GNRO-2014/00082, Supplemental Reload Licensing Report (SRLR) Grand Gulf Cycle 20 Extended Power Uprate (Epu)/Maximum Extended Load Line Limit Analysis Plus (Mellla+) SRLR

From kanterella
(Redirected from ML14338A127)
Jump to navigation Jump to search
Supplemental Reload Licensing Report (SRLR) Grand Gulf Cycle 20 Extended Power Uprate (Epu)/Maximum Extended Load Line Limit Analysis Plus (Mellla+) SRLR
ML14338A127
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 11/20/2014
From: Nadeau J
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GNRO-2014/00082 01N8480-SRLR, Rev. 0
Download: ML14338A127 (111)


Text

~

~Entergy GNRO-2014/00082 Nov 20,2014 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001 Entergy Operations, Inc.

P.O. Box 756 Port Gibson, MS 39150 James Nadeau Regulatory Assurance Manager Grand Gulf Nudear StaUon Tel. (601) 437*2103

SUBJECT:

REFERENCES:

Supplemental Reload Licensing Report (SRLR)

Grand Gulf Cycle 20 Extended Power Uprate (EPU)/Maximum Extended Load Line Limit Analysis Plus (MELLLA+) SRLR Grand Gulf Nuclear Station, Unit 1 Docket No. 50-416 License No. 29 1.

Safety Analysis Report (SAR) for Grand Gulf Nuclear Station (GGNS) Maximum Extended Load Line Limit Analysis Plus (MELLLA+),NEDC-33612P, Revision 0, September 2013.

2.

Grand Gulf Nuclear Station License Amendment Request, Maximum Extended Load Line Limit Analysis Plus (MELLLA+) License Amendment Request, dated September 25,2013 (GNRO-2013/00012, NRC ADAMS Accession No. ML3269A140) 3.

SRLR for GGNS, Reload 19 Cycle 20, Extended Power Uprate (4408 MWt) 1MELLLA+ (80%-105% Flow), GNF letter to Entergy, KGO-ENO-JB1-14-092, August 26, 2014 4.

ECH-NE-14-00033.RO EC52623, Entergy review acceptance of GNF Report 001 N8480-SRLR

Dear Sir or Madam:

This SRLR is provided to support operation over Extended Power Uprate (EPU) and Maximum Extended Load Line Limit Analysis Plus (MELLLA+) conditions as defined in Safety Analysis Report (SAR) for Grand Gulf Nuclear Station Maximum Extended Load Line Limit Analysis Plus, NEDC-33612P, Rev 0, September 2013.

This letter contains no new commitments. If you have any questions or reqUire additional information, please contact Mr. James Nadeau at (601) 437-2103.

GNRO-2014/00082 Page 2 of 2 I declare under penalty of perjury that the foregoing is true and correct. Executed on November 20, 2014.

Sincerely, JJN/ras

Attachment:

1.

Supplemental Reload Licensing Report for Grand Gulf Nuclear Station cc:

U.S. Nuclear Regulatory Commission ATIN: Mr. Mark Dapas, (w/2)

Regional Administrator, Region IV 1600 East Lamar Boulevard Arlington, TX 76011-4511 NRC Senior Resident Inspector Grand Gulf Nuclear Station Port Gibson, MS 39150 U. S. Nuclear Regulatory Commission ATTN: Mr. Alan Wang, NRR/DORL (w/2)

Mail Stop OWFN 8 B1 Washington, DC 20555-0001 Dr. Mary Currier, M.D., M.P.H State Health Officer Mississippi Department of Health P. O. Box 1700 Jackson, MS 39215-1700 GNRO-2014/00082 Supplemental Reload Licensing Report for Grand Gulf Nuclear Station

Global Nuclear Fuel A Joint Venture of GE, Toshiba, & Hitachi 001N8480-SRLR Revision 0 Class I August 2014 Supplemental Reload Licensing Report for Grand Gulf Nuclear Station Reload 19 Cycle 20 Extended Power Uprate (4408 MWt) I MELLLA+ (800/0-105%

Flow)

Copyright 2014 Global Nuclear Fuel-Americas, LLC AII Rights Reserved

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 Important Notice Regarding Contents of This Report Please Read Carefully This report was prepared by Global Nuclear Fuel - Americas, LLC (GNF-A) solely for use by Entergy Operations ("Recipient") in support of the operating license for Grand Gulf-l (the "Nuclear Plant"). The information contained in this report (the "Information") is believed by GNF-A to be an accurate and true representation of the facts known by, obtained by or provided to GNF-A at the time this report was prepared.

The only undertakings of GNF-A respecting the Information are contained in the contract between Recipient and GNF-A for nuclear fuel and related services for the Nuclear Plant (the "Fuel Contract") and nothing contained in this document shall be construed as amending or modifying the Fuel Contract. The use of the Information for any purpose other than that for which it was intended under the Fuel Contract, is not authorized by GNF-A. In the event of any such unauthorized use, GNF~A neither (a) makes any representation or warranty (either expressed or implied) as to the completeness, accuracy or usefulness of the Information or that such unauthorized use may not infringe privately owned rights, nor (b) assumes any responsibility for liability or damage of any kind which may result from such use of such information.

This SRLR is provided to support operation over Extended Power Uprate (EPU) and Maximum Extended Load Line Limit Analysis Plus (MELLLA+) conditions as defined in Safety Analysis Report for Grand Gulf Nuclear Station Maximum Extended Load Line Limit Analysis Plus, NEDC-33612P, Revision 0, September 2013.

Page 2

Grand Gulf-}

Reload 19 Acknowledgement 001 N8480-SRLR Revision 0 The engineering and reload licensing analyses, which form the technical basis of this Supplemental Reload Licensing

Report, were performed by GNF-A/GEH Nuclear Analysis personnel.

The Supplemental Reload Licensing Report was prepared by L. Gaul.

This document has been verified by G. N. Marrotte.

Page 3

Grand Gulf-l Reload 19 Table ofContents I.

Plant Unique Items 2.

Reload Fuel Bundles 3.

Reference Core Loading Pattern 4.

Calculated Core Effective Multiplication and Control System \\Vorth 5.

Standby Liquid Control System Shutdown Capability 6.

Reload Ur:tique GETAB AOO Analysis - Initial Condition Parameters 7.

Selected Margin Improvement Options 8.

Operating Flexibility Options 9.

Core-wide AOO Analysis Results 10.

Rod Withdrawal Error AOO Summary 11.

Cycle SLMCPR and OLMCPR Summary 12.

Overpressurization Analysis Summary 13.

Fuel Loading Error Results 14.

Control Rod Drop Analysis Results 15.

Stability Analysis Results 16.

Loss-of-Coolant Accident Results Appendix A Analysis Conditions Appendix B Thermal-Mechanical Compliance Appendix C Decrease in Core Coolant Temperature Event Appendix D Off-Rated Limits Appendix E Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information Appendix F GNF2 Spacer Bent Flow Wings Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information Appendix H List of Acronyms 00lN8480-SRLR Revision 0 5

5 6

6 6

7 12 13 14 19 20 26 26 26 27 30 87 88 89 90 97 100 102 105 Page 4

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 The basis for this report is General Electric Standard Application for Reactor Fuel, NEDE-24011-P-A-20, December 2013; and the U.S. Supplement, NEDE-24011-P-A-20-US, December 2013.

A proprietary Fuel Bundle b~formation Report (FBIR) supplements this licensing report. The FBIR specifies the thermal-mechanical linear heat generation rate limits and also provides a description of the fuel bundles to be loaded. The document number for this report is 000NI259-FBIR.

1.

Plant Unique Items Appendix A: Analysis C~nditions Appendix B: Thermal-Mechanical Compliance Appendix C: Decrease in Core Coolant Temperature Event Appendix D: OtT-Rated Limits Appendix E: Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information Appendix F: GNF2 Spacer Bent Flow Wings Appendix G: MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information Appendix H: List of Acronyms 2.

Reload Fuel Hundles Fuel Type Cycle Number Loaded Irradiated:

GNF2-PIOSG2B421-1 OG8.0-120T2-150-T6-3265 (GNF2) 18 44 GNF2-Pl OSG2B400-19GZ-120T2-150-T6-3267 (GNF2) 18 2

GNF2-PIOSG2B435-14GZ-120T2-150-T6-3269 (GNF2) 18 44 GNF2-PIOSG2B400-19GZ-120T2-150-T6-3270 (GNF2) 18 2

GNF2-P 1OSG2B387-14GZ-120T2-150-T6-4023 (GNF2) 19 96 GNF2-PI0SG2B424-14GZ-120T2-150-T6-4024 (GNF2) 19 72 GNF2-P 1OSG2B385-14GZ-120T2-150-T6-4025 (GNF2) 19 24 GNF2-PIOSG2B416-16GZ-120T2-1 50-T6-4026 (GNF2) 19 40 GNF2-Pl OSG2B397-14GZ-120T2-150-'1'6-4027 (GNF2) 19 16 GNF2-Pl OSG2B409-14GZ-120T2-150-T6-4028 (GNF2) 19 60 GNF2-PIOSG2B397-15GZ-120T2-150-T6-4029 (GNF2) 19 56 New:

GNF2-Pl OSG2B451-15GZ-120T2-150-T6-4249 (GNF2) 20 80 GNF2-PIOSG2B431-14GZ-120T2-150-T6-4247 (GNF2) 20 84 GNF2-Pl OSG2B421-15GZ-120T2-150-T6-4246 (GNF2) 20 180 Total:

800 Page 5

Grand Gulf-l Reload 19 3.

Reference Core Loading Pattern 001 N8480-SRLR Revision 0 Core Average Cycle Exposure Exposure Nominal previous end-of-cycle exposure:

29296 MWdlMT 16236 MWdlMT (26577 MWd/ST)

(14729 MWdlST)

Minimum previous end-of-cycle exposure (for cold 28399 MWdlMT 15339 MWd/MT shutdown considerations):

(25763 MWd/ST)

(13915 MWdlST)

Assumed reload beginning-of-cycle exposure:

11957 MWdlMT oMWd/MT (10847 MWd/ST)

(0 MWd/ST)

Assumed reload end-of-cycle exposure (rated 32625 MWdlMT 20668 MWd/MT conditions):

(29597 MWd/ST)

C18750MWd/ST)

Reference core loading pattern:

Figure 1 4.

Calculated Core Effective Multiplication and Control System Worth Beginning of Cycle, keffective Uncontrolled (20°C)

Fully controlled (20°C)

Strongest control rod out (most reactive condition, 20°C)

R,Maximum increase in strongest rod out reactivity during the cycle (L\\k)

Cycle exposure at which R occurs 5.

Standby Liquid Control System Shutdown Capability 1.129 0.953 0.986 0.002 20668 MWdlMT (18750 MWdlST)

Boron (ppm)

Shutdown Margin (~k)

(at 160°C, Xenon Free)

(at 20°C)

Analytical Requirement Achieved 780 2:0.0 10 0.026 Page 6

Grand Gulf-I Reload 19 6.

Reload Unique GETAB AOO Analysis - Initial Condition Parameters*

001N8480-SRLR Revision 0 Operating domain: ICF (HOB)

Exposure range

DOC toMOC

( Application Condition: 1,2,3, 4 )

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axhd R-Factor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.48 1.31 1.040 7.950 116.2 1.24 Operating domain: ICF (HOB)

Exposure range

MOC toEOC

( Application Condition: 1, 2, 3, 4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.39 1.47 1.040 7.474 120.6 1.24 Operating domain: LCF (HBB)

Exposure range

BOC toMOC

( Application Condition: 1,2,3, 4 )

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.32 1.29 1.040 7.095 90.4 1.25 Operating domain: LCF (HOB)

Exposure range

MOC toEOC (Application Condition: 1,2,3,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR/

(MWt)

(1000Ib/hr)

GNF2 1.45 1.28 1.34 1.040 6.897 92.0 1.27 1 Exposure range designation is defined in Table 7-1. Application condition number is defined in Section II.

Page 7

Grand Gulf-I Reload 19 001 N8480-SRLR Revision 0 Operating domain: ICF (UB)

Exposure range

MOC toEOC

( Application Condition: 1,2,3, 4 )

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(lOOOlb/hr)

GNF2 1.45 1.49 1.21 1.040 8.002 115.7 1.27 Operating domain: LCF (UB)

Exposure range

MOC toEOC (Application Condition: 1,2,3,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.40 1.16 1.040 7.493 87.7 1.22 Operating domain: ICF & FWTR (HBB)

Exposure range

BOCtoMOC

( Application Condition: 2,4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Faetor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.53 1.27 1.040 8.204 114.4 1.24 Operating domain: ICF & FWTR (HBB)

Exposure range

MOCtoEOC

( Application Condition: 2,4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.43 1.46 1.040 7.668 119.9 1.24 Operating domain: LCF & FWTR (HBB)

Exposure range

BOC to MOe

( Application Condition: 2,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(lOOOlb/hr)

GNF2 1.45 1.47 1.25 1.040 7.871 101.3 1.24 Page 8

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Operating domain: LCF & FWTR (HBB)

Exposure range

MOCto EOC

( Application Condition: 2,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.38 1.42 1.040 7.390 105.9 1.25 Operating domain: ICF & FWTR (UB)

Exposure range

MOCto EOC

( Application Condition: 2,4)

Peaking Factors Fuel

. Hundle Hundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.51 1.19 1.040 8.105 115.1 1.29 Operating domain: LCF & FWTR (UB)

Exposure range

MOCto EOC

( Application Condition: 2,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt),

(1000 lb/hr)

GNF2 1.45 1.46 1.18 1.040 7.824 101.6 1.28 Operating domain: ICF with RPTOOS (Hl;JB)

Exposure range

BOCtoMOC

( Application Condition: 3,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000 lb/hr)

GNF2 1.45 1.45 1.31 1.040 7.826 116.9 1.26 Page 9

Grand Gulf-1 Reload 19 001N8480-SRLR Revision 0 Operating domain: ICF withRPTOOS (HBB)

Exposure range. : MOC toEOC (Application Condition: 3,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.38 1.47 1.040 7.439 120.8 1.25 Operating domain: LCF with RPTOOS (HBB)

Exposure range

BOC toMOC

( Application Condition: 3,4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor

.Power Flow Design (MWt)

(1000 lb/hr)

MCPR GNF2 1.45 1.32 1.29 1.040 7.093 90.4 1.26 Operating domain: LCF with RPTOOS (HOB)

Exposure range

MOCto EOC

( Application Condition: 3,4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.28 1.34 1.040 6.891 92.1 1.27 Operating domain: ICF with RPTOOS (UB)

Exposure range

MOCtoEOC

( Application Condition: 3,4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000Ib/hr)

MCPR GNF2 1.45 1.46 1.21 1.040 7.848 116.6 1.30 Operating domain: LCF with RPTOOS (UB)

Exposure range

MOCtoEOC

( Application Condition: 3,4)

Peaking Factors Bundle Bundle

/'

Fuel Local Radial Axial R-Factor Power Flow Initial Design (MWt)

(1000 Ib/hr)

MCPR GNF2 1.45 1.39 1.16 1.040 7.461 87.9 1.23 Page 10

Grand Gulf-1 Reload 19 001 N8480-SRLR Revision 0 Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

BOCtoMOC

( Application Condition: 4)

Pe~lking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000 Ib/hr)

MCPR GNF2 lAS 1.51 1.27 1.040 8.103 115.0 1.26 Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

MOCto EOC

( Application Condition: 4)

Peaking Factors Fuel Bundle Bundle Initial Local Radial Axial R-Factor Power Flow Design (MWt)

(1000 Ib/hr)

MCPR GNF2 lAS lAO 1.46 1.040 7.536 120.7 1.26 Operating domain: LCF & FWTR with RPTOOS (HBB)

Exposure range

BOCto MOC

( Application Condition: 4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 lAS 1.46 1.25 1.040 7.838 101.5 1.25 Operating domain: LCF & FWTR with RPTOOS (HBB)

Exposure range

MOCtoEOC

( Application Condition: 4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 lAS 1.37 1.42 1.040 7.336 106.2 1.27 Page 11

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 Operating domain: ICF & FWTR with RPTOOS (UB)

Exposure range

MOC toEOC (Application Condition: 4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.48 1.19 1.040 7.950 116.0 1.32 Operating domain: LCF & FWTR with RPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 4)

Peaking Factors Fuel Bundle Bundle Initial Design Local Radial Axial R-Factor Power Flow MCPR (MWt)

(1000Ib/hr)

GNF2 1.45 1.44 1.18 1.040 7.724 102.1 1.30 7.

Selected Margin Improvement Options 2 Recirculation pump trip:

Rod withdrawal limiter:

Thermal power monitor:

Improved scram time:

Measured scram time:

Exposure dependent limits:

Exposure points analyzed:

Yes Yes Yes Yes (ODYN Option B)

Yes Yes 2

2 Refer. to the GESTAR basis document identified at the beginning of this report for the margin improvement options currently supported therein.

Page 12

Grand Gulf-l Reload 19 Table 7-1 Cycle Exposure Range Designation 001 N8480-SRLR Revision 0 Name Exposure Range J BOC to MOC BOC20 to EOR20-2899 MWd/MT (2630 MWd/ST)

MOC to EOC EOR20-2899 MWdlMT (2630 MWdlST) to EOC20 BOCtoEOC BOC20 to EOC20 8.

Operating Flexibility Options 4 5 6 The following information presents the operational domains and flexibility options which are supported by the reload licensing analysis.

Extended Operating Domain (EOD):

EOD type: Maximum Extended Load Line Limit Plus (MELLLA+)

Minimum core flow at rated power:

Increased Core Flow:

Flow point analyzed throughout cycle:

Fecdwater Temperature Reduction:

Feedwater temperature reduction during cycle:

Final feedwater temperature reduction:

ARTS Program:

Single Loop Operation:

Equipment Out of Service:

Safety/reIief valves Out of Service:

(credit taken for 15 valves)

ADS Out of Service:

End of Cycle Recirulation Pump Trip (EOC-RPT) OOS Yes 80.00/0 Yes 105.0%

Yes No Yes Yes Yes Yes 3 End of Rated (EOR) is defined as the cycle exposure corresponding to all rods out, 100% power/l 00% flow, and normal feedwater temperature. For plants without mid-cycle OLMCPR points, EOR is not applicable.

4 Refer to the GESTAR basis document identified at the beginning of this report for the operating flexibility options currently supported therein.

5 The Cycle 20 reload licensing analyzed feedwater temperature reduction during the cycle, and final feedwater temperature reduction at EOC, for 100°F feedwater temperature reduction. Entergy must assure that all licensing requirements are in place before operating at these conditions.

6 TBVOOS applies only to slow AOOs.

/

Page 13

Grand Gulf-]

Reload 19 Main Steam Isolation Valve (MSIV) OOS Turbine Bypass Valves (TBV) OOS 9.

Core-wide ADO Analysis Results 7 Methods used: GEMINI, GEXL-PLUS Yes Yes 001N8480-SRLR Revision 0 Operating domain: ICF (HBB)

Exposure range

BOC toMOC

( Application Condition: 1,2,3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated) <<Yo rated)

FW Controller Failure 106 104 0.11 2

Load Rejection wlo Bypass 146 100 0.17 Turbine Trip wlo Bypass 132 100 0.15 4

Operating domain: ICF (HBB)

Exposure range

MOCto EOC

( Application Condition: 1,2,3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 127 104 0.14 5

Load Rejection wlo Bypass 175 lOS 0.17 6

Turbine Trip wlo Bypass 160 103 0.16 7

Operating domain: LCF (HDB)

Exposure range

DOC toMOC

( Application Condition: 1, 2, 3, 4 )

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(oft. rated)

FW Controller Failure 106 104 0.13 8

Load Rejection wlo Bypass 116 100 0.18 9

Turbine Trip wlo Bypass 105 100 0.17 10 7 Exposure range desig~lation is defined in Table 7-1. Application condition number is defined in Section 11.

Page 14

Grand Gulf-l Reload 19 001 N8480-SRLR Revision O*

Operating domain: LCF (HBB)

Exposure range

MOC toEOC

( Application Condition: 1, 2, 3, 4 )

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 106 104 0.14 11 Load Rejection wlo Bypass 127 100 0.20 12 Turbine Trip wlo Bypass 117 100 0.18 13 Operating domain: ICF (UB)

Exposure range

MOC toEOC (Application Condition: 1,2,3,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%, rated)

FW Controller Failure 106 104 0.15 14 Load Rejection wlo Bypass 129 100 0.20 15 Turbine Trip wlo Bypass 116 100 0.18 16 Operating domain: LCF (UB)

Exposure range

MOC toEOC

( Application Condition: 1,2,3,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated).

FW Controller Failure 106 104 0.13 17 Load Rejection wlo Bypass 100 100 0.16 18 Turbine Trip w/o Bypass 100 100 0.15 19 Operating domain: ICF & FWTR (HBB)

Exposure range

BOCtoMOC

( Application Condition: 2,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 122 107 0.17 20 Page 15

Grand Gulf-1 Reload 19 001N8480-SRLR Revision 0 Operating domain: ICF & FWTR (HBB)

Exposure range

MOC to EOC

( Applicat~on Condition: 2,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 165 108 0.17 21 Operating domain: LCF & FWTR (HBB)

Exposure range

BOC toMOC

( Application Condition: 2,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(0/0 rated)

FW Controller Failure III 106 0.17 22 Operating domain: LCF & FWTR (HBB)

Exposure range

MOC toEOC

( Application Condition: 2,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 145 106 0.18 23 Operating domain: ICF & FWTR (VB)

Exposure range

MOC toEOC

( Application Condition: 2,4)

Uncorrected dCPR Event Flux Q/A GNF2 Fig.

(0/0 rated)

(%

rated)

FW Controller Failure 120 107 0.22 24 Operating domain: LCF& FWTR (VB)

Exposure range

MOCto EOC

( Application Condition: 2,4)

Vncorrected dCPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 111 106 0.20 25 Page 16

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Operating domain: ICF withRPTOOS (HUB)

Exposure nlnge

ROC toMOC

( Application Condition: 3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 120 104 0.14 26 Load Rejection w/o Bypass 164 103

! 0.19 27 Turbine Trip w/o Bypass 149 101 0.18 28 Operating domain: ICF with RPTOOS (HBB)

Exposure range

MOC toEOC

( Application Condition: 3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(Off, rated)

FW Controller Failure 164 106 0.17 29 Load Rejection w/o Bypass 198 109 0.18 30 Turbine Trip w/o Bypass 185 107 0.18 31 Operating domain: LCF with RPTOOS (HBB)

Exposure range

BOCtoMOC

( Application Condition: 3,4)

I Uncorrected ACl>R Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failw'e 106 104 0.13 32 Load Rejection w/o Bypass 121 100 0.18 33 Turbine Trip w/o Bypass 112 100 0.17 34 Operating domain: LCF with RPTOOS (HBB)

Exposure range

MOC toEOC (Application Condition: 3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(Off, rated)

FW Controller Failure 106 104 0.14 35 Load Rejection w/o Bypass 137 101 0.20 36 Turbine Trip w/o Bypass 126 100 0.18 37 Page 17

Grand Gulf-I Reload 19 001 N8480-SRLR Revision 0 Operating domain: ICF with RPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 3,4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%, rated)

FW Controller Failure 131 104 0.18 38 Load Rejection w/a. Bypass 154 102 0.23 39 Turbine Trip wlo,Bypass 147 101 0.22 40 Operating domain: LCF with RPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 3,4)

Uncorrected ACPR Event

Flux, Q/A GNF2 Fig.

(%

rated)

(%, rated)

FW Controller Failure 106 104 0.13 41 Load Rejection wlo Bypass 100 100 0;16 42 Turbine Trip wlo Bypass 100 100 0.15 43 Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

BOCtoMOC

( Application Condition: 4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 132 107 0.19 44 Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

MOC toEOC

( Application Condition: 4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failw'e 182 112 0.19 45 Operating domain: LCF & FWTR with RPTOOS (HBB)

Exposure range

BOCto MOC

( Application Condition: 4)

Uncorrected ACPR Event Flux Q/A GNF2 Fig.

(%

rated) <<Yo rated)

FW Controller Failure 117 106 0.18 46 Page 18

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 Operating domain: LCF & FWTR withRPTOOS (HBB)

Exposure nlnge

MOC toEOC

( Application Condition: 4)

Uncorrected ~CPR

Event, Flux Q/A GNF2 Fig.

(%

rated)

(%, rated)

FW Controller Failure 166 109 0.19 47 Operating domain: ICF & FWTR withRPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 4)

Uncorrected ~CPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 151 107 0.24 48 Operating domain: LCF & FWTR with RPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 4)

Uncorrected ~CPR Event Flux Q/A GNF2 Fig.

(%

rated)

(%

rated)

FW Controller Failure 131 106 0.22 49

10. Rod Withdrawal Error AOO Summary A cycle specific Rod Withdrawal Error (RWE) analysis was performed to determine whether the results are bounded by the generic BWRJ6 RWE analysis described in NEDE-24011-P-A-20-US. If the cycle specific results are not bounded by the generic BWR/6 RWE analysis for the one-foot withdrawal increment, additional analyses are perfonned to confinn that the generic results for the 700/0 power two-foot withdrawal increment are bounding. The results for the RWL RWE event are shown in Section] 1 below. The RWE OLMCPR result provided in Section 11 is the more limiting of the cycle specific and generic OLMCPR.

Page 19

Grand Gulf-l Reload 19

11. Cycle SLMCPR and OLMCPR Summary 8910 11 001N8480-SRLR Revision 0 Two Loop Operation (TLO) safety limit:

Single Loop Operation (SLO) safety limit:

Stability MCPR Design Basis:

ECCSMCPR Design Basis:

N E

t 12 on-preSSUrization vcn s:

1.15 1.15 See Section 15 See Section 16 (Initial MCPR)

Exposure range: BOC toEOC All Fuel Types Rod Withdrawal Error 1.36 Loss of Feedwater Heating 1.28 Fuel Loading EtTOr N/A (See Section 13)

Rated Equivalent SLO Pump Seizure Bounded by Off-Rated 13 8 See Appendix F regarding GNF2 bent flow wing effects on SLMCPR and OLMCPR.

9 Exposure range designation is defined in Table 7-1.

10 For SLO, the MCPR operating limit is equal to the two loop value.

1\\ The safety limit values presented include a 0.02 adder in accordance with Interim Methods LTR Safety Evaluation Report Limitation and Condition 9.5, as noted in Appendix E.

12 The non-pressurization event results shown here support operation with TBV OOS.

13 The cycle-independent OLMCPR for the recirculation pump seizure event for GNF2 is 1.49 based on the cycle-specific SLO SLMCPR.

The off-rated MCPRp limits at SLO off-rated power/flow conditions bound the MCPR calculated for the SLO recirculation pump seizure event.

Page 20

Grand Gulf-l Reload 19 Limiting Pressurization Events OLMCPR Summary Table: 14 15 16 001N8480-SRLR Revision 0 Appl.

Exposure Range Option A Option 0 Cond.

)GNF2 GNF2 1

Equipment in Service BOC toMOC

\\.50 1.37 MOCto EOC 1.51 1.41 2

FWHOOS BOC to MOC 1.50 1.37 MOC to EOC 1.53 1.43 3

EOC-RPTOOS BOCto MOC 1.52 1.39 MOC to EOC 1.54 1.44 4

EOC-RPT + FWH OOS BOCto MOC 1.52 1.39 MOCtoEOC 1.55

\\.45 Pressurization Events:

17 Operating domain: ICF (HOB)

Exposure range HOC to MOC

( Application Condition: 1,2,3, 4 )

FW Controller Failure Load Rejection wlo Bypass Turbine Trip wlo Bypass Option A GNF2 1.42 1.48 1.46 Option 0 GNF2 1.29 1.35 1.33 14 Each application condition (Appl. Cond.) covers the entire range of licensed flow and feedwater temperature unless specified otherwise. The OLMCPR values presented apply -to rated power operation based on the two loop operation safety limit MCPR.

15 The OLMCPR values shown here support a +20/ -10 psi pressure band.

16 The OLMCPR values presented in the Limiting Pressurization Events summary table have been adjusted to include a 0.01 adder in accordance with Interim Methods LTR Safety Evaluation Report Limitation and Condition 9.19, as noted in Appendix E. OLMCPR values presented in the detailed Pressurization Event tables do not include this adjustment.

17 Application condition numbers shown for each of the following pressurization events represent the application conditions for which this event contributed in the determination of the limiting OLMCPR value.

Page 21

Grand Gulf-l Reload 19 Operating domain: ICF (HUB)

Exposure range MOC to EOC

( Application Condition:.1, 2,3, 4 )

001 N8480-SRLR Revision 0 FW Controller Failure Load Rejection w/o Bypass Turbine Trip w/o Bypass \\

Option A GNF2 1043 1.46 1045 Option U GNF2 1.33 1.36 1.35 Operating domain: LCF (HBB)

Exposure range BOC to MOC FW Controller Failure Load Rejectionw/o Bypass Turbine Trip w/o Bypass Operating domain: LCF (HBB)

Exposure range: MOC toEOC FW Controller Failure Load Rejection w/o Bypass Turbine Trip w/o Bypass Operating domain: ICF (UB)

Exposure range MOC to EOC FW Controller Failure Load Rejection w/o Bypass Turbine Trip w/o Bypass

( Application Condition: 1, 2, 3, 4 )

Option A GNF2 1044 1049 1048

( Application Condition: 1, 2, 3, 4 )

Option A GNF2 1.44 1.50 1048

( Application Condition: 1,2,3,4)

Option A GNF2 1044 1.50 1048 Option B GNF2 1.31 1.36 1.35 Option B GNF2 1.34 lAO 1.38 Option B GNF2 1.34 lAO 1.38 Page 22

Grand Gulf-1 Reload 19 OOIN8480-SRLR Revision 0 Operating domain: LCF (UB)

Exposure range MOC to EOC FW Controller Failure

( Application Condition: 1,2,3,4)

Option A GNF2 1.42 Option H GNF2 1.32 Load Rejection w/o Bypass 1.45 1.35 Turbine Trip w/o Bypass 1.44 1.34 1.35 GNF2 Option B 1.48*

GNF2 FW Controller Failure Operating domain: ICF & FWTR (HUH)

Exposure range

BOC to MOC

( Application Condition: 2,4)

===r---------,-------l Option A 1.37 GNF2 Option B 1.47 GNF2 FW Controller Failure Operating domain: ICF & FWTR (HBB)

Exposure range

'. MOC to EOC

( Application Condition: 2, 4 )

"".,......------r---------!

Option A 1.35 GNF2.

Option B 1.48 GNF2 FW Controller Failure Operating domain: LCF & FWTR (HBB)

Exposure range BOC to MOC

( Application Condition: 2, 4 )

=~------,------;

Option A 1.37 GNF2 Option B GNF2 1.47 FW Controller Failure Operating domain: LCF & FWTR (HHB)

Exposure nlnge MOC to EOC

( Application Condition: 2,4)

Option A Operating domain: ICF & FWTR (UB)

Exposure range

MOC to EOC

( Application Condition: 2, 4 )

FW Controller Failure Option A GNF2 1.52 Option B GNF2 1.42 Page 23

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Operating domain: "LCF & FWTR (VB)

Exposure range MOC to EOC

( Application Condition: 2, 4 )

FW Controller Failure Option A GNF2 1.50 Option B GNF2 lAO 1.31 GNF2 Option B 1.44 GNF2 FW Controller Failure Operating domain: ICF with RPTOOS (HDB)

Exposure range BOC to MOC

( Application Condition: 3, 4 )

Option A Load Rejection w/o Bypass 1.51 1.38 Turbine Trip w/o Bypass 1.49

\\1.36 1.36 GNF2 Option D 1.46 GNF2 FW Controller Failure Operating domain: ICF with RPTOOS (HBB)

Exposure range MOC to EOC

( Application Condition: 3, 4 )

==,....-.-------,r--------!

Option A Load Rejection w/o Bypass 1.48 1.38 Turbine Trip w/o Bypass 1.47 1.37 1.31 GNF2 Option B 1.44 GNF2 FW Controller Failure Operating domain: LCF with RPTOOS (HBB)

Exposure range BOC toMOC

( Application Condition: 3, 4 )

Option A Load Rejection w/o Bypass 1.49 1.36 Turbine Trip w/o Bypass 1.48 1.35 Operating domain: LCF with RPTOOS (HBB)

Exposure range

MOC toEOC (Application Condition: 3,4)

~~'J!:~~i

  • Ill:.I::,'

Option A Option B y

.****'******1:'

GNF2 GNF2

.;t" *.

>>). *

.(,

FW Controller Failure 1.44 1.34 Load Rejection w/o Bypass 1.50 lAO Turbine Trip w/o Bypass 1.48 1.38 Page 24

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 1.37 GNF2 Option B 1.47 GNF2 lCF with RPTOOS (UB)

MOC to EOC

( Application Condition: 3,4)

Option A FW Controller Failure Operating domain:

Exposure range Load Rejection w/o Bypass 1.53 1.43 Turbine Trip w/o Bypass 1.52 1.42 1.32 GNF2 Option B 1.42 GNF2 FW Controller Failure Operating domain: LCF with RPTOOS (U~)

Exposure range

MOC toEOC (Application Condition: 3,4)

===r------y---------l Option A Load Rejection w/o Bypass 1.46 1.36 Turbine Trip w/o Bypass 1.45 1.35 Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

BOC toMOC

( Application Condition: 4)

Option A GNF2 FW Controller Failure 1.50 Option B GNF2 1.37 GNF2 1.38 Option B GNF2 1.48 Option A, FW Controller Failure Operating domain: ICF & FWTR with RPTOOS (HBB)

Exposure range

MOC to EOC

( Application Condition: 4)

~~~~~~7r-----r_----___1 Operating domain: LCF & FWTR with RPTOOS (HBB)

Exposure range

ROC to MOC

( Application Condition: 4)

FW Controller Failure Option A GNF2 1.49 Option B GNF2 1.36 Page 25

Grand Gulf-l Reload 19 Operating domain: LCF & FWTR with RPTOOS (HBB)

Exposure range MOC to EOC

( Application Condition: 4)

FW Controller Failure Operating domain: ICF & FWTR with RPTOOS (UB)

Exposure range MOC to EOC

( Application Condition: 4)

FW Controller Failure Operating domain: LCF & FWTR with RPTOOS (UB)

Exposure range

MOC toEOC

( Application Condition: 4)

FW Controller Failure

12. Overpressurization Analysis Summary Option A GNF2 1.49 Option A GNF2 1.54 Option A GNF2 1.52 00 IN8480-SRLR Revision 0 Option B GNF2 1.39 Option B GNF2 1.44 Option B GNF2 1.42 Event Psi Pdome Pv Plant (psig)

(psig)

(psig)

Response

MSIV Closure (Flux Scram) - ICF (HBB) 1300 1303 1335 Figure 50 MSIV Closure (Flux Scram) - LCF (HBB) 1293 1296 1319 Figure 51

13. Fuel Loading Error Results This plant satisfies the requirements to classify the fuel loading events (both mislocated bundle and misoriented bundle) as an Infrequent Incident; therefore, cycle specific loading event analyses are not required. NRC approval is documented in NEDE-24011-P-A-20-US.
14. Control Rod Drop Analysis Results This is a banked position withdrawal sequence plant, therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-24011-P-A-20-US.

Page 26

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 15.

Stability Analysis Results J8 Entergy is seeking approval for operating Grand Gulf Nuclear Station in the MELLLA+ operating domain which would provide greater core now flexibility~ particularly as power approaches 1150/0 of the Original Licensed Thermal Power.

SLO will not be allowed in conjunction with operation in the MELLLA+ domain. Implementation of the MELLLA+ operating domain requires the use of the Detect and Suppress Solution -

Confirmation Density (DSS-CD) stability solution.

Stability results for operation at EPU with MELLLA+ and DSS-CD are contained in this section.

15.1 Stability DSS-CD Solution, Grand Gulf Nuclear Station will implement the stability DSS-CD solution using the Oscillation Power Range Monitor (OPRM) as described in Section 4 of Reference 1.

Plant-speciHc analyses for the DSS-CD Solution are provided in Section 2.4 of Reference 2. The Detect and Suppress function of the DSS-CD solution based on the OPRM system relies on the Confirmation Density Algorithm (CDA), which constitutes the licensing basis. The Backup Stability Protection (BSP) solution may be used by the plant in the event that the OPRM system is declared inoperable.

The CDA enabled through the OPRM system and the BSP solution described in Section 2.4 of Reference 2 provide the stability licensing bases for Grand Gulf Nuclear Station Cycle 20.

The safety evaluation repmi for Reference 1 concluded that the DSS-CD solution is acceptable su~ject to certain cycle-specific limitations and conditions.

These cycle-specific limitations and conditions are met for Grand Gulf Nuclear Station Cycle 20.

15.2 Detect and Suppress Evaluation A reload DSS-CD evaluation has been performed in accordance with the licensing methodology described in Section 6 of Reference I to conHrm the Amplitude Discriminator Setpoint (SAD) of the CDA established in Section 2.4 of Reference 2. The Cycle 20 DSS-CD evaluation and the results for the DSS-CD Reload Confirmation Applicability Checklist documented in Table 15-1 demonstrate that: I) the DSS-CD Solution is applicable to Grand GulfNuclear Station Cycle 20; and~ 2) the SAD=1.1 0 established in Section 2.4 of Reference 2 is confirmed for operation of Grand GulfNuclear Station Cycle 20.

The S.<\\1)=1.1 0 setpoint is applicable to TLO and to SLO.

18 See Appendix F regarding assessment of the impact ofGNF2 beT]-t flow wings on the stability analysis.

Page 27

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Table 15-1 DSS-CD Reload Confirmation Applicability Checklist Grand Gulf Nuclear Parameter DSS-CD Criterion Station Acceptance Cycle 20 Results BWR Product Line BWRl6 design BWRl6 Confirmed fuel Product Line GNF2 and earlier GE designs GNF2 ConHrmed

~EPU/MELLLA+including EPUIMELLLA+

Operating Domain including currently (TLO) currently licensed operational licensed operational Confirmed flexibility features flexibil ity features

~ EPUIMELLLA including EPUIMELLLA Operating Domain including currently (SLO) currently licensed operational Iicensed operational Confirmed flexibility features flexibility features

~ 120 of (EPU/MELLLA) 100 OF Rated TFW Reduction No TFw Reduction (EPUIMELLLA)

Confirmed (MELLLA+ Extension)

Margin for TLO see Table I in Reference 4 2:0.161 Confirmed Margin for SLO see Table 2 in Reference 4 2: 0.248 Confirmed 15.3 Backup Stability Protection Section 7 of Reference 1 describes two BSP options that are based on selected elements from three distinct co'nstituents: BSPManual Regions, BSP Boundary, and Automated BSP (ABSP) setpoints.

The ManualBSP region boundaries and the BSP Boundary were calculated for Grand Gulf Nuclear Station Cycle 20 for normal feedwater temperature operation and reduced feedwater temperature.

The endpoints of the regions are defined in Table 15-2 and Table 15-3.

The Scram Region boundary, the Controlled Entry Region boundary, and the SSP Boundary are shown in Figure 52 and in Figure 53 for the normal and reduced feedwater temperature, respectively.

The ABSP APRM Simulated Thermal Power setpoints associated with the ABSP Scram Region from Reference 3 are determined for Cycle 20 and are defined in Table 15-4.

These ABSP setpoints bound both TLO and SLO.

Page 28

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Table 15-2 BSP Endpoints for Normal Feedwater Temperature EndpQint Power Flow (%)

Definition

(%)

Al 72.3 44.2 Scram Region Boundary, HFCL Bl 38.2 25.5 Scram Region Boundary, NCL A2 67.3 50.0 Controlled Entry Region Boundary, HFCL B2 26.4 24.4 Controlled Entry Region Boundary, NCL A3 100 82.2 BSP Boundary Intercept, HFCL B3 74.1 58.4 BSP ~oundary Intercept, MELLLALine Table 15-3 BSP Endpoints for Reduced Feedwater Temperature Endpoint Power Flow (%)

Definition

(%)

Al 61.9 43.4 Scram Region Boundary, HFCL Bl 32.7 25.1 Scram Region Boundary, NeL A2 67.3 50.0 Controlled Entry Region, Boundary, HFCL B2 26.4 24.4 Controlled Entry Region Boundary, NeL Note: The BSP Boundary for Reduced Feedwater Temperature is

~efined by the MELLLA line, per Reference 1.

Page 29

Grand Gulf-l Reload 19 Table 15-4 ABSP setpoints for the Scram Region 001N8480-SRLR Revision 0 Parameter Symbol Value Slope of AHSP APRM flow-mTrip 1.00 biased trip linear segment.

ABSP APRM flow-biased trip setpoint power intercept.

Constant Power Line for Trip P13SP-Trip 32.7 %RTpl from zero Drive Flow to Flow Breakpoint value.

ABSP APRM flow-biased trip setpoint drive flow intercept.

WBSP-Trip 39.0 %RDF2 Constant Flow Line for Trip.

Flow Breakpoint value W13SP-13rcak 9.0%RDF2 1.

RTP - Rated Thermal Power 2.

RDF - Recirculation Drive Flow 15.4 References GEHitachi Boiling ftVater Reactor, Detect and Suppress Solution - COl?jirmation Density, NEDC-33075P-A, Revision 8, November 2013.

2 Safety Analysis Report for Grand GulfNuclear Station Nfaximum Extended Load Line Limit Ana~ysis Plus, NEDC-33612P, Revision 0, September 2013.

3 Grand Gu(("Nuclear Station PRNlvf I..~ystem DSS-CD Settings, 0000-0158-7807-RO, Revision 0, October 2013.

4 Grand Gulf Nuclear Station Detect and Suppress Solution - Confirmation Density GNr"'] A1CPR

.Criteria, 001N8107-RO, Revision 0, August 2014.

16. Loss-of-Coolant Accident Results 19 16.1 10CFR50.46 Licensing Results The ECCS-LOCA GNF2 analysis is based on the SAFER/PRIME-LOCA methodology. NRC approval of the PRIME methodology is contained in the Final Safety Evaluation of the PRIME model Licensing Topical Report (Reference 2 for GNF2 in Section 16.4). The licensing results applicable to the GNF2 fuel type in the new cycle are summarized in the following table.

19 See Appendix F regarding assessment of the impact ofGNF2 bent flow wings on the LOCA results.

Page 30

Grand Gulf-l Reload 19 Table 16.1-1 Licensing Results 001N8480-SRLR Revision 0 Licensing Local Core-Wide Mehll-Water Fuel Type Basis PCT Oxidation Reaction (OF)

(%)

(%)

GNF2 1730

<2.00

< 0.10 The SAFERJPRIME ECCS-LOCA analysis results for the GNF2 fuel type are documented in Reference 1 for GNF2 in Section 16.4.

For GNF2, the large break Appendix K ECCS-LOCA result at pre-EPU power and rated core flow is 1712°F as documented in Reference 1. The large break Appendix K ECCS-LOCA result at EPU power and rated core flow is 1692°F as documented in Reference 1.

16.2 10CFR50.46 Error Evaluation The 10CFR50.46 errors applicable to the Licensing Basis PCT are shown in the following table.

Table 16.2-1 Impact on Licensing Basis Peak Cladding Temperature for GNF2 10CFR50.46 Error Notifications Number Subject PCT Impact (OF) 2014-01 SAFER04A E4 Revision-Code Changes ofNeutral 0

Impact 2014-02 SAFER04A E4 Revision-Mass Non-Conservatism 0

2014-03 SAFER04A E4 Revision-Minimum Core DP Model

-15 2014-04 SAFER04A E4 Revision-Lower Plenum CCFL 0

Restriction Total PCT Adder (OF)

-15 After accounting for the error impact, the GNF2 Licensing Basis PCT with the total PCT adder remains below the 10CFR50.461imit of2200°F.

Page 31

Grand Gulf-l Reload 19 16.3 ECCS-LOCA Operating Limits 001 N8480-SRLR Revision. 0 The ECCS-LOCAMAPLHGR limits for the GNF2 fuel bundles in this cycle are sh?wn in the following table.

Table 16.3-1MAPLHGR Limits Bundle Type(s): GNF2-Pl OSG28421-1 OG8.0-120T2-150-T6-3265 (GNF2)

GNF2-P1 OSG2B400-19GZ-120T2-150-T6-3267 (GNF2)

GNF2-PlOSG2B435-14GZ-120T2-150-T6-3269 (GNF2)

GNF2-PlOSG2B400-19GZ-120T2-150-T6-3270 (GNF2)

GNF2-PIOSG2B387-14GZ-120T2-150-T6-4023 (GNF2)

GNF2-P1OSG2B424-14GZ-120T2-150-T6-4024 (GNF2)

GNF2-PIOSG2B385-14GZ-120T2-150-T6-4025 (GNF2)

GNF2-PlOSG2B416-16GZ-120T2-150-T6-4026 (GNF2)

GNF2-PIOSG2B421-15GZ-120T2-150-T6-4246 (GNF2)

GNF2-PlOSG2B431-14GZ-120T2-150-T6-4247 (GNF2)

GNF2-Pl OSG2B451':15GZ-120T2-150-T6-4249 (GNF2)

GNF2-P10SG2B397-14GZ-120T2-150-T6-4027 (GNF2)

GNF2-PIOSG2B409-14GZ-120T2-150-T6-4028 (GNF2)

GNF2-Pl OSG2B397-15GZ-120T2-150-T6-4029 (GNF2)

Average Plana r Exposure MAPLHGR Limit CWd/MT CWd/ST kW/ft 0.00 0.00 13.78 19.31 17.52 13.78 67.00 60.78 7.50 70.00 63.50 6.69 The power and flow dependent LHOR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective. The MAPLHGR multipliers can either be set to\\ unity or set equal to the LHGR multipliers, and remain compliant with the basis of the ECCS-LOCA analysis with no loss of ECCS-LOCA margin.

The single loop operation multiplier on Ll-IGR andMAPLHGR and the ECCS-LOCA analytical initial MCPR value applicable to the GNF2 fuel type in the new cycle core are shown in the table below.

Page 32

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Table 16.3-2 Initial MCPR and Single Loop Operation Multiplier on LHGR and MAPLHGR Single Loop Operation Fuel Type Initial MCPR Multiplier on LHGR and MAPLHGR GNF2 1.18 0.83 GNF2 (Reload 17) 1.30 20 0.83 The GNF2 SLO multiplier applies to the EPU operating domain only, and SLO operation in the MELLLA+ domain is not permitted.

16.4 References The SAFER/PRIME ECCS-LOCA analysis base reports applicable to the new cycle core are:

References for GNF2

1. Grand Gulf Nuclear Station /l.lELLLA+ Task T0407: ECCS-LOCA Performance. 0000-o125-2482-RO, Revision 0, September 2012.
2. The PRINJE A1odelfor Ana~ysis of Fuel Rod Thermal-.i\\!Jechanical Performance, Technical Bases - NEDC-33256P-A Rev. 1, Qualification - NEDC-33257P-A Rev. 1, and Application Methodology - NEDC-33258P-A Rev. I, September 2010.

20 The GNF2 Reload 17 fuel IMCPR value includes a 1.1 multiplier to account for the GNF2 bent flow wing effect (see Appendix F).

Page 33

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 64 1

4 4

1 62 1.

4 1.

4 4

'7 1.8 1.8

'7 4

4 1

3 1

60 4

'7 7

7

'7 19 9 12 1.2 9 19 7

7 7

7 4

58 4

1 7

7 19 12 12 12 12 12 11 11 12 12 12 12 12 19 7

7 1

4 56 1

9 7

7 12 12 11 19 11 19 11 19 19 11 19 11 19 11 12 12 7

7 9

1 54 4

9 1 12 8 12 11 9 11 20 11 6 10 10 6 11 20 11 9 11 12 8 12 1

9 4

52 1

7 12 19 11 11 9 10 20 10 9 10 6

6 10 9 10 20 10 9 11 11 19 12 7

1 50 7

7 8 11 11 19 11 20 10 20 10 20 10 10 20 10 20 10 20 11 19 11 11 8

7 7

48 4

7 12 12 11 19 10 18 10 20 10 6 10 6

6 10 6 10 20 10 18 10 19 11 12 12 7

4 46 1

7 19 12 11 9 11 18 10 20 10 6 10 6 10 10 6 10 6 10 20 10 18 11 9 11 12 19 7

1 44 5

7 12 11 9 10 20 10 20 10 6 10 6 10 6

6 10 6 10 6 10 20 10 20 10 9 11 12 7

5 42 1

7 12 19 11 20 10 20 10 6 10 6 10 6 10 10 6 10 6 10 6 10 20 10 20 11 19 1" 7

1 40 4

7 12 11 20 10 20 10 6 10 6 10 6 10 8

8 10 6 10 6 10 6 10 20 10 20 11 1" 7

4 38 4 19 12 19 11 9 10 6 10 6 10 6 10 19 10 10 19 10 6 10 6 10 6 10 9 11 19 1.2 19 4

36 1

'7 9 12 11 6 10 20 10 6 10 6 10 19 10 8

8 10 19 10 6 10 6 1.0 20 10 6 11 12 9

7 1

34 4 18 12 11 19 1.0 6 10 6 10 6 10 8 10 8

1 1

8 10 8 10 6 10 6 1.0. 6 1.0 19 11 12 18 4

32 4 1.8 12 1.1 19 1.0 6 10 6 10 6 10 8 10 8

1.

1 8 10 8 10 6 10 6

1.0 6 10 19 1.1 12 18 4

30 1

7 9 12 11 6 10 20 10 6 10 6 10 19 10 8

8 10 19 10 6 10 6 10 20 10 6 11 12 9

7 1

28 4 19 12 19 1.1 9 10 6 10 6 10 6 10 19 10 10 19 10 6 10 6 10 6 10 9 1.1 19 12 19 4

26 4

7 12 11 20 10 20 10 6 10 6 10 6

1Q 8

8 10 6 10 6 10 6 10 20 10 20 11 12 7

4 24 1

7 12 19 1.1 20 10 20 10 6 10 6 10 6 10 10 6 10 6 10 6 10 20 10 20 1.1 19 12

'7 1

22 4

7 12 11 9 10 20 10 20 10 6 10 6 10 6

6 10 6 10 6 10 20 10 20 10 9 11 12 7

4 20 1

7 19 12 11 9 11 18 10 20 10 6 10 6 10 10 6 10 6 10 20 10 18 11 9 11 12 19 7

1 18 4

7 12 12 11 19 10 18 10 20 10 6 10 6

6 10 6 10 20 10 18 10 19 11 12 12 7

4 16 7

7 8

11 1.1 19 1.1 20 10 20 10 20 10 10 20 10 20 10 20 11 19 11 11 8

7 7

14 1

7 12 19 11 11 9 10 20 10 9 10 6

6 10 9 10 20 10 9 11 11 19 12 7

1 12 4

9 1 12 8 12 11 9 11 20 11 6 10 10 6 1.1 20 11 9 11 12 8 12 1

9 4

10 1

9 7

7 12 12 11 19 11 19 1.1 19 19 11 19 11 19 11 12 12 7

7 9

1 8

4 1

7 7 1.9 12 1.2 12 12 12 11 11 12 12 12 1.2 12 19 7

7 1.

4 6

4 7

7

'7

'7 1.9 9 12 12 9 1.9

'7 7

'7 7

4 4

1.

4 1.

4 4

7 1.8 18

'7 4

4 1.

3 1

2 1.

4 4

1 1

3 5

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 Fuel Type 1=GNF2-PI OSG2B42 1-1 OG8.O-120T2-150-T6-3265 (Cycle 18) 9=GNF2-PI0SG2B416-16GZ-120T2-150-T6-4026 (Cycle 19) 3=GNF2-PI0SG2B400-19GZ-120T2-150-T6-3267 (Cycle 18) 10=GNF2-PIOSG2B421-15GZ-120T2-150"T6-4246 (Cycle 20) 4=GNF2-P IOSG2B435-14GZ-120T2-150-T6-3269 (Cycle 18)

II=GNF2-PI05G2B431-14GZ-120T2-150-l'6-4247 (Cycle 20) 5=GNF2-P IOSG2B400-19GZ-120T2-150-T6-3270 (Cycle 18) 12=GNF2-PIOSG2B451-15GZ-120T2-150-T6-4249 (Cycle 20) 6=GNF2-PIOSG2B387-14GZ-120T2-150-T6-4023 (Cycle 19) 18=GNF2-PI0SG2B397-14GZ-120T2-150-T6-4027 (Cycle 19) 7=GNF2-P IOSG2B424-14GZ-120TI-150-T6-4024 (Cycle 19) 19=GNF2-Pl OSG2B409-14GZ-120T2-150-T6-4028 (Cycle 19) 8=GNF2-PI0SG2B385-14GZ-120TI-150-T6-4025 (Cycle 19) 20=GNF2-PIOSG2B397-15GZ-120T2-150-T6-4029 (Cycle 19)

Figure 1 Reference Core Loading Pattern Page 34

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400

~ Neutrbn Flu)('(light~

800 100 Er"' Dome Press Rise: (rig taxIs 400

~

,A..ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

--tr-Relief Valve Flow 360 350

--+- Core Inlet Subcooling 700

--+-

Bypass Valve Flow 80 320 300 600 70 280

~

'iii 250 500 ~

.e:

til 60 240 41

~

til "0

~

"0

~

4>

4>

~

~ 200 400

~

t; l:! 50 200

J UJ

'j.

r u::

f.

til c:

~

e Q.

300 ~

40 160 41 150 E

Z 0

0 1

30 120 100

.~~~'"

200

~.,.."":4.,,

20 80 50

~--

100 10 40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 4.0

~

Leve (right axis)

~

~

Vessel Steam Flow

~

-tr-Turbine Steam Flow 3.5 3.5 150

--+-

Feedwater Flow 90

--+-

30 30 75 ~

2.5 2.5 125 en

~ 2.0 2.0 E 0

'til III til

a c

c

~

1.5.

1.5 41 100 60 0.

c:

'C ell 0

0 41 en 0.

0.

t; 4>

~ 1.0 E

10 l:!

0 0

"r!-

oC u

U til 75 45 til

~ 05 0.5 ~

ell

~

u u

u

§.

III III Qj

~. 0.0 0.0 ~

50 30 CI)

...J

..lJ5

-0.5

-1.0

-1.0 25 15

-1.5

-1.5

-2.0

  • 2.0 6

8 10 12 14 16 a

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 2 Plant Response to FW Controller Failure

( MOC ICF (HBB) )

Page 35

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150.-.-r-'--'--'--.-~~--""-=e:=TNeUlron1='iuxlrfgWfaxiST 750 100

~.-"""""""--~-~-7B-u-on18l5?esS'"Ri se (righTaxIS) 400

~,ll"ve Surface Heat Flux

~

Safety Valve Flow

.......- Core Inlet Flow 90

-.1r-Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 70 280 100 500..-

'iii V~<

"C Q)

.e:

~--,-

1ii 60 240 Q)

~

II)

"C

~

"C i2 Q)

A.,

Q)

~

1ii 75 375

~

1ii

~

0:: 50 200

J

"a,.

u::

III

~

?!-

III c:

~

~

Q..

......-....~..........

40 160 Q)

~~

J E

.Q) 50 250 Z 0

0 30 r-~

AI:

120 20 80 25 125 10 I

40 I

3 3

Time (sec)

Time (sec) 250 100 40 4.0 eveI (rig taxis)

--e-aid

.eactlvity

~

Vessel Steam Flow

~

Doppler Reactivity

~

Turbine Steam Flow 3.5 Scram r~eactivity 3.5 200 Feedwater Flow 80

-.- Total Reactivity 3.0 30 60 ~

2.5 2.5 150 III

~ 2.0 2.0 ~

0 1ii In

~

In

~

1:

1:

~ 1.5 Q) 100 40 Q.

c:

"C III 0

0

<II In Q.

Q.

1ii

'~....

Q)

~ 10 E

1.0 0::

0 0

'~

.0 u

U (tl 50 20 In

~ 05 05 ~

III

..c:u u

u

§.

Rl Rl Gi

~ 0.0 DO ~

0 0

Q)

..J

-D.5

-0.5

-10

,10

-50

-20

  • 1.5

-1.5

  • 100
  • 40

-2.0

  • 2.0 0

0 3

Time (sec)

Time (sec)

Figure 3 Plant Response to Load Rejection w/o Bypass

( MOC ICF (HBB) )

Page 36

Grand Gulf-l Reload 19 001N8480-SRLR Revision O' 150

-~-~~~'-~-~~-'-~=e:='NeiJfron'F1LiX-Ti1'gl1lffi(iST

~,A.ve Surface Heat Flux

......- Core Inlet Flow 750 100 90

~~~~--"8~l5Ome-f5res~ise(ilghTaxls)

~

Safety Valve Flow

-.'II:-

Relief Valve Flow

-+- Bypass Valve Flow 400 360 125 625 80 320 3

Time (sec) 100

't:I 4>

~

75

~

50 25 375 !:l i:L c:e:;

4>

250 Z 125 70 50

't:I ill

~ 50 f.

40 30 At

~'---k-20 I

10 I

f 3

Time (sec) 280

~

240 cu In

~

~

200

J UI III

~n.

160 lU Eoa 120 80 40 3.5

-1.0

-1.5 3.0 25 3

Time (sec) 2.0 E III C

lUc:oQ.

10 g U

~--~~--

0.5*~

u lIJ

-t-or:'+~f-="""eo.-_-----------+

0.0 ~

......~~.,.....~~......~~......8=--'"""""'l""i'"";d""'.e~a~ct<rlv""it-y~..,..

40

~ Doppler Reactivity

-r-Scram Reactivity

-+- Total Reactivity 100 4.0 3.5 80 3.0 t

2.5 60 :¥ UI E 2.0 0

~

IIIC 4>

1.5 40 Q.

c:

<U 0

UI Q.

ill E

10 0

0

.c U

20 III

~ 0.5 cu

~

~u u

§.

III III 00 Qi 0::

1ti 0::

~"

50 Figure 4 Plant Response to Turbine Trip w/o Bypass

( MOC ICF (HBB) )

Page 37

Grand Gulf*1 Reload 19 001N8480-SRLR Revision 0 400. -~"-~-'-~-~~-'~~""""~--fi~T-NeuTrbn Flul"(rlgnra-XTSf--

800 100

~~~13"""""'Ljoriiel)r8§S1(1sE'J (ngh'"faXls 400

~

,A.ve Surface Heat Flux

~

Safety Valve Flow

.......- Core Inlet Flow 90

--a-Relief Valve Flow 360 350 Core Inlet Subcooling 700 Bypass Valve Flow 80 320 300 600 70 280

~

"iii 250 500 ~

E::

\\1l 60 240

<U

~

III "0

e:

"0 i2 Q)

Q)

~

~ 200 400

~

10 Cl: 50 200

J u::

UI f.

f.

III t:

~

0

\\

Q.

I-40 160

<U 150 300 ~

E z

0 0

30 120 100 200 20 80 50 100 10 40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 40 Leve (right axis)

-e-

~

Vessel Steam Flow

~

--a-Turbine Steam Flow 3.5

~

3.5 150 Feedwater Flow 90 3.0 3.0 75 ~

2.5 2.5 125 til

~ 2.0 20 ~

I-0 1ii

/11 III 1:

1:

\\1l

~ 1.5.

1.5

<U 100 60 a-t:

"0 lU 0

0 Q) til a-a-

'tV (I) g 10 E

1.0 Cl:

0 0

<I-

.0 U

U til f 05 75 45

/11 05 ~

lU

..c:u u

u

§,

III tV iii

~ 0.0 0.0 ~

50 30 Q)

..J

-0.5

-0.5

-1.0

-1.0 25 15

  • 1.5

-1.5

-2.0

-2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 5 Plant Response to FW Controller Failure

( EOC ICF (HUB) )

Page 38

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. ~-~~r-~~"'-~~8TNeutro-irFl~axls)

. 750 100

.........-.--,~.........-.--,Er:-uome Pressi~ise (right aXIs 400

~

,fJ.,ve Surface Heat Flux

~

Safety Valve Flow

-.r-Core Inlel Flow 90 Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320

~

70 280 100 500 __

"iii

'"0

~

E::

III 60 240

<U

"'\\r

~

III

'"0

~

'"0 i:E

<U

\\

\\.~1\\.

<U r

~

~

75,

~,

375

~

~ 50 200

J

~

~

III

.~ ~...

u:

?!-

III c:

Ql...

~ -~.-

e n.

i 40 160

<U cal E

250 Z 0

50 0

30 A

120

~~~

'IIr:--

20 80 25 125 10 40

-...---_*..-...~..-

3 3

Time (sec)

Time (sec) 250 100 4.0 4.0 ev I (rig taxis)

-e-id eactlvity

-M-Vessel Steam Flow

~ Doppler Reactivity

-tr-Turbine Steam Flow 3.5

-.r-Scram Reactivity 3.5

-.- Feedwater Flow 80

-.- Tolal Reactivity 200 30 3.0 60 ~

2.5 2.5 150 (II

~ 20 2.0 ~

0 1ii (II Ul C

C

~ 1.5.

1.5

<U 100 40 0.

c:

'"0 II) 0 0

<ll (II 0.

0.

~

"00-...

Q)

~ 10 1.0 E

~

~

0 0

?f!.

.c U

u III 50 20 Ul

~ 0.5 05 ~

II)

U U

U

§.

III III

~ 00 0.0 ~

0 II)

...J

-0.5

-0.5

-1.0

  • 1.0
  • 50.

-20

  • 15

-1.5

  • 100
  • 40

-2.0

  • 2.0 0

0 3

6 Time (sec)

Time (sec)

Figure 6 Plant Response to Load Rejection w/o Bypass

( EOe ICF (HBB) )

Page 39

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. ~~~"-*~-~~"""'-'-....:::a='l'W]ror;rF1UXTr:igfi aXIs)

  • 750 100

-~-"-'--'-'--'~~--""8:-Uome-PresS'r<tseTrlgl1TaXTSf-400

~ lJ,ve Surface Heat Flux

~

Safety Valve Flow

--.tr-Core Inlet Flow 90

.......r-Relief Valve Flow 360

......- Bypass Valve Flow 125 625 80 320 1\\

J~,

70 280 100 500.......

'iii

'"0 q,)

e 1ii 50 240 til

\\~

~

III

'"0

e

'"0

~

q,)

til

~

1ii 75 "~~-

375

~

1ii 50 200

J

~

~

III u::

"I-III c:

til....

~

-w_"

~

D..

~.

40 160 til

J E

Q) 250 Z 0

50 C

30 A

A 120 r

k

--:Q;-

'X~

20 I

80 25 125 10 I

40 I

I 3

3 Time (sec)

Time (sec) 250 100 4.0 40

-e-

\\/aid eactrvity

~

~ Doppler.Reactivity

--r-3.5

--tr-Scram PeactiVity 3.5 80

......- Total Reactivity 200 3.0 30 60 ~

2,5 25 150 (II

~ 20 2.0 ~

0 1ii (II III C

C

<<l t:! 1.5.

15 til 100 40 0.

c:

'"0

~~

<II 0

0 Gl (II 0.

0.

1ii w--

til

~ 1.0 10 E 0

~

0 "l-

.e u

U

<<l 50 20 III

~ 05 0.5 ~

<II

~

U U

U

§.

III IU I

"'iU

~ 0,0 00 &:

I 0

q,)

-I

-0,5

-0.5

-1.0

  • 1.0

-50

-20

  • 1.5

-1.5

  • 100
  • 40

-2,0

  • 2.0 0

0 3

Time (sec)

Time (sec)

Figure 7 Plant Response to Turbine Trip w/o Bypass

( EOC ICF (HBB) )

Page 40

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400. --r~-...,.-,-r~-"-'-~""'-.:::::e=Tl\\f'eLifronTiUx(FrgnraxlSf-800

~ Ave Surface Heat Flux

.......- Core Inlet Flow 350

-+- Core Inlet SUbcooling 700 100 90

~....,.-.-~,-~8r~-uoni8-l5"ress~Tse\\i'TQhT'aXls )

~

Safety Valve Flow

---AI:- Relief Valve Flow

-+- By'pass Valve Flow 400 360 80 320 300 600 70 200 100 -It-------:XX-----\\

200 r-----T----"~I

'~

50 ------e---~\\ ~

100 250 Cl.>

~ 200 f.

150 6

8 10 Time (sec) 12 14 16 400

~

u:

c:e 300 ~

Z 60 40 30 20 10 6

8 10 Time (sec) 12 14 16 E;

240

<II III i2 GI 200 5 III III

~

0..

160 lU Eo C

120 80 40 3.0 3.5 40

-r-~-,.--......,...~.........,-~"T"""":8=--"""T;"1r-r-,""i=l":~..,..,-.....,.

4.0

~

---r-

-+-

3.5 3.0 90 150 175

.,.......~-r-~......,...~.........,r--~.,...8~......,...,Ll:j--v~e,...,(,...,ri.,...g,...,ht,...a~x.,..,isr:-)~......,...

105

~

Vessel Steam Flow

-k-Turbine Steam Flow

-+- F8edwater Flow

-2.0 -+-..........-+-+-+-.....-r................,I-+-+-+-+-+--+-+-+->-+-'~-+-+~----r--+-t

-2.0 o

6 8

10 12 14 16 Time (sec)

~ 2.0 2.0 E UI III C

C

~

1.5 '.

~

o 0

~

~

~ 10 1.0

~

U U

~ 0.5 0.5 :_~

u u

(ll 11I

~ 00 +_----......-fiilliiiiii:ll-~~~L---____+

0.0 ~

2.5

-1.0

-0.5

-1.5 2.5

  • 1.5

-10

-0.5 15 75 ~

UI...o

~

(ll 60 g.

UI Cl.>>o

.c 11I 45 III lU.cu5 Qj 30 i;

..J 16 14 12 6

8 10 Time (sec) 25 50 125 100 Figure 8 Plant Response to FW Controller Failure

( MOC LCF (HUB) )

Page 41

Grand Gulf-l Reload 19 OOlN8480-SRLR Revision 0 150

-e-' Neutron' Flux (ngfit aXIs) 750 100

....:e-Dome Press'Rise (right aXIs 400

~

,fJ..,ve Surface Heat Flux

~

Safety Valve Flow

-a-Core Inlet Flow 90

-r-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 70 200 100

.~

500.-

"iii

'"C Q,)

,e;

'tii 60 240

<II It

~

i2

'"C V\\

\\

~

'"C Q,)

Q,)

<II 1ii V\\f, 375

~

1\\;

L-

~

75 50 200

J UI

'/.

u::

'/.

s-.:

III

~'-A,'--"

c:

~

e Q.

~

40 160

<II

'x.-.

.~-..._._

Q,)

E 250 Z 0

50

-~.._~-

c

~....

30 A

AI 120 r"

..;#(

~

I

---x-I 20 80 25 125 l

10 f

40 I

~---'-

I 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 evel(rlg taxis)

-e-oid eac vlty

~

Vessel Steam Flow

~ Doppler Reactivity

.......- Turbine Steam Flow 3.5

-a-Scram Reactivity 3.5

-.- Feedwater Flow 80

-.- Total Reactivity 200 3.0 3.0 60~

2.5 2.5 150 III

~ 2.0 2.0 E L-0

'tii III III

a c

c

~

1.5 1.5

<II

.100 40 Q.

c:

'"C

~~

--'-+--

Q,)

0 0

<Il III Q.

Q.

1\\;

Q,)

g 1.0 1.0 E 0

0 f.

I

-.----+.....-

.c U

U 11I 50 20 III

~ 0.5 05 ~

./"'-/-"

Q,)

..c:

U u

u

§.

III III

"'iii

~ 0.0 0.0 ~

0 0

Q,)

...J

-05

-0.5

-1.0

-1.0

-50

-20

  • 1.5

-1.5

-100

  • 40

-2.0

  • 2.0 0

3 0

3 Time (sec)

Time (sec)

Figure 9 Plant Response to Load Rejection w/o Bypass CMOC LCF (HBB) )

Page42

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150.

T-~~"""""""'-8'-~eutrOrii Flux (ngl'if aXTST~-

750 100

~''-'--'-'~~TB DOI~le-PressTRTsEj1i=rgFira)(ls) - - 400

~

,A..ve Surface Heat Flux

~

Safety Valve Flow

---s:- Core Inlet Flow 90

--k-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 70 280 100 500......

"iii "tl

~~

III

~

1ii 60 240

<U

~

III "tl

~

"tl

[2 III

\\tV ~~'--""'-

0 III

~

1ii 75 375

~

1ii

~

0:: 50 200

J III

<f..

u::

<f..

III c:

~

e Q.

i 40 160 III

~--~

III E

50 250 Z 0

0 30 120

......"'x.

........_~-

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 40 evel (ng taxis)

-e-oid

.eac vity Vessel Steam Flow

~ Doppler Reactivity

--k-TUrbine Steam Flow 3.5

-,tr-Scram Reactivity 3.5 200

-.- Feedwater Flow 60

-.- Total Reactivity 3.0 30 60 ~

2.5 25 150 III

~ 2.0 2.0 ~

0

~

III til C

C III

~ 1.5 1.5

<U 100 40 Q.

c:

"tl III 0

0 III til Q.

Q.

1ii Gl

~ 1.0 E

10 0::

0 0

..0 U

U

~

0 III

05 50 20 til 0.5 ~

III

'~'

~

u u

u

§.

ns ns Qi 0:: 0.0 00 0::

0

~-

III

...J

-0.5

-0.5

  • 10

-10

-50

-20

-1.5

-1.5

  • 100
  • 40

-2.0.

  • 2.0 3

0 3

Time (sec)

Time (sec)

Figure 10 Plant Response to Turbine Tripw/o Bypass

( MOC LCF (HBB) )

Page 43

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400. -~~~..-.-'- 8 i

NeUfrOriTiU!(i1Q~x~

800 100

~~~~es ise (rig taxIs 400

~.A.ve Surface Heat Flux

~

Safety Valve Flow

..or-Core Inlet Flow 90

-.- Relief Valve Flow 360 350

-.- Core Inlet Subcooling 700

--.- Bypass Valve Flow 80 320 300 600 70 2BO

c "iii 250 500 ~

~

60 240

<II 0::

III

~

i2

<II

,.J!I"--....

L

<U

~

~ 200 400

~

"ti:i 0::

50 200

J UI i-LL III c:

CD....

e n.

300 ~

40 160 III 150 E

Z 0

0 30 120 100 200 I

.~,,

20 80 50

~-..

100 10 I

40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-

-e-

~

~

-'1ft--

3.5

..or-3.5 150 90 3.0 3.0 75 ~

2.5 2.5 125 UI

~ 20 20 ~

0

~

UI III 1:

1:

l'O

~ 1.5

. 1.5

<II 100 60 Q.

c:

III 0

0

(\\)

UI Q.

Q.

"ti:i (I)

~ 1.0 E

1.0 0::

0 0

~

.c U

U l'O 75 45 ::

\\

3: 0.5 0.5 ~

.t:

u u

u

§.

I'll III q;

~ 00 0.0 ~

50 30

\\~

CD

..J

-0.5

-0.5

-1.0 j.

-1.0 25 15

  • 1.5

\\

-1.5

-2.0

-2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 11 Plant Response to FW Controller Failure

( EOC LCF (HBB) )

Page 44

Grand Gulf-1 Reload 19 00lN8480-SRLR Revision 0 150.

--e-eu ron~lgl'lt aXIs) 750 100

~~'8::Uoitie Pressi~

taxIs) 400

~

,A,ve Surface Heat Flux

~

Safety Valve Flow

.......- Core Inlet Flow 90

-a:-

Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 70 280 100

\\(-.X\\

500,......

"iii "0

~

E::

~~\\

50 240 III

~

it CI)

CI) u 1U 75 w,~

375

~

1\\1 50 200 3

~

u:

r:!

III

'j.

"t-III c:

~

e a..

40 160 u

~~

i E

CI) 50

-~~~~w_.

250 Z 0

0

""'~

30 r-*..-

A a

120

-tt--.

"'%...~

20 I

80 25 125 10 f

40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0

--e-aid eac vlty

~

~

Doppler Reactivity

--a-3.5

-A-- Scram F~eactivity 3.5 200 80

-.- Total Reactivity 10 3.0 60 ~

2.5 2.5 150 III

~ 20 2.0 ~

I-0e f1I III C

C co

~

1.5

.. 1.5 100 40 Q.

c:

0 0

f1I Q.

Q.

<<i CI)

~

1.0 E

--~

1.0 r:!

0 0

"t-f\\

.c U

U co 50 f~

20 III

~ 0.5 0.5 ~

u J:

U U

u§.

III lIS I

I Gi

~ 0.0 0.0 ~

0 0

--S-V

....J

..Q5

-0.5

-1.0

-1.0

-50

-20

  • 1.5

-1.5

-100

-40

-2.0

-2.0 3

0 3

Time (sec)

Time (sec)

Figure 12 Plant Response to Load Rejection w/o Bypass

( EOC LCF (HBB) )

Page 45

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. -~~"-'--~~"""""~&-T-Neutro-r{j=iu"")(lri'g1traxTS) 750 100

~-"""'-'--'----~~""Ef-=-Uom-el5"reSsTR'lS8frTgllTaxrsr

. 400

--;t:- Ave Surface Heat Flux

~ Safety Valve Flow

......r-Core Inlet Flow 90

-tc-Relief Valve Flow 360

-.-- Bypass Valve Flow 125 625 80 320 70 280 100

~

500......

"0;

"'C 41 E;

lii 60 240 cu a::

III

"'C

~

"'C

~

4) t 41\\ \\

0 41 41 lii 75 f\\'

375

~

lii 50 200 5 a::

V "

0::

III

'j.

u::

-j.

III

~~--_.'-

t:

~

e a.

i 40 160 cu

-X,

"-~A~._

41 E

250 Z 0

50

~

0 30 120

~~

r 20 80 25 125 I

10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 evel (ng taxis)

-er aid

.eactlvity

~

Vessel Steam Flow

-4t-Doppler Reactivity

.....- Turbine Steam Flow 3.5

......r-Scram Reactivity 3.5 200

-.-- Feedwater Flow 80

-.-- Total Reactivity 3.0 30 60 ~

2.5 25 150 til

~ 2.0 20 ~

0

~

ttl

.e c

t:

to

~ 1.5

. 15 cu 100 40 a-t:

"'C cu 0

0

<I) til a-a-

lii cu

~ 1.0 E

10 0::

0 0

.c u

U 1O 50 20 til

~ 0.5 05 ~

cu

..c::u u

u

§.

III IV Gi

&: 00 0.0 &:

0 41

...J

-D.5

-0.5

-1.0

  • 10
  • 50

-20

  • 1.5

-15

-100

  • 40

-20

  • 2.0 0

0 3

Time (sec)

Time (sec)

Figure 13 Plant Response to Turbine Trip w/o Bypass

( EOC LCF (HBB) )

Page 46

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400.

~""-~-~-'-~""""""--tJTNeLrfi:5in'iiJ)[(TlgnTaxrST-. 800 100

--'-'-'--'-~""""'~~8"'l)on1e15"ress~TS6'Tnl;inffils 400

~

,tJ..,ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

-A;r-Relief Valve Flow 360 350

-.- Core Inlet Subcooling 700

-.- Bypass Valve Flow SO 320 300 600 70 280

c

-Uj 250 500 ~

E; 50 240

<II

~

III

'0

~

'0

~

OIl OIl

~

~ 200 400

~

1\\; 50 200

l 0::

III u::

?ft III c:

~

e n.

300 ~

40 160 OIl 150 E

Z 0

C 30 120 100

~~

200

\\

~"

20 80

~,

......."'A......

50

........x....

100 10 40 5

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 40 4.0 Leve (right axis)

--e-

-M-Vessel Steam Flow

--.t--

-A;r-Turbine Steam Flow 3.5

-a-3.5

-.- Feectwater Flow 90 150 30 30 75 ~

2.5 2.5 125 III

~ 2.0 2.0 ~

0 1\\;

III (4

~

c c

~

1.5 -

1.5 OIl 100 60 Q.

c:

'0 OIl 0

0 OIl III Q.

Q.

'tV OIl

~ 1.0 1.0 E 0::

0 0

rJ.

.c u

U III 75 45 (4

~ 05 0.5 ~

OIl

~

U u

u

§.

III III Gi

~ 00 0.0 ~

50 30 OIl

..J

-0.5

-0.5

-1.0

-1.0 25 15

  • 1.5

-1.5

-20

-2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 14 Plant Response to FW Controller Failure (EOe ICF (UB>>

Page 47

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. ~~~T~-~-~-"""""""8~-T-i\\JeijTrOriTi=iUXrrrgl'it aXIS}

750 100

-'~"'-'-'-'~~""8--:-rJO?ii~9~Tes-sT~seTr1 ght aXls")-

400

~

,fJ..,ve Surface Heat Flux

~

Safety Valve Flow

.......- Core Inlet Flow 90 Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 It

\\..n<

70 280 100

~

500.....

~

~-

<II e

1ii 60 240

<II

~

III

~

~

<II

\\

~--..

<II U

1ii 75 375 9 1ii 50 200 5

~

~

11I rf.

"x u:

?f!-

III

~--...

c:

~

e Il.

~.

i 40 160

<II

<II E

250 Z 0

50 0

30 120

'x........

ra--

I 20 80

. 25 125 10 40 6L I

3 3

Time (sec)

Time (sec) 250 100 4.0 4.0 evel (ng taxis)

--e-aid eac vity

-)t-Vessel Steam Flow

-)t-Doppler Reactivity

--tit.-

Turbine Steam Flow 3.5

-.t-Scram Reactivity 3.5 Feedwater Flow 80

-.- Total Reactivity 200 3.0 3.0 60 ~

2.5 25 150 UI

~ 20 2.0 ~

0

~

III III C

C IV

~

1.5

<II 100 40 Q.

c:

<II 0

0 4l 1II Q.

Q.

'tV

<II g 1.0 1.0 E

~

0 0

~

........-----.----~

.c U

U

('II f 05 50

\\A/~

20 1II 0.5 :s;

<II

.t:

U u

u

§.

('II lIS Gi

~ 0.0 0.0 ~

0

<II

...J

-0.5

0.5

-1.0

-1.0

-50

-20

-1.5

-1.5

-100

  • 40
  • 2.0 3

,2 3

Time (sec)

Time (sec)

Figure 15 Plant Response to Load Rejection w/o Bypass

( EOC ICF (UB) )

Page 48

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. -.-.-.--.--.-~~-r-r-:::e:=r-i\\leutronr"FluxTrlgl'lt aXIs) 750 100

~~~-~-~~'8u-onle-Wess'~se (nghf'aXlS) 400

~

,~ve Surface Heat Flux

~

Safety Valve Flow

-.r-Core Inlet Flow 90

--:tr-Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 70 280

100, V\\A.

500......

'iii

'"CI II)

.e:

't;j 60 240 II)

~~'-.

~

II)

'"CI

~

'"CI

~

Q)

\\

Q) f

't;j 75 375

~

't;j 50 200

J

~

'~--

~

III

'<f.

u::

'<f.

II) c:

~

~

0-40 160 Q)

J E

OIl 0

50 250 Z C

30 120

....._~

20 80 25 125 10 40 I

3 3

Time (sec)

Time (sec) 250 100 4.0 4.0

--e-aid

.eac vlty

~

~

Doppler Reactivity

--.t-3.5

-.r-Scram Reactivity 35

--.- Total Reactivity 200 60 30 3.0 60 j 2.5 2.5 150 III

~ 20 JO ~

I-0

't;j III II) l-e e

I'll

~ 1.5 1.5 Got 100 40 0.

c:

"0 II) 0 0

Q) l/I C.

0.

't;j Q)

~ 10 1.0 E 0

~

0

.c U

U

?J.

til 05 50 20 l/I 0.5 ~

III

.t:

U u

u

§.

III III q;

~ 0.0 0.0 ~

0 0

II) oJ

-0.5

-0.5

-1.0

  • 1.0
  • 50

-20

  • 1.5

-1.5

-100

  • 40

-20 I

I I I j-+--+-+-+--

  • 2.0 3

0 3

4 5

6 Time (sec)

Time (sec)

Figure 16 Plant Response to Turbine Trip w/o Bypass (EOC ICF (UB))

Page 49

Grand Gulf-]

Reload] 9 00]N8480-SRLR Revision 0 400.

~~'-'--'--'--'--'-'-'B-'l\\feiJfrOr1FiUJTrl~:jRf8XIsT 800 100 1~-8'~uo7i;6Pres-S~QhThxls) 400

~ /we Surface Heat Flux

~

Safety Valve Flow

--.- Core Inlet Flow 90

--tr-Relief Valve Flow 360 350

--+- Core Inlet Subcooling.

700 Bypass Valve Flow 80 320 300 600 70 280

c "Uj 250 500 ~

S:

60 240 IU

~

Ul

~

~

Cl>

III IU

~ 200

~-"

400

~

a; 50 200 5 (IJ I

u:::

?f.

Ul c:

~

e n.

300 ~

40 160 IU 150 E

Z 0

0 30 120 100 200 II 20 80

':v.....

50 x::::*....,_.

100 10 40 0

)

6 8

10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Leve (ri ht axis)

--e-

~

Vessel Steam Flow

~

-a-Turbine Steam Flow 3.5 3.5

--+-

Feedwater Flow 90 150 3.0 3.0 75 ~

2.5 2.5 125 (II

~ 2.0 2.0 ~

I-0

~

111 Ul C

C l'O

~ 1.5 IU 100 60 a-c:

III 0

0 III (II a-a-

a;

<II

~ 1.0 1.0 E 0

0

~

.Q U

U l'O 75 45 til

~ 0.5 05 ~

III

.J::

U U

U

§.

lU lIS Gi

~ 0.0 0.0 ~

50 30 Cl>

oJ

-0.5

-0.5

-1.0

  • 1.0 25 15
  • 1.5

-1.5

  • 20 6

8 10 12 14 16 0

6 8

10 12 14 Time (sec)

Time (sec)

Figure 17 Plant Response to FW Controller Failure (EOC LCF (UB))

Page 50

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 150.

-e-750 100

...:e-Dol'ne Pres~ise (rig taxIs) 400

~

~

Safety Valve Flow

-Jtr-90

-.1r-Relief Valve Flow 360 Bypass Vallie Flow 125 625 80 320 70 280 100 500......

'ii

"'C Go)

.e:

~

'til 60 240 Go)

~

III

"'C V'~\\

~

"'C

~

Go)

Go)

~

1ii 375

~

'til

~

75 a: 50 200

J UJ

~

u::

"I-III c:

~

e n.

~

40 160 GI Go)

E 50 250 Z 0

0 30 120

~-----

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0

-e-oid eac vlty

~

~ Doppler ReactiVity

-.1r-3.5

.......- Scram Reactivity 35 200 80

-.- Total Reactivity 3.0 30 60 ~

2.5 2.5 150 UJ E 2.0 2.0 ~

I-0

~

III III 1:

1:

co

~

1.5 GI 100 40 Q.

c:

"'C Go) 0 0

Go)

III Q.

Q.

1ii Go)

~ 1.0 E

1.0 a:

0 0

"l-

.e u

U 11I 50 20 III

~ 0.5 05 ~

Go)

~

u u

u

§.

I'll co a;

~ 0.0 0.0 ~

Go) oJ

-0.5

-0.5

-1.0

  • 1.0

-50

-20

  • 1.5
    • 1.5

-100

  • 40

-2.0

  • 2.0 0

3 0

I 3

I Time (sec)

Ti,me (sec)

Figure 18 Plant Response to Load Rejection w/o Bypass (EOC LCF (DB))

Page 5'1

Grand Gulf-I, Reload 19 001N8480-SRLR Revision 0 150

-e-' Neutron lux 119 aXIs) 750 100 400

-e-

~.owe Surface Heat Flux

~

.......- Core Inlet Flow 90 360 125 625 80 320 70 280 100 500.-.

'0;

'"C II) e At) til 50 240 III

~

III

'"C

~

'"C C2 II) 0 III

~

til 75

\\/'1 ~

375

~

"tU

~

0:: 50 200

J UI

<f,

~,.~

u:::

III c:

CD...

_.~

e Q.

"5 40 160 III II)

E 50

-......x............--~-_~.

250 Z 0

C 30 120

.~

r At

~--....~..

20 80 25 125 10 40 II 3

3 Time (sec)

Time (sec) 250 100 4.0 40 eveI (ng taxis)

-e-aid

.eac vity

~

Vessel Steam Flow

""l"1(- Doppler Reactivity

--&- Turbine Steam Flow 3.5

--:r-Scram Reactivity 3.5 200

--..- Feedwater Flow 80

--..- Total Reactivity 30 30 60 ]'

2.5 2.5 150 UI

~ 20 2.0 E I-0 til Ul III

~

C C

~

1.5 15 III 100 40 0-c:

'C

<II 0

0 (l) en 0-0-

m II)

~ 10 E

10 0::

--.--...~

0 0

.c u

U 1Il f 05 50 20 en 05 ~

<II

.c:u u

u

§.

III III Gi

~ 0.0 0.0 ~

0 0

II)

\\ \\

..J

-OS

-0.5

-1.0 \\\\

  • 1.0

-50

-20

\\

-1.5

\\

-1.5

\\,

-100

-40

-2.0

  • 2.0 0

3 0

3 6

Time (sec)

Time (sec)

Figure 19 Plant H.esponse to Turbine Trip w/o Bypass (EOC LCF (UB))

Page 52

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400

--.--.....--~-~~I

--et-i\\leCjfron~ aXIs) 600 100

,......,-.---.--'-8~~e~-pTS6lngnt aXIs 400

~ P,ve Surface Heat Flux

~

Safety Valve Flow

......r-Core Inlet Flow 90

~

Relief Valve Flow 360 350

.....- Core Inlet Subcooling 700

.....- Bypass Valve Flow 80 320 300 600 70 280

0-or.;

250.

500 ~

E:

(

co 50 240 lU a:

Ul

'0

~

'0 iE 4>

4>

~

~ 200 400

~

1\\1 50 200

~

a:

III ii:

Ul c:

Ql....

e Q.

300 ~

40 160 lU 150 E\\

Z 0

0 30 120 100

~-~o__

200 r~

20

/

60

'x """_.:6:.

50

........"'.'Xo.

100 1

10 40 6

8 10 12 6

6 10 12 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Level (rig taxis

-e-oid eactivity

~ Vessel Steam Flow

~ Doppler Reactivity

--tr-Turbine Steam Flow 35 1

.......- Scram Reactivity 3.5

.....- Feedwater Flow 90

-.- Total Reactivity 150 30 3.0 75 ~

25 2.5 125 III

~ 20 2.0 ~

0

~

III II' C

C co

~

1.5 1.5 lU 100 60 c..

c:

'0 lU 0

0 lU III c..

c..

1\\1 4>

~

1.0 1.0 E 0

a:

0.c U

U

~

co 75 45 III

~ 05 05 ~

lU

~

U U

U

§.

co co q;

~ 0.0 0.0 ~

50 30

\\

Ql

-oJ

-0.5

-0.5

-1.0

  • 1.0 25 15 I
  • 1.5 1

-1.5 I

  • 20
  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 20 Plant Response to FW Controller Failure (MOC ICF & FWTR(HBB))

Page 53

Grand Gulf-1 Reload 19 00lN8480-SRLR Revision 0 40 80

'iii E::

240

<U UI

~

~

200

J (II til

~

Q.

160 eu Eo C

120 360 320 280

.--,-~r-r-B~lJc;mEn5ress~TsefrTgFifaxls)

. 400

~

Safety Vatve Flow

........- Relief Valve Flow

-+-- Bypass Valve Flow 20 10 100 200

. ~~~-'-'~~r-~8r~NeutrO~g aXIs) 800 100

~

,lJ.,ve Surface Heat Flux

-.llr-Core Inlet Flow 90

---.- Core Inlet Subcooling 700 80 600 70

0 500 ~

r (U

50

~

~

"Cl Q

ell 400

~

1U 50

~

u:

?J.

c:

0l..

40 300 ~

Z 30 300 150 400 250 350 6

8 Time (sec) 10 12 6

8 Time (sec) 10 12 3.0 2.5 3.5 12 10 6

8 Time (sec) 2.5 4.0

..,.......-..........,r--..--..,..~~-.-...........,B=--......,,....oi,....d-.=::-e,-a~ct,.,...iv..,.,.it-y.,........,.

4.0

~ DopplerReactivity

.......- Scram Reactivity

---.- Total Reactivity 3.0 3.5

-2.0 -f--;-+--+--!I-'--t-'-+-l--+-+-+--+-+-+-+-<-.f.L-t--f-+--;.-+-+-+ *2.0 o

15 75 ~

(II I-o

~

(U 60 g.

(II ell>o

.c (II 45 tileu

~u

§.

iii 30 i;

....J 90 12 10 6

8 Time (sec)

.,..--.-..........-~......,...-~-.-~B-....,LCT"'e~v....,el,...,(.....,ri--,gr-:"t~a-xi,....s'\\"""'T-.--,-

105

~ Vessel Steam Flow

-dr-Turbine Steam Flow

---.- F eedwater Flow 175 150 125 100 "Cl ell<<i.

a::

'J.

75 Figure 21 Plant Response to FW Controller Failure

( EOC ICF & FWTR (HBB) )

Page 54

Grand Gulf-]

Reload 19 001N8480-SRLR Revision 0 400

---&=~nFTi.ix\\ngnraXiS) 800 100

..e-Dome Press ~t aXIs 400

~

,lJ..,ve Surface Heat Flux

~

Safety Valve Flow

-.r-Core Inlet Flow 90 Relief Valve Flow 360 350

-.- Core Inlet SUbcooling 700

-.- Bypass Valve Flow 80 320 300 600 70 280

a

'Uj 250 r

500 ~

E; t'll 60 240 GI

~

III

't:I

~

't:I

~

4>

4>

~

~ 200 400

~

1ii 50 200

3 0::

III

'j.

u::

?J-III c:

4>

t.-

e 0..

3(UJ ~

40 160 cu 150 E

Z 0

C 30 120 100 200

~-r--"

'~'~-'A-20 I

80 I

x.,,-...

50

......x.....

100 I

10 40 6

8 10 12 5

8 10 12 Time (sec)

Time (sec) 175 105 4.0 4.0

--e-Level (rig taxis

--e-oid eactivity

~

Vessel Steam Flow

~ Doppler Reactivity

--tr-Turbine Steam Flow 3.5

-.r-Scram F~eactivity 3.5

-.- Feedwater Flow 90

-.- Total Reactivity 150 30 3.0

  • \\

75 ~

2.5 2.5 125 t

III

~ 2.0 2.0 E t.-o 1;;

Ul

~

ii C

c:

~ 1.5 1.5 GI 100 50 0.

c:

't:I cu 0

0 cu en 0.

0.

1ii

<II

~

1.0 1.0 E 0

0::

0

?J.

.c u

U t'll 75 45 l/I

~ 05 05 ~

cu J::

U U

U

§.

IV t'll Qi

~ 0.0 0.0 ~

50 30

\\ I cu

..J

"'I

-0.5 tl

-10

\\I

,1.0 25 15 I

-1.5

-1.5

-2.0

  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 22 Plant Response to FW Controller Failure

( MOC LCF & FWTR (HBB) )

Page 55

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 400.

--&- Neutron Flux (righ axis) 800 100

~Uome Pr8s~n~TSelrig taxis) 400

~

/J...ve Surface Heat Flux

~

Safety Valve Flow

-k-Core Inlet Flow 90

-:llr-Relief Valve Flow 360 350

-+- Core Inlet Subcooling 700

-+- Bypass Valve Flow 80 320 300 600 70 280 r~

c

'iii 250 500 ~

~

III 60 240 eu

~

III "0

~

"C

~

eu III

~

~ 200 400 S 10 50 200

J

~

III rJ?

u::

III c:

II)'-

0 Q..

I-40 160 eu 150 300 ~

E z

0 C

30 120 100 200 20 80 50 100 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 4.0 40

-e-Level (rig taxis

-e- \\ oid eactivity

-)t-Vessel Steam Flow

~ Doppler Reactivity

-&- Turbine S;team Flow 3.5

........- Scram r'~eactivity 3.5

-+- Feedwater Flow 90

-+- Total Reactivity 150 30 3.0 75 ~

2.5 2.5 125

~

(II

~ 2.0 20 ~

'-0

~

III III C

C III

~

1.5 eu 100 60 Q.

c:

"C eu 0

0 III III Q.

Q.

10 II)

~ 1.0 1.0 E 0

~

0

.c U

U III 75 45 UI

~ 05 0.5 '$:

eu

..c:

u u

u

§.

lU III Gi

~ 0.0 0.0 ~

50..

. 30

>eu

..J

-0.5

-0.5

-1.0

-1.0 25 15

  • 1.5

-1.5

-2.0

  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 23 Plant Response toFW Controller Failure (EOC LCF & FWTR (HBB) )

Page 56

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 360 400. ~~~"'-~"'-'-~8"'- Neutron Flux (light aXi'S) 800

~,A,ve Surface Heat Flux

--.- Core Inlet Flow 350

-.- Core Inlet Subcooling 700 100 90

~""""-'-'-""""8~tJome PreSs-~lsern'~g""'t-a-x'T"ls""") --,*400

~

Safety Valve Flow

-.r-Relief Valve Flow

-+- Bypass Valve Flow 300 250 "0

III

~ 200 rf.

150 80 600 70

~

500.e r

til 60

~

~

"0 III 400

~

'ti:i 50

~

u::

?J.

11 c:e 40 300 ~

Z 30 20 10 320 280 iii E::

240 I\\l III

[2 III 200 5 Ul III

~a-160 I\\l Eo C

120 40 6

8 Time (sec) 10 12 6

8 Time (sec) 10 12 2.5 30 35

-1.5

-0.5

  • 1.0 12 10 6

8 Time (sec) 30 2.5 4.0

.,.......--~-..-,.~~-,-~8---..,..,...,;-o,...,id,.........e,....a~ct,.,..iv..,.,it-y..,......,...,.

40

~ Doppler Reactivity

--:fr-Scram r:;:eactiVity

-+- Total Reactivity 3.5

  • 1.5

-0.5

-2. 0 -+-.....~+-t--<--t-+-t--+->-t--+-..........~t-+-~+--t-r--+--!-t--+-+

  • 2.0 o

-10

~ 2.0 2.0 ~

~

III c:

C

~

1.5 15

~

o 0

~

~

~ 1.0 10

~

U u

f 0.5 0.5 f u

u

~ 00 }--"-.==.~~F.E~fi1;b*-~-----t-00 ~

15 75 ~

Ul...o tt; lii 60 2-Ul

<II>o.c III 45 III I\\l

.J::u§.

Gi>

<II

...J 90 12 10 6

8 Time (sec)

..,-.-......-,--.......,--~-,-~8--L"...e-v-e,....,1

(""'ri-gr-:t~a-x""'isT""'T---r-105

~

Vessel Steam Flow

~ Turbine Steam Flow

-+-

F8edwater Flow 175 150 125 100 "0

III

'ti:i ex:

?J.

75 50 25 Figure 24 Plant Response toFW Controller Failure (EOC ICF & FWTR (UB) )

Page 57

Grand Gulf-1 Reroad 19 001N8480-SRLR Revision 0 360 400.

350 100 90

,......,-.--.--.--,.-*c:::8;-..-...,....~:r-R'=7F'\\=--r::!'="T."'C'-"'".. 400

~

-a-80 320 300 600 70 280 40 80 "0;

~

240 lU III

~

GJ 200 3 III III

~

Q..

160 lU Eoo 120 12 10 6

8 Time (sec) 10 30 20 40 60 400

~

u::

c:e 300 ~

Z 200 12 10 6

8 Time (sec) 150

~---.....

250 Cl>

~ 200 30 3.5 3.0 4.0

-r--......--,,..---.-,--~-,-"""-O:8=--""""'":'oi'-:1d;:::-:er-a..,ct""iv.,...ity,.......,...

.......... 4.0

~

Doppler Reactivity Scram F~eactivlty

-.- Total Reactivity 3.5 90 150 175

.,.......-..,......,-~.-,--~-,-~8-.....,l,.,..e~v-el,...,(~ri--,g"t~a~xl:-* s"--'- 105

~

Vessel Steam Flow

-6:-

Turbine Steam Flow

-.- Feedwater Flow 25

-1.5

-0.5

  • 1.0 12 10

. I

~~l\\!II 6

B Time (sec) 2.5

  • 1.5

-2.0 -t-+-t-+-t-+--t->-l--+--<>-+--/-+--l--t-t-+--+<--+-f-t-.........-t--+-!- *2.0 o

-1.0

-0.5

~ 2.0 2.0~

til III C

C

~ 15 15

~

o 0

~

~

~ 1.0 1.0

~

U u

f 0.5 0.5 f u

U l'O l'O

~ 00 }--.-.=4=~E§I~~£-~---t 0.0 ~

15 75 ~

til...o

~

l'O 60 g.

til Cl>>o

.c l'O 45 III lU

.!:u

-:2.

q; 30

~

...J 12 10 6

8 Time (sec) 25 50 75 125 100 Figure 25 Plant Response to FW Controller Failure

( EOC LCF & FWTR (UB) )

Page 58

Grand Gulf-J Reload 19 001N8480-SRLR Revision 0 400

.~....-.--,-.

i '"1f""'"l\\Ie"Lifron FlumrgnraxTS)-

800 100

-~~8'""":'[jQri;e15res~ (rigMt 'aXiS) 400

~,b,ve Surface Heat Flux

~

Safety Valve Flow

-k-Core Inlet Flow 90

-k-Relief Valve Flow 360 350

--.- Core Inlet Subcooling 700

-...- Bypass Valve Flow 80 320 300 600 70 280

c

'iii 250 500 ~

E; l'll 60 240

<II

~

Ul "tJ

~

"tJ

~

<II III

~

~ 200 400 g 1\\1 50 200

~

cr::

UI

~

u::

Ul c::

<II e

t 300 ~

40 160

<II 150 E

z a

C 30 120 100 200

\\"

20 80 50 100

' **.x......_.

10 40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Levi? (right axis)

-e-

~ Vessel Steam Flow

~

--£r-Turbine Steam Flow 3.5 3.5 150 Feedwater Flow 90

-+-

3.0 3D 75 ~

2.5 2.5 125 UI e 2.0 2.0 E L-a

~

.e Ul c::

1:

III

~

1.5 1.5

<II 100 60 Q.

c::

"tJ

<II a

a

<II Ul Q.

Q.

1\\1 III

~ 1.0 1.0 E cr::

a 0

.c U

U l'll 75 45 Ul

~ 0.5 05 ~

<II U

U U

§.

Rl l'll Gi

~ 0.0 0.0 ~

50 30 III-'

-05

-0.5

-10

  • 1.0 25 15
  • 1.5

-1.5

  • 20 6

8 10 12 14 16 0

6 8

10 12 14 Time (sec)

Time (sec)

Figure 26 Plant Response to FW Controller Failure (MOC ICF with RPTOOS (HBB) )

Page 59

Grand Gulf..]

Reload 19 00lN8480..SRLR Revision 0 150.

-e-750 100 8

Dome PresS'~ taxIs) 400

~

~

Safety Valve Flow

-.t>-

90

-.llr-Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 tV\\"'AI\\vt\\/.-.....--A.----~

70 280 100

\\f'~

500.....

'r.;

"C Ii>

E;

\\

1U 60 240

<II

~

III "C

\\,

~

'0

~

Ii>

0 III

~

111 375 S 1U

~

75

~ 50 200

J

~

(II IT:

III c:

Gl..

e 0...

i 40 160

<II Gl E

50 250 Z 0

0 30 120

---.....----:a-----.-.-__

20 80 25 125 10 40 3

3 Time (sec)'

Time (sec) 250 100 4.0 4.0 ev I (ng taxis)

-a-oid eactlvity

~

Vessel Steam Flow

~ Doppler Reactivity

-r-Turbine Steam Flow 3.5

-.t>- Scram ReactiVity 35 200 Feedwater Flow 80

-.- Total Reactivity 3.0 3.0 60 ~

2.5 2.5 150 (II

~ 20 2.0 ~

0

~

III III C

1:

lU

~ 1.5

<II 100 40 Q.

c:

'0 Ii>

0 0

Gl III Q.

Q.

1U Gl

~ 1.0 1.0 E

~

0 0

.c u

U lU 50 20 III

~ 0.5 05 ~

Ii>

J:

z; U

U U

§.

IV lU Qi

~ 0.0 0.0 ~

0 Ii>

..J

-0.5

-0.5

-1.0

  • 1.0

-50

  • 20
  • 1.5

-1.5

  • 100
  • 40
  • 2.0 3

Time (sec)

Time (sec)

Figure 27 Plant Response to Load Rejection w/o Bypass (MOC ICF with RPTOOS (HBB) )

Page 60

Grand Gulf-I Reload 19 00IN8480-SRLR Revision 0 150

~'lWUfrOn' Flux (nght aXIs) 750 100

-:e-Dome Press'Rlse (nght aXIs) 400

~

,IJ...ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

--:llr-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 r\\';\\J'J'~"'------k-"--

70 280 100 500 __

'iii

'til lI)

E; 1ii 60 240 lI:I a:

II)

'til

~

~

'til

[2

<l>

e-li) f 1ii 375

~

'IV 0::

75 0::

50 200

J UI

'/.

u::

?f.

II)

~

c:

~

e n..

15 40 160 lI:I lI)

E 250 Z 0

50 0

30 120 20 1*-----......-"

80 25 125 I

10 I

40 3

3 Time (sec)

Time (sec) 250 100 4.0 40 evl (ng taxis)

~

Void

.eac vlty

~

Vessel Steam Flow

~. Doppler Reactivity

~ Turbine Steam Flow 35

-.- Scram Reactivity 3.5

-.- Feedwater Flow 80

-.- Total Reactivity 200 3.0 3.0 60 ~

2.5 2.5 150 UI

~ 2.0 2.0 ~

0

~

UI II)

C C

111

~ 1.5 lI:I 100 40 C.

c:

'til lI) 0 0

<II UI C.

c.

'IV

~

lI)

~ 1.0 1.0 E 0::

_#-+-#-

0 0

.0 U

U

~

111 50 20 til

~ 0.5 0.5 ~

lI)

..c:

U u

u K-""'-

§.

111 III

~ 0.0 0.0 ~

Gi 0

lI:I

..J

  • 0.5
  • 0.5
  • 1.0
  • 1.0
  • 50

-20

-1.5

  • 1.5

-100

  • 40
  • 2.0

-2.0 3

0 3

Time (sec)

Time (sec)

Figure 28 Plant Response to Turbine Trip w/o Bypass

( MOC ICF withRPTOOS (HBB) )

Page 61

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400

~8 i Neutron Flux (right aXIs) 800 100

~~re§s Rise) (rignt aXIs) 400

~ Ave Surface Heat Flux

~

Safety Valve Flow

-&- Core Inlet Flow 90

-a-Relief Valve Flow 360 350

--+- Core Inlet SUbcooling 700

--+- Bypass Valve Flow 80 320 300 600 70 280

0 250 500 ~

e til 60 240

<II

~

/I)

"0

~

"0 i:i

<II 0

4) f!

~ 200 400

~

1G 50 200

J

~

III

'/.

~~

u::

'/.

/I) c::

~

0 n..

(

I-40 160

<II 150 300 ~

E z

0c

~;vw---,~__.

30 120 100 200 1---

i~ -

20 80 50 "x.....,

100

'......~

10 I

'40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Leve (right axis)

-e-

~

Vessel Steam Flow

~

-.- Turbine Steam Flow 3.5

. --A-3.5

--+- Feedwater Flow 90

--+-

150 3.0 3.0 75 ~

2.5 25 125

/I)

~ 2.0 2.0 ~

I-0

~

III

/I)

C C

til

~ 1.5.-

<II 100 60 0..

c::

"C eu 0

0 Gl D-o..

1G Ql

~

1.0 1.0 E 0::

0 0

'J.

.0 U

U til 75 45 til

~ 0.5 05 ~

eu

.£:

U U

U

§.

III III Gi

~ 00 0.0 ~

50 30 Q)

...J

-0.5

-0.5

-1.0

  • 1.0 25 15
  • 1.5

-1.5

-2.0

  • 2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Tim,e (sec)

Figure 29 Plant Response to FW Controller Failure

( EOC ICF with RPTOOS (HBB) )

Page 62

Grand Gulf-l Reload 19 001N8480-SRLR

- Revision 0 150 -

--e-eu ron' Flux (rig~

750 100

--e-o -6i5'r'8s5~1rI 9 taxI s) 400

~

,~ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

-r-Relief Valve Flow 360

-+-

Bypass Valve Flow 125 625 80 320 r\\£:\\f'J1I/"'/~--"""_-t 70 280 100

\\

SOD.....

'0;

'"C Q,)

S:

1V 60 240 u

\\"

~

iE

'"C

e

'"C Q,)

0 Q,)

u

'tii 75 375

~

1\\1 50 200 5

~

~

1Il

<f.

u::

?!-

II) c::

~

~

e n.

~

40 160 u Q,)

E 50 250 Z 0

0 30 120 Al Ai

--a-----_~

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 evel (ng taxis)

--e-oid

.eactlvity

~

Vessel Steam Flow

~ Doppler Reactivity

-fit:-

Turbine Steam Flow 3.5

~

Scram Reactivity 35 200

-+-

Feedwater Flow 80

-+- Total Reactivity 30 30 60 ~

2.5 25 150 1Il E 20 2.0 E 0

'tii In In C

C

<<l

~

1.5 -

. -IS u

100 40 0.

c::

'"C u

0 0

(ll 1Il 0.

0.

"tV Q)

~

1.0 1.0 E

~---

~

0 0

.c U

u

e 1lI

-,~

0 50 20 In

~ 05

___r~

05 ~

uJ:

~

u u

u

§.

III III Gi

~ 00 0.0 ~

0 Q,)

...J

-05

-0.5

-1.0

-1.0

-50

-20

-1.5

-15

-100

-40

-2.0

-2.0 0

3 0

3 6

Time (sec)

Time (sec)

Figure 30 Plant Response to Load Rejection w/o Bypass

( EOC ICF with RPTOOS (HBB) )

Page 63

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150 -

r~~8-"'-i\\JeLi1:rorrFTuXTi19l'it aXIS!

750 100

~.......-.-.,-~~~rd-~om-el5resS'~ise (ngliYaxls)

  • 400

~

,D..,ve Surface Heat Flux

~

Safety Valve Flow

-,a-Core Inlet Flow 90

-tr-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320

'f\\~~~---

70 280 100 500......

"iii "0

01)

~

'tii 60 240

<II

~

U)

"0

\\

~

"0 0::

01) 01)

QI

'tV 75

~~

375

~

'tii 50 200 5

~

0::

In u:

U) 01)

x c:

0 Q.

~

40 160

<II

~

01)

E 50 250 Z 0

Cl 30 120 20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 40 ev I (ng taxis)

~

oid

.eac vity

~

Vessel Steam Flow

~ Doppler Reactivity

-a-Turbine Steam Flow 3.5

-,a-Scram Reactivity 35 200

-.- Feedwater Flow 80

-.- Total Reactivity 30 10 60 ~

2.5 25 150 1/1

~ 20 2.0 E 0

'tii 1/1 til C

C III

~ 1.5 -

15

<II 100 40 0-c:

"0 01) 0 0

4) 1/1 0-0-

'tV 01)

~ 1.0 10 E 0::

0 0

.Q U

U III 50 20 tJl

~ 05 0.5 ~

QI L:

ti u

u

§.

III III cu

&! 0.0 0.0 &!

0 0

01)

-l

-0.5

-0.5

  • 10
  • 10

-50

-20

  • 1.5

-1.5

  • 100
  • 40

-2.0

-2.0 0

3 0

3 Time (sec)

Time (sec)

Figure 31 Plant Response to Turbine Trip w/o Bypass

( EOC ICF with RPTOOS (HBB) )

Page 64

Grand Gulf-!

Reload 19 001 N8480-SRLR Revision 0 400 350 300 250 150 100 50 I -B-' Neutron FluX' (right axis)

~

,A.,ve Surface Heat Flux

.......- Core Inlet Flow

-.- Core Inlet Subcooling

~._-.

I

~

x

\\

/'~'v.r~~

\\..

~""-

'X.....'-

800 100 90 700 80 600 70

c 500 ~

('lJ 60

~

~

'0 L

CII 400 9 1ii 50 0::

u::

~

c:

0...

40 300 ~

Z 30 200 20 100 10

  • 1.5

-2 0 -j--<--.-.-+-+-+--r........-+-li-+-+-+--!-+'->-+-t-<.........4-j-.......-+-j->-......-r o

-0.5 2.5 30

  • 10 E 2.0

.l!lc:

~ 1.5 o

Q.

~ 1.0 Uf 05 u

('lJ

~ 00....-----~ii=iiiilllI_i!i!5!5i3j~.L----__t_

16 14 12 6

8 10 Time (sec) 6 8

10 12 14 16 Time (sec) 175 105

-e-Leve (right axis)

~

Vessel Steam Flow

---.- Turbine Steam Flow

-.-.,.. Feedwater Flow 90 150 125 75 ~

en...

0

~

('lJ 100 60 Q.

'0 CII CII en 1ii CII>

0::

0

~

.0 0

('lJ 75 45 III CII

.cu§.

a; 50 30 CII

...J 25 15 Figure 32 Plant Response to FW Controller Failure

( MOC LCF with RPTOOS (HBB) )

Page 65

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 150.

-~""-'-'--'--'-~~'-'-E3' ' Neutron' Flux (rigfit axis) ~

750 100

...:e-l5Oi'ile PrEIsS'.ise rig taxIs 400

~.A.ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

-a-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 70 280 100 500....

'iji M

"'CI II)

~

tvv~-~V\\'i'

'tii 60 240. (II 0:::

til

"'CI f.

V"

\\/...............~~-a------.t.--

~

"0 i2 II) e...

II)

~

'tii 75

'x 375

~

"tii 50 200

J a:

a:

UI

'/.

u::

UI c:

~

e Q.

40 160 (II

~'--,

i E

II) 250 Z 0

50 C

30 120

..........~

~........

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 IV I (rig taxis)

~

loid eactlvity

-)t-Vessel Steam Flow

-)t-Doppler Reactivity

-r-Turbine ~;team Flow 3.5

............ Scram r-~eactivity 3,5 200

-.- Feedwater Flow 80

-.- Total Reactivity 3.0 10 60 ~

2,5 2.5 150 UI E 20 2.0 E 0

'tii UI UI

u 1:

1:

~

1.5 (II 100 40 Q.

c:

"0 (II 0

0 (l)

UI Q.

Q.

"tii CD E

1.0 E a:

0 1.0 0

0

.0 U

U t'lI 50 20 til

~ 0,5 05 ~

(II

.c:u u

u

§.

III III Gi

~ 0,0 0,0 ~

0 II)

.J

-0.5

-0.5

  • 1.0
  • 1.0

-50

-20

  • 1.5

-1.5

  • 100

-40

-2,0

-2.0 0

3 0

3 6

Time (sec)

Time (sec)

Figure 33 Plant Response to Load Rejection w/o Bypass

( MOC LCF with RPTOOS (HBB) )

Page 66

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. -~~~~T--~~--r~~B-"'-i\\J8UlTorr-FTuxli1'ghraXisl 750 100

~-~T8--T-l5'on,el5"res-S'~seTr-TgnfEjXTS)'

400

~

,fJ..,ve Surface Heat Flux

~

Safety Valve Flow

---.- Core Inlet Flow 90

--Ar-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 70 280 100 500......

"C f: :'\\- ~"'>

G)

~

'tii 60 240 G) 0::

III "C

1'M\\tJ...

\\.PvJt-...---...

Ar

~

"C i2 G)

~~

G)

GJ

'tii 75 375

~

'tii 50 200 5 0::

cr::

(/J

'/.

u::

'/.

III c:

tD

~"

e Q.

40 160 GJ E

~

G) 0 50 250 Z 0

30 120

~--

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 40 4.0 evl (ng taxis)

--e-oid

.eactlvity

~

Vessel Steam Flow

~ Doppler Reactivity

-er-Turbine Steam Flow 3.5

---.- Scram Reactivity 3.5

-.- Feedwater Flow 80

......- Total Reactivity 200 30 3.0 60 j 2.5 2.5 150

(/J

~ 2.0 2.0 E 1\\

0

'tii 111 III C

C III

~ 1.5 1.5 GJ 100 40 Q.

c:

"C GJ 0

0 G)

III Q.

Q.

'tii G)

~ 1.0 1.0 E 0

cr::

0.0 U

U

~

ell 50 20 III

~ 05

,~'-

0.5 ~

G)

.£:

U u

u

~

co ell a;

&: 0.0 0.0 ~

0 0

G)

~

...J

-0.5

-0.5

-1.0

  • 1.0
  • 50

-20

  • 1.5

-1.5

-100

  • 40
  • 2.0 3

3 Time (sec)

Time (sec)

Figure 34 Plant Response to Turbine Trip w/o Bypass

( MOC LCF with RPTOOS (HBB) )

Page 67

Grand Gulf-1 Reload 19 001N8480-SRLR Revision 0 400. ~'-'--'-

i -e-~n FluX' (right aXIS)

BOO 100

-e-Dome Pre§s Rise (nght aXIs) 400

~

,b...ve Surface Heat Flux

~

Safety Valve Flow

-A-Core Inlet Flow 90

-:r-Relief Valve Flow 360 350

-.- Core Inlet Subcooling 700 Bypass Valve Flow 80 320 300 600 70 280

c-

'g; 250 500 ~

~

60 240 eu ct (II "C

e:

"C iE eu f~---",

III eu

~ 200 400 S

~ 50 200 5 0::

1II u::

?!-

(II

{

c:

~

0 Q..

40 160 eu 150 300 ~

E z

0 0

30 120 100 200

~~....~......,.

"'.....,~

20 80 50 100

~~

10 40 J

1 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 40 4.0

-e-Leve (right axi )

-e-

~

Vessel Steam Flow

-4t-

-:r-Turbine Steam Flow 3.5

-A-3.5 150 Feedwater Flow 90 3.0 30 75 ~

2.5 25 125 1II

~ 2.0 2.0 ~

0 1ii 1II III C

C IU

~

1.5

. 1.5 eu 100 60 Co c:

"C eu 0

0 (I) 1II Co Co

~

<II

~ 1.0 1.0 E 0::

0 0

~

.c U

U lIS 75 45 (II

'5: 0.5 05 ~

III

~

u u

u

§.

I'll I'll "iii

~ 00 0.0 ~

50 30

<II

\\

..J

-0.5

-0.5

-1.0

~

-*1.0 25 15

  • 1.5

-1.5

  • 20
  • 2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 35 Plant Response to FW Controller Failure

( EOC LCF with RPTOOS (HBB) )

Page 68

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 150

-e-'I\\JeLifrOri lux rig aXIs) 750 100

~

400

~

,o"ve Surface Heat Flux

~

-.- Core Inlet Flow 90

-tc-360 125 625 80 320 70 280 100 v.l\\

500.....

'iii

"'C Q)

E;

~.I\\j~\\I\\I"~--

1ii 50 240

~

1ii 75

'X, 375 g 1W 50 200

J

~

c:::

III

~

\\,~

u::

?f-III X"

c:

~

~

Q.

40 160

<U

'~

J E

Q) 250 Z 0

50 C

30 120 20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 ev I (rrg taxis)

-e-id eactlvity

~

Vessel Steam Flow

~

Doppler Reactivity

~

Turbine Steam Flow 3.5

-:0\\-

Scram ReactiVity 3.5 Feedwater Flow 80

-.- Total Reactivity 200 30 3.0 60 ~

25 2.5 150 UI

~ 2.0 2.0 ~

I-0 1ii III In l-e e

lU

~ 1.5.

<U 100 40 Q.

c:

"'C

III Q.

Q.

1W Q)

~

1.0 1.0 E 0

c:::

0 Q

.c U

U

~

til 50 20 In

~ 05 05 ~

<U

.c:u u

u

§.

III III Gi

~ 0.0 0.0 ~

0

~

Q)

..J

-0.5

-0.5

-1.0

,1.0

  • 50

-20

  • 1.5

-1.5 I

  • 100

-40

-2.0

  • 2.0 3

0 3

Time (sec)

Time (sec)

Figure 36 Plant Response to Load Rejection w/o Bypass

( EOC LCF with RPTOOS (HBB) )

Page 69

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150

~~r-..- ~i Neutron~igFit aXIs) 750 100

'8 Oon,e Press'Rise (ng taxIs) 400

~

,lJ."ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

-a-- Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 70 280 100 500....

"0 Q) e tv 50 240 (II

'tI.\\fv

~

III "0

\\

\\

f"tC~"'-IIr-'-___"'"

~

"0 ii Q) 0

<I)

~

tv 1i1

~

75

\\",

375

~

~ 50 200

J III i-u:

?f-III t:

Gl..

e Q.

i 40 160 (II Q)

E

~,

250 Z 0

50 0

30 120

~-

20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 evl (ng taxis)

-e-id eactlvity

~

Vessel Steam Flow

~ Doppler Reactivity

--r-Turbine Steam Flow 3.5

---a-- Scram Reactivity 3.5 200

-.- Fseawater Flow 80

-.- Total Reactivity 3.0 3.0 60 ~

2.5 2.5 150 III e 20 2.0 E 0

~

III III C

C co

~ 1.5.

1.5 (II 100 40 Q.

t:

"0 lU 0

0

III Q.

Q.

1i1 Gl

~

1.0 1.0 E

~

0 0

~

.c U

U 0

co 50 20 III

~ 05 05 ~

lU

~

0 u

0

§.

III III

~ 00 0.0 ~

Qi

\\\\

0 0

Q)

..J

-0.5

-0.5

-1.0

\\\\

-1.0

-50

-20

  • 1.5

-1.5

-100

-40

-2.0 4-

-2.0 0

3 0

3 Time (sec)

Time (sec)

Figure 37 Plant Response to Turbine Trip w/o Bypass

( EOC LCF with RPTOOS (HBB) )

Page 70

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400

~~-,--.--.-

I -e-'l\\JeU'frOi1~

XIS) 800 100

-e:- 'D07lie13"ressmseTr-TQhTIiXIs) 400

~,A,ve Surface Heat Flux

~

Safety Valve Flow

-a-Core Inlet Flow 90

--tr-Relief Valve Flow 360 350

-+- Core Inlet Subcooling 700

-+- Bypass Valve Flow 80 320 300 600 70 280

0-

"iii 250 500 ~

E; t'll 60 240 GI

~

III "t'

~

"t' iE GI Oil

~

~ 200 400

~

m 50 200

J

~

l/I

'/.

r'~

u::

III c:

~

e 0..

300 ~

40 160 GI 150 E

Z 0

0 30 120 1J.'If".~..

100

\\,)\\

-a...~~.

200

\\,

20 80 50

""'-"""'"x......

100 10 40 6

8 10 12 14 16 6

8 10 12 14 16 Time (sec)

Time (sec) 175 105 4.0 40

-:e-Leve (right axis)

-e-

~

Vessel Steam Flow

-tt-

--tr-Turbine Steam Flow 3.5

--;t-3.5

-+- F8ed\\Nater Flow 90

-+-

150 3.0 30 75 ~

25 25 125 l/I

~ 20 2.0 ~

0 1U III III

a c

c

~ 1.5 1.5 GI 100 60 0.

c:

"C CII 0

0 Oil l/I 0.

0.

m Oil

~ 1.0 1.0 E

~

0 0

~

.0 U

U t'll 75 45 III

~ 0.5 0.5 ~

CII

.c:

U u

u

§.

t'll l'G iii

~ 0.0 0.0 ~

50 30..

CII

...J

.05

-0.5

-1.0

  • 1.0 25 15
  • 1.5

-1.5

-2.0

  • 2.0 6

8 10 12 14 16 0

6 8

10 12 14 16 Time (sec)

Time (sec)

Figure 38 Plant Response to FW Controller Failure (EOC ICF with RPTOOS (UB) )

Page 71

Grand Gulf-1 Reload 19 001N8480-SRLR Revision 0 150.

ff::"l\\JeLifr"Ori~gfit aXIs) 750 100

~~PreS5imserng taxIs 400

~ Ave Surface Heat Flux

~

Safety Valve Flow

-.t-Core Inlet Flow 90

-tr-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 V\\J'pt'v*'N"........~-----

70 280.

100

-'\\

500.-.

'iii V"

"'C

~

E;

\\

1ii 50 240 41

~

III

"'C

~

~

"'C i2 41 4) u 1ii 75 375

~

"1ii 50 200 5

~

UI

'if.

u::

?f.

III c:

~

e Q.

40 160 41

~

E 250 Z 0

50 0

~

30 120 r--

A 20 80 25 125 10 40 3

3 Time (sec)

Time (sec) 250 100 40 40

-e-oid eac vity

~

~ Doppler Reactivity

~

3.5

-.t-Scram Reactivity 35 200 80

-.- Total Reactivity 3.0 30 60 ~

2.5 2.5 150 III

~ 20 20 ~

0 1ii II) 1Il i

C C

~ 1.5 41 100 40 Q.

c:

"'C 41 0

0 U

1Il Q.

Q.

1ii Ql

~ 1.0 10 E 0

0

~

..--~

.c U

U 1lI 50 20 1Il

~ 05 05 ~

QI L:

U u

u

§.

Rl Rl Qi

~ 0.0 00 ~

0 0

~

~

oJ

-D.5

-0.5

-1.0

-1.0

-50

-20

  • 1.5

-1.5

-100

-40

-2.0

-2.0 0

3 3

Time (sec)

Time (sec)

Figure 39 Plant Response to Load Rejection w/o Bypass

( EOC ICF with RPTOOS (UB) )

Page 72

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 150

-a-' Neutron lux I-ig axis) 750 100

-a-Dome Press'Rlse (rig taxis) 400

~

P...ve Surface Heat Flux

~

Safety Valve Flow

-tr-Core Inlet Flow 90

-tr-Relief Valve Flow 360

-.- Bypass Valve Flow 125 625 80 320 f\\i.\\j'b/-..JAV \\,./4r#"',-....___*.__

70 280 100 ~

500.-

'iii

'tl G) e 1ii 60 240

<lJ ct III

'tl

\\

~

'tl

[2 G) 0

<lJ G) 1ii 75 375

~

1ii 50 ct

~

ct 200

J III i-ii:

?J-III c:

III..

e n.

15 40 160 III G)

E 50 250 Z 0

0 30 120

............~~

/'

\\

20 80 25 125' 10 40 I

3 3

Time (sec)

Time (sec) 250 100 4.0 4.0 ev I (ng taxis)

-a-oid

.eactlvity Vessel Steam Flow

--#- Doppler Reactivity

-ar-Turbine Steam Flow 3.5

.......- Scram Reactivity 3.5 200

-.- Feedwater Flow 80

-.- Total Reactivity 30 3.0 60 ~

25 25 150 en

~ 2.0 2.0 ~

0 1ii en III C

C l'Il

~ 1.5 1.5

<lJ 100 40 0.

c:

'tl III 0

0 G) en 0.

0.

1ii III

~ 10 -

1.0 E 0

0

~

..c u

U l'Il 50 20 III

'5: 0.5 0.5 ~

III J:

(.)

u

(.)

§.

III

\\\\I a:;

~ 00 0.0 ~

0

\\\\

III

...J

.(l.5

-0.5

-1.0 \\

  • 1.0

-50

-20

  • 1.5

\\

-1.5

  • 100
  • 40

-2.0

  • 2.0 3

0 3

6 Time (sec)

Time (sec)

Figure 40 Plant Response to Turbine Trip w/o Bypass (EOC ICF with RPTOOS (VB) )

Page 73

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 90 400. ~'-'-'-~~8 i Nel:ifr'O-irfTtJ:l(Ilg""Rfai(fSf-BOO

,lJ.,ve Surface Heat Flux

.....- Core Inlet Flow 350

-.- Core Inlet Subcooling 700 100

,.......~-.-~~-.-,-~sr~l5Oi'iiel'5ressl~ISrJTnQfif§xTs)

~

Safety Valve Flow

-a-Relief Valve Flow

-.- Bypass Valve Flow 400 360 80 320 300 600 70 280 250 "0

4>

~ 200

'j.

150 6

8 10 Time (sec) 12 14 16 400 S u::

c:e 300 ~

Z 60 40 30 20 10 6

8 10 Time (sec) 12 14 16

'in E::

240 4>

1/1

~

u 200 5 UI 1/1 Ql L-a.

160 CD Eoa 120 80 40 25 3.0 3.5

  • 1.0

-1.5

-0.5 4.0

..,.....~.....,....~~~.........,,.....-~.,.......8=-"--,-,-,,....,..,,..,,,...~,.,....,~........... 40

~

--:A-30 2.5

  • 1.5

-1.0 3.5

-0.5

-2.0 -t--+--<-t-+-+-+-+-+-+-+-1--+--+-+--t-+-+-+-t-t-tl-4-+--+-+-i--+-t-+-l- *2.0 o

6 8

10 12 14 16 Time (sec)

E 2.0 20 E 1/1 1/1 C

C

~ 1.5.

1.5

~

o 0

~

~

g 1.0 1.0

~

U u

f 0.5 0.5 f u

u m

~

Q; 0.0....----.....lIllI:Ilit=EllllliiiiiiS!'ii'1i§~~L---_+0.0 Q; 15 75 ~

1/1...o

~

III 60 g-1/1 Ql>o

.Q."

45 IIIu

.!:u

§.

Qj 30

~

..J 90 16 14 12 150 175

.,....~-,-~......,...~.........,~~"C'"~L;-Tt:l:-:-.v'":"er.("=riT_

h""t:"":a::":x"='is")~..-, 105

~

Vessel Steam Flow

-tll:- Turbine Steam Flow

-.- Feedwater Flow 6

8 10 Time (sec) 125 75 50 25 100 L_------llt----l' "0

4>

<<i 0::

Figure 41 Plant Response to FW Controller Failure

( EOC LCF with RPTOOS (VB) )

Page 74

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150. -.......-.--.-,-*~~..,...-~~-ff,...r.Jeu1ron'Tiuxlng1)raXT§T*

- 750 100

-'-~~'-'~~"-B-"-uom8ffis~se(rTgfif6iXiS1~

400

-;t-

,A.,ve Surface Heat Flux

~

Safety Valve Flow

---JJi;- Core Inlet Flow 90

-Ar-Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 70 280 100 500.....

'iii

\\

"0 Xf':?\\

Q)

.e::

1ii 60 240 Q)

VV~!\\r............~------~---

~

II)

"0

~

"0

~

Q)

Q)

~

'til 75 375

~

1ii

~

\\

0::

50 200

J III "l-x.,

u::

"I-

~---

II) c:

Gl

.~

e Q..

15 40 160 Q)

'~

Q)

E 50 250 Z 0

C 30 120 20 80 25 125 10 I

40 3

3 Time (sec)

Time (sec) 250 100 4.0 4.0 Level (ng taxis)

-a-V id

.eactlvity

~

Vessel Steam Flow

~ Doppler Reactivity

-:til:- Turbine Steam Flow 3.5

~ Scram r-(eactivity 3.5 200

-.- Feedwater Flow 80

-+- Total Reactivity 3.0 30 60 ~

2.5 25 150 V

III

~ 20 2.0 ~

0 1ii fII II) i C

C

~ 1.5

- - 15 Q) 100 40 Q.

c:

"0 lU 0

0 Q)

'~

,.~

III Q.

Q.

1ii Q)

~ 10 E

10 0::

,..*--.-....~.-

0 0

~

.0 U

U f\\

RI

~--

50 20 til

~ 05 05 ~

lU

~

U U

U

.~~

~

III III Q;

~ 0.0 0.0 ~

0

\\\\

~

Q)

...J

-0.5

-0.5

\\ '

,1.0

-1.0

'II

-50

-20

-1.5

-1.5

~,

-100

-40

-2.0

-2.0 3

0 3

Time (sec)

Time (sec)

Figure 42 Plant Response to Load Rejection w/o Bypass

( EOe LCF with RPTOOS (UB) )

Page 75

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150 - --'--'--'-'--'-~~T~-=e:=r-i\\JeUfror{l=ruXTri'gl'lt aXIs) 750 100

'~~~~~""8--~l5OriiEi--f5res-5mserrrgh1 aXIs)

- 400

~

,IJ,ve Surface HeatFlux

~

Safety Valve Flow

---.- Core Inlet Flow 90

-1Ir-Relief Valve Flow 360

.......- Bypass Valve Flow 125 625 80 320 70 280 100 500.....

'in

"'CI

.....x, II)

~

'l;j 60 240 GI r{l\\N.." r~

~

(II

"'CI

\\;.lll

~"_Itr-_._*

~

"'CI i2 Q) ell GI

'l;j 75 375

~

'l;j 50 200 5 0::

~

UI

<f.

\\...~,

i.i:

(II c:

~

e n.

x.~

i 40 160 GI Q)

E 250 Z 0

50

~

0 30 120 r-----~

20 80 25 125 10 I

40 o.

3 3

Time (sec)

Time (sec) 250 100 4.0 4.0 ev.1 (rig taxis)

~

id eactlvity

---?t-Vessel Steam Flow

---?t-Doppler Reactivity

---&- Turbine Steam Flow 3.5

---.- Scram Reactivity 3.5 200

-.- Feedwater Flow 80

-.- Total Reactivity 3.0 3.0 60 j 2.5 2.5 150 (II

~ 2.0 2.0 E 0

'l;j III (II c

C l'Il

~ 1.5 1.5 GI 100 40 0.

c:

"C II) 0 0

ell (II 0.

0.

'l;j (II

~ 1.0 1.0 E 0::

0 0

~

..c U

U tlI 50 f\\A~

20 III

~ 0.5 0.5 ~

II)

.t:

U U

u§.

l'Il l'Il "iii

~ 0.0 0.0 ~

0 (II

...J

-0.5

-0.5

-1.0

-1.0

-50

-20

-1.5

-1.5

-100

-40

-2.0 0

3 3

Time (sec)

Time (sec)

Figure 43 Plant Response to Turbine Trip w/o Bypass

( EOC LCF with RPTOOS (UB) )

Page 76

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400.-~-~r--'~~'-'~[jr-*-mtiti'OnFTuxrngnra:xTSr 800 100

~'-8~TIOmePres~Tse (rigHt aXIs 400

~,A.ve Surface Heat Flux

~

Safety Valve Flow

--r-Core Inlet Flow 90

-a-Relief Valve Flow 360 350

-+- Core Inlet Subcooling 700

-+- Bypass Valve Flow 80 320 300 600 70 280

tJ "g;

250 500 ~

,e; nl 60 240

<II

~

l4

~

"C

~

GI GI f

~ 200 400

~

~

50 200

J

~

In

'J?

u::

l4 c:

GI e

~

300 ~I 40 160

<II 150 E

Z 0a 30 120 100

~~-.t.r-'--A' 200 r-20 80 50 x.............

100 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 40 4.0

-e-Level (rig taxis

-e-oid eactivity

--)t-Vessel Steam Flow

~ Doppler Reactivity

---a-Turbine Steam Flow 3.5

--r-Scram Reactivity 3.5

-+- Feedwater Flow 90

-+- Total Reactivity 150 30 30 75 ~

2.5 2.5 125 l4

~ 20 2.0 ~

I-0

'tii In III C

C

~

1.5

.. 1.5

<II 100 60 Q.

f c:

"C

<II 0

0 GI r1I Q.

f Q.

~

GI

~ 10 1.0 E 0

~

0

.0 U

U nl 75 45 III

~ 05 05 ~

<II

~

U U

U

§.

III III Qi

~ 00 0.0 ~

50 30

\\

GI

\\

..J

-0.5

-0.5

\\*

-1.0 1

  • 10 25 15

\\

-1.5

-1.5

-2.0

  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 44 Plant Response to FW Controller Failure (MOC ICF & FWTR with RPTOOS (HBB) )

Page 77

Grand Gulf-]

Reload 19 00lN8480-SRLR Revision 0 400. ~--.--T-~~~-r"~~8"""~i\\Teuvon"""F'ilTx1ilgn1 aXIs) 800

~,A,ve Surface Heat Flux

-tr-Core Inlet Flow 350

--+- Core Inlet Subcooling 700 100 90

-~-,~~.-," 8 DomeF'ress"f'<TserrTgmaxisT

~

Safety Valve Flow

............jRelief Valve Flow

--+- Bypass Valve Flow 400 360 80 320 300 600 70 280 "iii S:

240 CI>

III 0::

200

J UI (II

~

0-160 CI>

Eoa 120 12 10r

-a.-.:

80 40 6

8 Time (sec) 40 10 20 30 60 100 400

~

u::

I:e 300 ~

Z 200 12 10 6

8 Time (sec) 250 150 CI>

~ 200

'j.

25 30 3.5

-1.5

-1.0

-0.5 12 10 6

8 Time (sec) 2.5

-2.0 -l-t-+--+-j--+--t-I-f---+-+-+-I-+-+-+--r-+-+J.-+--Ir-+--+--I-f---+ -2.0 o

4.0

,......-...,.....,~---r-~~-,....~8::--"l"7"l-,oi,.-,d""F""1.er-a-,ct"..iv.,.,.ity--r-----r 40

~ Doppler Reactivity

.......- Scram Reactivity

..:....- Total Reactivity

  • 1.5

-0.5 3.5 30

-1.0

~ 2.0 20 E UI UI C

C

~ 1.5

~

o 0

~

~

~

1~

1~

~

U u

f 0.5 0.5 f u

u 11I Rl a: 0.0 }---.-.==-=~~§iri+--;}L__-+ 0.0 a:

15 90 75 ~

UI...o

~

Rl 60 g-UI CI>>o

.0 11I 45 UI QI

~

U§.

Gi 30

~

...J 12 10 6

8 Time (sec) 25 50 75 150 125 100 175

.,.......-...,.....,-~--r-~~-r-"'::8:--....,L;T"'e~v-el;-;(.....,ri-,g,...,t~a-xi,.-s"rT--.-,-

105

~

Vessel Steam Flow

---6:- _Turbine Steam Flow

--+- Feedwater Flow Figure 45 Plant Response to FW Controller Failure

( EOC ICF & FWTR with RPTOOS (HBB) )

Page 78

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 400

-~-'-""-'~~-T~-~~ar-'Neuli'oi1'Flu)(

(r-ight aXIsI""

800 100

....--,.--,---,--.--.--.--,-B~tJOmeW4Ss Ri 56 (ngFlfaxls) 400

~

lJ...ve Surface Heat Flux Safety Valve Flow

..........- Core Inlet Flow 90 Relief Valve Flow 360 350

--.- Core Inlet Subcooling 700 Bypass Valve Flow 80 320 300 600 70 280 S'

"iii 250 r"*,

500 ~

S:

60 240

<U ll!

/II

'0 J

~

'0

~

<U

<U

~

~ 200 400

~

"tV 50 200

J ll!

III ii:

/II c:

~

e n.

300 ~

40 160

<U 150 E

Z 0

C 30 120 100 200 20 80

..~.

100 50 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 4,0 4,0

-e-level (rig taxis

-e-Vessel Steam Flow

-t(-

...,.... Turbine Steam Flow 3,5 3,5 Feedwater Flow 90 150 3,0 30 0\\

75 ~

2,5 2.5 125 I

~

III E 2,0 2,oE I-0 lii III

/II J

l-i:

i:

1Il III 1.5

<U 100 60 Q.

C C

'0

<II 0

0 Gl III Q.

Q.

"tV

~ 1.0 10 E ll!

0 0

~

..c U

U 1Il

~ 05 75 45 III 0,5 ~

<II

..c u

u u

§.

III III Qi

~ 0,0 0,0 ~

50 30

...J

-0,5

-0,5

-1,0

  • 1,0 25 15
  • 1,5

-1.5

-2.0

  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 46 Plant Response to FW Controller Failure

( MOC LCF & FWTR with RPTOOS (HBB) )

Page 79

Grand Gulf-l Reload 19 001N8480~SRLR Revision 0 400

--e-Neutron Flux (right aXIs) 800 100 4r-Dome Press-Rise (rig taxIs 400

-?t-

,~ve Surface Heat Flux

-?t-Safety Valve Flow

-.- Core Inlet Flow 90

--.l!r-Relief Valve Flow 360 350

-...- Core Inlet Subcooling 700 Bypass Valve Flow 80 320 300 600 70 280

ti' "g;

250 500 ~

E; II:l 60 240 lU D::

Ul "l:'

~

"l:'

~

lU lU

~

~ 200 400

~

1i; 50 200

1 cr::

UI

?f.

u::

/II c:

Q)...

e

~

Q.

300 ~

40 160 lU 150 E

Z 0

0 30 120 100

~~1fir-..~...

200 Xx 20 80 50 "x...x; 100 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Level (rig taxis

-e-oid

.eactil/ity Vessel Steam Flow

-?t-Doppler Reactivity

--tr-Turbine Steam Flow 3.5

-r-Scram Reactivity 3.5 Feedwater Flow

--.- Total Reactivity 150 90 30 3.0 75 j 2.5 2.5 125 I

~

UI e 20 2.0 E 0

1i; Ul Ul

~

C C

~ 1.5 lU 100 60 0..

c:

"l:'

w 0

0 lU UI 0..

0..

1i; Q)

~ 10 1.0 E 0

cr::

0

'J.

.Q U

U II:l f 05 75 45 III 0.5 ~

w

..c:

ti u

u

§.

IV II:l Gi

~ 0.0 0.0 ~

50 30 Ci>

..J

-0.5

-0.5

  • 10
  • 1.0 25 15

-1.5

-15

-2.0

-2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 47 Plant Response to FW Controller Failure

( EOC LCF & FWTR with RPTOOS (HBB) )

Page 80

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 400.

~~-r-.-~~-'-~~-8r-T-Het:iVOn-ffi11*ight aXI5) 800 100

"-""B~dOl'i'i8Wess~TSe1ngFif aXIs 400

~

,A,ve Surface Heat Flux

~

Safety Valve Flow

-.- Core Inlet Flow 90

-a-Relief Valve Flow 360 350

-+- Core Inlet Subcooling 700

-+-

Bypass Valve Flow 80 320 300 600 70 280

c

'Qj 250 500.;

~

0 60 240

<II

~

(II

'0 i

'0

~

Q)

OIl Q)

~200 400

~

'tV 50 200 5 a::

(II

?f, u::

(II

+

c:

III t.-

e 0..

300 ~

40 160

<II 150 E

Z 0

C 30 120 100

'h\\~~;a,-.._.*.

200 r

x..,

20 80 Tx....

50

.........x...

100 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Level (rig taxis

-e-

--it-Vessel Steam Flow

--it-

-tl:-

Turbine Steam Flow 3.5 3.5 150

-+-

Feedwater Flow 90

-+-

30 3.0

-+- *

  • \\

75 ~

2.5 2.5 125 Ul E 2.0 2.0 E

.~

t.-o 1;j III (II I

~

C C

~

1.5 -

. 1.5

<II 100 60 Q.

c:

'0

<II 0

0 OIl Ul Q.

Q.

1;j Q)

~ 1.0 E

1.0 a::

0 0

.c U

U (lJ

~ 05 75 45 (II 0.5 ~

IV

.t:

U u

u

§.

lU lU Gi

~ 0.0 0.0 ~

50 30 Q)

\\

..J

-0.5

-0.5

\\

-1.0 I

  • 1.0 1

25 15

\\

I

  • 1.5 i

-1.5 I

-2.0 I

  • 2.0 6

8 10 12 0

6 8

10 12 Time (sec)

Time (sec)

Figure 48 Plant Response to FW Controller Failure

( EOC ICF & FWTR with RPTOOS (UB) )

Page 81

Grand Gulf-I Reload 19 001N8480-SRLR Revision 0 400. -~~-~-r~~-'-~-~-Er'Neu1ronrrux (right axIS) 800 100

'8~l5OiYlel5iBS~Tse-rrTgR[iXfs

  • 400

-?t-

,A.,ve Surface Heat Flux

~

Safety Valve Flow

-.tr-Core Inlet Flow 90

---.1r-Relief Valve Flow 360 350

-+- Core Inlet Subcooling 700

--+- Bypass Valve Flow 80 320 300 600 70 280 "iii 250 500 ~

.e ttl 60 240 GI 0::

UI "0

~

"0 i:t!

GI GI GI

~ 200 400

~

1;;

50 200

l 0::

UI i-ii:

-j.

UI c:

~

0 Q.

I-40 160 GI 150 300 ~

E z

0 0

30 120 100

'l(l!.r-a-..--_A,.

200 r&----A-..;

X 20 I

80

'x...x.

50

""""X-100 10 40 6

8 10 12 6

8 10 12 Time (sec)

Time (sec) 175 105 4.0 4.0

-e-Level (rig taxis

-e-oid eactivity

~

Vessel Steam Flow

-1t-Doppler Reactivity

-.- Turbine Steam Flow 3.5

-;- Scram r~eactivity 3.5

--+-

Feedwater Flow 90

-+- Total Reactivity 150 30 3.0 75 j 2.5 2.5 125 UI

~ 2.0 20 E I-0 1il III UI l-e e

Cll

~ 1.5

.. 1.5 GI 100 60 0.

c:

"0 cu 0

0

<II UI 0.

0.

1;;

Q)

~ 10 10 E 0

0::

0

-j.

.0 U

U ttl 75 45 III

0.5 05 ~

cu.c u

u u

§.

III III a;

~ 0.0 0.0 ~

50 30

\\t GI

-J

-0.5

-0.5

-1.0

  • 1.0 25 15

\\ I

-1.5 i

-1.5 t-

-2.0

  • 2.0 6

8 10 12 0

4 6

8 10 12 Time (sec)

Time (sec)

Figure 49 Plant Response to FW Controller Failure

( EOC LCF & FWTR with RPTOOS (UB) )

Page 82

Grand Gulf-l Reload 19 001N8480-SRLR.

Revision 0 150

-eF'l'Jeutrbn Flux (119 XIS 750 100

~'lXi"18 Pre§s Rise 400 rig

~

,iJwe Surface Heat Flux

~

Safety Valve Flow

-.r-Core Inlet Flow 90

-a-Relief Valve Flow 360

-.-. Bypass Valve Flow 125 625 80 320 A

A 70 280 100 500......

"0;

"'0 G) e 1ii 60 240

<lJ

~

Ul

"'0

~

"'0

[2 G) e.....

III

~

1ii 75 375

~

1ii

~

0::

50 200

J III

'j.

ii:

?J.

Ul c:

~

e 0..

i 40 160

<lJ III E

50 250 Z 0

C 30 120 20 80 25 125 10 I

40 I

3 4

5 3

4 5

Time (sec)

Time (sec) 250 100 4.0 4.0

~

Void

.eac ivi y

~

~

Doppler Reactivity 3.5

-.r-Scram Reactivity 3.5 200 80 Total ReactiVity 3.0 3.0 60 ~

2.5 2.5 150 III

~ 2.0 2.0 ~

0 1ii III

.e c

c:

lU

~ 1.5

.. 1.5

<lJ 100 40 a.

c:

"'0 (II 0

0 III

\\~

III a.

a.

1ii III g 1.0 E

1.0

~

0 0

?J.

.0 U

U tll f 05 50 20 til 05 ~

...__W s

(II

.t:u u

u

§.

tll III Qj

~ 00 0.0 ~

0 G)

...J

-0.5

-0.5

-10

  • 1.0

-50

-20

  • 1.5

-1.5

-100

-40

-2.0

-2.0 0

3 4

5 0

3 4

5 Time (sec)

Time (sec)

Figure 50 Plant Response to MSIV Closure (Flux Scram) - ICF (HUB)

Page 83

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 150

-e-'"I\\leutrbn Flux (right §xisl 750 100 Dotfie Press~lse (right 'aXIS 400

~ Ave Surface Heat Flux

~

Safety Valve Flow

-.r-Core Inlet Flow 90

-.0:-

Relief Valve Flow 360 Bypass Valve Flow 125 625 80 320 70 280 100 500.......

-iii "Ccu

.e:

iii 60 240 cu

/"lVtI/.....,,r....lJy-- ~

Cl:

4n "C

Ai

~

"C

~

cu cu

~

1ii 75

~

375

~

1ii Cl:

Cl:

50 200

J III

~

u:::

'J.

III 0

r::

cu Ie 0

a.

40 160 cu cu E

50 250 Z 0

C 30 120 1/

20 80 25 125 J

10 40 3

4 5

3 4

5 6

Time (sec)

Time (sec) 250 100 4.0 4.0 vel (ri ht aXIs)

-e-Void lac ivi y

~

Vessel Steam Flow

~

Doppler Reactivity

---.- Turbine Steam Flow 3.5

-.r-Scram Reactivity 3.5 200 Feedwater Flow 80

-.- Total Reactivity 3.0 30 60~

2.5 2.5 150 tn E 2.0 20 E

...2 III 4n E

c:

1:

III

~ 1.5 -

1.5 eLI 100 40 0-r::

"C Q) 0 0

eLI Cl) 0-0-

iii cu

~ 1.0 1.0

~

Cl:

0

'J.

.lJ U

U III 50 20 tn

~ 0.5 05 ~

Q) s::.

u u

u

§.

tV tV G)

~ 0.0 0.0 ~

0

~

eLI

...J

-0.5

-0.5

-1.0

-1.0

-50

-20

  • 1.5
  • 1.5

-100

-40

-20

-2.0 0

3 4

5 0

3 4

5 Time (sec)

Time (sec)

Figure 51 Plant Response to MSIV Closure (Flux Scram) - LCF (HBB)

Page 84

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0

-- NFWf !3SP COi\\l(()n,~d Entry R~9i(}!)

Bo;;ndarv

--Implcmcnt('c SSP t!oundary 120 110 100 90 80

/0 00 30 20 10 120 110 100 90 80

£ 70

~

~

60 0.

0§ Q,I

~lO

.c.....

flO SO 20 10 0

()

Core Flow I%J Figure 52 Manual BSP Regions and BS.P Boundary for Normal Feedwater Temperature Operation Page 85

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 120 110 100 gO 1}()

~

/()

I 60 0

§ 50

~

..r=....

1,0 10 20 10 0

,.~

0 Core Flow 1%1 no 170 Figure 53 Manual BSP Regions and BSP Boundary for Reduced Feedwater Temperature Operation Page 86

Grand Gulf-!

Reload 19 Appendix A Analysis Conditions 001N8480-SRLR Revision 0 The reactor operating conditions used in the reload licensing analysis for this plant and cycle are presented in Table A-I. The pressure relief and safety valve configuration for this plant are presented in Table A-2. Additionally, the operating flexibility options listed in Section 8 are supported by the reload licensing analysis. 21 22 Table A-I Reactor Operating Conditions Analysis Value Parameter ICF LCF ICF LCF NFWT NFWT RFWT RFWT Thermal power,MWt 4408.0 4408.0 4408.0 4408.0 Core flow. Mlb/hr 118.1 90.0 118.1 104.4 Reactor pressure (core mid-plane), psia 1056.0 1051.3 1035.0 1032.8 Inlet enthalpy, Btu/lb 526.4 518.7 511.8 507.0 Non-fuel powertraction 0.036 0.036 0.036 0.036 Steam flow, Mlb/hr 18.99 18.98 16.75 16.75 Dome pressure, psig 1025.0 1025.0 1005.1 1005.1 Turbine pressure, psig 964.9 965.0 957.7 957.8 Table A-2 Pressure Relief and Safety Valve Configuration Valve Type Number of Lowest Setpoint Valves (psig)

Dual Mode SafetyIRelief Valve 20 1133.0 (ReliefMode) 1211.6 (Safety Mode) 11 All analyses assume six of 20 S/RVs operating in relief mode and nine of 20 S/RVs operating in safety mode, or tive S/RVs out of service.

22 No credit was taken in the reload analyses for THV or AT\\VS-RPT. However, this does not imply that they may be out of service.

Page 87

Grand Gulf*l Reload 19 Appendix B Thermal-Mechanical Compliance 00 IN8480-SRLR Revision 0 A thermal-mechanical compi iance check is performed'for all analyzed transients to assure that the fuel will operate without violating the thermal-mechanical design limits. These limits are designed such that reactor operation within these limits provides assurance that the fuel will not exceed any thermal-mechanical design or licensing limits during all modes of operation. The fuel thermal-mechanical limits are met for the current cycle.

Page 88

Grand Gulf-l Reload 19 Appendix C Decrease in Core Coolant Temperature Event 001N8480-SRLR Revision 0 The Loss-of-Feedwater Heating event was analyzed at 100% rated power using the BWR Simulator Code. The use of this code is consistent with the approved methodology. The transient plots~ neutron flux and heat flux values normally rep0l1ed in Section 9 are not an output of the BWR Simulator Code; therefore, those items are not included in this document. The OLMCPR result is shown in Section 11.

Page 89

Grand Gulf-1 Reload 19 Appendix D Off-Rated Limits Off-Rated Power Dependent Limits 001 N8480-SRLR Revision 0 Cycle Specitic off-rated power dependent limits are generated for Cycle 20. The power dependent limits address Equipment In-Service, FWH OOS, EOC-RPT OOS, and EOC-RPT OOS with FWH OOS. The MCPRp limits are based qn a SLMCPR of 1.15. The MCPRp limits have been adjusted to include a 0.01 adder in accordance with Interim Methods LTR Safety Evaluation Report Limitation and Condition 9.19, as noted in Appendix E.

Power dependent limits designated as MOC are applicable from 80C to MOC. Power dependent limits designated as Eoe are applicable from MOe to EOe. The exposure range designation is defined in Table 7-1.

Operation with one Main Steam Isolation Valve Out-of-Service (MSIV OOS) was continned for Cycle 20 for reactor power ::;750/0.

MCPRpLimits for Power < 35.4%:

Application Exposure Scram Flow> 50.0%

Flow ~ 50.0%

Condition 23 Speed 21.8 % P 35.4%

P 21.8 % P 35.4%

P EOe Option A 2~19 2.07 2.19 2.02 Option B 2.19 2.07 2.19 2.02 1

Option A 2.16 2.05 2.16 1.97 MOe Option B 2.16 2.05 2.16 1.97_

EOe Option A 2.19 2.07 2.19 2.02 Option B 2.19 2.07 2.19 2.02 2

Option A 2.16 2.05 2.16 1.97 MOe Option B 2.16 2.05 2.16 1.97 EOe Option A 2.19 2.07 2.19 2.02 3

Option B 2.19 2.07 2.19 2.02 Option A 2.16 2.05 2.16 1.97 MOe Option B 2.16 2.05 2.16 1.97 coe Option A 2.19 2.07 2.19 2.02 Option B 2.19 2.07 2.19 2.02 4

Option A 2.16 2.05 2.16 1.97 MOe Option B 2.16 2.05 2.16 1.97 23 The Application Conditions are defined as:

I-Equipment In-Service 2-FWH OOS 3-EOC-RPT OOS 4-EOC-RPT OOS with FWH OOS Page 90

Grand Gulf-1 Reload 19 001N8480-SRLR Revision 0 MCPRp Limits for Pm,'er ~ 35.4(%:

Application Exposure Scram 35.4% P 50(%P 700/0P 80.6(%P 900/oP 1000/oP Condition 24 Speed Eoe Option A 1.77 1.77 1.69 1.67 1.60 1.51 Option B 1.66 1.63 1.58 1.56 1.49 1.41

]

Option A 1.73 1.73 1.68 1.65 1.58 1.50 MOe Option B 1.66 1.62 1.53 1.50 1.44 1.37 EOe Option A 1.78 1.78 1.72 1.67 1.60 1.53 Option B 1.66 1.63 1.61 1.56 1.49 1.43 2

Option A 1.73 1.73 1.68 i.65 1.58 1.50 MOe Option B 1.66 1.62 1.53 1.50 1.44 1.37 EOe Option A 1.77 1.77 1.71 1.67 1.61 1.54 Option B 1.66 1.63 1.58 1.56 1.50 1.44 3

Option A 1.73 1.73 1.68 1.65 1.58 1.52 MOe Option B 1.66 1.62 1.53 1.50 1.44 1.39 EOe Option A 1.78 1.78 1.72 1.67 1.63 1.55 Option B 1.66 1.63 1.61 1.56 1.52 1.45 4

Option A 1.74 1.73 1.68 1.65 1.58 1.52 MOe Option B 1.66 1.62 1.53 1.50 1.44 1.39 LHGRFACp Limits for:

Equipment in Service - EOC Limitsfor Power < 35.4%

Flow> 50.0%

Flow <: 50.0%

Power (%)

Limit Power (%)

Limit 21.8 0.781 ;

21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor Power> 35.4%

Power (°/0)

Limit 35.4 1.000

\\

50.0 1.000 70.0 "1.000 90.0 1.000 100.0 1.000

~4 The Application Conditions are defined as:

l-Equipment In-Service 2-FWHOOS 3-EOC-RPT OOS 4-EOC-RPT OOS with FWH OOS Page 91

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 LHGRFACp Limits for:

FWH Out-of-Service - EOC Limits/or Power < 35.4%

Flow> 50.0%

Flow ~ 50.0%

Power (%)

Limit Power (%)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor Power ~ 35.4%

Power (%)

Limit

'35.4 1.000 50.0 1.000 70.0 1.000 90.0 1.000 100.0 1.000 LHGRFACp Limits for:

EOC-RPT Out-of-Service - EOC Limitsfor Power < 35.4%

Flow> 50.0%

Flow'~ 50.0%

Power CYo)

Limit Power CYo)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor Power> 35.4%

Power (%)

Limit 35.4 1.000 50.0

/

1.000 70.0 1.000 90.0 1.000 100.0 1.000 LHGRFACp Limits for:

EOC-RPT AND FWH OOS - EOC Limits/or Power < 35.4%

Flow> 50.00/0

.Flow ~ 50.0°;')

Power (0;')

Limit Power (%)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor Power> 35.4%

I Power (%)

Limit 35.4 1.000 50.0 1.000 70.0 1.000 90.0 1.000 100.0 1.000 Page 92

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 LHGRFACp Limits for:

Equipment in Service - MOC Limits for.Power < 35.4%

Flow> 50.0%

Flow < 50.0%

I>m,ver (%,)

Limit Power (%)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor.Power> 35.4%

Power (%)

Limit 35.4 1.000 50.0 1.000 70.0 1.000 90.0 1.000 100.0 1.000 LHGRFACp Limits for:

FWH Out-of-Service - MOC Limits for.Power < 35.4%

Flow> 50.0%

Flow < 50.0%

Power (%)

Limit Power CYo)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor.Power> 35.4%

Power (%)

Limit 35.4 1.000 50.0 1.000 70.0 1.000 90.0 1.000 100.0 1.000 LHGRFACp Limits for:

RPT Out-or-Service - MOC Limits for Power < 35.4%

Flow> 50.0%

Flow < 50.00A, Power (%))

Limit Power (%)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limits for.Power> 35.4%

Power (%)

Limit 35.4 1.000 50.0 1.000 70.0

].000 90.0 r

1.000 100.0 1.000 Page 93

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 LHGRFACp Limits for:

EOC-RPT OOS and FWH Out-of-Service - MOC Limits/or Power < 35.4%

Flow> 50.0%

Flow ~ 50.0%

Power (%)

Limit Power (%)

Limit 21.8 0.781 21.8 0.808 35.4 0.781 35.4 0.903 Limitsfor Power ~ 35.4%

Power (%)

Limit 35.4 1.000 50.0 1.000 70.0 1.000 90.0 1.000 100.0 1.000 Off-Rated Flow Dependent Limits The off-rated flow dependent limits are confirmed for Cycle 20. The MCPRf and LHGRFACf limits are provided in Reference 0-1. The MCPRf and LHGRFACf limits are provided for operation up to a maximum of 110% rated' core flow.

The MCPRf limits have been scaled for this cycle.

The MCPRf limits are based on a SLMCPR of 1.15. The MCPRf limits have been adjust to include a 0.01 adder In accordance with extended operating domain licensing commitments.

Flow dependent limits are applicable from SOC to EOC.

MCPRf Limits for:

Equipment In Service Limitsfor a Maximum Runout Flow of110.0%

Flow <<Yo)

Limit lvfCPRI 20.0 1.39 30.0 1.39 90.0 1.28 110.0 1.28 MCPRfLimits for:

FWH Out-of-Service Limitsfor a Maximum Runout Flow of110.0%

Flow <<Yo)

Limit "NfCPRl 20.0 1.39 30.0 1.39 90.0 1.28 110.0 1.28 Page 94

Grand Gulf-I Reload 19 001 N8480-SRLR Revision 0,

MCPRf Limits for:

EOC-RPT Out-of-Service

.limits for a Maximum RUllout Flow of110.0%

Flow (%)

Limit MCPRf 20.0 1.39 30.0 1.39 90.0 1.28 110.0 1.28 MCPRf Limits for:

EOC-RPT andFWH Out-of-Service Limitsfor a Maximum RUIlOlit Flow (~f110.0%

Flow (%.)

Limit lvfCPRf 20.0 1.39 30.0 1.39 90.0 1.28 110.0 1.28 LHGRFACf Limits for:

Equipment In Service Limitsfor a Maximum Runout Flow of110.0%

Flow (%)

Limit 20.0 0.652 30.0 0.652

  • 71.4 1.000 110.0 1.000 LHGRFACf Limits for:

FWHOut-of-Service Limitsfor a Maximum RUllout Flow of110.0%

Flow (o,:{.)

Limit 20.0 0.652 30.0 0.652 71.4 1.000 110.0 1.000*

LHGRFACf Limits for:

EOC-RPT Out-of-Service

.limits for a Maximum RUIlOlit Flow of110.0%

Flow (%.)

Limit 20.0 0.652 30.0 0.652 71.4 1.000 110.0 1.000 Page 95

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 LHGRFACfLimits for:

EOC-RPT and FWH Out-of-Service Limitsfor a Maximum Runout Flow of.110.0%

Flow (%)

Limit 20.0 0.652 30.0 0.652 71.4 1.000 110.0 1.000 References 0-1.

GNF2 Fuel Design Cycle-Independent Analyses for Entergy Grand Gu(fNuclear Station, GEH-0000-0107-7366-R3, Revision 3, March 2011.

J Page 96

Grand Gulf-l Reload 19 001 N8480-SRLR Revision 0 Appendix E Interim Methods LTR (NEDC-33173P-A Revision 4)

Supplemental Information The safety evaluation for licensing topical report NEDC-33173P-A Revision 4 (Reference E-l) concluded that the application of GEH/GNF methods to expanded operating domains was acceptable subject to certain limitations and conditions.

Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The infonnation provided below responds to these requests for the identified items.

Limitation and Condition 9.5 (SLMCPR 2)

Limitation and Condition 9.5 states:

"For operation at AlELLLA+, including operation at the EPU power levels at the achievable core flow state-point, a 0.01 value shall be added to the cycle-spec~fic SLlvICPR value for power-tojlmv ratios up to 42 MWt/J\\;Jlbmi'l'lr, and a (j,()2 value shall be added to the cycle-spec~fic SLlvICPR value for power-to-flow ratios above 42 J\\/Wt/Mlbm/hr."

For operation at MELLLA+, a 0.02 value was added to the cycle specific SLMCPR.

The SLMCPR values reported in Section 11 retlect this adder.

Limitation and Condition 9.8 (ECCS-LOCA 2)

Limitation and Condition 9.8 states:

"The ECCS-LO(~4

~1Jill be pe/formed for all statepoints in the upper boundary of the expanded operating domain, including the min~mum core flow statepoints, the transition statepoint, as defined in Reference £-2 and the 55 percent core flow statepoint.

The plant-specific application will report the limiting ECCS-LOCA 'results as well as the rated pmver andflow results.

The SRLR will include both the limiting statepoint £CCS-LOCA results and the rated conditions ECCS-LOCA results. "

This limitation and condition is satisfied by the' Appendix K PCTs reported in Reference 1 in Section.

16.4. The SRLR reports the bounding Licensing Basis PCT for all statepoints analyzed.

Limitation and Condition 9.10/9.11 (TransientLHGR 2/3)

Limitation and Condition 9.10 states:

"Each EPU andMELLL4+ fuel reload will document the calculation results of the analyses demonstrating compliance to transient T~A1 acceptance criteria. The plant T-At Page 97

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 response will be provided with the SRLR or COLR, or it will be reported directly to the NRC as an attachment to the SRLR or COLR."

Limitation and Condition 9.11 states:

"To account for the impact of the void histOly bias, plant-specific EPU and NlELLLA+

applications using either TRACG or ODYN will demonstrate an equivalent to 10 percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain acceptance

  • criteria due to pellet-cladding mechanical interaction for all qf limiting AOO transient events, including equipnlent out-qf-service. Limiting transients in this case, refers to transients "Itt/here the void reactivizy coefficient plays a significant role ('Such as pressurizaiion events). ff the void history bias is inc011Jorated into the transient model within the code, then the additional 10 percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain is no longer required. "

Appendix B documents the fact that the results for all analyzed transients demonstrate compliance with thermal-mechanical acceptance criteria.

Table £-1 summarizes the percent margin to the Thermal Overpower and Mechanical Overpower acceptance criteria.

Table E-l Margin to the Thermal Overpower and Mechanical Overpower Acceptance Criteria Criteria Thelmal Overpower Mechanical Overpower GNF2 23.90/0 24.9%

Limitation ~lnd Condition 9.17 (Ste~ldy-State 5 Percent Bypass Voiding)

Limitation and Condition 9.17 states:

"The instrumentation specification design bases limit the presence ofbypass voiding to 5 percent (LRPlvf (5ic) levels). Limiting the bypass voiding to less than 5 percentfor long term steady operation ensures that instrumentation is operated "l-vithin the specification.

For EPU and il/lELLLA+ operation, the bypass voiding will be evaluated on a cycle-spec(fic basis to confirm that the void fraction remains belo"l-v 5 percent at all LPRlvf levels when operating at stea(~y-state conditions within the kfELLLA+ upper boundary.

The highest calculated b;pass voiding at any LPRlvf levell~lill be provided with the plant-specific SRLR. "

Page 98

Grand Gulf-!

Reload 19 OO! N8480-SRLR Revision 0 Th~ bypass voiding was evaluated for the licensed core loading and confirmed that the bypass void fraction remained below 5 percent at all LPRM levels when operating at steady-state conditions within the licensed upper boundary.

Limitation and Condition 9.18 (Stability Setpoints Adjustment)

Limitation and Condition 9.18 states:

"The NRC stc{ff concludes that.the presence l~vpass voiding at the low-flow conditions where instabilities are likely can result in calibration errors of less than 5percent for OPRM cells and less than 2 percentfor APRM signals. These calibration errors must be accounted for while determining the setpoints for any detect and suppress long term methodology. The calibration valuesfor the different long-term solutions are specified in

,the associated sections ofthis SE, discussing the stability methodology. '.'

This limitation and condition is not applicable to DSS-CD because the significant conservatisms in the current licensing methodology and associated MCPR margins are more than sut1icient to compensate for the overall uncertainty in the OPRM instrumentation.

Limitation and Condition 9.19 (Void..;Quality Correlation 1)

Limitation and Condition 9.19 states:

"For applications involving PANCEA(sic)IODYNI/SCORITASC for operation at EPU and MELLLA+, an additional 0.01 will be added to the OL';fCPR, until such time that GE expands the experimental database supporting the Findlay-Dix void-quality correlation to demonstrate the accuracy and performance ofthe vOid-qualit.v correlation based on experimental data representative qf the current fuel designs and operating conditions during steady-state, transient, and accident conditions. "

The 0.01 adder was applied to the Grand Gulf 1 Cycle 20 OLMCPR.

References for Appendix E E-I. Applicability of GE i\\!fethods to Krpanded Operating Domains, NEDC-33 173P-A, Revision 4, November 2012.

E-2. General Electric Boiling Wat~r Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009.

Pag'e 99

Grand Gulf-l Reload 19 Appendix F GNF2 Spacer Bent Flow Wings 001 N8480-SRLR Revision 0 A manufacturing defect was discovered in GNF2 spacer flow wings that affects the Grand Gulf Reload 17 bundles. The condition is characterized as the spacer flow wing associated with a corner location being bent downward. This condition is described further in Reference F-l.

Reference F-l also contains the basis for performing statistically based assessments of the impact on the OLMCPR for such defected fuel. Although the assessment basis is the same, subsequent to issuance of Reference F-l, the approach has been changed to apply the impact to the SLMCPR. The Reference F-l method used for evaluation of the impact ofthe defect on the SLMCPR is the same as that reviewed in an audit by the NRC on August 20, 2010 associated with the. FitzPatrick Cycle 20 SLMCPR Technical Specification change submittal. The NRC acknowledged this audit and consideration of the GNF2 bent spacer wing in their FitzPatrick SLMCPR Technical Specification change safety evaluation (Reference F-2). In approving the FitzPatrick SLMCPR change, the NRC accepted this evaluation method for assessing the effect ofthe GNF2 bent spacer wing.

A statistically based evaluation of the impact on the SLMCPR for the Reload 17 bundles operating in the Cycle 20 concludes that there is no impact on the Cycle 20 SLMCPR.

There is no penalty applied to the Transient OLMCPR limits as the statistically based evaluation of the impact ofthe bent spacer flow wings concluded that there is no impact on the Cycle 20 SLMCPR.

As there is no impact of GNF2 spacer bent flow wings in corner locations on SLMCPR in Cycle 20, the Grand Gulf Cycle 20 stability analysis is not affected.

\\

Reference F-3 contains disposition of the ECCS-LOCA 10CFR50.46 results of Reference F-4 with respect to fuel affected by GNF2 spacer bent flow wings in comer locations. This assessment concluded that if the ECCS IMCPR is increased by at least 100/0, there is no effect on the 10CFR50.46 Appendix K results of Reference F-4. This conclusion continues to apply to Reference F-5. The increased ECCS IMPCR is re"flected in SRLR Section 16.3 for the affected batch.

References F-1. Basis and Procedure for Evaluation ofthe Operating.Margin Adjustmentfor the GNF2 Corner Rod Flow rVing lvlanufacturing Defect, GNF S-0000-0117-4755, Revision 2, May 2010.

F-2.

Letter, B. K. Vaidya(NRC) to Entergy Nuclear Operations, James A. Fitzpatrick Nuclear POlt'er Plant - h;suance Of Amendment Re: Changes To The Safety,Limit Minimum Critical Power Ratio (TAC NO. ME3786), September 27,2010.

F-3. Letter RA-ENO-GEN-I0-074, R. Augi, Entel'gv GNF2 Fuel Transitions: Disposition ofBent Spacer Flow Wing Effects on NFl-Revision 1,May 10, 2010.

F-4. Grand GulfNuclear Station GNF2 ECCS-LOCA Evaluation, 0000-01 00-8822-Rl, Revision 1, December 2009.

Page 100

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 F-5. Grand Gu?fNuclear Station Ex/ended Power Uprate Task T0407:

J ECCS-LOCA SAFERIGESTR, 0000-0107-6093-Rl, Revision 1, January 2010.

Page 101

Grand Gulf-l Reload 19 Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3)

Supplemental Information 001 N8480-SRLR Revision 0 The safety evaluation for licensing topical report NEDC-33006P-A Revision 3 (Reference G-l) approved the operation of GE HWRs in theMELLLA+ expanded operating domain, subject to certain limitations and conditions.

Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items.

Limitation and Condition 12.6 (SLMCPR Statepoints and CF Uncertainty)

Limitation and Condition 12.6 states:

"Until such time when the SLlvfCPR methodology (References G-2 and G-3) jbr oiFrated SL!vICPR calculation is approved by the staff/or!vIELLLA -+- operation, the SLlvICPR will be calcula/~d at the rated statepoint (l20 percent PI]00 percent CF). the plant-specific minimum CF statepoint (e.g., 120 percent PI80 percent CF), and at the 100 percent OLTP at 55 percent CF statepoint. The currently approved off-rated CF uncertainty will

\\

be used for the minimum CF and 55 percent CF statepoints.

The uncertain(v must be consistent with the CF uncertainty currently applied to the SLO operation or as NRC-approved for l\\IELLLA + operation.

The calculated values will be documented in the SRLR."

As requested, the SLMCPR calculated results at specified off-rated power/flow conditions are reported in Table 0-1 below, including the low CF statepoint.

Table G-l Two-Loop SLMCPR Results for MELLLA+ Conditions 25 Power (%

Rated)

Flow (%

Rated)

SLMCPR 100 100 1.09 100 80 1.12 80.6 55.0 1.12 100 105 1.09 25 The results prese~ted in Table G-l do not include any adders as specified in Appendix E Limitation and Condition 9.5.

Page 102

Grand Gulf-l Reload 19 Limibltion and Condition 12.10.b (ECCS-LOCA Off-Rated Multiplier)

Limitation and Condition 12.1 O.b states:

001 N8480,.SRLR Revision 0 "LOCA analysis is not pel/ormed on cycle-specific basis;. therefore, the thermal limits applied in the Jvf+SAR LOCA analysis for the 55 percent CF MELLLA + statepoint and/or the transition statepoint must be either bounding or consistent with cycle-specific off-rated limits. The COLR and the SRLR will contain confirmation that the off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-spec(fic off-rated limits calculated for the MELLLA + operation.

Every future cycle reload shall conjirm that the c.vcle-specific off-rated thermal limits applied at the 55 percent CF and/or the transition statepoints are consistent with those assumed in the plant-spec(fic ECCS-LOCA analyses. "

The ofT-rated limits assumed in the ECCS-LOCA analyses are confirmed to be consistent with the cycle-specific ofT-rated LHGR multipliers calculated for the MELLLA+ operation.

The off-rated LHGR multipliers provide adequate protection for the MELLLA+ operation.

Limitation and Condition 12.18.d (ATWS TRACG Analysis)

Limitation and Condition 12.18.d states:

"In general, the plant-specific application will ensure that operation in the MELLLA +

domain is consistent with the assumptions used in the AT11~c) ana~vsis, including equipment out ofservice (e.g., FTiVHOOS, SLO, SRVs, SLC pwnps, andRHRpumps, etc.).

If assumptions are not satisfied, operation in lvfELLLA + is not allowed.

The SRLR will specifjJ the' prohibited flexibility options for plant-spec~ficMELLLA+ operation. where applicable.

For key input parameters, systems and engineering safety features that are important to simulating the ATJiVS analysis and are specified in the Technical Specification (TS) (e.g., SICS parameters. AT~VS RPT, etc), the calculation assumptions rnust be consistent with the allowed TS values Qlld the allowedplant cOl?figuration. Ifthe anaZvses deviate ji'om the allmved TS cOlifiguration for long term equipment out of service (i.e., beyond the TS LCO), the plant-spectfic application will specifjJ andjustify the deviation. In addition, the licensee must ensure that all operability requirements are met (e.g., NPSH) by equipment assumed operable in the calculations, "

This ATWS TRACG Analysis limitation and condition requiJ~es that the SRLR specify the prohibited flexibility options for plant-specific MELLLA+

operation~ where applicable, as expressed by EOOS options in Section 8.

Page 103

Grand Gulf-l Reload 19 References for Appendix G 001 N8480-SRLR Revision 0 G-I. General Electric Boiling rVater Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009.

G-2. Alethodology and Uncertainties for Safety Limit lvlCPR Evaluations, NEDC-3260IP-A, August 1999.

G-3. Power Distribution Uncertainties for Safety Limit lvfCPR Evaluations, NEDC-32694P-A, August 1999.

Page 104

Grand Gulf-l Reload 19 Appendix H List of Acronyms 001 N8480-SRLR Revision 0 Acronym Description

~CPR Delta Critical Power Ratio

~k Delta k-etlective 2RPT (2PT)

Two Recirculation Pump Trip ADS Automatic Depressurization System ADSOOS Automatic Depressurization System Out of Service AOO Anticipated Operational Occurrence APRM Average Power Range Monitor ARTS APRM, Rod Block and Technical Specification Improvement Program BOC Beginning ofCycle BSP Backup Stability Protection BWROG Boiling Water Reactor Owners Group COLR Core Operating Limits Report CPR Critical Power Ratio DlRPT Delta MCPR over Initial MCPR for a two-Recirculation Pump Trip DIVOM Delta CPR over Initial MCPR vs. Oscillation Magnitude DR Decav Ratio DS/RV Dual Mode Safety/ReliefYalve ECCS Emergency Core Cooling System ELLLA Extended Load Line Limit Analysis EOC End of Cycle (including an planned cycle extensions)

EOR End of Rated (All Rods Out lOO%Power I 100%FIow I NFWT)

EPU Extended Power Uprate ER Excl usion Region FFWTR Final Feedwater Temperature Reduction FMCPR Final MCPR FOM Figure of Merit FW Feedwater FWCF Feedwater Controller Failure FWHOOS Feedwater Heaters Out of Service FWTR Feedwater Temperature Reduction GESTAR General Electric Standard Application for Reactor Fuel GETAB General Electric Thelmal Analysis Basis GSF Generic Shape Function HAL Haling Burn HBB Hard Bottom Bum HBOM Hot Bundle Oscillation Magnitude HCOM Hot Channel Oscillation Magnitude HFCL High Flow Control Line HPCI High Pressure Coolant Injection ICA Interim Corrective Action Page 105

Orand Oulf-l Reload 19 001N8480-SRLR Revision 0 Acronym Description lCF Increased Core Flow IMCPR Initial MCPR IVM Initial Validation Matrix Kf Off-rated flow dependent OLMCPR multiplier Kp Off-rated power dependent OLMCPR multiplier L8 Turbine Trip on high water level (Level 8)

LCF Low Core Flow LFWH Loss of Feedwater Heating LHGR Linear Heat Generation Rate LHORFACf Off-rated flow dependent LHOR multiplier LHGRFACp Off-rated power dependent LHOR multiplier LOCA Loss of Coolant Accident LOSC Loss of Stator Cooling LPRM Local Power Range Monitor LRWHBP Load R~jection with Half Bypass LRNBP Load Rejection without Bypass LTR Licensing Topical Report MAPFACf Off-rated flow dependent MAPLHGR multiplier MAPFACp Off-rated power dependent MAPLHGR multiplier MAPLHGR Maximum Average Planar Linear Heat Generation Rate MCPR Minimum Critical Power Ratio MCPRf Off-rated flow dependent OLMCPR MCPRp Off-rated power dependent OLMCPR MELLLA Maximum Extended Load Line Limit Analysis MELLLA+

MELLLAPlus MOC Middle of Cycle MRB Maximal Region Boundaries MSF Modified Shape Function MSIV Main Steam Isolation Valve MSIVOOS Main Steam Isolation Valve Out of Service MSR Moisture Separator Reheater MSROOS Moisture Separator Reheater Out of Service MTU Metric Ton Uranium MWd Megawatt dav MWdlST Megawatt days per Standard Ton MWdlMT Megawatt days per Metric Ton MWt Megawatt Thermal N/A Not Applicable NBP No Bypass NeL Natural Circulation Line NFWT Normal Feedwater Temperature NOM Nominal Bum NTR Normal Tri pReference OLMCPR Operating Limit MCPR OOS Out of Service Page 106

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 Acronym Description OPRM Oscillation Power Range Monitor Pbypass Reactor power level below which the TSV position and the TCV fast closure scrams are bypassed Pdome Peak Dome Pressure PsI Peak Steam Line Pressure Py Peak Vessel Pressure PCT Peak Clad Temperature PHE Peak Hot Excess PLHGR Peak Linear Heat Generation Rate PLU Power Load Unbalance PLUOOS Power Load Unbalance Out of Service PRFDS Pressure Regulator Failure Downscale PROOS Pressure Regulator Out ofService Q/A Heat Flux RUM Rod Block Monitor RC Reference Cycle RCF Rated Core Flow RFWT Reduced Feedwater Temperature RPS Reactor Protection System RPT Recirculation Pump Trip RPTOOS Recirculation Pump Trip Out of Service RV Relief Valve RVM*

Reload Validation Matrix RWE Rod Withdrawal Error SC Standard Cycle SL Safety Limit

. SLMCPR Safety Limit Minimum Critical Power Ratio SLO Single Loop Operation SRI Select Rod Insert SRLR Supplemental Reload Licensing Report S/RV (SRV)

Safety/ReliefValve SRVOOS Safetv/ReliefValve(s) Out of Service SS Steady State SSV Spring Safety Valve STU Short Tons (or Standard Tons) of Uranium TBSOOS Turbine Bypass System Out of Service.

TBV Turbine Bypass Valve TBVO Turbine Bypass Valves Open TBVOOS Turbine Bypass Valves Out of Service TCV Turbine Control Valve TCVOOS Turbine Control Valve Out of Service TCVSC Turbine Control Valve Slow Closure TLO Two Loop Operation TOPPS Tracking Over-Power Protection System TRF Trip Reference Ftinction Page 107

Grand Gulf-l Reload 19 001N8480-SRLR Revision 0 Acronym Description TSIP Technical Specifications Improvement Program TSV Turbine Stop Valve TSVOOS Turbine Stop Valve Out of Service TT Turbine Trip TTWHBP Turbine Trip with Half Bypass TTNBP Turbine Trip without Bypass UB Under Burn Page 108