ML16293A584

From kanterella
Jump to navigation Jump to search
WCAP-18166-NP, Revision 0, Analysis of Capsule 284 from the Entergy Operations, Inc. Arkansas Nuclear One, Unit 2 Reactor Vessel Radiation Surveillance Program.
ML16293A584
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 09/30/2016
From: Hawk A, Mays B
Westinghouse
To:
Entergy Operations, Office of Nuclear Reactor Regulation
References
2CAN101602 WCAP-18166-NP, Rev 0
Download: ML16293A584 (263)


Text

Attachment to 2CAN101602 WCAP-18166-NP, Revision 0, "Analysis of Capsule 284 from the Entergy Operations, Inc.

Arkansas Nuclear One, Unit 2 Reactor Vessel Radiation Surveillance Program" September 2016

Westinghouse Non-Proprietary Class 3 WCAP-18166-NP September 2016 Revision 0 Analysis of Capsule 284° from the Entergy Operations, Inc.

Arkansas Nuclear One Unit 2 Reactor Vessel Radiation Surveillance Program

@Westinghouse

Westinghouse Non-Proprietary Class 3 WCAP-18166-NP Revision 0 Analysis of Capsule 284° from the Entergy Operations, Inc.

Arkansas Nuclear One Unit 2 Reactor Vessel Radiation Surveillance Program Benjamin E. Mays*

Materials Center of Excellence Andrew E. Hawk*

Nuclear Operations and Radiation Analysis September 2016 Reviewers: Elliot J. Long*

Materials Center of Excellence Eugene T. Hayes*

Nuclear Operations and Radiation Analysis Approved: David B. Love*, Manager Materials Center of Excellence Laurent P. Houssay*, Manager Nuclear Operations and Radiation Analysis

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA

© 2016 Westinghouse Electric Company LLC All Rights Reserved

Westinghouse Non-Proprietary Class 3 ii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iii LIST OF FIGURES ...................................................................................................................................... v EXECUTIVE

SUMMARY

......................................................................................................................... vii 1

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRODUCTION ........................................................................................................................ 2-1 3 BACKGROUND .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .................................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE 284° ................................................................. 5-1 5.1 OVERVIEW .................................................................................................................... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TENSILE TESTRESULTS ............................................................................................. 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

........................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 CALCULATIONAL UNCERTAINTIES ................. :...................................................... 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS ............................................................................................. A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS .................................... B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ........................................................ C-1 APPENDIX D ARKANSAS NUCLEAR ONE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION ............................................................................................................................ D-1 APPENDIX E ARKANSAS NUCLEAR ONE UNIT 2 UPPER-SHELF ENERGY EVALUATION ... E-1 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 Ill LIST OF TABLES Table 4-1 Chemical Composition (wt. %) of the AN0-2 Reactor Vessel Surveillance Materials (Unirradiated) ......................... :......................................................................................... 4-3 Table 4-2 Arrangement of Encapsulated Test Specimens withinAN0-2 Capsule 284° ................. .4-4 Table 5-1 Charpy V-notch Data for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of3.67 x 10 19 n/cm2 (E > 1.0 MeV) (Longitudinal Orientation) ........................ 5-6 Table 5-2 Charpy V-notch Data for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of3.67 x 10 19 n/cm (E > 1.0 MeV) (Transverse Orientation) ........................... 5-7 2

Table 5-3 Charpy V-notch Data for the AN0-2 Surveillance Program Weld Material (Heat# 83650)

Irradiated to a Fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV) ............................................ 5-8 Table 5-4 Charpy V-notch Data for the AN0-2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV) ................................................................... 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV)

(Longitudinal Orientation) ............................................................................................. 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV)

(Transverse Orientation) ................................................................................................ 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the AN0-2 Surveillance Program Weld Material (Heat# 83650) Irradiated to a Fluence of3.67 x 10 19 n/cm2 (E > 1.0 MeV) .. 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the AN0-2 Heat-Affected Zone (HAZ)

Material Irradiated to a Fluence of 3 .67 x 10 19 n/cm2 (E > 1.0 MeV) ........................... 5-13 Table 5-9 Effect of Irradiation to 3.67 x 10 19 n/cm2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the AN0-2 Reactor Vessel Surveillance Capsule 284° Materials

....................................................................................................................................... 5-14 Table 5-10 Comparison of the AN0-2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions

....................................................................................................................................... 5-15 Table 5-11 Tensile Properties of the AN0-2 Capsule 284° Reactor Vessel Surveillance Materials Irradiated to 3.67 x 10 19 n/cm2 (E > 1.0 MeV) ............................................................... 5-16 Table 6-1 Calculated Fast Neutron (E > 1.0 MeV) Fluence Rate and Fluence at the Surveillance Capsule Center at Core Midplane .................................................................................... 6-7 Table 6-2 Calculated Iron Atom Displacement Rate and Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane ............................................................... 6-8 Table 6-3 Calculated Azimuthal Variation of the Maximum Fast Neutron (E > 1.0 MeV) Fluence Rate at the Reactor Vessel Clad/Base Metal Interface ..................................................... 6-9 Table 6-4 Calculated Azimuthal Variation of the Maximum Fast Neutron (E > 1.0 MeV) Fluence at the Reactor Vessel Clad/Base Metal Interface ............................................................... 6-10 Table 6-5 Calculated Azimuthal Variation of the Maximum Iron Atom Displacement Rate at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-11 Table 6-6 Calculated Azimuthal Variation of the Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface .................................................................................. 6-12 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 iv Table 6-7 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Arkansas Nuclear One Unit 2 ........................................................................................................ 6-13 Table 6-8 Calculated Surveillance Capsule Lead Factors .............................................................. 6-13 Table 6-9 Calculated Maximum Fast Neutron (E > 1.0 MeV) Fluence at the Pressure Vessel Clad/Base Metal Interface .............................................................................................. 6-14 Table 6-10 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Clad/Base Metal Interface ......................................................................................................................... 6-15 Table 7-1 Surveillance Capsule Withdrawal Schedule .................................................................... 7-1 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors .................................... A-9 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor ....................................................................................................... A-10 Table A-3 Surveillance Capsule Fluence Rates for Ci Calculation, Core Midplane Elevation ..... A-16 Table A-4 Surveillance Capsule Ci Factors, Core Midplane Elevation ......................................... A-17 Table A-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule 97° ............ A-18 Table A-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule 284° .......... A-19 TableA-7 Least-Squares Evaluation of Dosimetry in Capsule 97° (7° Azimuth, Core Midplane, Withdrawn at the End of Cycle 2) ................................................................................ A-20 Table A-8 Least-Squares Evaluation of Dosimetry in Capsule 284° (14° Azimuth, Core Midplane, Withdrawn at the End of Cycle 24) .............................................................................. A-21 Table A-9 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions ..................................................................................................... A-22 Table A-10 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios ..................... A-22 Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ................................................ C-2 Table C-2 Select Upper-Shelf L.E. Values (mils) Fixed for CV GRAPH Analysis ......................... C-2 Table D-1 Calculation of Interim Chemistry Factors for the Credibility Evaluation Using AN0-2

  • Surveillance Capsule Data .............................................................................................. D-4 Table D-2 AN0-2 Surveillance Capsule Data Scatter about the Best-Fit Line ............................... D-5 Table D-3 Calculation of Residual vs. Fast Fluence for AN0-2 ...................................................... D-6 Table E-1 AN0-2 Beltline 1/4T Fast Neutron Fluence Calculation ................................................ E-2 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 32 EFPY ....................... E-4 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 v LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the AN0-2 Reactor Vessel... ......................... .4-5 Figure 4-2 Original Surveillance Program Capsule in the AN0-2 Reactor Vessel .......................... .4-6 Figure 4-3 Surveillance Capsule Charpy Impact Specimen Compartment Assembly in the AN0-2 Reactor Vessel .................................................................................................................. 4-7 Figure 4-4 Surveillance Capsule Tensile and Flux-Monitor Compartment Assembly in the AN0-2 Reactor Vessel .................................................................................................................. 4-8 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation) ........................................................... 5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation) ..................................... 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation) ........................................................... 5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) .............................................................. 5-20 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) ......................................... 5-22 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) .............................................................. 5-24 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) ......................................................................... 5-26 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) .................................................... 5-28 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) ......................................................................... 5-30 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-32 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-34 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material ................................................................................................................. 5-36 Figure 5-13 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Standard Reference Material. ........................................................................................................ 5-38 Figure 5-14 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Standard Reference Material ......................................................................................................... 5-39 Figure 5-15 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Standard Reference Material ......................................................................................................... 5-40 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation) .................................................................... 5-41 Figure 5-17 Charpy Impact Specimen Fracture Surfaces for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) ....................................................................... 5-42 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 vi Figure 5-18 Charpy Impact Specimen Fracture Surfaces for the AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) ......................................................................... 5-43 Figure 5-19 Charpy Impact Specimen Fracture Surfaces for the AN0-2 Reactor Vessel Heat-Affected Zone Material. ................................................................................................................ 5-44 Figure 5-20 Tensile Properties for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) ................................................................................................ 5-45 Figure 5-21 Tensile Properties for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat

  1. 83650) ......................................................................................................................... 5-46 Figure 5-22 Tensile Properties for the AN0-2 Reactor Vessel Heat-Affected Zone Material... ........ 5-4 7 Figure 5-23 Fractured Tensile Specimens from AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) .................................................................................... 5-48 Figure 5-24 Fractured Tensile Specimens from AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) ................................................................................................. 5-49 Figure 5-25 Fractured Tensile Specimens from the AN0-2 Reactor Vessel Heat-Affected Zone Material .......................................................................................................................... 5-50 Figure 5-26 Engineering Stress-Strain Curves for AN0-2 Intermediate Shell Plate C-8009-3 Tensile Specimens 2.KE and 2KY (Transverse Orientation) ...................................................... 5-51 Figure 5-27 Engineering Stress-Strain Curve for AN0-2 Intermediate Shell Plate C-8009-3 Tensile Specimen 2KU (Transverse Orientation) ....................................................................... 5-52 Figure 5-28 Engineering Stress-Strain Curves for AN0-2 Surveillance Program Weld Material (Heat
  1. 83650) Tensile Specimens 3JU and 3JB ..................................................................... 5-53 Figure 5-29 Engineering Stress-Strain Curve for AN0-2 Surveillance Program Weld Material (Heat #

83650) Tensile Specimen 3.KD ...................................................................................... 5-54 Figure 5-30 Engineering Stress-Strain Curves for AN0-2 Heat-Affected Zone Material Tensile Specimens 4KT and 4.KE ................................................ :.............................................. 5-55 Figure 5-31 Engineering Stress-Strain Curve for AN0-2 Heat-Affected Zone Material Tensile Specimen 4JL ................................................................................................................. 5-56 Figure 6-1 Arkansas Nuclear One Unit 2 r,8 Reactor Geometry Plan View at the Core Midplane with Surveillance Capsules .................................................................................................... 6-16 Figure 6-2 Arkansas Nuclear One Unit 2 r,8 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules ....................................................................................... 6-17 Figure 6-3 Arkansas Nuclear One Unit 2 r,z Reactor Geometry. Section View ............................... 6-18 Figure E-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... E-3 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 vii EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule 284 ° from Arkansas Nuclear One Unit 2 (AN0-2). Capsule 284° was removed at 29.24 effective full-power years (EFPY) and post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. A fluence evaluation utilizing the neutron transport and dosimetry cross-section libraries was derived from the Evaluated Nuclear Data File (ENDF) database (specifically, ENDF/B-VI). Capsule 284° received a fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV) after irradiation to 29.24 EFPY. The peak clad/base metal interface vessel fluence after 32 EFPY (end-of-license) of plant operation is projected to be 3.02 x 10 19 n/cm2 (E > 1.0 MeV).

This evaluation led to the following conclusions: 1) The measured percent decreases in upper-shelf energy for the surveillance plate and weld materials contained in AN0-2 Capsule 284° are less than the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions. 2) The AN0-2 surveillance plate data and surveillance weld (Heat# 83650) are judged to be credible. This credibility evaluation can be found in Appendix D. 3) With consideration of surveillance data, all beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (32 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].

The upper-shelf energy evaluation is presented in Appendix E.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule 284°, the third capsule removed and tested from the Arkansas Nuclear One Unit 2 (AN0-2) reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program.

Appendix C presents the CVGRAPH, Version 6.02, Charpy V-notch plots for Capsule 284° and previous capsules, along with the program input data.

  • Capsule 284° received an average fast neutron fluence (E > 1.0 MeV) of 3.67 x 10 19 n/cm2 after 29.24 effective full-power years (EFPY) of plant operation.
  • Irradiation of the reactor vessel Intermediate Shell Plate C-8009-3 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (longitudinal orientation),

resulted in an irradiated 30 ft-lb transition temperature of 86.2°F and an irradiated 50 ft-lb transition temperature of 121.1°F. This results in a 30 ft-lb transition temperature increase of 85.7°F and a 50 ft-lb transition temperature increase of 98.9°F for the longitudinally oriented specimens.

  • Irradiation of the reactor vessel Intermediate Shell Plate C-8009-3 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major rolling direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 100.5°F and an irradiated 50 ft-lb transition temperature of 138.5°F. This results in a 30 ft-lb transition temperature increase of 85.6°F and a 50 ft-lb transition temperature increase of 96.0°F for the transversely oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat # 83650) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 8.2°F and an irradiated 50 ft-lb transition temperature of 37.1°F. This results in a 30 ft-lb transition temperature increase of 12.0°F and a 50 ft-lb transition temperature increase of26.3°F.
  • Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -56.4°F and an irradiated 50 ft-lb transition temperature of -17.8°F.

This results in a 30 ft-lb transition temperature increase of 73.5°F and a 50 ft-lb transition temperature increase of 69.8°F.

  • The average upper-shelf energy of Intermediate Shell Plate C-8009-3 (longitudinal orientation) resulted in an average energy decrease of 37 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 122 ft-lb for the longitudinally oriented specimens.
  • The average upper-shelf energy of Intermediate Shell Plate C-8009-3 (transverse orientation) resulted in an average energy decrease of 25 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 109 ft-lb for the transversely oriented specimens.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 1-2

  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 83650) Charpy specimens resulted in an average energy decrease of 19 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 132 ft-lb for the weld metal specimens.
  • The average upper-shelf energy of the RAZ Material Charpy specimens resulted in an average energy decrease of 19 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 142 ft-lb for the RAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the AN0-2 reactor vessel surveillance materials are presented in Table 5-10.

Standard Reference Material (SRM) Heavy-Section Steel Technology (HSST) 01 Charpy specimens were not included in the AN0-2 Capsule 284°. However, the SRM HSST 01 Charpy specimens were reanalyzed in this report. The SRM HSST 01 material was contained in Capsule 104°, which was irradiated to a neutron fluence of 2.15 x 10 19 n/cm2 (E > 1.0 MeV). The results of the SRM HSST 01 reanalysis are included in Table 5-10 and shown in Figures 5-13 through 5-15.

  • Irradiation of the SRM HSST 01 Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 163.8°F and an irradiated 50 ft-lb transition temperature of 205.3°F. This results in a 30 ft-lb transition temperature increase of 132.3°F and a 50 ft-lb transition temperature increase of 150.6°F.
  • The average upper-shelf energy of the SRM HSST 01 Charpy specimens resulted in an average energy decrease of 59 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 87 ft-lb.
  • Based on the credibility evaluation presented in Appendix D, the AN0-2 surveillance plate and the surveillance weld material (Heat# 83650) are both credible.
  • Based on the upper-shelf energy evaluation in Appendix E, all beltline materials contained in the AN0-2 reactor vessel exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (32 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].
  • The maximum calculated 32 EFPY (end-of-license) neutron fluence (E > 1.0 MeV) for the AN0-2 reactor vessel beltline using the Regulatory Guide 1.99, Revision 2 [Ref. 1] attenuation formula (i.e.,

Equation# 3 in the Guide) is as follows:

Calculated (32 EFPY): Vessel peak clad/base metal interface fluence* = 3.02 x 10 19 n/cm2 Vessel peak quarter-thickness (1/4T) fluence = 1.88 x 10 19 n/cm2

  • This fluence value is documented in Table 6-4 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule 284 °, the third capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Entergy Operations, Inc. (Entergy) AN0-2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the AN0-2 reactor pressure vessel materials was designed and recommended by Westinghouse Electric Company, LLC. A detailed description of the surveillance program is contained in A-NLM-005, Revision 1 [Ref. 3], "Program for Irradiation Surveillance of Arkansas Nuclear One Unit 2 Reactor Vessel Materials." The AN0-2 capsule contents are documented in CEN-15(A)-P [Ref. 4], "Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Arkansas Nuclear One - Unit 2 Reactor Vessel Materials." The pre-irradiation mechanical properties of the reactor vessel materials are presented in TR-MCD-002 [Ref. 5],

"Arkansas Power & Light Arkansas Nuclear One - Unit 2 Evaluation of Baseline Specimens Reactor Vessel Materials Irradiation Surveillance Program." The surveillance program was originally planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-73 [Ref. 6],

"Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels." Capsule 284° was removed from the reactor after 29.24 EFPY of exposure and shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing and post-irradiation data obtained from surveillance Capsule 284° removed from the AN0-2 reactor vessel and discusses the analysis of the data.

WCAP-18166-NP September 2016 Revision 0

-- I Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and ~ts primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low-alloy, ferritic pressure vess.el steels such as SA533 Grade B Class 1 (base material of the AN0-2 reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 7]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT)*

RTNDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NDTT per ASTM E208-06 [Ref. 8]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major rolling direction of the plate. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K10 curve) which appears in Appendix G to Section XI of the ASME Code

[Ref. 7]. The K1c curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1c curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTNDT and, in tum, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the AN0-2 reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (.ilRTNnr) due to irradiation is added to the initial RTNnT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (initial RTNDT + M + .ilRTNnr) is used to index the material to the K1c curve and, in tum, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the AN0-2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel, as shown in Figure 4-1, between the core barrel and the vessel wall, at various azimuthal locations. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from the following:

  • Intermediate Shell Plate C-8009-3 (longitudinal orientation)
  • Intermediate Shell Plate C-8009-3 (transverse orientation)
  • Weld metal fabricated with weld wire Heat Number 83650, Linde Type 0091 flux, Lot Number 1122 which is equivalent to the heat number, Flux Type, and Flux Lot number used in the actual fabrication of the intermediate shell to lower shell circumferential weld seam *
  • Weld heat-affected zone (RAZ) material oflntermediate Shell Plate C-8009-3
  • Standard Reference Material (SRM) Heavy-Section Steel Technology (HSST)-OlMY Plate Test material obtained from the Intermediate Shell Plate C-8009-3 (after thermal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched edges of the plate. All test specimens were machined from the l/i thickness location of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Test specimens were also removed from the weld and heat-affected zone metal of stress-relieved weldments joining Intermediate Shell Plate C-8009-1 and adjacent Intermediate Shell Plate C-8009-2 for the weld and Intermediate Shell Plate C-8009-2 and Intermediate Shell Plate C-8009-3 for the heat-affected zone. All heat-affected zone specimens were obtained from the weld heat-affected zone oflntermediate Shell Plate C-8009-3.

Charpy V-notch impact specimens from Intermediate Shell Plate C-8009-3 were machined in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular (normal) to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from Intermediate Shell Plate C-8009-3 were machined in the transverse orientation only. Tensile specimens from the weld metal were oriented perpendicular to the welding direction.

Some of the AN0-2 capsules, specifically the previously tested Capsule 104° and also Capsule 263°,

which is still in the reactor vessel, contain SRM, which was supplied by the Oak Ridge National Laboratory, from plate materials used in the HSST Program. The material for the AN0-2 Capsules was obtained from an A533, Grade B Class 1 plate labeled HSST 01. The plate was produced by the Lukens Steel Company and heat treated by Combustion Engineering, Inc. (CE).

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-2 All six capsules contain flux monitor assemblies that include sulfur pellets, iron wire, titanium wire, nickel wire (cadmium-shielded), aluminum-cobalt wire (cadmium-shielded and unshielded), copper wire (cadmium-shielded) and uranium foil (cadmium-shielded and unshielded).

The capsules contain (12 total) thermal monitors made from four low-melting-point eutectic alloys, which were sealed in quartz tubes. These thermal monitors were located in three different positions in the capsule. These thermal monitors are used to define the maximum temperature attained by the test specimens during irradiation. The composition of the four eutectic alloys and their melting points are as follows:

80.0% Au, 20.0% Sn Melting Point: 536°F (280°C) 5.0% Ag, 5.0% Sn, 90.0% Pb Melting Point: 558°F (292°C) 2.5% Ag, 97.5% Pb Melting Point: 580°F (304°C) 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 5 90°F (310°C)

The chemical composition and the arrangement of the various mechanical specimens in Capsule 284° are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original specimen manufacture and capsule assembly report, CEN-15(A)-P [Ref. 4], as well as NUREG/CR-6413 [Ref. 9].

Capsule 284° was removed after 29.24 EFPY of plant operation. This capsule contained Charpy V-notch specimens, tensile specimens, dosimeters, and thermal monitors. Figures 4-1 through 4-4 detail the arrangement of the surveillance capsules, an example of an original program surveillance capsule, a close-up of the Charpy impact specimen compartment, and the tensile and flux-monitor compartment assembly in the AN0-2 reactor vessel. Capsules 83°, 97°, 263° and 277° are radiologically equivalent to the 7° azimuth, while Capsules 104° and 284° are radiologically equivalent to the 14° azimuth.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Chemical Composition (wt. %) of the AN0-2 Reactor Vessel Surveillance Materials (Unirradiatedia)

Intermediate Shell Plate C-8009-3 Standard Reference Surveillance Weld Metal(d)

Element Material HSST Original CE Best-Estimate OlMY PlateCcl Original CE Best-Estimate Analysis(a) Analysis(bl Analysis(a) Analysis(bl c 0.22 --- --- 0.13 ---

Mn 1.40 -- - -- - 1.33 ---

p 0.009 --- --- 0.004 ---

s 0.011 - -- --- 0.009 -- -

Si 0.21 --- -- - 0.14 ---

Ni 0.60 0.580 0.66 0.08 0.083 Mo 0.63 - -- -- - 0.62 - --

Cr 0.15 --- --- 0.02 ---

Cu 0.08 0.096 0.18 0.04 0.045 Al 0.034 --- -- - 0.001 ---

Co 0.012 -- - --- 0.003 ---

w <0.01 - -- --- <0.01 - --

Ti <0.01 --- --- <0.01 -- -

Zr 0.001 --- -- - 0.001 ---

v 0.006 -- - -- - 0.006 ---

Sn 0.005 --- --- 0.001 ---

As 0.010 --- -- - 0.006 -- -

Cb <0.01 --- -- - <0.01 ---

Nz 0.008 --- --- 0.005 - --

B <0.001 --- --- <0.001 ---

Notes:

(a) Data obtained from CEN-15(A)-P, Table III [Ref. 4], unless otherwise noted.

(b) Chemistry values are the average of all available data from unirradiated and capsule chemistry test results.

Nine measurements in total were averaged for the plate, while six measurements in total were averaged for the weld.

(c) Data obtained from NUREG/CR-6413 [Ref. 9].

(d) The surveillance weld was fabricated with the same wire, flux type, and flux lot as that used in the intermediate to lower shell circumferential weld seam 9-203. The surveillance and reactor vessel welds were fabricated using weld wire heat number 83650, with a Linde 0091 flux, Lot Number 1122.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-4 Table 4-2 Arrangement of Encapsulated Test Specimens within AN0-2 Capsule 284° Compartment Number Compartment Position<aJ Specimen Numbers<*>

(Specimen Type and Material)(*)

I D614 4KT, 4KE, 4JL (Tensile HAZ Specimens) 42B, 47T, 454, 42A, D624 2 461, 43B, 412, 433, (Charpy Impact HAZ Specimens) 47M,423,411,41P D631 I IB, I IP, 13E, 12K, 3 (Charpy Impact Longitudinal 13J, 12E, Ill, 14P, Plate Specimens) 136, 15J, IIM, 125 D642 4 (Tensile Transverse 2KE, 2KY, 2KU Plate Specimens)

D652 22C, 235, 233, 21 T, 5 (Charpy Impact Transverse 265,237,267,23P, Plate Specimens) 23M,21M,21J,221 33M, 313, 37U, 367, 6 D663 311, 352, 37E, 32L, (Charpy Impact Weld Specimens) 341, 33T, 365, 35C 7 D673 3JU, 3JB, 3KD (Tensile Weld Specimens)

Note:

(a) Data obtained from CEN-15(A)-P, Table XIX and/or Table XX [Ref. 4].

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-5 18n°

,f--------i,,./Outlet Nozzle l/

I I t*

,,,---. ~

\Inlet I \Nozzle I

I

".\

)'

I

\

j Vessel

' Reactor Vessel

/Vessel Ve3sel Capsule Assembly I

I

\. Vessel

,-' \

\

\ ,I

'\ I

'\.; , -- -.. ._.,,-

'---- ... /

I I

) Reactor

\ Vessel

'II .._______ , I Enlarged Plan View Elevation

-Y_iew Figure 4-1 Arrangement of Surveillance Capsules in the AN0-2 Reactor Vessel '

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-6 1- - - - Lock Assembly**

} Wedge Coupling Assembly


1 Tensile -Monitor . . . .

Compartment

  • Charpy Impact Compartments Tensile -Monitor Compartment

- Charpy Impact Compartments Tensile-Monitor---~1 Compartment Figure 4-2 Original Surveillance Program Capsule in the AN0-2 Reactor Vessel WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 4-7 Wedge Coupling - End Cap

  • Charpy Impact Specimens Rectangular Tubing Wedge Coupling - End Cap Figure 4-3 Surveillance Capsule Charpy Impact Specimen Compartment Assembly in the AN0-2 Reactor Vessel WCAP-18166-NP September 2016 Revision_O

Westinghouse Non-Proprietary Class 3 4-8 Wedge Coupling - End Cap______...~

  • Flux Spectrum Monitor, Cadmium Shielded Stain less Steel Tubing Threshold .Detector Flux Spectrum Monitor Temperature Monitor------

0 ~.

0 IHnit;_,- Qua. rtz Tubing

  • i
  • Weight*

Temperature Monitor----- t.)1.,._, Low Melting Alloy Housing .

Tensile Specimen

. Split Spacer Tensile Specimen Housing----

Rectangular Tubing Wedge Coupling - End Cap.

Figure 4-4 Surveillance Capsule Tensile and Flux-Monitor Compartment Assembly in the AN0-2 Reactor Vessel WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE 284° 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Westinghouse Materials Center of Excellence Hot Cell Facility. Testing was performed in accordance with 10 CFR 50, Appendix H [Ref. 2] and ASTM Specification El 85-82

[Ref. 10].

Capsule 284° was opened upon receipt at the hot cell laboratory. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in CEN-15(A)-P [Ref. 4]. All of the items were in their proper locations.

Examination of the thermal monitors indicated that the 536°F and 558°F temperature monitors had melted at all three axial locations. None of the 580°F or 590°F temperature monitors had melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 580°F (304°C) and greater than 558°F (292°C), assuming a uniform temperature throughout the capsule.

The Charpy impact tests were performed per ASTM Specification E185-82 [Ref. 10] and E23-07a

[Ref. 11] on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an Instron 1 Impulse system. Instrumented testing and calibration were performed to ASTM E2298-15

[Ref. 12].

The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ms.

From the load-time curve, the load of general yielding (Fgy), the maximum load (Fm) and the time to maximum load were determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the brittle fracture initiation/load at initiation of unstable crack propagation (Fbr). The termination load after the fast load drop is identified as the arrest load/load at end of unstable crack propagation (Fa)- Fgy, Fm, Fbr, and Fa were determined per the guidance in ASTM Standard E2298-15 [Ref. 12].

The pre-maximum load energy (Wm) was determined by integrating the load-time record to the maximum load point via the instrumented Charpy software. The pre-maximum load energy is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Wp) is the difference between the total impact energy (W1) and the pre-maximum load energy (Wm)- W1 is compared to the absorbed energy measured from the dial energy (KV).

Percent shear was determined from post-fracture photographs using the ratio-of-areas method in compliance with ASTM E23-07a [Ref. 11] and A370-16 [Ref. 13]. The lateral expansion was measured using a dial gage rig similar to that shown in the same ASTM Standards.

1 Instron is a registered trademark oflnstron Corporation.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-2 Tensile tests were performed on a 250 kN Instron screw driven tensile machine (Model 5985) per ASTM E185-82 [Ref. 10]. Testing met ASTM Specifications E8/E8M-15a [Ref. 14] for room temperature or E21-09 [Ref. 15] for elevated temperatures.

The tensile specimens were, nominally, 3.00 inches long with a 1.00 inch gage section and a reduced section 1.50 inches long with a 0.250 inch diameter, per CEN-15(A)-P [Ref. 4]. Load was applied through a threaded connection. Strain measurements were made using an extensometer, which was attached to the 1.00 inch gage section of the tensile specimen. The strain rate obtained met the requirements of ASTM E8/E8M-15a [Ref. 14] and ASTM E21-09 [Ref. 15].

Elevated test temperatures were obtained with a three-zone electric resistance split-tube Instron SF-16 furnace with an 11-inch hot :zone. For the elevated tests, temperature was measured by two Type N thermocouples in contact with the gage section of the specimen per ASTM E21-09 [Ref. 15]. Tensile specimens were soaked at temperature(+/- 5°F) for a minimum of 20 minutes before testing. All tests were conducted in air.

The yield load, ultimate load, fracture load, uniform elongation, and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength, and fracture strength were calculated using the original cross-sectional area. Yield point elongation (YPE) was calculated as the difference in strain between the upper yield strength and the onset of uniform strain hardening using the methodology described in ASTM E8/E8M-15a [Ref. 14]. The final diameter and final gage length were determined from post-fracture photographs. This final diameter measurement was used to calculate the fracture stress (fracture true stress) and the percent reduction in area. The final and original gage lengths were used to calculate total elongation after fracture.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule 284°, which received a fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV) in 29.24 EFPY of operation, are presented in Tables 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1through5-12. The unirradiated and previously withdrawn capsule results were taken from TR-MCD-002 [Ref. 5], BMI-0584 [Ref. 16], and BAW-2399, Revision 1 [Ref.

17]. The previous capsules, along with the original program unirradiated material input data, were updated using CVGRAPH, Version 6.02.

The transition temperature increases and decreases in upper-shelf energies for the Capsule 284° materials are summarized in Table 5-9 and led to the following results:

  • Irradiation of the reactor vessel Intermediate Shell Plate C-8009-3 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (longitudinal orientation),

resulted in an irradiated 30 ft-lb transition temperature of 86.2°F and an irradiated 50 ft-lb transition temperature of 121.1°F. This results in a 30 ft-lb transition temperature increase of 85.7°F and a 50 ft-lb transition temperature increase of98.9°F for the longitudinally oriented specimens.

  • Irradiation of the reactor vessel Intermediate Shell Plate C-8009-3 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major rolling direction (transverse WCAP-18166-NP September 2016 Revision o

Westinghouse Non-Proprietary Class 3 5-3 orientation), resulted in an irradiated 30 ft-lb transition temperature of 100.5°F and an irradiated 50 ft-lb transition temperature of 138.5°F. This results in a 30 ft-lb transition temperature increase of 85.6°F and a 50 ft-lb transition temperature increase of 96.0°F for the transversely oriented specimens.

  • Irradiation of the Surveillance Program Weld Material (Heat# 83650) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 8.2°F and an irradiated 50 ft-lb transition temperature of 37.1°F. This results in a 30 ft-lb transition temperature increase of 12.0°F and a 50 ft-lb transition temperature increase of 26.3 °F.
  • Irradiation of the HAZ Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -56.4°F and an irradiated 50 ft-lb transition temperature of-17.8°F. This results in a 30 ft-lb transition temperature increase of 73.5°F and a 50 ft-lb transition temperature increase of 69.8°F.
  • The average upper-shelf energy of Intermediate Shell Plate C-8009-3 (longitudinal orientation) resulted in an average energy decrease of 37 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 122 ft-lb for the longitudinally oriented specimens.
  • The average upper-shelf energy of Intermediate Shell Plate C-8009-3 (transverse orientation) resulted in an average energy decrease of 25 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 109 ft-lb for the transversely oriented specimens.
  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 83650) Charpy specimens resulted in an average energy decrease of 19 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 132 ft-lb for the weld metal specimens.
  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 19 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 142 ft-lb for the HAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the AN0-2 reactor vessel surveillance materials are presented in Table 5-10.

Standard Reference Material (SRM) HSST 01 Charpy specimens were not included in the AN0-2 Capsule 284°. However, the SRM HSST 01 Charpy specimens were reanalyzed in this report. The SRM HSST 01 material was contained in Capsule 104°, which was irradiated to a neutron fluence of2.15 x 10 19 n/cm2 (E > 1.0 MeV). The results of the SRM HSST 01 reanalysis are included in Table 5-10 and shown in Figures 5-13 through 5-15.

  • Irradiation of the SRM HSST 01 Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 163.8°F and an irradiated 50 ft-lb transition temperature of 205.3°F. This results in a 30 ft-lb transition temperature increase of 132.3°F and a 50 ft-lb transition temperature increase of 150.6°F.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-4

  • The average upper-shelf energy of the SRM HSST 01 Charpy specimens resulted in an average energy decrease of 59 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 87 ft-lb.

The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-16 through 5-19. The fractures show an increasingly ductile or tougher appearance with increasing test temperature. Load-time records for the individual instrumented Charpy specimens are contained in Appendix B.

With consideration of the surveillance data, all beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license (32 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation is contained in Appendix E.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-5 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule 284 ° irradiated to 3.67 x 10 19 n/cm2 (E > LO MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-20 through 5-22.

The results of the tensile tests performed on the Intermediate Shell Plate C-8009-3 (transverse orientation) indicated that irradiation to 3.67 x 10 19 n/cm2 (E > LO MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 5]. See Figure 5-20 and Table 5-11.

The results of the tensile tests performed on the Surveillance Program Weld Material (Heat # 83650) indicated that irradiation to 3.67 x 10 19 n/cm2 (E > LO MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 5]. See Figure 5-21 and Table 5-lL The results of the tensile tests performed on the Heat-Affected Zone Material indicated that irradiation to 3.67 x 10 19 n/cm2 (E > LO MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 5]. See Figure 5-22 and Table 5-11.

The fractured tensile specimens for the Intermediate Shell Plate C-8009-3 (transverse orientation) material are shown in Figure 5-23, the fracture tensile specimens for the Surveillance Program Weld Material (Heat# 83650) are shown in Figure 5-24, and the fracture tensile specimens for the Heat-Affected Zone Material are shown in Figure 5-25. The engineering stress-strain curves for the tensile tests are shown in Figures 5-26 through 5-31.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-6 Table 5-1 Charpy V-notch Data for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of 3.67 x 10 19 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

14P 25 -4 16.5 22 18 0.46 15 111 60 16 28.5 39 25.5 0.65 20 12K 72 22 29 39 24 0.61 25 15J ' 80 27 35 47 30.5 0.77 30 llP 100 38 36.5 49 30 0.76 30 125 120 49 35 47 33 0.84 30 136 130 54 54 73 42.5 1.08 40 13E 165 74 67 91 57 1.45 55 131 200 93 111 150 86 2.18 85 llB 250 121 123 167 92 2.34 100 12E 275 135 126 171 94.5 2.40 100 llM 300 149 117 159 89 2.26 100 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-7 Table 5-2 Charpy V-notch Data for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of3.67 x 10 19 n/cm 2 (E>1.0 MeV) (Transverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

267 25 -4 6 8 10.5 0.27 10 237 60 16 16 22 19 0.48 20 221 72 22 28.5 39 28 0.71 25 21J 80 27 28 38 24 0.61 25 233 100 38 33 45 30 0.76 30 235 130 54 45 61 39.5 1.00 40 23M 150 66 45 61 44 1.12 40 21T 175 79 58 79 48 1.22 50 23P 200 93 94 127 74.5 1.89 80 21M 250 121 W5 142 85 2.16 100 22C 275 135 113.5 154 86 2.18 100 265 300 149 109 148 90 2.29 100 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-8 Table 5-3 Charpy V-notch Data for the AN0-2 Surveillance Program Weld Material (Heat 2

  1. 83650) Irradiated to a Fluence of 3.67 x 10 19 n/cm (E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

37E -25 -32 8.5 12 13 0.33 15 367 0 -18 18 24 22.5 0.57 35 352 15 -9 62.5 85 50 1.27 50 33M 15 -9 68 92 55 1.40 50 341 25 -4 34 46 33.5 0.85 45 32L 40 4 31 42 32 0.81 55 313 60 16 29 39 33.5 0.85 50 365 72 22 93 126 70 1.78 75 33T 110 43 125 169 96 2.44 95 35C 150 66 121 164 95 2.41 95 311 200 93 144 195 98 2.49 , 100 37U 250 121 139 188 96 2.44 100 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-9 Table 5-4 Charpy V-notch Data for the AN0-2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of3.67 x 10 19 n/cm2 (E>1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

412 -75 -59 6.5 9 11 0.28 15 43B -50 -46 24 33 18 0.46 20 47T -40 -40 29.5 40 20.5 0.52 20 433 -30 -34 47 64 35.5 0.90 45 46J -25 -32 51.5 -- 70 35.5 0.90 50 454 15 -9 88 119 59 1.50 75 423 40 4 101 137 93 2.36 75 42A 100 38 86 117 56.5 1.44 70 47M 130 54 136 184 91 2.31 100 411 165 74 123 167 80 2.03 80 41P 200 93 138 187 85.5 2.17 100 42B 250 121 150.5 203 92.5 2.35 100 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-10 Table 5-5 Instrumented Charpy Impact Test Results for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of 3.67 x 10 19 n/cm 2 (E > 1.0 MeV) (Longitudinal Orientation)

Total Energy to Total Dial General Test Instrumented Difference, Max Maximum Time to Fracture Arrest Sample Energy, Yield Temp Energy, (KV-Wt)IKV Load, Load, Fm Fm Load, Fhr Load, Fa Number KV Load, Fgy (oF) Wt (%) Wm (lb) (msec) (lb) (lb)

(ft-lb) (lb)

(ft-lb) (ft-lb)

I4P 25 I6.5 I5.5 6.I I2.92 3887 0.26 3234 3763 0 Ill 60 28.5 25.9 9.1 22.91 3902 0.43 2952 3837 0 I2K 72 29 25.2 13.1 22.49 3832 0.43 3047 3832 0 I5J 80 35 30.2 13.7 25.25 3864 0.48 2904 3737 0 llP 100 36.5 31.9 I2.6 25.37 3887 0.48 2778 3752 639 I25 I20 35 30.2 13.7 24.79 3796 0.48 2824 3796 847 136 130 54 47.9 I 1.3 32.32 3964 0.6I 2770 3854 I I80 13E I65 67 59.4 11.3 30.80 3960 0.60 2737 38I8 1935 I3J 200 Ill 99.6 I0.3 32.06 3984 0.60 2633 2933 I880 I IB 250 I23 ll0.3 10.3 30.73 3823 0.60 2528 0 0 I2E 275 126 1 I4.l 9.4 30.93 3832 0.60 25I8 0 0 IIM 300 1I7 106.4 9.1 31.39 3723 0.63 25I2 0 0 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-11 Table 5-6 Instrumented Charpy Impact Test Results for the AN0-2 Intermediate Shell Plate C-8009-3 Irradiated to a Fluence of 3.67 x 10 19 n/cm 2 (E>1.0 MeV) (Transverse Orientation)

Total Energy to Total Dial General Test Instrumented Difference, Max Maximum Time to Fracture Arrest Sample Energy, Yield Temp Energy, (KV-W1)/KV Load, Load, Fm Fm Load, Fbr Load, Fa Number KV Load, Fgy

{°F)

(ft-lb)

W1 (%) Wm (lb) (msec)

(lb)

(lb) (lb)

(ft-lb) (ft-lb) 267 25 6 5.4 10.0 3.17 3683 0.09 3165 3366 0 237 60 16 13.8 13.8 3.12 3713 0.09 3034 3668 0 221 72 28.5 25.2 11.6 22.26 3927 0.43 2980 3927 0 211 80 28 25.0 10.7 22.67 3820 0.43 2901 3820 0 233 100 33 28.5 13.6 25.11 3850 0.48 2858 3826 350 235 130 45 39.6 12.0 32.35 3894 0.60 2803 3883 1294 23M 150 45 39.6 12.0 32.23 3901 0.60 2824 3901 1605 21T 175 58 49.4 14.8 31.15 3814 0.60 2782 3559 2081 23P 200 94 85.2 9.4 32.78 4000 0.60 2810 3702 2807 21M 250 105 94.9 9.6 31.66 3883 0.61 2565 0 0 22C 275 113.5 102.0 10.1 27.86 3998 0.57 2708 0 0 265 300 109 100.3 8.0 30.81 3792 0.60 2491 0 0 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-12 Table 5-7 Instrumented Charpy Impact Test Results for the AN0-2 Surveillance Program Weld Material (Heat# 83650) Irradiated to a Fluence of3.67 x 10 19 n/cm 2 (E>1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-W1)/KV Load, Load, Fm Fm Load, Fbr Number KV Load, Fgy Fa (oF) Wt (%) Wm (lb) (msec) (lb)

(ft-lb) (lb) (lb)

(ft-lb) (ft-lb) 37E -25 8.5 7.4 12.9 3.34 3907 0.09 3252 3379 0 367 0 18 15.9 11.7 3.88 4403 0.11 3181 3360 832 352 15 62.5 54.0 13.6 32.94 3884 0.61 3095 3639 994 33M 15 68 60.3 11.3 33.56 3995 0.60 3137 3759 761 341 25 34 29.1 14.4 18.42 3820 0.36 3081 3681 1191 32L 40 31 26.4 14.8 3.08 3797 0.09 3023 3521 1579 313 60 29 25.7 11.4 3.10 3732 0.09 3108 3386 1532 365 72 93 84.6 9.0 31.49 3750 0.60 2929 3391 2708 33T 110 125 111.8 10.6 41.63 3760 0.79 2797 2693 2544 35C 150 121 108.7 10.2 30.74 3720 0.60 2686 2575 2284 311 200 144 130.7 9.2 29.73 3680 0.60 2380 0 0 37U 250 139 124.8 10.2 28.78 3543 0.60 2428 0 0 WCAP-18166-NP September 2016 Revision 0

l Westinghouse Non-Proprietary Class 3 5-13 Table 5-8 Instrumented Charpy Impact Test Results for the AN0-2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.67 x 10 19 n/cm2 (E > 1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, .(KV-W1)/KV Load, Load, Fm Fm Load, Fhr Number KV Load, Fgy F.

(°F) Wt (%) Wm (lb) (msec) (lb)

(ft-lb) (lb) (lb)

(ft-lb) (ft-lb) 412 -75 6.5 5.9 9.2 3.50 4343 0.09 3263 4156 0 43B -50 24 22.5 6.3 3.61 4271 0.09 3384 4236 0 47T -40 29.5 26.5 10.2 3.53 4183 0.09 3257 4142 0 433 -30 47 42.5 9.6 36.65 4267 0.61 3383 4267 791 46J -25 51.5 46.6 9.5 4.43 4313 0.12 3460 4009 1143 454 15 88 77.2 12.3 35.39 4217 0.61 3320 3666 1838 423 40 101 90.0 10.9 34.65 4191 0.60 3220 3238 1817 42A 100 86 76.4 11.2 33.87 4107 0.60 3052 3326 2320 47M 130 136 120.7 11.3 32.06 3895 0.60 2888 0 0 411 165 123 109.5 11.0 32.72 4026 0.60 2860 2355 1349 41P 200 138 123.9 10.2 43.61 4297 0.82 2429 0 0 42B 250 150.5 134.9 10.4 47.23 4042 0.91 3035 0 0 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-14 Table 5-9 Effect of Irradiation to 3.67 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the AN0-2 Reactor Vessel Surveillance Capsule 284° Materials Average 30 ft-lb Transition Average 35 mil Lateral Expansion Average 50 ft-lb Transition Average Energy Absorption Material Temperature<a> (°F) Temperature<a> (°F) Temperature<al (°F)  ;::: 95% Shear<hl (ft-lb)

Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AE Intermediate Shell Plate C-8009-3 0.5 86.2 85.7 15.0 103.9 88.9 22.2 121.1 98.9 159 122 -37 (Longitudinal)

Intermediate Shell Plate C-8009-3 14.9 100.5 85.6 28.7 114.0 85.3 42.5 138.5 96.0 134 109 -25 (Transverse)

Surveillance Weld Material -3.8 8.2 12.0 6.0 17.8 11.8 10.8 37.1 26.3 151 132 -19 (Heat# 83650)

Heat-Affected Zone

-129.9 -56.4 73.5 -77.1 -26.2 50.9 -87.6 -17.8 69.8 161(c) 142 -19 (HAZ) Material Notes:

(a) Average value is determined by CVGRAPH, Version 6.02 (see Appendix C).

(b) Upper-shelf Energy (USE) values are a calculated average from unirradiated and Capsule 284 ° Charpy test results for specimens that achieved greater than or equal to 95%

shear, unless otherwise noted.

( c) Consistent with the previous evaluation, one 95% shear point was deemed "out of family" and was excluded from the USE determination for the unirradiated HAZ material.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-15 Table 5-10 Comparison of the AN0-2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions Capsule 30 ft-lb Transition Upper-Shelf Energy Fluence Temperature Shift Decrease Material Capsule (x 10 19 n/c m2, Predicted<*> Measured<bl Predicted<aJ Measured(bl E > 1.0 MeV) (oF) (oF) (%) (%)

Intermediate Shell Plate 97° 0.303 41.9 23 .5 14.5 12 C-8009-3 (Longitudinal) 284° 3.67 83.2 85.7 26 23 97° 0.303 41.9 33.4 14.5 10 Intermediate Shell Plate C-8009-3 104° 2.15 75 .1 52.9 23 .0 31 (Transverse) 284° 3.67 83.2 85.6 26.0 19 97° 0.303 22 .7 13 .2 14.5 3 Survei llance Weld Material 104° 2.15 40.7 16. l 23 .0 17 (Heat # 83650) 284° 3.67 45 .1 12.0 26.0 13 97° 0.303 -- - 50.9 --- 14 Heat-Affected Zone Materi al 104° 2. 15 - -- 11 3. 1 - -- 19 284° 3.67 --- 73.5 - -- 12 Standard Reference Material 104° 2. 15 --- 132.3 - - - 40 Notes:

(a) Based on Regulatory Guide 1.99, Revision 2 [Ref. I] , methodology using the capsule tluence and best-estimate weight percent values of copper and nickel of the surveillance material.

(b) Calculated by CVGRAPH, Version 6.02 using measured Charpy data (See Appendix C).

WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5- 16 Table 5-11 Tensile Properties of the AN0-2 Capsule 284° Reactor Vessel Surveillance Materials Irradiated to 3.67 x 10 19 n/cm 2 (E > 1.0 MeV) 0.2 % Fracture Test Ultimate Fracture Fracture Uniform Total Reduction Sample Yield True Material Temp. Strength Load Strength Elongation Elongation in Area Number (oF) Strength Stress (ksi)

(ksi) (kip) (ksi)

(ksi)

(%) (%) (%)

2KE 72 81.7 102.5 3.38 70. 1 166 10.8 23 .3 58 Intermediate Shell Plate C-8009-3 2KY 250 77.0 96.0 3. 18 65 .2 171 9.8 21.4 62 (Transverse) 2KU 550 72.4 96.3 3.40 70.3 178 9.1 19.3 60 3JU(a) 72 80.5 94.9 2.82 57.9 81 8.8 14.1 29 Surveillance Weld Material 3JB 250 75.5 88 .3 2.64 54.2 205 8.3 22.6 74 (Heat # 83650) 3KD 550 73.2 89.4 2.81 58.1 175 8.2 20.8 67 4KT 72 74. 1 91.3 2.64 54.1 182 7.5 21.8 70 Heat-Affected Zone Material 4KE 250 71.9 86.0 2.53 52.3 188 6.5 20.0 72 4JL 550 72.7 91. 1 2.88 59.1 195 7.6 20.1 70 Note:

(a) Speci men 3JU fai led at the extensometer knife edge WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-17 Intermediate Shell Plate C-8009-3 (Longitudinal)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 6/l 0/2016 2:44 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 NIRR SA533 B CL! LT C8182-2 2 rkansas 2 97° SA533B CL! LT C8182-2 3 rkansas 2 284° SA533B CL! LT C8182-2 180 ------...-----......-----------------------------.......------------

0 1 0 160 A 2 8 3 o l:::::i::::+/-:~~::f::.L-1...._L--1...-1..........1..--1---J~L__.1...-.1.........__J

-300 -200 -IOO 0 100 200 300 400 500 600 Temperature {° F)

Curve Flue nee LSE USE d- USE T uy30 d-T @30 T @50 d-T @SO l --- 2.2 159 0 0.5 0 22.2 0 2 --- 2.2 140 -19 24 23 .5 56 33 .8 3 --- 2.2 122 -37 86.2 85.7 121.1 98 .9 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation)

Note: Data for Capsule 284° was taken from Table 5-1.

WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5- 18 Interm ediate Shell Plate C-8009-3 (Longitudinal)

CYGraph 6.02 : Hyperbolic Tangent Curve Printed on 6/ 10/20 16 2:45 PM Curve Plant Capsule Material Ori Heat #

I Arkansas 2 IRR AS33B LI LT C8182-2 2 Arkansa 2 97° SA533B CLI LT C8182-2 3 Arkansa 2 284° SA533B CL! LT C8 I 82-2 110 100 - 0 1

@ 0 .j .. Ii A 2

/"'b / 0 o- A.&

90 - 8 3 Iv h [~/~

--s VJ 80 io ~ v

-*-=0 VJ 70 60 o*Pi

'7 I j

=

=

c.. I I /°

~

~

i..

~

so 40 t-r I b

.J= 30

/ [ r-h D 20 t-

~'f ref 10

)'/

.-/1_/ /

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Curve Flue nc e LSE USE d-USE T @35 d-T @35 I --- I 95. 17 0 IS 0 2 --- I 96.5 1 1.34 39 24 3 --- I 92* -3 . 17 103 .9 88.9

  • The upper-shelf LE value for Capsule 28-' 0 was fixed based on !he a\*emge of 1hree claia points 1ha1 achie,*ed grealer lhan or eqtml 10 95% shc.1 r.

Figure 5-2 Charpy V-Notch Lateral E xpansion vs. Temperature for AN0-2 R eactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation)

Note: Data for Capsule 284° was taken from Table 5- 1.

WCAP-1 8166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-19 Intermediate Shell Plate C-8009-3 (Longitudinal)

C Graph 6.02 : Hyperbolic Tangent Cu rve Printed on 6/ I 0/20 16 2:46 PM Cu rve Plant Capsule Materi al Ori . Heat #

Arka n as 2 A533 B CL! LT C8 182-2 2 Arkansas 2 AS33 B CL! LT C8 182-2 3 Arkan sas 2 284° SA S33 B CL! LT C81 82-2 90 0 1 1-+-~~-+-~~+f:;J-----.~~~~~--l~~-+~~-f A 2 80 a 3

~

~

60 t--~~-r-~~-+~~~+---.::.--ffi~-+--+~~~t--~~-r-~~-+~~--t

.c 00

--- 50 t---~~-t-~~~t--~~-t-~-J-fll-ll---t-~-t-~~-;~~~-t-~~---1~~~1

=

~

u

~ 40 J--~~-+-~~--+~~~t---B--l---+-13-~-+~~~t--~~-+-~~--+~~---f Q..

o L--'-..J.............E:::::::c...-L---1~.l.._....1---1..----l~.L......i...--1.~1..-..l..._-1...._J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

C urve Fluence LSE USE d-USE T (a,>50 d-T (ti)SO 0 100 0 48. 1 0 2 0 100 0 89.7 41.6 3 0 100 0 139.6 91. S Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation)

Note: Data for Capsule 284° was taken from Table 5-1.

WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-20 Intermediate Shell Plate C-8009-3 (Transverse)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 6/ 10/20 16 2:47 PM Curve Pl ant Capsul e Mate ri al Ori . Heat #

Arkansas 2 IRR SA533 B C LI TL C8182-2 2 rkansa 2 97° SA533 B CLI TL C8 182-2 3 rkansa 2 104° SA533 BCL I TL C8182-2 4 Ark ansas 2 284° SA533 B CL I TL C 8182-2 160 ------------------------........------...--------------------------

0 1 140 A 2 1-+-~~--~~-+---tr:t--+--~~+-~~1--~-+~~-1 a 3 120 $ 4

(/l

.Q "j 100 ---~~--+-~~-+-~~~>--~~-.-~---4-+-~---~+--~~-+-~~-+-~~--1

~

~ 80 ~~~+-~~-+-~~-t-~~f-t--J'--~:tt-~~+-~~-+-~~-t-~~-i a) c

~

z 60 t--~~r-~~-r-~~;-~~---1-#-x-1-~~--~~-r-~~-r~~--i u

ol::=c:::::::d::::::i:~~~~_J_---1..._J_--l.-_J_--J..._L--J.-_L--1..-~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for AN 0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation)

Note: Data for Capsule 284° was taken from Table 5-2.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-21 Intermediate Shell Plate C-8009-3 (Transverse)

CVGraph 6.02: Hyperbolic Tangent Curve: Printed on 6/ 10/2016 2:47 PM Curve Fluence LSE USE d-USE T @30 d-T @30 T @50 d-T @50 1 -- - 2.2 134 0 14.9 0 42.5 0 2 -- - 2.2 120 -14 48.3 33.4 84.8 42.3 3 -- - 2.2 92 -42 67.8 52.9 11 0 67.5 4 --- 2.2 109 -25 100.5 85 .6 138.5 96 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) - Continued WCAP-18166-NP September 20 16 Revis ion 0

Westinghouse Non-Proprietary Class 3 5-22 Interm ediate hell Plate C-8009-3 (Transve rse)

CV Graph 6.02 : Hyperboli c Tangent Cu rve Pri nted on 61I0/20 16 2:48 PM Curve Pl ant Capsule Materi al Ori . Heat #

I Arka nsas 2 IRR SA53 3B CLI TL C8182-2 2 rkansa 2 97° SA533 B CL I TL C8 182-2 3 Arkan sas 2 104° SA533 BCL I TL C8 182-2 4 Arkansas 2 284° SA533 B CLI TL C8182-2 90 0 1 1-+~~+-~-+~*e--h---~~""'"""'"""F====~===t A 2 80 8 3 11~~~~1-:r--r-t~-r-~~~-===-r====t

$ 4 o bd::~~~----'-_l_~L_L--L-L~----1-J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 R eactor Vessel Intermediate Shell Plate C-8009-3 (Transver se Orientation)

Note: Data for Capsule 284° was taken from Table 5-2.

WCAP-1 8166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-23 Intermediate Shell Plate C-8009-3 (Transverse)

CVGraph 6.02: Hyperbolic Tangent Curw Printed on 6/ 10/201 6 2:48 PM Curve Fluence LSE SE d-USE T @35 d-T @35 l - -- I 90.61 0 28.7 0 2 - -- l 85 .94 -4.67 56.9 28.2 3 - -- I 79.35 -11.26 88.9 60.2 4 - -- l 87"' -3.61 114 85.3

  • The upper-shelf LE value for Capsule 284° was fixed based on the average of thre.: data points that achi.:ved greater than or equa l to 95% shear.

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) - Continued WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-24 Interm ediate Shell Plate C-8009-3 (Tra nsver e)

CVGraph 6.02: Hyperbolic Tangent Curve Pri nted on 6110/20 16 2 :49 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 IRR A533 B CL I TL C8182-2 2 Arkan as 2 97° SA533B CLI TL C8182-2 3 rkansa 2 104° SA 33 BCLI TL C8182-2 4 Arkan as 2 284° AS33B C LI TL C8182-2 90 o I 1-+~~~-+-~~-+~-+---.w-~+---+~~~+-~~-+~~--1 A 2 80 8 3 1-t-~~~-+-~~-+-tn-_.,r-<~~~-r~~~+-~~-r~~--1 e 4

~

~

60 t--~~-t-~~-+~~~1--~-e~EB--+-+~~~1--~~-t-~~-+~~--t

.c 00.

..... 50 ....__~~-+-~~--<f--~~-+-~~-11&--1-...a.-1-~~-4~~~-1-~~-4~~--1 c~

iU

~ 40 r-~~-r~~--ir-~~-t-~~t-11~:>Q~--t-~~-t~~~-t-~~-t~~--1 Q..

o L-..1.--L.......,.....~:L....~--1.~1-....1.---1..----1.~l-....i.....--1..--J~1---'-_J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 {Transver se Orientation)

Note: Data for Capsule 284° was taken from Table 5-2.

WCAP- 18 166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-25 Intermediate Shell Plate C-8009-3 (Transverse)

CVGraph 6.02: Hyperbolic Tangent Curv.~ Printed on 6/10/201 6 2:49 PM Curve Fluence LSE USE d-USE T @50 d-T @50 I - -- 0 100 0 67 0 2 --- 0 100 0 94.2 27.2 3 - -- 0 100 0 110 43 4 - -- 0 100 0 148 81 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation) - Continued WCAP-1 8166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-26 Surveillance Progra m W eld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Pri nted on 6/1 0/20 16 2:52 PM Curve Pl ant Capsul e Materi al Ori . Heat #

I Arkansa 2 IRR WELD IA 83650 2 Arkan as 2 97° WELD IA 83650 3 rkansas 2 104° WELD I 83650 4 Arkansas 2 284° WELD NIA 83650 180 ----------------------------------------------------------

-H0-1 160 -

-A--2 0 A

-Oi-+--3

-Be-4 20

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-7 Charpy V-Notch Impact E nergy vs. Temperature for AN 0-2 R eactor Vessel Surveillance Progr am Weld M aterial (Heat# 83650)

Note: Data for Capsule 284° was taken from Table 5-3.

WCAP- 18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-27 Surveillance Program Weld Metal C VGraph 6.02: Hyperbolic Tangent Curw . Printed on 6/ 10/2016 2:52 PM Curve Fluence LSE USE d-USE T @,30 d-T @,30 T @,50 d-T @SO l --- 2.2 151 0 -3.8 0 10.8 0 2 --- 2.2 147 -4 9.4 13.2 26.1 15.3 3 --- 2.2 125 -26 12.3 16.1 36.4 25.6 4 --- 2.2 132 -1 9 8.2 12 37. 1 26.3 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) - Continued WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-28 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Prin ted on 6/ 10/20 16 2:52 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 NIRR WELD /A 83650 2 Arkan as 2 97° WELD /A 83650 3 rkansa 2 104° WELD /A 83650 4 Arkansas 2 284° WELD /A 83650 100

~ a. I l A 90 >-

0 1 n. II ~ il 80 6:

8 2

3 f f 1

  • --s

$ 4 "1

70 oJ I r c 60

(" r_J

  • -c 0 "1

c:i: 50

(

7 c.

~

i;;i;;i i:-=

i..

40 I

..... ~<>

Q,j c:i: 30

...:i ~

ba 20 10

~

0

_.o: ~~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat # 83650)

N ote: Data fo r Capsule 284° was taken fro m Table 5-3.

WCAP-1 8166-NP September 201 6 Revision 0

Westinghouse Non-Proprietary Class 3 5-29 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curv.:: Printed on 6/10/2016 2:52 PM Curve Fluence LSE US E d-USE T @35 d-T @35 1 - -- I 92.36 0 6 0 2 - -- 1 93.26 0.90 15.7 9.7 3 --- I 94.74 2.38 21.1 15.1 4 --- I 96* 3.64 17.8 11.8

  • The upper-shelf LE value for Capsule 284° was fixed based on the average of four data points that achieved greater than or equal to 95% shear.

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) - Continued WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-30 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent urve Printed on 6/ 10/2016 2:53 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 NIRR WELD /A 83650 2 Arkansas 2 97° WELD /A 83650 3 Arka nsa 2 104° WELD /A 83650 4 Arkansa 2 284° WELD N/ A 83650 100 ....

~

  • £ .

90 ..._

0 1 j'f!Y 80 >-

6 a

2 3 ~i r

e 4 ( './

70 --

i..

0 c: 60 cu

.c >

rJl '" j 50 .......

c:

cu >

c.J i..

cu Q.,

40 .-..

  • i 30

~

20 10

_A, 0

~

.... ~ I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat # 83650)

Note: Data for Capsule 284° was taken from Table 5-3.

WCAP- 18 I 66-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-31 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curv.:: Printed on 6/ 10/2016 2:53 PM Cun'e Fluence LSE USE d-USE T @50 d-T @50 1 - -- 0 100 0 18.5 0 2 - -- 0 100 0 27.9 9.4 3 --- 0 100 0 31.3 12.8 4 - -- 0 100 0 29.5 Il Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650) - Continued WCAP-18166-NP September 20 16 Revision 0

- 1 Westinghouse Non-Proprietary Class 3 5-32 Heat-A ffected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 6/10120 16 2 :55 PM Curve Plant Capsul e Materi al Ori . Heat #

I Arka nsas 2 IRR SAS33 B C LI IA C8 182-2 2 Arka nsa 2 97° SAS33 B C LI IA C8 I 82-2 3 Arkan sa 2 104° SA533 B CLI IA C8 182-2 4 Arkansas 2 284° SA533 B CLI IA C8 182-2 0 0 0 1 160 A 2 H-~~~~--+-:::-:~+/-::-.---+-- .........~........""'*.......,~

a 3 <>

140 e 4 H-~-+-"J~~~c:::::~==~~~~==I o C::::~~z:::::J...:.~...L-1-_L--1..._L-1-__L---1.__J~L--L_~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-10 Charpy V-Notch Impact E nergy vs. Temper ature fo r AN0-2 R eactor Vessel Heat-Affected Zone Material Note: Data for Capsule 284° was taken from Table 5-4.

WCAP-1 8 166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-33 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curw Printed on 6/ 10/2016 2:55 PM Curve Fluence LSE USE d-USE T @30 d-T @30 T @50 d -T @SO 1 --- 2.2 161 0 -129.9 0 -87.6 0 2 --- 2.2 138 -23 -79 50.9 -53 .2 34.4 3 --- 2.2 130 -3 l -1 6.8 113 .l 15 102.6 4 --- 2.2 142 -1 9 -56.4 73 .5 -17.8 69.8 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18166-NP September 201 6 Revision 0

Westinghouse Non-Proprietary Class 3 5-34 Heat-A ffec ted Zone CV Gra ph 6 .02 : Hyperbolic Tang ent C urve Printed on 6/ I 0/ 20 16 2:55 PM Cu rve Plant Capsule ateri al Ori . Heat #

I Arka nsas 2 lRR S A533 B C Ll /A C8 182-2 2 Arkansa 2 97° SAS33 B CLI /A C81 82-2 3 Arka nsas 2 104° SA533 B C LI /A C81 82-2 4 Arka nsa 2 2 84° SA533 B C LI /A C8 182-2 100 90 ,_ e 1 <> 6 \ <>

80 ,_

A 8

2 3

Ii 0

n ,,_ i~o ~ ........-11 r1

\ffi / '

  • ---s-

$ 4 r ll A

l 70

~

~

I.

, A I

/. rl I

=

0 60 r ll v 0

= ~ 50 u c.. I

>< .~ ~ J. B

~

~

40

/ ~ ~ [r-

...~

i..

~ 30 I

...J 20 I 1~

II ~

~

,,J IO bl6 ~

u If 0


"""' I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material Note: Data for Capsule 284° was taken from Table 5-4.

WCAP-1 8166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-35 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curv.i Printed on 6/10/2016 2:55 PM Curve Fluence LSE SE d-USE T @35 d-T @35 1 - -- l 83 .55 0 -77.1 0 2 - -- 1 89.53 5.98 -63.4 13.7 3 - -- I 84.97 1.42 15.4 92.5 4 - -- I 83.07 -0.48 -26.2 50.9 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-36 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Cu rve Pri nted on 6110120 16 2 :56 PM Cu rve Plan t Capsule Material Ori . Heat #

I Arkansas 2 NlRR SAS33 B C LI IA C81 82-2 2 Arkansas 2 97° SA 533B CL I IA C8 I 82-2 3 Arkansas 2 104° SA533B CLI IA C8182-2 4 Arkan as 2 284° SA533 B CLI IA C81 82-2 90 0 1 1-+-~~--t--G--D~~--i~~-+~~-+-~~-t--~--1 A 2 80 8 3 t-t-~~"tiff7~f-f--t-~r-1~~-r~~-;-~~-;-~--.

$ 4

~

~ 60 1--~~-+-~~---1~--l"""*-+f--f-~---l~~~-+-~~--+~~~-+-~~--+~~--1

~

.c 00

...,. 50 ~~~-+-~~--;~~18'-IHfERB---1~~~-+-~~--+~~~+-~~--+~~--i

=

~

tJ

~ 40 .__~~-+-~~-+0-iH-IEJf-E3-~-+-~~-+~~~f--~~-+-~~-+~~--1 Q.,

O i..;iii1iiii111111111E::::...L--..J_-'-~1---1--l.~.1..-...L.--L.~.L..--1--l.~J..--L--.1.---l

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material Note: Data for Capsule 284° was taken from Table 5-4 .

WCAP- 18 166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-37 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tangent Curw Printed on 6/ 10/2016 2:56 PM Curve Fluence LSE USE d -USE T @50 d-T @SO l - -- 0 100 0 -37.8 0 2 - -- 0 100 0 -31.3 6.5 3 - -- 0 100 0 16 53.8 4 -- - 0 100 0 -7.5 30.3 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Heat-Affected Zone Material - Continued WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-38 Standard Reference Material CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 6/10/2016 3:02 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 UNI RR SA533B CLI LT HSST-OIMY 2 Arkansas 2 104° SA533 B CLl LT HSST-OIMY 160 0

140 ,....

0

6 I

2

_ / ......-

120  !

.Q

~ ft

- I ct::

ell 100 80 JI

~~[/"""""A II QJ

=

lili:l z 60 J I

~

u 40 r 20 t

/o /

J 0

~ ~ I l

I I

-300 -200 -100 0 100 200 300 400 soo 600 Temperature{° F)

Curve Flue nee LSE USE d- SE T @30 d-T @30 T @SO d-T @SO I --- 2.2 146 0 3 l.5 0 54.7 0 2 --- 2.2 87 -59 163 .8 132.3 205 .3 150.6 Figure 5-13 Charpy V-Notch Impact E nergy vs. Temperature for AN0-2 Reactor Vessel Standard Reference Material WCAP-1 8 166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-39 Standard Reference Material CVGraph 6.02 : Hyperbolic Tangent Cu rve Printed on 6/10/20 16 3:02 PM Curve Plant Capsule Material Ori . Heat #

I Arkansas 2 UN IRR A533B CL! LT HSST-OlMY 2 Arkansas 2 104° SAS33 B CLl LT HSST-OIMY 100 90 .....

0 I I"\ n 80 6 2 eye 0 A__,,..

p **;i;i,;

.7

~

70 j j E

i I c

  • -c Q

~

~

0.

ii<

60 50 l

I I r

~

40

~l H

I

~

~

~ 30

,.J ._

f J~

20

~( ,/

10

... _yLA 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

C ur ve Fluence LSE USE d-USE T @35 d-T @35 1 -- - I 89.39 0 41.9 0 2 - -- I 83.67 -5 .72 180.9 139 Figure 5-14 Charpy V-Notch Lateral Expansion vs. Temperature for AN0 -2 Reactor Vessel Standard R eference M aterial WCAP- 18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-40 Standard Reference Material CVGraph 6.02 : Hyperbolic Tangent Curve Prillted on 6/10/2016 3:06 PM Curve Plant Capsule Material O ri . Heat #

I Arkan as 2 UN IRR SA5338 CL I LT HSST-OIMY 2 Arkansas 2 104° SA533 8 CL l LT HSST-OIMY 100 - ..

90 - 0 1 ~/

v- v 80 ts 2 1 I 70 r

i I /~

~

~ 60 Qi

. }~

.c 00.

.... 50 J

=

Qi u ~

l ..t

~

Qi Q.

40 30

....  ;- ~1 20 f I cV ;

10

~ v~ ..

0

-300 I

-200 -100- 0 I

100 I

200 300 400 500 600 Temperature (° F)

C ur ve Fluence L SE USE d-USE T @SO d-T @SO I --- 0 100 0 83.3 0 2 --- 0 100 0 178 .5 95 .2 Figure 5-15 Charpy V-Notch Percent Shear vs. Temperature for AN0-2 Reactor Vessel Standard Reference Material WCAP-1 8166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-41 14P, 25 °F 111 , 60°F 12K, 72°F 15J, 80°F llP, 100°F 125, 120°F 136, 130°F 13E, 165°F 13J, 200°F llB, 250°F 12E, 275°F llM, 300°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Longitudinal Orientation)

WCAP- 18 166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-42 267, 25 °F 237, 60°F 221, 72°F 211, 80°F 233, 100°F 235 , 130°F 23M, 150°F 21T, l 75°F 23P, 200°F 21M, 250°F 22C, 275°F 265,300°F Figure 5-17 Charpy Impact Specimen Fracture Surfaces for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation)

WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-43 37E, -25°F 367, 0°F 352, 15°F 33M, 15°F 341 , 25°F 32L, 40°F 313, 60°F 365 , 72°F 33T, 110°F 35C, 150°F 311 , 200°F 37U, 250°F Figure 5-18 Charpy Impact Specimen Fracture Surfaces for the AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650)

WCAP- 18 166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-44 412, -75°F 43B, -50°F 47T, -40°F 433 , -30°F 461, -25°F 454, 15°F 423 , 40°f 42A, 100°F 47M, 130°F 411 , 165 °F 41P, 200°F 42B, 250°F Figure 5-19 Charpy Impact Specimen Fracture Surfaces for the AN0-2 Reactor Vessel Heat-Affected Zone Material WCAP-18 166-NP September 2016 Revis ion 0

Westinghouse Non-Proprietary Class 3 5-45 120.0 ~- -- --

100.0

- Ultimate Tensile Strennth

-~

80.0 u;

~ 0.2% Yield Strength I/I I/I 60.0

~

~

40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature ("F)

Legend: _. , * , and

  • are unirradiated 19 ti, o, and o are irradiated to 3.67 x 10 n/cm2 (E > 1.0 MeV) 80 ~

Area Reduction 70 60

~

50

~

~ 40 ti 0

30

-- Total Elongation 20 Uniform Elongation 10 0

0 100 200 300 400 500 600 Temperature ('F)

Figure 5-20 Tensile Properties for AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation)

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-46 120.0 100.0 Ultimate Tensile Strength -

iii

~

80.0

- 0.2% Yield Strength Ill Ill 60.0

~

1ii 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (' F)

Legend:.&. , * ,and

  • are unirradiated 19

!i.., o, and o are irradiated to 3.67 x 10 n/cm2 (E > 1.0 MeV)

Note that the irradiated 72°F weld specimen failed at the knife edge; see Table 5-11 for more information.

80 Area Reduction 70 /

/

60 50

/

g

~

40

/

/

u c"

30

- Total Elongation 20 Uniform Elongatio n 10 0

0 100 200 300 400 500 600 Temperature (' F)

Figure 5-21 Tensile Properties for AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat # 83650)

WCAP-1 8166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-47 120.0 100.0 Ultimate Tensile Strength

"--- -0

- 80.0 -

~

Iii

~

~

60.0 0.2% Yield Strength 40.0 20.0 0.0 0 100 200 300 400 500 600 Temperature (' Fl Legend: .A. ,* , and

  • are unirradiated Li, o , and o are irradiated to 3.67 x 10 19 n/cm2 (E > 1.0 MeV) 80 -- - -

Area Reduction 70 60 50

~

~ 40 ti c"'

30

- Total Elongation 20 Uniform Elongation 10 0

0 100 200 300 400 500 600 Temperature ("F)

Figure 5-22 Tensile Properties for the AN0-2 Reactor Vessel Heat-Affected Zone Material WCAP-18166-NP September 20 16 Revision 0 L

Westinghouse Non-Proprietary Class 3 5-48 2KE - Tested at 72"F 2KY - Tested at 250°F 2KU - Tested at 550"F Figure 5-23 Fractured Tensile Specimens from AN0-2 Reactor Vessel Intermediate Shell Plate C-8009-3 (Transverse Orientation)

WCAP- 18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 5-49 3JU -Tested at 72°F 3JB - Tested at 250°F 3KD - Tested at 550°F Figure 5-24 Fractured Tensile Specimens from AN0-2 Reactor Vessel Surveillance Program Weld Material (Heat# 83650)

WCAP- 18166-NP September 2016 Revis ion 0

Westinghouse Non-Proprietary Class 3 5-50 4KT - Tested at 72°F 4KE - Tested at 250°F 4JL - Tested at 550°F Figure 5-25 Fractured Tensile Specimens from the AN0-2 Reactor Vessel Heat-Affected Zone Material WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-51 11 0 100 90 80

'(ii 70 .................................. .,. ............. ' .... .... ... ....... ...... .. ..... ... .... ............ ..... ... .

~ . .

........ 60 **********************************:*************' *** ******* ****** **** *.** ****** *** ***** * ******************

Ill 50

...,Kl I...

1::::::::::::::::::::::::::::::::::I::::::::::::::::::::::::s:::

(./) 40 . .

30 **** ***** **** *************** ** **** ::**** **** *** *** ** ** *** **************:********* ****** **** ************** ***

20 0 o o o o o o o o o o o o o o o o o 0 0 o ' 0 ' o o o o o o ' o o o ~ o o o o ' o o o o o o o o o o o o o o o o o ' 0 I 0 o 0 o ' o o o 0 *:*

o 0 o 0 o o 0 o 0 o 0 o o o o o o o o o o ' o o o o o ' 0 o I 0 0 0 o 10 **********************************'************* . ..........................................................

0 0 10 20 30 Strain[%]

Tensile Specimen 2KE Tested at 72°F 1 10 100

---~-~.

90 80 ................................. ,

Ill 70

~

........ 60 . ....... * ** * * ***** **** ***** **** * * ** :***

Ill

...,!!l .. ..

50 I...

(./) 40 ....... .. ********* **** ***** **** ****!*** ***** ****** ** ****** **** *** ******:** ********** ** **** ** * ........... .

30 I **** ** **** * ********** * ** ********* *;***** ****** **** **** * * ***** *** ***** *:** ** **** ** ** ******* ******* ** *** ** **

20 . ... .... ***** ** *** *** ******* *** *** !*** * *** **** ************ ******* **** *:*** ****** ** ************* *** * **** ***

10 ....... .......... . . .. ....... ... .. ' ! ' ' ' ********************.******** ***:* * ***** * ***.*.* ..*. .*..** ** ***** ***

o' 0 10 20 30 Strain[ % ]

Tensile Specimen 2KY Tested at 250°F Figure 5-26 Engineering Stress-Strain Curves for AN0-2 Intermediate Shell Plate C-8009-3 Tensile Specimens 2KE and 2KY (Transverse Orientation)

WCAP-18166-NP September 20 I 6 Revision 0

Westinghouse Non-Proprietary Class 3 5-52 110 100 ** ** ******* ** **** **** ***** **** *****. *** ***** **** ******* *** **** ** *** *******

---~-

90 .. ..

80 ....... ... ...................... ,. ......................... ******** ***. ******* ************************ ***

(/)

70 .................................... ., ......................................................................

~

: ::::r::::::.::::::::J~:::::::

60 VI ID 50 I...

40 (f) 30 *** ********** ****** ** ********** ***:******** ********** ** ******* **** ** **:************** ... .. ... ...... .... ... .

20 ***** ** *** **** ****** ** ***** ***** *** .?******* **** ***** **** ** **** ** ** ** ***:****

10 .... ..... .... ... ..... ..... ......... ,. ..... ............... ...... .. ..... ..... . ....... ....... ....... ......... ... .

0 0 10 20 30 Strain[%]

Tensile Specimen 2KU Tested at 550°F Figure 5-27 Engineering Stress-Strain Curve for AN0-2 Intermediate Shell Plate C-8009-3 Tensile Specimen 2KU (Transverse Orientation)

WCAP- I 8 I 66-NP September 20 I 6 Revision 0

Westinghouse Non-Proprietary Class 3 5-53 110 100 ... ...... .... .. ....... .. ...... ... ...... . .... .... .. ...... ... ......... ...... . ... ...... ... ... ... .... ...... .... .

~~~~....:...

90 1 O o o o o o o < O o o O o O O o ' O ~ O O O O I O O O O O O O O O O O O t I t O O O O O O O O O O o. o O O o O o t o 0 o o 0 0 0 o o o 0 0 I 0 o t 0 0 0 0 0 o 0 0 I 0 0 0 80 . . .. . ..... . . .. .... . .. .. .... .. **1*** .. ... ... ..... . ******* * **** ***** .

(/)

70 **** ***** *** ******* ** ********* ****!******** **** **** **** ***** **** **** *<* ****** *** ***** ********* ***********

~

.......... 60 ..... .... .... ..... ... .......... ... .,. ............. ** **** ****** *** ***** *.** . ***** *** ***** **** ********* **** ***

(/) . ..

8J so .... ... ... ... ............. .. ...... .......... ........... .... ..... ... ..... .... ... .. ... ... ........ ...... ... ..... ...

I...

IJ) 40 **** ***** **** ** ****** ***** **** **** :*** ****** ******* *\ *****************:***********************************

30 I **** ** ******* *** ******* *** **** **** ;*** ***** **** **** **** ******* ** **** **:** ******* * ***** ****** ** ***** **** ***

20 *** ******* *** ******** ***** ********!** ************ ****** ****** **** ** ** *:*. ******** ****** ** ***** **** ** ** *****

10 O+'-~~~~-+~~~~~-t-~~~~-+~~~~~+-~~~~--+~~~~----t 0 10 20 30 Strain[%]

Tensile Specimen 3JU* Tested at 72°F 110 100 ................................. ' ". .................................. *-. ....... .. ..... .... .............. .. .

90 ...... ............ .. ..... ... ...... ., ....................................................................... . .

80 "iii 70 .................................. .,. ............................... *****.. **** *** ** ******* ** ***** *** *********

~ . .

.......... 60 **** ** ***** ******* ** *** ******* ****:*** ***** **** ***** *** ***** ****** ** **-** *** ...... ... .... ... ....... ... .. ..

(/)

so .... ........... *******************:***********************************.***** . . ............................ .

~

I...

40 .. ... ... ************ ****** *** ******:. *** ******* ** ** *** *** ****** ** ****** *.**

Vl 30 0 0 0

  • 0 I t * '
  • o 0 0 o 0 0 o 0 0 0 o 0 t ' 0 0
  • I o 0
  • o ' o 0 ~ 0 o 0 0 < I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 t 0 I I 0 0 *:* 0 0 0 o 0 I 0 0 0 < 0 0 0 0 0 0 0 0 0 I
  • 0 I 0 0 0 0 0 t t ' 0 0 0 0 20 ....... ****** ****** **** *********** ..'*** **** *** ********* *** ******** .... .......... .. .. ....... ... .... ... ..... ... .

10 .................................. .,, ... ...... .. ...... ... ...... .. .......... . ......................... ........ .

0 0 10 20 30 Strain[%]

Tensile Specimen 3JB Tested at 250°F Figure 5-28 Engineering Stress-Strain Curves for AN0-2 Surveillance Program Weld Material (Heat # 83650) Tensile Specimens 3JU and 3JB

  • Note: Specimen 3JU failed at the extensometer knife edge. As a result, the stress-strain curve is atypical and may not reflect the weld behavior.

WCAP-18 166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-54 110 100 ...... ... .... ........ ......... ... .... ..

90 . . . . . . . . . . . . . . " :..:_

' *~

  • ~...._,__,,

80 ..... ...... .. ....... ........... .,.... .. .......... ************* ****** **** ***** ** ******* ** ****** **** ***

Vl 70 **** ************ ******************:*** ************************* ******-** ** ** ************* ********* ** *****

.::,(.

60 **** **** ******** ****** ************:****** .

Vl

. *:*:::::.::: * ::::::: :c::.::: :::: ::*::: .::::::::*:r* .: ~.::::**::

!!'I....l 50 l/) 40 30 ****** ******* ***** *** *** ********* *:***** .. ******* ** ******* ** ********* **<*.. ** *** ***** *** ***** *** ******* *** ***

20 ..... .... ....... ..... ..... .... .. .. .,. ... ... ........ .. ....... ...... ..... .... .

10 ....... ... .... .......... .. ......... ... ... ... ... ... .......... . .............

~ ' '

0 0 10 20 30 Strain[%]

Tensile Specimen 3KD Tested at 550°F Figure 5-29 Engineering Stress-Strain Curve for AN0-2 Surveillance Program Weld Material (Heat# 83650) Tensile Specimen 3KD WCAP-18 166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 5-55 110 100 ...... ... ..... ... ........ ..... .... .... ..... ......... ......... .. .......... ............... ..... .. ... .........

90 ... ..... ...... ~_...-,-;-;-;-..,-;-;-,......,~-

  • 80 ... ... .... .... .... ... .......... .,. ..... ** *********** ********************************************** .

70 .................................. .,. .. ..... ..... .... .... ... ..... . .... .... .

I/) . .

~ . .

I/)

60 **** ***** **** **** ***** **** ********:***** .. .. ............................... .

so **********************************:***** . ****** ***** **** ****** ** ** **** *.** . ** * ... .... .. .... .......... .. .... .

IDI-

.... **********************************1***** .

rJ) 40 .. ..

30 *** *** *************** ** ** ****** ***:***** ******************************:***************************** .. .... .

20 I ** ** * * * * ** * ** * * * ****** * * * * **** * * * .;. .... * * * ** *** * * * ***** * * * * * *** * * * * * * *~**

10 ................................. *:**** ... ****** ... .... ...... .. .... ***:**** ..... ...... .... ..... ... ..... .. .

OT"--~~~~--t~~~~~+-~~~~--t~~~~~+-~~~~--t~~~~----1 0 10 20 30 Strain[%]

Tensile Specimen 4KT Tested at 72°F 110 100 ........ *** *** ******* *********************** . *** ****** ***** ****** **** ***-** . ***** ****** *** **** ************ ****

90 . ..

80 Vl 70 . . ** *** *** ****** *** ***** ***** **** ***

~ . .

60 Vl so ........................ **********:***********************************.* ................................. . .

IDI-rJ) 40 .. ***** *** ****** *** ***** *** ***** **.***** .. ......... ... .. .... .... ...... .

30 .... .... **************************:***********************************:***** ..... ..... ..... ...... ......... .

20 ......................... ' .... ..... . .................................. *:*. . ' .. ' .. .. ...... ... ..... ..... ... ... .

.. ~

10 0

0 10 20 30 Strain[%]

Tensile Specimen 4KE Tested at 250°F Figure 5-30 Engineering Stress-Strain Curves for AN0-2 Heat-Affected Zone Material Tensile Specimens 4KT and 4KE WCAP- 18 166-NP September 201 6 Revision 0

Westinghouse Non-Proprietary Class 3 5-56 110~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.....,

100 .. ....... ... ... ...... ... .. .... .... .... ... .... ... ... .. .. ........... .... .....

90 .

80 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * .~. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

  • I  :  :

70 .... ..... .... .... .... ......... .... .,. ..... ........ .. ....... ..... **** *********

'iii ..

~ .

.......... 60 **** ** ** ***** ******************* **:***** .. ****************** ** ***** **** ... ....... .. ... ........ ... .... ... .. ..

Ill .. .. *** ..... ... ..... .. ... ... ... .... .

Kl 50 **** *** ** **** **** **** ** ***** ** *** *:* **** ** **** **** ***** *** ***** ** ** ***.**

L...

.j..I . .

fJ) 40 ****** ******* **** **** ** *** **** ****:*** .. ***** **** ** ******** *** *** ***** **.** .. ** *** ***** ........ .. .... ... ... .

30 **** ***** **** **** ************* ****:**** **** ****** ** **** ***** *** *******:** ** *** **** ** ****** ***** *** ***** ***

20 . ~

10 ***** *** ** *** *** ****** **** ******* ** 'l*** . ****** ** ** ....... .. ...... ..... ...-.. ..... ... .... ..... ..... .... .... .. .

0 0 10 20 30 Strain [%]

Tensile Specimen 4JL Tested at 550°F Figure 5-31 Engineering Stress-Strain Curve for AN0-2 Heat-Affected Zone Material Tensile Specimen 4JL WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates (Sn) transport analysis performed for the Arkansas Nuclear One Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron (E > 1.0 MeV) fluence and iron atom displacements (dpa) were established on a plant- and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule 284°, withdrawn at the end of the 241h plant operating cycle, is provided. In addition, the sensor set from the previously withdrawn and evaluated Capsule 97° was also re-analyzed. However, the sensor set from the previously withdrawn and evaluated Capsule 104° was not re-analyzed since the counting results for this sensor set were not included in the Capsule 104° analysis report. Comparisons of the results from the dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently form the basis for projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 54 effective full-power years (EFPY).

The use of fast neutron (E > 1.0 MeV) fluence to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel.

However, in recent years, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-13, "Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 18] recommends reporting displacements per iron atom along with fluence (E > 1.0 MeV) to provide a database for future reference.

The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-94, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 19]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. 1].

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on nuclear cross-section data derived from ENDF/B-VI. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 20]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Ref. 21].

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-2 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Arkansas Nuclear One Unit 2 reactor vessel is shown in Figure 4-1. Six irradiation capsules attached to the pressure vessel inner wall are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 83°, 97°, 104°, 263°, 277°, and 284°, as shown in Figure 4-1. These full-core positions correspond to the octant symmetric locations shown in Figure 6-1: 7° from the core cardinal axes (for the 83°, 97°, 263°, and 277° capsules) and 14° from the core cardinal axes (for the 104° and 284° capsules).

The stainless steel specimen containers are 1.5-inch by 0.75-inch and are approximately 98 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the approximate central 8 feet of the 12.5-foot-high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a significant effect on both the spatial distribution of neutron fluence rate and the neutron spectrum in the vicinity of the capsules. However, the capsules are far enough apart that they do not interfere with one another. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Arkansas Nuclear One Unit 2 reactor vessel and surveillance capsules, a series of fuel-cycle-specific forward transport calculations were carried out using the following three-dimensional fluence rate synthesis technique:

</J (r, z)

</J(r,e,z) = </J(r,e) x </J(r) (Eqn. 6-1) where ~(r,8,z) is the synthesized three-dimensional neutron fluence rate distribution, ~(r,8) is the transport solution in r,8 geometry, ~(r,z) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and ~(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,8 two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Arkansas Nuclear One Unit 2.

For the Arkansas Nuclear One Unit 2 transport calculations, the r,8 models depicted in Figure 6-1 and Figure 6-2 were utilized since, with the exception of the capsules, the reactor is octant symmetric. These r,8 models include the core, the reactor internals, octants with suviellance capules at 7° and 14° and octants without surveillance capsules, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations. In developing these analytical models, nominal design dimensions were generally employed for the various structural components. Note that for the pressure vessel inner radius, however, the average of the as-built inner radii was used. In addition, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full-power operating conditions. The coolant densities were treated on a fuel-cycle-specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,8 reactor model in Figure 6-1 consisted of 166 radial by 123 azimuthal intervals. The geometric mesh description of the r,8 reactor model in Figure 6-2 consisted of 166 radial by 116 azimuthal intervals. Mesh sizes were chosen to assure WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-3 that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration fluence rate convergence criterion utilized in the r,8 calculations was set at a value of 0.001.

The r,z model used for the Arkansas Nuclear One Unit 2 calculations is shown in Figure 6-3 and extends radially from the centerline of the reactor core out to the primary biological shield and over an axial span from an elevation approximately 4.9 feet below to 6 feet above the active core. As in the case of the r,8 models, nominal design dimensions, with the exception of the pressure vessel inner radius, and full-power coolant densities were employed in the calculations. In the r,z model, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel girth ribs located between the core shroud and core barrel regions were also explicitly included in the model. The geometric mesh description of the r,z reactor model in Figure 6-3 consisted of 161 radial by 222 axial intervals. As in the case of the r,8 calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration fluence rate convergence criterion utilized in the r,z calculations was set at a value of 0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 161 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant-specific transport analysis for each of the first 25 fuel cycles at Arkansas Nuclear One Unit 2 included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions (note that Cycles 1-24 have been completed; Cycle 25 is based on the expected core design for this cycle and an assumed cycle length of 1.37 EFPY). This information was used to develop spatial- and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel-cycle-averaged neutron fluence rate, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and bumup history of individual fuel assemblies.

From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code [Ref. 24] and the BUGLE-96 cross-section library [Ref. 23]. The BUGLE-96 library provides a coupled 47-neutron, 20-gamma-group cross-section data set produced specifically for light-water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a Ps Legendre expansion, and angular discretization was modeled with an S 16 order of angular quadrature. Energy- and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis.

Selected results from the neutron transport analyses are provided in Table 6-1 through Table 6-10. In Table 6-1, the calculated exposure rates and integral exposures expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and fast neutron fluence (E > 1.0 MeV), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., at the 7° and 14° capsule locations. In Table 6-2, the calculated exposure rates and integral exposures expressed in terms of iron atom displacement rate and iron atom displacements, respectively, are given at the radial and azimuthal center WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-4 of the surveillance capsule positions, i.e., at the 7° and 14° capsule locations. These results, representative of the average axial exposure of the material specimens, establish the calculated exposure of the surveillance capsules to date and projected into the future.

Similar information in terms of calculated fast neutron fluence rate (E > 1.0 MeV), fast neutron fluence (E > 1.0 MeV), dpa/s, and dpa, are provided in Table 6-3 through Table 6-6, respectively, for the reactor vessel inner radius at four azimuthal locations, as well as the maximum exposure observed within the octant. The vessel data given in Table 6-3 through Table 6-6 were taken at the clad/base metal interface and represent maximum calculated exposure levels on the vessel. From the data provided in Table 6-4, it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 MeV) at the end of Cycle 24 (i.e.,

after 29.24 EFPY of plant operation) was 2.77E+19 n/cm2 .

These data tabulations include both plant- and fuel-cycle-specific calculated neutron exposures at the end of Cycle 24, at the end of projected Cycle 25, and at further projections to 54 EFPY. The calculations account for the uprate from 2815 MWt to 3026 MWt that occurred at the beginning of Cycle 16. The projections are based on the assumption that the core power distributions and associated plant operating characteristics from Cycle 23, Cycle 24, and the design of Cycle 25 are representative of future plant operation. The future projections are based on the current reactor power level of 3026 MWt.

The calculated fast neutron exposures for the three surveillance capsules withdrawn from Arkansas Nuclear One Unit 2 are provided in Table 6-7. These neutron exposure levels are based on the plant- and fuel-cycle-specific neutron transport calculations performed for the Arkansas Nuclear One Unit 2 reactor.

From the data provided in Table 6-7, Capsule 284° received a fast neutron fluence (E > 1.0 MeV) of 3.67E+19 n/cm2 after exposure through the end of the 241h fuel cycle (i.e., after 29.24 EFPY).

Updated lead factors for the Arkansas Nuclear One Unit 2 surveillance capsules are provided in Table 6-8.

The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-8, the lead factors for capsules that have been withdrawn from the reactor (97°, 104°, and 284°) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules. For the capsules remaining in the reactor (83°, 263°, and 277°), the lead factor corresponds to the calculated fluence at the projected end of Cycle 25.

Table 6-9 presents the maximum fast neutron fluences (E > 1.0 MeV) and Table 6-10 presents the maximum dpa for pressure vessel materials.

6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serve to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least-squares evaluation comparisons is documented in Appendix A.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-5 The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule 284°, which was withdrawn from Arkansas Nuclear One Unit 2 at the end of the 241h fuel cycle, is summarized below.

Reaction Rate (rps/atom)

Reaction MIC Measured (M) Calculated (C) 63 Cu(Cd) (n,a) 6°Co 6.14E-17 5.60E-17 1.10 54Fe (n,p) 54Mn 5.42E-15 5.07E-15 1.07 58Ni(Cd) (n,p) 58 Co 7.27E-15 6.63E-15 1.10 46 Ti (n,p) 46 Sc 9.68E-16 8.80E-16 1.10 238 U(Cd) (n,f) 137 Cs 1.51E-14 1.76E-14 0.86 Average 1.05 Standard Deviation(%) 10.0 The measured-to-calculated (MIC) reaction rate ratios for the Capsule 284° threshold reactions range from 0.86 to 1.10, and the average MIC ratio is 1.05 +/- 10.0% (lcr). This direct comparison falls within the

+/- 20% criterion specified in Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Arkansas Nuclear One Unit 2.

6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Arkansas Nuclear One Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages:

1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.
3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.
4. Comparisons of the plant-specific calculations with all available dosimetry results from the Arkansas Nuclear One Unit 2 surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-6 qualification (H.B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods-related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations, as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the Arkansas Nuclear One Unit 2 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Arkansas Nuclear One Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Arkansas Nuclear One Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.

The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 22.

Description Capsule and Vessel IR PCA Comparisons 3%

H.B. Robinson Comparisons 3%

Analytical Sensitivity Studies 11%

Additional Uncertainty for Factors not Explicitly 5%

Net Calculational Uncertainty 13%

The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random, .and no systematic bias was applied to the analytical results. The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Arkansas Nuclear One Unit 2.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-7 Table 6-1 Calculated Fast Neutron (E > 1.0 MeV) Fluence Rate and Fluence at the Surveillance Capsule Center at Core Midplane Cumulative Fluence Rate (n/cm 2-s) Fluence (n/cm 2)

Cycle Operating Cycle Length Time 7° Capsule 14° Capsule 7° Capsule 14° Capsule (EFPY)

(EFPY) 1 0.89 0.89 5.llE+lO 5.08E+l0 1.44E+18 1.43E+18.

2 0.80 1.69 6.30E+10 6.21E+10 3.03E+l8 3.00E+18 3 0.64 2.33 6.16E+10 6.0lE+lO 4.28E+18 4.21E+ 18

.A 0.97 3.31 6.llE+lO 5.88E+10 6.15E+18 6.02E+18 5 0.85 4.16 6.61E+10 6.44E+10 7.94E+18 7.76E+18 6 1.22 5.38 4.90E+10 4.81E+l0 9.82E+l8 9.61E+18 7 1.13 6.51 4.50E+10 4.28E+l0 1.14E+19 1.11E+19 8 1.15 7.66 4.67E+10 4.52E+l0 1.31E+l9 1.28E+ 19 9 1.18 8.84 4.59E+10 4.45E+10 1.48E+19 1.44E+ 19 10 1.32 10.16 4.31E+10 4.21E+l0 1.66E+19 1.62E+19 11 1.33 11.49 3.l 7E+ 10 2.90E+l0 1.80E+19 1.74E+19 12 1.31 12.81 3.37E+10 3.25E+l0 1.94E+19 1.87E+19 13 1.47 14.27 3.08E+10 2.79E+l0 2.08E+19 2.00E+19 14 1.41 15.69 3.25E+10 3.18E+10 2.22E+19 2.15E+19 15 1.29 16.98 3.14E+10 3.08E+l0 2.35E+19 2.27E+19 16 1.35 18.33 3.75E+10 3.52E+10 2.51E+19 2.42E+19 17 1.36 19.69 3.56E+10 3.46E+ 10 2.66E+19 2.57E+19 18 1.43 21.12 3.80E+l0 3.85E+l0 2.84E+19 2.74E+19 19 1.34 22.46 3.66E+10 3.66E+l0 2.99E+19 2.90E+19 20 1.36 23.82 3.67E+10 3.66E+l0 3.15E+19 3.05E+19 21 1.35 25.17 3.64E+10 3.63E+l0 3.30E+19 3.21E+19 22 1.45 26.61 3.58E+10 3.58E+l0 3.47E+ 19 3.37E+19 23 1.36 27.98 3.58E+10 3.71E+l0 3.62E+19 3.53E+19 24 1.26 29.24 3.32E+10 3.45E+l0 3.75E+19 3.67E+19 25(a) 1.37 30.60 3.86E+10 3.85E+l0 3.92E+19 3.84E+19 FutureCbl 32.00 4.08E+19 4.00E+19 FutureCb) 36.00 4.53E+19 4.46E+19 FutureCbl 40.00 4.98E+19 4.92E+19 FutureCb) 48.00 5.89E+19 5.85E+19 FutureCbl 54.00 6.57E+19 6.55E+19 Notes:

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

(b) Values beyond Cycle 25 are based on the average power distributions and core operating conditions of Cycles 23-25.

WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 6-8 Table 6-2 Calculated Iron Atom Displacement Rate and Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane Cumulative Displacement Rate (dpa/s) Displacements (dpa)

Cycle Operating Cycle Length Time 7° Capsule 14° Capsule 7° Capsule 14° Capsule (EFPY)

(EFPY) 1 0.89 0.89 7.46E-11 7.40E-11 2.09E-03 2.08E-03 2 0.80 1.69 9.18E-11 9.05E-11 4.42E-03 4.37E-03 3 0.64 2.33 8.97E-11 8.76E-11 6.23E-03 6.14E-03 4 0.97 3.31 8.90E-11 8.57E-11 8.97E-03 8.77E-03 5 0.85 4.16 9.63E-11 9.38E-11 1.16E-02 1.13E-02 6 1.22 5.38 7.15E-11 7.02E-11 l.43E-02 1.40E-02 7 1.13 6.51 6.57E-11 6.25E-11 1.67E-02 1.62E-02 8 1.15 7.66 6.81E-11 6.59E-11 1.91E-02 1.86E-02 9 1.18 8.84 6.70E-11 6.49E-ll 2.16E-02 2.lOE-02 10 1.32 10.16 6.29E-11 6.15E-11 2.42E-02 2.36E-02 11 1.33 11.49 4.63E-11 4.24E-11 2.62E-02 2.54E-02 12 1.31 12.81 4.92E-ll 4.75E-ll 2.82E-02 2.73E-02 13 . 1.47 14.27 4.50E-ll 4.08E-11 3.03E-02 2.92E-02 14 1.41 15.69 4.75E-ll 4.64E-11 3.24E-02 3.13E-02 15 1.29 16.98 4.59E-11 4.50E-11 3.43E-02 3.31E-02 16 1.35 18.33 5.48E-11 5.14E-11 3.66E-02 3.53E-02 17 1.36 19.69 5.20E-11 5.06E-11 3.89E-02 3.75E-02 18 1.43 21.12 5.55E-11 5.62E-11 4.14E-02 4.00E-02 19 1.34 22.46 5.35E-11 5.35E-11 4.36E-02 4.23E-02 20 1.36 23.82 5.36E-ll 5.34E-ll 4.59E-02 4.46E-02 21 1.35 25.17 5.32E-ll 5.31E-11 4.82E-02 4.68E-02 22 1.45 26.61 5.24E-11 5.23E-ll 5.06E-02 4.92E-02 23 1.36 27.98 5.24E-11 5.42E-ll 5.29E-02 5.16E-02 24 1.26 29.24 4.86E-11 5.04E-ll 5.48E-02 5.36E-02 25(a) 1.37 30.60 5.64E-11 5.62E-11 5.72E-02 5.60E-02 Future(b) 32.00 5.95E-02 5.83E-02 Future<bJ 36.00 6.62E-02 6.51E-02 Future(b) 40.00 7.28E-02 7.19E-02 Future(b) 48.00 8.60E-02 8.54E-02 Future(b) 54.00 9.60E-02 9.55E-02 Notes:

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

(b) Values beyond Cycle 25 are based on the average power distributions and core operating conditions of Cycles 23-25.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietaiy Class 3 6-9 Table 6-3 Calculated Azimuthal Variation of the Maximum Fast Neutron (E > 1.0 MeV)

Fluence Rate at the Reactor Vessel Clad/Base Metal Interface Cumulative Fluence Rate (n/cm 2-s)

Cycle Operating Cycle Length oo Time 15° 30° 45° Maximum (EFPY)

(EFPY) 1 0.89 0.89 3.62E+10 3.60E+10 2.71E+ld 2.63E+10 3.81E+10 2 0.80 1.69 4.59E+10 4.51E+10 3.38E+10 3.22E+10 4.80E+10 3 0.64 2.33 4.34E+10 4.21E+10 3.18E+10 3.12E+ 10 4.52E+10 4 0.97 3.31 4.36E+ 10 4.12E+10 3.34E+10 3.33E+10 4.46E+10 5 0.85 4.16 4.68E+l0 4.52E+10 3.34E+10 3.30E+l0 4.86E+10 6 1.22 5.38 3.40E+10 3.40E+10 2.54E+10 2.34E+10 3.64E+10 7 1.13 6.51 3.17E+10 3.03E+10 2.39E+10 2.20E+10 3.30E+10 8 1.15 7.66 3.25E+10 3.20E+10 2.42E+10 2.17E+10 3.44E+10 9 1.18 8.84 3.20E+10 3.15E+10 2.38E+10 2.09E+10 3.38E+10 10 1.32 10.16 2.98E+10 2.98E+10 2.35E+10 2.26E+10 3.19E+10 11 1.33 11.49 2.36E+10 2.06E+10 1.73E+10 1.83E+10 2.36E+10 12 1.31 12.81 2.41E+10 2.30E+10 1.77E+10 1.75E+10 2.48E+10 13 1.47 14.27 2.29E+10 1.99E+10 1.63E+10 1.78E+10 2.29E+10 14 1.41 15.69 2.35E+10 2.28E+10 1.79E+10 1.78E+10 2.42E+10 15 1.29 16.98 2.31E+10 2.23E+10 1.90E+10 1.85E+10 2.34E+10 16 1.35 18.33 2.73E+l0 2.49E+10 1.90E+l0 1.92E+10 2.75E+10 17 1.36 19.69 2.56E+10 2.47E+10 1.96E+10 1.89E+10 2.63E+10 18 1.43 21.12 2.77E+10 2.83E+10 2.21E+10 2.13E+10 2.95E+10 19 1.34 22.46 2.71E+10 2.72E+10 2.09E+l0 2.06E+10 2.85E+10 20 1.36 23.82 2.72E+10 2.72E+10 2.lOE+lO 2.llE+lO 2.85E+10 21 1.35 25.17 2.72E+10 2.72E+10 2.12E+10 2.12E+10 2.86E+10 22 1.45 26.61 2.59E+10 2.59E+10 2.03E+10 2.05E+10 2.72E+10 23 1.36 27.98 2.50E+10 2.68E+10 2.13E+10 2.16E+10 2.76E+10 24 1.26 29.24 2.40E+ 10 2.57E+10 2.14E+10 2.20E+10 2.64E+10 25<*) 1.37 30.60 2.97E+10 2.96E+10 2.29E+10 2.32E+10 3.llE+lO Note:

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-10 Table 6-4 Calculated Azimuthal Variation of the Maximum Fast Neutron (E > 1.0 MeV)

Fluence at the Reactor Vessel Clad/Base Metal Interface Cumulative Fluence (n/cm 2 )

Cycle Operating Cycle Length oo Time 15° 30° 45° Maximum (EFPY)

(EFPY) 1 0.89 0.89 l.02E+18 l.01E+18 7.61E+17 7.37E+17 l.07E+18 2 0.80 1.69 2.16E+18 2.14E+18 1.61E+l8 l.54E+18 2.27E+18 3 0.64 2.33 3.04E+18 2.99E+18 2.25E+18 2.17E+18 3.18E+18 4 0.97 3.31 4.38E+18 4.26E+18 3.27E+18 3.19E+18 4.55E+18 5 0.85 4.16 5.64E+18 5.48E+18 4.17E+18 4.08E+18 5.86E+18 6 1.22 5.38 6.95E+18 6.78E+18 5.15E+18 4.98E+18 7.26E+18 7 1.13 6.51 8.08E+18 7.86E+18 6.00E+18 5.77E+18 8.44E+18 8 1.15 7.66 9.26E+l8 9.02E+18 6.88E+18 6.56E+18 9.68E+18 9 1.18 8.84 1.04E+19 1.02E+19 7.76E+18 7.33E+18 1.09E+19 10 1.32 10.16 1.17E+19 1.14E+19 8.74E+18 8.27E+18 l.23E+19 11 1.33 11.49 1.27E+19 l.23E+19 9.47E+18 9.04E+18 1.32E+19 12 1.31 12.81 1.37E+19 l.32E+19 l.02E+19 9.76E+18 l.43E+19 13 1.47 14.27 1.47E+ 19 1.42E+19 1.09E+19 1.06E+19 1.53E+19 14 1.41 15.69 1.57E+19 l.51E+19 1.17E+19 1.14E+19 l.63E+19 15 1.29 16.98 1.67E+l9 1.60E+l9 1.25E+19 1.21E+l9 1.73E+19 16 1.35 18.33 1.78E+19 1.71E+19 l.33E+19 1.29E+19 1.84E+19 17 1.36 19.69 1.89E+19 1.81E+19 1.41E+19 l.37E+l9 1.95E+19 18 1.43 21.12 2.01E+19 1.94E+19 1.51E+19 1.46E+19 2.08E+19 19 1.34 22.46 2.12E+ 19 2.05E+19 1.59E+19 1.55E+19 2.20E+19 20 1.36 23.82 2.23E+19 2.16E+19 1.68E+19 1.64E+19 2.32E+ 19 21 1.35 25.17 2.35E+19 2.27E+19 1.77E+19 l.72E+19 2.43E+19 22 1.45 26.61 2.46E+ 19 2.39E+19 1.86E+19 1.81E+19 2.55E+19 23 1.36 27.98 2.57E+19 2.50E+19 1.95E+19 l.91E+l9 2.67E+19 24 1.26 29.24 2.66E+19 2.60E+19 2.03E+19 1.99E+19 2.77E+19 25(a) 1.37 30.60 2.78E+19 2.72E+19 2.12E+19 2.08E+19 2.90E+19 Future(b) 32.00 2.89E+l9 2.84E+19 2.22E+19 2.18E+19 3.02E+19<cl Future(b) 36.00 3.22E+19 3.18E+19 2.49E+19 2.46E+l9 3.37E+19 Future(b) 40.00 3.55E+19 3.53E+19 2.77E+19 2.74E+19 3.73E+19 Future(b) 48.00 4.21E+19 4.22E+19 3.32E+l9 3.30E+19 4.44E+19 Future(b) 54.00 4.71E+19 4.74E+19 3.73E+19 3.72E+19 4.98E+19 Notes:

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

(b) Values beyond Cycle 25 are based on the average power distributions and core operating conditions of Cycles 23-25.

(c) This updated 32 EFPY projected maximum fluence is bounded by the maximum 32 EFPY projected fluence value (3.791E+l9 n/cm2) in the analysis ofrecord [Ref. 17].

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-11 Table 6-5 Calculated Azimuthal Variation of the Maximum Iron Atom Displacement Rate at the Reactor Vessel Clad/Base Metal Interface Cumulative Displacement Rate I dpa/s)

Cycle Operating Cycle Length oo Time 15° 30° 45° Maximum (EFPY)

(EFPY) 1 0.89 0.89 5.52E-11 5.47E-ll 4.14E-11 4.0lE-11 5.79E-11 2 0.80 1.69 6.99E-11 6.86E-11 5.16E-11 4.91E-11 7.29E-11 3 0.64 2.33 6.62E-11 6.40E-11 4.85E-11 4.76E-ll 6.87E-11 4 0.97 3.31 6.65E-11 6.27E-ll 5.lOE-11 5.08E-11 6.78E-11 5 0.85 4.16 7.13E-11 6.87E-11 5.lOE-11 5.04E-11 7.39E-11 6 1.22 5.38 5.20E-11 5.17E-11 3.88E-11 3.58E-11 5.53E-11 7 1.13 6.51 4.84E-ll 4.61E-11 3.66E-11 3.37E-ll 5.02E-11 8 1.15 7.66 4.97E-11 4.86E-11 3.69E-11 3.33E-ll 5.24E-11 9 1.18 8.84 4.89E-11 4.79E-11 3.64E-11 3.21E-11 5.15E-11 10 1.32 10.16 4.56E-ll 4.54E-11 3.59E-11 3.45E-ll 4.84E-11 11 1.33 11.49 3.60E-11 3.14E-11 2.65E-11 2.80E-11 3.60E-ll 12 1.31 12.81 3.68E-ll 3.51E-11 2.71E-11 2.68E-11 3.78E-11 13 1.47 14.27 3.50E-ll 3.03E-11 2.50E-11 2.73E-ll 3.50E-11 14 1.41 15.69 3.59E-11 3.48E-11 2.73E-11 2.73E-11 3.69E-11 15 1.29 16.98 3.53E-11 3.41E-11 2.91E-11 2.83E-11 3.57E-11 16 1.35 18.33 4.17E-ll 3.80E-11 2.91E-11 2.95E-11 4.19E-11 17 1.36 19.69 3.91E-11 3.76E-11 3.0lE-11 2.89E-11 4.0lE-11 18 1.43 21.12 4.23E-11 4.31E-11 3.38E-11 3.26E-11 4.49E-11 19 1.34 22.46 4.13E-11 4.14E-11 3.20E-11 3.16E-11 4.34E-11 20 1.36 23.82 4.15E-11 4.13E-11 3.21E-11 3.23E-ll 4.34E-11 21 1.35 25.17 4.16E-11 4.14E-11 3.24E-ll 3.25E-11 4.35E-11 22 1.45 26.61 3.95E-11 3.95E-11 3.lOE-11 3.13E-11 4.14E-11 23 1.36 27.98 3.82E-11 4.08E-11 3.26E-11 3.29E-11 4.20E-11 24 1.26 29.24 3.67E-11 3.91E-11 3.27E-ll 3.36E-11 4.02E-11 25(a) 1.37 30.60 4.53E-11 4.51E-11 3.50E-11 3.55E-11 4.74E-11 Note:

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-12 Table 6-6 Calculated Azimuthal Variation of the Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface Cumulative Displacements (dpa)

Cycle Operating Cycle Length Time oo 15° 30° 45° Maximum (EFPY)

(EFPY) 1 0.89 0.89 l.55E-03 1.54E-03 l.16E-03 1.13E-03 1.63E-03 2 0.80 1.69 3.30E-03 3.25E-03 2.45E-03 2.36E-03 3.45E-03 3 0.64 2.33 4.63E-03 4.54E-03 3.43E-03 3.32E-03 4.83E-03 4 0.97 3.31 6.68E-03 6.47E-03 5.00E-03 4.88E-03 6.91E-03 5 0.85 4.16 8.60E-03 8.32E-03 6.37E-03 6.24E-03 8.90E-03 6 1.22 5.38 1.06E-02 1.03E-02 7.86E-03 7.61E-03 1.lOE-02 7 1.13 6.51 1.23E-02 1.20E-02 9.17E-03 8.82E-03 l.28E-02 8 1.15 7.66 1.41E-02 l.37E-02 1.05E-02 1.00E-02 1.47E-02 9 1.18 8.84 1.59E-02 1.55E-02 1.19E-02 1.12E-02 1.66E-02 10 1.32 10.16 1.78E-02 1.74E-02 l.34E-02 1.27E-02 1.86E-02 11 1.33 11.49 1.94E-02 1.87E-02 1.45E-02 l.38E-02 2.0lE-02 12 1.31 12.81 2.09E-02 2.02E-02 1.56E-02 1.49E-02 2.17E-02 13 1.47 14.27 2.25E-02 2.15E-02 1.67E-02 1.62E-02 2.32E-02 14 1.41 15.69 2.40E-02 2.31E-02 1.79E-02 1.74E-02 2.48E-02 15 1.29 16.98 2.54E-02 2.44E-02 1.91E-02 1.85E-02 2.63E-02 16 1.35 18.33 2.72E-02 2.60E-02 2.03E-02 1.97E-02 2.80E-02 17 1.36 19.69 2.89E-02 2.76E-02 2.16E-02 2.lOE-02 2.97E-02 18 1.43 21.12 3.07E-02 2.95E-02 2.31E-02 2.24E-02 3.17E-02 19 1.34 22.46 3.24E-02 3.12E-02 2.44E-02 2.37E-02 3.35E-02 20 1.36 23.82 3.41E-02 3.29E-02 2.57E-02 2.50E-02 3.53E-02 21 1.35 25.17 3.58E-02 3.46E-02 2.70E-02 2.63E-02 3.70E-02 22 1.45 26.61 3.76E-02 3.64E-02 2.84E-02 2.77E-02 3.89E-02 23 1.36 27.98 3.92E-02 3.81E-02 2.98E-02 2.91E-02 4.06E-02 24 1.26 29.24 4.06E-02 3.96E-02 3.llE-02 3.04E-02 4.22E-02 25(*) 1.37 30.60 4.25E-02 4.14E-02 3.25E-02 3.19E-02 4.41E-02 FutureCb) 32.00 4.42E-02 4.32E-02 3.39E-02 3.33E-02 4.59E-02 FutureCb) 36.00 4.92E-02 4.84E-02 3.81E-02 3.76E-02 5.13E-02 FutureCb) 40.00 5.42E-02 5.37E-02 4.23E-02 4.19E-02 5.67E-02 Future(b) 48.00 6.43E-02 6.42E-02 5.08E-02 5.05E-02 6.76E-02 FutureCb) 54.00 7.19E-02 7.21E-02 5.71E-02 5.69E-02 7.58E-02 Note(s):

(a) Cycle 25 is the current operating cycle. Values listed for this cycle are projections based on the Cycle 25 design.

(b) Values beyond Cycle 25 are based on the average power distributions and core operating conditions of Cycles 23-25.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-13 Table 6-7 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Arkansas Nuclear One Unit 2 Cumulative Fluence Iron Atom Irradiation Capsule Irradiation Time (E > 1.0 MeV) Displacements Cycle(s)

(EFPY) (n/cm2) (dpa) 97° 1-2 1.69 3.03E+18 4.42E-03 104° 1-14 15.69 2.15E+19 3.13E-02 284° 1-24 29.24 3.67E+19 5.36E-02 Table 6-8 Calculated Surveillance Capsule Lead Factors Capsule Location Status Lead Factor 7° (Capsule 97°) Withdrawn EOC 2 1.34 14° (Capsule 104°) Withdrawn EOC 14 1.31 14° (Capsule 284°) Withdrawn EOC 24 1.32 7° (Capsules 83°, 263°, & 277°) In Reactor(*) 1.35 Note:

(a) Lead factor is based on the calculated fluence at the projected end of Cycle 25.

/

WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 6-14 Table 6-9 Calculated Maximum Fast Neutron (E > 1.0 MeV) Fluence at the Pressure Vessel Clad/Base Metal Interface Fluence (n/cm2)

Material 32 EFPY 36EFPY 40EFPY 48EFPY 54EFPY Inlet Nozzle to Upper Shell Welds -Lowest Extent Nozzle 1 4.78E+16 5.36E+16 5.93E+l6 7.09E+16 7.96E+16 Nozzle 2 4.78E+16 5.36E+16 5.93E+l6 7.09E+16 7.96E+16 Nozzle 3 4.78E+l6 5.36E+16 5.93E+16 7.09E+16 7.96E+l6 Nozzle4 4.78E+16 5.36E+16 5.93E+16 7.09E+16 7.96E+16 Outlet Nozzle to Upper Shell Welds -Lowest Extent Nozzle 1 6.05E+16 6.73E+16 7.41E+16 8.77E+16 9.80E+l6 Nozzle 2 6.05E+16 6.73E+16 7.41E+16 8.77E+l6 9.80E+16 Upper to Intermediate Shell Circumferential Weld 8-203 3.53E+17 3.96E+17 4.38E+17 5.24E+17 5.89E+17 Intermediate Shell Plates C-8009-1, -2, -3 3.02E+19 3.36E+19 3.70E+19 4.39E+ 19 4.91E+19 Intermediate Shell Longitudinal Welds 2-203 A 2.89E+19 3.21E+19 3.53E+19 4.16E+19 4.64E+19 2-203 B 2.22E+19 2.48E+19 2.75E+19 3.28E+19 3.68E+19 2-203 c 2.22E+19 2.48E+l9 2.75E+l9 3.28E+19 3.68E+19 Intermediate to Lower Shell Circumferential' Weld 9-203 3.00E+19 3.35E+l9 3.69E+19 4.38E+ 19 4.89E+19 Lower Shell Plates C-8010-1, -2, -3 3.02E+l9 3.37E+l9 3.73E+l9 4.44E+19 4.98E+19 Lower Shell Longitudinal Welds 3-203 A 2.89E+19 3.22E+l9 3.55E+l9 4.21E+l9 4.71E+l9 3-203 B 2.22E+l9 2.49E+l9 2.77E+l9 3.32E+l9 3.73E+l9 3-203 c 2.22E+l9 2.49E+l9 2.77E+l9 3.32E+19 3.73E+19 Lower Shell to Bottom Head Circumferential Weld 10-203 5.41E+16 6.06E+16 6.71E+16 8.0IE+16 8.98E+16 Notes:

(a) The axial location used corresponds to the bottom of the vessel support pad of the inlet nozzle, instead of the nozzle to upper shell weld. This provides a bounding fluence for the nozzle to upper shell weld.

(b) Projected values are based on the average power distributions and core operating conditions of Cycles 23-25.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-15 Table 6-10 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Clad/Base Metal Interface Iron Atom Displacements (dpa)

Material 32 EFPY 36 EFPY 40 EFPY 48 EFPY 54 EFPY Inlet Nozzle to Upper Shell Welds - Lowest Extent Nozzle 1 2.83E-04 3.l 7E-04 3.51E-04 4.19E-04 4.70E-04 Nozzle 2 2.83E-04 3.l 7E-04 3.51E-04 4.19E-04 4.70E-04 Nozzle 3 2.83E-04 3.17E-04 3.51E-04 4.19E-04 4.70E-04 Nozzle 4 2.83E-04 3.l 7E-04 3.51E-04 4.19E-04 4.70E-04 Outlet Nozzle to Upper Shell Welds - Lowest Extent Nozzle 1 3.37E-04 3.75E-04 4.14E-04 4.91E-04 5.48E-04 Nozzle 2 3.37E-04 3.75E-04 4.14E-04 4.91E-04 5.48E-04 Upper to Intermediate Shell Circumferential Weld 8-203 6.41E-04 7. l 8E-04 7.95E-04 9.50E-04 1.07E-03 Intermediate Shell Plates C-8009-1, -2, -3 4.59E-02 5.1 lE-02 5.64E-02 6.69E-02 7.47E-02 Intermediate Shell Longitudinal Welds 2-203 A 4.42E-02 4.90E-02 5.39E-02 6.36E-02 7.09E-02 2-203 B 3.39E-02 3.80E-02 4.20E-02 5.02E-02 5.63E-02 2-203 c 3.39E-02 3.80E-02 4.20E-02 5.02E-02 5.63E-02 Intermediate to Lower Shell Circumferential Weld 9-203 4.57E-02 5.lOE-02 5.62E-02 6.67E-02 7.45E-02 Lower Shell Plates C-8010-1 , -2, -3 4.59E-02 5.13E-02 5.67E-02 6.76E-02 7.58E-02 Lower Shell Longitudinal Welds 3-203 A 4.41E-02 4.92E-02 5.42E-02 6.43E-02 7.19E-02 3-203 B 3.39E-02 3.81E-02 4.23E-02 5.08E-02 5.71E-02 3-203 c 3.39E-02 3.81E-02 4.23E-02 5.08E-02 5.71E-02 Lower Shell to Bottom Head Circumferential Weld 10-203 2.85E-04 3.19E-04 3.53E-04 4.22E-04 4.73E-04 Notes:

(a) The axial location used corresponds to the bottom of the vessel support pad of the inlet nozzle, instead of the nozzle to upper shell weld. This provides a bounding fluence for the nozzle to upper shell weld.

(b) Projected values are based on the average power distributions and core operating conditions of Cycles 23-25 .

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-16 A 0 - 2 Vessel Model -

DORT - r,t Geometry with Capsules Meshes: 66R,1239

-- C""-.*-"*'-°"' - "'*-

-~* *--

~-

~.

Figure 6-1 Arkansas Nuclear One Unit 2 r,9 Reactor Geometry Plan View at the Core Midplane with Surveillance Capsules WCAP-1 8166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-17

- C.*

AN0 - 2 Vessel Model - DORT - r ,I Geometry without Capsules Meshes: 166R,1168 C.*tn*

Figure 6-2 Arkansas Nuclear One Unit 2 r,9 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 6-18 AN0 - 2 Vessel Model - DORT - r, z Geometry Meshes: 161R,222Z

- tc*

~...... y... °"'

- Ccrt 9roul

_, .... - c.-. ~

..... - C..br

........... tco:tr II- . .

J

- IP " "'

N

~

N q

~

'E

~

N N

I Sl ci N"'

....aS

'jb.O 9U 182.9 27U 365.8 R le J Figure 6-3 Arkansas Nuclear One Unit 2 r,z Reactor Geometry Section View WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM E185-82 [Ref. 10]. Note that it is recommended for future capsule(s) to be removed from the AN0-2 reactor vessel.

Table 7-1 Surveillance Capsule Withdrawal Schedule Capsule ID and Capsule Lead Withdrawal Capsule Fluence Status EFPY(b,c)

Location Factor(a) (n/cm2 , E > 1.0 MeV)(c) 97° Withdrawn (EOC 2) 1.34 1.69 0.303 x 10 19 104° Withdrawn (EOC 14) 1.31 15.69 2.15 x 10 19 284° Withdrawn (EOC 24) 1.32 29.24 3.67 x 10 19 277° In Reactor 1.35 40.00(d) 4.98 x 10 19(d) 83° In Reactor 1.35 Note (e) Note (e) 263° In Reactor 1.35 Note (f) Note (t)

Notes:

(a) Updated in Capsule 284° dosimetry analysis; see Table 6-8.

(b) EFPY from plant startup.

(c) Updated in Capsule 284° dosimetry analysis; see Table 6-7.

(d) Capsule 277° should be withdrawn at the vessel refueling outage nearest to but following 40 EFPY of plant operation, which is when the fluence on the capsule will have reached the projected 60-year (54 EFPY) peak vessel fluence (4.98 x 10 19 n/cm2).

(e) Capsule 83° should remain in the reactor. If additional metallurgical data is needed for AN0-2, such as in support of a second license renewal to 80 total years of operation, withdrawal and testing of Capsule 83° should be considered.

(t) Capsule 263° should remain in the reactor and continue to accrue irradiation for potential future testing, if needed.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, May 1988.
2. Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.
3. Combustion Engineering Report A-NLM-005, Revision 1, Program for Irradiation Surveillance ofArkansas Nuclear One Unit 2 Reactor Vessel Materials, October 1974.
4. Combustion Engineering Report CEN-15(A)-P, Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Arkansas Nuclear One -

Unit 2 Reactor Vessel Materials, May 1975.

5. Combustion Engineering Report TR-MCD-002, Arkansas Power & Light Arkansas Nuclear One

- Unit 2 Evaluation of Baseline Specimens Reactor Vessel Materials Irradiation Surveillance Program, March 1976.

6. ASTM E185-73, Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels, 1973.
7. Appendix G of the ASME Boiler and Pressure Vessel (B&PV) Code,Section XI, Division 1, Fracture Toughness Criteria for Protection Against Failure.
8. ASTM E208-06, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature ofFerritic Steels, 2006.
9. NUREG/CR-6413; ORNL/TM-13133, Analysis of the Irradiation Data for A302B and A533B Correlation Monitor Materials, April 1996.
10. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), 1982.
11. ASTM E23-07a, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, 2007.
12. ASTM E2298-15, Standard Test Method for Instrumented Impact Testing of Metallic Materials, 2015.
13. ASTM A370-16, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, 2016.
14. ASTM E8/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, 2015.
15. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, 2009.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 8-2

16. Battelle - Columbus Laboratories Report BMI-0584, Final Report on Examination, Testing, and Evaluation of Irradiated Pressure Vessel Surveillance Specimens from the Arkansas Nuclear One Unit 2 Generating Plant to Arkansas Power and Light Company, May 1984.
17. AREVA NP, Inc. Report BAW-2399, Revision 1, Analysis of Capsule W-104 Entergy Operations, Inc. Arkansas Nuclear One Unit 2 Power Plant Reactor Vessel Material Surveillance Program, F~burary 2005.
18. ASTM E853-13, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, 2013.
19. ASTM E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms ofDisplacements Per Atom (DPA), E706 (ID), 1994.
20. Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
21. Westinghouse Report WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Coo/down Limit Curves, May 2004.
22. Westinghouse Report WCAP-16083-NP-A, Revision 0, Benchmark Testing of the FERRET Code for Least Squares Evaluation ofLight Water Reactor Dosimetry, May 2006.
23. RSICC Data Library Collection DLC-185, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derivedfrom ENDFIB-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, July 1999.
24. RSICC Computer Code Collection CCC-650, DOORS 3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for Capsules 97° and 284° are provided in this appendix. The sensor sets have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. As noted in Section 6.1, the sensor set from the previously withdrawn and evaluated Capsule 104° was not re-analyzed since the counting results for this sensor set were not included in the Capsule 104° analysis report. One of the main purposes for providing this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of two of the three surveillance capsules analyzed to date as part of the Arkansas Nuclear One Unit 2 reactor vessel materials surveillance program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Capsule Azimuthal Withdrawal Irradiation Time Location Time (EFPY) 97° 97° End of Cycle 2 1.69 284° 284° End of Cycle 24 29.24 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-2 The passive neutron sensors included in the evaluations of Surveillance Capsules 97° and 284° are summarized as follows:

Sensor Material Reaction Of Interest Capsule 97° Capsule 284° Copper (Cd) 63 Cu(Cd) (n,a) °Co 6 x x Iron 54 Fe (n,p) 54Mn x x Nickel (Cd) 58 Ni(Cd) (n,p) 58 Co x x Titanium 46 Ti (n,p) 46 Sc x x Cobalt-Aluminum(a) 59 Co (n,y) 6°Co x x Uranium-238(a) 238 U (n,f) FP x x Notes:

(a) The cobalt-aluminum and uranium sensors include both bare and cadmium-covered sensors.

(b) The surveillance capsules also contained sulfur monitors which, due to the short half-life of their activation product isotope (3 2P, 14.3 days), were not analyzed.

Pertinent physical and nuclear characteristics of the passive neutron sensors analyzed are listed in Table A-1.

The use of passive monitors does not yield a direct measure of the energy-dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron fluence rate has on the target material over the course of the irradiation period. An accurate assessment of the average neutron fluence rate level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • the measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

The radiometric counting of the sensors from Capsule 284 ° was carried out by Pace Analytical Services, Inc. The radiometric counting followed established ASTM procedures.

The irradiation history of the reactor over the irradiation periods experienced by Capsules 97° and 284 ° was based on the monthly power generation of Arkansas Nuclear One Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period (Cycle 24). For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules 97° and 284° is given in Table A-2.

WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 A-3 Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A Measured specific activity (dps/g).

No Number of target element atoms per gram of sensor.

F Atom fraction of the target isotope in the target element.

y Number of product atoms produced per reaction.

Average core power level during irradiation period j (MW).

Pref Maximum or reference power level of the reactor (MW).

Calculated ratio of~ (E > 1.0 MeV) during irradiation period j to the time weighted average~ (E > 1.0 MeV) over the entire irradiation period.

Decay constant of the product isotope (1/sec).

Length of irradiation period j (sec).

= Decay time following irradiation period j (sec).

The summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[P red accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Ci, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Ci term should be employed. The impact of changing fluence rate levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-4 non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel-cycle-specific neutron fluence rates and the computed values for Ci are listed in Table A-3 and Table A-4, respectively, for Capsules 97° and 284°. These fluence rates represent the capsule- and cycle-dependent results at the radial and azimuthal center of the respective capsules at core midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238 U cadmium-covered measurements to account for the presence of 235 U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238 U sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the surveillance capsule irradiations. The correction factors corresponding to the Arkansas Nuclear One Unit 2 fission sensor reaction rates are summarized as follows:

Correction Capsule 97° Capsule 284° mu Impurity/Pu Build-in N/A<al 0.7536 23sU(y,f) N/A<aJ 0.8869 238 Net U Correction N/ACaJ 0.6684 Note:

(a) The uranium sensor dosimetry results were not used in the Capsule 97° analysis report to calculate fluence rates or fluences.

The correction factors for Capsule 284° were applied in a multiplicative fashion to the decay-corrected cadmium-covered uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for surveillance Capsules 97° and 284° are given in Table A-5 and Table A-6. In Table A-5 and Table A-6, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed both with and without the applied corrections for mu impurities, plutonium build-in, and gamma-ray-induced fission effects.

A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with associated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-5 R. +/- oR.

I 1

= '1 L... (cr.tg +/- 8 . )(<p g +/- 8 )

0' 1g Cflg g

relates a set of measured reaction rates, Ri, to a single neutron spectrum, <Jig, through the multigroup dosimeter reaction cross-sections, O"ig, each with an uncertainty 8. The primary objective of the least-squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least-squares evaluation of the Arkansas Nuclear One Unit 2 dosimetry, the FERRET code

[Ref. A-2] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine the best-estimate values of exposure parameters (fluence rate (E > 1.0 MeV) and dpa) and their associated uncertainties.

The application of the least-squares methodology requires the following input:

1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.
2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
3. The energy-dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Arkansas Nuclear One Unit 2 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A.1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-3].

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least-squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E944, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-4].

The following provides a summary of the uncertainties associated with the least-squares evaluation of the Arkansas Nuclear One Unit 2 surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-6 After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation:

Reaction Uncertainty 63 Cu (n,a) 60Co 5%

54Fe (n,p) 54Mn 5%

58 Ni (n,p) 58 Co 5%

46 Ti (n,p) 46 Sc 5%

59Co (n,y) 6oCo 5%

238 U (n,f) FP 10%

These uncertainties are given at the la level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross-sections were compiled from recent cross-section evaluations, and they have been tested for accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination, as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Arkansas Nuclear One Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Reaction Uncertainty 63 Cu (n,a) 6°Co 4.08-4.16%

54Fe (n,p) 54Mn 3.05-3.11%

58 Ni (n,p) 58 Co 4.49-4.56%

46 Ti (n,p) 46 Sc 4.50-4.87%

59 Co (n,y) 6°Co 0.79-3.59%

238 137 U (n,f) Cs 0.54-0.64%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-7 Calculated Neutron Spectrum The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg* specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Where:

(g-g')2 H=----

2yz The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (8 specifies the strength of the latter term). The value of 8 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Arkansas Nuclear One Unit 2 calculated spectra was as follows:

Fluence Rate Normalization Uncertainty (Rn) 15%

Fluence Rate Group Uncertainties (Rg, Rg*)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 25%

(E < 0.68 eV) 50%

Short Range Correlation (8)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-8 Fluence Rate Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least-squares evaluations of the dosimetry from Capsules 97° and 284° are provided in Table A-7 and Table A-8, respectively. In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in these tabulations are ratios of the measured reaction rates to both the calculated and least-squares adjusted reaction rates. These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Table A-7 and Table A-8 show that the adjustments to the calculated spectra are relatively small and within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% at the l cr level.

Further comparisons of the measurement results with calculations are given in Table A-9 and Table A-10.

In Table A-9, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-10, calculations of fast neutron exposure rates in terms of fast neutron (E > 1.0 MeV) fluence rate and dpa/s are compared with the best-estimate results obtained from the least-squares evaluation of the capsule dosimetry results.

These comparisons yield consistent and similar results with all measurement-to-calculation comparisons falling within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

In the case of the direct comparison of the measured and calculated sensor reaction rates, for the individual threshold foils considered in the least-squares analysis, the MIC comparisons of the fast neutron threshold reactions range from 0.86 to 1.12. The overall average MIC ratio is 1.07 with an associated standard deviation of 7. 7%.

In the case of the comparison of the best-estimate and calculated fast neutron exposure parameters, the BE/C comparisons range from 1.01 to 1.05 for both the fast neutron (E > 1.0 MeV) fluence rate and the iron atom displacement rate. The overall average BE/C ratio is 1.03 with an associated standard deviation of2.7% for the fast neutron (E > 1.0 MeV) fluence rate, and 1.03 with an associated standard deviation of

2. 7% for the iron atom displacement rate.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Arkansas Nuclear One Unit 2 reactor pressure vessel.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-9 Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors 90%

Atomic Target Product Fission Reaction of Response Weight Atom Half-life Yield Interest Range<a>

(gig-atom) Fraction (days) (%)

(MeV) 63 Cu (n,a) 6°Co 63.546 0.6917 1925.5 n/a 4.53-11.0 54Fe (n,p) 54Mn 55.845 0.05845 312.11 n/a 2.27-7.54 58 58 Ni (n,p) Co 58.693 0.68077 70.82 n/a 1.98-7.51 46 46 Ti (n,p) Sc 47.867 0.0825 83.79 n/a 3.70-9.43 59 6 Co (n,y) °Co 58.933 0.0017 1925.5 n/a non-threshold mu (n,f) 137 Cs 238.051 1.0 10983.07 6.02 1.44-6.69 Note:

(a) Energies between which 90% of activity is produced (235 U fission spectrum) [Ref. A-5]

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-10 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor Cyclel Cycle2 Cycle3 Cycle4 Month MWt-h Month MWt-h Month MWt-h Month .MWt-h Dec-78 44610 Apr-81 0 Sep-82 0 Oct-83 0 Jan-79 321275 May-81 0 Oct-82 0 Nov-83 0 Feb-79 568 Jun-81 0 Nov-82 228218 Dec-83 0 Mar-79 0 Jul-81 951468 Dec-82 1300179 Jan-84 0 Apr-79 0 Aug-81 1639884 Jan-83 387247 Feb-84 1178875 May-79 0 Sep-81 1642113 Feb-83 1246428 Mar-84 1834869 Jun-79 260849 Oct-81 1096188 Mar-83 2062107 Apr-84 2000857 Jul-79 886333 Nov-81 1664611 Apr-83 2021530 May-84 2036346 Aug-79 763394 Dec-81 1851833 May-83 1991108 Jun-84 1898909 Sep-79 301182 Jan-82 854080 Jun-83 1702512 Jul-84 1372853 Oct-79 105975 Feb-82 1848171 Jul-83 2050169 Aug-84 1803663 Nov-79 0 Mar-82 1906705 Aug-83 1175145 Sep-84 1715686 Dec-79 813240 Apr-82 1015224 Sep-83 1664408 Oct-84 1725334 Jan-80 1323007 May-82 1265831 Nov-84 1852495 Feb-80 0 Jun-82 1329783 Dec-84 2087030 Mar-80 472488 Jul-82 1767012 Jan-85 2091428 Apr-80 895643 Aug-82 947070 Feb-85 1533774 May-80 1696850 Mar-85 913141 Jun-80 1254184 Jul-80 1785023 Aug-80 1845969 Sep-80 204301 Oct-80 1899794 Nov-80 1182232 Dec-80 784128 Jan-81 1778112 Feb-81 1754722 Mar-81 1562183 WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 A-11 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor - Continued Cycle 5 Cycle 6 Cycle 7 Cycle8 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Apr-85 0 Jul-86 0 Mar-88 0 Oct-89 0 May-85 100110 Aug-86 0 Apr-88 0 Nov-89 462718 Jun-85 1172909 Sep-86 494337 May-88 329862 Dec-89 2068599 Jul-85 1682609 Oct-86 2092056 Jun-88 2015855 Jan-90 1493698 Aug-85 1860629 Nov-86 1523343 Jul-88 1621035 Feb-90 1886951 Sep-85 1167234 Dec-86 2057080 Aug-88 975343 Mar-90 1735806 Oct-85 1142264 Jan-87 2088705 Sep-88 2014234 Apr-90 2018895 Nov-85 1967415 Feb-87 1886383 Oct-88 2088496 May-90 2089752 Dec-85 1348977 Mar-87 2059594 Nov-88 2021328 Jun-90 1871344 Jan-86 2091009 Apr-87 1603604 Dec-88 1901679 Jul-90 1382696 Feb-86 1745075 May-87 162732 Jan-89 1421652 Aug-90 1984197 Mar-86 2064830 Jun-87 2000452 Feb-89 1886762 Sep-90 1938837 Apr-86 1811148 Jul-87 1303949 Mar-89 2089334 Oct-90 2088915 May-86 2091218 Aug-87 2087867 Apr-89 1173517 Nov-90 2024368 Jun-86 861998 Sep-87 1925257 May-89 1461654 Dec-90 2091637 Oct-87 2039907 Jun-89 1506926 Jan-91 1993202 Nov-87 1745480 Jul-89 1786280 Feb-91 1222971 Dec-87 2087030 Aug-89 2089334 Jan-88 2083888 Sep-89 1620224 Feb-88 732364 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-12 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor - Continued Cycle 9 Cycle 10 Cycle 11 Cyclel2 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Mar-91 0 Oct-92 586211 Apr-94 269159 Oct-95 0 Apr-91 457854 Nov-92 1960118 May-94 2059803 Nov-95 54926 May-91 2092056 Dec-92 2091428 Jun-94 1973292 Dec-95 1876965 Jun-91 1941674 Jan-93 2090590 Jul-94 2093732 Jan-96 2048912 Jul-91 2091218 Feb-93 1879573 Aug-94 2093941 Feb-96 1917704 Aug-91 2091847 Mar-93 2073207 Sep-94 2026395 Mar-96 2049960 Sep-91 1979373 Apr-93 2020517 Oct-94 2093941 Apr-96 1983629 Oct-91 1524694 May-93 960892 Nov-94 2026395 May-96 2049960 Nov-91 1973698 Jun-93 2023354 Dec-94 2078652 Jun-96 1984035 Dec-91 2071950 Jul-93 2091218 Jan-95 767374 Jul-96 2050169 Jan-92 2092475 Aug-93 2081375 Feb-95 1858008 Aug-96 2049750 Feb-92 1956889 Sep-93 1802231 Mar-95 2058546 Sep-96 1983832 Mar-92 596055 Oct-93 2093313 Apr-95 1990520 Oct-96 2050378 Apr-92 0 Nov-93 2023152 May-95 2024199 Nov-96 1043397 May-92 1831727 Dec-93 2076139 Jun-95 1988899 Dec-96 863295 Jun-92 1943499 Jan-94 2060641 Jul-95 2057709 Jan-97 2031529 Jul-92 2089962 Feb-94 1890734 Aug-95 2015193 Feb-97 1836632 Aug-92 2090800 Mar-94 691558 Seo-95 1236145 Mar-97 1977914 Sep-92 268551 Aor-97 1969847 May-97 536366 WCAP-18166-NP September 2016

  • Revision 0

Westinghouse Non-Proprietary Class 3 A-13 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor - Continued Cycle 13 Cycle 14 Cycle 15 Cyclel6 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Jun-97 1271006 Feb-99 103213 Oct-00 0 May-02 1790044 Jul-97 2093103 Mar-99 2083033 Nov-00 0 Jun-02 2177849 Aug-97 2093313 Apr-99 2016463 Dec-00 1221850 Jul-02 2249993 Sep-97 2025381 May-99 2092781 Jan-01 1383325 Aug-02 2250443 Oct-97 2093522 Jun-99 2025381 Feb-01 1890167 Sep-02 2177596 Nov-97 2025989 Jul-99 2093313 Mar-01 2092685 Oct-02 2249993 Dec-97 2093313 Aug-99 2093313 Apr-01 2025584 Nov-02 2177855 Jan-98 2093522 Sep-99 2025989 May-01 2093313 Dec-02 2141028 Feb-98 1347444 Oct-99 2093313 Jun-01 2025787 Jan-03 2250443 Mar-98 554168 Nov-99 723365 Jul-01 2090381 Feb-03 2028592 Apr-98 2025381 Dec-99 2085564 Aug-01 2093313 Mar-03 2250443 May-98 1795704 Jan-00 2086401 Sep-01 . 2025584 Apr-03 2177849 Jun-98 2011194 Feb-00 1940431 Oct-01 2093522 May-03 2250443 Jul-98 2093522 Mar-00 2093313 Nov-01 1883911 Jun-03 2177631 Aug-98 2093103 Apr-00 2025787 Dec-01 2093522 Jul-03 2229281 Sep-98 2025989 May-00 2030691 Jan-02 2078862 Aug-03 2016754 Oct-98 2093522 Jun-00 2010586 Feb-02 1884113 Sep-03 1203743 Nov-98 2025787 Jul-00 1361543 Mar-02 2092475 Dec-98 1967023 Aug-00 968223 Apr-02 790655 Jan-99 421385 Sep-00 977323 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-14 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor - Continued Cycle 17 Cycle 18 Cycle 19 Cycle 20 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Oct-03 1183081 Apr-05 1320740 Oct-06 73844 Apr-08 1350153 Nov-03 2177975 May-05 2249768 Nov-06 2123816 May-08 2249289 Dec-03 1885342 Jun-05 2177195 Dec-06 2249768 Jun-08 2177195 Jan-04 2249318 Jul-05 2249543 Jan-07 1787117 Jul-08 2159939 Feb-04 1851048 Aug-05 2249543 Feb-07 1935459 Aug-08 2249993 Mar-04 2249733 Sep-05 2134928 Mar-07 2249663 Sep-08 2176977 Apr-04 2177195 Oct-05 2249543 Apr-07 2146039 Oct-08 2248790 May-04 2249768 Nov-05 2176759 May-07 2245026 Nov-08 2175541 Jun-04 2177195 Dec-05 2249768 Jun-07 2176957 Dec-08 2249318 Jul-04 2249768 Jan-06 2249768 Jul-07 2249675 Jan-09 1990638 Aug-04 2182228 Feb-06 2032049 Aug-07 2249813 Feb-09 1931798 Sep-04 1963027 Mar-06 2249993 Sep-07 2167810 Mar-09 1922423 Oct-04 2111761 Apr-06 2177195 Oct-07 2249543 Apr-09 2176323 Nov-04 2177195 May-06 2249768 Nov-07 2176759 May-09 2248868 Dec-04 2249768 Jun-06 2176977 Dec-07 2249224 Jun-09 2176106 Jan-05 2249543 Jul-06 2249264 Jan-08 2249543 Jul-09 2248868 Feb-05 2031845 Aug-06 2237836 Feb-08 1853364 Aug-09 2240312 Mar-05 580622 Sep-06 1286970 Mar-08 1110950 WCAP-18166-NP September 2016 Revision 0 L

Westinghouse Non-Proprietary Class 3 A-15 Table A-2 Monthly Thermal Generation during the First 24 Fuel Cycles of the Arkansas Nuclear One Unit 2 Reactor - Continued Cycle 21 Cycle 22 Cycle 23 Cycle24 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Sep-09 358152 Mar-11 343286 Oct-12 1503448 May-14 0 Oct-09 2249543 Apr-11 2014880 Nov-12 2175888 Jun-14 1275205 Nov-09 2176977 May-11 2093750 Dec-12 2249093 Jul-14 2248642 Dec-09 2036116 Jun-11 2176323 Jan-13 2246616 Aug-14 2248642 Jan-10 2249543 Jul-11 2249318 Feb-13 2031439 Sep-14 2176106 Feb-10 1861237 Aug-11 2249318 Mar-13 2199338 Oct-14 2248868 Mar-10 2248477 Sep-11 2176106 Apr-13 105420 Nov-14 2176106 Apr-10 2176387 Oct-11 2248642 May-13 2248417 Dec-14 2184479 May-10 2248219 Nov-11 2176323 Jun-13 2175888 Jan-15 2248417 Jun-10 2176106 Dec-11 2202322 Jul-13 2248192 Feb-15 2030828 Jul-10 2248192 Jan-12 2248417 Aug-13 2247580 Mar-15 2247742 Aug-10 1607910 Feb-12 2103569 Sep-13 2175452 Apr-15 2175452 Sep-10 1931217 Mar-12 2247742 Oct-13 2248192 May-15 2248192 Oct-10 2247967 Apr-12 2175234 Nov-13 2174145 Jun-15 2175452 Nov-10 2175452 May-12 2247967 Dec-13 603810 Jul-15 2222527 Dec-10 2247828 Jun-12 2175452 Jan-14 1483861 Aug-15 2154311 Jan-11 2248188 Jul-12 2247292 Feb-14 2030625 Sep-15 1344270 Feb-11 1402079 Aug-12 2115138 Mar-14 2247066 Sep-12 859069 Apr-14 1781539 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-16 Table A-3 Surveillance Capsule Fluence Rates for Ci Calculation, CoreMidplane Elevation Fluence Rate (n/cm2-s)

Cycle Cycle Length Capsule 97° Capsule 284° (EFPY) 1 0.89 5.llE+lO 5.08E+10 2 0.80 6.30E+10 6.21E+10 3 0.64 6.0lE+lO 4 0.97 5.88E+10 5 0.86 6.44E+10 6 1.22 4.81E+10 7 1.13 4.28E+10 8 1.15 4.52E+10 9 1.18 4.45E+10 10 1.32 4.21E+10 11 1.33 2.90E+10 12 1.31 3.25E+10 13 1.47 2.79E+10 14 1.41 3.18E+10 15 1.29 3.08E+10 16 1.35 3.52E+10 17 1.36 3.46E+10 18 1.43 3.85E+10 19 1.34 3.66E+10 20 1.36 3.66E+10 21 1.35 3.63E+10 22 1.45 3.58E+10 23 1.36 3.71E+10 24 1.26 3.45E+10 Average -- 5.67E+10 3.98E+10 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-17 TableA-4 Surveillance Capsule Ci Factors, Core Midplane Elevation C;

Cycle Cycle Length Capsule 97° Capsule 284° (EFPY) 1 0.89 0.90 1.28 2 0.80 1.11 1.56 3 0.64 1.51 4 0.97 1.48 5 0.86 1.62 6 1.22 1.21 7 1.13 1.08 8 1.15 1.14 9 1.18 1.12 10 1.32 1.06 11 1.33 0.73 12 1.31 0.82 13 1.47 0.70 14 1.41 0.80 15 1.29 0.77 16 1.35 0.88 17 1.36 0.87 18 1.43 0.97 19 1.34 0.92 20 1.36 0.92 21 1.35 0.91 22 1.45 0.90 23 1.36 0.93 24 1.26 0.87 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-18 Table A-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule 97° Corrected Average Measured Saturated Reaction Average Reaction Reaction Activity Activity Rate Reaction Rate (dps/g) (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 Cu(Cd) (n,a.) 6°Co 1.11E+05 5.88E+05 8.97E-17 63 Cu(Cd) (n,a.) 6°Co 1.08E+05 5.72E+05 8.73E-17 8.95E-17 8.95E-17 63 Cu(Cd) (n,a.) 6°Co l.13E+05 5.99E+05 9.13E-17 54Fe (n,p) s4Mn 2.94E+06 4.89E+06 7.76E-15 s4Fe (n,p) 54Mn 2.93E+06 4.88E+06 7.74E-15 7.65E-15 7.65E-15 54Fe (n,p) 54Mn 2.82E+06 4.69E+06 7.45E-15 58 Ni(Cd) (n,p) 58 Co 5.85E+07 7.44E+07 1.07E-14 58 Ni(Cd) (n,p) 58 Co 5.25E+07 6.68E+07 9.56E-15 1.0lE-14 1.0lE-14 58 Ni(Cd) (n,p) 58 Co 5.48E+07 6.97E+07 9.98E-15 46 Ti (n,p) 46 Sc 1.21E+06 1.56E+06 1.50E-15 4.6Ti (n,p) 46 Sc 1.09E+06 1.40E+06 l.35E-15 1.40E-15 1.40E-15 46 Ti (n,p) 46 Sc 1.10E+06 1.42E+06 1.36E-15 59 Co (n,y) 6°Co 1.72E+07 9.11E+07 5.95E-12 59Co (n,y) 6°Co 1.53E+07 8.11E+07 5.29E-12 5.12E-12 5.12E-12 59 Co (n,y) 6°Co 1.19E+07 6.31E+07 4.llE-12 59 Co(Cd) (n,y) 6°Co 1.89E+06 1.00E+07 6.53E-13 59 Co(Cd) (n,y) 6°Co 1.90E+06 1.01E+07 6.57E-13 6.49E-13 6.49E-13 59 Co(Cd) (n,y) 6°Co 1.84E+06 9.75E+06 6.36E-13 Note:

(a) Measured activity is decay corrected to August 20, 1982.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-19 Table A-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule 284° Corrected Average Measured Saturated Reaction Average Reaction Reaction Activity Activity Rate Reaction Rate (dps/g) (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 eu(ed) (n,a.) 60 eo 3.00E+05 6.23E-17 4.08E+05 63 eu(ed) (n,a.) 60 eo 2.75E+05 3.74E+05 5.71E-17 6.14E-17 6.14E-17 63 eu(ed) (n,a.) 60 eo 3.12E+05 6.48E-17 4.25E+05 54 54 3.37E+06 5.35E-15 Fe (n,p) Mn 1.61E+06 s4Fe (n,p) s4Mn 1.58E+06 3.31E+06 5.25E-15 5.43E-15 5.43E-15 54Fe (n,p) 54Mn 1.71E+06 3.58E+06 5.68E-15 58Ni(e.d) (n,p) 58 eo 4.12E+06 5.08E+07 7.27E-15 58 Ni(ed) (n,p) 58 eo 3.80E+06 4.69E+07 6.71E-15 7.27E-15 7.27E-15 58 Ni(ed) (n,p) 58 eo 4.44E+06 5.47E+07 7.84E-15 46 Ti (n,p) 46 Sc 1.16E+05 9.97E+05 9.60E-16 46 Ti (n,p) 46 Sc 9.35E-16 9.69E-16 9.69E-16 1.13E+05 9.71E+05 46 Ti (n,p) 46 Sc 1.22E+05 1.05E+06 1.0lE-15 59eo (n,y) 60eo 2.38E-12 2.68E+07 3.65E+07 59 60 4.33E+07 2.83E-12 2.64E-12 2.64E-12 eo (n,y) eo 3.18E+07 59eo (n,y) 60eo 2.71E-12 3.05E+07 4.15E+07 59 eo(ed) (n,y) 60eo 4.69E+06 6.39E+06 4.17E-13 59 eo(ed) (n,y) 60eo 4.69E+06 6.39E+06 4.17E-13 4.22E-13 4.22E-13 59 eo(ed) (n,y) 60eo 4.88E+06 6.64E+06 4.33E-13 238 U(ed) (n,f) mes 1.38E+06 3.08E+06 2.30E-14 238 U(ed) (n,f) mes 1.28E+06 2.85E+06 2.13E-14 2.26E-14 1.51E-14 238 U(ed) (n,f) mes 1.41E+06 3.14E+06 2.35E-14 Note:

(a) Measured activity is decay corrected to May 16, 2016.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-20 Table A-7 Least-Squares Evaluation of Dosimetry in Capsule 97° (7° Azimuth, Core Midplane, Withdrawn at the End of Cycle 2)

Reaction Rate (rps/atom)

Best-Reaction Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu(Cd) (n,a) 6°Co 8.94E-17 7.94E-17 8.82E-17 1.13 1.01 1.11 54Fe (n,p) s4Mn 7.65E-15 7.25E-15 7.78E-15 1.05 0.98 1.07 58Ni(Cd) (n,p) 58 Co 1.0lE-14 9.48E-15 1.02E-14 1.06 0.99 1.07 46 Ti (n,p) 46 Sc 1.40E-15 1.26E-15 1.38E-15 1.12 1.02 1.10 59 Co (n,y) 6°Co 5.12E-12 3.56E-12 5.09E-12 1.44 1.00 1.43 59 Co(Cd) (n,y) 6°Co 6.49E-13 6.30E-13 6.50E-13 1.03 1.00 1.03 238 U(Cd) (n,f) 137Cs Rejected Rejected Rejected -- -- --

Average of Fast Energy Threshold Reactions 1.09 1.00 1.09 Standard Deviation 3.7% 1.8% 1.9%

Best-Calculated Uncertainty Integral Quantity Estimate BE/C (C)

<BE)

(%)

Fluence Rate E > 1.0 MeV 5.67E+10 5.96E+l0 7 1.05 Fluence Rate E > 0.1 MeV 1.08E+ll 1.13E+ll 9 1.04 dpa/s 8.17E-ll 8.66E-11 6 1.05 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-21 Table A-8 Least-Squares Evaluation of Dosimetry in Capsule 284° (14° Azimuth, Core Midplane, Withdrawn at the End of Cycle 24)

Reaction Rate (rps/atom)

Best-Reaction Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu(Cd) (n,a.) 6°Co 6.14E-17 5.60E-17 6.13E-17 1.10 1.00 1.09 54Fe (n,p) 54Mn 5.42E-15 5.07E-15 5.39E-15 1.07 1.01 1.06 58Ni(Cd) (n,p) 58 Co 7.27E-15 6.63E-15 7.09E-15 1.10 1.03 1.07 46 Ti (n,p) 46 Sc 9.68E-16 8.80E-16 9.58E-16 1.10 1.01 1.09 s9Co (n,y) 60Co 2.64E-12 2.58E-12 2.64E-12 1.02 1.00 1.02 59 Co(Cd) (n,y) 6°Co 4.22E-13 4.49E-13 4.24E-13 0.94 1.00 0.94 238 U(Cd) (n,f) 137Cs l.51E-14 1.76E-14 1.82E-14 0.86 0.83 1.03 Average of Fast Energy Threshold Reactions 1.05 0.98 1.07 Standard Deviation 10.0% 8.4% 2.3%

Best-Calculated Uncertainty Integral Quantity Estimate BE/C (C) (%)

(BE)

Fluence Rate E > 1.0 MeV 3.97E+10 4.03E+10 6 1.01 Fluence Raet E > 0.1 MeV 7.59E+10 7.54E+l0 9 0.99 dpa/s 5.74E-11 5.84E-11 6 1.01 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 A-22 Table A-9 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions Capsule Reaction Average Std. Dev.

97° 284° 63 Cu(Cd) (n,cx) 6°Co 1.13 1.10 1.12 1.9%

S4Fe (n,p) S4Mn 1.05 1.07 1.06 1.3%

58 Ni(Cd) (n,p) 58 Co 1.06 1.10 1.08 2.6%

46 Ti (n,p) 46 Sc 1.12 1.10 1.11 1.3%

238 U(Cd) (n,f) 137 Cs Rejected 0.86 0.86 NIA Average of MIC Results 1.07 7.7%

Table A-10 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios Fast (E > 1.0 MeV) Fluence Rate Iron Atom Displacement Rate Capsule BE/C Std. Dev. BE/C Std. Dev.

97° 1.05 7.0% 1.05 6.0%

284° 1.01 6.0% 1.01 6.0%

Average 1.03 2.7% 1.03 2.7%

WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 A-23 A.2 REFERENCES A-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, March 2001.

A-2 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79~40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-3 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross-Section Compendium, July 1994.

A-4 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (!IA), 2013.

A-5 ASTM Standard E844-09 (Reapproved 2014), Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (!IC), 2014.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-1

)

APPENDIXB LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

  • "1.XX" denotes Intermediate Shell Plate C-8009-3, longitudinal orientation
  • "2.XX" denotes Intermediate Shell Plate C-8009-3, transverse orientation
  • "3.XX" denotes weld material
  • "4.XX" denotes heat-affected zone material Note that the instrumented Charpy data is not required per ASTM Standards El85-82 or E23-07a.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-2 6000.00 5000001

<mmoot ei 3000.00 3

2000.00 1000.00 0.0-0

'*" 1.GO

"' 3.0~

r~-1(ms)

>OO 6.00 14P: Tested at 25°F T~1-0.44ms 6000.00Lo'4-16.941b S000.00

.icco.oo g

2000Ji0

"' 0.00 1.CO 2.00 J.00 4.00

"' S.00 Tr:>e-l(rr.s) 111: Tested at 60°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-3 6000.0-01 4000.CO 1000.0ll O.OO'----"""~~-~~~..,_,__...._,_-""'-"""'-""--""'-',..._=i..1JA..='-"'"-""->'""'--'-"'-L>0--"1-Ll.._.U...."'"--""-""_.,,,,"'-""-',__~_o._-<

0.00 1.0<> 600 Ti.~*1\ms}

"' 5.00 12K: Tested at 72°F WOO.~Lo!d-I 31.0S!b Ttne-1 -OA3:r.s sooo.co 4000.C-O TL>:le-1(=)

15J: Tested at 80°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-4 cooa.ooLoad-1H61;1 5000.00 4!NO.OO 200-0.00 1000.00 o.ool---~~~.Ll'--"UJJ/Jlll!'.L-'-Ltl!..(lD-JJ""-'""'~...U.LW&.,l....,""11..a...,...>...:..,_,,..,,.,,U...a,J......_.,,._,.....,_.,._,~~_.,,..L\-~~.o-....._..._.~

a.oo 1.00 3.0tl Ti:r.e-1 (msl "" 6.llO llP: Tested at 100°F SOOO.OOLo,Q'.-144.9.;tJ Tll*1 *OA2111s 5000.00 S.00 S.00 125: Tested at 120°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-5 sm.ooload-134S01b 500000 136: Tested at 130°F COOO.OO Lo!(!..! 20.73!b T"*l -C.~Sir.s S-000.00 s.oo

'*" 3.

Te:":e-1(11:$)

'*" 5.00 13E: Tested at 165°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-6 BOOO.ODLeaG.1.S:911b Tn:e-1-C4Sms 5000.00 100000

'*"".... 1.00 2.00 3.00

"' S.OCl 6.00 r~-11Nl 13J: Tested at 200°F sootl.COLo'4-I 27.1!3b Tnie-1-0.421:'.s 500<>.00 "COG.00 g

i 3000.00 3

ztlOG.00

'" 0.00

'" 2.00 3.00 4.C.O S.00 e.oo Tl':'C-1 {rr.s) 1 lB: Tested at 250°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-7

£001),-----------------------------------------~

1CDO.OO o.ool---~--~----------------~--------!C-"""'""",..a.....,,......,,_~~.o1

'*" 3.00

!i:cc-1(!l"<S) "'" S.00 6.00 12E: Tested at 275°F 60.00 Lcn1:t-I 33.27111 Ttna-1-0.*Unis 4()00.00 UM: Tested at 300°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-8 SOOOOOLCad*111901b rn:e-1-e<<r.:s 500000 4C.<Xl

~ 3COO.CC

~

2-000.00 1000.0<J D.00

>DD UD 0.-00 200 3.00 TC?".e-1{rnsl "'

267: Tested at 25°F eooo.ooLo*ISS.47b T~l-0,"41ms sooo.co

.&OC0.00 g

,\.!C00.00

.s 2000.00 ODO 0.00 1.CO 2.00 Tl!l\e-l(ms)

'*" '*" 6.00 237: Tested at 60°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-9 6ct-O.CCLead-13"61b 4te-O.OO 1000.00 221: Tested at 72°F 6000.COL.o:tcf.1 J.4Sb SO.CO

'000.00 aaoJ..-~~_lJ__LllCLLLIJLICJLLJ.....lil.!.J....U.!l'-'~IM-Ol!!lc...Ll!l..1!"'--1;~-""__.11tc..£'"--'""-l!l...L1-",._.'-""'-1'>....J.'.\....l'"-'""'--"'-~...J.LJ,._~u!l.-..l Tlrl'e-1(11'$)

'*" '*" 6.<l<>

21J: Tested at 80°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-10 iiC00.00,-----------------------------------------,

2000.CO, 1000_00 0.00 0.00 1.0-0 2.00 3.llO "o S.00 600 T~1(rns) 233: Tested at 100°F SCOO.CO Lo~d-1 O.OOb Trne-1-0.Hms iooo.oo e

i ""*"'

2000.00 e.oo

'*" '"' l.1JO Tl!l',e..1(~}

235: Tested at 130°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-11 5{100-001

  • UN~OGJ 101)1).00

..,, 1.00 :z.oo ,_,,.

o.oo'--------<'--'-"'1L.J..t.JJlJ,..;l.l.L..L.Ll~'-"""---'-"-'1""--.!l.l..."'-'--""-"'""""""""--'""-""".fil._,,,.,'--'"'_......._,,_,_....._

4.00

_,.,__.~.._,,

T.me.1 \msl 23M: Tested at 150°F

_ Lcisd-148.321b Trne-1 -0.42tr'.s 6000 00 4000.00 2.00 11~1(/M)

'*" 5.00 6.00 21T: Tested at 175°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-12 eovcoo 1..cltd-t 2ueb 5<1W.OO

.... 3.00 Time-1(11\5}

  • CC 23P: Jested at 200°F EOOO.O.Jlee>1-12.11.161b Trr.o-1 -0.4~ms saao.co 4WGCO 21M: Tested at 250°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-13 COOC.GOLo~120.i51b 5000.0ll 3.00 Time.t{tll.S}

22C: Tested at 275°F tOOO.OOLo8.S-131.311b SOC0.00 4000.00

  • oo

'" >.DO 265: Tested at 300°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-14 Gl!OO.OVLolt'3-12071il T~-1 -032rm 500000 4COD.OO e:

~ J000.00 2000.00 101lD.IH1 o.ov a.co 0.00

'*" 2.0ll 3.C\f Tllf':t!-1(rm) 4.0> 5.t\V 37E: Tested at -25°F

~OC0.00 r

~0-00.DD e:

~ "'"'

2{j(i000 l~.00 1.00 >CO 3.00 T!r.e-1(rr.s}

'" 5.CO 367: Tested at 0°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-15

~ ""*"1 2oon.oo 10CO.OO o.aal--------'==-"'-"'<..l-LL!.>Oll'-U.JL-LU.:WILL.=.-"""-""'""'"'-"""'"""""""'"""'"""'...o.....,_,....,,._,,._.-ltl_,.__........,....,~,,,_..Q 200 S.00 600 0.00 3.0tl Tl:t.1!-1(ms} "'

352: Tested at 15°F 60CO.ctl Lc&d-1 1725ib e

~ JCC0.00

~

2000.00 33M: Tested at 15°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-16 i6ll.OOlcad-1U11b Tme--1 -04~rr.s 341: Tested at 25°F W00.00 LostJ.I I0.37b Trne--1-0.45ms

.teco.oo 2.00 3.00 Tl~-1(ir.s)

'*"" '" 6.00 32L: Tested at 40°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-17

£OOOOO Lcad-1 ~9Jlb Ti:r.e-1 4<<ms SOO<U~O 4000.0ll

'*"' 2.QO 3.~D Time-l(r.-s) 4.CQ S.00 313: Tested at 60°F eooo.ootoad-1 55.25ti sooo.co 4000.00 a.coL-----~---~--'--_:.:__'!_~~~Ll0!!!:'.~¥~~~C:C,~~~~~~~~~~~~~

a.on 1.00 2.QQ .,, *.oo S.00 *.oo

'T'mo-1 (ms}

365: Tested at 72°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-18 60-00.00lcad-1 .93b rime-1 .O.:!Srr.s

.&COO.CO g

~ 3000.00 2000.0fl 1000.00 MO 0.00 t.00 200 3.00 TllDe"*l(ms)

'*" '*'° &.00 33T: Tested at 110°F 6000.00Lo~ll7.35i7 T~l-0.<<ms S000.00 4000.00 g

2CCO.OO 1000.CO 0.00 0.00 t.00 2.00 4,00 6.00 Ttme-l(m&)

35C: Tested at 150°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-19 SC<<ICO o.oo,1-------------------------------------_'.__.'.:~..........-....J 0.00 1.00 3.00

"' S..110 311: Tested at 200°F 6COO.OOLo,0-15S.-1211 Tlll!41-C.SSms SW0.00 401)0:00

'*" 3.0'J Tir::e-1 (ms.)

37U: Tested at 250°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-20 6Cil1100Lcad-1E.93!b T~-1-044ms C.Ml-WJ<J:lilllilLL.,ll.-"--"-1..JJUU.l.ill!J.Oll!!il...<l,'.l.AJJ!U!:Ju:.a_(_JJLi.l4JLL>:i..LILa:.....J'->~L-'""'--',,,.__.C...L1...L>....._,-'-""'-'-'.--"---"'_,,.---"'.L.:l..."'-"...__""'--"'--"

0.00 1.00

"" 6.00 412: Tested at -75°F

~.COLa,g...131.t7ti Tine-1-~.Hl!'.S ZCC0.00 Ttma-1(111$)

43B: Tested at -50°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-21 5000.l)C 2000.00 1000.00

- ~ ~ -

T~-ne-1 (ir"J o.oo>J_---1..lL'.lilLLILILLjLLlilo..l!JLU...IJ<ll_Lll.ll.l.M(!:lo..l_I..l..1'~i!'A-..Oo._&-"""'1"'-ll!l...;'.l..LM>.u/l..J!>...J1>.._,.')._,,,._£J...-..o.J'-"'.....L:LlJ,.......,._..JJ.._J_

~

47T: Tested at -40°F 6000.COLo,G-120.731b T-..1 -045ms

~.co g

~ ~COD.CO

.3 zt:C0.00 433: Tested at-30°F WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 B-22 ccoo.oolcaa-121.6Jlb 5000.0ll

~

~

~

'"'*"r 1000.00 c.0-0'--------------"-'-""..,,..w....<"""'<lili"""~.-.."""-""oU>..o...n........,,._.,..._,"-""...,......._......__,,,,__......_.,.__.,,.,_.,_...._.~.,._.J>..........,

0.0-0 1.110 3.0"~

r~-1{msl

'°' "'

46J: Tested at-25°F 500-0.0. 100

~

rv

"'c

~

q 80

~

z '

b.

u 60 40

~

I(

j 20 I I I 0 I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-5 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: LT Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (LONGITUDINAL)

Charpy V-Notch Data Tern iwrature (° F) Input CVN Computed CVN Differential

-80 6.0 4.6 1.42

-40 8.5 10.7 -2.18

-40 11.5 10.7 0.82 0 18.0 29.7 -11.65 0 31.0 29.7 1.35 40 64.0 71.3 -7.29 40 86.0 71.3 14.71 60 105.0 96.7 8.28 60 100.0 96.7 3.28 60 105.0 96.7 8.28 80 99.0 119.0 -20.04 80 108.0 119.0 -11.04 120 145.0 145.8 -0.77 120 154.5 145.8 8.73 160 154.0 155.2 -1.20 160 166.5 155.2 11.30 210 159.0 158.2 0.75 CVGraph 6.02 05/0912016 Page212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-6 ANO UNIT 2 UNIRRADIA TED (LONGITUDINAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 I :38 PM A= 48.09 B = 47.09 C = 58.92 TO= 31.81D=0.00 Correlation Coefficient= 0.985 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 95.17 Lower ShclfL.E. = 1.00 (Fi-.;ed)

Temp@35 mils= 15.00° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsule: UNIRR 110 100

@0

"/1) 0  ;

90 If 80 "/

,0 1:1.l

-*-=s 0

1:1.l 70 60 I

o~ PO J

=

=

Q.;

l r

lio< 50

-...=

~

i.. 40

~

Q,j

= 30  :

D I

20

j>

10 0

2

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 05/09/2016 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-7 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: LT Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (LONGITUDINAL)

Charpy V-Notch Data Tempuature {° F) Input L. E. Computed L. E. Differential

-80 3.0 3.1 -0.07

-40 8.0 8.6 -0.57

-40 10.0 8.6 1.43 0 18.0 24.9 -6.88 0 26.0 24.9 1.12 40 49.0 54.6 -5.59 40 67.0 54.6 12.41 60 72.0 69.0 2.96 60 69.0 69.0 -0.04 60 74.0 69.0 4.96 80 68.0 79.8 -11.82 80 72.0 79.8 -7.82 120 95.0 90.7 4.32 120 96.0 90.7 5.32 160 92.0 94.0 -1.97 160 98.0 94.0 4.03 210 92.0 95.0 -2.95 CVGraph 6.02 05/09/2016 Page2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-8 ANO UNIT 2 UNIRRADIATED (LONGITUDINAL)

CVGrnph6.02: Hyperbolic Tangent Cun'e Primed on 12/17/2015 12:47 PM A= 50.00 B = 50.00 C = 70. 73 TO= 48.02 D = 0.00 Correlation Coefficient= 0.988 Eqtmtion is A+ B * [Tanh((f-TO)/(C+DT))j Upper Shelf%Shcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 48.10 Plant: Arkansas 2 Material: SA533B CLt Heat: C8182-2 Orientation: LT Capsule: UNIRR 100 -- -

7~

90 80 1

70 I

.c 00

~

~

60 so

    • f

)

c~

~-CJ

~ 40 fo L

30 20 l

10

._/ '.

0

-300 I

-200

Y

-100 I

0 I

100 I

200 300 400 I

500 I

600

. Temperature {° F)

CVGraph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-9 Plant: Arkans.'ls 2 Material: SA533BCL1 Heat: C8182-2 Orientation: LT Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (LONGITUDINAL)

Charpy V-N otch Data Temperature{° F) Input %Shear Computed %Shear Difl'Crential

-80 5.0 2.6 2.39

-40 10.0 7.7 2.34

-40 10.0 7.7 2.34 0 25.0 20.5 4.54 0 25.0 20.5 4.54 40 35.0 44.4 -9.36 40 40.0 44.4 -4.36 60 60.0 58.4 1.61 60 65.0 58.4 6.61 60 60.0 58.4 1.61 80 65.0 71.2 -6.18 80 65.0 71.2 -6.18 120 90.0 88.4 1.55 120 100.0 88.4 11.55 160 100.0 96.0 4.04 160 100.0 96.0 4.04 210 100.0 99.0 I.OJ CVGraph 6.02 1211712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-10 ANO UNIT 2 UNIRRADIATED (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 1:39 PM A= 68.10 B = 65.90 C = 72.96 TO= 62.99 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 134.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs= 14.90° F Tcmp'.035 ft-lbs= 22.70° F Temp@50 ft-lbs= 42.50° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: UNIRR 160 n

140 120 y

v

-o***..

-=1 'J '

I

-~

I iJ:::

100 J

t

i... 80 Cl.I c

~

z r

60 u .. ..

40 20

/0 0

n. J' i I I I  ; I

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGraph 6.02 05/09/2016 Page J/2 WCAP-18166-NP September 2016 Revision 0

--1 Westinghouse Non-Proprietary Class 3 C-11 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TI, Capsule: UNIRR ANO UNIT 2 UNIRRADIA TED (TRANSVERSE)

Charpy V-Notch Data Tern perature {° F) Input CVN Computed CVN Differential

-120 4.0 3.1 0.93

-80 6.0 4.8 1.23

-40 7.5 9.6 -2.09

-40 14.5 9.6 4.91 0 24.0 22.1 1.90 0 27.5 22.l 5.40 40 36.5 48.0 -11.50 40 58.5 48.0 10.50 60 57.0 65.4 -8.40 60 60.0 65.4 -5.40 60 72.5 65.4 7.10 80 85.5 83.2 2.31 120 107.0 111.2 -4.17 120 110.0 111.2 -1.17 160 125.5 125.4 0.12 160 140.0 125.4 14.62 210 127.5 131.7 -4.20 210 142.0 131.7 10.30 CVGraph 6.02 05/0912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-12 ANO UNIT 2 UNIRRADIATED (TRANSVERSE)

CVGraph 6Jl2: Hyperbolic Tangent Curve Printed on 12/17/2015 12:51 PM A= 45.81 B = 44.81 C = 83.86 TO= 49.24 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 90.61 Lower ShelfL.E. = 1.00 (Fi"cd)

Temp@35 mils= 28.70° F Plant: Arkansas 2 Material: SA53JB CLl Heat: C8182-2 Orientation: TL Capsule: UNIRR 100 90 -*

/ 'p°""

80

~ ft ~

-*-=

70 6

60 I

1 0

~

=

~

c..

50

~

~

~

40 f

i..

~

~ 30 lo . ..

~

20 1/

10

oj

.... . _o. /'

I I I I I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 12/1712015 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-13 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (TRANSVERSE)

Charpy V-Notch Data Tern puature {° F) InputL. E. Computed L. E. Differential

-120 4.0 2.6 1.44

-80 4.0 4.9 -0.93

-40 8.0 10.5 -2.53

-40 14.0 10.5 3.47 0 24.0 22.2 1.85 0 25.0 22.2 2.85 40 32.0 40.9 -8.89 40 45.0 40.9 4.11 60 46.0 51.5 -5.52 60 46.0 51.5 -5.52 60 57.0 51.5 5.48 80 69.0 61.5 7.46 120 77.0 76.6 0.38 120 75.0 76.6 -1.62 160 83.0 84.7 -1.65 160 90.0 84.7 5.35 210 85.0 88.7 -3.72 210 89.0 88.7 0.28 CVGraph 6.02 12/1712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-14 ANO UNIT 2 UNIRRADIATED (TRANSVERSE)

CVGmph6.02: Hyperbolic Tangent Curve Printed on 12/1712015 12:51 PM A= 50.00 B = 50.00 C = 78.66 TO= 66.91 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Tempemture at 50% Shear= 67.00 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: UNIRR 100 v--

90 /

80 j

70 l-

= 60 j

~

.c 00.

...... so 1 - .

~

=

~

~

~ 40

- t1-30 20 I-

/o --

7 I-10

..... )

0

-300

-200 - -100 0 100 200 300 400 500 600 Temperature_{° F)

CVGmph6.02 12/17/2015 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-15 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: TL Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (TRANSVERSE)

Charpy V-Notch Data Temp~rature (0 F) Input %Shear Computed %Shear Differential

-120 0.0 0.9 -0.86

-80 0.0 2.3 -2.33

-40 10.0 6.2 3.81

-40 10.0 6.2 3.81 0 20.0 15.4 4.57 0 20.0 15.4 4.57 40 25.0 33.5 -8.53 40 35.0 33.5 1.47 60 40.0 45.6 -5.62 60 45.0 45.6 -0.62 60 50.0 45.6 4.38 80 60.0 58.2 1.76 120 70.0 79.4 -9.41 120 80.0 79.4 0.59 160 IOO.O 91.4 8.57 160 100.0 91.4 8.57 210 100.0 97.4 2.56 210 100.0 97.4 2.56 CVGraph 6.02 12/17/2015 Page 2/2

Westinghouse Non-Proprietary Class 3 C-16 ANO UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 I :46 PM A= 76.60 8 = 74.40 C = 40.52 TO= 25.94 D = 0.00 Correlation Coefficient= 0.992 Equation is A+ B * [Tanl1((T-TO)/(C+DT))]

Upper Shelf Energy= 151.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@30 ft-lbs= -3.80° F Temp@35 ft-lbs= 0.40° F Temp@50 ft-lbs= 10.80° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: UNIRR 180 160 n 0

140 .I -- 0

--r;f.l

.c 120

  • - (o b

-4:

~

~

I

....... 100 D

~

Q.l

= 80 -

z u

> 60  :

40 I

20

> 1) 0

-300 -200 n

-100 oi I 0

I 100 I

200 I

300 I

400 I

500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 C-17 Plant: Arkansas 2 Material: WEID Heat: 83650 Orientation: NIA Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-120 4.5 2.3 2.19

-80 6.5 3.0 3.51

-40 5.0 7.7 -2.73 f------

-40 10.0 7.7 2.27 0 24.5 34.6 -10.07 0 30.5 34.6 -4.07 20 80.0 65.8 14.22 40 95.5 101.4 -5.93 50 126.5 116.2 10.27 50 110.5 116.2 -5.73 50 118.0 116.2 1.77 80 128.5 141.3 -12.85 80 140.0 141.3 -1.35 120 140.0 149.6 -9.58 120 155.0 149.6 5.42 160 146.0 150.8 -4.80 160 161.0 150.8 10.20 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-18 ANO UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/l 7/2015 12:53 PM A = 46.68 B = 45.68 C = 36.97 TO = 15.60 D = 0.00 Correlation Coefficient= 0.994 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 92.36 Lower Shelf L.E. = 1.00 (Fixed)

Temp@35 mils= 6.00° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: UNIRR 100 90

- ('\;

lo n I I

I- ' {° 80 p

-s-I-

rl.l 70

.._ I- 0

  • -==

('

Q 60

!"I}

=

Cot

~

50 I-.

-...=

~

~

40 I-

~= 30 I-I)

)

20 10

._J 0 o~ i i I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 12117/2015 Page 112 WCAP-18166-NP September 2016 Revision 0 I

L

Westinghouse Non-Proprietary Class 3 C-19 Plant: Arkansas 2 JYiaterial: WEID Heat: 83650 Orientation: NIA Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (WELD)

Charpy V-Notch Data Tern perature {° F) lnputL. E. Computed L E. Differential

-120 4.0 I. I 2.94

-80 6.0 1.5 4.48

-40 4.0 5.3 -1.30

-40 10.0 5.3 4.70 0 23.0 28.5 -5.48 0 27.0 28.5 -1.48 20 61.0 52.1 8.91 40 66.0 73.1 -7.10 50 85.0 80.1 4.94 50 76.0 80.1 -4.06 50 82.0 80.1 1.94 80 86.0 89.6 -3.64 80 91.0 89.6 1.36 120 91.0 92.0 -1.04 120 94.0 92.0 1.96 160 93.0 92.3 0.68 160 93.0 92.3 0.68 CVGraph 6.02 12/17/2015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietacy Class 3 C-20 ANO UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 12:53 PM A= 50.00 B = 50.00 C = 60.06 TO= 18.40 D = 0.00 Correlation Coefficient= 0. 990 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

UppcrShelf%Sbcar= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 18.50 Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: NIA Capsule: UNIRR 100 .....

.... ,6:"

,,J 90 80

~ '

_f -*---:---

70 t

~

o{

.c

~

QI 00.

60 50

~

~

.=

QI

~

QI 40 I

I J'

30 20 I

10

..., i 0 _.

I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-21 Plant: Arkansas 2 l'viaterial: WEID Heat: 83650 Orientation: NIA Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (WELD)

Charpy V-Notch Data Temperature(° F) Input %Shear Computed %Shear DilTcrential

-120 0.0 1.0 -0.99

-80 10.0 3.6 6.36

-40 10.0 12.5 -2.51

-40 15.0 12.5 2.49 0 30.0 35.1 -5.15 0 30.0 35.l -5.15 20 65.0 51.3 13.67 40 60.0 67.2 -7.24 50 80.0 74.1 5.88 50 70.0 74.1 -4.12 50 75.0 74.1 0.88 80 85.0 88.6 -3.61 80 90.0 88.6 1.39 120 95.0 96.7 -1.72 120 99.0 96.7 2.28 160 100.0 99.l 0.89 160 100.0 99.1 0.89 CVGraph 6.02 1211712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-22 ANO UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangen! Curve Printed on 5/9/2016 1:45 PM A= 81,60B=79.40C=119.53 TO= -37.34 D = 0.00 Correlation Coefficient= 0.859 Equation is A+ B * [Tanh((T-TO)/(C+D'D)J Upper Shelf Energy= 161.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 f!-lbs=-129.90° F Temp@35 ft-lbs=-117.70° F Temp@SO ft-lbs=-87.60° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: UNIRR 180

- 0 0 0 *o 160 -

0

/

Yo 0 140

--rl:l

,Q 120

'>/

lo

~

I

...... 100

~

~

o

./

0

~= 80 I"\

z

>- 60

) ..

u 40

  • P :o 0 20 Vo

/ 0 0

l-/

-300 -200 -100 0 100 200 300 400 500 600 Temperature(° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-23 Plant: Arkans.1s 2 Material: SA533B CLl Heat: C8182-2 Orientation: NI A Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tcm perature (° F) Input CVN Computed CVN Differential

-160 12.0 20.3 -8.28

-120 16.5 34.0 -17.55

-80 50.5 54.4 -3.91

-80 81.0 54.4 26.59

-40 51.0 79.8 -28.84

-40 106.5 79.8 26.66 0 102.0 105.6 -3.63 0 116.5 105.6 10.87 40 147.0 126.8 20.17 40 168.0 126.8 41.17 50 55.0 131.1 -76.11 50 111.5 131.1 -19.61 50 127.0 131.1 -4.11 80 122.5 141.5 -18.95 80 170.0 141.5 28.55 120 156.5 150.4 6.15 120 164.5 150.4 14.15 160 151.5 155.4 -3.86 160 163.0 155.4 7.64 CVGraph 6.02 05/09/2016 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-24 ANO UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Primed on 12/J 7/2015 12:55 PM A= 42.27 B = 41.27 C = 94.44 TO= -60.33 D = 0.00 Correlation Coefficient= 0.912 Equation is A+ B * [Tanh((f-TO)/(C+DT)))

Upper ShclfL.E. = 8355 Lower Shelf L.E. = 1.00 (Fixed)

Tcmp@,35 mils=-77 .10° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: UNIRR

. 0 90 ---------------------------------------....-----........ ----.......----....

C) o,__-;.8_- +--~-r-----:--r----:---i-----:----t 80 n -~

-= ~

70

. 0 ))

I a 60

....c= 50  :;

=

~

=

c.

~ 40 u/.* 0

-=

~

~

...... 30 I

~

=

)

20 10

~Ve>v I

0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-25 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: NIA Capsule: UNIRR ANO UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature{° F) Input L. E. Computed L. E. Differential

-160 7.0 9.9 -2.92

-120 9.0 19.2 -10.19

-80 31.0 33.8 -2.80

-80 49.0 33.8 15.20

-40 36.0 51.0 -15.03

-40 63.0 51.0 11.97 0 65.0 65.6 -0.56 0 71.0 65.6 5.44 40 81.0 74.7 6.26 40 85.0 74.7 10.26 50 44.0 76.3 -32.27 50 73.0 76.3 -3.27 50 73.0 76.3 -3.27 80 80.0 79.5 0.47 80 88.0 79.5 8.47 120 81.0 81.8 -0.78 120 84.0 81.8 2.22 160 85.0 82.8 2.22 160 87.0 82.8 4.22 CVGraph 6.02 12/17/2015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-26 ANO UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

CVGraph6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 12:55 PM A= 50.00 B = 50.00 C = 103.80 TO= -37.83 D = 0.00 Correlation Coeflicicnt = 0.923 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -37 .80 Plant Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: UNIRR 100 90

.... 0

,./

v 80

+IQ

?

70 .....

~

~

.c 00.

60

'. /o I

50 .....

=

~

'-I

~ 40 ,. . I Q.;

30 J:o J

lo 20

/_ '

10

./c; .;.

~ I I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12117/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-27 Plant: Arkans.'ls 2 Material: SA533B CL1 Heat: C8182-2 Orientation: NIA Capsule: UNIRR ANO UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tern pcrature {° F) Input %Shear Computed %Shear Differential

-160 5.0 8.7 -3.68

-120 10.0 17.0 -7.03

-80 25.0 30.7 -5.74

-80 40.0 30.7 9.26

-40 35.0 49.0 -13.95

-40 70.0 49.0 21.05 0 55.0 67.5 -12.46 0 80.0 67.5 12.54 40 90.0 81.8 8.25 40 95.0 81.8 13.25 50 50.0 84.5 -34.45 50 85.0 84.5 0.55 50 75.0 84.5 -9.45 80 90.0 90.6 -0.64 80 100.0 90.6 9.36 120 100.0 95.4 4.56 120 100.0 95.4 4.56 160 100.0 97.8 2.16 160 100.0 97.8 2.16 CVGraph 6.Cl2 1211712015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-28 ANO UNIT 2 UNIRRADIA TED (SRM)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:03 PM A= 74.10 B = 71.90 C = 63.41TO=76.76 D = 0.00 Correlation Coefficient= 0.996 Equation is A+ B * [Tanh((f-TO)/(C+D1)))

Upper Shelf Energy= 1-16.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp:?j130 ft-lbs= 31.50° F Temp'.??;35 ft-lbs= 38.20° F Tcmp'.050 ft-lbs= 54. 70° F Plant: Arkansas 2 Material: SA533B CLl Heat: HSST-OlMY Orientation: LT Capsule: UNIRR 160

~

~Id' 140 120 f

-rl.l fl

==

~

I en 80

~

100 J1  :

~

=

z 60 :I u

40

- I 20 r

/o 0

-300 -200 -100 nY 0 100 200 300 400 500 600 Temperature {° F)

CVGmph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

-1I Westinghouse Non-Proprietary Class 3 C-29 Plant: Arkansas 2 l11faterial: SA533B CL1 Heat: HSST-OlMY Orientation: LT Capsule: UNIRR ANO UNIT 2 UNIRRADIATED (SRM)

Charpy V-Notch Data Temperature (0 F) InputCVN Computed CVN Differential

-80 4.5 3.2 1.28

-40 7.0 5.7 1.27

-40 8.0 5.7 2.27 0 14.5 13.9 0.57 0 16.5 13.9 2.57 40 25.0 36.5 -11.54 40 38.0 36.5 1.46 80 85.0 77.8 7.23 80 81.5 77.8 3.73 120 110.0 116.7 -6.72 120 116.0 116.7 -0.72 160 131.0 136.3 -5.29 160 139.0 136.3 2.71 210 144.5 143.9 0.62 210 153.0 143.9 9.12 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-30 ANO UNIT 2 UNIRRADIA TED (SRM)

CVGraph 6.02: Hyperoolic Tangent Curve Printed on 5/9/2016 2:04 PM A= 45.19 B = 44.19 C = 57.30 TO= 55.35 D = 0.00 Correlation Coefficient = 0. 995 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 89.39 LowerShelfL.E. = 1.00 (Fixed)

Temp@35 mils= 41.90° F Plant: Arkansas 2 Material: SA533B CLl Heat: HSST-OlMY Orientation: LT Capsule: UNIRR 100 0 0 90 er 0 80 p

  • -s-t l.l l 70

-*-= 60 i

I Q

tl.l ....

=

~ 50 I

~

lio< .....

~

-~

40

~

i..

CJ

~ 30

~ .... ..

Jo 20

.... c,(

10 0

.... y

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGraph 6.02 05/09/2016 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-31 Plant: Arkansas 2 :Miiterial: SA533B CLl Heat: HSST-01MY Orientation: J,T Capsule: UNIRR ANO UNIT 2 UNIRRADIA TED (SRM)

Charpy V-Notch Data Temp~rature (° F) Input L. E. Computed L. E. Differential

-80 2.0 1.8 0.22

-40 6.0 4.1 1.94

-40 1.0 4.1 2.94 0 14.0 12.2 1.81 0 17.0 12.2 4.81 40 26.0 33.6 -7.63 40 33.0 33.6 -0.63 80 68.0 63.1 4.89 80 63.0 63.1 -0.11 120 78.0 81.0 -3.0l 120 84.0 81.0 2.99 160 85.0 87.2 -2.15 160 9!.0 87.2 3.85 210 9!.0 89.0 2.0l 210 84.0 89.0 -4.99 CVGraph 6.02 0510912016 Page 2f2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-32 ANO UNIT 2 UNIRRADIATED (SRM)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:05 PM A= 50.00 B = 50.00 C = 77.50 TO= 83.27 D = 0.00 Correlation Coefficient= 0.995 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0. 00 (Fixed)

Temperature at 50% Shear= 83.30 Plant: Arkansas 2 Material: SA533B CLl Heal: HSST-OtMY Orientation: LT Capsule: UNIRR 100 -

~

90 ~I 80 1 i

70 r

~

QJ

.c rJJ.

60 J

50

=

=--

QJ

~

l QJ 40 30 rf 20 cy 10 0

y....

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-33 Plant: Arkansas 2 Material: SA533B CL1 Heat: HSST-OlMY Orientation: LT Capsule: UNIRR ANO UNIT 2 UNIRRADIA TED (SRM)

Charpy V-Notch Data Temjlfrature {° F) Input %Shear Computed %Shear Differential

-80 0.0 1.5 -1.46

-40 5.0 4.0 1.01

-40 5.0 4.0 I.OJ 0 15.0 10.4 4.56 0 15.0 10.4 4.56 40 25.0 24.7 0.34 40 25.0 24.7 0.34 80 50.0 47.9 2.11 80 40.0 47.9 -7.89 120 70.0 72.l -2.07 120 70.0 72.1 -2.07 160 90.0 87.9 2.13 160 95.0 87.9 7.13 210 100.0 96.3 3.66 210 100.0 96.3 3.66 CVGraph 6.02 05/0912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-34 ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:42 PM A= 71.10 B = 68.90 C = 86.14 TO= 83.24 D = 0.00 Correlation Coefficient= 0.993 Equation is A+ B * [Tanh((f-TO)/(C+D'D)]

Upper ShelfEnergy = 140.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Ternp@30 ft-lbs= 24.00° F Temp:@35 ft-lbs= 33.20° F Temp@50 ft-lbs= 56.00° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsnle: 97° 160

4*) I'\ ,...

140 .

v---o 120

~

,.Q f

~

I

~

Cl.I 100 80 .....

~

~

z

=

60 7  :

u 40

j 20

.V 0

_LI ' ' ' '

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGrnph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

--1 Westinghouse Non-Proprietary Class 3 C-35 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: LT Capsule: 97° ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

Charpy V-Notch Data Tern p~rature (0 F) InputCVN Computed CVN Differential

-40 7.0 9.7 -2.66 0 21.3 19.6 1.67 15 21.0 25.7 -4.65 f----

30 . 34.2 33.2 0.98 55 46.0 49.3 -3.29 80 80.3 68.5 11.79 120 92.3 98.8 -6.54 160 111.0 120.2 -9.15 200 142.5 131.4 11.09 241 141.2 136.6 4.65 280 135.3 138.6 -3.29 320 141.0 139.4 1.56 CVGraph 6.02 12117/2015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-36 ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:06 PM A =48.76 B = 47.76 C = 84.06 TO =63.84 D = 0.00 Correlation Coefficient = 0. 992 Equation is A+ B

  • lTanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 96.51 Lower Shelf L.E. = LOO (Fixed)

Tcmp@35 mils= 39.00° F Plant: Arkansas 2 Material: SA533B CLt Heat: C8182-2 Orientation: LT Capsule: 97° 110 100 ~ > 0 u .. - .. ..

~ v ~

./

90 lo

-e-

~ 80

,..._, 70 i

  • -==

Q

~ 60

-~

=Q..

II< 50 I

-....=

~

i.. 40 l

~=

QJ 30

[

20 l*

JO J 0

-~

-300 -200 -100 0 100 200 300 400 500 600 Temperature(° F)

CVGrnph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-37 Plant: Arkansas 2 Nfaterial: SA533B CU Heat: C8182-2 Orientation: .LT Capsule: 97° ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

Charpy V-N otch Data Tern pfraturc (° F) Input L. E. Computed L. E. Differential

-40 8.0 8.4 -0.44 0 20.0 18.2 1.84 15 20.8 23.8 -2.96 30 30.8 30.5 0.29 55 39.8 43.8 -3.95 80 66.8 57.8 8.98 120 72.4 76.6 -4.23 160 82.0 87.7 -5.71 200 98.2 92.9 5.29 241 98.2 95.l 3.08 280 94.6 96.0 -1.36 320 94.8 96.3 -1.50 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-38 ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

CVGraph 6.02: Hypctbolic Tangent Curve Printed on 12/17/2015 1:43 PM A = 50.00 B = 50.00 C = 94.55 TO = 89.68 D = 0.00 Correlation Coefficient= 0.994 Equation is A+ B * [Tanh((f-TO)/(C+Dl))]

Upper Shelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 89.70 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsule: 97° 100 90 v

80 70

-j-i..

~

~

60 L

.c

...c 00.

50

_j

~

~

'-I i..

~ 40

--1 7

30 20 j

I-j ch 10 0

I-

- ~

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-39 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: LT Capsule: 97° ANO UNIT 2 CAPSULE 97° (LONGITUDINAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-40 5.0 6.0 -1.05 0 15.0 13.0 1.96 15 15.0 17.1 -2.08 30 20.0 22.I -2.06 55 35.0 32.4 2.56 80 50.0 44.9 5.10 120 60.0 65°.5 -5.51 160 75.0 81.6 -6.57 200 100.0 91.2 8.84 241 100.0 96.1 3.91 280 100.0 98.2 1.75 320 100.0 99.2 0.76 CVGraph 6.02 12117/2015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-40 ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:08 PM A= 61.10 B = 58.90 C = 91.97 TO= 102.30 D = 0.00 Correlation Cocnicicnl = 0. 980 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 120.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs= 48.30° F Temp§35 ft-lbs= 58.60° F Tcmp§50 ft-lbs= 84.80° F Plant: Arkansas 2 Material: SA5338 CLl Heat: C8182-2 Orientation: TL Capsule: 97° 140 0 Q__

v 120

-= ~

I 100

}

I c::

.OJ) 80

~

z

=

Q;I 60 0

I

~

u I Jo 40 20 1*

~*>

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-41 Plant: Arkans.<ts 2 :Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsuk 97° ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

Charpy V-Notch Data Tern perature {° F) Input CVN Computed CVN Differential

-40 4.5 7.3 -2.80 0 11.7 13.7 -1.99 35 20.5 24.3 -3.84 55 35.0 33.2 1.78 80 33.5 47.l -13.59 90 75.5 53.3 22.23 llO 66.7 66.0 0.68 130 74.0 78.3 -4.32 160 88.0 93.9 -5.86 240 113.3 114.4 -1.08 280 124.2 117.6 6.62 320 122.0 119.0 3.03 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-42 ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:09 PM A=43.47 B=42.47C=85.71 T0=74.21 D=0.00 Correlation Coefficient= 0.965 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 85.94 Lower ShelfL.E. = l.00 (Fixed)

Tcmp@35 mils= 56.90° F Plant: Arkansas 2 Material: SASJJB CLl Heat C8182-2 Orientation: TL Capsule: 97° 100 90 0 0 n .. .. . . ...

,, v-- .

80

( l.l I 0 70 s

c

= 60 0 fa

( l.l b ..*.

c J

=

c..

50

~

iio<

-= I

.....Cl.I 40

-lo

= 30

~

20 Cb p

)

v 10 0

~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-43 Plant: Arkansas 2 :Material: SA533B CL1 Heat: C8182-2 Orientation: Tl, Capsule: 97° ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

Charpy V-Notch Data Tern p~rature (0 F) Input L. E. Computed L. E. Differential

-40 4.0 6.5 -2.53 0 24.2 13.8 10.43 35 24.4 25.3 -0.89 55 32.0 34.1 -2.11 80 34.2 46.3 -12.14 90 62.6 51.2 11.39 llO 56.8 60.2 -3.44 130 63.6 67.8 -4.17 160 87.0 75.8 11.17 240 86.4 84.2 2.20 280 86.8 85.2 1.55 320 77.2 85.7 -8.46 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-44 ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

CVGraph6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:45 PM A= 50.00 B = 50.00 C = 92.47 TO= 94.15 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 94.20 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: 97° 100 ---

90

~

80 70 f,.

~

~

.c:

60 I

00

~

50 -

=  :-

~

~

~ 40 I

=....

30 Jo 20

{

10 I

0

_/ I I  ;  ; I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGrnph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-45 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: TL Capsule: 97° ANO UNIT 2 CAPSULE 97° (TRANSVERSE)

Charpy V-Notch Data Tern ptrature (0 F) Input %Shear Computed %Shear Differential

-40 5.0 5.2 -0.21 0 10.0 11.5 -1.54 35 25.0 21.8 3.23 55 30.0 30.0 -0.01 80 35.0 42.4 -7.41 90 60.0 47.8 12.24 110 50.0 58.5 -8.49 130 70.0 68.5 1.53 160 80.0 80.6 -0.60 240 100.0 95.9 4.09 280 100.0 98.2 1.76 320 100.0 99.2 0.75 CVGraph 6.02 12117/2015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-46 ANO UNIT 2 CAPSULE 97° (WELD)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 5/10/2016 11:18 AM A= 74.60 B = 72.40 C = 45. 72 TO= 42.22 D = 0.00 Correlation Coefficient= 0.978 Equation is A+ B * [Tanh((f-TO)/(C+DT))J Upper Shelf Energy= 147.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs= 9.40° F Temp@l,.35 ft-lbs= 14.20° F Temp@50 ft-lbs= 26.10° F Plant: Arkansa.~ 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 97° 180 160 140 ,/ C)

-=

r;l:J 120 I 0

-~

I

...... 100 r l

ell

~

Q,) o,

=

~

80 I

z u 60 j

40 I* ..

20 Cr 0

JI I I  ; I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-47 Plant: Arkansas 2 l\tfuterial: WEID Heat: 83650 Orientation: N/A Capsule: 97° ANO UNIT 2 CAPSULE 97° (WELD)

Charpy V-Notch Data Tern perature (0 F) Input CVN Computed CVN Differential

-50 5.0 4.7 0.28 0 26.9 21.9 4.97 10 21.5 30.6 -9.13 15 26.5 36.0 -9.46 25 38.0 48.5 -10.55 35 89.0 63.3 25.74 60 100.0 101.4 -1.41 I

78 117.0 122.0 -4.96 120 126.5 142.3 -15.83 160 159.0 146.2 12.83 200 143.0 146.9 -3.85 240 138.8 147.0 -8.17 CVGraph 6.02 0511012016 Page2f2 WCAP-18166-NP September 2016 Revision 0 I

Westinghouse Non-Proprietary Class 3 C-48 ANO UNIT 2 CAPSULE 97° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:47 PM A= 47.13 B = 46.13 C = 37.31TO=25.73 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B * [Tanh((T-TO)/(C+Dn)J Upper ShelfL.E. = 93.26 Lower ShelfL.E. = l.00 (Fixed)

Temp:@35 mils= 15.70° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 97° 100 90

-n

~.,_

lo'\ 0 80

- 1

  • .._-s-r:l:l 70 I(,.

r c 60

  • -c Q

r:l:l

c. 50

~

ii<

~

~

QJ 40 0  :

~ 30

~ - .

(

20 10

)

']/

I I I I  ; I I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGn1ph 6.02 12/1712015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-49 Plant: Arkansas 2 Material: WEID Heat: 83650 Orientation: NIA Capsule: 97° ANO UNIT 2 CAPSULE 97° (WELD)

Charpy V-Notch Data Tern perature (0 F) Input L. E. Computed L. E. Differential

-50 6.8 2.6 4.23 0 27.8 19.6 8.24 10 29.2 28.8 0.44 I-----*

15 29.4 34.2 -4.82 25 34.6 46.2 -11.63 35 68.8 58.4 10.44 60 80.6 80.6 0.02 78 89.3 88.0 1.32 120 93.0 92.7 0.33 160 94.6 93.2 1.41 200 91.0 93.2 -2.25 240 91.6 93.3 -1.66 CVGraph 6.02 12/1712015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-50 ANO UNIT 2 CAPSULE 97° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:47 PM A= 50.00 B = 50.00 C = 48.99 TO= 27.86 D = 0.00 Correlation Coefficient= 0.992 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 27.90 Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 97° 100 v - .-..,

_}

90 -

80 l p

- 70 i..

~ 60 Q,j

.c c 00

+.> 50 cQ,j u

i..

Q,j 40 '

~

30 p

I ID 20 10

)

0 J(

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/1712015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 C-51 Plant: Arkansas 2 lvlaterial: WELD Heat: 83650 Orientation: NIA Capsule: 97° ANO UNIT 2 CAPSULE 97° (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-50 5.0 4.0 1.00 0 25.0 24.3 0.72 10 25.0 32.5 -7.54 15 35.0 37.2 -2.17 25 55.0 47.l 7.91 35 60.0 57.2 2.76 60 75.0 78.8 -3.79 78 90.0 88.6 1.44 120 90.0 97.7 -7.73 160 100.0 99.5 0.45 200 100.0 99.9 0.09 240 100.0 100.0 0.02 CVGraph 6.02 12117/2015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-52 ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Cun'e Printed on 5/10/2016 11 :20 AM A= 70.10 B = 67.90 C = 69.09 TO= -32.12 D = 0.00 Correlation Coefficient= 0.778 Equation is A+ B * [Tanh((f-TO)/(C+DD)J Upper Shelf Energy= 138.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs=-79.00° F Temp@35 ft-lbs=-71.60° F Temp@:50 ft-lbs=-53.20° F Plant: Arkansa.~ 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 97° 180 160 --*

0 0 140

.c 120 t;l:l 0 /

I c:::

..... 100 0

I 0

~

r..

~ .o'j

~= 80 u

z

> 60 './

/ *Y> ..

40 20 I *o

~

0 I I I I i  ;

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGmph6.02 05/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-53 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 97° ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN DiITerential

-80 14.0 29.4 -15.37

-40 27.5 62.4 -34.89

-40 87.5 62.4 25.11

-30 95.9 72.2 23.72

-25 125.5 77.1 48.43

-15 58.0 86.6 -28.59 0 55.3 99.6 -44.27 35 160.0 121.0 39.02 55 95.5 127.9 -32.41 80 148.0 132.9 15.09 140 150.0 137.1 12.92 200 138.5 137.8 0.66 CVGraph 6.02 05/10/2016 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-54 ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hypc!bolic Tangent Curve Printed on 12/17/2015 1:49 PM A= 45.27 8 = 44.27 C = 97.52 TO= -40.42 D = 0.00 Correlation Coefficient= 0.838 Equation is A+ B * [Tanh((f-TO)/(C+Dl))]

Upper ShelfL.E. = 89.53 Lower Shelf L.E. = 1.00 (Fixed)

Temp@35 mils=-63.40° F Plant: Arkansas 2 Material: SA5338 CLl Heat: C8182-2 Orientation: N/A Capsule: 97° 100 ---------------------------------------------------..-------.

90 80

~

70

o  !

-....e= :n lo Q

60

~

=

= 50

~

~

Iii<

.. /*o>** . i'"'

-=

~

40

~ 30

,..J

./.

20 10

./0

~/

0 L-.....l.....-.i---l....-....L...---J"---'---'--....L..--.L.........l....-..L....--1....-....L...---J"---'---.L.........l.---I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-55 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: NIA Capsule: 97° ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) InputL. E. Computed L. E. Differential

-80 19.0 28.2 -9.22

-40 33.6 45.5 -11.86

-40 57.6 45.5 12.14 f----

-30 60.4 50.0 10.42

-25 74.0 52.2 21.79

-15 44.0 56.6 -12.55 0 44.2 62.6 -18.43 35 88.4 74.0 14.41 55 65.2 78.6 -13.37 80 85.0 82.6 2.37 140 88.0 87.4 0.60 200 91.0 88.9 2.10 CVGraph 6.02 12117/2015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-56 ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 12/J 7/2015 1:49 PM A= 50.00 B = 50.00 C = 68.92 TO= -31.34 D = 0.00 Correlation Coefficient = 0.882 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shclf%Shear = 100.00 (Fixed) Lower Shelf 'YoShcar = 0.00 (Fixed)

Temperature at 50% Shear= -31.30 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 97° 100 90

... -7 --

80 I

... 0 I 70

~1

.c 00.

~

~

60

-1 50

= /a~

~

~

~ 40

~

30 I

20

~

/.o 10

~

/o 0

... __/

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 12/1712015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-57 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: NIA Capsule: 97° ANO UNIT 2 CAPSULE 97° (HEAT-AFFECTED ZONE)

Charpy V-N otch Data Temperature (0 F) Input %Shear Computed %Shear DilTerentinl

-80 15.0 19.6 -4.59

-40 25.0 43.7 -18.75

-40 60.0 43.7 16.25

-30 65.0 51.0 14.03

-25 75.0 54.6 20.42

-15 45.0 61.6 -16.64 0 45.0 71.3 -26.29 35 100.0 87.3 12.73 55 100.0 92.5 7.55 80 100.0 96.2 3.80 140 100.0 99.3 0.69 200 100.0 99.9 0.12 CVGraph 6.02 1211712015 Page 2f2 WCAP-18166-NP September 2016 Revision 0

r Westinghouse Non-Proprietary Class 3 C-58 ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2: 17 PM A= 47.10 B = 44.90 C = 90.57TO=104.07 D = 0.00 Correlation Coefficient= 0.997 Equation is A+ B * [Tanh((f-TO)/(C+D"D)]

Upper ShelfEnergy = 92.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@,30 ft-lbs= 67.80° F Temp@35 ft-lbs= 79.10° F Temp@50ft-lbs=l10.00° F Plant: Arkansas 2 Material: SA533BCL1 Heat C8182-2 Orientation: TL Capsule: 104° 4i .. -*-.

C) 90 Q,. .

""*--\--*

80 ..

I- *-*: ..

70

~

rl.l

/

~

~

~

~

60 50

~= 40

. ~, ..

z u 30 20 10 0 ,____...._......~......~......~......~......__.--......~......~......~......~......__.--__.~......;~......~-;~....

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-59 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: TL Capsule: 104° ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

Charpy V-Notch Data Tern perature (0 F) Input CVN Compulcd CVN Differential 0 8.5 10.4 -1.90 30 13.5 16.8 -3.34 50 28.5 23.1 5.42 60 26.0 26.8 -0.83 70 29.5 31.0 -1.46 100 46.5 45.l 1.42 125 57.0 57.3 -0.29 200 80.5 82.4 -1.86 300 93.5 90.8 2.67 350 88.5 91.6 -3.11 400 93.5 91.9 1.63 CVGraph 6.02 05/0912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-60 ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

CVGraph6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:51 PM A= 40.17 B = 39.17 C = 96.58 TO= 101.65 D = 0.00 Correlation Coefficient= 0. 996 Equation is A+ B * [Tanh((f-TO)/(C+D1))]

Upper Shelf L.E. = 79.35 Lower Shelf L.E. = 1.00 (Fixed)

Temp@35 mils= 88. 90° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: 104° 90

~. ..

()

80 .,

~

~ .. .. 0

-=er l}

70

/'

-....=

c rl}

60 50 I ..

=

I*'/

~ ~

Q.

~ 40

~

~

i..

a.> 30

~

~

~

20

~.

°f  :

10

~ .

/, r

"" _/> I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/17/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-61 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: Tl, Capsule: 104° ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential 0 7.0 9.5 -2.51 30 13.0 15.5 -2.49 50 26.0 21.0 4.98 60 24.0 24.3 -0.26 70 26.0 27.8 -1.78 100 41.0 39.5 1.49 125 49.0 49.5 -0.47 200 69.0 70.3 -1.30 300 78.0 78.1 -0.08 350 77.0 78.9 -1.89 400 82.0 79.2 2.82 CVGraph 6.02 12/17/2015 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-62 ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

CVGraph6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:51 PM A= 50.00 B = 50.00 C = 80.73TO=109.91 D =0.00 Correlation Coefficient= 0.995 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

UppcrShelf%Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 110.00 Plant: Arkansa.~ 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: 104° 100 -

Ir 7

90

... .:/c*)

80 70

- I j:

-~

~

..c:

00.

60 r

+.I so

= - I

~

~ 0 **-'

~ 40

~

30

- J 20 oJ 10

... /

f

_/ 0 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12117/2015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-63 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: 104° ANO UNIT 2 CAPSULE 104° (TRANSVERSE)

Charpy V-Notch Data Tern perature (0 F) Input %Shear Computed %Shear Differential 0 0.0 6.2 -6.16 30 5.0 12.l -7.13 50 25.0 18.5 6.52 60 20.0 22.5 -2.50 70 30.0 27.l 2.88 100 45.0 43.9 I.I I 125 60.0 59.2 0.76 200 85.0 90.3 -5.31 300 100.0 99.l 0.89 350 100.0 99.7 0.26 400 100.0 99.9 0.08 CVGraph 6.02 12/1712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-64 ANO UNIT 2 CAPSULE 104° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2: 19 PM A =63.60 B =61.40 C =61.9-' TO =50.33 D = 0.00 Correlation Coefficient= 0.91-'

Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 125.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs= 12.30° F Temp'.?!;35 ft-lbs= 19.10° F Temp@50 ft-lbs= 36.-'0° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 104° 140 ------------------------------------------------------

c*

-200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 C-65 Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: NIA Capsule: 104° ANO UNIT 2 CAPSULE 104° (WELD)

Charpy V-Notch Data Tcmpuature (0 F) Input CVN Computed CVN Differential

-30 10.5 10.7 -0.24 0 22.5 22.4 0.10 15 27.5 31.9 -4.44 30 23.5 44.1 -20.64 30 66.5 44.1 22.36 40 80.0 53.5 26.54 50 22.5 63.3 -40.78 50 74.0 63.3 10.72 70 88.0 82.5 5.53 125 118.0 114.9 3.11 200 124.5 124.0 0.47 400 131.0 125.0 6.00 CVGraph 6.02 05/09/2016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-66 ANO UNIT 2CAPSULE104° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/20162:19 PM A= 47.87 B = 46.87 C = 73.86 TO= 41.90 D = 0.00 Correlation Coefficient = 0. 906 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper ShelfL.E. = 94.74 Lower ShelfL.E. = 1.00 (Fb:ed)

Temp@35 mils= 21.10° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 104° 100

.... () ....

  • 90 80 r ll 70 s

= 60

  • -0 r ll

=

= 50 l

Q.;

i.< ...

~

-= 40

r..

Q.l

=

..,J 30 lPo p 0 20 10

.j 0

~v I

-300 -200 -100 0 100 200 300 400 500 600 Temperature(° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-67 Plant: Arkansas 2 !Vfaterial: \VELD Heat: 83650 Orientation: NIA Capsule: 104° ANO UNIT 2 CAPSULE 104° (WELD)

Charpy V-N_otch Data Tern peraturc {° F) Input L. E. Computed L. E. Differential

-30 11.0 12.7 -1.71 0 23.0 23.8 -0.81 15 28-0 31.5 -3.52 30 26.0 40.4 -14.39 30 56.0 40.4 15.61 40 66.0 46.7 19.33 50 25.0 53.0 -27.99 50 60.0 53.0 7.01 70 72.0 64.9 7.11 125 81.0 85.8 -4.81 200 96.0 93.5 2.54 400 95.0 94_7 0.26 CVGraph 6.02 05/0912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-68 ANO UNIT 2 CAPSULE 104° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:53 PM A= 50.00 B = 50.00 C = 61.63 TO= 31.27 D = 0.00 Correlation Coefficient= 0.953 Equation is A+ B * [Tanh((I'-TO)/(C+Dl))]

Upper Shelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 31.30 Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 104° 100 90 80

o/ ..

70 ......

I

~ 60 Q)

.=

00

...... so s'

=

~

~

T

~

~ 40 -

30 .P 20 J 10

/

0

_/o I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 12/1712015 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-69 Plant: Arkansas 2 l'vfuterial: \\'EID Heat: 83650 Orientation: NIA Capsule: 104° ANO UNIT 2 CAPSULE 104° (WELD)

Charpy V-Notch Data Tcm pcrature (0 F) Input %Shear Computed %Shear Differential

-30 5.0 12.0 -7.04

--f-*

0 30.0 26.6 3.40 15 35.0 37.1 -2.10 30 50.0 49.0 1.03 30 55.0 49.0 6.03 40 70.0 57.0 12.97 50 40.0 64.7 -24.74 50 65.0 64.7 0.26 70 85.0 77.8 7.15 125 95.0 95.4 -0.44 200 100.0 99.6 0.42 400 100.0 100.0 0.00 CVGraph 6.02 1211712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-70 ANO UNIT 2 CAPSULE 104° (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:21 PM A= 66.10 B = 63.90 C = 83.21 TO= 36.39 D = 0.00 Correlation Coefficient= 0.955 Equation is A+ B * [Tanh((f-TO)/(C+D1))]

Upper Shelf Energy= 130.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Ternpf@30 ft-lbs=-16.80° F Temp'.@35 ft-lbs= -7.80° F Temp@50 ft-lbs= 15.00° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: NIA Capsule: 104° 140 ---....----.---....-----.-----...----.-----.-------

0 ~L**~'*-+-~+-~____;._~

/- ct>

120 ~~~+---'~-+-~~_.__~~-!---J'---+~~---l-~-'----lf--~~+---'----1

0 /.

j 100 80 ~

/

--+--+-----'----+-.---'LI-..~--l--'----+-~--+----------1 60 ~-'-~-i-~~-t---',~-+-e.::~-+-~-'----!-~-'---+~-,.---f~-'---~!--~--1

.1/9 40 ~---'-~-+--~~--l~-'--~-l-~~-1-~~~I----'-~-+-~'-----+~--"-~+----'-~~

Ql 20 0 1----+--:,-

' .v

~~~-+--~-'---l~--J""--+-~~-1-~~~1--~~-1-~~--+~~~+--~~~

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGraph 6.02 05/09/2016 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-71 Plant: Arkansas 2 1vfaterial: SA533B CLl Heat: C8182-2 Orientation: NIA Capsule: 104° ANO UNIT 2 CAPSULE 104° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature(° F) InputCVN Computed CVN Differential

-60 27.0 13.7 13.33

-30 22.0 23.7 -1.75

-15 35.0 31.0 4.01 0 49.5 39.8 9.69 30 57.5 61.2 -3.71 30 59.5 61.2 -1.71 50 62.5 76.5 -13.96 50 56.5 76.5 -19.96 70 11 l.0 90.6 20.40 125 133.5 116.4 17.08

-* - -- ~*

200 131.5 127.5 3.96 400 123.5 130.0 -6.48 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-72 ANO UNIT 2CAPSULE104° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:55 PM A= 42.98 B = 41.98 C = 91.41TO=32.95 D = 0.00 Correlation Coefficient= 0.956 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf LE.= 84.97 Lower ShclfL.E. = 1.00 (Fixed)

Temp@35 mils= 15.40° F Plant: Arkansas 2 Material: SA533B CLI Heal: C8182-2 Orientation: N/A Capsule: 104° 90 80 0 /c r- (I)

.... 0 I ..

-=t i.)

70

~

I

-....=

8 0

ti.)

60 50

~

I ..

=

= 40 -

Q.,

~ lo

-=

~

~

~ 30

- Cr-

~= -* ..

  • 9  :

20 10

~

/

'l ..

~

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/17/2015 Page 112 WCAP-18166-NP September 2016 Revision 0

_J

-1 Westinghouse Non-Proprietary Class 3 C-73 Plant: Arkamms 2 Material: SA533BCL1 Heat: C8182-2 Orientation: NIA Capsule: 104° ANO UNIT 2 CAPSULE 104° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tern perature {° F) InputL. E. Computed L. E. Differential

-60 19.0 10.7 8.28

-30 17.0 17.9 -0.91

-15 24.0 22.8 1.22 0 32.0 28.5 3.53 30 39.0 41.6 -2.63 30 40.0 41.6 -1.63 50 42.0 50.7 -8.73 50 40.0 50.7 -10.73 70 75.0 59.1 15.87 125 82.0 75.1 6.92 200 81.0 82.9 -1.85 400 81.0 84.9 -3.94 CVGraph 6.02 1211712015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-74 ANO UNIT 2CAPSULE104° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 12/17/2015 1:56 PM A= 50.00 8 = 50.00 C = 101.30 TO= 15.99 D = 0.00 Correlation Coefficient= 0.929 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shcar = 100.00 (FLxed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 16.00 Plant: Arkansas 2 Material: SA5338 CLl Heat: C8182-2 Orientation: N/A Capsule: 104°

-..../

100 90 0 - ..

- **,  : I J

80 70

- *I ..

ci:

~

60 f

.c 00

1) L_

50

=

~

~

- ,-~

~ 40 - ......

~]

~

30 20 J

10

/;

0

- L/ I I I I  ;

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 12/1712015 Page 1/2 WCAP-18166-NP September 2016 Revision 0 L

Westinghouse Non-Proprietary Class 3 C-75 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 104° ANO UNIT 2 CAPSULE 104° (HEAT-AFFE<;TED ZONE)

Charpy V-Notch Data Tern perature (0 F) Input % Shear Computed %Shear Differential

-60 20.0 18.2 l.76

-30 30.0 28.7 1.26

-15 40.0 35.2 4.83 0 55.0 42.2 12.83 30 40.0 56.9 -16.87 30 50.0 56.9 -6.87 50 65.0 66.2 -1.19 50 50.0 66.2 -16.19 10 95.0 14.4 20.61 125 100.0 89.6 I0.41 200 100.0 97.4 2.58 400 100.0 99.9 0.05 CVGraph 6.02 12117/2015 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-76 ANO UNIT 2CAPSULE104° (SRM)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:23 PM A= 44.60 B = 42.40 C = 85.15 TO= 194.36 D = 0.00 Correlation Coefficient= 0.993 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEncrgy = 87 .00 (Fi'xed) Lower Shelf Energy = 2.20 (Fixed)

Temp@JO ft-lbs=163.80° F Temp@35 ft-lbs= 174.80° F Tempifj,'50 fl-lbs=205.30° F Plant: Arkansas 2 Material: SA533B CLl Heat: HSST-OlMY Orientation: LT Capsule: 104° 100 90 80 cv** u ~'\

-= 70 I "

~

f  :

I

~ 60

~

OJJ CJ 50  ;

0 I  :

~

= 'I

z 40 u 30 1

20 ot 0 10

,/*

  • . __,,er 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-77 Plant: Arkansas 2 lvfaterial: SA533B CLt Heat: HSST-OlMY Orientation: LT Capsule: 104° ANO UNIT 2CAPSULE104° (SRM)

Charpy V-Notch Data Tcm perature (0 F) InputCVN Computed CVN DllTcrcntial 70 6.0 6.5 -0.53 100 10.5 10.5 -0.03 130 22.5 17.5 4.98 150 24.0 24.3 -0.31 150 23.5 24.3 -0.81 170 26.0 32.8 -6.79 170 37.5 32.8 4.71 200 48.0 47.4 0.60 250 65.0 68.9 -3.94 300 86.0 80.5 5.54 350 89.0 84.9 4.14 400 87.0 86.3 0.67 CVGraph 6.02 0510912016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-78 ANO UNIT 2CAPSULE104° (SRM)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:24 PM A= 42.34 B = 41.34 C = 102.98 TO= 199.36 D = O.OU Correlation Coefficient= 0.996 Equation is A+ B * [Tanh((T-TO)/(C+DT))J Upper ShclfL.E. = 83.67 Lower ShelfL.E. = l.00 (Fixed)

Tempfi)35 mils= 180. 90° F Plant: Arkansas 2 Material: SA533B CLl Heat: HSST-OlMY Orientation: LT Capsule: 104° 90 80 n~ -

~

.. " c/

-= ~

s

..._ 60 70 I

I

....=

c

~

=

50 II "

= 40 ,..

Q.,

~

D

-...=

~

i...

Qj 30

  • I

~ =

20 c,f * ..

10

~I 0

~

-*LA' '

I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

-1 Westinghouse Non-Proprietary Class 3 C-79 Plant: Arkansas 2 Material: SA533B CL1 Heat: HSST-OlMY Orientation: LT Capsule: 104° ANO UNIT 2 CAPSULE 104° (SRM)

Charpy V-Notch Data Temperature{° F) InputL. E. Computed L. E. Differential 70 5.0 7.2 -2.20 100 13.0 11.5 1.52 130 22.0 18.1 3.94 150 23.0 23.9 -0.91 150 22.0 23.9 -1.91 170 27.0 30.9 -3.86 170 34.0 30.9 3.14 200 43.0 42.6 0.41 250 60.0 61.2 -1.17 300 75.0 73.4 1.58 350 81.0 79.5 1.53 400 80.0 82.0 -2.03 CVGraph 6.02 05/09/2016 Page2/].

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-80 ANO UNIT 2CAPSULE104° (SRM)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 5/9/2016 2:25 PM A= 50.00 8 = 50.00 C = 103.24 TO= 178.47 D = 0.00 Correlation Coefficient= 0.984 Equation is A+ B * [Tanh((f-TO)/(C+DT))j UpperShelf%Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 178.50 Plant: Arkansas 2 Material: SA533B CLl Heat: HSST..OIMY Orientation: LT Capsule: 104° 100 90

- .. v -

80 7

70 l Iv

~

QI

-=

00 60

_fo 50

= _p.

QI ..

CJ QI 40

~

30 oJ 20 I 10

')

0

~

Vo  :

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 05/09/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-81 Plant: Arkansas 2 Material: SA533B CLl Heat: HSST-OlMY Orientation: LT Capsule: 104° ANO UNIT 2CAPSULE104° (SRM)

Charpy V-Notch Data Tern perature (0 F) Input % Shear Computed %Shear Differential 70 5.0 10.9 -5.90 100 10.0 17.9 -7.94 130 35.0 28.l 6.89 150 40.0 36.6 3.45 150 40.0 36.6 3.45 170 50.0 45.9 4.09 170 45.0 45.9 -0.91 200 55.0 60.3 -5.28 250 70.0 80.0 -9.99 300 100.0 91.3 8.67 350 100.0 96.5 3.48 400 100.0 98.7 1.35 CVGraph 6.02 05/09/2016 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-82 ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 1:39 PM A= 62.10 B =59.90 C = 88.76TO=139.26 D = 0.00 Correlation Coefficient= 0.978 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 122.00 (FLxed) Lower Shelf Energy= 2.20 (Fixed)

Temp@,30 ft-lbs= 86.20° F Temp@35 ft-lbs= 96.00° F Temp@50 ft-lbs=l2l.10° F Plant Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsule: 284° 140 00 120

  • >/'

-i;,:i

.c 100

/ ..

"'j"

~

~

11.o

~

80 fa .,

~

= 60 z

u 40 l  :

i

>o 20

___.,V' i  ;

0 I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-83 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: LT Capsule: 284° ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

Charpy V-Notch Data Tern perature (° F) InputCVN Computed CVN Dillcrential 25 ,______,_________ ----------

16.5 10.7 5.82 60 28.5 19.4 9.10 72 29.0 23.8 5.22 80 35.0 27.2 7.85 100 36.5 37.2 -0.71 120 35.0 49.3 -14.30 130 54.0 55.9 -1.87 165 67.0 79.0 -12.00 200 111.0 97.7 13.30 250 123.0 112.9 10.13 275 126.0 116.6 9.37 300 117.0 118.9 -1.88 CVGraph 6.02 06/10/2016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-84 ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

CVGraph 6.02: Hyperbolic Tangent Cmve Printed on 6/20/2016 8:54 AM A= 51.80 B = 50.80 C = 115.40 TO= 143.85 D = 0.00 Correlation Coefficient= 0.981 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 102.61* Lower Shelf L.E. = 1.00 (Fixed)

Temp@35 mils=I04.20° F Plant: Arkansas 2 Material: SA533B CLl Heat C8182-2 Orientation: LT Capsule: 284° 120 ------------.,.....----.......----..-----..-----.......----.,.....----...-----

1001--_:___J___:_~.J___:__-l-___:_~l--_:._-+-~~~,,,.,.-~~~:t=:=!=====t

i' ** . . cl cl';, .
  • -§, I .

801--~~1---'-~l--"-'----l-~....._-1-~~-1-,1--"'---+-~~-1-------+---,.--I

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 06/20/2016 Page 112 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-85 Plant: Arkansas 2 :Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsule: 284° ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

Charpy V-Notch Data Tern perature (0 F) InputL. E. Computed L. E. Differential 25 18.0 12.5 5.51

~--

60 25.5 20.3 5.24 72 24.0 23.7 0.29 80 30.5 26.3 4.25 100 30.0 33.4 -3.38 120 33.0 41.5 -8.45 130 42.5 45.7 -3.24 165 57.0 61.0 -4.01 200 86.0 74.7 11.26 250 92.0" 88.7 3.32 275 94.5" 93.1 1.38 300 89.0" 96.2 -7.24

  • CVGraph 6.02 has calculated the upper-shelf LE value to be 102.61 mils. TI1is plot reflects the CVGraph calculated value. However, no data appears near the calculated upper-shelf LE value. Tiierefore, the summary plot for the Intermediate Shell Plate C-8009-3 (Longitudinal), displaying all capsule results, contains a set value for Capsule 284° upper-shelf LE. The summary plot set value for the upper-shelf LE is the average of the three indicated points.

CVGraph 6.02 0612012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-86 ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 I :51 PM A = 50.00 B = 50.00 C = 96.27 TO = 139.57 D = 0.00 Correlation Coefficient= 0.982 Equation is A+ B * [Tanh((f-TO)/(C+D'D)]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 139.60 Plant: Arl<ansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: LT Capsule: 284° 100 ..... -

........ ~

90

/

80

'" *>/

70 I

~

QJ 60

.c 00.

+-' 50

/o

=

QJ u

QJ 40 L

~

1-.

30

-~

20 oJ  :

10 I

_/

v 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

r Westinghouse Non-Proprietary Class 3 C-87 Plant: Arkansas 2 Material: SA533BCL1 Heat: C8182-2 Orientation: LT Capsule: 284° ANO UNIT 2 CAPSULE 284° (LONGITUDINAL)

Charpy V-Notch Data Tcm perature (° F) Input %Shear Computed %Shear Dinerential 25 15.0 8.5 6.53 60 20.0 16.1 3.93 72 25.0 19.7 5.28 80 30.0 22.5 7.51 100 30.0 30.5 -0.53 120 30.0 40.0 -9.97 130 40.0 45.0 -5.05 165 55.0 62.9 -7.91 200 85.0 77.8 7.18 250 100.0 90.8 9.16 275 100.0 94.3 5.66 300 100.0 96.6 3.45 CVGraph 6.02 06/10/2016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-88 ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 I :52 PM A= 55.60 B = 53.40 C = 91.22 TO= 148.10 D = 0.00 Correlation Coefficient= 0.979 Equation is A+ B * [Tanh((f-TO)/(C+D'D)J Upper ShelfEnergy = 109.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp~,30 ft-lbs=I00.50° F Temp@35 ft-lbs= 111.00° F Temp@50 ft-lbs=138.50° F Plant: Arkansas 2 Material: SAS33B CLl Heat: C8182-2 Orientation: TL Capsule: 284° 120  :

0 . .. .

' . c) .

0/

100

--r;f.l

.c 80

(

f

~

~

I OJ)

~

=

60

/to z

u> 40

- ~ ,. '

  • ~

c/

20 7 0

~

/ 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-89 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: TL Capsule: 284° ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

Charpy V-Notch Data Temperature (0 F) InputCVN Computed CVN Differential 25 6.0 8.9 -2.93 60 16.0 15.7 0.28 72 28.5 19.1 9.36 80 28.0 21.8 6.21 100 33.0 29.8 3.21 130 45.0 45.l -0.14 150 45.0 56.7 -11.71 175 58.0 70.9 -12.91 200 94.0 83.1 10.92 250 105.0 98.7 6.33 275 113.5 102.8 10.73 300 109.0 105.3 3.69 CVGraph 6.02 0611012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-90 ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

CVGraph 6. 02: Hyperbolic Tangent Curve Printed on 6/20/2016 9:08 AM A= 52.58 8 = 51.58 C = 134.97 TO= 164.28 D = 0.00 Correlation Coefficient= 0.988 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShclfL.E. = 104.17* Lower Shelf L.E. = 1.00 (Fixed)

Temp@35 mils= 116.40° F Plant: Arkansas 2 Material: SA5338 CLl Heat: C8182-2 Orientation: TL Capsule: 284° 120 100  ;

rl.l 9')

-*-=

6 Q

rl.l 80

  • (

=

~

c..

60

)

~

ilo<

-=

I.

a.i

...... 40

}

~= .. .,

{:

-~

20

_U/

l/

I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGraph 6.02 06/20/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-91 Plant: Arkansas 2 :Material: SA533BCL1 Heat: C8182-2 Orientation: TL Capsule: 284° ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

Charpy V-Notch Data Tern perature {° F) Input L. E. Computed LE. Differential 25 10.5 12.6 -2.12 60 19.0 19.\ -0.13 72 28.0 21.9 6.05 80 24.0 24.0 0.00 100 30.0 29.7 0.28 130 39.5 39.8 -0.26 150 44.0 47.l -3.15 175 48.0 56.7 -8.67 200 74.5 65.9 8.57 250 85.0* 81.6 3.45 275 86.0* 87.4 -1.42 300 90.0* 92.0 -1.99

  • CVGraph 6.02 has calculated the upper-shelf LE value to be 104.17 mils. TI1is plot reflects the CVGraph calculated value. However, no data appears near the calculated upper-shelf LE value. TI1erefore, the summary plot for the Intermediate Shell Plate C-8009-3 (Transverse), displaying all capsule results, contains a set value for Capsule 284° upper-shelf LE. The summary plot set value forthe upper-shelf LE is the average of the three indicated points.

CVGraph 6.02 0612012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-92 ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/20 IG I :53 PM A= 50.00 B = 50.00 C = 101.89 TO= 147.94 D = 0.00 Correlation Coefficient= 0.977 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 148.00 Plant: Arkansas 2 Material: SA5338 CLl Heat: C8182-2 Orientation: TL Capsule: 284° 100

~

90 /

80 I"/ . '

j 70

~

Q) 60 I

.c 00.

= 50 I

..=..

Q)

/_ .

r:

~

Q) 40 30

_J.'"'

20 10 V.

0

~

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGrnph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-93 Plant: Arkansas 2 :Material: SA533B CLl Heat: C8182-2 Orientation: TL Capsule: 284° ANO UNIT 2 CAPSULE 284° (TRANSVERSE)

Charpy V-Notch Data Tcmpfrature (0 F) Input %Shear Computed %Shear Differential 25 10.0 8.2 1.78 60 20.0 15.l 4.89 72 25.0 18.4 6.62 80 25.0 20.9 4.14 100 30.0 28.1 1.93 130 40.0 41.3 -1.29 150 40.0 51.0 -11.01 175 50.0 63.0 -12.98 200 80.0 73.5 6.47 250 100.0 88.1 11.88 275 100.0 92.4 7.63 300 100.0 95.2 4.81 CVGraph 6.02 06/1012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-94 ANO UNIT 2 CAPSULE 284° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 1:55 PM A= 67.10 B = 64.90 C = 76.02 TO= 57.59 D = 0.00 Correlation Coefficient= 0.907 Eqtmtion is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfEnergy = 132.00 (Fi.xed) Lower Shelf Energy = 2.20 (Fi.xed)

Temp@30 ft-lbs= 8.20° F Temp@35 ft-lbs= 16.40° F Temp@50 ft-lbs= 37.10° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 284° 160

(~

140 -

.... .. .. . .. ~ ***- ... *-* . *-*

120 0 /

-arl.l 100 I

~

.... - .°/ ..

-=

~

z

~

Q.l 80 g/

60 u

~

40 If oo 20

/o.,' - ..

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-95 Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 284° ANO UNIT 2 CAPSULE 284° (WELD)

Charpy V-Notch Data Tern perature {° F) Input CVN Computed CVN Differential

-25 8.5 15.5 -6.97 0 18.0 25.6 -7.59 15 62.5 34.1 28.38 15 68.0 34.l 33.88 25 34.0 40.9 -6.86 40 31.0 52.3 -21.34 60 29.0 69.2 -40.15 72 93.0 79.3 13.75 110 125.0 105.9 19.12 150 121.0 121.5 -0.51 200 144.0 129.0 14.99 250 139.0 131.2 7.82 CVGraph 6.02 06/\0/2016 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-96 ANO UNIT 2 CAPSULE 284° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/20/20169:16 AM A= 51.85 B = 50.85 C = 92.44 TO= 49.55 D = 0.00 Correlation Coefficient= 0.913 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 102.70* Lower Shelf L.E. = 1.00 (Fixed)

Temp(q)35 mils= 17.80° F Plant: Arkansas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 284° 120 100

  • C"I)

-*- 80

°! 0 c

0 C"I) c

~

c.. 60 1

~

~

~

i..

g/  :

40 4o Q,)

.+mo

~

~ .... . ..

20

))

0

-200

-100

/o 0 100 200 300 400 I

500 600

-300 Temperature(° F)

CVGraph 6.02 06/20/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-97 Plant: Arkansas 2 )).1aterial: WEID Heat: 83650 Orientation: NI A Capsule: 284° ANO UNIT 2 CAPSULE 284° (WELD)

Charpy V-Notch Data Tern perature (° F) InputL. E. Computed L E. Differential

-25 13.0 17.9 -4.90 0 22.5 26.9 -4.43 15 50.0 33.7 16.32 15 55.0 33.7 21.32 25 33.5 38.7 -5.15 40 32.0 46.6 -14.62 60 33.5 57.6 -24.07 72 70.0 64.0 6.04 110  %.O"' 81.1 14.94 150 95.0* 92.3 2.69 200 98.0* 98.9 -0.92 250  %.0* 101.4 -5.39

  • CVGraph 6.02 has calculated the upper-shelf LE value to be 102.70 mils. This plot reflects the CVGraph calculated value. However, no data appears near the calculated upper-shelf LE value. 111erefore, the summary plot for the Surveillance Program Weld Metal, displaying all capsule results, contains a set value for Capsule 284° upper-shelf LE.

111e summary plot set value for the upper-shelf LE is the average of the four indicated points.

CVGraph 6.02 06/2012016 Page 2/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-98 ANO UNIT 2 CAPSULE 284° (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 1:57 PM A= 50.00 B = 50.00 C = 86.91 TO= 29.-lS D = 0.00 Correlation Coefficient= 0.968 Equation is A+ B * [Tanh((f-TO)/(C+D'D)J Upper Shclf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 29.50 Plant: Arlrnnsas 2 Material: WELD Heat: 83650 Orientation: N/A Capsule: 28-l0 100 90

... oy-I j

80 70 i co:

~

60 I

.c 00

_f_

50

=

~

~

~ 40 f"

C-i - . cl ..

30 Jo 20 10

~

v 0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-99 Plant: Arkansas 2 Material: WEID Heat: 83650 Orientation: NIA Capsule: 284° ANO UNIT 2 CAPSULE 284° (WELD)

Charpy V-Notch Data Tern perature (0 F) Input %Shear Computed %Shear Differential

-25 15.0 22.2 -7.22 1-------- --

0 35.0 33.7 1.33 15 50.0 41.8 8.24 15 50.0 41.8 8.24 25 45.0 47.4 -2.44 40 55.0 56.0 -1.04 60 50.0 66.9 -16.89 72 75.0 72.7 2.31 110 95.0 86.5 8.54 150 95.0 94.1 0.87 200 100.0 98.1 1.94 250 100.0 99.4 0.62 CVGraph 6.02 06/10/2016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-100 ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/20 16 I :58 PM A= 72.10 B = 69.90 C = 104.33 TO= 16.28 D = 0.00 Correlation Coefficient= 0.957 Equation is A+ B * (Tanh((f-TO)/(C+DT))]

Upper Shelf Energy= 142.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp@30 ft-lbs=-56.40° F Temp@35 ft-lbs=-+5.30° F Tcmp@.,50 ft-lbs=-17.80° F Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 284° 160 0

140 120 1x*

-- ~

,.Q I 100 ~I OJ) 80 ol C)

I

~  :

~

= '.

z 60

~

u 40 I '.

20 II' Jg 0

L/ 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 06/1012016 Page 1/2 WCAP-18166-NP September 2016 Revision 0 L

Westinghouse Non-Proprietary Class 3 C-101 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: NIA Capsule: 284° ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-75 6.5 22.9 -16.40

-50 24.0 32.8 -8.84

-40 29.5 37.7 -8.17

-30 47.0 43.0 4.02

-25 51.5 45.8 5.70 15 88.0 71.2 16.76 40 101.0 87.7 13.28 100 86.0 118.6 -32.61 130 136.0 127.8 8.20 165 123.0 134.4 -11.36 200 138.0 138.0 O.Ql 250 150.5 140.4 10.07 CVGraph 6.02 0611012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-102 ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 1:59 PM A= 42.04 B = 41.04 C = 46.91 TO= -18.13 D = 0.00 Correlation Coefficient= 0.943 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper ShelfL.E. = 83.07 Lower Shelf L.E. = 1.00 (Fi'l:ed)

Temp@35 mils=-26.20° F Plant Arkansas 2 Material: SA533B CLl Heat: (8182-2 Orientation: N/A Capsule: 284° 100

0. 0 90

()

~

80 rlJ 70 6

c 0

60 I

rlJ c

~ 50 c.

~

Ii<

~

40 I

(jJ

~ 30

...:i 20 10 J

~/.

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-103 Plant: Arkansas 2 :Material: SA533BCL1 Heat: C8182-2 Orientation: N/A Capsule: 284° ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tern perature (0 F) Input L. E. Computed L. E. Differential

-75 11.0 7.7 3.33

-50 18.0 17.8 0.22

-40 20.5 24.2 -3.68

-30 35.5 31.9 3.63

-25 35.5 36.l -0.57 15 59.0 67.0 -8.00 40 93.0 76.7 16.28 100 56.5 82.5 -26.04 130 91.0 82.9 8.08 165 80.0 83.0 -3.04 200 85.5 83.1 2.44 250 92.5 83.l 9.43 CVGraph 6.02 06/1012016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-104 ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 6/10/2016 2:00 PM A= 50.00 B = 50.00 C = 93.17 TO= -7.56 D = 0,00 Correlation Coefficient= 0.942 Equation is A+ B * [Tanh((f-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -7.50 Plant: Arkansas 2 Material: SA533B CLl Heat: C8182-2 Orientation: N/A Capsule: 284° 100 90 v -

80

  • / .;;..

70 of

~

QJ

.c 60 I

I 00

...... so  : -

= '~/

QJ ..

~

QJ 40

~

30 /

20

0

~ / I I I I I  ;  ; I

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGraph 6.02 06/10/2016 Page 1/2 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 C-105 Plant: Arkansas 2 Material: SA533B CL1 Heat: C8182-2 Orientation: N/A Capsule: 284° ANO UNIT 2 CAPSULE 284° (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tempnature (° F) Input %Shear Computed %Shear Differential

-75 15.0 19.0 -4.04

-50 20.0 28.7 -8.68

-40 20.0 33.3 -13.26

-30 45.0 38.2 6.82

-25 50.0 40.7 9.25 15 75.0 61.9 13.13 40 75.0 73.5 1.49 100 70.0 91.0 -20.96 130 100.0 95.0 4.96 165 80.0 97.6 -17.60 200 100.0 98.9 1.15 250 100.0 99.6 0.40 CVGraph 6.02 06/10/2016 Page 212 WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-1 APPENDIXD ARKANSAS NUCLEAR ONE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION D.1 INTRODUCTION Regulatory Guide 1.99, Revision 2 [Ref. D-1] describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed and tested from the Arkansas Nuclear One Unit 2 (AN0-2) reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with Regulatory Guide 1.99, Revision 2, the credibility of the surveillance data will be judged based on five criteria.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the AN0-2 reactor vessel surveillance data and determine if that surveillance data is credible.

D.2 EVALUATION Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements" [Ref. D-2], as follows:

"the region of the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage. "

The AN0-2 reactor vessel beltline region traditionally consists of the following materials:

1. Intermediate Shell Plates C-8009-1, C-8009-2, and C-8009-3
2. Lower Shell Plates C-8010-1, C-8010-2, and C-8010-3
3. Intermediate Shell Longitudinal Welds 2-203A, B, & C (Multiple Heat #'s)
4. Lower Shell Longitudinal Welds 3-203A, B, & C (Heat# 10120, Flux Type Linde 0091)
5. Intermediate to Lower Shell Circumferential Weld 9-203 (Heat# 83650, Flux Type Linde 0091)

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-2 Per BAW-2399, Revision 1 [Ref. D-3], the AN0-2 surveillance program was developed to the requirements of ASTM El 85-73. At the time of the surveillance program development, all of the beltline plates were considered in terms of irradiation embrittlement through end of life. Of the beltline plates, Intermediate Shell Plate C-8009-3 was foreseen to be the most limiting plate. As determined in CEN-15(A)-P [Ref. D-4], Intermediate Shell Plate C-8009-3 has the highest estimated initial and end of life RTNDT and the lowest initial upper-shelf energy value of the AN0-2 beltline plates. The chemistry values (Cu and Ni weight percent) for the beltline plates are relatively consistent and no plate is clearly differentiated from the rest by its high copper or nickel content. Therefore, Intermediate Shell Plate C-8009-3 was selected as the plate material for the surveillance program.

The beltline welds all have low copper content. Since Intermediate to Lower Shell Circumferential Weld 9-203 (Heat# 83650, Flux Type Linde 0091) has the highest projected fluence in comparison to the other beltline welds, it was selected for the surveillance program. Lastly, selection of. the beltline circumferential weld is consistent with the general practice for Combustion Engineering surveillance programs because it was considered representative material.

Based on the discussion above, Criterion 1 is met for the AN0-2 surveillance program.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper-shelf energy unambiguously.

Based on engineering judgment, the scatter in the data presented in these plots, as documented in Appendix C, is small enough to permit the determination of the 30 ft-lb temperature and the upper-shelf energy of the AN0-2 surveillance materials unambiguously.

Hence, the AN0-2 surveillance program meets Criterion 2.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-3 Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of

~TNoT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and l 7°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper-shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82 [Ref. D-5].

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine ifthe scatter of these LiRTNDT values about this line is less than 28°F for welds and less than l 7°F for the plate.

Following is the calculation of the best-fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2. In addition, the recommended NRC methods for determining credibility will be followed. The NRC methods were presented to industry at a meeting held by the NRC on February 12 and 13, 1998 [Ref. D-6]. At this meeting, the NRC presented five cases. Of the five cases, Case 1

("Surveillance data available from plant and no other source") most closely represents the situation for the AN0-2 surveillance plate and weld material.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-4 Case 1: Intermediate Shell Plate C-8009-3 and Weld Heat# 83650 Following the NRC Case 1 guidelines, the AN0-2 surveillance plate and weld metal (Heat# 83650) will be evaluated using the AN0-2 data. This evaluation is contained in Table D-1. Note that when evaluating the credibility of the surveillance weld data, the measured ~RTNDT values for the surveillance weld material do not include the adjustment ratio procedure of Regulatory Guide 1.99, Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld material measured shift values. In addition, only AN0-2 data is being considered; therefore, no temperature adjustment is required.

Table D-1 Calculation of Interim Chemistry Factors for the Credibility Evaluation Using AN0-2 Surveillance Capsule Data Capsule (b)

Fluence yy<*> ARTNDT FF*ARTNDT 2 Material Capsule 19 2 FF (x 10 n/cm , (oF) {°F)

E> 1.0 MeV)

Intermediate 97° 0.303 0.673 23.5 15.81 0.45 Shell Plate C-8009-3 284° 3.67 1.337 85.7 114.60 1.79 (Longitudinal)

Intermediate 97° 0.303 0.673 33.4 22.47 0.45 Shell Plate 104° 2.15 1.208 52.9 63.90 1.46 C-8009-3 (Transverse) 284° 3.67 1.337 85.6 114.47 1.79 SUM: 331.26 5.94 I

CF C-8009-3 = L(FF

  • L\RTNDT) 2

+ L(FF ) = (331.26) + (5.94) = 55.8°F 97° 0.303 0.673 13.2 8.88 0.45 Surveillance Weld Material 104° 2.15 1.208 16.1 19.45 1.46 (Heat #83650) 284° 3.67 1.337 12.0 16.05 1.79 SUM: 44.38 3.70 CF surv. weld= L(FF

  • L\RTNDT) 2

+ L(FF ) = (44.38) + (3.70) = 12.0°F Notes:

0 10 10 (a) FF= fluence factor= :t< 0*28 - *

(b) L\RTNDT values are the measured 30 ft-lb shift values taken from Table 5-10.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-5 The scatter of .LlRTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.

Table D-2 AN0-2 Surveillance Capsule Data Scatter about the Best-Fit Line CF Capsule Measured Predicted Scatter <17°F Material Capsule (Slopebcst-fit) Fluence FF ARTNDT ARTNDT ARTNDT (Base Metal)

(oF) (x 1019 n/cm 2) (oF) (oF) (oF) <28°F (Weld)

Intermediate Shell 97° 55.8 0.303 0.673 23.5 37.5 14.0 Yes Plate C-8009-3 (Longitudinal) 284° 55.8 3.67 1.337 85.7 74.6 11.1 Yes 97° 55.8 0.303 0.673 33.4 37.5 ' 4.1 Yes Intermediate Shell Plate C-8009-3 104° 55.8 2.15 1.208 52.9 67.4 14.5 Yes (Transverse) 284° 55.8 3.67 1.337 85.6 74.6 11.0 Yes 97° 12.0 0.303 0.673 13.2 8.1 5.1 Yes Surveillance Weld Material 104° 12.0 2.15 1.208 16.1 14.5 1.6 Yes (Heat# 83650) 284° 12.0 3.67 1.337 12.0 16.0 4.0 Yes From a statistical point of view, +/- lcr would be expected to encompass 68% of the data. Table D-2 indicates that all five of the five surveillance data points fall inside the +/- 1cr of l 7°F scatter band for surveillance base metal; therefore, the plate data is deemed "credible" per the third criterion.

Table D-2 indicates that all three of the three surveillance data points fall inside the+/- lcr of28°F scatter band for surveillance weld material; therefore, the surveillance weld data is deemed "credible" per the third criterion.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-6 Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within+/- 25°F.

The surveillance materials are contained in capsules positioned near the reactor vessel inside wall so that the irradiation conditions (fluence, flux spectrum, temperature) of the test specimens resemble, as closely as possible, the irradiation conditions of the reactor vessel. The capsules are bisected by the midplane of the core and are placed in capsule holders positioned circumferentially about the core at loqations near the regions of maximum flux. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F.

Hence, Criterion 4 is met for the AN0-2 surveillance program.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The AN0-2 surveillance program does contain Standard Reference Material (SRM). The material was obtained from an A533 Grade B, Class 1 plate (HSST Plate 01). NUREG/CR-6413, ORNL/TM-13133

[Ref. D-7] contains a plot of Residual vs. Fast Fluence for the SRM (Figure 11 in the report). This Figure shows a 2a uncertainty of 50°F. The data used for this plot is contained in Table 14 in the report.

However, the NUREG Report does not consider the recalculated fluence and LiRTNDT values for Capsule 104°. Thus, Table D-3 contains an updated calculation of Residual vs. Fast Fluence, considering the recalculated capsule fluence and LiRTNDT values for Capsule 104°.

Table D-3 Calculation of Residual vs. Fast Fluence for AN0-2 Capsule fluence Measured RG 1.99, Rev. 2<h> Residual(c)

Capsule (x 10 19 n/cm2, FF Shift<a> (°F) Shift (°F) (°F)

E > 1.0 MeV) 104° 2.15 1.208 132.3 164.4 32.1 Notes:

(a) The measured LiT30 value for the SRM was taken from Section 5.

(b) Per NUREG/CR-6413, ORNL/TM-13133, the Cu and Ni values for the SRM (HSST Plate 01) are 0.18 and 0.66, respectively. This equates to a chemistry factor value of 136.1°F based on Regulatory Guide 1.99, Revision 2, Position I. I. The calculated shift is thus equal to CF

(c) Residual = Absolute Value [Measured Shift - RG 1.99 Shift].

Table D-3 shows a 2a uncertainty ofless than 50°F, which is the allowable scatter in NUREG/CR-6413, ORNL/TM-13133 [Ref. D-7].

Hence, Criterion 5 is met for the AN0-2 surveillance program.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 D-7 D.3 CONCLUSION Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B:

  • The AN0-2 surveillance plate data are deemed "credible"
  • The AN0-2 surveillance weld data are deemed "credible" D.4 REFERENCES D-1 U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, May 1988.

D-2 Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.

D-3 AREVA, NP Inc. Report BAW-2399, Revision 1,Analysis of Capsule W-104 Entergy Operations, Inc. Arkansas Nuclear One Unit 2 Power Plant Reactor Vessel Material Surveillance Program, February 2005.

D-4 Combustion Engineering Report CEN-15(A)-P, Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Arkansas Nuclear One -

Unit 2 Reactor Vessel Materials, May 1975.

D-5 ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), 1982.

D-6 K. Wichman, M. Mitchell, and A. Hiser, USNRC, Generic Letter 92-01 and RPV Integrity Workshop Handouts, NRC/Industry Workshop on RPV Integrity Issues, February 12, 1998, Agencywide Document Access and Management System (ADAMS) Accession Number ML110070570.

D-7 NUREG/CR-6413; ORNL/TM-13133, Analysis of the Irradiation Data for A302B and A533B Correlation Monitor Materials, April 1996.

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 E-1 APPENDIXE ARKANSAS NUCLEAR ONE UNIT 2 UPPER-SHELF ENERGY EVALUATION E.1 EVALUATION Per U.S. Regulatory Guide 1.99, Revision 2 [Ref. E-1], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure E-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in USE may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure E-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph.

The end-of-license (32 effective full-power years [EFPY]) USE of the vessel materials can be predicted using the corresponding quarter-thickness (1/4T) fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2 [Ref. E-1].

The AN0-2 reactor vessel beltline region thickness is 7.875 inches per Reference E-2. Calculation of the 1/4T vessel fluence values at 32 EFPY for the beltline materials is shown in Table E-1. The following pages present the AN0-2 USE evaluation. Figure E-1, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2 [Ref. E-1]. Table E-2 provides the predicted USE values for 32 EFPY (end-of-license).

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 E-2 Table E-1 AN0-2 Beltline 1/4T Fast Neutron Fluence Calculation 32 EFPY Fluence (x 10 19 n/cm 2, Material E > 1.0 MeV)

Surface l/4T<*>

Intermediate Shell Plate C-8009-1 3.02 1.88 Intermediate Shell Plate C-8009-2 3.02 1.88 Intermediate Shell Plate C-8009-3 3.02 1.88 Lower Shell Plate C-8010-1 3.02 1.88 Lower Shell Plate C-8010-2 3.02 1.88 Lower Shell Plate C-8010-3 3.02 1.88 Intermediate Shell Longitudinal Welds 2.89 1.80 2-203A, B, & C (Heat# Multiple)

Lower Shell Longitudinal Welds 2.89 1.80 3-203A, B, & C (Heat # 101 20)

Intermediate to Lower Shell Girth Weld 3.00 1.87 9-203 (Heat# 83650)

Note:

(a) 1/4T fluence values were calculated from the surface fluence , the reactor vessel beltline thickness (7 .875 inches) and equation f = f surf

WCAP-18166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 E-3 Limiting Plate Percent USE Dec rease 31 % from Capsule 104 ° (transverse orientation)

Limiting Weld Percent USE Decrease 17% from Capsule 104° I

100.0 .......

-  % Copper

...... I I

I I

I I

I

- Base Metal W eld .......

- I 0.35 0.30 I

I I 0.30 0.25 '""'- I Plate I

--~ ;;;;;--- ;;..""'

Line l l 0.20 Upper Limit I ~ I /

- 0.25 0.20 0.15

\

......... __,, ~

- 0.15 0.10

~

~

-v ~--

0.10 0.05 i-------;. - L-i_.- ~

-~ ~-- ~

~

- .,.,..,.,..,.,. ........ -...-::::.---- ....- I i_.-

L une w

ti')

c-;- ------ - .... -

- - ~ ---- ~

~

i---

.,_. ~

i- ~

.5 _.... ...... -- .... L-----" -

~

-- ----- -- - --~- ~-

~

0 Q.

0 Q) 10.0

~__;:

~

~

.- ~

C>

cu ~

~

_i-

  • Surveillance Material:

cQ): i__-- Intermediate Shell

(.) Plate C-8009-3 0.

Q)

-

  • Surveillance Material:

Weld Heat # 83650

./ ~~ I I I I I

,,,,,~ ........ .......

Intermediate and Lower Shell Intermediate and Lower Shell Plates Longitudinal Welds 32 EFPY 1/4T 32 EFPY 1/4T Fluence 1.88 x 10 19 n/cm2 =

=

Fluence 1.80 x 10 19 n/cm2 Intermediate to Lower Shell Girth Weld 32 EFPY 1/4T Fluence 1.87 x 1019 n/ cm2 =

1.0 I I I II 1111 I I I I 1.00E+17 1.00E +18 1.00E +19 1.00E+20 Neutro n Fluence, n/cm 2 (E > 1 MeV)

Figure E-1 Regulatory Guide 1.99, Revision 2 P redicted Decrease in Upper-Shelf E nergy as a F unctio n of Copper and Fluence WCAP-1 8166-NP September 2016 Revision 0

Westinghouse Non-Proprietary Class 3 E-4 Table E-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 32 EFPY Projected l/4T EOLE Fluence Projected Weight Unirradiated EOL Material (x 10 19 n/cm2, USE Decrease USE(bl

%Cu USE (ft-lb)

E > 1.0 MeV) (%)

(ft-lb)

Position 1.2(>)

Intermediate Shell Plate C-8009-1 0.098 1.88 95 22.0 74 Intermediate Shell Plate C-8009-2 0.085 1.88 93 22.0 73 Intermediate Shell Plate C-8009-3 0.096 1.88 134 22.0 105 Lower Shell Plate C-80 10- 1 0.085 1.88 89 22.0 69 Lower Shell Plate C-80 I 0-2 0.083 1.88 94 22.0 73 Lower Shell Plate C-8010-3 0.080 1.88 97 22.0 76 Intermediate Shell Longitudinal Weld 2-203A, B, & C(c) (Heat # Multiple) 0.050 1.80 11 0 22.0 86 Lower Shell Longitudinal Weld 3-203A, B, & C (Heat# I 0120) 0.046 1.80 125 22.0 98 Intermediate to Lower Shell Girth Weld 0.045 1.87 136 22.0 106 9-203 (Heat# 83650)

Position 2.2(d)

Intermediate Shell Plate C-8009-3 0.096 1.88 134 30.0 94 Intermediate to Lower Shell Girth Weld 0.045 1.87 136 17. 0 11 3 9-203 (Heat # 83650)

Notes:

(a) Calculated using the Cu wt. % values and l /4T fluence value for each material and Regulatory Guide 1.99, Revision 2, Position 1.2. In calcu lating Position 1.2 percent USE decreases, the base metal and weld Cu weight percentages were conservatively rounded up to the nearest line in Regu latory Guide 1.99, Revision 2, Figure 2.

(b) The initial USE values for the beltline materials have been updated from those documented in previous analyses using all avai lable Certified Material Test Report (CMTR) data and the USE calculation methodology described in Appendix C.

(c) A review of the AN0-2 fabr ication records indicated that the intermediate shell longitudinal welds were fabricated using multiple different weld heats. The material properties used herein for these welds represent the limiting values considering all of the app licab le intermediate she ll longitudinal weld heats.

(d) Calculated using surveill ance capsule measured percent decrease in USE from Table 5-1 0 and Regulatory Guide 1.99, Revision 2, Position 2.2; see Figure E-1 .

WCAP-18166-NP September 20 16 Revision 0

Westinghouse Non-Proprietary Class 3 E-5 USE Conclusion As shown in Table E-2, all of the AN0-2 reactor vessel beltline materials are projected to remain above the USE screening criterion of 50 ft-lbs (per 10 CFR 50, Appendix G [Ref. E-3]) at 32 EFPY.

E.2 REFERENCES E-1 U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement ofReactor Vessel Materials, May 1988.

E-2 AREVA NP, Inc. Report BAW-2405 , Revision 3, Appendix G Pressure-Temperature Limits for 32 EFPY, using ASME Code Cases,for Arkansas Nuclear One Unit 2 Power Plant, May 2005.

E-3 Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No. 243, December 19, 1995 .

WCAP-18166-NP September 2016 Revision 0