ML13329A746
| ML13329A746 | |
| Person / Time | |
|---|---|
| Site: | San Onofre |
| Issue date: | 06/21/1991 |
| From: | SOUTHERN CALIFORNIA EDISON CO. |
| To: | |
| Shared Package | |
| ML13329A747 | List: |
| References | |
| DC-3601, DC-3601-R, DC-3601-R00, NUDOCS 9108020176 | |
| Download: ML13329A746 (63) | |
Text
ENCLOSURE 1 SONGS 1 RCS Inventory Analysis for Station Blackout 0
Calculation # DC-3601 9:108020176 9 10729 PDR ADOCK 05000:206 F
CA 9ULATION TITLE PAGE Sheet SONGS Unit DCP/MMP No. & R v. N/A Caic. No. DC-3601 O Subject SONGS 1 RCS Inventory Anal sis for Station Blackout Engineering System umber N/A Primary Station System Designator RCS O-Class SR Tech Spec Effecting
[J NO Section No.
N/A Equipment Tag No.
N/A Computer STANDARD COMPUTER PROGRAM PROGRAM NO.(S)
VERSION/RELEASE NO.
Program YES NO RETRAN-02 MOD 004 RECORD OF ISSUES SCE TOTAL LAST DISC. or REV.
DESCRIPTION NO. of SHEET ORIG.
NEDO O-A Issued for Comments 59 59 VFW WWS NFM 0
Original Issue Z
f '.
Space for RPE Stamp, reference alternate calc., and notes as applicable.
This calc. was prepared for the Identified DCP/MMP. DCP completion and turnover acceptance to be verified by receipt of a memorandum directing DCN Conversion. Upon receipt, this calc. represents the as-built condition. Memo date by SCE 26-121-1 REV 3/90
Page CALCULATION CROSS-INDEX Subject Calculation No.
_DC - 36 01 INPUTS OUTPUTS These interfacing calculations and /or Does the out-Identity output Group Supervisor Subject Superseded documents provide input to the subject Results and conclusions of the subject put interface interface or Station Technical Calculation By calculation, and it revised may require calculation are used in these interfacing calc/document calcidocument Group Supervising Revision No.
Calc. No.
revision of the subject calculation.
calculations and/or documents.
require revision?
CCN or DCN Engineer TCN/Rev.
Signature/Date ICal/
Document No.
Rev. No.
Calc/ Document No.
Rev. No.
YES / NO O
N/
PC -3 Y33 0
t/
tJoo/
o m /A
&-So-5(-).--0 cip NVOA1 O
N/A 1C -3 6
0 W
/A
^1 t1 16414 NOV
NES&L DEPARTMENT CALCULATION SHEET IoN No.
PREUM. CCN NO.
PAGE OF Project dr DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
ccN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
3 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nar th 6/21/91 W. Alhassa 6/21/91 E
TABLE OF CONTENTS SECTION PAGE
- 1.
PURPOSE......................................4 II.
RESULTS/CONCLUSIONS & RECOMMENDATIONS......... 5 Ill.
ASSUMPTIONS..................................9 IV.
DESIGN INPUT..................................
12 V.
METHODOLOGY................................16 VI.
REFERENCES.................................
VII.
NOMENCLATURE................................
31 VIII.
CALCULATIONS.................................32 APPENDIX A (LISTING OF RETRAN CODE MODEL)........ 34 APPENDIX B (PRESSURIZER LEVEL PROGRAM)........... 61
NES&L DEPARTMENT CALCULATION SHEET 1CC Uo.
PREUM. CCN NO.PAEO Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
4 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazarfij 6/21/91 W. Alhassan' 6/21/91 V
- 1.
PURPOSE 10 CFR 50.63' requires that SCE demonstrate the ability of SONGS Unit 1 to cope with a Loss of all AC power (Station Blackout). Regulatory Guide 1.155 provides NRC guidance for addressing this situation2. This guide states that the NUMARC (NUclear Management And Resource Council) published guidelines3 to demonstrate ability to cope with a station blackout (NUMARC 87-00) is compatible with the Reg. Guide. The basic NUMARC/REG. GUIDE criteria are as follows:
(i) procedures and equipment relied upon in station blackout should ensure that satisfactory performance of necessary decay heat removal systems is maintained for the required station blackout coping duration, (ii) the core must be kept covered for the coping duration, and (iii) appropriate containment integrity should be provided in a blackout to the extent that isolation valves perform their intended function without AC power.
The purpose of this calculation is to determine whether adequate RCS water inventory exists to perform the decay heat removal function and keep the core covered during a station blackout for the NUMARC defined coping duration.
NES&L DEPARTMENT CALCULATION SHEET IUC NO.,
PREUM. CCN NO.
TPAGE: OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN -
Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
5 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar 6/21/91 W. Alhassa 6/21/91 II.
RESULTS/CONCLUSIONS AND RECOMMENDATIONS A. RESULTS/CONCLUSIONS The significant events occurring during a station blackout including operator actions are shown on Table 11-1. A trend of some of the important parameters during the critical times of the coping duration are shown in Table 11-2.
On initiation of the blackout, the Pressurizer begins to empty rapidly due to the RCS leakage (171 gpm (cold) for the first 2 minutes and 101 gpm (cold) thereafter) and coolant shrinkage. In 21 minutes the pressurizer has emptied. Thereafter, the Reactor vessel upper head begins to drain resulting in a steam bubble in the upper head of the vessel. In 45 minutes the vessel upper head is completely voided. The outlet plenum then begins to drain causing the steam bubble to expand into the outlet plenum. The mixture level in the outlet plenum drops to just above the top of the hot leg at the end of one hour. During this one hour period natural circulation removes the core decay heat and keeps the core covered.
At one hour after the initiation of the blackout the charging pumps when powered by the DSD will provide makeup flow to the RCS. Thereafter the RCS inventory will be maintained (or will increase) for the remaining three hours of the coping duration. Again the core decay heat continues to be removed and the core remains covered for this period.
B. RECOMMENDATIONS
- 1. The Technical Specification leakage allowance of 6 gpm (total identified &
unidentified) remains valid for Station Blackout. No changes to the Technical Specifications are thus required.
- 2. The allowable letdown isolation valve leakage of 20 gpm remains acceptable.
NES&L DEPARTMENT CALCULATION SHEET CCN NO.
PREUM. CCN NO.
PAGE OF Project or DCP/MMP Caic. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN -
Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
6 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar h 6/21/91 W. Alhassa 6/21/91 E
TABLE II-1 SEQUENCE OF MAJOR EVENTS FOR STATION BLACKOUT TIME (MINUTES)
EVENTACTION 00 0
Loss of all on and offsite AC power accompanied by reactor and turbine trip 3
Operator takes manual control of ADV's 4.7 Auxiliary Feedwater Flow injected into the S.G.'s through turbine driven pump (G-10) to achieve and maintain S.G. level between 50% and 70% NR.
20.8 Pressurizer empty; Voiding begins in the upper Reactor head 45 Upper Reactor head completely voided; Voiding begins in the outlet plenum 60 Outlet plenum* approximately 40% voided; No voiding in the hot legs 60.1 RCS charging restored through powering north charging pump by the DSD diesel generator; RCS inventory reduction stops 240 End of coping duration Outlet plenum extends from the reactor head flange to the top of the core 0pe eco edcmltl odd odn
C TABLE 11-2 SIGNIFICANT PARAMETER TRENDS DURING A SBO*
<0
__o___>
o CA 0
z 0
TIME ACTIVITY/EVENT RCS RCS RCS RCS RCS RCS RCS c(
min LEAKAGE CHARGING PRESSURE Tcold Thot FLOW SUBCOOL R
ibm/sec ibm/sec psia F
F
%flow
-ING(F) 0 Steady State 0
0 2100 527.0 576.0 100 66.9 C Cn f u l l p o w e r a____
0.1 Reactor at 10%
24.2 0
2062 526.5 572 68 68.2 a-.
power 2.1 letdown leakage 14.6 0
1885 515.1 557.3 10 70.3 Z
reduced 3.1 manual ADV 14.3 0
1838 515.8 539.7 7
84.3 C
3:
control
_)
0 a
o y
4.7 AFW flow starts 14.2 0
1870 528.3 539.6 4.9 86.8 a
P>
Z 20.8 Pressurizer 14.0 0
1587 535.4 558.1 4.4 45.8 c
0 empty
_o__
27 RCS at 13.9 0
1133 534.7 559.6 4.7 0
W a
Saturation
-_C o
45 RV upper head 13.9 0
1073 535.3 553.1 4.4 0
5 o
voided a
0 55 Intermediate 13.9 0
1061 535.5 551.6 4.0 0
0 condition
-00 2
60 Outlet plenum 13.9 0
1067 535.4 551.0 4.1 0
Z z 40% voided 0 0 60.3 Charging starts 13.9 26.9***
1065 520.2 552.0 4.8 0
0 100% flow = 20,278 lbm/sec ADV in automatic mode prior to this time M
Based on an estimated charging flow of 150 gpm f
+from Fiche ECFUELA J1262 r"
TABLE 11-2 (continued)
SIGNIFICANT PARAMETER TRENDS DURING A SBO, TIME ACTIVITY/EVENT S. G.
S. G.
PRESSUR VESSEL S.G.
AUXILIARY 0
mi SECONDARY SECONDARY
-IZER MIXTURE SECONDARY FEEDWATER z
V PRESSURE TEMP.
LEVEL HEIGHT" LEVEL" FLOW" psia F
ft.
%NR pm
-mmm aeem ommzu 0
Steady state 547 476.0 37.5 35.82 30 0
U) full power 0.1 Reactor at 10%
670 497.9 35 35.82 28.8 0
0Em power 2.1 letdown leakage 717 505.4 19.6 35.82 0
0 reduced 3.1 manual ADV 856 525.6 15.9 35.82 0
0 control 4.7 AFW flow starts 895 530.8 17.0 35.82 0
370 20.8 Pressurizer 927 535.0 0
35.82 61 167.8 Z
empty 27 RCS at 927 535.0 0
35.25 65 84.2 Z
saturation 45 RV upper head 926 535.0 0
29.26 65 93.4 o
voided 55 Intermediate 926 535.0 0
26.80 64 104.1 condition 60 outlet plenum 925 535.0 0
25.58 67 54.7 40% voided 60.3 Charging starts 925 535.0 0
25.54 67 48.0 Top of the core 19.82 ft.
Top of hot leg = 25.55 ft.
Top of Lower head = 29.32 ft.
" Actual AFW flow would be as little as 270 gpm at S.G. Pressure of 923 psia. The RETRAN analysis used 370 gpm during the period of S.G.
recovery (15 min.) after which flow is manually throttled. Use or actual minimum flows have negligible impact on ana1 ysis re AFW flows used are best estimate values and should not be considered design Dasis a5 ues.A 1"MT
NES&L DEPARTMENT CALCULATION SHEET FEcUMo.
PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CcN CONVERSION:
CcN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
9 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE V. F. Nazan 6/21/91 W. Alhassi 6/21/91 III.
ASSUMPTIONS A) NUMARC2 BASED
- 1. The reactor is operating at 100% power for 100 days and at normal operating conditions at the time of the blackout.
2., All reactor support systems are within normal operating ranges.
- 3. The blackout does not occur during a design basis event.
- 4. Single failure criteria are not considered since SBO is not considered a design basis event.
- 5. The RCS pump seal leakage (cold) will not be greater than 25 gpm/pump.
- 6. The coping duration Is four (4) hours.
- 7. The initiating event is a-loss of offsite power.
B) OPERATIONS BASED
- 1. The Nominal pressurizer level at 100% power is 37.5%.
This is the expected Pressurizer level at 551.5 F (i.e. based on the reduced Tavg program - see assumption B.2)2 (confirmed by E-mail from Operations -- see Appendix B).
NUMARC permits use of the nominal pressurizer level as the initial condition of the blackout (see assumption A.1 & A.2).
- 2. The plant is using a Reduced Tavg program (due to the steam generator tube corrosion and plugging)".
- 3. The total unidentified and identified leakage is less than 6 gpm (requirement from Section 3.1.4 of the tech. specs.7).
C) EO4' BASED
- 1. Steam generator level will be maintained between 50% and 70% NR during the blackout.
NES&L DEPARTMENT CALCULATION SHEET IooNO./
C PREUM. CCN NO.
PAGE OF Project sr DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
10 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar t 6/21/91 W. Alhassa I 6/21/91 E
- 2. Auxiliary feedwater flow will be provided to the steam generators to maintain the steam generator level between the above limits.
Auxiliary feedwater flow is provided through the turbine driven pump (G-1 0). The operator can throttle flow to the steam generators to maintain the Steam generators within these limits'.
- 3. The DSD can be powered up to restore charging capacity within one hour after the initiation of the blackout 6.
- 4. The number of steam generator tubes plugged will be less than 20%2. The safety analysis for Unit 1 cycle 11 assumes S.G. tube plugging of 20%. Therefore this assumption is used here.
- 5. The atmospheric dump valves are placed in manual mode to maintain plant subcooling conditions 3 minutes after initiation of the event. This is an expected operator action. However, this assumption will not compromise the conservatism of this calculation. If the manual operation of the ADV's were not credited, decay heat removal will still occur through automatic control of the ADV's and also through the Main Steam Safety Valves (MSSV).
- 6. The letdown leakage for the first two minutes after the blackout will be less than 90 gpm (i.e. 70 gpm greater than the leakage after blackout initiation). The 90 gpm value is the normal maximum letdown leakage (Section 9.3.4 of Reference 10). The letdown valve closure time is expected to be less than 30 seconds8.
Therefore the assumption of a 90 gpm letdown leakage for 2 minutes since the initiation of the SBO is conservative.
- 7. The total letdown system leakage (cold) after the first two minutes is less than 20 gpm. This is the maximum expected leakage from the letdown orifice isolation valves after the letdown system is isolated 8.
- 8. Control rods are fully inserted within 3 seconds after initiation of the blackout'2.
- 9. No other leakage resulting in RCS water inventory drain exists.
- 10. The reactor trip is caused by the instantaneous loss of all AC. This produces the
NES&L DEPARTMENT CALCULATION SHEET EUMN PREUJM. CON No.
FPAGE;O.5 Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
11 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
DER V. F. Nazar 6/21/91 W. Alhassan' 6/21/91 loss of the turbine bypass system which causes the initial opening of the ADV's.
The ADV's are air operated and have Nitrogen backup.
Therefore they will continue to be operable during a blackout.
- 11. Control room adequacy and battery are assured to function during the entire coping duration'.
- 12.
The minimum Auxiliary Feedwater flow delivered to all three steam generators at a secondary side pressure of approximately 923 psia, when driven by pump G-10 will be at least 270 gpm.
The actual minimum deliverable flow is expected to be between 288 gpm and 300 gpm.
Therefore, it is conservative to assume a minimum deliverable flow of 270 gpm.
NES&L DEPARTMENT CALCULATION SHEET I36o
.,O PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
ICN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
12 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
- v. F. Nazar th 6/21/91 W. Aiha 6/21/91E IV.
DESIGN INPUT Table IV-1 shows the design inputs used to determine the RCS inventory during the station blackout. The auxiliary feedwater flow that will be automatically delivered to each S.G. by means of the steam driven auxiliary feedwater pump (G10) is shown in Table IV-2. Some of the significant external inputs that require further explanation are described as follows:
(i)
RCS Leakaqe -- NUMARC 87-00 suggests using the assumption of leakage rates of 25 gpm per pump seal (i.e. total seal leakage of 75 gpm). The Unit 1 technical specification 3.1.4 permits a maximum allowable unidentified and identified leakage of 6 gpm. The letdown leakage limit is assumed to be 90 gpm until the letdown isolation valves are closed (i.e. for the first 2 minutes of the blackout) and subsequently 20 gpm for the remaining duration of the transient. Therefore the total leakage assumed is 171 qpm for the first 2 minutes of the blackout and 101 gpn for the rest of the coping duration. On a loss of all ac power, the letdown system is automatically isolated. This occurs by closure of valves CV-202, CV-203
& CV-204 along with CV-525 and CV-526 (See note in letdown system drawing21).
The closure time for the letdown isolation valves is less than 30 seconds.
For conservatism the closure time of 2 minutes is used in this calculation.
(ii)
Auxiliary Feedwater -- After initiation of the blackout, main feedwater is not available as a decay heat removal system. Auxiliary feedwater however is available since it is driven by the steam driven auxiliary feedwater pump (G-1 0). AFW flow is automatically initiated when the SG level reaches a setpoint value of 5% NR (Table 5.5-3 of Reference 10). It is then assumed that the delay time for the pump to be available to deliver flow into the S.G.'s is 3 minutes (Section 6.5.2.2.3 of Reference 10). Thereafter once the S.G. level has reached between 50% and 70%
NR, the operator manually throttles the AFW flow to maintain this level in the
NES&L DEPARTMENT CALCULATION SHEET
_CN No.
PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
ccN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
13 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
E V. F. Nazare h 6/21/91 W. Alh ani 6/21/91 S.G.'s 4. The philosophy employed here is to maintain temperature and Pressure control in the Secondary side and consequently in the primary side and thus continue to have this system available for decay heat removal.
(iii)
Charqing Flow -- After one hour the charging pump when powered by the DSD restores charging flow to the Reactor. From Table 11-2, the RCS pressure at this time will be 1067 psia. The charging flow capable of being delivered at this pressure will be at least 198.5 gpm*. However for this calculation a conservative value of 150 gpm charging flow is used. This minimum charging flow will be maintained from 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> to the end of the coping duration (i.e. 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />).
- Note that in this analysis it is only important that the charging flow delivered be greater than 101 gpm so that the RCS water that is lost due to the leakage can be made up.
NES&L DEPARTMENT CALCULATION SHEET ICCN No.
PREUM.CCN NO.
PAGE OF Project br DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CcN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
14 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar 6/21/91 W. Alhassani 6/21/91 E
TABLE IV-1 DESIGN INPUT FOR STATION BLACKOUT A. INITIAL CONDITIONS PARAMETER VALUE REFERENCE COMMENTS
- 1. Core Power 1347 MW 10 100% Rated Power
- 2. Core Average Temp.
551.5 F 11 At 100% power
- 3. RCS Pressure 2100 psia 10
- 4. Pressurizer level 37.5%
Nominal level
- 5. S.G. Pressure 547 psia 11 at 100% power
- 6. S.G. Mass 43,000 lbm 17 per S.G.
- 7.
S.G. Tubes plugged 20%
11,20
- 8. S.G. Level 30% NR Nominal
- 9. Vessel Flow Rate 195,000 gpm 10,20
- 10.
Vessel mass flow 73*106 lb/h 10
- 11.
Core mass flow 69.7*106 lb/h 10
- 12.
Core bypass flow 4.5%
10
- 13.
Heat generated in Fuel 97.4%
10
- 14.
No load Ref. Temp.
535 F 11 B. AFTER BLACKOUT INITIATION PARAMETER VALUE REFERENCE COMMENTS
- 1. RCS leakage for initial 2 min.
171 gpm see Section IV discussion
- 2. RCS Leakage after initial 2 min.
101 gpm see Section IV discussion
- 3. S.G. NR Level 50%-70%
4 Manually maintained
- 4. Auxiliary Feedwater Auto. initiation 5% NR 10 see Section IV discussion
- 5. Aux. Feedwater Auto initiation delay 3 min.
10 see Section IV discussion
- 6. ADV manual initiation time delay 3 min.
4,5 Assumption
- 7. ADV relief Capacity 1.468x106 12 lbm/hr
- 8. RCP flywheel inertia 45,000 12 1bm/ft2
- 9. Charging Initiation 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> See Section IV discussion
- 10.
Charging flow 150 gpm See Section IV discussion
NES&L DEPARTMENT CALCULATION SHEET PCCNNO._
PREIJM. CCN NO.
PAle o-1 Project or OCP/MMP Calc. No. DC. 3801 CcN cNvEFMMON:
Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOT Sheet No.
15 REV ORIGINATOR DATE IRE OATE REV ORIGINATOR DATE IRE AE R
V. F. NazarX 6/21/91 W. Alhas 6/21/91E TABLE IV-2 AUXILIARY FEEDWATER FLOW FOR STATION BLACKOUT PUMP DISCHARGE PRESSURE AFW FLOW (Psia)
(Gpm) 0.0 123.3 995.0 123.3 1030.0 115.0 1055.0 108.3 1125.0 88.3 1155.0 64.3 1185.0 50.0 1240.0 33.3 The AFW flow shown in this table was derived from Figure 2-1 of Reference 16 and used in the RETRAN case.
However, the actual flow expected to be delivered to each S.G. through the steam driven AFW pump G-10 will be at least 90 gpm. This will not significantly affect the results of this calculation since reduced AFW flow has a negligible effect on RCS water inventory change and the reduced flow remains sufficient to meet decay heat removal requirements. The lower initial AFW flow will slightly delay the recovery of S.G. secondary side level relative to the RETRAN results.
However, once the S.G.
level has reached 50% NR, the operator will throttle the AFW flow to maintain S.G.
level.
The secondary side results will then be consistent with the RETRAN values. For these reasons the lower AFW flow will not impact the RCS water inventory level nor will it significantly impact the ability of the system: to remove core decay heat.
AFW flows used are best estimate values and should not be considered design basis values.
NES&L DEPARTMENT CALCULATIONCC SH ENso./
CALCULATION SHEET PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc, No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
16 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar 6/21/91 W. Alhassa i 6/21/91 V.
METHODOLOGY A.GENERAL The RCS Inventory Analysis is performed based on the expected operator actions during a blackout as enumerated in EOI S01-1.0-60 and the expected Plant responses described in the Background Document for this EO5. The simulation of the blackout and consequent plant actions and response is modeled using the RETRAN computer code.
The results of the computer code will then be verified by a simplified hand calculation.
B. RETRAN CODE MODEL The basic RETRAN model for Station Blackout was developed for the analysis performed to demonstrate the adequacy of the leakage technical specification (T.S. 3.1.4) and in response to LER 90-0041e. A complete description of the input model used for this LER analysis is documented in Reference 12. The RETRAN nodal diagram describing the control volumes and junctions used in this analysis is shown in figure V-1.
The code control systems for auxiliary feedwater flow and steam bypass are described in Figures V-2 and V-3.
The modifications made to the basic model12 for this analysis are shown on Table V-1. The primary modifications along with the reasons for the changes are described as follows:
- 1.
RCS Leakage -- The base model had the total RCS leakage only from one loop (i.e. volume 18). This approach is acceptable until such a time as the Pressurizer is drained.
Thereafter the imbalance in the leakage appears to affect the convergence of the code. Therefore, a new junction (junction 51) was added for leakage from the other loops (i.e. volume 36). The amount of leakage through junction 50 will thus be reduced to one third of the total leakage and through junction 51 will be two thirds of the total leakage (since loops A & C are modeled IJ
NES&L DEPARTMENT ICCN NO./
CALCULATION SHEET oUo PREUM. CCN NO.
PAGE OF project or DCP/MMP Calc. No. DC - 3601 CcN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
17 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazare 6/21/91 W. Alhassard 6/21/91 VV together as one loop).
The HOT leakage is determined as follows:
'hot
= Lcold * (dcoddhot)
- where, Lhot = Hot leakage (gpm)
Lcold = Cold leakage (gpm) dhot = density of water at 535 F
= 47.7 Ibm/ft3 dcold = density of water at 80 F
= 62.6 Ibm/ft3 The HOT leakage per RCS loop thus becomes 74.67 gpm (171*1.31/3) for the first 2 minutes of the SBO and 44.1 gpm (101 *1.31/3) thereafter for the coping duration of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
- 2.
Charging -- The base model does not account for charging flow into the RCS system one hour after the SBO initiation. Therefore two extra junctions were added to provide this function (junctions 48 and 49). The amount of charging through these junctions will be one third through junction 48 and two thirds through junction 49. The hot charging flow per RCS loop will thus be 65.5 gpm (150*1.31/3) to be initiated one hour after the initiation of the SBO for the remaining 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> of the coping duration. In addition a charging initialization card was included to permit the initiation of charging flow.
- 3.
RCS Flow Rates & Temperatures -- The base model flow rates were recalculated here based on the values from Table 4.4-1 of the FSAR10. Table V-2 shows the vessel flow rate, core flow rate and the calculation of the vessel inlet and outlet temperatures with the caveat that the Tavg will be maintained at 551.5 F (i.e. the Reduced Tavg program).
- 4.
Bubble Rise Models -- The base model was developed for a RCS leakage of only 27 gpm. The criteria used was Pressurizer drain. Since the criteria here is core
NES&L DEPARTMENT CALCULATION SHEET ICEeN.NNO PAGE OF PREUIM. CON NO.PAEO Project or DCP/MMP Calc. No. DC -'3601 CCN CONVERSION:
cON No. CCN Subject SONGS I RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
18 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar 6/21/91 W. Alha 6/21/91 uncovery and the outlet plenum and upper head drain, a bubble rise model is included for the outlet plenum volume 6 (a bubble model in the upper head was in the original model). The model parameters are the same as for the upper head (i.e. Volume 7).
- 5.
Volume overlaps -- Due to the occurrence of bubbles in Volumes 6 & 7, RETRAN was not converging at the time that volume 7 was drained. Therefore, the volume height of volume 6 was adjusted to 9.6 inches to produce an overlap of 0.1 inches (old value was 9.5 inches). For the same reason the volume height of volumes 11, 16, 29 & 34 were also adjusted to 8.605 inches to produce an overlap of 0.1 inches (old value was 8.505 inches).
- 6.
Steam Generator Adjustments -- The mass of water in the secondary side of each S.G. is 43,000 Ibm. However, the code model is set up to accept only volumes.
Therefore, the volume of the S.G.'s are adjusted to result in this S.G. water mass (i.e. Volume 50 = 1395, Volume 60 = 2906). In addition the initial S.G. liquid level and gain are adjusted to 22.2938 and 0.1044 to obtain an initial S.G. liquid level of 30% NR.
- 7.
AFW control block -- The automatic AFW flow injection is modeled to inject water into the S.G.'s when the S.G. low level reaches 5% NR with a time delay of 3 minutes to account for valve stroking, transit time and time for the pump to get to full speed. The base model erroneously set the trip function for AFW initiation on a parameter for ADV control. This error was conservative in Reference 12 since the AFW would be actuated later than if it was correct. However, for this analysis this error is corrected (Card # 040030).
- 8.
Time step -- In order to reduce the unnecessary time steps and consequently the code execution time, the time steps after the first hour of the transient are changed from 0.05 sec to 0.10 sec..
This will not compromise any of the results or conclusions of the code.
NES&L DEPARTMENT CALCULATION SHEET 1CCN NO PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
19 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaret 6/21/91 W. Alhassa i 6/21/91
- 9.
Problem Run Time --
The NUMARC guideline coping duration is 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
However, the charging flow powered by the DSD diesel is restored after one hour.
Therefore, the simulation need be performed only for one hour. This simulation is performed for 30 minutes more (i.e. 90 minutes) to simulate some of the recovery process once the charging is restored.
NES&L DEPARTMENT CALCULATION SHEET ICCN NO.
PREUM. CCN NO.
PAGE OF_
Project or DCP/MMP Caic. No. DC - 3601 cN cONVERSON:
cCN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
20 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. NazaretV 6/21/91 W. Alh 6/21/91 TABLE V-1 LIST OF MODIFICATIONS TO BASIC SBO MODEL No. Card #
Parameter Modified value Base Value Purpose
- 1. 010001 No. of minor
-54
-40 More detail output edits printed
- 2. 010001 No. of trip 20 19 Additional trip for functions charging actuation
- 3. 010001 Number of bubble 10 9
Addition of set for Sets outlet plenum vol 6
- 4. 010001 Number of junctions 51 48 Addition of junctions for second leakage path and charging(2)
- 5. 010002 Number of fill 14 13 Addition of fill tables table for charging
- 6. 02000x Minor Edits Printing more output variables
- 7. 0300x0 Edit frequency Changes in output edit print frequency
- 8. 030060 Time steps
.10
.05 less frequent time steps after 1 hr.
- 9. 040010 Problem run time 4800 7200 Running problem for 1.5 hrs.
- 10. 040030 Control block
-20
-13 Correction of AFW error
- 11.
040200 Charging trip New charging initialization card
- 12. 050011 Vessel inlet temp.
527 528 corrected value
- 13.
050061 Bubble set 10 Assigning new bubble model set for vol 6
NES&L DEPARTMENT ICCN NO./
I CALCULATION SHEET
[PREUM.CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 ccN CONVERSION:
21 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaret 6/21/91 W. Alhassani 6/21/91 E
No. Card #
Parameter Modified value Base Value Purpose
- 14. 050061 Volume 6 height 9.6 9.5 Changed to get.1" vol 6/7 overlap
- 15. 050071 Vessel outlet temp. 576 575 corrected value
- 16.
050111 Volume 11 height 8.605 8.505 Increased to get 0.1 in.
vol 11/12 overlap
- 17.
050161 Volume 16 height 8.605 8.505 Increased to get 0.1 in.
vol 15/16 overlap
- 18.
050291 Volume 29 height 8.605 8.505 Increased to get 0.1 in.
vol 29/30 overlap
- 19. 050341 Volume 34 height 8.605 8.505 Increased to get 0.1 in.
vol 33/34 overlap
- 20. 050501 S.G. "B" Volume 1395 1310 water vol. adjusted to 43,000 lbm
- 21.
050601 S.G. "A+C" volume 2906 2620 Water vol. adjusted to 86,000 lbm
- 22. 060101 Bubble set Bubble rise model for vol 6 same as vol 7
- 23.
080011 Junction 1 19,361 20,583 Corrected core flow rate flow rate
- 24. 080081 Junction 8 6,759 7,110 Corrected Loop "B" flow rate flow rate
- 25. 080091 Junction 9 6,759 7,110 Corrected Loop "B" flow rate, flow rate
- 26. 080211 Junction 21 20,278 21,330 Corrected vessel flow rate flow rate
- 27.
080311 Junction 31 13,519 14,220 Corrected Loop 'A+C' flow rate flow rate
- 28. 080511 Junction 51 36 New RCS leakage path from volume 36
NES&L DEPARTMENT CALCULATIONCC SHENeuo.
CALCULATION SHEET PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN No. CCN Subject SONGS I RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
22 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaret 6/21/91 W. AlhascVi 6/21/91 V
No. Card #
Parameter Modified value Base Value Purpose
- 29. 080511 Junction 51 2.0 Area doubled to double leakage
- 30.
080512 Junction 51 continuation card for new junction 51
- 31.
131301 RCS leakage
-74.67
-35.4 total leakage per RCS loop for first 2 min
- 32.
131302 RCS leakage
-74.67
-35.4 total leakage per RCS loop for first 2 min
- 33.
131303 RCS leakage
-44.1
-35.4 total leakage per RCS loop after 2 min
- 34. 131304 RCS leakage
-44.1
-35.4 total leakage per RCS loop after 2 min
- 35.
131401 Charging flow 0.0 No charging flow at initiation of SBO
- 36.
131402 Charging flow 0.0 No charging flow for one hour of SBO
- 37.
131403 Charging flow 65.5 Chargingflowafter one hour
- 38. 131404 Charging flow 65.5 Chargingflowafter one hour
- 39. 702003 RCS Flow Rate 4.93*10-5 4.69*10-5 Adjust initial ain (1/vessel flow)
- 40. 702007 Vessel outlet temp. 576.0 575.01 Corrected value
- 41.
702008 Vessel inlet 527.0 528.02 Corrected value temperature
- 42. 702009 S.G. Liquid level 22.2938 22.3838 Adjusted to match steady state value
- 43.
703020 S.G. Level Gain 0.1044 0.1012 Adjusted to get initial 30% NR
NES&L DEPARTMENT CALCULATION SHEET oCC NO.
IPAGEOF PREUM. CCN NO.PAEO Project or DCP/MMP Calc. No. DC - 3601 ccN CONVERSION:
ccN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
23 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaeg 6/21/91 W. Alhass 6/21/91 E
TABLE V-2 CALCULATION OF RCS FLOWS AND TEMPERATURES The basic equation to calculate heat transfer in the core is:
DHC=Q Mc........................ Equation5.1
- where, DHC
= Enthalpy Rise in the Core Q = Heat generated in core
= (4.596
- 10)
- 0.974 = 4.477
- 10 Btu/hr (Reference 10*)
Mc= Core mass flow rate
-69.7
- 106 ibm/hr...
(Reference 10*)
Therefore substituting in Equation 5.1, DHe
= 64.2 Btu/lbm The enthalpy changes in the core can be stated as:
havg = (hov + hn) / 2.0
.... Equation 5.2 and DHe
=ho -h
.... Equation 5.3
- where, havg =average enthalpy in the core
= h(P=2100 psia, T =551.5 F) (This is an approximation)
= 549.3 Btu/lbm (Yr'om steam tables) hav = Vessel outlet enthalpy hin = Vessel inlet enthalpy hoc = Core outlet enthalpy Therefore combining equations 5.2 and 5.3 and substituting for known quantities, hav+ho = (2
- 549.3) + 64.2
= 1162.8
................ Equation 5.4
NES&L DEPARTMENT CALCULATION SHEET caN NO.
PREUIM. CCN NO.
PAGE
.OF Projector DCP/MMP Caic. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
24 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazare~j 6/21/91 W. AlhasW 6/21/91 E
IN V
From Reference 10* the difference between the vessel temperature rise and the core temperature rise at full power is 2 F (i.e. 49.3 - 47.3)
Therefore, assuming that the core exit temperature and the vessel exit temperature are between 570 and 580 F and interpolating from the steam tables for a pressure of 2100 psia, hav - hoc = -2.6
.................. Equation 5.5 Combining Equations 5.4 and 5.5 results in, hav = 1160.2/2
= 580.1 Therefore, Tov = Vessel outlet Temperature T (P=2100 psia, h,=580.1 Btu/lbm)
575.4 F Substituting in Equation 5.2, hi
(2
- 549.3) -
580.1
= 518.5 Therefore, Ti= Vessel inlet temperature
= T(P=2100 psia, hin=518.5 Btu/lbm)
= 526.4 F Subsequently, Calculated T,,g = (575.4 + 526.4) / 2.0
= 550.9 F Since the actual Tag = 551.5 F, the values of Tin and To. are adjusted by +0.6 F.
Therefore the values input into RETRAN are as follows:
Ti
= 527 F T0v = 576 F hi
= h(p=2100 psia, T=527 F)
= 519.3 Btu/lbm
NES&L DEPARTMENT CALCULATION SHEET MN PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC
- 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
25 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazare 6/21/91 W. Alhassani 6/21/91 j hav = h(p=2100 psia, T=576 F)
= 580.8 Btu/Ibm M = Core mass flow rate
= (69.7
- 106 lbm/hr) / (3600 Sec/hr)
= 19,361 ibm/sec M = Vessel mass flow rate (73
- 106 1bm/hr) / (3600 Sec/hr).....
(Reference 10*)
= 20,278 ibm/sec
= 6,759 ibm/sec per RCS loop
- from Table 4.4-1
NES&L DEPARTMENT CALCULATION SHEET N No.,
[PREUM. CCN NO.
PAGE O
'Project or DCP/MMP CaIc. No. DC - 3601 CCN CONVERSION:
ccN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
26 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaret 6/21/91 W. Alhassan 6/21/91 E
V)V C) q0.
£>
00 oA z
z OQ
NES&L DEPARTMENT CALCULATION SHEET REMo.
PREUM. CCN NO.PAGEOF Project or DCP/MMP Calc. No. DC
- 3601 CCN CONVERSION:
CCN NO. CCN -
Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
27 IE REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazaret 6/21/91 W. Alhasi 6/21/91 V
V CL C
CL0 QU EI*
d............
O3 d)
~
1 t~JL5 T
07 4.)
2 S
46 eeE da
NES&L DEPARTMENT CALCULATION SHEET N
No PREUM. CCN NO, PAGE O
Project or DCP/MMP Calc. No. DC - 3601 CCN CONvERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
28 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazare 11 6/21/91 W. Alhassani 6/21/91 OV U
z uJ C
O O0 O)
C L
CD i
0 L~
L Q) t 4 L.
U E7~O(.
Ln z
C3-~
NES&L DEPARTMENT CALCULATION SHEET
_ooN No.
PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CON CONVERSION:
A&
[CCN No. CCN Subject SONGS I RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
29 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazareto 6/21/91 W. Alhassani 6/21/91 VI.
REFERENCES
- 1.
Code of Federal Regulations, 10CFR50.63.
- 2.
NUREG 1.155, "Station Blackout', August 1988.
- 3.
NUMARC 87-00, "Guidelines and Technical Bases for NUMARC initiatives addressing Station Blackout at Light Water Reactors", November 1987.
- 4.
EOI S01-1.0-60, Rev. 9, "Loss of all AC power", February 13, 1991.
- 5.
EOI S01-1.0-60.1, Rev. 2, "Background Document for Loss of all AC power", April 10, 1990.
- 6.
Letter for M.O. Medford (SCE) to NRC "Docket Nos. 50-206, 50-361, 50-362; Response to 10 CFR 50.63, Loss of all alternating current power; San Onofre Nuclear Generating Station Units 1, 2 and 3", April 17, 1989.
- 7.
SONGS Unit 1 Technical Specifications, Amendment 143.
- 8.
MMP 1-3645.005N, Revision 0 (See sheet 437).
- 9.
DC-3460, "CRS and Charging System Performance", P. Biba, January 9, 1991 (Attachment 46)
- 10.
SONGS Unit 1 Updated Final Safety Analysis Report (UFSAR)
- 11.
PFC # 1-89-003, "Unit 1 Cycle 10 Core Reload", January 23, 1989 (Attachment J).
- 12.
DC-3533, "SONGS 1 RCS Leakage During Station Blackout', Y.P.Ting, March 8, 1991.
- 13.
Intentionally Blank
- 14.
Songs Unit 1 drawing 5178220-16.
- 15.
Crane Reference Manual "Flow of Fluids through valves, fittings and pipe", 1981 (See chapter 1)
- 16.
DC-2836, Supplement B, "AFW Flow Venturi Sizing", May 21, 1990.
- 17.
Letter from H.C. Calton (Westinghouse) to L.K. Carlisle (SCE),"Southern California Edison Company, San Onofre Nuclear Generating Station Unit 1, Main Steamline
NES&L DEPARTMENT CALCULATION SHEET eCNNO/
NO.
-PAGE OF PREUM. CCN NO.PAEO
,Project or DCP/MMP Caic. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
30 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazareth 6/21/91 W. Alh!!I 6/21/91 I
Break M & E Releases for SONGS-1", NS-OPS-OPL-1-90-613, October 26, 1990.
- 18.
LER 90-004, "Potential for Reactor System Leakage greater than Technical Specification Basis, San Onofre Nuclear Generating Station, Unit 1", April 25, 1990.
- 19.
Letter from F.R. Nandy (SCE) to NRC, "Supplemental Response to 10CFR 50.63, Loss of All Alternating Current Power, Station Blackout (TAC No. 68599/600), San Onofre Nuclear Generating Station Units 1,2 and 3", May 1, 1990.
- 20.
Letter from M.F. Muenks (Westinghouse) to P.D. Myers(SCE), "Southern California Edison San Onofre Unit No. 1 Cycle 11 Reload Safety Evaluation Report", 90SC-G 0025, 9/26/90.
- 21.
Songs Unit 1 drawing 5178130-13.
- 22.
SONGS Unit 1 Systems Descriptions, SD-S01 -280-3-3, Revision 2 (See Figure 3).
NES&L DEPARTMENT CALCULATION SHEET 1ooN NO!
.PAGE OF PREUM. CON NO.PAEO Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
31 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazare 6/21/91 W. Alhassa 6/21/91 E
V11.
NOMENCLATURE ADV Atmospheric dump Valve AFW Auxiliary Feedwater Flow AOV Air Operated Valves DSD Dedicated Shutdown Diesel EOI Emergency Operating Instruction LER Licensing Event Report MOV Motor Operated Valves NR Narrow Range (SG level)
NRC Nuclear Regulatory commission NUMARC Nuclear Management and Resource Council RCP Reactor Coolant Pump RCS Reactor Coolant System RV Reactor Vessel SBO Station Blackout SG Steam Generator
NES&L DEPARTMENT CALCULATION SHEET UMNo.
PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
)
ccN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
32 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
EL V. F. Nazaretb 6/21/91 W. Alha 6/21/91 VIII.
CALCULATIONS A. HAND VERIFICATION In order to verify the accuracy of the RETRAN code results a simplified hand calculation will be performed. The purpose of this calculation is strictly to verify that the results are in the realm of reasonableness. The RCS inventory calculated during the station blackout is described in Table Vill-1. As shown on this Table the results of the hand verification calculation compare quite favorably with the results of RETRAN.
Therefore it is concluded that the RETRAN results are acceptable.
NES&L DEPARTMENT CALCULATION SHEET r-CN NO.P PREUM. CON NO.
PAGE OF Project or DCP/MMP Calc. No. DC. 3601 ccN cONERSION:
ccN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
33 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazart 6/21/91 W. Alhassani 6/21/91 E
TABLE VIII-1 VERIFICATION OF RCS INVENTORY BY HAND ESTIMATE RETRAN CONTROL RETRAN LIQUID LEAKAGEb DRAIN TIME (min.)
DRAIN VOLUME VOLUME MASS&
TI ME NO.
NAME NO.
1bm INITIALc REGULAR CONTROL CUMULATIVE min lb/sec lb/sec VOLUME SYSTEM
- 1. Pressur 25 18,447 24.2 14.2 20.2 20.2 20.8
-izer
- 2.
Surge 26 927 0
14.0 1.1 21.3 22.0 Line
- 3.
R.V.
7 17,261 0
13.9 20.7 42.0 45.0 Upper head
- 4.
R.V.
6 13,105 0
13.9 15.8 57.8 60.0 Outlet Plenumf (a) from RETRAN model at steady state (i.e. at time
- 0)
(b) from Table 11-2 (c) for first 2 minutes of SBO only (d) t = {[M -
(Li
- c
- k)] / (Lr
- k)} + c
- where, t = Drain time (minutes)
M = Liquid mass Li = Initial leakage Rate (i.e. for first 2 minutes of SBO)
Lr = Regular leakage Rate (i.e. after first 2 minutes of SBO) k = conversion constant from seconds to minutes (i.e. 60.0) c = initial leakage time in minutes (i.e. 2.0 if initial leakage is greater than 0 or 0.0 otherwise)
(e) from Table II-1 (f) ONLY UNTIL TOP OF HOT LEG (i.e. 39.7% of outlet plenum)
NES&L DEPARTMENT CALCULATION SHET CALCULATION SHEET PREUM. CCN NO.
PAGE OF Project or DCP/MMP Calc. No. DC
- 3601 CCN CONVERSION:
CCN NO. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
34 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. NazareN 6/21/91 W. Alhasi 6/21/91 E
APPENDIX A LISTING OF RETRAN CODE MODEL
e eu 1
= RETRAN ANALYSIS OF SONGS 1 STATION BLACK OUT EVENT (PHASE
- 2) 2 3
m CASE 2: CHARGING SYSTEM MAKEUP 4
m (A
01 0
0 5
w a*****MN
.eamnmanmanm 0emgy 6
0 7
- 1.
'REDUCED TAVG' PROGRAM WITH 20% TUBE PLUGGING "0
8
- 2. RCS LEAKAGE = 171.0 GPM (COLO FOR 2 MINUTES 0
90
"=
101.0 GPM (COLD) THEREAFTER D
1 U
10
- 3.
ADVIS)
ARE MANUALLY OPERATED AFTER 3 MINUTES m
0B 11 INTO THE SBO EVENT.
0 12 K
K
- 4. SG LEVELIS)
ARE MANUALLY HAINTAINED BETWEEN 50 m
C-1 13 K
K AND 70% NR LEVEL.
CO 14 S
- 5. PRESSURIZER INITIAL LEVEL = 37.5%
o 0o 15 K
- 6. STEAM GENERATOR INITIAL LEVEL = 30% NR
(
16 K
- 7. RCS CHARGING
- 150.0 6PM (COLD)
AFTER 1 HOUR o
0 17 0
m n 18 answeenie**n***eK**u*
neKanaenem-n------------ee 19 z
20 011 AT SOF I = 62.6 LBM/FTK*3
-4 21 024 AT 535F
= 47.7 LBM/FTK*3 22 r
23 HOT LEAKAGE 1 /D 02 )
COLD LEAKAGE 00 z
24 K
= (62.6 / 47.7)
- COLD LEAKAGE (0
25 U 1.31 K COLD LEAKAGE M.n 26 0 O 27 K
FOR A COLD LEAKAGE OF 101 GPH 1171 GPM),
ro 28 HOT LEAKAGE = 1.31
- 101 GPM (171 GPM) z 29 K
= 132.31 GPM 1224.01 GPM) m 0
30
= = 44.1 GPM (74.67 GPM)
0 32 HOT CHARGING = I0
/ 02 1
- COLD CHARGING 33 K
= (62.6 / 47.73
- COLD CHARGING D
34 K
= 1.31
- COLD CHARGING 35 0
C 36 FOR A COLD CHARGING OF 150 GPM, A a 37 HOT CHARGING = 1.31
- 150 GPM 0
)
38 a 196.5 GPM C.
m 39 a
40 0 O 41 K ASSUMPTIONS:
2 42 8 0 0
zz0 43
( 1ll THE AUXILIARY FEEDHATER IS DELIVERED TO THE SGIS) BY THE STEAM-0 44 K
DRIVEN PUMP (G-10) KITH 3 MINUTES DELAY AFTER SBO.
45
(
(2) THE RCS LEAKAGE IS MEASURED AT COLD CONDITION 180 F).
46
(
(31 FOLLOWING A SO EVENT, OPERATORS HILL MAINTAIN THE S/G NR LEVEL 0
47 AT BETWEEN 50% AND 70% BY OPERATING THE AUXILIARY FEEDNATER 1I 48 K
PUMP PER EOI SO1-1.0-60.
49 2
O 50 m
51
- PLANT INITIAL CONDITIONS:
52 53 K REF.
- 11)
RELOAD SAFETY EVALUATION, SAN ONDFRE NUCLEAR GENERATING 54 STATION, UNIT 1 CYCLE 10.
55 (2) ACCIDENT ANALYSIS BASIS DOCUMENTATION:
MODULE 11, STEAMLINE 56 RUPIURE FOR SONGS1, HCAP12567, MAY, 1990 57 (3) SO-SO1-280, REVISION 2, FIG. 3.
mI*
58 m
59
- (1 THLRMAL POKER = 1347.0 HT 4100%)
60
- 421 TAVG
= 551.5 F W
Ti 61
- (3) PZR PRESSURE
= 2100 PSIA 62
- 44) PZR LEVEL
= 37.5% (REF.3) 63
- 45) S/G PRESSURE
= 547.0 PSIA 64
- (6) S/G NR LEVEL
= 30%<
0 65
- 17) S/G MASS
= 43,000 LBM (FROM FLB ANALYSIS BY N)
Onm 0
66
- 481 S/G TUBE PLUGGING LEVEL <= 20%
a z
67 z
U) 68
?
- M M
a nn__
69 0
N0a 70 N
N CODE VERSION: RETRANO2-HOD4 N
2 3
71 N
N
(
73 Cc 74 N
m 75
- NNNNN*M PROBLEM CONTROL AND DESCRIPTION DATA - OOO Y MMNeNzNN 76 N
77 N
78 Y----1-----2-----3-----4-----5-----6-----7-----8---9----10----
79 NC) 80 010001 0
-40 6
19 34 9
1 48 2
1 81 010001 0
~54 6
20 34 10 1
51 2
1 NNN THIS CARD IS A REPLACEMENT CARD.
82
<m 83 w
z 84 N----------11----
12----13----14----15----16----17 18 ----
19 ----
20----
via 86 010002 11 13 11 2
4 3
0 0
2 0
0 M
87 010002 11 14 11 2
4 3
0 0
2 0
NNN THIS CARD IS A REPLACEMENT CARD.
88 NA z'
89 N
0 90 N---------- 21----22----23----24----25----26----27----28----29----
30--j 91 0
92 010003 0
0 0
0 0
1 0
0 1
1 2
z 93 0
94 N
95 31---- 32--33 34 ----
35----36----37----38----39----40---
96 N
O 97
- 10004 0
0 1
4 0
0 0
1 0
0 Z
0 98 010004 0
0 1
0 0
0 0
1 0
0 C
mi 99 N4 100 0
0 101 aN*NNNa*NNNN*nN*M PONER*INUCLEAR ONLY)
Nee-an NenNN z
102 N
103 z
0zZ 104 010005 1347.00 N MEGNATTS 4100% POER) 105 106 N
107 M**
NNnnN*ww*new MINOR EDIT VARIABLES 02000Y NN***NanMnnNN*n 108.
z 109 N
$S$$$ VFN MODIFIED $$$$
)
110 N
THESE EDITS HAVE BEEN MODIFIED TO INCLUDE MORE OUTPUT EDITS 111 AND ALSO DELETE SOME IRRELEVANT EDITS 112 N
S$$$$ VFN MODIFIED $$S$
113 N
114 020001 PNRH, 0
- PRES, 25 MIXL, 25 MIXL, 26 MIXL, 7
- TEMP, 9
115 020002 TE1IP, 20 PRES, 60 SPED, 1 SPED, 2
- AVEX, 6 AVEX, 7
D.
116 020003 AVEX, 26 AVEX, 11 AVEX, 12 AVEX, 15 AVEX, 16 HP**, 50 117 020004 HP**,
60 HP**,
70 HP**,
79 NP**,
81 HP**,
91 HP**, 100 118 O0OO04 WP**,
51
- AVEX, 9 HP**,
79 HP**, 81 HP*N, 91 HP**, 100 N
THIS CARD IS A REPLACEMENT CARD.
119 020005 NP**,
120
- COUT, 1 COUT, 3
- COUT,
-1
- COUT,
-2 COUT, -19 m
120 020006 COUT,
-20
- COUT,
-24 COUT, -25 PRES, 50 LIQL, 50 MIXL, 50 rn 121
- 20007 NP*p, 69 HP**, 102 MIXL, 12 MIXL, 15 * $$ VFN REPLACED $S 122 020007 KP*f, 69 NP*#, 102 MIXL, 12 HIXL, 15 TEMP, 26 MIXL, 11 123
<C 124 f
$$ VFN NEW MINOR EDIT CARDS ADDED SSS 0 o 125 z
0 126 020008 TEMP, 12 TEMP, 50 MIXL, 10 MIXL, 17 PRES, 4 TEMP, 4
z 127 020009 MIXL, 4
- AVEX, 4 TEMP, 6 MIXL, 6 PRES, 6 TEMP, 11 0
128 020009 HIXL, 4 AVEX, 4 TEMP, 6 MIXL, 6 WP**, 48 HP**
49
- THIS CARD IS A REPLACEMENT CARD.
O 129 (DmmV 1..
130 f
- COUT, 1 = NORMALIZED PZR LEVEL, 0
131
- COUT, 3 = NORMALIZED RCS FLON, (0) m 132 f
COUT, -2 = TAVG, Cc 133 COUT, -19 = ADV RELIEVING CAPACITY, 134 f
COUT, -20 = S/G NR LEVEL, m
135 f
COUT, -24 = AUXFN FLOW TO S/8 A, 136 f
COUT, -25 a AUXFM FLOW TO S/C SAC.
0 137 33 rr 138 139 ffnfmfnftesttf TIME-STEP ALGORITHM CONSTANTS 030001 answftntttfstff 140 1 4 1 f
140 t
CD c m 142 f
FC3 FC4 FC5 FC6 FC7 FC8 FC9 Z
143 Uw 144
- 030001 0.0 0.0 10.0 10.0 0.0 0.0 0.0 145 0
0 146 a)
(
147 ft r'B 148 MMfaffnfansweefewanswf TIME STEPS DATA 03XXXO nefttftefemannt n*an 149 f
150 VFN CHANGES MADE 151 f
BETWEEN 1000 AND 3600 SECS Z
C 152 f
NO CHANGES TO EXECUTION TIME STEPS W
153 f
MAJOR EDIT PRINTED EVERY 100 SECS INAS 200 SECSI 154 BETWEEN 3600 SECS AND END OF EXECUTION 155 t
--, EXECUTION TIME STEPS EVERY 10 SECS INAS 5 SECS)
C 156 M
MAJOR EDIT PRINTED EVERY 400 SECS INAS 500 SECS) 5 0
157
$$$ VFN CHANGES MADE
$4$
r Z 159 0
160 f
NHIN NHMAJ NDMP NCHK DELTH DTHIN TLAST 0
161 z
162 030010 100 5
9000 0
0.01 0.0 10.0 6
163 030020 100 25 9000 0
0.01 0.0 100.0 Do 164 030030 100 50 9000 0
0.02 0.0 500.0 165 030040 250 20 9000 0
0.02 0.0 1000.0O 166 030050 200 20 9000 0
0.05 0.0 3000.0
- o 167 030060 400 25 9000 0
0.05 0.0 1.OE+6 m
168 030050 200 10 9000 0
0.05 0.0 3600.0 Mft THIS CARD IS A REPLACEMENT CARD.
169 030060 200 20 9000 0
0.10 0.0
.OE*6 THIS CARD IS A REPLACEMEN[ CARD.
m Q
171 M
172 MMMMteanffwanswmaneffne TRIP CONTROLS -
04XXXO annamzfannefwansweens z
173 f
174 I
175 TRIP SIG 176 t4XXXO ID ID IXI IX2 SETPT DELAY 177
-<Mn 178 040010 1
1 0
0 7200.0 0.0
- PROBLEM RUNNING TIME m
m
179 040010 1
1 0
0, 4800.0 0.0
- PROBLEM RUNNING TIME
- NN THIS CARD IS A REPLACEMENT CARD.
181 040020 2
1 0
0 0.01 0.0
- SBO OCCURS/RCPS TRIP M
182 183 040030 3
-14
-13 0
0.05 180.0
- STEAM-0RIVEN AFN PUMP 184 040030 3 -14
-20 0
0.05 180.0
- STEAM-DRIVEN AFN PUMP NNN THIS CARD IS A REPLACEMENT CARD.
U) 185 NOPERATION 0
0m 186 040040 4
1 0
0 0.0 0.0
- MFH OPERATION z
a 187
-)
188 PRIMARY PORVS AND SRVS ----------
189W 0
190 040050 5
4 25 0
2215.0 0.0
- PORV SETPOINT 42 VALVES) 03 191 040060
-5
-4 25 0
2190.0 0.0
- RESET 1ASSUMPTION) z 192 mA 193 N
PORV SETPOINTS = 2200/2215 PSIA (PAGE 17, SD-SO1-280) 194 195 040070 6
4 25 0
2525.0 0.0
- SRV SETPOINT 12 VALVES)
Z 0
196 040080
-6
-4 25 0
2450.0 0.0
- RESET IASSUMPTION)
-4 m
197 198 M
PZR SRV SETPOINTS = 2500/2525 PSIA (PAGE 19, SD-SO1-280) 199 M
200 201 SECONDARY SAFETY VALVES --------
202 203 040090 7
4 70 0
1000.0 0.0
- MSSV 31 SETPOINT 204 040100
-7
-4 70 0
950.0 0.0
- RESET (ASSUMPTION) c)
205 n
0
-i 206 040110 8
4 70 0
1015.0 0.0
- MSSV 82 SETPOINT 0
207 040120
-8
-4 70 0
965.0 0.0
- RESET (ASSUMPTION) 0 208
>a 209 040130 9
4 70 0
1035.0 0.0
- MSSV 83SETPOINT co m
0 210 040140
-9
-4 70 0
985.0 0.0
- RESET 4ASSUMPTION)
O 211
- 0 212 040150 10 4
70 0
1045.0 0.0
- MSSV 84 SETPOINT 2
z 213 040160 -10
-4 70 0
995.0 0.0
- RESET (ASSUMPTION) w 214 S;
215 040170 11 4
70 0
1050.0 0.0
- MSSV 85 SETPOINT 216 040180
-11
-4 70 0
1000.0 0.0
- RESET (ASSUMPTION)
O 217 0
0 m
122 0 218 040190 25 1
0 0
0.01 0.0
- LEAKAGE INITIALIZATION
(
219 220 N
VFN CHANGES
$20 221 NEN TRIP SEQUENCE ADDED FOR CHARGING ACTUATION z
222 VFN CHANGES
$8 223 z z 224 040200 26 1
0 0
0.01 0.0
- CHARGING INITIALIZATION z
225 0 2 226 0 0 227
(
228 ann**ewnaesVOLUME DATA -
05XXXCY SY=15 (j)au~nwenwn 229 230 N
VFN CHANGES MADE
$$8 Un 231 N
IN VOLUME 6 (LONER REACTOR VESSEL HEADI 232 N
BUBBLE RISE MODEL INCLUDED IHAD NO B.R. MODEL) 233 INCLUDED OVERLAP OF 0.1 INCHES BETWEEN VOLUME 6 8 7 234 (IHAD NO OVERLAP) 235 INLET AND OUTLET TEMPERATURES CORRECTED 236 VOLUME 1 TEMPERATURE 527 F (HAS 528 F) 237 VOLUME 9 TEMPERATURE 576 F 1HAS 575 F) 238 IN VOLUMES 11, 16, 29, 34
..... m <m2
239 INCLUDED OVERLAP OF 0. 1 INCHES IN VERTICAL JUNCTIONS 240 w
BETHEEN THESE JUNCTIONS AND THOSE ABOVE THEM (I.E.
241 M
JUNCTIONS 12, 15, 30, 331 (HAD NO OVERLAP) 3D c
242 u
$$8 VFN CHANGES MADE
<S$
243 a
244 0
245 12 3
4 5
6 7
8 9
10 0
0A 246 Y
IB IR P
H X OR VOL ZVOL ZM FLONL FLONA C) 247 M
zi
'a 248 050011 0 0 0.0 520.1 0.0 758.7 9.82 9.82 9.82 1.0E+9 249 M
(528.0 F) 250 050011 0 0 0.0 519.3 0.0 758.7 9.82 9.82 9.82 1.0E+9 THIS CARD IS A REPLACEMENT CARD.
251 0
0527.0 F) 1 2
05001 0
0 0.0 0.0 0.0 117.0 3.33 3.33 3.33 46.60 z
253 050031 0 0 0.0 0.0 0.0 117.0 3.33 3.33 3.33 46.60 254 050041 0 0 0.0 0.0 0.0 117.0 3.33 3.33 3.33 46.60 jQO 255 050051 0 0 0.0 0.0 0.0 135.5 10.0 10.0 10.0 1.94 Z
256 050061 0 0 0.0 0.0 0.0 734.0 9.5 9.5 9.5 1.OE+6 W
a C) 257 050061 10 0
0.0 0.0 0.0 734.0 9.6 9.6 9.6 1.OE+6
- en THIS CARD IS A REPLACEMENT CARD.
258 050071 4 0 0.0 579.9 0.0 383.1 6.5 6.5 6.5 1.OE*6 259 4575.0 F) 260 050071 4 0 0.0 580.8 0.0 383.1 6.5 6.5 6.5
.OE*6 THIS CARD IS A REPLACEMENT CARD.
261 (576.0 Fl 5
1 T
262 050081 0 0 0.0 0.0 0.0 393.0 23.25 23.25 18.33 16.9 r
263 050091 0 0 0.0 0.0 0.0 76.7 2.3 2.3 2.3 4.12 264 050101 0 0 0.0 0.0 0.0 103.7 7.5.
7.5 7.5 1.OE+6 C.
265S 266
- 50111 0
0 0.0 0.0 0.0 73.95 8.505 8.505 8.505 7.2 0
m 267
- 50121 6 0 0.0 0.0 0.0 73.95 8.505 8.505 8.505 7.2 268
- 50151 7 0 0.0 0.0 0.0 73.95 8.505 8.505 8.505 7.2 269
- 50161 0
0 0.0 0.0 0.0 73.95 8.505 8.505 8.505 7.2 269
- 50161 0
0 0.0 0.0 0.0 73.95 8.505 8.505 8.505 7.2 conz' 270 D
271 050111 0 0 0.0 0.0 0.0 59.25 8.505 8.505 8.505 5.8 0
272 050111 0 0 0.0 0.0 0.0 59.25 8.605 8.605 8.605 5.8 THIS CARD IS A REPLACEMENT CARD.
273 050121 0 0 0.0 0.0 0.0 59.25 8.505 8.505 8.505 5.8 274 050151 0 0 0.0 0.0 0.0 59.25 8.505 8.505 8.505 5.8 275 050161 0 0 0.0 0.0 0.0 59.25 8.505 8.505 8.505 5.8 0
0 276 050161 0 0 0.0 0.0 0.0 59.25 8.605 8.605 8.605 5.8 THIS CARD IS A REPLACEMENT CARD.
a X
277
- (2Z TUBE PLUGGING) 0~
0 278 z
279 050171 0 0 0.0 0.0 0.0 103.3 7.5 7.5 7.5 1.OE+6 280 050181 0 0 0.0 0.0 0.0 106.5 2.3 2.3 2.3 4.12 O
0 281 050191 0 0 0.0 0.0 0.0 133.0 5.0 5.0 5.0 1.OE+6 z
282 050201 0 0 0.0 0.0 0.0 53.5 2.3 2.3 2.3 4.12 283 050251 1 0 2100.0 0.0 0.0 1300.0 37.20 13.95 37.20 34.91 0
z 284 Z
285 PZR NOMINAL HATER LEVEL a 37.2 FT
- 37.5% = 13.95 O
286 0
287 050261 5 0 0.0 0.0 0.0 24.5 5.13 5.13 5.13 0.55 o
M 288 050271 0
0 2105.53 0.0 0.0 153.4 2.30 2.30 2.30 8.24 z
289 050281 0
0 0.0 0.0 0.0 207.4 7.5 7.5 7.5 1.OE+6 m w 290
- 5 0
291
- 50291 0 0 0.0 0.0 0.0 147.9 8.505 8.505 8.505 14.4 292
- 50301 8 0 0.0 0.0 0.0 147.9 8.505 8.505 8.505 14.4 293
- 50331 9
0 0.0 0.0 0.0 147.9 8558558551.
294
- 50341 0
0 0.0 0.0 0.0 147.9 8.505 8.505 8.505 14.4 295 296 050291 0
0 0.0 0.0 0.0 118.3 8.505 8.505 8.505 11.5 m
297 00291 0
0 0.0 0.0 0.0 118.3 8.605 8.605 8.605 11.5 THIS CARD IS A REPLACEMENT CARD.
298 050301 0
0 0.0 0.0 0.0 118.3 8.505 8.505 8.505 11.5
299 050331 0
0.0 0.0 118.3 8.505 8.505 8.505 11.5 300 050341 0 0 0.0 0.0 0.0 118.3 8.505 8.505 8.505 11.5 301 050341 0
0 0.0 0.0 0.0 118.3 8.605 8.605 8.605 11.5 THIS CARD IS A REPLACEMENT CARD.
0 302 I20Y TUBE PLUGGING) 303 Q
30'4 050351 0
0 0.0 0.0 0.0 206.6 7.5 7.5 7.5 1.OE+6 F
0 305 050361 0
0 0.0 0.0 0.0 213.0 2.3 2.3 2.3 8.24 O10 0 0 306 050371 0
0 0.0 0.0 0.0 266.0 5.0 5.0 5.0 1.OE+9 z
2 307 050381 0
0 0.0 0.0 0.0 107.0 2.3 2.3 2.3 8.24 co) 308 4
-A 309 S/G VOLUME FLOM AREA HAS DIVIDED BY AN ASSUMED RECIRCULATION RATIO OD m
10
- 15.0 AT 100 POER) TO ACCOUNT FOR THE MASS FLUX IN THE S/G 2ND SIDE.
0
.z 311 1
m 312 S/G VOLUME AS ADJUSTED IN SUCH A MAY THAT THE RETRAN CALCULATED MASS c
U 313 INVENTORY AT STEADY-STATE FULL PONER IS EQUAL TO 43,000 LBM.
314 po 315 VFN CHANGES MADE 0
316 S.G.
VOLUME IVOL.
- 50) ADJUSTED TO PRODUCE MASS OF 43,000 LBM 0
m 317 S.G. VOLUME (VOL. 60) ADJUSTED TO PRODUCE MASS OF 86,000 LBH 318
- 84 VFN CHANGES MADE 319 m
320 050501 2
0 547.0 0.0
-1.0 1310.0 37.0 24.2 37.0 7.66 z Z 321 050601 3 0 547.0 0.0
-1.0 2620.0 37.0 24.2 37.0 15.32 322 050501 2 0 547.0 0.0
-1.0 1395.0 37.0 24.2 37.0 7.66 THIS CARD IS A REPLACEMENT CARD.
cn Z
323 050601 3 0 547.0 0.0 -1.0 2906.0 37.0 24.2 37.0 15.32
- THIS CARD IS A REPLACEMENT CARD.
(A 3:
325 326 050701 0 0 520.0 0.0 0.0 1960.0 20.0 20.0 200.0 4.76 k
m 327 (ASSUMPTION) 328 051001 0 1 0.0 0.0 0.0 1.0E+6 10.0 10.0 100.0 1.OE+6 z
U 329 r
0 330 331 0
0 332 VOLUME DATA 05K)OY IY=2i 333 334 11 12 13 14 15 16 335 Y
DIAMV ELEV INEQ VRAIN VLHTC MESH 0
0 336 m
0q 337 0
337 050012 0.0
-24.40 0
0.0 0.0 0
- 338, 050022 0.0454
-14.58 0
0.0 0.0 0
339 050032 0.0454
-11.25 0
0.0 0.0 0
0 z
340 050042 0.0454
-7.91 0
0.0 0.0 0
0 0
341 050052 0.0
-14.58 0
0.0 0.0 0
0 z
342 050062 0.0
-4.58 0
0.0 0.0 0
88O z 343 050072 0.0 4.92 0
0.0 0.0 0
0 0
344 050082 0.0
.- 18.33 0
0.0 0.0 0
345 050092 2.3
-1.15 0
0.0 0.0 0
346 050102 0.0
-1.15 0
0.0 0.0 0
347 050112 0.0533 6.35 0
0.0 0.0 0
i 348 050122 0.0533 14.855 0
0.0 0.0 0
1 349 050152 0.0533 14.855 0
0.0 0.0 0
z 350 050162 0.0533 6.35 0
0.0 0.0 0
m 351 050172 0.0
-1.15 0
0.0 0.0 0
352 050182 2.3
-1.15 0
0.0 0.0 0
Z 353 050192 0.0
-1.15 0
0.0 0.0 0
0 354 050202 2.3
-1.15 0
0.0 0.0 0
3S5 a
356 050252 6.67 6.18 1
4.0 0.0 0
357 252 6.67 6.18 0
0.0 0.0 0
358
<r
59 050262 0.833 1.15 0
0.0 0.0 0
60 050272 0.0
-1.15 0
0.0 0.0 0
61 050282 0.0
-1.15 0
0.0 0.0 0
62 050292 0.0754 6.35 0
0.0 0.0 0
63 050302 0.0754 14.855 0
0.0 0.0 0
64 050332 0.0754 14.855 0
0.0 0.0 0
c O
65 050342 0.0754 6.35 0
0.0 0.0 0
C 0 U 66 050352 0.0
-1.15 0
0.0 0.0 0
T Z
67 050362 3.25
-1.15 0
0.0 0.0 0
0 68 050372 0.0
-1.15 0
0.0 0.0 0
U 0
69 050382 3.25
-1.25 0
0.0 0.0 0
z 0
70 050502 0.0 6.35 0
0.0 0.0 0
O 71 050602 0.0 6.35 0
0.0 0.0 0
(A 72 050702 0.0 40.0 0
0.0 0.0 0
73 051002 0.0 35.0 0
0.0 0.0 0
0:
CO 74
) rr 75 N
76 as ene*
BUBBLE DATA -
06XXX1
- Na n
naNNNNan a
77
(
78 N
- 86 VFN CHANGES MADE 0**
-- -0 79 a
BUBBLE RISE MODEL INCLUDED FOR VOLUME 6 (HAD NO B.R.
MODEL) 80 VFN CHANGES MADE
$88 81 d
82 83 XXX ALPH VBUB IDALPH IDVBUBV B4 rh 3:
85 060011 1.00 3.00 0
0
- PZR (VOL 25)
ASSUMPTION
- 0.
86 0
N 87 060021 1.00 58.50 0
0
- S/G (VOL 50l
- 0) 88 060031 1.00 58.50 0
0
- S/G (VOL 60)
U Z
89 P.
con 90 060041 1.00 3.00 0
0
- R.V. UPPER HEAD (VOL 7) m O
91 Z
03 92 060051 1.00 3.00 0
0
- SURGE LINE (VOL 261 Z
0 93 0
1 94 060061 1.00 3.00 0
0
- UPPER TUBE IVOL 12) c C
95 060071 1.00 3.00 0
0
- UPPER TUBE (VOL
- 15)
S 0 96 060081 1.00 3.00 0
0
- UPPER TUBE IVOL 30) 2 A
97 060091
'1.00 3.00 0
0
- UPPER TUBE IVOL 33) 0 98 060101 1.00 3.00 0
0
- R.V. LOWER HEAD (VOL 6)
C 99 X
00 N
CALCULATION OF VBUB FOR VOL 50 AND VOL 60:
01 N
02 N
STEAM FLONRATE = VOL.
FLON AREA
- VBUB
- STEAM DENSITY 03 on 04 N
5 528.3 06 N
VBUB = ----------------
(SEE DATA CARD 050501) 07 N
7.66
- 1.1793 08 z
9 N
= 58.5 FT/SEC V.
O 10 Z
11 1
_I 0m 12 NeaNNN*NNNNNNNNM TIME-DEPENDENT VOLUMIE DATA -
07XXYY NN**NNN*NNemNaan*NZ 134 15 N--------------
TURBINE-GENERATOR 16 7
M 18 TIME PRES TEMP AVG.
MIXL m<1 m
9
- (SECI IPSIA) IF)
X (FT)
'U M) m 21 070101 2
0.0 250.0 0.0 1.0 10.0 0
22 070102 1.OE+6 250.0 0.0 1.0 10.0 23 NOTE: THE TURBINE VOLUME IS TREATED AS A TDV IN ORDER TO O0 U
AVOID THE MASS FLOM IMBLANCE OCCURRING AT THE STEADY-z 27 STATE.
z0 28 U) 29 O
30
- aw JUNCTION DATA -
08XXKY (Y=1) wN**mna*wwwa 0
31 0
m 32 N
VFN CHANGES MADE 33 RCS FLOM RATES CORRECTED INO ADJUSTMENTS MADE TO MATCH 34 N
VENDOR THOT DATA)
(Ta 35 w
JUNCTION 1 HP 19,361 LBN/SEC IAS 20583) 1 36 JUNCTION 8 HP 6.759 LBM/SEC (HAS 7,110) 0 o
3 37 JUNCTION 9 NP 6,759 LBM/SEC INAS 7,110)
)m 38 N
JUNCTION 21 NP 20,278 LBM/SEC (NAS 21,330) 0 39 N
JUNCTION 31 HP 13,519 LBM/SEC (HAS 14,220) 40 N
NEW LEAKAGE JUNCTION (JUNCTION 51) INCLUDED FOR VOLUME 36 IN z
41 N
ORDER TO BETTER REPRESENT THE ACTUAL LEAKAGE IN THE PLANT 42 N
THEREFORE:
r 43 N
JUNCTION 50 : ONE THIRD OF TOTAL LEAKAGE I-I 44 N
JUNCTION 51 : THD THIRDS OF TOTAL LEAKAGE 45 N
NEN JUNCTIONS (JUNCTIONS 48 8 49) INCLUDED FOR m
011 46 N
VOLUMES 20 AND 38 TO REPRESENT CHARGING MAKEUP 47 N
THEREFORE:
aA5 48 U
JUNCTION 48 : ONE THIRD OF TOTAL CHARGING U) 49 N
JUNCTION 49 : TWO THIRDS OF TOTAL CHARGING (o
m 0
50 N
$$$ VFN CHANGES MADE
$at 51 0
52 Nz 53 1
2 3 4 5
6 7
8 9
10 0
54
- XXXY VI VO IP IV mP AJUN ZJUN INERTA FJUNF FJUNR 56 080011 1
2 0 0 20583.0 46.60
-14.58 0.034 0.45 1.0 2
At 57 080011 1
2 0 0 19361.0 46.60 -14.58 0.034 0.45 1.0 THIS CARD IS A REPLACEMENT CARD.
0 0 58 N=
E 59 ASSUMING CORE BYPASS FLON = 4.5% OF TOTAL CORE FLON.
60 0
61 080021 2
3 0 -0 0.0 46.60
-11.25 0.068 0.0 0.0 Z
62 080031 3
4 0 0 0.0 46.60
-7.91 0.068 0.0 0.0 63 080041 4
6 0 0 0.0 48.60
-4.58 0.034 1.0 0.45 z
64 080051 7
6 0 0 0.0 50.00 4.92 0.100 0.0 0.0 0
2 65 080061 1
5 0 0 0.0 13.55
-14.58 0.357 0.45 1.0 O
66 080071 5
6 0 0 0.0 13.55
-4.58 0.357
-1.0 0.45 0
67 080081 6
9 0 0 7110.0 4.15 0.0 2.241
-1.0 1.0
(
68 080091 9 10 0 0 7110.0 4.15 0.0 2.241 0.2 0.2 69 080081 6
9 0 0 6759.0 4.15 0.0 2.241
-1.0 1.'0 THIS CARD IS A REPLACEMENT CARD.)
70 080091 9
10 0
0 6759.0 4.15 0.0 2.241 0.2 0.21N THIS CARD IS A REPLACEMENT CARD.
Q 71 1
72 N
THE CORE FLONRATE HAS BEEN ADJUSTED TO MATCH THE THOT HITH z
73 N
VENDOR'S RESULT.
74 75 080101 10 11 0 0 0.0 7.2 6.35 0.788 0.45 1.0 76 080111 11 12 0 0 0.0 7.2 14.855 1.182 0.0 0.0 77 080131 12 15 0 0 0.0 7.2 20.50 1.182 0.2 0.2 78 080151 15 16 0 0 0.0 7.2 14.855 1.182 0.0 0.0
479 080161 36 17 0 0 0.0 7.2 6.35 0.788 1.0 0.45
- 10 080171 17 18 0 0 0.0 4.15 0.0 2.961 0.2 0.2
)A 080181 18 19 -1 0
0.0 4.15 0.0 2.961 0.0 7.5 080191 19 20 1
0 0.0 4.15 0.0 1.578 0.0 7.5 080201 20 8
0 0
0.0 4.15 0.0 1.578 0.2 0.45
-9d4 080211 8
1 0
0 21330.0 16.9
-18.33 1.376 0.0 0.0 485 080211 8
1 0 0 20278.0
- 16.
-1.3 1.700U 486 16.9
-18.33 1.376 0.0 0.0 THIS CARD IS A REPLACEMENT CARD.
Tn 0
0
..ft7 080251 0 25 5 0 0.0 1.0 43.3 0.0 0.0 0.0 z) 080261 0
25 6 0 0.0 1.0 43.3 0.0 0.0 0.0 U
- ,90 080291 25 26 0 0 0.0 0.55 6.18 40.818 1.0 1.0 D
Ur 491 080301 26 9 0 0 0.0 0.55 1.15 40.818 1.0 1.0
)
492 080311 6 27 0 0 14220.0 8.30 0.0 1.129
-1.0 1.0 U
493 0i031 26 27 0 0 13519.0 8.30 0.0 1.129
-1.0 1.0 W**
THIS CARD IS A REPLACEMENT CARD.
Z C
)
494 080321 27 28 0 0 0.0 8.30 0.0 1.129 0.2 0.2 495 080331 28 29 0 0 0.0 14.4 6.35 0.394 0.45 1.0 N)
'496 080341 29 30 0 0 0.0 14.4 14.855 0.788 0.0 0.0 C)
'7 080361 30 33 0 0 0.0 14.4 20.50 0.788 0.2 0.2 0
0
-. 98 080381 33 34 0 0 0.0 14.4 14.855 0.788 0.0 0.0 499 080391 34 35 0 0 0.0 14.4 6.35 0.394 0.2 0.2 500 080441 35 36 0 0 0.0 8.3 0.0 1.480 0.0 0.0
>-I 501 080451 36 37 -2 0 0.0 8.3 0.0 1.480 0.0 7.5 502 080461 37 38 2 0 0.0 8.3 0.0 0.789 0.2 7.5 r-rn 503 080471 38 8 0 0 0.0 8.3 0.0 0.789
-1.0 0.45 rZ 504 0
0A 0 505 080481 0
20 14 0
0.0 1.0 0.0 0.0 0.0 0.0 M
506 080491 0
38 14 0
0.0 2.0 0.0 0.0 0.0 0.0 p
507 M
508 080501 0 18 13 0
0.0 1.0 0.0 0.0 0.0 0.0 o
ZU 509 080511 0 36 13 0 0.0 2.0 0.0 0.0 0.0 0.0 "4
0 510 t
g 55.0 511 080601 0 50 1 0 0.0 1.0 6.4 0.0 0.0 0.0 512 080691 0 S0 3 0 0.0 1.0 6.4 0.0 0.0 0.0 m
z 0
513 514 080701 0
60 2 0 0.0 1.0 6.4 0.0 0.0 0.0 515 080791 0 60 4 0 0.0 1.0 6.4 0.0 0.0 0.0 516 0 O 517 080811 50 70 0 0 528.3 4.76 43.35 21.01
-1.0
-1.0
(
0 518 080911 60 70 0 0 1056.6 4.76 43.35 21.01
-1.0
-1.0 C
m Z 519
.Z 520 081001 70 100 0 1 0.0 9.52 43.35 21.01
-1.0
-1.0 521 z
522 081021 0 70 7 0 0.0 1.0 60.0 0.0 0.0 0.0 8
Z 523 081041 0
70 8 0 0.0 1.0 60.0 0.0 0.0 0.0 0
0 524 081061 0
70 9 0 0.0 1.0 60.0 0.0 0.0 0.0 525 081081 0
70 10 0
0.0 1.0 60.0 0.0 0.0 0.0O 526 081101 0
70 11 0 0.0 1.0 60.0 0.0 0.0 0.0 0
527 0
528 081201 0
70 12 0
0.0 1.0 60.0 0.0 0.0 0.0 z
529 o
S30*n 531 JUNCTION DATA -
O8XXXY (Y=2) 532 VFN CHANGES MADE
$SZ 533 NEW JUNCTION 51 CARD IN THIS SECTION-P 0
534 f
SS$ VFN CHANGES MADE S$
535 537 11 12-13 14 15 16 17 18 19 20 21 538 f
Y JVERT CHOK JCA MIX DIAHJ CNTR REGM 2PHS ANGL INDEX ISP m
40 080012 0
-1 0
0 0.0445 1.0 0
0 0.0 2
0 c
41 080022 0
-1 0
0 0.0445 1.0 0
0 0.0 3
0
.42 080032 0
-1 0
0 0.0445 1.0 0
0 0.0 3
0 a
43 080042 0
-1 0
0 0.0445 1.0 0
0 0.0 1
0 C
-44 080052 0
-1 0
0 8.00 1.0 0
0 0.0 0
0 U(
45 080062 0
-1 0
0 4.22 1.0 0
0 0.0 0
0 O
0 46 080072 0
-1 0
0 4.22 1.0 0
0 0.0 0
0 Z
47 080082 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 48 080092 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 0
49 080102 0
-1 0
0 0.0533 1.0 0
0 0.0 2
0 O2 SO 080112 0
-1 0
0 0.0533 1.0 0
0 0.0 3
0 00 S1 080132 1
-1 0
0 0.0533 1.0 0
0 0.0 3
0
- 3) 52 080152 0
-1 0
0 0.0533 1.0 0
0 0.0 3
0 0
53 080162 0
-1 0
0 0.0533 1.0 0
0 0.0 1
0 CA 0
54 080172 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 C
55 080182 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 rn 56 080192 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 0
57 080202 1
-1 0
0 2.30 1.0 0
0 0.0 0
0 58 080212 1
-1 0
0 4.64 1.0 0
0 0.0 0
0 0
59 60 080252 0
-1 0
0 1.0 1.0 0
0 180.0 0
1 61 080262 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 m
- D 62 m
-< 611.
63 080292 1
-1 0
0 0.84 1.0 0
0 0.0 0
0 U) 64 080302 0
-1 0
3 0.84 1.0 0
0 0.0 0
0 0 fl 65 080312 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 66 080322 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 a
0 67 080332 0
-1 0
0 0.0533 1.0 0
0 0.0 2
0 04 68 080342 0
-1 0
0 0.0533 1.0 0
0 0.0 3
0
-4 69 080362 1
-1 0
0 0.0533 1.0 0
0 0.0 3
0
-I 70 080382 0
-1 0
0 0.0533 1.0 0
0 0.0 3
0 0
0 71 080392 0
-1 0
0 0.0533 1.0 0
0 0.0 1
0 z
0 72 080442 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 0
73 080452 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 74 080462 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 C
75 080472 1
-1 0
0 3.25 1.0 0
0 0.0 0
0 0
0 76 m
A 77 080482 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 mZ 78 080492 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 0
79 ~
80 080502 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 O
81 080512 0
-1 0
0 1.0 1.0 0
0 180.0 0
0
-- 0 20 82 000-O 83 080602 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 zzO 84 080692 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 85 MmO 86 080702 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 87 080792 0
-1 0
0 1.0 1.0 0
0 0.0 0
0 88 M
89 080812 0
-1 0
0 2.46 1.0 0
0 0.0 0
0 90 080912 0
-1 0
0 2.46 1.0 0
0 0.0 0
0 z
0 91 w
92 081002 0
-1 0
0 1.0 1.0 0
0 0.0 0
00 93 94 081022 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 95 081042 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 96 081062 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 z
97 081082 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 98 081102 0
-1 0
0 1.0 1.0 0
0 180.0 0
0
081202 0
-1 0
0 1.0 1.0 0
0 180.0 0
0 W
-0 0)2 03 annan****m*** PUMP CURVE SET INPUT FLAGS -
100000 a*nn
- nIaia 04
<tU 0535 06 NOTE: UNIQUE PUMP CURVE SET IS USED, I.E. J =1.Z 07 ftC) c 08 J
09 a
NPCIll NC41) 10 4D 11 100000 2
0 0
12 z
Cm 13 01 14 Maneannakensewan*MMM PUMP DESCRIPTION DATA -
090OXY ftmanamenan0an4on a
16 NHERE )(
= IPUMP (SEE M3 ON CARDS 08XXXY),
oIm 17 AND XX = 01 1 RCP B ),
0 o
18
= 02 ( RCPS A 8 C).
19 20
REFERENCE:
SONGSI STATION MANUAL EQUIPMENT MANUAL DATA, VOL.
- 3.
z 21
)I 22 m
I 23 OXXY IPC ITPUMP IRP IPM INT PONGAR PSRAT PFLONR PHEADR PTORKR ca) 24 (RPM)
(SPMI IFTI ILBF-FTI 3I 25 m1 26 090011 1
2 0
0 0
1180.0 1.0 69560.0 200.0 13887.0 0
27 ftj3 28 090021 1
2 0
0 0
1180.0 1.0 139120.0 200.0 27773.0 co) 29 z
so ft 51 M
XXY PINRTA VRHOI TORKHR TORKF1 TORKF2 TORKF3 TORKF4 0
52 ILBM-FTAM2)
ILBF-FT)
(S**O)
(S*fl)
IS**2) 4IS*3)
Z 0
53 0
w 54 090012 45000.0 0.0 0.0 0.0 0.0 0.0 0.0 S6 090022 90000.0 0.0 0.0 0.0 0.0 0.0 0.0 X
58 4--------- ASSUMPTION --------)
0 59
- NOTE: THE RCP FLYNHEEL INERTIA IS 45,000 LBM/FT**2 (SEE SONGS1 SYSTEM
- 0 DESCRIPTION SO-SO1-300, P. 5) 0
- 2 PUMP MOTOR TORQUE = PUMP MOTOR POKER / PUMP SPEED 00 z
i3 a
= 2.2E+6 ILBF-FT/SECI/123.57 IRAD/SEC)
O zO 0
- 4 f
= 1.78E+4 LBF-FT
.Z i5 HERE O
i6 fO i7 PUMP MOTOR POKER = 4000 HORSE PONER (P. 1-6, REF.)
i8 ft=
4000 (HP)
- 2545 (BTU/HR)/(HP)
- 778.2 z
i9 ft LBF-FT)/IBTUI
- 1 (HR)/36001SEC)
U) i0
= 2.2E+6 LBF-FT/SEC 1
51 fta 2
PUMP SPEED
= 1180 RPM (P. 1-5, REF.)
z 53
=
= 1180 * (2
- 3.2416/60) RAD/SEC 4
f=
123.57 RAD/SEC 56 HYDRAULIC TORQUE
OVERALL EFFICIENCY (P. 1-8, REF.1 57 PUMP MOTOR TORQUE 58 f
0.78
- 1.78Et+
9=
13887. LBF-FT 62 e
PUMP STOP DATA 095KX1
- nueamw 1
63
<0 64 0
co) 65 ELAPSED TIME FORNARD REVERSE
- n 0
66
- 95XX1 ISEC)
RPM IMAX)
RPM IMAX) u 67 o
68 095011 0.0 0.0
-1.OE-6
- t B 69 095021 0.0 0.0
-1.OE-6 A
C 70 0
z 7 1
( A.
m 72 PUMP MOTOR TORQUE DATA 097XXY annuatnfangan 73 0
74 11 hI%
75 (HAY BE USED FOR THE CASE OF PUMP RESTART) I 76 0
77
-=
78 TIME SPEED 9
XXY NTHO SEC RPM 81
- 097011
-3 0.0 0.0 82 097012 10.0 1180.0 FZ
- S
- 097013 1.0E+6 1180.0 U)i 85 ft 86 owansweensteene4fnt*ee VALVE DATA 11XXXO essmanamesenamesma) nn e
0 87
.q 88 ft 89 m
NOTE: XXX = IVALVE IN4 IN CARDS 08XXXY) o 0
90 a
91
)(X0 ITCV IACV IACV2 PCV CVI CV2 CV3 0
0 2
ITRIPID)
I 93 f
110010 2
1 0
0.0 0.0 0.0 0.0
- CLOSE TURBINE STOP 5
VALVE - JUN 100 O
0 6
f 97 8
annannumfefttfffenffftts*f GENERAL DATA 12XXYY fttttettwffftmtntftftts 9
ft 1
a VALVE TABLE 1 ------
2 m XXYY N
TIME POSITION
- CLOSING CURVE FOR JUN 100 3
f f
ON LOSS OF CONDENSER 4
120101
-3 0.0 1.0 ASSUMPTION) 5 120102 1.0 0.0 6
120103 1.OE+6 0.0 0 m 7
ft
)8 ft 9
f DELTA VALVE POSI.
TABLE 2 ------
O XXYY N
TEMP.
DEMAND
- MASTER CONTROLLER 11 2
120201
-4
-1.0E+6 0.0 Z
3 120202 0.0 0.0 4
120203 6.67 1.0 5
120204 1.0E+6 1.0 L8
- t VALVE POSI.
"BYPASS" VALVE f--------TABLE 3 --------
719 M XXYY DEMAND POSI.
DEMAND 0
1 120301
-5
-1.OE+6 0.0 122 120302 0.0 0.0 723 120303 0.5 1.0 724 120304 1.0 1.0 0<
725 120305 1.0E+6 1.0 O
0 0
726 z
0 727 z
0E 728 VALVE POSI.
"ADV" M---------
TABLE 4 -------
N DEMAND POSI.
DEMAND
-4 1 51 120401
-4
-1.0E+6 0.0 0
00
/32 120402 0.5 0.0 (0
733 120403 1.0 1.0 0- -c n
734 120404 1.OE+6 1.0 735 r
m 736 0on'-
n 737 W
TIME VALVE TABLE 5 ------
738 N
ISEC)
POSITION
- FOR QUICK-OPEN MODE 739
- ASSUNING FULL OPENED HITHIN 740 120501
-6
-1.0E+6 0.0 1.0 SECOND AND LASTS FOR 10 z
741 120502 0.0 0.0
- SECONDS.
3D 742 120503 1.0 1.0 rn f
743 120504 10.0 1.0 m
z 744 120505 10.1 0.0 U) 745 120506 1.OE+6 0.0 03 746 0M 747 0T
?48 VALVE POSI.
VALVE TABLE 6 -------
c) 149 N
ERROR SPEED
- VALVE SPEED FOR MODULATION (D
r 0
150 f MODULATION SPEED = 10 SEC 151 120601
-5
-1.0E+6
-0.1 0
0 152 120602-
-1.0E-6
-0.1 z
0 r53 120603 0.0 0.0 T
w
'54 120604 1.OE-6 0.1 S
SS 120605 1.0E+6 0.1 0
0 756 m
O P57 0
M 0
38 TIME OUTPUT TABLE 7 -------
59 N
ISEC) 0 0*
ADVS ARE IN AUTOMATIC MODE.
0 0
61 120701
-4
-1.OE+6 1.0 1 z 62 120702 180.0 1.0
'63 120703 180.1 0.0 0 0
'64 120704 1.0E+6 0.0
'65 0
'66 M
'67 TIME OUTPUT w-------- TABLE 8 -------
'68 N
ISEC) z
'69
- ADVS ARE MANUALLY REGULATED.
W Z
'70 120801
-4
-1.OE+6 0.0 r
'71 120802 180.0 0.0
'72 120803 180.1 1.0 z
73 120804 1.0E+6 1.0 74 75 D
76 DELTA T OUTPUT TABLE 9 ---------
77 N NF 78 f
79 120901
-4
-I.OE+6 0.0 180 120902 0.0 0.0 i) 781 120903 0.1 1.0 782 120904 1.OE+6 1.0 783 a
784 0
S
/G N
NRLEVEL OUTPUT ft---------
TABLE 10 -----
121001
-4
-1.OE+6 1.0
- OPERATOR ACTION ON S/G 19 121002 0.50 1.0
- LEVEL CONTROL O0 1
-U 190 121003 0.70 0.0
- (ASSUMPTION) J 00 791 121004 1.OE+6 0.0
)
()Z 792 ft Cn 793 C
- 0) 794 f
S/G PRES.
AUXFM TABLE 11 -------
/95 s N
IPSIA)
(GPH/SQ.FT) co Z0 196 0
r 797 121101
-9 0.0 123.3 f
REFERENCE:
-4 798 121102 995.0 123.3
- FIG. 21, DESIGN CALC. NO.
799 121103 1030.0 115.0
- DC-2836, SHEET RS-6A.
800 121104 1055.0 108.3 801 121105 1125.0 88.3 802 121106 1155.0 78.3 o1 803 121107 1185.0 64.3 FX i
804 121108 1215.0 50.0 805 121109 1240.0 33.3 R r 806 f
807 ft 808
-4oZ 809 man ttounseennanttnatenwane FILL TABLE 13XXYY metn f
ttuns cornu0 810 dt 811 ft 0
812 TABLE 1 S/G B FM-JUN 60) ----------
L 813 f
CD 814 a
815 f
TRIP JX TIME FLUX H
PSIA 0
0 816 m
XXYY N
ID (TIME) JY IS) (LB/SEC-FT*M2) a A
817
( 0 0
818 130101 -3 4
0 0
0.0 528.3 394.0 700.0 819 130102 1.0 0.0 394.0 700.0 820 130103 1.0E+6 0.0 394.0 700.0 0
0 821 f
z 822
- NOTE: TOTAL MFN FLONRATE AT FULL POKER IS 5.706E+6 LBM/HR (SEE P.20-1, O
z 823 f
SONGS1 STATION MANUAL).
O 824 0
825 r
826 TABLE 2 (S/GS AAC MFM -
JUN 70) ---------
827 f
828 f
TRIP JX TIME FLUX H
PSIA 829 f )OYY N
ID (TIME I JY (S) ILB/SEC-FT*t2J u)
I 830 A
Qn 831 130201 -3 4
0 0
0.0 1056.6 394.0 700.0 m
832 130202 1.0 0.0 394.0 700.0 z
833 130203 1.0E+6 0.0 394.0 700.0 834 f
056 TABLE 3 IS/G B AUXFH -
JUN 69) ---------
837 f
838 m<n22
839 TRIP JX-CNTL DUMMY FLUX H
PSIA 840
- XXYY N
ID BLK ID JY VALUE IGPM/FT**2) 841 842 130301 1
1000
-24 1
0.0 0.0 40.8 1000.0 3
(70.0 Fl TABLE 4 IS/GS AAC AUXFH JUN 79) 0 z
0 847 130401 1
1000
-25 1
0.0 0.0 40.8 1000.0 z) 848 ft 1
~
-0
!349
-4 0>
i 0
TABLE S IPORVS - JUN 251 -------------
23 852 m
853 TRIP JX JY PRES FLUX 854 XXYY N
ID IPSIA) fLBM/S-FT**2)
H PSIA 856 130501
-4 5
1 0
0.0 0.0 1.0 1.0
-r 857 130502 2215.0 0.0 1.0 1.0 0-U 858 130503 2281.5
-66.75 1.0 1.0 859 1lu,04 1.0E+6
-66.75 1.0 1.0 860 (2 PORVS) 861 862 A 3Y OF ACCUMULATION RATIO IS ASSUMED.
863 M
REF: SEE P.
17 OF SD-SO1-280 FOR PORV SETPOINT AND CAPACITY.
Cn 865 Um 866 TABLE 6 I SRVS -
JUN 261 -----------
867 0
868 TRIP JX JY FLUX o
869
- XXYY N
ID (PSIAl PRES ILBM/S-FT**21 H
PSIA
-P 870 t
871 130601
-4 6
1 0
0.0 0.0 1.0 1.0 0
0 872 130602 2525.0 0.0 1.0 1.0 Z
0 873 130603 2601.0
-133.33 1.0 1.0 a
874 130604 1.OE*6
-133.33 1.0 1.0 w
875 (2 SRVS) 0 876 0
877
-A 3% OF ACCUMLATION RATIO IS ASSUMED.
0 0
878 REF.: SEE P.
19 OF SD-SO1-280 FOR SRV SETPONT AND CAPACITY.
879 zt 880 0
C) 881 TABLES 7 -
11 INSSV) ---------------
x' 0
882 883 REF.: SD-SO1-190 0
884 t
z 885 TRIP JX FLUX H
PSIA 886 f XXYY N
ID IPSIA) JY PRES (LBM/FT**2-S) o 887 ft) 87 --JUN 102--
o M 888 130701 -4 7
1 0
0.0 0.0 1.0 1.0
- VALVES WITH z
889 130702 1000.0 0.0 1.0 1.0
- SETPOINT =
1 890 130703 1030.0
-332.6 1.0 1.0
- 1000.0 PSIA r
)
891 130704 1.0E+6
-332.6 1.0 1.0 892
(
12 VALVESI 893 ft f -- JUN 104-894 130801 -4
.8 1
0 0.0 0.0 1.0 1.0
- VALVES WITH 895 130802 1015.0 0.0 1.0 1.0
- SETPOINT =
896 130803 1045.5
-337.6 1.0 1.0
- 1015.0 PSIA 897 130804 1.0E+6
-337.6 1.0 1.0 898 x
NES&L DEPARTMENT CALCULATION SHEET LCCN NO./PAEO Project or DCP/MMP___________ Caic. No. DC - 3601 CCN CONVERSION:
I CCN NO. CCN
50 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATER z z IJa W w U L
(A 0
-X 1-.
00 H 0 00 z
4 z
1-4 H
a 0
0-4 90 1
LU a
U 0
U*
In-40 flF-4 I>Cfl..4 4 -4 4 44 I
I4
- a.
8.J 4.4-4'
.444-4 ai 0L 0
N (D N N%0 0 J g w
a 4
m fy U.
- a.
XI-00 fn F4 CD 00~~0 00- >0@
x4 tI4 Ifl1-LW a0 C0 W
C o
Z089 w0 00 5
0 0
0 ~
0 0 0 J
-1W LL0.'
0
~
4 1
0
-a-0 0c 0s a
a as 0
0~~
0 0
L.I 0-4 w
I U
00 g
)0L 0 Lo L10n uu CC~~~
~
~
0-K 4 C
0 0
0 0-0 4 P-
-4m '
I6 L6 &&i1.I W. U.
C OC 0 -8 0~f 0
0 0C CF.
0
a,
- a.
0 2 0 a..
4 O.0 o 2 1 rI P-40 IqN4.
14 b40
-4 14 140 14'.0 14N?
r n'
l.4 1
(
A'IU DP 4- 0 I 0J ZZ 4 a
N I
Z Z
Q N r r i l
0n go a, 4
I4 N ?A t U I II 0
co~
~ ~ aI aa 0
,H 91 40 c
41 I
aZ CI 710 Za
,42
,Q 2
,0,q r
,1
,9,q 1
4,ol 0za 1*
1:
131403 3600.1 65.5 1.0 1.0 131404 l.0E+6 65.5 1.0 1.0 2
C 4
- M POINT KINETICS DATA 0
5~
C 60 5
- z 0
7 REF.: ANALYSIS OF ATHS FOR SONGS1, NUS REPORT, OCTOBER 1974 z
a 9
0 N
KHUL BOVL RHOIN UDUF PROMPT LAMBDA TAU ni 2
140000 0.0 596.1 0.0 1.0 1.0 0.0 00 4
BOVL = EFFECTIVE BETA / NEUTRON LIFE TIME a
5 N
0.00608 / 10.2E-6 ISEE P.4-4, ABOVE REFERENCE)
-4 Z
6
= 596.1 D-C 7
m
-4 DELAYED NEUTRON DATA -----------------------
5 D
DLAMDA1 DLAMDA2 DLANDA3 DLAMD4 DLANDA5 DLANDA6 5
140001 0.0126 0.0309 0.1173 0.3149 1.2639 3.3795 Tn o
a l
7 AJOVRJ1 AJVORJ2 AJVORJ3 AJVORJ4 AJVORJS AJVORJ6 UI 3
140002 0.0300 0.2080 0.1892 0.3914 0.1360 0.0454 m
O 5--------------------------- REACTIVITY COEFFICIENT ------------------------
w O
C 0
0 DOPPLER TEMP.
HATER TEMP 3
7 N DENNT FTHT COEF IS/F)
COEF ($/F) 0 (
0 9
140010 0.333 0.333
-8.3333E-4 0.0
.4 0
140020 0.334 0.334
-8.3333E-4 0.0 O
0 1
140030 0.333 0.333'
-8.3333E-4 0.0 00 z (ASSUMPTION)
ISEE CALC BELONI O
o 00 0
AVG. FUEL TEMP DOPPLER REAC.
O 1200.0 0.5 N
1400.0 0.0 U) 0.0- 0.5 DOPPLER TEMPERATURE COEFFICIENT
/
3 (PER CORE CONDUCTOR) 1400 -
1200
= -8.3333E-4 S/F REF.
(I):
FIG. 4-30, A PARAMETRIC STUDY OF AN ATHS IN A H FOUR LOOP PLANT, NSAC-91, NOVEMIVER 1985.
m
<rw
19 f
NOTE: VARIATION OF THE DOPPLER REACTIVITY RESULTS IN LITTLE ZO DIFFERENCE BETHEEN PRIMARY PRESSURE PEAKS AND TOTAL m.)
IV 1021 REACTIVITY AS SHOHN IN FIGS. 4-28 AND 4-29, RESPECTIVELY, 1022 IN THE REF. I1).
ii25 SCRAMWTABLE O
a 1026 M
()
C 1027 0
0 1028 m XYY N
TRIP TIME 0
1029 10 ID(SEC)0>
1030 141001
-3 2
0.0 0.0 1071 141002 3.0
-10.0 00 141003 1.0E+6
-10.0 rn1 mC DENSITY REACTIVITY TABLE ----------
1
-- 4 Z
1036 (D-0 1037 0
1038 f
REF.: A PARAMETRIC STUDY OF AN ATHS IN A H FOUR-LOOP PLANT, 1059 f
NSAC-91, NOVEBER 1985.
1040 f
1041 f>
1042 f
NOTE: SEE FIG. A-2 OF THE ABOVE REFERENCE FOR THE DENSITY NI 10 "
REACTIVITY CURVE.
(A Z
1045 f
U )
1046 H
MATER DENSITY p
1047 XX N
(LBM/FT**31 1048 f
1049
- 142000
-9 31.84
-4.37 f -4.0 PCM/F tm 0
1050
- 142001 33.40
-3.26
.051
- 142002 34.96
-2.36 0
052
- 142003 36.52
-1.63 m
)
1053
- 142004 38.08
-1.11 1054
- 142005 39.64
-0.69 1055 142006 41.20
-0.34 0
1056
- 142007 42.76
-0.17 O
1057
- 142008 44.33 0.0 0
1058 ft E:
1059 4
1060
- 142000
-9 31.84
-5.67 f -8.0 PCM/F 1061
- 142001 33.40
-4.4 Z
1062
- 142002 34.96
-3.3 88 1063
- 142003 36.52
-2.37 0
Zr 1064
- 142004 38.08
-1.6 1065
- 142005 39.64
-1.05 1066
- 142006 41.20
-0.61 1067
- 142007 42.76
-0.28 0
m 1068
- 142008 44.33 0.0 1 0 6 9 C
1070 f
C) 1071 1
1072 142000
-9 31.84
-3.02 f 0.0 PCM/F z
1073 142001 33.40
-2.15 0
1074 142002 34.96
-1.43 1075 142003 36.52
-0.91 1076 142004 38.08
-0.50 K) 7 142005 39.64
-0.28 I
142006 41.20
-0.11
379 142007 42.76
-0.05
)80 142008 44.33 0.0 381 M
O
)82
)83 DOPPLER REACTIVITY TABLE ---------
)84 O
'as2 0
(A
)86 f
XX N
5 z
0 387 z
E
)
0 I88 143000 0
N 1
C
~0
)90 ftC MI 0
191 DIRECT HODERATOR KEATING ----------
0
)92 (At o
z 193 C.
194.
f
)0 195 f
)(
QPI)
QDIl)
J96 ft 197 144000 0.025 0.0
- ASSUMPTION O
T 198 1,0-#001 0.025 0.0 a ASSUMPTION 0
199 144002 0.025 0.0 m ASSUMPTION O
- 1) 101 ft 102 ft 03 ~Hessmttsenfwfe w HEAT CONDUCTOR DATA -
15XXXY (Aeenannfantwwwtt*n, r 04 (At3 05 r
06 f
XXX = HEAT CONDUCTOR NUMBER 07 ft 08 Z
09 f
IVSL IVSR 101 CELEV INCL INCR ASUL ASUR VOLS 0
10 N1 M2 N
N3 M4 15 M6 N7 K8 M9 11 tXXXY 2
0 12 150011 0
2 1
0.0 2
2 0.0 10407.3 91.5
- CORE w
13 150021 0
3 1
0.0 2
2 0.0 10407.3 91.5 05 14 150031 0
4 1
0.0 2
2 0.0 10407.3 91.5 0
15 ftc 0
0 16 150041 11 50 2
4.2525 2 2
4727.5 5540.0 25.95 f S/G SB TUBES
)A0 17 150051 12 50 2 12.7575.
2 2
4727.5 5540.0 25.95 18 150061 15 50 2 12.7575 2
2 4727.5 5540.0 25.95 c
19 150071 16 50 2
4.2525 2
2 4727.5 5540.0 25.95
-0 20 ft O
0 2
0 21 150081 29 60 2
4.2525 2
2 9454.8 11080.0 51.75 S/G A&C TUBES 22 150091 30 60 2 12.7575 2 2
9454.8 11080.0 51.75 0
z 23 150101 33 60 2 12.7575 2 2
9454.8 11080.0 51.75 z
o 24 150111 34 60 2
4.2525 2 2
9454.8 11080.0 51.75 25 mO 26 HDHL HOMR DHEL DHER CHNL CHNR IHXQF NTUBES 0
.27 D10 111 112 113 N14 N15 H16 117
.28 XXXY
.29 150012 0.0 0.0454. 0.0 0.0454 0.00 3.33 0
30 150022 0.0 0.0454 0.0 0.0454 0.00 3.34 0
31 150032 0.0 0.0454 0.0 0.0454 0.00 3.33 0
m 32 z
33 150042 0.0533 0.0918 0.0533 0.0980 8.505 8.505 1
34 150052 0.0533 0.0918 0.0533 0.0980 8.505 8.505 1
35 150062 0.0533 0.0918 0.0533 0.0980 8.505 8.505 1
36 150072 0.0533 0.0918 0.0533 0.0980 8.505 8.505 1
37 1
38 150082 0.0533 0.0918 0.0533 0.0980 8.505 8.505 2
n
1139 150092 0.0533 0.0918 0.0533 0.0980 8.505 8.505 2
150102 0.0533 0.0918 0.0533 0.0980 8.50S 8.505 2
1 150112 0.0533 0.0918 0.0533 0.0980 8.505 8.505 2
c "62 1143
- 41) FOR FUEL ROD:
1144 w
1145 REF.: CORE PHYSICS PARAMETERS AND PLANT OPERATIONS DATA 0
0 1146 FOR SONGS1 CYCLE 9, FIG. 2-1.
Z C
1147 z
C) 1148 N
NO. OF ASSEMBLY
= 157 Nm 9
NO. OF FUEL ROD PER ASSEMBLY = 180
- !0 FUEL ROD I.D.
= 0.422" D
T 1151 N
PELLET..
= 0.3835" 0
1152 N
CLAD THICKNESS
= 0.0165" ri 1153 C (/C 1154 N
ASUR = 180
- 157
- 0.422" a 10.0
/
3 1155
=
= 10407.3 FT*NM m
r 1156 z
o 1157 N
VOL 2 4180
- 157 N PI 0.422" 2 N 10.0/
- 4)
/3 1158
=
91.5 FT**3 1159 1160 1161
(
- 12) FOR S/G:
1162 a
-J 1163 REF.: VERTICAL S/G FOR SONGS1, TABLE 1-1, TECHNICAL MANUAL 1164 N
1440-C77, DEC.
1965.
1165 C
1166 N
OUTER TUBE HEATING SURFACE = 27700 FT**2 m
f167 CA 1168 N
TUBE 0.D.
= 0.75" jo.
z 1169 N
TUBE AVERAGE THICKNESS = 0.055" 0
1170 N
TUBE I.D.
= 0.75" -
0.055"
- 2 1171
= 0.64"0 1172 z2 0
1173 N
INNER TUBE HEATING SURFACE
= 27700
- 0.64 / 0.75 w
L 1174 N=
23637 FT**2 1175 0
a 0
1176 ASUR = 27700 / 4 = 6925.0 FT**2 PER CONDUCTOR O
1177 ASUL = 23637 / 4 = 5909.0 FT*N2 PER CONDUCTOR a
0 1178 c
m 1179 N
FOR 20% TUBE PLUGGING:
850 N
- 0.
0
.81 N
ASUR = 6925.0 N 0.8 a 5540.0 FT**2 / SG Z
1182 N
ASUL z 5909.0 N 0.8 c 4727.5 FT-a2 / SG 88Z 1183 N
1184 N
0o 1185
- NN**NNseenNN***
CORE SECTION DATA -
16XX0O 00************
00 1186 o
1187 0
-m 1188 N )X ISLB CLTI QFRAC 1189 1
1190 160010 1
0.0 0.336 C) 1191 160020 2
0.0 0.406 m
1192 160030 3
0.0 0.258 m
1193 0
1194 a
NOTE: NO STEAM-METAL REACTION FOR FUEL ROD CLAD OF STAINLESS 1195 a
STEEL.
1196 a
1197 N
1198 ann aa*aMM CONDUCTOR GEOMETRY DATA -
17XXYY maaaaaaaaaaaMMMa*aa
<m2
99 K
K1TYPES OF HEAT CONDUCTOR:
)3 XX =
1, CORE
)4
=
2, STEAM GENERATOR U-TUBES C0
)s 0
mfl 0
)6 HEAT CONDUCTOR MATERIAL IDENTIFICATION:
C)
)a1K=
1, U02 00
)9 2,
GAP 00 L0
=
3, STAINLESS STEEL
- 3.
11
=
4, INCONEL
- 0) 12 K
14 K XXYY IG/IGP NR IN NDX XD XR PF 9a L6 170101 2
3 1
4 0.0 0.015979 1.0
- FUEL PELLET 0
170102 1
2 1
0.000229 0.0
- GAP 4
4 170103 0
3 3
0.001375 0.0
- CLAD 0
170201 2
1 4
3 0.026667 0.004583 0.0
- S/G TUBES z
!2 K
S/G TUBE THICKNESS = 0.004583 FT m
-(
3
= 0.055 INCH U
!4 3
!6
- Ke e
THERMAL CONDUCTIVITY DATA -
18XXYY K****KK**nKeen0 UNIT: TEMPERATURE (F)
VS.
K IBTU/FT-HR-F)
U.-
9o K
L K
REF.: (Il NA-82-001 2
- 2 K2)
SEE THI-2 ACCIDENT FOR CORE HEAT-UP z
3 ANALYSIS ISUPPLEMENT), FIG. 24, P.5-18, 0
4 STAINLESS STEEL THERMAL PROPERTIES.
- 5 0
6 UD2 -----
O 5 0
.7 180101
-21 F
K F
K F
K F
K 01 O
1 180102 0.0 3.341 500.0 3.341 650.0 2.971 800.0 2.677 z
,2 180103 950.0 2.439 1100.0 2.242 1250.0 2.078 1400.0 1.940 8
0 3
180104 1550.0 1.823 1700.0 1.724 1850.0 1.639 2000.0 1.568 zz.
4 180105 2150.0 1.507 2300.0 1.457 2450.0 1.415 2600.0 1.382
- 5 180106 3100.0 1.323 3600.0 1.333 4100.0 1.406 4600.0 1.538 k6 180107 5100.0 1.730 0
.7 K
.8 K
P9 GAP ----
o 180201
-6 i2 F
K F
K F
K z
3 I
4 180202 100.0 0.0937 1100.0 0.163 2100.0 0.212 5
180203 3100.0 0.253 4100.0 0.289 5100.0 0.322
-6 len 7
K STAINLESS STEEL -------
1259 180301
-6 bO C)
-0 1261 N
F K
F K
F K
1262 1263 180302 200.0 9.5 500.0 11.0 1000.0 13.1 0
1264 180303 1500.0 15.4 2000.0 17.6 2500.0 19.8 O
t265 N.
c)
Qo 1266 F
2 0
L267 INCONEL ----
1268 180401
-3 U
1269 1270 F
K F
K F
K 0
L271
- T 1272
- 180402 212.0 10.000 752.0 11.000 1832.0 18.000 m
1273 C
w L274 180402 212.0 3.3139 752.0 3.4168 1832.0 3.8863 90
.275 m
rZ4 276 N
NOTE:
THE THERMAL CONDUCTIVITY TABLE HAS BEEN MODEIFIED TO INCLUDE 0
- 277 THE EFFECT OF FOULING FACTOR ON THE OUTER TUBE SURFACE.
o "278 N
-(
279
.280 NNNNNwN****NN VOLUME HEAT CAPACITY DATA 19XKYY
>NN z
.281
.282 N
UNIT: TEMPERATURE (F)
VS.
CP (BTU/FT**3-F) z
.283 N
.284 U
.285
REFERENCE:
NA-82-001 UX 7
N------
L-02 ----
88 o
190101
-16
.289 c
.290 N
F CP F
CP F
CP mD m
0 291 0
0 292 190102 32.0 34.45 122.0 38.35 212.0 40.95 0 a 293 190103 392.0 43.55 752.0 46.80 2012.0 51.35 w
294 190104 2732.0 52.65 3092.0 56.55 3452.0 63.05 295 190105 3812.0 72.80 4352.0 89.70 4532.0 94.25 296 190106 4712.0 98.15 4892.0 100.10 5144.0 101.40 0
)
297 190107 8000.0 101.40 51 299 N
300
GAP ----
301 190201
-2 0
00 0
302 z
303 N
F CP F
) C) 304 N0 Z 2 305 190202 32.0 0.0149 3400.0 0.0149 0
00 306 N
307 STAINLESS STEEL -------
308 190301
-6 309 N
310 N
F CP F
CP F
CP 23 311 N
312 190302 200.0 57.6 500.0 64.1 1000.0 67.7 m
313 190303 1500.0 70.2 2000.0 76.2 2500.0 79.2 0
314 0
315 INCONEL ----
316 190401
-8 317 318 N
F CP F
CP F
CP n
19
!o 190402 200.0 57.2600 400.0 60.1409 4so.0 60.6320 0>
~l 190403 500.0 61.1216 550.0 61.6216 600.0 62.0564<
!Z 190404 800.0 64.1.549 1000.0 67.2913
-4 0
U)
- Na**e LINEAR THERMAL EXPANSION COEFFICIENT DATA 2OXXYY 0NNN*nsN 0
'7 UNIT: TEMPERATURE IF) VS. COEF II/FI C)
I 19 0
0
REFERENCE:
NA-82-001
- 3) 1 0
0m 2
U02 -----
I 3
200101
-13
()
4 0N 5
F COEF F
COEF F
COEF 4
6 ND Z4 0
7 200102 440.6 3.40E-6 890.6 4.27E-6 1340.6 4.77E-6 0 0 8
200103 1790.6 5.19E-6 2240.6 5.71E-6 2960.6 6.02E-6 9
200104 3140.6 6.40E-6 3590.6 6.91E-6 4040.6 7.28E-6 O
200105 4490.6 7.68E-6 4940.6 8.10E-6 5390.6 1.48E-5 z
1 200106 5840.6 1.51E-5 K
.<cn GAP -----
5 0
-m 6
200201
-2 C) 7 N
8 F
COEF F
COEF Z
9 ND 0
200202 0.0 0.0 2000.0 0.0 m
9 1
N O
2 z
0 3
STAINLESS STEEL -------
0 200301
-2 S
a 5
C 6
N F
COE F F
COEF 0
7 0 O 200302 500.0 11.25E-6 2500.0 11.25E-6 4
FROM REF. (2):
C TEMPERATURE IF)
THERMAL EXPANSION (% DELTA L/LI 500.0 2.75 4
N 2500.0 0.5 6
2.75 - 0.5 7
THERMAL EXPANSION COEF.
X
)
B 2500 - 500 9
co
= 11.25E-6 / F 2
INCONEL 3
200401
-5 F
COEF F
COEF F
COEF 7
200402 200.0 7.10E-6 600.0 7.70E-6 1000.0 8.10E-6 9
200403 1400.0 8.70E-6 1600.0 9.OOE-6
- 79 a
u..
- 80 0
- 81
- NON-CONDUCTION HEAT EXCHANGER DATA CARDS -
21XXYY
- Cn
- 82 a
83 84
- XXYY IHTX IDTRP JVOL IHTYPE M51KH)
H6ESEC) 0 85 Ot
- 86
- 210101 1000 99 7
0.0 0.0
- HEAT SINK LOSS Z
0
_u
'87 0(I 88asD
-4
-A R
89 0t 90 LOCAL CONDITION HEAT TRANSFER STACK CARDS -
2200YX 0ne**** 3 91 m) 92 c
u3) 93 YX ISHD LENS DZ TIMCH NCON1 NCON2 94 m
m 95
- 220011
-1 2
0.0 0.0 4
5 0
96
- 220021
-1 2
0.0 0.0 7
6 40 m
97
- 220031
-1 2
0.0 0.0 a
9
)
_u 98
- 220041
-1 2
0.0 0.0 11 10 99 m2 00
>t 01 anamen STEADY-STATE INITIALIZATION CONVERGENCE CRITERIA -
230000 Ma*een 02 ftr
<cr 03 3:I 04 LCOUNT ACEPSI HEPSE EPSIM VSEPSI r
05 (PRES)
IENTHALPY)
IMASS)
(SLIP VEL) 0 06 0
07 230000 25 1.OE-5 1.OE-5 1.OE-5 1.OE-5 K) 08 Z
09 f
10 0
11 anean******* STEADY-STATE POER REMOVAL SYSTEM DATA -
230XXY
- Mateftets
()
0 12 M
Z 13 to D
14 f
XXY ISGNUM JBIAS JBAL POHF 15 ft C
o 0
6 230011 1
60 81 0.333 m
0 7
230021 2
70 91 0.667 0
8~
ft 19 f
0 ftftttffftt
- he CONTROL SYSTEM MODELING -
70YXXX ant anant owanameft**I.
21 ft 2
f---t 23 NO.
OF CNTL NO.
OF CNTL MAX.
TIME 24 INPUT BLOCKS BLOCKS STEP 25 26 701000 13 25 0.01
- 27.
f 28 tc s
29 CONTROL INPUT BLOCKS ----------
so a
i 31 f
$$S VFN CHANGES 32 f
INLET AND OUTLET TEMPERATURES CORRECTED z
33 f
INLET TEMP 527 F (HAS 528 F) 34 OUTLET TEMP 576 F INAS 57S F) 35 f
SG LEVEL CHANGED TO GET INITIAL LEVEL AT 30% NR 36 f
LEVEL 22.2938 FT (HAS 22.3838) 37 f
GAIN (IN BLOCK -201 0.1044 IHAS 0.10121 18 f
RCS FLON RATE GAIN ADJUSTED TO RESULT IN STEADY STATE m
L439 i
NOMALIZED FLON RATE OF 1.0 1440 F
VFN CHANGES W
-0 1441 if 0
L442 XXX IDC SYMBOL IREG CGAIN CIC 444 702001 1
- MIXL, 25 2.6882E-2 0.375
- PZR LEVEL (FRACTION) 0 V5 7002 2
TM, 0
1.0 0.0
- SYSTEM TIME 0
0 1446 702003 3
NP**,
21 4.6882E-5 1.0
- f NORM. RCS FLOWRATE z
~
)
t447 702003 3
NP**,
21 4.9310E-5 10 T
NORM. RCS FLONRATE
- THIS CARD IS A REPLACEMENT CARD.
o 0
.48 702004 4
- CONS, 0
-1.0
-1.0 N
>)
-4 o) 449 702005 5
- CONS, 0
535.0 535.0
- NO LOAD TIREFI O
0 450 702006 6
- TRPT, 2
1.0 0.0
- TRIP TIME FOR TRIP 2.
3 451 702007 7
TEMP,)
9 1.0 575.01 *f HOT LEG TEMP.
0 452 702008 8
- TEMP, 20 1.0 528.02
- COLD LEG TEMP.
m
.453 702009 9
- LIQL, 50 1.0 22.3838
- S/G LIQUID LEVEL cn
.454 702007 7
- TEMP, 9
1.0 576.0
- HOT LEG TEMP.
- i*THIS CARD IS A REPLACEMENT CARD.
<9 455 702008 8
- TEMP, 20 1.0 527.0 COLD LEG TEMP.
- i THIS CARD IS A REPLACEMENT CARD.
Z
.456 702009 9
- LIQL, 50 1.0 22.2938
- S/G LIQUID LEVEL ia THIS CARD IS A REPLACEMENT CARD.
W 0
'4 n0
.457 702010 10
- CONS, 0
19.42 19.42
- LOWER NR LEVEL TAP 0
T
.458 702011 11
- TRIP, 3
1.0 0.0
.459 702012 12
- PRES, 50 1.0 547.0
)
.460 702013 13
- TEMP, 50 1.0 476.053
.461 z
z
.462
=r m
r-*<
.463 CONTROL BLOCK DEFINITIONS ----------
02
.464 i
X
.465 m
.466 if 1
2 3
4 5
6 7
8 9
10 0
)
467 XXX IOC ITYPE INCI INC2 GAIN CP1 CP2 CIC MIN MAX m
468 if
.469 703001
-1
- SUM, 7
8 0.5 1.0 1.0 551.5 2
470 703002
-2
- LLG,
-1 0
1.0 10.0 3.0 551.5 m
O 471 703003
-3
- SIM, 5
-2 1.0
-1.0 1.0 16.5 DELTA T 472 703004
-4
- FNG,
-3 2
1.0 0.0 0.0 1.0 O
z 473 703005
-9
- FNG,
-4 3
0.0 0.0 0.0 0.0 0 BYPASS
()
474 703006
-6
- FNG,
-4 4
1.0 0.0 0.0 1.0 001 475 703007
-7
- SAIX,
-6
-9 1.0 1.0
-1.0 1.0 0
0 476 703008
-8
- FNG,
-7 6
1.0 0.0 0.0 0.1 0
1.0 477 703009
-9
- INT,
-8 0
1.0 0.0 0.0 0.0 0.0 1.0 0
478 703010
-10
- SUM, 2
6 1.0 1.0
-1.0 -5.OE6 479 703011 -11
- FNG,
-10 5
1.0 0.0 0.0 0.0 0.0 1.0 O
480 703012
-12
- MAX,
-9
-17 1.0 0.0 0.0 0.0 0.0 1.0 481 703013 -13
- FNG,
-10 7
1.0 0.0 0.0 1.0 0.0 1.0 482 703014 -14 SUL, -12
-13 1.0 0.0 0.0 0.0 0.0 1.0 483 703015 -15
- MUL,
-10 8
1.0 0.0 0.0 0.0 0.0 1.0 484 703016
-16
- SUM, 5
13 1.0
-1.0 1.0 -58.947 1
485 703017
-17
- FNG,
-16 9
1.0 0.0 0.0 0.0 0.0 1.0 T
486 703018
-18
- IUL,
-15
-17 1.0 0.0 0.0 0.0 0.0 1.0 487 703019
-19 SM,
-14
-18
-407.77 1.0 1.0 0.0 0
489 70 SEE P.14 OF S-SO-190 FOR THE ADV RELIEVING CAPACITY.
490 Af 491 UFCTL------------------------AUF CNLmC 492 1f 493 703020
-20
- SUM, 9
10 0.1012 1.0
-1.0 0.3 0.0 1.0 0
494 703020
-20
- SUM, 9
10 0.1044 1.0
-1.0 0.3 0.0 1.0 iifTHIS CARD IS A REPLACEMENT CARD.
496 703022
-22
- MUL, 11
-21 1.0 0.0 0.0 0.0 0.0 1.0 a
(
497 703023
-23
- FNG, 12 11 1.0 0.0 0.0 123.3 498 703024
-24
- MilL,
-22
-23 1.0 0.0 0.0 0.0
- TO J 69
NES&L DEPARTMENT CALCULATION SHEET oCN NO.J IPREUM. CCN NO.
PAGE OF Project or DCP/MMP CaIc. No. DC - 3601 ccN CONVERSION:
N No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
60 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazareth 6/21/91 W. Alh i
6/21/91 of 0*
Q 0
Z
- S
- 3
- 0 0
NES&L DEPARTMENT CALCULATION SHEET IcCN NO.
PRELJM. CCN NO, PAGE OF Project or DCP/MMP Calc. No. DC - 3601 CCN CONVERSION:
CcN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
61 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
V. F. Nazar 9lq 6/21/91 W. Alhassani 6/21/91 V
APPENDIX B PRESSURIZER PROGRAM LEVEL
NES&L DEPARTMENT CALCULATION SHEET IooCN NO.
PRELJM. CCN NO.PAE O
Project or DCP/MMP Cac. No. DC - 3601 CCN CONVERSION:
CCN No. CCN Subject SONGS 1 RCS INVENTORY ANALYSIS FOR STATION BLACKOUT Sheet No.
62 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R
E V. F. Nazareth 6/21/91 W. Alh!
atj 6/21/91
[205] From: JOHN CUSTER at WEST3 6/20/91 1:41PM (859 bytes: 14 In)
To: MIKE MCDEVITT at NESL3
Subject:
Pressurizer Program level
Message Contents ----------------------
Mike Although Pressurizer program level is not specifically addressed in Operations procedures, this information is common operator required knowledge. It is addressed in our training and system description and is set by I&C as required by engineering.
Presently the program level for our lower Tave program (level is prgrammed to Tave) is 25% level from 0 to 15% power and ramps linearly from 25% to 37.5% level from 15% power to 100% power.
At our present normal full Rx power level of 92% PZR program level is approximately 36.5%.
John Custer 89271 6/20/91 0