ML17310A515

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs Changing Surveillance Frequency from Monthly to Quarterly for Channel Functional Tests for RPS & ESFAS Instrumentation
ML17310A515
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 08/05/1993
From:
ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
To:
Shared Package
ML17310A514 List:
References
NUDOCS 9308130140
Download: ML17310A515 (61)


Text

0U4 ~

su<

XIO m Q) R7

~ D ao o4 c XO ~

as~

UIQ ~

OG OQ

'OO tJQIQI KlO R

TABLE 2.2-1 REACTOR PROTECTIVE INSTRUMENTATION TRIP TRIP SETPOINT

< 2383 psia

> 1837 psia (2)

> 44.2% (4)

< 91.0% (9)

> 919 psia (3)

< 3.0 psig FUNCTIONAL UNIT I.

TRIP.GENERATION A.

Process 1.

Pressurizer Pressure

- High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level - Low 4.

Steam Generator Level - High 5.

Steam Generator Pressure

- Low 6.

Containment Pressure

- High 7.

Reactor Coolant Flow - Low SETPOINT LIMITS I

I ALLOWABLE VALUES I

I I

< 2388 psia

~

~

~~~I ~> -HR2-psia (2)

> 43.7% (4)

< 91.5% (9)

~

~

~ s t +> 842 psia (3)

< 3.2 psig a.

Rate b.

Floor c.

Band 8.

Local Power Density - High 9.

DNBR - Low

-B.

Excore Neutron Flux

< 0.115 psi/sec (6)(7)

> 11.9 psid (6)(7)

< 10.0 psid (6)(7)

< 21. 0 kW/ft (5)

> 1.24 (5)

< 0.118 psi/sec (6)(7)

> 11.7 psid(6)(7)

< 10.2 psid (6)(7)

< 21.0 kW/ft (5)

> 1.24 (5) m TD Wl C7 1.

Variable Overpower Trip a.

Rate b.

Ce i l ing c.

Band

< 10.6%/m>n of RATED

< 11.0%/min of RATED THERMAL POWER (8)

THERMAL POWER (8)

< 110.0% of RATED

< ill 0% of RATED THERMAL POWER (8)

TIIERMAL POWER-(8)

~.g/ ~< ~% of RATED

)3/

< +fhAX of RATED TIIERMAL POWER (8)

THERMAL POWER (8)

~

l l

TABLE 4. 3-1 REACTOR PROTECTIVE IHSTRUHENTATIOH SURVEILLANCE RE UIREHEHTS

'Cm rQ C7m FUtlCT IOHAL UNIT I.

TRIP GEtlERATION A.

Process CHANNEL CllANNEL.

CllECK CALIBRATIOH CllANtlEL FUttCT IOtlAL TEST HODES IH MtllCtl SURVE I LLAtlCE 1.

Pressurizer Pressure

- High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level - Low

4. 'team Generator Level - High 5.

Steam Generator Pressure

- Low 6.

Containment Pressure - High 7.

Reacto~ Coolant Flow - Low 8.

Local Power Density - High 9.

ONBR - Low S

S 5

S S

S S

S

~ S R

R R

R R

R R

0 (2, 4),

R (4, 5)

D (2, 4),

R (4, 5)

H (8),

S (7)

QW QW R (6)

~

R (6) 1, 2

1, 2

1, 2

1, 2

]

2 3A 4A 1,

2 1,

2 1>

2 1,

2 B.

Excore Neutron Flux 1.

Variable Overpower Trip 2.

Logarithmic Power Level - High D (2, 4),

H (3, 4) 0 (4)

R (4) 1, 2

Q% and S/U (1) 1, 2, 3, 4, 5

and "

C.

Core Protection Calculator System 1.

CEA Cal cul ators 2.

Core Protection Calculators R

Q%, R(6) 1,2 D (2, 4),

R (4, 5) 9+/-(9),

R (6) 1, 2

H (8),

5 (7)

~

~

(

Cl m

FUNCTIONAL UNIT CHANNEL "-'-

CHANNEl.

CHECK CALIBRATION ClIAtttt E L FUHCT IONA L TEST TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE INSTRUHENTATION SURVEIl.LAHCE RE UIREHEttTS HODES IH MHICtt SUAVEILLAttCE 0.

Supplementary Protection System Pressurizer Pressure

- High II.

RPS LOGIC A.

Hatrix Logic B.

Initiation Logic I II.

RPS ACTUATIOtt OEVICFS N.A.

N.A.

N.A.

N.A, 1,

2 1, 2, 3", 4", 5" 1

2 3>>

4>>

5>>

A.'eactor Trip Breakers B.

Hanual Trip N.A.

~ '.A.

H.A.

)

N.A.

H, R (10) 1, 2, 3", 4", 5" 1, 2, 3" 4"

5"

~

~

~

/

TABLE 4. 3-1 (Continuedl TABLE NOTATIONS (2}

(3)

(4)

(5)

(6)

(7)

(8)

(10)-

With reactor tri br eactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal and fuel 'h n

ue in the reactor vessel.

e reactor tr ip breakers closed Each STARTUP or when required with the react t

b and the CEA drive system capable of rod withdrawal if in the previous 7 days.

o wi rawal, if not performed Heat balance only (CHANNEL FUNCTIONAL TEST not included}, above 15K of RATED THERMAL POMER; adjust the linear power level, the CPC delta T

power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater th 2

0

TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each ma or t t an prior o proceeding to the next major test power plateau.

Above 15K of RATED THERMAL POMER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.

Neutron detectors may be excluded from CHANNEL CALIBRATION.

After each fuel loading and prior to exceeding 70K of RATED THERMAL POMER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

This CHANNEL FUNCTIONAL TEST shall include the injecti f

1 d

rocess si e injec ion o simulated p

ignals snto the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

Above 70K of RATED THERMAL POMER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate.

The flow measurement uncertainty may than 4X.

be included in the BERRl term in the CPC and is equal t ua o or greater Above 70K of RATED THERMAL POWER, verify that the t t 1

t d-RCS flow ra e

o a s eady-state ow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor flo m

coo'lant um differential pressure instrumentation a

d th 1

o meter a

'usted pump curves or calorimetric calculations.

the cor Th ANNEL FUNCTIONAL TEST shall include verificati th t AN ca ion t at each OPERABLE CPC.

rrect current values of addressable constants are in t ll ins a

ed in At leaeast once per 18 months and following maintenance or adjustment of the reactor trip breaker s, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervolt'age and shunt trips PALO VERDE - UNIT 1 3/4 3-16 AMENDMENT NO. 27

~

~

I ld

TABLE 3.3-4 FHGIHEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATIOH TRIP VALUES m

C7m ESFA SYSTEM FUNCTIONAL UNIT I.

SAFETY INJECTION (SIAS)

A.

Sensor/Trip Units 1.

Containment Pressure - High 2.

Pressurizer Pressure

- Low B.

ESFA System Logic C.

Actuation Systems II.

COHTAINMEHT ISOLATION (CIAS)

A.

Sensor/Trip Units 1.

Containment Pressure

- High Z.

Pressurizer Pressure

- Low B.

ESFA System Logic C.

Actuation Systems III. CONTAINMENT SPRAY (CSAS)

A.

Sensor/Trip Units Containment Pressure High - High B.

ESFA System Logic CD Actuation 'Systems IV.

MAIN STEAM LINE ISOLATION (MSIS)

A.

Sensor/Trip Units 1.

Steam Generator Pressure

- Low 2.

Steam Generator Level - High 3.

Containment Pressure

- High B.

ESFA System Logic C.

Actuation Systems TRIP SETPOINT ALLOWABLE VALUES

< 3.0 psig

> 1837 psia Not Applicable Hot Applicable

< 3.2 psig.

~iszr ~i QB. psia

~ (1)

Hot Applicable Hot Applicable

< 8.5 psig Hot Applicable Hot Applicable

< 8.9 psig Hot Applicab1e Hot Applicable

> -919 psi

< 9I.OX HR(2)

< 3.0 psig Hot Applicable Hot Applicable C~b

< 91 5X HR(2)-

< 3.2 psig Hot Applicable Hot Applicable

< 3.0 psig

< 3.2 psig

> 1837 psia

<aZi

> 4%2 psia

~ (1)

. Hot Applicable Hot Applicable

'ot Applicable Hot Applicable

~

~/

t

TABLE 4. 3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREHENTS ESFA SYSTEH FUNCTIONAL UNIT I.

SAFETY INECTION (SIAS)

CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATION TEST

>'lODES FOR MHICH SURVEILLANCE IS RE UIRED A.

Sensor/Trip Uni ts 1.

Containment Pressure

- High S

2 ~

Pressurizer Pressure

- Low S

1, 2, 3, 4

1, 2, 3, 4

B.

ESFA System Logic 1.

Hatrix Logic 2.

Initiation l.ogic 3.

!lanua1 SIAS C.

Automatic Actuation Logic (eiSCCCLP+ %tA+gtO~y M% 0 g%)

I I.

COIITAlttttEttT ISOLATIVltl PCIAST T HA

  • HA NA w(aQ(g) 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

A.

Sensor/Trip Uni ts l.

ontainment Pressure

- High S

2.

Pressurizer Pressure Low S

1, 2, 3

1 2

3 B.

ESFA System Logic l.

11atrix Logic 2.

Initiation Logic 3.

Manual CIAS 4.

Hanua1 SIAS HA NA NA NA THA NA 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

h 4

~

~

~

~

Ih 1.'h

\\

I h

~ s f~

~

~

~ I

~ 1 4

.5 h 'I kQ Q l~

~ h hh h

TABLE 4.3-2.(Continued)

ENGIHEEREO SAFETY FEATURES ACTUATIOH SYSTEH.INSTRUMENTATION SURVEILLANCE RE UIREflEHTS ESFA SYSTEH FUNCTIONAL UN!T II.

COHTAINllEHT ISOLATION (Continued)

C.

Automatic Actuation Logic

/chic,o p%'u.~cpap ec.l.a q~)

A.cpu.a.Q~~ S~4qe~q

%~%ay a III.

COHTAIHkkEHT SPRAY (CSAS)

A.

Sensor/Trip Units 1.

Containment Pressure--

ligh - kligh CklANNEL CHANNEl..

CHANNEI.

FUNCTIONAL CklECK-"

CALIBRATION TEST

~v> (~)

t10DES FOR WklICkk SURVEILLANCE

%II

%y

<s?,

1 1, 2, 3

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Hanual CSAS NA HA NA HA NA 1,2,3,4 1, 2, 3,

4 1, 2, 3, 4

C.

Automatic Actuation Logic

( ~c.~)4 ~v~qreep ca4~aQ K~cv.284~~ 8~4)coop QLE~f4 k,Z,'5 K,2,E, 6

~

~

~

4 4

'I h

4, p '4 I

~ 4 p

4

')

p rI,

~4 4

p pg

'I 44 happ 4

a kl 4

I ~

4 4!

~ J 4

4 n

i= /'

44 4

"4 s4 I

~ 4

~ ~

a I

g ~

(

m C7m TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREliENTS

, ~

I ESFA SYSTEH FUNCTIONAL UNIT IV.

HAIN STEAM LINE ISOLATION (HSIS)

A.

Sensor/Trip Units CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATION TEST MODES FOR WHICH SURVEILLANCE IS RE UIREO 1.

Steam Generator Pressure-Low S

2.

Steam Generator Level - High S

3.

Containment Pressure

- High S

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Hanual llSIS NA NA NA NA 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

C.

Automatic A4gption Logic

(~~<.aq4>>4qcoep c'4ags) h.~4~~4<<~ '5~4~<<~~ ghee~>

<,Z,S,u,

TABlE 4.3-2 (Continued)

I ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM INSTRUHENTATIOH SURVEILLANCE RE UIREHENTS ESFA SYSTEH FUNCTIONAL UNIT V.

RECIRCULATION (RAS)

A.

Sensor/Trip Units Refueling Water Storage

'- Tank - Low B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

11anual RAS C.

Automatic+Aa9tgtion Looic VI.

AUXILIARYFEEOWATER (VG-E)((IFAf-1)

A.

Sensor/Trip Units 1.

Steam Generator Ol Level-Low 2.

Steam Generator h Pressure SG2

> SGl CHANtlEL CllANHEL CHANNEL FUNCTIONAL C)IECK CALIBRATION TEST HA NA HA W(L)( g)

NODES FOR WllICll SURVEILLAtlCE t

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

~)2,'5,6 I 1) 1, 2, 3

1, 2, 3

~

4 IL I

~~

~ ~

la.

L E

k I

~

~

~

~

IE II 4

L) 8

~I P ~

TABLE 4.3-2 (Continued)

ENGINEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS HA NA NA NA C.

Automatic Actuation Logic VII.

AUXILIARYFEEOWATER (SG-2)(AFAS-2)

A.

Sensor/Trip Units l.

Steam Generator N2 Level-Low 2.

Steam Generator 6 Pressure SGl >

SG2 CHANNEL ESFA SYSTEM FUNCTIONAL UNIT CHECK VI.

AUXILIARYFEEDWATER (SG-1)(AFAS-1) (Continued)

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual AFAS NA NA NA HA 1, 2, 3, 4 1, 2, 3, 4

Q4-1, 2, 3, 4 M(1) (2) (3) 1, 2, 3, 4

1, 2, 3

1, 2, 3

CHANNEL MODES FOR WHICH CHANNEL FUNCTIONAL SURVEILLANCE T

T TT E

TEST EtTII E

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual AFAS C.

Automatic Actuation Logic VIII. LOSS OF POWER (LOV)

A.

4. 16 kV Emergency Bus Under-voltage (Loss of Voltage)

B.

4. l6 kV Emergency Sus Under-voltage (Degraded Voltage)

NA HA NA NA HA HA HA NA Q~

M(l) (2) (3) 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

~

~

3/4. 3 INSTRUMENTATION BASES 3/4.3.

1 and 3/4.3.2 REACTOR PROTECTIVE ANO ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentat,ion and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions.

The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

Response

time testing of resistance temperature

devices, which are a part of the reactor protective system, shall be performed by using in-situ loop current test techniques or-another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA deviation penalties.

Administrative controls on changes and periodic checking of addressable constant values (see also Technical Specifications 3'. 1 and 6.8. 1) ensure that inadvertent misloading of addressable constants into the CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable.

If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DNBR and LPD penalty factors and increased DNBR and LPD margin to restrict reactor operation to a power level that will ensure safe operation of the plant.

If the margins are not maintained, a reactor trip will occur.

a. ru a>

a~ p g<a.yu c.wc,ygo>r '4~ c4o.vv a.(j 4 ~~c L ~<<~ <g<+

5-pq~a~ a h

%opia.e Q

c a.go~ r c 6<- Q7-b

~ Rps/EsFb-5 KN'kv 4 6 Kvbhv m cw~,

~e. Q QQH,-3+ ~, Svqq4,~$

c ~%~~4a ~~

%3 7c,- gQ-Zoo-Q,aw. bl

~

PALO VERDE - UNIT 1 B 3/4 3-1 AMENDMENT NO.

27

~

g

/

TABLE 2.2-1 REACTOR PROTECTIVE INSTRUHENTATION TRIP SETPOINT LIHITS FUNCTIONAL UNIT I.

TRIP GFNERATION A.

Process 1.

Pressurizer Pressure

- High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level - Low 4.

Steam Generator Level - High 5.

Steam Generator Pressure

- Low 6.

. Containment Pressure

- High 7.

Reactor Coolant Flow - Low a.

Rate b.

Floor c.

Band 8.

Local Power Density - High 9.

DNBR -

Low B.

Excore Neutron Flux TRIP SETPOINT

< 2383 psia

> 1837 psia (2)

> 44.2X (4)

< 91.0X (9)

> 919 psia (3)

< 3.0 psig

< 0.115 psi/sec (6)(7)

> 11.9 psid(6)(7)

.< 10.0 psid(6)(7)

< 21. 0 kM/ft (5)

> 1.24 (5)

ALLOWABLE VALUES

< 2388 psia

> 4828 psia (2)

> 43.7X (4)

< 91.5X (9)

> 9kB-psia (3)

< 3.2 psig

< 0.118 psi/sec (6)(7)

> 11.7 psid (6)(7)

< 10.2 psid (6)(7)

< 21.0 kW/ft (5)

> 1.24 (5) l.

Variable Overpower Trip a.

Rate b.

Ceiling c.

Band

< 10.6X/min of RATED

< 11.0X/min of RATED THERHAL POWER (8)

THERHAL POWER (8)

< 110.0X of RATED

< 111.0X of RATED THERHAL POWER (8)

THERHAL POWER (8)

~

~

P,f /

< 9rSX of RATED

~>8 f

( Bh&X of RATED THERHAL POWER (8)

THERMAL POWER (8)

~

~

TABLE 4. 3" 1 REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE RE UIREMENTS FUNCTIONAL UNIT I.

TRIP GENERATION A.

Process CHANNEL CHANNEL CHECK CALIBRATION CHANNEL,"

MODES IN WHICH FUNCTIONAL SURVEILLANCE T

~EE 1.

Pressurizer Pressure

- High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level - Low 4.

Steam Generator Level - High 5.

Steam Generator Pressure - Low 6 ~

Containment Pressure

- High 7 ~

Reactor Coolant Flow - Low 8.

Local Power Density - High 9.

DNBR - Low B.. Excore Neutron Flux S

S S

S S

S S

S S

R R

R R

R R

R D (2, 4),

R (4, 5) 0 (2, 4),

R (4, 5)

H (8),

S (7)

Q +I.

Qw 9 +t-QR

-Qw QW Q4; R (6)

Q +I; R (6) 1, 2

1, 2

1, 2

1, 2

1, 2, 3*, 4*

1, 2

1, 2

1, 2

1 2

l.

Variable Overpower Trip 2.

Logarithmic Power Level - High 0 (2, 4),

M (3, 4) 0 (4)

R (4) 1, 2

Q R and SlU (1) 1, 2, 3, 4, 5

and "

C.

Core Protection Calculator System 1.

CEA Calculators 2.

Core Protection Calculators R

> W R (6) 1, 2

D (2, 4),

R (4, 5,)

QW(9),

R (6) 1, 2

H (8),

S (7)

I CD TABlE 4.3-1 (Continued)

REACTOR f'ROTECTIVE INSTRUHENTATION SURVEILLANCE RE UIREHENTS

(

m CD m

FUNCTIONAL UNIT O.

Supp1ementary Protection System Pressurizer Pressure

- lligh CllANNEL ClNNNEL CllECK CALIBRATION CllANNEL HOOES IN WHICH FUNCTIONAL

'URVEILLANCE E

~R 1,

2 CssI Vl 11.

RPS LOGIC A.

Hatrix Logic B.

Initiation l.ogic III.

RPS ACTUATION OEVICES A.

Reactor Trip Breakers B.

Hanval Trip N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

H, R(ZO) r, 2, 3",

l, 2, 3")

1, 2, 3*,

I, 2, 3",

Zlf

{1 4A 5'A g]

4A" 5A

-l

{)

4" 5"

4*

5* '-'

y-,-o~',MFO.=;ii lot~.'l".

TABLE 4. 3-1 Continued)

REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REOUIREMENTS TABLE NOTATIONS (1)-

(2)

(3)

(4)

(5)

(7)

(s)

(1O)

With reactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.

Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, if not erformed in the previous 7 days.

no per ormed Heat balance only (CHANNEL FUNCTIONAL TEST not included),

above 15K of RATED THERMAL POWER; adjust the linear po~er level, the CPC delta T

power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2

During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.

Above 15K of RATED THERMAL POWER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.

.Neutron detectors may be excluded from CHANNEL CALIBRATION.

After each fuel loading and prior to exceeding 7QX of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than Qr equal to the actual flow rate.

The flow m-asurement uncertainty may be included in the BERRl term in the CPC and is equal to or greater than 4X.

Above 70K of RATED THERMAL POWER, verify that the total steady"state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coo ump differential pressure instrumentation and the ultrasonic f

w meter< djusted pump curves or calorimetric calculations queer 4xP Th CHANNEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.

At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervoltage and shunt trips.

PALO VERDE - UNIT 2 3/4 3-16 AMEND.".ENT NO.

39

TABLE 3.3-4 ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM INSTRUMENTATION TRIP VALUES ESFA SYSTEM FUNCTIONAL UNIT I.

SAFETY INJECTION (SIAS)

A.

Sensor/Trip Units 1.

Containment Pressure

- High 2.

Pressurizer Pressure

- Low B.

ESFA System Logic C.

Actuation Systems II.

CONTAINMENT ISOLATION. (CIAS)

A.

Sensor/Trip Units 1.

Containment Pressure - High 2.

Pressurizer Pressure - Low B.

ESFA System Logic C.

Actuation Systems III. CONTAIHNFHT SPRAY (CSAS)

A.

Sensor/Trip Units Containment Pressure High - High B.

ESFA System Logic C.

Actuation Systems IV.

HAIN STEAH LINE ISOLATION (HSIS)

A.

Sensor/Trip Units 1.

Steam Generator Pressure

- Low 2.

Steam Generator Level - High 3.

Containment Pressure

- High B.

ESFA System Logic C.

Actuation Systems TRIP SETPOINT ALLOWABLE VALUES s

< 3.0 psig

< 3.2 psig

> 1837 psia ie,zy

> %22-psia

. (1)

Not Applicable Hot Applicable Hot'Applicable Hot Applicable

< 3.0 psig

< 3.2 psig

> 1937 psia

~equi

> BIB& psia Not Applicable Hot Applicable Not Applicable Hot Applicable

< 8.5 psig Not Applicable Not App1i cable

< 8 9 psig Hot Applicable Hot Applicable

> 919 psia

~i<

> 9+& psia

< 91.0X NR(2)

< 91.5X NR")

< 3.0 psig

< 3.2 psig Not Applicable Not Applicable Not Applicable Hot Applicable

~

~

TABLE 4.3-2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM IHSTRUMEHTATIOH SURVEILLANCE RE UIREMEtlTS m

ID m

ESFA SYSTEM FUNCTIONAL UNIT I.

SAFETY INJECTION (SIAS)

A.

Sensor/Trip Units 1 ~

Containment Pressure

- High 2.

Pressurizer Pressure

- Low CllANHEL ClNNHEL CHANNEL FUNCTIONAL CllECK CALIBRATION TEST S

R S

R MODES FOR WICH SURVEILLANCE IS RE UIRED 1, 2, 3, 4

1, 2, 3, 4

"i'l U

~l B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manua1 SIAS C.

Automatic. Actuation Logic (wc <p t a~Syeoepr4;e qS)

II.

COHTAINIIEHT I%SO ATIOR (CfA~

A.

Sensor/Trip Units 1.

Containment Pressure

- High 2.

Pressurizer Pressure

- Low B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual CIAS 4.

Manua1 SIAS N.A.

H.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

H.A.

N.A.

4-.A-.

'TI4~

H.A.

N.A.

N.A.

H.A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

S

<)2,3,s K,2, 3,"i 1, 2, 3

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

5 reed r

'i

~

~

~ )

I ~>>

f*,

I ll

~

I e

1%

M r>>

J.

~:

~

~l

~ f,4,j hf P

,4i" e

b 1

I>>

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEM IHSTRUNEHTATIOH SURVEILLANCE RE UIREHEHTS ESFA SYSTEM FUNCTIONAL UNIT II.

COHTAIHHEHT ISOLATION (Continued)

CHANNEL CllANHEL CHANNEL F UNCTIOHAI.

CHECK CALIBRATION TEST NODES FOR WHICH SURVEILLANCE IS RE UIRED C.

Automatic Actuation Logic

( o.v.~4 ~~~ge~~p coke.q v)

~~4~~4~~~ m~c a~p q~k~g~

III.

CONTAINMENT SPRAY (CSAS)

A.

Sensor/Trip Units 1.

Containment Pressure--

High - High

++.

un

~zg

%s ~a 1, 2, 3

B.

ESFA System Logic 1.

Hatrix Logic 2.

Initiation Logic 3.

Hanual CSAS N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

1, 2, 3, 4

1, 2, 3, 4

1, 2,'3,4 C.

Automatic Actuation Logic

(~vo+"p C Ov&qroopr4oqw) cv.rv rio~ So+re o( g+q 4-.A

~

~

~

~

I

~.

4 I

t, k

~

l gl II

~ "

~ \\II l

C

~ I

~l v

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATIOH SYSTEH INSTRUHEHTATIOH SURVEILLANCE RE UIREHEHTS ESFA SYSTEM FUNCTIONAL UNIT IV.

HAIN STEAM LINE ISOLATION (HSIS)

A.

Sensor/Trip Units CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATIOH TEST NODES FOR MlllCH SURVEILLANCE IS RE UIRED 1.

Steam Generator Pressure-Low S

2.

Steam Generator Level - High S

3.

Containment Pressure - High S

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

B.

ESFA System Logic 1.

Hatrix Logic 2.

Initiation Logic 3.

Hanual HSIS H.A.

N.A.

H.A.

H.A.

H.A.

N.A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

C.

Automatic Ad@ation Logic

( ew.~p4 a"~coup ceil~~)

Kc.+IJ zAww~ Ro'Ic,pcoepg+yz

J

~

~

TABLE 4.3-2 (Continued)

EHGINEEREO SAFETY FEATURES ACTUATION SYSTEH IHSTRUHENTATION SURVEILLANCE RE UIREHENTS ESFA SYSTEfl FUNCTIONAL UNIT V.

RECIRCULATION (RAS)

A.

Sensor/Trip Units Refueling Water Storage Tank - Low 8:

ESFA System Logic CllhHNEL NODES FOR WllICfl CllANNEL CflANHEL FUNCTIONAL SURVEILLANCE CffECK CALIBRATIOH TEST IS RE UIREO 1, 2, 3

1.

Hatrix Logic 2.

Initiation Logic 3.

Hanual RAS C.

Automatic<A ation Logic H.A.

H.A.

H.A.

-N-.A.

N.A.

N.A.

N.A.

g (zg w(iQ(p) 1, 2, 3, 4 1, 2, 3, 4

1, 2, 3, 4

~~ 2i 3,W

SGl 1, 2, 3

1, 2, 3

44/I 4

r'DI ll 4

C 4 lt tt 4

~ ~

4 l 4

I D

t 4

't

~t 4g

TABLE 4.3-2 (Continued)

ENGIHEEREO SAFETY FEATURES ACTUATION SYSTEH IHSTRUHEHTATIOH SURVEILLANCE RE UIREHEHTS ESFA SYSTEH FUNCTIONAL UHIT VI.

AUXILIARYFEEOMATER (SG-l)(AFAS-1)

B.

ESFA System Logic l.

i1atrix Logic 2.

Initiation Logic 3.

Manual AFAS C.

Automatic Actuation Logic VII.

AUXILIARYFEEDMATER (SG-2)(AFAS-2)

A.

Sensor/Trip Units 1.

Steam Generator

//2 Level-Low 2.

Steam Generator

b. Pressure SGl >

SG2

'B.

ESFA System Logic 1.

Hatrix Logic 2.

Initiation Logic 3.

ifanual AFAS C.

Automatic Actuation Logic VIII. LOSS OF POMER (LOV)

A.

4. 16 kV Emergency Bus Under-voltage (Loss of Voltage)

B.

4. 16 kV Emergency Bus Under-voltage (Oegraded Voltage)

CHANNEL CHANNEL CHECK CALIBRATION (Continued)

CiiANHEL FUNCTIONAL TEST NODES FOR MHICN SURVEILLANCE IS RE UIRED N.A.

N.A.

H.A.

N.A.

H.A.. 'H.A.

N.A.

H.A:

QW H(1) (2) (3) 1 2

1, 2, 1, 2, 1, 2, 3,

4 3,

4 3,

4 3,

4 1, 2, 3

1 2

3 H.A.

N.A.

N.A.

H.A.

H.A.

N.A.

H.A.

N.A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

H(1) (2) (3) 1, 2, 3, 4

/

I,

~

~

~

I

'FOR IN-QRM'0M N'

3/4.3 INSTRUMENTATION BASES 3/4.3. 1 and 3/4.3. 2 REACTOR PROTECTIVE AND ENGINEERED SAFETY FEATURES H

UN The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliabH ity, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions.

The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses.

Response

time testing of resistance temperature

devices, which are a part of the reactor protective
system, shall be performed by using in-situ loop current test techniques or another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA deviation penalties.

Administrative controls on changes and periodic checking of addressable constant values (see also Technical Specifications 3.3.1 and

6. 8. 1) ensure that inadvertent misloading of addressable constants into the CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable.

If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If,the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DNBR and LPD penalty factors and increased DNBR and LPD margin to restrict reactor operation to a power level that will ensure safe operation of the plant.

If the margins are not maintained, a reactor trip will occur.

The value of the DNBR in Specification

2. 1 is conservatively compensated for measurement uncertainties.

Therefore, the actual RCS total flow rate determined by the reactor coolant pump differential pressure instrumentation or by calorimetric calculations does not have to be conservatively compensated for measurement uncertainties.

tt e. ch~wNe(v g ae

e. )/o cV a. v<e~~ah)C c'

ok i sets/ht oa'v,sysQevs

% S 0 b'6sa 4 thwvv t

'gh.ww,ts 4) iLg,s pt'st f<<Larw~esm tww Q~ hLgc 5 pp'04 tL eve tctaps c. ss 4 ('L'pest'w news-aai-a, neo/aas

'm Kv.c QQ ress t

~ axvei. Evd c vwv<,

a.

h ceN-sap-a A+wwwm l s

gsw 4 s be@.cv ow Q 3C Seh

~ooi (gv. Gsv, PALO VERDE - UNIT 2 B 3/4 3-1 AMENDMEHT NO.

~

1

~

~

d

TABLE 2.2-1 REACTOR PROTECTIVE INSTRUMENTATIOH TRIP SETPQIHT LIMITS FUHCTIOHAL UNIT TRIP GEHERAT ION A.

Process 1.

Pressurizer Pressure

- High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level " Low 4.

Steam Generator Level - High 5.

Steam Generator Pressure

- Low 6.

Containment Pressure

- High

7. 'eactor Coolant Flow " Low a.

Rate b.

Floor c.

Band 8.

Local Power Density - High 9.

DHBR " Low B.

Excore Neutron Flux 1.

Variable Overpower Trip a.

Rate b.

Cei 1 ing c.

Band TRIP SETPOINT ALLOWABLE VALUES

< 2383 psia

> 1837 psia (2)

> 44.ZX (4)

< 91.0X (9)

> 919 psia (3)

< 3.0 psig

< 2388 psia

> 482& psia (2)

> 43.7X (4)

< 91.5X (9)

> 4k& po)o (3)

< 3.2 psig

< 0.115 psi/sec (6)(7)

> ll.9 psid(6)(7)

< 10.0 psid(6)(7)

< 21.0 kW/ft (5)

> 1.24 (5)

< 0.118 psi/sec (6)(7)

> 11 F 7 psid (6)(7)

< 10.2 psid (6)(7)

< 21.0 kW/ft (5)

> 1.24 (5)

< 10.6X/min of RATED

< 11.OX/min of RATED THERMAL POWER (8)

THERMAL POWER (8)

< 110.0X of RATED

< ill.OX of RATED THERMAL POWER (8)

THERMAL POWER (8) 9-. SX of RATER

~p. 9l.

< 4MX of RATER THERMAL POWER (8)

THERMAL POWER (8)

TABLE 4. 3-1 REACTOR PROTECTIVE INSTRUHENTATION SURVEILLANCE RE UIREHEHTS FUHCTIOHAL UHIT I.

TRIP GENERATION A.

Process Pressurizer Pressure - High 2.

Pressurizer Pressure

- Low 3.

Steam Generator Level - Low 4.

Steam Generator Level - High 5.

Steam Generator Pressure - Low 6.

Containment Pressure

- High 7.

Reactor Coolant Flow " Low 8.

Local-Power Oensity - High 9.

OHBR - Low 8,

Excore Neutron Flux CHANNEL CHANNEL CHECK 'ALIBRATION R

R R

R R

R R

0 (2, 4),

R (4, 5) 0 (2, 4),

R (4, 5)

H (8),

S (7)

CHAHHEL F UNCT IOHAL TEST QM QM Qw QM Q8-,

R (6)

@MR (6)

HOOES IN WICH SURVEILLANCE 1,

2 1,

2 1,

2 3*

1, 2

1, 2

1, 2-1, 2

1.

Variable Overpower Trip 2.

Logarithmic Power Level " High 0 (2, 4),

H (3, 4) 0 (4)

R (4) l.

2 Q Wand S/U (1) 1, 2, 3, 4, 5

and "

C.

Core Protection Calculator System 1.

CEA Calculators 2.

Core Protection Calculators R

%MR (6) 1, 2

0 (2, 4),

R (4, 5)

QM(9),

R (6) 1, 2

H (8),

S (7)

Ip I

j ~

~

~

TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE RE UIREHEttTS FUt<CTIOt<AL UNI T D.

Supplement,ary Protection System Pressurizer Pressure

- High CHANNEL CHANNEL CHECK CALIBRATION CNANttEL.

FUttCTIOttAL TEST HOOES It< WttlCN SURVEILLANCE 1,

2 I I.

RPS LOGIC A.

that.rix Logic B.

Init.iation Logic I I I.

RPS ACTUATIOt< DEVICES A.

Reactor Trip Breakers 0.

Hanual Trip H.A.

H.A.

H.A.

H.A.

H.A.

N.A.

H.A.

H.A.

H, R(10) 2 3A 4A'A 3*

4A cA 3A 44 5)t 1

2 3"

4*

5*

J

/~

l I

F~ r.. [Hr 0 8 bleak.7lG )'g.".

TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE.IHSTRUMEHTATIOH SURVEILLANCE RE UIREMEHTS (3)

(4)

(5)

(e)

(7)

(8)

(10)

TABLE HOTATIOHS With ith reactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal, and fuel in the reactor, vessels Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, if not erformed in the previous 7 days.

no per orme Heat balance only (CHANNEL FUNCTIONAL TEST not included),

above 15K of RATED THERMAL POWER; adjust the linear power level, the CPC delta T

power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2X.

During PHYSICS cali

ESTS, these daily calibrations may be suspended provided th brations are performed upon reaching each major test power plateau i

e ese and prior to proceeding to the next major test power plateau.

Above 15K of RATED THERMAL POWER, verify that the linear power sub-channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in'the Core Protection Calculators.

Neutron detectors may be excluded from CHANNEL CALIBRATION.

After each fuel loading and prior to exceeding 70K of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.

This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate.

The flow measurement uncertainty may be included in the BERRl term in the CPC and is equal to or greater than 4X.

Above 70K of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation and the ultrasonic fl

'ted pump curves or calorimetric calculations.

The NHEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.

At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIOHAL TEST shall include independent verification of the undervoltage and shunt trips.

PALO VERDE - UNIT 3 3/4 3-16 AMEHDMEHT HO.

2/

J I

TABLE 3.3-4 EHGINEEREO SAFETY FEATURES ACTUATIOH SYSTEH IHSTRUMENTATIOH TRIP VALUES m

<<3m ESFA SYSTEM FUNCTIONAL UHIT I.

SAFETY INJECTION (SIAS)

A.

Sensor/Trip Units I,

1.

Containment Pressure

- High 2.

Pressurizer Pressure

- Low B.

ESFA System Logic C.

Actuation Systems II.

CONTAIHMEHT ISOLATIOH (CIAS)

A.

Sensor/Trip Units 1.

Containment Pressure

- High 2.

Pressurizer Pressure

- Low 8.

ESFA System Logic C.

Actuation Systems III. COHTAINHENT SPRAY (CSAS)

A.

Sensor/Trip Units Containment Pressure High - High B.

ESFA System Logic C.

Actuation Systems IV.

HAIN STEAH LINE ISOLATION (HSIS)

A.

Sensor/Trip Units 1.

Steam Generator Pressure

- Low 2.

Steam Generator Level - High 3.

Containment Pressure

- High B.

ESFA System Logic C.

Actuation Systems TRIP SETPOIHT ALLOMABLE VALUES

< 3.0 psig

> 183? psia Not Applicable Hot Applicable

< 3 2 psig psia Hot Applicable Hot Applicab1e

< 8.5 psig, Hot Applicable Not Applicable

< 8.9 psig Hot Applicable Hot Applicable

> 919 psia R~'E

>~ psia'

< 91.0X NR

< 91.5X NR

< 3.0 psig

< 3.2 psig Hot Applicable Not Appl icable Not Appl icable Not Applicable

< 3.0 psig

< 3 ~ 2 psig

> 1837 psla~

~apzg

> ~ ps$ a Hot Applicable Not Applicable Hot Applicable Not Applicable

/

t I~

)

TABLE 4.3-2 EHGIHEEREO SAFETY FEATURES ACTUATIOH SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMEHTS ESFA SYSTEM FUNCTIONAL UNIT I.

SAFETY INJECTION (SIAS)

CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATIOH TEST MOOES FOR MHICN SURVEILLANCE

~E A.

Sensor/Trip Units 1.

Containment Pressure

- High S

2.

Pressurizer Pressure

- Low S

1, 2, 3, 4

1, 2, 3, 4

0.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual SIAS C.

Au omatic Actuation Logic

~++

+CO'4P'C

~RA~~ %04g~oCh I I.

CONTAINMENT ISOLATION (Cl'AS H. A.

H. A.

N.A.

N.A.

H. A.

H.A.

Q(zg

~ ~ (ig( wQ 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

L,Z,3, +

A.

Sensor/Trip Units 1.

Containment Pressure

- High S

Z.

Pressurizer Pressure Low S

1, 2, 3

1, 2, 3

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual CIAS 4.

Manual SIAS H. A.

N.A.

H. A.

N. A.

N. A.

N. A.

N.A.

1, 2, 3, 4

1,"2,3,4 1, 2, 3, 4

I, 2, 3, 4

c,S

~

P IP

'd Ct',

1' II g

1'>

o"l 8

~.

II I q

'E l,

1 g

'I 1 ~

g I

0@

lg II

TABLE 4. 3-2 (Continued)

EHGIHEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE BE UIREMEHTS ESFA SYSTEM FUNCTIONAL UNIT II.

CONTAINMENT ISOLATION (Continued)

C.

Automatic Actuation Logic

+~a.pV %a&qravp etLCLy~)

4,c

%Q ls c <~Sa~~op Rakaq~

ill.

COHTAIHMEHT SPRAY (CSAS)

A.

Sensor/Trip Units 1.

Containment Pressure--

High - High CflANHEL CHANNEL CHANNEL FUNCTIONAL CtiECK CALIBRATION TEST MODES FOR WHICH SURVEILLANCE 2

1, 2, 3

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual CSAS N. A.

N. A.

N.A.

N.A.

N.A.

N. A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

C.

Automatic Actuation Logic

-H-.Az

( ~4~<.pk

~~ e~~4'wc'~ E~MQl'~q g~~~

L.) R,E~%

II II I

e

~

~

f C

a m

II pl h

II I

k

TABLE 4.3-2 (Continued)

/

ENGINEERED-SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS ESFA SYSTEM FUNCTIONAL UNIT IV.

MAIN STEAM LINE ISOLATION (MSIS)

A.

Sensor/Trip Units CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATION TEST MODES FOR WHICH SURVEILLANCE 1.

Steam Generator Pressure-Low S

2.

Steam Generator Level - High S

3.

Containment Pressure - High S

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

B.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual HSIS N. A.

N.A.

N.A.

N. A.

N. A.

N.A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

C.

Automatic A~ation Logic g~C.OP c SQ~r~p ~4y~$

+c. %~~ c ~~~ Q~Qqr~p $044)Q

~O(p)

L,Z, 3,"I

J r

I, I/

L

~

~

~ 4

~

e

~

~ I ~

lE>>

1 r lO I'>>

~ L L~

1

~

lt

TABLE 4.3-2 (Continued)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEH INSTRUHENTATION SURVEILLANCE RE UIREHENTS ESFA SYSTEH FUNCTIONAL UNIT V.

RECIRCULATION (RAS)

A.

Sensor/Trip Units Refueling Mater Storage Tank - Low 0.

ESFA System Logic CHANNEL CHANNEL CHANNEL FUNCTIONAL CHECK CALIBRATION TEST HODES FOR MHICN SURVEILLANCE IS RE UIRED 1, 2, 3

1.

Hatrix Logic 2.

Initiation Logic 3.

Hanual RAS C.

Automatic AWtfation Logic VI.

AURILIARY I'EEDWAISR (%G-El)tAFIPI)

A.

Sensor/Trip Units 1.

Steam Generator IIl Level-Low 2.

Steam Generator h Pressure SG2

> SGl.

N. A.

N. A.

N. A.

N.A.

N.A.

N. A.

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3

1, 2, 3

~ V

'L

~

J J ~

~ ~

h l

g'0 4

~,

4

)

4p W

lh 4

tI

~

I ~

R

>vg k~,)

+% ~

~l 4,

d l,

l, ~

TABLE 4.3-2 (Continued)

ENGINEEREO SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE RE UIREMENTS N.A.

C.

.Automatic Actuation Logic VII.

AUXILIARYFEEOWATER (SG-2)(AFAS-2)

A.

Sensor/Trip Units l.

Steam Generator b'2 Level-Low 2.

Steam Generator 6 Pressure SG1 SG2 N. A.

CHANNEL ESFA SYSTEM FUNCTIONAL UNIT CHECK Vl.

AUXILIARYFEEOWATER (SG-l)(AFAS-1) (Continued)

B.

ESFA System Logic 1.

Matrix Logic N. A.

2.

Initiation Logic N. A.

3.

Manual AFAS CHANNEL CALIBRATION N.A.

N.

A.'.A.

N. A.

CHANNEL FUNCTIONAL TEST M(1) (2) (3)

MOOES FOR WHICH SURVEILLANCE 1,

2 3

4 1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3

1,2,3 D.

ESFA System Logic 1.

Matrix Logic 2.

Initiation Logic 3.

Manual AFAS C.

Automatic Actuation Logic VIII.

LOSS OF:POWER (LOV) h.

4. 16 kV Emergency Bus Under-voltage (Loss of Voltage)

B.

4. 16 kV Emergency Bus Under-voltage (Oegraded Voltage)

N. A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

1, 2, 3, 4

1, 2, 3, 4

Q %-

1, 2, 3, 4

M(l) (2) (3) 1, 2, 3, 4

1, 2, 3, 4~

1, 2, 3, 4

, ~ ~

'(~

f t

-gF; iM.-"GRI',riP.TiQI~ Ot""

,.~34. 3 INSTRUHEH100M BASES 3/4 3. 1 >>d 3/4.3.2 REACTOR PROTECTIVE AND ENGINEEREO SAFETY FEATURES ON UH N A ON The OPERABILITY of the reactor protective and Engineered Safety Features Actuation Systems instrumentation and bypasses ensures that (1) the associated Engineered Safety Features Actuation action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy; and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions.

The

'integrated operation of each of these systems 15 consistent with the assumptions

.used in the safety analyses.

Response

time testing of resistance temperature

devices, which are a part of the reactor protective system, shall be performed by using in-situ loop current test techniques or another NRC approved method.

The Core Protection Calculator (CPC) addressable constants are provided to allow calibration of the CPC system to more accurate indications of power level, RCS flow rate, axial flux shape, radial peaking factors and CEA-. deviation penalties.

Administrative controls on changes and periodic checking of addressable constant values (see also Technical Specifications 3.3. 1 and 6.&.1) ensure that inadvertent misloading of addressable constants into the CPCs is unlikely.

The design of the Control Element Assembly Calculators (CEAC) provides reactor protection in the event one or both CEACs become inoperable.

If one CEAC is in test or inoperable, verification of CEA position is performed at least every 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the second CEAC fails, the CPCs in conjunction with plant Technical Specifications will use DHBR and LPD penalty factors and increased OHBR and LPD margin to restrict, reactor operation to a power level that will ensure safe operation of the plant. If the margins are not maintained, a reactor trip will occur.

The value. of the OHBR in Specification 2.1 is conservatively compensated for measurement uncertainties.

Therefore, the actual RCS total flow rate determined by the reactor coolant pump differential pressure instrumentation or by calorimetric calculations does not have to be conservatively compensated for measurement uncertainties.

Tl g, qL o.eg pic/

q a

y)C

'Eka cps.

\\,/

't

~ 4 c4%h%j

<Y s c~s is 4a sa h o~ 4'hq.

a wa4jsea pea.scwka.$

e 44m <R< aqProvq g vatic.a.h

<<pa~~ 0 e.4 327- <, Rps/KsFN 'E*e~kad +4.sk Xw4crv aA 4@4-z

tages, a.~ g

~ 4 ~a 4c.usa-ego~ i'5-Z- R "RR) (<~.0%

~

1 PALO VERDE - UHIT 3 B 3/4 3 1 AHEHOMEHT HO 18

0 W

0

~

t

/I)

A