Floor > ll.9 psid(6)(7) > 11 7 F psid (6)(7)
c. Band < 10.0 psid(6)(7) < 10.2 psid (6)(7)
8. Local Power Density - High < 21.0 kW/ft (5) < 21.0 kW/ft (5)
9. DHBR " Low > 1.24 (5) > 1.24 (5)

B. Excore Neutron Flux

1. Variable Overpower Trip
a. Rate < 10.6X/min of RATED < 11.OX/min of RATED THERMAL POWER (8) THERMAL POWER (8)
b. Cei 1 ing < 110.0X of RATED < ill.OX of RATED THERMAL POWER (8) THERMAL POWER (8)
c. Band < 9-. SX of RATER ~p. 9l. < 4MX of RATER THERMAL POWER (8) THERMAL POWER (8)

TABLE 4. 3-1 REACTOR PROTECTIVE INSTRUHENTATION SURVEILLANCE RE UIREHEHTS CHAHHEL HOOES IN WICH CHANNEL CHANNEL F UNCT IOHAL SURVEILLANCE FUHCTIOHAL UHIT CHE CK 'ALIBRATION TEST I. TRIP GENERATION A. Process Pressurizer Pressure - High R 1, 2

2. Pressurizer Pressure - Low R QM 1, 2
3. Steam Generator Level - Low R 1, 2
4. Steam Generator Level - High R QM
5. Steam Generator Pressure - Low R 3*
6. Containment Pressure - High R Qw 1, 2
7. Reactor Coolant Flow " Low R QM 1, 2
8. Local-Power Oensity - High 0 (2, 4), R (4, 5) Q8-, R (6) 1, 2-
9. OHBR - Low 0 (2, 4), R (4, 5) @MR (6) 1, 2 H (8), S (7) 8, Excore Neutron Flux
1. Variable Overpower Trip 0 (2, 4), H (3, 4) l. 2 0 (4)
2. Logarithmic Power Level " High R (4) Q Wand S/U (1) 1, 2, 3, 4, 5 and "

C. Core Protection Calculator System

1. CEA Calculators R %MR (6) 1, 2
2. Core Protection Calculators 0 (2, 4), R (4, 5) QM(9), R (6) 1, 2 H (8), S (7)

I jIp

~ ~ ~

TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE RE UIREHEttTS CNANttEL . HOOES It< WttlCN CHANNEL CHANNEL FUttCTIOttAL SURVEILLANCE FUt<CTIOt<AL UNI T CHECK CALIBRATION TEST D. Supplement,ary Protection System Pressurizer Pressure - High 1, 2 I I. RPS LOGIC A. that.rix Logic H.A. H.A. 2 3A 4A'A B. Init.iation Logic H.A. N.A. 3* 4A cA I I I. RPS ACTUATIOt< DEVICES A. Reactor Trip Breakers H.A. H.A. H, R(10) 3A 44 5)t

0. Hanual Trip H.A. H.A. 1 2 3" 4* 5*

J

/~

l I

F~ r.. [Hr 0 8 bleak.7lG )'g.".

TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE .IHSTRUMEHTATIOH SURVEILLANCE RE UIREMEHTS TABLE HOTATIOHS ith reactor trip breakers in the closed position and the CEA drive With system capable of CEA withdrawal, and fuel in the reactor, vessels Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, in the previous 7 days.

if not per no erformed orme Heat balance only (CHANNEL FUNCTIONAL TEST not included), above 15K of RATED THERMAL POWER; adjust the linear power level, the CPC delta T power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2X. During PHYSICS ESTS, these daily calibrations may be suspended provided i e th ese cali brations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.

(3) Above 15K of RATED THERMAL POWER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in'the Core Protection Calculators.

(4) Neutron detectors may be excluded from CHANNEL CALIBRATION.

(5) After each fuel loading and prior to exceeding 70K of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

(e) This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

(7) Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate. The flow measurement uncertainty may be included in the BERRl term in the CPC and is equal to or greater than 4X.

(8) Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation and the ultrasonic fl 'ted pump curves or calorimetric calculations.

The NHEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.

(10) At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIOHAL TEST shall include independent verification of the undervoltage and shunt trips.

PALO VERDE - UNIT 3 3/4 3-16 AMEHDMEHT HO. 2/

J I

TABLE 3.3-4 EHGINEEREO SAFETY FEATURES ACTUATIOH SYSTEH IHSTRUMENTATIOH TRIP VALUES m ESFA SYSTEM FUNCTIONAL UHIT TRIP SETPOIHT ALLOMABLE VALUES

<<3 m I. SAFETY INJECTION (SIAS)

A. Sensor/Trip Units I, -

1. Containment Pressure High < 3.0 psig < 3 2 psig
2. Pressurizer Pressure - Low > 183? psia psia B. ESFA System Logic Not Applicable Hot Applicable C. Actuation Systems Hot Applicable Hot Applicab1e I I. CONTAIHMEHT I SOLATIOH (CI AS)

A. Sensor/Trip Units 8.

1.

2.

Containment Pressure Pressurizer Pressure ESFA System Logic High Low 3.0 psig 1837 psla~

Hot Applicable

~apzg > ~

< 3~ 2 psig ps$ a Not Applicable C. Actuation Systems Hot Applicable Not Applicable III. COHTAINHENT SPRAY (CSAS)

A. Sensor/Trip Units Containment Pressure High - High < 8.5 psig, < 8.9 psig B. ESFA System Logic Hot Applicable Hot Applicable C. Actuation Systems Not Applicable Hot Applicable IV. HAIN STEAH LINE ISOLATION (HSIS) .

A. Sensor/Trip Units

1. Steam Generator Pressure - Low > 919 psia R~'E > ~ psia'
2. Steam Generator Level - High < 91.0X NR < 91.5X NR
3. Containment Pressure - High < 3.0 psig < 3.2 psig B. ESFA System Logic Hot Applicable Not Appl icable C. Actuation Systems Not Appl icable Not Applicable

/

t I~ )

TABLE 4.3-2 EHGIHEEREO SAFETY FEATURES ACTUATIOH SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMEHTS ESFA SYSTEM FUNCTIONAL UNIT I. SAFETY INJECTION (SIAS)

CHANNEL CHECK CHANNEL CALIBRATIOH CHANNEL FUNCTIONAL TEST ~E MOOES FOR MHICN SURVEILLANCE A. Sensor/Trip Units

1. Containment Pressure - High S 1, 2, 3, 4
2. Pressurizer Pressure - Low S 1, 2, 3, 4
0. ESFA System Logic
1. Matrix Logic H. A. N.A. 1, 2, 3, 4
2. Initiation Logic H. A. H. A. 1, 2, 3, 4
3. Manual SIAS N.A. H.A. 1, 2, 3, 4 C. Au omatic Actuation

~+ + Logic

~RA~~ %04g~oCh

+CO'4P'C Q(zg L,Z,3, +

II. CONTAINMENT ISOLATION (Cl'AS

~

~ (ig( wQ A. Sensor/Trip Units

1. Containment Pressure - High S 1, 2, 3 Z. Pressurizer Pressure - Low S 1, 2, 3 B. ESFA System Logic
1. Matrix Logic H. A. N. A. 1, 2, 3, 4
2. Initiation Logic N. A. 1,"2,3,4
3. Manual CIAS N.A. N. A. 1, 2, 3, 4
4. Manual SIAS H. A. N.A. I, 2, 3, 4

c,S

~ P IP

'd Ct',

1' II g 1'>

o"l 8

~ .

II I q

'E 1 l,'I g

1~

g I 0@

lg II

TABLE 4. 3-2 (Continued)

EHGIHEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE BE UIREMEHTS CflANHEL MODES FOR WHICH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CtiECK CALIBRATION TEST II. CONTAINMENT ISOLATION (Continued)

C. Automatic Actuation Logic

+~a.pV %a&qravp etLCLy~) 2 4,c %Q ls c <~Sa~~op Rakaq~

ill. COHTAIHMEHT SPRAY (CSAS)

A. Sensor/Trip Units

1. Containment Pressure--

High - High 1, 2, 3 B. ESFA System Logic

1. Matrix Logic N. A. N.A. 1, 2, 3, 4
2. Initiation Logic N. A. N.A. 1, 2, 3, 4
3. Manual CSAS N.A. N. A. 1, 2, 3, 4 C. Automatic Actuation Logic -H-.Az

( ~4~<.pk L.) R,E~%

~~ e~~4'wc'~ E~MQl'~q g~~~

II II I e

~ ~

f C

a m I

I pl h

II I

k

TABLE 4.3-2 (Continued)

/

ENGINEERED- SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS CHANNEL MODES FOR WHICH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CHECK CALIBRATION TEST IV. MAIN STEAM LINE ISOLATION (MSIS)

A. Sensor/Trip Units

1. Steam Generator Pressure-Low S 1, 2, 3, 4
2. Steam Generator Level - High S 1, 2, 3, 4
3. Containment Pressure - High S 1, 2, 3, 4 B. ESFA System Logic
1. Matrix Logic N. A. N. A. 1, 2, 3, 4
2. Initiation Logic N.A. N. A. 1, 2, 3, 4
3. Manual HSIS N.A. N.A. 1, 2, 3, 4 C. Automatic A~ation Logic g~C.OP c SQ~r~p ~4y~$

+c. %~~ c ~~~ Q~Qqr~p $044)Q ~O(p) L,Z, 3,"I

J I,rI/ L ~

~ ~4

~ e ~

~ I~ lE>>

1 r lO I'>>

~ L L~ '

1 ~

lt

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEH INSTRUHENTATION SURVEILLANCE RE UIREHENTS CHANNEL HODES FOR MHICN CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEH FUNCTIONAL UNIT CHECK CALIBRATION TEST IS RE UIRED V. RECIRCULATION (RAS)

A. Sensor/Trip Units Refueling Mater Storage Tank - Low 1, 2, 3

0. ESFA System Logic
1. Hatrix Logic N. A. N.A. 1, 2, 3, 4
2. Initiation Logic N. A. N.A. 1, 2, 3, 4
3. Hanual RAS N. A. N. A. 1, 2, 3, 4 C. Automatic AWtfation Logic VI. AURIL IARY I'EEDWAISR (%G-El)tAFIPI)

A. Sensor/Trip Units

1. Steam Generator IIl Level-Low 1, 2, 3
2. Steam Generator h Pressure SG2 > SGl . 1, 2, 3

~ V 'L ~ J J ~

~~

h l

g'0 4

~, 4

)

4p W

lh 4 tI

~ I ~ R

>vg k~,)

+% ~

~l 4,

d l,

l, ~

TABLE 4.3-2 (Continued)

ENGINEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS CHANNEL MOOES FOR WHICH CHANNEL CHANNEL FUNCTIONAL SURVEILLANCE ESFA SYSTEM FUNCTIONAL UNIT CHECK CALIBRATION TEST Vl. AUXILIARY FEEOWATER (SG-l)(AFAS-1) (Continued)

B. ESFA System Logic

1. Matrix Logic N. A. N.A. 1, 2 3 4
2. Initiation Logic N. A. N.

A.'.A.

1, 2, 3, 4

3. Manual AFAS N.A. 1, 2, 3, 4 C. .Automatic Actuation Logic N. A. N. A. M(1) (2) (3) 1, 2, 3, 4 VII. AUXILIARY FEEOWATER (SG-2)(AFAS-2)

A. Sensor/Trip Units

l. Steam Generator b'2 Level-Low 1, 2, 3
2. Steam Generator 6 Pressure SG1 > SG2 1,2,3 D. ESFA System Logic
1. Matrix Logic N. A. N.A. 1, 2, 3, 4
2. Initiation Logic N.A. N.A. 1, 2, 3, 4
3. Manual AFAS N.A. N.A. Q %- 1, 2, 3, 4 C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1, 2, 3, 4 VII I. LOSS OF:POWER (LOV)
h. 4. 16 kV Emergency Bus Under-voltage (Loss of Voltage) 1, 2, 3, 4~

B. 4. 16 kV Emergency Bus Under-voltage (Oegraded Voltage) 1, 2, 3, 4

'(~

f

,~ ~

t

-gF; iM.-"GRI',riP.TiQI~ Ot""

INSTRUHEH100M

, .~34. 3 BASES 3/4 3. 1 >>d 3/4.3.2 REACTOR PROTECTIVE AND ENGINEEREO SAFETY FEATURES ON UH N A ON The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy; and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The

'integrated operation of each of these systems 15 consistent with the assumptions

.used in the safety analyses.

Response time testing of resistance temperature devices, which are a part of the reactor protective system, shall be performed by using in-situ loop current test techniques or another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA-. deviation penalties. Administrative controls on changes and periodic checking of addressable constant values (see also Technical Specifications 3.3. 1 and 6.&.1) ensure that inadvertent misloading of addressable constants into the CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable. If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. If the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DHBR and LPD penalty factors and increased OHBR and LPD margin to restrict, reactor operation to a power level that will ensure safe operation of the plant. If the margins are not maintained, a reactor trip will occur.

tages, The value. of the OHBR in Specification 2.1 is conservatively compensated for measurement uncertainties. Therefore, the actual RCS total flow rate determined by the reactor coolant pump differential pressure instrumentation or by calorimetric calculations does not have to be conservatively compensated for measurement uncertainties.

Tl g, qL o.eg

<Y s c ~s pic /

is 4a sa h o~

q a4'hq.y)Cwa4 seacps.

a

'Eka j

\,/ e 't 44m <R<

pea.scwka.$

0 e.4 327- <, Rps/KsFN 'E*e~kad +4.sk Xw4crv aA

~ 4 c4%h%

4@4-z j

aqProvq g a.~ g vatic.a.h

<<pa~~

1

~ 4 ~a 4c.usa- ego~ i'5- Z- R "RR) (<~.0% ~

PALO VERDE - UHIT 3 B 3/4 3 1 AHEHOMEHT HO 18

0 W 0 ~

t

/I)

A