RA-16-003, RETRAN-3D -- a Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems Volume 4: Applications Manual

From kanterella
(Redirected from ML16315A295)
Jump to navigation Jump to search
RETRAN-3D -- a Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems Volume 4: Applications Manual
ML16315A295
Person / Time
Site: Harris, Robinson  Duke Energy icon.png
Issue date: 03/31/2014
From: Gose G C, Jensen P J, King C C, McFadden J H, Paulsen M P, Peterson C E, Shatford J G, Westacott J L
Computer Simulation & Analysis, Progress Energy Carolinas
To:
Office of Nuclear Reactor Regulation
Shared Package
ML16315A286 List:
References
RA-16-0034
Download: ML16315A295 (598)


Text

50 52 54 56 58 60 62 640123456Pressure(psia)Length(ft)RETRAN 3DData105 107 109 111 113 115 117 1190123456Pressure(psia)Length(ft)RETRAN 3DData 115116 117118119 120121122 123 124125 0123456Pressure(psia)Length(ft)RETRAN 3DData237 238 239 240 0123456Pressure(psia)Length(ft)RETRAN 3DData

51.59951.60051.60151.602 51.60351.60451.60551.60651.607 51.60851.609 02468Pressure(psia)Length(ft)RETRAN 3DHandCalculation51.551.651.7 51.8 51.952.052.1 52.202468Pressure(psia)Length(ft)RETRAN 3DHandCalculation

050010001500 200025003000 3500024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData 050010001500 2000 2500 30003500024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData0 5001000150020002500 3000024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData 0500100015002000250030003500024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData0 50010001500 2000 250030003500024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData 0 500 1000 1500 2000 2500 3000 3500024681012WallTemperature(F)Length(ft)HEMChexal_Lellouche 5 EqChexalLelloucheDynamicSlip 5 EqDynamicSlipData

20 21 22 23 24 25 26 27 28 00.511.522.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 eqDynamicSlipData 250260270280290300310 320 00.511.522.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData20 21 22 23 24 25 26 27 28 29 30 00.511.522.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData 280285290295300305310315320 00.511.522.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData18 19 20 21 22 23 24 00.511.522.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData 240 245 250 255 260 265 00.511.522.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData18 19 20 21 22 23 24 25 26 00.5 11.5 22.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData 270 275 280 285 290 295 300 305 310 00.511.522.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData22 24 26 28 30 32 34 00.511.522.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData 240 245 250 255 260 265 00.511.522.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData14 14.5 15 15.5 16 16.5 1700.511.522.5Pressure(psia)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData 220222224 226 228 230 232 234236238 240 00.5 11.5 22.5WallTemperature(F)DistancefromInlet(ft)4 EqDynamicSlip 5 EqDynamicSlipData

320 330 340 350 360 370 380 39000.511.522.533.5WallTemperature(F)TestSectionLength(ft)5 EqDynamicslip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData 80 85 90 95 100 105 110 115 12000.511.522.533.5Pressure(psia)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData300310 32033034035036037038039040000.511.522.533.5WallTemperature(F)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData 80 90100 110120130140150 16000.511.522.533.5Pressure(psia)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData350360370380390400 41042043044045000.511.522.533.5WallTemperature(F)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData 100 120 140 160 180 200 22000.511.522.533.5Pressure(psia)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData350360370 380390400 410420430 44045000.511.522.533.5WallTemperature(F)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData 0 50 100 150 200 250 30000.511.522.533.5Pressure(psia)TestSectionLength(ft)5 EqDynamicSlip 5 EqChexalLellouchehem 4 EqDynamicSlip 4 EqChexalLelloucheData

20002500 3000 3500 400045005000012345678HeatTrans.Coefficient(btu/hrft^2 F)Length(ft)RETRAN 3DAnalyticalSolution

00.10.20.30.4 0.5 0.6 0.70.80.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData50 60 70 80 90 100 110 120012345678CoolantTemperature(F)Length(ft)RETRAN 3DData 00.10.20.3 0.4 0.5 0.6 0.70.80.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData50 60 70 80 90100110 120012345678CoolantTemperature(F)Length(ft)RETRAN 3DData 00.10.20.30.4 0.50.60.7 0.80.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData50 60 70 80 90100110012345678CoolantTemperature(F)Length(ft)RETRAN 3DData 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData50 60 70 80 90100110012345678CoolantTemperature(F)Length(ft)RETRAN 3DData 00.10.20.30.40.50.6 0.70.80.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData40 50 60 70 80 90100110012345678CoolantTemperature(F)Length(ft)RETRAN 3DData 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1012345678NoncondensableQualityLength(ft)RETRAN 3DData40 60 80100 120 140012345678CoolantTemperature(F)Length(ft)RETRAN 3DData

0 1 2

3 4 5 60.000010.00010.0010.010.1 Nu Dh/Nu Dh ,0Gr/(Re2.6*(Pr0.5+1))AirFreonRETRAN 3D

100 150 200 250 300 35000.511.522.533.54Pressure(psia)DistanceFromInlet(ft)RETRAN 3DData 100 120 140 160 180 200 220 240 260 280 30000.511.522.533.54Pressure(psia)DistanceFromInlet(ft)RETRAN 3DData10 30 50 70 9011013015000.511.522.533.54Pressure(psia)DistanceFromInlet(ft)RETRAN 3DData

300350400450500 550600650 70075001 02 03 04 05 0Pressure(psia)Time(seconds)RETRAN 3DData0 500010000150002000025000 30000 35000 4000001 02 030405 0Flow(lb/sec)Time(seconds)RETRAN 3DData 300350400450 500 550600650 700 75001 02 03 04 05 0Pressure(psia)Time(seconds)RETRANData05000100001500020000 25000 300003500001 02 03 04 05 0Flow(lb/sec)Time(seconds)RETRANData

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80246810121416VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.70246810121416VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData0.1 0 0.1 0.2 0.3 0.4 0.5 0.602468101214VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.902468101214VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData0.1 00.10.2 0.30.40.5 0.6 0.7 0.802468101214VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData 00.10.20.3 0.4 0.50.60.702468101214VoidFractionElevation(ft)4 EqDynamicSlipNeutronVoid 4 EqChexallLelloucheNeutronVoid 4 EqVoid 5 EqDynamicSlipVoid 5 EqChexallLelloucheVoidData

00.10.20.30.4 0.50.60.70.80246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData 0 0.2 0.4 0.6 0.8 1 1.20246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData00.10.20.30.4 0.5 0.6 0.70.80.9 10246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData00.10.2 0.3 0.4 0.5 0.6 0.7 0.80246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData 00.10.2 0.30.40.5 0.60.70.8 0.9 10246810121416VoidFractionElevation(ft)4 EqChexal_LelloucheNeutronVoid 5 EqChexalLelloucheVoidFraction 4 EqVoidFractionData

0200400600800 1000 1200 050100150200Pressure(psia)Time(seconds)RETRAN 3DData0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 50 100 150 200VaporVoidFractionTime(seconds)RETRAN 3DData 00.10.2 0.3 0.4 0.5 0.6 0.70.80.9 1 050100150200VaporVoidFraction Time(seconds)RETRAN 3DData

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102468101214VaporVoidFractionElevation(ft)RETRAN 3DData00.20.4 0.6 0.8 11.202468101214VaporVoidFractionElevation(ft)RETRAN 3DData 00.10.20.30.4 0.50.60.7 0.80.9 102468101214VaporVoidFractionElevation(ft)RETRAN 3DData00.10.2 0.30.40.5 0.6 0.70.80.9 102468101214VaporVoidFractionElevation(ft)RETRAN 3DData

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102468101 2VaporVoidFractionElevation(ft)RETRAN 3DData 400 600 8001000 1200 1400 1600 1800024681012Temperature(F)Elevation(ft)RETRAN 3DData

Separate Effect Analyses Revision 8 BWR8x8 -7.2 MPa -1600 kg/m 2 s . -*-***:-*-*-

***********:* **.........
. : : : 0.7 **********-_'f"***.,"'*"*:*************:************;00***********:*00********* , : ... : : : : .. . . . . . c 0.6 0 *******:'**

............ ; ............. : ............ : ............. ; ........... . I ; : : : . . . . I 0.5 I : : : : **** *-*** , ************************** '#' *************

                                                    • I : : : : : 'O . . . . . 0 > 0.4 I : : . : : . : .. , *****:*************:*************:************:*************:******
            • c JI 1S . . . . . . . . . . . . . . . . . . . 0.3 . ********:*************:*************:************:***
                  • -:************ . . . . . . . . . . . . . . 0.2 *********:*************: .. **. 0.1 ...... ******:**** ...... ***:***. e experimental data Chexal-Lellouche model calculation Zolotar-Lellouche model calculation no slip model calculation . . . . . . . . 0.1 0.2 0.3 0.4 0.5 0.6 flowquallty Figure 111.4-24.

Prediction of a BWR8x8 Experiment BWA 8.118 -C1 ( 7.2 llPa J 284 lrgJm2s ) 0.7 . . . . . . . . . . . . . . . . . . . . 0.8 ......*.*.*.*.. ; ................ i.............. . ..............

................
.............. . . . . . I I I I . . . . . . . . . . . . . . . . . . . . . . . . 0.6 ***************;**************
  • * .. ********* ..

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .f o.4 :D . . . . ***************-***

  • ............. , ...........................................................

__ ............. . . . . . . . . . . . . ' ' ' . . . . . .

lo I t t t I . . . . I I 0 I . . . . . 0 I t I t ............................................ , ...............................

....................

............ . . . . . . 0.3 . . . . .

  • t ' * . . . . . . . ' . . . . . . . ' . . . . . . . . 02 *******:****************l*******
    • l****************:**********
          • . . . . . . . . . .
  • 0.1 experimental data retran slip = 3 retran slip = 5 chexal-lellouche . . . . . . i . . . . 0.7

..........

0 0.05 0.1 0.16 0.2 0.25 0.3 FlowQuallty Using the Three-Equation Figure 111.4-25.

Prediction of BWR8x8 Cl Experiment Using Three-and Four-Equation Model Options 111-60 Separate Effect Analyses BWR8x&-C4( 7.2MPa/1fJ62 kglm 2 s) OB ************** ***************!****************=****************l************* ...... ....-J . . . . . . . . . . . . . . 0.7 .................. . .........................

.................. . ..................................................... . . . . . . . . . . . . . . . 0.0 ************** . . .............................................................................

...... . . . . . . . . . . . . . . . c . . . . .

l JI . . .......................

............................................................................. I I I t . . . . . . . . . . . . . . . . . . . . . . 0.3 ....................

...................................................

...............

.......................... . . . . . 0 t I I I . . . . .

0 I 0 I I . . . . .

t 0 0 0 I . . . . .

02 ..* *********:****************:****************

i-----....__

___ ....____, I * , . ; 0.1 j**************:****************!**************** experimental data retran slip = 3 retran slip = 5 chexal-lellouche I O'-----..._

___ ...._ ___ _,_ ___ _._ ___ _._ ___ 0 0.05 0.1 0.115 FlowQullllty 0.2 025 0.3 Figure 111.4-26.

Prediction of BWR8x8 C4 Experiment Using Three-and Four-Equation Model Options BW R 8x8 -D4 ( 8.6 MPa 111162 kglm 2 s) . . 03 I I I f t . . . . . t I I I . . . . . . 0.0

..

      • ->-**** ****i**** .... . . . . . . . I o I I . . . . . . . . . . . . . . . . 0.5 ********:******
                • ................

...........

........................................

... I I I I I . . . . . . . . . . . . . . I t I I 0 . . . . " . . . . . . . . . .2 1$ . . . l_o.4 JI I t I I I I .......................................

........... _ .............................. . t I I I I t I . . . . . . . I I I I t . . . . . I. I I I t . . . . . . . . . . . . . . . ............. .......... :, ********. :. .......... .......... .=.. ..........

............ : .......... . t I I I I I I I 03 . .. . . . . I I I I I I . . . .. . . I I I I I I . . . . ' I f I f I I . . . . . .

02 ooo.ooo I " " " " " " " " " " " " " " " " " " " " " " " " ", : : ; : . * *

  • experimental data !*; : ' ' t II 3 0*1 I****t*********i**
            • t*********r*********
s , ; ;
  • chexal-lellouche . . . . o.__ _ _._ __ ..._ _ _._ _

o 0.02 o.04 ooo o.oa 0.1 0.12 0.14 o.1e o.1a 02 FlowOu.llty Figure 111.4-27.

BWR8x8 D4 Experiment Using Three-and Four-Equation Model Options 111-61 Revision 8 Separate Effect Analyses BWR4x4-1.0 MPa -1400 kg/m 2 s 0.9 . . . . . . . . .

  • . * ... ! *....* ..*......... : ..........** : **....... 0.8 0.7 c 0.8 !o.s . . . . . . ................ , ........... , ..................

................................. , ... . . . . . . . . I . . . . . . . . . . . . . . . . > 0.4 . . . . . . . . . ..... *: ............ :* ........... ........... -:-........... : ........... *:-........... :* ... . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . 0.3 .....

........................... ************ ..... ***** *:**. ******* ....... . . . . . . . . . . . 0.2 " .......

.......... ... . . . . .

  • experimental data Chexal-Lellouche model calculation Zolotar-Lellouche model calculation flow regime dependent dynamic slip 0.1 ........... ; ...........

-; ...... ---. . . . . . . .

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 flow quality Figure 111.4-28.

Prediction of a BWR4x4 Experiment Using Three-and Four-Equation Model Options is lower (1.0 MPa) and the flow regime dependent slip option slightly underpredicts the experimental void fraction.

The predictions using the Zolotar-Lellouche and the Lellouche correlations are almost identical and close to the experimental data. It should be noted that the "flat spots" in the predicted void profiles shown for the BWR4x4 experiment in Figure 111.4-28 are due to the relatively coarse nodalization used for this calculation.

The TPTF and PWR5x5 facilities have rod assemblies typical of PWRs, and were both used for separate effects tests. The NEPTUN facility was originally used for PWR reflood experiments but later redesigned with a tightly packed rod assembly.

This arrangement produces a very small equivalent hydraulic diameter of 4 mm. The analyzed NEPTUN experiments were from the latter data set. For these experiments, the pressure, the inlet mass flux and subcooling, and the total power were available, and input directly into the corresponding components of the RETRAN-3D model. The TPTF experiment at high pressure (6.9 MPa), but with a low mass flux (75 kg/m 2 s), was modeled using the four-equation model options similar to those used for the BWR4x4 experiments.

Figure III.4-29 shows the results. The superiority of the Chexal-Lellouche correlation over the Zolotar-Lellouche correlation can be seen. The void fractions calculated using the Zolotar-Lellouche correlation are overpredicted, confirming the trend towards overprediction with decreasing mass flux. The flow regime dependent dynamic slip option is also unable to correctly predict the experimental data. This is not surprising since the Bennett map used to determine the flow regime is based on data at much higher mass flow rates. Revision 8 111-62

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 1 10 100100010000NormalizedDecayHeatPowerTime(sec)RETRAN 3DData00.010.020.03 0.04 0.05 0.060.07 1 10100100010000NormalizedDecayHeatPower Time(sec)RETRAN 3DData

0.02 00.020.040.06 0.080.101000200030004000500060007000MassFlow(kg/sec)HeatingRate(Watts)DataRETRAN 3DImprovedEOSRETRAN 02Spec.Vol.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090100020003000400050006000MassFlow(kg/sec)HeatingRate(Watts)Dataf=16/Re f24/Ref=66.5/Re4.88/Re**.572f=151/Re**1.17

00.10.20.30.4 0.5 0.60.70.8 0.9 105001000150020002500300035004000FrictionFactorx4.0ReynoldsNumberf=16/R2f=24.0/Ref=66.5/Ref=4.88/Re**0.572f=151/Re**1.17

0.5 0.3 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.50123456LiquidEnthalpyChange(Btu/lbm)Time(sec)10 5 20 30 40 60 80100

0.5 0.3 0.10.10.30.5 0.70.91.1 1.31.50123456LiquidEnthalpyChange(Btu/lbm)Time(sec)20nodes 10nodes 10nodesdt/2 0.5 0.3 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.50123456LiquidEnthalpyChange(Btu/lbm)Time(sec)20nodes 10nodes 10nodesdt/2

400410 420 430440450 460 470480490 500102030405060708090100LiquidEnthalpy(Btu/lbm)VolumeNumber 10nodes 20nodes 00.10.2 0.3 0.4 0.50.60.7102030405060708090100VoidFractionVolumeNumber 10nodes 20nodes

0 50100150 200 250 300 350 4000123456MassFlowRate(lbm/sec)Time(sec)

0200400600800100012000123456InjectedMass(lbm)Time(sec)FourEquationFiveEquationAnalyticalSolution

0 50 100 150 200 250 300 350 4000123456WaterTemperature(F)Time(sec)FourEquationFiveEquationAnalyticalSolution0 20 40 60 80 100 120 140 1600123456Pressure(psia)Time(sec)FourEquationFiveEquationAnalyticalSolutionTotalPressureAirPressure 0 50 100 150 200 250 3000123456SurfaceTemperature(F)Time(sec)FourEquationFiveEquationAnalyticalSolution30000250002000015000100005000 050000123456HeatFlux(btu/hrft^2)Time(sec)FourEquationFiveEquationAnalyticalSolution

0.60.10.40.9 1.4020406080100120140SpecificVolumePercentErrorTime(sec)UpperPlenumLowerPlenum

20002200 2400 260028003000 3200 3400 3600 3800020406080100120140PressurizerPressure(psi)Time(sec)RETRANASME 43.5 32.5 21.5 10.5 00.5020406080100120140DensityReactivity($)Time(sec)RETRANASME

Separate Effect Analyses R elief nozzle -------measurement tor liqmd level LIT-P120*44 l.iquid temperature. thermocouple TE-P120-41 Accumulator tank pressure PT-P\20-43 aoroted water plant protec:toon system inje<:lion line Figure 111.11-2.

LOFT Accumulator Comparison of the measured and calculated pressure response for the measured level response confirm the RETRAN-3D accumulator model's ability to predict the correct pressure response.

Revision 9 111-100

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000010203040506070LiquidLevel(ft)Time(sec)RETRAN 3DData Separate Effect Analyses 600 -i-..---.........

-...----.-.

..... 500 ta" *a 400 -Cl.I ... ::s 300 0.. 200 100 0 10 20 -RETRAN-3D --Data 30 40 so Time (sec) Figure 111.11-4.

LOFT Ll-4 Accumulator Pressure -.... .... 60 70 Reference III .11-7 reported that the pressure response for this test was representative of an isentropic expansion.

Figure III.11-5 shows the ideal pressure response curves for isentropic and isothermal expansions determined from where y = 1.4 and 1.0, respectively.

The calculated pressure response from the accumulator modelis also shownin Figure III.11-5.

It is nearly identical to the isentropic expansion .curve, indicating that the heat transfer is negligible and only has a slight effect near the end of the simulation even though it is included in the model. Heat transfer is more important for longer duration transients as will be shown in Section III.11.1.2.3.

11.1.2.2 L2-5 Experiment. The LOFT L2-5 accumulator discharge was simulated for 70 seconds, which included approximately 18 seconds of steady operation prior to initiation of accumulator flow, followed by 32 seconds with discharge flow and l 0 seconds after the level flattens and the flow terminates.

The RETRAN-3D MOD004.7 code version was used to simulate the experiment.

Revision 9 111-102 700 600 500 -!400 41 ... :s .,, li1 300 ... Cl. 200 100 0 40 ' ' ' ' ' .... 60 .... ' ' ' .... Separate Effect Analyses * * * * * *

  • I sen tropic --Isothermal -RETRAN-30

.... .... .... ....

...... *********

80 100 120 Gas Volume (ft3) Figure 111.11-5.

LOFT Ll-4 Ideal Expansion Model Pressure Comparison The initial conditions used for the L2-5 test are given below. Pressure (psia) Temperature (F) Level (ft) Gas Volume (ft 3) 623.66 86.4 6.89 32.58 Figure 111.11-6 shows that the actual liquid level and measured level are in very good agreement, as expected since the measured value was used as a boundary condition.

This indicates that the correct exit flow was modeled. As shown in Figure IILl 1-7, the RETRAN-3D calculated pressures are also in good agreement with the experimental values. Note that after about 60 seconds the measured accumulator pressure continues to decrease, while the level remains constant.

This is due to the level passing below the lower pressure tap, beyond which the measurement is nonresponsive to the level change. For the purpose of this comparison, only the first 60 seconds of the simulation are considered.

11.1.2.3 L3-1 Experiment.

The LOFT L3-1 experiment simulated a small break event. While the experiment was run for approximately 4500 seconds, only the first 1600 seconds were of interest for the accumulator response.

Consequently the simulations were run for 2000 111-103 Revision 9 Sepa r ate Effect Analyses 8.000 -RETRAN-3D 7.000 --Data 6.000 g S.000 'ii > 4.000 "C *s 3.000 2.000 1.000 0.000 0 10 20 30 40 so 60 70 Time (sec) Figure 111.11-6.

LOFT L2-5 Liquid Level 700 600 -RETRAN-3D --Data soo la' 'iS_ 400 . *cu ... :s 300 Cl.I ... 0.. 200 ----100 0 0 10 20 30 40 so 60 70 Time (sec) Figure 111.11-7.

LOFT L2-5 Accumulator Pressure Revision 9 111-104

Separate Effect Anal y ses 5 4 g > 3 *5 C" ::; 2 1 0 0 700 600 500 -*;;; Q. 400 -Cll ... ::s "' "' Cll 300 ... Cl. 200 100 0 0 Revision 9 500 1000 Time (sec) -RETRAN-3D --Data 1500 Figure 111.11-8.

LOFT L3-1 Liquid Level -RETRAN-3D --Data 200 400 600 800 1000 1200 1400 Time (sec) Figure IIl.11-9.

LOFT L3-1 Accumulator Pressure 111-1 06 2000 1600 Separate Effect Analyses 500 -I 400 J i I 300 .... .... * * * * * *

  • lsentropic --Isothermal -RETRAN-30

-RETRAN-30-lsentropic

..............

I 200 l .... .... . .... .. . 100 50 60 70 80 90 100 110 Gas Volume (ft3) Figure 111.11-10.

LOFT L3-1 Accumulator Pressure Comparison to Expansion Model Results 11.2.1 Semiscale RETRAN-3D Model Description 120 The Semiscale RETRAN-3D model was similar to that used for the LOFT experiments where the accumulator dimensions and initial conditions were changed to match the Semiscale experiment.

The flow control system was also removed and replaced with a flow (fill) boundary condition where the measured flow was used. It is shown in Figure III. I 1-11. The RETRAN-3D MOD004. 7 code version was used to simulate the experiment.

The initial conditions used for the S-04-6 test are given below. Pressure (psia) Temperature (F) Level (ft) Gas Volume (ft 3) 591.95 40.0 3.0 1.78 The test report gave the gas volume as 1.97 ft 3* When this volume was used in preliminary analyses by adjusting the volume height as discussed earlier (5.158 ft), the initial depressurization rate was significantly slower than that for the experiment.

Initially, the depressurization should be isentropic since heat transfer effects should be minimal so the calculated pressure should not be significantly greater than the experimental value, but it was. 111-107 Revision 9 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5010203040506070Flow(lb/sec)Time(sec)RETRAN 3D

Separate Effect Ana l yses 3.S 3 -RETRAN-30 2.5 ;; < cu E 2 :s 1.S :S'! :s CT :::i 1 0.5 0 0 10 20 30 40 so 60 70 Time(sec)

Figure 111.11-12.

Semiscale S-04-6 Liquid Volume 700 -RETRAN-30 600 --Data -RETRAN-3D lsentropic soo -"iii Q. --400 cu .. ::I "' "' cu 300 .. a. 200 100 0 0 10 20 30 40 so 60 70 Time (sec) Figure 111.11-13.

Semiscale S-04-6 Accumulator Pressure 111-109 Rev i sion 9

Separate Effect Analyses Base Multi-Node Model Stratification Model 2 ... 2 ... 30 30 30 ... 30 ... 112 112 111 111 110 109-t 110 109 109 10s+ 108 108 101 t 107 107 106-t 106 106 105.,. 105 105 104.,. 104 104 103-t 103 103 102+ 102 102 101 .,. 101 101 10 10 1 + 1 + Figure 111.12-1.

Shippingport Test Noding Diagrams for Single-Node and Multinode Models Revision 9 111-112

2140 .lU.U 1100 2080 :i 2060 "' a. -; 2040 Ill Ill Cl.I .t 20Z.O 2000 1C)R() 1960 1940 0 \ ' \ 100 200 ' Separate Effect Analyses --Single-node ---Experimental data --Multi-node

' ' ', ,,. --' , ' , \ I ... _,,. JOO 400 500 600 700 800 Thne (1ecJ Figure 111.12-2.

Shippingport Pressurizer Test 105 MW(e), Pressurizer Pressure 9.5 -j -:E. 'ii :> QI ..... "'C *:; O' 8.5 ::; 8 7.5 0 100 200 300 --Single-node ---Experimental data --Multi-node 400 Time (sec) 500 600 700 800 Figure 111.12-3.

Shippingport Pressurizer Test 105 MW(e), Pressurizer Level 111-11 5 Rev i sion 9 Separate Effect Analyses 646 Li:' 644 -Cll ... :::J 642 Cll a. E 640 r:; 638 C' :3 636 634 632 0 100 200 300 --Multi-node

--Single-node

--Saturation 400 Time (sec) 500 600 700 800 Figure 111.12-4.

Shippingport Pressurizer Test 105 MW(e), Liquid Region Temperature (F) 2150 i 2100 f 2050 :::J f Q. 2000 1950 0 \ \ \ 100 ' ' ' ' ' ' 200 ' ... ... 300 400 Time (sec) --Single-node ---Experimental data --Multi-node

... I \ I ... ... ... .... 500 600 700 800 Figure 111.12-5.

Shippingport Pressurizer Test 74 MW(e), Pressure vs. Time Revision 9 111-116

'ii > QI ..... "C *:; 9.5 9 :! 8.5 8 0 100 200 300 --Single-node ---Experimental data --Multi-node 400 Time (sec) 500 600 Separate Effect Analyses \ \ ' ' ' ' 700 800 Figure 111.12-6.

Shippingport Pressurizer Test 74 MW(e), Pressurizer Level 218 0 2160 2140 2120 2100 "' a. -2080 "' "' QI 2060 2040 2020 2000 1980 0 so ' ' ' ' 100 ' ' ' ' ' ' ' ' ' ' 150 --Single-node ---Experimental data --Multi-node

... __ ------200 Time (sec) 250 ... ... 300 ... 350 400 Figure 111.12-7.

Shippingport Pressurizer Test 51 MW(e), Pressurizer Pressure 111-117 Revision 9 Separate Effect Analyses 10.5

-;:-!!:. 'ii > cu ... :5! :I O" ::; I 10 l 9.5 9 I 8.5 I --Single-node ---Experimental data --Mutli-node 8 7.5 0 so 100 150 200 Time (sec) 250 300 350 400 Figure 111.12-8.

Shippingport Pressurizer Test 51 MW(e), Pressurizer Liquid Level No information was available for the time-dependent behavior of the spray valve other than the on-off setpoints.

Typically, spray valves are proportionally opened and closed over some pressure range. The unknown behavior of the spray valve could contribute to the discrepancies in magnitude of the computed and actual pressures.

Also, the spray and fill enthalpies are set to a constant value instead of changing them with time. Figures 111.12.7 and III.12.8 illustrate the pressure and level results for the 51 MW(e) case, which only has one pressure peak. Both the single-node and multinode cases over predictthe pressure by psi and psi, respectively. As with the 105 WM(e) and 72 (MW(e) cases, the pressure following the first pressure peak is under predicted.

Again, the multinode results show a slower depressurization in the vicinity of 100 seconds because of the warmer fluid that accumulates in the top of the liquid region because of saturated condensate from the walls and spray. The temperature of the upper liquid region also is not affected by the subcooled insurged fluid as happens with the single-node model. There is a consistent deviation for the calculated results from the measured data following the first insurge. The cause however , has not been identified.

It could be a limitation in the mathematical models, or it might be due to an incomplete description of the spray valve behavior.

It is noted that for all three experiments, the measured depressurization rate is lower than the calculated values. This could be indicative of the experiment having warmer fluid in the liquid Revision 9 111-118 Separate Effect Analyses region. However, this is unlikely since the analyses were initialized at the saturation temperature.

Another possibility might be that the time constant associated with the pressure measurement instrumentation is limiting the depressurization rate, which would also limit the minimum pressure before the second insurge. In spite of these differences the overall agreement is good and correct behavior is predicted.

12.2 MIT Pressurizer Tests The MIT Pressurizer Test ST4[111.12-2]

used a small-scale, low pressure pressurizer partially filled with saturated water. The test was initiated by activating two quick-opening valves, permitting an insurge of subcooled water into the bottom of the pressurizer.

The data from this test provides a good check of steam condensation modeling on the vessel wall. The experimental apparatus consisted primarily of two cylindrical tanks. The primary tank was 3.74 ft tall and 0.75 ft internal diameter.

It had six windows and was equipped with six immersion heaters with a total power of9 kW. The storage tank was pressurized with nitrogen to force the liquid into the primary tank. Test ST4 began with the liquid level in the primary tank at 1.47 ft from the bottom. Figure 111.12-9 shows a schematic of the experimental apparatus. Storage Tanlc Drain Opcning Valve DIP Cell Orifice Computer Control

  • Valve Figure 111.12-9.

Schematic for the MIT Pressurizer Test 111-119 Primary Tank Revision 9

Separate Effect Analyses 1.0 ......----------------------------.

\ ---RETRAN-30 0.8 --Modified u 0.6 -3 .2 .... 0.4 0.2 0.0 ;-----....-----....-----...,..----

-.--------0 10 20 30 40 50 60 nme(sec) Figure 111.12-11.

MIT Pressurizer Test, Surge Flow The MIT pressurizer test simulation analyses were performed using RETRAN-3D MOD004.7 with the implicit solution method. 12.2.2 Results of the Analysis Figure IV .1-12, compares the calculated and measured pressure results. The results were obtained using RETRAN-3D MOD004.7.

Results from the single-node and multinode models were compared with the experimental results as shown in Figure 111.12-12.

This experiment is primarily driven by the insurge with vessel wall condensation occurring as the pressure increases.

As can be seen, the pressurizer pressures for both models are nearly identical as should be expected since the multinode model does not affect the vapor condensation on the wall and there is no spray in the experiment.

The peak pressure occurs at the point where the insurge flow is terminated.

The RETRAN-3D results tend to over predict the data from the very beginning of the simulation, but have a fairly uniform offset between 10 and 40 seconds. During the early portion of the simulation, condensation on the vessel wall should not have a significant effect on the pressure; the primary driver for the pressure increase during this period is the insurged fluid mass. It appears that the insurge flow boundary condition is high initially.

Examining the boundary flow shown in Figure Ill.12-11 raises several questions, the first of which is why doesn't the flow start at 0 and increase to the maximum value. This would be the expected behavior given the facility 111-121 Revision 9 Separate Effect Analyses 90 88 86 84 -ii 82 *;;; .e QI 80 -... :::J "' "' QI ... 78 Q. 76 74 72 70 0 --Single-node ---Experimental data --Multi-node

--Modified BC 10 20 30 nme (sec) 40 Figure 111.12-12.

MIT Pressurizer Test, Pressure -------. 50 60 configuration. The other question is why the flow decreases stepwise at -10 seconds. It is not obvious why such a change should occur. Also, other tests show a continuous flow with a uniform rate of change as would be expected from the storage tank depressurization.

Since the slope of the flow curve between 0 and 9 seconds and the portion of the flow curve between 11 and 40 seconds are similar and the indication that the initial flows are high, the flow boundary condition was revised by subtracting an offset of 0.13 lb/sec from the flow data prior to 10 seconds. Additionally, the time 0 data point was set to zero and a data point at 1 second was arbitrarily set to give a flow of 0.35 lb/sec. This revised flow boundary condition is also shown in Figure 111.12-11.

The new flow boundary condition was then used to simulate the test using the multinode model. As shown on Figure 111.12-12, the results compare very well with the data for the duration to the experiment through the peak pressure at -40 seconds. The depressurization following the peak is driven by wall condensation since the interregion heat transfer should be small in the absence of spray flow. It appears that the wall heat transfer model may be under predicting the wall condensation following the peak pressure as indicated by the lower depressurization rate. In spite of the uncertainties of the boundary condition modeling, the results agree reasonably well with the measured behavior, e.g., rate of pressure increase and timing. The results for the modified boundary condition flow are in excellent agreement with the data. Revision 9 111-122 Separate Effect Analyses 12.3 NEPTUNUS Pressurizer Test The NEPTUNUS test Y05 was performed at the Delft University in the Netherlands.[111.12-3]

The goal of the test was to research how periodic surge line flow in surges and outsurges combined with pressurizer spray operation would affect pressurizer thermal hydraulic behavior. The NEPTUNUS test facility consisted of a 1/40th scale model pressurizer.

The vessel consisted of a carbon steel vessel 8.23 ft high and an inside diameter of 2.62 ft with hemispherical ends on the top and the bottom. The spray-line connects to a .089 ft diameter nozzle at the top of the pressurizer vessel. The surge-line connects to a .276 ft diameter nozzle in the bottom. The test section of the pressurizer contains instrumentation to obtain overall pressure measurements and 4 regional fluid temperature measurements.

The desired test conditions are obtained by initializing the water level , temperature , and pressure at the specified test values. Figure I II.12-13 shows a drawing of the NEPTUNUS pressurizer vessel. I .. I I .. . , .. I. . .... '

... I "' ... .. .. ... **

..,** -.,-: ..,. ._-.1i1 m Fig ur e 11 1.1 2-13. NEPT UNUS Test F acility Pre ss urizer 111-123 Revision 9 Separate Effect Analyses The Y05 test was initialized with a water level of 3.67ft, a pressurizer pressure of 1797 psi, and a temperature of 622 F. An insurge of 527 F water at 1813 psi flowed into the tank followed by the activation spray. Four similar successive insurges and outsurges combined with spray injection were performed at 50 second intervals.

The experiment description noted that spray line temperature varied between 440 F and 610 F. 12.3.1 Description of the Model The NEPTUNUS pressurizer was modeled in RETRAN3D using a single-node nonequilibrium pressurizer volume and by a second multinode model where the single-node pressurizer volume was subdivided into 8 equal size subnodes.

The single volume model uses a two-region model to describe the entire pressurizer.

In the multinode model, a two-region model was used to describe the vapor region and the uppermost portion of the liquid region. All subnodes that reside entirely below the mixture l evel are treated as a standard volume with temperature transport delay. When there is an insurge or outsurge, the domains of the two region model, and the temperature transport model are adjusted to accommodate the change in liquid inventory so that the two region model always covers the subnode where the mixture level resides. This allows RETRAN-3D to model any thermal stratification that occurs from an influx of liquid at a different temperature.

Figure IVIl.12-14 shows the noding diagram for the node and the multinode models. Base Mu l ti-Node Model S tra tific ati on M odel 30. 30. 112 112 111 11 0 111 110 109 t 110 109 109 109 1ost 108 108 108 107t 110 107 1 07 107 106t 106 106 106 1o st 105 1 05 105 104t 104 104 104 1 03 t 103 103 103 1ot 1ot 10 10 1 + Figure 111.12-14.

NEPUNUS Test Noding Diagrams for Single-Node and Multinode Models Revision 9 111-124 Separate Effect Analyses The model contains 11 conductors, one for each of the lower subnodes and 3 for the uppermost subnode. The flow rates for the spray and surge line junctions were controlled by fill tables that were created to replicate the data from Figure III.12-15.

For the RETRAN-3D model, the spray injection was shifted so the flow rate would be zero at time zero. The same offset was applied throughout the transient simulation.

The surge flow was also shifted so the time of the first insurge matched the time the pressure began to increase.

This offset was also applied throughout the transient simulation.

Figure IVII.12-15 shows the mass flow rates for the surge line and spray line and how they were shifted for the RETRAN-3D model. A constant insurge fluid temperature of 527 F was used. Since it was known that the spray temperature varied between 440 F and 610 F but no additional information regarding the history of the variation was available; consequently, it was varied linearly from 440 Fat the beginning to 610 F at 100 seconds. These temperatures were included in the appropriate fill models. The NEPUNUS pressurizer test facility analyses were performed using RETRAN-3D MOD004. 7 with the explicit solution method. 4 3 2 u 1 GI VI -QD =-0 er:: -1 i:i: -2 VI VI Ill 4 6 0 \ .... \ .. .. . , :. .. ."I. ** .... *. ---1 ........... . so ** .. ** .. \ .. 100 Time (s) 150 * * *** ** ** Surgeline Flow --Surgeline Flow Shifted * * * * * * * ** Sprayline Flow * '*** **. --Sprayline Flow Shifted \ """""---. 200 250 Figure Ill.12-15.

Transient Boundary Condition Flow Rates for the NEPTUNUS Pressurizer 12.3.2 Results of the Analysis Figure III.12-16 compares the experiment pressure data with the results from the single-node and multinode pressurizer calculations.

The RETRAN-3D single-node pressurizer model under predicts the pressure during each insurge and outsurge and grows steadily worse. This is 111-125 Revision 9 Separate Effect Analyses 13.00 12.00 11.00 :E Q,I .. ::s "' "' Q,I 10.00 --Multi-node ---Experiment 9.oo -Single-node 8.00 -t------,------.-------.---------,------l 0 50 100 150 200 250 Time (sec.) Figure 111.12-16.

NEPTUNUS Pressurizer Test Pressure Predictions because the insurged fluid is mixed with the liquid in the liquid region, reducing the average temperature of the liquid region and its saturation pressure.

On the other hand, the multinode pressurizer pressure results compare well with the experimental data. This is because the insurged fluid does not mix with the warmer fluid in the liquid region which will include saturated liquid that condenses on the vessel wall. This warmer fluid flashes sooner, reducing the depressurization rate. Figure III.12-17 illustrates the liquid subnode temperatures for the multinode model and the liquid region temperatures for the multinode and single-node models. As shown in Figure III.12-17, accounting for thermal stratification significantly affects the liquid region temperature leading to a different depressurization rate. It is also clear that the bottom subnode (volume I 03) experiences a significant change in temperature as cold fluid in insurged and then outsurged.

Volumes 104 and 105 experience some cooling, while volume 106 moves in and out of the region volume. When it is part of the two-region node the temperature arbitrarily follows the saturation temperature, while it is similar to the volume 105 temperature when the level rises and the volume I 06 (subnode) is re-activated.

This is consistent with the fact that the fluid inventory for volume I 06 came from volume I 05 during the insurge. The results of this test clearly indicate the effect that stratification can have on the pressurizer depressurization rate for outsurge events. Revision 9 111-126 565 570 575 580 585 590 595 600 605 050 100 150 200Temperature(K)Time(sec)VOL103VOL104VOL105VOL106SaturationLiq.Reg.Liq.Reg.1Node

0 5 10 15 20 25 3002004006008001000120014001600MassFlowRate(lbm/sec)Time(sec)RETRAN 3DData0 5 10 15 20 25 30 35 40 45 5002004006008001000120014001600Density(lbm/ft^3)Time(sec)RETRAN 3DData 0 0.2 0.4 0.6 0.8 1 1.202004006008001000120014001600NormalizedSystemMass Time(sec)RETRAN 3DData600650700750800850900950100002004006008001000120014001600Pressure(psia)Time(sec)RETRAN 3DData 600 80010001200 1400 1600 18002000220002004006008001000120014001600Pressure(psia)Time(sec)RETRAN 3DData

0 5 10 15 20 25 3002004006008001000120014001600MassFlowRate(lbm/sec)Time(sec)RETRAN 3DData0 5 10 15 20 25 30 35 40 45 5002004006008001000120014001600Density(lbm/ft^3)Time(sec)RETRAN 3DData 0 0.2 0.4 0.6 0.8 1 1.202004006008001000120014001600SystemNormalizedMassTime(sec)RETRAN 3DData6008001000 1200 140016001800 2000220002004006008001000120014001600Pressure(psia)Time(sec)RETRAN 3DData

700750 800 850 900 950 100002004006008001000120014001600Pressure(psia)Time(sec)RETRAN 3DData

Row/Col1234567810.96931.48731.05461.78911.80720.98230.39890.560221.48731.81291.63361.89761.41160.55550.57070.4395 31.05461.63360.99941.43080.72770.73830.3899 41.78911.89761.43081.42971.02520.97920.5636 51.80721.41160.72771.02520.55740.7012 60.98230.55550.73830.97920.7012 70.39890.57070.38990.5636 80.56020.4395Row/Col1234567810.98651.51391.0691.80631.82120.99420.39590.5433 21.51391.8451.65831.91641.42440.55780.55920.43 31.0691.65831.01351.4470.72960.72450.382341.80631.91641.4471.43861.0160.94730.54351.82121.42440.72961.0160.54280.6738 60.99420.55780.72450.94730.6738 70.39590.55920.38230.543 80.54330.43 Row/Col1234567810.88141.00171.13631.10681.16941.12250.84340.743721.00171.10371.15051.17941.14661.09020.95580.5905 31.13631.15051.18821.1611.12951.01690.9303 41.10681.17941.1611.13671.03761.0020.6547 51.16941.14661.12951.03760.93260.7272 61.12251.09021.01691.0020.7272 70.84340.95580.93030.6547 80.74370.5905Row/Col1234567810.89171.01231.14581.11561.17521.12640.8390.733221.01231.11291.16351.18571.15381.09030.94980.5825 31.14581.16351.19371.17051.13061.01580.920641.11561.18571.17051.13851.03780.98930.650151.17521.15381.13061.03780.9190.7176 61.12641.09031.01580.98930.7176 70.8390.94980.92060.6501 80.73320.5825Row/Col1234567810.40580.72120.97961.08521.2671.12420.48620.555720.72120.82590.88321.1261.25061.18660.90140.5006 30.97960.88320.54721.05891.28211.1951.0685 41.08521.1261.05891.20981.22961.22750.7908 51.2671.25061.28211.22961.14670.8989 61.12421.18661.1951.22750.8989 70.48620.90141.06850.7908 80.55570.5006 Row/Col1234567811.01741.03531.12951.09391.16821.17040.9850.816521.03531.1131.14181.15951.14011.10861.00870.6304 31.12951.14181.1631.13761.10491.00650.9271 41.09391.15951.13761.1021.00520.96410.6391 51.16821.14011.10491.00520.88620.6927 61.17041.10861.00650.96410.6927 70.9851.00870.92710.6391 80.81650.6304

00.20.4 0.6 0.8 11.20246810121416NormalizedPower NodeRETRAN 3D(4Node)REFERENCE(Panther4Node)0 0.2 0.4 0.6 0.8 1 1.20246810121416NormalizedPower NodeRETRAN 3D(4Node)REFERENCE(Panther4Node) 00.20.4 0.6 0.8 11.20246810121416NormalizedPowerNodeRETRAN 3D(4Node)REFERENCE(Panther4Node)0 0.2 0.4 0.6 0.8 1 1.20246810121416NormalizedPowerNodeRETRAN 3D(4Node) 0 20 40 60 80100120 140 00.5 11.5 2CorePower(%)Time(sec)RETRAN 3D(1Node)RETRAN 3D(4Node)100 101 102 103 104 105 106 107 108 109 110 00.511.52CorePower(%)Time(sec)RETRAN 3D(1Node)RETRAN 3D(4Node) 0 50 100 150 200 250 300 00.511.52CorePower(%)Time(sec)RETRAN 3D(1Node)RETRAN 3D(4Node)100 101 102 103 104 105 106 107 108 109 110 00.5 11.5 2CorePower(%)Time(sec)RETRAN 3D(1Node)RETRAN 3D(4Node)

Row/Col1234567813.54572.7481.3351.8031.66490.85540.31310.405722.7482.7961.97821.90211.30010.47410.43880.3222 31.3351.97821.08081.36890.64050.58880.2973 41.8031.90211.36891.2670.84280.74270.4151 51.66491.30010.64050.84280.43270.5195 60.85540.4740.58880.74260.5195 70.31310.43880.29730.4151 80.40570.3222Row/Col1234567813.28742.58171.29081.77791.66390.87540.33150.438122.58172.63791.9131.87531.30630.4890.46570.3478 31.29081.9131.06521.37130.65510.61640.3165 41.77791.87531.37131.28950.87470.78420.443 51.66391.30630.65510.87470.45550.5521 60.87540.4890.61640.78420.5521 70.33150.46570.31650.443 80.43810.3478Row/Col1234567811.17151.12661.19031.12721.16781.10760.81670.714121.12661.19131.19911.1941.14541.07210.92860.5681 31.19031.19911.20981.17051.11890.99880.9016 41.12721.1941.17051.12971.02420.97210.6375 51.16781.14541.11891.02420.90420.7051 61.10761.07210.99880.97210.7051 70.81670.92860.90160.6375 80.71410.5681 Row/Col1234567811.15931.11841.18481.12481.16771.10980.82060.717321.11841.18391.19431.19161.14551.07410.93180.5705 31.18481.19431.20661.16921.11941.00060.904 41.12481.19161.16921.12971.02510.97390.639 51.16771.14551.11941.02510.90560.7064 61.10981.07411.00060.97390.7064 70.82060.93180.9040.639 80.71730.5705Row/Col1234567810.30550.54980.77860.93681.24891.44921.36921.118520.54980.63420.70410.96261.19151.35291.32190.8349 30.77860.70410.44340.8881.14161.17131.1554 40.93670.96260.8881.00171.03791.08670.7452 51.24891.19141.14161.03790.94880.7536 61.44911.35281.17131.08670.7536 71.36921.32181.15530.7451 81.11840.8348Row/Col1234567810.32110.57410.80230.9511.24531.42891.34091.095820.57410.65980.72590.97581.19121.33551.29870.8218 30.80230.72590.45580.90031.14311.16351.140840.9510.97580.90031.01091.0431.0850.74351.24531.19121.14311.0430.95380.7579 61.42891.33551.16351.0850.7579 71.34091.29871.14080.743 81.09580.8218 Row/Col1234567810.99071.01191.10771.08051.16721.19811.06710.865621.01191.08871.12061.14421.13581.12111.04480.6599 31.10771.12061.14211.12111.09441.00660.9345 41.08051.14421.12111.08560.99330.95710.6381 51.16721.13581.09440.99330.87470.6852 61.19811.12111.00660.95710.6852 71.06711.04480.93450.6381 80.86560.6599Row/Col1234567810.99261.01331.10861.08091.16681.19691.06520.864221.01331.091.12141.14461.13561.12031.04360.6591 31.10861.12141.14281.12161.09461.00640.934141.08091.14461.12161.08610.99360.95730.638151.16681.13561.09460.99360.87510.6856 61.19691.12031.00640.95730.6856 71.06521.04360.93410.6381 80.86420.6591

0 20 40 60 80100120140 00.2 0.40.60.8 1CorePower(%)Time(sec)RETRAN 3D(4Node)REFERENCE(Panther4Node) 100101 102 103 104 105 106 107 108 109 110 00.20.40.60.81CorePower(%)Time(sec)RETRAN 3D(4Node)REFERENCE(Panther4Node)0 50100150 200 250 300 00.2 0.40.60.8 1CorePower(%)Time(sec)RETRAN 3D(4Node)REFERENCE(Panther4Node) 100 101 102 103 104 105 106 107 108 109 110 00.2 0.40.6 0.8 1CorePower(%)Time(sec)RETRAN 3D(4Node)REFERENCE(Panther4Node)

System Effects Analysis Revision 9 1 2 10 11 12 13 14 16 ,. 17 11 ,. Core Half Line 10 Core Mldplane Symmetry line Figure IV.2-46. 19-Channel Steamline Break Overlay lnlacl loop 8olun loop Tnoe DtpendentVolHu (ARROTTAPru*ure

... Tnu) 5 5 8 9 10 18 fiA Boua*., Cooclidon* (AAROTTA Flow **.Ti u) Figure IV.2-47. 19-Channel Fill Boundary Model IV-48 System Effects Analysis 2.3.2 Results of the Analysis The calculations were executed from two different initial conditions.

The first case was initialized at a power of 10 MW and the second was started from 10 kW or nearly zero power. The transient was terminated at 200.0 seconds. RETRAN-3D MOD004.6f95 was used to obtain the results. In the 10 MW case (Figure IV.2-48), the ARROTT A power drops immediately from the initial power to a low value of2 MW due to scram rod insertion.

The power remains level for a brief time and then begins to rise slowly at 25.0 seconds. There is a sharp rise in power between 45.0 and 60.0 seconds. The power turns over at approximately 70.0 seconds then remains level at 38 MW until boron injections begins at 90.0 seconds. The power ramps down to 26 MW at 200.0 seconds. Figure IV.2-48 shows the core power for the transient.

45 40 .... ..... _ ..... ..... ---..... 30 ..... ..... ..... ..... ..... 25 .... .... QI 3: 0 20 QI .... 0 15 -RETRAN-30 v 10 --ARROTTA 5 0 0 50 100 150 200 Time (sec) Figure IV.2-48. Core Power During Steamline Break from 10 MW Following the initial power drop due to the rod insertion, the core coolant density gradually increases because the primary side of the faulted loop is being cooled down. This introduces a positive reactivity into the core, eventually this positive moderator density reactivity exceeds the shutdown margin and power begins to rise. The fuel temperatures and densities around the stuck rod are not uniform and as the power tends to rise, very local effects tend to dominate the nature of the transient.

Examination of the ARROTTA case with detailed thermal-hydraulic edits showed that some channels begin to void at 69.0 seconds which coincides with the power turning over. This voiding occurs in only four of the 190 ARROTTA channels and all four are located on the 'hot' (intact loop) side of the core and near the stuck control rod location The degree to IV-49 Revision 9 System Effects Analysis which this local voiding effect can be captured by the RETRAN-3D model is a function of the nodalization.

The core power responds differently for the 10 kW case as shown in Figure IV.2-49. Following the initial scram rod insertion, the power remains level for 65.0 seconds then rises sharply to a peak turning over immediately due to Doppler, decreasing until about 80.0 seconds. As the rods cool a second power rise occurs until 90.0 seconds when the power decreases until the end of the transient at 200.0 seconds due to boron injection.

i 50 45 40 35 30 j 25 f 20 s 15 10 5 I ' , -RETRAN*3D --ARROTTA 0 0 50 100 Time (sec) 150 Figure IV.2-49. Core Power During Steamline Break from 10 kW 200 The 'low power' case is characterized by uniform initial conditions.

That is, there is little radial variation in moderator temperature and density at each axial level and unlike the I 0 MW case, the power rise terminates almost entirely due to Doppler feedback.

The difference between the ARROTT A and the 19-channel RETRAN-3D case has been identified as differences between the heat conduction models and the boron injection models in the two codes. The ARROTT A heat conduction model is based upon a semi-analytical formalism while the RETRAN-3D model uses a conventional finite difference numerical method. Sensitivity studies such as 'freezing' various feedback components and varying heat conduction input parameters were performed to help identify the conduction solution as the principle cause of the difference.

The boron injection is simulated in ARROTT A using a single boron concentration versus time table, which assures that the soluble boron is injected and transported throughout the core instantaneously.

On the other hand, RETRAN-3D simulates the boron injection using the more realistic general transport model. Revision 9 IV-50

System Effects Analysis 1030 :::::: 102 :::::: :*::*: IOIO ****=* 8 (Upper Plenum) 1030 1020 1010 1040 1030 1020 IOIO Active Co re 48 Chan nels Core Bypa ss J Ch ann el 130 129 128 103 104 102 ro 3 101 102 Channel I Channel 48 10 1 9 (Lower Plenum) Figure IV.2-63. SPERT RETRAN-3D Model Table IV.2-14 RETRAN-3D Flow Channel and Conduction Model Parameters Parameter Value Source Comments Channel Flow Area 0.00260027 m 2 (I) [IV.2-17] (I) 25-rod assembly.

0.00180598 m 2 <2> <2> 16-rod assembly.

Wetted Perimeter/

0.929628 m (I) [IV.2-17]

<1> 25-rod assembly.

Heated Perimeter 0.594964 m <2> <2> 16-rod assembly.

Fuel Rod Diameter 0.010668 m [IV.2-17]

Gap Width 0.0000762 m [IV.2-17]

Clad Thickness 0.000508 m [IV.2-17]

U02 Thermal Temperature Dependent PWR sample Conductivity Table problem Gap Conductance 1000 Btu/hr-ft 2-F PWRsample (5678.87 W/m 2-C) problem Clad Thermal Temperature Dependent Table A.6 Stainless steel Conductivity Table [IV.2-18]

U02 & Gap Heat Temperature Dependent PWR sample Capacity Table problem Clad Heat Capacity Temperature Dependent Table A.6 Stainless steel Table [IV.2-18]

Revision 9 IV-62

0 50100150 200 250 300 350 00.050.10.150.20.25ReactorPower(MW)Time(sec)RETRAN 3DData 0 5 10 15 20 25 00.05 0.1 0.15 0.2 0.25Energy(MWsec)Time(sec)RETRAN 3DData0 0.2 0.4 0.6 0.8 1 1.2 1.4 00.050.10.150.20.25Reactivity(Dollars)Time(sec)RETRAN 3DData 0.4 0.2 00.20.4 0.60.8 11.2 00.050.10.150.20.25Reactivity($)Time(sec)TotalReactivityTransientRodReactivityModeratorDensityReactivityDopplerReactivity 0 100 200 300 400 500 600 700 00.1 0.20.3 0.4 0.5ReactorPower(MW)Time(sec)RETRAN 3DData0 0.2 0.4 0.6 0.8 1 1.2 00.1 0.20.3 0.40.5Reactivity(Dollars)Time(sec)RETRAN 3DData 0 0.2 0.4 0.6 0.8 1 1.2 00.1 0.20.3 0.40.5Reactivity(Dollars)Time(sec)RETRAN 3DData 0.6 0.1 0.4 0.9 1.4 00.1 0.20.3 0.40.5Reactivity($)Time(sec)TotalReactivityTransientRodReactivityModeratorDensityReactivityDopplerReactivity

0 100 200 300 400 500 600 700 800 00.10.20.30.40.5ReactorPower(MW)Time(sec)1,00010,0002,000

0100200300400 500 600 700 800 00.050.10.150.20.25ReactorPower(MW)Time(sec)$1.12$1.17$1.22

0 2000 4000 6000 8000 10000 12000 14000 16000051015202530Pressure(kPa)Time(sec)FiveEquationsFourEquationsData

00.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 51015202530VoidFractionTime(sec)FiveEquationsFourEquationsData0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1051015202530VoidFractionTime(sec)FiveEquationsFourEquationsData System Effects Analysis After the pressure in the system fell below the cold leg saturation pressure at about 8 seconds, a further change in the depressurization rate followed.

The remaining fluid in the cold side reservoir then began to flash and expand, thus creating a low void fraction fluid slug which flowed into the cold leg towards the heated section. Within 1.5 seconds, the fluid slug traversed the heated section, where the power had already been switched off, and reached the hot leg void measurement point on its way to the hot leg reservoir and out through the hot leg break. The consequence of the traverse of the two-phase slug from the cold side reservoir is also seen in Figure IV.3-5 as a sharp decrease in rod temperature at about 11 seconds. Cll .. :::J Qj Q. J 1200 1100 1000 900 800 700 600 ---500 400 0 -.... ': .. .. 1: I ! ' . I

  • I : , I . . . . . \ \ \ \ \ \ \ \ \ ' -5 10 .... _ 15 Ti me (sec) -Five Equa ti ons * * * ..
  • Four Equa ti ons --Data .... _ ******** ... ' ...... ".... . ..... . . .. . . 20 25 30 Figure IV.3-5. OMEGA Test No. 9 Heater Temperature Level 6 During the final stage of the transient, the cold and hot leg mass flow rates decreased further and the void fraction in both legs increased as the system inventory evaporated and the vapor was released through the breaks. In Figure IV.3-2 one can see that both models provide a good prediction of the system pressure behavior.

The differences between the curves with the five-equation model and the four equation thermal equilibrium model are a result of the five-equation model calculating a lower vaporization rate in the heated section than that yielded by the thermal equilibrium model and that observed experimentally.

The lower pressure predicted by the five-equation model during the depressurization from hot leg to cold leg saturation conditions supports this conclusion.

During this stage of the transient, vapor production as a result of liquid flashing in the heated section and in the hot leg, together with the critical flow out of the breaks, were the most important phenomena in determining system pressure.

Revision 9 IV-92

0 50010001500 2000 2500 3000 350040004500 50000102030405060MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 30 25 20 15 10 5 0 50102030405060Reactivity(Dollars)Time(sec)RETRAN 3DRETRAN 02

0 0.2 0.4 0.6 0.8 1 1.20102030405060NormalizedPowerTime(sec)RETRAN 3DRETRAN 029409609801000 102010401060 10801100112011400102030405060Pressure(psia)Time(sec)RETRAN 3DRETRAN 02

Comparisons of Systems Analyses:

RETRAN-02 and RETRAN-30 2.2.2 Results of the Analysis The loss of feed water heater transient began with a feedwater heater trip at 0.001 second. A control system calculated the resulting reduction in feedwater enthalpy.

The initial delay and subsequent decay of the feedwater enthalpy is shown in Figure V.2-7. RETRAN-3D MOD004.6f95 was used to generate results for this analysis.

The comparison of the RETRAN-02 and RETRAN-3D results is shown in Figures V.2-7 through V .2-14. The first part of the transient was an operational null transient since the feedwater enthalpy did not decrease until approximately 50 seconds. A power increase is shown in Figure V.2-8 as the reactivity increased (Figure V.2-9) due to increasing core inlet subcooling.

The RETRAN-02 and RETRAN-3D power results are nearly identical.

Both the core flow andjet pump flow increased as shown in Figures V.2-13 and V.2-14, respectively.

These predicted flows were effected by the increasing density as the feedwater temperature decreased and by the recirculation pump controllers reacted to maintain a prescribed pump speed. The flow increase, in combination with the power increase caused the downcomer water level to decrease.

In response, the feedwater controller increased the feedwater flow as shown in Figure V.2-10. Also, an increase in steam flow was calculated (Figure V.2-12) by the turbine valve controller in order to maintain the system pressure.

The results of this analysis show that RETRAN-3D produces reasonable results and that these results are nearly identical to the RETRAN-02 results for a BWR loss of feedwater heater transient.

365 360 355 e 350 .Q ' :I .. .Q 345 -> Q. -RETRAN-30 ii ..c 340 .. c: --RETRAN-02 LU 335 330 325 0 20 40 60 80 100 120 Time (sec) Figure V.2-7. Susquehanna Feedwater Heater Failure, Feedwater Enthalpy V-11 Revision 8 Comparisons of Systems Analyses:

RETRAN-02 AND RETRAN-30 1.08 1.07 I ... 1.06 1 QI 1.05 l -RETRAN-30 --RET R AN-02 0 Cl. 1.04 1 "C QI I .!::! iii 1.03 -l E ... 0 z 1.02 1.01 1 0.99 0 20 40 60 80 100 120 Time (sec) Figure V.2-8. Susquehanna Feedwater Heater Failure, Normalized Power 0.014 0.012 0.01 -RETRAN-30

<ii ... J! --RETRAN-02 0 0.008 Q -> ... *:; 0.006 z IV 0.004 0.002 0 ----------

0 20 40 60 80 100 120 Time (sec) Figure V.2-9. Susquehanna Feedwater Heater Failure, Reactivity Revision 8 V-12 Comparisons of Systems Analyses:

RETRAN-02 and RETRAN-30 3750 3740 J 3730 -3720 -< -RETRAN-30

\ii ... 3710 --; .!!! 0 I c 3700 I -> "> 3690 --RETRAN-02

'oW I.I 1 I'll 3680 Ill a: 3670 .... 3660 l 3650 3640 0 20 40 60 80 100 120 Time (sec) Figure V.2-10. Susquehanna Feedwater Heater Failure, Feedwater Flow 32.9 32.8 32.7 g 32.6 Qj 32.5 -> Ill _, -RETRAN-30 a: z 32.4 ---RETRAN-02 32.3 32.2 32.1 0 20 40 60 80 100 120 Time (sec) Figure V.2-11. Susquehanna Feedwater Heater Failure, Narrow Range Level V-13 Revision 8 Comparisons of Systems Analyses:

RETRAN-02 AND RETRAN-30 3780 3760 u 3740 GI -RETRAN-30 E 3720 --RETRAN-02

-0 3700 i:i: "' "' "' 3680 3660 3640 0 20 40 60 80 100 120 Time (sec) Figure V.2-12. Susquehanna Feedwater Heater Failure, Steamline Flow 24530 24520 I 24510 J -24500 u GI 24490 E ..Q 24480 ::. 24470 1 ..2 I.I.. "' 24460 1 Ill "' 24450 -j 24440 _j 24430 24420 0 20 -RETRAN-30 --RETRAN*02 40 60 Time (sec) 80 100 120 Figure V.2-13. Susquehanna Feedwater Heater Failure, Core Mass Flow Rate Revision 8 V-14 Comparisons of Systems Analyses:

RETRAN-02 and RETRAN-30 13720 13710 13700 u -RETRAN-30 cu Ill 13690 ...... E --RETRAN-02

..c ::::;. 13680 3: ..2 ..... Ill 13670 Ill !II 13660 13650 13640 0 20 40 60 80 100 120 Ti me (sec) Figure V.2-14. Susquehanna Feedwater Heater Failure, A Loop Jet Pump Flow 2.3 Oyster Creek Feedwater Controller Failure The Oyster Creek RETRAN-3D analysis of the feedwater controller failure transient was analyzed and compared to a RETRAN-02 analysis over a 40-second period. 2.3.1 Description of the Model The model was composed of 61 volumes, 84 junctions, 2 nonequilibrium volumes, 6 fills, and 2 time-dependent volumes. The core neutronics, modeled by one-dimensional kinetics, had an initial power of 1930 MWt powering 24 heat conductors in the core. The graphical representation of the RE TRAN geometric construction and nodalization of the Oyster Creek BWR is shown in Figure V.2-15. Table V.2-3 is a listing of the options used in the RETRAN-02 and RETRAN-3D transient analysis.

V-15 Revision 8

0 C/l ()' :::> CX> ...... O> UZI H2S vm Jm v 4%4 v 104 JIM CON IPMY UPftA PUllUll J Jtt Jll VtlZ J14 y , .. VM1 uet FEEDWATER fill Figure V.2-15. Oyster Creek RETRAN Noding Diagram J28t J 203 J 205 .g Ill g (I) Q, (/) Ci) ):., ::i Ill ;ti 2 ):.,

00.5 11.5 22.5 33.50510152025303540NormalizedPower Time(sec)RETRAN 3DRETRAN 02 1020104010601080 1100 1120 114011600510152025303540Presure(psia)Time(sec)RETRAN 3DRETRAN 020 0.5 1 1.5 2 2.5 30510152025303540MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02

0 500 1000 1500 2000 2500 30000510152025303540MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15NormalizedPower Time(sec)RETRAN 3DRETRAN 02980 1000 1020 1040 1060 1080 1100 1120 114005101 5Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 860 880 900 920 940 960 980 1000 0 5 10 15Pressure(psia)Time(sec)RETRAN 3DRETRAN 025000 7000 9000 11000 13000 15000 17000 19000 0 5 10 15MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 0 500 1000 1500 2000 2500 3000 0 5 10 15MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 020 500 1000 1500 2000 2500 300005101 5MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 150 200 250 300 350 400 450 50005101 5LiquidVolume(ft^3)Time(sec)RETRAN 3DRETRAN 02280 300 320 340 360 380 400 420 440 0 5 10 15LiquidVolume(ft^3)Time(sec)RETRAN 3DRETRAN 02 0 0.5 1 1.5 2 2.5 3 3.5 405101 5MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 0233.23.4 3.6 3.8 44.2 4.4 4.6 4.8 0 5 10 15MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 00.10.20.30.40.50.60.70.80.9 105101 5NormalizedTorqueTime(sec)RETRAN 3DRETRAN 02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 201020304050607080NormalizedPowerTime(sec)RETRAN 3DRETRAN 0210001050 1100 1150 1200 1250130001020304050607080Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 500 1000 1500 2000 2500 3000 3500 400001020304050607080FlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

0 0.5 1 1.5 2 2.501020304050607080NormalizedPower Time(sec)RETRAN 3DRETRAN 020 500100015002000 250030003500400001020304050607080FlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 1000 1050 1100 1150 1200 1250 130001020304050607080Pressure(Psia)Time(sec)RETRAN 3DRETRAN 020500 1000 1500 2000 2500 3000 3500 400001020304050607080FlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

00.10.20.30.4 0.50.60.7 0.80.9 10246810121416NormalizedPower Time(sec)RETRAN 3DRETRAN 02 180020002200 2400 260028003000 3200 340036000246810121416FeedwaterMassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 0219002100 2300 2500 2700 2900 3100 3300 35000246810121416SteamlineMassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 60008000100001200014000 16000 180000246810121416DowncomerMassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 020 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10246810121416PumpTorque(ftlbf)Time(sec)RETRAN 3DRETRAN 02 30 32 34 36 38 40 42 440246810121416

%WideRangeLiquidLevel Time(sec)RETRAN 3DRETRAN 0235 37 39 41 43 45 47 49 51 53 550246810121416

%NarrowRangeLiquidLevelTime(sec)RETRAN 3DRETRAN 02

00.5 11.5 22.5 33.5 44.5 5012345NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 30 25 20 15 10 5 0 5012345Reactivity(Dollars)Time(sec)RETRAN 3DRETRAN 02985990995 1000 1005 1010 1015 1020 1025 1030 1035 1040012345Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 20001000 01000200030004000012345MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 012345NormalizedPowerTime(sec)RETRAN 3DRETRAN 02985990 9951000 1005 1010 1015 1020 1025 1030 10351040012345Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 Comparisons of Systems Analyses:

RETRAN-02 AND RETRAN-30 3.0 PRESSURIZED WATER REACTOR TRANSIENT ANALYSES 3.1 AN0-2 Turbine Trip 3. 1. 1 Description of the Model The AN0-2 NSSS is a Combustion Engineering PWR, containing four primary coolant pumps and two steam generators, a rated power of 912 MWe, and a nominal RCS pressure of2250 psia. A RETRAN model of this plant was used to simulate a turbine trip event. The RETRAN model used for the analysis was a two-loop representation of the AN0-2 plant as shown in Figure V .3-1. The model contains 65 volumes, 92 junctions, and 52 heat conductors.

The core region was modeled with six equal size volumes, with the core shroud and guide tubes included in one bypass volume. The primary side of the steam generator was represented with six equal volumes and the secondary contains seven volumes. The separator and upper downcomer of the steam generators are separated volumes. Point kinetics was used for the power response.

Feedwater flow was supplied as a boundary condition to the analysis using measured data. The options used in the RETRAN-02 and RETRAN-30 analyses are listed in Table V.3-1. Table V.3-2 shows the initial conditions for the AN0-2 turbine trip test. Figure V.3-1. AN0-2 PWR Plant Model Revision 8 V-48 .........


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1020406080100120NormalizedPower Time(sec)RETRAN 3DRETRAN 02 1300150017001900210023002500020406080100120Pressure(psia)Time(sec)RETRAN 3DRETRAN 02700750 800 850 900 9501000 10501100020406080100120Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 2 4

6 8 10 12 14020406080100120VolumeLevel(ft)Time(sec)RETRAN 3DRETRAN 0215 20 25 30 35 40020406080100120MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 1000 500 050010001500 2000020406080100120MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

0 50100150 200 250 02004006008001000MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 1600 1700 1800 1900 2000 2100 2200 2300 2400 0 200 400600 8001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 1 2 3 4 5 6 7 8 9 10 0200400600 8001000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 460 470 480 490 500 510 520 530 540 0 2004006008001000Temperature(F)Time(sec)RETRAN 3DRETRAN 02440 450 460 470 480 490 500 510 520 530 540 0 200 400 600 8001000Temperature(F)Time(sec)RETRAN 3DRETRAN 02 300400 500 600 700800900 0 2004006008001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 2 4 6 8 10 12 0 200 400 6008001000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 500 550 600 650 700 750 800 850 900 0 200400 6008001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 2 4 6 8 10 12 0200 400 6008001000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 0 50100150 200250 0 200 4006008001000MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 0216001700 1800 1900 2000 2100 2200 230001002003004005006007008009001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 1 2

3 4 5 6

7 8 9 10 02004006008001000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02460470 480 490 500 510 520 530 540 02004006008001000Temperature(F)Time(sec)RETRAN 3DRETRAN 02 440 450 460 470 480 490 500 510 520 530 540 0 200 400 6008001000Temperature(F)Time(sec)RETRAN 3DRETRAN 02300400500 600 700800900 02004006008001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 1 2 3 4 5 6 7 8 9 10 0 200400 600800 1000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02500 550 600 650 700 750 800 850 900 0200 4006008001000Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 1 2

3 4 5 6 7 8 9 10 0 200 400 600 800 1000MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02

2100212021402160 2180 2200 2220 2240 2260 2280 0 5 10 152025Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 26 27 28 29 30 31 32 0 5 10 152025MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02700750 800 850 900 9501000 1050 1100 0 510 15 2025Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 700 750 800 850 900 9501000 1050 1100 0 5 1015 20 25Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 510 15 20 25NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 534536 538 540 542 544 546 548 550 0 5 10 15 20 25Temperature(F)Time(sec)RETRAN 3DRETRAN 02565570575 580 585 590595600 605 610 0 5 10 1520 25Temperature(F)Time(sec)RETRAN 3DRETRAN 02

-....I c.> :::0 C/l i5' ::I CX> @ II © IJ&raiOUJ ion '1::1 I* =r "IJU II Ml Figure V.3-35. Nodalization Diagram of a Four-Loop Westinghouse RETRAN-02 Model i g (I) Q, en (ii 3 (I) ):,,. ::i Q) (I) Cl) fl! :ti Q) ::i Q. :ti

2250235024502550 265027502850 295030503150 3250020406080100120140160Pressure(psia)Time(sec)RETRAN 3DRETRAN 0202004006008001000 1200 1400020406080100120140160Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1020406080100120140160NormalizedPowerTime(sec)RETRAN 3DRETRAN 02580590 600610620 630 640650660 670020406080100120140160AverageTemperature(F)Time(sec)RETRAN 3DRETRAN 02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1020406080100120140160NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 2250235024502550 265027502850 2950 305031503250020406080100120140160Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 200 400 600 8001000 1200 1400020406080100120140160Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0500 1000 1500 2000 2500020406080100120140160MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 020 5 10 15 20 25 30 35 40020406080100120140160MassFlowRate(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 00.10.2 0.3 0.40.50.6020406080100120140160AverageHeatFlux(btu/hrft^2)Time(sec)RETRAN 3DRETRAN 02580 590 600 610 620 630 640 650 660 670020406080100120140160AverageTemperature(F)Time(sec)RETRAN 3DRETRAN 02

17501800 1850 1900 195020002050 2100 2150 2200 22500100200300400500600700Pressure(psia)Time(sec)RETRAN 3DRETRAN 02530540 550 560570580 590 6000100200300400500600700Temperature(F)Time(sec)RETRAN 3DRETRAN 02 524526 528 530 532 534536538 540 5420100200300400500600700Temperature(F)Time(sec)RETRAN 3DRETRAN 02700750 800 850 900 95010000100200300400500600700Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 2 4 6 8 10 12 14 160100200300400500600700LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 0200.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10100200300400500600700NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 17501800 1850 1900 1950 2000 205021002150 2200 22500100200300400500600700Pressure(psia)Time(sec)RETRAN 3DRETRAN 02530 540 550 560 570 580 590 6000100200300400500600700Temperature(F)Time(sec)RETRAN 3DRETRAN 02 524526528530 532 534536538 5400100200300400500600700Temperature(F)Time(sec)RETRAN 3DRETRAN 02700 750 800 850 900 95010000100200300400500600700Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 2 4

6 8 10 12 14 160100200300400500600700LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 020 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10100200300400500600700NormalizedPowerTime(sec)RETRAN 3DRETRAN 02

.... ::0 C/I er ::::J ()) '"" STEAl.1 C£NERATOR 1 I 1 ...............

..

..

...... u 1*.:.::" ..

...... , ........ \ 111

  • .,,J"P"'4-_..1.vt1 I 0 n***I* ,,.. '" .. ' r**\t , " . ...... t:J PRESSURIZER I ..

"' ll 11, .. , r;.::-;-r" l]f."';;)J I 1 I * .., r.:.1"' .... u:!JJ--r--I ..

I I ... 'Cl t(lfl* .. I ... "' I I j .1 I

... e. 1 j'-; ST(AI.\ UNE *.*.* , ... I u ,.... "ClU'*£* *>*-f--*'A-+**et u*) * .* ., JI ' ., ;.-*.1..,.

! ....... -r 1 1 1 ..

... 0 ......... . I .. ..... 1-j .,,_,_t'*"l-1"'" -fl '"'1 !!. I I 0

'0' I ... ti *I-/J--f tftt I _...__, -i ,._ . I I .*. ... i I \t.:.) ... .......... . ,._,_ '19.-'i

I Iv tt I tt 0

(*J I tO* I . £i l.1 ,.;_ *-!.?-iJ*--1

  • ,oU '8 1' I ,._ ,, i .. -'l* ** , 1 .. ,..,.,. 1--t (!!)

_,.1,... I l l'r"j' 0 U --'(:J I "I',., I co*c .; * * ** ,, _, --*,:. -*-I* t0* ..

J I .J,

=j' . *--1:.J L-::t.-m "" r,...,,...

I . c:v I II I**-'*" -.. _J -. 1 * " .,., * ** ,_, . (i9 ........ .. .-. .. ,.,.., J r/ I ' lZJ L . rr .,.. ' ---*----,--i; 0 I 1 20 stcor;oAnv) l --J\r'ICT ic:*:S [ 32 rn1:.IARY.

i9 SECONDARY) t CIJilOUCTOilS

[12 G(l;(RATOR, 3 REACTOR VESSEL Figure V.3-60. One-Loop RETRAN Model for Three Mile Island Unit 1 f ?;i* g (/) Q, (/) Cir 3 (/) :t:. :::J Q) :ti ):;. Q.. :ti ):;.

1900 1950 2000 2050 2100 2150 2200020406080100120140Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 10 12 14 16 18 20 22 24020406080100120140MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 0200.20.4 0.60.8 11.2020406080100120140NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200020406080100120140Pressure(psia)Time(sec)RETRAN 3DRETRAN 025 7 9 11 13 15 17 19 21 23 25020406080100120140MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 02 0 500100015002000 25003000020406080100120140MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02900 920 940 960 9801000 10201040106010801100020406080100120140Pressure(psia)Time(sec)RETRAN 3DRETRAN 02

555 560 565 570 575 580 585 59002 04 06 0801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 021950 2000 2050 2100 2150 2200 2250 230002 0406 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 10 12 14 16 18 20 22 2402 04 06 0801 0 0LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 0210001020104010601080 110011201140116002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 1 2 3 4 5 6 7 8 9 1002 04 060801 0 0LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 02 1600 1400 1200 1000 800 600 400 200 002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102 04 060801 0 0NormalizedPowerTime(sec)RETRAN 3DRETRAN 02555560 565 570 575 58058559002 04 06 0801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02 1950 2000 2050 2100 2150 2200 2250 230002 0406 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 0210 12 14 16 18 20 22 2402 04 06 0801 0 0LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 02 1000 1020 1040 1060 1080 1100 1120 1140 116002 0406 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 1 2 3

4 5 6 7

8 9 1002 04 06 0801 0 0LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 02 140012001000800600400200 002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 0200.10.20.30.40.50.60.70.80.9 102 04 06 0801 0 0BankABypassTime(sec)RETRAN 3DRETRAN 02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 50100150 200NormalizedPower Time(sec)RETRAN 3DRETRAN 02 16001700 1800 1900 2000 210022002300 050100150200Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200WaterLevel(%)Time(sec)RETRAN 3DRETRAN 02 800850 900 950 1000 1050020406080100120140160180200Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 200 400 600 80010001200 050100150200MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 0200400600 800 1000 1200 0 50 100 150 200MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 020 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 050100150200NormalizedPowerTime(sec)RETRAN 3DRETRAN 02 1600 1700 1800 1900 2000 2100 2200 2300 050100 150 200Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 5 10 15 20 25 30 35 40 45 50 0 50100150200 SG1WaterLevel(%)Time(sec)RETRAN 3DRETRAN 02 800 850 900 9501000 1050 0 50100 150200 SG1Pressure(psia)Time(sec)RETRAN 3DRETRAN 020200400 60080010001200 050100150200 SG1FeedwaterFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 0200400600 80010001200 050 100150200 SG1FeedwaterFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

Comparisons of Systems Analyses:

RETRAN-02 AND RETRAN-30


*---**-**---------.

Figure V.3-96. Nodalization of KNU 2 Primary System Revision 8 V-116

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102 04 06 0801 0 0NormalizedPower Time(sec)RETRAN 3DRETRAN 02 20002050 21002150220022502300235002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 0211 12 13 14 15 16 17 18 19 20 2102 04 06 0801 0 0WaterLevel(ft)Time(sec)RETRAN 3DRETRAN 02 550560 570 580590600 610 62002 0406 0801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02548550552554556558 56056256456656857002 04 060801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02 02004006008001000 120002 04 060801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02850900 9501000 1050 1100 115002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0 1 2 3 4 5 6 702 04 06 0801 0 0WaterLevel(ft)Time(sec)RETRAN 3DRETRAN 02

0 0.2 0.4 0.6 0.8 1 1.20204 06 0801 0 0NormalizedPowerTime(sec)RETRAN 3DRETRAN 0220002050 2100 2150 2200 2250 2300 235002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 11 12 13 14 15 16 17 18 19 20 2102 04 06 0801 0 0WaterLevel(%)Time(sec)RETRAN 3DRETRAN 02550560570 580590600 61062002 0406 0801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02 548550 552554556558560562564 56656802 0406 0801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 020 200 400 600 800 1000 12000204 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 850 900 9501000 10501100115002 04 060801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 020 1 2 3 4 5 6 702 04 06 0801 0 0WaterLevel(%)Time(sec)RETRAN 3DRETRAN 02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10204 06 0801 0 0NormalizedPowerTime(sec)RETRAN 3DRETRAN 021950 2000 2050 2100 2150 2200 2250 0 20 406080 100Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 10 15 20 2502 04 06 0801 0 0LiquidLevel(ft)Time(sec)RETRAN 3DRETRAN 02550560570580590 60061062063002 04 060801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02 554 556 558 560 562 564 566 56802 04 060801 0 0Temperature(F)Time(sec)RETRAN 3DRETRAN 02960 9801000 102010401060 108011001120 114011600204 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DRETRAN 02 0200400 600 8001000 1200 1400 160002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 020 200 400 600 8001000120002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 25 27 29 31 33 35 37 39 41 43 4502 04 06 0801 0 0MixtureLevel(ft)Time(sec)RETRAN 3DRETRAN 020200400600 8001000 1200 140002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02 0 50 100 150 200 25002 0406 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DRETRAN 02

00.20.40.6 0.8 11.21.41.6 1.80510152025303540NormalizedPowerTime(sec)4Equation 5Equation 1020 1040 1060 1080 1100 1120 1140 11600510152025303540Pressure(psia)Time(sec)4Equation 5Equation00.5 11.5 22.5 30510152025303540MixtureLevel(ft)Time(sec)4Equation 5Equation

00.20.40.60.8 11.202468101214NormalizedPowerTime(sec)4Equation 5Equation 980 1000 1020 1040 1060 1080 1100 1120 114002468101214Pressure(psia)Time(sec)4Equation 5Equation0 50100150200250 300 350400450 50002468101214LiquidVolume(ft^3)Time(sec)4Equation 5Equation 00.5 11.5 22.5 33.5 402468101214MixtureLevel(ft)Time(sec)4Equation 5Equation0 5000 10000 15000 20000 2500002468101214MassFlow(lbm/sec)Time(sec)4Equation 5Equation 0 500 1000 1500 2000 2500 300002468101214MassFlow(lbm/sec)Time(sec)4Equation 5Equation050010001500 2000 25003000350002468101214MassFlow(lbm/sec)Time(sec)4Equation 5Equation 860 880 900 920 940 960 980100002468101214MassFlow(lbm/sec)Time(sec)4Equation 5Equation

00.5 11.5 22.5 33.5 44.5 5012345NormalizedPower Time(sec)4Equation 5Equation 35 30 25 20 15 10 5 0 5012345Reactivity($)Time(sec)4Equation 5Equation 9859909951000 10051010101510201025103010351040012345Pressure(psia)Time(sec)4Equation 5Equation20001000 010002000 3000 4000012345MassFlowRate(lbm/sec)Time(sec)4Equation 5Equation

0 0.2 0.4 0.6 0.8 1 1.2020406080100120140160NormalizedPowerTime(sec)4Equation 5Equation 200022002400 2600 280030003200 3400020406080100120140160Pressure(psia)Time(sec)4Equation 5Equation0200400 600 800 1000 1200 1400020406080100120140160Pressure(psia)Time(sec)4Equation 5Equation 050010001500 2000 2500020406080100120140160MassFlowRate(lbm/sec)Time(sec)4Equation 5Equation 20 0 20 40 60 80 100 120 140 160020406080100120140160MassFlowRate(lbm/sec)Time(sec)4Equation 5Equation 0 0.1 0.2 0.3 0.4 0.5 0.6020406080100120140160AverageHeatFlux(BTU/hrft^2)Time(sec)4Equation 5Equation580 590 600 610 620 630 640 650 660 670020406080100120140160AverageTemperature(F)Time(sec)4Equation 5Equation

00.20.4 0.6 0.8 11.2 0150 300450 600750NormalizedPowerTime(sec)4Equation 5Equation 530 540 550 560 570 580 590 600 0150300450600 750AverageTemperature(F)Time(sec)4Equation 5Equation524 526 528 530 532 534 536 538 540 542 0 150300 450 600 750Temperature(F)Time(sec)4Equation 5Equation 17501800 1850 1900 1950 200020502100 2150 2200 2250 0 150300 450600 750Pressure(psia)Time(sec)4Equation 5Equation0 2 4 6 8 10 12 14 16 0150 300450 600750LiquidLevel(ft)Time(sec)4Equation 5Equation 700 750 800 850 900 950 1000 0 150 300 450 600 750Pressure(psia)Time(sec)4Equation 5Equation

0.90.920.94 0.960.98 11.02 1.0402 0406 0801 0 0NormalizedPower Time(sec)RETRAN 3DData14401460 1480 1500 152015401560 1580 160002 04 06 0801 0 0MassFlow(kg/sec)Time(sec)RETRAN 3DData 7.017.027.037.047.057.067.07 7.087.0902 04 060801 0 0Pressure(MPa)Time(sec)RETRAN 3DData200100 010020030040002 04 060801 0 0HPCSFlow(l/sec)Time(sec)RETRAN 3DData 800 900 1000 1100 1200 1300 1400 1500 1600 1700 180002 0406 0801 0 0MassFlow(kg/sec)Time(sec)RETRAN 3DData60 70 80 90 100 110 120 13002 04 060801 0 0Level(cm)Time(sec)RETRAN 3DData

100 80 60 40 20 0 20 4002 04 0608 0LevelRegulatorOutputVariation(%)Time(sec)RETRAN 3DData 100 80 60 40 20 0 20 400102030405060708090LevelRegulatorOutputVariation(%)Time(sec)RETRAN 3DData 0 50100150200250 3003504000102030405060708090LineASteamFlow(kg/sec)Time(sec)RETRAN 3DData0 10 20 30 40 50 60 70 80 901000102030405060708090CoreFlow(%)Time(sec)RETRAN 3DData 0 20 40 60 801000102030405060708090Power(%)Time(sec)RETRAN 3DData0 501001502000102030405060708090HPCSVolumetricFlow(l/sec)Time(sec)RETRAN 3DData 5.75.9 6.1 6.36.56.7 6.9 7.10102030405060708090DomePressure(MPa)Time(sec)RETRAN 3DData 40 20 0 20 40 60 80100 1200102030405060708090Level(cm)Time(sec)RETRAN 3DData

Systems Analyses:

Comparisons with Experimental Data ;

  • 111 -11 o+* "C 0 ... 8 I l I f'f'l I I != i
  • I ' ai fl E-4 I! 1111 ii II') I .. I .. I = <I) * .. E "E a i =

= = t>J) p = ,..;j -.c I M I

  • I a. = 3 t>J) *-.. 0 0 .. <!:>I <I) I I I :t Vl-19 Revision 8
a en a*
:J 00 < iG 00 1 ,STEAMSEPARATOR (D : CONI'ROL VOLUME -j : JUNCl10N 24 1 <l!il ,A 310 STEAM

,>' E MAIN STEAM LINE 16 lS / 16 UPPER DOWNCOMER MIDDLE OOWNCOMER.

'r;:213 q1;p --+i [RECIRCULATION A-LOOP] " *--* --= -*-JET PUMP [RECRCULATION B-LOOPJ -204 Figure VI.2-30. Noding Diagram of Pressure Vessel and Recirculation Loops of BWR-S for Analyses by RETRAN-3D ff en Ci) 3 en :t:. :::s Q) i Q) g en :::r "O CD §* Qi -a? Qi

< co ::0 en ()" :::I ()) 310 RPV I <D : CONmOL voiliMil -J :JUNcnON -------* --------SAFETY RBUBF VALVE 381 382 IPCV //' e::::oN , 385 @ 390 362 361 Figure VI.2-31. Nodal Diagram for Main Steamlines ofBWR-5 for Analyses by RETRAN-3D ff en Ci) )::.. ::::i Q) f1 .g Q) g en ::;,. "O Cl) §* Qi -Qi

Systems Analyses:

Comparisons with Experimental Data

  • Figure VI.2-97. Vermont Yankee RETRAN Nodalization

-System Revision 8 Vl-78

1 0 1 2

3 4

5 6

7 012345CoreAveragedLPRM Time(sec)RETRAN 3DRETRAN 02Data 5 0 5 10 15 20 25 30 35 40 45012345DomePressureRise(psia)Time(sec)RETRAN 3DRETRAN 02Data 1 0 1 2 3 4 5 012345CoreAveragedLPRM Time(sec)RETRAN 3DRETRAN 02Data0 10 20 30 40 50 60 70 80012345DomePressureRise(psia)Time(sec)RETRAN 3DRETRAN 02Data 0 1 2

3 4

5 6 012345CoreAveragedLPRM Time(sec)RETRAN 3DRETRAN 02Data0 10 20 30 40 50 60 70 80 90012345DomePressureRise(psia)Time(sec)RETRAN 3DRETRAN 02Data

Systems Analyses:

Comparisons with Experimental Data

  • the four-equation thermal-hydraulic model was used with the Zolotar-Lellouche drift flux correlation,
  • point kinetics was selected for power response and the local reactivity modified by local importance weighting of the squared nodal power,
  • the safety release valves (SRV s) are grouped into six junctions connected to the main steamline, and
  • a single feedwater fill junction is connected to the middle downcomer volume. Ten RIPs are peripherally bottom mounted on the reactor pressure vessel, which simplify the primary recirculation flow system by eliminating the external recirculation loops and jet pumps used with previous BWR designs. The adjustable speed drive (ASD) and the digital control system for each RIP regulate the core flow rate by adjusting the RIP speed. The schematic of the RIP power supply system is shown in the Figure VI.2-108.

A summary of the system and RIP modeling are described below. Revision 8 500kv Transm is sion l.iae 66kv nu , M aia Tnia.ron11er T ransron11er Figure VI.2-108.

RIP Power Supply System and Grouping Schematic Vl-92 Systems Analyses:

Comparisons with Experimental Data

  • ten RlPs are modeled as separate volumes,
  • ten RIPs from A through K (I skipped) are grouped into four high-voltage power supply systems that connect to the bus bar, as shown in the Figure VI.2-108,
  • two of the four groups are equipped with MG sets,
  • each RIP has ASD to control the pump speed, and
  • RlPs modeled using the centrifugal pump model and design specifications for rated pump speed , pump speed ratio, rated flow, and torque. The master controller demands the core flow rate adjustment through the recirculation flow controller (RFC) in accordance with the load/demand error signal from the turbine EHC system or by manual adjustment.

A schematic of the RFC system is shown in the Figure VI.2-109.

The feedback control system directly detects the core flow measured by the pressure drop through the feedback line. The total core flow is then controlled by the speed of the ten RlPs which is adjusted by the frequency signals to the ASDs. The turbine-driven (TID) and motor-driven (MID) reactor feedwater pumps (RFPs) are controlled by matching the feedwater flow rate against the reactor water level and main steam RPV RIP RIP p MSL MASTER CONTROLLER FLOW CORE FLOW CONTROLLER STATIC REaRCULATION PUMP POWER SUPPLY Figure VI.2-109.

Recirculation Flow Control (RFC) System Schematic Vl-93 Revision 8

S G, 22 0 ... 1:-;-H fu1tunc 11 Atmosphere 66 lei down Flow VOLUME NUMBER JUNCTION NUMOER VALVE \NORMAL OPEN! Systems Analyses:

Comparisons with Experimental Data ll II ll -*----------H----* I I ' . ;o

  • 1 2 I VALVE 'NORMAL CLOSED DIRECTION OF FLOW HEAT CONDUCTOR r w Inlet I Figure VI.3-1. Nodalization ofKNU 1 System Vl-105 Revision 8

2060 2080 2100 2120 2140 2160 2180 2200 2220 2240 2260 228002 0406 08 0Pressure(psia)Time(sec)RETRAN 3DData 20 25 30 35 40 4502 04 060801 0 0Pressure(psia)Time(sec)RETRAN 3DData545 550 555 560 565 57002 0406 0801 0 0Pressure(psia)Time(sec)RETRAN 3DData 545 550 555 560 565 57002 0406 0801 0 0Pressure(psia)Time(sec)RETRAN 3DData0 100 200 300 400 500 600 700 800 9000204 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DData 0100200300400500600 700800900 100002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DData0 5 10 15 20 25 30 35 40 45 5002 04 06 0801 0 0WaterLevel(%)Time(sec)RETRAN 3DData 840860880 900920940 9609801000 102002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DData

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102 04 06 0801 0 0NormalizedPowerTime(sec)RETRAN 3DData1800190020002100 22002300240002 04 06 0801 0 0Pressure(psia)Time(sec)RETRAN 3DData 20 25 30 35 40 45 50 55 60 65 7002 0406 0801 0 0WaterLevel(%)Time(sec)RETRAN 3DData550 560 570 580 590 600 610 620 63002 04 060801 0 0Temperature(F)Time(sec)RETRAN 3DData 556558560 56256456656857002 04 060801 0 0Temperature(F)Time(sec)RETRAN 3DData555 560 565 570 575 580 585 590 595 60002 04 06 0801 0 0Temperature(F)Time(sec)RETRAN 3DData 98010001020 1040 1060 1080 11001120114002 04 060801 0 0Pressure(psia)Time(sec)RETRAN 3DData0 200 400 600 8001000 1200 1400 160002 0406 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DData 0 200 400 600 800 1000 1200 140002 04 06 0801 0 0MassFlow(lbm/sec)Time(sec)RETRAN 3DData 20 10 0 10 20 30 40 50 6002 04 060801 0 0WaterLevel(%)Time(sec)RETRAN 3DData

0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200NormalizedPower Time(sec)RETRAN 3DData550552 554 556 558 560 562 564 566 568 050100150200Temperature(F)Time(sec)RETRAN 3DData 550560570580590 600610620 0 50100150200Temperature(F)Time(sec)RETRAN 3DData19001950 2000205021002150220022502300 0 50 100 150 200Pressure(psia)Time(sec)RETRAN 3DData 20 25 30 35 40 45 50 55 60 050100150200WaterLevel(%)Time(sec)RETRAN 3DData0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200Demand(%Full)Time(sec)RETRAN 3DData 2 1 0 1 2 3 4 5 0 50 100 150 200Flow(MPPH)Time(sec)RETRAN 3DData 2 1 0 1 2

3 4

5 0 50 100 150 200Flow(MPPH)Time(sec)RETRAN 3DData 0 10 20 30 40 50 60 70 0 50 100 150200Flow(MPPH)Time(sec)RETRAN 3DData920 940 960 980 1000 1020 1040 1060 1080 0 50 100150 200Pressure(psig)Time(sec)RETRAN 3DData

00.10.20.30.4 0.5 0.6 0.7 0.8 0.9 1 30 40 50 60 70 80 90 02004006008001000AirMassFractioninGasPhaseIntegratedMassTransfer(lbm)Time(sec)PressureAirMassFraction600040002000 020004000 6000 02004006008001000IntegratedMassTransfer(lbm)Time(sec)CoreSumSteamGenerator 00.10.2 0.3 0.40.50.6 0.70.80.9 101002003004005006007008009001000VoidFractionTime(sec)