ML13305A121
| ML13305A121 | |
| Person / Time | |
|---|---|
| Site: | Oconee |
| Issue date: | 09/30/2013 |
| From: | Cheng P, Noronha S AREVA |
| To: | Duke Energy Carolinas, Office of Nuclear Reactor Regulation |
| References | |
| 77-3127-002, ONS-013-013 ANP-3127, Rev 2 | |
| Download: ML13305A121 (52) | |
Text
License Amendment Request No. 2012-10, Supplement 2 October 25, 2013 ENCLOSURE 1 AREVA Topical Report ANP-3127, Revision 2, "Oconee Nuclear Station Units 1, 2 & 3 Pressure-Temperature Limits at 54 EFPY,"
September 2013
ANP-3127, Revision 2 September 2013 Oconee Nuclear Station Units 1, 2 & 3 Pressure-Temperature Limits at 54 EFPY
ANP-3127, Revision 2 September 2013 Oconee Nuclear Station Units 1, 2 & 3 Pressure-Temperature Limits at 54 EFPY Prepared by P.-Y. Cheng S. J. Noronha Reviewed by A. D. Nana AREVA Document No.
77-3127-002 Prepared for Duke Energy
A AREVA ANP-3127, Revision 2 Copyright 0 2013 AREVA.
All Rights Reserved
ConrdiDed Documntei A
AREVA ANP-3127, Revision 2 Record of Revision Revision PageslSectionslParagraphs No.
Changed Brief Description I Change Authorization 000 All Original Release 001 Section 4.3 Changed words of description Section 4.4 Added reference to I OCFR Part 50 Appendix G Section 7.0 Added reference to I OCFR Part 50 Appendix G Added Tables 7-6 and 7-7.
Changed Figures 7-1 through 7-9 adding more markers.
Section 3.0 Added Statements on fluence and ART exemption requests Through out Deleted the word "basis" from "Technical Specification P-T Limits" Section 8.0 Added 4 more references.
002 Section 1.0 Added purpose of Revision 2.
Section 3.0/ 5th paragraph Updated ONS-3 LNBF ART values.
Section 3.0/ Table 3-3 and Table Updated ONS-3 LNBF ART values.
3-4 Section 6.0/ Table 6-1 Deleted the second note.
Section 7.0/ Table 7-1 through Updated ONS-3 P-T limits.
Table 7-5, Figure 7-7 through Figure 7-9 Section 8.0 Updated references.
I.
- 1 I.
.4
A AREVA ANP-3127, Revision 2 Table of Contents Page RECO RD O F REVISIO N........................................................................................................................
I LIST O F TABLES.................................................................................................................................
III LIST O F FIG URES...............................................................................................................................
IV 1.0 INTRO DUCTIO N........................................................................................................................
1 2.0 BACKG RO UND..........................................................................................................................
1 3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES....................... 2 4.0 DESIGN BASIS FOR PRESSURE-TEMPERATURE LIMITS................................................
8 4.1 M a te ria l P ro p e rtie s............................................................................................................................
8 4.2 P o stu la te d F la w s...............................................................................................................................
8 4.3 Upper Shelf Toughness............................................................................................................
9 4.4 Uncorrected Reactor Vessel Closure Head Limits.......................................................................
9 4.5 Convection Film Coefficient.........................................................................................................
9 4.6 Reactor Coolant Temperature-Time Histories...........................................................................
9 5.0 TECHNICAL BASIS FOR PRESSURE-TEMPERATURE LIMITS..........................................
10 5.1 F ra ctu re T o u g h n e ss.......................................................................................................................
1 1 5.2 Thermal Analysis and Thermal Stress Intensity Factor.............................................................
11 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region................................
13 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles............................................
14 6.0 PRESSURE CO RRECTIO NS...............................................................................................
14 7.0 SUM MARY O F RESULTS........................................................................................................
16
8.0 REFERENCES
39 9.0 CERTIFICATIO N......................................................................................................................
40
....... *r"._
.**.*.;i"*
-i' A
AREVA ANP-3127, Revision 2 List of Tables Page Table 3-1: Adjusted Reference Temperature Evaluation for the ONS-1 Reactor Vessel Beltline M aterials at 54 E FPY........................................................................................................
..... 4 Table 3-2: Adjusted Reference Temperature Evaluation for the ONS-2 Reactor Vessel Beltline M aterials at 54 E FPY........................................................................................................
5 Table 3-3: Adjusted Reference Temperature Evaluation for the ONS-3 Reactor Vessel Beltline M aterials at 54 E FPY........................................................................................................
6 Table 3-4: Limiting Adjusted Reference Temperature for ONS Units Locations...............................
7 T able 4-1: M aterial P roperties........................................................................................................
8 Table 6-1: Limiting Location Pressure Corrections Factors for ONS-1...............................................
15 Table 6-2: Limiting Location Pressure Corrections Factors for ONS-2 and ONS-3.............................
15 Table 7-1: Tech. Spec. P-T Limits for Normal Heatup.....................................................................
18 Table 7-2: Tech. Spec. P-T Limits for Normal Cooldown................................................................
21 Table 7-3: Tech. Spec. P-T Limits for ISLH Heatup.......................................................................
24 Table 7-4: Tech. Spec. P-T Limits for ISLH Composite Curve.......................................................
27 Table 7-5: Tech. Spec. Criticality Limit P-T Limits..........................................................................
30 Table 7-6: Operational Constraints for Plant Heatup.......................................................................
33 Table 7-7: Operational Constraints for Plant Cooldown...................................................................
33 iii
L)
A AREVA ANP-3127, Revision 2 List of Figures Page Figure 7-1: Tech. Spec. P-T Limits of ONS-1 for Normal Heatup and Criticality Limit.....................
34 Figure 7-2: Tech. Spec. P-T Limits of ONS-1 for Normal Cooldown................................................
34 Figure 7-3: Tech. Spec. P-T Limits of ONS-1 for ISLH Composite Curve (Heatup, Cooldown).....
35 Figure 7-4: Tech. Spec. P-T Limits of ONS-2 for Normal Heatup and Criticality Limit.....................
35 Figure 7-5: Tech. Spec. P-T Limits of ONS-2 for Normal Cooldown................................................
36 Figure 7-6: Tech. Spec. P-T Limits of ONS-2 for ISLH Composite Curve (Heatup, Cooldown).....
36 Figure 7-7: Tech. Spec. P-T Limits of ONS-3 for Normal Heatup and Criticality Limit.....................
37 Figure 7-8: Tech. Spec. P-T Limits of ONS-3 for Normal Cooldown................................................
37 Figure 7-9: Tech. Spec. P-T Limits of ONS-3 for ISLH Composite Curve (Heatup, Cooldown).....
38 iv
A AR EVA ANP-3127, Revision 2
1.0 INTRODUCTION
This report provides Reactor Coolant Pressure Boundary (RCPB) Technical Specification Pressure-Temperature (P-T) operating limits of Oconee Nuclear Station Units 1, 2, and 3 (ONS-1, ONS-2 and ONS-3) for 54 effective full-power years (EFPY). The P-T limits are established in accordance with the requirements of 10 CFR Part 50, Appendix G [1]. These P-T limits are generated for normal operation heatup, normal operation cooldown, inservice leak and hydrostatic test (ISLH) conditions, and reactor core operations.
These limits are expressed in the form of curves of allowable pressure versus temperature. The uncorrected P-T limits for the three ONS units were determined for 54 effective full power years (EFPY) of operation. Pressure correction factors were determined between the pressure sensor locations (pressure tap in the DHRS drop line and two pressure taps in the RCS hot leg) and various regions of the reactor vessel (RV). The Technical Specification pressure-temperature operating limits applicable to ONS-1, ONS-2, and ONS-3 are developed for 54 EFPY of reactor operation. In addition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10 CFR Part 50, Appendix G [1].
Revision 1 was to incorporate customer comments. The purpose of revision 2 is to provide updated P-T limits for ONS-3 based on the updated adjusted reference temperatures (ARTs) for lower nozzle belt forging (LNBF).
2.0 BACKGROUND
The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of the primary system in light water-cooled reactors.
The three areas of the reactor pressure vessel addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.
A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G of the ASME Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components" [2]. This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition (RTNDT). The RTNDT is defined as the greater of the drop weight nil-ductility transition temperature (per ASTM E208 [3]) or the temperature at which the material exhibits 50 ft-lbs absorbed energy and 35 mils lateral expansion minus 60*F. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K1c). The K1c curve appears in Appendix G of ASME Code Section XI [2]. When a given material is indexed to the K1, curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Plant operating limits can then be determined using these allowable stress intensity factors.
Page 1
A AREVA ANP-3127, Revision 2 The beltline region of the reactor vessel is the most highly exposed to neutron irradiation. The general effects of fast neutron irradiation on the mechanical properties of low-alloy ferritic steels such as SA-302, Grade B, modified and SA-508, Class 2 forging material used in the fabrication of the ONS units reactor vessels and inlet and outlet nozzles, are well characterized and documented in the literature. The effects of irradiation on these steels include an increase in the yield and ultimate strengths and a decrease in ductility.
The most significant effect, however, is an increase in the temperature associated with the transition from brittle to ductile fracture and a reduction in the Charpy upper-shelf energy value.
Pressure-temperature limits for the ONS Units reactor vessels are developed in accordance with the requirements of 10 CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical report BAW-1 0046A, Revision 2 [4] and ASME Code Section X1, Appendix G [2].
The ONS-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits for ONS-1 are based on the postulation of both axial and circumferential flaws in the most limiting axial and circumferential welds. Since ONS-2 and ONS-3 RV do not contain any axial welds in their beltline regions, axial flaws are postulated in the most limiting forging materials of these reactor vessels.
3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The RTNDT of the reactor vessel materials, and in turn, the pressure-temperature limits of a reactor vessel, must be adjusted to account for the effects of irradiation. The adjusted RTNDT (ART) values are calculated by adding a radiation-induced ARTNDT to the initial RTNDT plus a margin term using Regulatory Guide 1.99 Revision 2 [5] to predict the radiation induced ARTNDT values as a function of the material's copper and nickel content and neutron fluence. The projected fluence values at 54 EFPY are based on NRC approved Topical Report BAW-2241 P-A, Revision 2 [6], which complies with Regulatory Guide 1.190 [7].
The 1/4t (t-thickness of the section) and %t ART values for the ONS units reactor vessels beltline materials applicable to 54 EFPY are listed in Table 3-1 through Table 3-3.
These values were calculated in accordance with Regulatory Guide 1.99, Revision 2. The calculation of the ART values for the weld metals used the following information from BAW-2308 Revision 1A and 2A [8]; the initial RTNDT, the associated standard deviation and the added chemistry factor requirement. Duke Energy made an exemption request [9] and already received NRC approval of the exemption request [10] to utilize BAW-2308 Revision 1A and 2A for determining the ART values for the Linde 80 weld metals for Page 2
A AREVA ANP-3127, Revision 2 the ONS units. Table 3-4 summarizes the limiting ART for ONS units used in the calculation of P-T limits. The characters in parentheses next to the ART values are the material identification.
The circumferential welds with the highest ART values for the ONS-1 reactor vessel are the Intermediate Shell to Upper Shell Circumferential Weld (ID 61%), SA-1229, with an ART value of 164.20F at the 1/4t wall location and Intermediate Shell to Upper Shell Circumferential Weld (OD 39%),
WF-25, with an ART value of 132.10F at the 33/4t wall location.
Considering the base metal and the longitudinal welds, the materials with the highest ART values are the Upper Shell Longitudinal Weld, SA-1493, with an ART value of 171.0°F at the 1/4t wall location and the Intermediate Shell Plate, C2197-2, with an ART value of 132.90F at the %t wall location. At the nozzle belt the highest ART values are 111,9 0F and 83.50F at 1/4t and %t locations, respectively, for Nozzle belt forging, AHR 54.
The circumferential weld with the highest ART values for the ONS-2 reactor vessel is the Upper Shell to Lower Shell Circumferential Weld, WF-25, with an ART value of 193.1°F at the 1/4t wall location and 132.5 0F at the %t wall location. Considering the base metal (there are no longitudinal welds in ONS-2),
the material with the highest ART values is the Lower Nozzle Belt Forging (Location 3), AMX 77, with an ART value of 161.8 0F at the 1t wall location and 135.7 0F at the %t wall location. At the nozzle belt the highest ART values are 102.40F and 79.40F at 1/4t and 3/t locations, respectively, for Nozzle belt forging, AMX 77.
The circumferential welds with the highest ART values for the ONS-3 reactor vessel are the Upper Shell to Lower Shell Circumferential Weld (ID 75%), WF-67, with an ART value of 195.60F at the 1/t wall location and the Upper Shell to Lower Shell Circumferential Weld (OD 25%), WF-70, with an ART value of 162.1OF at the %t wall location. Considering the base metal (there are no longitudinal welds in ONS-3), the material with the highest ART values is the Lower Nozzle Belt Forging (t=8.44", Location 3), 4680; with an ART value of 190.8 0F at the 1/4t wall location and 160.00F at the %t wall location. At the nozzle belt (t=12") the highest ART values are 106.3°F and 88.80F at 1/t and 3/t locations, respectively, for Nozzle belt forging, 4680.
Page 3
- ~
A AREVA ANP-3127, Revision 2 Table 3-1: Adjusted Reference Temperature Evaluation for the ONS-1 Reactor Vessel Beltline Materials at 54 EFPY Chemical ART*nT (OF) at 54 ART (OF) at 54 Material Description Coposition 54 EFPY Fluence (n/cm2)
EFPY Margin (OF)
EFPY Initial Inner Reactor Vessel BeIldine Mad.
Heat Cu Ni RTNor Chemisty Wetted At
%t At
%t 1/4t
'At At
%t Regio Location Ident.
Number Type [III wt%
wt%
°F)
Factor Surface Location Location Location Location Location Location Location Location Lower Nozzle Belt (LNB)
AHR 54 ZV-2861 A-508, Cl. 2' 0.16 0.65
+3 119.3 1.25E+18 7.29E+ 17 2.65E+17 42.5 24.3 70.7 66.6 116.2 93.9 Forging (Location 1)
Lower Nozzle Belt (LNB)
AHR 54 ZV-2861 A-508, Cl. 2-0.16 0.65
+3 119.3 1.25E+18 5.90E+17 1.40E+17 38.2 16.4 70.7 64.1
<111.9>
<83.5>
Forging (Location 2)
Intermediate Shell (IS) Plate C2197-2 C2197-2 SA-302 G-r. B Mod.
5 0.15 0.50
+1 104.5 1.32E+19 7.74E+18 2.81E+18 97.0 68.3 63.6 63.6 161-6 1132.9)
Upper Shell (US) Plate C3265-1 C3265-1 SA-302 Gr. B Mod.'
010 0.50
+1 65.0 1.46E+19 8.55E+18 3.1IE+18 62.1 44.2 63.6 63.6 126.7 108.8 Upper Shell Plate C3278-1 C3278-1 SA-302 Gr. B Mod.'
0.12 0.60
+1 83.0 1.46E+19 8.55E+18 3.1IE+18 79.4 56.4 63.6 63.6 144.0 121.0 Lower Shell (LS) Plate C2800-1 C2800-1 SA-302 Gr. B Mod.
0.11 0.63
+1 74.5 1.48E+19 8.63E+18 3.13E+18 71.4 50.8 63.6 63.6 136.0 115.4 Lower Shell Plate C2800-2 C2800-2 SA-302 Gr. B Mod.
0.11 0.63
+ 1 74.5 1.48E+ 19 8.63E+ 18 3.13E+18 71.4 50.8 63.6 63.6 136.0 115.4 LNB to IS Circ. Weld (100%)
SA-1 135 61782 Linde 80 0.23 0.52
-58.5 167.0' 1.25E-18 7.29E+17 2.65E+17 59.5 34.1 63.9 63.9 64.9 39.5 IS Long. Weld (00%)
SA-1073 IP0962 Linde 80 0.21 0.64
-48.6 170.6 1.04E+ 19 6.05E+18 2.20E+18 146.6 101.0 66.6 66.6 164.6 119.0 IS to US Circ. Weld (ID 61%)
SA-1229 71249 Linde 80 0.23 0.59
-53.5 167.6 1.34E+19 7.82E+18 N/A 156.1 N/A 61.6 N/A
[164.21 N/A IStoUSCirc.Weld(OD WF-25 299144 Linde 80 0.34 0.68
-74.3 220.6 1.34E+19 N/A 2.84E+18 N/A 144.8 N/A 61.6 N/A
[132.1]
39%/)
US Long. Weld (100%)
SA-1493 8T1762 Linde 80 0.19 0.57
-48.6 167.0' 1.27E+19 7.42E+18 2.70E+18 153.0 107.4 66.6 66.6 (171.01 125.4 US to LS Circ. Weld (100%)
SA-1585 72445 Linde 80 0.22 0.54
-72.5 167.0' 1.42E+19 8.31E+18 3.02E+18 158.3 112.2 60.9 60.9 146.7 100.6 LS Long. Weld (100%)
SA-1426 8"1762 Linde 80 0.19 0.57
-48.6 167.0' 1.21E+19 7.09E+18 2.57E+18 150.9 105.4 66.6 66.6 168.9 123.4 LS Long. Weld (100%)
SA-1430 811762 Linde 80 0.19 0.57
-48.6 167.0' 1.21E+19 7.09E+l8 2.57E+18 150.9 105.4 66.6 66.6 168.9 123.4
[
Highest values of the adjusted reference temperatures for circumferential welds
{ } - Highest values of the adjusted reference temperatures for base metal or longitudinal welds
< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-2 b ASME SA-302 Gr. B Mod. To ASME Code Case 1339
'Per BAW-2308 Rev. 2-A Page 4
A AREVA ANP-3127, Revision 2 Table 3-2: Adjusted Reference Temperature Evaluation for the ONS-2 Reactor Vessel Beltline Materials at 54 EFPY Chemical ARTjajT (*F) at 54 ART (*F) at 54 Material Description composition 54 EFPY Fluence (n/M)
EFPY Margin (F)
EFPY Initial Inner Reactor Vessel Beltline Region Mad.
Heat Cu Ni RTOr Chemistry Wetted
'1/4t
%t 1/4t
%t
%t
/t t
%t Location Ident.
Number Type f[I wt%
wt%
(°F)
Factor Surface Location Location Location Location Location Location Location Location LNB Forging (Location3 3)
AMX77 123T382 A-508, CL 2' 0.13 0.76
+3 95.0 1.32E+19 7.72E+18 2.80E+18 88.1 62.0 70.7 70.7 (161.8 (135.7)
LNB Forging (Location 4)
AM]X 77 123T382 A-508, CL 2' 0.13 0.76
+3 95.0 1.25E+18 5.90E+17 1.40E+17 30.4 13.0 69.0 63.4
<102.4>
<79.4>
US For no AAW 163 3P2359 A-508, Cl2 0.04
!0.75
+20 26.0 1.40E+19 8,19E+18 2,98E+18 24.5 17.4 24.5 17.4 690 54.8 LS Forging AWG 164 4PIg85 A-508, C.2b 0.02 0.80
+20 20.0 1.40E+19 8.20E+18 2.98E+18 18.9 13.4 18.9 13.4 57.8 46.8 LNB to US Circ. Weld (100%)
WF-154 406L44 Linde 90 0.27 0.59
-98.0 182.6 1.32E+ 19 7.72E+18 2.80E+18 169.4 119.2 60,6 60.6 132.0 81.8 US to LS Circ. Weld (100%)
WF-25 299L44 Linde 80 0.34 0.68
-74.3 220.6 1,35E+19 7.88E+18 2.86E+18 205.8 145.2 61.6 61.6
[193.I
[132.5]
[ I - Highest values of the adjusted reference temperatures for circumferential welds
{ ) - Highest values of the adjusted reference temperatures for base metal (no longitudinal welds in ONS-2)
< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-2 b ASTM A-508-64 Cl. 2 Mod. By ASME Code Case 1332-4 Page 5
i
)
A AREVA ANP-3127, Revision 2 Table 3-3: Adjusted Reference Temperature Evaluation for the ONS-3 Reactor Vessel Beltline Materials at 54 EFPY Chemical ART,,ur ('F) at 54 ART (°F) at 54 Material Des iion Cposition 54 EFPY Fluence (/am)
EFPY inF)
EFPY Initial Inner Reactor Vessel Beldine Mail.
Cu Ni RTNmr Chenistry Wetted At
%t
'At
'At
'At t
't t t
Region Location
[dent.
Heat Number Type [Ip wt%
wt%
(*1)
Factor Surface Location Location Location Location Location Location Location Location LNB Forgig (Location 3) 4680 4680 A-508, CL 2' 0.147 0.91
+17.7 112.94 1.24E+19 7.25E+18 2.63E+18 10276 71.95 70.36 70.36 (190.81 K
160.0}
LNB Forging (Location 4) 4680 4680 A-508, CL 2-0.147 0.91
+17.7 112.94 5.54E+17 2.62E+17 6.20E+16 22.88 8.86 65.71 62.23
<106.3>
<88.8>
US Forging AWS 192 522314 A-508, Cl. 2b 0.01 0.73 440 36.0 11.38E+19 8.07E+18 2.93E+18 33.8 23.9 34.0 34.0 107.8 97.9 LS Forging ANK 191 522194 A-508, CI. 2' 0.02 0.76
+40 17.4' 1.39E+19 8.16E+18 2.96E+ 18 16.4 11.6 16.4 11.6 72.8 63.2 LNB to US Circ. Weld WF-200 821T44 Linde 80 0.24 0.63
-84.2 178.0 1.26E+19 7.36E+18 2.67E+18 162.7 114.0 59.2 59.2 137.7 89.0 (100%)
W 1-2 206 19 1102
- 17.
9 US to LS Circ. Weld (ID WF-67 72442 Linde 80 0.26 0.60
-33.2 180.0 1.34E+19 7.83E+18 N/A 167.7 N/A 61.1 N/A
[195.6]
N/A US to LS Circ. Weld (OD WF-70 72105 Linde 80 0.32 0.58
-31.1 199.3 1.34E+19 N/A 2.85E+18 N/A 130.9 N/A 62.3 N/A
[162.11 25%)
[]-Controlling values of the adjusted reference temperatures for circumferential welds
{ } - Highest values of the adjusted reference temperatures for base metal (no longitudinal welds in ONS-3)
< > - Highest values of the adjusted reference temperature for the thick 12-inch nozzle belt section a ASTM A-508-64 CI. 2 Mod. By ASME Code Case 1332-3 b ASTM A-508-64 CI. 2 Mod. By ASME Code Case 1332-4 "This Chemistry Factor was determined from surveillance data Page 6
A AREVA ANP-31127, Revision 2 Table 3-4: Limiting Adjusted Reference Temperature for ONS Units Locations Vessel Wall Vessel WallLim it!ing RTNDT (OF)
Component Location ONS-1 ONS-2 ONS-3 171.0 161.8 190.8 Beltline (SA-1493)
(AMX-77)
(4680)
Axial Weld/Base Metal 132.9 135.7 160.0
/3/4t (C2197-2)
(AMX-77)
(4680) 164.2 193.1 195.6 1/4/t Beltline (SA-1229)
(WF-25)
(WF-67)
Circ. Weld 132.1 132.5 162.1
/At (WF-25)
(WF-25)
(WF-70) 111.9 102.4 106.3 1/4/t Nozzle Belt (AHR-54)
(AMX-77)
(4680)
Upper (t=12")
83.5 79.4 88.8
(
(4t (AHR-54)
(AMX-77)
(4680)
Page 7
i-I, -K (J
0 L rý ý,'r A
AREVA ANP-3127, Revision 2 4.0 DESIGN BASIS FOR PRESSURE-TEMPERATURE LIMITS Essential analytical parameters used in the preparation of ONS-1, 2, and 3 P-T limits are described below.
4.1 Material Properties Table 4-1 describes the material properties used in the development of the P-T limits for the ONS units.
Table 4-1: Material Properties Temp.
Elastic Thermal(2)
Thermal Specific Density Thermal Modulus Expansion Conductivity Heat Conductivity for Cladding Material (OF)
(10 6psi)
(10. in/in/PF)
(Btu-in/hr-ft2-OF)
(Btu/Ib-°F)
(lb/ft3)
(Btu-in/hr-ft2-OF) 70 29.9 6.07 278.4 0.104 490.9 103.9 100 29.8(1) 6.13 275.1 0.107 490.5 105.6 150 29.7(1) 6.25 270.8 0.111 489.9 108.4 200 29.5 6.38 267.6 0.115 489.2 111.3 250 29.3(1) 6.49 265.3 0.118 488.6 114.2 300 29.0 6.60 263.7 0.120 487.9 117.0 350 28.8(1) 6.71 262.5 0.123 487.3 119.9 400 28.6 6.82 261.6 0.125 486.7 122.7 450 28.3(1) 6.92 260.6 0.126 486.0 125.6 500 28.0 7.02 259.5 0.128 485.4 128.5 550 27.7(1) 7.12 257.8 0.130 484.7 131.3 600 27.4 7.23 255.6 0.133 484.1 134.2 650 27.0(1) 7.33 252.5 0.135 483.4 137.0 700 26.6 7.44 248.4 0.139 482.8 139.9 Note: (1) The values are obtained by interpolating the available values; (2) Mean coefficients of thermal expansion are used.
4.2 Postulated Flaws
- a.
Postulated Reactor Vessel Beltline Flaws Semi-elliptical surface flaws that are 1/4t deep and 11t long are postulated on the inside and outside surfaces of the reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds and a circumferential flaw is postulated in the circumferential welds.
Page 8
Jý A
- b.
Postulated Nozzle Corner Flaw A 1/4/4tNB (tNB - the thickness at the nozzle belt) deep corner flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles and core flood nozzle corner.
4.3 Upper Shelf Toughness A maximum value of 200 ksi-/in is assumed for the upper shelf fracture toughness (K,,) of the reactor vessel beltline. For the nozzle forging materials, a "no cut-off' limit is assumed.
4.4 Uncorrected Reactor Vessel Closure Head Limits Pressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLH operation were derived for ONS reactor vessel closure heads (RVCHs) based on the KI, fracture toughness curve.
The Pressure-Temperature limits derived for the reactor vessel head-to-flange conservatively bounds the minimum required temperature requirements as given in Table 1 of the Appendix G to 10CFR Part 50 [1].
4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft2-OF is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use. When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the last RCP is shut off during cooldown), a value of 354 BTU/hr-ft2-OF is used as an effective film coefficient at the cladding-to-base metal interface. For LPI swap a value of 430 BTU/hr-ft2-OF is used as an effective film coefficient at the cladding-to-base metal interface. This value was developed for flow conditions when no RCPs are running and 54 0F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle low pressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.
4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown.
The limiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used to simulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.
The following input temperate-time histories are considered:
Normal Ramp Heatup, 60°F/hr to 270°F and then 1 00°F/hr to 550°F Page 9
A AR EVA ANP-3127, Revision 2 Normal Step Heatup, 60°F/hr to 270*F and then 100*F/hr to 550°F Normal Ramp Cooldown, 1 0O0 F/hr to 2700F and then 500F/hr to 60OF Normal Step Cooldown, 100°F/hr to 270°F and then 50°F/hr to 60°F 5.0 TECHNICAL BASIS FOR PRESSURE-TEMPERATURE LIMITS Pressure-temperature limits are developed using an analytical approach that is in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G [2].
Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50 [1].
The analytical techniques used to calculate P-T limits are based on an approved linear elastic fracture mechanics methodology described in topical report BAW-10046A, Revision 2 [4].
The fundamental equation used to calculate the allowable pressure is Kallow K
-KR IT Pnw=SFx iZlP where, Pow allowable pressure KIR reference stress intensity factor (Ka or K I)
KIT thermal stress intensity factor KZ 1
=
unit pressure stress intensity factor (due to 1 psig)
SF
=
safety factor For each analyzed transient and steady state condition, the allowable pressure is determined as a function of reactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle, and closure head. In the beltline region, flaws are postulated to be present at the 1/4t and %t locations of the controlling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactor vessel nozzle flaws are located at the inside juncture (corner) with the nozzle shell, and the closure head flaw is located near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation. The P-T limit curves presented consist of the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a function of fluid temperature. These curves have been "smoothed", as necessary, to eliminate irregularities associated with the startup of the first reactor coolant pump during heatup and the initiation of decay heat removal during cooldown. After the initial determination of the P-T limit curves, location specific curves were adjusted for sensor location.
No Page 10
A AREVA ANP-3127, Revision 2 instrument error correction has been applied.
The final results include the determination of a minimum/lower bound P-T curve.
The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at a pressure of 2500 psig (approximately 10% above the normal operating pressure). The ISLH analysis considers the most limiting heatup and cooldown transients. The approach satisfies the requirement of Item 2.d in Table 1 of 10 CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material + 1600F.
Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.
5.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed to the adjusted reference temperature of the material, RTNDT.
Pressure-Temperature limits developed in accordance with ASME Code,Section XI, Appendix G [2], which permits the use of K1c fracture toughness, K1= = 33.2 + 20.734 exp [0.02 (T - RTNDT)J The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'An for the reactor vessel welds and shell base metal and "no cut-off' limit for the inlet and outlet nozzles. The crack-tip temperature needed for these fracture toughness equations is obtained from the results of a transient thermal analysis, described below.
6.2 Thermal Analysis and Thermal Stress Intensity Factor Through-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction equation, P T
+ I n) aC
(
r 2 r ar) subject to the following boundary conditions:
at the inside surface, where r = Ri, Page 11
A AREVA ANP-31127, Revision 2
- k - = h(Tw - Tb) ar at the outside surface, where r = Ro, or-=0
- where, p=
density q
specific heat k =
thermal conductivity T=
temperature r =
radial coordinate t=
time h =
convection heat transfer coefficient T,=
wall temperature Tb =
bulk coolant temperature R, =
inside radius of vessel Ro =
outside radius of vessel The above equation is solved numerically using a finite difference technique to determine the temperature at 17 points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.
An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined by trapezoidal integration of the following expression:
Thermal hoop stresses:
Eai 1 r 'R2f'Tr dr + frTrdr-Tr 2
1-v r 2 (R,,-
Jý RJ&)
[12, Eqn (255)]
Page 12
r",'ý-
';rý 1,-1 ý
, Yý :PZ'Y A
AR VA ANP-3127, Revision 2 Expressing the thermal stress distributions by o(x) = CO + C1 (x/a) + C2 (x/a)2 + C3 (x/a)3,
- where, x =
is a dummy variable that represents the radial distance from the appropriate (i.e., inside or outside) surface, in.
a =
the flaw depth, in.
The thermal stress intensity factors are defined by the following relationships:
For a /4t inside surface flaw during cooldown, Ki, =
(1.0359 Co + 0.6322 C1 + 0.4753 C2 + 0.3855 C3) Vn For a 1/4t outside surface flaw during heatup, Kit=
(1.043 Co + 0.630 C1 + 0.481 C2 + 0.401 C 3)O 51 6.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltilne Region The membrane stress intensity factor in the reactor vessel shell due to a unit pressure load is Kim=
MmxRi/t where R=
vessel inner radius, in.
t =
vessel wall thickness, in.
For a longitudinal % -thickness x 3/2 -thickness semi-elliptical surface flaw:
at the inside surface, Mm=
1.85 for /t < 2
= 0.926 /t for 2 _<*
4t _< 3.464
=
3.21 for -A > 3.464 at the outside surface, Mm=
1.77 for 't <2
=
0.893 't for 2 _< /t _< 3.464
=
3.09 for */t > 3.464 Page 13
A AR VA ANP-3127, Revision 2 6.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles Considering a nozzle as a hole in a shell, WRC Bulletin 175 [13] presents the following method for estimating stress intensity factors for a nozzle corner flaw:
Kim = o*I-- F(a/r,)
where a=
R,/t Ri =
nozzle belt shell inner radius, in.
t =
nozzle belt shell wall thickness, in.
a=
flaw depth, in.
rn=
apparent radius of nozzle, in.
=
ri + 0.29rc r=
inner radius of nozzle, in.
r=
nozzle corner radius, in.
and F(a/rn) = 2.5 - 6.108(a/rn) + 12(a/rn)2 - 9.1664(a/rn) 3 6.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. The plants use two instrument locations for indicated pressures, the low range taps in the decay heat drop lines and two taps (a narrow range tap and a wide range tap) in the hot legs. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations. These location corrections were analyzed for various temperatures and pump combinations. The location corrections for ONS-1 are summarized in Table 6-1.
The location correction factors for ONS-2 and ONS-3 are shown in Table 6-2. The limiting correction factors at various temperature ranges are then determined for beltline and closure head, as tabulated in Table 6-1 for ONS-1; and Table 6-2 for ONS-2 and ONS-3. The correction factors for the beltlines are also applicable to the nozzles.
Page 14
(fl...
'4 A
AREVA ANP-3127, Revision 2 Table 6-1: Limiting Location Pressure Corrections Factors for ONS-1 Temperature 50-99 100-299 300-399 400-532*
Range, OF Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP 2/0 2/1 Beltline &
21 93 105 0/0 or or 115 2/2 Nozzle (E12 WR)
(D7A1 WR)
(D51 WR) 0/2 1/2 2/0 13 72 RVCH 0/0 or N/A N/A (E12WR)
(D7A1 WR) 0/2
- The correction factor is used for temperatures above 5320F since the values are bounding for higher temperature Table 6-2: Limiting Location Pressure Corrections Factors for ONS-2 and ONS-3 Temperature 50-99 100-299 300-399 400-532*
Range, OF Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP 2/0 2/1 Beltline &
21 88 100 0/0 or or 109 2/2 Nozzle (E12 WR)
(E7A1 WR)
(E51 WR) 0/2 1/2 2/0 13 68 RVCH 0/0 or N/A N/A (E12 WR)
(E7A1 WR) 0/2 l
'The correction factor is used for temperatures above 5320F since the values are bounding for higher temperature Page 15
A ANP-3127, Revision 2 ARE VA 7.0
SUMMARY
OF RESULTS The following is a summary of results for the ONS-1, ONS-2, and ONS-3 P-T limits at 54 EFPY. The analyses are corrected for location only. Correction due to instrument uncertainty is not included.
Technical Specification (Tech. Spec.) P-T limits for normal heatup and criticality conditions; normal cooldown, and inservice leak hydrostatic conditions are provided in Figure 7-1 through Figure 7-3 for ONS-1, Figure 7-4 through Figure 7-6 for ONS-2, and Figure 7-7 through Figure 7-9 for ONS-3, respectively.
These P-T limits have been developed considering the operational conditions described in Section 4.0.
Maintaining the reactor coolant system pressure below the upper limit of the pressure-temperature limit curves ensures protection against non-ductile failure. Acceptable pressure and temperature combinations for reactor vessel operation are below and to the right of the applicable P-T limit curves. These P-T limit curves have been adjusted based on pressure differential between point of system pressure measurement and the point in the reactor vessel that establishes the controlling unadjusted pressure limit. The P-T limit curves provided in Figure 7-1 through Figure 7-9 do not include margins for instrument error. The reactor is not permitted to be critical until the pressure-temperature combinations are, as a minimum, to the right of the criticality curve. The numerical values for the Technical Specification P-T curves provided in Figure 7-1 through Figure 7-9 are shown in Table 7-1 through Table 7-5. The operational constraints for these curves are tabulated in Table 7-6 and Table 7-7. These Technical Specification P-T curves meet all the pressure and temperature requirements for the reactor pressure vessel listed in Table 1 of 1 OCFR Part 50, Appendix G [1].
The Tech. Spec. P-T limits for normal heatup for ONS units 1, 2, and 3 are shown in Table 7-1. The Tech.
Spec. P-T limits for normal cooldown for ONS units 1, 2, and 3 are generated as the limiting allowable pressure at every calculated temperature as shown in Table 7-2. The Tech. Spec. P-T limits for ISLH heatup of the three ONS units are shown in Table 7-3. The limiting composite curves for Tech. Spec. P-T limits for ISLH are shown in Table 7-4. The criticality limit temperature corresponding to a pressure of 2500 psig is determined through interpolation of ISLH heatup data in Table 7-3. As shown in Table 7-5(a), the criticality limit temperatures for ONS-1, ONS-2, and ONS-3 are 252.90F, 243.5°F, and 274.8*F, respectively. The criticality-limit P-T limits data are shown in Table 7-5(b).
The Low Temperature Overpressurization Protection (LTOP) pressure limit at 54 EFPY that bounds all three ONS units is 540 psig (ONS-1). The 54 EFPY LTOP limiting pressure remains above the current Pressurizer Power-Operated Relief Valve (PORV) setpoint of 535 psig. Therefore, the current PORV low-pressure setpoint (535 psig) remains acceptable for plant operation to 54 EFPY for all three ONS units.
Page 16
C1 i vrI Cal A
AR VA ANP-3127, Revision 2 The minimum 54 EFPY LTOP enable temperature that bounds all three ONS units with instrument uncertainty is 276.8°F (ONS-3). This value is lower than the current LTOP enable temperature of 3250F at 33 EFPY. Therefore, the current LTOP temperature of 325 0F remains acceptable for plant operation to 54 EFPY for all three ONS units.
Page 17
L i C) L A
AR EVA ANP-3127, Revision 2 Table 7-1: Tech. Spec. P-T Limits for Normal Heatup ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing FluidsAdjutedjusted_
Temnp Adjusted Temnp Adutd Temnp Ajse Pressure Pressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 528 528 528 528 528 528 528 528 528 528 528 534 545 553 553*
553 557*
557*
557' 557*
557*
557*
557 557 557 567 593 729 804 834 867 903 943 987 1035 1089 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 527 527 527 527 527 527 527 527 527 527 527 532 543 550 550*
550O 550' 550' 550*
550*
550*
550*
550 550 550 582 613 776 825 867 914 965 1021 1083 1145 1210 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 15O 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 4701 470t 470*
470*
470W 470W 470*
470t 470*
470*
470*
4701 470' 470*
470t 470' 470*
4701 470*
470' 470*
4701 470*
470*
470 517 532 638 661 687 715 746 780 818 860 907 Page 18
A AREVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluld Governing Fluid Governing Adjusted Adjusted Adjusted Pressure Pressure Pressure (OF)
(psi)
(TF)
(psi)
(OF)
(psi) 215 1148 215 1281 215 947 220 1213 220 1360 220 990 225 1285 225 1446 225 1038 230 1364 230 1542 230 1092 235 1451 235 1648 235 1150 240 1547 240 1764 240 1215 245 1653 245 1893 245 1287 250 1771 250 2035 250 1365 255 1900 255 2192 255 1453 260 2044 260 2365 260 1549 265 2202 265 2557 265 1656 270 2374 270 2755 270 1772 275 2500 275 2906 275 1856 280 2655 280 2984 280 1961 285 2834 285 2984 285 2081 290 2978 290 2984 290 2215 295 2978 295 2984 295 2364 300 2978 300 2984 300 2518 305 2978 305 2984 305 2700 310 2978 310 2984 310 2902 315 2978 315 2984 315 2984 320 2978 320 2984 320 2984 325 2978 325 2984 325 2984 330 2978 330 2984 330 2984 335 2978 335 2984 335 2984 340 2978 340 2984 340 2984 345 2978 345 2984 345 2984 350 2978 350 2984 350 2984 355 2978 355 2984 355 2984 360 2978 360 2984 360 2984 365 2978 365 2984 365 2984 370 2978 370 2984 370 2984 375 2978 375 2984 375 2984 380 2978 380 2984 380 2984 385 2978 385 2984 385 2984 390 2978 390 2984 390 2984 395 2978 395 2984 395 2984 400 2978 400 2984 400 2984 Page 19
A AR VA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Adjusted Adjusted Adjusted Temp Pressure Pressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 405 2978 405 2984 405 2984 410 2978 410 2984 410 2984 415 2978 415 2984 415 2984 420 2978 420 2984 420 2984 425 2978 425 2984 425 2984 430 2978 430 2984 430 2984 435 2978 435 2984 435 2984 440 2978 440 2984 440 2984 445 2978 445 2984 445 2984 450 2978 450 2984 450 2984 455 2978 455 2984 455 2984 460 2978 460 2984 460 2984 465 2978 465 2984 465 2984 470 2978 470 2984 470 2984 475 2978 475 2984 475 2984 480 2978 480 2984 480 2984 485 2978 485 2984 485 2984 490 2978 490 2984 490 2984 495 2978 495 2984 495 2984 500 2978 500 2984 500 2984 505 2978 505 2984 505 2984 510 2978 510 2984 510 2984 515 2978 515 2984 515 2984 520 2978 520 2984 520 2984 525 2978 525 2984 525 2984 530 2978 530 2984 530 2984 535 2978 535 2984 535 2984 540 2978 540 2984 540 2984 545 2978 545 2984 545 2984 550 2978 550 2984 550 2984 554 2978 554 2984 554 2984 558 2978 558 2984 558 2984 Value adjusted to avoid negative slope in the curve Page 20
A AR EVA ANP-3127, Revision 2 Table 7-2: Tech. Spec. P-T Limits for Normal Cooldown ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing TeFup Adjusted Temp Adjusted TeFup Adjusted Pressure Pressure Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 550 2978 550 2984 550 2984 545 2969 545 2975 545 2975 540 2952 540 2958 540 2958 535 2933 535 2939 535 2939 530 2913 530 2919 530 2919 525 2893 525 2899 525 2899 520 2873 520 2879 520 2879 515 2853 515 2859 515 2859 510 2833 510 2839 510 2839 505 2815 505 2821 505 2821 500 2796 500 2802 500 2802 495 2779 495 2785 495 2785 490 2761 490 2767 490 2767 485 2745 485 2751 485 2751 480 2729 480 2735 480 2735 475 2714 475 2720 475 2720 470 2699 470 2705 470 2705 465 2685 465 2691 465 2691 460 2672 460 2678 460 2678 455 2659 455 2665 455 2665 450 2646 450 2652 450 2652 445 2634 445 2640 445 2640 440 2623 440 2629 440 2629 435 2611 435 2617 435 2617 430 2601 430 2607 430 2607 425 2591 425 2597 425 2597 420 2581 420 2587 420 2587 415 2571 415 2577 415 2577 410 2562 410 2568 410 2568 405 2554 405 2560 405 2560 400 2546 400 2552 400 2552 395 2546 395 2552 395 2552 390 2540 390 2545 390 2545 385 2533 385 2538 385 2538 380 2526 380 2531 380 2531 375 2519 375 2524 375 2524 370 2513 370 2518 370 2518 Page 21
A AR EVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Flui Adjusted Temp Adjusted Temp Adjusted Temp Pressure Pressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 365 2506 365 2511 365 2511 360 2501 360 2506 360 2506 355 2495 355 2500 355 2500 350 2490 350 2495 350 2495 345 2485 345 2490 345 2490 340 2480 340 2485 340 2485 335 2475 335 2480 335 2480 330 2471 330 2476 330 2476 325 2467 325 2472 325 2472 320 2463 320 2468 320 2468 315 2459 315 2464 315 2464 310 2456 310 2461 310 2461 305 2452 305 2457 305 2457 300 2449 300 2454 300 2454 295 2449 295 2454 295 2454 290 2449 290 2454 290 2454 285 2449 285 2454 285 2454 280 2449 280 2454 280 2454 275 2447 275 2452 275 2452 270 2444 270 2449 270 2359 265 2444 265 2449 265 2199 260 2444 260 2449 260 2039 255 2444 255 2449 255 1895 251 2231 251 2365 251 1675 250 2231' 250 2365*
250 1675*
246 2221 246 2365 246 1668 245 2187 245 2365*
245 1646 241 2058 241 2365 241 1559 240 2028 240 2338 240 1539 236 1912 236 2199 236 1460 235 1884 235 2165 235 1442 231 1779 231 2039 231 1371 230 1754 230 2009 230 1354 226 1659 226 1895 226 1290 225 1636 225 1867 225 1275 221 1550 221 1764 221 1217 220 1529 220 1739 220 1203 216 1452 216 1646 216 1151 Page 22
A AREVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing T Adjusted Temp Adjusted Temp Adjusted Temp Pressure Pressure Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 215 211 210 206 205 201 200 196 195 191 190 186 181 176 171 166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1433 1363 1346 1282 1267 1209 1195 1143 1131 1083 1053 1029 981 910 837 824 765 720 710 636 611 531 527 513 513 513 513 513 513 513 512 506 215 211 210 206 205 201 200 196 195 191 190 186 181 176 171 166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1623 1539 1518 1442 1423 1354 1338 1275 1260 1203 1166 1138 1079 1021 907 907 871 814 802 708 670 557 557 544 544 544 544 544 544 534 525 518 215 211 210 206 205 201 200 196 195 191 190 186 181 176 171 166 161 156 155 146 135 110 105 100 95 90 85 80 75 70 65 60 1138 1091 1079 1037 1026 971 971*
941 928 881 860 828 780 738 701 642 608 582 575 533 529 487 486 476 476 476 476 476 476 476 476 476 Value adjusted to avoid negative slope in the curve Page 23
u A
AREVA ANP-3127, Revision 2 Table 7-3: Tech. Spec. P-T Limits for ISLH Heatup ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing FluidsAdjutedjusted_
Trp Adjusted Temp Adutd Temp Ajse Temp Pressure Pressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 553 553 553 553 553 553 553 553 553 553 553 610 752 774 774*
774*
774*
774' 774' 774' 774*
774*
774 774 774 787 821 1002 1103 1143 1187 1235 1288 1347 1412 1483 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 557 557 557 557 557 557 557 557 557 557 557 622 753 763 763' 763' 763*
763*
763*
763*
763*
763*
763 763 763 805 847 1065 1130 1186 1248 1316 1390 1473 1557 1643 60 65 70 72 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 557 557 557 557 557 557 557 557 557 557 557 614 655*
655 6551 655' 655' 655*
655*
6551 655' 655*
655 655 655 719 738 880 911 945 983 1024 1069 1120 1176 1238 Page 24
A AR EVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Adjusted Temp Adjusted Temp Adjusted Temp Pressure Pressure Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 1562 1649 1745 1852 1969 2098 2241 2398 2572 2765 2977 3197 3364 3571 3809 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 1738 1842 1958 2085 2226 2382 2553 2743 2952 3183 3438 3702 3904 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 1292 1350 1414 1485 1563 1649 1745 1850 1966 2095 2237 2392 2504 2644 2804 2983 3182 3390 3634 3903 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 Page 25
ýU Q,{
A AREVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing T Adjusted Adjusted Adjusted Temp Pressure Pressure Pressure
(*F)
(psi)
(OF)
(psi)
(OF)
(psi) 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 4009 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015 4015
'Value adjusted to avoid negative slope in the curve Page 26
T E.
A AREVA ANP-3127, Revision 2 Table 7-4: Tech. Spec. P-T Limits for ISLH Composite Curve ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Fluid Adjusted Up Adjusted Fluid Adjusted Temp Pressure Pressure Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 215 553 553 553 553 553 553 553 553 553 553 610 752 774 774 774 774 774 774 774 774 774 774 774 774 787 821 1002 1103 1143 1187 1235 1288 1347 1412 1483 1562 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 215 557 557 557 557 557 557 557 557 557 557 614 753 763 763 763 763 763 763 763 763 763 763 763 763 805 847 1065 1130 1186 1248 1316 1390 1473 1557 1643 1738 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 167 170 170 170 170 175 180 185 190 195 200 205 210 215 557 557 557 557 557 557 557 557 557 557 614 655 655 655 655 655 655 655 655 655 655 655 655 655 719 738 880 911 945 983 1024 1069 1120 1176 1238 1292 Page 27
A AREVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Adjusted Temp Adjusted Adjusted Temp Pressure Pressure Temp Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1649 1745 1852 1969 2098 2241 2398 2572 2765 3290 3290 3293 3297 3300 3300 3300 3300 3305 3309 3314 3319 3324 3330 3336 3342 3348 3355 3362 3369 3377 3385 3394 3403 3412 3422 3432 3432 3443 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1842 1958 2085 2226 2382 2553 2743 2952 3183 3295 3295 3298 3302 3305 3305 3305 3305 3310 3314 3319 3324 3329 3335 3341 3347 3353 3360 3367 3374 3382 3390 3399 3408 3417 3427 3437 3438 3449 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 1350 1414 1485 1563 1649 1745 1850 1966 2095 2237 2392 2504 2644 2804 2983 3182 3305 3310 3314 3319 3324 3329 3335 3341 3347 3353 3360 3367 3374 3382 3390 3399 3408 3417 3427 3437 3438 3449 Page 28
A AR EVA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Temp Adjusted Temp Adjusted Temp Adjusted Pressure Pressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3455 3467 3479 3492 3506 3520 3536 3551 3567 3583 3601 3619 3637 3657 3677 3698 3720 3743 3767 3791 3816 3842 3869 3896 3923 3950 3975 3997 4008 4009 4009 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3461 3473 3485 3498 3512 3526 3542 3557 3573 3589 3607 3625 3643 3663 3683 3704 3726 3749 3773 3797 3822 3848 3875 3902 3929 3956 3981 4003 4014 4015 4015 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 554 558 3461 3473 3485 3498 3512 3526 3542 3557 3573 3589 3607 3625 3643 3663 3683 3704 3726 3749 3773 3797 3822 3848 3875 3902 3929 3956 3981 4003 4014 4015 4015 Page 29
A AREVA ANP-3127, Revision 2 Table 7-5: Tech. Spec. Criticality Limit P-T Limits (a) Criticality Limit Determination (b) Criticality Limit P-T Limits ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing I
Adjusted Adjusted Temp Adjusted Temp PsPressure ressure Pressure (OF)
(psi)
(OF)
(psi)
(OF)
(psi) 252.9 252.9 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0
1124 1148 1213 1285 1364 1451 1547 1653 1771 1900 2044 2202 2374 2500 2655 2834 2978 2978 2978 2978 2978 2978 243.5 243.5 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0
1126 1145 1210 1281 1360 1446 1542 1648 1764 1893 2035 2192 2365 2557 2755 2906 2984 2984 2984 2984 2984 2984 2984 2984 274.8 274.8 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 0
1148 1150 1215 1287 1365 1453 1549 1656 1772 1856 1961 2081 2215 2364 2518 2700 2902 2984 Page 30
A ARE VA ANP-3127, Revision 2 ONS-1 ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Tep Adjusted Temp Adjusted Tep Adjusted Temp Pressure T
Pressure Temp Pressure (0F)
(psi)
(OF)
(psi)
(OF)
(psi) 360 2978 360 2984 360 2984 365 2978 365 2984 365 2984 370 2978 370 2984 370 2984 375 2978 375 2984 375 2984 380 2978 380 2984 380 2984 385 2978 385 2984 385 2984 390 2978 390 2984 390 2984 395 2978 395 2984 395 2984 400 2978 400 2984 400 2984 405 2978 405 2984 405 2984 410 2978 410 2984 410 2984 415 2978 415 2984 415 2984 420 2978 420 2984 420 2984 425 2978 425 2984 425 2984 430 2978 430 2984 430 2984 435 2978 435 2984 435 2984 440 2978 440 2984 440 2984 445 2978 445 2984 445 2984 450 2978 450 2984 450 2984 455 2978 455 2984 455 2984 460 2978 460 2984 460 2984 465 2978 465 2984 465 2984 470 2978 470 2984 470 2984 475 2978 475 2984 475 2984 480 2978 480 2984 480 2984 485 2978 485 2984 485 2984 490 2978 490 2984 490 2984 495 2978 495 2984 495 2984 500 2978 500 2984 500 2984 505 2978 505 2984 505 2984 510 2978 510 2984 510 2984 515 2978 515 2984 515 2984 520 2978 520 2984 520 2984 525 2978 525 2984 525 2984 530 2978 530 2984 530 2984 535 2978 535 2984 535 2984 540 2978 540 2984 540 2984 545 2978 545 2984 545 2984 Page 31
r L
J A
AREVA ANP-3127, Revision 2 ONS-I ONS-2 ONS-3 Fluid Governing Fluid Governing Fluid Governing Tamp Adjusted Adjusted Tamp Adjusted Pressure Temp Pressure Pressure (0F)
(psi)
(TF)
(psi)
(OF)
(psi) 550 2978 550 2984 550 2984 555 2978 555 2984 555 2984 560 2978 560 2984 560 2984 565 2978 565 2984 565 2984 570 2978 570 2984 570 2984 575 2978 575 2984 575 2984 580 2978 580 2984 580 2984 585 2978 585 2984 585 2984 590 2978 590 2984 590 2984 594 2978 594 2984 594 2984 598 2978 598 2984 598 2984 Page 32
A AREVA ANP-3127, Revision 2 Table 7-6: Operational Constraints for Plant Heatup CONSTRAINT RC TEMPERATURE HEATUP RATE ALLOWED PUMP COMBINATION RC Temperature T < 270°F
- 30°F in any 1/2 hr period NA T > 2700 F
< 50°F in any 1/2 hr period NA RC Pumps T < 100OF NA No pumps 1 00°F T < 300OF NA
< two pumps T
300OF NA Any Table 7-7: Operational Constraints for Plant Cooldown CONSTRAINT RC TEMPERATURE COOLDOWN RATE ALLOWED PUMP COMBINATION RC Temperature T
- 270°F 5 50°F in any 1/2 hr period NA 1401F T < 2701F
_< 25°F in any 1/2 hr period NA T<1400F
- 50°F in any one hr period NA RCS depressurized
_< 50oF in any one hr period NA T > 300OF NA Any RC Pumps 00°F < T < 300OF NA
< two pumps T < 100OF NA No pumps Page 33
A AREVA ANP-3127, Revision 2 Figure 7-1:
0.
0.
C.
Ix C)
'U Tech. Spec. P-T Limits of ONS-l for Normal Heatup and Criticality Limit 2400 -
I I
I Composite HU Curve Criticality Limit P-T Limit Curve Normal Heatup Criticality Limit 2000 Temp. Press.
Temp. Press.
(*F)
(psig)
(
0F) (psig)
I 60 528 253 0
105 528 253 1124 1600 115 545 270 1364 120 553 290 1771 135 557 310 2374 170 557 170 729 1200 175 804 190 903 210 1089 230 1364 800 250 1771 270 2374 1
400 n
0 50 100 150 200 250 300 35 Indicated RCS Inlet Temperature, 'F Figure 7-2: Tech. Spec. P-T Limits of ONS-1 for Normal Cooldown 2400 Normal Cooldown Temp.
Press.
Composite CD Curve
(°F)
(pslg) 2000 251 2231 M0 246 2221 WA 231 1779 C"
211 1363 191 1083 190 1053 s
186 1029 181 981 n
171 837 1200 166 824 161 765 V
155 710 10 146 636 800 135 611 110 531 105 527 100 513 400 70 513 65 512 60 506 0
r 50 0
50 100 150 200 Indicated RCS Inlet Temperature, OF 250 300 Page 34
u A
AREVA ANP-3127, Revision 2 Figure 7-3: Tech. Spec. P-T Limits of ONS-1 for ISLH Composite Curve (Heatup, Cooldown) 2400 2000 MM Ie Ve 13 1600 ISLH Composite Temp.
Press.
(IF)
(psig) 60 553 105 553 110 610 115 752 120 774 170 774 170 1002 175 1103 190 1235 210 1483 230 1852 K-ISLH Composite (HUICD) Curve
/
/
1200 800 400 4or-0 0
50 100 150 200 250 300 Indicated RCS Inlet Temperature, OF Figure 7-4: Tech. Spec. P-T Limits of ONS-2 for Normal Heatup and Criticality Limit 2400 I
2000 1-MM E.
M.I3 0.
1600 -Com Cr11 Normal Heatup Criticality Limit Temp. Press.
Temp. Press.
(IF)
(psig)
(IF)
(psig) 60 527 243 0
105 527 243 1126 115 543 265 1446 120 550 280 1764 170 550 300 2365 170 776 185 914 205 1145 225 1446 240 1764 260 2365 L-nposite ticality HU Curve Limit P-T Limit Curve I
-K-Jr I- 'Igi
- 1 _____
I I
1200 ý-
800 --
-1 iI I
I 400
__-W-__
0 0
50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF Page 35
I L -
LJ L' A
AREVA ANP-3127, Revision 2 Figure 7-5: Tech. Spec. P-T Limits of ONS-2 for Normal Cooldown 2400 2000 2M1600 u
1200 M
18 80 400 Normal Cooldown i
Temp.
Press.
Composite CD Curve
(*F)
(psig) 251 2365 241 2365 231 2039 211 1539 191 1203 190 1166 186 1138 176 1021 171 907 166 907 161 871 155 802 146 708 135 670 110 557 105 557 100 544 75 544 70 534 60 518
+
.~
0 50 100 150 200 250 300 Indicated RCS Inlet Temperature, OF Figure 7-6: Tech. Spec. P-T Limits of ONS-2 for ISLH Composite Curve (Heatup, Cooldown) 2400 2000 M,a._
1600 I.
1200 Cn 400 0
-- ISLH Composite (HUICD) Curve ISLH Composite Temp.
Press.
(*F)
(psig)
_60 557_
105 557 110 614 115 753/
120 763
- 170 763 170 1065 190 1316 210 1643 225 1958 240 2382 0
50 100 150 200 Indicated RCS Inlet Temperature, OF 260 300 Page 36
A ARE VA ANP-3127, Revision 2 Figure 7-7: Tech. Spec. P-T Limits of ONS-3 for Normal Heatup and Criticality Limit 2400 I
i F
Composite HU Curve
- Criticality Limit P-T Limit Curve 2000 Normal Heatup Criticality Limit Temp. Press.
Temp. Press.
[
j (IF)
(psig)
(IF)
(psig) 60 470 275 0
1600 170 470 275 1148 i
F 170 638 295 1453 190 746 310 1772I 210 907 325 2081 1200 220 990 335 2364 235 1150 255 1453 270 1772 800 275 1856 I
265 2081 295 2346 I -'-!
400 0iI 0
60 100 160 200 260 300 360 Indicated RCS Inlet Temperature, OF Figure 7-8: Tech. Spec. P-T Limits of ONS-3 for Normal Cooldown 2400 I
Normal Cooldown Temp.
Press.
-Composite CD Curve (IF)
(psig)
[
2000 270 2359 MM 255 1895 U) 251 1675 246 1668 1 1!Uu 241 1559 w
231 1371 211 1091 206 1037 1200 201 971 0
195 928 190 860 800 166 642 156 582
- '*146 533 I=
135 529 400 110 487 40 105 486 100 476 60 476 0
60 100 10 200 250 300 Indicated RCS Inlet Temperature, OF Page 37
A A RE VA ANP-3127, Revision 2 Figure 7-9: Tech. Spec. P-T Limits of ONS-3 for ISLH Composite Curve (Heatup, Cooldown) 2400 I
ISLH Composite (HUICD) Curve ISLH Composite Temp.
Press.
(IF)
(psig) 60 557 I
05 557 i/
--J 1600 10 614.
115 655 170 655 170 880 1200 ----- 190 1024
-.-...---. 1.-
u210 1238 240 1649 800 255 1966 270 2392 400 0
I 0
50 100 150 200 250 300 Indicated RCS Inlet Temperature, OF Page 38
A AREVA ANP-3127, Revision 2
8.0 REFERENCES
- 1.
Code of Federal Regulations, Title 10, Part 50 -Domestic Licensing of Production and Utilization Facilities, Appendix G - Fracture Toughness Requirements, Federal Register Vol. 78, No. 34248, June 7, 2013
- 2.
American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," Appendix G, "Fracture Toughness Criteria for Protection Against Failure," 1998 Edition with Addenda through 2000
- 3.
ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels," American Society for Testing and Materials, Philadelphia, PA
- 4.
AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness and Operational Requirements of 10CFR50, Appendix G," by H. W. Behnke et al., June 1986
- 5.
US Nuclear Regulatory Commission, "Radiation Embrittlement of Reactor Vessel Materials," Regulatory Guide 1.99, Revision 2, May 1988
- 6.
AREVA NP Document BAW-2241P-A, Rev. 2, "Fluence and Uncertainty Methodologies," 2006
- 7.
US Nuclear Regulatory Commission, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," Regulatory Guide 1.190, March 2001
- 8.
AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials," by K. K. Yoon, August 2005 and March 2008
- 9.
Duke Energy to NRC Letter dated August 3, 2011 "Request for Exemption from Certain Requirements Contained in 10 CFR 50.61 and 10 CFR 50, Appendix G" (Accession No. ML11223A010)
- 10.
NRC Letter to Duke Energy dated March 30, 2012 "Oconee Nuclear Station, Units 1,2 and 3 -
Environmental Assessment and Finding of No Significant impact related to the Proposed Exemption from the Requirements of Title 10 of the Code of Federal Regulations (10 CFR), Part 50.61 and 10 CFR Part 50, Appendix G" (Accession No. ML120580101)
- 11.
AREVA NP Document BAW-2313 Rev. 6, "B&W Fabricated Reactor Vessel Materials and Surveillance Data Information," November 2008
- 12.
Timoshenko, S.P., and Goodier, J.N., "Theory of Elasticity," Third Edition, McGraw-Hill Book Company, 1970
- 13.
PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," Bulletin No. 175, Welding Research Council, August 1972 Page 39
AREVA ANP-3127, Revision 2 9.0 CERTIFICATION Pressure-Temperature limits for the ONS-1, 2 and 3 reactor vessels have been calculated to satisf, the requirements of 10 CFR Part 50, Appendix G using analytical methods and acceptance criteria of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G, 1998 Edition with 2000 Addenda.
Pei-Yuan Cheng, Engineer Ill Date Component Analysis and Fracture Mechanics Silvester J. Noronha, Principal Engineer Date Component Analysis and Fracture Mechanics This report has been reviewed for technical content and accuracy.
Ashok D. Nana, Supervisor Date Component Analysis and Fracture Mechanics Verification of independent review.
Tim M. Wiger, Manager I Date Component Analysis and Fracture Mechanics This report is approved for release Lany M. Lesniak, Project Manager Date
~'~~)e~A V Z...
J.L Page 40
License Amendment Request No. 2012-10, Supplement 2 October 25, 2013 ENCLOSURE 2 AFFIDAVIT For AREVA Document No. 32-9208072-001
AFFIDAVIT COMMONWEALTH OF VIRGINIA
)
) ss, CITY OF LYNCHBURG
)
- 1.
My name is Gayle F. Elliott. I am Manager, Product Licensing, for AREVA NP Inc. (AREVA NP) and as such I am authorized to execute this Affidavit.
- 2.
I am familiar with the criteria applied by AREVA NP to determine whether certain AREVA NP information is proprietary. I am familiar with the policies established by AREVA NP to ensure the proper application of these criteria.
- 3.
I am familiar with the AREVA NP information contained in the document 32-9208072-001 titled "LST considering RCS Piping and RVCH Limit for B&W Plant Designs,"
dated September 2013, and referred to herein as "Document." Information contained in this Document has been classified by AREVA NP as proprietary in accordance with the policies established by AREVA NP for the control and protection of proprietary and confidential information.
- 4.
This Document contains information of a proprietary and confidential nature and is of the type customarily held in confidence by AREVA NP and not made available to the public. Based on my experience, I am aware that other companies regard information of the kind contained in this Document as proprietary and confidential.
- 5.
This Document has been made available to the U.S. Nuclear Regulatory Commission In confidence with the request that the information contained in this Document be withheld from public disclosure. The request for withholding of proprietary information is made In accordance with 10 CFR 2.390. The information for which withholding from disclosure is
requested qualifies under 10 CFR 2.390(a)(4) "Trade secrets and commercial or financial information":
- 6.
The following criteria are customarily applied by AREVA NP to determine whether information should be classified as proprietary:
(a)
The information reveals details of AREVA NP's research and development plans and programs or their results.
(b)
Use of the information by a competitor would permit the competitor to significantly reduce its expenditures, in time or resources, to design, produce, or market a similar product or service.
(c)
The information includes test data or analytical techniques concerning a process, methodology, or component, the application of which results in a competitive advantage for AREVA NP.
(d)
The information reveals certain distinguishing aspects of a process, methodology, or component, the exclusive use of which provides a competitive advantage for AREVA NP in product optimization or marketability.
(e)
The information is vital to a competitive advantage held by AREVA NP, would be helpful to competitors to AREVA NP, and would likely cause substantial harm to the competitive position of AREVA NP.
The information in the Document is considered proprietary for the reasons set forth in paragraphs 6(c) and 6(d) above.
- 7.
In accordance with AREVA NP's policies governing the protection and control of information, proprietary information contained in this Document has been made available, on a limited basis, to others outside AREVA NP only as required and under suitable agreement providing for nondisclosure and limited use of the information.
- 8.
AREVA NP policy requires that proprietary information be kept in a secured file or area and distributed on a need-to-know basis.
- 9.
The foregoing statements are true and correct to the best of my knowledge, information, and belief.
SUBSCRIBED before me this day of Avi 2013.
Sherry L. McFaden NOTARY PUBLIC, COMMONWEALTH OF VIRGINIA MY COMMISSION EXPIRES: 10/31/2014 Reg.#7079129 Notarj Public Commonwealth of Virginia 7079129 My Commission Expires Oct 3V, 20141