RNP-RA/15-0083, Submits Request for Technical Specification Change to Reactor Coolant System Pressure and Temperature Limits

From kanterella
(Redirected from ML15307A069)
Jump to navigation Jump to search

Submits Request for Technical Specification Change to Reactor Coolant System Pressure and Temperature Limits
ML15307A069
Person / Time
Site: Robinson Duke Energy icon.png
Issue date: 11/02/2015
From: Glover R
Duke Energy Progress
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RNP-RA/15-0083
Download: ML15307A069 (108)


Text

R. Michael Glover

( "-> DUKE H. B. Robinson Steam Electric Plant Unit 2 ENERGY~ Site Vice President Duke Energy Progress 3581 West Entrance Road Hartsville, SC 29550 0 : 843 857 1704 F: 843 857 1319 Mike. GIOl'e a d11ke-e11ergy.com 10 CFR 50.90 Serial: RNP-RA/15-0083 NOV 0 2 2015 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-261 I RENEWED LICENSE NO. DPR-23 REQUEST FOR TECHNICAL SPECIFICATION CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS

Dear Sir/Madam:

In accordance with the provisions of 10 CFR 50.90 Duke Energy Progress, Inc. is submitting a request for an amendment to the technical specifications (TS) for H. B. Robinson Steam Electric Plant, Unit No. 2 (HBRSEP2). The proposed amendment revises the reactor coolant system (RCS) pressure and temperature limits by replacing TS Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 effective full power years (EFPY). provides a description and basis of the proposed change, a No Significant Hazards Consideration Determination, and an Environmental Analysis. Attachment 2 provides the existing TS pages marked up to show the proposed change. Attachment 3 provides revised (clean) TS pages that reflect the proposed change. Attachment 4 provides a non-proprietary version of the Westinghouse report, WCAP-15827, "H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation."

HBRSEP2 requests approval of the proposed license amendment by October 31, 2016, with the amendment being implemented within 120 days of issuance.

In accordance with 10 CFR 50.91, a copy of this application, with attachments, is being provided to the designated South Carolina Official.

Please address any comments or questions regarding this matter to Mr. Richard Hightower, Manager- Nuclear Regulatory Affairs at (843) 857-1329.

U.S. Nuclear Regulatory Commission Serial: RNP-RA/15-0083 Page 2 I d~clare under penalty of perjury that the foregoing is true and correct. Executed on

/\/o.,rt .~.r 2, , 2015.

Sincerely,

~. ~ : ~k(ll~ _JJP~*~

R. Michael Glover Site Vice President RMG/jmw Attachments

1. Description and Basis of Proposed Change
2. Proposed Technical Specification Changes
3. Revised Technical Specification Pages
4. Westinghouse report, WCAP-15827 (Non-Proprietary Class 3) cc: Mr. V. M. Mccree, NRC, Region II Ms. Martha C. Barillas, NRC Project Manager, NRR NRC Resident Inspector, HBRSEP2 Ms. S. E. Jenkins, Manager, Infectious and Radioactive Waste Management Section (SC)

U.S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 5 Pages (including this cover page)

DESCRIPTION AND BASIS OF PROPOSED CHANGE

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 2 of 5

1.0 DESCRIPTION

AND BASIS OF PROPOSED CHANGE 1.1 Description of Proposed Change Appendix A, Technical Specifications (TS), to Renewed Operating License No. DPR-23, for H.

B. Robinson Steam Electric Plant, Unit No. 2 (HBRSEP2), establishes the Limiting Condition for Operation (LCO) requirements for reactor coolant system (RCS) pressure and temperature (PIT) limits. Specifically, the LCO states that the RCS pressure, RCS temperature, and RCS heatup and cooldown rates shall be maintained within the limits specified in Figures 3.4.3-1 and 3.4.3-2. Figures 3.4.3-1 and 3.4.3-2 contain PIT limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature. Each PIT limit curve defines an acceptable region for operation. The curves are used during heatup and cooldown maneuvering, by monitoring and comparing pressure and temperature indications to the applicable curve to ensure that operation is within the allowable region .

The proposed change replaces TS Section 3.4.3, Figures 3.4.3-1 and 3.4.3-2, with updated curves (see the attached markup of TS pages and retyped TS pages) that are applicable up to 50 effective full power years (EFPY). This is necessary since the current Figures 3.4.3-1 and 3.4.3-2 are applicable to 35 EFPY, which is projected to be reached at the start of cycle 31 .

1.2 Basis For Proposed Change The technical basis for the proposed revision to the heatup and cooldown limits is provided in the attached Westinghouse report, WCAP-15827, "H. B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation." The fluence values used in these analyses were updated and documented in WCAP-15805, "Analysis of Capsule X from the Carolina Power and Light Company H. B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program," which was previously submitted to the NRC by letter, dated April 25, 2002.

As explained in the attached WCAP-15827 report, the heatup and cooldown curves were generated using the most limiting material adjusted reference temperature (ART) values and the NRG-approved methodology documented in WCAP-14040-NP-A, Revision 2, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," with the exception of the following:

The fluence values are calculated fluence values (i.e., comply with Regulatory Guide 1.190), and are not the best-estimate fluence values.

K1c (which is the material toughness property measured in terms of stress intensity factor, Ki. which will lead to non-ductile crack propagation) is used in place of K1a (which is the critical value of the stress intensity factor, K1, for crack arrest as a function of temperature). This methodology is consistent with the approved ASME Code Case N-641 .

U. S. Nuclear Regulatory Commission to Serial : RNP-RA/15-0083 Page 3 of 5 The 1996 Version of Appendix G to ASME Section XI was used in lieu of the 1989 version.

Additionally, the proposed heatup and cooldown limits were further adjusted by +20°F and -80 psig to account for instrument error, which is consistent with the current licensing basis.

The normal shift of the Prr limit curves as irradiation time increases is toward lower pressures for a given temperature. The pressure-temperature curves for 50 EFPY were developed using the "axial-flaw" methodology with the most limiting "axial-flaw" ARTs and the "circ-flaw" methodology (Code Case N-641) with the most limiting "circ-flaw" ARTs. This allows higher pressures at a given temperature, and the limit curves shift to lower temperatures and higher pressures upon first use of the methodology. This method has been accepted by the NRC in the past as an exemption to ASME Section XI, and in April 2004, the NRC published Regulatory Issue Summary 2004-04, "Use of Code Cases N-588, N-640, and N-641 in Developing Pressure-Temperature Operating Limits," which allows the use of the Code Case methodology with no need for an exemption application.

Review of the low temperature overpressure protection limits confirmed that no changes are required as a result of the revised reactor pressure vessel analyses and limits.

Since the proposed RCS Prr limits are based on applicable NRG-approved methodology, the proposed amendment will continue to maintain appropriate limits for the HBRSEP2 RCS up to 50 EFPY.

2.0 REGULATORY ANALYSIS

2.1 No Significant Hazards Consideration Determination As required by 10 CFR 50.91 (a)(1 ), this analysis is provided to demonstrate that the proposed license amendment does not involve a significant hazard.

Conformance of the proposed amendment to the standards for a determination of no significant hazards, as defined in 10 CFR 50.92, is shown in the following :

1) Does the proposed license amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

No . The proposed RCS Prr limits are based on NRG-approved methodology and will continue to maintain appropriate limits for the HBRSEP2 RCS up to 50 EFPY. These changes provide appropriate limits for pressure and temperature during heatup and cooldown of the RCS, thus ensuring that the probability of RCS failure is maintained acceptably low. These limits are not directly related to the consequences of accidents.

Therefore , the proposed amendment does not result in an increase in the probability or consequences of an accident previously evaluated.

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 4 of 5

2) Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?

No. The proposed changes will continue to ensure that the RCS will be maintained within appropriate pressure and temperature limits during heatup and cooldown. No physical changes to the HBRSEP2 systems, structures, or components are being implemented . There are no new or different accident initiators or sequences being created by the proposed Technical Specifications changes. Therefore, these changes do not create the possibility of a new or different kind of accident from any accident previously evaluated.

3) Does the proposed change involve a significant reduction in margin of safety?

No. The proposed changes ensure that the margin of safety for the fission product barriers protected by these functions will continue to be maintained. This conclusion is based on use of the applicable NRC-approved methodology for developing and establishing the proposed RCS PIT limits. Therefore, these changes do not involve a significant reduction in the margin of safety.

Based on the preceding analysis, it is concluded that the replacement of TS Section 3.4.3, Figures 3.4.3-1 and 3.4.3-2, with updated curves that are applicable up to 50 EFPY does not involve a significant hazards consideration finding as defined in 10 CFR 50.92.

3.0 ENVIRONMENTAL ANALYSIS 10 CFR 51.22(c)(9) provides criteria for identification of licensing and regulatory actions for categorical exclusion from performing an environmental assessment. A proposed change for an operating license for a facility requires no environmental assessment if operation of the facility in accordance with the proposed change would not (i) involve a significant hazards consideration; (ii) result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite; (iii) result in a significant increase in individual or cumulative occupational radiation exposure. Duke Energy Progress, Inc., has reviewed this request and determined that the proposed change meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22( c)(9). Pursuant to 10 CFR 51.22(b ), no environmental impact statement or environmental assessment needs to be prepared in connection with the issuance of the amendment. The basis for this determination is as follows:

Proposed Change The proposed change will revise the RCS pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 EFPY.

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 5 of 5 The proposed changes meet the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9) for the following reasons:

1) As demonstrated in the No Significant Hazards Consideration Determination, the proposed changes do not involve a significant hazards consideration.
2) The proposed changes revise the RCS pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits,"

Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 EFPY. These changes do not affect the generation or control of effluents. Therefore, the proposed changes will not result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite.

3) The proposed changes, as previously described, do not affect any parameters that would cause an increase in occupational radiation exposure. There are no proposed physical changes to the facility or any process changes that would result in additional radiation exposure. Therefore, the proposed changes will not result in a significant increase in individual or cumulative occupational radiation exposure.

U.S. Nuclear Regulatory Commission to Serial : RNP-RA/15-0083 5 Pages (including this cover page)

PROPOSED TECHNICAL SPECIFICATION CHANGES

Replace with Insert 1 RCS PIT Limits 3.4.3 MATERIAi S PROPERTIES BASE Curves applicable for heatup rates up to 60 °F/Hr for CONTROLLING MATERIAL: Upper Shell Plate W10201-1 Service period up to 35 EFPY.

~* iting ART Values at 35 EFPY: 1/4T, 167' F 3/4T, 147'F Heatup Curves include +10°F and -60 psig allowance For instrumentation error.

2250 2000 1750 Ci Acceptable Operation "iii

.s: 1500 Heatup Rate to I!!

i Ill 60 ' F/Hr Ill I!!

Q. 1250 "C

IV u

'6

.: 1000 Criticality Limit based on service Hydrostatic test T perature (226' F) for the rvice period up to 750 35 EF Y 500 250 100 150 200 250 300 350 400 450 Indicated Temperature (°F)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-7 Amendment No ~

- Replace with INSERT2 RCS PIT Limits

'II 3.4.3 MATERIALS PROPERTY BASE CONTROLLING MATERIAL: Upper Shell Plate W10201-1 Curves applicable for cooldown rates up and Girth Weld 10-273 100°F/Hr for the service period up to 35 iting ART Values at 35 EFPY: 1/4T, 167°F and 242°F EFPY. Curves include +10°F and -60 IG 3/4T, 147°F and 172°F allowance for instrument error.

2500 2250 2000

(;- 1750 iii E

s (I)

(I) 1500 E

0..

"C Acceptable Operation I

.el CJ

'6 1250

=

1000 Cooldown Rate

("F/Hr 750 500 50 100 150 200 250 300 350 400 450 Indicated Temperature (°F)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-8 Amendment No. 21'8-

!INSERT 1 I MATERIALS PROPERTIES BASE Controlling r.tateriat Upper Snell Plate W1D201-1 & Girtll Weld 10-273 Curves appHcable for lleatup rates up to 60' F/Hr for Limfti11g AAT V alues at 50 EFPY. 1/4T, 172"F & 263'F service period up to 50 EFPY 3/4T, 153'F & 191 'F Heatup Curves include +20'F and -SD psig A llow ance for lnstrumentatio11 error.

2:00 22:0 2000

=

'ii a

1500 t

'C

~ 12:0

~

1000 1:0 500 2: 0 100 1$0 200 2:--0 350 400 4:0 500 s:o lndicatedTemperature<<FJ Figure 3 4 3-1 Reactor Coolant System Heatup Limits Applicable Up to 50 EFPY

jlNSERT 21 MATERIALS PROPERTIES BASE cur11es applicable for cooldown rates up to 100* F/Hr Controllin!J Material Upper Shell Plate W10201-1 & Girth Weld 10-273 for the seniice period up to 50 EFPY Limfting ART Values at SD EFPY: 1/4T. 172'F & 263'F Cuives include +20' F and -80 PSIG Allowance for 314T, 153'F & 191'F Instrumentation error 2750 2500 2250 2000 1750 S'

ii5

~

CD

I 151!0 Ill Ill CD IL "Cl CD 1250 10

~

.5 1000 750 500 250 50 100 150 200 250 300 350 4!!0 450 500 550 Indicated Temperature ("F)

Figure 3 4 3-2 Reactor Coolant System Cootdown Limitations Appllcable Up to 50 EFPY

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 3 Pages (including this cover page)

REVISED TECHNICAL SPECIFICATION PAGES

RCS PIT Limits 3.4.3 MATERIALS PROPERTIES BASE Controlling Material: Upper Shell Plate W10201-1 & Girth Weld 10-273 Curves applicable for heatup rates up to 60"F/Hr for Limiting ART Values at 50 EFPY: 1/4T, 172°F & 263"F service period up to 50 EFPY 3/4T, 153°F & 191 "F Heatup Curves include +20°F and -80 psig Allowance for Instrumentation error.

2500 2250 2000 Leak Test Limit 1750 Ci Unacceptable Operation

'iii

.!: Acceptable Operation I!! 1500

I 111 Heatup Rate to

~

II..

60°F/Hr "C

~ 1250 u

'6 1000 Criticality Limit based on lnservice Hydrostatic test temperature (221 "F) for the service period up to 50 EFPY 750 500 250 o +-r~-..-,-~~*-.-.~.-...-,.-,.-~....-~.....-J~~-.-.-.-.~.-.--.-.-..--.,.-,-..-.-~~~~~-......1 0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature ("F)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 50 EFPY HBRSEP Unit No. 2 3.4-7 Amendment No.

RCS PIT Limits 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for cooldown rates up to 100° F/Hr Controlling Material: Upper Shell Plate W10201-1 & Girth Weld 10-273 for the service period up to 50 EFPY.

Limiting ART Values at 50 EFPY: 1/4T. 172°F & 263°F Curves include +20°F and -80 PSIG Allowance for 3/4T, 153°F & 191 °F Instrumentation error.

2500 2250 2000

~

~IU-n-a-cc_e_p-ta-b-le-0-peration I 1750 6'

Ci) e:. 20°F/ Hr I!! 1500

J U)

U)

Acceptable Operation I!!

a.

"C 1250 60°F/ Hr ca u

c

.E 1000 Cooldown Rates

(°F/Hr) 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature {°F)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limitations Applicable Up to 50 EFPY HBRSEP Unit No. 2 3.4-8 Amendment No. _ _

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 93 Pages (including this cover page)

WESTINGHOUSE REPORT, WCAP-15827, "H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation" (Non-Proprietary Class 3)

Westinghouse Non-Proprietary Class 3 WCAP-15827 March 2003 Revision 0 H.B. Robinson Unit 2 tI Heatup and Cooldown Limit Curves for I

Normal Operation

'f Ir f

I II t

'l

~

'(

I 8westinghouse

  • WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15827, Revision O H.B. Robinson Unit 2 Hcatup and Cooldown Limit Curves for Normal Operation T. J. Laubham March2003 Prepared by the Westinghouse Electric Company LLC for the Carolina Power & Light Co.

Approved: ~ (vkl~

J.A. Gresham, Manager c.-* Engineering and Materials Technology Weslinghouse Electric Company LLC Energy Systems P.O. Box3.S.S Pinshurgh. PA 15230.0355

>2003 Wes1inghousc Electric Company LLC All Rights Reserved

iii TABLE OF CO~TENTS LIST OFTABLES ........................................................................................................................................iv LIST OF AGURES ...................................................................................................................................... vi EXEClITIVE SUl\11\1ARY ......................................................................................................................... vii INTRODUCTION ............................................................................................................................ I 2 FRACTURE TOUGHNESS PROPERTIES .................................................................................... 2 3 CRITERlA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS .................... 7 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE ............................................ 11 5 HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES ........................ 29 6 REFERENCES ............................................................................................................................... 56 APPENDIX A: PT CURVES WITHOUT FLANGE REQUIREMENT .................................................. A-0 APPENDIX B: VESSEL WALL(l/4T. 3/4Tand T)TEMPERATURES ................................................ 8-0

iv LISTOFTAlltES Table I Summary of lhe Best Estimate Cu and Ni Weight Percent and Initial RTNOT Values for the H.B. Robinson Unit 2 Reactor Vessel Materials ..................................................... 3 Table 2 Calculared lntegrared Neutron Exposure of the Surveillance Capsules @

H.B. Robinson Unit 2.......................................................................................................... 4 Table 3 Calculation of Chemistry Factors using H.B. Robinson Unit 2 Surveillance Capsule Data ....................................................................................................................... 5 Table4 Summary of the H.B. Robinson Unit 2 Reactor Vessel Bel\Hne Material Chemistry Factors ............................................................................................................... 6 Table S Calculated Neutron FJuence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface ( 1019 n/cm2

  • E > 1.0 MeV) ..................................................... 12 Table 6 Summary of the Vessel Surface, J/4T and 3/4T F1uence Values used for the Generation of Che 30, 35, 40, 45 and 50 EFPY Heatup/Cooldown Curves ....................... 14 Table 7 Summary of the Calcul3ted FJuence Factors used for the Generation of the 30, 35, 40, 45 and 50 EFPY Heatup and Cooldown Curves ......................................................... 16 Table 8 Calculation of the ART Values for the l/4T Location @ 30 EFPY .................................. 18 Table 9 Calculation of the ART Values for the 3/4T Location @ 30 EFPY .................................. 19 Table 10 Calcularion of the ART Values for che l/4T Location @ 35 EFPY .................................. 20 Table 11 Calculation of Che ART Values for the 3/4T Location @ 35 EFPY .................................. 21 Table 12 Calculation of the ART Values for the l/4T Location @ 40 EFPY .................................. 22 Table 13 Calculation of the ART Values for che 3/4T Location @ 40 EFPY .................................. 23 Table 14 Calculation of the ART Values for the l/4T location @ 45 EFPY .................................. 24 Table 15 Calculation of the ART Values for the 3/4T Location @ 45 EFPY .................................. 25 Table 16 Calculation of the ART Values for the l/4T Location @ 50 EFPY .................................. 26 Table 17 Calculation of the ART Values for the 3/4T Location @ 50 EFPY .................................. 27

v LISTOFTABLF.S Table 18 Summary of lhe Limiting ART Values Used in the Generation of lhc H.B. Robinson Unit 2 Heatup/Cooldown Curves ...................................................................................... 28 Table 19 30 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnainties for Instrumentation Errors) ................................................................... 33 Table20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) .................................................................. 35 Table 21 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for ln!itrumcntation Errors) ................................................................... 38 Table 22 35 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .................................................................. 40 Table23 40 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnainties for Instrumentation Errors) ................................................................... 43 Table 24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncenainties for Instrumentation Errors) .................................................................. 45 Table 25 45 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncenaintics for Instrumentation Errors) ................................................................... 48 Tablc26 45 EFPY Cooldown Curve Data Points Using 1996App. G (without Uncenaintics for Instrumentation Errors) .................................................................. 50 Table 27 SO EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) ................................................................... S3 Tablc28 SO EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .................................................................. SS

vi UST OF FIGURf..S Figure I H.B. Robinson Unit 2 Reactor Coolant System Heat up Limitations (Jlealup Rates of 60 & I 00°F/hr) Applicable for the First 30 EFPY

(\Virhout Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 31 Figure 2 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumental ion Errors) Using 1996 App. G Methodology ........... 32 Figure 3 H.B. Robinson Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 & J00°F/hr) Applicabli! for 1he First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 36 Figure4 H.B. Robinson Unit 2 Reactor Coolant System Cootdown Limitations (Cooldown Rates up lo 100°F/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 37 Figure 5 H.B. Robinson Unit 2 Reactor Coolant System Hcarup Limitations (Heatup Rates of 60 & I 00°F/hr) Applicable for the First 40 EFPY (Without Margins for Instrumental ion Errors) Using 1996 App. G Methodology ........... 41 Figure6 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limittitions (Cooldown Rates up to 100°F/hr) Applicable for the First 40 EFPY (Without Margins for lnsirumentation Errors) Using 1996 App. 0 Methodology ........... 42 Figure 7 H.B. Robinson Unit 2 Reactor Coolant System Heatup Limitations (Hcatup Rates of 60 & J00°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. 0 Methodology ........... 46 Figure 8 H.B. Robin~on Unit 2 Reactor Coolant System CoolJown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using '996 App. G Methodo\ogy ........... 47 Figure 9 H.B. Robinson Unit 2 Re:icror Coolant System Heatup Limitations (Heatup Rates of 60 & I00°F/hr) Applicable for the First 50 EFPY

(\Vithout M:irgins for Instrumentation Errors) Using 1996 App. G Methodology ...........51 Figure 10 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (CooIdown Rates up 10 I00°F/hr) Appl icablc for the First 50 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodo\ogy ...........52

vii EXECUTIVE

SUMMARY

This report provides the methodology and results of the generation ofheatup and cooldown pressure temperature limit curves for nonn:il operation of the H.B. Robinson Unit 2 reactor vessel. In addition, the vessel wall temperature dati is documented herein under the Appendices.

The PT curves were generated based on the latest available reactor vessel infommtion and Ouenees

{WCAP-1580S)fll, which were up<bted to reflect actual power realized from the R021 uprate. The new H.B. Robinson Unit 2 heatup and cooldo\\11 pressure-temperature limit curves were generated using ASME Code Case N-641121 (which allows the use of the Kie methodology and "Circ. Flaw" methodology) and the a.'tial flaw methodology of the 1995 ASME Code,Section XI through the 1996 Addcndat3l.

It should be noted that H.B. Robinson was limited at the l/4T and 3/4T locations by the upper to intermediate shell circumferential weld with exception to the 3/4T location at 30 EFPY (Limited here by the upper shell plate Wl0201*1). The limiting axial material was the upper shell plate Wl0201*1. The pressure-temperature (PT) limit curves presented in Section S and Appendix A arc developed using the "axial-flaw methodology with the most limiting "a"<i:il-flaw" adjusted reference temperatures (ARTs), and the "Circ Flaw" Methodology (ASME Code Case N-641. formerly known as N-Sssl*I) with the mQfil limiting "Circ. Flaw" ART values. The "a.'tial-flaw" ART values produce a more limiting PT curve overall with exception to the higher temperatures where at a ccrt3in point, depending on the EFPY, the curve could switch from "axial-flaw" limited to a "circ-flaw" limited curve. When and where this occurs is noted within the data tables for each specific PT-limit curve.

[Note that the PT limit curves ofAppendix A arc the same as those in Section S, with exception of removing the flange requirement for potential future use.]

I INTRODUCTION He:uup and cooldown limit curves are calculated using lhe adjusted RTNOT (reference nil-ductility temperature) corresponding to the limiting belt line region m:iterial of the reilctor vessel. The adjusted RTNor of the limiting material in the core region of the reactor vessel is determined by using the unirrildiated reactor vessel material fracture toughness properties. estima1ing the radiation-induced flRTNOT* and adding a margin. The unirradia1ed RTNl>T is designated as the higher of either the drop weight nil-ductility transition temperature (NDTI) or the 1empcra1ure al which the malerial exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to &he major working direction) minus 60°F.

RTNl>T increases as the material is exposed to fast-neutron radiation. Therefore. to find the most limiting RTNOT at any time period in the reactor's life, flRT NOT due to the radiation exposure associated with that rime period must be added to the unirradiated RTNOT (IRTNOT). The extent of 1he shift in RTNOT is enhanced by certoiin chemical clements (such as copper and nickel) present in reactor vessel steels. The Nucleilr Regul:uory Commission (NRC) has published a method for predicting radialion embriulement in Regulalory Guide 1.99, Revision 2, ..Radialion Embrillll!menl of Reactor Vessel Malerials.1' 1 Regulatory Guide 1.99, Revision 2, is used for lhe calculation of Adjusted Reference Tempcralure (ART) values (lRTNOT + .1.RTNM'+ margins for uncertainties) at the 1/4T and 3/4T locations, where Tis the thickness of the vessel at the belt line region measured from the clad/base metal interface.

The heatup and cooldown curves documented in this report were generaled using the most limiling ART values and the NRC approved methodology documented in WCAP-14040-NP-A, Revision 21"'1, "Me1hodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" wilh exception of the following: I) The Oucnce values used in this report arc calculated nuence values (i.e. comply with Reg. Guide l.190). not the best estimate flucnce values.

2) The K1c crilical stress intensities are used in place of the K1, criticill stress inlensities. This me1hodology is laken from approved ASME Code Case N-641m. 3)The 1996 Version of Appcndiit G to Sec1ion X1 1 ~ 1 will be used rather than the 1989 version.

WCAP-IS827

2 2 FRACTURE TOUGHNESS PROPERTIES The fracture-toughness propenies of the ferri1ic materials in 1he reactor coolant pressure boundary are determined in accordance wi1h the NRC Standard Review Plan 171* The bellline material properties of the H.B. Robinson Unit 2 reactor vessel is presen1ed in Table I.

Best estimate copper (Cu) and nickel (Ni) weight percent values used to calculate chemistry factors (CF) in accordance with Regulatory Guide 1.99, Revision 2, are provided in Table I. Addition:illy, surveillance capsule data is available for four capsules (Capsules S, V, T and X) already removed from lhe H.B. Robinson Unit 2 reactor vesse1. This l'IUr\'cillance capsule dala was ntso used lo cakuta1e CF values per Posilion 2.1 of Regulatory Guick 1.99, Rcvbion 2 in Table 4. These CF values are summarized in Table 5.

The Regulalory Guide 1.99, Revision 2 methodology used lo develop the heatup and cooldown curves documented in this report is the same as that documented in WCAP-14040, Revision 2.

Credibility Evalu:11ion Robinson surveillance program contains surveillance malerial from alJ three intermediate shell plates and from weld material fabricated from weld wire heat number W52 I4, which is the same heat as the upper lo intermedia1e shell girth weld seam. In order to apply the surveillance data to such evaluations as developing ART values, you lirst have to evaluate whether or not the data is credible. The procedures for cvalualing credibility are prescribed in Regulatory Guide 1.99, Rev. 2 and IOCFR50.61, along with guidance provided by the NRC at an industry meeting on February 12111 & 13th, 1998. The credibility cvalualion for lhe Robinson data has already been performed under lhe Capsule X repon, WCAP-15805, and the results were as follows:

  • Surveillance plate materials from lnlermediate Shell Plates WI0201-4 and Wl0201-6 were determined 10 be not credible.
  • Surveillance plate ma1erials from Intermediate Shell Plate W 10201-5 was determined 10 be credible.
  • Surveillance weld metal (Heat W5214) from Robinson only was dclermined to be not credible. Note that there exists surveillance data of the same heat from Indian Point Units 2 and 3. lf this data were integrated with Robinson, the surveillance weld data would then be credible. For conservatism, however, the Indian Point surveillance data will not be used. Robinson data alone produces a slightly lower chemistry factor via Position 2.1, but this is offset by the higher margin because of the non-credible data.

Ba~d on the results above, only intennediate shell plate W10201-5 may use a reduced m3rgin when calculating ART via Position 2.1. All other surveillance data win use the full a~ in determining margin and ART.

WCAP-1.5827

3 TABLE I Summary of the Best Estimale Cu and Ni Weight Pcrccnl and Initial RT NOT Values for the H.B. Robinson Unil 2 Reaclor Vessel Materials Material Description Cu (%)'8' Ni(%)1* 1 Initial RT"rrr1d 1 Closure Head A:mge WI 0208 ... 0.70 60°F Vessel Range WI0209 ... 0.67 60°F Inlet Nozzle 0.02 0.75/0.90 6Qopcl Outler Nozzle 0.15 0.71 6Qoptl Upper Shell Pl:itc WI 020 I -1 0.13 0.11 69°F Upper Shell Pl:ite WI 0201-2 0.15 0.25 30°F Upper Shell Pl:itc WI 0201-3 0.11 0.08 36°F lmenncdi:itc Shell Plate WI020l-i 0.12 0.09 20°F Intermediate Shell Plate WI0201*5 O.IO 0.12 20°F Jn1ermcdiate Shell Plate WI0201 *6 0.l)() 0.09 45°F Lower Shell Plate W9807-3 0.12 0.10 50°F Lower Shell Plate W9807-5 0.15 0.10 33°F Lower Shell Pl:ite W9807-9 0.14 0.15 9°F Upper Shell Plate Longitudinal 0.22 o.os*b* -56°F Weld Sc:ims 1-273A, B,C(He:it # R6054D)

Intermediate Shell Plate Lon~itudin:il 0.22 o.os*b* -56°F Weld Scams 2*273A, B. C (Heat# R6054 8)

Lower Shell Plate Longitudinal 0.22 0.051b* -56°F Weld Scams 3-273A. D. C (Heal# 860548)

Upper to Jnh:rmcdiatc Shell Plate Circumferential o.21*h* 1.01 -56°F Weld Scam 10-273 (Heat# W5214)

Intermediate 10 Lower Shell Plate Circumforcntial 0.19 0.98 -77°F WelJ Scam 11-273 (Heat# 3-iD009)

Nozzle Welds --_,,, --_.,, -56opcl Surveillance Weld (Heat# W5214)'c1 0.34 O.fl6 ---

Notes:

(a) Cu & Ni are the currcnl docketed v3lues for Robinson 2 (Ref 8 for the plates and Ref. 9 for the Welds). The Jnle1 nozzle forgings (heal Xl5156/XSJ 16J) were ohl3incd rcr the Midvalc-Heppcnstall CMTRs.

(b) Rounded 10 two decimal poinls per ASTM E29. using the Rounding Method" (c) Per WCAP-IOJ04.

(d) Oocke1cd values per Ref. 8. All values ar~ mc3surcd Cllccpl welds of heat numbers 860548 &. WS214.

(e) Assumed $Cncric value per Standard Review Pl3n Branch Technical Position MTED 5-2.

(0 No Copper Value availahlc, however since the inlet noule was reported as 0.02 Cu ii is conservative to assume thal the oullct nozzle Cu value will llC no higher than the highcsl vessel plate or nozzle Cu value.

(g) Sec Tahle 4.

WCAP-15827

The chemistry factors were calculated using Regulatory Guide 1.99 Revision 2, Posit ions I.I and 2.1.

Position 1.1 uses the Tables from the Reg. Guide along with the best estim.1te copper and nickel weight percents. Position 2.1 uses the surveillance capsule data from all capsules withdrawn to dale. The Ouence values used to determine the CFs in Table 4 are the calculated nucnce values at the surveillance capsule locations. The measured ARTNor values for the weld data were adjusted for chemistry using the ratio procedure given in Position 2.1 of Regulatory Guide 1.99, Revision 2.

All calculated Ouence values (capsule and projections) for H.B. Robinson Unit 2 were updated and documented in WCAP-15805 111* These fluences were calculated using the ENDF/B-VI scattering cross-section data set. Table 2 is a summary of the capsule Ouences from 11.B Robinson Unit 2.

TABLE2 Calculated Integrated Neutron faposure of the Surveillance Capsules @ H.B. Robinson Unit 2 Capsule Flue nee s 4.79 x I011 nkm 2, (E > 1.0 McV) v 5.30 x 1011 n/r:m2, (E > 1.0 McV)

T 3.87 x I0 19 n/r:m2, (E > 1.0 McV) x 4.49 x I0 111 n/cm~. (E > 1.0 McV)

WCAP-15827

5 TABLE3 Calculation of Chemistry Factors using H.B. Robinson Unit 2 Surveillance Capsule Data f\1atcrial Capsule Capsule r* 1 FFb1 flRTNoT ' 1 1

FF*ARTNOT FF2 ln1crmcdia1c Shell s 0.479 0.795 .n.51 25.85 0.632 Plalc WI 0201-4 x 4.49 1.381 104.73 144.63 1.907 (Long.) SUM: 170.48 2.s:w Cfw1o:x11 .~ = I(fF *RTNot> + I< FF!)= (170.48) + (2.539)= 67.1°F ln1ermedi:11c Shell s 0.479 0.795 15.29 12.16 0.632 Plate WI0201-5 v 0.530 0.823 47.01 38.69 0.677 (Long.) SUM: 50.85 1.309 Cfw10201-s = I<FF

  • RT,..-oy) + I< FF2) =(50.85) + ( 1.309) = 38.8°f Intermediate Shell s 0.479 0.795 13.8 10.97 0.632 Plate WI0201*6 T 3.87 1.3-49 75.24 IOI.SO 1.820 (Long.) . SUM: 112.47 2.452 Cfwur.o*** = I<FF *RTtmT) + I< FP) = ( J 12.47) + =

(2.452) 4S.9"F Surveillance Weld V(HDR2) 0.530 0.823 221.88 (209.32) 182.61 0.677 Matcrial'd* T(HBR2) 3.87 J.3-49 305.44 (288.1.5) 412.04 1.820 X (HBR2) 4.49 1.381 281.89 (265.93) 3119.29 1.907 SUM: 983.9-4 4.40-i CF s-. Weld a: !.<FF* RTNOT) + I.{ FF1) = (98J.9-4°F) + (4.404) =22J.4"F Note<;;

(a) f = flucncc. Sec Table 2, (x 1019 n/cm2* E > 1.0 MeV).

(b) FF= nucnce factor= ( 0*11

  • 0 **1osn.

(c) ti.RTNOT values arc the measured 30 ft-lb shifl values taken from the following documents:

- H.B. Robinson Uni1 2 ..* WCAP-1'805111 (I.I) = =

Ratio HDR2 230.2 + 217.7 1.06 for the H.B. Robinson Unit 2 data.

(The pre-ndjustcd values are in parenthesis.)

WCAP-15827

6 TABLE4 Summary of the 11.B. Robinson Unit 2 Reactor Vessel Beltline Material Chemistry Factors Material Reg. Guide 1.99, Re,*. 2 Reg. Guide 1.99, Rev. 2 Position J.1 Cf's1* 1 Position 2.t Cf's Inlet Nozzle 2oop*' ...

Outlet Nozzle I 13°f4° ...

Upper Shell Plate W 10201-1 62.9°F ...

Up(ll!r Shell Plate WI 0201-2 84.8°F ...

Urpcr Shell Plate WI0201-3 51.8°F .. -

Intermediate Shell Plate WI0201-4 57.J°F 67.1°F Intermediate Shell Plate WI0201*5 51.2°F 38.8°F Intermediate Shell Plate \\'10201-6 44.2°F 45.9nF Lower Shell Plate \\'9807-3 58.0°F ...

Lower Shell Plate W9807-5 70.5°f ---

Lower Shell Plate W9807-9 70.5°f ...

Up[ll!r Shell Plate Longitudinal 100.8°F ...

Weld Scams 1-273A, B, C (Heal # 86054 8)

Intermediate Shell Plate Longitudinal I00.8°F Weld Seams 2-273A, B, C (Heat# 860548)

Lower Shell Plate Longitudinal 100.8°F . -.

Weld Scams 3-273A, B. C (Heat# 860548)

Up[ll!r to Intermediate Shell Plate 230.2°F 223.4°F Circumferential Weld Scam 10-273 (Heat# WS214) ln1crmcdia1c 10 Lower Shell Plate 217.1°F ...

Circumfcrcn1ial Weld Scam 11-273 (Heat# 348009)

Nozzle Welds 230.2°f'bl .. -

Surveillance Weld (Hc:u # WS214) 210.7°F --.

NOTE:

(a) See Tahlc I for cxplan:nion of the copper and nickel values used to determine the chemistry factor.

(b) Since no copper or nickel content is availahlc, it is conserva1ively assumed that the chemistry factor is equal lo that of the highesl weld on 1hc vessel (i.e. Heat #W.5214).

WCAP-1.5827

7 3 CRITERIA FOR ALLO\VABLE PRESSURE-TEl\1PERATURE RELATIONSHIPS 3.1 Overall Approach The ASME approach for calculating 1he allowable limit cun.*es for various heatup and cooldown rates specifies that lhe total stress intensity factor, K1o for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater 1han the reference slress intensity factor, Kie. for the metal temperature at that time. K1c is obtained from the reference fracture toughness curve, defined in Code Case N-640, ..Alternative Reference Frac1ure Toughness for Development of PT Limit Curves for Section Xl12 " 31 of the ASME Appendi~ G to Section XI. The K1c curve is given by the following equation:

(I)

where, reference stress intensity factor as a function of the metal temperature T and the metal reference nit-ductility temperature RTNOT This K1c curve is based on the lower bound of static critical K1 values measured as a function of temperature on specimens of SA-533 Grade B Class I, SA-508-1, SA-508-2, SA-508-3 steel.

3.2 Methodology ror Pressure-Temperature Limit Curve De,,*elopment The governing equation for the heatup-cooldown analysis is defined in Appendix G of Che ASME Code as follows:

(2) where, K1m = stress intensity factor caused by membrane (pressure) stress K11 = stress intensity factor caused by the thermal gradients K1c = reference stress intensity factor as a function of temperature relative to the RTNOT of the material C s::: 2.0 for Level A and Level B service limils C = 1.5 for hydrostatic and leak tesl conditions during which the reactor core is not critical WCAP-15827

8 For membrane 1cnsion, 1he corresponding K1 for the postulated defect is:

Kim= M,,,x(pR./t) (3) where. Mm for an inside surface flaw is given by:

1.85 for .Ji < 2, 0.926 .fi for 2 S .fi S 3.464

  • 3.21 for .fi > 3.464 Similarly. Mm for an oulside surface flaw is given by:

1.77 for .Ji < 2, 0.893 .fi for 2 S JI S 3.464 ,

3.09 for .Ji > 3.464 and p =internal pressure, Ri =vessel inner radius, and t =vessel wall thickness.

For bending stress. the corresponding K1 for the postulated defect is:

Kn. = Mb

  • Maximum Slress, where M is two-thirds of Mm 11 The maximum K1 produced by radial thermal gradienl for che po!itulated in!iide surface defecc of G-2120 is K 1, = 0.953x JO.) x CR x tu. where CR is the cooldown rate in °F/hr.* or for a poslulated oulside surface defecl, K 14 =0.753x10* 3 x HU x t15, where HU is the heatup rale in °f/hr.

The through-wall temperature difference associated with the maximum thermal K1c:m be determined from Fig. G-2214-1. The temperature at any radial distance from the vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K1 *

(:a) The m:aximum thermal K1 relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-22 I 4.3(a)( I) and (2).

(b) Alternatively, the K1 for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a *A-thickness inside surface defect using the relationship:

K11 = (1.0359Co+ 0.6322C1+0.4753C2+0.3855C3) * / ; (4)

WCAP-15827

9 or similarly, Krr during heatup for a 'A-thickness outside surface defect using the relationi;hip:

K1, =(l.043Co + o."630C1 + 0.481C2+0.40 ICl)* Ji;; (5) where the coefficients Co. Ci. C1 and Cl are dctennined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:

(6) and xis a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maltimum crack depth.

Note, that equations 3, 4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves. No other changes were made to 1he OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040, "Methodology used lo Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"161 Section 2.6 (equations 2.6.2-4 and 2.6.3-1) with the exceptions just described above.

At any time during the heatup or cooldown transient, K1c is di:tennined by the metal temperature at the lip of a postulated naw at the I/4T and 3/4T location, the appropriate value for RTNOT* and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated nnd then the corresponding (thermal) slress in1ensity factors, K11 , for the reforence naw are computed. From Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, lhe reference naw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the naw is always at lhe inside of the wall because the thennal gradients produce tensile stresses nt the inside, which increase with increasing cooldown rates.

Allowahle pressure-tempcrarurc relations nre generated for both stendy*stare and finite cooldown rate situations. From these relations, composite limit curves are constructed for ench cooldown rate of interest.

The use or the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coofant tempcrarure, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed naw. During cooldown, the l/4T vessel location is at a higher temperature than the Ouid adjacent to the vessel inner diameter. This condition. of course, is nor true for the steady-state situation. It follows that, at any given reactor coolant temperature, the 41T (temperature) developed during cooldown results in a higher value of Kie at lhe If.ff location for finite cooldown rates lhan for steady-state operation. furthennore, if conditions exist so that the increase in Kk exceeds K11 , the calculated allowable pressure during c:ooldown will be greater than the Mcady-state \'alue.

WCAP-15827

10 The above procedures are necdl!d bccau!.e there is no direct control on temperature at the l/4T location and, lherefore, allowable prc~!.ures may un~nowingly be violated if the rate of cooling is decreased at various inlervals along a cooldown ramp. The ui.e of the composile curve eliminates this problem and ensures conserv;uive opera1ion of the sy!>lem for 1he entire cooldown period.

Three separate calculations are required 10 de1ermine 1he limit curves for finite heatup rates. As is done in the cooldown analysis. allowable pre!.sure-temperature relationships are developed for ~ready-state conditions as well as finite heat up rate conditions assuming the presence of a l/4T defect at the inside of the wall. The heatup rc:sulls in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant tempera1Ure:

therefore, lhe K1c for the l/4T crnck Juring heatup is lower than lhe Kie for lhe l/4T crack during ~teady state conditions al the same coolanl temperature. During hcalup, especially al 1he end of lhc lransienl, conditions may exist so 1hat lhe effec1s of compressive 1hennal stresses and lower K1c values do not offset each other, and lhe pressure-temperature curve based on steady-Mate conditions no longer represents a lower bound of all similar curves for finite he:uup rates when the l/4T naw is considered. Therefore, both cases have to be analyzed in order to ensure that al any coolant temperature the lower value of the allowable pressure calculated for !lteady-!>tatc and finite healup rates is obtained.

The second ponion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a l/4T Oaw located at the l/4T location from the outside surface is assumed. Unlike the situation at the \'e!ii.el inside ~urface, the thermal gradients established at the outside surface during hca1up produce Mre!.i.es which are tensile in nature and therefore lend to reinforce any pressure stresses present. These thermal ~tresses arc dependent on both the rate of hcatup and the time (or coolant temperature) along the hcatup ramp. Since the thennal stresses at the outside arc tensile and increase with increasing heatup rates. each heatup rate must be an:ilyzed on an individu:il basis.

Following the gener:ition of pressure-temperature curves for both the Meady-state and finite heatup rate situations, the final limit cur\'cs are produced by con~tructing a compo~ile curve based on a point-by-point comparison of the ~teady*state and finite heat up rate data. At any given temperature, the aUowable pres~ure is laken to be the lesser of the three \'alues laken from the curves under consideration. The use of the composile curve is necessary to set conservative heatup limilations because it is possible for conditions to exist wherein. over the couri.e of the heatup ramp, the controlling condition switches from the inside to the outside. and the pressure limil mu!lt at all times be based on analysis of the most critical criterion.

3.3 Closure llead/\'essd Flange Requirements 10 CFR Part 50, Appendix 0 1111 .iddresses the metal temperature of the closure head nange and vessel nange regions. This rule litatcs that the metal temperature of the closure nange regions must exceed the material unirradialed RTNor by al leaM 120°F for nonnal operation when lhe pressure exceeds 20 percent of 1he prcsel'\'ice hydroslalic te!.l pres!>ure (3106 p~i), which is 621 psig for H.B. Robinson Unit 2. The limiting unirradiated RTNor of 60°F occurs in both the closure head and \'Cssel nanges or lhe H.B.

Robinson Unit 2 reactor o,*essel. i.o the minimum allowable temperature oflhis region is 180°F at pressures grealer than 62 l p~ig. This limit is !\hown in Figures 5-1 through 5-10 wherever applicable.

WCAP*l5827

II 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusled reference temperature (ART) for each material in the bchline region is given by the following expression:

ART= lniti:lf RTNt>f +ART1111>r +Margin (7) lni1ial RTNOT is Che reference temperature for the unirradialcd malerial as defined in paragraph NB-2331 of Section Ill of the ASME Boiler and Pressure Vessel Codelll1* If measured values of initial RTNOT for the material in question arc not avallable, generic mean values for tha' class of material may be used if there are sufficient test results 10 eslablish a mean and standard deviation for the class.

ARTNOT is the mean value or the adjustment in reference tcmpcralurc caused by irradiation and should be calculated as follows:

(8)

To calculate ARTNOT at any depth (e.g., at l/4T or 3/4T), the following formula must first be used to attenuate the flucnce at the specific depth.

(9) where x inches (vessel bel1Jine thickness is 9.313 inches) is the dcp1h into the vessel wall measured from the vessel clad/base metal interface. The resulrant Ouence is then placed in Equation 8 to calculate the ARTNor at the specific depth.

The Westinghouse Radiation Engineering and Analysio; Group evaluated the vessel nuence projections in WCAP-15805, which were updated toreOcct a total power uprate of 1.77r to 2339 Mw. They are presented in a condensed version in Tabk S of this rcpon. The evaluation used the ENDF/B-VJ scattering cross-section data set. This is con~istent with methods presented in WCAP-14Q.i0-NP-A,

Methodology Used to Develop Cold Overpressure Mitigating Sysrem Sctpoints and RCS Hcatup ond Cooldown Limit Curves". Table S contains lhe calculated vessel surface nucnces values al various azimuthal locations, and in some instances at various longitudinal locations. Tables 7 and 8 contain the J/4T and 3/4T calculated fluences and fluence factors, per the Regulatory Guide 1.99, Revision 2, used to calculate the ART values for all beltline materials in the H.B. Robinson Unit 2 reactor vessel.

WCAP-15827

J2 TABLES Cakulaled Neu1ron Auence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface CJ 0 19 n/cm2* E > 1.0 Me V)

Azimuthal Location EFP\' oo 10° 20° 30° 40° Peak V~I Longitudinal Location (-4 inches above Cor~ Midpl:and 20.39 2.76110 1" 2.05 Jt to'" 1.24 ll IO'" 9.69 l to 11 6.63 Jt 101*

21.78 2.87 ll 101" 2.14" 10 "

1 1.29* 101" 1.02 l 10 1" 7.01 it JO" 29 3.68 I JO'" 2.73 x 1 I0 " 1.62 Jt 10 1

" 1.27 x 10 1

" 9.001 J0 11 30 3.79 ll IO'" 2.81 lt to'" 1.67 x I0 1" 1.30 ll JO'" 9.27 ll Jo 1*

3.5 4.3.5x IO'" 3.23 ll JO'" 1.89 x IO'" 1.48ll 101" J.06 ll to 19 40 4 .901t JO'"  :.l64 Jt JO'" 2.12 x 101" l.65x IO'" 1.20 ll J0 19 4.5 ~.4S 1 10 "

1 4.05 l 10 1.. 2.3.5it10 1" 1.82 JI 101" 1.33 It 101..

.50 6.01x10 1" 4.461 IO'" 2.!'\81 I01" 2.00 l 101" 1.47 ll 101" Upper to Inter. Shell Circ. Weld 20.39 1.21 x 101" - ... -* -

2J.78 1.2.5 l 10 1 29 1.S711 10 1

IO 1.62 x 10 1 3.5 1.841110 1 40 2.06 x 101" *-* **- ... ...

45 2.2811 to'" -- --- - -

so 2.50

  • 1 I0 " - -- - -

Inter. to LowerSheJJ Cfrc. Weld 20.39 1.52 ll 101" -- **- *- --

21.78 1..54 1 I 10 "

29 t .67x JO'"' - - - -

30 1.69 x 10 1 35 1.78 ll 10" -- ... -- -

40 1.87 x 101" -- ... - -

45 l.96 x IO'" - - - -

so 2.05 1 JO'" - - - -

WCAP-J.5827

13 TABLE 5 - (Continued)

Calcufated Neutron Auence'Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface

()019 n/cm2* E > 1.0 MeV)

Azimuthal l...ocalion EFPY Peak*

Inlet Nozzles 50 3.93 x 1017 Outlet Nozzles*

50 2.53 x I0 17

  • Only the SO EFPY values are listed since the Noulc:li will not he limiting materials due to their low Oucncc values. This will be demonstrated in the ART cakul31innc; for 50 EfPY only. Values for the lnll!t and Outlet Nozzles were taken from Table 6-1 Kof WCAP* 1.5!10.5 (Used lhc Nt1zzlc Weld Flucnccs for conscrvalism).

WCAP-15827

14 TABLE6 Summary of the Vessel Surface, l/4T and 3/4T Auence Values used for lhe Generation of lhe 30, 35, 40, 45 and 50 EFPY Hcatup/Cooldown Cur\'eS Material Surfare l/4Td J/4Tct 1 1 1

(.Vcm .E > 1.0 Me\') (.Vcm ,F. > 1.0 MeV) (nlcm .E > 1.0 l\leV) 30 EFP\'

1 lntermedi:lle Shell Plates (Peak Flucncc) 3.79 x 10 "' 1 2.17 x 10 " 7.09 x 10*~

1 Upper to Inter. Shell Circ Weld, Upper Shell l.62x 10 " 9.26 X I0 1 K 3.03 x 10 11 Plates and Upper Shell Long. Welds111 Inter. to Lower Circ. Weld, Lower Shell Plates 1.69 x JO'"' 9.67 x 10 1* J.16 x rn 111 and Lower Shell Long. Welds lnrcr. Shell Long. Welds 2.!11 x I0 1"' 1.61JC101'1 S.26 x I0 11 (I Cl", 20* or 40-)n. 1 35 EFPY Intermediate Shell Plates (Peak Aucncc) 4.35 x I0 1"' 2.49 x 101"' IU4 x IO" Upper to lnrer. Shell Circ Weld, Upper Shell 1.84 x JO'"' 1.05 x 1

10 " 3.4..t x 10 11 Plates and Upper Shell Long. Welds111 1 1 111 Inter. lo Lower Circ. Weld, Lower Shell Plates 1.78 x 10 "' 1.02 x I0 "' 3.33 x 10 and Lower Shell Long. Welds Inter. Shell Long. Welds 3.23 x 10 "

1 1.85 x 10 111 6.04 x I011 (10°, :zoo or 40°)'bl 40 EFP\'

Intermediate Shell Plates (Peale. Flucncc) 4.90 x 101" 2.80 x 101"' 9.17 x 1011 Upper to Inter. Shell Circ Weld, Upper Shell 2.06 x JO'" 1.18 x 101'1 3.85 x J0 11 Plates and Upper Shell Long. Welds111 1

Inter. to Lower Circ. Weld, Lower Shell Plates 1.87 x I0 " 1.07 x 101" 3.50 x 10 111 and Lower Shell Long. Welds ln1er. Shell Long. Welds 3.64 x JO'"' 2.08 x 10111 6.80 x 10 111 1111 (10°. 20* or40°)

45 EFPY 111 1 lntermediale Shell Plates (Peak Fluence) 5.45 x 10 3.11 x 101.. 1.02 x I0 "

1 Upper to ln1er. Shell Circ Weld, Upper Shell 2.28 x 10 " l.30x 10 "

1 4.26 x I0 111 Plates and Upper Shell Long. Welds111 1 1 ln1cr. 10 Lower Circ. Weld. Lower Shell Pla1cs 1.96 x 10 " 1.12 x I0 " 3.67 x 1011 and Lower Shell Long. Welds 1 1 Inter. Shell Long. Welds 4.0S x 10 " 2.32 x 10 " 7.56 x I0 11

( 10", 10" or 40")'111 Noles on Next Page.

WCAP-15827

15 TABLE 6 (Continued)

Summary of lhc Vessel Surface. l/4T and 3/4T Fluence Values used for the Generation of the 30. 35. 40. 45 and 50 EFPY Heatup/Cooldown Curves Material Surface 11.irc* 3/4rc>

(n/cm 2

.r. > 1.0 MeV) 2 (n/cm .E > 1.0 MeV) 1 (n/cm ,E>1.0 Me\')

SOEFPY Intermediate Shell Plates (Peak Auc:nce) 6.01 x 1019 3.44 ll I0 19 1.12 ll IO'"

Upper lo Inter. Shell Circ Weld. Upper Shell 2.50 x 1

10 " 1.43 ll I0 19 4.68 x I0 11 Plates and Upper Shell Long. Welds111 Inter. 10 Lower Circ. Weld, Lower Shell Plates 2.05 x 1019 1.17 x IO'" 3.83 x 1011 and Lower Shell Long. Welds Inter. Shell Long. Welds 4.46 x I019 2.55 x J019 8.3.i x 1018

( 100. 20° or 40°)1111 Inlet Nozzle 3.93 x I0 17 2.24 x 10° 7.35 x I0111 Outlet Noulc 2.53 ll 1017 1.45 ll 1017 4.73 x J0 111 (a) For conscrvati~m the peak nucnce was u!ied even though Jong. welds arc not at the peak location (0°).

(b) The nuence was taken from the peak azimuthal location from the three rrovided.

(c) If.ff and 3/4T = FcSurfllCCI *c14 24 ** 1, where x is the depth into the ves~I wall (i.e. 9.3 J3*0.25 or 0.75)

WCAP-15827

16 TABLE?

Summary of the Calculated FJuence Factors used for the Generation of the 30, 35, 40, 45 and 50 EFPY Heatup and Cootdown Curves l\faCeriaf lf4Tf'*1 Jl4TFF 3/.CT r*> 3/4TFF 30 EFP\'

ln1crmedi:11e Shell Plales (Pc:ilt Flucncc) 2.17 x 10 "

1 1.21 7.09 x rn** 0.904 11 11 Upper 10 lnrcr. Shell Circ Weld. Upper Shell 9.26 x I0 0.978 3.03 x 10 0.672 Plales and Upper Shell Long. Welds1b 1 Jn1cr. to Lower Circ. Weld. Lower Shell Plates 9.67x 1o*r- 0.99) 3.16x 1011 0.684 and Lower Shell Long. Welds ln1er. Shell Long. Wc!Js (10°, 20° or 40°r 1.61 x IOh 1.13 5.26 x to'* 0.821 35 EFPY lnh:rmcdiate Shell Plates (Peak Flucncc) 2.49 x 10"' 1.25 8.14 x to 0.942 Upper lo Inter. Shell Circ Weld. Upper Shell 1.05 x IO'" 1.01 3.44 x 10111 0.706 Pla1cs and Upper Shell Long. Welds11" lnlcr. to Lower Circ. Weld, Lower Shell Plates 1.02 x l0 19 1.01 3.33" 10" 0.697 and Lower Shell Long. Wetds lnlcr. Shell Long. Welds (10°, 20° or 40°)' 0 1.85 x IO'" 1.17 6.04 x 10** 0.858 40 EFP\'

1 lntcnnedi:lle Shell Plates (Peak Aucncc) 2.80x 10 " 1.27 9.17 x to" 0.976 Upper 10 Inter. Shell Circ Weld, Upper Shell 1.18 x 10'" I.OS 3.85 x 10" 0.736 Plates ond Urpcr Shell Long. Weldsn.1 Inter. to Lower Circ. Weld, Lower Shell Pl:ucs 1.07" 10'" 1.02 3.SO x 10" 0 .710 and Lower Shell Long. Welds Inter. Shell Long. Welds ( 10°. 200 or 400)" 1 2.08 )l 10'" 1.20 6.80 x IO" 0.891 45 EFP\'

Intermediate Shell Plalcs (Peal: Aucncc) 3.11" 10*~ 1.30 1.02 x 10*~ I.OJ Upper co Inter. Shell Circ Weld. Upper Shell I.JO x JO'~ 1.07 4.26 x 10** 0.763 Plates and Urper Shell Long. Welds1b 1 Inter. to Lower Circ. Weld. Lower Shell Plates 1.12 x IOi I.OJ 3.67 .JC 10111 0 .723 and Lower Shell Long. Welds Inter. Shell Long. WclrJ'i ( 10°. 20° or 400)4" 2.32 .ic I01'i J.23 7.S6x 1011 0 .922 WCAP-15827

17 TABLE 7 (Continued)

Calculation of the l/4T and 3/4T Fluence Fac1or Values use~ for the Generation of the 30, 35. 40, 45 and 50 EFPY Hcalup/Cooldown Curves Material 1/4T F 91 l/4TFF 3/4Tf'*l 3/4TFF SO EFr\'

lntcrmcdi3te Shell Plates (Pcalt Aucncc) J.4.i x 10*~ 1.32 1.12 x 101y t.03 Upper 10 Inter. Shell Circ Weld, Upper Shell l.4J X IOIY 1.10 4.68 x 10)8 0.788 Plates and Upper Shell Long. Wclds1111 Inter. lo Lower Circ. Weld, Lower Shell Pla1cs J.17 lt JOl'I 1.0-i J.83 x w** 0.734 and Lower Shell Long. Welds Inter. Shell Long. Welds (10°. 20° or40°) 2.SS x JO'" 1.25 8.34 x IO"' 0.949 Intel Nozzle 2.24 x 1011 0.184 7.35 x 10 11' 0.089 17 1 Ou1lc1 Nozzle 1.45 x 10 0.140 4.73 x 10 " 0.064 (a) . .E > 1.0 MeV)

(n/c:m .~

(b) For conservatism the peak nucncc was used even lhough long. welds arc not a1 the peak loc.:nion (0°).

(c) The flucncc was Ulen from the peak azimuthal location from \he three provided.

Margin is calculated as, M = 2 ~a;+ a! . The standard deviation for the initial RTNITT rmrgin term. is a, 0°F when the initial RTNDT is a measured value, and I7°F when a generic value is available. The standard deviation for the AP:fHDT margin term, o.\. is I7°F for plates or forgings, and 8.5°F for plates or forgings when surveillance data is used. For welds, a.i is equal to 28°F when surveillance capsule data is not used, nnd is l4°F (half the value) whert credible survei\htnce capsule data is used. o" need not exceed 0.5 limes the mean value of ARTNOT*

WCAP-IS827

18 Contained in Tables 8 through 17 are the calculations of the 30, 35, 40, 45 and 50 EFPY ART values used for generation of the heatup and cooldown curves.

TABLES Calculation of the ART Values for the l/4T Location @ 30 EFPY Mattria1 R.tg.Guidt CF"' 1.4T FF IR.T.,nT*** taRT,..nT"' M ART'CI l.99 Rtv.2 (Of) (Of) l\lcthod Upper Shell Plate WI 020 I* I Position I.I 62.9 0.978 69 61.5 34 165 Upper Shell Pl:ue WI 0201 *2 Position I.I 84.8 0.978 30 82.9 34 147 Upper Shell Pla1e WI 0201 *3 Posi1ion I.I 51.8 0.978 36 S0.7 34 121 ln1crmedi3te Shell Pla1e Posilion I. I 57.1 1.21 20 69.1 34 123 WI02014 Posilion 2.1 67.1 1.21 20 81.2 341c1 135 ln1crmclli3tc Shell Plate Posi1ion I. I 51.2 1.21 20 62.0 34 116 WI0201*5 Posi1ion 2.1 38.8 1.21 20 46.9 17*c1 84 ln1c:rmedia1e Shell Plate Posilion I. I 44.2 1.21 45 5:1.4 3.$ 132 WI0201-6 Posi1ion 2.1 45.9 1.21 45 55.5 341c1 135 Lower Shell Plate W9807-3 Posilion I. I 58.0 0.991 so 57.4 34 141 Lower Shell Plate W9807-5 Position I. I 10.S 0.991 33 69.9 34 137 Lower Shell Plate W9807-9 Position 1.1 70.5 0.991 9 69.9 34 113 Upper. Inter. &. Lower Shell Position I. I 100.8 1.13 -56 113.9 65.5' 0 123 Plale Long. Weld Scams*d*

1-273A.B,C. 2*273A.8.C &:

3-273A.D.C (Heal# 860548)

Upper to Inter. Shell Plate Posilion I.I 230.2 0.978 -56 225.I 65.510 235 Circumfcren1i3I Weld Scam Posi1ion 2. I 223.4 0.978 *S6 218.5 65.Stc.O 228 10-273 (flcat # W5214) lnler. 10 Lower Shell Plate Posilion I. I 217.l 0.991 .77 215.1 56 19-1 Circumfcrenlial WclcJ Scam 11-273 (lleal # 3-iD009)

~

(a) Initial RT,.,111 \'3lucs arc measured values.

(h) ARTNOT .. CF. FF (c) ART= I + ARTicur + M (This value was round~-d per ASThf E29. using the *Roundinl,? Mcthoo".)

(d) Actu:il nuence is lower on the upper and lower shell long. wtlds versus the lntermcdi:ite $hell long. v.*clds. but since 1hcy arc 1hc same he:it II\ lhc inter. shell long Wf'lds thcn1he higher nucnccs will be used.

(c) Robinson su~cillancc weld dala * (stand alone) and lntcrmcdi:itc shell plates WI0201-4 and-6 are not credible.

lnlcnncdi:ite shell plate WIOlOl *S is cmlible (Ref. WCAP* 151105). The non-c:rcdihlc m:ncrials sh:ill use a full O.i.

(f) Initial RTNnl was generic. thus. <J, is equ:d ta 17°F.

WCAP-15827

19 TABLE9 Calculation of the ART Values for the 3/4T Location @ 30 EFPY Matuial Reg.Guide CF" 1ATFF IRT, 11r 1** ~RT"'T 1b1 M ART* 1 1.99 Rn. 2 (oF) (oF)

Method Upper Shell Plate WI0201*1 Position I. I 62.9 0.672 69 42.3 3.i 145 Upper Shell Pl:ne WI0201-2 Position I.I 84.8 0.672 JO 57.0 34 121 Upper Shell Plate \VJ0201-3 Po~ition I.I 51.8 0.672 J(i J.J.K 3.i I05 Intermediate Shell Plate Posilion I.I 57.1 0.90-i 20 51.6 3-' 106 WJ0201-4 Position 2.1 67.1 O.Q(l-i 20 60.7 34*d 115 lntermcdi3te Shell Pl:ite Position I. I 51.2 0.90-1 20 46.3 34 100 w10201-s Position 2.1 38.8 0.90-i 20 35.l 17*** 72 Intermediate Shell Plate Position I.I 4.t.2 0.90-i 45 40.0 3-' 119 WJ0201-6 Position 2.1 45.9 0.904 45 41.S 34*d 121 Lower Shell Plate W9807-3 Position I.I 58.0 0.684 so 39.7 3.S 124 Lower Shell Pl3tc W9807-S Position I. I 70.S 0.6K4 3J 48.2 34 115 Lower Shell Pl:itc W9807-9 Position I.I 10.5 0.684 9 48.2 3.S 91 Upper. Inter. &. Lower Shell Position 1.1 100.8 0.821 *56 82.8 65.S' 0 92 Plate Long. Weld Scams'"

I *273A.B,C, 2-273A.D.C &

3-273A.B.C (Heat# 860548}

Upper to Inter. Shell Plate Position I.I 230.2 0.672 -56 15-1.7 6s.s*'* 16-i Circumferential Weld Seam Position 2.1 22J.4 0.672 -56 150.I 65.51c.11 160 10-273 (Hc:n # WS214)

Inter. to Lower Shell Plate Position I. I 217.1 0.684 .77 l.tK.5 56 127 Circumferential Wc:ld Scam 11-273 (Hc:it # 348009)

~

(a) Initial RTlilJT \*alucs arc nicasurcd values.

Cb) ~RTMIT *CF

  • FF (c) ART= I + t.RT1111T + M (This value was roumkd per ASTM E29. using the "Roum.linti McthoJ".l

{d) Actual nuence is lower 0t11hc upper and lower shell Ion,. welds \"crsus 1hc inic~"\.liah.' shell Ion~. li\'dds. but since they are the same heat as the imcr. shell long welds lhenlhe hi~hcr (lucnccs will be: used.

(e) Robinson sunreillance weld data (stand alone) and intermediate shell plates WI 0201-4 anti -6 arc nnl credible.

lnlmncdiatc shell rla1c WI0201-.S is credible (Rer. WCAP- "80~). The non-crcdiMc moitcrials sh:ill use a run a,,.

(f) Initial RTNllT was icncric. thus. CJ, Is equal to I7*F.

WCAP-15827

20 TABLElO Calculation of lhe ART Values for the l/4T Location @ 35 EFPY Material Reg. Guide CF" 1ATFF IRTNnT*** ARTp,or'b' M ART'*'

J.99 Rev.2 (Of) (Of)

Method Upper Shell Plate WI0201*1 Position t. I 62.9 1.01 69 63.S 3.S I 67 Upper She11 Plate WI0201*2 Position I. I 84.8 1.01 30 85.6 3-1 ISO Upper Shell Plate W I020 I*3 Position 1.1 SJ.8 1.01 36 52.3 34 122 lntenncdiate Shell Plate Position 1.1 57.1 1.25 20 71.4 3.S 125 WI0201-4 Position 2.1 67.1 J.25 20 83.9 34*cl 138 lntenncdiatc: Shell Plate Position 1.1 51.2 1.25 20 6-1.0 ~ 118 WI0201*5 Position 2.1 38.8 1.25 20 48.5 17" 1 86 Intermediate Shell Plate Position I. I 44.2 1.25 45 55.3 3-1 13-1 WJ0201*6 Position 2.1 45.9 1.25 45 51.4 341.. 1 136 Lower Shell Plate W9807-3 Position I.I 58.0 1.01 so 58.6 34 143 Lower Shell Plate W9807*5 Position I. I 70.5 1.01 33 71.2 3.S 1:\8 Lower Shell Plate W9807-9 Position I .I 70.5 1.01 9 71.2 3.S 114 Upper. Inter. & Lower Shctl Position I. I 100.8 1.17 -56 117.9 65.5' 0 127 Plate Long. Weld Scams1d 1 1-273A.D,C, 2-273A.D.C &

3-273A.D.C (Heat# 860548)

Upper 10 Inter. Shell Plate Position I. I 230.2 I.OJ -56 232.5 65.S 242 Circumferential Weld Scam Position 2.1 223.4 1.01 *56 225.6 65 .Scc.n 235 10-273 (Heal# WS214)

Inter. 10 Lower Shell Plate Position 1.1 217.1 1.01 .77 219.3 56 198 Circumferential Weld Scam I 1*273 (Heat# 348009)

~

(a) lnilfal RT"'llT 'Values are measured nluc:s.

(bl ART.,,,,. =CF *FF (c) ART= I + ARTNllT + M (This value was round1.-d per ASTM E29. using 1hc: "Roonding Mc:1ho1.r.)

(d) Aclu3l nuence is lower on lhe upper and lower shell long. welds versus lhe intermcdi31e shc:ll lon11. welds. 1-ut since they arc lhc: same heat as the inter. shell long welds thcn1hc hil!her nuencts will be used.

(c) Robinson sun-eillance weld d3ta (stand alone) and intermedi31C shell plates W&0201-4 and -6 un: not credible:.

Intermediate shell plate WI0201 *.5 is credible (Ref. WCAP-1.5805). The non-credible maleri3ls sh:ill use 3 full ol.

CO lnilial RT" was 11."llcric. thus. a, is equ:il to 17°F.

WCAP*l.5827

21 TABLE II Calculation of the ART Values for the 3/4T Location @ 35 Efl>Y 11 ART'..

Material Reg.Guide CF"' 1ATFF IRTNoT181 ARTNl>T 1\1 J.99 Rev.2 (Of) (Of)

Method Upper Shell Plate WI0201*1 Position I.I 62.9 0.706 69 4.S.4 3.S l.S7 Upper Shell Plate WI0201*2 Position I. I 84.8 0.706 30 59.9 3.S 124 Upper Shell Plate WI0201*3 Posilion I.I 51.8 0.706 36 36.6 3.a 107 Intermediate Shell Pl:llc Position I. I 57.1 0.9-12 20 53.8 3.a I08 WI02ot-4 Position 2.1 67.l 0.9.$2 20 63.2 34**1 111 ln1crmcdia1c Shell Plate Posiiion I.I 51.2 0.942 20 48.2 34 102 WI0201*S Position 2.1 38.8 0.942 20 36.S 17*d 74 ln1ermediatc Shell Plate Position I. t 4.S.2 0.942 45 41.6 34 121 WI0201-6 Posi1ion 2.1 4$.9 0.942 45 43.2 3,tl*I 122 Lower Shell Plate W9807*3 Position 1.1 58.0 0.697 50 40.4 3.a 124 Lower Shell Plate W9807-5 Position I.I 70.5 0.697 ~) 49.1 3-1 116 Lower Shell Plalc W9807-9 Posi1ion I.I 70.S 0.697 9 49.1 3.$ 92 Upper, Inter. & Lower Shell Position I. I 100.8 0.858 -56 86.4 65.510 96 141 Pla1e Long. Weld Seams I *273A.D,C, 2-273A.B,C 8:.

3-273A.B.C (Heat# 860548)

Urpcr to ln1cr. Shell Plate Posi1ion U 230.2 0.706 -S6 162.5 65.5' 0 172.

Circumforen1ial Weld Scam Posilion 2.1 223.4 0.706 -56 157.7 6s.s*c.n 167 10.273 (H~al # W5214)

Inter. to Lower Shell Plate Position 1.1 '217.1 0.697 -11 151.3 56 130 Circumfcrcnlial Weld Scam I 1*273 (Hc3t # 34Il009)

~

(3) lniti31 RT.,.,JT values arc mc3surcd v3lues.

(b) bRTNIJT =CF*FF (c) ART= I + ART111,, + M ('lllis value was round\.'d per ASTM E29, usin! lhe wRoundin~ Method".)

(d) Actual nucnce is lower on lhe upper and lower shell long. welds ~ersus lhe in1ermcdi:ite shell Ion!. welds, bul since they arc 1hc s:imc hc:11 as 1he inter. shell long welds 1hen1he higher nucnces will be used.

(c) Rohinst'n surveillance weld d:it:i ; (sl:ind alone) and inrcrmcdi:ite shell plates WIOZOl-4 and-6 are nm credible.

Intermediate shell plate WI0201-) is credible (Rcr. WCAP*IS80S). The non-("rcdible materials shall use a foll G3 *

(0 Initial RTNOT was generic. thus, a, is equ:il 10 I 7°F.

WCAP-15827

22 TABLE 12 Calcul:uion of the ART Values for chc 1/4T Location @ 40 EFPY Mattriat Reg.Guide CF"' 1ATFF IRTrmT1* 1 ARTi-;ol" M ARTC' 1.99 Rev.2 (Of) (Of)

Method Urper Shell Pl3te wI020 I* I Position I.I 62.9 I.OS 69 66.0 34 169 Upper Shell Plate: WI 020 I*2 Position I.I 84.8 I.OS 30 89.0 3-1 153 Upper Shell Plale WI0201*3 Posi1ion I. I 51.8 I.OS 36 54.4 34 124 lntenncdiare Shell Pl3te Position I.I 57.1 1.27 20 72.S 34 127 WI0201-4 Position 2.1 67.1 1.27 20 85.2 3-1(0 139 Intermediate Shell Pl31e Position 1.1 51.2 1.27 20 65.0 34 119 WJ0201-5 Posirion 2.1 38.8 1.27 20 49.3 17'., 86 Intermediate Shell Plate Position I.I 44.2 1.27 45 56.I 3-1 135 WI0201-6 Position 2. I 45.9 1.27 4.S 58.3 341' 1 137 Lower Shell Plate W9R07-3 Position I.I 58.0 1.02 50 59.2 3-1 143 Lower Shell Plate W9807-5 Position I.I 70.S 1.02 33 71.9 34 139 Lower Shell Plate W9807-9 Position I.I 70.5 1.02 9 71.9 34. 115 Upper, Inter. & Lower Shell Position I.I 100.8 1.20 -56 121.0 65.S'° 131 Plate Long. Weld Seams1d 1 l-273A,n.c. 2-273A.B.C &

3-273A.B,C (Heat# 86054D)

Upper to Inter. Shell Plalc Position I.I 230.2 1.05 -S6 241.7 65.S'O 251 Circumferential Weld Scam P~ition 2.1 22:\.4 I.OS -56 23-1.6 65.S'**O 244 10-213 (Heal# W5!14)

Inter. to Lower Shell Plate Position I.I 217.1 1.02 -77 221.4 56 200 Circumfereniial Weld Seam 11-273 (Hc3t # 348009)

.tfillES,;

(a) Initial RT,.11, values arc measured values.

(b) ART1111rr *CF- FF (c) ART 1: I+ ARTNl>T + 1\1 (This value w:is rounded per ASTM E29. using the "Rounding Mc1hod".)

(d) Actu3l nucnce is lower 11n !he upper 11nd lower she11 long. wclJs versus the lntcrmcdia1c shell long. welds, but since they arc 1hc same hc:i111s the inter. shell long welds thenthc higher nucnces will be used.

(.:) Robinson surveill11ncc weld da111 (st11nd alone) 11nJ inlcl'lll\.-di1111: shell plates W10201-4 anJ -6 arc not credible.

ln1crmcdi:11e shell pl111e WI0201*S is credible (Rcr. WCAP-1.SH0.5). The non*cn:dible m11terials sh11ll use a (ull a6 *

<0 lnilial RT!'>llT was rcm.'lic. thus. a, is cqu11l 10 I7°F.

WCAP-15827

23 TABLE 13 Cakulalion of the ART Values for lhe 3/4T Local ion @ 40 EFPY Material Reg. Guide CF'CI 'ATFF IRT1110T "

1 1

~RTNoT1 ~ 1 1\1 ART4c' 1.99 Rev. 2 (af) (aF)

Method Upper Shell Plate WI0201*1 Posi1ion I.I 62.9 0.736 69 46.3 3-1 149 Upper Shell Plate WI0201-2 Position I. I 8-1.8 0.736 30 62.4 34 126 Upper Shell Plate WI 0201-3 Position I. I 51.S 0.736 36 38.1 34 IOS lnlcrmediatc Shell Plate Posirion I. I 57.1 0.976 20 55.7 34 110 WI02014 Posirion 2.1 67.1 0.976 20 65.S 34*c1 120 lntermedi:ire Shell Plate Position 1.1 Sl.2 0.976 20 50.0 34 104 WI0201*S Posirion 2.1 31t8 0.976 20 :n.9 rte* 75 lnrermediate Shell Plate Position I. I 44.2 0.976 45 43.1 34 122 WI0201*6 Posirion 2.1 45.9 0.976 45 4-1.8 34tcl 124 Lower Shell Plate W9807*3 Position I.I 58.0 0.710 so 41.2 34 125 Lower Shell Plate W9807-5 Position I. I 70.5 0.7IO :n SO.I 34 117 Lower Shell Plate W9807-9 Position I. I 70..5 0.710 9 .50.1 34 93 Upper. lnlcr. & Lower Shell Position 1.1 100.8 0.891 *56 89.8 65 ..5'° 99 Plarc Long. Weld Scams*Ji 1*273A.B.C, 2*273A.B,C &

3-273A.B.C (Hc:it # 8605.tB)

Urpcr to Inter. Shen Pbtc P<>!iition I. I 2:\0.2 0.736 -56 169.4 65.510 179 Circumferential Weld Seam Position 2.1 223.4 0.736 -56 16.t.4 65.S'cn 17.t 10-273 (He:it # W.5214)

Inter. &o Lower Shell Plate Position I. I 217.1 0.710 -77 154.1 56 133 Circumrcrcntial Weld Scam I 1*273 (Heal# 348009)

~

(3) Initial RT,.11r v:ilues :ire measured \*:alues.

(b) .dRT11111T a CF* FF (c) ART* I + .dRTNUT + M (This ":lluc was mund1.-d per ASTM E29. usinl! the "Roundinl! ~kthod",)

(J) Actual fiucnce Is lower on 1he urrcr and lower shell long. welds "ersu<> the intermediate shell Ion!!. we!Js. but since they :ire the s:imc he:it 1s the inier. shell Joni welds thenthc hither fluences will be USt.-d.

(c) Robinson sul'\'eill:ince weld dat:i (sland alone) and lntem1t.-di31e shell plJtcs W 10201-4 and -6 an: not credible.

Intermediate shell plate WI0201*S Is cn:dihlc (Rcr. WCAP-1!'180!'1). The non-crcditilc matcrfals shall u~ a full a4 *

<0 Initial RTPUIT WilS 1encric. thus. a, is equal lo I7°F.

WCAP*l.5827

TABLE 14 Calcul:uion of 1he ART Values for the l/4T Location @ 45 EFPY Material Rtg. Guide CF.. ' lATFF IRTN0T'* 1 ~RT,.oT"" M AR~~'

1.99 Rev. 2 (Of) (Of) l\fdhod Uppcr Shell Plate WI0201*1 Posilion I. I 62.9 1.07 69 67.3 34 170 Uppcr Shell Plate W I0201-2 Position I. I 84.8 1.07 30 90.7 34 ISS Uppcr Shell Pl;nc W I0201-3 Position I. I 51.8 1.07 J6 5.5.4 J.$ 125 lntcrmcdi:ue Shell Plate Position 1.1 57.1 1.30 20 74.2 34 128 WJ0201-4 Position 2.1 67.1 1.30 20 87.2 34*ct 141 Intermediate Shell Plate Position I. I .51.2 1.30 20 66.6 34 121 Wl020\-5 Position l. \ 38.S 1.30 20 50.4 n"1 87 lntermcJiate Shell Plate Position I. I 4..\.2 1.30 45 57.4 34 136 WI0201*6 Position 2.1 45.9 1.30 4.5 59.7 34tcl 139 Lower Shell Plate W9807-3 Position I.I 58.0 1.03 so 59.1 34 144 Lower Shell Plate W9807-S Position I.I 10.5 1.03 33 72.6 34 140 Lower Shell Plate W9807-9 Position 1.1 10.S 1.03 9 72.6 34 116 Uprcr. lntcr. & Lower Shell Posit ion I.I 100.8 1.23 -56 124.0 65.S'° 134 Plate Long. W~ld Scams1d 1 1-27:\A.D,C. 2-27JA.D.C &

3-2HA.B.C (Heat# 86054B) 11 Upper 10 Inter. Shell Plate Position 1.1 230.2 1.07 -56 246.3 65.5 ' 256 Circumferential Weld Scam Position 2.1 223.4 1.07 -56 239.0 65.S'cn 249 10-27.\ (Heat# W5214)

Inter. lo Lower Shell Plate Position I.I 217.1 1.03 -77 223.6 56 203 Circumrcrcntial Weld Scam l l-273 (Hl!at ff 3-'ll009)

~

(a) Initial RTMIT v:ilues arc mc3surcd values.

(h) ~RTN11T *CF*FF Cc> ART* I + ~RTM1T + M (This value w3s rounded per ASTM E29, usinr the "Roundinl:! Method".)

(di Actual nul'ncc is lower on lhc upper and lower shell lonr. \lo'Clds versus the inrcrmcdiatc shdl long. v.c:lds. hut since they are the same hc:11 11s the inter. shell long welds thcnthc hirher flucnces will be used.

(c) Robinson surveillance weld data (st3nd alone) and intermediate shell pl:itcs WI02014 and -6 are nut crcdihlc.

lntcrll1'.'tliatc shell pl3tc WI0201-S is credible (Rcr. WCAP-15805). The non-credible materials sh:ill u~ a full a-'.

(f) lni\ia\ RTl'ollT was rcncric, lhus. O, is equal to 11°F.

WCAP-15827

25 TABLE 15 Calcula1ion or &he ART Values for lh!! 3/4T Loca1ion @ 45 EFPY Material Reg. Guide crt** *ATFF IRT!'lnT'*' &RT,..0Tcb1 1\1 ART'c' 1.99 Rev.2 (Of) (Of)

Method Upper Shell Pla1c WI 020 I* I Pmilion I. I 62.9 0.7M 69 48.0 34 ISi Upper Shell Pl ale WI 020 I*2 Posi1ion I.I 84.8 0.763 30 64.7 34 129 Upper Shell Pla1c W I020 I*3 Pusilion 1.1 51.8 0.763 36 39.5 34 110 lntermedia1c Shell Plate Position I. I 57.1 1.01 20 57.8 34 112 WJ0201-4 Posilion 2.1 67.1 1.01 20 67.8 34 122 Intermediate Shell Plalc Posi1ion I. I 51.2 1.01 20 51.7 34 106 WI0201*S Position 2.1 38.8 1.01 20 39.2 17*t* 76 ln1crmcdia1c Shell Plate Position I.I 44.2 1.0I 45 44.6 34 124 WI0201*6 Posilion 2.1 45.9 1.01 45 46.4 34*** 125 Lower Shell Plate W9807-3 Posit ion I.I 58.0 0.723 50 41.9 34 126 Lower Shell Plate W9807-5 Position I.I 70.5 0.723 33 51.0 34 118 Lower Shell Plalc W9807*9 Position I.I 70.5 0.723 9 51.0 34 94 Upper, lnler. & Lower Shell Position I.I 100.8 0.922 -56 92.9 65.511'1 I02 Plale Long. \Vele.I Scam!>*d*

1-273A.B,C, 2-273A.B.C &

3-273A.n.c (Heal# 8605.JB)

Upper to ln1er. Shell Plate Posi1ion I.I 230.2 0.763 -56 175.6 65.511'1 185 Circumferential Wclc.I Scam Position 2.1 223.4 0.763 -56 170.5 65.S'c.o 180 10*273 (Heal# W5214) lnicr. 10 Lower Shell Plate Position I.I 217.1 0.723 -77 157.0 56 136 Circumfcrcn1ial Weld Sc:im 11-273 (Heat# 348009) till1li (3) Initial RTNUT values arc mcasun:d values.

(b) .6RTNllT c: CF

  • FF (c) ART= I + 4RTsut + M (This \'alu..: was rounded per ASTM E29. using the "Rounding Me1hod",)

(d) Aciual nucnce is lower on 1hc upfll'r and lower shell Ion!!. welds versus 1hc intermediate shell Ion~. welds. hut since lhey arc lhe same hc3t as the inter. shell long welds thcnthc higher flucnces will be used.

(e) Robinson survcillanl'C ~clJ dJla (st01nJ alone) and in1crmcdia1c shell pla1es WI0201-4 and -6 arc 001 credible.

lnlcnnediate shell pla1e WI 0201-~ is credible (Rcr. WCAP* 1580~ ). The non-cn:dihlc materials shall use a run CJ".

(0 lnilial RTNllT was gcncric.1hus. CJ, is equal 10 I 7°F.

WCAP-15827

26 TABLE 16 Calculation of the ART Values for the l/4T Location @ 50 EFPY IRTNDTl*t 11 l\lalerial Reg.Guide Cf"' 1ATf"f ARTl'mT " M ART<'

1.99 Rev.2 (Of) (OF)

Mtthod Inlet Nozzle Posi1ion I.I 20 0.184 60 3.7 34.210 98 Ou1lct Nozzle Posilion I.I IU 0.140 60 IS.8 37.S'° 113 Upper Shell Plale WI0201 *I Posi1ion I. I 62.9 1.10 69 69.2 34 172 Urper Shell Plate WI0201-2 Position 1.1 84.8 1.10 30 93.3 34 157 Upper Shell Pla1c WI0201 *3 Posi1ion I.I Sl.8 1.10 36 57.0 3-1 127 Intermediate Shell Pla1c Posi1ion I.I S7.I 1.32 20 75.4 34 129 WI0201-4 Posilion 2.1 67.l 1.32 88.6 J~ftl 143 20 lntcrmcdiale Shell Plalc Posi1ion I. I 51.2 1.'.\2 20 67.6 34 122 WJ020J-5 Posi1ion 2.1 38.8 i.:u 20 51.2 17*d 88 Jn1crmcdia1e Shell Pla1e P~i1ion I.I 44.2 *1.n 45 58.3 3-t 137 WJ0201-6 Position 2.1 45.9 J.32 45 60.6 34*cl 140 Lower Shell Plate W9807-3 Position 1.1 58.0 1.0-t 50 60.3 34 144 Lower Shell Plale W9807-5 Position I. I 70.5 1.04 33 73.3 34 140 Lower Shell Plate W9807*9 Posi1ion I. I 70.S 1.04 9 73.3 34 116 Upper. Inter.&. Lower Shell Position I.I 100.8 1.2.S -56 126.0 65.510 136 Pla1e Long. Weld Scams1d' 1-273A.n.c, 2-273A.B.C &.

3-273A.B,C (Hcai # 860548)

Upper to ln1er. Shell Pl.:11c Position I.I 230.2 1.10 -56 253.2 6S.S'° 263 Circumrerential Weld Scam Position 2.1 223.4 1.10 -56 2.is.1 65.Sfc.0 255 10-273 (Heat# W.5214)

Inter. to Lower Shen Plate Position 1.1 217.l 1.o.i .77 225.S 56 205 Circumrerenli:ll Weld Scam I 1-273 (Heal# 34B009)

NozzkWelds Position I. I 230.2 0.184 -56 42.4 .5-t.3'0 41

~

(3) Jnili3l RTmJT v3lucs arc measured \*alucs.

(b) t.RTNnT "'CF* fF (c) ART* I+ ARTNIJT + M (This v3luc was rounded per ASTM E29. using the "Rounding Method".)

(d) Aclual nucncc Is lower on the upper and lower shell lune. welds \'Crsus the inlcrmcdi3tc shell Ions. welds. but since they arc 1hc same heat as 1hc inter. shell long welds thcnthc hither nucnccs will be used.

(c) Robinson survc:illancc: weld dala (stand :!lone) and intcrmcdi3tC shell pl3te5 WJ0201-4 and -6 arc not credible.

Intermediate: shell plate W10201-S is credible <Ref. WCAf>*l!i805). The non-credible m:ncrials shall use a full o-'.

(f) Initial RT,.l>T W3S rcncric. thus. o, is equal to 17°F.

WCAP-1.5827

27 TABLE 17 Calculation of the ART Values for the 3/4T Location @ 50 EFPY Material Reg. Guide CFd 1ATf*r I RTNor*** .6.RT,.or'b' 1\1 ART"'

1.99 Rev.l (Of) (Of)

Method Inlet Nozzle Position I.I 20 0.088 60 1.8 341 96 Outlet Nozzle Position l.J 1IJ 0.0<>-l 60 7.2 J.i.8 102 Upper Shell Plate WI 020 I* I Position I.I 62.9 0.788 69 49.6 34 153 Upper Shell Plate WJ0201-2 Position I.I 84.8 0.788 30 fi<l.8 34 131 Upper Shell Plate WI0201-3 Position I. I 51.8 0.788 36 *Ul.8 34 111 Intermediate Shell Pla1e Position I.I 57.1 1.03 20 58.8 34 113 WI0201-4 Position 2.1 67.1 I.OJ 20 (19.1 3.i*tl 123 Intermediate Shell Plate Position I.I 51.2 I.OJ 20 52.7 34 107 WI0201-5 Position 2.1 38.8 J.OJ 20 40.0 1r 1 77 Intermediate Shell Plate Position I.I 44.2 l:OJ 45 45.5 34 125 WI0201-6 Position 2.1 45.9 1.03 45 47.J 34*c1 126 Lower Shell Plate W9807-3 Position I.I 58.0 0.73..& so 42.6 34 127 Lower Shell Plate W9807-S Position I. I 10.S 0.734 33 51.7 34 119 Lower Shell Plate W9807 *9 Position I. I 10.S 0.734 9 51.7 34 95 Upper, Inter. & Lower Shell Position I.I 100.8 0.949 -56 95.7 65.S IOS Plate Long. Weld Seams1* 1 1*273A.n.c. 2*273A.B.C &

3-273A.D,C(He:it # 860548)

Upper to Inter. Shell Plate Position I.I 230.2 0.7HK *56 181.4 65.5' 11 191 Circumferential Weld Scam Position 2.1 223.4 0.788 -56 176.0 65.51cr1 186 10-273 (Heat# WS214)

Inter. to Lower Shell Plate Position I.I 217.1 0.734 -77 159.4 56 138 Circumferential Weld Seam 11-273 (Heat# 348009)

Nozzle Welds Position I.I 230.2 0.089 -56 20.5 39.7'1'1 4

~

(a) Initial RTNUT \"3lucs are mc3surcd values.

(b) ARTNllT =Cf. FF (c) ART .. I + ART"'11T + M (This value W3S rounded per ASTM E29. usin~ lhc "Roundini Mc1hud".)

(d) Aclual Ouc:ncc is lower on lhc upper and lower shell Ion~. \\elds versus the in1c:rmcdia1t: shell Ion~. wclJs. bu1 since 1hi:y arc the '3me heal as the Inter. shcll lonB welds 1hen1hc higher flucncc:s will be used.

(c} Robinson surveillance weld data (stand alone} and lnterrm.-diatc shell plates WIO:?Ol-4 an<l -6 arc not credible.

lntrnncdiale shc:ll plale WI 0201 *S is credible (Ref. WCAP* I!'iK05). The non*cn:dihlc marcri;ils shall u~ a full 0 6

  • CO lni1ial RT...,,, was reneric. lhus. o, is equal lo l 7°F.

WCAP-IS827

28 The upper to inrermediate shell plare girth weld has rhe highest overall ART. However, since Code Case N-641 allows for less restrictive methodology to be used when the highest ART comes from a girth weld, then the highest non-girth weld ART must be identified. The upper shell plate WI 0201*1 has 1hc highest non-girth weld ART for all EFPYs in question.

Conrained in Table 18 is a summary of lhe limiting ARTs to be used in the generation of the H.B.

Robinson Unit 2 reactor vessel heatup and cooldown curves. The upper shell ART values were used in conjunction wirh the me1hodology from lhe 1996 ASME Code Section XI, Appendix G. while the Upper to Intermediate She\1 Plate Circ. Weld ART va\ues were used with the methodology from ASME Code Case N-641 (Circ. Flaw Methodology). A composile curve was creared from the results of lhe 1wo curve sels. The limiring composile curves will be presenled in Seer ion 5.

TABLE18 Summary of the Limiting ART Values Used in the Generation of the H.B. Robinson Unit 2 Hearup/Cooldown Curves EFPY 1A T Limiling ART ~~ T Limiting ART Upper to Intermediate Sh.ell Plate Circumferential Weld (10-273)*

30 235 164 35 242 172 40 251 179 45 256 185 50 263 191 Upper Shell Plate \\'10201*1 30 165 145 35 167 147 40 169 149 45 170 151 so 172 153

  • The Posi\ion I. l ART Va\ucs were selected since the Robin!>on weld d;\\a (Position 2.1) w3s deemed non-credible.

WCAP-15827

29 5 HEATUP AND COOLDO\VN PRESSURE-TEMPERATURE Lll\fIT CURVES Pressure-temperature limit curves for nonnal heatup and cooldown of the primary reactor coolant system have been caiculated for the pressure and temperature in the reactor vessel beltlinc region using the methods discussed in Sections 3.0 and 4.0 of this report. This approved methodology is also presented in WCAP-14040-NP*A, Revision 2 with exception of those items discussed in Section 1 of this report.

Figures I, 3, S, 7 and 9 present the limiting heatup curves \\ithout margins for possible instrumentation errors using heatup rates of 60 and I00°F/hr applicable for the first 30, 35, 40, 45 and 50 EFPYs, respectively. These curves were generated using the 1996 ASME Code Section XI, Appendix. G with the limiting plate ARTs in combination \\ith ASME Code Case N-588 and the limiting circ weld ARTs. The curves produced using the limiting plate ARTs are primarily bounding throughout the heatup curves, however there arc instances that the circ weld becomes limiting at higher temperatures {See bolded values In rhe data tables).

Figures 2. 4, 6, 8 and 10 present the limiting cooldO\\n curves \\ithout margins for possible instrumentation errors using cooldown rates of 0, 20, 40, 60 and 100°f/hr applicable for 30, 35, 40, 45 and 50 EFPYs, respectively. Again. these curves were generated using the 1996 ASME Code Section XI, Appendix G with the limiting pl3te ARTs in combination v.ith ASME Code Case N-588 and the limiting circ weld ARTs. The curves produced using the limiting plate ARTs are primarily bounding throughout the cooldown curves, however there arc instances that the circ weld becomes limiting at higher temperatures (See holdcd values in the data tables).

Allowable combination of temperature and pressure for specific temperature change rates arc below and to the right of the limit lines shown in Figures I through 10. This is in addition to other criteria which must be met before the rC3ctor is made critical, as discussed below in the following paragraphs.

The reactor must not be made critical until pressure-temperature combinations arc to the right of the criticality limit line shown in Figures I, 3, 5, 7 and 9. The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservicc hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equ:ition for the hydrostatic test is defined in Code Case N-6401 21 (approved in February 1999) as follows:

where, K1m is the stress intensity factor covered by membrane (pressure) stress, Kie= 33.2 + 20.734 cl002 CT*RTNDT>I, T is the minimum permissible metal temperature, and RTNOT is the metal reference nil~uctility temperature.

The criticality limit curve specifics pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Reference 14. The pressure-temperature limits for WCAP*IS827

30 core operation (except for low power physics tests) arc that the re.'.lctor vessel must be at a temperature equal to or higher than the minimum temperature required for the inscrvice hydrostatic test. and at least 40°F higher ~ the minimum pcnnissible temperature in the corresponding pressure-temperature curve for hcatup and cooldown calculated as described in Section 3.0 of this report. for the hcatup and coo1down curves without margins for instrumentation errors, the minimum temperatures for the in service hydrostatic 1e:tk tests for the H.B. Robinson Unit 2 reactor vessel at 30, 35, 40, 45 and 50 EFPY are 214°F, 216°F, 2 l 8°F, 2 J9°F and 221°F, respectively. The vertical line drawn from these points on the prcssure-tcmperaturc curve, intersecting a curve 40°f higher than the pressure-temperature limit curve, constitutes the limit for core operation for the rC3ctor vessel.

Figures 1 through I 0 define all of the above limits for ensuring prevention of nonductilc fuilure for the H.B.

Robinson Unit 2 reactor vessel for various EFPYs. The data points used for the he.1tup and cooldown pressure-temperature limit curves shoY.n in Figures I through 10 arc presented in Tables 19 through 28.

The balded values arc those limited by the girth weld using the "Circ-FJaw" Methodology. The non-bolded values arc those limited by the Upper shell Plate using the standard "Axial-Flaw" Methodology from the 1996 version of the ASME Code Section XI, Appendix G WCAP-15827

31 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WJ020l-l LIMITING ART VALUES AT 30 EFPY: 114T. 165°F 3/4T, 145°F joper11111 Verslon .5. t Run *2910B I Leek Test Limit 2250 ... ...... .

Unacceptable Acceptable 2000 Operation Operation 1750 - ... ..-..

0 (ij D.

CD

J II) 1500 *--- * - -*-

Heatup Rate Crltlcal Llmlt 60 Deg. F/Hr II) 100 Deg. F/Hr II>

D.

1250 *-****

'O Q)

I ll "S

u 1000 . -***-*'"--*- . -* ....

"iQ 0

750 .. - ..... . - ...

500 ----* - - ***-**- -* .* *-*. ... *.. ' .....

Boltup Criticality Limit based on 250 Temp. inservlce hydrostatic lest

\emperature (214 F) for the service period up to 30 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure I 11.8. Robinson Unit 2 Reactor Coolant System llcatup I.imitations (lleatup Rates of 60 & 100°f/hr) Applicable for the l'irst 30 l*:FrY (Without l\lar~ins for Instrumentation Errors) Usins: 1996 App.G Methodoloi:y WCAP-15827

32 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE Wl0201-I & GIRTH WELD 10-273 LIMITING ART VALUES AT 30 EFPY: l/4T. 165°F & 235°F 3/4T. 145°F & 164°F 2500 lop~r*m VerslOfl:S.1 Aun*291oa I 2250 Unacceptable 2000 Operation Acceptable Operation 1750 CJ iii D..

G>

~

1500 Ill Q.

1250. .. .

'Cl Ill ca

1000 .

u

'; CooldowD u Raln FIHr

  • l**dJ'******
  • 20, and -40 750.

CooldowD 500. RatuFnlr

-eoa

  • 100 250 -

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-1.5827

.:u TABLE 19 30 EFPY He:llup Curve Dala Poinls Using 1996 App. G (wi1hou1 Unccrt:iinlics for Jns1rumcn1:ition Errors)

SO Heatup* SO Criti<al Limit* 60 llealup 60 Critical Limit 100 lleatup 100 Critical Limit TC°F, P (psig) T (0 f, r (psig) Tf 0 f) r (psig) T (0 f) r (psig) T(OF) P(pslg) TC 0 f) P (psig) 60 0 214 0 60 0 214 0 60 0 214 0 60 621 214 621 60 621 214 621 60 621 214 621 6S 621 214 621 6!'i 621 214 621 6S 621 214 621 70 621 214 621 70 621 214 621 70 621 214 621 75 621 214 621 75 621 214 621 75 621 214 621 80 621 214 621 80 621 214 621 80 621 214 621 85 621 214 621 HS 621 214 621 85 621 214 621 90 621 214 621 90 621 214 621 90 621 214 621 95 621 214 621 95 621 214 621 95 621 214 621 100 621 214 621 IOO 621 214 621 100 621 214 621 IDS 621 214 621 I05 621 214 621 105 621 214 621 110 621 214 621 I JO 621 214 621 110 621 214 621 llS 621 214 621 llS 621 214 621 115 621 214 621 120 621 214 621 120 621 214 621 120 621 214 621 125 621 214 621 12S 621 214 621 125 621 214 621 130 621 214 621 130 621 214 621 130 621 214 621 135 621 214 621 135 621 214 621 135 621 214 621 140 621 214 621 140 621 214 621 140 621 214 621 145 621 214 621 14.S 621 214 621 145 621 214 621 ISO 621 214 621 150 621 214 621 I.SO 621 214 621

\SS 621 214 621 1S5 621 214 621 155 621 214 621 160 621 214 621 160 621 214 621 160 621 214 621 165 621 214 621 16S 621 214 621 16S 621 214 621 170 621 215 621 170 621 21S 621 170 621 215 621 17S 621 220 621 175 621 220 621 175 621 220 621 180 621 220 IO!!I 180 621 220 1001 180 621 220 768 180 1081 225 1132 180 ICXll 225 1046 180 768 225 794 185 1132 230 1188 185 1046 230 1095 185 79..i 230 822 190 1188 235 12.50 190 IO<JS 23S II.SO 190 822 235 854 195 12.SO 240 Bl9 195 1150 240 1210 195 854 240 890 200 1319 2..i.s 1395 200 1210 24.S 1277 200 890 24.S 930 205 1395 250 1479 205 1277 250 1351 205 930 250 97.S 210 1479 2S.S IS71 2IO 1351 255 1433 210 97.S 255 1024 215 1571 260 1673 215 1433 260 1523 215 I02.S 260 I078 220 1673 265 1786 220 1523 265 1622 220 1078 265 1139

  • Shown by requesl of CP&L. This rate is nol shown on lhe plot WCAP-15827

TABLE 19- (Continued) 30 EFPY Hea1up Curve Data Points Using 1996 App. G (wilhout Uncertainties for lns1rum\!nlation Errors)

SO lteatup* SO Critical Limit* 60 Uealup 60 Critical Limit 100 Heatup 100 Critical Umit TC°F) r (psii:) T(Of) r (psii:) T (0 f) r (psig) T( 0 f) r (psii:> T(°F) r (psiJ?) T(OF) r (psig) 225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 275 2048 230 1732 275 1854 230 1206 275 1279 235 2048 280 2200 235 IK54 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 14SI 24S 2367 245 2135 290 22lJ8 2.$5 1451 290 155 I 250 2298 295 2477 250 1551 295 1660 255 2477 2S5 1660 300 1782 260 1782 305 1915 265 191S 310 2062 270 2062 315 2224 275 2224 320 2403 280 2403 u:~ ~~~ ~*:i?_;*.;.,;:*~..;.,~!'~_..:!9:f.*~'.:;~!*._:. .i ..t.: ':-..*!.:';; ; . :.. :-. -~*-~ ~ ~ .: ':. !.'". ~. l **

. ... :,:;...: :*~* *\.;' ,::*." *:~:** ...*\ ~~. . -:-,~;~r.{ ~

Leak Ttst Temp. 195 214 Limit Pnss. 2000 2485

  • Shown by request of CP&l.. This rate is not shown on the plot.

WCAP-15827

35 TABLE20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccn3intics for lnstrumcnt:uion Errors)

Steady Slate 20°Flhr. 40°F/hr. S0°flhr.* 60"f/hr. IOO"flhr.

T l°F) I P (psiJ?) T f0 Fl I P (psiJ?) T C0 Fl I p (pSiJ?) T {0 f) I P (psiJ?) T {0 f) I p (p'iiJ?) T {0 f) I r fpsie) 60 0 60 0 60 0 60 0 60 {) 60 0 60 621 60 621 60 619 60 584 60 5-19 60 404 65 621 65 621 65 621 65 591 65 556 65 413 70 621 70 621 70 621 70 598 70 564 70 422 15 621 15 621 15 621 75 607 15 572 75 433 80 621 80 621 80 621 80 616 80 582 80 445 85 621 85 621 85 621 85 621 85 593 85 459 90 621 90 621 90 621 90 621 90 606 90 414 95 621 95 621 95 621 95 621 95 619 95 492 100 621 100 621 100 621 100 621 100 621 100 511 I05 621 105 621 105 621 105 621 I05 621 I05 532 110 621 110 621 110 621 110 621 110 621 I IO 556 llS 621 llS 621 115 621 I IS 621 115 621 115 583 120 621 120 621 120 621 120 621 120 621 120 613 125 621 12S 621 12S 621 12S 621 125 621 125 621 130 621 130 621 130 621 130 621 130 621 130 621 135 621 13S 621 135 621 13S 621 J:\5 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621. 145 621 145 621 145 621 145 621 150 621 ISO 621 ISO 621 ISO 621 150 621 ISO 621 155 621 155 621 155 621 ISS 621 1.55 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 um 621 180 1293 180 1287 180 1289 180 1289 180 1289 180 1127 185 1355 185 135S 185 13SS 185 1355 185 B55 18S llSS 190 1424 190 1424 190 1424 190 1424 190 142-1 190 1249 195 1500 195 1.500 195 1500 195 1500 195 1500 195 1321 200 1584 200 1584 200 1.584 200 1584 200 ISR4 200 I.SOI 205 1677 205 1677 205 1677 205 1677 205 J6S7 205 l.S89 210 1779 210 1779 210 1779 2JO 1779 210 1732 210 1588 215 1893 215 1893 215 1893 215 1855 215 1816 215 1697 220 2018 220 2018 220 1978 220 19-12 220 1909 220 1819 225 2156 225 2138 225 2069 225 2039 225 2013 225 1953 230 2295 230 2226 230 2169 230 2146 230 2127 230 2103 235 2382 235 2325 235 2281 235 2265 235 2254 235 2269 2.ao 2479 240 24.J.a uo uo.a uo 2397 2.ao 2395 240 2.SS4

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Boldcd V:ilues are Limited by the Circ. Weld ART using Code Ca:o;e N-588 .

WCAP-1~827

36 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I LIMITING ART VALUES AT 35 EFPY: l/4T, 167°F 3/4T, 147°f Opllfhm V9f1M>n:5.1 Run:784S Leak Test Limit 2250 ... . .. .

Unacceptable Acceptable 2000 Operation Operation 1750 Crlllcal Limit 60 Deg. F/Hr 0 Heatup Rate iii 60 Deg. F/Hr

a. 1500 CD
J Crllical Limit 100 Deg. F/Hr

.,, Heatup Rate f 1250 100 Deg. F/Hr  :-*** ****** -.

a.

'C CLI f tl u 1000 iii u

750 500 250 Boltup _ -*- ** **- Crlllcallty Limit based on Temp. lnservlce hydrostatic test temperature (216 F) for the service period up lo 35 EFPY 0-l-----~;..........+.......,,.........+--_......f-).....,_+---!:+:;:::;:;:;:;:;::::;:;:;:;:::::;::;:;::;:::;:::...+--_,....1 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 3 11.8. Robinson Unit 2 Reactor Coolant System Heatup Limitations (lleatup Rates or 60 & IOOnF/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

37 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I & GIRTH WELD 10-273 LIMITING ART VALUES AT 35 EFPY: l/4T. 167°F & 242°F 3/4T. 147°F & l72°F 2500 loiierlm Ver11on.s .1 Run*784S I 2250 Unacceptable 2000 Operation Acceptable Operation 1750

-en CJ

a. 1500.

GJ

i GJ Cl.

1250 . .. . .... .

'tJ GJ Cll 95

(,)

1000 CooldowD . - ........... - *-

Cii R*IH Fnlr u *le*dJ'**late

-20,and o40 750 .... - . *-

Co old ow a Rat ... t"nlr 500.

  • GO A
  • 100 250 Boltup Temp.

0 ~.-.----+-"O:.-........t--..........+---~~_..............._..-+-.........,.--1--r-......,...._..................,.+-r-........--t--........~

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 4 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°f/hr) Applicable for the First 35 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

. 38 TABLE21 35 EFPY Hcalup Curve Dara Poinls Using 1996 App. G (without Uncertainties for lns1rumcn1:11ion Errors)

SO Jleatup* 50 Critical Limit* 60 llratup 4i0 Critical Limit 100 lleatup JOO Critica1 Limit TC 0 f) P (psig) TC 0 f) r (psiiil T(°F) r (psig) TC"F) r (psig) T( 0 f) r (psig} TC0 f) r Cpsiii>

60 0 216 0 60 0 216 0 60 0 216 0 60 621 216 621 60 621 216 621 60 621 216 621 65 621 216 621 65 621 216 621 65 621 216 621 70 621 216 621 70 621 216 621 70 621 216 621 75 621 216 621 75 621 216 621 75 621 216 621 80 621 216 621 80 621 216 621 80 621 216 621 85 621 216 621 8S 621 216 621 85 621 216 621 90 621 216 621 90 621 216 621 90 621 216 621 95 621 216 621 95 621 216 621 95 621 216 621 100 621 216 621 100 621 216 621 100 621 216 621 105 621 216 621 105 621 216 621 105 621 216 621 I IO 621 216 621 110 621 216 621 110 621 216 621 115 621 216 621 115 621 216 621 115 621 216 621 120 621 216 621 120 621 216 621 120 621 216 621 125 621 216 621 125 621 216 621 125 621 216 621 130 621 216 621 130 621 216 621 130 621 216 621 135 621 216 621 135 621 216 621 135 621 216 621 140 621 216 621 140 621 216 621 140 621 216 621 145 621 216 621 145 621 216 621 145 621 216 621 ISO 621 216 621 ISO 621 216 621 150 621 216 621 155 621 216 621 155 621 216 621 155 621 216 621 160 621 216 621 160 621 216 621 160 621 216 621 165 621 216 621 165 621 216 621 165 621 216 621 170 621 216 621 170 621 216 621 170 621 216 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 1061 180 62 I 220 983 180 621 220 756 180 1061 225 J JJO 180 98J 22.5 J026 180 756 22.5 780 185 1110 230 1164 185 1026 230 1074 185 780 230 808 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 1248 200 873 245 911 205 B62 250 1443 205 1248 250 1319 205 911 250 953 2IO l4.i3 255 1532 210 1319 255 1398 2IO 953 255 1001 215 1532 260 1630 21S 1398 260 148-t 215 1001 260 1053 220 1630 265 1739 220 1484 265 1580 220 I053 265 1111

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

39 TABLE 21 - (Continued) 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccn:iintics for lmarumcntarion Errors) 50 lleatup* 50 Critkal Urnit* 60 lleatup 60 Critical Limit 100 Jlealup 100 Critical Limit T( 0 f) P(psig) T(°F) r <psigl T( 0 f) r (psig) T(°F) r (psig) T C0 f) r (psi~) T( 0 f) r (psi~)

225 1739 270 18.58 225 1580 270 1685 225 1111 270 1175 2JO 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 1411 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 1728 260 1728 305 1856 265 1856 310 1998 270 1998 315 2153 275 2153 320 2325 280 2325

. ... *:. ~ :**.,;:*:".;. *~ .. ..;~-:~-" .-:" f l; ...:~~..-:- f ~:-;,.::.J'.*:~~. ~: *,~. :~~-~ *':.:.4..::: :~'\ *;-:;,. 4 .!"*'* ...... . .. ,. .. . . . ~ ....*, . . . . : . . , .  : :~. :;;."; :--~:-~!';

Leak T~t Limit Temp. 197 216 Press. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plol .

WCAP-15827

40 TABLE22 35 EFPY Cooldown Curve Data Points Using I996 App. G (without Uncenainties for Instrumentation Errors)

Steady State 20°flhr. 40°Flhr. 50°flhr.* 60°f/hr. 100°f/hr.

T ( 0 f) I P (psiJ!) T (0 f) I p (psiJ!) T (0 f> I r Cpsil!) T {0 f) I p (psiJ!) T C°F> I r Cpsil!> T c0 r> 1 r (psil!>

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 616 60 581 60 546 60 400 65 621 65 621 65 621 6S 588 65 553 65 409 70 621 70 621 70 621 70 595 70 560 70 418 75 621 75 621 75 621 75 603 75 568 75 428 80 621 80 621 80 621 80 612 80 578 80 440 85 621 85 621 85 621 85 621 85 588 85 453 90 621 90 621 90 621 90 621 90 600 90 468 95 621 95 621 95 621 95 621 95 613 95 484 100 621 JOO 621 100 621 100 621 100 621 100 502 105 621 105 621 105 621 105 621 J05 621 105 523 110 621 110 621 110 621 I IO 621 110 621 # 110 546 115 621 115 621 115 621 115 621 115 621 115 572 120 621 120 621 120 621 120 621 120 621 120 600 125 621 125 621 125 621 125 621 125 621 125 621 130 621 1:\0 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 150 621 ISO 621 150 621 150 621 150 621 155 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1270 180 1260 180 1260 180 1260 180 1260 180 1053 185 1330 185 1328 185 1330 185 1330 185 1330 185 J102 190 1396 190 1396 190 1396 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 1449 195 1220 200 1549 200 1549 200 1549 200 1549 200 1502 200 1288 205 1638 205 1638 205 1638 205 1616 205 1561 205 1365 210 1737 210 1737 210 1729 210 1677 210 1627 210 1450 215 1846 215 1846 215 1793 215 1745 215 1699 215 1545 220 1966 220 1957 220 186-1 220 1821 220 1780 220 1650 225 2099 225 2027 225 1943 225 1905 225 1869 225 1767 230 2187 230 2104 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 2041 240 2J.t6 240 2' 240 2234 240 2215 240 2201 .240 2200 245 2439 245 2388 245 2353 245 2342 245 2336 .245 2336 250 243.i 250 2482 250 2482 250 2482

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

41 MATER1AL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 LIMITING ART VALUES AT 40 EFPY: l/4T, 169°F J/.ff, 149°F 2500 ,.-----------------~.-------~-------;=::============,.,

Oper11111 Version*5.1 Run:7462 Leak Test Llmil 2250 2000 Acceptable Unacceptable Operation Operation 1750 CJ

~ 1500 Heatup Rate 60Deg. FIHr Critical Limit 60 Deg. Flttr

...::2CIJ VI GI Q.

1250 Heatup Rate Crltlcal Limit . -

100 Deg. F/Hr 100 Deg . F/Hr

'O

~

"S 1000 .. .. . .. . .

co" u

750 500 Criticality Llmi\ based on Boltup 250 Temp.

inservlce hydrostatic te9l temperature (218 F) for the service period up to 40 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) 11.B. Robinson Unit 2 Reactor Coolant System Ifeatup Limitations (lleatup Rates of 60 & IOO"Fn1r) Applicable for the First 40 EFP\' (Without Margins for Instrumentation Errors) Usini: 1996 App.G l\1ethodo1ogy WCAP*l5827

42 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 & GIRTll WELD 10-273 LJ11..1ITINGARTVALUESAT40EFPY: l/4T, 169°F & 251°F 31.tT, 149°F & 179°F 2500 Op1rl1111 VetSIOfl'5., Run.7462 2250 .. **-* **--

Unacceptable 2000 Operation Acceptable Operation 1750 **-----*-*

CJ c;;

D.

C>

~

i 1500 ...... --------*** . -**

en en GI

~

a.

1250 . . ... - .-

"CS

-GI ca

1000 u CooldowD Cii R*lu Fnlr

(,) *lead1-*l*ll*

  • 20,and ..fO 750 Cooldown 500 ft**~* Fnlr

.ao&

-100 250 Boltup Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 6 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to I00°F/hr) Applicable for lhe first 40 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

TABLE23 40 EFPY HealupCurve Dala Points Using 1996App. G (wi1hou1 Uncc:n3inrks for lns1rumenl31ion Errors) 50 Healup* SO Critical Limit* 60 lleatup 60 Critical Limit JOO lleatup IOO Critical Limit TC°F) P (psi~) TC 0 f) P(psf~) TC 0 f) r (psi~) T{ 0 f) r (psi~) TC 0 f) P(psi~) T(Of) r <p.. ii:l 60 0 216 0 60 0 216 0 60 0 216 ()

60 621 218 621 60 621 218 621 60 621 218 621 65 621 218 621 65 621 218 621 65 621 218 621 70 621 218 621 70 621 218 621 70 621 218 621 75 621 218 621 75 621 218 621 75 621 218 621 80 621 218 621 80 621 218 621 80 621 218 621 85 621 218 621 85 621 218 621 85 621 218 621 90 621 218 621 90 621 218 621 90 621 218 621 95 621 218 621 95 621 218 621 9S 621 218 621 100 621 218 621 100 621 218 621 10() 621 218 621 105 621 218 621 105 621 218 621 105 621 211! 621 110 621 218 621 110 621 218 621 110 621 218 621 115 621 218 621 115 621 218 621 115 621 218 621 120 621 218 621 120 621 218 621 120 621 218 621 125 621 218 621 125 621 218 621 125 621 218 621 130 621 218 621 130 621 218 621 BO 621 218 621 135 621 218 621 135* 621 218 621 135 621 218 621 140 621 218 621 140 621 218 621 140 621 218 621 145 621 218 621 145 621 2\g 621 145 621 218 621 ISO 621 218 621 150 621 218 621 150 621 218 621 155 621 218 621 155 621 218 621 155 621 218 621 160 621 218 621 160 621 218 621 160 621 218 621 165 621 218 621 165 621 218 621 165 621 218 621 170 621 218 621 170 621 218 621 170 621 218 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 IO-i2 180 621 220 966 180 621 220 744 180 1o.i2 225 I089 180 966 225 1007 180 744 225 767 185 1089 230 1141 185 1007 230 I053 185 767 230 79.J 190 1141 235 1198 190 IOSJ 235 1103 190 79.J 235 SB 195 1198 240 1261 195 1103 240 1159 195 823 240 856 200 1261 245 1331 200 1159 245 1221 200 856 245 893 205 ll31 250 1409 205 1221 250 1289 205 893 250 933 210 t~09 255 t49.t 210 1289 255 136-l 2to 9:\:\ 255 979 215 149.S 260 1589 215 1364 260 1447 215 979 260 1029 220 1589 265 1693 220 l.S-l7 265 1539 220 I021J 265 I08-'

225 1693 270 1808 225 1539 270 1640 225 !084 270 1146

  • Shown by request of CP&L. This rale is nol shown on lhe plot WCAP-15827

44 TABLE 23 - (Continued) 40 EFPY Healup Curve Data Points Using 1996 App. G (wi1hou1 Uncertainties for Jns1rumcn1a1ion Errors)

SO lleatup* SO Critical Limit* 60 Jleatup 60 Critical Limit 100 llealup 100 Critical Limic T(Of) P(psig) T(°F) r (psig) T(Of) P(~igl T( 0 f) r (psig) T(Of) P (psii?) T(°F) r (psig) 230 1808 275 1934 230 16-10 275 1752 230 1146 275 1214 235 1934 280 2074 235 1752 2RO 1876 235 1214 280 1289 240 2074 285 2229 240 1876 285 2012 240 1289 285 1372 245 2229 290 2.1~ 245 2012 290 216:? 245 1372 290 1464 250 236-i 295 2-159 250 2162 295 2328 250 1464 295 1565 255 2-159 25.5 2328 255 156.5 300 1677 260 1677 305 1800 265 1800 310 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432 285 2432

!-:!. J*,:..~*_~.r;..;;i.,;'..:.fi ,or~.~*~*:. t ..~ '~t;-.:~ ::.: .' *:il~'~'i*:**~: .. ~:*f':-::;.~~,t~:~:.. ~*~* : .-~* : ~.:. *~ J:,.~ *~ ~-::j ~~;:..~*~~t..'l.~*v... *~"J~'.*~,'*;\/~~ ::. :*-.~~;.~-i:,1~:.t..:*.~;."~. ~-:':,

uak Test Limit Temp. 199 218 Pres.~. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot'.
    • Bolded Values are Limited by the Circ. Weld ART using Code Ca~e N-588 .

WCAP-15827

45 TABLE24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for lnstrumcn1a1ion Error~)

Slrady Stale 20°Flhr. 40°flhr. SOnf/hr.* 60°f/hr. 100°Flhr.

T ( 0 f) Ir (psii:) T t°Fl I r (psiJ?> T (°F) I P (psi~) T ( 0 f) I P (psii:) T ( 0 f) I r (psii:) T (°Ft Ir CpsiJ?>

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 614 60 579 60 S43 60 397 65 621 65 621 65 620 65 585 65 549 6S 405 70 621 70 621 70 621 70 592 70 SS1 70 413 75 621 75 621 75 621 75 599 75 565 75 423 80 621 80 621 80 621 80 60R 80 S14 80 434 gs 621 SS 621 85 621 85 6l8 85 SM 8S 4~7 90 621 90 621 90 621 90 621 90 595 90 461 95 621 95 621 95 621 95 621 95 607 9S 477 100 621 100 621 100 621 100 621 100 621 100 494 105 621 105 621 I0.5 621 105 621 105 621 105 514 110 621 110 621 110 621 110 621 I IO 621 110 536 115 621 115 621 11.5 621 115 621 115 621 115 560 120 621 120 621 120 621 120 621 120 621 120 588 125 621 125 621 125 621 125 621 125 621 l2S 618 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140

  • 621 14S 621 145 621 14.5 621 145 621 145 621 145 621 150 621 ISO 621 ISO 621 ISO 621 150 621 ISO 621 ISS 621 IS5 621 15.5 621 155 621 IS5 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 16S 621 165 621 165 621 165 621 16S 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 IRO 621 180 621 180 621 180 1248 180 1235 IRO 1231 IKO 1231 IRO 1231 180 911 185 1305 185 1300 IK.5 no.i 185 IJQ.i 185 1289 185 1012 190 1368 190 1368 190 1368 190 1368 190 1324 190 1058 195 1439 195 1439 195 14'.\9 195 1430 195 136" 195 1109 200 1516 200 1516 200 1516 200 1472 200 1408 200 1165 205 1602 205 1602 205 1579 205 1517 205 1457 205 1229 210 1696 210 1696 210 1627 210 1568 210 1511 210 1299 215 1801 21S 1795 215 1681 215 1625 215 1571 215 1378 220 1917 220 IS-a7 220 17.&0 220 1688 220 1638 220 1465 225 2011 225 1905 225 1805 225 1758 225 1712 225 1562 230 2068 230 1970 230 1878 230 1835 230 1795 230 1670 235 2131 2JS 2041 235 1958 235 1921 ?JS 1886 235 1790 uo 2201 2-10 2120 240 20.as 2.ao 2016 2.ao 1988 2.ao 1923 2.as 2279 245 2107 2.as 2146 2.a5 2121 us 2101 245 2070 250 236-S 250 2303 250 2256 250 2238 250 2225 250 2225 255 2459 255 2410 255 2377 255 2368 255 2364 255 2364
  • Shown by request of CP&L. This rate is not ~hown on the plot.

WCAP-15827

46 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 020 I* I LIMITING ART VALUES AT 45 EFPY: l/4T, 170"F 3/4T, 151°F 2500 Opetlm version 5.1 Run :1oss1 Leak Test Limit 2250 Un1eeept11ble Aeeep,able 2000 Operation Operation 1750 CJ iii Heatup Rate

. 60 Deg. F/Hr Critical Limit

-.,,=.

D.

Cl) 1500 -**. -** *- ..*- ..

Hutup Rate 100 Deg. F/Hr

. 60 Deg. F/Hr

.,...,, 1250 ... -* **--**. ---*-- .

D.

.....,cu

'C

1000 .. . ... . ..

()

'CV

(.)

750 500 ...*. *-**

Boltup 250 Temp. Crltleality Limit based on inservlce hydrostatic test temperature (219 F) for the service period up to 45 EFPY o+-.. . . . . .~;..........+...................+..................~L..,....,.+-......--~::;::;::;::;::;:;:::+;:::::;:;:;:;::;:::::::~..............t 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure7 H.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & 100°F/hr) Applicable for the First 45 EFP (Without Maratins for Instrumentation Errors) UsinJ: 1996 App.G l\tcthodoloizy WCAP-15827

41 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I& GIRTH WELD 10-273 LIMITING ART VALUES AT 45 EFPY: l/4T, 170°F & 256°F 3/4T, 151°F & 185°F 2500 lop1rt1m V11sion:S.1 Run :1oss1 I 2250.

Unacceptable 2000. Operation Acceptable 1750 . Operation

-en Cl

c. 1500 .

"'"'.,... 1250 Cl.

't:I OI ca

'S 1000 Cooldown Cii Rain Fnlr 0

et1Pad:r**l*l1P

  • 20, and -40 750.

Cooldo*a Ralea Fnlr 500 -804

  • IOO Boltup 250 Temp. - *** - *
  • 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure 8 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Coo1down Rates up to J00°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAr-15827

48 TABLE25 45 EFPY Hcatup Curve Data Points Using 1996 App. G (wi1hou1 Unccnain1ics for lnstrumcn1a1ion Errors)

SO lleatup* SO Critical Limit* 60 lltatup 60 Critical Limit JOO lleatup I 00 Crilical Limit TC 0 f) r (psii:l TC°F) p (p-;igl T( 0 f) r cp~iJ:> T (0 f) P (psiJ:) T( 0 f) P (psig} TC°F) r (psiJ:)

60 0 219 0 fl(} 0 219 0 60 0 219 0 60 621 219 621 60 621 219 621 60 621 219 621 65 621 219 621 6!1 621 219 621 65 621 219 621 70 621 219 621 70 621 219 621 70 621 219 621 75 621 219 621 75 621 219 621 75 621 219 621 80 621 219 621 RO 621 219 621 80 621 219 621 85 621 219 621 R.S 621 219 621 85 621 219 621 90 621 219 621 90 621 219 621 90 621 219 621 95 621 219 621 95 621 219 621 95 621 219 621 100 621 219 621 IOO 621 219 621 100 621 219 621 I05 621 219 621 105 621 219 621 IOS 621 219 621 110 621 219 621 110 621 219 621 110 621 219 621 115 621 219 621 115 621 219 621 115 621 219 621 120 621 219 621 120 621 219 621 120 621 219 621 125 621 219 621 125 621 219 621 125 621 219 621 130 621 219 621 IJO 621 219 621 130 621 219 621 135 621 219 621 IJ5 621 219 621 135 621 219 621 140 621 219 621 140 621 219 621 140 621 219 621 145 621 219 621 145 621 219 621 145 621 219 621 150 621 219 621 150 621 219 621 150 621 219 621 lSS 621 219 621 155 621 219 621 155 621 219 621 160 621 219 621 160 621 219 621 160 621 219 621 165 621 219 621 16!1 621 219 621 165 621 219 621 170 621 219 621 170 6'.!I 219 621 170 621 219 621 175 621 220 621 115 621 220 621 175 621 220 6:? I 180 621 220 102.i 180 621 220 950 180 621 220 73J 180 !02.i 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 185 989 230 l033 185 755 230 780 190 1118 235 1174 190 1033 235 l081 190 780 235 80R 195 1174 2.io 123-* 195 IOSI 240 1135 19.5 808 240 840 200 1234 245 IJ02 200 1135 245 1194 200 840 245 875 205 IJ02 250 IJ76 205 1194 250 1260 205 875 250 914 2IO 1:\76 255 1458 210 1260 255 1332 210 914 255 957 215 1458 260 1549 215 1332 260 1412 215 957 260 1005 220 1549 265 l<H9 220 1412 265 1500 220 1005 265 1059 225 IM9 270 1759 225 1500 270 1597 225 1059 270 1118

  • Shown by request of CP&L. This rate is not shown on the plot

49 TABLE 25 *(Continued) 45 EFPY He;Jlup Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) 50 llcatup* 50 Critical Limit* 60 lleatup 60 Critiral Limit IOO lleatup 100 Critical Limit TC°F) r (psis:) TC°F) P (psii:l T(°F) P(psi~l T( 0 f) P (psii:) T(°F) r (psis:> TC°F) r Cpsii:l 230 1759 275 1881 230 1597 275 1705 230 1118 275 1183 235 1881 280 201S 235 1705 2KO 1823 235 1183 280 1255 240 2015 285 2164 240 1823 2K5 195.S 240 1255 285 1335 2-15 216-i 290 2279 245 1954 290 2098 245 1335 290 1423 250 2279 295 236-1 250 2098 295 2258 250 1423 295 1520 255 2364 300 2~59 255 2258 JOO 2*BJ 255 1520 300 1627 260 2-159 260 2.SJJ 260 1627 305 1746 265 1746 310 1876 270 1876 315 2020 275 2020 320 2178 280 2178 325 2353 285 2353

~r.~~:-::i::?.r..t.. ~_~,~~ ~*~i~*( ~~:~*~*: . :J:-.:;1;,.1 11.1,.'_, :..::;..:.*.1: :.::~ ...,. .*.. " ... * *! ':,;;.~.... :-:~* *.'-:,:.If.~. "~ ......-.. .. 1,.:~~,...~t...f,r!~*

~ak Test Limit Temp. 200 219 Pnss. 2000 2485

  • Shown by request of CP&L. This rate is not shown pn &he plot .

WCAP-15827

50 TABLE26 45 EFPY Cooldown Curve Data Points Using 1996 App. G (wi1hou1 Unccrtain1ics for lns1rumi:n1:11ion Errors)

Steady Slate 20°F/hr. 40°F/hr. SO"F/hr.* 60°F/hr. IOO"f/hr.

T (0 f) I I' (psi~) T (°Fl I p (pslJ?) T c0 Fl I r Cpsi~l T c°Fl I r CpsiJ?l T c°Fl I r Cpc;ii?l T (0 F) I r (psid 60 0 60 0 60 0 60 0 tiO () 60 0 60 621 60 621 60 613 60 511 60 542 60 39S 65 621 65 621 65 618 65 Sit\ 65 548 65 403 70 621 10 621 10 621 70 590 10 SSS 70 41\

75 621 75 621 75 621 75 598 75 563 75 421 80 621 80 621 80 621 80 606 80 572 80 432 85 621 85 621 85 621 8S 615 HS 581 85 444 90 621 90 621 90 621 90 621 90 592 90 4S8 9S 621 9S 621 95 621 9S 621 95 605 9S 473 100 621 100 621 100 621 100 621 IOO 618 100 490 105 621 105 621 105 621 I05 621 I05 621 105 510 110 621 110 621 110 621 110 621 110 621 110 531 115 621 115 621 115 621 115 621 115 621 115 SSS 120 621 120 621 120 621 120 621 120 621 120 582 125 621 125 621 125 621 125 621 125 621 125 612 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 JlS 6:.?I 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 .621 145 621 145 621 145 621 145 621 150 621 ISO 621 150 621 150 621 150 621 150 621 155 621 155 621 155 621 155 621 155 621 155 62\

160 621 160 621 HiO 621 160 621 160 621 160 621 16S 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 115 621 115 621 115 62\ 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 um 621 180 1237 180 1223 180 1217 180 1217 180 1217 180 932 185 1293 185 1286 185 1289 185 1289 185 1255 185 968 190 1355 190 1355 190 1355 190 1355 190 1187 190 1009 195 1424 195 1424 195 1424 195 1391 195 1323 195 1055 200 1500 200 1500 zoo 1-196 200 1-'29 200 1362 200 1106 205 1584 205 1584 205 1535 205 l.S70 205 l.S06 205 1163 210 1677 210 1671 210 1578 210 1516 210 I.SSS 210 1227 215 1779 215 1747 215 1626 215 1567 215 1509 215 1297 220 1893 220 179.& 220 1679 220 162.& 220 1570 220 1376 225 1959 225 18.S7 225 1739 225 1687 225 1637 225 1.i6-t 230 2011 230 1905 230 180.i 230 1757 230 1711 230 1561 235 2068 235 1969 235 1877 235 183.i 235 179.& 235 1669 2.SO 2131 2.ao 20.ao uo 1958 2.io 1920 2.io 1885 2.ao 1789 2.as 2201 2.a5 2119 2.. 5 2047 245 2015 2.. 5 1987 2.as 1922 2SO 2279 lSO 2206 250 2146 lSO 2111 250 lUIO 250 2070 255 236-1 255 2303 255 2255 255 2238 255 2225 255 2225 260 2.SS9 260 2.SIO 260 2377 260 2367 260 2J63 260 2363

  • Shown by request of CP&L. This rale is not 5hown on the plot .

WCAP-15827

SI MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 50 EFPY: l/4T, 172°F & 263°F 3/4T, 153°F & 191°F 2500 Opert1m Version.5. 1 Run:19517 Leak Test Limit 2250 Unacceptable Acceptable 2000 Operation Operation 1750 CJ i'ii Heatup Rate 60 Deg. F/Hr Critical Limit

c. 1500 C~b
s fl)

Heatup Rate 100 Deg. F/Hr 60 Deg. F/Hr fl)

Cll

~ 1250 c.

~

Cll IU

'S 1000

<<a"

(.)

750 500 Bollup 250 Temp. Crltlcallty Limit based on lnservlce hydrostatic test temperature (221 F) for the sentlce period up to SO EFPY 0 +.....~~~-h- ..............+-r-.--~~-+-................+,!::;:;::+:~:;+:;::;::;:::::::;:::;:;::;::;:::;:!...,........_t 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure 9 H.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & IOO"F/hr) Applicable for the First SO EFP\' (Wilhout Margins ror Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

52 MATERIAL PROPF.RTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE Wl0201-I & GIRTH WELD J0-273 LIMITING ART VALUES AT 50 EFPY: l/4T, J72°f & 263°F 3/4T, 153°F & 191°F 2500 -rr===============:;--~~~~-:-~~~~~~~~~~~~~

Operllm Vers111n:5 .t Run:t9511 2250 Unacceptable 2000 Operation Acceptable 1750 Operation a-c;;

Q.

Cll

~

s Ill 1500 Ill

!! 1250 Q.

"C CLI C'CI u 1000

'S Cooldown ia RalH Flllt u *lead)'*alale

  • 20,and .40 750 .

Cooldown 500 Rate* F/Ur

.eoa

  • 100 250 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 10 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to l00°F/hr} Applicable for the First SO EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

53 TAllLE27 50 EFPY Heatup Curve Dara Points Using 1996 App. G (without Unccnaintics for ln~rrumcnt::uion Errors)

SO lltatup* SO Crirical Limit* 60 llcatup 60 Critical Limit JOO lltatup 100 Critical Limit T (0 f) r (psig) T( 0 f) r (psii:> T( 0 f) r (psi,::) T (°F) p (pdg) T( 0 f) r (psig) T (°F) P (psig) 60 0 221 0 60 0 221 0 60 0 221 0 60 621 221 621 60 621 221 621 60 621 221 621 65 621 221 621 65 621 221 621 65 621 221 621 70 621 221 621 70 621 221 621 70 621 221 621 15 621 221 621 75 621 221 621 75 621 221 621 80 621 221 621 80 621 221 621 80 621 221 621 85 621 221 621 85 621 221 621 85 621 221 621 90 621 221 621 90 621 221 621 90 621 221 621 95 621 221 621 95 621 221 621 95 621 221 621 JOO 621 221 621 100 621 221 621 JOO 62J 221 62J 105 621 221 621 105 621 221 621 105 62J 221 621 110 621 221 621 110 621 221 621 110 621 221 621 115 621 221 621 115 621 221 621 115 621 221 621 120 621 221 621 120 621 221 621 120 621 221 621 125 621 221 621 125 621 221 621 125 621 221 621 130 621 22J 621 130 621 221 621 130 621 221 621 135 621 221 621 135 621 221 621 135 621 221 621 140 621 221 621 140 621 221 621 140 621 221 621 145 621 221 621 145 621 221 621 145 621 221 621 150 621 221 621 150 621 221 621 150 621 221 621 155 621 221 621 155 621 221 621 ISS 621 221 621 160 621 221 621 160 621 221 621 160 621 221 621 165 621 221 621 16!\ 621 221 621 165 621 221 621 170 621 221 621 170 621 221 621 170 621 221 621 175 621 221 1006 115 621 221 9J-I 115 621 221 722 180 621 225 1049 180 621 225 972 180 621 225 7-13 180 1006 230 1097 180 934 230 101.a 180 722 230 767 185 IO-i9 235 1150 185 972 235 1060 185 743 235 794 190 1097 2.ao 1208 190 101.a 240 1112 190 767 240 824 195 1150 2.a5 1273 195 1060 245 1169 195 794 245 858 200 1208 250 134-1 200 1112 250 1231 200 824 250 895 205 1273 255 1423 205 1169 255 1301 205 858 255 937 210 1344 260 1510 210 1231 260 1378 210 895 260 983 215 1423 265 1606 215 1301 265 1462 215 937 265 I03.S 220 1510 270 1712 220 1378 270 1556 220 983 270 1091 225 1606 275 1829 225 1462 275 1659 225 103-1 275 11.53 230 J7l2 280 1958 230 1556 280 1773 230 1091 280 1223

  • Shown by request of CP&L. This rale is not shown on the pfol.

WCAP-1.5827

54 TABLE 27 - (Continued) 50 EFPY Hcatup Cur\'e Data Points Using 1996 App. G (withoul Unccnaintic:s for ln'ltrumc:nt::ition Errors)

SO Jleatup* SO Critical Lir1Ut* 60 lltatup 60 Critical Limit 100 lltatup 100 Critical Limit T(Of) r (psi~) T(OF) r (psil!,) T( 0 f) r (psij!.) T(Of) r (psij!.) T(OF) r (psil!.) T( 0 f) P(psi~)

235 1829 28S 2101 2l5 1659 285 189K 2l5 1153 285 1299 240 1958 290 2173 240 1773 290 2037 2.io 1223 290 1384 245 2101 295 2247 245 1898 295 2190 2.$5 1299 295 1477 250 2173 300 2329 250 2037 300 2329 250 1384 300 1580 255 2247 305 2420 255 2190 305 2420 255 1477 305 1693 260 2329 260 2329 260 1580 310 1819 265 2-120 165 2420 265 1693 315 1957 270 1819 320 2109 275 1957 325 2276 280 2109 :no 2461 285 2276 290 2461

.:;r~~:~;~~:~*..';~. .~\~J:.;r;.~:~t'l\f~.~~t~;~,~~=~'rl:J7~';t:;~~ ;tJ;.~*;!;. '.~,:~...~ 1i.=:* . : tc *..~:-:*. :~**~;*: ~* ~ ':_!,i': ~ :.:..* "':~ ::* *' 1

... ~ *: :* * **:~~ .,~ !; *,1:=-; ~*, ~V:.'1 Leak Ttst Lir1Ut Temp. 202 221 PrtSS. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

55 TABLE28 50 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors)

SCrady Stale 20QFlhr. 40"F/hr. 50°Flhr.* 60QF/hr. 100°Flhr.

T ("F) I p (p'iil?l T ( f) I P (psii:l 0

T f°Fl I P lpsil?l T C"Fl I P (psil?l T (°Fl I P (psii:l T f°Fl I P (psij?)

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 610 60 575 60 539 60 392 65 621 65 621 65 616 65 581 65 545 65 399 70 621 70 621 70 621 70 587 70 552 70 407 75 621 15 621 75 621 15 594 15 559 75 416 80 621 80 621 KO 621 80 602 80 568 80 427 HS 621 85 621 85 621 85 611 85 577 85 4J8 90 621 90 621 90 621 90 621 90 587 90 451 95 621 95 621 95 621 95 621 95 599 95 466 100 621 JOO 621 100 621 100 621 IOO 612 100 483 105 621 I05 621 IDS 621 105 621 I05 621 IDS SOI 110 621 t 10 621 110 621 110 621 110 621 110 522 115 621 115 621 115 621 115 621 115 621 115 545 120 621 120 621 120 621 120 621 120 621 120 510 125 621 125 621 125 621 125 621 125 621 125 599 130 621 no 621 130 621 130 621 130 621 130 621 IJj 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 150 621 150 621 150 621 150 621 150 621 ISS 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1216 180 1199 180 ll91 um 1190 180 1189 ISO 882 185 1270 IRS 1260 185 1260 185 1260 185 1213 185 91.t 190 1:no 190 028 190 1328 190 J31S 190 12.a1 190 949 195 l'.'96 195 l'.'96 195 1396 195 IJ.a3 195 1271 195 988 200 1469 200 1469 200 14-16 200 1376 200 1305 200 1032 205 IS-t9 205 15-t~ 205 1480 205 l.tll 105 13.il 205 I082 2IO 16~8 210 1638 2IO 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 21S 1495 215 1433 215 1197 220 1846 220 1728 220 1605 220 154-1 220 1485 220 1265 225 1895 225 177-1 225 1656 225 1599 225 15.13 225 IJ.al 230 19.tO 230 182.t 230 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 2.ao 20.a5 2.io 19.t2 2.ao 18.t6 2-10 1801 2.ao 1758 1.io 1623 2.is llOS 245 1010 245 1923 us ISSl us 1s.i6 2-IS 1738 250 2173 250 2086 250 2009 250 1975 2.50 19.S.. 250 1866 255 u.i1 255 2170 255 2l0.& 255 2076 255 2052 255 2008 260 2329 160 1263 260 2209 260 2188 260 2172 260 2166 265 2-120 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2.a5s 270 USI 270 2451 270 2451

  • Shown by request of CP&L. This rate is not shown on the plol .

WCAP-15827

56 6 REFERENCES I. WCAP-15805, "Analysis of Capsule: X from Carolina Power and Light Company H.B. Robinson Unit 2 Reactor Vessel Radiation Sur\.'eillance Program", T.J. Laubham, et.al., March 2002.

2. ASME Code Case N-641, ..Alternative Pressure-Temperature Relationship and Low Temperature Overpressure Protection System Requiremcn1sSection XI, Division r. January 17, 2000.

(Sub Rtfertnrt: ASME Coat Care N-6"0. "A/1m1atfrt Rtfertnu Frar111rt To1t8hntssfor Dti*t/opmtnf of P*T Umir C1m*ts for Stet ion XI, Dfrision I", Ft'1runry: 26, 1999.J

3.Section XI oflhe ASME Boiler and Pressure Vessel Code, Appendix G. "Fracture Toughness Criteria for Pro1ection Againsl Failure," D;ncd December 1995, through 1996 Addendum.
4. ASME Boiler and Pressure Vessel Code, C&Jsc N-588, **Anenuation 10 Reference Flaw Orientation of Appendix G for Circumfcrcn1ial Welds in Reac1or Vessels".Section XI. Division I, Approved December 12, 1997.

S. Regulatory Guide 1.99, Revision 2. "Radialion Emhrittlemcnt of Reactor Vessel Materials, U.S.

Nuclear Regulatory Commission, May I988.

6. WCAP-14040-NP-A. Revision 2, "Mc1hodology used to Develop Cold Overpressure Mi1ig:11ing sysrem Serpoinls nnd RCS Heal up and Cooldown Limil Cur\'es". J.D. Andrachek, et. al., January 1996.
7. ..fracture Toughness Requiremcn1s", Branch Technical Posilion MTEB 5-2, Ch:ip1er 5.3.2 in Standard Review Plan for the Review of Safc1y Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800, 1981.
8. CP&L(Robinson) File No. 135101, Serial No. RNP-RA/95-0205, Docket No. 50-261/License No. DPR-23; Lener from CP&L to NRC on Vessel Integrity Data, Dated I 1120/95.
9. CP&L(Robinson) File No. 13SIOHA. Serial No. RNP-RA/98-0133, Docket No. 50-261/Liccnse No. DPR-23; Lener from CP&L to NRC on Vessel Integrity Dala, Da1ed 7/23/98.
10. CE Report NPSD-1039, Revision 2. **Best Estima1e Copper and Nickel Values in CE Fabricated Reactor Vessel Welds. CEOG Task 902. By the CE Owners Group. June 1997.
11. Code of Federal Regulations, I 0 CFR Part 50, Appendix G **fracture Toughness Requiremcnls,"

U.S. Nuclear Regulatory Commission. Washing1on, D.C., Federal Regi!iler, Volume 60, No. 243, dated December 19, 1995.

12. 1989 Section Ill, Division I of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331,

..Material for Vessels."

13. WCAP-13892, ..New Measuremcnls of USE of Archival and Surveillance Pl31e Material Represenrative of the H.B. Robinson Unit No. 2 Reactor Vessel Bcltline Plates". J.F. Williams, 1993.
14. WCAP-13587. Revision I. "Reactor Vessel Upper Shelf Energy Bounding Evaluation For Wes1inghouse Pressurized Waler Reaclors", S. T&Jndon, et. at., September 1993.

WCAP-15827

A*I MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WIO:?Ol-1 LIMITING ART VALUES AT 30 EFPY: l/4T, 165°F 3/4T, 145°F 2500 loperllm Vers1on:5.1 Run:29t08 j Leak Test Limit 2250 - . . *-* .

Unacceptable 2000 Operation Acceptable Operation 1750 CJ Cii D..

Cl>

I 1500 Crllicaf Limit 60 Deg. F/Hr f/j f/j Cll D..

1250 Crlllcaf Limit too Deg. F/Hr

'C Cll cu "5 1000 u

cu 0

750 500 Boltup 250 Temp Crllicallly Limit based on lnservlce hydrostatic test temperature (214 F) for the service period up to 30 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure Al 11.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & 100°F/hr) Applicable for the First 30 EFPY (Without Margins for ln.~lrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A*2 MATERIAL PROPERTY BASIS UMITING MATERIAL: UPPER SHELL PLATE WJ0201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 30 EFPY: I/4T, 165°F & 235°F 3/4T, 145°F & 164°F 2500 Tr===============::;-------~----~---------------------,

Op1111m Vtmon:s. 1 Run:2910B 2250 Unacceptable 2000 Operation Acceptable 1750 Operation

"-c;; 1500 I

Q. . ...... __ ., **---*-~- .. ..... . .

CD

I Cooldowa . ' j 1250 R*lH Flllr ~-- - ***-~--*- . ..:__ --~----f----*-- . --** -

Q. *l**d1**l*l*

-to I m

.40

.eo I

'S u 1000 -100

'ii u

750 **-**- .. ______ .!__ ---

1

  • 500 ----*--- --**- -*-------*--*------..---***..

250 _ Boltup .*-*-- -*----- ....__ ...

I Temp 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure Al H.B. Robinson Unit 2 Reactor Coolant System Cooldown Umitations (CooJdown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A-3 TABLE Al 30 EFPY Healup Curve Dala Poinls Using 1996 App. G (without Uncertainties for Instrumentation Errors)

SO Heatup* SO Critical U..Ut* 60 lleatup 60 Critical Umit 100 Heatup 100 Critical Limit T(°F) P (psig) T(OF) P (psig) T( 0 f) r(psig) T{ 0 f) P (psig) T(°F) p (psig) T(°F) P (psig) 60 0 214 0 60 0 214 0 60 0 214 0 60 720 214 720 60 70-i 214 70-i 60 644 214 644 65 720 214 720 65 70-i 214 706 65 644 214 644 70 720 214 722 70 7().t 214 706 10 644 214 64S 7.5 720 214 723 7.5 704 214 710 7.5 644 214 64.5 80 720 214 727 80 70-i 214 7IO 80 644 214 649 85 720 214 727 85 704 214 715 85 644 214 649 90 720 214 734 90 704 214 71.5 90 644 214 6.54 95 720 214 734 9.5 704 214 723 95 644 214 654 100 723 214 743 100 10-i 214 723 100 644 214 661 10.5 727 214 154 10.5 706 214 733 105 644 214 661 110 734 214 7.54 110 7JO 214 733 110 644 214 670 115 743 214 767 115 715 214 7.S5 115 644 214 670 120 154 214 767 120 723 214 1.is 120 644 214 680 125 767 214 782 12.5 733 214 758 125 644 214 680 130 782 214 799 130 745 214 774 130 64.5 214 693 13.5 799 214 818 13.5 158 214 774 135 649 214 693 140 818 214 840 140 774 214 793 140 654 214 708 14.5 840 214 864 145 793 214 813 145 661 214 708 1.50 864 214 892 150 813 214 837 150 670 214 726 I.SS 892 214 922 1.55 837 214 863 ISS 680 214 726 160 922 214 956 160 863 214 892 160 693 214 726 165 956 214 993 165 892 214 925 165 708 214 726 170 993 215 103.5 170 925 21.5 961 170 726 215 7.t6 115 103.5 220 1081 115 961 220 1001 17.5 746 220 768 180 1081 225 1132 180 1001 225 lo.t6 180 768 22S 794 18.5 1132 230 1188 185 1046 230 1095 185 79.i 230 822 190 1188 23.5 12.50 190 109.5 23.5 1150 190 822 23.5 8.54 195 1250 240 1319 195 1150 240 12IO 195 854 240 890 200 1319 245 139.5 200 1210 245 1277 200 890 24S 930 205 139.5 250 1479 205 1277 250 1351 205 930 2.50 915 210 1479 2.55 1.571 210 1351 255 1433 210 975 2SS J024 21.5 1571 260 1673 21.5 1433 260 J.523 215 J024 260 1078 220 1673 265 1786 220 1.523 265 1622 220 1078 26.5 1139

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-1.5827

A-4 TABLE A I *(Continued) 30 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnaintics for lns1rumen1a1ion Errors)

SO lltatup* SO Critical Umit* 60 llratup 60 Critical Limit 100 Heatup 100 Critical Limit T(OF) p (psig) T(OF) P (psii:) T(OF) r (psis:> T( 0 f) r (psii:) T( 0 f) r (psig) T( 0 f) r (psii:)

225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 275 2048 230 1732 275 185-1 2'.\0 1206 275 1279 235 2048 280 2200 235 185.t 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 14.SI 245 2367 245 2135 290 2298 245 1451 290 15.SI 250 2298 295 2477 250 IS.SI 295 1660 255 2477 255 1660 300 1782 260 1782 305 1915 265 1915 310 2062 270 2062 315 2224 275 2224 320 2403 280 2403 i:::~~~>*~.~:;::~:~... ~~:*i:::i. ,,.~ :)*ii'!-.1:;,"(a..PJ:tf,:~. :r;;;:. ~*. j_'7"' : .. : : I * '.u-,;*,~*..;:: h ~:;:*v-!\. ::\:.. I*.

  • 1.* ._ .*~*~ *~ :~** , .L:t*i:~ '\- "':.~.~~.:'i'i::r,. :~.r-~.~./_;,~~
  • 0 Leak Test Temp. 195 214 Limit Prn.s. 2000 2485
  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A*S TABLEA2 30 EFPY Cooldown Curve Da1:1 Poinrs Using 1996 App. G (without Unccnaintics for Instrumentation Errors)

Steady State lO"Flhr. 40°F/hr. S0°F/hr.* W"Flhr. lOO"Flhr.

T C0 f) I r Cpsig) T ( 0 f) I r fpsig) T (°F> I r fpsig) T (°F) I r fpsij!) T C°F) I p fp~ig) T ( 0 F) I p (p!iiJ?)

{lO 0 {lO 0 {lO 0 60 0 60 0 60 0 60 1SS 60 688 60 619 60 584 60 549 60 40-i 65 761 65 694 6S 626 65 591 65 SS6 65 413 70 767 70 701 70 633 70 598 70 564 70 422 1S 774 75 708 1S 641 75 607 75 512 75 433 80 782 80 716 80 650 80 616 80 582 80 44S 8S 790 85 125 8S 660 85 627 85 593 8S 4S9 90 799 90 735 90 671 90 638 90 606 90 474 95 810 95 747 9S 683 95 651 95 619 9S 492 100 821 100 759 100 697 lOO 666 100 63-t 100 Sil I05 8:l4 IOS 773 I05 712 105 682 105 651 IOS 532 110 8.S7 110 788 110 729 110 700 110 670 110 SS6 115 863 115 805 115 748 115 719 115 691 115 583 120 880 120 824 120 769 120 1.i2 120 715 120 613 125 898 125 84.5 125 792 125 766 125 741 125 6-t6 130 919 130 868 130 818 130 793 130 770 130 683 l'.\5 942 135 893 135 846 l35 823 135 802 135 724 140 967 140 921 140 878 140 857 140 837 140 770 145 995 145 952 145 913 145 894 14S 877 145 821 150 1026 ISO 987 ISO 951 150 9JS 150 920 150 . 877 155 I ()(.,0 155 1025 lSS 994 ISS 981 ISS 969 155 917 160 1098 160 1067 160 1042 160 IOJI 160 1023 160 951 165 1140 165 1114 165 1095 165 I087 165 1082 165 988 170 11116 170 1166 110 1153 170 1150 170 1148 170 1029 175 12:n 175 1223 175 1218 175 1218 175 1218 175 1076 lltO 1293 180 1287 ttm 1287 180 1287 180 1287 180 1127 185 1355 185 1355 185 1355 185 llS5 185 135S 185 1185 190 1424 190 1.i24 190 1424 190 IH4 190 1424 190 1249 195 1500 195 1500 195 ISOO 195 1500 195 1500 195 1321 200 ISK4 200 1584 200 1584 200 1584 200 1584 200 1401 205 1677 205 1677 205 1677 205 1677 205 1657 205 J.t89 210 1779 2IO 1779 2IO 1779 210 1779 210 1732 210 1588 215 1893 215 1893 215 1893 215 1855 215 1816 215 1697 220 2018 220 2018 220 1978 220 19.U 220 1909 220 1819 225 2156 225 2138 225 2069 225 2039 225 20IJ 225 1953 2.lO 2295 230 2%26 230 2169 230 2146 230 2127 230 2103 2..15 2382 235 2325 235 2281 235 2265 135 2254 235 2269 2.. 0 2479 l-10 2.Sl-1 2.io 240.C 2.. 0 2.197 2-10 2395 2-10 2-'S-1

  • Shown hy request of CP&L. This rate ii; not shown on the plot.

WCAP-15827

MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI020l-l LIMITINGA'RTVALUESAT3S EFPY: l/4T. l67°F 3/4T, 147°F 2500 loparlim Vemon:5.1 Run:784S I i*~~-.('~ Leak Test Limit

~f:t.~J,~

'~~\: .*k\:.'-* 2250 Unacceptable Acceptable 2000 Operation Operation 1750 Critical Limit CJ iii Heatup Rate 60 Deg. F/Hr

-e.,,

a. 1500
l 60 Deg. F/Hr Critical Limit 100 Deg. F/Hr 4ll

£).

1250

'C Cl>

I ll

'S 1000 . . .. ... .... ..

CJ CJ CIS 750 500 250 Bottup Criticality Limit based on Temp. lnservlce hydrostatic test temperature (216 F) for the service period up lo 35 EFPY o+..........-'".l!:...-i.-.----J.--,.......L-l.-..-.4......-~::;:;:=::i::::;::;:~::;:;::;::;:::i::;::;::~_.....--4 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

.J Figure A3 H.B. Robinson Unit 2 Reaccor Coolant System lleacup Limitations (lleatup Rates of 60 & 100.,F/hr) Applicable for the First 35 EFP\' (Without Maq~ins for Instrumentation Errors} Using 1996 App.G Methodology WCAP-15827

A-7 MATERIAL PROPERD BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI020l-1 &: GIRTH WELD 10-273 LIMITINGARTVALUESAT35 EFPY: l/4T. 167°F & 242°F 3/.ff. I 47°F & l 72°F 2500 Operr1m Version:S.t Run:7845 2250 .. ~ * . ... ..

Unacceptable 2000 Operation Acceptable - .. . -****-

Operation 1750 u; . ....... -

Q,.

GI

J en 1500 Co*ldowD R*le.

VI rnrr Cll Q,.

1250 .. *H*d1*al*le .. ***- ---

  • 20

't2 Cll *40

  • 80 u 1000 *100 ... .......... .. --

iii u

750 500 250 *- - .

0 .._~~-r---.-t--.-.....-t--......-.-+-----+-_,..--+~~-+-r----t-.-................................i - -............,

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A4 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°Flhr) Applicable for lhe first 35 EH,\' (Without Margins for Instrumentation Errors) Usini: 19% App.G Methodology WCAP-l5827

A*8 TABLE Al 35 EFPY Heatllp Curve Data Points Using 1996 App. G (without Uncenainlics for lns1rumcn1a1ion Errors) 50Heatup* SO Critical Limit* 60 Heatup 60 Crirical Limit 100 llealup 100 Critical Limit T( 0 f) r (psig) T(OF) P(psiR) T(OF) P(psig) T( 0 f) r (psig) T( 0 f) r (psi~) T( 0 f) r (psi~)

60 0 216 0 60 0 216 0 60 0 216 0 60 716 216 716 60 700 216 700 60 639 216 639 65 716 216 716 65 700 216 701 65 639 216 639 10 716 216 718 70 700 216 701 70 639 216 640 15 716 216 723 75 700 216 705 75 639 216 640 80 716 216 723 80 700 216 705 80 M9 216 643 SS 116 216 729 85 700 216 710 85 639 216 643 90 716 216 729 90 700 216 710 90 639 216 648 95 716 216 737 95 700 216 717 95 639 216 648 100 718 216 737 too 700 216 727 too 639 216 654 105 723 216 748 105 701 216 727 I05 639 216 654 IJO 729 216 748 110 705 216 738 110 639 216 662 115 737 216 760 115 710 216 738 115 639 216 662 120 748 216 760 120 717 216 751 120 639 216 672 125 760 216 774 125 727 216 751 125 639 216 672 130 774 216 790 130 738 216 766 130 640 216 685 135 790 216 809 135 751 216 766 135 643 216 685 140 809 216 830 140 766 216 784 140 648 216 699 145 830 216 853 145 784 216 R03 145 654 216 699 150 853 216 879 150 803 216 826 ISO 662 216 715 155 879 216 908 155 826 216 851 155 672 216 715 160 908 216 941 160 851 216 879 160 685 216 734 165 941 216 977 165 879 216 910 165 699 216 734 170 977 216 1017 170 910 216 945 170 715 216 734 175 1017 220 1061 175 945 220 983 175 734 220 756 180 1061 225 1110 180 983 225 I0:?6 180 756 225 780 185 1110 230 1164 185 1026 230 I074 185 780 230 808 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 124!\ 200 873 24S 911 205 1362 250 1443 205 1248 250 1319 205 911 250 953 210 1443 255 1532 210 1319 255 1398 210 953 255 1001 215 1532 260 1630 215 1398 260 1484 215 1001 260 1053 220 1630 265 1739 220 1484 265 1580 220 1053 265 1111

  • Shown by request of CP&L. This rare is not shown on lhe plot WCAP-15827

TABLE Al * (Continued) 35 EFPY Hearup Curve Dara Poinrs Using 1996 Arp. G (without Unccrt.:iintics for Instrumentation Errors)

SO llcatup* 50 Critical Umit* 60 lltatup 60 Critical Limit 100 llcatup JOO Critical Limit TC 0 F> p (p!ii~) T(Of) r (psii:) T( 0 f) r (psig) T( 0 f) r (psis;!) T( 0 f) r (psii:) T(OF) r (psii:>

225 17)9 270 1858 22j 1580 270 1685 225 1111 270 1175 230 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 14lt 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 172R 260 1728 305 1856 265 1856 ~IO 1998 270 1998 315 2153 275 2153 320 2325 280 2325 rf: . :~ ':-.--".." ,,\-:*"... *:~;, ; 4... :-:*~i~.::;~t-.:_.;";*~,,1_1~~*.(~~J.f..~\.~:*.. ::.{:;. . ).',;~~-~$:;,~;:*:i*~*.;..-;,i::,_~;';£~ *.~~... : .. ~ ~*..:. ;~:: .* :.. :: t . * ;. :* ....

uak Test Limit Temp. 197 216 Press. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plol.

WCAP-15827

A-10 TABLEA4 35 EFPYCooldown Curve Data Points Using 1996App. G (without Unccnaintics for Instrumentation Errors)

Strady Stale 20°F/hr. 40"F/hr. 50°flhr.* 60°Fl1ir. 100°Flhr.

T (0 f) I P (psi~) T (0 f) I r (psli:l T f0 f) I p (p:d~l T (0 fl I P (psi~) T ( 0 F) I P(psig) T (0 fa I P (psii?l (IQ 0 60 0 60 0 60 0 60 0 60 0 60 753 60 685 60 616 60 581 60 546 60 400 65 758 65 691 65 623 65 588 65 553 65 409 70 764 70 698 70 629 70 595 70 560 70 418 75 771 15 705 75 637 75 603 15 568 75 428 80 778 80 713 80 646 80 612 80 578 80 440 85 787 85 721 85 655 85 622 85 588 85 453 90 795 90 731 90 666 90 633 90 600 90 468 95 805 95 742 95 678 95 646 95 613 95 484 100 816 JOO 754 100 691 100 659 100 628 100 502 I05 828 t05 767 I05 706 I05 675 IOS 644 105 S23 110 s.i2 110 782 110 722 I IO 692 110 662 110 546 115 856 115 798 115 740 115 711 115 682 115 572 120 873 120 816 120 760 120 732 120 705 120 600 125 891 125 836 125 782 125 756 125 730 125 632 130 911 130 858 130 807 130 782 130 757 130 667 135 933 135 882 BS 834 135 811 135 788 135 707 140 951 140 910 140 864 140 843 140 822 140 151 145 984 145 939 145 898 145 879 145 860 145 800 150 1013 1.50 973 ISO 935 150 918 1.50 902 ISO 8-17 155 1046 155 1009 155 976 155 962 155 949 155 873 160 1082 160 I050 160 I022 160 1010 160 1000 160 901 165 1123 165 1095 165 1073 165 1064 165 1058 165 933 170 1167 170 1145 170 1129 170 I 124 170 1121 170 968 175 1216 175 1200 175 1191 175 1190 175 1190 175 1008 180 1270 180 1260 180 1260 180 1260 180 1260 180 1053 185 1330 185 1328 185 1328 185 1328 185 1328 185 1102 190 1396 190 1396 190 1.196 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 14.&9 195 1220 200 15-'9 200 1549 200 1549 200 1549 200 1502 200 1288 205 1638 205 1638 205 1638 205 1616 205 1561 205 1365 210 1737 210 1737 llO 1729 210 1677 210 1627 210 1450 215 18-'6 215 1846 215 1793 215 1745 215 1699 215 1545 220 1966 220 1957 220 186-i 220 1821 220 1780 220 1650 225 2099 225 2027 225 19.&J 225 1905 225 1869 225 1767 230 2187 230 210.a 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 20-11 2-10 23.&6 lJO 228-1 2-10 2234 2-10 2215 uo 2201 uo 2.200 2-15 2-139 lJS 2388 2-15 2353 2-15 23.&2 2.&S 2336 us 2336 250 2484 250 2482 250 2482 250 U82

  • Shown by request of CP&L. This rate is not shown on the plot.

u Boldcd Values are Limited by the Circ. Weld ART using Code Case N-588.

WCAP-15827

A*ll MATERIAL PROPERTY BAS1S LIMITING MATERIAL: UPPER SHELL PLATE W10201*1 LIMITING ART VALUES AT 40 EFPY: l/4T, 169°F 3/4T, 149°F 2500 ,-~~~~~~~--~.--~~~~----~r==============n Operlim VerslOll .S.1 Run:7462 Leak Test Limit 2250 2000 Acceptable Unacceptable Operation Operation 1750

-g CJ 1500 Critical Limit 60 Deg. F/Hr

~

I

"'en~ 1250 Critical Limit Q.

100 Deg. F/Hr

-GI ca

'S 0

1000 ti 750 500 Crmca\lty Limit based on Bollup 250 Temp.

lnservlce hydrostatic test temperature (218 F) for the service period up to 40 EFPV 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure AS 11.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates of 60 & J00°F/hr) Applicable for the first 40 EFP\' (Without Mara:ins for Instrumentation Errors) Using 1996 App.G Methodology WCAP*IS827

A-12 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 0201-1 & GIRTH WELD I0-273 LIMITING ART VALUES AT 40 EFPY: 1/4T, 169°F & 251°F 3/4T, 149°F & 179°F Qp111tm Verslon:5. 1 Run:7462 2250 - __ ,,_ ..

Unacceptable 2000 Operation Acceptable Operation 1750 -. - ,.. __ .- ... -.

CJ iii

a. 1500
3 Cooldowa Rol**

! Flllr GI 1250 - . ...... -

~ *leod1-*l*I*

a. *20

'S GI f tl u 1000

--40

  • 10

.100 co u

750 500

__ .~-* Boltup 250 Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A6 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to JOO.,Fn1r) Applicable for the First 60 EFP\' (Without Margins ror Instrumentation Errors) Using 1996 App.G l\lethodology WCAP-15827

A*ll TABLE AS 40 EFPY Heatup Curve Data Points Using 1996 App. G (wi1hout Uncertain1ics for lnstrumcn1:11ion Errors)

SO lleatup* SO Critic:al Umit* 60 lleatup 60 Critical Umit 100 llealup 100 Critical Limit T(°F) r (psii:) T(°F) r (psii:) TC°F) r (psig) T(°F) P Cpsii:> T( 0 f) r (psii:> T( 0 f) r (psig) 60 0 216 0 60 0 216 0 60 0 216 0 60 712 218 712 60 696 218 696 60 634 218 634 65 712 218 712 65 696 218 697 6S 6J-I 218 6J5 70 712 218 714 70 696 218 697 70 63-1 218 63S 7S 712 218 718 75 696 218 700 15 6J-I 218 637 80 712 218 718 80 696 218 700 80 63-1 218 637 85 712 218 724 BS 696 218 705 85 634 218 637 90 712 218 724 90 696 218 712 90 634 218 642 9S 712 218 732 95 696 218 712 9S 634 218 642 100 714 218 732 100 696 218 720 100 634 218 648 IOS 718 218 742 IOS 697 218 720 105 63-1 218 648 110 724 218 753 110 700 218 731 110 634 218 655 llS 732 218 753 llS 705 218 731 115 634 218 665 120 742 218 767 120 712 218 743 120 634 218 665 125 753 218 767 125 720 218 743 125 6J-I 218 676 IJO 767 218 782 130 731 218 758 130 635 218 676 1:\5 782 218 800 135 743 218 758 135 637 218 690 140 800 218 820 140 758 218 115 140 642 218 690 145 820 218 842 145 77S 218 79-1 145 648 218 706 ISO 842 218 868 ISO 79-1 218 BIS ISO 655 218 706 IS5 868 218 896 IS5 815 218 839 IS5 66S 218 724 160 896 218 927 160 839 218 866 160 676 218 724 165 927 218 961 165 866 218 896 165 690 218 724 170 961 218 999 170 896 218 929 170 706 218 724 175 999 220 IQ.12 175 929 220 966 175 724 220 74-l 180 lo.t2 225 I0!!9 180 966 225 1007 180 7-14 225 767 185 1089 230 1141 185 1007 230 I053 18.S 767 230 794 190 1141 235 1198 190 I053 235 1103 190 794 235 823 195 1198 240 1261 19S 1103 240 1159 195 823 240 856 200 1261 245 1331 200 1159 245 1221 200 856 245 893 205 1331 250 1409 205 1221 250 1289 205 893 250 933 210 1409 255 1494 210 1289 2S5 1364 210 933 2SS 979 215 1494 260 1589 215 1364 260 1447 215 979 260 1029 220 IS89 265 1693 220 1447 265 1539 220 1029 265 108-1 225 1693 270 1808 225 1539 270 1640 225 108.t 270 1146

  • Shown by request of CP&L. This rate is not shown on the plot .

WCAP*l5827

A-14 TABLE A5 * (Conrinucd) 40 EFPY Hearup Curve Dara Points Using 1996App. G (without Unccrtain1ics for Instrumentation Errors)

SO Jleatup* SO Crirkal Limit* 60 lleatup 60 Critical Limit JOO llutup 100 Critkal Limit T( 0 f) P (psig) TC°F) P (psig) T( 0 f) r (psi~) T(Of) r Cpsig) T( 0 f) r (psig) TC°F) P (psil?l 230 1808 275 1934 HO 1640 275 1752 230 1146 275 1214 235 1934 280 2074 2:\.S 1752 280 1876 235 1214 280 1289 240 2074 285 2229 240 1876 285 2012 240 1289 285 1372 245 2229 290 2364 2-15 2012 290 2162 245 1372 290 1464 250 2364 295 2459 250 2162 295 2328 250 1464 295 1565 255 2459 255 2328 255 1565 300 1677 260 1677 305 1800 265 1800 3IO 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432 285 2432

  • ~:~f~..::::.~*.~~..): . ~: '* ...: .. *~,;: ','!;~:.~:,..*.. *.' ';'r1: ,'.. -!°'~!~'i*t :: i!~~~~'t/ .~**i*~,\~:;" ;": ~\'* !~ ~'4*~/*~f~:ft. . . .-,.~~ l.:~):*"I~*.. *, ...... ";°)," ,:, I Leak Test Limit Temp. 199 218 p~ 2000 2485
  • Shown by request of CP&L. This rare is not shown on the plot.

WCAP-15827

A-15 TABLEA6 40 EFPY Cooldown Curve Data Poin1s Using 1996 App. G (without Uncenain1h:s for 1n~trumcn1a1ion Errors)

Strady State 20°Flhr. 40"Flhr. S0°Flhr.* 60"F/br. 100°Flhr.

T ( 0 f') I r (psil,?) T ( 0 F) I r (psil,?) T ( 0 f) I r (psil.?) T c0 F)l -p Cpsi1.?) T ( 0 f) I r (psi ii:) T ( 0 f) I P (psh~)

60 0 60 0 60 0 60 0 60 0 ti() 0 60 751 60 683 60 61-1 60 579 60 5.i3 60 397 65 756 65 6119 65 620 65 5115 65 5..i9 65 405 70 762 70 695 70 626 70 59:? 70 557 70 413 75 768 75 702 15 6'.\.t 15 599 15 565 75 423 80 775 80 709 80 6"'2 KO 6011 RO 574 80 434 85 783 85 718 85 651 RS 6JR RS 58.i 85 447 90 792 90 727 90 661 90 fi~8 90 595 90 461 95 801 95 737 95 673 95 6..i() 95 607 95 477 100 812 100 749 100 6115 100 6H 100 621 100 494 I05 823 105 761 I05 699 I05 MR I05 637 105 514 110 836 110 776 110 715 I IO 6115 110 654 I IO 536

'15 850 115 '191 115 '132 115 '103 115 67.\ 115 560 120 866 120 808 120 751 120 7B 120 695 120 588 125 883 125 828 125 7B 125 7..i6 125 719 125 618 130 902 130 849 130 796 130 771 130 1..i6 130 652 135 924 135 872 135 823 135 799 BS 775 135 690 140 947 140 898 140 852 1-10 829 140 808 140 732 145 973 145 927 145 884 145 8M 145 844 145 779 ISO 1001 ISO 959 ISO 920 150 902 150 885 ISO 803 1.5.5 1033 1.5.5 994 IS5 959 155 9.t.t 15.5 929 155 82-1 160 1068 160 I033 160 IOOJ 160 990 ItiO 979 160 s.i1 165 1106 165 1076 165 1052 165 1().-12 16.5 JOJ-1 165 873 170 1149 170 112-1 170 ll06 170 IOW 170 I095 170 902 175 1196 175 1177 175 1165 175 1163 175 1162 175 93-i 180 1248 180 1235 180 1231 I!(() 1:?31 180 1231 180 971 185 1305 185 1300 1115 1300 185 1300 185 1289 185 1012 190 1~68 190 1368 190 J:\68 190 D6K 190 132-1 190 1058 195 1439 195 1439 195 1..i:w 195 1430 195 136-1 195 1109 200 1516 200 IS16 200 IS16 200 l.t72 200 1408 200 1165 205 1602 205 1602 295 1579 205 1517 205 1.i51 205 1229 2IO 1696 2IO 1696 210 1627 210 IS68 210 1511 210 1299 215 1801 215 1795 215 1681 215 1625 215 1571 215 1378 220 1917 220 IU7 220 17.&0 220 1688 220 1638 220 1465 225 2011 225 1905 225 1805 225 1158 225 1712 225 1562 230 2068 230 1970 2JO 1878 230 1835 230 1795 230 1670 235 2131 235 20-11 235 1958 235 1921 235 1886 235 1790 1.io 2101 2-10 2120 240 2048 2.io 2016 240 1988 2..CO 1923 2-15 2279 2-15 2207 2-15 21.&6 2.is 2121 2.is 2101 2.i5 2070 250 23~ 250 2303 250 2256 250 2238 250 2225 250 2225 255 2J59 255 2-llO 255 2377 255 2368 255 236-1 255 236-1

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bo1ded Values are Limited by the Circ. Weld ART using Codi! Case N-588 .

WCAP-15827

A-16 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 0201-1 LIMITINGARTVALUESAT45 EFPY: 114T, 170°F 3/4T, 151°F 2500 .-~~~~~~~~~-.-~~~~~~--.==============ii lope1km V11ts111n.S.1 Run:IOSSI I Leak Test Limit 2250 -- *--*-** ... - -**

Unacceptable Acceptable 2000 Operatlon ------ . . ..

  • Operation 1750 CJ Critical Limit i'ii Q.

t>

s en 1500 60 Deg. F/Hr en OJ Q.

1250 "D

OJ

<

CooldowD R*t .. Fnlr II>

  • le*d7**1*le

! 1250 *20 a.

  • 40 "C

Q> .co ID .100

u 1000 iii u

750

--- ...... *-* *- --- -------* l -- -

500 ~-*

Boltup 250 Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure AS II.II. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to IOO"FA1r) Applicable for lhe Firsl 45 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

  • A-18 TABLEA7 45 EFPY Healup Curve Data Points Using 1996 App. G (wi1hout Uncertainties for lns1rumcnta1ion Errors)

SO lleatup* SO Critical Limit* 60 Heatup 60 Critical Limit 100 lleatup 100 Critical Um.it T(OF) P (psia:) T(OF) P(psi~) T< 0 n P(psi~) TC°F> P(psi~) T( 0 f) r (psi~) TC 0 F) PCpsig) 60 0 219 0 60 0 219 0 60 0 219 0 60 708 219 708 60 692 219 692 60 629 219 629 65 708 219 708 65 692 219 693 65 629 219 630 70 708 219 710 70 692 219 693 70 629 219 630 15 708 219 713 75 692 219 695 75 629 219 632 80 708 219 713 80 692 219 695 80 629 219 632 8.5 708 219 719 85 692 219 700 85 629 219 636 90 708 219 719 90 692 219 706 90 629 219 636 95 708 219 726 9.5 692 219 706 95 629 219 641 100 7IO 219 726 100 692 219 714 100 629 219 641 105 713 219 736 105 693 219 714 105 629 219 648 110 719 219 736 110 695 219 725 110 629 219 648 115 726 219 747 115 700 219 725 115 629 219 651 120 736 219 747 120 706 219 736 120 629 219 657 125 747 219 760 125 714 219 736 125 629 219 668 130 760 219 77.5 130 725 219 150 130 630 219 668 135 115 219 792 13.5 736 219 750 135 632 219 681 140 792 219 811 140 7.50 219 766 140 636 219 681 145 811 219 832 145 766 219 784 145 641 219 696 150 832 219 856 150 784 219 805 150 648 219 696 155 856 219 883 155 805 219 828 155 657 219 713 160 883 219 913 160 828 219 854 160 668 219 713 165 913 219 946 165 854 219 882 165 681 219 713 170 946 219 983 170 882 219 914 170 696 219 713 175 983 220 I024 175 914 220 950 175 713 220 733.

180 I024 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 185 989 230 I033 185 155 230 780 190 1118 235 1174 190 I033 235 1081 190 780 235 808 195 1174 240 1234 195 1081 240 1135 195 808 240 840 200 1234 245 1302 200 1135 2-15 119-1 200 840 245 875 205 1302 250 1376 205 1194 250 1260 205 875 250 914 210 1376 255 1458 210 1260 255 1332 210 914 255 957 215 1458 260 15-19 215 1332 260 1412 21S 957 260 1005 220 1549 26.5 1649 220 1412 265 1.500 220 1005 265 I059 225 16-19 270 1759 225 1500 270 1.597 225 1059 270 1118

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-1.5827

A-19 TABLE A7 *(Continued) 45 EFPY Heatup Curve Data Poinrs Using 1996 App. G (without Unccnainlics for lnstrumcntalion Errors)

SO llcatup* SO Critical Limit* 60 llcatup 60 Critical Limit 100 lleatup 100 Critical Limit Tf°F) r (psis:) T(OF) r (psis:) T(°F) r (psi1:) Tf°F) r (psii:l T< 0 n r (psi~) Tf°F) r (psii:)

230 1759 275 1881 2.m 1597 275 1705 2JO 1118 275 1183 235 1881 280 2015 235 1705 2RO 182J 2J5 I 18J 280 1255 240 2015 285 2164 240 1823 285 1954 240 12.55 285 1335 24.S 2164 290 2279 245 19.54 290 2098 245 133.S 290 1423 250 2279 295 236-S 250 2098 295 2258 250 1423 295 1.520 255 2364 300 2459 255 2258 300 2433 25.S 1520 300 1627 260 l-iS9 260 2433 260 1627 30.S 1746 265 1746 310 1876 270 1876 315 2020 27.S 2020 320 2178 280 2178 325 2353 285 2353

~~'~.~ .!.,r,~.;::&;.s*t'.~~\: ~~!.'i::t~ **~ :~!.~;);*.~ : *. ~ ;._* :*:* .::.. * .: ::~ *; . * *~.;.- .~. *~* .**: . ' * !- *;. ,,,:t ..' . . '.:. ' *.:.*!~;.. ,. ~:--:<...~ ;::~;-=~: '!*::~ ~:.~. .~. . -..:..

Leak Ttst Limit Temp. 200 219 Pnss. 2000 2485

  • Shown by request of CP&L. This rare is not shown on the plot.
    • Bolded Values are Limited by the Circ. Weld ART using Code Cuc;e N-588 .

WCAP* 1.5827

A-20 TABLEA8 45 EFPY Cooldown Curve Dala Points Using 1996App. G (withoul Uncertainties for Instrumentation Errors)

Ste:1dy State 20°Flhr. 40°F/hr. 50°F/hr.* 60°F/hr. 100°F/hr.

T ( 0 fl I r fpsii:) T ( 0 Fl I r (psiJ:) T C°f) I r {psii:) T (0 f) I r (psiJ:) T (0 f) I P (psiJ?) T t°F> Ir CpsiJ:l 60 0 60 0 60 0 60 () 60 0 60 0 60 750 60 682 60 613 60 577 60 542 60 395 6S 15S 65 688 65 618 6S 583 65 548 65 403 70 761 70 694 70 625 70 590 70 555 70 411 75 767 75 700 75 632 75 598 1S 563 75 421 80 774 80 708 80 MO 80 60(, 80 572 80 432 85 782 85 716 8S 6-t9 8S 61S 8S SRI 8S 444 90 790 90 725 90 6S9 90 626 90 S92 90 458 95 799 95 735 9S 670 95 638 95 605 95 473 100 810 100 746 100 683 100 650 100 618 100 490 105 821 105 759 105 696 105 665 105 6'.\-t I05 SIO 110 834 110 773 110 712 110 681 110 651 110 531 115 SH llS 788 I IS 728 llS 699 I IS 670 llS SSS 120 863 120 80S 120 747 120 719 120 691 120 582 125 880 125 824 125 768 12S 7-11 125 714 125 612 130 898 130 844 130 791 130 765 130 740 130 64S 135 919 135 867 ll5 817 13S 793 135 769 135 682 140 942 140 893 140 846 140 823 140 801 140 723 145 967 145 921 14S 877 145 856 145 837 145 766 150 995 150 952 ISO 912 ISO 894 ISO 876 ISO 782 155 I026 155 987 15S 951 155 935 155 920 155 800 160 1060 160 1025 160 994 IC'-0 980 160 968 160 820 165 1098 165 1067 165 1a.i2 165 1031 16S 1022 165 844 170 1140 170 1114 170 1094 170 1087 170 1082 170 870 175 1186 175 1166 175 1153 175 1149 175 1148 175 899 U!O 1237 180 1223 180 1217 180 1217 180 1217 180 932 185 1293 185 1286 18S 1289 185 1293 185 1255 185 968 190 1355 190 1355 190 13S5 190 135S 190 1287 190 1009 195 1424 195 1424 195 1424 19S 1391 195 132.3 195 JOSS 200 1500 200 1500 200 I.i96 200 1429 200 1.362 200 1106 205 1584 205 158.t 205 1535 zos 1470 205 1406 zos 1163 210 1677 210 1677 210 1578 210 IS16 2IO 145S 210 1227 215 1779 215 11.a1 215 1626 215 1567 215 1509 215 1297 220 1893 220 1794 220 1679 220 1624 220 1570 220 1376 225 230 1959 2011 225 230 1847 190S 225 230 1739 1804 225 230 1687 1757 225 230 1637 1711 22S 230 1561

~

235 2068 235 1969 235 1877 23S 1834 23S 179.$ 23S 1669 240 2131 240 2040 240 1958 240 1920 240 188S 240 1789 2.is 2201 us 2119 us 20.$7 us 2015 2.$5 1987 245 1922 2SO 2279 2SO 2206 250 2146 250 2121 250 2100 250 2070 25S .2364 255 230.3 255 2255 255 2238 255 222S 255 2225 260 2459 260 2410 260 2377 260 2367 260 2..163 260 2363

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bo1dcd Values are Limited by 1he Circ. Weld ART using Code Ca~ N-588.

WCAP-15827

A-21 MATERIAL PROPERTY BASIS LIMmNG MATERIAL: UPPER SHELL PLATE WI0201*1 & GIRTH WELD 10.273 LIMITINGARTVALUESAT50EFPY: l/4T, 172°F& 263°F 3/4T. 153°F & 191°F 2500 ~-------------------.--------~---.r=================,., loper~m Versl0n:5.' Ru1t:19S11 I Leak Test Limit 2250 Unacceptable Acceptable 2000 Operation Operation 1750 S'

c;; Critical Limit CL.

s 1500 60 Deg. F/Hr Cll Cll f 1250

,,CL.

"5 Cll I ll u 1000 ca

()

750 -

500 .. *- . -* .. .. . . - **- . . . ****--*----- *- . *-

I Bollup 250 Temp. .

  • _ Criticality Limit based on lnaervlce hydrostatic test temperature (221 F) for the service period up lo 50 EFPV 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure A9 11.8. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates of 60 & 100°f/hr) Applicable for the First SO EfPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A-22

~1ATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPERSHELLPLATEWI0201-I &GIRTHWELD 10-273 LIMITING ART VALUES AT SO EFPY: l/4T. J72°F & 263°F 3/4T. 153°F & 191°F 2250 Unacceptable 2000 Operation Acceptable 1750 * ----*~ * *- Operation CJ iii D.

I>

1500 CooldowD f 1250 a.,.. Fnlr . **-*---** ..

  • - * - ** *l**d7**l*le '

D. -to "O

OJ cu u 1000 "S

ia

  • 'O
  • 10
  • IOO u

750 500 250 *- .* Boltup Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A10 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First SO EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Mcthodolo~y WCAP-15827

' A-23 TABLEA9 50 EFPY Heatup Curve Data Points Using 1996 App. G (withou1 Uncertainlics for lns1rumcn1a1ion Errors) 50 lltatup* 50 Critical Umit* 60 lltatup 60 Critical Umit 100 lleatup 100 Critical Umil T(°F) r (psi.:) T(°F) p (psi.:) TC°F) PCpsigl T( 0 f) r (psi~) T( 0 f) r (psig) T (0 f) P(psi~)

60 0 221 0 60 0 221 () 60 0 221 0 60 7().t 221 704 60 688 221 688 60 62S 221 625 65 7().t 221 7o.t 65 688 221 689 65 62S 221 625 70 7().t 221 706 70 688 221 689 70 625 221 627 75 7().t 221 709 75 688 221 691 75 62S 221 627 80 704 221 709 BO 688 221 691 80 625 221 630 BS 704 . 221 714 BS 688 221 695 85 625 221 630 90 704 221 714 90 688 221 701 90 625 221 635 9S 704 221 721 95 688 221 701 95 62S 221 635 100 706 221 721 100 688 221 709 100 625 221 642 105 709 221 730 I05 689 221 709 I05 62S 221 642 llO 714 221 741 110 691 221 718 110 62S 221 650 115 721 221 741 115 695 221 718 I IS 625 221 650 120 730 221 753 120 701 221 730 120 625 221 661 125 741 221 753 125 709 221 743 125 625 221 661 130 753 221 767 130 718 221 743 130 625 221 673 135 767 221 7B3 135 730 221 758 135 627 221 673 140 7B3 221 802 140 743 221 758 140 630 221 687 145 802 221 B22 145 1S8 221 115 145 63.S 221 687 ISO 822 221 MS ISO 115 221 795 ISO 6-i2 221 703 155 845 221 B71 155 795 221 817 155 650 221 703 160 871 221 900 160 817 221 842 160 661 221 703 165 900 221 932 165 842 221 869 165 673 221 722 170 932 221 967 170 869 221 900 170 687 221 722 175 967 221 1006 175 900 221 9J4 175 703 221 722 180 1006 225 IO-i9 180 93.t 225 972 180 722 225 743 IB5 lo.t9 230 1097 IBS 972 230 1014 185 743 230 767 190 1097 235 1150 190 IOl4 235 1060 190 767 235 794 195 1150 240 1208 195 1060 240 1112 195 794 240 824 200 1208 245 1273 200 1112 245 1169 200 824 2.i5 858 205 1273 250 1344 205 1169 250 1231 205 858 250 895 210 IJ.t4 255 1423 2JO 1231 255 1301 2IO 895 255 937 215 1423 260 1510 215 1301 260 1378 215 9:17 260 98:1 220 15!0 265 1606 220 1378 265 l.t62 220 9!!:1 265 1034 225 1606 270 1712 225 1462 270 1556 225 I034 270 1091 230 1712 275 1829 230 1556 275 1659 230 1091 275 1153 235 1829 280 1958 235 1659 280 177;\ 235 1153 280 1223

  • Shown by request of CP&L. This r3te is not shown on 1he plot .

WCAP-15827

A-24 TABLE A9 * (Continued)

SO EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) 50 lleatup* 50 Critical Limit* 60Jleatup 60 Critical Limit 100 lltatup JOO Critical Limit TC°F) P (psig) T(°F) P (psi,:) TC°F) r (psig) TC°F) r (psig) T( 0 f) P (psi,:) T(°F) r (psig) 240 1958 285 2IOI 240 1773 285 1898 240 1223 285 1299 24S 2101 290 2173 245 1898 290 2037 24.5 1299 290 138.i 250 2173 295 2U7 2SO 2037 295 2190 250 1384 29.5 1477 255 2247 300 2329 2SS 2190 300 2329 2SS 1477 300 1580 260 2329 305 2420 260 2329 305 2420 260 1580 305 1693 265 2420 265 2420 265 1693 310 1819 270 1819 315 1957 275 1957 320 2109 280 2109 325 2276 285 2276 330 2461 290 2461

. *~~**~*!~'*'.?.r~*; ! ~~..~~f'i*;.:~;:~('<~~.tt?t1~tt~'~;.J~!,;Jl";;r~~\?"Eft~.};:'"i~lt'*:..L"~:v~r\.~i~~J:;. '~~!: ~;\'~ * ~;* :.. ).,:~!.' ! r::~.c:*:;.:~*. * *.::~*. *..*:. :. ;*., ..,

Leak Test Limit Ttmp. 202 221 PttSS. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A-25 TABLEAIO 50 EFPY Cooldown Curve Data Points Using 1996 App. G (wi1hou1 Unccnainlics for lnstrumcntalion Errors)

Steady State 20°Flhr. 40°Flhr. S0°Flhr.* 60°FJhr. l00°flhr.

T (0 f) I r (psig) T <°F> 1r (osig> T( 0 f) I P(psig) T (0 f) I r (psig) T (Of) I P (psig) T (0 F) I P (psig) 60 0 60 0 60 0 60 0 60 0 60 0 60 748 60 680 60 610 60 575 60 539 60 392 65 753 65 685 65 616 65 581 65 545 65 399 70 758 70 691 70 622 70 587 70 552 70 407 75 764 15 697 75 629 75 594 15 559 15 416 80 771 80 704 80 637 80 602 80 568 80 427 85 778 85 712 85 645 85 611 85 577 85 438 90 787 90 721 90 655 90 621 90 587 90 451 95 795 95 731 95 665 95 632 95 599 95 466 100 805 100 742 100 677 100 645 100 612 100 483 IOS 816 105 754 105 690 I05 659 105 627 105 501 110 828 110 767 110 705 I JO 674 110 643 110 522 115 842 115 781 115 721 115 691 115 661 11.5 545 120 856 120 798 120 739 120 7JO 120 682 120 570 125 873 125 816 125 759 125 732 125 704 125 599 130 891 130 836 130 782 130 755 130 729 130 631 135 911 135 858 135 806 135 781 135 151 135 666 140 933 140 882 140 834 140 810 140 787 140 706 145 957 145 909 145 864 145 842 *145 822 145 742 150 984 ISO 939 ISO 898 150 878 150 859 150 755 155 1013 155 972 155 935 155 918 155 902 155 770 160 1046 160 1009 160 976 160 961 160 948 160 788 165 1082 165 1050 165 I022 165 JOJO 165 JO()() 165 807 170 1123 170 1095 170 1073 170 1064 170 1057 170 830 175 1167 175 1144 175 1129 175 1124 175 1121 175 854 180 1216 180 1199 180 1191 180 1190 180 1189 180 882 185 1270 185 1260 185 1260 185 1263 185 1213 185 914 190 1330 190 1328 190 1328 190 1315 190 1241 190 949 195 1396 195 1396 195 1396 195 1343 195 1271 195 988 200 1469 200 1469 200 14-i6 200 1376 200 1305 200 1032 205 1549 205 1549 205 1480 205 1411 205 1343 205 1082 210 1638 210 1638 210 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 215 1495 215 1433 215 1197 220 18.t6 220 1728 220 1605 220 154.S 220 1485 220 1265 225 1895 225 1774 225 1656 225 1599 225 1543 225 1341 230 1940 230 1824 2JO 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 240 2045 240 1942 240 1846 240 1801 240 1758 240 1623 245 2105 245 2010 245 1923 245 1883 245 1846 245 1738 250 2173 250 2086 250 2009 250 1975 250 194.S 250 1866 255 2247 255 2170 255 210.S 255 2076 255 2052 255 2008 260 2329 260 2263 260 2209 260 2188 260 2172 260 2166 265 2420 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2455 270 2451 270 2.s51 270 2451

  • Shown by request of CP&L. This rate is not shown on the plot .

WCAP-15827

B-1

, Table Bl H. B. Robinson Vessel Temperatures for Cooldown 50 °F/hr. Cooldown 100 °Flhr. Cooldown Inner Wall l/4TWall 3/4TWall Ou1sidc Inner Wall ll*ffWall 3/4TWall Outside Temp. (°F) Temp.( 0 f) Temp.( 0 f) Wall Temp. Temp. (0 F) Temp. (0 F) Temp. (0 f) Wall Temp.

(Of) (OF) 550.0 5.50.0 550.0 550.0 550.0 5SO.O 550.0 550.0 54.5.0 548.8 549.9 550.0 545.0 549.4 550.0 550.0 540.0 546.0 549.5 549.7 5.io.o 547.4 549.9 550.0 535.0 542.1 548.6 549.1 535.0 .544.7 549.6 549.9 530.0 539.2 547.1 547.8 5:m.o 541.9 549.I 549.5 525.0 535.5 545.1 546.1 525.0 538.7 548.2 549.0 520.0 531.6 542.7 543.9 520.0 535.4 547.1 548.2 515.0 521.S 539.9 541.3 515.0 531.9 54.S.1 541.0 5IO.O .523.4 536.8 538.4 510.0 .528.4 544.1 545.6 505.0 519.0 533.4 535.1 505.0 524.7 542.2 544.0 500.0 .514.6 529.8 531.6 500.0 520.9 540.I 542.1 49.5.0 510.1 526.0 527.9 49.5.0 517.0 S37.7 540.0 490.0 .505.6 522.1 524.0 490.0 513.1 535.2 537.7 485.0 500.9 517.9 520.0 485.0 509.0 532.S 535.1 480.0 496.2 513.7 515.8 480.0 .s~.9 529.6 532.4 47.S.O 491.5 509.3 511.4 475.0 500.7 526.6 529.S 470.0 486.7 5~.8 507.0 470.0 496.S 523.4 526.5 465.0 481.9 500.2 502.5 465.0 492.2 520.1 523.3 460.0 477.0 495.6 497.8 460.0 487.8 516.6 520.0 4SS.O 472.1 490.8 49J.2 4.55.0 483.4 513.0 516.S 450.0 467.2 486.1 488.3 450.0 479.0 509.4 512.9 445.0 462.3 4!U.3 483.6 445.0 474.5 505.S 509.2 440.0 4.57.4 476.4 478.8 440.0 469.9 501.6 SOS.4 43.S.O 4.52.4 471.S 473.9 435.0 465.3 497.6 501.5 430.0 447.4 466.6 469.0 430.0 460.7 493.5 497.5 42.S.O 442.4 461.7 464.0 425.0 456.0 489.4 493.4 420.0 437.4 4.56.7 4.59.1 420.0 451.4 485.1 489.2 415.0 432.4 451.7 4.54.1 415.0 446.6 480.8 485.0 4IO.O 427.4 446.7 449.0 410.0 441.9 476..S 480.6 405.0 422.4 441.7 444.0 405.0 437.1 472.0 476.3 400.0 417.4 436.6 439.0 400.0 432.3 467.5 471.8 395.0 412.4 431.6 433.9 395.0 427.5 463.0 467.3 390.0 407.3 426.5 428.9 390.0 422.7 458.4 462.R 385.0 402.J 421.4 423.8 385.0 417.8 453.7 4.58.1 380.0 397.3 416.4 418.7 380.0 412.9 449.1 453.S 37.S.O 392.2 411.3 413.6 375.0 408.0 444.4 448.8 370.0 387.2 406.2 408.5 370.0 40:\.1 439.6 444.0 36.S.O 382.1 401.1 403.4 365.0 398.2 434.8 439.3 360.0 377.1 396.0 398.3 360.0 393.3 430.0 434.S 3.55.0 372.0 390.9 393.2 355.0 3118.3 42.S.I 429.7 350.0 367.0 38.S.8 388.1 350.0 383.4 420.3 424.8 3-15.0 361.9 3K0.7 383.0 345.0 378.4 415.3 420.0 340.0 356.9 375.6 377.9 3400 373.4 410.4 41.S.O 335.0 351.8 370.5 372.8 335.0 368.4 405.5 410.0 330.0 346.8 365.4 I 367.7 330.0 36:\.4 40Cl.S 405.0 325.0 341.7 360.3 362.6 32.5.0 358.4 395.S 400.1 320.0 336.7 35.S.2 357.5 320.0 353.4 390.5 3115.0 315.0 JJJ.6 350.J 352.J 315.0 348.4 .JHS.S 390.0 WCAP*l5827

B-2

uo.o 326.6 3.$5.0 3.$7.2 310.0 343.3 380.4 385.0 305.0 321.5 339.8 342.1 305.0 338.3 375.4 379.9 300.0 316..5 334.7 337.0 300.0 333.3 370.3 374.8 295.0 311.4 329.6 331.9 295.0 328.2 36.5.2 369.8 290.0 306.4 324.S 326.7 290.0 323.2 360.1 364.7 285.0 301.:\ 319.4 321.6 285.0 318.I 355.0 359.S 280.0 296.3 314.3 316.5 280.0 313.1 349.9 354.4 275.0 291.2 309.2 311.4 275.0 308.0 34..t.7 349.3 270.0 286.2 304.1 306.3 270.0 302.9 339.6 3.i.i.2 265.0 281.1 299.0 301.4 265.0 297.9 334.S 339.0 260.0 276.1 293.8 296.0 260.0 292.8 329.3 333.9 255.0 271.0 288.7 290.9 255.0 287.7 324.2 328.7 250.0 266.0 283.6 285.8 250.0 282.6 319.0 323 ..5 245.0 260.9 278.5 280.7 245.0 277.6 313.9 318.3 240.0 255.9 273.4 275.6 240.0 272.5 308.7 313.2 235.0 2.50.8 268.3 270.4 235.0 267.4 303 ..5 308.0 230.0 245.7 263.2 265.3 230.0 262.3 298.3 302.8 225.0 240.7 258.1 260.2 225.0 257.2 293.2 297.6 220.0 235.6 253.0 255.1 220.0 252.1 288.0 292.4 215.0 2:\0.6 247.8 250.0 215.0 247.0 282.8 287.2 210.0 225.S 242.7 244.8 2JO.O 241.9 277.6 282.0 205.0 220.5 237.6 239.7 205.0 236.8 272.4 276.8 200.0 215.4 232.5 234.6 200.0 231.8 267.2 271.6 195.0 . 210.4 227.4 229.5 195.0 226.7 262.0 266.4 190.0 205.3 222.3 224.4 190.0 221.6 256.8 261.1 185.0 200.3 217.2 219.3 185.0 216.5 251.6 2.55.9 180.0 195.2 212.1 214.2 180.0 211.4 246.4 250.7 175.0 190.2 207.0 209.0 175.0 206.3 241.2 245 ..5 170.0 18.5.1 201.9 203.9 170.0 201.2 236.0 240.3 165.0 180.1 196.7 198.8 165.0 196.1 230.7 235.0 160.0 175.0 191.6 193.7 160.0 191.0 225.5 229.8 155.0 170.0 186.5 188.6 ISS.0 185.9 220.3 224.6 150.0 16-1.9 181.4 183.5 150.0 180.8 21.5.1 219.4 145.0 159.9 176.3 178.3 145.0 175.7 210.0 214. 1 140.0 154.8 171.2 173.2 140.0 170.6 20.i.7 208.9 llS.O 149.8 166.1 168.1 135.0 165.S 199.5 203.7 130.0 144.7 161.0 163.0 130.0 160.4 19-'.3 198.4 125.0 139.7 1.5.5.9 157.9 125.0 1.55.3 189.0 193.2 120.0 134.6 1.50.8 152.8 120.0 1.50.2 183.8 188.0 115.0 129.6 14.5.7 147.7 11.5.0 14.5.1 178.6 182.7 I I0.0 124.S 140.6 142 ..5 I JO.O 140.0 173.4 177.5 I05.0 119.S 135 ..5 137.4 I05.0 134.9 168.2 172.3 HlO.O 114.4 130.4 132.3 100.0 129.8 162.9 167.1 95.0 109.4 125.3 127.2 95.0 124.7 157.7 161.8 90.0 104.3 120.1 122.1 90.0 119.6 152.S 156.6 8.5.0 99.3 11.5.0 117.0 85.0 114.5 147_1 ISl.4 80.0 9-l.2 I IO.O 119.9 80.0 109.3 142.1 146.I 75.0 89.2 104.8 106.8 75.0 104.2 136.9 140.9 70.0 84.1 99.7 101.6 70.0 99.1 131.6 135.7 65.0 79.1 94.6 96.S 65.0 94.0 126.4 130.4 60.0 74.0 89.5 91.4 60.0 88.9 121.2 125.2 WCAP-15827

B-3 Table B2 H. BRob'mson \Iesse I 1iemperaturcs i or Heatup 50 °F/hr. Heatup JOO 0 f/hr. fftatuD Inner Wall J/4TWall 3/4TWall Outside Inner Wall J/4TWall 3/4TWall Outside Temp.( 0 F) Temp. (0 f) Temp.( 0 f) Wall Temp. Temp. (0 f) Temp. (0 F) Temp. (0 f) Wall Temp.

(OF) (OF) 55.0 55.0 5S.O 5S.O 55.0 55.0 55.0 55.0 60.0 56.4 SS.I SS.I 60.0 55.9 55.0 ss.o 6S.0 59.1 55.8 SS.5 65.0 58.2 55.2 SS.I 70.0 63.1 57.2 56.6 70.0 61.2 55.7 55.4 7S.O 66.9 59.3 S8.5 75.0 64.3 56.6 56.0 80.0 70.9 62.0 61.0 80.0 67.7 57.9 57.0 85.0 75.0 65.0 63.9 85.0 71.2 S9.S 58.4 90.0 79.3 68.4 67.2 90.0 74.9 61.5 60.1 95.0 83.8 72.1 70.6 95.0 78.7 63.7 62.1 100.0 88.3 76.1 74.6 100.0 82.7 66.2 64.4 105.0 92.9 80.2 78.6 105.0 86.7 69.0 67.0 110.0 97.6 84.4 82.8 I IO.O 90.8 71.9 69.8 115.0 102.3 88.8 87.2 115.0 95.0 75.1 72.8 120.0 107.1 93.3 91.6 120.0 99.2 78.4 75.9 125.0 111.9 97.8 96.1 125.0 103.6 81.8 79.3 130.0 116.7 102.4 100.7 130.0 108.0 85.4 82.8 135.0 121.6 I07.I I05.3 135.0 112.4 89.1 86.4 140.0 126.4 111.8 110.0 140.0 116.9 92.9 90.1 145.0 131.3 116.5 114.7 145.0 121.4 96.8 93.9 150.0 136.2 121.3 119.5 150.0 126.0 100.8 97.9 155.0 141.1 126.1 124.3 155.0 130.6 104.9 IOl.9 160.0 146.0 130.9 129.1 160.0 135.2 109.1 106.0 165.0 151.0 135.8 133.9 165.0 139.8 113.3 110.1 170.0 155.9 140.6 138.7 170.0 144.5 117.6 114.4 175.0 160.8 145.S 143.6 175.0 149.2 121.9 118.6 180.0 165.8 150.3 148.4 180.0 153.9 126.3 123.0 18.5.0 170.7 1.55.2 153.3 185.0 158.7 130.7 127.3 190.0 175.6 160.1 158.2 190.0 163.4 135.2 131.8 195.0 180.6 164.9 163.0 195.0 168.2 139.7 136.2 200.0 185.5 169.8 167.9 200.0 173.0 144.2 140.7 205.0 190.5 174.7 172.8 205.0 177.8 148.7 145.2 210.0 19.S.4 179.6 177.7 210.0 182.6 153.3 149.8 215.0 200.4 184.S 182.6 215.0 187.4 157.9 154.3 220.0 205.3 189.4 187.S 220.0 192.2 162.S 158.9 225.0 210.3 194.3 192.3 225.0 197.J 167.1 163.S 230.0 215.2 199.2 197.2 230.0 201.9 171.8 168.1 235.0 220.2 204.1 202.1 235.0 206.7 176.4 172.8 240.0 225.1 209.0 207.0 240.0 211.6 181.J 177.4 245.0 230.1 213.9 211.9 245.0 216.5 185.8 182.1 250.0 235.0 218.8 216.8 250.0 221.3 190.5 186.8 255.0 240.0 223.7 221.7 255.0 226.2 195.2 191.S 260.0 244.9 228.6 226.6 260.0 231.1 199.9 196.2 265.0 249.9 233.5 231.S 265.0 235.9 204.7 200.9 270.0 254.8 238.4 236.3 270.0 240.8 209.4 205.6 275.0 259.8 243.3 2.i 1.2 275.0 245.7 214.1 210.3 280.0 264.7 248.1 246.1 280.0 250.6 218.9 215.1 285.0 269.7 253.0 251.0 285.0 255.4 223.6 219.8 290.0 274.6 257.9 255.9 290.0 260.3 228.4 224.5 295.0 279.6 262.8 260.8 295.0 265.2 233.2 229.3 WCAP*l.5827

B-4 300.0 284 ..5 267.7 26.5.7 300.0 270.1 237.9 234.0 305.0 289 ..5 272.6 270.6 305.0 275.0 242.7 238.8 310.0 294.4 277.S 275.5 310.0 279.9 247..5 243..5 315.0 299.4 282.4 280.4 315.0 284.8 252.2 248.3 320.0 JO.i.3 287.3 285.3 320.0 289.7 257.0 253.1 325.0 309.3 292.2 290.1 325.0 294.6 261.8 257.8 330.0 314.2 297.1 295.0 330.0 299..5 266.6 262.6 335.0 319.2 302.0 299.9 335.0 304.3 271.3 267.4 340.0 324.1 306.9 304.8 340.0 309.2 276.1 272.1 345.0 329.I 311.8 309.7 345.0 314.I 280.9 276.9 350.0 334.0 316.7 314.6 350.0 319.0 285.7 281.7 355.0 339.0 321.6 319.5 355.0 323.9 290.S 286.4 360.0 343.9 326.S 324.4 360.0 328.8 295.3 291.2 365.0 348.9 331.4 329.3 365.0 333.7 300.1 296.0 370.0 3.53.8 336.3 334.1 370.0 338.6 304.9 300.8 375.0 3.58.8 341.2 339.0 37.5.0 341.S 309.6 305..5 380.0 363.7 346.1 343.9 380.0 348.4 314.4 310.3 385.0 368.7 3.51.0 348.8 385.0 353.3 319.2 31.5.1 390.0 373.6 3.5.5.9 353.7 390.0 358.2 324.0 319.9 39.5.0 378.6 360.8 358.6 395.0 363.1 328.8 324.7 400.0 383.S 36.5.7 363.S 400.0 368.0 333.6 329.4 405.0 388..5 370.S 368.4 405.0 372.9 338.4 334.2 4I0.0 393.4 37.5.4 373.2 410.0 377.8 343.2 339.0 41.5.0 398.4 380.3 378.I 41.5.0 382.7 348.0 343.8 420.0 403.3 38.5.2 383.0 420.0 387.6 3.52.8 348.S 42.5.0 408.3 390.1 387.9 42.5.0 392.S 3.57.6 3.53.3 430.0 413.2 39.5.0 392.8 430.0 397.4 362.4 358.1 435.0 418.2 399.9 397.7 435.0 402.3 367.1 362.9 440.0 423.1 404.8 402.6 440.0 407.2 371.9 367.7 44.5.0 428.1 409.7 407.5 445.0 412.1 376.7 372.4 450.0 433.0 414.6 412.3 4.50.0 417.0 381..5 377.2 455.0 438.0 419.S 417.2 45.5.0 421.9 386.3 382.0 460.0 442.9 424.4 422.1 460.0 426.8 391.I 386.8 465.0 447.9 429.3 427.0 465.0 431.7 39.5.9 391.6 470.0 452.8 434.1 431.9 470.0 436.6 400.7 396.3 475.0 4.57.8 439.0 436.8 475.0 441.S 405.5 401 .1 480.0 462.7 443.9 441.6 480.0 446.4 410.3 40S.9 48.5.0 467.7 448.8 446.5 485.0 451 ..1 415.1 410.7 490.0 472.6 4S3.1 451.4 490.0 456.2 419.9 415.S 495.0 477.6 4.58.6 456.3 49.5.0 461.1 424.6 420.2 500.0 482.S 463.S 461.2 500.0 466.0 429.4 425.0

.505.0 487.S 468.4 466.1 505.0 470.9 434.2 429.8 SIO.O 492.4 473.3 470.9 .510.0 475.8 439.0 434.6

.515.0 497.3 478.2 47.5.8 515.0 480.7 441.8 439.3 S20.0 .502.3 483.0 480.7 S20.0 485.6 448.6 444.I S25.0 S01.2 487.9 485.6 .525.0 490.S 453.4 448.9

.s.:m.o .s 12.2 492.8 490..S .SJO.O 49.5.4 458.2 453.1

.535.0 .517.1 497.7 49.5.4 .535.0 500.3 463.0 458.4 540.0 S22.I S02.6 500.2 540.0 505.2 467.7 463.2

.545.0 527.0 501.5 SOS.I 545.0 .510. I 472.S 468.0 550.0 .532.0 512.4 510.0 .550.0 51.5.0 477.3 472.8 WCAP-1.5827

R. Michael Glover

( "-> DUKE H. B. Robinson Steam Electric Plant Unit 2 ENERGY~ Site Vice President Duke Energy Progress 3581 West Entrance Road Hartsville, SC 29550 0 : 843 857 1704 F: 843 857 1319 Mike. GIOl'e a d11ke-e11ergy.com 10 CFR 50.90 Serial: RNP-RA/15-0083 NOV 0 2 2015 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 H.B. ROBINSON STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-261 I RENEWED LICENSE NO. DPR-23 REQUEST FOR TECHNICAL SPECIFICATION CHANGE TO REACTOR COOLANT SYSTEM PRESSURE AND TEMPERATURE LIMITS

Dear Sir/Madam:

In accordance with the provisions of 10 CFR 50.90 Duke Energy Progress, Inc. is submitting a request for an amendment to the technical specifications (TS) for H. B. Robinson Steam Electric Plant, Unit No. 2 (HBRSEP2). The proposed amendment revises the reactor coolant system (RCS) pressure and temperature limits by replacing TS Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 effective full power years (EFPY). provides a description and basis of the proposed change, a No Significant Hazards Consideration Determination, and an Environmental Analysis. Attachment 2 provides the existing TS pages marked up to show the proposed change. Attachment 3 provides revised (clean) TS pages that reflect the proposed change. Attachment 4 provides a non-proprietary version of the Westinghouse report, WCAP-15827, "H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation."

HBRSEP2 requests approval of the proposed license amendment by October 31, 2016, with the amendment being implemented within 120 days of issuance.

In accordance with 10 CFR 50.91, a copy of this application, with attachments, is being provided to the designated South Carolina Official.

Please address any comments or questions regarding this matter to Mr. Richard Hightower, Manager- Nuclear Regulatory Affairs at (843) 857-1329.

U.S. Nuclear Regulatory Commission Serial: RNP-RA/15-0083 Page 2 I d~clare under penalty of perjury that the foregoing is true and correct. Executed on

/\/o.,rt .~.r 2, , 2015.

Sincerely,

~. ~ : ~k(ll~ _JJP~*~

R. Michael Glover Site Vice President RMG/jmw Attachments

1. Description and Basis of Proposed Change
2. Proposed Technical Specification Changes
3. Revised Technical Specification Pages
4. Westinghouse report, WCAP-15827 (Non-Proprietary Class 3) cc: Mr. V. M. Mccree, NRC, Region II Ms. Martha C. Barillas, NRC Project Manager, NRR NRC Resident Inspector, HBRSEP2 Ms. S. E. Jenkins, Manager, Infectious and Radioactive Waste Management Section (SC)

U.S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 5 Pages (including this cover page)

DESCRIPTION AND BASIS OF PROPOSED CHANGE

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 2 of 5

1.0 DESCRIPTION

AND BASIS OF PROPOSED CHANGE 1.1 Description of Proposed Change Appendix A, Technical Specifications (TS), to Renewed Operating License No. DPR-23, for H.

B. Robinson Steam Electric Plant, Unit No. 2 (HBRSEP2), establishes the Limiting Condition for Operation (LCO) requirements for reactor coolant system (RCS) pressure and temperature (PIT) limits. Specifically, the LCO states that the RCS pressure, RCS temperature, and RCS heatup and cooldown rates shall be maintained within the limits specified in Figures 3.4.3-1 and 3.4.3-2. Figures 3.4.3-1 and 3.4.3-2 contain PIT limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature. Each PIT limit curve defines an acceptable region for operation. The curves are used during heatup and cooldown maneuvering, by monitoring and comparing pressure and temperature indications to the applicable curve to ensure that operation is within the allowable region .

The proposed change replaces TS Section 3.4.3, Figures 3.4.3-1 and 3.4.3-2, with updated curves (see the attached markup of TS pages and retyped TS pages) that are applicable up to 50 effective full power years (EFPY). This is necessary since the current Figures 3.4.3-1 and 3.4.3-2 are applicable to 35 EFPY, which is projected to be reached at the start of cycle 31 .

1.2 Basis For Proposed Change The technical basis for the proposed revision to the heatup and cooldown limits is provided in the attached Westinghouse report, WCAP-15827, "H. B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation." The fluence values used in these analyses were updated and documented in WCAP-15805, "Analysis of Capsule X from the Carolina Power and Light Company H. B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program," which was previously submitted to the NRC by letter, dated April 25, 2002.

As explained in the attached WCAP-15827 report, the heatup and cooldown curves were generated using the most limiting material adjusted reference temperature (ART) values and the NRG-approved methodology documented in WCAP-14040-NP-A, Revision 2, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," with the exception of the following:

The fluence values are calculated fluence values (i.e., comply with Regulatory Guide 1.190), and are not the best-estimate fluence values.

K1c (which is the material toughness property measured in terms of stress intensity factor, Ki. which will lead to non-ductile crack propagation) is used in place of K1a (which is the critical value of the stress intensity factor, K1, for crack arrest as a function of temperature). This methodology is consistent with the approved ASME Code Case N-641 .

U. S. Nuclear Regulatory Commission to Serial : RNP-RA/15-0083 Page 3 of 5 The 1996 Version of Appendix G to ASME Section XI was used in lieu of the 1989 version.

Additionally, the proposed heatup and cooldown limits were further adjusted by +20°F and -80 psig to account for instrument error, which is consistent with the current licensing basis.

The normal shift of the Prr limit curves as irradiation time increases is toward lower pressures for a given temperature. The pressure-temperature curves for 50 EFPY were developed using the "axial-flaw" methodology with the most limiting "axial-flaw" ARTs and the "circ-flaw" methodology (Code Case N-641) with the most limiting "circ-flaw" ARTs. This allows higher pressures at a given temperature, and the limit curves shift to lower temperatures and higher pressures upon first use of the methodology. This method has been accepted by the NRC in the past as an exemption to ASME Section XI, and in April 2004, the NRC published Regulatory Issue Summary 2004-04, "Use of Code Cases N-588, N-640, and N-641 in Developing Pressure-Temperature Operating Limits," which allows the use of the Code Case methodology with no need for an exemption application.

Review of the low temperature overpressure protection limits confirmed that no changes are required as a result of the revised reactor pressure vessel analyses and limits.

Since the proposed RCS Prr limits are based on applicable NRG-approved methodology, the proposed amendment will continue to maintain appropriate limits for the HBRSEP2 RCS up to 50 EFPY.

2.0 REGULATORY ANALYSIS

2.1 No Significant Hazards Consideration Determination As required by 10 CFR 50.91 (a)(1 ), this analysis is provided to demonstrate that the proposed license amendment does not involve a significant hazard.

Conformance of the proposed amendment to the standards for a determination of no significant hazards, as defined in 10 CFR 50.92, is shown in the following :

1) Does the proposed license amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

No . The proposed RCS Prr limits are based on NRG-approved methodology and will continue to maintain appropriate limits for the HBRSEP2 RCS up to 50 EFPY. These changes provide appropriate limits for pressure and temperature during heatup and cooldown of the RCS, thus ensuring that the probability of RCS failure is maintained acceptably low. These limits are not directly related to the consequences of accidents.

Therefore , the proposed amendment does not result in an increase in the probability or consequences of an accident previously evaluated.

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 4 of 5

2) Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?

No. The proposed changes will continue to ensure that the RCS will be maintained within appropriate pressure and temperature limits during heatup and cooldown. No physical changes to the HBRSEP2 systems, structures, or components are being implemented . There are no new or different accident initiators or sequences being created by the proposed Technical Specifications changes. Therefore, these changes do not create the possibility of a new or different kind of accident from any accident previously evaluated.

3) Does the proposed change involve a significant reduction in margin of safety?

No. The proposed changes ensure that the margin of safety for the fission product barriers protected by these functions will continue to be maintained. This conclusion is based on use of the applicable NRC-approved methodology for developing and establishing the proposed RCS PIT limits. Therefore, these changes do not involve a significant reduction in the margin of safety.

Based on the preceding analysis, it is concluded that the replacement of TS Section 3.4.3, Figures 3.4.3-1 and 3.4.3-2, with updated curves that are applicable up to 50 EFPY does not involve a significant hazards consideration finding as defined in 10 CFR 50.92.

3.0 ENVIRONMENTAL ANALYSIS 10 CFR 51.22(c)(9) provides criteria for identification of licensing and regulatory actions for categorical exclusion from performing an environmental assessment. A proposed change for an operating license for a facility requires no environmental assessment if operation of the facility in accordance with the proposed change would not (i) involve a significant hazards consideration; (ii) result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite; (iii) result in a significant increase in individual or cumulative occupational radiation exposure. Duke Energy Progress, Inc., has reviewed this request and determined that the proposed change meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22( c)(9). Pursuant to 10 CFR 51.22(b ), no environmental impact statement or environmental assessment needs to be prepared in connection with the issuance of the amendment. The basis for this determination is as follows:

Proposed Change The proposed change will revise the RCS pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits," Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 EFPY.

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 Page 5 of 5 The proposed changes meet the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9) for the following reasons:

1) As demonstrated in the No Significant Hazards Consideration Determination, the proposed changes do not involve a significant hazards consideration.
2) The proposed changes revise the RCS pressure and temperature limits by replacing Technical Specifications Section 3.4.3, "RCS Pressure and Temperature (PIT) Limits,"

Figures 3.4.3-1 and 3.4.3-2, with figures that are applicable up to 50 EFPY. These changes do not affect the generation or control of effluents. Therefore, the proposed changes will not result in a significant change in the types or significant increases in the amounts of any effluents that may be released offsite.

3) The proposed changes, as previously described, do not affect any parameters that would cause an increase in occupational radiation exposure. There are no proposed physical changes to the facility or any process changes that would result in additional radiation exposure. Therefore, the proposed changes will not result in a significant increase in individual or cumulative occupational radiation exposure.

U.S. Nuclear Regulatory Commission to Serial : RNP-RA/15-0083 5 Pages (including this cover page)

PROPOSED TECHNICAL SPECIFICATION CHANGES

Replace with Insert 1 RCS PIT Limits 3.4.3 MATERIAi S PROPERTIES BASE Curves applicable for heatup rates up to 60 °F/Hr for CONTROLLING MATERIAL: Upper Shell Plate W10201-1 Service period up to 35 EFPY.

~* iting ART Values at 35 EFPY: 1/4T, 167' F 3/4T, 147'F Heatup Curves include +10°F and -60 psig allowance For instrumentation error.

2250 2000 1750 Ci Acceptable Operation "iii

.s: 1500 Heatup Rate to I!!

i Ill 60 ' F/Hr Ill I!!

Q. 1250 "C

IV u

'6

.: 1000 Criticality Limit based on service Hydrostatic test T perature (226' F) for the rvice period up to 750 35 EF Y 500 250 100 150 200 250 300 350 400 450 Indicated Temperature (°F)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-7 Amendment No ~

- Replace with INSERT2 RCS PIT Limits

'II 3.4.3 MATERIALS PROPERTY BASE CONTROLLING MATERIAL: Upper Shell Plate W10201-1 Curves applicable for cooldown rates up and Girth Weld 10-273 100°F/Hr for the service period up to 35 iting ART Values at 35 EFPY: 1/4T, 167°F and 242°F EFPY. Curves include +10°F and -60 IG 3/4T, 147°F and 172°F allowance for instrument error.

2500 2250 2000

(;- 1750 iii E

s (I)

(I) 1500 E

0..

"C Acceptable Operation I

.el CJ

'6 1250

=

1000 Cooldown Rate

("F/Hr 750 500 50 100 150 200 250 300 350 400 450 Indicated Temperature (°F)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limits Applicable Up to 35 EFPY HBRSEP Unit No. 2 3.4-8 Amendment No. 21'8-

!INSERT 1 I MATERIALS PROPERTIES BASE Controlling r.tateriat Upper Snell Plate W1D201-1 & Girtll Weld 10-273 Curves appHcable for lleatup rates up to 60' F/Hr for Limfti11g AAT V alues at 50 EFPY. 1/4T, 172"F & 263'F service period up to 50 EFPY 3/4T, 153'F & 191 'F Heatup Curves include +20'F and -SD psig A llow ance for lnstrumentatio11 error.

2:00 22:0 2000

=

'ii a

1500 t

'C

~ 12:0

~

1000 1:0 500 2: 0 100 1$0 200 2:--0 350 400 4:0 500 s:o lndicatedTemperature<<FJ Figure 3 4 3-1 Reactor Coolant System Heatup Limits Applicable Up to 50 EFPY

jlNSERT 21 MATERIALS PROPERTIES BASE cur11es applicable for cooldown rates up to 100* F/Hr Controllin!J Material Upper Shell Plate W10201-1 & Girth Weld 10-273 for the seniice period up to 50 EFPY Limfting ART Values at SD EFPY: 1/4T. 172'F & 263'F Cuives include +20' F and -80 PSIG Allowance for 314T, 153'F & 191'F Instrumentation error 2750 2500 2250 2000 1750 S'

ii5

~

CD

I 151!0 Ill Ill CD IL "Cl CD 1250 10

~

.5 1000 750 500 250 50 100 150 200 250 300 350 4!!0 450 500 550 Indicated Temperature ("F)

Figure 3 4 3-2 Reactor Coolant System Cootdown Limitations Appllcable Up to 50 EFPY

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 3 Pages (including this cover page)

REVISED TECHNICAL SPECIFICATION PAGES

RCS PIT Limits 3.4.3 MATERIALS PROPERTIES BASE Controlling Material: Upper Shell Plate W10201-1 & Girth Weld 10-273 Curves applicable for heatup rates up to 60"F/Hr for Limiting ART Values at 50 EFPY: 1/4T, 172°F & 263"F service period up to 50 EFPY 3/4T, 153°F & 191 "F Heatup Curves include +20°F and -80 psig Allowance for Instrumentation error.

2500 2250 2000 Leak Test Limit 1750 Ci Unacceptable Operation

'iii

.!: Acceptable Operation I!! 1500

I 111 Heatup Rate to

~

II..

60°F/Hr "C

~ 1250 u

'6 1000 Criticality Limit based on lnservice Hydrostatic test temperature (221 "F) for the service period up to 50 EFPY 750 500 250 o +-r~-..-,-~~*-.-.~.-...-,.-,.-~....-~.....-J~~-.-.-.-.~.-.--.-.-..--.,.-,-..-.-~~~~~-......1 0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature ("F)

Figure 3.4.3-1 Reactor Coolant System Heatup Limits Applicable Up to 50 EFPY HBRSEP Unit No. 2 3.4-7 Amendment No.

RCS PIT Limits 3.4.3 MATERIALS PROPERTIES BASE Curves applicable for cooldown rates up to 100° F/Hr Controlling Material: Upper Shell Plate W10201-1 & Girth Weld 10-273 for the service period up to 50 EFPY.

Limiting ART Values at 50 EFPY: 1/4T. 172°F & 263°F Curves include +20°F and -80 PSIG Allowance for 3/4T, 153°F & 191 °F Instrumentation error.

2500 2250 2000

~

~IU-n-a-cc_e_p-ta-b-le-0-peration I 1750 6'

Ci) e:. 20°F/ Hr I!! 1500

J U)

U)

Acceptable Operation I!!

a.

"C 1250 60°F/ Hr ca u

c

.E 1000 Cooldown Rates

(°F/Hr) 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Indicated Temperature {°F)

Figure 3.4.3-2 Reactor Coolant System Cooldown Limitations Applicable Up to 50 EFPY HBRSEP Unit No. 2 3.4-8 Amendment No. _ _

U. S. Nuclear Regulatory Commission to Serial: RNP-RA/15-0083 93 Pages (including this cover page)

WESTINGHOUSE REPORT, WCAP-15827, "H.B. Robinson Unit 2 Heatup and Cooldown Limit Curves for Normal Operation" (Non-Proprietary Class 3)

Westinghouse Non-Proprietary Class 3 WCAP-15827 March 2003 Revision 0 H.B. Robinson Unit 2 tI Heatup and Cooldown Limit Curves for I

Normal Operation

'f Ir f

I II t

'l

~

'(

I 8westinghouse

  • WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15827, Revision O H.B. Robinson Unit 2 Hcatup and Cooldown Limit Curves for Normal Operation T. J. Laubham March2003 Prepared by the Westinghouse Electric Company LLC for the Carolina Power & Light Co.

Approved: ~ (vkl~

J.A. Gresham, Manager c.-* Engineering and Materials Technology Weslinghouse Electric Company LLC Energy Systems P.O. Box3.S.S Pinshurgh. PA 15230.0355

>2003 Wes1inghousc Electric Company LLC All Rights Reserved

iii TABLE OF CO~TENTS LIST OFTABLES ........................................................................................................................................iv LIST OF AGURES ...................................................................................................................................... vi EXEClITIVE SUl\11\1ARY ......................................................................................................................... vii INTRODUCTION ............................................................................................................................ I 2 FRACTURE TOUGHNESS PROPERTIES .................................................................................... 2 3 CRITERlA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS .................... 7 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE ............................................ 11 5 HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES ........................ 29 6 REFERENCES ............................................................................................................................... 56 APPENDIX A: PT CURVES WITHOUT FLANGE REQUIREMENT .................................................. A-0 APPENDIX B: VESSEL WALL(l/4T. 3/4Tand T)TEMPERATURES ................................................ 8-0

iv LISTOFTAlltES Table I Summary of lhe Best Estimate Cu and Ni Weight Percent and Initial RTNOT Values for the H.B. Robinson Unit 2 Reactor Vessel Materials ..................................................... 3 Table 2 Calculared lntegrared Neutron Exposure of the Surveillance Capsules @

H.B. Robinson Unit 2.......................................................................................................... 4 Table 3 Calculation of Chemistry Factors using H.B. Robinson Unit 2 Surveillance Capsule Data ....................................................................................................................... 5 Table4 Summary of the H.B. Robinson Unit 2 Reactor Vessel Bel\Hne Material Chemistry Factors ............................................................................................................... 6 Table S Calculated Neutron FJuence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface ( 1019 n/cm2

  • E > 1.0 MeV) ..................................................... 12 Table 6 Summary of the Vessel Surface, J/4T and 3/4T F1uence Values used for the Generation of Che 30, 35, 40, 45 and 50 EFPY Heatup/Cooldown Curves ....................... 14 Table 7 Summary of the Calcul3ted FJuence Factors used for the Generation of the 30, 35, 40, 45 and 50 EFPY Heatup and Cooldown Curves ......................................................... 16 Table 8 Calculation of the ART Values for the l/4T Location @ 30 EFPY .................................. 18 Table 9 Calculation of the ART Values for the 3/4T Location @ 30 EFPY .................................. 19 Table 10 Calcularion of the ART Values for che l/4T Location @ 35 EFPY .................................. 20 Table 11 Calculation of Che ART Values for the 3/4T Location @ 35 EFPY .................................. 21 Table 12 Calculation of the ART Values for the l/4T Location @ 40 EFPY .................................. 22 Table 13 Calculation of the ART Values for che 3/4T Location @ 40 EFPY .................................. 23 Table 14 Calculation of the ART Values for the l/4T location @ 45 EFPY .................................. 24 Table 15 Calculation of the ART Values for the 3/4T Location @ 45 EFPY .................................. 25 Table 16 Calculation of the ART Values for the l/4T Location @ 50 EFPY .................................. 26 Table 17 Calculation of the ART Values for the 3/4T Location @ 50 EFPY .................................. 27

v LISTOFTABLF.S Table 18 Summary of lhe Limiting ART Values Used in the Generation of lhc H.B. Robinson Unit 2 Heatup/Cooldown Curves ...................................................................................... 28 Table 19 30 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnainties for Instrumentation Errors) ................................................................... 33 Table20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) .................................................................. 35 Table 21 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for ln!itrumcntation Errors) ................................................................... 38 Table 22 35 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .................................................................. 40 Table23 40 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnainties for Instrumentation Errors) ................................................................... 43 Table 24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncenainties for Instrumentation Errors) .................................................................. 45 Table 25 45 EFPY Heatup Curve Data Points Using 1996 App. G (without Uncenaintics for Instrumentation Errors) ................................................................... 48 Tablc26 45 EFPY Cooldown Curve Data Points Using 1996App. G (without Uncenaintics for Instrumentation Errors) .................................................................. 50 Table 27 SO EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) ................................................................... S3 Tablc28 SO EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) .................................................................. SS

vi UST OF FIGURf..S Figure I H.B. Robinson Unit 2 Reactor Coolant System Heat up Limitations (Jlealup Rates of 60 & I 00°F/hr) Applicable for the First 30 EFPY

(\Virhout Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 31 Figure 2 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumental ion Errors) Using 1996 App. G Methodology ........... 32 Figure 3 H.B. Robinson Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 & J00°F/hr) Applicabli! for 1he First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 36 Figure4 H.B. Robinson Unit 2 Reactor Coolant System Cootdown Limitations (Cooldown Rates up lo 100°F/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodology ........... 37 Figure 5 H.B. Robinson Unit 2 Reactor Coolant System Hcarup Limitations (Heatup Rates of 60 & I 00°F/hr) Applicable for the First 40 EFPY (Without Margins for Instrumental ion Errors) Using 1996 App. G Methodology ........... 41 Figure6 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limittitions (Cooldown Rates up to 100°F/hr) Applicable for the First 40 EFPY (Without Margins for lnsirumentation Errors) Using 1996 App. 0 Methodology ........... 42 Figure 7 H.B. Robinson Unit 2 Reactor Coolant System Heatup Limitations (Hcatup Rates of 60 & J00°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. 0 Methodology ........... 46 Figure 8 H.B. Robin~on Unit 2 Reactor Coolant System CoolJown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using '996 App. G Methodo\ogy ........... 47 Figure 9 H.B. Robinson Unit 2 Re:icror Coolant System Heatup Limitations (Heatup Rates of 60 & I00°F/hr) Applicable for the First 50 EFPY

(\Vithout M:irgins for Instrumentation Errors) Using 1996 App. G Methodology ...........51 Figure 10 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (CooIdown Rates up 10 I00°F/hr) Appl icablc for the First 50 EFPY (Without Margins for Instrumentation Errors) Using 1996 App. G Methodo\ogy ...........52

vii EXECUTIVE

SUMMARY

This report provides the methodology and results of the generation ofheatup and cooldown pressure temperature limit curves for nonn:il operation of the H.B. Robinson Unit 2 reactor vessel. In addition, the vessel wall temperature dati is documented herein under the Appendices.

The PT curves were generated based on the latest available reactor vessel infommtion and Ouenees

{WCAP-1580S)fll, which were up<bted to reflect actual power realized from the R021 uprate. The new H.B. Robinson Unit 2 heatup and cooldo\\11 pressure-temperature limit curves were generated using ASME Code Case N-641121 (which allows the use of the Kie methodology and "Circ. Flaw" methodology) and the a.'tial flaw methodology of the 1995 ASME Code,Section XI through the 1996 Addcndat3l.

It should be noted that H.B. Robinson was limited at the l/4T and 3/4T locations by the upper to intermediate shell circumferential weld with exception to the 3/4T location at 30 EFPY (Limited here by the upper shell plate Wl0201*1). The limiting axial material was the upper shell plate Wl0201*1. The pressure-temperature (PT) limit curves presented in Section S and Appendix A arc developed using the "axial-flaw methodology with the most limiting "a"<i:il-flaw" adjusted reference temperatures (ARTs), and the "Circ Flaw" Methodology (ASME Code Case N-641. formerly known as N-Sssl*I) with the mQfil limiting "Circ. Flaw" ART values. The "a.'tial-flaw" ART values produce a more limiting PT curve overall with exception to the higher temperatures where at a ccrt3in point, depending on the EFPY, the curve could switch from "axial-flaw" limited to a "circ-flaw" limited curve. When and where this occurs is noted within the data tables for each specific PT-limit curve.

[Note that the PT limit curves ofAppendix A arc the same as those in Section S, with exception of removing the flange requirement for potential future use.]

I INTRODUCTION He:uup and cooldown limit curves are calculated using lhe adjusted RTNOT (reference nil-ductility temperature) corresponding to the limiting belt line region m:iterial of the reilctor vessel. The adjusted RTNor of the limiting material in the core region of the reactor vessel is determined by using the unirrildiated reactor vessel material fracture toughness properties. estima1ing the radiation-induced flRTNOT* and adding a margin. The unirradia1ed RTNl>T is designated as the higher of either the drop weight nil-ductility transition temperature (NDTI) or the 1empcra1ure al which the malerial exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to &he major working direction) minus 60°F.

RTNl>T increases as the material is exposed to fast-neutron radiation. Therefore. to find the most limiting RTNOT at any time period in the reactor's life, flRT NOT due to the radiation exposure associated with that rime period must be added to the unirradiated RTNOT (IRTNOT). The extent of 1he shift in RTNOT is enhanced by certoiin chemical clements (such as copper and nickel) present in reactor vessel steels. The Nucleilr Regul:uory Commission (NRC) has published a method for predicting radialion embriulement in Regulalory Guide 1.99, Revision 2, ..Radialion Embrillll!menl of Reactor Vessel Malerials.1' 1 Regulatory Guide 1.99, Revision 2, is used for lhe calculation of Adjusted Reference Tempcralure (ART) values (lRTNOT + .1.RTNM'+ margins for uncertainties) at the 1/4T and 3/4T locations, where Tis the thickness of the vessel at the belt line region measured from the clad/base metal interface.

The heatup and cooldown curves documented in this report were generaled using the most limiling ART values and the NRC approved methodology documented in WCAP-14040-NP-A, Revision 21"'1, "Me1hodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" wilh exception of the following: I) The Oucnce values used in this report arc calculated nuence values (i.e. comply with Reg. Guide l.190). not the best estimate flucnce values.

2) The K1c crilical stress intensities are used in place of the K1, criticill stress inlensities. This me1hodology is laken from approved ASME Code Case N-641m. 3)The 1996 Version of Appcndiit G to Sec1ion X1 1 ~ 1 will be used rather than the 1989 version.

WCAP-IS827

2 2 FRACTURE TOUGHNESS PROPERTIES The fracture-toughness propenies of the ferri1ic materials in 1he reactor coolant pressure boundary are determined in accordance wi1h the NRC Standard Review Plan 171* The bellline material properties of the H.B. Robinson Unit 2 reactor vessel is presen1ed in Table I.

Best estimate copper (Cu) and nickel (Ni) weight percent values used to calculate chemistry factors (CF) in accordance with Regulatory Guide 1.99, Revision 2, are provided in Table I. Addition:illy, surveillance capsule data is available for four capsules (Capsules S, V, T and X) already removed from lhe H.B. Robinson Unit 2 reactor vesse1. This l'IUr\'cillance capsule dala was ntso used lo cakuta1e CF values per Posilion 2.1 of Regulatory Guick 1.99, Rcvbion 2 in Table 4. These CF values are summarized in Table 5.

The Regulalory Guide 1.99, Revision 2 methodology used lo develop the heatup and cooldown curves documented in this report is the same as that documented in WCAP-14040, Revision 2.

Credibility Evalu:11ion Robinson surveillance program contains surveillance malerial from alJ three intermediate shell plates and from weld material fabricated from weld wire heat number W52 I4, which is the same heat as the upper lo intermedia1e shell girth weld seam. In order to apply the surveillance data to such evaluations as developing ART values, you lirst have to evaluate whether or not the data is credible. The procedures for cvalualing credibility are prescribed in Regulatory Guide 1.99, Rev. 2 and IOCFR50.61, along with guidance provided by the NRC at an industry meeting on February 12111 & 13th, 1998. The credibility cvalualion for lhe Robinson data has already been performed under lhe Capsule X repon, WCAP-15805, and the results were as follows:

  • Surveillance plate materials from lnlermediate Shell Plates WI0201-4 and Wl0201-6 were determined 10 be not credible.
  • Surveillance plate ma1erials from Intermediate Shell Plate W 10201-5 was determined 10 be credible.
  • Surveillance weld metal (Heat W5214) from Robinson only was dclermined to be not credible. Note that there exists surveillance data of the same heat from Indian Point Units 2 and 3. lf this data were integrated with Robinson, the surveillance weld data would then be credible. For conservatism, however, the Indian Point surveillance data will not be used. Robinson data alone produces a slightly lower chemistry factor via Position 2.1, but this is offset by the higher margin because of the non-credible data.

Ba~d on the results above, only intennediate shell plate W10201-5 may use a reduced m3rgin when calculating ART via Position 2.1. All other surveillance data win use the full a~ in determining margin and ART.

WCAP-1.5827

3 TABLE I Summary of the Best Estimale Cu and Ni Weight Pcrccnl and Initial RT NOT Values for the H.B. Robinson Unil 2 Reaclor Vessel Materials Material Description Cu (%)'8' Ni(%)1* 1 Initial RT"rrr1d 1 Closure Head A:mge WI 0208 ... 0.70 60°F Vessel Range WI0209 ... 0.67 60°F Inlet Nozzle 0.02 0.75/0.90 6Qopcl Outler Nozzle 0.15 0.71 6Qoptl Upper Shell Pl:itc WI 020 I -1 0.13 0.11 69°F Upper Shell Pl:ite WI 0201-2 0.15 0.25 30°F Upper Shell Pl:itc WI 0201-3 0.11 0.08 36°F lmenncdi:itc Shell Plate WI020l-i 0.12 0.09 20°F Intermediate Shell Plate WI0201*5 O.IO 0.12 20°F Jn1ermcdiate Shell Plate WI0201 *6 0.l)() 0.09 45°F Lower Shell Plate W9807-3 0.12 0.10 50°F Lower Shell Plate W9807-5 0.15 0.10 33°F Lower Shell Pl:ite W9807-9 0.14 0.15 9°F Upper Shell Plate Longitudinal 0.22 o.os*b* -56°F Weld Sc:ims 1-273A, B,C(He:it # R6054D)

Intermediate Shell Plate Lon~itudin:il 0.22 o.os*b* -56°F Weld Scams 2*273A, B. C (Heat# R6054 8)

Lower Shell Plate Longitudinal 0.22 0.051b* -56°F Weld Scams 3-273A. D. C (Heal# 860548)

Upper to Jnh:rmcdiatc Shell Plate Circumferential o.21*h* 1.01 -56°F Weld Scam 10-273 (Heat# W5214)

Intermediate 10 Lower Shell Plate Circumforcntial 0.19 0.98 -77°F WelJ Scam 11-273 (Heat# 3-iD009)

Nozzle Welds --_,,, --_.,, -56opcl Surveillance Weld (Heat# W5214)'c1 0.34 O.fl6 ---

Notes:

(a) Cu & Ni are the currcnl docketed v3lues for Robinson 2 (Ref 8 for the plates and Ref. 9 for the Welds). The Jnle1 nozzle forgings (heal Xl5156/XSJ 16J) were ohl3incd rcr the Midvalc-Heppcnstall CMTRs.

(b) Rounded 10 two decimal poinls per ASTM E29. using the Rounding Method" (c) Per WCAP-IOJ04.

(d) Oocke1cd values per Ref. 8. All values ar~ mc3surcd Cllccpl welds of heat numbers 860548 &. WS214.

(e) Assumed $Cncric value per Standard Review Pl3n Branch Technical Position MTED 5-2.

(0 No Copper Value availahlc, however since the inlet noule was reported as 0.02 Cu ii is conservative to assume thal the oullct nozzle Cu value will llC no higher than the highcsl vessel plate or nozzle Cu value.

(g) Sec Tahle 4.

WCAP-15827

The chemistry factors were calculated using Regulatory Guide 1.99 Revision 2, Posit ions I.I and 2.1.

Position 1.1 uses the Tables from the Reg. Guide along with the best estim.1te copper and nickel weight percents. Position 2.1 uses the surveillance capsule data from all capsules withdrawn to dale. The Ouence values used to determine the CFs in Table 4 are the calculated nucnce values at the surveillance capsule locations. The measured ARTNor values for the weld data were adjusted for chemistry using the ratio procedure given in Position 2.1 of Regulatory Guide 1.99, Revision 2.

All calculated Ouence values (capsule and projections) for H.B. Robinson Unit 2 were updated and documented in WCAP-15805 111* These fluences were calculated using the ENDF/B-VI scattering cross-section data set. Table 2 is a summary of the capsule Ouences from 11.B Robinson Unit 2.

TABLE2 Calculated Integrated Neutron faposure of the Surveillance Capsules @ H.B. Robinson Unit 2 Capsule Flue nee s 4.79 x I011 nkm 2, (E > 1.0 McV) v 5.30 x 1011 n/r:m2, (E > 1.0 McV)

T 3.87 x I0 19 n/r:m2, (E > 1.0 McV) x 4.49 x I0 111 n/cm~. (E > 1.0 McV)

WCAP-15827

5 TABLE3 Calculation of Chemistry Factors using H.B. Robinson Unit 2 Surveillance Capsule Data f\1atcrial Capsule Capsule r* 1 FFb1 flRTNoT ' 1 1

FF*ARTNOT FF2 ln1crmcdia1c Shell s 0.479 0.795 .n.51 25.85 0.632 Plalc WI 0201-4 x 4.49 1.381 104.73 144.63 1.907 (Long.) SUM: 170.48 2.s:w Cfw1o:x11 .~ = I(fF *RTNot> + I< FF!)= (170.48) + (2.539)= 67.1°F ln1ermedi:11c Shell s 0.479 0.795 15.29 12.16 0.632 Plate WI0201-5 v 0.530 0.823 47.01 38.69 0.677 (Long.) SUM: 50.85 1.309 Cfw10201-s = I<FF

  • RT,..-oy) + I< FF2) =(50.85) + ( 1.309) = 38.8°f Intermediate Shell s 0.479 0.795 13.8 10.97 0.632 Plate WI0201*6 T 3.87 1.3-49 75.24 IOI.SO 1.820 (Long.) . SUM: 112.47 2.452 Cfwur.o*** = I<FF *RTtmT) + I< FP) = ( J 12.47) + =

(2.452) 4S.9"F Surveillance Weld V(HDR2) 0.530 0.823 221.88 (209.32) 182.61 0.677 Matcrial'd* T(HBR2) 3.87 J.3-49 305.44 (288.1.5) 412.04 1.820 X (HBR2) 4.49 1.381 281.89 (265.93) 3119.29 1.907 SUM: 983.9-4 4.40-i CF s-. Weld a: !.<FF* RTNOT) + I.{ FF1) = (98J.9-4°F) + (4.404) =22J.4"F Note<;;

(a) f = flucncc. Sec Table 2, (x 1019 n/cm2* E > 1.0 MeV).

(b) FF= nucnce factor= ( 0*11

  • 0 **1osn.

(c) ti.RTNOT values arc the measured 30 ft-lb shifl values taken from the following documents:

- H.B. Robinson Uni1 2 ..* WCAP-1'805111 (I.I) = =

Ratio HDR2 230.2 + 217.7 1.06 for the H.B. Robinson Unit 2 data.

(The pre-ndjustcd values are in parenthesis.)

WCAP-15827

6 TABLE4 Summary of the 11.B. Robinson Unit 2 Reactor Vessel Beltline Material Chemistry Factors Material Reg. Guide 1.99, Re,*. 2 Reg. Guide 1.99, Rev. 2 Position J.1 Cf's1* 1 Position 2.t Cf's Inlet Nozzle 2oop*' ...

Outlet Nozzle I 13°f4° ...

Upper Shell Plate W 10201-1 62.9°F ...

Up(ll!r Shell Plate WI 0201-2 84.8°F ...

Urpcr Shell Plate WI0201-3 51.8°F .. -

Intermediate Shell Plate WI0201-4 57.J°F 67.1°F Intermediate Shell Plate WI0201*5 51.2°F 38.8°F Intermediate Shell Plate \\'10201-6 44.2°F 45.9nF Lower Shell Plate \\'9807-3 58.0°F ...

Lower Shell Plate W9807-5 70.5°f ---

Lower Shell Plate W9807-9 70.5°f ...

Up[ll!r Shell Plate Longitudinal 100.8°F ...

Weld Scams 1-273A, B, C (Heal # 86054 8)

Intermediate Shell Plate Longitudinal I00.8°F Weld Seams 2-273A, B, C (Heat# 860548)

Lower Shell Plate Longitudinal 100.8°F . -.

Weld Scams 3-273A, B. C (Heat# 860548)

Up[ll!r to Intermediate Shell Plate 230.2°F 223.4°F Circumferential Weld Scam 10-273 (Heat# WS214) ln1crmcdia1c 10 Lower Shell Plate 217.1°F ...

Circumfcrcn1ial Weld Scam 11-273 (Heat# 348009)

Nozzle Welds 230.2°f'bl .. -

Surveillance Weld (Hc:u # WS214) 210.7°F --.

NOTE:

(a) See Tahlc I for cxplan:nion of the copper and nickel values used to determine the chemistry factor.

(b) Since no copper or nickel content is availahlc, it is conserva1ively assumed that the chemistry factor is equal lo that of the highesl weld on 1hc vessel (i.e. Heat #W.5214).

WCAP-1.5827

7 3 CRITERIA FOR ALLO\VABLE PRESSURE-TEl\1PERATURE RELATIONSHIPS 3.1 Overall Approach The ASME approach for calculating 1he allowable limit cun.*es for various heatup and cooldown rates specifies that lhe total stress intensity factor, K1o for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater 1han the reference slress intensity factor, Kie. for the metal temperature at that time. K1c is obtained from the reference fracture toughness curve, defined in Code Case N-640, ..Alternative Reference Frac1ure Toughness for Development of PT Limit Curves for Section Xl12 " 31 of the ASME Appendi~ G to Section XI. The K1c curve is given by the following equation:

(I)

where, reference stress intensity factor as a function of the metal temperature T and the metal reference nit-ductility temperature RTNOT This K1c curve is based on the lower bound of static critical K1 values measured as a function of temperature on specimens of SA-533 Grade B Class I, SA-508-1, SA-508-2, SA-508-3 steel.

3.2 Methodology ror Pressure-Temperature Limit Curve De,,*elopment The governing equation for the heatup-cooldown analysis is defined in Appendix G of Che ASME Code as follows:

(2) where, K1m = stress intensity factor caused by membrane (pressure) stress K11 = stress intensity factor caused by the thermal gradients K1c = reference stress intensity factor as a function of temperature relative to the RTNOT of the material C s::: 2.0 for Level A and Level B service limils C = 1.5 for hydrostatic and leak tesl conditions during which the reactor core is not critical WCAP-15827

8 For membrane 1cnsion, 1he corresponding K1 for the postulated defect is:

Kim= M,,,x(pR./t) (3) where. Mm for an inside surface flaw is given by:

1.85 for .Ji < 2, 0.926 .fi for 2 S .fi S 3.464

  • 3.21 for .fi > 3.464 Similarly. Mm for an oulside surface flaw is given by:

1.77 for .Ji < 2, 0.893 .fi for 2 S JI S 3.464 ,

3.09 for .Ji > 3.464 and p =internal pressure, Ri =vessel inner radius, and t =vessel wall thickness.

For bending stress. the corresponding K1 for the postulated defect is:

Kn. = Mb

  • Maximum Slress, where M is two-thirds of Mm 11 The maximum K1 produced by radial thermal gradienl for che po!itulated in!iide surface defecc of G-2120 is K 1, = 0.953x JO.) x CR x tu. where CR is the cooldown rate in °F/hr.* or for a poslulated oulside surface defecl, K 14 =0.753x10* 3 x HU x t15, where HU is the heatup rale in °f/hr.

The through-wall temperature difference associated with the maximum thermal K1c:m be determined from Fig. G-2214-1. The temperature at any radial distance from the vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K1 *

(:a) The m:aximum thermal K1 relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-22 I 4.3(a)( I) and (2).

(b) Alternatively, the K1 for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a *A-thickness inside surface defect using the relationship:

K11 = (1.0359Co+ 0.6322C1+0.4753C2+0.3855C3) * / ; (4)

WCAP-15827

9 or similarly, Krr during heatup for a 'A-thickness outside surface defect using the relationi;hip:

K1, =(l.043Co + o."630C1 + 0.481C2+0.40 ICl)* Ji;; (5) where the coefficients Co. Ci. C1 and Cl are dctennined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:

(6) and xis a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maltimum crack depth.

Note, that equations 3, 4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves. No other changes were made to 1he OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040, "Methodology used lo Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"161 Section 2.6 (equations 2.6.2-4 and 2.6.3-1) with the exceptions just described above.

At any time during the heatup or cooldown transient, K1c is di:tennined by the metal temperature at the lip of a postulated naw at the I/4T and 3/4T location, the appropriate value for RTNOT* and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated nnd then the corresponding (thermal) slress in1ensity factors, K11 , for the reforence naw are computed. From Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, lhe reference naw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the naw is always at lhe inside of the wall because the thennal gradients produce tensile stresses nt the inside, which increase with increasing cooldown rates.

Allowahle pressure-tempcrarurc relations nre generated for both stendy*stare and finite cooldown rate situations. From these relations, composite limit curves are constructed for ench cooldown rate of interest.

The use or the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coofant tempcrarure, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed naw. During cooldown, the l/4T vessel location is at a higher temperature than the Ouid adjacent to the vessel inner diameter. This condition. of course, is nor true for the steady-state situation. It follows that, at any given reactor coolant temperature, the 41T (temperature) developed during cooldown results in a higher value of Kie at lhe If.ff location for finite cooldown rates lhan for steady-state operation. furthennore, if conditions exist so that the increase in Kk exceeds K11 , the calculated allowable pressure during c:ooldown will be greater than the Mcady-state \'alue.

WCAP-15827

10 The above procedures are necdl!d bccau!.e there is no direct control on temperature at the l/4T location and, lherefore, allowable prc~!.ures may un~nowingly be violated if the rate of cooling is decreased at various inlervals along a cooldown ramp. The ui.e of the composile curve eliminates this problem and ensures conserv;uive opera1ion of the sy!>lem for 1he entire cooldown period.

Three separate calculations are required 10 de1ermine 1he limit curves for finite heatup rates. As is done in the cooldown analysis. allowable pre!.sure-temperature relationships are developed for ~ready-state conditions as well as finite heat up rate conditions assuming the presence of a l/4T defect at the inside of the wall. The heatup rc:sulls in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant tempera1Ure:

therefore, lhe K1c for the l/4T crnck Juring heatup is lower than lhe Kie for lhe l/4T crack during ~teady state conditions al the same coolanl temperature. During hcalup, especially al 1he end of lhc lransienl, conditions may exist so 1hat lhe effec1s of compressive 1hennal stresses and lower K1c values do not offset each other, and lhe pressure-temperature curve based on steady-Mate conditions no longer represents a lower bound of all similar curves for finite he:uup rates when the l/4T naw is considered. Therefore, both cases have to be analyzed in order to ensure that al any coolant temperature the lower value of the allowable pressure calculated for !lteady-!>tatc and finite healup rates is obtained.

The second ponion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a l/4T Oaw located at the l/4T location from the outside surface is assumed. Unlike the situation at the \'e!ii.el inside ~urface, the thermal gradients established at the outside surface during hca1up produce Mre!.i.es which are tensile in nature and therefore lend to reinforce any pressure stresses present. These thermal ~tresses arc dependent on both the rate of hcatup and the time (or coolant temperature) along the hcatup ramp. Since the thennal stresses at the outside arc tensile and increase with increasing heatup rates. each heatup rate must be an:ilyzed on an individu:il basis.

Following the gener:ition of pressure-temperature curves for both the Meady-state and finite heatup rate situations, the final limit cur\'cs are produced by con~tructing a compo~ile curve based on a point-by-point comparison of the ~teady*state and finite heat up rate data. At any given temperature, the aUowable pres~ure is laken to be the lesser of the three \'alues laken from the curves under consideration. The use of the composile curve is necessary to set conservative heatup limilations because it is possible for conditions to exist wherein. over the couri.e of the heatup ramp, the controlling condition switches from the inside to the outside. and the pressure limil mu!lt at all times be based on analysis of the most critical criterion.

3.3 Closure llead/\'essd Flange Requirements 10 CFR Part 50, Appendix 0 1111 .iddresses the metal temperature of the closure head nange and vessel nange regions. This rule litatcs that the metal temperature of the closure nange regions must exceed the material unirradialed RTNor by al leaM 120°F for nonnal operation when lhe pressure exceeds 20 percent of 1he prcsel'\'ice hydroslalic te!.l pres!>ure (3106 p~i), which is 621 psig for H.B. Robinson Unit 2. The limiting unirradiated RTNor of 60°F occurs in both the closure head and \'Cssel nanges or lhe H.B.

Robinson Unit 2 reactor o,*essel. i.o the minimum allowable temperature oflhis region is 180°F at pressures grealer than 62 l p~ig. This limit is !\hown in Figures 5-1 through 5-10 wherever applicable.

WCAP*l5827

II 4 CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusled reference temperature (ART) for each material in the bchline region is given by the following expression:

ART= lniti:lf RTNt>f +ART1111>r +Margin (7) lni1ial RTNOT is Che reference temperature for the unirradialcd malerial as defined in paragraph NB-2331 of Section Ill of the ASME Boiler and Pressure Vessel Codelll1* If measured values of initial RTNOT for the material in question arc not avallable, generic mean values for tha' class of material may be used if there are sufficient test results 10 eslablish a mean and standard deviation for the class.

ARTNOT is the mean value or the adjustment in reference tcmpcralurc caused by irradiation and should be calculated as follows:

(8)

To calculate ARTNOT at any depth (e.g., at l/4T or 3/4T), the following formula must first be used to attenuate the flucnce at the specific depth.

(9) where x inches (vessel bel1Jine thickness is 9.313 inches) is the dcp1h into the vessel wall measured from the vessel clad/base metal interface. The resulrant Ouence is then placed in Equation 8 to calculate the ARTNor at the specific depth.

The Westinghouse Radiation Engineering and Analysio; Group evaluated the vessel nuence projections in WCAP-15805, which were updated toreOcct a total power uprate of 1.77r to 2339 Mw. They are presented in a condensed version in Tabk S of this rcpon. The evaluation used the ENDF/B-VJ scattering cross-section data set. This is con~istent with methods presented in WCAP-14Q.i0-NP-A,

Methodology Used to Develop Cold Overpressure Mitigating Sysrem Sctpoints and RCS Hcatup ond Cooldown Limit Curves". Table S contains lhe calculated vessel surface nucnces values al various azimuthal locations, and in some instances at various longitudinal locations. Tables 7 and 8 contain the J/4T and 3/4T calculated fluences and fluence factors, per the Regulatory Guide 1.99, Revision 2, used to calculate the ART values for all beltline materials in the H.B. Robinson Unit 2 reactor vessel.

WCAP-15827

J2 TABLES Cakulaled Neu1ron Auence Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface CJ 0 19 n/cm2* E > 1.0 Me V)

Azimuthal Location EFP\' oo 10° 20° 30° 40° Peak V~I Longitudinal Location (-4 inches above Cor~ Midpl:and 20.39 2.76110 1" 2.05 Jt to'" 1.24 ll IO'" 9.69 l to 11 6.63 Jt 101*

21.78 2.87 ll 101" 2.14" 10 "

1 1.29* 101" 1.02 l 10 1" 7.01 it JO" 29 3.68 I JO'" 2.73 x 1 I0 " 1.62 Jt 10 1

" 1.27 x 10 1

" 9.001 J0 11 30 3.79 ll IO'" 2.81 lt to'" 1.67 x I0 1" 1.30 ll JO'" 9.27 ll Jo 1*

3.5 4.3.5x IO'" 3.23 ll JO'" 1.89 x IO'" 1.48ll 101" J.06 ll to 19 40 4 .901t JO'"  :.l64 Jt JO'" 2.12 x 101" l.65x IO'" 1.20 ll J0 19 4.5 ~.4S 1 10 "

1 4.05 l 10 1.. 2.3.5it10 1" 1.82 JI 101" 1.33 It 101..

.50 6.01x10 1" 4.461 IO'" 2.!'\81 I01" 2.00 l 101" 1.47 ll 101" Upper to Inter. Shell Circ. Weld 20.39 1.21 x 101" - ... -* -

2J.78 1.2.5 l 10 1 29 1.S711 10 1

IO 1.62 x 10 1 3.5 1.841110 1 40 2.06 x 101" *-* **- ... ...

45 2.2811 to'" -- --- - -

so 2.50

  • 1 I0 " - -- - -

Inter. to LowerSheJJ Cfrc. Weld 20.39 1.52 ll 101" -- **- *- --

21.78 1..54 1 I 10 "

29 t .67x JO'"' - - - -

30 1.69 x 10 1 35 1.78 ll 10" -- ... -- -

40 1.87 x 101" -- ... - -

45 l.96 x IO'" - - - -

so 2.05 1 JO'" - - - -

WCAP-J.5827

13 TABLE 5 - (Continued)

Calcufated Neutron Auence'Projections at Key Locations on the Reactor Vessel Clad/Base Metal Interface

()019 n/cm2* E > 1.0 MeV)

Azimuthal l...ocalion EFPY Peak*

Inlet Nozzles 50 3.93 x 1017 Outlet Nozzles*

50 2.53 x I0 17

  • Only the SO EFPY values are listed since the Noulc:li will not he limiting materials due to their low Oucncc values. This will be demonstrated in the ART cakul31innc; for 50 EfPY only. Values for the lnll!t and Outlet Nozzles were taken from Table 6-1 Kof WCAP* 1.5!10.5 (Used lhc Nt1zzlc Weld Flucnccs for conscrvalism).

WCAP-15827

14 TABLE6 Summary of the Vessel Surface, l/4T and 3/4T Auence Values used for lhe Generation of lhe 30, 35, 40, 45 and 50 EFPY Hcatup/Cooldown Cur\'eS Material Surfare l/4Td J/4Tct 1 1 1

(.Vcm .E > 1.0 Me\') (.Vcm ,F. > 1.0 MeV) (nlcm .E > 1.0 l\leV) 30 EFP\'

1 lntermedi:lle Shell Plates (Peak Flucncc) 3.79 x 10 "' 1 2.17 x 10 " 7.09 x 10*~

1 Upper to Inter. Shell Circ Weld, Upper Shell l.62x 10 " 9.26 X I0 1 K 3.03 x 10 11 Plates and Upper Shell Long. Welds111 Inter. to Lower Circ. Weld, Lower Shell Plates 1.69 x JO'"' 9.67 x 10 1* J.16 x rn 111 and Lower Shell Long. Welds lnrcr. Shell Long. Welds 2.!11 x I0 1"' 1.61JC101'1 S.26 x I0 11 (I Cl", 20* or 40-)n. 1 35 EFPY Intermediate Shell Plates (Peak Aucncc) 4.35 x I0 1"' 2.49 x 101"' IU4 x IO" Upper to lnrer. Shell Circ Weld, Upper Shell 1.84 x JO'"' 1.05 x 1

10 " 3.4..t x 10 11 Plates and Upper Shell Long. Welds111 1 1 111 Inter. lo Lower Circ. Weld, Lower Shell Plates 1.78 x 10 "' 1.02 x I0 "' 3.33 x 10 and Lower Shell Long. Welds Inter. Shell Long. Welds 3.23 x 10 "

1 1.85 x 10 111 6.04 x I011 (10°, :zoo or 40°)'bl 40 EFP\'

Intermediate Shell Plates (Peale. Flucncc) 4.90 x 101" 2.80 x 101"' 9.17 x 1011 Upper to Inter. Shell Circ Weld, Upper Shell 2.06 x JO'" 1.18 x 101'1 3.85 x J0 11 Plates and Upper Shell Long. Welds111 1

Inter. to Lower Circ. Weld, Lower Shell Plates 1.87 x I0 " 1.07 x 101" 3.50 x 10 111 and Lower Shell Long. Welds ln1er. Shell Long. Welds 3.64 x JO'"' 2.08 x 10111 6.80 x 10 111 1111 (10°. 20* or40°)

45 EFPY 111 1 lntermediale Shell Plates (Peak Fluence) 5.45 x 10 3.11 x 101.. 1.02 x I0 "

1 Upper to ln1er. Shell Circ Weld, Upper Shell 2.28 x 10 " l.30x 10 "

1 4.26 x I0 111 Plates and Upper Shell Long. Welds111 1 1 ln1cr. 10 Lower Circ. Weld. Lower Shell Pla1cs 1.96 x 10 " 1.12 x I0 " 3.67 x 1011 and Lower Shell Long. Welds 1 1 Inter. Shell Long. Welds 4.0S x 10 " 2.32 x 10 " 7.56 x I0 11

( 10", 10" or 40")'111 Noles on Next Page.

WCAP-15827

15 TABLE 6 (Continued)

Summary of lhc Vessel Surface. l/4T and 3/4T Fluence Values used for the Generation of the 30. 35. 40. 45 and 50 EFPY Heatup/Cooldown Curves Material Surface 11.irc* 3/4rc>

(n/cm 2

.r. > 1.0 MeV) 2 (n/cm .E > 1.0 MeV) 1 (n/cm ,E>1.0 Me\')

SOEFPY Intermediate Shell Plates (Peak Auc:nce) 6.01 x 1019 3.44 ll I0 19 1.12 ll IO'"

Upper lo Inter. Shell Circ Weld. Upper Shell 2.50 x 1

10 " 1.43 ll I0 19 4.68 x I0 11 Plates and Upper Shell Long. Welds111 Inter. 10 Lower Circ. Weld, Lower Shell Plates 2.05 x 1019 1.17 x IO'" 3.83 x 1011 and Lower Shell Long. Welds Inter. Shell Long. Welds 4.46 x I019 2.55 x J019 8.3.i x 1018

( 100. 20° or 40°)1111 Inlet Nozzle 3.93 x I0 17 2.24 x 10° 7.35 x I0111 Outlet Noulc 2.53 ll 1017 1.45 ll 1017 4.73 x J0 111 (a) For conscrvati~m the peak nucnce was u!ied even though Jong. welds arc not at the peak location (0°).

(b) The nuence was taken from the peak azimuthal location from the three rrovided.

(c) If.ff and 3/4T = FcSurfllCCI *c14 24 ** 1, where x is the depth into the ves~I wall (i.e. 9.3 J3*0.25 or 0.75)

WCAP-15827

16 TABLE?

Summary of the Calculated FJuence Factors used for the Generation of the 30, 35, 40, 45 and 50 EFPY Heatup and Cootdown Curves l\faCeriaf lf4Tf'*1 Jl4TFF 3/.CT r*> 3/4TFF 30 EFP\'

ln1crmedi:11e Shell Plales (Pc:ilt Flucncc) 2.17 x 10 "

1 1.21 7.09 x rn** 0.904 11 11 Upper 10 lnrcr. Shell Circ Weld. Upper Shell 9.26 x I0 0.978 3.03 x 10 0.672 Plales and Upper Shell Long. Welds1b 1 Jn1cr. to Lower Circ. Weld. Lower Shell Plates 9.67x 1o*r- 0.99) 3.16x 1011 0.684 and Lower Shell Long. Welds ln1er. Shell Long. Wc!Js (10°, 20° or 40°r 1.61 x IOh 1.13 5.26 x to'* 0.821 35 EFPY lnh:rmcdiate Shell Plates (Peak Flucncc) 2.49 x 10"' 1.25 8.14 x to 0.942 Upper lo Inter. Shell Circ Weld. Upper Shell 1.05 x IO'" 1.01 3.44 x 10111 0.706 Pla1cs and Upper Shell Long. Welds11" lnlcr. to Lower Circ. Weld, Lower Shell Plates 1.02 x l0 19 1.01 3.33" 10" 0.697 and Lower Shell Long. Wetds lnlcr. Shell Long. Welds (10°, 20° or 40°)' 0 1.85 x IO'" 1.17 6.04 x 10** 0.858 40 EFP\'

1 lntcnnedi:lle Shell Plates (Peak Aucncc) 2.80x 10 " 1.27 9.17 x to" 0.976 Upper 10 Inter. Shell Circ Weld, Upper Shell 1.18 x 10'" I.OS 3.85 x 10" 0.736 Plates ond Urpcr Shell Long. Weldsn.1 Inter. to Lower Circ. Weld, Lower Shell Pl:ucs 1.07" 10'" 1.02 3.SO x 10" 0 .710 and Lower Shell Long. Welds Inter. Shell Long. Welds ( 10°. 200 or 400)" 1 2.08 )l 10'" 1.20 6.80 x IO" 0.891 45 EFP\'

Intermediate Shell Plalcs (Peal: Aucncc) 3.11" 10*~ 1.30 1.02 x 10*~ I.OJ Upper co Inter. Shell Circ Weld. Upper Shell I.JO x JO'~ 1.07 4.26 x 10** 0.763 Plates and Urper Shell Long. Welds1b 1 Inter. to Lower Circ. Weld. Lower Shell Plates 1.12 x IOi I.OJ 3.67 .JC 10111 0 .723 and Lower Shell Long. Welds Inter. Shell Long. WclrJ'i ( 10°. 20° or 400)4" 2.32 .ic I01'i J.23 7.S6x 1011 0 .922 WCAP-15827

17 TABLE 7 (Continued)

Calculation of the l/4T and 3/4T Fluence Fac1or Values use~ for the Generation of the 30, 35. 40, 45 and 50 EFPY Hcalup/Cooldown Curves Material 1/4T F 91 l/4TFF 3/4Tf'*l 3/4TFF SO EFr\'

lntcrmcdi3te Shell Plates (Pcalt Aucncc) J.4.i x 10*~ 1.32 1.12 x 101y t.03 Upper 10 Inter. Shell Circ Weld, Upper Shell l.4J X IOIY 1.10 4.68 x 10)8 0.788 Plates and Upper Shell Long. Wclds1111 Inter. lo Lower Circ. Weld, Lower Shell Pla1cs J.17 lt JOl'I 1.0-i J.83 x w** 0.734 and Lower Shell Long. Welds Inter. Shell Long. Welds (10°. 20° or40°) 2.SS x JO'" 1.25 8.34 x IO"' 0.949 Intel Nozzle 2.24 x 1011 0.184 7.35 x 10 11' 0.089 17 1 Ou1lc1 Nozzle 1.45 x 10 0.140 4.73 x 10 " 0.064 (a) . .E > 1.0 MeV)

(n/c:m .~

(b) For conservatism the peak nucncc was used even lhough long. welds arc not a1 the peak loc.:nion (0°).

(c) The flucncc was Ulen from the peak azimuthal location from \he three provided.

Margin is calculated as, M = 2 ~a;+ a! . The standard deviation for the initial RTNITT rmrgin term. is a, 0°F when the initial RTNDT is a measured value, and I7°F when a generic value is available. The standard deviation for the AP:fHDT margin term, o.\. is I7°F for plates or forgings, and 8.5°F for plates or forgings when surveillance data is used. For welds, a.i is equal to 28°F when surveillance capsule data is not used, nnd is l4°F (half the value) whert credible survei\htnce capsule data is used. o" need not exceed 0.5 limes the mean value of ARTNOT*

WCAP-IS827

18 Contained in Tables 8 through 17 are the calculations of the 30, 35, 40, 45 and 50 EFPY ART values used for generation of the heatup and cooldown curves.

TABLES Calculation of the ART Values for the l/4T Location @ 30 EFPY Mattria1 R.tg.Guidt CF"' 1.4T FF IR.T.,nT*** taRT,..nT"' M ART'CI l.99 Rtv.2 (Of) (Of) l\lcthod Upper Shell Plate WI 020 I* I Position I.I 62.9 0.978 69 61.5 34 165 Upper Shell Pl:ue WI 0201 *2 Position I.I 84.8 0.978 30 82.9 34 147 Upper Shell Pla1e WI 0201 *3 Posi1ion I.I 51.8 0.978 36 S0.7 34 121 ln1crmedi3te Shell Pla1e Posilion I. I 57.1 1.21 20 69.1 34 123 WI02014 Posilion 2.1 67.1 1.21 20 81.2 341c1 135 ln1crmclli3tc Shell Plate Posi1ion I. I 51.2 1.21 20 62.0 34 116 WI0201*5 Posi1ion 2.1 38.8 1.21 20 46.9 17*c1 84 ln1c:rmedia1e Shell Plate Posilion I. I 44.2 1.21 45 5:1.4 3.$ 132 WI0201-6 Posi1ion 2.1 45.9 1.21 45 55.5 341c1 135 Lower Shell Plate W9807-3 Posilion I. I 58.0 0.991 so 57.4 34 141 Lower Shell Plate W9807-5 Position I. I 10.S 0.991 33 69.9 34 137 Lower Shell Plate W9807-9 Position 1.1 70.5 0.991 9 69.9 34 113 Upper. Inter. &. Lower Shell Position I. I 100.8 1.13 -56 113.9 65.5' 0 123 Plale Long. Weld Scams*d*

1-273A.B,C. 2*273A.8.C &:

3-273A.D.C (Heal# 860548)

Upper to Inter. Shell Plate Posilion I.I 230.2 0.978 -56 225.I 65.510 235 Circumfcren1i3I Weld Scam Posi1ion 2. I 223.4 0.978 *S6 218.5 65.Stc.O 228 10-273 (flcat # W5214) lnler. 10 Lower Shell Plate Posilion I. I 217.l 0.991 .77 215.1 56 19-1 Circumfcrenlial WclcJ Scam 11-273 (lleal # 3-iD009)

~

(a) Initial RT,.,111 \'3lucs arc measured values.

(h) ARTNOT .. CF. FF (c) ART= I + ARTicur + M (This value was round~-d per ASThf E29. using the *Roundinl,? Mcthoo".)

(d) Actu:il nuence is lower on the upper and lower shell long. wtlds versus the lntermcdi:ite $hell long. v.*clds. but since 1hcy arc 1hc same he:it II\ lhc inter. shell long Wf'lds thcn1he higher nucnccs will be used.

(c) Robinson su~cillancc weld dala * (stand alone) and lntcrmcdi:itc shell plates WI0201-4 and-6 are not credible.

lnlcnncdi:ite shell plate WIOlOl *S is cmlible (Ref. WCAP* 151105). The non-c:rcdihlc m:ncrials sh:ill use a full O.i.

(f) Initial RTNnl was generic. thus. <J, is equ:d ta 17°F.

WCAP-15827

19 TABLE9 Calculation of the ART Values for the 3/4T Location @ 30 EFPY Matuial Reg.Guide CF" 1ATFF IRT, 11r 1** ~RT"'T 1b1 M ART* 1 1.99 Rn. 2 (oF) (oF)

Method Upper Shell Plate WI0201*1 Position I. I 62.9 0.672 69 42.3 3.i 145 Upper Shell Pl:ne WI0201-2 Position I.I 84.8 0.672 JO 57.0 34 121 Upper Shell Plate \VJ0201-3 Po~ition I.I 51.8 0.672 J(i J.J.K 3.i I05 Intermediate Shell Plate Posilion I.I 57.1 0.90-i 20 51.6 3-' 106 WJ0201-4 Position 2.1 67.1 O.Q(l-i 20 60.7 34*d 115 lntermcdi3te Shell Pl:ite Position I. I 51.2 0.90-1 20 46.3 34 100 w10201-s Position 2.1 38.8 0.90-i 20 35.l 17*** 72 Intermediate Shell Plate Position I.I 4.t.2 0.90-i 45 40.0 3-' 119 WJ0201-6 Position 2.1 45.9 0.904 45 41.S 34*d 121 Lower Shell Plate W9807-3 Position I.I 58.0 0.684 so 39.7 3.S 124 Lower Shell Pl3tc W9807-S Position I. I 70.S 0.6K4 3J 48.2 34 115 Lower Shell Pl:itc W9807-9 Position I.I 10.5 0.684 9 48.2 3.S 91 Upper. Inter. &. Lower Shell Position 1.1 100.8 0.821 *56 82.8 65.S' 0 92 Plate Long. Weld Scams'"

I *273A.B,C, 2-273A.D.C &

3-273A.B.C (Heat# 860548}

Upper to Inter. Shell Plate Position I.I 230.2 0.672 -56 15-1.7 6s.s*'* 16-i Circumferential Weld Seam Position 2.1 22J.4 0.672 -56 150.I 65.51c.11 160 10-273 (Hc:n # WS214)

Inter. to Lower Shell Plate Position I. I 217.1 0.684 .77 l.tK.5 56 127 Circumferential Wc:ld Scam 11-273 (Hc:it # 348009)

~

(a) Initial RTlilJT \*alucs arc nicasurcd values.

Cb) ~RTMIT *CF

  • FF (c) ART= I + t.RT1111T + M (This value was roumkd per ASTM E29. using the "Roum.linti McthoJ".l

{d) Actual nuence is lower 0t11hc upper and lower shell Ion,. welds \"crsus 1hc inic~"\.liah.' shell Ion~. li\'dds. but since they are the same heat as the imcr. shell long welds lhenlhe hi~hcr (lucnccs will be: used.

(e) Robinson sunreillance weld data (stand alone) and intermediate shell plates WI 0201-4 anti -6 arc nnl credible.

lnlmncdiatc shell rla1c WI0201-.S is credible (Rer. WCAP- "80~). The non-crcdiMc moitcrials sh:ill use a run a,,.

(f) Initial RTNllT was icncric. thus. CJ, Is equal to I7*F.

WCAP-15827

20 TABLElO Calculation of lhe ART Values for the l/4T Location @ 35 EFPY Material Reg. Guide CF" 1ATFF IRTNnT*** ARTp,or'b' M ART'*'

J.99 Rev.2 (Of) (Of)

Method Upper Shell Plate WI0201*1 Position t. I 62.9 1.01 69 63.S 3.S I 67 Upper She11 Plate WI0201*2 Position I. I 84.8 1.01 30 85.6 3-1 ISO Upper Shell Plate W I020 I*3 Position 1.1 SJ.8 1.01 36 52.3 34 122 lntenncdiate Shell Plate Position 1.1 57.1 1.25 20 71.4 3.S 125 WI0201-4 Position 2.1 67.1 J.25 20 83.9 34*cl 138 lntenncdiatc: Shell Plate Position 1.1 51.2 1.25 20 6-1.0 ~ 118 WI0201*5 Position 2.1 38.8 1.25 20 48.5 17" 1 86 Intermediate Shell Plate Position I. I 44.2 1.25 45 55.3 3-1 13-1 WJ0201*6 Position 2.1 45.9 1.25 45 51.4 341.. 1 136 Lower Shell Plate W9807-3 Position I.I 58.0 1.01 so 58.6 34 143 Lower Shell Plate W9807*5 Position I. I 70.5 1.01 33 71.2 3.S 1:\8 Lower Shell Plate W9807-9 Position I .I 70.5 1.01 9 71.2 3.S 114 Upper. Inter. & Lower Shctl Position I. I 100.8 1.17 -56 117.9 65.5' 0 127 Plate Long. Weld Scams1d 1 1-273A.D,C, 2-273A.D.C &

3-273A.D.C (Heat# 860548)

Upper 10 Inter. Shell Plate Position I. I 230.2 I.OJ -56 232.5 65.S 242 Circumferential Weld Scam Position 2.1 223.4 1.01 *56 225.6 65 .Scc.n 235 10-273 (Heal# WS214)

Inter. 10 Lower Shell Plate Position 1.1 217.1 1.01 .77 219.3 56 198 Circumferential Weld Scam I 1*273 (Heat# 348009)

~

(a) lnilfal RT"'llT 'Values are measured nluc:s.

(bl ART.,,,,. =CF *FF (c) ART= I + ARTNllT + M (This value was round1.-d per ASTM E29. using 1hc: "Roonding Mc:1ho1.r.)

(d) Aclu3l nuence is lower on lhe upper and lower shell long. welds versus lhe intermcdi31e shc:ll lon11. welds. 1-ut since they arc lhc: same heat as the inter. shell long welds thcn1hc hil!her nuencts will be used.

(c) Robinson sun-eillance weld d3ta (stand alone) and intermedi31C shell plates W&0201-4 and -6 un: not credible:.

Intermediate shell plate WI0201 *.5 is credible (Ref. WCAP-1.5805). The non-credible maleri3ls sh:ill use 3 full ol.

CO lnilial RT" was 11."llcric. thus. a, is equ:il to 17°F.

WCAP*l.5827

21 TABLE II Calculation of the ART Values for the 3/4T Location @ 35 Efl>Y 11 ART'..

Material Reg.Guide CF"' 1ATFF IRTNoT181 ARTNl>T 1\1 J.99 Rev.2 (Of) (Of)

Method Upper Shell Plate WI0201*1 Position I.I 62.9 0.706 69 4.S.4 3.S l.S7 Upper Shell Plate WI0201*2 Position I. I 84.8 0.706 30 59.9 3.S 124 Upper Shell Plate WI0201*3 Posilion I.I 51.8 0.706 36 36.6 3.a 107 Intermediate Shell Pl:llc Position I. I 57.1 0.9-12 20 53.8 3.a I08 WI02ot-4 Position 2.1 67.l 0.9.$2 20 63.2 34**1 111 ln1crmcdia1c Shell Plate Posiiion I.I 51.2 0.942 20 48.2 34 102 WI0201*S Position 2.1 38.8 0.942 20 36.S 17*d 74 ln1ermediatc Shell Plate Position I. t 4.S.2 0.942 45 41.6 34 121 WI0201-6 Posi1ion 2.1 4$.9 0.942 45 43.2 3,tl*I 122 Lower Shell Plate W9807*3 Position 1.1 58.0 0.697 50 40.4 3.a 124 Lower Shell Plate W9807-5 Position I.I 70.5 0.697 ~) 49.1 3-1 116 Lower Shell Plalc W9807-9 Posi1ion I.I 70.S 0.697 9 49.1 3.$ 92 Upper, Inter. & Lower Shell Position I. I 100.8 0.858 -56 86.4 65.510 96 141 Pla1e Long. Weld Seams I *273A.D,C, 2-273A.B,C 8:.

3-273A.B.C (Heat# 860548)

Urpcr to ln1cr. Shell Plate Posi1ion U 230.2 0.706 -S6 162.5 65.5' 0 172.

Circumforen1ial Weld Scam Posilion 2.1 223.4 0.706 -56 157.7 6s.s*c.n 167 10.273 (H~al # W5214)

Inter. to Lower Shell Plate Position 1.1 '217.1 0.697 -11 151.3 56 130 Circumfcrcnlial Weld Scam I 1*273 (Hc3t # 34Il009)

~

(3) lniti31 RT.,.,JT values arc mc3surcd v3lues.

(b) bRTNIJT =CF*FF (c) ART= I + ART111,, + M ('lllis value was round\.'d per ASTM E29, usin! lhe wRoundin~ Method".)

(d) Actual nucnce is lower on lhe upper and lower shell long. welds ~ersus lhe in1ermcdi:ite shell Ion!. welds, bul since they arc 1hc s:imc hc:11 as 1he inter. shell long welds 1hen1he higher nucnces will be used.

(c) Rohinst'n surveillance weld d:it:i ; (sl:ind alone) and inrcrmcdi:ite shell plates WIOZOl-4 and-6 are nm credible.

Intermediate shell plate WI0201-) is credible (Rcr. WCAP*IS80S). The non-("rcdible materials shall use a foll G3 *

(0 Initial RTNOT was generic. thus, a, is equ:il 10 I 7°F.

WCAP-15827

22 TABLE 12 Calcul:uion of the ART Values for chc 1/4T Location @ 40 EFPY Mattriat Reg.Guide CF"' 1ATFF IRTrmT1* 1 ARTi-;ol" M ARTC' 1.99 Rev.2 (Of) (Of)

Method Urper Shell Pl3te wI020 I* I Position I.I 62.9 I.OS 69 66.0 34 169 Upper Shell Plate: WI 020 I*2 Position I.I 84.8 I.OS 30 89.0 3-1 153 Upper Shell Plale WI0201*3 Posi1ion I. I 51.8 I.OS 36 54.4 34 124 lntenncdiare Shell Pl3te Position I.I 57.1 1.27 20 72.S 34 127 WI0201-4 Position 2.1 67.1 1.27 20 85.2 3-1(0 139 Intermediate Shell Pl31e Position 1.1 51.2 1.27 20 65.0 34 119 WJ0201-5 Posirion 2.1 38.8 1.27 20 49.3 17'., 86 Intermediate Shell Plate Position I.I 44.2 1.27 45 56.I 3-1 135 WI0201-6 Position 2. I 45.9 1.27 4.S 58.3 341' 1 137 Lower Shell Plate W9R07-3 Position I.I 58.0 1.02 50 59.2 3-1 143 Lower Shell Plate W9807-5 Position I.I 70.S 1.02 33 71.9 34 139 Lower Shell Plate W9807-9 Position I.I 70.5 1.02 9 71.9 34. 115 Upper, Inter. & Lower Shell Position I.I 100.8 1.20 -56 121.0 65.S'° 131 Plate Long. Weld Seams1d 1 l-273A,n.c. 2-273A.B.C &

3-273A.B,C (Heat# 86054D)

Upper to Inter. Shell Plalc Position I.I 230.2 1.05 -S6 241.7 65.S'O 251 Circumferential Weld Scam P~ition 2.1 22:\.4 I.OS -56 23-1.6 65.S'**O 244 10-213 (Heal# W5!14)

Inter. to Lower Shell Plate Position I.I 217.1 1.02 -77 221.4 56 200 Circumfereniial Weld Seam 11-273 (Hc3t # 348009)

.tfillES,;

(a) Initial RT,.11, values arc measured values.

(b) ART1111rr *CF- FF (c) ART 1: I+ ARTNl>T + 1\1 (This value w:is rounded per ASTM E29. using the "Rounding Mc1hod".)

(d) Actu3l nucnce is lower 11n !he upper 11nd lower she11 long. wclJs versus the lntcrmcdia1c shell long. welds, but since they arc 1hc same hc:i111s the inter. shell long welds thenthc higher nucnces will be used.

(.:) Robinson surveill11ncc weld da111 (st11nd alone) 11nJ inlcl'lll\.-di1111: shell plates W10201-4 anJ -6 arc not credible.

ln1crmcdi:11e shell pl111e WI0201*S is credible (Rcr. WCAP-1.SH0.5). The non*cn:dible m11terials sh11ll use a (ull a6 *

<0 lnilial RT!'>llT was rcm.'lic. thus. a, is cqu11l 10 I7°F.

WCAP-15827

23 TABLE 13 Cakulalion of the ART Values for lhe 3/4T Local ion @ 40 EFPY Material Reg. Guide CF'CI 'ATFF IRT1110T "

1 1

~RTNoT1 ~ 1 1\1 ART4c' 1.99 Rev. 2 (af) (aF)

Method Upper Shell Plate WI0201*1 Posi1ion I.I 62.9 0.736 69 46.3 3-1 149 Upper Shell Plate WI0201-2 Position I. I 8-1.8 0.736 30 62.4 34 126 Upper Shell Plate WI 0201-3 Position I. I 51.S 0.736 36 38.1 34 IOS lnlcrmediatc Shell Plate Posirion I. I 57.1 0.976 20 55.7 34 110 WI02014 Posirion 2.1 67.1 0.976 20 65.S 34*c1 120 lntermedi:ire Shell Plate Position 1.1 Sl.2 0.976 20 50.0 34 104 WI0201*S Posirion 2.1 31t8 0.976 20 :n.9 rte* 75 lnrermediate Shell Plate Position I. I 44.2 0.976 45 43.1 34 122 WI0201*6 Posirion 2.1 45.9 0.976 45 4-1.8 34tcl 124 Lower Shell Plate W9807*3 Position I.I 58.0 0.710 so 41.2 34 125 Lower Shell Plate W9807-5 Position I. I 70.5 0.7IO :n SO.I 34 117 Lower Shell Plate W9807-9 Position I. I 70..5 0.710 9 .50.1 34 93 Upper. lnlcr. & Lower Shell Position 1.1 100.8 0.891 *56 89.8 65 ..5'° 99 Plarc Long. Weld Scams*Ji 1*273A.B.C, 2*273A.B,C &

3-273A.B.C (Hc:it # 8605.tB)

Urpcr to Inter. Shen Pbtc P<>!iition I. I 2:\0.2 0.736 -56 169.4 65.510 179 Circumferential Weld Seam Position 2.1 223.4 0.736 -56 16.t.4 65.S'cn 17.t 10-273 (He:it # W.5214)

Inter. &o Lower Shell Plate Position I. I 217.1 0.710 -77 154.1 56 133 Circumrcrcntial Weld Scam I 1*273 (Heal# 348009)

~

(3) Initial RT,.11r v:ilues :ire measured \*:alues.

(b) .dRT11111T a CF* FF (c) ART* I + .dRTNUT + M (This ":lluc was mund1.-d per ASTM E29. usinl! the "Roundinl! ~kthod",)

(J) Actual fiucnce Is lower on 1he urrcr and lower shell long. welds "ersu<> the intermediate shell Ion!!. we!Js. but since they :ire the s:imc he:it 1s the inier. shell Joni welds thenthc hither fluences will be USt.-d.

(c) Robinson sul'\'eill:ince weld dat:i (sland alone) and lntem1t.-di31e shell plJtcs W 10201-4 and -6 an: not credible.

Intermediate shell plate WI0201*S Is cn:dihlc (Rcr. WCAP-1!'180!'1). The non-crcditilc matcrfals shall u~ a full a4 *

<0 Initial RTPUIT WilS 1encric. thus. a, is equal lo I7°F.

WCAP*l.5827

TABLE 14 Calcul:uion of 1he ART Values for the l/4T Location @ 45 EFPY Material Rtg. Guide CF.. ' lATFF IRTN0T'* 1 ~RT,.oT"" M AR~~'

1.99 Rev. 2 (Of) (Of) l\fdhod Uppcr Shell Plate WI0201*1 Posilion I. I 62.9 1.07 69 67.3 34 170 Uppcr Shell Plate W I0201-2 Position I. I 84.8 1.07 30 90.7 34 ISS Uppcr Shell Pl;nc W I0201-3 Position I. I 51.8 1.07 J6 5.5.4 J.$ 125 lntcrmcdi:ue Shell Plate Position 1.1 57.1 1.30 20 74.2 34 128 WJ0201-4 Position 2.1 67.1 1.30 20 87.2 34*ct 141 Intermediate Shell Plate Position I. I .51.2 1.30 20 66.6 34 121 Wl020\-5 Position l. \ 38.S 1.30 20 50.4 n"1 87 lntermcJiate Shell Plate Position I. I 4..\.2 1.30 45 57.4 34 136 WI0201*6 Position 2.1 45.9 1.30 4.5 59.7 34tcl 139 Lower Shell Plate W9807-3 Position I.I 58.0 1.03 so 59.1 34 144 Lower Shell Plate W9807-S Position I.I 10.5 1.03 33 72.6 34 140 Lower Shell Plate W9807-9 Position 1.1 10.S 1.03 9 72.6 34 116 Uprcr. lntcr. & Lower Shell Posit ion I.I 100.8 1.23 -56 124.0 65.S'° 134 Plate Long. W~ld Scams1d 1 1-27:\A.D,C. 2-27JA.D.C &

3-2HA.B.C (Heat# 86054B) 11 Upper 10 Inter. Shell Plate Position 1.1 230.2 1.07 -56 246.3 65.5 ' 256 Circumferential Weld Scam Position 2.1 223.4 1.07 -56 239.0 65.S'cn 249 10-27.\ (Heat# W5214)

Inter. lo Lower Shell Plate Position I.I 217.1 1.03 -77 223.6 56 203 Circumrcrcntial Weld Scam l l-273 (Hl!at ff 3-'ll009)

~

(a) Initial RTMIT v:ilues arc mc3surcd values.

(h) ~RTN11T *CF*FF Cc> ART* I + ~RTM1T + M (This value w3s rounded per ASTM E29, usinr the "Roundinl:! Method".)

(di Actual nul'ncc is lower on lhc upper and lower shell lonr. \lo'Clds versus the inrcrmcdiatc shdl long. v.c:lds. hut since they are the same hc:11 11s the inter. shell long welds thcnthc hirher flucnces will be used.

(c) Robinson surveillance weld data (st3nd alone) and intermediate shell pl:itcs WI02014 and -6 are nut crcdihlc.

lntcrll1'.'tliatc shell pl3tc WI0201-S is credible (Rcr. WCAP-15805). The non-credible materials sh:ill u~ a full a-'.

(f) lni\ia\ RTl'ollT was rcncric, lhus. O, is equal to 11°F.

WCAP-15827

25 TABLE 15 Calcula1ion or &he ART Values for lh!! 3/4T Loca1ion @ 45 EFPY Material Reg. Guide crt** *ATFF IRT!'lnT'*' &RT,..0Tcb1 1\1 ART'c' 1.99 Rev.2 (Of) (Of)

Method Upper Shell Pla1c WI 020 I* I Pmilion I. I 62.9 0.7M 69 48.0 34 ISi Upper Shell Pl ale WI 020 I*2 Posi1ion I.I 84.8 0.763 30 64.7 34 129 Upper Shell Pla1c W I020 I*3 Pusilion 1.1 51.8 0.763 36 39.5 34 110 lntermedia1c Shell Plate Position I. I 57.1 1.01 20 57.8 34 112 WJ0201-4 Posilion 2.1 67.1 1.01 20 67.8 34 122 Intermediate Shell Plalc Posi1ion I. I 51.2 1.01 20 51.7 34 106 WI0201*S Position 2.1 38.8 1.01 20 39.2 17*t* 76 ln1crmcdia1c Shell Plate Position I.I 44.2 1.0I 45 44.6 34 124 WI0201*6 Posilion 2.1 45.9 1.01 45 46.4 34*** 125 Lower Shell Plate W9807-3 Posit ion I.I 58.0 0.723 50 41.9 34 126 Lower Shell Plate W9807-5 Position I.I 70.5 0.723 33 51.0 34 118 Lower Shell Plalc W9807*9 Position I.I 70.5 0.723 9 51.0 34 94 Upper, lnler. & Lower Shell Position I.I 100.8 0.922 -56 92.9 65.511'1 I02 Plale Long. \Vele.I Scam!>*d*

1-273A.B,C, 2-273A.B.C &

3-273A.n.c (Heal# 8605.JB)

Upper to ln1er. Shell Plate Posi1ion I.I 230.2 0.763 -56 175.6 65.511'1 185 Circumferential Wclc.I Scam Position 2.1 223.4 0.763 -56 170.5 65.S'c.o 180 10*273 (Heal# W5214) lnicr. 10 Lower Shell Plate Position I.I 217.1 0.723 -77 157.0 56 136 Circumfcrcn1ial Weld Sc:im 11-273 (Heat# 348009) till1li (3) Initial RTNUT values arc mcasun:d values.

(b) .6RTNllT c: CF

  • FF (c) ART= I + 4RTsut + M (This \'alu..: was rounded per ASTM E29. using the "Rounding Me1hod",)

(d) Aciual nucnce is lower on 1hc upfll'r and lower shell Ion!!. welds versus 1hc intermediate shell Ion~. welds. hut since lhey arc lhe same hc3t as the inter. shell long welds thcnthc higher flucnces will be used.

(e) Robinson survcillanl'C ~clJ dJla (st01nJ alone) and in1crmcdia1c shell pla1es WI0201-4 and -6 arc 001 credible.

lnlcnnediate shell pla1e WI 0201-~ is credible (Rcr. WCAP* 1580~ ). The non-cn:dihlc materials shall use a run CJ".

(0 lnilial RTNllT was gcncric.1hus. CJ, is equal 10 I 7°F.

WCAP-15827

26 TABLE 16 Calculation of the ART Values for the l/4T Location @ 50 EFPY IRTNDTl*t 11 l\lalerial Reg.Guide Cf"' 1ATf"f ARTl'mT " M ART<'

1.99 Rev.2 (Of) (OF)

Mtthod Inlet Nozzle Posi1ion I.I 20 0.184 60 3.7 34.210 98 Ou1lct Nozzle Posilion I.I IU 0.140 60 IS.8 37.S'° 113 Upper Shell Plale WI0201 *I Posi1ion I. I 62.9 1.10 69 69.2 34 172 Urper Shell Plate WI0201-2 Position 1.1 84.8 1.10 30 93.3 34 157 Upper Shell Pla1c WI0201 *3 Posi1ion I.I Sl.8 1.10 36 57.0 3-1 127 Intermediate Shell Pla1c Posi1ion I.I S7.I 1.32 20 75.4 34 129 WI0201-4 Posilion 2.1 67.l 1.32 88.6 J~ftl 143 20 lntcrmcdiale Shell Plalc Posi1ion I. I 51.2 1.'.\2 20 67.6 34 122 WJ020J-5 Posi1ion 2.1 38.8 i.:u 20 51.2 17*d 88 Jn1crmcdia1e Shell Pla1e P~i1ion I.I 44.2 *1.n 45 58.3 3-t 137 WJ0201-6 Position 2.1 45.9 J.32 45 60.6 34*cl 140 Lower Shell Plate W9807-3 Position 1.1 58.0 1.0-t 50 60.3 34 144 Lower Shell Plale W9807-5 Position I. I 70.5 1.04 33 73.3 34 140 Lower Shell Plate W9807*9 Posi1ion I. I 70.S 1.04 9 73.3 34 116 Upper. Inter.&. Lower Shell Position I.I 100.8 1.2.S -56 126.0 65.510 136 Pla1e Long. Weld Scams1d' 1-273A.n.c, 2-273A.B.C &.

3-273A.B,C (Hcai # 860548)

Upper to ln1er. Shell Pl.:11c Position I.I 230.2 1.10 -56 253.2 6S.S'° 263 Circumrerential Weld Scam Position 2.1 223.4 1.10 -56 2.is.1 65.Sfc.0 255 10-273 (Heat# W.5214)

Inter. to Lower Shen Plate Position 1.1 217.l 1.o.i .77 225.S 56 205 Circumrerenli:ll Weld Scam I 1-273 (Heal# 34B009)

NozzkWelds Position I. I 230.2 0.184 -56 42.4 .5-t.3'0 41

~

(3) Jnili3l RTmJT v3lucs arc measured \*alucs.

(b) t.RTNnT "'CF* fF (c) ART* I+ ARTNIJT + M (This v3luc was rounded per ASTM E29. using the "Rounding Method".)

(d) Aclual nucncc Is lower on the upper and lower shell lune. welds \'Crsus the inlcrmcdi3tc shell Ions. welds. but since they arc 1hc same heat as 1hc inter. shell long welds thcnthc hither nucnccs will be used.

(c) Robinson survc:illancc: weld dala (stand :!lone) and intcrmcdi3tC shell pl3te5 WJ0201-4 and -6 arc not credible.

Intermediate: shell plate W10201-S is credible <Ref. WCAf>*l!i805). The non-credible m:ncrials shall use a full o-'.

(f) Initial RT,.l>T W3S rcncric. thus. o, is equal to 17°F.

WCAP-1.5827

27 TABLE 17 Calculation of the ART Values for the 3/4T Location @ 50 EFPY Material Reg. Guide CFd 1ATf*r I RTNor*** .6.RT,.or'b' 1\1 ART"'

1.99 Rev.l (Of) (Of)

Method Inlet Nozzle Position I.I 20 0.088 60 1.8 341 96 Outlet Nozzle Position l.J 1IJ 0.0<>-l 60 7.2 J.i.8 102 Upper Shell Plate WI 020 I* I Position I.I 62.9 0.788 69 49.6 34 153 Upper Shell Plate WJ0201-2 Position I.I 84.8 0.788 30 fi<l.8 34 131 Upper Shell Plate WI0201-3 Position I. I 51.8 0.788 36 *Ul.8 34 111 Intermediate Shell Pla1e Position I.I 57.1 1.03 20 58.8 34 113 WI0201-4 Position 2.1 67.1 I.OJ 20 (19.1 3.i*tl 123 Intermediate Shell Plate Position I.I 51.2 I.OJ 20 52.7 34 107 WI0201-5 Position 2.1 38.8 J.OJ 20 40.0 1r 1 77 Intermediate Shell Plate Position I.I 44.2 l:OJ 45 45.5 34 125 WI0201-6 Position 2.1 45.9 1.03 45 47.J 34*c1 126 Lower Shell Plate W9807-3 Position I.I 58.0 0.73..& so 42.6 34 127 Lower Shell Plate W9807-S Position I. I 10.S 0.734 33 51.7 34 119 Lower Shell Plate W9807 *9 Position I. I 10.S 0.734 9 51.7 34 95 Upper, Inter. & Lower Shell Position I.I 100.8 0.949 -56 95.7 65.S IOS Plate Long. Weld Seams1* 1 1*273A.n.c. 2*273A.B.C &

3-273A.D,C(He:it # 860548)

Upper to Inter. Shell Plate Position I.I 230.2 0.7HK *56 181.4 65.5' 11 191 Circumferential Weld Scam Position 2.1 223.4 0.788 -56 176.0 65.51cr1 186 10-273 (Heat# WS214)

Inter. to Lower Shell Plate Position I.I 217.1 0.734 -77 159.4 56 138 Circumferential Weld Seam 11-273 (Heat# 348009)

Nozzle Welds Position I.I 230.2 0.089 -56 20.5 39.7'1'1 4

~

(a) Initial RTNUT \"3lucs are mc3surcd values.

(b) ARTNllT =Cf. FF (c) ART .. I + ART"'11T + M (This value W3S rounded per ASTM E29. usin~ lhc "Roundini Mc1hud".)

(d) Aclual Ouc:ncc is lower on lhc upper and lower shell Ion~. \\elds versus the in1c:rmcdia1t: shell Ion~. wclJs. bu1 since 1hi:y arc the '3me heal as the Inter. shcll lonB welds 1hen1hc higher flucncc:s will be used.

(c} Robinson surveillance weld data (stand alone} and lnterrm.-diatc shell plates WIO:?Ol-4 an<l -6 arc not credible.

lntrnncdiale shc:ll plale WI 0201 *S is credible (Ref. WCAP* I!'iK05). The non*cn:dihlc marcri;ils shall u~ a full 0 6

  • CO lni1ial RT...,,, was reneric. lhus. o, is equal lo l 7°F.

WCAP-IS827

28 The upper to inrermediate shell plare girth weld has rhe highest overall ART. However, since Code Case N-641 allows for less restrictive methodology to be used when the highest ART comes from a girth weld, then the highest non-girth weld ART must be identified. The upper shell plate WI 0201*1 has 1hc highest non-girth weld ART for all EFPYs in question.

Conrained in Table 18 is a summary of lhe limiting ARTs to be used in the generation of the H.B.

Robinson Unit 2 reactor vessel heatup and cooldown curves. The upper shell ART values were used in conjunction wirh the me1hodology from lhe 1996 ASME Code Section XI, Appendix G. while the Upper to Intermediate She\1 Plate Circ. Weld ART va\ues were used with the methodology from ASME Code Case N-641 (Circ. Flaw Methodology). A composile curve was creared from the results of lhe 1wo curve sels. The limiring composile curves will be presenled in Seer ion 5.

TABLE18 Summary of the Limiting ART Values Used in the Generation of the H.B. Robinson Unit 2 Hearup/Cooldown Curves EFPY 1A T Limiling ART ~~ T Limiting ART Upper to Intermediate Sh.ell Plate Circumferential Weld (10-273)*

30 235 164 35 242 172 40 251 179 45 256 185 50 263 191 Upper Shell Plate \\'10201*1 30 165 145 35 167 147 40 169 149 45 170 151 so 172 153

  • The Posi\ion I. l ART Va\ucs were selected since the Robin!>on weld d;\\a (Position 2.1) w3s deemed non-credible.

WCAP-15827

29 5 HEATUP AND COOLDO\VN PRESSURE-TEMPERATURE Lll\fIT CURVES Pressure-temperature limit curves for nonnal heatup and cooldown of the primary reactor coolant system have been caiculated for the pressure and temperature in the reactor vessel beltlinc region using the methods discussed in Sections 3.0 and 4.0 of this report. This approved methodology is also presented in WCAP-14040-NP*A, Revision 2 with exception of those items discussed in Section 1 of this report.

Figures I, 3, S, 7 and 9 present the limiting heatup curves \\ithout margins for possible instrumentation errors using heatup rates of 60 and I00°F/hr applicable for the first 30, 35, 40, 45 and 50 EFPYs, respectively. These curves were generated using the 1996 ASME Code Section XI, Appendix. G with the limiting plate ARTs in combination \\ith ASME Code Case N-588 and the limiting circ weld ARTs. The curves produced using the limiting plate ARTs are primarily bounding throughout the heatup curves, however there arc instances that the circ weld becomes limiting at higher temperatures {See bolded values In rhe data tables).

Figures 2. 4, 6, 8 and 10 present the limiting cooldO\\n curves \\ithout margins for possible instrumentation errors using cooldown rates of 0, 20, 40, 60 and 100°f/hr applicable for 30, 35, 40, 45 and 50 EFPYs, respectively. Again. these curves were generated using the 1996 ASME Code Section XI, Appendix G with the limiting pl3te ARTs in combination v.ith ASME Code Case N-588 and the limiting circ weld ARTs. The curves produced using the limiting plate ARTs are primarily bounding throughout the cooldown curves, however there arc instances that the circ weld becomes limiting at higher temperatures (See holdcd values in the data tables).

Allowable combination of temperature and pressure for specific temperature change rates arc below and to the right of the limit lines shown in Figures I through 10. This is in addition to other criteria which must be met before the rC3ctor is made critical, as discussed below in the following paragraphs.

The reactor must not be made critical until pressure-temperature combinations arc to the right of the criticality limit line shown in Figures I, 3, 5, 7 and 9. The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservicc hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equ:ition for the hydrostatic test is defined in Code Case N-6401 21 (approved in February 1999) as follows:

where, K1m is the stress intensity factor covered by membrane (pressure) stress, Kie= 33.2 + 20.734 cl002 CT*RTNDT>I, T is the minimum permissible metal temperature, and RTNOT is the metal reference nil~uctility temperature.

The criticality limit curve specifics pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Reference 14. The pressure-temperature limits for WCAP*IS827

30 core operation (except for low power physics tests) arc that the re.'.lctor vessel must be at a temperature equal to or higher than the minimum temperature required for the inscrvice hydrostatic test. and at least 40°F higher ~ the minimum pcnnissible temperature in the corresponding pressure-temperature curve for hcatup and cooldown calculated as described in Section 3.0 of this report. for the hcatup and coo1down curves without margins for instrumentation errors, the minimum temperatures for the in service hydrostatic 1e:tk tests for the H.B. Robinson Unit 2 reactor vessel at 30, 35, 40, 45 and 50 EFPY are 214°F, 216°F, 2 l 8°F, 2 J9°F and 221°F, respectively. The vertical line drawn from these points on the prcssure-tcmperaturc curve, intersecting a curve 40°f higher than the pressure-temperature limit curve, constitutes the limit for core operation for the rC3ctor vessel.

Figures 1 through I 0 define all of the above limits for ensuring prevention of nonductilc fuilure for the H.B.

Robinson Unit 2 reactor vessel for various EFPYs. The data points used for the he.1tup and cooldown pressure-temperature limit curves shoY.n in Figures I through 10 arc presented in Tables 19 through 28.

The balded values arc those limited by the girth weld using the "Circ-FJaw" Methodology. The non-bolded values arc those limited by the Upper shell Plate using the standard "Axial-Flaw" Methodology from the 1996 version of the ASME Code Section XI, Appendix G WCAP-15827

31 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WJ020l-l LIMITING ART VALUES AT 30 EFPY: 114T. 165°F 3/4T, 145°F joper11111 Verslon .5. t Run *2910B I Leek Test Limit 2250 ... ...... .

Unacceptable Acceptable 2000 Operation Operation 1750 - ... ..-..

0 (ij D.

CD

J II) 1500 *--- * - -*-

Heatup Rate Crltlcal Llmlt 60 Deg. F/Hr II) 100 Deg. F/Hr II>

D.

1250 *-****

'O Q)

I ll "S

u 1000 . -***-*'"--*- . -* ....

"iQ 0

750 .. - ..... . - ...

500 ----* - - ***-**- -* .* *-*. ... *.. ' .....

Boltup Criticality Limit based on 250 Temp. inservlce hydrostatic lest

\emperature (214 F) for the service period up to 30 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure I 11.8. Robinson Unit 2 Reactor Coolant System llcatup I.imitations (lleatup Rates of 60 & 100°f/hr) Applicable for the l'irst 30 l*:FrY (Without l\lar~ins for Instrumentation Errors) Usins: 1996 App.G Methodoloi:y WCAP-15827

32 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE Wl0201-I & GIRTH WELD 10-273 LIMITING ART VALUES AT 30 EFPY: l/4T. 165°F & 235°F 3/4T. 145°F & 164°F 2500 lop~r*m VerslOfl:S.1 Aun*291oa I 2250 Unacceptable 2000 Operation Acceptable Operation 1750 CJ iii D..

G>

~

1500 Ill Q.

1250. .. .

'Cl Ill ca

1000 .

u

'; CooldowD u Raln FIHr

  • l**dJ'******
  • 20, and -40 750.

CooldowD 500. RatuFnlr

-eoa

  • 100 250 -

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-1.5827

.:u TABLE 19 30 EFPY He:llup Curve Dala Poinls Using 1996 App. G (wi1hou1 Unccrt:iinlics for Jns1rumcn1:ition Errors)

SO Heatup* SO Criti<al Limit* 60 llealup 60 Critical Limit 100 lleatup 100 Critical Limit TC°F, P (psig) T (0 f, r (psig) Tf 0 f) r (psig) T (0 f) r (psig) T(OF) P(pslg) TC 0 f) P (psig) 60 0 214 0 60 0 214 0 60 0 214 0 60 621 214 621 60 621 214 621 60 621 214 621 6S 621 214 621 6!'i 621 214 621 6S 621 214 621 70 621 214 621 70 621 214 621 70 621 214 621 75 621 214 621 75 621 214 621 75 621 214 621 80 621 214 621 80 621 214 621 80 621 214 621 85 621 214 621 HS 621 214 621 85 621 214 621 90 621 214 621 90 621 214 621 90 621 214 621 95 621 214 621 95 621 214 621 95 621 214 621 100 621 214 621 IOO 621 214 621 100 621 214 621 IDS 621 214 621 I05 621 214 621 105 621 214 621 110 621 214 621 I JO 621 214 621 110 621 214 621 llS 621 214 621 llS 621 214 621 115 621 214 621 120 621 214 621 120 621 214 621 120 621 214 621 125 621 214 621 12S 621 214 621 125 621 214 621 130 621 214 621 130 621 214 621 130 621 214 621 135 621 214 621 135 621 214 621 135 621 214 621 140 621 214 621 140 621 214 621 140 621 214 621 145 621 214 621 14.S 621 214 621 145 621 214 621 ISO 621 214 621 150 621 214 621 I.SO 621 214 621

\SS 621 214 621 1S5 621 214 621 155 621 214 621 160 621 214 621 160 621 214 621 160 621 214 621 165 621 214 621 16S 621 214 621 16S 621 214 621 170 621 215 621 170 621 21S 621 170 621 215 621 17S 621 220 621 175 621 220 621 175 621 220 621 180 621 220 IO!!I 180 621 220 1001 180 621 220 768 180 1081 225 1132 180 ICXll 225 1046 180 768 225 794 185 1132 230 1188 185 1046 230 1095 185 79..i 230 822 190 1188 235 12.50 190 IO<JS 23S II.SO 190 822 235 854 195 12.SO 240 Bl9 195 1150 240 1210 195 854 240 890 200 1319 2..i.s 1395 200 1210 24.S 1277 200 890 24.S 930 205 1395 250 1479 205 1277 250 1351 205 930 250 97.S 210 1479 2S.S IS71 2IO 1351 255 1433 210 97.S 255 1024 215 1571 260 1673 215 1433 260 1523 215 I02.S 260 I078 220 1673 265 1786 220 1523 265 1622 220 1078 265 1139

  • Shown by requesl of CP&L. This rate is nol shown on lhe plot WCAP-15827

TABLE 19- (Continued) 30 EFPY Hea1up Curve Data Points Using 1996 App. G (wilhout Uncertainties for lns1rum\!nlation Errors)

SO lteatup* SO Critical Limit* 60 Uealup 60 Critical Limit 100 Heatup 100 Critical Umit TC°F) r (psii:) T(Of) r (psii:) T (0 f) r (psig) T( 0 f) r (psii:> T(°F) r (psiJ?) T(OF) r (psig) 225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 275 2048 230 1732 275 1854 230 1206 275 1279 235 2048 280 2200 235 IK54 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 14SI 24S 2367 245 2135 290 22lJ8 2.$5 1451 290 155 I 250 2298 295 2477 250 1551 295 1660 255 2477 2S5 1660 300 1782 260 1782 305 1915 265 191S 310 2062 270 2062 315 2224 275 2224 320 2403 280 2403 u:~ ~~~ ~*:i?_;*.;.,;:*~..;.,~!'~_..:!9:f.*~'.:;~!*._:. .i ..t.: ':-..*!.:';; ; . :.. :-. -~*-~ ~ ~ .: ':. !.'". ~. l **

. ... :,:;...: :*~* *\.;' ,::*." *:~:** ...*\ ~~. . -:-,~;~r.{ ~

Leak Ttst Temp. 195 214 Limit Pnss. 2000 2485

  • Shown by request of CP&l.. This rate is not shown on the plot.

WCAP-15827

35 TABLE20 30 EFPY Cooldown Curve Data Points Using 1996 App. G (without Unccn3intics for lnstrumcnt:uion Errors)

Steady Slate 20°Flhr. 40°F/hr. S0°flhr.* 60"f/hr. IOO"flhr.

T l°F) I P (psiJ?) T f0 Fl I P (psiJ?) T C0 Fl I p (pSiJ?) T {0 f) I P (psiJ?) T {0 f) I p (p'iiJ?) T {0 f) I r fpsie) 60 0 60 0 60 0 60 0 60 {) 60 0 60 621 60 621 60 619 60 584 60 5-19 60 404 65 621 65 621 65 621 65 591 65 556 65 413 70 621 70 621 70 621 70 598 70 564 70 422 15 621 15 621 15 621 75 607 15 572 75 433 80 621 80 621 80 621 80 616 80 582 80 445 85 621 85 621 85 621 85 621 85 593 85 459 90 621 90 621 90 621 90 621 90 606 90 414 95 621 95 621 95 621 95 621 95 619 95 492 100 621 100 621 100 621 100 621 100 621 100 511 I05 621 105 621 105 621 105 621 I05 621 I05 532 110 621 110 621 110 621 110 621 110 621 I IO 556 llS 621 llS 621 115 621 I IS 621 115 621 115 583 120 621 120 621 120 621 120 621 120 621 120 613 125 621 12S 621 12S 621 12S 621 125 621 125 621 130 621 130 621 130 621 130 621 130 621 130 621 135 621 13S 621 135 621 13S 621 J:\5 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621. 145 621 145 621 145 621 145 621 150 621 ISO 621 ISO 621 ISO 621 150 621 ISO 621 155 621 155 621 155 621 ISS 621 1.55 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 um 621 180 1293 180 1287 180 1289 180 1289 180 1289 180 1127 185 1355 185 135S 185 13SS 185 1355 185 B55 18S llSS 190 1424 190 1424 190 1424 190 1424 190 142-1 190 1249 195 1500 195 1.500 195 1500 195 1500 195 1500 195 1321 200 1584 200 1584 200 1.584 200 1584 200 ISR4 200 I.SOI 205 1677 205 1677 205 1677 205 1677 205 J6S7 205 l.S89 210 1779 210 1779 210 1779 2JO 1779 210 1732 210 1588 215 1893 215 1893 215 1893 215 1855 215 1816 215 1697 220 2018 220 2018 220 1978 220 19-12 220 1909 220 1819 225 2156 225 2138 225 2069 225 2039 225 2013 225 1953 230 2295 230 2226 230 2169 230 2146 230 2127 230 2103 235 2382 235 2325 235 2281 235 2265 235 2254 235 2269 2.ao 2479 240 24.J.a uo uo.a uo 2397 2.ao 2395 240 2.SS4

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Boldcd V:ilues are Limited by the Circ. Weld ART using Code Ca:o;e N-588 .

WCAP-1~827

36 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I LIMITING ART VALUES AT 35 EFPY: l/4T, 167°F 3/4T, 147°f Opllfhm V9f1M>n:5.1 Run:784S Leak Test Limit 2250 ... . .. .

Unacceptable Acceptable 2000 Operation Operation 1750 Crlllcal Limit 60 Deg. F/Hr 0 Heatup Rate iii 60 Deg. F/Hr

a. 1500 CD
J Crllical Limit 100 Deg. F/Hr

.,, Heatup Rate f 1250 100 Deg. F/Hr  :-*** ****** -.

a.

'C CLI f tl u 1000 iii u

750 500 250 Boltup _ -*- ** **- Crlllcallty Limit based on Temp. lnservlce hydrostatic test temperature (216 F) for the service period up lo 35 EFPY 0-l-----~;..........+.......,,.........+--_......f-).....,_+---!:+:;:::;:;:;:;:;::::;:;:;:;:::::;::;:;::;:::;:::...+--_,....1 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 3 11.8. Robinson Unit 2 Reactor Coolant System Heatup Limitations (lleatup Rates or 60 & IOOnF/hr) Applicable for the First 35 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

37 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I & GIRTH WELD 10-273 LIMITING ART VALUES AT 35 EFPY: l/4T. 167°F & 242°F 3/4T. 147°F & l72°F 2500 loiierlm Ver11on.s .1 Run*784S I 2250 Unacceptable 2000 Operation Acceptable Operation 1750

-en CJ

a. 1500.

GJ

i GJ Cl.

1250 . .. . .... .

'tJ GJ Cll 95

(,)

1000 CooldowD . - ........... - *-

Cii R*IH Fnlr u *le*dJ'**late

-20,and o40 750 .... - . *-

Co old ow a Rat ... t"nlr 500.

  • GO A
  • 100 250 Boltup Temp.

0 ~.-.----+-"O:.-........t--..........+---~~_..............._..-+-.........,.--1--r-......,...._..................,.+-r-........--t--........~

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 4 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°f/hr) Applicable for the First 35 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

. 38 TABLE21 35 EFPY Hcalup Curve Dara Poinls Using 1996 App. G (without Uncertainties for lns1rumcn1:11ion Errors)

SO Jleatup* 50 Critical Limit* 60 llratup 4i0 Critical Limit 100 lleatup JOO Critica1 Limit TC 0 f) P (psig) TC 0 f) r (psiiil T(°F) r (psig) TC"F) r (psig) T( 0 f) r (psig} TC0 f) r Cpsiii>

60 0 216 0 60 0 216 0 60 0 216 0 60 621 216 621 60 621 216 621 60 621 216 621 65 621 216 621 65 621 216 621 65 621 216 621 70 621 216 621 70 621 216 621 70 621 216 621 75 621 216 621 75 621 216 621 75 621 216 621 80 621 216 621 80 621 216 621 80 621 216 621 85 621 216 621 8S 621 216 621 85 621 216 621 90 621 216 621 90 621 216 621 90 621 216 621 95 621 216 621 95 621 216 621 95 621 216 621 100 621 216 621 100 621 216 621 100 621 216 621 105 621 216 621 105 621 216 621 105 621 216 621 I IO 621 216 621 110 621 216 621 110 621 216 621 115 621 216 621 115 621 216 621 115 621 216 621 120 621 216 621 120 621 216 621 120 621 216 621 125 621 216 621 125 621 216 621 125 621 216 621 130 621 216 621 130 621 216 621 130 621 216 621 135 621 216 621 135 621 216 621 135 621 216 621 140 621 216 621 140 621 216 621 140 621 216 621 145 621 216 621 145 621 216 621 145 621 216 621 ISO 621 216 621 ISO 621 216 621 150 621 216 621 155 621 216 621 155 621 216 621 155 621 216 621 160 621 216 621 160 621 216 621 160 621 216 621 165 621 216 621 165 621 216 621 165 621 216 621 170 621 216 621 170 621 216 621 170 621 216 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 1061 180 62 I 220 983 180 621 220 756 180 1061 225 J JJO 180 98J 22.5 J026 180 756 22.5 780 185 1110 230 1164 185 1026 230 1074 185 780 230 808 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 1248 200 873 245 911 205 B62 250 1443 205 1248 250 1319 205 911 250 953 2IO l4.i3 255 1532 210 1319 255 1398 2IO 953 255 1001 215 1532 260 1630 21S 1398 260 148-t 215 1001 260 1053 220 1630 265 1739 220 1484 265 1580 220 I053 265 1111

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

39 TABLE 21 - (Continued) 35 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccn:iintics for lmarumcntarion Errors) 50 lleatup* 50 Critkal Urnit* 60 lleatup 60 Critical Limit 100 Jlealup 100 Critical Limit T( 0 f) P(psig) T(°F) r <psigl T( 0 f) r (psig) T(°F) r (psig) T C0 f) r (psi~) T( 0 f) r (psi~)

225 1739 270 18.58 225 1580 270 1685 225 1111 270 1175 2JO 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 1411 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 1728 260 1728 305 1856 265 1856 310 1998 270 1998 315 2153 275 2153 320 2325 280 2325

. ... *:. ~ :**.,;:*:".;. *~ .. ..;~-:~-" .-:" f l; ...:~~..-:- f ~:-;,.::.J'.*:~~. ~: *,~. :~~-~ *':.:.4..::: :~'\ *;-:;,. 4 .!"*'* ...... . .. ,. .. . . . ~ ....*, . . . . : . . , .  : :~. :;;."; :--~:-~!';

Leak T~t Limit Temp. 197 216 Press. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plol .

WCAP-15827

40 TABLE22 35 EFPY Cooldown Curve Data Points Using I996 App. G (without Uncenainties for Instrumentation Errors)

Steady State 20°flhr. 40°Flhr. 50°flhr.* 60°f/hr. 100°f/hr.

T ( 0 f) I P (psiJ!) T (0 f) I p (psiJ!) T (0 f> I r Cpsil!) T {0 f) I p (psiJ!) T C°F> I r Cpsil!> T c0 r> 1 r (psil!>

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 616 60 581 60 546 60 400 65 621 65 621 65 621 6S 588 65 553 65 409 70 621 70 621 70 621 70 595 70 560 70 418 75 621 75 621 75 621 75 603 75 568 75 428 80 621 80 621 80 621 80 612 80 578 80 440 85 621 85 621 85 621 85 621 85 588 85 453 90 621 90 621 90 621 90 621 90 600 90 468 95 621 95 621 95 621 95 621 95 613 95 484 100 621 JOO 621 100 621 100 621 100 621 100 502 105 621 105 621 105 621 105 621 J05 621 105 523 110 621 110 621 110 621 I IO 621 110 621 # 110 546 115 621 115 621 115 621 115 621 115 621 115 572 120 621 120 621 120 621 120 621 120 621 120 600 125 621 125 621 125 621 125 621 125 621 125 621 130 621 1:\0 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 150 621 ISO 621 150 621 150 621 150 621 155 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1270 180 1260 180 1260 180 1260 180 1260 180 1053 185 1330 185 1328 185 1330 185 1330 185 1330 185 J102 190 1396 190 1396 190 1396 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 1449 195 1220 200 1549 200 1549 200 1549 200 1549 200 1502 200 1288 205 1638 205 1638 205 1638 205 1616 205 1561 205 1365 210 1737 210 1737 210 1729 210 1677 210 1627 210 1450 215 1846 215 1846 215 1793 215 1745 215 1699 215 1545 220 1966 220 1957 220 186-1 220 1821 220 1780 220 1650 225 2099 225 2027 225 1943 225 1905 225 1869 225 1767 230 2187 230 2104 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 2041 240 2J.t6 240 2' 240 2234 240 2215 240 2201 .240 2200 245 2439 245 2388 245 2353 245 2342 245 2336 .245 2336 250 243.i 250 2482 250 2482 250 2482

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

41 MATER1AL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 LIMITING ART VALUES AT 40 EFPY: l/4T, 169°F J/.ff, 149°F 2500 ,.-----------------~.-------~-------;=::============,.,

Oper11111 Version*5.1 Run:7462 Leak Test Llmil 2250 2000 Acceptable Unacceptable Operation Operation 1750 CJ

~ 1500 Heatup Rate 60Deg. FIHr Critical Limit 60 Deg. Flttr

...::2CIJ VI GI Q.

1250 Heatup Rate Crltlcal Limit . -

100 Deg. F/Hr 100 Deg . F/Hr

'O

~

"S 1000 .. .. . .. . .

co" u

750 500 Criticality Llmi\ based on Boltup 250 Temp.

inservlce hydrostatic te9l temperature (218 F) for the service period up to 40 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) 11.B. Robinson Unit 2 Reactor Coolant System Ifeatup Limitations (lleatup Rates of 60 & IOO"Fn1r) Applicable for the First 40 EFP\' (Without Margins for Instrumentation Errors) Usini: 1996 App.G l\1ethodo1ogy WCAP*l5827

42 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 & GIRTll WELD 10-273 LJ11..1ITINGARTVALUESAT40EFPY: l/4T, 169°F & 251°F 31.tT, 149°F & 179°F 2500 Op1rl1111 VetSIOfl'5., Run.7462 2250 .. **-* **--

Unacceptable 2000 Operation Acceptable Operation 1750 **-----*-*

CJ c;;

D.

C>

~

i 1500 ...... --------*** . -**

en en GI

~

a.

1250 . . ... - .-

"CS

-GI ca

1000 u CooldowD Cii R*lu Fnlr

(,) *lead1-*l*ll*

  • 20,and ..fO 750 Cooldown 500 ft**~* Fnlr

.ao&

-100 250 Boltup Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 6 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to I00°F/hr) Applicable for lhe first 40 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

TABLE23 40 EFPY HealupCurve Dala Points Using 1996App. G (wi1hou1 Uncc:n3inrks for lns1rumenl31ion Errors) 50 Healup* SO Critical Limit* 60 lleatup 60 Critical Limit JOO lleatup IOO Critical Limit TC°F) P (psi~) TC 0 f) P(psf~) TC 0 f) r (psi~) T{ 0 f) r (psi~) TC 0 f) P(psi~) T(Of) r <p.. ii:l 60 0 216 0 60 0 216 0 60 0 216 ()

60 621 218 621 60 621 218 621 60 621 218 621 65 621 218 621 65 621 218 621 65 621 218 621 70 621 218 621 70 621 218 621 70 621 218 621 75 621 218 621 75 621 218 621 75 621 218 621 80 621 218 621 80 621 218 621 80 621 218 621 85 621 218 621 85 621 218 621 85 621 218 621 90 621 218 621 90 621 218 621 90 621 218 621 95 621 218 621 95 621 218 621 9S 621 218 621 100 621 218 621 100 621 218 621 10() 621 218 621 105 621 218 621 105 621 218 621 105 621 211! 621 110 621 218 621 110 621 218 621 110 621 218 621 115 621 218 621 115 621 218 621 115 621 218 621 120 621 218 621 120 621 218 621 120 621 218 621 125 621 218 621 125 621 218 621 125 621 218 621 130 621 218 621 130 621 218 621 BO 621 218 621 135 621 218 621 135* 621 218 621 135 621 218 621 140 621 218 621 140 621 218 621 140 621 218 621 145 621 218 621 145 621 2\g 621 145 621 218 621 ISO 621 218 621 150 621 218 621 150 621 218 621 155 621 218 621 155 621 218 621 155 621 218 621 160 621 218 621 160 621 218 621 160 621 218 621 165 621 218 621 165 621 218 621 165 621 218 621 170 621 218 621 170 621 218 621 170 621 218 621 175 621 220 621 175 621 220 621 175 621 220 621 180 621 220 IO-i2 180 621 220 966 180 621 220 744 180 1o.i2 225 I089 180 966 225 1007 180 744 225 767 185 1089 230 1141 185 1007 230 I053 185 767 230 79.J 190 1141 235 1198 190 IOSJ 235 1103 190 79.J 235 SB 195 1198 240 1261 195 1103 240 1159 195 823 240 856 200 1261 245 1331 200 1159 245 1221 200 856 245 893 205 ll31 250 1409 205 1221 250 1289 205 893 250 933 210 t~09 255 t49.t 210 1289 255 136-l 2to 9:\:\ 255 979 215 149.S 260 1589 215 1364 260 1447 215 979 260 1029 220 1589 265 1693 220 l.S-l7 265 1539 220 I021J 265 I08-'

225 1693 270 1808 225 1539 270 1640 225 !084 270 1146

  • Shown by request of CP&L. This rale is nol shown on lhe plot WCAP-15827

44 TABLE 23 - (Continued) 40 EFPY Healup Curve Data Points Using 1996 App. G (wi1hou1 Uncertainties for Jns1rumcn1a1ion Errors)

SO lleatup* SO Critical Limit* 60 Jleatup 60 Critical Limit 100 llealup 100 Critical Limic T(Of) P(psig) T(°F) r (psig) T(Of) P(~igl T( 0 f) r (psig) T(Of) P (psii?) T(°F) r (psig) 230 1808 275 1934 230 16-10 275 1752 230 1146 275 1214 235 1934 280 2074 235 1752 2RO 1876 235 1214 280 1289 240 2074 285 2229 240 1876 285 2012 240 1289 285 1372 245 2229 290 2.1~ 245 2012 290 216:? 245 1372 290 1464 250 236-i 295 2-159 250 2162 295 2328 250 1464 295 1565 255 2-159 25.5 2328 255 156.5 300 1677 260 1677 305 1800 265 1800 310 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432 285 2432

!-:!. J*,:..~*_~.r;..;;i.,;'..:.fi ,or~.~*~*:. t ..~ '~t;-.:~ ::.: .' *:il~'~'i*:**~: .. ~:*f':-::;.~~,t~:~:.. ~*~* : .-~* : ~.:. *~ J:,.~ *~ ~-::j ~~;:..~*~~t..'l.~*v... *~"J~'.*~,'*;\/~~ ::. :*-.~~;.~-i:,1~:.t..:*.~;."~. ~-:':,

uak Test Limit Temp. 199 218 Pres.~. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot'.
    • Bolded Values are Limited by the Circ. Weld ART using Code Ca~e N-588 .

WCAP-15827

45 TABLE24 40 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for lnstrumcn1a1ion Error~)

Slrady Stale 20°Flhr. 40°flhr. SOnf/hr.* 60°f/hr. 100°Flhr.

T ( 0 f) Ir (psii:) T t°Fl I r (psiJ?> T (°F) I P (psi~) T ( 0 f) I P (psii:) T ( 0 f) I r (psii:) T (°Ft Ir CpsiJ?>

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 614 60 579 60 S43 60 397 65 621 65 621 65 620 65 585 65 549 6S 405 70 621 70 621 70 621 70 592 70 SS1 70 413 75 621 75 621 75 621 75 599 75 565 75 423 80 621 80 621 80 621 80 60R 80 S14 80 434 gs 621 SS 621 85 621 85 6l8 85 SM 8S 4~7 90 621 90 621 90 621 90 621 90 595 90 461 95 621 95 621 95 621 95 621 95 607 9S 477 100 621 100 621 100 621 100 621 100 621 100 494 105 621 105 621 I0.5 621 105 621 105 621 105 514 110 621 110 621 110 621 110 621 I IO 621 110 536 115 621 115 621 11.5 621 115 621 115 621 115 560 120 621 120 621 120 621 120 621 120 621 120 588 125 621 125 621 125 621 125 621 125 621 l2S 618 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140

  • 621 14S 621 145 621 14.5 621 145 621 145 621 145 621 150 621 ISO 621 ISO 621 ISO 621 150 621 ISO 621 ISS 621 IS5 621 15.5 621 155 621 IS5 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 16S 621 165 621 165 621 165 621 16S 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 IRO 621 180 621 180 621 180 1248 180 1235 IRO 1231 IKO 1231 IRO 1231 180 911 185 1305 185 1300 IK.5 no.i 185 IJQ.i 185 1289 185 1012 190 1368 190 1368 190 1368 190 1368 190 1324 190 1058 195 1439 195 1439 195 14'.\9 195 1430 195 136" 195 1109 200 1516 200 1516 200 1516 200 1472 200 1408 200 1165 205 1602 205 1602 205 1579 205 1517 205 1457 205 1229 210 1696 210 1696 210 1627 210 1568 210 1511 210 1299 215 1801 21S 1795 215 1681 215 1625 215 1571 215 1378 220 1917 220 IS-a7 220 17.&0 220 1688 220 1638 220 1465 225 2011 225 1905 225 1805 225 1758 225 1712 225 1562 230 2068 230 1970 230 1878 230 1835 230 1795 230 1670 235 2131 2JS 2041 235 1958 235 1921 ?JS 1886 235 1790 uo 2201 2-10 2120 240 20.as 2.ao 2016 2.ao 1988 2.ao 1923 2.as 2279 245 2107 2.as 2146 2.a5 2121 us 2101 245 2070 250 236-S 250 2303 250 2256 250 2238 250 2225 250 2225 255 2459 255 2410 255 2377 255 2368 255 2364 255 2364
  • Shown by request of CP&L. This rate is not ~hown on the plot.

WCAP-15827

46 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 020 I* I LIMITING ART VALUES AT 45 EFPY: l/4T, 170"F 3/4T, 151°F 2500 Opetlm version 5.1 Run :1oss1 Leak Test Limit 2250 Un1eeept11ble Aeeep,able 2000 Operation Operation 1750 CJ iii Heatup Rate

. 60 Deg. F/Hr Critical Limit

-.,,=.

D.

Cl) 1500 -**. -** *- ..*- ..

Hutup Rate 100 Deg. F/Hr

. 60 Deg. F/Hr

.,...,, 1250 ... -* **--**. ---*-- .

D.

.....,cu

'C

1000 .. . ... . ..

()

'CV

(.)

750 500 ...*. *-**

Boltup 250 Temp. Crltleality Limit based on inservlce hydrostatic test temperature (219 F) for the service period up to 45 EFPY o+-.. . . . . .~;..........+...................+..................~L..,....,.+-......--~::;::;::;::;::;:;:::+;:::::;:;:;:;::;:::::::~..............t 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure7 H.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & 100°F/hr) Applicable for the First 45 EFP (Without Maratins for Instrumentation Errors) UsinJ: 1996 App.G l\tcthodoloizy WCAP-15827

41 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-I& GIRTH WELD 10-273 LIMITING ART VALUES AT 45 EFPY: l/4T, 170°F & 256°F 3/4T, 151°F & 185°F 2500 lop1rt1m V11sion:S.1 Run :1oss1 I 2250.

Unacceptable 2000. Operation Acceptable 1750 . Operation

-en Cl

c. 1500 .

"'"'.,... 1250 Cl.

't:I OI ca

'S 1000 Cooldown Cii Rain Fnlr 0

et1Pad:r**l*l1P

  • 20, and -40 750.

Cooldo*a Ralea Fnlr 500 -804

  • IOO Boltup 250 Temp. - *** - *
  • 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure 8 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Coo1down Rates up to J00°F/hr) Applicable for the First 45 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAr-15827

48 TABLE25 45 EFPY Hcatup Curve Data Points Using 1996 App. G (wi1hou1 Unccnain1ics for lnstrumcn1a1ion Errors)

SO lleatup* SO Critical Limit* 60 lltatup 60 Critical Limit JOO lleatup I 00 Crilical Limit TC 0 f) r (psii:l TC°F) p (p-;igl T( 0 f) r cp~iJ:> T (0 f) P (psiJ:) T( 0 f) P (psig} TC°F) r (psiJ:)

60 0 219 0 fl(} 0 219 0 60 0 219 0 60 621 219 621 60 621 219 621 60 621 219 621 65 621 219 621 6!1 621 219 621 65 621 219 621 70 621 219 621 70 621 219 621 70 621 219 621 75 621 219 621 75 621 219 621 75 621 219 621 80 621 219 621 RO 621 219 621 80 621 219 621 85 621 219 621 R.S 621 219 621 85 621 219 621 90 621 219 621 90 621 219 621 90 621 219 621 95 621 219 621 95 621 219 621 95 621 219 621 100 621 219 621 IOO 621 219 621 100 621 219 621 I05 621 219 621 105 621 219 621 IOS 621 219 621 110 621 219 621 110 621 219 621 110 621 219 621 115 621 219 621 115 621 219 621 115 621 219 621 120 621 219 621 120 621 219 621 120 621 219 621 125 621 219 621 125 621 219 621 125 621 219 621 130 621 219 621 IJO 621 219 621 130 621 219 621 135 621 219 621 IJ5 621 219 621 135 621 219 621 140 621 219 621 140 621 219 621 140 621 219 621 145 621 219 621 145 621 219 621 145 621 219 621 150 621 219 621 150 621 219 621 150 621 219 621 lSS 621 219 621 155 621 219 621 155 621 219 621 160 621 219 621 160 621 219 621 160 621 219 621 165 621 219 621 16!1 621 219 621 165 621 219 621 170 621 219 621 170 6'.!I 219 621 170 621 219 621 175 621 220 621 115 621 220 621 175 621 220 6:? I 180 621 220 102.i 180 621 220 950 180 621 220 73J 180 !02.i 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 185 989 230 l033 185 755 230 780 190 1118 235 1174 190 1033 235 l081 190 780 235 80R 195 1174 2.io 123-* 195 IOSI 240 1135 19.5 808 240 840 200 1234 245 IJ02 200 1135 245 1194 200 840 245 875 205 IJ02 250 IJ76 205 1194 250 1260 205 875 250 914 2IO 1:\76 255 1458 210 1260 255 1332 210 914 255 957 215 1458 260 1549 215 1332 260 1412 215 957 260 1005 220 1549 265 l<H9 220 1412 265 1500 220 1005 265 1059 225 IM9 270 1759 225 1500 270 1597 225 1059 270 1118

  • Shown by request of CP&L. This rate is not shown on the plot

49 TABLE 25 *(Continued) 45 EFPY He;Jlup Curve Data Points Using 1996 App. G (without Unccnaintics for Instrumentation Errors) 50 llcatup* 50 Critical Limit* 60 lleatup 60 Critiral Limit IOO lleatup 100 Critical Limit TC°F) r (psis:) TC°F) P (psii:l T(°F) P(psi~l T( 0 f) P (psii:) T(°F) r (psis:> TC°F) r Cpsii:l 230 1759 275 1881 230 1597 275 1705 230 1118 275 1183 235 1881 280 201S 235 1705 2KO 1823 235 1183 280 1255 240 2015 285 2164 240 1823 2K5 195.S 240 1255 285 1335 2-15 216-i 290 2279 245 1954 290 2098 245 1335 290 1423 250 2279 295 236-1 250 2098 295 2258 250 1423 295 1520 255 2364 300 2~59 255 2258 JOO 2*BJ 255 1520 300 1627 260 2-159 260 2.SJJ 260 1627 305 1746 265 1746 310 1876 270 1876 315 2020 275 2020 320 2178 280 2178 325 2353 285 2353

~r.~~:-::i::?.r..t.. ~_~,~~ ~*~i~*( ~~:~*~*: . :J:-.:;1;,.1 11.1,.'_, :..::;..:.*.1: :.::~ ...,. .*.. " ... * *! ':,;;.~.... :-:~* *.'-:,:.If.~. "~ ......-.. .. 1,.:~~,...~t...f,r!~*

~ak Test Limit Temp. 200 219 Pnss. 2000 2485

  • Shown by request of CP&L. This rate is not shown pn &he plot .

WCAP-15827

50 TABLE26 45 EFPY Cooldown Curve Data Points Using 1996 App. G (wi1hou1 Unccrtain1ics for lns1rumi:n1:11ion Errors)

Steady Slate 20°F/hr. 40°F/hr. SO"F/hr.* 60°F/hr. IOO"f/hr.

T (0 f) I I' (psi~) T (°Fl I p (pslJ?) T c0 Fl I r Cpsi~l T c°Fl I r CpsiJ?l T c°Fl I r Cpc;ii?l T (0 F) I r (psid 60 0 60 0 60 0 60 0 tiO () 60 0 60 621 60 621 60 613 60 511 60 542 60 39S 65 621 65 621 65 618 65 Sit\ 65 548 65 403 70 621 10 621 10 621 70 590 10 SSS 70 41\

75 621 75 621 75 621 75 598 75 563 75 421 80 621 80 621 80 621 80 606 80 572 80 432 85 621 85 621 85 621 8S 615 HS 581 85 444 90 621 90 621 90 621 90 621 90 592 90 4S8 9S 621 9S 621 95 621 9S 621 95 605 9S 473 100 621 100 621 100 621 100 621 IOO 618 100 490 105 621 105 621 105 621 I05 621 I05 621 105 510 110 621 110 621 110 621 110 621 110 621 110 531 115 621 115 621 115 621 115 621 115 621 115 SSS 120 621 120 621 120 621 120 621 120 621 120 582 125 621 125 621 125 621 125 621 125 621 125 612 130 621 130 621 130 621 130 621 130 621 130 621 135 621 135 621 135 621 135 621 JlS 6:.?I 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 .621 145 621 145 621 145 621 145 621 150 621 ISO 621 150 621 150 621 150 621 150 621 155 621 155 621 155 621 155 621 155 621 155 62\

160 621 160 621 HiO 621 160 621 160 621 160 621 16S 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 115 621 115 621 115 62\ 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 um 621 180 1237 180 1223 180 1217 180 1217 180 1217 180 932 185 1293 185 1286 185 1289 185 1289 185 1255 185 968 190 1355 190 1355 190 1355 190 1355 190 1187 190 1009 195 1424 195 1424 195 1424 195 1391 195 1323 195 1055 200 1500 200 1500 zoo 1-196 200 1-'29 200 1362 200 1106 205 1584 205 1584 205 1535 205 l.S70 205 l.S06 205 1163 210 1677 210 1671 210 1578 210 1516 210 I.SSS 210 1227 215 1779 215 1747 215 1626 215 1567 215 1509 215 1297 220 1893 220 179.& 220 1679 220 162.& 220 1570 220 1376 225 1959 225 18.S7 225 1739 225 1687 225 1637 225 1.i6-t 230 2011 230 1905 230 180.i 230 1757 230 1711 230 1561 235 2068 235 1969 235 1877 235 183.i 235 179.& 235 1669 2.SO 2131 2.ao 20.ao uo 1958 2.io 1920 2.io 1885 2.ao 1789 2.as 2201 2.a5 2119 2.. 5 2047 245 2015 2.. 5 1987 2.as 1922 2SO 2279 lSO 2206 250 2146 lSO 2111 250 lUIO 250 2070 255 236-1 255 2303 255 2255 255 2238 255 2225 255 2225 260 2.SS9 260 2.SIO 260 2377 260 2367 260 2J63 260 2363

  • Shown by request of CP&L. This rale is not 5hown on the plot .

WCAP-15827

SI MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI0201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 50 EFPY: l/4T, 172°F & 263°F 3/4T, 153°F & 191°F 2500 Opert1m Version.5. 1 Run:19517 Leak Test Limit 2250 Unacceptable Acceptable 2000 Operation Operation 1750 CJ i'ii Heatup Rate 60 Deg. F/Hr Critical Limit

c. 1500 C~b
s fl)

Heatup Rate 100 Deg. F/Hr 60 Deg. F/Hr fl)

Cll

~ 1250 c.

~

Cll IU

'S 1000

<<a"

(.)

750 500 Bollup 250 Temp. Crltlcallty Limit based on lnservlce hydrostatic test temperature (221 F) for the sentlce period up to SO EFPY 0 +.....~~~-h- ..............+-r-.--~~-+-................+,!::;:;::+:~:;+:;::;::;:::::::;:::;:;::;::;:::;:!...,........_t 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure 9 H.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & IOO"F/hr) Applicable for the First SO EFP\' (Wilhout Margins ror Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

52 MATERIAL PROPF.RTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE Wl0201-I & GIRTH WELD J0-273 LIMITING ART VALUES AT 50 EFPY: l/4T, J72°f & 263°F 3/4T, 153°F & 191°F 2500 -rr===============:;--~~~~-:-~~~~~~~~~~~~~

Operllm Vers111n:5 .t Run:t9511 2250 Unacceptable 2000 Operation Acceptable 1750 Operation a-c;;

Q.

Cll

~

s Ill 1500 Ill

!! 1250 Q.

"C CLI C'CI u 1000

'S Cooldown ia RalH Flllt u *lead)'*alale

  • 20,and .40 750 .

Cooldown 500 Rate* F/Ur

.eoa

  • 100 250 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure 10 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to l00°F/hr} Applicable for the First SO EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

53 TAllLE27 50 EFPY Heatup Curve Dara Points Using 1996 App. G (without Unccnaintics for ln~rrumcnt::uion Errors)

SO lltatup* SO Crirical Limit* 60 llcatup 60 Critical Limit JOO lltatup 100 Critical Limit T (0 f) r (psig) T( 0 f) r (psii:> T( 0 f) r (psi,::) T (°F) p (pdg) T( 0 f) r (psig) T (°F) P (psig) 60 0 221 0 60 0 221 0 60 0 221 0 60 621 221 621 60 621 221 621 60 621 221 621 65 621 221 621 65 621 221 621 65 621 221 621 70 621 221 621 70 621 221 621 70 621 221 621 15 621 221 621 75 621 221 621 75 621 221 621 80 621 221 621 80 621 221 621 80 621 221 621 85 621 221 621 85 621 221 621 85 621 221 621 90 621 221 621 90 621 221 621 90 621 221 621 95 621 221 621 95 621 221 621 95 621 221 621 JOO 621 221 621 100 621 221 621 JOO 62J 221 62J 105 621 221 621 105 621 221 621 105 62J 221 621 110 621 221 621 110 621 221 621 110 621 221 621 115 621 221 621 115 621 221 621 115 621 221 621 120 621 221 621 120 621 221 621 120 621 221 621 125 621 221 621 125 621 221 621 125 621 221 621 130 621 22J 621 130 621 221 621 130 621 221 621 135 621 221 621 135 621 221 621 135 621 221 621 140 621 221 621 140 621 221 621 140 621 221 621 145 621 221 621 145 621 221 621 145 621 221 621 150 621 221 621 150 621 221 621 150 621 221 621 155 621 221 621 155 621 221 621 ISS 621 221 621 160 621 221 621 160 621 221 621 160 621 221 621 165 621 221 621 16!\ 621 221 621 165 621 221 621 170 621 221 621 170 621 221 621 170 621 221 621 175 621 221 1006 115 621 221 9J-I 115 621 221 722 180 621 225 1049 180 621 225 972 180 621 225 7-13 180 1006 230 1097 180 934 230 101.a 180 722 230 767 185 IO-i9 235 1150 185 972 235 1060 185 743 235 794 190 1097 2.ao 1208 190 101.a 240 1112 190 767 240 824 195 1150 2.a5 1273 195 1060 245 1169 195 794 245 858 200 1208 250 134-1 200 1112 250 1231 200 824 250 895 205 1273 255 1423 205 1169 255 1301 205 858 255 937 210 1344 260 1510 210 1231 260 1378 210 895 260 983 215 1423 265 1606 215 1301 265 1462 215 937 265 I03.S 220 1510 270 1712 220 1378 270 1556 220 983 270 1091 225 1606 275 1829 225 1462 275 1659 225 103-1 275 11.53 230 J7l2 280 1958 230 1556 280 1773 230 1091 280 1223

  • Shown by request of CP&L. This rale is not shown on the pfol.

WCAP-1.5827

54 TABLE 27 - (Continued) 50 EFPY Hcatup Cur\'e Data Points Using 1996 App. G (withoul Unccnaintic:s for ln'ltrumc:nt::ition Errors)

SO Jleatup* SO Critical Lir1Ut* 60 lltatup 60 Critical Limit 100 lltatup 100 Critical Limit T(Of) r (psi~) T(OF) r (psil!,) T( 0 f) r (psij!.) T(Of) r (psij!.) T(OF) r (psil!.) T( 0 f) P(psi~)

235 1829 28S 2101 2l5 1659 285 189K 2l5 1153 285 1299 240 1958 290 2173 240 1773 290 2037 2.io 1223 290 1384 245 2101 295 2247 245 1898 295 2190 2.$5 1299 295 1477 250 2173 300 2329 250 2037 300 2329 250 1384 300 1580 255 2247 305 2420 255 2190 305 2420 255 1477 305 1693 260 2329 260 2329 260 1580 310 1819 265 2-120 165 2420 265 1693 315 1957 270 1819 320 2109 275 1957 325 2276 280 2109 :no 2461 285 2276 290 2461

.:;r~~:~;~~:~*..';~. .~\~J:.;r;.~:~t'l\f~.~~t~;~,~~=~'rl:J7~';t:;~~ ;tJ;.~*;!;. '.~,:~...~ 1i.=:* . : tc *..~:-:*. :~**~;*: ~* ~ ':_!,i': ~ :.:..* "':~ ::* *' 1

... ~ *: :* * **:~~ .,~ !; *,1:=-; ~*, ~V:.'1 Leak Ttst Lir1Ut Temp. 202 221 PrtSS. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

55 TABLE28 50 EFPY Cooldown Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors)

SCrady Stale 20QFlhr. 40"F/hr. 50°Flhr.* 60QF/hr. 100°Flhr.

T ("F) I p (p'iil?l T ( f) I P (psii:l 0

T f°Fl I P lpsil?l T C"Fl I P (psil?l T (°Fl I P (psii:l T f°Fl I P (psij?)

60 0 60 0 60 0 60 0 60 0 60 0 60 621 60 621 60 610 60 575 60 539 60 392 65 621 65 621 65 616 65 581 65 545 65 399 70 621 70 621 70 621 70 587 70 552 70 407 75 621 15 621 75 621 15 594 15 559 75 416 80 621 80 621 KO 621 80 602 80 568 80 427 HS 621 85 621 85 621 85 611 85 577 85 4J8 90 621 90 621 90 621 90 621 90 587 90 451 95 621 95 621 95 621 95 621 95 599 95 466 100 621 JOO 621 100 621 100 621 IOO 612 100 483 105 621 I05 621 IDS 621 105 621 I05 621 IDS SOI 110 621 t 10 621 110 621 110 621 110 621 110 522 115 621 115 621 115 621 115 621 115 621 115 545 120 621 120 621 120 621 120 621 120 621 120 510 125 621 125 621 125 621 125 621 125 621 125 599 130 621 no 621 130 621 130 621 130 621 130 621 IJj 621 135 621 135 621 135 621 135 621 135 621 140 621 140 621 140 621 140 621 140 621 140 621 145 621 145 621 145 621 145 621 145 621 145 621 150 621 150 621 150 621 150 621 150 621 150 621 ISS 621 155 621 155 621 155 621 155 621 155 621 160 621 160 621 160 621 160 621 160 621 160 621 165 621 165 621 165 621 165 621 165 621 165 621 170 621 170 621 170 621 170 621 170 621 170 621 175 621 175 621 175 621 175 621 175 621 175 621 180 621 180 621 180 621 180 621 180 621 180 621 180 1216 180 1199 180 ll91 um 1190 180 1189 ISO 882 185 1270 IRS 1260 185 1260 185 1260 185 1213 185 91.t 190 1:no 190 028 190 1328 190 J31S 190 12.a1 190 949 195 l'.'96 195 l'.'96 195 1396 195 IJ.a3 195 1271 195 988 200 1469 200 1469 200 14-16 200 1376 200 1305 200 1032 205 IS-t9 205 15-t~ 205 1480 205 l.tll 105 13.il 205 I082 2IO 16~8 210 1638 2IO 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 21S 1495 215 1433 215 1197 220 1846 220 1728 220 1605 220 154-1 220 1485 220 1265 225 1895 225 177-1 225 1656 225 1599 225 15.13 225 IJ.al 230 19.tO 230 182.t 230 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 2.ao 20.a5 2.io 19.t2 2.ao 18.t6 2-10 1801 2.ao 1758 1.io 1623 2.is llOS 245 1010 245 1923 us ISSl us 1s.i6 2-IS 1738 250 2173 250 2086 250 2009 250 1975 2.50 19.S.. 250 1866 255 u.i1 255 2170 255 2l0.& 255 2076 255 2052 255 2008 260 2329 160 1263 260 2209 260 2188 260 2172 260 2166 265 2-120 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2.a5s 270 USI 270 2451 270 2451

  • Shown by request of CP&L. This rate is not shown on the plol .

WCAP-15827

56 6 REFERENCES I. WCAP-15805, "Analysis of Capsule: X from Carolina Power and Light Company H.B. Robinson Unit 2 Reactor Vessel Radiation Sur\.'eillance Program", T.J. Laubham, et.al., March 2002.

2. ASME Code Case N-641, ..Alternative Pressure-Temperature Relationship and Low Temperature Overpressure Protection System Requiremcn1sSection XI, Division r. January 17, 2000.

(Sub Rtfertnrt: ASME Coat Care N-6"0. "A/1m1atfrt Rtfertnu Frar111rt To1t8hntssfor Dti*t/opmtnf of P*T Umir C1m*ts for Stet ion XI, Dfrision I", Ft'1runry: 26, 1999.J

3.Section XI oflhe ASME Boiler and Pressure Vessel Code, Appendix G. "Fracture Toughness Criteria for Pro1ection Againsl Failure," D;ncd December 1995, through 1996 Addendum.
4. ASME Boiler and Pressure Vessel Code, C&Jsc N-588, **Anenuation 10 Reference Flaw Orientation of Appendix G for Circumfcrcn1ial Welds in Reac1or Vessels".Section XI. Division I, Approved December 12, 1997.

S. Regulatory Guide 1.99, Revision 2. "Radialion Emhrittlemcnt of Reactor Vessel Materials, U.S.

Nuclear Regulatory Commission, May I988.

6. WCAP-14040-NP-A. Revision 2, "Mc1hodology used to Develop Cold Overpressure Mi1ig:11ing sysrem Serpoinls nnd RCS Heal up and Cooldown Limil Cur\'es". J.D. Andrachek, et. al., January 1996.
7. ..fracture Toughness Requiremcn1s", Branch Technical Posilion MTEB 5-2, Ch:ip1er 5.3.2 in Standard Review Plan for the Review of Safc1y Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800, 1981.
8. CP&L(Robinson) File No. 135101, Serial No. RNP-RA/95-0205, Docket No. 50-261/License No. DPR-23; Lener from CP&L to NRC on Vessel Integrity Data, Dated I 1120/95.
9. CP&L(Robinson) File No. 13SIOHA. Serial No. RNP-RA/98-0133, Docket No. 50-261/Liccnse No. DPR-23; Lener from CP&L to NRC on Vessel Integrity Dala, Da1ed 7/23/98.
10. CE Report NPSD-1039, Revision 2. **Best Estima1e Copper and Nickel Values in CE Fabricated Reactor Vessel Welds. CEOG Task 902. By the CE Owners Group. June 1997.
11. Code of Federal Regulations, I 0 CFR Part 50, Appendix G **fracture Toughness Requiremcnls,"

U.S. Nuclear Regulatory Commission. Washing1on, D.C., Federal Regi!iler, Volume 60, No. 243, dated December 19, 1995.

12. 1989 Section Ill, Division I of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331,

..Material for Vessels."

13. WCAP-13892, ..New Measuremcnls of USE of Archival and Surveillance Pl31e Material Represenrative of the H.B. Robinson Unit No. 2 Reactor Vessel Bcltline Plates". J.F. Williams, 1993.
14. WCAP-13587. Revision I. "Reactor Vessel Upper Shelf Energy Bounding Evaluation For Wes1inghouse Pressurized Waler Reaclors", S. T&Jndon, et. at., September 1993.

WCAP-15827

A*I MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WIO:?Ol-1 LIMITING ART VALUES AT 30 EFPY: l/4T, 165°F 3/4T, 145°F 2500 loperllm Vers1on:5.1 Run:29t08 j Leak Test Limit 2250 - . . *-* .

Unacceptable 2000 Operation Acceptable Operation 1750 CJ Cii D..

Cl>

I 1500 Crllicaf Limit 60 Deg. F/Hr f/j f/j Cll D..

1250 Crlllcaf Limit too Deg. F/Hr

'C Cll cu "5 1000 u

cu 0

750 500 Boltup 250 Temp Crllicallly Limit based on lnservlce hydrostatic test temperature (214 F) for the service period up to 30 EFPY 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure Al 11.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates or 60 & 100°F/hr) Applicable for the First 30 EFPY (Without Margins for ln.~lrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A*2 MATERIAL PROPERTY BASIS UMITING MATERIAL: UPPER SHELL PLATE WJ0201-1 & GIRTH WELD 10-273 LIMITING ART VALUES AT 30 EFPY: I/4T, 165°F & 235°F 3/4T, 145°F & 164°F 2500 Tr===============::;-------~----~---------------------,

Op1111m Vtmon:s. 1 Run:2910B 2250 Unacceptable 2000 Operation Acceptable 1750 Operation

"-c;; 1500 I

Q. . ...... __ ., **---*-~- .. ..... . .

CD

I Cooldowa . ' j 1250 R*lH Flllr ~-- - ***-~--*- . ..:__ --~----f----*-- . --** -

Q. *l**d1**l*l*

-to I m

.40

.eo I

'S u 1000 -100

'ii u

750 **-**- .. ______ .!__ ---

1

  • 500 ----*--- --**- -*-------*--*------..---***..

250 _ Boltup .*-*-- -*----- ....__ ...

I Temp 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure Al H.B. Robinson Unit 2 Reactor Coolant System Cooldown Umitations (CooJdown Rates up to 100°F/hr) Applicable for the First 30 EFPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A-3 TABLE Al 30 EFPY Healup Curve Dala Poinls Using 1996 App. G (without Uncertainties for Instrumentation Errors)

SO Heatup* SO Critical U..Ut* 60 lleatup 60 Critical Umit 100 Heatup 100 Critical Limit T(°F) P (psig) T(OF) P (psig) T( 0 f) r(psig) T{ 0 f) P (psig) T(°F) p (psig) T(°F) P (psig) 60 0 214 0 60 0 214 0 60 0 214 0 60 720 214 720 60 70-i 214 70-i 60 644 214 644 65 720 214 720 65 70-i 214 706 65 644 214 644 70 720 214 722 70 7().t 214 706 10 644 214 64S 7.5 720 214 723 7.5 704 214 710 7.5 644 214 64.5 80 720 214 727 80 70-i 214 7IO 80 644 214 649 85 720 214 727 85 704 214 715 85 644 214 649 90 720 214 734 90 704 214 71.5 90 644 214 6.54 95 720 214 734 9.5 704 214 723 95 644 214 654 100 723 214 743 100 10-i 214 723 100 644 214 661 10.5 727 214 154 10.5 706 214 733 105 644 214 661 110 734 214 7.54 110 7JO 214 733 110 644 214 670 115 743 214 767 115 715 214 7.S5 115 644 214 670 120 154 214 767 120 723 214 1.is 120 644 214 680 125 767 214 782 12.5 733 214 758 125 644 214 680 130 782 214 799 130 745 214 774 130 64.5 214 693 13.5 799 214 818 13.5 158 214 774 135 649 214 693 140 818 214 840 140 774 214 793 140 654 214 708 14.5 840 214 864 145 793 214 813 145 661 214 708 1.50 864 214 892 150 813 214 837 150 670 214 726 I.SS 892 214 922 1.55 837 214 863 ISS 680 214 726 160 922 214 956 160 863 214 892 160 693 214 726 165 956 214 993 165 892 214 925 165 708 214 726 170 993 215 103.5 170 925 21.5 961 170 726 215 7.t6 115 103.5 220 1081 115 961 220 1001 17.5 746 220 768 180 1081 225 1132 180 1001 225 lo.t6 180 768 22S 794 18.5 1132 230 1188 185 1046 230 1095 185 79.i 230 822 190 1188 23.5 12.50 190 109.5 23.5 1150 190 822 23.5 8.54 195 1250 240 1319 195 1150 240 12IO 195 854 240 890 200 1319 245 139.5 200 1210 245 1277 200 890 24S 930 205 139.5 250 1479 205 1277 250 1351 205 930 2.50 915 210 1479 2.55 1.571 210 1351 255 1433 210 975 2SS J024 21.5 1571 260 1673 21.5 1433 260 J.523 215 J024 260 1078 220 1673 265 1786 220 1.523 265 1622 220 1078 26.5 1139

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-1.5827

A-4 TABLE A I *(Continued) 30 EFPY Heatup Curve Data Points Using 1996 App. G (without Unccnaintics for lns1rumen1a1ion Errors)

SO lltatup* SO Critical Umit* 60 llratup 60 Critical Limit 100 Heatup 100 Critical Limit T(OF) p (psig) T(OF) P (psii:) T(OF) r (psis:> T( 0 f) r (psii:) T( 0 f) r (psig) T( 0 f) r (psii:)

225 1786 270 1911 225 1622 270 1732 225 1139 270 1206 230 1911 275 2048 230 1732 275 185-1 2'.\0 1206 275 1279 235 2048 280 2200 235 185.t 280 1987 235 1279 280 1361 240 2200 285 2367 240 1987 285 2135 240 1361 285 14.SI 245 2367 245 2135 290 2298 245 1451 290 15.SI 250 2298 295 2477 250 IS.SI 295 1660 255 2477 255 1660 300 1782 260 1782 305 1915 265 1915 310 2062 270 2062 315 2224 275 2224 320 2403 280 2403 i:::~~~>*~.~:;::~:~... ~~:*i:::i. ,,.~ :)*ii'!-.1:;,"(a..PJ:tf,:~. :r;;;:. ~*. j_'7"' : .. : : I * '.u-,;*,~*..;:: h ~:;:*v-!\. ::\:.. I*.

  • 1.* ._ .*~*~ *~ :~** , .L:t*i:~ '\- "':.~.~~.:'i'i::r,. :~.r-~.~./_;,~~
  • 0 Leak Test Temp. 195 214 Limit Prn.s. 2000 2485
  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A*S TABLEA2 30 EFPY Cooldown Curve Da1:1 Poinrs Using 1996 App. G (without Unccnaintics for Instrumentation Errors)

Steady State lO"Flhr. 40°F/hr. S0°F/hr.* W"Flhr. lOO"Flhr.

T C0 f) I r Cpsig) T ( 0 f) I r fpsig) T (°F> I r fpsig) T (°F) I r fpsij!) T C°F) I p fp~ig) T ( 0 F) I p (p!iiJ?)

{lO 0 {lO 0 {lO 0 60 0 60 0 60 0 60 1SS 60 688 60 619 60 584 60 549 60 40-i 65 761 65 694 6S 626 65 591 65 SS6 65 413 70 767 70 701 70 633 70 598 70 564 70 422 1S 774 75 708 1S 641 75 607 75 512 75 433 80 782 80 716 80 650 80 616 80 582 80 44S 8S 790 85 125 8S 660 85 627 85 593 8S 4S9 90 799 90 735 90 671 90 638 90 606 90 474 95 810 95 747 9S 683 95 651 95 619 9S 492 100 821 100 759 100 697 lOO 666 100 63-t 100 Sil I05 8:l4 IOS 773 I05 712 105 682 105 651 IOS 532 110 8.S7 110 788 110 729 110 700 110 670 110 SS6 115 863 115 805 115 748 115 719 115 691 115 583 120 880 120 824 120 769 120 1.i2 120 715 120 613 125 898 125 84.5 125 792 125 766 125 741 125 6-t6 130 919 130 868 130 818 130 793 130 770 130 683 l'.\5 942 135 893 135 846 l35 823 135 802 135 724 140 967 140 921 140 878 140 857 140 837 140 770 145 995 145 952 145 913 145 894 14S 877 145 821 150 1026 ISO 987 ISO 951 150 9JS 150 920 150 . 877 155 I ()(.,0 155 1025 lSS 994 ISS 981 ISS 969 155 917 160 1098 160 1067 160 1042 160 IOJI 160 1023 160 951 165 1140 165 1114 165 1095 165 I087 165 1082 165 988 170 11116 170 1166 110 1153 170 1150 170 1148 170 1029 175 12:n 175 1223 175 1218 175 1218 175 1218 175 1076 lltO 1293 180 1287 ttm 1287 180 1287 180 1287 180 1127 185 1355 185 1355 185 1355 185 llS5 185 135S 185 1185 190 1424 190 1.i24 190 1424 190 IH4 190 1424 190 1249 195 1500 195 1500 195 ISOO 195 1500 195 1500 195 1321 200 ISK4 200 1584 200 1584 200 1584 200 1584 200 1401 205 1677 205 1677 205 1677 205 1677 205 1657 205 J.t89 210 1779 2IO 1779 2IO 1779 210 1779 210 1732 210 1588 215 1893 215 1893 215 1893 215 1855 215 1816 215 1697 220 2018 220 2018 220 1978 220 19.U 220 1909 220 1819 225 2156 225 2138 225 2069 225 2039 225 20IJ 225 1953 2.lO 2295 230 2%26 230 2169 230 2146 230 2127 230 2103 2..15 2382 235 2325 235 2281 235 2265 135 2254 235 2269 2.. 0 2479 l-10 2.Sl-1 2.io 240.C 2.. 0 2.197 2-10 2395 2-10 2-'S-1

  • Shown hy request of CP&L. This rate ii; not shown on the plot.

WCAP-15827

MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI020l-l LIMITINGA'RTVALUESAT3S EFPY: l/4T. l67°F 3/4T, 147°F 2500 loparlim Vemon:5.1 Run:784S I i*~~-.('~ Leak Test Limit

~f:t.~J,~

'~~\: .*k\:.'-* 2250 Unacceptable Acceptable 2000 Operation Operation 1750 Critical Limit CJ iii Heatup Rate 60 Deg. F/Hr

-e.,,

a. 1500
l 60 Deg. F/Hr Critical Limit 100 Deg. F/Hr 4ll

£).

1250

'C Cl>

I ll

'S 1000 . . .. ... .... ..

CJ CJ CIS 750 500 250 Bottup Criticality Limit based on Temp. lnservlce hydrostatic test temperature (216 F) for the service period up lo 35 EFPY o+..........-'".l!:...-i.-.----J.--,.......L-l.-..-.4......-~::;:;:=::i::::;::;:~::;:;::;::;:::i::;::;::~_.....--4 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

.J Figure A3 H.B. Robinson Unit 2 Reaccor Coolant System lleacup Limitations (lleatup Rates of 60 & 100.,F/hr) Applicable for the First 35 EFP\' (Without Maq~ins for Instrumentation Errors} Using 1996 App.G Methodology WCAP-15827

A-7 MATERIAL PROPERD BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI020l-1 &: GIRTH WELD 10-273 LIMITINGARTVALUESAT35 EFPY: l/4T. 167°F & 242°F 3/.ff. I 47°F & l 72°F 2500 Operr1m Version:S.t Run:7845 2250 .. ~ * . ... ..

Unacceptable 2000 Operation Acceptable - .. . -****-

Operation 1750 u; . ....... -

Q,.

GI

J en 1500 Co*ldowD R*le.

VI rnrr Cll Q,.

1250 .. *H*d1*al*le .. ***- ---

  • 20

't2 Cll *40

  • 80 u 1000 *100 ... .......... .. --

iii u

750 500 250 *- - .

0 .._~~-r---.-t--.-.....-t--......-.-+-----+-_,..--+~~-+-r----t-.-................................i - -............,

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A4 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°Flhr) Applicable for lhe first 35 EH,\' (Without Margins for Instrumentation Errors) Usini: 19% App.G Methodology WCAP-l5827

A*8 TABLE Al 35 EFPY Heatllp Curve Data Points Using 1996 App. G (without Uncenainlics for lns1rumcn1a1ion Errors) 50Heatup* SO Critical Limit* 60 Heatup 60 Crirical Limit 100 llealup 100 Critical Limit T( 0 f) r (psig) T(OF) P(psiR) T(OF) P(psig) T( 0 f) r (psig) T( 0 f) r (psi~) T( 0 f) r (psi~)

60 0 216 0 60 0 216 0 60 0 216 0 60 716 216 716 60 700 216 700 60 639 216 639 65 716 216 716 65 700 216 701 65 639 216 639 10 716 216 718 70 700 216 701 70 639 216 640 15 716 216 723 75 700 216 705 75 639 216 640 80 716 216 723 80 700 216 705 80 M9 216 643 SS 116 216 729 85 700 216 710 85 639 216 643 90 716 216 729 90 700 216 710 90 639 216 648 95 716 216 737 95 700 216 717 95 639 216 648 100 718 216 737 too 700 216 727 too 639 216 654 105 723 216 748 105 701 216 727 I05 639 216 654 IJO 729 216 748 110 705 216 738 110 639 216 662 115 737 216 760 115 710 216 738 115 639 216 662 120 748 216 760 120 717 216 751 120 639 216 672 125 760 216 774 125 727 216 751 125 639 216 672 130 774 216 790 130 738 216 766 130 640 216 685 135 790 216 809 135 751 216 766 135 643 216 685 140 809 216 830 140 766 216 784 140 648 216 699 145 830 216 853 145 784 216 R03 145 654 216 699 150 853 216 879 150 803 216 826 ISO 662 216 715 155 879 216 908 155 826 216 851 155 672 216 715 160 908 216 941 160 851 216 879 160 685 216 734 165 941 216 977 165 879 216 910 165 699 216 734 170 977 216 1017 170 910 216 945 170 715 216 734 175 1017 220 1061 175 945 220 983 175 734 220 756 180 1061 225 1110 180 983 225 I0:?6 180 756 225 780 185 1110 230 1164 185 1026 230 I074 185 780 230 808 190 1164 235 1224 190 1074 235 1126 190 808 235 838 195 1224 240 1290 195 1126 240 1184 195 838 240 873 200 1290 245 1362 200 1184 245 124!\ 200 873 24S 911 205 1362 250 1443 205 1248 250 1319 205 911 250 953 210 1443 255 1532 210 1319 255 1398 210 953 255 1001 215 1532 260 1630 215 1398 260 1484 215 1001 260 1053 220 1630 265 1739 220 1484 265 1580 220 1053 265 1111

  • Shown by request of CP&L. This rare is not shown on lhe plot WCAP-15827

TABLE Al * (Continued) 35 EFPY Hearup Curve Dara Poinrs Using 1996 Arp. G (without Unccrt.:iintics for Instrumentation Errors)

SO llcatup* 50 Critical Umit* 60 lltatup 60 Critical Limit 100 llcatup JOO Critical Limit TC 0 F> p (p!ii~) T(Of) r (psii:) T( 0 f) r (psig) T( 0 f) r (psis;!) T( 0 f) r (psii:) T(OF) r (psii:>

225 17)9 270 1858 22j 1580 270 1685 225 1111 270 1175 230 1858 275 1990 230 1685 275 1802 230 1175 275 1246 235 1990 280 2136 235 1802 280 1930 235 1246 280 1324 240 2136 285 2297 240 1930 285 2072 240 1324 285 14lt 245 2297 290 2474 245 2072 290 2229 245 1411 290 1506 250 2474 250 2229 295 2401 250 1506 295 1612 255 2401 255 1612 300 172R 260 1728 305 1856 265 1856 ~IO 1998 270 1998 315 2153 275 2153 320 2325 280 2325 rf: . :~ ':-.--".." ,,\-:*"... *:~;, ; 4... :-:*~i~.::;~t-.:_.;";*~,,1_1~~*.(~~J.f..~\.~:*.. ::.{:;. . ).',;~~-~$:;,~;:*:i*~*.;..-;,i::,_~;';£~ *.~~... : .. ~ ~*..:. ;~:: .* :.. :: t . * ;. :* ....

uak Test Limit Temp. 197 216 Press. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plol.

WCAP-15827

A-10 TABLEA4 35 EFPYCooldown Curve Data Points Using 1996App. G (without Unccnaintics for Instrumentation Errors)

Strady Stale 20°F/hr. 40"F/hr. 50°flhr.* 60°Fl1ir. 100°Flhr.

T (0 f) I P (psi~) T (0 f) I r (psli:l T f0 f) I p (p:d~l T (0 fl I P (psi~) T ( 0 F) I P(psig) T (0 fa I P (psii?l (IQ 0 60 0 60 0 60 0 60 0 60 0 60 753 60 685 60 616 60 581 60 546 60 400 65 758 65 691 65 623 65 588 65 553 65 409 70 764 70 698 70 629 70 595 70 560 70 418 75 771 15 705 75 637 75 603 15 568 75 428 80 778 80 713 80 646 80 612 80 578 80 440 85 787 85 721 85 655 85 622 85 588 85 453 90 795 90 731 90 666 90 633 90 600 90 468 95 805 95 742 95 678 95 646 95 613 95 484 100 816 JOO 754 100 691 100 659 100 628 100 502 I05 828 t05 767 I05 706 I05 675 IOS 644 105 S23 110 s.i2 110 782 110 722 I IO 692 110 662 110 546 115 856 115 798 115 740 115 711 115 682 115 572 120 873 120 816 120 760 120 732 120 705 120 600 125 891 125 836 125 782 125 756 125 730 125 632 130 911 130 858 130 807 130 782 130 757 130 667 135 933 135 882 BS 834 135 811 135 788 135 707 140 951 140 910 140 864 140 843 140 822 140 151 145 984 145 939 145 898 145 879 145 860 145 800 150 1013 1.50 973 ISO 935 150 918 1.50 902 ISO 8-17 155 1046 155 1009 155 976 155 962 155 949 155 873 160 1082 160 I050 160 I022 160 1010 160 1000 160 901 165 1123 165 1095 165 1073 165 1064 165 1058 165 933 170 1167 170 1145 170 1129 170 I 124 170 1121 170 968 175 1216 175 1200 175 1191 175 1190 175 1190 175 1008 180 1270 180 1260 180 1260 180 1260 180 1260 180 1053 185 1330 185 1328 185 1328 185 1328 185 1328 185 1102 190 1396 190 1396 190 1.196 190 1396 190 1396 190 1158 195 1469 195 1469 195 1469 195 1469 195 14.&9 195 1220 200 15-'9 200 1549 200 1549 200 1549 200 1502 200 1288 205 1638 205 1638 205 1638 205 1616 205 1561 205 1365 210 1737 210 1737 llO 1729 210 1677 210 1627 210 1450 215 18-'6 215 1846 215 1793 215 1745 215 1699 215 1545 220 1966 220 1957 220 186-i 220 1821 220 1780 220 1650 225 2099 225 2027 225 19.&J 225 1905 225 1869 225 1767 230 2187 230 210.a 230 2030 230 1998 230 1969 230 1897 235 2263 235 2189 235 2127 235 2101 235 2079 235 20-11 2-10 23.&6 lJO 228-1 2-10 2234 2-10 2215 uo 2201 uo 2.200 2-15 2-139 lJS 2388 2-15 2353 2-15 23.&2 2.&S 2336 us 2336 250 2484 250 2482 250 2482 250 U82

  • Shown by request of CP&L. This rate is not shown on the plot.

u Boldcd Values are Limited by the Circ. Weld ART using Code Case N-588.

WCAP-15827

A*ll MATERIAL PROPERTY BAS1S LIMITING MATERIAL: UPPER SHELL PLATE W10201*1 LIMITING ART VALUES AT 40 EFPY: l/4T, 169°F 3/4T, 149°F 2500 ,-~~~~~~~--~.--~~~~----~r==============n Operlim VerslOll .S.1 Run:7462 Leak Test Limit 2250 2000 Acceptable Unacceptable Operation Operation 1750

-g CJ 1500 Critical Limit 60 Deg. F/Hr

~

I

"'en~ 1250 Critical Limit Q.

100 Deg. F/Hr

-GI ca

'S 0

1000 ti 750 500 Crmca\lty Limit based on Bollup 250 Temp.

lnservlce hydrostatic test temperature (218 F) for the service period up to 40 EFPV 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure AS 11.B. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates of 60 & J00°F/hr) Applicable for the first 40 EFP\' (Without Mara:ins for Instrumentation Errors) Using 1996 App.G Methodology WCAP*IS827

A-12 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 0201-1 & GIRTH WELD I0-273 LIMITING ART VALUES AT 40 EFPY: 1/4T, 169°F & 251°F 3/4T, 149°F & 179°F Qp111tm Verslon:5. 1 Run:7462 2250 - __ ,,_ ..

Unacceptable 2000 Operation Acceptable Operation 1750 -. - ,.. __ .- ... -.

CJ iii

a. 1500
3 Cooldowa Rol**

! Flllr GI 1250 - . ...... -

~ *leod1-*l*I*

a. *20

'S GI f tl u 1000

--40

  • 10

.100 co u

750 500

__ .~-* Boltup 250 Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A6 11.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to JOO.,Fn1r) Applicable for the First 60 EFP\' (Without Margins ror Instrumentation Errors) Using 1996 App.G l\lethodology WCAP-15827

A*ll TABLE AS 40 EFPY Heatup Curve Data Points Using 1996 App. G (wi1hout Uncertain1ics for lnstrumcn1:11ion Errors)

SO lleatup* SO Critic:al Umit* 60 lleatup 60 Critical Umit 100 llealup 100 Critical Limit T(°F) r (psii:) T(°F) r (psii:) TC°F) r (psig) T(°F) P Cpsii:> T( 0 f) r (psii:> T( 0 f) r (psig) 60 0 216 0 60 0 216 0 60 0 216 0 60 712 218 712 60 696 218 696 60 634 218 634 65 712 218 712 65 696 218 697 6S 6J-I 218 6J5 70 712 218 714 70 696 218 697 70 63-1 218 63S 7S 712 218 718 75 696 218 700 15 6J-I 218 637 80 712 218 718 80 696 218 700 80 63-1 218 637 85 712 218 724 BS 696 218 705 85 634 218 637 90 712 218 724 90 696 218 712 90 634 218 642 9S 712 218 732 95 696 218 712 9S 634 218 642 100 714 218 732 100 696 218 720 100 634 218 648 IOS 718 218 742 IOS 697 218 720 105 63-1 218 648 110 724 218 753 110 700 218 731 110 634 218 655 llS 732 218 753 llS 705 218 731 115 634 218 665 120 742 218 767 120 712 218 743 120 634 218 665 125 753 218 767 125 720 218 743 125 6J-I 218 676 IJO 767 218 782 130 731 218 758 130 635 218 676 1:\5 782 218 800 135 743 218 758 135 637 218 690 140 800 218 820 140 758 218 115 140 642 218 690 145 820 218 842 145 77S 218 79-1 145 648 218 706 ISO 842 218 868 ISO 79-1 218 BIS ISO 655 218 706 IS5 868 218 896 IS5 815 218 839 IS5 66S 218 724 160 896 218 927 160 839 218 866 160 676 218 724 165 927 218 961 165 866 218 896 165 690 218 724 170 961 218 999 170 896 218 929 170 706 218 724 175 999 220 IQ.12 175 929 220 966 175 724 220 74-l 180 lo.t2 225 I0!!9 180 966 225 1007 180 7-14 225 767 185 1089 230 1141 185 1007 230 I053 18.S 767 230 794 190 1141 235 1198 190 I053 235 1103 190 794 235 823 195 1198 240 1261 19S 1103 240 1159 195 823 240 856 200 1261 245 1331 200 1159 245 1221 200 856 245 893 205 1331 250 1409 205 1221 250 1289 205 893 250 933 210 1409 255 1494 210 1289 2S5 1364 210 933 2SS 979 215 1494 260 1589 215 1364 260 1447 215 979 260 1029 220 IS89 265 1693 220 1447 265 1539 220 1029 265 108-1 225 1693 270 1808 225 1539 270 1640 225 108.t 270 1146

  • Shown by request of CP&L. This rate is not shown on the plot .

WCAP*l5827

A-14 TABLE A5 * (Conrinucd) 40 EFPY Hearup Curve Dara Points Using 1996App. G (without Unccrtain1ics for Instrumentation Errors)

SO Jleatup* SO Crirkal Limit* 60 lleatup 60 Critical Limit JOO llutup 100 Critkal Limit T( 0 f) P (psig) TC°F) P (psig) T( 0 f) r (psi~) T(Of) r Cpsig) T( 0 f) r (psig) TC°F) P (psil?l 230 1808 275 1934 HO 1640 275 1752 230 1146 275 1214 235 1934 280 2074 2:\.S 1752 280 1876 235 1214 280 1289 240 2074 285 2229 240 1876 285 2012 240 1289 285 1372 245 2229 290 2364 2-15 2012 290 2162 245 1372 290 1464 250 2364 295 2459 250 2162 295 2328 250 1464 295 1565 255 2459 255 2328 255 1565 300 1677 260 1677 305 1800 265 1800 3IO 1936 270 1936 315 2085 275 2085 320 2250 280 2250 325 2432 285 2432

  • ~:~f~..::::.~*.~~..): . ~: '* ...: .. *~,;: ','!;~:.~:,..*.. *.' ';'r1: ,'.. -!°'~!~'i*t :: i!~~~~'t/ .~**i*~,\~:;" ;": ~\'* !~ ~'4*~/*~f~:ft. . . .-,.~~ l.:~):*"I~*.. *, ...... ";°)," ,:, I Leak Test Limit Temp. 199 218 p~ 2000 2485
  • Shown by request of CP&L. This rare is not shown on the plot.

WCAP-15827

A-15 TABLEA6 40 EFPY Cooldown Curve Data Poin1s Using 1996 App. G (without Uncenain1h:s for 1n~trumcn1a1ion Errors)

Strady State 20°Flhr. 40"Flhr. S0°Flhr.* 60"F/br. 100°Flhr.

T ( 0 f') I r (psil,?) T ( 0 F) I r (psil,?) T ( 0 f) I r (psil.?) T c0 F)l -p Cpsi1.?) T ( 0 f) I r (psi ii:) T ( 0 f) I P (psh~)

60 0 60 0 60 0 60 0 60 0 ti() 0 60 751 60 683 60 61-1 60 579 60 5.i3 60 397 65 756 65 6119 65 620 65 5115 65 5..i9 65 405 70 762 70 695 70 626 70 59:? 70 557 70 413 75 768 75 702 15 6'.\.t 15 599 15 565 75 423 80 775 80 709 80 6"'2 KO 6011 RO 574 80 434 85 783 85 718 85 651 RS 6JR RS 58.i 85 447 90 792 90 727 90 661 90 fi~8 90 595 90 461 95 801 95 737 95 673 95 6..i() 95 607 95 477 100 812 100 749 100 6115 100 6H 100 621 100 494 I05 823 105 761 I05 699 I05 MR I05 637 105 514 110 836 110 776 110 715 I IO 6115 110 654 I IO 536

'15 850 115 '191 115 '132 115 '103 115 67.\ 115 560 120 866 120 808 120 751 120 7B 120 695 120 588 125 883 125 828 125 7B 125 7..i6 125 719 125 618 130 902 130 849 130 796 130 771 130 1..i6 130 652 135 924 135 872 135 823 135 799 BS 775 135 690 140 947 140 898 140 852 1-10 829 140 808 140 732 145 973 145 927 145 884 145 8M 145 844 145 779 ISO 1001 ISO 959 ISO 920 150 902 150 885 ISO 803 1.5.5 1033 1.5.5 994 IS5 959 155 9.t.t 15.5 929 155 82-1 160 1068 160 I033 160 IOOJ 160 990 ItiO 979 160 s.i1 165 1106 165 1076 165 1052 165 1().-12 16.5 JOJ-1 165 873 170 1149 170 112-1 170 ll06 170 IOW 170 I095 170 902 175 1196 175 1177 175 1165 175 1163 175 1162 175 93-i 180 1248 180 1235 180 1231 I!(() 1:?31 180 1231 180 971 185 1305 185 1300 1115 1300 185 1300 185 1289 185 1012 190 1~68 190 1368 190 J:\68 190 D6K 190 132-1 190 1058 195 1439 195 1439 195 1..i:w 195 1430 195 136-1 195 1109 200 1516 200 IS16 200 IS16 200 l.t72 200 1408 200 1165 205 1602 205 1602 295 1579 205 1517 205 1.i51 205 1229 2IO 1696 2IO 1696 210 1627 210 IS68 210 1511 210 1299 215 1801 215 1795 215 1681 215 1625 215 1571 215 1378 220 1917 220 IU7 220 17.&0 220 1688 220 1638 220 1465 225 2011 225 1905 225 1805 225 1158 225 1712 225 1562 230 2068 230 1970 2JO 1878 230 1835 230 1795 230 1670 235 2131 235 20-11 235 1958 235 1921 235 1886 235 1790 1.io 2101 2-10 2120 240 2048 2.io 2016 240 1988 2..CO 1923 2-15 2279 2-15 2207 2-15 21.&6 2.is 2121 2.is 2101 2.i5 2070 250 23~ 250 2303 250 2256 250 2238 250 2225 250 2225 255 2J59 255 2-llO 255 2377 255 2368 255 236-1 255 236-1

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bo1ded Values are Limited by the Circ. Weld ART using Codi! Case N-588 .

WCAP-15827

A-16 MATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPER SHELL PLATE WI 0201-1 LIMITINGARTVALUESAT45 EFPY: 114T, 170°F 3/4T, 151°F 2500 .-~~~~~~~~~-.-~~~~~~--.==============ii lope1km V11ts111n.S.1 Run:IOSSI I Leak Test Limit 2250 -- *--*-** ... - -**

Unacceptable Acceptable 2000 Operatlon ------ . . ..

  • Operation 1750 CJ Critical Limit i'ii Q.

t>

s en 1500 60 Deg. F/Hr en OJ Q.

1250 "D

OJ

<

CooldowD R*t .. Fnlr II>

  • le*d7**1*le

! 1250 *20 a.

  • 40 "C

Q> .co ID .100

u 1000 iii u

750

--- ...... *-* *- --- -------* l -- -

500 ~-*

Boltup 250 Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure AS II.II. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to IOO"FA1r) Applicable for lhe Firsl 45 EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

  • A-18 TABLEA7 45 EFPY Healup Curve Data Points Using 1996 App. G (wi1hout Uncertainties for lns1rumcnta1ion Errors)

SO lleatup* SO Critical Limit* 60 Heatup 60 Critical Limit 100 lleatup 100 Critical Um.it T(OF) P (psia:) T(OF) P(psi~) T< 0 n P(psi~) TC°F> P(psi~) T( 0 f) r (psi~) TC 0 F) PCpsig) 60 0 219 0 60 0 219 0 60 0 219 0 60 708 219 708 60 692 219 692 60 629 219 629 65 708 219 708 65 692 219 693 65 629 219 630 70 708 219 710 70 692 219 693 70 629 219 630 15 708 219 713 75 692 219 695 75 629 219 632 80 708 219 713 80 692 219 695 80 629 219 632 8.5 708 219 719 85 692 219 700 85 629 219 636 90 708 219 719 90 692 219 706 90 629 219 636 95 708 219 726 9.5 692 219 706 95 629 219 641 100 7IO 219 726 100 692 219 714 100 629 219 641 105 713 219 736 105 693 219 714 105 629 219 648 110 719 219 736 110 695 219 725 110 629 219 648 115 726 219 747 115 700 219 725 115 629 219 651 120 736 219 747 120 706 219 736 120 629 219 657 125 747 219 760 125 714 219 736 125 629 219 668 130 760 219 77.5 130 725 219 150 130 630 219 668 135 115 219 792 13.5 736 219 750 135 632 219 681 140 792 219 811 140 7.50 219 766 140 636 219 681 145 811 219 832 145 766 219 784 145 641 219 696 150 832 219 856 150 784 219 805 150 648 219 696 155 856 219 883 155 805 219 828 155 657 219 713 160 883 219 913 160 828 219 854 160 668 219 713 165 913 219 946 165 854 219 882 165 681 219 713 170 946 219 983 170 882 219 914 170 696 219 713 175 983 220 I024 175 914 220 950 175 713 220 733.

180 I024 225 1069 180 950 225 989 180 733 225 755 185 1069 230 1118 185 989 230 I033 185 155 230 780 190 1118 235 1174 190 I033 235 1081 190 780 235 808 195 1174 240 1234 195 1081 240 1135 195 808 240 840 200 1234 245 1302 200 1135 2-15 119-1 200 840 245 875 205 1302 250 1376 205 1194 250 1260 205 875 250 914 210 1376 255 1458 210 1260 255 1332 210 914 255 957 215 1458 260 15-19 215 1332 260 1412 21S 957 260 1005 220 1549 26.5 1649 220 1412 265 1.500 220 1005 265 I059 225 16-19 270 1759 225 1500 270 1.597 225 1059 270 1118

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-1.5827

A-19 TABLE A7 *(Continued) 45 EFPY Heatup Curve Data Poinrs Using 1996 App. G (without Unccnainlics for lnstrumcntalion Errors)

SO llcatup* SO Critical Limit* 60 llcatup 60 Critical Limit 100 lleatup 100 Critical Limit Tf°F) r (psis:) T(OF) r (psis:) T(°F) r (psi1:) Tf°F) r (psii:l T< 0 n r (psi~) Tf°F) r (psii:)

230 1759 275 1881 2.m 1597 275 1705 2JO 1118 275 1183 235 1881 280 2015 235 1705 2RO 182J 2J5 I 18J 280 1255 240 2015 285 2164 240 1823 285 1954 240 12.55 285 1335 24.S 2164 290 2279 245 19.54 290 2098 245 133.S 290 1423 250 2279 295 236-S 250 2098 295 2258 250 1423 295 1.520 255 2364 300 2459 255 2258 300 2433 25.S 1520 300 1627 260 l-iS9 260 2433 260 1627 30.S 1746 265 1746 310 1876 270 1876 315 2020 27.S 2020 320 2178 280 2178 325 2353 285 2353

~~'~.~ .!.,r,~.;::&;.s*t'.~~\: ~~!.'i::t~ **~ :~!.~;);*.~ : *. ~ ;._* :*:* .::.. * .: ::~ *; . * *~.;.- .~. *~* .**: . ' * !- *;. ,,,:t ..' . . '.:. ' *.:.*!~;.. ,. ~:--:<...~ ;::~;-=~: '!*::~ ~:.~. .~. . -..:..

Leak Ttst Limit Temp. 200 219 Pnss. 2000 2485

  • Shown by request of CP&L. This rare is not shown on the plot.
    • Bolded Values are Limited by the Circ. Weld ART using Code Cuc;e N-588 .

WCAP* 1.5827

A-20 TABLEA8 45 EFPY Cooldown Curve Dala Points Using 1996App. G (withoul Uncertainties for Instrumentation Errors)

Ste:1dy State 20°Flhr. 40°F/hr. 50°F/hr.* 60°F/hr. 100°F/hr.

T ( 0 fl I r fpsii:) T ( 0 Fl I r (psiJ:) T C°f) I r {psii:) T (0 f) I r (psiJ:) T (0 f) I P (psiJ?) T t°F> Ir CpsiJ:l 60 0 60 0 60 0 60 () 60 0 60 0 60 750 60 682 60 613 60 577 60 542 60 395 6S 15S 65 688 65 618 6S 583 65 548 65 403 70 761 70 694 70 625 70 590 70 555 70 411 75 767 75 700 75 632 75 598 1S 563 75 421 80 774 80 708 80 MO 80 60(, 80 572 80 432 85 782 85 716 8S 6-t9 8S 61S 8S SRI 8S 444 90 790 90 725 90 6S9 90 626 90 S92 90 458 95 799 95 735 9S 670 95 638 95 605 95 473 100 810 100 746 100 683 100 650 100 618 100 490 105 821 105 759 105 696 105 665 105 6'.\-t I05 SIO 110 834 110 773 110 712 110 681 110 651 110 531 115 SH llS 788 I IS 728 llS 699 I IS 670 llS SSS 120 863 120 80S 120 747 120 719 120 691 120 582 125 880 125 824 125 768 12S 7-11 125 714 125 612 130 898 130 844 130 791 130 765 130 740 130 64S 135 919 135 867 ll5 817 13S 793 135 769 135 682 140 942 140 893 140 846 140 823 140 801 140 723 145 967 145 921 14S 877 145 856 145 837 145 766 150 995 150 952 ISO 912 ISO 894 ISO 876 ISO 782 155 I026 155 987 15S 951 155 935 155 920 155 800 160 1060 160 1025 160 994 IC'-0 980 160 968 160 820 165 1098 165 1067 165 1a.i2 165 1031 16S 1022 165 844 170 1140 170 1114 170 1094 170 1087 170 1082 170 870 175 1186 175 1166 175 1153 175 1149 175 1148 175 899 U!O 1237 180 1223 180 1217 180 1217 180 1217 180 932 185 1293 185 1286 18S 1289 185 1293 185 1255 185 968 190 1355 190 1355 190 13S5 190 135S 190 1287 190 1009 195 1424 195 1424 195 1424 19S 1391 195 132.3 195 JOSS 200 1500 200 1500 200 I.i96 200 1429 200 1.362 200 1106 205 1584 205 158.t 205 1535 zos 1470 205 1406 zos 1163 210 1677 210 1677 210 1578 210 IS16 2IO 145S 210 1227 215 1779 215 11.a1 215 1626 215 1567 215 1509 215 1297 220 1893 220 1794 220 1679 220 1624 220 1570 220 1376 225 230 1959 2011 225 230 1847 190S 225 230 1739 1804 225 230 1687 1757 225 230 1637 1711 22S 230 1561

~

235 2068 235 1969 235 1877 23S 1834 23S 179.$ 23S 1669 240 2131 240 2040 240 1958 240 1920 240 188S 240 1789 2.is 2201 us 2119 us 20.$7 us 2015 2.$5 1987 245 1922 2SO 2279 2SO 2206 250 2146 250 2121 250 2100 250 2070 25S .2364 255 230.3 255 2255 255 2238 255 222S 255 2225 260 2459 260 2410 260 2377 260 2367 260 2..163 260 2363

  • Shown by request of CP&L. This rate is not shown on the plot.
    • Bo1dcd Values are Limited by 1he Circ. Weld ART using Code Ca~ N-588.

WCAP-15827

A-21 MATERIAL PROPERTY BASIS LIMmNG MATERIAL: UPPER SHELL PLATE WI0201*1 & GIRTH WELD 10.273 LIMITINGARTVALUESAT50EFPY: l/4T, 172°F& 263°F 3/4T. 153°F & 191°F 2500 ~-------------------.--------~---.r=================,., loper~m Versl0n:5.' Ru1t:19S11 I Leak Test Limit 2250 Unacceptable Acceptable 2000 Operation Operation 1750 S'

c;; Critical Limit CL.

s 1500 60 Deg. F/Hr Cll Cll f 1250

,,CL.

"5 Cll I ll u 1000 ca

()

750 -

500 .. *- . -* .. .. . . - **- . . . ****--*----- *- . *-

I Bollup 250 Temp. .

  • _ Criticality Limit based on lnaervlce hydrostatic test temperature (221 F) for the service period up lo 50 EFPV 0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F) figure A9 11.8. Robinson Unit 2 Reactor Coolant System lleatup Limitations (lleatup Rates of 60 & 100°f/hr) Applicable for the First SO EfPY (Without Margins for Instrumentation Errors) Using 1996 App.G Methodology WCAP-15827

A-22

~1ATERIAL PROPERTY BASIS LIMITING MATERIAL: UPPERSHELLPLATEWI0201-I &GIRTHWELD 10-273 LIMITING ART VALUES AT SO EFPY: l/4T. J72°F & 263°F 3/4T. 153°F & 191°F 2250 Unacceptable 2000 Operation Acceptable 1750 * ----*~ * *- Operation CJ iii D.

I>

1500 CooldowD f 1250 a.,.. Fnlr . **-*---** ..

  • - * - ** *l**d7**l*le '

D. -to "O

OJ cu u 1000 "S

ia

  • 'O
  • 10
  • IOO u

750 500 250 *- .* Boltup Temp.

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

Figure A10 H.B. Robinson Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100°F/hr) Applicable for the First SO EFP\' (Without Margins for Instrumentation Errors) Using 1996 App.G Mcthodolo~y WCAP-15827

' A-23 TABLEA9 50 EFPY Heatup Curve Data Points Using 1996 App. G (withou1 Uncertainlics for lns1rumcn1a1ion Errors) 50 lltatup* 50 Critical Umit* 60 lltatup 60 Critical Umit 100 lleatup 100 Critical Umil T(°F) r (psi.:) T(°F) p (psi.:) TC°F) PCpsigl T( 0 f) r (psi~) T( 0 f) r (psig) T (0 f) P(psi~)

60 0 221 0 60 0 221 () 60 0 221 0 60 7().t 221 704 60 688 221 688 60 62S 221 625 65 7().t 221 7o.t 65 688 221 689 65 62S 221 625 70 7().t 221 706 70 688 221 689 70 625 221 627 75 7().t 221 709 75 688 221 691 75 62S 221 627 80 704 221 709 BO 688 221 691 80 625 221 630 BS 704 . 221 714 BS 688 221 695 85 625 221 630 90 704 221 714 90 688 221 701 90 625 221 635 9S 704 221 721 95 688 221 701 95 62S 221 635 100 706 221 721 100 688 221 709 100 625 221 642 105 709 221 730 I05 689 221 709 I05 62S 221 642 llO 714 221 741 110 691 221 718 110 62S 221 650 115 721 221 741 115 695 221 718 I IS 625 221 650 120 730 221 753 120 701 221 730 120 625 221 661 125 741 221 753 125 709 221 743 125 625 221 661 130 753 221 767 130 718 221 743 130 625 221 673 135 767 221 7B3 135 730 221 758 135 627 221 673 140 7B3 221 802 140 743 221 758 140 630 221 687 145 802 221 B22 145 1S8 221 115 145 63.S 221 687 ISO 822 221 MS ISO 115 221 795 ISO 6-i2 221 703 155 845 221 B71 155 795 221 817 155 650 221 703 160 871 221 900 160 817 221 842 160 661 221 703 165 900 221 932 165 842 221 869 165 673 221 722 170 932 221 967 170 869 221 900 170 687 221 722 175 967 221 1006 175 900 221 9J4 175 703 221 722 180 1006 225 IO-i9 180 93.t 225 972 180 722 225 743 IB5 lo.t9 230 1097 IBS 972 230 1014 185 743 230 767 190 1097 235 1150 190 IOl4 235 1060 190 767 235 794 195 1150 240 1208 195 1060 240 1112 195 794 240 824 200 1208 245 1273 200 1112 245 1169 200 824 2.i5 858 205 1273 250 1344 205 1169 250 1231 205 858 250 895 210 IJ.t4 255 1423 2JO 1231 255 1301 2IO 895 255 937 215 1423 260 1510 215 1301 260 1378 215 9:17 260 98:1 220 15!0 265 1606 220 1378 265 l.t62 220 9!!:1 265 1034 225 1606 270 1712 225 1462 270 1556 225 I034 270 1091 230 1712 275 1829 230 1556 275 1659 230 1091 275 1153 235 1829 280 1958 235 1659 280 177;\ 235 1153 280 1223

  • Shown by request of CP&L. This r3te is not shown on 1he plot .

WCAP-15827

A-24 TABLE A9 * (Continued)

SO EFPY Heatup Curve Data Points Using 1996 App. G (without Uncertainties for Instrumentation Errors) 50 lleatup* 50 Critical Limit* 60Jleatup 60 Critical Limit 100 lltatup JOO Critical Limit TC°F) P (psig) T(°F) P (psi,:) TC°F) r (psig) TC°F) r (psig) T( 0 f) P (psi,:) T(°F) r (psig) 240 1958 285 2IOI 240 1773 285 1898 240 1223 285 1299 24S 2101 290 2173 245 1898 290 2037 24.5 1299 290 138.i 250 2173 295 2U7 2SO 2037 295 2190 250 1384 29.5 1477 255 2247 300 2329 2SS 2190 300 2329 2SS 1477 300 1580 260 2329 305 2420 260 2329 305 2420 260 1580 305 1693 265 2420 265 2420 265 1693 310 1819 270 1819 315 1957 275 1957 320 2109 280 2109 325 2276 285 2276 330 2461 290 2461

. *~~**~*!~'*'.?.r~*; ! ~~..~~f'i*;.:~;:~('<~~.tt?t1~tt~'~;.J~!,;Jl";;r~~\?"Eft~.};:'"i~lt'*:..L"~:v~r\.~i~~J:;. '~~!: ~;\'~ * ~;* :.. ).,:~!.' ! r::~.c:*:;.:~*. * *.::~*. *..*:. :. ;*., ..,

Leak Test Limit Ttmp. 202 221 PttSS. 2000 2485

  • Shown by request of CP&L. This rate is not shown on the plot.

WCAP-15827

A-25 TABLEAIO 50 EFPY Cooldown Curve Data Points Using 1996 App. G (wi1hou1 Unccnainlics for lnstrumcntalion Errors)

Steady State 20°Flhr. 40°Flhr. S0°Flhr.* 60°FJhr. l00°flhr.

T (0 f) I r (psig) T <°F> 1r (osig> T( 0 f) I P(psig) T (0 f) I r (psig) T (Of) I P (psig) T (0 F) I P (psig) 60 0 60 0 60 0 60 0 60 0 60 0 60 748 60 680 60 610 60 575 60 539 60 392 65 753 65 685 65 616 65 581 65 545 65 399 70 758 70 691 70 622 70 587 70 552 70 407 75 764 15 697 75 629 75 594 15 559 15 416 80 771 80 704 80 637 80 602 80 568 80 427 85 778 85 712 85 645 85 611 85 577 85 438 90 787 90 721 90 655 90 621 90 587 90 451 95 795 95 731 95 665 95 632 95 599 95 466 100 805 100 742 100 677 100 645 100 612 100 483 IOS 816 105 754 105 690 I05 659 105 627 105 501 110 828 110 767 110 705 I JO 674 110 643 110 522 115 842 115 781 115 721 115 691 115 661 11.5 545 120 856 120 798 120 739 120 7JO 120 682 120 570 125 873 125 816 125 759 125 732 125 704 125 599 130 891 130 836 130 782 130 755 130 729 130 631 135 911 135 858 135 806 135 781 135 151 135 666 140 933 140 882 140 834 140 810 140 787 140 706 145 957 145 909 145 864 145 842 *145 822 145 742 150 984 ISO 939 ISO 898 150 878 150 859 150 755 155 1013 155 972 155 935 155 918 155 902 155 770 160 1046 160 1009 160 976 160 961 160 948 160 788 165 1082 165 1050 165 I022 165 JOJO 165 JO()() 165 807 170 1123 170 1095 170 1073 170 1064 170 1057 170 830 175 1167 175 1144 175 1129 175 1124 175 1121 175 854 180 1216 180 1199 180 1191 180 1190 180 1189 180 882 185 1270 185 1260 185 1260 185 1263 185 1213 185 914 190 1330 190 1328 190 1328 190 1315 190 1241 190 949 195 1396 195 1396 195 1396 195 1343 195 1271 195 988 200 1469 200 1469 200 14-i6 200 1376 200 1305 200 1032 205 1549 205 1549 205 1480 205 1411 205 1343 205 1082 210 1638 210 1638 210 1517 210 1451 210 1386 210 1136 215 1737 215 1687 215 1559 215 1495 215 1433 215 1197 220 18.t6 220 1728 220 1605 220 154.S 220 1485 220 1265 225 1895 225 1774 225 1656 225 1599 225 1543 225 1341 230 1940 230 1824 2JO 1713 230 1659 230 1607 230 1425 235 1990 235 1880 235 1776 235 1726 235 1679 235 1519 240 2045 240 1942 240 1846 240 1801 240 1758 240 1623 245 2105 245 2010 245 1923 245 1883 245 1846 245 1738 250 2173 250 2086 250 2009 250 1975 250 194.S 250 1866 255 2247 255 2170 255 210.S 255 2076 255 2052 255 2008 260 2329 260 2263 260 2209 260 2188 260 2172 260 2166 265 2420 265 2365 265 2326 265 2313 265 2305 265 2305 270 2479 270 2455 270 2451 270 2.s51 270 2451

  • Shown by request of CP&L. This rate is not shown on the plot .

WCAP-15827

B-1

, Table Bl H. B. Robinson Vessel Temperatures for Cooldown 50 °F/hr. Cooldown 100 °Flhr. Cooldown Inner Wall l/4TWall 3/4TWall Ou1sidc Inner Wall ll*ffWall 3/4TWall Outside Temp. (°F) Temp.( 0 f) Temp.( 0 f) Wall Temp. Temp. (0 F) Temp. (0 F) Temp. (0 f) Wall Temp.

(Of) (OF) 550.0 5.50.0 550.0 550.0 550.0 5SO.O 550.0 550.0 54.5.0 548.8 549.9 550.0 545.0 549.4 550.0 550.0 540.0 546.0 549.5 549.7 5.io.o 547.4 549.9 550.0 535.0 542.1 548.6 549.1 535.0 .544.7 549.6 549.9 530.0 539.2 547.1 547.8 5:m.o 541.9 549.I 549.5 525.0 535.5 545.1 546.1 525.0 538.7 548.2 549.0 520.0 531.6 542.7 543.9 520.0 535.4 547.1 548.2 515.0 521.S 539.9 541.3 515.0 531.9 54.S.1 541.0 5IO.O .523.4 536.8 538.4 510.0 .528.4 544.1 545.6 505.0 519.0 533.4 535.1 505.0 524.7 542.2 544.0 500.0 .514.6 529.8 531.6 500.0 520.9 540.I 542.1 49.5.0 510.1 526.0 527.9 49.5.0 517.0 S37.7 540.0 490.0 .505.6 522.1 524.0 490.0 513.1 535.2 537.7 485.0 500.9 517.9 520.0 485.0 509.0 532.S 535.1 480.0 496.2 513.7 515.8 480.0 .s~.9 529.6 532.4 47.S.O 491.5 509.3 511.4 475.0 500.7 526.6 529.S 470.0 486.7 5~.8 507.0 470.0 496.S 523.4 526.5 465.0 481.9 500.2 502.5 465.0 492.2 520.1 523.3 460.0 477.0 495.6 497.8 460.0 487.8 516.6 520.0 4SS.O 472.1 490.8 49J.2 4.55.0 483.4 513.0 516.S 450.0 467.2 486.1 488.3 450.0 479.0 509.4 512.9 445.0 462.3 4!U.3 483.6 445.0 474.5 505.S 509.2 440.0 4.57.4 476.4 478.8 440.0 469.9 501.6 SOS.4 43.S.O 4.52.4 471.S 473.9 435.0 465.3 497.6 501.5 430.0 447.4 466.6 469.0 430.0 460.7 493.5 497.5 42.S.O 442.4 461.7 464.0 425.0 456.0 489.4 493.4 420.0 437.4 4.56.7 4.59.1 420.0 451.4 485.1 489.2 415.0 432.4 451.7 4.54.1 415.0 446.6 480.8 485.0 4IO.O 427.4 446.7 449.0 410.0 441.9 476..S 480.6 405.0 422.4 441.7 444.0 405.0 437.1 472.0 476.3 400.0 417.4 436.6 439.0 400.0 432.3 467.5 471.8 395.0 412.4 431.6 433.9 395.0 427.5 463.0 467.3 390.0 407.3 426.5 428.9 390.0 422.7 458.4 462.R 385.0 402.J 421.4 423.8 385.0 417.8 453.7 4.58.1 380.0 397.3 416.4 418.7 380.0 412.9 449.1 453.S 37.S.O 392.2 411.3 413.6 375.0 408.0 444.4 448.8 370.0 387.2 406.2 408.5 370.0 40:\.1 439.6 444.0 36.S.O 382.1 401.1 403.4 365.0 398.2 434.8 439.3 360.0 377.1 396.0 398.3 360.0 393.3 430.0 434.S 3.55.0 372.0 390.9 393.2 355.0 3118.3 42.S.I 429.7 350.0 367.0 38.S.8 388.1 350.0 383.4 420.3 424.8 3-15.0 361.9 3K0.7 383.0 345.0 378.4 415.3 420.0 340.0 356.9 375.6 377.9 3400 373.4 410.4 41.S.O 335.0 351.8 370.5 372.8 335.0 368.4 405.5 410.0 330.0 346.8 365.4 I 367.7 330.0 36:\.4 40Cl.S 405.0 325.0 341.7 360.3 362.6 32.5.0 358.4 395.S 400.1 320.0 336.7 35.S.2 357.5 320.0 353.4 390.5 3115.0 315.0 JJJ.6 350.J 352.J 315.0 348.4 .JHS.S 390.0 WCAP*l5827

B-2

uo.o 326.6 3.$5.0 3.$7.2 310.0 343.3 380.4 385.0 305.0 321.5 339.8 342.1 305.0 338.3 375.4 379.9 300.0 316..5 334.7 337.0 300.0 333.3 370.3 374.8 295.0 311.4 329.6 331.9 295.0 328.2 36.5.2 369.8 290.0 306.4 324.S 326.7 290.0 323.2 360.1 364.7 285.0 301.:\ 319.4 321.6 285.0 318.I 355.0 359.S 280.0 296.3 314.3 316.5 280.0 313.1 349.9 354.4 275.0 291.2 309.2 311.4 275.0 308.0 34..t.7 349.3 270.0 286.2 304.1 306.3 270.0 302.9 339.6 3.i.i.2 265.0 281.1 299.0 301.4 265.0 297.9 334.S 339.0 260.0 276.1 293.8 296.0 260.0 292.8 329.3 333.9 255.0 271.0 288.7 290.9 255.0 287.7 324.2 328.7 250.0 266.0 283.6 285.8 250.0 282.6 319.0 323 ..5 245.0 260.9 278.5 280.7 245.0 277.6 313.9 318.3 240.0 255.9 273.4 275.6 240.0 272.5 308.7 313.2 235.0 2.50.8 268.3 270.4 235.0 267.4 303 ..5 308.0 230.0 245.7 263.2 265.3 230.0 262.3 298.3 302.8 225.0 240.7 258.1 260.2 225.0 257.2 293.2 297.6 220.0 235.6 253.0 255.1 220.0 252.1 288.0 292.4 215.0 2:\0.6 247.8 250.0 215.0 247.0 282.8 287.2 210.0 225.S 242.7 244.8 2JO.O 241.9 277.6 282.0 205.0 220.5 237.6 239.7 205.0 236.8 272.4 276.8 200.0 215.4 232.5 234.6 200.0 231.8 267.2 271.6 195.0 . 210.4 227.4 229.5 195.0 226.7 262.0 266.4 190.0 205.3 222.3 224.4 190.0 221.6 256.8 261.1 185.0 200.3 217.2 219.3 185.0 216.5 251.6 2.55.9 180.0 195.2 212.1 214.2 180.0 211.4 246.4 250.7 175.0 190.2 207.0 209.0 175.0 206.3 241.2 245 ..5 170.0 18.5.1 201.9 203.9 170.0 201.2 236.0 240.3 165.0 180.1 196.7 198.8 165.0 196.1 230.7 235.0 160.0 175.0 191.6 193.7 160.0 191.0 225.5 229.8 155.0 170.0 186.5 188.6 ISS.0 185.9 220.3 224.6 150.0 16-1.9 181.4 183.5 150.0 180.8 21.5.1 219.4 145.0 159.9 176.3 178.3 145.0 175.7 210.0 214. 1 140.0 154.8 171.2 173.2 140.0 170.6 20.i.7 208.9 llS.O 149.8 166.1 168.1 135.0 165.S 199.5 203.7 130.0 144.7 161.0 163.0 130.0 160.4 19-'.3 198.4 125.0 139.7 1.5.5.9 157.9 125.0 1.55.3 189.0 193.2 120.0 134.6 1.50.8 152.8 120.0 1.50.2 183.8 188.0 115.0 129.6 14.5.7 147.7 11.5.0 14.5.1 178.6 182.7 I I0.0 124.S 140.6 142 ..5 I JO.O 140.0 173.4 177.5 I05.0 119.S 135 ..5 137.4 I05.0 134.9 168.2 172.3 HlO.O 114.4 130.4 132.3 100.0 129.8 162.9 167.1 95.0 109.4 125.3 127.2 95.0 124.7 157.7 161.8 90.0 104.3 120.1 122.1 90.0 119.6 152.S 156.6 8.5.0 99.3 11.5.0 117.0 85.0 114.5 147_1 ISl.4 80.0 9-l.2 I IO.O 119.9 80.0 109.3 142.1 146.I 75.0 89.2 104.8 106.8 75.0 104.2 136.9 140.9 70.0 84.1 99.7 101.6 70.0 99.1 131.6 135.7 65.0 79.1 94.6 96.S 65.0 94.0 126.4 130.4 60.0 74.0 89.5 91.4 60.0 88.9 121.2 125.2 WCAP-15827

B-3 Table B2 H. BRob'mson \Iesse I 1iemperaturcs i or Heatup 50 °F/hr. Heatup JOO 0 f/hr. fftatuD Inner Wall J/4TWall 3/4TWall Outside Inner Wall J/4TWall 3/4TWall Outside Temp.( 0 F) Temp. (0 f) Temp.( 0 f) Wall Temp. Temp. (0 f) Temp. (0 F) Temp. (0 f) Wall Temp.

(OF) (OF) 55.0 55.0 5S.O 5S.O 55.0 55.0 55.0 55.0 60.0 56.4 SS.I SS.I 60.0 55.9 55.0 ss.o 6S.0 59.1 55.8 SS.5 65.0 58.2 55.2 SS.I 70.0 63.1 57.2 56.6 70.0 61.2 55.7 55.4 7S.O 66.9 59.3 S8.5 75.0 64.3 56.6 56.0 80.0 70.9 62.0 61.0 80.0 67.7 57.9 57.0 85.0 75.0 65.0 63.9 85.0 71.2 S9.S 58.4 90.0 79.3 68.4 67.2 90.0 74.9 61.5 60.1 95.0 83.8 72.1 70.6 95.0 78.7 63.7 62.1 100.0 88.3 76.1 74.6 100.0 82.7 66.2 64.4 105.0 92.9 80.2 78.6 105.0 86.7 69.0 67.0 110.0 97.6 84.4 82.8 I IO.O 90.8 71.9 69.8 115.0 102.3 88.8 87.2 115.0 95.0 75.1 72.8 120.0 107.1 93.3 91.6 120.0 99.2 78.4 75.9 125.0 111.9 97.8 96.1 125.0 103.6 81.8 79.3 130.0 116.7 102.4 100.7 130.0 108.0 85.4 82.8 135.0 121.6 I07.I I05.3 135.0 112.4 89.1 86.4 140.0 126.4 111.8 110.0 140.0 116.9 92.9 90.1 145.0 131.3 116.5 114.7 145.0 121.4 96.8 93.9 150.0 136.2 121.3 119.5 150.0 126.0 100.8 97.9 155.0 141.1 126.1 124.3 155.0 130.6 104.9 IOl.9 160.0 146.0 130.9 129.1 160.0 135.2 109.1 106.0 165.0 151.0 135.8 133.9 165.0 139.8 113.3 110.1 170.0 155.9 140.6 138.7 170.0 144.5 117.6 114.4 175.0 160.8 145.S 143.6 175.0 149.2 121.9 118.6 180.0 165.8 150.3 148.4 180.0 153.9 126.3 123.0 18.5.0 170.7 1.55.2 153.3 185.0 158.7 130.7 127.3 190.0 175.6 160.1 158.2 190.0 163.4 135.2 131.8 195.0 180.6 164.9 163.0 195.0 168.2 139.7 136.2 200.0 185.5 169.8 167.9 200.0 173.0 144.2 140.7 205.0 190.5 174.7 172.8 205.0 177.8 148.7 145.2 210.0 19.S.4 179.6 177.7 210.0 182.6 153.3 149.8 215.0 200.4 184.S 182.6 215.0 187.4 157.9 154.3 220.0 205.3 189.4 187.S 220.0 192.2 162.S 158.9 225.0 210.3 194.3 192.3 225.0 197.J 167.1 163.S 230.0 215.2 199.2 197.2 230.0 201.9 171.8 168.1 235.0 220.2 204.1 202.1 235.0 206.7 176.4 172.8 240.0 225.1 209.0 207.0 240.0 211.6 181.J 177.4 245.0 230.1 213.9 211.9 245.0 216.5 185.8 182.1 250.0 235.0 218.8 216.8 250.0 221.3 190.5 186.8 255.0 240.0 223.7 221.7 255.0 226.2 195.2 191.S 260.0 244.9 228.6 226.6 260.0 231.1 199.9 196.2 265.0 249.9 233.5 231.S 265.0 235.9 204.7 200.9 270.0 254.8 238.4 236.3 270.0 240.8 209.4 205.6 275.0 259.8 243.3 2.i 1.2 275.0 245.7 214.1 210.3 280.0 264.7 248.1 246.1 280.0 250.6 218.9 215.1 285.0 269.7 253.0 251.0 285.0 255.4 223.6 219.8 290.0 274.6 257.9 255.9 290.0 260.3 228.4 224.5 295.0 279.6 262.8 260.8 295.0 265.2 233.2 229.3 WCAP*l.5827

B-4 300.0 284 ..5 267.7 26.5.7 300.0 270.1 237.9 234.0 305.0 289 ..5 272.6 270.6 305.0 275.0 242.7 238.8 310.0 294.4 277.S 275.5 310.0 279.9 247..5 243..5 315.0 299.4 282.4 280.4 315.0 284.8 252.2 248.3 320.0 JO.i.3 287.3 285.3 320.0 289.7 257.0 253.1 325.0 309.3 292.2 290.1 325.0 294.6 261.8 257.8 330.0 314.2 297.1 295.0 330.0 299..5 266.6 262.6 335.0 319.2 302.0 299.9 335.0 304.3 271.3 267.4 340.0 324.1 306.9 304.8 340.0 309.2 276.1 272.1 345.0 329.I 311.8 309.7 345.0 314.I 280.9 276.9 350.0 334.0 316.7 314.6 350.0 319.0 285.7 281.7 355.0 339.0 321.6 319.5 355.0 323.9 290.S 286.4 360.0 343.9 326.S 324.4 360.0 328.8 295.3 291.2 365.0 348.9 331.4 329.3 365.0 333.7 300.1 296.0 370.0 3.53.8 336.3 334.1 370.0 338.6 304.9 300.8 375.0 3.58.8 341.2 339.0 37.5.0 341.S 309.6 305..5 380.0 363.7 346.1 343.9 380.0 348.4 314.4 310.3 385.0 368.7 3.51.0 348.8 385.0 353.3 319.2 31.5.1 390.0 373.6 3.5.5.9 353.7 390.0 358.2 324.0 319.9 39.5.0 378.6 360.8 358.6 395.0 363.1 328.8 324.7 400.0 383.S 36.5.7 363.S 400.0 368.0 333.6 329.4 405.0 388..5 370.S 368.4 405.0 372.9 338.4 334.2 4I0.0 393.4 37.5.4 373.2 410.0 377.8 343.2 339.0 41.5.0 398.4 380.3 378.I 41.5.0 382.7 348.0 343.8 420.0 403.3 38.5.2 383.0 420.0 387.6 3.52.8 348.S 42.5.0 408.3 390.1 387.9 42.5.0 392.S 3.57.6 3.53.3 430.0 413.2 39.5.0 392.8 430.0 397.4 362.4 358.1 435.0 418.2 399.9 397.7 435.0 402.3 367.1 362.9 440.0 423.1 404.8 402.6 440.0 407.2 371.9 367.7 44.5.0 428.1 409.7 407.5 445.0 412.1 376.7 372.4 450.0 433.0 414.6 412.3 4.50.0 417.0 381..5 377.2 455.0 438.0 419.S 417.2 45.5.0 421.9 386.3 382.0 460.0 442.9 424.4 422.1 460.0 426.8 391.I 386.8 465.0 447.9 429.3 427.0 465.0 431.7 39.5.9 391.6 470.0 452.8 434.1 431.9 470.0 436.6 400.7 396.3 475.0 4.57.8 439.0 436.8 475.0 441.S 405.5 401 .1 480.0 462.7 443.9 441.6 480.0 446.4 410.3 40S.9 48.5.0 467.7 448.8 446.5 485.0 451 ..1 415.1 410.7 490.0 472.6 4S3.1 451.4 490.0 456.2 419.9 415.S 495.0 477.6 4.58.6 456.3 49.5.0 461.1 424.6 420.2 500.0 482.S 463.S 461.2 500.0 466.0 429.4 425.0

.505.0 487.S 468.4 466.1 505.0 470.9 434.2 429.8 SIO.O 492.4 473.3 470.9 .510.0 475.8 439.0 434.6

.515.0 497.3 478.2 47.5.8 515.0 480.7 441.8 439.3 S20.0 .502.3 483.0 480.7 S20.0 485.6 448.6 444.I S25.0 S01.2 487.9 485.6 .525.0 490.S 453.4 448.9

.s.:m.o .s 12.2 492.8 490..S .SJO.O 49.5.4 458.2 453.1

.535.0 .517.1 497.7 49.5.4 .535.0 500.3 463.0 458.4 540.0 S22.I S02.6 500.2 540.0 505.2 467.7 463.2

.545.0 527.0 501.5 SOS.I 545.0 .510. I 472.S 468.0 550.0 .532.0 512.4 510.0 .550.0 51.5.0 477.3 472.8 WCAP-1.5827