ML13282A350

From kanterella
Jump to navigation Jump to search
Final Report, Assessment of Wind Speeds Over the LaSalle County Station Ultimate Heat Sink
ML13282A350
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 10/04/2013
From:
Cermak, Peterka & Peterson, (CPP)
To:
Exelon Generation Co, Office of Nuclear Reactor Regulation
Shared Package
ML13282A339 List:
References
RS-13-151
Download: ML13282A350 (131)


Text

ATTACHMENT 6 Study Performed By CPP Wind Engineering and Air Quality Consultants Assessment of Wind Speeds over the LaSalle County Station Ultimate Heat Sink August 30, 2013 129 pages follow

CERMAK PETERKA PETERSEN WIND ENGINEERING AND AIR QUALITY CONSULTANTS Final Report Assessment of Wind Speeds over the LaSalle County Station Ultimate Heat Sink Prepared for:

Exelon Generation Company LLC 2601 North 21 st Road Marseilles, Illinois Prepared by:

Ronald L. Petersen, Ph.D., CCM, Principal Anke Beyer-Lout, Project Scientist Tom Lawton, Senior Systems Engineer CPP Project 7255 30 August 2013 CPP, Inc.

1415 Blue Spruce Drive Fort Collins, Colorado 80524, USA Tel: I 970 221 3371 Fax: 1 970 221 3124 info@cppwind.com www.cppwind.com

TABLE OF CONTENTS LIST OF FIGURES.........................................................................................................................

ii LIST OF TABLES.........................................................................................................................

iii LIST OF SYMBOLS.......................................................................................................................

iv EXECUTIVE SUM M ARY.........................................................................................................

v

1. INTRODUCTION.....................................................................................................................

1

2. PROJECT SPECIFIC INFORM ATION...............................................................................

2 2.1 Description of Project Site.............................................................................................

2 2.2 Approach Surface Roughness Lengths And Approaching Wind Profile...................... 2 2.3 M eteorology..............................................................................................................

2

3. W IND-TUNNEL M ODELING M ETHODOLOGY............................................................

4 3.1 W ind-Tunnel Similarity Criteria...................................................................................

4 3.2 Scale Model and W ind Tunnel Setup.............................................................................

5 3.2.1 Scale M odel...........................................................................................................

5 3.2.2 W ind-tunnel Configuration...................................................................................

5 3.3 Data Acquisition and Processing....................................................................................

7 3.4 Quality Assurance.........................................................................................................

7

4. DATA ANALYSIS AND RESULTS..................................................................................

9 4.1 G en eral................................................................................................................................

9 4.2 Determination of the reference height above the UHS and calculation of the wind speed ratio (W SR).........................................................................................................

10 4.3 W ind Speed Ratios over the UHS for Neutral Stability..............................................

10 4.4 Determination of Surface roughness length (zO)..........................................................

10 4.5 Hourly wind speeds over the UHS Corrected for Stability.........................................

11

5. CONCLUSIONS.....................................................................................................................

13

6.

REFERENCES........................................................................................................................

14 F IG U R E S.......................................................................................................................................

15 T A B L E S.........................................................................................................................................

3 2 APPENDIX A - W ind Tunnel Similarity Requirements........................................... A-I APPENDIX B - Quality Assurance Documentation................................................... B-1 APPENDIX C - Plots of Measured Data and Log Law Fit....................................... C-1 U

LIST OF FIGURES Figure 1.

Aerial photograph of the area modeled and location of meteorological tower.......... 16 Figure 2.

Plan views of the area modeled on the turntable with building heights and m easurem ent locations...........................................................................................

17 Figure 3.

Project site land use classifications used to determine the approach surface roughness length....................................................................................................

19 Figure 4.

A close-up plan view of the LaSalle County Station buildings with tier heights...... 20 Figure 5.

Photographs of the model in the wind tunnel.......................................................

21 Figure 6.

Schematic of the wind tunnel used for testing and photograph of the wind-tunnel confi guration.........................................................................................................

24 Figure 7.

Mean velocity and turbulence profile approaching the LCS model...................... 25 Figure 8.

Elevation view schematic showing the measurement locations and heights......

26 Figure 9.

Close up of the UHS with measurement locations and associated area designations.........................................................................................................

.. 27 Figure 10. Comparison of ratios of UO/U4 by wind direction for measurement points 7-12 for both turntables..................................................................................................

28 Figure 11. Velocity ratios vs wind direction for all points.....................................................

29 Figure 12. Area averaged Wind Speed Ratio (WSR) versus wind direction..........................

31 Figure 13. Area averaged surface roughness length (zo) versus wind direction.....................

31 ii UI

LIST OF TABLES Table ES-I. Area Averaged Wind Speed Ratio (WSR) Results................................................

v Table 1.

AERSURFACE calculated roughness lengths for 12 sectors by season............... 33 Table 2.

AERSURFACE land use classifications and seasonal surface roughness (m) from E P A, 2 0 0 8..................................................................................................................

34 Table 3.

Area associated with each zone............................................................................

35 Table 4.

U2/U2tower ratios versus wind direction.................................................................

36 Table 5.

U3/U3tower ratios versus wind direction.................................................................

37 Table 6.

U4/U4toWeI ratios versus wind direction.................................................................

38 Table 7.

Wind speed ratios (WSR=UO/U4towe) versus wind direction................................

39 Table 8.

Surface Roughness Length Results (Zo) from log law fit.......................................

40 iii

LIST OF SYMBOLS AO Potential Temperature Difference (K) v Air Viscosity (m2/s) g Acceleration Due to Gravity (m/s 2 )

k von Kdrmin Constant

(-)

L Monin-Obukhov Length Scale (m) n Power Law Exponent

(-)

Hb Building Height (m)

Rb Bulk Richardson Number

(-)

Ri Richardson Number

(-)

Reb Building Reynolds Number

(-)

Re.,

Surface Reynolds Number

(-)

T Mean Temperature (K)

Ub Wind Speed at Building Height (m/s)

Uref Wind Speed at Reference Height Location (m/s)

Ui Mean Velocity at height i (i = 0 to 4)

(m/s)

U.

Friction Velocity (m/s) t Time Step (s) z Height Above Local Ground Level (m)

Zo Surface Roughness Length (m)

Zref Reference Height (m) iv

EXECUTIVE

SUMMARY

This report documents the wind-tunnel study conducted by CPP, Inc. on behalf of Exelon Generation Company LLC (Exelon) for the LaSalle County Station (LCS) in Marseilles, Illinois.

The LCS has a water pond referred to as the Ultimate Heat Sink (UHS) that is used for plant cooling purposes during emergency conditions. The Nuclear Regulatory Commission (NRC) requires that the temperature of the water in the UHS be calculated and one of the key input parameters is the wind speed at 2m (6.6ft) above the water surface. The LCS has a weather station which is near the UHS that is measuring winds at three heights. The weather station data has been used to calculate a wind power law exponent which in turn has been used to estimate the wind speeds at 2m (6.6ft) over the water surface for heat transfer calculations.

Due to building and terrain variations around the UHS, this simple power scaling approach may not be appropriate. This report evaluates the impact of building and terrain variations around the UHS, over a range of wind directions, on wind speeds at 2m (6.6ft) over the water surface as determined using local meteorological tower data.

Hence, the purpose of this study was to use wind tunnel modeling to determine the ratio of the wind speed at the 1 14m (375ft) level from the meteorological tower to the area averaged wind speed at 2m (6.6ft) over the UHS as a function of wind direction. It should be noted that the tower wind speed measurement is 123. Im above the UHS and this height is used for all calculations herein. The ratios were then used along with an hourly stability correction factor to calculate the wind speed over the UHS for the 1995-2009 summer months.

Area averaged wind speed ratios (WSR) by wind direction are presented in Table ES-1 along with the equivalent power law exponent. It should be noted that the wind tunnel determined ratios in Table ES-1 are valid for neutral stratification. Since the UHS will be warmer than the ambient temperature for most hours (99.99% of the time assuming the 1 OF water surface temperature), the atmospheric stability over the UHS will be essentially unstable. The report documents that wind speeds will increase under unstable conditions, so the wind speed ratios in Table ES-I will tend to underestimate the wind speeds at 2m (6.6ft) over the UHS.

An Excel Spreadsheet supplements this report where the hourly wind speeds during the summer months are calculated using the ratios in Table ES-I along with the hourly stability correction factor discussed in this report.

v

vi Project 7255 Table ES-1 Area Averaged Wind Speed Ratio (WSR) Results 0

0.560 0.141 22.5 0.566 0.138 45 0.577 0.133 67.5 0.590 0.128 90 0.600 0.124 112.5 0.600 0.124 135 0.569 0.137 157.5 0.549 0.145 180 0.555 0.143 202.5 0.555 0.143 225 0.550 0.145 247.5 0.583 0.131 270 0.576 0.134 292.5 0.581 0.132 315 0.593 0.127 337.5 0.561 0.140 Overall Average 0.573 0.135

1) The power law exponent corresponding to the WSR is calculated as follows:

ln(flkU-tower)

In(WSR) 1 n(L°\\z4 ln(,.,j.-m4.)

(zO\\ -

2mr U

1. tNTRODUCTION This report documents the wind-tunnel study conducted by CPP, Inc. on behalf of Exelon Generation Company LLC (Exelon) for the LaSalle County Station (LCS) in Marseilles, Illinois.

The LCS has a water pond referred to as the Ultimate Heat Sink (UHS) that is used for plant cooling purposes during emergency conditions. The Nuclear Regulatory Commission (NRC) requires that the temperature of the water in the UHS be calculated and one of the key input parameters is the wind speed at 2m (6.6fi) above the water surface. The LCS has a weather station which is near the UHS that is measuring winds at three heights. The weather station data has been used to calculate a wind power law exponent which in turn has been used to estimate the wind speeds at 2m (6.6ft) over the water surface for heat transfer calculations.

Due to building and terrain variations around the UHS, this simple power scaling approach may not be appropriate. This report evaluates the impact of building and terrain variations around the UHS, over a range of wind directions, on wind speeds at 2m (6.6ft) over the water surface as determined using local meteorological tower data.

Hence, the purpose of this study was to use wind tunnel modeling to determine the ratio of the wind speed at the 114m (375ft) level from the meteorological tower to the area averaged wind speed at 2m (6.6ft) over the UHS as a function of wind direction. It should be noted that the tower wind speed measurement is 123.1m above the UHS and this height is used for all calculations herein. The ratios were then used along with an hourly stability correction factor to calculate the wind speed over the UHS for the 1995-2009 summer months.

To meet the objectives of the study, a 1:500 scale model of the LCS and nearby surroundings was constructed and placed in CPP's boundary-layer wind tunnel. Wind speed measurements were obtained at a variety of locations and multiple heights above the UHS and at the location of the meteorological tower.

Included in this report are a description of various site-specific issues, a discussion of the experimental methods, analysis methodology, the results and conclusions of the study. The conclusions are summarized in an executive summary, which is located at the beginning of the report.

U

2. PROJECT SPECIFIC INFORMATION

2.1 DESCRIPTION

OF PROJECT SITE The LaSalle County Station (LCS) Ultimate Heat Sink (UHS) is located in Marseilles, Illinois. An aerial photograph of the site and area modeled in the wind tunnel is shown in Figure

1. Figures 2a and 2b present detailed views of the area modeled on the two turntables.

2.2 APPROACH SURFACE ROUGHNESS LENGTHS AND APPROACHING WIND PROFILE To represent full scale wind profiles in the wind tunnel it is necessary to match the surface roughness length used in the model to that of the actual site. A target approach surface roughness and power law exponent of 0.13m and 0.17, respectively, were specified based on AERSURFACE (EPA, 2008) results for a 5 km radius (see Table 1) for Seasons 1 (June, July, August) and 2 (September, October, November). The target approach surface roughness length was based on the highest roughness for the wind directions where the plant structures do not influence the roughness calculation. These structures were included in the model and the actual roughness due to these structures was therefore simulated in the wind tunnel. The land use classification chart that was used for this analysis is provided in Figure 3 (see Table 2 for appropriate surface roughness values for the different land use classifications). The Figure 3 shows that the site approach roughness is influenced by the plant structures for several wind directions. The largest roughness where the plant structures do not influence the calculation is of 0.13 m for 150-180 degrees and is the target roughness selected for all wind directions (see highlighted in yellow in Table 1).

This high roughness value was simulated for all wind directions because that would tend to result in lower wind speeds (i.e., a conservative assumption).

2.3 METEOROLOGY Meteorological data from a tower near the project site for the years of 1995 to 2009 was provided by Exelon (SEAG 13-000056). The meteorological tower is located to the southeast of the LCS main plant structures (see Figures 1 and 2). Hourly measurements of wind speed, wind direction and temperature are available at heights of 10m (33ft), 61m (200ft) and 114m (375ft) 2M

3 Project 7255 above local grade. Per client instruction, only the summer months (June, July and August) will be used for data post processing.

U

3. WIND-TUNNEL MODELING METHODOLOGY 3.1 WIND-TUNNEL SIMILARITY CRITERIA An accurate simulation of the boundary-layer winds is an essential prerequisite to any wind-tunnel study. The similarity requirements can be obtained from dimensional arguments derived from the basic equations governing fluid motion. A detailed discussion on these requirements is given in the EPA fluid modeling guideline (EPA, 1981) and Cermak (1971, 1975, 1976). Based on CPP's past experience with wind tunnel studies and the requirements in the EPA fluid modeling guideline, the criteria that were used for conducting this wind-tunnel simulation are:

a fully turbulent building wake flow was ensured [building Reynolds number greater than 11,000]

Reb = UbtIb/V in model scale: Reb =6.26(m/s) O. 06m/1.81E-05(m2/s) =21,117 a fully turbulent surface flow was ensured [surface Reynolds number greater than 2.5]

Re., = Uzj/v in model scale: Re,, =0.49(m/s) *2.6E-04m/1.81E-O5(m2/s) =6 99 identical geometric proportions - all dimensions were scaled by the length scaling factor of 500; equivalent stability [Richardson number [Ri = (gAOH,)/(T Ub2)] in model equal to that in full scale, equal to zero for neutral stratification]; and equality of dimensionless boundary and approach flow conditions (see discussion in Section 3.2.2)

More information on wind tunnel similarity requirements can be found in Appendix A.

4

5 Project 7255 3.2 SCALE MODEL AND WIND TUNNEL SETUP 3.2.1 Scale Model A 1:500 scale model of the LaSalle County Station and the UHS was constructed based on information supplied by Exelon (SEAG 13-000056) and placed on a two 3.45 m diameter turntables. Two turntables were needed so that the model size could be large enough for measurement resolution and to maintain a fully turbulent flow. The area modeled is depicted in Figures 2a and 2b. A close-up plan view of the LaSalle County Station buildings with tier heights is provided in Figure 4. Photographs of the model from various directions are shown in Figure 5.

The UHS water flow areas (SEAG 13-000060) were considered in determining the measurement locations above the UHS. All UHS measurement locations are shown in Figures 2a and 2b. Measurement points 7-12 are located on both turntables and velocities were measured at those locations for both turntables to evaluate the impact of the LCS building wakes on the velocity profiles over the UHS. The meteorological tower location is shown in Figure 1 and Figure 2a.

3.2.2 Wind-tunnel Configuration All testing was carried out in CPP's closed-circuit wind tunnel shown in Figure 6. Turning vanes at the tunnel elbows were used to maintain a homogeneous flow at the test-section entrance. Spires and a trip at the leading edge of the test section begin the development of the atmospheric boundary layer. The long boundary layer development region between the spires and the site model was filled with roughness elements in a pattern experimentally set to develop the appropriate approach boundary layer wind profile and approach surface roughness length.

In order to document the appropriateness of the wind-tunnel configuration, vertical profiles of mean velocity and longitudinal turbulence intensity were obtained upwind of the model test area.

The profiles were collected using a hot-film anemometer mounted on the vertical traverse system.

Figure 7 shows the mean velocity and turbulence profile approaching the LCS model. An analysis of the mean velocity profile was conducted to determine whether the shape was characteristic of that expected in the atmosphere. The starting point in any analysis of the mean velocity profile characteristics is to consider the equations which are commonly used to predict the distribution of wind and turbulence in the atmosphere. The most common equation, which has a theoretical basis, is referred to as the "log-law" and is given by:

U_ 1 Iln z-_

(1)

U.

k

( Zz

6 Project 7255 where U =

the velocity at height z; z

=

elevation above ground-level;

z.

=

the surface roughness length; U. =

the friction velocity; and k

= von Khrmhn's constant (which is generally taken to be 0.4 (Panofsky and Dutton, 1984)).

Another equation which is commonly used to characterize the mean wind profile is referred to as the "power-law" and is given by:

U

=( z~

(2)

Uref

.\\(2f) where zref =

is some reference height; Uref=

is the wind speed at the reference height zref, and n

=

is the "power-law" exponent.

Another consistency check is to relate the power-law exponent, n, to the surface roughness length, z0. Counihan (1975) presents a method for computing the "power-law" from the surface roughness length, zo, using the following equation:

n = 0.24 + 0.096 logl0 z, + 0.016 (logl0 zo 2 (3)

The variation of longitudinal turbulence intensity with height has been quantified by EPA (1981). EPA gives the following equation for predicting the variation of longitudinal turbulence intensity in the surface layer:

U/ in (30) n-n

ý (4) where all heights are in full-scale meters. This equation is only applicable between 5 and 100m (16 and 330ft). Above l00m, the turbulence intensity is assumed to decrease linearly to a value of 0.01 at a height of roughly 600m (2000fl) above ground level. The observed zo and computed power law exponent were input into the above equation to define the turbulence intensity profile.

U

7 Project 7255 Care was taken that the mean velocity and turbulence intensity profiles established in the wind tunnel are representative of those expected for the site evaluated during this study.

3.3 DATA ACQUISITION AND PROCESSING Hot-film probes were installed on a computer-controlled 3-axis traverse which allowed it to be positioned anywhere above the model to measure velocities at different heights above the water surface and at the location of the meteorological tower. The measurement locations are shown in Figures 2a and 2b. The measurement heights over the UHS are 2, 10.5, 19, 70 and 123m (6.6, 34, 62, 229 and 404ft) for 16 wind directions. Velocity measurements were obtained at the meteorological tower at 10, 61 and 114m (33, 200 and 375ft) heights for 16 wind directions. A schematic with the measurement heights is shown in Figure 8.

The hot-film probes were installed at a fixed distance along a metal rod and measurements were taken at three heights simultaneously. The traverse system was outfitted with a "foot" enabling it to land at a specific measurement location, ensuring accurate measurement heights above the local elevation.

A pitot-static tube was mounted upwind of the turntable at a height of Im above the wind tunnel floor. The velocity from the pitot-static tube was used to normalize the measurements taken with the hot-film probes, thus removing the effect of any tunnel speed variation.

Data was acquired at 1kHz for approximately 60s per measurement point. The time per point was chosen based on the time required to achieve acceptably settled values for mean velocity.

3.4 QUALITY ASSURANCE As mentioned above, the traverse system was outfitted with a "foot" enabling it to land at a specific measurement location and measure velocities at fixed measurement heights above the local elevation. This hot-film probe support foot was located beneath the lowest measurement height (2m, 6.6ft). A test was done to ensure that the support does not affect the velocity measurements. Mean velocities UO, U1 and U2 were measured with and without the foot present at a single location. A comparison of the results showed no significant difference in the results.

The maximum error of the average mean velocity measurements was less than 1.5%.

Two turntables were used to model the LCS in the wind tunnel and measurement points 7-12 are located on both turntables (see Figures 2a and 2b). Velocities were measured at those locations for both turntables to evaluate the impact of the LCS building wakes on the velocity profiles over the UHS. The ratio of UO over U4 measured at points 7-12 was calculated for both

8 Project 7255 turntables and compared. Figure 10 shows the UO/U4 ratios plotted versus wind direction at points 7-12 for both turntables. The average error of the UO/U4 ratios for points 7-9 (closest to the LCS) for wind directions that put the buildings upwind (247.5 and 270 deg.) is 15%, while the error for points 10-12 for the same wind directions is less than 8%. The west turntable produces systematically higher speeds at locations 7-9, indicating that the upwind buildings have an effect on the local winds at these locations. The same is not true for points 10-12 (Figure 10). Therefore, west turntable measurements were used for points 7-9 for wind directions between 202.5 and 315 degrees. East turntable measurements were used for all directions for points 10-12. No buildings were installed upwind for the east turntable because there were no building wake effects at these locations.

As mentioned above, three hot-film probes were installed at a fixed distance on the traverse system and measurements were taken at three heights simultaneously. With only 5 distinct measurement heights above the UHS prescribed in the test plan, two velocity measurements were taken at height U2 (see Figure 8). Doubling up the velocity measurement U2 for every measurement point above the UHS, provides the means to evaluate data repeatability and variance. The absolute difference in mean velocity at height U2 is only between 0 and 6.6%.

Therefore, both measurements of U2 were used in subsequent data analysis and fitting.

All other Quality Assurance documentation is provided in Appendix B.

UI

4. DATA ANALYSIS AND RESULTS 4.1 GENERAL Mean velocities were measured at 5 heights above the UHS (2, 10.5, 19, 70 and 123m) and three heights at the meteorological tower location (10, 61 and 114m) for 16 wind directions. The measurement locations are shown in Figures 2a and 2b. The mean velocity measurements were normalized by the wind tunnel reference velocity measured with the pitot-static tube. After initial data quality checks (see Section 3.4 above), the normalized velocity measurements were used to calculate the desired velocity ratios and surface roughness length (zo) as discussed in Sections 4.2 and 4.4 below.

Areas were assigned to each UHS velocity measurement point as shown in Figure 9 and are listed in Table 3. For measurement points close to the water edge, areas were defined first by drawing a line from the edge of the water surface out to 50ft. This distance is greater than ten times the distance from the top of the terrain at which distance Hosker (1984) shows that the velocity should not be significantly affected by the wake created by the high terrain mark.

Thereafter, the remaining areas were specified as shown in Figure 9. Area delineations also considered stagnant water flow areas (SEAG 13-000060). The areas were used to calculate area average wind speeds and surface roughness values versus wind direction.

Document SEAG 13-000072 states that the total area for the UHS is 83.83 acres. Table 3 shows that the total area computed by CPP is 84.89 acres or a 1.3% difference. This difference is attributed to the fact that the base map of the UHS was not geo-referenced and had to be scaled by hand to match surroundings. It should be noted that the 1.3% area difference is equivalent to a 0.65% length scale difference. It should be noted that if all areas are decreased by 1.3%, the area averaged wind speeds discussed below will not change.

The following outlines the methodology used to analyze the wind speed measurements over the UHS and at the meteorological tower.

9U

J0 Project 7255 4.2 DETERMINATION OF THE REFERENCE HEIGHT ABOVE THE UHS AND CALCULATION OF THE WIND SPEED RATIO (WSR)

The ratio of mean velocity measured above the UHS over the velocity measured at the same height at the meteorological tower location was calculated for every point to determine the appropriate reference height (height where the ratios were approximately 1 for all wind directions) for the remainder of the data analysis. Tables 4, 5 and 6 list the ratios of U2/U2,or, U/U3tower and U4/U4towr, versus wind direction. The areas associated with each measurement point are also listed and area averages were computed. Figure 11 shows plots of U2/U2or,,,,

U3/U3towe, and U4/U4....r versus wind direction. U2/U2tower and U3/U3toer show a large deviation from the value I for a wind direction of 315 deg. This is due to the influence of buildings on the meteorological tower velocity measurement for that wind direction. Therefore, U4 was chosen as the reference height, because wind speeds at U4 above the UHS were approximately the same as U4 at the tower location for all wind directions.

4.3 WIND SPEED RATIOS OVER THE UHS FOR NEUTRAL STABILITY Following the determination of the reference height, wind speed ratios (WSR) were calculated for all points. The WSR is defined as the ratio of the 2m speed above the UHS (UO) over the reference speed U4 at the meteorological tower. The computed wind speed ratios for all wind directions, as well as area averages are shown in Table 7. The area averaged WSR is plotted against wind direction in Figure 12. Linear interpolation between the values for the 16 wind directions evaluated in the wind tunnel was used to determine the WSR for all other wind directions. Linear interpolation results in the best fit to the measured data. It should be noted that the ratios are valid for neutral conditions or L = infinity.

4.4 DETERMINATION OF SURFACE ROUGHNESS LENGTH (Z0)

The surface roughness length (zo) was computed at each measurement point above the UHS for every wind direction by a best fit to the log-law profile (see Equation 1). All measurement heights were used for the data fit (2, 10.5, 19, 70 and 123m); including the extra velocity measurement at height U2 (see Section 3.4). The results, including the area average values, are listed in Table 8. Area averaged surface roughness lengths versus wind direction are plotted in Figure 13. Figures showing the measured data and the log law fit for all points and all wind directions are provided in Appendix C. Linear interpolation between the values for the 16 wind directions evaluated in the wind tunnel was used to determine the surface roughness lengths for all other wind directions. Linear interpolation results in the best fit to the measured data.

M

11 Project 7255 4.5 HOURLY WIND SPEEDS OVER THE UHS CORRECTED FOR STABILITY Hourly meteorological data (described in Section 2.3) and the area averaged wind speed ratio (see Section 4.3) for every wind direction,j, were used to calculate hourly wind speeds at 2m (UO) over the UHS as follows:

UO(tstability) = WSR 6)

  • U4,ower (t)
  • WSSR (t,stability)

(5) where WSSR is the wind speed stability ratio, a correction factor that takes the unstable conditions above the warm water of the UHS into account (note: the WSSR was set equal to 1 for the few hours classified as stable). The wind speed stability ratio, WSSR (tL) is the ratio of wind speed under unstable conditions to that under neutral stability for each hour (t) as follows:

WSSR(t,L) = UO(tL)/UO(tL =Neutral)

(6)

The hourly Monin-Obukhov Length Scale (L) is calculated using the following relationship between Richardson Number Ri, L and zref(Randerson, 1984) for unstable conditions.

R = -zref where zref = 123.1m (7)

L The Richardson Number R, is calculated from the hourly Bulk Richardson Number Rb using the following relation developed by Panofsky (1984).

Ri Rb

=

n--T(8) where n is the power law exponent determined from the best fit to the hourly meteorological tower data using all three measurement heights (10, 61 and I 14m). In case of a negative value for n, i.e. decreasing velocity with height measured at the meteorological tower (e.g. low-level jet), n was set to 0.01.

The hourly Bulk Richardson number Rb is computed using meteorological tower wind speed and temperature data at the reference height determined in previous step (meteorological tower values at 114m are set equal to values at 123.1m above the UHS) and UHS water surface temperature (37.78"C or 100F, per Document SEAG 13-000072). For this calculation A9 will be calculated using the temperature difference between 123m (404ft) and the water surface, U4,owe, and zrf equal to 123.1 m.

R Zref g ((T4 - Tw,.,,,)

+ YdZre)

Rb T=U 2

(9)

Rb U 4 tower aix

12 Project 7255 where yd= 9.8 K/km (0.03 'C per ft) and T,,g is the average temperature of all three tower heights.

Using velocity profile equations from Randerson (1984), the hourly 2m wind speed under unstable conditions, UO (t,L), is computed as follows:

u*

U O(t, L) = -- -[In(z / z,) -V. (z / L) + V,,o(Zo /L](10) k where L is the hourly computed value (see equation 7) and the surface roughness length zo depends on the hourly wind direction (see Section 4.4).

For comparison purposes, the hourly 2m wind speed under neutral stability UO (t,L=Neutral) is computed as follows:

u*

UO(t, L = Neutral) =-- ln(z/z 0 )

(11) k The hourly u *(L, Ure, was computed using the hourly Uref and computed L and the equation below from AERMOD (EPA, 2004) and with L = infinity (neutral). Next compute UO(tL) using the computed u*, zo and L values using the same equation rearranged as shown below.

u,(L) ref (12) ln(zref / zo) -

/.m (Zref / L) + V/0 (z. I L) with y/ (z I L) = 2 In

+ In

- 2 arctan(1u) + z / 2 2)

V/ Iz,/L) :- 2 In1 +'"0j+

In I+

- 2arctan(po ) + 7

=(1 - 16z / L)Y" 4 and pu =(1 - 16z0 / L)'/ 4 where z=zef Using the equations above, an hourly data file of the area average wind speed for all needed years was developed and is provided in an Excel spreadsheet that supplements this report.

U

5. CONCLUSIONS As discussed previously, the LaSalle County Station (LCS) has a water pond referred to as the Ultimate Heat Sink (UHS) that is used for plant cooling purposes during emergency conditions. The Nuclear Regulatory Commission (NRC) requires the temperature of the UHS water to be calculated. One of the key input parameters for this calculation is the wind speed at 2m (6.6ft) above the water surface. The LCS has a meteorological tower near the UHS that is measuring wind speeds at three different heights. The meteorological tower data has been used to calculate a wind power law exponent which in turn has been used to estimate the wind speeds at 2m (6.6ft) over the water surface for heat transfer calculations.

Due to building and terrain variations around the UHS, this simple power scaling approach may not be appropriate.

The purpose of this study was to use wind tunnel modeling to determine the ratio of the wind speed at the 114m (375ft) level of the meteorological tower to the area averaged wind speed at 2m (6.6ft) over the UHS as function of wind direction. The ratios were then then used along with an hourly stability correction factor to calculate the wind speed over the UHS for the 1995-2009 summer months.

Area averaged wind speed ratios (WSR) by wind direction are presented in Table ES-i of the Executive Summary (at the beginning of this report) along with the equivalent power law exponent. This report documents that the 2m (6.6ft) wind speeds over the UHS increase under unstable conditions, so the wind speed ratios in Table ES-1 will tend to underestimate the wind speeds at the 2m (6.6ft) height over the UHS.

An Excel Spreadsheet supplements this report where the hourly wind speeds during the summer months of 1995-2009 are calculated using the ratios in Table ES-1 along with the hourly stability correction factor discussed in this report.

13

6. REFERENCES Cermak, J.E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Journal., Vol.

9, September 1971.

Cermak, J.E., "Applications of Fluid Mechanics to Wind Engineering," Journal Fluids Engineering, Vol. 97, P. 9, 1975.

Cermak, J.E., "Aerodynamics of Buildings," Annual Review of Fluid Mechanics, Vol. 8, pp.75-106, 1976.

CPP Report: Wind Tunnel Modeling of Exhaust Impact on Control Room Air Intake for the Susquehanna Steam Electric Station (SSES), CPP Project 99-1852, December 1999.

Counihan, J., "Adiabatic Atmospheric Boundary Layers. A Review and Analysis of Data From the Period 1880-1972," Atmospheric Environment, September 1975.

EPA, Guideline for Use of Fluid Modeling of A tmospheric Diffusion. U.S. Environmental Protection Agency, Office of Air Quality, Planning and Standards, Research Triangle Park, North Carolina, EPA-600/8-81-009, April 1981.

EPA, AERMOD: Description of Model Formulation. EPA-454/R-03-004. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, 2004.

EPA, AERSURFACE User's Guide, EPA-454/B-08-001, USEPA Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Modeling Group, Research Triangle Park, North Carolina, 2008.

Turner, D.B., Workbook of Atmospheric Dispersion Estimates, Second Edition. Lewis Publishers, Boca Raton, Florida, 1994.

Hosker, R. P., "Flow and Diffusion Near Obstacles," Chapter 7 in Atmospheric Science and Power Production, Daryl Randerson, Editor, Published by TIC of USDOE, DOE/TIC-27601, 1984 Panofsky H.A., J.A. Dutton, "Atmospheric Turbulence - Models and Methods for Engineering Applications", Wiley-Interscience Publication, 1984.

Randerson, D., "Atmospheric Boundary Layer," Chapter 5 in Atmospheric Science and Power Production, Daryl Randerson, Editor, Published by TIC of USDOE, DOE/TIC-27601, 1984 14

FIGURES U

16 Project 7255 Figure 1.

Aerial photograph of the area modeled and location of meteorological tower.

17 Project 7255

-Turntable radius -2833'

-Relative building heights In feet above local (maximum) ground elevation.

-Architectural elevation datum = UHS DATUM = 690' MSL WEST TURNTABLE 0'

500' 1500 I

I 25W 1060 Figure 2.

Plan views of the area modeled on the turntable with building heights and measurement locations: a)

West Turntable.

18 Project 7255

-Turntable radius -2833'

-Relative building heights In feet above local (maximum) ground elevation.

-Architectural elevation datum = UHS DATUM m 690 MSL EAST TURNTABLE O0" 1501Y 25W~

1000W Figure 2.

Plan views of the area modeled on the turntable with building heights and measurement locations: b)

East Turntable.

UI

19 Project 7255 0.0 km 1.0 I=

2.0 km 3.0 km 4.0 km 5.0 km Figure 3.

Project site land use classifications used to determine the approach surface roughness length.

U

20 Project 7255 Figure 4.

A close-up plan view of the LaSalle County Station buildings with tier heights U

21 Project 7255 Figure 5.

Photographs of the model in the wind tunnel: West Turntable (top); Close-up of the LCS (bottom).

U

22 Project 7255 Figure 5.

Photographs of the model in the wind tunnel: East Turntable (top); Close-up of measurement locations (bottom).

U

23 Project 7255 Figure 5.

Photographs of the model in the wind tunnel: Traverse System (top); Close-up of hot-film probe and landing foot (bottom).

U

24 Project 7255 CPP's Closed-Circuit Wind Tunnel Figure 6.

Schematic of the wind tunnel used for testing and photograph of the wind-tunnel configuration. Note spires and trip at entrance to test section, and roughness elements on approach fetch to develop a turbulent boundary-layer flow.

U

25 Project 7255 Scale:

500 7255E#.PRF Additional Eeents Trip Spires Roughness Elements Row Height Number Height Height Length Size Per Spacing (in)

Spires (in)

(in)

(n)

(in)

Row (a1) 16in 4ful_ 2half 6f1 I in and 2in 4411 None Heilht Full Model log Scale Scale zlzref zlzref ln(z)

U

(

)I

[

em im

/

U UIUr Log U/Ur Urm UrmlUm (mill Power Law UmlUr I"1 Cale Log Law UmlUr Power Law Um/Ur Fi Target Log Law UmIUr Snyder T.I.

Snyder TI.

17 3.40 0.120

-0.920 2.833 6.681 0,702

-0.153 1.470 0.2201 0.74 0.73 0.170 0.70 0.71 0.187 23 4.52 0.160

-0.796 3.118 7.340 0.772

-0.113 1.466 0.1997 0.77 0.77 0.162 0.74 0.75 0.177 30 6.07 0.215

-0.668 3.413 7.796 0.820

-0.086 1.414 0.1814 0.81 0.81 0.154 0.77 0.80 0.167 41 8.20 0.290

-0.538 3.714 8.283 0.871

-0.060 1.371 0.1655 0.84 0.85 0.146 0.81 0.84 0.158 56 11.12 0.393

-0.405 4.018 8&635 0.908

-0.042 1.365 0.1580 0.88 0.89 0.139 0.86 0.89 0.150 76 15.14 0.536

-0.271 4.327 8.856 0.931

-0.031 1230 0,13*9 0.92 0.93 0.133 0.90 0.93 0.143 103 20.67 0.731

-0.136 4.638 9.292 0.977

-0.010 1.274 0.1371 0.96 0.98 0.127 0.95 0.98 0.136 141 28.27 1.000 0.000 4.951 9.510 1.000 0.000 1.264 0.13291 1.00 1.02 0.118 1.00 1.02 0.127 Reference Height:

141 m Power Law I

n=

0.1k' Log Law I

n=

0.W5 U=

0.519 zo 0.080 Target n=

0.1"7 U" (fit)=

0.556 U* (theory)=

0.571

z. =

0.13 Mean Velocity Profile Turbulence Intensity Profile 1.25 1.00 0.75 01 0.50 0.25 0.00 4-0.00 Mean Velocity, U/URf Turbulence Intensity, UJU, %

UM-lD.

-.l RI L.9 L-~

T-"l L-9 L-

-Log L- (Snyd.. APP-)

T..g.

Figure 7.

Mean velocity and turbulence profile approaching the LCS model.

26 Project 7255 Met ToweW UHS 404V 37S" (M23m)

U4 (114m)

T4,U44 22 3

2W*

("tM) u (61m)

T3,U3 62' 33' (19m)

U2 (10m)

T3U24-(10.Sin)

U1 719' 630' TO 120F LAND WATER Figure 8.

Elevation view schematic showing the measurement locations and heights.

U

27 Project 7255 0'

SO"1000' MW iw Figure 9.

Close up of the UHS with measurement locations and associated area designations.

28 Project 7255 Ninl 7 Pcoint 9 04.6

('.3 A

.7.-.~

.~

N A

1). -1 Point I0 Toi,,i I I PNint 12

('.1) p5 n

41.4 or

0. 2
0. I 41 II 45 910 135 11(1 225 271-315 36104 NN-D
1) 45 90J 1;:V, 14) 225 271) 31s 360a WD)
0)

T-,

904 i35 ISO

  • 225 271) 3 15 360)

WIN Figure 10. Comparison of ratios of UO/U4 by wind direction for measurement points 7-12 for both turntables.

29 Project 7255 1.4 1.2 i

0.8

-- 0. 6 0.4 0.2 0

I i

0 45 00 135 180 225 270 315 1ID I fSt'!s I'low r

+

1,.,a *tsflTloncr I~etT~ElG St EtTT 11

/)1)( r x

Figure 11.

Velocity ratios vs wind direction for all points a) U2/U2,ower.

1.2

,+

0.8 r

0.6 0.4 0.2

(

I 1

I a

I 0

45 90 135 180 225 270 315 WD lWucstTT

+

EaTstT7" x

Figure 11.

Velocity ratios vs wind direction for all pointsb) U3/U3tower.

U

30 1.2 1

Project 7255

-1 1, -t, 1, 4,, i t

I I I

I I

I I

A I I ýt -

0.6 0.4 0.2 0

45 90 1:35 180 225 270 WD e it r Stios vs

+

diarti fr a Figure 11.

Velocity ratios vs wind direction for all points c) U4iU4towcr.

315

31 Project 7255 0.66 0.64 4.

0.62 0 0

2.0.60 0.52 0.50 L

4-0 50 100 150 200 Wind Direction (deg.)

250 300 350 Figure 12. Area averaged Wind Speed Ratio (WSR) versus wind direction.

1.000 GD0.100 C

hi 0.001 0

50 100 150 200 250 300 350 Wind Direction (deg.)

Figure 13. Area averaged surface roughness length (zo) versus wind direction.

U

TABLES

33 Table 1.

AERSURFACE calculated roughness lengths for 12 sectors by season Project 7255 W in Dieto Seco Sesoa Z,

(mnna 0

30 60 90 120 150 180 210 240 270 300 330 30 60 90 120 150 180 210 240 270 300 330 360 0.069 0.008 0.006 0.03 0.122 0.134 0.175 0.181 0.219 0.127 0.18 0.221 0.069 0.008 0.006 0.03 0.122 0.134 0.175 0.181 0.219 0.127 0.18 0.221 0.023 0.004 0.003 0.008 0.018 0.017 0.023 0.027 0.044 0.023 0.029 0.058 0.033 0.005 0.003 0.01 0.025 0.024 0.033 0.04 0.06 0.034 0.051 0.098 0.049 0.006 0.005 0.020 0.072 0.077 0.102 0.107 0.136 0.078 0.110 0.150 Average r

0.12 0.12 0.02 0.03 0.08 Seasons:

1 Midsummer with lush vegetation: 678 2

Autumn with unharvested cropland: 91011 3

Late autumn after frost and harvest, or winter with no snow: 1212 5 Transitional spring (partial green coverage, short annuals): 345 U

34 Project 7255 Table 2.

AERSURFACE land use classifications and seasonal surface roughness (m) from EPA, 2008 Seasonal Values of Surface Roughness (m) for the NLCDO2 21-Land Cover Classification System Class Class Name Seasonal Surface Roughness1 (m)

Reference Nume 1

2 3

4 5

11 Open Water 0.001 0.001 0.001 0.001 0.001 Stutl 2

12 Perennial Ice/Snow 0.002 0.002 0.002 0.002 0.002 Stu12 50% 22 + 26% 43+

21 Low Intensity Residential 0.40 0.40 0.30 0.30 0.40 25% 853 22 High Intensity Residential 1

1 1

1 1

AERMET' 23 Commercialllndust/Transp (Site at Airport) 0.07 0.07 0.07 0.07 0.07 10% 22 & 90% 315 CommerciaVIndustrialfTransp (Not at Airport) 0.7 0.7 017 07 0.7 90% 22 & 10% 315 31 Bare RoddaSand/Clay (Arid Region) 0.05 0.05 0.05 NA 0.05 Sladee Bare RocklSand/Clay (Non-arid Region) 0.05 0.05 0.05 0.05 0.05 Slade6 32 Quarries/Strip Mines/Gravel 0.3 0.3 0.3 0.3 0.3 Estimate7 33 Transitional 0.2 0.2 0.2 0.2 0.2 Estimatee 41 Deciduous Forest 1.3 1.3 0.6 0.5 1

AERMET4 42 Evergreen Forest 1.3 1.3 1.3 1.3 1.3 AERMET' 43 Mixed Forest 1.3 1.3 0.9 0.8 11 50% 41 & 50% 42' Shrub and (Arid Region) 0.15 0.15 0.15 NA 0.15 50%51 (Non-And)'

Shrubland (Non-arid Region) 0.3 0.3 0.3 0.15 0.3 AERMET4 61 Orchards/fineyards/Other 0.3 0.3 0.1 0.05 0.2 Garratt 71 GrasslardsgHe, cxts 0.1 0.1 0.01 0.005 0.05 AERMET4 81 Pasture/Hay 0.15 0.15 0.02 0.01 0.03 Garratt" & Slade'2 82 Row Crops 0.2 02 0.02 0.01 0.03 Garratt" & Slade"'

83 Small Grains 0.15 0.15 0.02 0.01 0.03 Garratt" & Slade'2 84 Fallow 0.05 0.05 0.02 0&01 0.02 31 & 81,82,83'3 85 LkIban/Recreational Grasses 0.02 0.015 0,01 0.005 0.015 Randersort" 91 Woody Wetlands 0.5 0.5 0.4 0.3 0.5 50% 43 & 50% 921s 92 Emergent Herbaceous Wetlands 0.2 0.2 0.2 0.1 0.2 AERMET' 1

Values are listed for the following seasonal categories:

I - Midsummer with lush vegetation, 2-Autumn with unharvested cropland; 3 - Late autumn after fhost and harvest; or winter with no snow, 4-Winter with corninuows snow on ground; 5 -

2 Transionat spring with partial green coverage or short annuals Estimate based on Stull, Fig 9.6. We have specified a largr roughness than the AERMET 'calm open sea" roughness value because we have assumed that most of the water is closer to land and will experience waves and be closer to Uhe shoreline, increasing roughmess.

Assume 50% ^High Intensity Residential* (22), 25% 'Mixed Forest" (43), and 25% iUrbaniRecreational Grasses" (85), using a weighted geometric mean value.

Based on the AERMET Users Guide (EPA, 2004a), Table 4-3.

3 For airport sites, assume 90% of land cover is 'Transportation with roughness similar to Class 31 (Bare Rock/ Sandt Clay) and 10% is 'Commercial/Industriar with roughness similar to Class 22 (High Intensity Residential). For non-airport, assume 10% of land covet is iTransportation" and 90% is tCommerciavlndustrlar. Weighted geometric mean values are used.

Estimate based on Slade, Table 3-1, assuminsg the surface is not completely level due to inclusion of some larger rocks.

SEstimate reflecting signikfct surface expression Estimate redlecting significant mix of diferent land cover classes. A warning wig be issued to the user if this category appearsm In more than 10% of the land cover data.

Assume "Mlxed Forest" is 50% i)eciduous Forest* and 50% "Evergreen Forest', using a weighted geometric mean value.

'0 Assume arld region would have approximately 50% less vegetation than a non-arid region.

1Estinate based on Garratt, Table A6.

Estimate based on Slade, Table 3-1

'2 Based on class 31 ("Bare Rock/Sand/Clay) for seasonal categories 1 &2 and 81.82. 83 (Pasture/Hay", "Row Crops" &

'Small Grains) for seasonal categories 3, 4, & 5, with seasonal category 5 having a more similar amount of vegetation to seasonal category 3 and, therefore, the sarne roughness.

Estimate based on Randersou. Table 5.4 ts Assume 50% Mixed Forest (43) and 50% Emergent Herb Wetlands (92), using a weighted geometric mean value.

RevLied 01/16/2013 U

35 Project 7255 I

Table 3.

Area associated with each zone A-1 15539.3 3.84 A-2 17361.2 4.29 A-3 11050.4 2.73 A-4 2591.3 0.64 A-5 11994.0 2.96 A-6 2263.8 0.56 A-7 2324.1 0.57 A-8 12006.6 2.97 A-9 14607.2 3.61 A-10 1900.9 0.47 A-I1 1894.8 0.47 A-12 17509.0 4.33 A-13 17941.1 4.43 A-14 1882.3 0.47 A-15 4240.3 1.05 A-16 14221.3 3.51 A-17 17716.1 4.38 A-18 1868.4 0.46 A-19 7525.7 1.86 A-20 16088.3 3.98 A-21 2216.0 0.55 A-22 14442.9 3.57 A-23 3611.5 0.89 A-24 2812.8 0.70 A-25 23497.5 5.81 A-26 2289.1 0.57 A-27 2800.1 0.69 A-28 3566.3 0.88 A-29 2621.1 0.65 N-i 87112.6 21.53 N-2 2814.2 0.70 N-3 2762.3 0.68 Total area used in analysis:

250383.3 61.9 Total area not used:

92689.2 22.9 Total area:

343072.7 84.78 U

36 Project 7255 Table 4.

U2/U2to.we, ratios versus wind direction Measurement Area Wn

(

  • eg.)

5179.8 5179.8 5179.8 5787.1 5787.1 5787.1 3683.5 3683.5 3683.5 2263.8 11994.0 2591.3 1900.9 14607.2 12006.6 2324.1 1882.3 17941.1 17509.0 1894.8 1868.4 17716.1 14221.3 4240.3 2216.0 16088,3 7525.7 2812.8 3611.5 14442.9 2289.1 23497.5 2621.1 3566.3 2800.1 0.952 0.931 0.983 0.975 0.958 0.997 0.990 0.945 0.995 0.980 0.980 1.002 0.959 0.961 1.010 0.964 0.964 1.001 1.013 1.014 1.031 1.007 1.019 1.033 1.023 1.029 1.070 1.027 1.022 1.041 1.032 1.022 1.054 1.032 1.047 1.065 1.047 1.038 1.046 1.039 1.047 1.054 1.040 1.049 1.062 1.031 1031 1.036 1.022 1.041 1.044 1.039 1.034 1.036 1.039 1.029 1.042 1.017 1.032 1.034 1.030 1.031 1.019 1.052 1.045 1.034 1.042 1.044 1.037 1.026 1.029 1.027 1.038 1.032 1.007 1.048 1.040 1.011 1.051 1.040 1.038 1.017 1.032 1.026 1.085 1.046 1.005 1.096 1.045 1.001 1.063 1.033 0.991 1.027 1.012 1.012 1.015 1.005 0.992 1.062 1.028 0.980 1.066 1.035 1.003 1.039 0.985 0.944 1.057 1.031 0.975 1.035 1.016 0.984 1.044 1.083 1.109 1.099 1.092 1.098 1.094 1.003 1.002 0.916 0.959 1.189 1.027 1.065

1. 104 1.116 1.091 1.073 1.074 1.074 1`004 0.988 0.886 1.019 1.190 1.021 1.056 1.113 1.126 1.071 1.061 1.079 1.065 0.990 0.931 0.915 1.039 1.203 1.031 1.045 1.105 1.112 1.102 1.111 1.100 1.118 1.103 1.072 1.028 1.063 1.195 1.004 1.053 1.113 1.125 1.100 1.094 1.074 1.097 1.083 1.079 1.015 1.055 1.223 1.013 1.046 1.105 1.129 1.088 1`083 1.081 1.089 1.084 1.060 1.001 1.066 1.213 1.032 1.092 1.141 1.121 1.045 1.027 1.051 1.161 1.146 1.116 1.124 1.083 1.227 1.038 1.092 1.144 1.126 1.019 1.018 1.011 1.149 1.134 1.120 1.115 1.102 1.213 1.038 1.097 1.151 1.137 2.021 1.014 1.024 1.159 1.146 1.117 1.120 1.095 1.215 1.055 1.060 1.120 1.118 1.069 1.093 1.078 1.058 1.028 1.046 1.045 1.045 1.212 1.068 1.082 1.133 1.134 1.075 1.086 1.078 1.061 1.040 1.057 1.058 1.031 1.220 1.052 1.085 1.118 1.123 1.045 1.064 1.074 1.052 1.058 1.069 1.042 1.025 1.195 1.048 1.068 1.105 1.120 1.057 1.071 1.091 1.100 1.061 1.048 1.049 1.056 1.221 1063 1.077 1.115 1.131 1.072 1.095 1.103 1.098 1.053 1.051 1.072 1.039 1.235 1L055 1.078 1.107 1.120 1.074 1.090 1.108 1.092 1.049 1.080 1.064 1.044 1.212 1069 1.063 1.108 1.109 1.077 1.079 1.063 1.076 1.049 1.078 1.051 1.032 1.201 1044 1.049 1.088 1.115 1.072 1.088 1.082 1.100 1.079 1.042 1.048 1.052 1.233 1.072 1.058 1.095 1.100 1.071 1.083 1.090 1.111 1.063 1.055 1.065 1.042 1.234 1.068 1.048 1.085 1.089 1.084 1.098 1.085 1.088 1.054 1.060 1.069 1.047 1.226 1.066 1.054 1.092 1.086 1.094 1.098 1.080 1.109 1.076 1.076 1.082 1.043 1.206 1.064 1.032 1.074 1.087 1.072 1.084 1.095 1.074 1.070 1.055 1.061 1.065 1.254 1.079 1.036 1.081 1.075 1.074 1.085 1.095 1.102 1.082 1.066 1.066 1.064 1.244 1.068 1.034 1.079 1.075 1.079 1.098 1.100 1.100 1.077 1.064 1.082 1.044 1.238 1.062 1.038 1.068 1.061 1.070 1.107 1.120 1.122 1.107 1.092 1.078 1.036 1.197 1.053 1.014 1.079 1.077 1.069 1.095 1.120 1.107 1.098 1.070 1.081 1.079 1.268 1.102 1.029 1.068 1.073 1.071 1.119 1.128 1.116 1.085 1.063 1.081 1.087 1.254 1.084 1.016 1.070 1.075 1.075 1.099 1.134 1.110 1.090 1.068 1.085 1.058 1.227 1.082 1.023 1.055 1.078 1.080 1.111 1.139 1.123 1.114 1.086 1.085 1.052 1.217 1.044 0.984 1.025 1.013 1.011 1.047 1.094 1.120 1.107 1.075 1.079 1.047 1.264 1.104 0.989 1.019 1.047 1.055 1.084 1.138 1.139 1.124 1.087 1.063 1.080 1.289 1.130 1.018 1.045 1.058 1.085 1.110 1.134 1.138 1.092 1.062 1.095 1.073 1.269 1.095 1.012 1.045 1.071 1.067 1.122 1.156 1.147 1.115 1.106 1.098 1.053 1.221 1.054 1.001 1.056 1.099 1.096 1.146 1.163 1.156 1.115 1.106 1.084 1.027 1.209 1033 0.973 1.016 1.013 1.020 1.058 1.108 1.099 1.089 1.085 1.095 1.055 1.277 1125 0.986 1.006 1.040 1.046 1.087 1.141 1.130 1.121 1.084 1.070 1.070 1.273 1127 0.956 1.019 1.026 1.010 1.083 1.103 1.079 1.078 1.066 1.089 1.081 1.291 1129 0.983 1.008 1.008 1.042 1.108 1.137 1.137 1.111 1.073 1.064 1.081 1.270 1.107 0.993 1.038 1.034 1.056 1.112 1.116 1.119 1.114 1.099 1.096 1.083 1.270 1.094 1.189 0.916 1.190 0.886 1.203 0.915 1.195 0.980 1.223 0.959 1.213 0.964 1.227 1.013 1.213 1.007 1.215 1.014 1.212 1.022 1.220 1.022 1.195 1.025 1.221 1.038 1.235 1.039 1.212 1.040 1.201 1.031 1.233 1.022 1.234 1.034 1.226 1.029 1.206 1.017 1.254 1.019 1.244 1.034 1.238 1.034 1.197 1.026 1.268 1.007 1.254 1.011 1.227 1.016 1.217 1.017 1.264 0.984 1.289 0.989 1.269 0.991 1.221 1.012 1.209 0.992 1.277 0.973 1.273 0.986 1.291 0.944 1.270 0.975 1.270 0.984 1.036 1.040 1.038 1.070 1.066 1.063 1.089 1.084 1.092 1.071 1.076 1.072 1.078 1.083 1.084 1.072 1.077 1.078 1.076 1.078 1.074 1.079 1.078 1.077 1.084 1.085 1.082 1.080 1.069 1.087 1.085 1.082 1.082 1.068 1.080 1.061 1.076 1.079 Max 1.096 1.049 1.070 1.097 1.151 1.137 1.102 1.146 1.163 1.161 1.146 1.120 1.124 1.102 1.291 1.130 Total Max 1.291 Min 0.952 0.931 0.944 0.956 1.006 1.008 1.010 1.014 1.011 1.052 0.990 0.931 0.886 0.959 1.189 1.004 Total Min 0.886 Average 1.028 1.019 1.019 1.038 1.081 1.088 1.066 1.086 1.099 1.107 1.081 1.067 1.059 1.054 1.231 1.066 Total Average 1.074 Area Average 1.035 1.025 1.024 1.040 1.080 1.088 1.070 1.089 1.102 1.106 1.077 1.063 1.060 1.055 1.236 1.070 Total Area Average 1.076 UI

37 Project 7255 Table 5.

U3 /U3 tower, ratios versus wind direction Mesrmn Are Win Diko (dg.

5179.8 5179.8 5179.8 5787.1 5787.1 5787.1 3683.5 3683.5 3683.5 2263.8 11994.0 2591.3 1900.9 14607.2 12006.6 2324.1 1882.3 17941.1 17509.0 1894.8 1868.4 17716.1 14221.3 4240.3 2216.0 16088.3 7525.7 2812.8 3611.5 14442.9 2289.1 23497.5 2621.1 3566.3 2800.1 1.008 1.018 1.011 1.010 1.012 1.015 0.986 0.993 0.998 0.995 0.998 0.982 1.012 0.988 0.985 0.987 0.986 0.982 0.991 0.987 0.980 0.981 0.978 0.984 0.982 0.998 0.991 0.972 1.002 1.012 0.982 0.985 0.993 0.993 0.988 0.973 0.986 0.987 0.959 0.974 0.963 0.990 0.975 0.980 1.003 1.003 1.000 0.995 0.991 0.994 0.996 0.992 1.001 0.989 1.006 0.985 0.969 0.995 0.994 1.003 1.003 0.987 0.990 0.996 0.991 0.988 0.992 0.998 0.994 1.000 1.009 0.997 0.991 0.961 1.001 0.984 0.980 0.972 0.989 0.990 0.992 0.984 0.999 0.998 1.029 0.997 1.000 1.019 0.999 0.995 1.011 0.989 1.000 0.986 0.994 0.994 0.991 0.991 0.995 0.994 0.984 0.995 1.004 0.999 0.994 0.990 0.973 0.994 1.001 0.969 0.985 0.974 0.965 0.986 1.006 1.008 1.010 0.995 0.999 1.011 1.018 1.021 1.023 1.000 1.011 1.012 1.007 1.010 1.016 1.012 0.995 1.006 1.003 1.006 0.986 0.992 0.992 1.000 0.997 0.989 0.997 0.994 0.978 0.969 1.001 0.989 1.003 0.981 0.983 0.979 1.003 0.999 0.998 1.004 1.035 1.031 1.028 1.025 1.017 1.022 1.039 1.023 1.024 1.035 1.012 1.020 1.017 1.019 1.009 1.015 1.006 1.012 1.020 1.021 1.013 1.010 1.016 1.012 1.020 1.005 1.008 1.006 1.001 1.014 1.024 1.003 1.008 1.018 1.010 0.997 1.026 1.044 1.050 1.039 1.060 1.044 1.053 1.036 1.057 1.037 1.029 1.034 1029 1,040 1.022 1.026 1.032 0.999 0.992 0.997 0.999 0.994 1.005 0.991 1.014 1.005 1.013 1.006 0.990 1.007 1.012 1.013 1.017 0.981 0.999 0.996 0.993 1.018 1.015 1.003 0.998 1.011 1.013 1.001 0.972 0.975 0.982 0.969 0.991 0.967 0.974 0.981 0.984 0.979 0.967 0.966 0.980 0.975 0.980 0.978 0.969 0.981 0.994 0.978 0.978 0.990 0.983 0.986 1.003 0.985 1.011 0.988 0.984 0.989 0.986 1.003 1.004 0.996 0.997 1.010 1.005 0.981 0.970 0.961 0.956 0.973 0.982 0.976 0.978 0.989 0.975 0.978 0.976 0.979 0.973 0.984 0.988 0.986 0.987 0.995 0.989 1.013 0.967 0.981 1.000 0.997 0.998 1.002 0.995 0.990 0.987 1.003 1.008 1.017 1.012 1.004 1.019 1.021 1.015 1.015 0.994 0.990 0.990 1.011 1.000 1.012 1.009 0.995 0.997 1.008 0.998 0.996 0.987 0.999 1.022 0.999 0.995 1.008 1.031 1.009 1.015 1.018 1.013 1.034 1.029 1.037 1.023 1.023 1.029 1.047 1.054 1.033 1.007 0.965 0.996 0.979 1.011 0.975 1.013 0.987 1.010 0.986 1.006 0.987 1.023 1.008 1.039 0.991 1.031 1.006 0.998 0.979 0.986 0.977 1.000 0.971 1.013 0.983 0.998 0.982 1.004 0.971 0.999 0.969 1.022 0.984 1.000 0.981 0.986 0.965 1.000 0.972 0.991 0.984 1.016 0.986 0.993 0.974 0.994 0.993 1.011 0.999 1.007 0.981 1.003 0.974 1.003 0.988 1.026 1.000 1.030 1.018 1.027 0.993 1.022 0.990 1.018 0.978 1.018 0.998 1.037 1.016 1.026 1.008 1.037 1.002 1.022 1.002 0.993 0.978 0.964 0.982 0.920 0.978 1.008 0.974 1.021 0.974 1.012 0.978 1.013 0.993 1.012 0.991 1.020 0.995 1.002 0.985 1.009 0.995 1.005 0.977 1.007 0.985 0.987 0.991 1.008 0.972 1.002 0.969 0.994 0.989 0.998 0.975 0.997 0.971 0.999 0.991 L005 0.987 1.008 0.979 0.998 0.984 0.992 0.978 1.002 0.986 0.999 0.984 0.994 0.983 0.997 0.989 1.009 0.991 1.025 0.988 0.995 0.987 1.013 0.999 1,019 0.985 1.020 0.985 1.016 0.984 1014 0.999 1.007 1.008 1.020 0.984 0.993 0.992 0.985 0.983 0.984 0.986 0.984 1.004 1.004 1.012 0.998 0.998 1.006 0.987 0.982 0.985 1.003 0.980 0.983 0.971 0.982 0.991 0.978 0.965 0.990 0.993 0.978 0.985 0.990 0.993 0.981 0.990 0.968 0.995 0.977 1.013 0.997 0.999 1.182 1.156 1.183 1.141 1.184 1.152 1.169 1.155 1.166 1.169 1.183 1.162 1.167 1.178 1.169 1.167 1.177 1.166 1.156 1.157 1.168 1.159 1.178 1.147 1.178 1.169 1.155 1.170 1.171 1.193 1.176 1.155 1.148 1.176 1.176 1.184 1.174 1.179 1.000 0.992 0.994 0.987 0.979 0.992 1.013 1.007 1.013 1.004 0.984 0.986 0.993 0.983 0.990 0.987 1.004 0.998 0.997 1.000 0.999 0.992 0.996 0.995 1.012 0.995 0.983 0.983 1.000 1.021 0.985 0.971 0.977 1.014 0.997 1.016 0.997 0.996 1.182 1.156 1.183 1.141 1.184 1.152 1.169 1.155 1.166 1.169 1.183 1.162 1.167 1.178 1.169 1.167 1.177 1.166 1.156 1.157 1.168 1.159 1.178 1.147 1.178 1.169 1.155 1.170 1.171 1.193 1.176 1.155 1.148 1.176 1.176 1.184 1.174 1.179 0.959 0.964 0.920 0.974 0.974 0.978 0.970 0.961 0.956 0.969 0.977 0.967 0.974 0.981 0.971 0.969 0.967 0.966 0.965 0.971 0.980 0.978 0.969 0.965 0.982 0.978 0.967 0.972 0.978 0.969 0.973 0.971 0.968 0.969 0.977 0.961 0.965 0.984 1.008 1.O05 1.007 1.012 1.015 1.011 1.013 1.012 1.019 1.009 1.010 1.008 1.011 1.007 1.007 1.004 1.009 1.001 0.997 1.002 1.005 1.005 1.002 1.001 1.011 1.008 1.003 1.004 1.009 1.017 1.009 1.010 1.011 1.008 1.010 1.013 1.014 1.014 Max 1.018 1.009 1.029 1.023 1.039 1.060 1.015 1.017 1.054 1.039 1.018 1.025 1.008 1.013 1.193 1.021 Total Max 1.19; Min 0.972 0.959 0.965 0.969 0.997 0.981 0.966 0.956 0.987 0.986 0.965 0.920 0.969 0.965 1.141 0.971 Total Mmin 0.92C Average 0.992 0.990 0.992 1.000 1.016 1.018 0.986 0.988 1.013 1.011 0.987 1003 0.985 0.989 1.168 0.996 Total Average 1.001 Area Average 0.991 0.990 0.991 1.000 1.015 1.014 0.984 0.988 1.008 1,009 0.986 1.001 0.982 0.986 1.169 0.994 Total Area Average 1.003 UI

38 Project 7255 Table 6.

U4/U4 twer ratios versus wind direction Mesrmn AraWn

iecin(e.

1 5179.8 1.015 0.978 0.995 1.012 0.996 1.018 1.008 1.008 1.013 0.998 0.979 1.005 0.986 0.992 1.036 0.994 1.036 0.978 1.002 2

5179.8 1.025 0.995 0.985 1.007 0.999 1.025 0.998 0.999 1.008 0.998 0.994 0.992 0.990 0.989 1.016 0.990 1.025 0.985 1.001 3

5179.8 1.011 0.981 1.006 1.009 1.031 1.036 0.991 1.003 1.023 1.001 0.984 0.987 0.982 0.979 1.034 0.990 1.036 0.979 1.003 4

5787.1 1.020 1.002 0.997 0.994 1.021 1.024 1.003 1.021 1.024 1.008 0.988 1.002 0.977 0.976 1.004 0.986 1.024 0.976 1.003 5

5787.1 1.017 0.990 1.003 0.998 1.017 1.041 1.005 1.017 1.018 1.007 0.987 1.008 0.976 0.983 1.032 0.981 1.041 0.976 1.005 6

5787.1 1.022 0.995 0.984 1.014 1.021 1.031 0.993 0.994 1.018 0.992 0.993 1.003 0.976 0.983 1.010 0.989 1.031 0.976 1.001 7

3683.5 0.994 1.012 1.005 1.011 1.004 1.035 0.963 0.969 1.002 1.012 0.997 1.007 0.987 0.981 1.031 1.007 1.035 0.963 1.001 8

3683.5 1.007 1.008 1.005 1.018 1.007 1.018 0.964 0.967 0.999 1.027 0.989 1.012 0.985 0.998 1.022 1.006 1.027 0.964 1.002 9

3683.5 1.004 1.009 1.027 1.019 1.024 1.035 0.975 0.964 1.000 1.013 1.000 1.013 0.989 0.998 1.023 1.004 1.035 0.964 1.006 10 2263.8 1.003 1.004 1.005 0.998 1.011 1.014 0.965 0.969 1.015 0.984 0.978 0.993 0.976 1.008 1.026 0.995 1.026 0.965 0.997 11 11994.0 1.002 1.000 1.002 1.012 1.010 1.013 0.979 0.982 1.006 0.979 0.976 1.003 0.983 0.992 1.035 0.984 1.035 0.976 0.997 12 259L3 0.988 1.001 1.019 1.007 1.016 1.016 0.960 0.975 1.015 0.990 0.972 0.997 0.965 0.991 1.021 0.981 1.021 0.960 0.995 13 1900.9 1.007 1.000 1.001 1.005 1.001 1.014 0.969 0.975 1.004 1.001 0.983 1.000 0.976 0.998 1.020 0.988 1.020 0.969 0.996 14 14607.2 0.990 0.994 0.996 1.007 1.010 1.026 0.969 0.990 0.996 0.983 0.976 0.977 0.981 0.983 1.025 0.977 1.026 0.969 0.993 15 12006.6 0.989 1.007 1.016 1.013 1.005 1.013 0.976 0.975 0.997 0.987 0.972 1.000 0.962 0.974 1.020 0.986 1.020 0.962 0.993 16 2324.1 0.992 0.998 0.998 1.009 1.014 1.018 0.968 0.980 1.008 0.991 0.967 0.998 0.963 0.975 1.015 0.979 1.018 0.963 0.992 17 1882.3 0.984 1.011 1.000 0.994 1.00 1.018 0.961 0.978 0.998 1.010 0.981 0.992 0.980 0.993 1.024 0.993 1.024 0.961 0.995 18 17941.1 0.987 0.994 0.989 1.004 1.008 0.986 0.959 0.977 0.992 0.990 0.980 0.992 0.963 0.972 1.019 0.987 1.019 0.959 0.987 19 17509.0 0.997 0.978 0.994 1.000 1.000 0.983 0.973 0.977 0.985 0.979 0.964 0.986 0.966 0.972 1.008 0.986 1.008 0.964 0.984 20 1894.8 0.992 1.001 1.002 1.007 L005 0.986 0.971 0.984 1.000 0.989 0.973 0.990 0.981 0.963 1.004 0.992 1.007 0.963 0.990 21 1868.4 0.980 1.003 1.005 0.988 1.010 0.987 0.969 0.986 1.024 0.987 0.986 1.003 0.982 0.968 1.015 0.985 1.024 0.968 0.992 22 17716.1 0.983 1.011 0.993 0.992 1.010 0.980 0.970 0.989 0.996 1005 0.989 1.002 0.966 0.982 1.010 0.979 1.011 0.966 0.991 23 14221.3 0.984 1.006 0.993 0.988 1.005 0.993 0.962 0.986 0.999 0.980 0.975 0.993 0.973 0.974 1.028 0.989 1.028 0.962 0.989 24 4240.3 0.986 0.992 1.000 0.998 1.002 0.986 0.970 0.999 1.012 0.982 0.988 0.983 0.968 0.959 0.999 0.984 1.012 0.959 0.988 25 2216.0 0.990 0.993 0.983 1.000 1.004 0.999 0.979 0.985 1.024 1.005 1.000 0.996 0.979 0,977 1.018 1.000 1.024 0.977 0.996 26 16088.3 0.999 1.004 1.006 0.992 0.998 0.993 0.969 1.004 1.009 0.993 0.979 0.993 0.972 0.979 1.016 0.985 1.016 0.969 0.993 27 7525.7 0.989 0.993 1.004 0.996 1.008 1.001 0.971 0.969 1.016 0.991 0.968 0.982 0.973 0.969 1.007 0.970 1.016 0.968

. 0.988 28 0.977 0.994 1.003 0.995 0.995 0.994 0.980 0.979 1.017 0.990 0.984 0.986 0.979 0.975 1.022 0.976 1.022 0.975 0.990 29 2812.8 1.004 1.001 0.997 0.987 1.002 0.976 0.974 0.996 LO09 1.017 1.002 1.011 0.984 0.983 1.016 0.990 1.017 0.974 0.997 30 3611.5 1.010 1.002 0.996 0.977 0.998 0.990 0.968 0.991 1.026 1.019 1.011 1.016 0,980 0.982 1.034 1.000 1.034 0.968 1.000 31 14442.9 0.982 0.998 0.981 0.997 0.992 1.000 0.987 0.995 1.026 1.012 0.997 0.988 0.976 0.969 1.021 0.976 1.026 0.969 0.994 32 0.984 1.007 0.998 0.991 1.007 1.006 0.981 1.002 1.033 1.008 0.993 1.003 0.981 0.980 1005 0.969 1.033 0.969 0.997 33 0.997 1.010 1.001 1.000 1.020 1.007 1.002 0.993 1.023 1.003 0.971 1.006 0.973 0.974 1,005 0.975 1.023 0.971 0.997 34 2289.1 0.994 1.007 0.984 0.989 0.999 0.975 0.977 0.995 1.019 1.011 1.003 1.017 0.976 0.987 1.020 1.000 1.020 0.975 0.997 35 23497.5 0.988 1.007 0.997 0.989 1.001 0.985 0.973 0.984 1.025 1.026 1.021 1.011 0.973 0.963 1.020 0.982 1.026 0.963 0.997 36 2621.1 0.980 0.981 0.987 0.995 1.009 0.985 0.979 0.998 1.044 L025 1.015 1.011 0.982 1,002 1.023 0.996 1.044 0.979 1.001 37 3566.3 0.995 1.013 0.980 L 002 1.005 0.979 0.975 1.003 1.049 1.032 1.006 1.010 0.997 0.979 1.022 0.982 1.049 0.975 1.002 38 2800.1 0.992 0.996 0.996 0.994 0.985 1.001 0.993 1.013 1.029 1.015 0.998 1.016 0.974 0.983 1,026 0.986 1.029 0.974 1.000 Max 1.025 1.013 1.027 1.019 1.031 1.041 1.008 1.021 1.049 1.032 1.021 1.017 0.997 1.008 1.036 1.007 Total Max 1.049 Min 0.977 0.978 0.980 0.977 0.985 0.975 0.959 0.964 0.985 0.979 0.964 0.977 0.962 0.959 0.999 0.969 Total Min 0.959 Average 0.996 0.999 0.998 1.000 1.007 1.005 0.977 0.989 1.013 1.001 0.987 1.000 0.977 0.981 1.019 0.987 Total Average 0.996 Area Average 0.995 0.999 0.997 1.000 1.006 1.001 0.975 0.988 1.008 0.999 0.986 0.997 0.974 0.978 1.019 0.985 Total Area Average 0.994

39 Project 7255 Table 7.

Wind speed ratios (WSR=UO/U4tower) versus wind direction MeSrmn Are WidDrtn(e.

5179.8 5179.8 5179.8 5787.1 5787.1 5787.1 3683.5 3683.5 3683.5 2263.8 11994.0 2591.3 1900.9 14607.2 12006.6 2324.1 1882.3 17941.1 17509.0 1894.8 1868.4 17716.1 14221.3 4240.3 2216.0 16088.3 7525.7 2812.8 3611.5 14442.9 2289.1 23497.5 2621.1 3566.3 2800.1 0.394 0.438 0.340 0.448 0.445 0.344 0.443 0.453 0.342 0.523 0.564 0.532 0.544 0.596 0.591 0.523 0.552 0.591 0.570 0.406 0.575 0.613 0.607 0.548 0.576 0.611 0.622 0.601 0.593 0.642 0.605 0.602 0.577 0.608 0.626 0.573 0.609 0.528 0.430 0.465 0.344 0.483 0.487 0.396 0.452 0.467 0.370 0.527 0.577 0.566 0.559 0.609 0.600 0.550 0.568 0.603 0.592 0.470 0.577 0.607 0.609 0.586 0.568 0.606 0.620 0.609 0.586 0.616 0.583 0.593 0.571 0.598 0.611 0.516 0.577 0.524 0.506 0.529 0.435 0.545 0.551 0.470 0.496 0.519 0.428 0.551 0.601 0.594 0.574 0.620 0.616 0.572 0.584 0.614 0.617 0.531 0.589 0.610 0.614 0.607 0.570 0.585 0.609 0.606 0.557 0.581 0.556 0.599 0.565 0.570 0.578 0.481 0.549 0.507 0.570 0.601 0.540 0.603 0.607 0.532 0.500 0.597 0.524 0.573 0.622 0.625 0.600 0.638 0.635 0.596 0.608 0.622 0.616 0.586 0.608 0.608 0.605 0.607 0.579 0.596 0.580 0.600 0.542 0.573 0.555 0.581 0.567 0.554 0.557 0.474 0.496 0.517 0.590 0.626 0.606 0.614 0.632 0.607 0.594 0.645 0.616 0.582 0.639 0.614 0.616 0.645 0.634 0.613 0.607 0.634 0.624 0.623 0.591 0.609 0.610 0.608 0.609 0.600 0.577 0.594 0.540 0.558 0.561 0.571 0.583 0.540 0.534 0.460 0.484 0.542 0.544 0.601 0.605 0.559 0.613 0.618 0.472 0.589 0.589 0.533 0.635 0.612 0.572 0.639 0.635 0.584 0.570 0.639 0.637 0.618 0.575 0.615 0.610 0.598 0.571 0.614 0.595 0.606 0.525 0.589 0.594 0.575 0.610 0.551 0.570 0.490 0.487 0.526 0.446 0.547 0.518 0.485 0.551 0.522 0.429 0.494 0.473 0.468 0.559 0.548 0.472 0.587 0.595 0.549 0.513 0.602 0.608 0.607 0.533 0.593 0.611 0.581 0.557 0.607 0.599 0.584 0.496 0.596 0.612 0.563 0.605 0.526 0.576 0.489 0.513 0.518 0.357 0.477 0.456 0.417 0.499 0.477 0.314 0.438 0.440 0.434 0.530 0.534 0.444 0.565 0.587 0.538 0.418 0.552 0.609 0.574 0.495 0.576 0.593 0.587 0.539 0.605 0.599 0.603 0.511 0.593 0.610 0.576 0.631 0.521 0.590 0.518 0.549 0.547 0.315 0.445 0.431 0.397 0.484 0.460 0.290 0.404 0.418 0.406 0.520 0.544 0.450 0.581 0.605 0.547 0.401 0.570 0.582 0.545 0.483 0.584 0.610 0.619 0.533 0.618 0.626 0.627 0.555 0.628 0.623 0.609 0.646 0.541 0.623 0.545 0.620 0.601 0.348 0.484 0.451 0.420 0.496 0.461 0.454 0.518 0.523 0.403 0.537 0.530 0.447 0.565 0.581 0.515 0.397 0.575 0.580 0.512 0.470 0.575 0.602 0.629 0.503 0.599 0.606 0.622 0.551 0.599 0.605 0.612 0.637 0.533 0.604 0.529 0.618 0.592 0.416 0.498 0.473 0.473 0.535 0.505 0.487 0.580 0.551 0.404 0.490 0.555 0.446 0.564 0.573 0.539 0.427 0.552 0.569 0.581 0.475 0.567 0.589 0.607 0.489 0.577 0.598 0.612 0.530 0.572 0.572 0.603 0.608 0.528 0.587 0.512 0.596 0.585 0.520 0.483 0.514 0.574 0.459 0.554 0.516 0.450 0.514 0.575 0.598 0.601 0.616 0.594 0.588 0.575 0.568 0.534 0.585 0.632 0.621 0.642 0.656 0.629 0.597 0.640 0.523 0.422 0.456 0.535 0.553 0.568 0.549 0.576 0.506 0.498 0.513 0.504 0.561 0.572 0.587 0.580 0.600 0.569 0.572 0.547 0.506 0.492 0.490 0.530 0.574 0.584 0.583 0.584 0.581 0.575 0.572 0.604 0.579 0.540 0.521 0.574 0.613 0.609 0.591 0.610 0.610 0.605 0.596 0.625 0.554 0.521 0.531 0.595 0.621 0.604 0.605 0.634 0.609 0.608 0.605 0.617 0.599 0.581 0.524 0.518 0.510 0.563 0.541 0.563 0.603 0.608 0.622 0.620 0.606 0.595 0.609 0.578 0.576 0.588 0.590 0.577 0.589 0.575 0.584 0.534 0.540 0.551 0.587 0.570 0.589 0.597 0.599 0.599 0.518 0.468 0.544 0.480 0.468 0.380 0.557 0.472 0.558 0.479 0.460 0.373 0.583 0.445 0.562 0.463 0.418 0.382 0.572 0.528 0.567 0.556 0.521 0.515 0.599 0.558 0.606 0.575 0.574 0.569 0.483 0.479 0.597 0.563 0.611 0.583 0.599 0.573 0.494 0.444 0.639 0.587 0.640 0.597 0.614 0.574 0.506 0.506 0.636 0.599 0.647 0.620 0.623 0.616 0.594 0.570 0.550 0.563 0.596 0.611 0.649 0.616 0.618 0.595 0.602 0.563 0.622 0.616 0.629 0.635 0.579 0.572 0.628 0.607 0.600 0.541 0,590 0.626 0.606 0.614 0.632 0.618 0.632 0.656 0.640 0.582 0.639 0.625 0.616 0.645 0.635 0.613 0.608 0.639 0.637 0.623 0.639 0.640 0.614 0.629 0.636 0.647 0.626 0.627 0.593 0.642 0.649 0.620 0.646 0.622 0.635 0.579 0.628 0.601 0.315 0.438 0.340 0.397 0.445 0.344 0.290 0.404 0.342 0.403 0.490 0.498 0.444 0.564 0.569 0.479 0.397 0.552 0.569 0.406 0.470 0.567 0.574 0.506 0.489 0.577 0.577 0.570 0.496 0.541 0.555 0.563 0.563 0.521 0.534 0.460 0.484 0.507 0.464 0.520 0.470 0.515 0.546 0.494 0.487 0.541 0.490 0.495 0.567 0.554 0.529 0.596 0.596 0.539 0.525 0.594 0.594 0.545 0.557 0.600 0.604 0.581 0.567 0.608 0.606 0.602 0.541 0.589 0.598 0.595 0.595 0.566 0.592 0.523 0.568 0.558 Max 0.642 0.620 0.620 0.638 0.645 0.639 0.612 0.631 0.646 0.637 0.612 0.642 0.656 0.634 0.649 0.635 Total Max 0.656 Min 0.340 0.344 0.428 0.474 0.460 0.472 0.429 0.314 0.290 0.348 0.404 0.422 0.450 0.492 0.418 0.373 Total Min 0.290 Average 0.536 0.544 0.560 0.579 0.593 0.583 0.546 0.524 0.528 0.534 0.538 0.573 0.566 0.571 0.575 0.539 Total Average 0.555 Area Average 0.560 0.566 0.577 0.590 0.600 0.600 0.569 0.549 0.555 0.555 0.550 0.583 0.576 0.581 0.S93 0.561 Total Area Average 0.573

40 Project 7255 Table 8.

u ace Table 8.

Surface Roughness Length Results (z0) from log law fit I

~I 5179.8 5179.8 5179.8 5787.1 5787.1 5787.1 3683.5 3683.5 3683.5 2263.8 11994.0 2591.3 1900.9 14607.2 12006.6 2324.1 1882.3 17941.1 17509.0 1894.8 1868.4 17716.1 14221.3 4240.3 2216.0 16088.3 7525.7 2812.8 3611.5 14442.9 2289.1 23497.5 2621.1 3566.3 2800.1 0.175 0.107 0.203 0.091 0.100 0.229 0.064 0.064 0.166 0.024 0.012 0.015 0.017 0.005 0.005 0.019 0.012 0.005 0.009 0.084 0.006 0.002 0.003 0.011 0.006 0.004 0.002 0.003 0.004 0.001 0.002 0.004 0.009 0.003 0.002 0.005 0.003 0.016 0.087 0.030 0.056 0.016 0.176 0.072 0.048 0.015 0.042 0.014 0.112 0.038 0.068 0.032 0.051 0.022 0.125 0.073 0.021 0.012 0.009 0.004 0.009 0.007 0.011 0.008 0.003 0.002 0.005 0.004 0.012 0.008 0.011 0.007 0.004 0.003 0.004 0.003 0.040 0.017 0.009 0.007 0.005 0.003 0.004 0.003 0.006 0.O4 0.009 0.009 0.004 0.008 0.002 0.004 0.004 0.005 0.006 0.013 0.003 0.009 0.006 0.011 0.008 0.006 0.014 0.014 0.006 0.009 0.004 0.009 0.021 0.048 0.010 0.013 0.019 0.031 0.010 0.004 0.014 0.004 0.002 0.006 0.015 0.006 0.007 0.004 0.004 0.013 0.003 0.002 0.006 0.019 0.005 0.004 0.024 0.003 0.053 0.005 0.001 0.007 0.017 0.003 0.009 0.007 0.006 0.019 0.003 0.001 0.002 0.002 0.004 0.004 0.004 0.003 0.009 0.002 0.001 0.002 0.002 0.002 0.002 0.006 0.004 0.007 0.003 0.004 0.009 0.003 0.002 0.001 0.003 0.002 0.001 0.006 0.003 0.002 0.003 0.008 0.005 0.003 0.005 0.002 0.004 0.004 0.003 0.004 0.004 0.004 0.009 0.004 0.008 0.005 0.005 0.003 0.008 0.010 0.005 0.005 0.006 0.004 0.017 0.022 0.020 0.008 0.017 0.007 0.013 0.012 0.006 0.008 0.012 0.009 0.014 0.011 0.004 0.016 0.023 0.012 0.014 0.028 0.009 0.055 0.070 0.034 0.043 0.052 0.037 0.029 0.015 0.027 0.055 0.012 0.021 0.031 0.012 0.019 0.061 0.033 0.048 0.029 0.009 0.009 0.032 0.004 0.004 0.013 0.002 0.002 0.002 0.011 0.003 0.001 0.005 0.009 0.002 0.003 0.005 0.032 0.004 0.003 0.008 0.004 0.021 0.007 0.039 0.021 0.025 0.145 0.045 0.066 0.086 0.036 0.039 0.222 0.073 0.070 0.048 0.016 0.016 0.052 0.010 0.005 0.014 0.064 0.010 0.002 0.007 0.027 0.008 0.005 0.006 0.013 0.005 0.002 0.003 0.033 0.006 0.004 0.008 0.001 0.026 0.005 0.027 0.015 0.018 0.195 0.065 0.091 0.105 0.047 0.061 0.262 0.126 0.108 0.099 0.025 0.022 0.055 0.006 0.004 0.017 0.089 0.009 0.006 0.015 0.045 0.007 0.004 0.003 0.021 0.003 0.003 0.003 0.014 0.004 0.004 0.005 0.002 0.019 0.004 0.026 0.007 0.007 0.142 0.036 0.068 0.071 0.032 0.049 0.042 0.025 0.019 0.108 0.019 0.027 0.057 0.009 0.007 0.024 0.105 0.007 0.006 0.019 0.041 0.010 0.004 0.001 0.027 0.004 0.004 0.002 0.016 0.006 0.005 0.003 0.001 0.021 0.007 0.030 0.005 0.007 0.090 0.043 0.060 0.033 0.016 0.026 0.026 0.005 0.010 0.130 0.039 0.011 0.058 0.011 0.008 0.014 0.065 0.013 0.007 0.005 0.042 0.010 0.005 0.004 0.036 0.007 0.003 0.003 0.018 0.011 0.010 0.004 0.002 0.021 0.009 0.035 0.006 0.007 0.029 0.009 0.028 0.008 0.004 0.009 0.005 0.001 0.005 0.079 0.015 0.008 0.028 0.007 0.005 0.012 0.034 0.007 0.006 0.O04 0.025 0.005 0.OO4 0.001 0.017 0.004 0.003 0.002 0.020 0.013 0.004 0.003 0.004 0,008 0.007 0.021 0.007 0,006 0.071 0.115 0.108 0.004 0.005 0.010 0.001 0.001 0.001 0.048 0.0O9 0.022 0.026 0.005 0.005 0.018 0.019 0.004 0.005 0.006 0.008 0.004 0.003 0.007 0.004 0.003 0.002 0.003 0.018 0.013 0.002 0.003 0.005 0.003 0.006 0.012 0.010 0.003 0.040 0.014 0.019 0.003 0.011 0.001 0.002 0.014 0.021 0.015 0.034 0.011 0.007 0.006 0.028 0,008 0,006 0=59 0,002 0.003 0.004 0.012 0.002 0.001 0.002 0.005 0.021 0,006 0.001 0.004 0,005 0.007 0.003 0.012 0.004 0.003 0.037 0.017 0.056 0.012 0.016 0.045 0.009 0.012 0.077 0.012 0.015 0.027 0.006 0.006 0.012 0.043 0.007 0.005 0.005 0.032 0.002 0.002 0.005 0.026 0.002 0.002 0.003 0.008 0.012 0.006 0.002 0.003 0.005 0.003 0.002 0.007 0.003 0.005 0.053 0.042 0.117 0.051 0.039 0.120 0.080 0.059 0.122 0.020 0.010 0.020 0.010 0.006 0.008 0.035 0.010 0.007 0.008 0.056 0.005 0.004 0.009 0.025 0.004 0.002 0.002 0.008 0.007 0.003 0.002 0.003 0.009 0.002 0.001 0.006 0.002 0.011 0.195 0.115 0.203 0.105 0.100 0.229 0.262 0.126 0.166 0.130 0.039 0.034 0.058 0.011 0.012 0.043 0.105 0.013 0.009 0.084 0.045 0.010 0.009 0.026 0.036 0.008 0.010 0.008 0.033 0.017 0.013 0.012 0.014 0.026 0.028 0.070 0.052 0.031 0.004 0.002 0.006 0.003 0.002 0.004 0.001 0.001 0.001 0.006 0.001 0.002 0.003 0.001 0.002 0.004 0.003 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.004 0.001 0.001 0.003 0.001 0.002 0.001 0.005 0.002 0.003 0.074 0.037 0.070 0.036 0.024 0.050 0.060 0.030 0.054 0.043 0.013 0.015 0.024 0.005 0.005 0.017 0.029 0.005 0.005 0.019 0.015 0.005 0.004 0.008 0.011 0.004 0.004 0.004 0.017 0.007 0.005 0.006 0.007 0.012 0.007 0.028 0.015 0.014 Max 0.229 0.176 0.073 0.055 0.070 0.053 0.061 0.222 0.262 0.142 0.130 0.079 0.115 0.040 0.077 0.122 Total Max 0.262 Min 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 Total Min 0.001 Average 0.039 0.027 0.016 0.011 0.010 0.010 0.016 0.033 0.042 0.028 0.024 0.012 0.016 0.009 0.014 0.026 Total Average 0.021 Area Average 0.029 0.020 0.011 0.008 0.008 0.007 0.010 0.022 0.028 0.019 0.018 0.009 0.012 0.007 0.011 0.019 Total Area Average 0.015 U

APPENDIX A

WIND-TUNNEL SIMILARITY REQUIREMENTS

TABLE OF CONTENTS A.1.

EXACT SIMILARITY REQUIREMENTS.....................................................................

A-3 A.2.

SCALING PARAMETERS THAT CANNOT BE MATCHED......................................

A-6 A.3.

R E FE R E N C E S.................................................................................................................

A -8 A-2

A.1.

EXACT SIMILARITY REQUIREMENTS An accurate simulation of the boundary-layer winds is an essential prerequisite to any wind-tunnel study. The similarity requirements can be obtained from dimensional arguments derived from the equations governing fluid motion. The basic equations governing motion (conservation of mass, momentum and energy) may be expressed, using Einstein notation, in the following dimensionless form (Cermak, 1975; Petersen, 1978):

V__+_0 (A.2)

Pat x

and aT" U WT

+

ax L

W I

]o a2 TU +*

+ L jO c 0a T]

(A.2)

F o.IF Vo

]C

-T, 0

0

,+

1[

Ix axU V

A.3 where T =

temperature; P

=

pressure; U =

velocity; L

=

length scale; g

=

acceleration due to gravity;

=

specific heat at constant pressure; xi=

Cartesian coordinates in tensor notation; v

=

kinematic viscosity; K =

thermal conductivity; A-3

CPP, Inc.

A-4 Project 7255 D2 =

angular velocity of earth;

=

dissipation; and the subscript "o" denotes a reference quantity. The dependent and independent variables have been made dimensionless (indicated by an "*") by choosing the appropriate reference values. The prime (') refers to a fluctuating quantity and Eijk is the alternating unit tensor.

For exact similarity, the bracketed quantities and boundary conditions must be the same in the wind tunnel as they are in the corresponding full-scale case. The complete set of requirements for similarity is:

undistorted geometry; equal Rossby number:

Ro= U0 Lof2o (A.4) equal gross Richardson number:

Ri = ATg 0 L0 (A.5) equal Reynolds number:

equal Prandtl number:

Re = U°L-V0 (A.6)

Pr = vp.°CPO Ko (A.7) equal Eckert number:

Ec = -

CPOATO (A.8) similar surface-boundary conditions; and similar approach-flow characteristics.

U

CPP, Inc.

A-5 Project 7255 For exact similarity, each of the above dimensionless parameters must be matched in the model and in full scale.

A.2.

SCALING PARAMETERS THAT CANNOT BE MATCHED For most studies, simultaneously equalizing Reynolds number, Rossby number, Eckert Number and Richardson number for the model and the prototype is not possible. However, these inequalities are not serious limitations, as will be discussed below.

Reynolds number independence is an important feature of turbulent flows which allows wind-tunnel modeling to be used. The Reynolds number describes the relative importance of inertial forces to viscous forces in fluid flow. Atmospheric wind flows around buildings are characterized by high Reynolds numbers (>106) and turbulence. Matching high Reynolds numbers in the wind tunnel for the scale reduction of this study would require tunnel speeds 180 to 300 times typical outdoor wind speeds; an impossibility because of equipment limitations and since such speeds would introduce compressible flow (supersonic) effects. Beginning with Townsend (1956), researchers have found that in the absence of thermal and Coriolis (earth rotation) forces, the turbulent flow characteristics are independent of Reynolds number provided the Reynolds number is high enough. EPA (1981) specifies a Reynolds number criterion of about 11,000 for sharp-edged building complexes.

The mean flow field will become Reynolds number independent and characteristic of the atmospheric boundary layer if the flow is fully turbulent (Schlichting, 1978). The critical Reynolds number for this criterion to be met is based on the work of Nikuradse, as summarized by Schlichting (1978), and is given by:

Re-, = z0u-> 2.5

"° v

(A.9)

In this relation, z0 is the surface roughness factor. If the scaled down roughness gives a Re-o less than 2.5, then exaggerated roughness would be required. The roughness elements must be larger than about 11 zfwhere zf is the friction length v/u*. Below this height, the flow is smooth.

In the event the Reynolds numbers are not sufficiently high, testing should be conducted to establish the expected errors. Recent arguments suggest that Re,0 can be as low as 1.0 without introducing serious errors into the simulations. It should be noted that this guidance is based on a neutral atmosphere. For stable stratification, it has been often assumed that a similar limit applies, but no systematic studies have been conducted to confirm this assumption.

A-6

CPP, Inc.

.A-7 The Rossby number, Ro, is a quantity which indicates the effect of the earth's rotation on the flow field. In the wind tunnel, equal Rossby numbers between model and prototype cannot be achieved without a spinning wind tunnel. The effect of the earth's rotation only becomes significant if the distance scale is large. EPA (1981) set a conservative cutoff point at 5 km. For this project, the length scale of concern is less than 1 km, resulting in insignificant Coriolis effects.

When equal Richardson numbers are achieved, equality of the Eckert number between model and prototype cannot be attained. This is not a serious compromise since the Eckert number is equivalent to a Mach number squared. Consequently, the Eckert number is small compared to unity for laboratory and atmospheric flows and can be neglected.

U

A.3.

REFERENCES Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," Journal of Fluids Engineering, Vol. 97, p. 9, 1975.

EPA, "Guideline for Fluid Modeling of Atmospheric Diffusion," U.S. EPA, Environmental Sciences Research Laboratory, Office of Research and Development, Research Triangle Park, North Carolina, Report No. EPA-600/8-81-009, 1981.

Petersen, R.L., "Plume Rise and Dispersion for Varying Ambient Turbulence, Thermal Stratification and Stack Exit Conditions," dissertation, CED77-78RLP25, Colorado State University, Fort Collins, CO, 1978.

Schlichting, H., Boundary-Layer Theory, 7th ed., Translated by Dr. J. Kestin, McGraw-Hill Book Company, New York, 1978.

A-8

APPENDIX B CPP QUALITY ASSURANCE PLAN for Wind Tunnel Modeling of the LaSalle County Station CPP Project 7255 August 28, 2013

CPP QUALITY ASSURANCE PLAN for Wind Tunnel Modeling of the LaSalle County Station CPP Project 7255 Submitted Date:

./-LK/I_!t By:

r Project Manager Accepted for CPP, Inc.

Date:

_/. /_/3 By:__

Ronald L. Petersen Vice President

CPP QA Plan B-3 Project 7255 CPP QUALITY ASSURANCE PLAN for Wind Tunnel Modeling of the LaSalle County Station CPP Project 7255 This document describes the Cermak Peterka Petersen, Inc. (CPP) quality assurance (QA) plan for wind tunnel modeling performed for the LaSalle County Station. Section 1 describes the instrumentation used, calibration procedures, and traceability to NIST (National Institute of Standards and Technology) standards. Sections 2 through 6 describe the QA management, training procedures, the report review, inspection of engineering calculations, and exception reports, respectively. The QA checklists and forms are described in the last section.

1.0 INSTRUMENTATION AND STANDARDS Instrumentation and equipment used for the velocity measurements at the Environmental Wind Tunnel of CPP, Inc. for this project for are the pitot-static tube and the hot-film anemometer. The instrumentation and applicable standards are discussed below.

1.1 Velocity NMeasurements Velocity measurements were used in the wind tunnel study for three primary purposes: 1) to measure the approach wind profile and the variation of mean velocity and turbulent fluctuations as a function of height; 2) to determine the reference wind tunnel velocity at a fixed height; and 3) to measure mean velocities at specific heights over the project site model. In this study, mean reference velocities were measured with a pitot-static tube. The profile of mean velocities and turbulent fluctuating velocities approaching the turntable were measured with a hot-film anemometer. Mean velocities at specific heights and locations over the project site model were measured with hot-film anemometers.

The pitot-static tube is the primary velocity standard at CPP. The pitot-static tube is a standard device which converts the total pressure head of an air flow into a static pressure measurable with a pressure transducer and which also makes a measurement of the static pressure. The difference in total and static pressure is the dynamic pressure proportional to air density and the square of air velocity. Mean velocities in the wind tunnel were computed from calibrations of pressure transducers and measurements of atmospheric pressure and temperature. Pressure transducer calibrations are described below.

Measurements of atmospheric pressure were downloaded every 5 minutes from the Colorado State University web site for the current Fort Collins weather (http://ccc.atmos.colostate.edu/-autowx/fclwx current.php?unit=m). Measurements of temperature were taken from a K-type thermocouple in the Wind Tunnel connected to an Advantech ADAM Ethernet DAQ module, sampled every 0.5s and averaged over the preceding 2 minutes. The lower limit of velocity is limited by the sensitivity of the pressure transducer and the design of the pitot tube. The pitot tube was not used to measure air speeds below 1.5 m/s. The pitot-static tube was inspected for physical damage before and after the testing program.

CPP QA Plan B-4 Project 7255 The hot-film anemometer was used to measure the approach profiles of mean velocity and turbulent velocity fluctuations, as well as the mean velocity at specific heights and locations over the project site model. The hot-film anemometer was calibrated against the pitot-static tube. The hot-film anemometer is sensitive to dust deposits, and calibration was checked at least once for each day of use (see Table for calibration checks).

The hot filn anemometer was mounted on a computer-controlled 3-axis traverse system. A calibration of the traverse system was not required, because the position feedback was done via digital encoder. Prior to data collection the traverse system was positioned directly over every measurement point and the location was recorded, enabling the system to return to the specific position within a resolution of 1/10 mm. Hot-film anemometers were installed at a fixed distance along a metal rod connected to the traverse system and measurements were taken at three heights simultaneously. The traverse system was outfitted with a "foot" enabling it to land at a specific measurement location, ensuring accurate measurement heights above the local elevation 1.2 NIST Traceability A NIST traceable calibrated micromanometer (Setra Model 267) was used as the calibration reference for secondary reference transducers (AllSensors Mini type, various ranges) in the lab. A 0.75" secondary reference transducer was used with a standard-pattern pitot-static tube to calibrate the hot-film Anemometers employed in this study. The reference velocity used to normalise the hot-film measurements was measured with a standard-pattern pitot-static tube connected to the NIST-traceable calibrated micromanometer.

2.0 QA MANAGEMENT Dr. Ron Petersen of Cermak Peterka Petersen, Inc. had overall responsibility for quality assurance on this project. Anke Beyer-Lout, the project manager for this study, was responsible for ensuring that this Quality Assurance Plan was followed. Mr. Kurt Fleckenstein, laboratory operations manager, was primarily responsible for performing instrument calibrations. Mr. Fleckenstein reported to Ms. Beyer-Lout on all QA matters. Likewise, Ms. Beyer-Lout reported to Dr. Petersen.

3.0 TRAINING CPP uses on the job training for employees who collect data and perform calibrations. The current employees who were working on this study have at least three months of experience and several have over 10 years of experience. The documentation of training will consist of documentation of employee qualifications.

Employee qualification documents for each data collector includes a statement from a company principal that the employee qualifications satisfies the requirements of the position. Prior to the testing, the particular test plan was discussed with the data collection personnel and any questions the data collectors had were answered.

CPP QA Plan B-5 Project 7255 4.0 REPORT REVIEW The report was be prepared primarily by Dr. Ron Petersen and Anke Beyer-Lout. Prior to submission, the draft report was reviewed by a principal of the corporation (Dr. Ron Petersen).

5.0 ENGINEERING CALCULATIONS Representative samples of engineering calculations performed during the study were checked by hand calculations and documented in the QA report.

6.0 EXCEPTION REPORTS During the course of the study, any out of the ordinary conditions which may degrade the quality of the data were to be recorded in exception reports. A decision on whether to accept the data as is, correct the data, or discard and retake the data was to be made by the project manager and recorded with the report. If necessary, exception reports were to be included in the QA documentation. No exceptional events occurred during data collection and no exception report was issued for this project.

7.0 QUALITY CONTROL CHECKLISTS This section describes the checklists used to ensure the QA steps of Sections 1 to 6 above were taken. The master checklist is Form QA-l and lists all of the other forms, documentation, and calibrations used in quality assurance. Beside each entry is a space for an initial for the person performing the task and the date of signature.

Three other standard checklist forms were included in the QA documentation: a project information list (Form QA-2), a model information list (Form QA-3), and a form for each approach wind profile used (Form QA-4). Each of the forms requires an initial and date of initial for each entry. The additional information requested in the forms was attached. Several calibration attachments are included in this document.

Form QA-1 Master QA Checklist Project Name: LaSalle County Station Winds Project Number: 7255 Item nitial IDate Project Information Sheet Completed (attach Form QA-2)

__i _P-____

Model information Sheet Completed (attach Form QA-3)

Approach Setup Description Sheet(s) (attach Form QA-4) 4/P2 ---

Pitot tube inspection for physical damage

1. Pre-test

( 7 A4' 67 1Z ell3

2. Post-test 6 A4 L/7 9113 Model drawing check (attach)

A Y7 L--

?(

9 1 _0 Model check against client drawings (attach)

,2

& 113ý Calculations checks (attach)

T

/,2-//3 Exception Reports, if any (attach)

NONE Employee/Data Collector Qualifications and Training (attach all)

Form QA-2 Project Information Sheet Project Name: LaSalle County Station Winds Project Number: 7255 Item Description TInitial JDate A

Project Number Official Project Title Sponsor NamelAddress Staffing:

Project Manager Project Engineer Data CollectionlQA Coordinator Model Construction Coordinator Goal of Study:

Site Location:

Meteorological Data:

Model Scale:

Configurations to Test:

1.

2.

Assessment of Wind Speeds over the

.I!

/

LaSalle County Station Ultimate Heat Sink (UHS)

Exelon Generation Company LLC 2601 North 21st Road Marseilles, Illinois Ron Petersen

'-f Anke Beyer-Lout Tom Lawton 1.

Kurt Fleckenstein Determine the ratio of wind speed at the 33ft

.*,/it/

i" height anemometer location to the 6ft speed over the UHS at various locations as a function of wind direction and wind speed 2601 N 21st Road, Marseilles, Illinois j

on-site meteorological tower data provided by Greg Engels (Exelon) 1:500/

West Turntable East Turntable

Form QA-3 Model Information Sheet Project Name: LaSalle County Station Winds Project Number: 7255 Item Description 1Initial I Date Model Scale Buildings to Construct Terrain to construct Measurment Grid(s)

(attach diagrams of locations) 1:500ooo see Figures 2a, 2b and 4 I'

West and East Turntables If see Figures 2a and 2b of..___

measurements were taken with a movable #JP traverse system

,I

,a see Figures 2a and 2b for locations IV_ )_(I,

Form QA-4 Boundary Layer Checklist (Use for each approach profile desired)

Project Name: LaSalle County Station Winds Project Number: 7255 VELOCITY PROFILE: 7255E#.PRF Item Target Data Fit Data Fit Acceptable? Initial Date Roughness length (zo) 0.13 see Figure 7 YES 0 EIA

/"

Friction Velocity (u*)

0.519 see Figure 7 YES

________,__/__,__

normalized RMS error J(UM#g"grvd-Utajry.o,9 9

)

Umeaasr ed 0.20%

YES TUNNEL SETUP Item Description Initial Date Reference Height (ft) 3.28

/

'0/.

Reference Location upwind of turntable

/

No. of Spires 4 full, 2 half Spire Type wedge type A

J A Spacing of Spires (in) 29.5 Height of spires(ft) 6 1

,/

Height of trip (in.)

16 Length of roughness upwind of T.T.

44 Distance spire upwind edge to trip (ft) 1

/

Roughness Setup 22ft of 2in roughness blocks downwind of the trip.

followed by 22ft of 1 in roughness blocks up to turntable (sse WT setup drawing)

Photographs of setup see report document

_____/_,

'3 J

0 0a 0

r1 0

0 0

0 13 0

o 0 0

103 c, r OO O

o o

a a

10 C03 10 0

0 a

0 0

0 S

n ri 2" Blocks 1" Blocks Typical Spire Design Detail A Detail B

Model Inspection Project Name: LaSalle County Station Winds Project Number: 7255 Model Scale 1:500 Client Drawing CPP Design Heights Constructed Model Difference Full Scale Full Scale Model Scale Full Scale Full Scale Model Scale Height Datum Height Datum Height Height Height Height Item Client Drawing (ft)

(ft)

(11)

(ft)

(in)

(ft)

(ft)

(in)

Initial Date Radwaste Building a-2.pdf 52.0 710.0 54.0 708.0 1.38 57.5 3.5 0.08 gum Turbine Building a-1.pdf 132.3 710.0 136.0 708.0 3.20 133.3 2.7 0.06 9.,6i,_"

Reactor Building a-l.pdf 182.3 710.0 186.0 708.0 4.50 187.5 1.5 0.04 New Service Building a-1005-all-2.pdf 57.0 710.5 60.0 708.0 1.42 59.2 0.8 0.02 y___

Lake Screen House a-408.pdf 29.0 714.0 31.0 712.0 0.81 33.8 2.8 0.07 Hatchery Building aerial photographs 24.0 24.0 0.61 25.4 1.4 0.03

,/

This Certifies that CPP, Inc. employee Anke Beyer-Lout has appropriate education, training and experience for the position of Project Engineer.

He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

__._date:

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Adrian M. Manzanares has appropriate training and experience totaling at least six months (or equivalent) for the position of Model Design/Drafting Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

~

.t date:

Iez-21.//3 Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Aaron A. Fresquez has appropriate training and experience totaling at least six months (or equivalent) for the position of Model Design/Drafting Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

date:

/ / /?

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Kurt Fleckenstein has appropriate training and experience totaling at least six months (or equivalent) for the position of Laboratory Operations Manager. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

date:

4_

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Tom Lawton has appropriate training and experience totaling at least six months (or equivalent) for the position of Senior Systems Engineer. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

_date:

le ________-

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Greg Gross has appropriate training and experience totaling at least six months (or equivalent) for the position of Systems Engineer. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

____date:

  • ,=?/

//.i Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Alex Steingrube has appropriate training and experience totaling at least six months (or equivalent) for the position of Senior Engineering Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

'Iý

/

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated date:

ii_1

//i_?

This Certifies that CPP, Inc. employee Tim VanZant has appropriate training and experience totaling at least six months (or equivalent) for the position of Data Acquisition Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

)L Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated date:?V.///_P I

I

This Certifies that CPP, Inc. employee Bryan Dorcheus has appropriate training and experience totaling at least six months (or equivalent) for the position of Data Acquisition Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

/i date:

9___._,_2 Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Thomas Boettcher Jr.

has appropriate training and experience totaling at least six months (or equivalent) for the position of Data Acquisition Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

IV date:

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee Brian M. Moon has appropriate training and experience totaling at least six months (or equivalent) for the position of Model Construction Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

9 z

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated date:

£--z'v / Z13

This Certifies that CPP, Inc. employee William J. Buehler has appropriate training and experience totaling at least six months (or equivalent) for the position of Model Construction Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

_,.e_4__

date:

,/'.2/

/ 3 Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

This Certifies that CPP, Inc. employee William R. Schultz III has appropriate training and experience totaling at least six months (or equivalent) for the position of Model Construction Technician. He is qualified to perform the duties of the above position for the wind tunnel study of LaSalle County Station Winds CPP Project Number:

7255 Client:

LaSalle County Station by:

date:

g/.2,Z/Z'/"-

Ronald L. Petersen, Ph.D., CCM Vice President CPP, Incorporated

Engineering calculation QA to check Spreadsheet '7255_hourlycaicsResults_all.xlsx' Raw meteorological data from the tower:

33WS

- 33Ft Wind Speed (MPH) 33WD

- 33Ft Wind Direction (deg) 33Ta

- 33Ft Temperature (F) 200WS

- 200Ft Wind Speed (MPH) 200WD

- 200Ft Wind Direction (deg) 200DT

- 200Ft-33Ft Delta-T (F) 375WS

- 375Ft Wind Speed (MPH) 375WD

- 375Ft Wind Direction (deg) 375DT

- 375Ft-33Ft Delta-T (F) 6/1/1995 1:00 3.5 114 65.5 12.3 147 3.8 14 149 4.8 Calculate temperature from delta-T, convert to Celsius and convert wind speed to m/s:

-3 S

3 W

ý3T--

20 WS -

-20 WD

- 20I~

W 3-W

-3 7S 6/1/1995 1:00 1.56 114 18.61 5.50 147 20.72 6.26 149 23.39 Fitting the three wind speeds at the meteorological tower results in a power law exponent of n=0.5475.

Based on the wind tunnel tests, for a wind direction of 1490 the wind speed ratio (WSR) is 0.56 and the surface roughness length (zo) is 0.02m.

The Bulk Richardson number Rb is computed as follows:

R h - z,.ef g ((T 4 - T.,,,) + Ydz,.f)

T.19 U42 Zref=123.1m g=9.81m/s 2

Tavg=(18.61°C+20.72°C+23.39°C)/3=20.91°C=294.06K (Agrees with values in spreadsheet)

Twater=100F=37.78°C=310.93K (Agrees with values in spreadsheet)

T4=23.39°C=296.54K Page 1 of 4

Engineering calculation QA to check Spreadsheet '7255_hourlycaicsResults_aIl.xlsx' U4=6.26m/s Yd=9.8 K/km=0.0098K/m 123.1 *9.81 ((296.54-310.93) + 0.0098* 123.1)

Rb =

2406.62=

_-1.382 (Agrees with values in spreadsheet) 294.06 6.262 The Richardson Number Ri is calculated from the Bulk Richardson Number Rb Ri-

-*-b Ri = -1.382

= -4.61 (Agrees with values in spreadsheet) n 20.54752 The Monin-Obukhov Length Scale (L) is calculated ref 123.1 Ri-z

-- L =-z L =

= -26.7 m

L RI

-4.61 The wind speed stability ratio, WSSR (tL) is the ratio of wind speed under unstable conditions to that under neutral stability WSSR(t, L)=UO(t, L)/UO(t,L=Neutral)

U (t,L), is computed as follows: UO(t, L) = *- [ln(z / zo) - y/ m (z / L) + V. (z,, L)]

k wit(zIL)

=

2In

-2 arctan(po) + 7r/ 2 22)"

,u=(116z / L)'I4 and /uO =(1-16z, L)"4 First u* is calculated for z=zrefl12 3.1m

=*

U4*k u*=i~ /oz /(

L

, z / L)]

Page 2 of 4

Engineering calculation QA to check Spreadsheet '7255_hourlycaicsResults_all.xlsx'

,ut =(1-16"*123.1/(-26.7))"'4 = 2.94 p-, = (I -16*0.02/(-26.76))'14

= 1.003 y/,,(z/L) = 2In11+2.94)+ In1+2.94 2

)-2arctan(2.94) + 7r/ 2 =2.014 S(z,, /.L) = 2 In 1+1.003

+ hi1+1.003 2 arctan(1.003) + 7r / 2 = 0.003 2

2 6.26*0.4

-037 u*= [ln(123.14/0.02) - 2.014+ 0.003]

(Agrees with values in spreadsheet)

Then, UO (tL), is computed for z=2m

=(1,6*/(*.,6

=1218 y/, (z /L) = 2hi1+1.218 + In 1+ 1.218 2 arctan(1.218) + c /2=0.228 2

2 UO(t, L) = 0--[in(2/0.02) -0.228 + 0.003)] = 4.1 (Agrees with values in spreadsheet) 0.4 UO (tL=neutral), is computed as follows UO(t,L = Neutral) = -ln(z / z) k With u*-

[n/o and z=zref=123.14m

[1n(z / z.2)]

6.26 *0.4

-0.287 (Agrees with values in spreadsheet)

[ln(1 23.14/0.02)]-

Page 3 of 4

Engineering calculation QA to check Spreadsheet '7255_hourlycalcsResultsall.xlsx' UO(t,L = Neutral) 0.2871n(2/0.02) = 3.3 0.4 WSSR(t,L)=4.1/3.3=1.24 Finally:

UO(t,stability) = 0.56

  • 6.26
  • 1.24 = 4.3 m/s (Agrees with values in spreadsheet)

Page 4 of 4

Q~a~ibraThi Qrfiffiratie Technician: sh Part No: 267100 WD2EG2HD Model:

267 I

Serial No:5187189 Work Order:24050552 Date:08/06/2012 Range:0 to 1 IN WC Nom.Output:0.05 to 10.05 VDC Supply: 24 VDC CALIBRATION DATA APPLIED PRESSURE (IN WC)

TRANSDUCER OUTPUT (VDC)

NONLINEARITY ERRORS

(% FS)

EXTRAPOLATED ERRORS

(% FS)

Zero -0.052 Span 0.002 0.0093 0.1098 0.2027 0.3035 0,4035 0.5060 0.6198 0.7073 0.8058 0.9021 1.0022 0.1374

1. 1379 2.0660 3.0772 4.0788 5.1013 6.2395 7.1115 8.0975 9.0550 10.0665 0.057 0.010 0.004 0.033 0.048 0.021 0.021

-0.006 0.000

-0.057 0.057 SPECIFICATIONS

1. Nonlinearity:

+/- 0.5 %FS, BEST FIT STRAIGHT LINE method, ISA.AS-37.1

2.

Zero pressure output:

0.05 VDC +/-

1 %FS

3.

Full Scale output:

10 VDC +/-

1 %FS

4.

This unit meets the specifications defined above.

NOTES

1. All errors are expressed as: Percent Full-Scale output.
2.

Consult specification sheet for additional specifications.

3.

This calibration is certified per N.I.S.T. traceable primary standards.

NIST# Rpt#1500129433 Transfer standard: 239SPD16.24, Location of cal.:

PCZD02

4. This part uses spec. record number: 2671001WD2EG2HD.I
5.

This certificate cannot be reproduced except in full, without the writtei approval of Setra Systems, Inc.

159 Swanson Road, Boxborough, MA 01719/Telephone 1-800-257-3872, (978) 263-1400 SS0513-2 Rev. 1/99

Hot-film Anemometer Calibration Checks Date Tie HtFl Uloa U/

So of ~

~~~

Mesrmn Nu br Ho-imSi Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul30 Tue Jul30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Tue Jul 30 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 7:19 PM 7:20 PM 7:20 PM 7:45 PM 7:46 PM 7:46 PM 8:08 PM 8:08 PM 8:09 PM 9:06 PM 9:07 PM 9:07 PM 9:39 PM 9:40 PM 9:41 PM 10:03 PM 10:03 PM 10:04 PM 10:25 PM 10:25 PM 10:26 PM 10:45 PM 10:45 PM 10:46 PM 11:14 PM 11:15 PM 11:16 PM 11:37 PM 11:37 PM 11:38 PM 11:59 PM 12:00 AM 12:00 AM 12:21 AM 12:22 AM 12:23 AM 12:43 AM 12:44 AM 12:45 AM 1:06 AM 1:07 AM 1:07 AM 1:28 AM 1:29 AM 1:29 AM 1:49 AM 1:49 AM 10.1944 10.2494 10.4305 10.3108 10.3238 10.2872 10.3096 10.3352 10.2936 10.3705 10.5027 10.4067 10.3544 10.3614 10.4509 10.4119 10.4409 10.3613 10.336 10.4536 10.3873 10.4227 10.4759 10.5057 10.4552 10.4295 10.532 10.5167 10.5222 10.4356 10.5072 10.5617 10.5147 10.4629 10.568 10.4706 10.4377 10.5272 10.5086 10.466 10.6595 10.4805 10.4772 10.572 10.5277 10.5217 10.5594 9.982 10.0405 10.1959 10.0608 10.076 10.1054 10.0499 10.063 10.0881 10.0677 10.1672 10.15 10.0305 10.0339 10.1628 10.0342 10.0473 10.0805 9.9816 10.0728 10.1002 10.0486 10.0933 10.1867 10.0656 10.0339 10.2043 10.1198 10.1119 10.143 10.0893 10.1168 10.1717 10.0743 10.1424 10.1476 10.0356 10.1252 10.1884 10.0544 10.2152 10.1468 10.0811 10.1672 10.188 10.115 10.1453 1.0213 1.0208 1.0187 1.0248 1.0246 1.0183 1.0258 1.027 1.0228 1.0301 1.033 1.0254 1.0323 1.0326 1.0299 1.0376 1.0392 1.0275 1.0355 1.0378 1.03 1.0372 1.0379 1.0318 1.0387 1.0394 1.0341 1.0392 1.0406 1.0321 1.0414 1.044 1.0358 1.0386 1.042 1.0326 1.0401 1.0397 1.0331 1.0409 1.0435 1.0354 1.0393 1.0398 1.0347 1.0402 1.0408 Page 1 of 5

Hot-film Anemometer Calibration Checks Dat Tim Ho-Fl U

UlclUUo of.

Meaureen Nube HotFil

  • s i

Meaureen Comne Us ms Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Wed Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 1:50AM 2:06 AM 2:07 AM 2:08 AM 10:11 AM 10:12 AM 10:13 AM 10:33 AM 10:34 AM 10:35 AM 11:21 AM 11:21 AM 11:22 AM 11:42 AM 11:42 AM 11:43 AM 12:04 PM 12:04 PM 12:05 PM 12:26 PM 12:26 PM 12:27 PM 12:47 PM 12:48 PM 12:49 PM 1:09 PM 1:10 PM 1:10 PM 1:30 PM 1:31 PM 1:31 PM 1:47 PM 1:48 PM 1:49 PM 2:04 PM 2:05 PM 2:06 PM 2:26 PM 2:27 PM 2:28 PM 2:48 PM 2:49 PM 2:50 PM 3:10 PM 3:11 PM 3:11 PM 3:32 PM 10.4622 10.4337 10.5903 10.4492 10.1167 10.2272 10.3112 10.2973 10.3781 10.3597 9.866 9.8984 10.126 9.9902 9.9981 10.136 9.9523 9.9549 10.1539 10.0271 10.0393 10.1937 9.8256 9.9147 10.0112 9.9384 9.9583 10.1774 10.0155 10.0145 10.1904 9.9451 9.9079 10.1838 10.0237 10.0178 10.1393 10.0327 9.9843 10.2476 10.0083 10.1577 10.2571 10.105 10.01 10.2283 9.9871 10.1414 10.0429 10.1786 10.1406 9.8252 9.8543 9.9963 9.9176 9.9357 10.0049 9.8023 9.8575 10.0428 9.8966 9.9151 10.0475 9.8504 9.8632 10.0356 9.8602 9.8664 10.0369 9.7355 9.8121 9.93 9.7894 9.8395 10.0423 9.8747 9.883 10.052 9.8216 9.8064 10.0663 9.8973 9.8847 10.0231 9.884 9.8495 10.113 9.8504 10.0026 10.1071 9.9533 9.8758 10.0877 9.8699 1.0333 1.0389 1.0404 1.0319 1.0297 1.0378 1.0332 1.0383 1.0445 1.0453 1.0065 1.0041 1.0077 1.0095 1.0084 1.0098 1.0103 1.0093 1.0106 1.0169 1.0175 1.0158 1.0093 1.0105 1.0139 1.0152 1.0121 1.019 1.0143 1.0133 1.0142 1.0126 1.0104 1.0134 1.0128 1.0135 1.0104 1.015 1.0137 1.0129 1.016 1.0155 1.0112 1.0152 1.0136 1.015 1.0119 Page 2 of 5

Hot-film Anemometer Calibration Checks Dat Tim Ho-Fl S.

UlclUUo of Mesrmn Numbe Hot-Film

a.

a Measurement Comned(/S ms Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Wed Jul 31 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 Thu Aug 01 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 3:32 PM 3:33 PM 3:54 PM 3:54 PM 3:55 PM 4:14 PM 4:15 PM 4:16 PM 4:32 PM 4:33 PM 4:34 PM 4:57 PM 4:58 PM 4:59 PM 5:05 PM 5:06 PM 5:06 PM 5:49 PM 5:50 PM 5:51 PM 9:08 PM 9:09 PM 9:10 PM 9:15 PM 9:15 PM 9:16 PM 10:06 PM 10:07 PM 10:08 PM 10:59 PM 11:00 PM 11:00 PM 11:51 PM 11:52 PM 11:53 PM 12:45 AM 12:45 AM 12:46 AM 1:37 AM 1:38 AM 1:39 AM 6:52 AM 6:52 AM 6:53 AM 7:45 AM 7:45 AM 7:46 AM 10.0016 10.307 10.0964 10.0714 10.216 10.0642 10.0061 10.2837 10.0359 10.1029 10.0636 9.926 10.0243 10.1157 9.8889 9.9487 10.0351 9.9726 9.9811 10.0656 9.8099 9.8195 9.7787 9.7196 9.8468 9.9157 9.8997 9.9201 10.1315 10.0148 10.0285 10.161 10.0884 10.0464 10.1247 10.0137 9.9637 10.128 9.9316 10.0306 10.1715 9.8488 9.7226 9.9586 9.834 9.7893 10.0385 9.8993 10.1841 9.9528 9.9461 10.1082 9.929 9.9035 10.1543 9.9212 10.0069 9.9819 9.8897 9.972 10.1088 9.8484 9.8854 10.0306 9.8673 9.8936 10.0031 9.8756 9.9378 9.9024 9.7933 9.9353 10.0048 9.7746 9.8399 10.0231 9.897 9.9286 10.0675 9.9283 9.9175 9.9991 9.8616 9.868 10.0088 9.7994 9.9016 10.0253 9.8941 9.8285 10.0119 9.8055 9.8014 10.0024 1.0103 1.0091 1.0144 1.0126 1.0094 1.0136 1,0104 1.0112 1.0116 1.0096 1.0109 1.0037 1.0052 1.0071 1.0041 1.0064 1.0044 1.0107 1.0088 1.0118 0.9933 0.9881 0.9956 0.9925 0.9911 0.9985 1.0128 1.0082 1.0142 1.0119 1.0101 1.0104 1.0161 1.013 1.0173 1.0154 1.0097 1.0137 1.0135 1.013 1.018 0.9954 0.9892 0.9945 1.0029 0.9988 1.0078 Page 3 of 5

Hot-film Anemometer Calibration Checks Dat Tim Ho-Fl U

Scl UUo Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Thu Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 Aug 01 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 8:37 AM 8:38 AM 8:38 AM 9:33 AM 9:34 AM 9:34 AM 10:25 AM 10:25 AM 10:26 AM 11:17 AM 11:18 AM 11:18 AM 12:09 PM 12:10 PM 12:11 PM 1:01 PM 1:02 PM 1:03 PM 1:55 PM 1:56 PM 1:57 PM 2:47 PM 2:48 PM 2:49 PM 3:40 PM 3:40 PM 3:41 PM 4:19 PM 4:20 PM 4:21 PM 5:11 PM 5:11 PM 5:12 PM 6:03 PM 6:03 PM 6:04 PM 6:55 PM 6:56 PM 6:56 PM 7:47 PM 7:48 PM 7:49 PM 8:39 PM 8:40 PM 8:41 PM 9:32 PM 9:32 PM 9.9058 9.8472 10.1113 9.8763 9.8653 10.179 9.8552 9.8896 10.0987 9.9382 9.9614 10.1607 9.8816 9.9757 10.1295 9.8809 9.9336 10.1308 9.9908 9.8831 10.0892 9.893 9.8834 10.0697 9.8666 9.9696 10.0956 9.8518 9.971 10.0705 9.7913 10.0203 10.0474 10.0055 9.9869 10.0888 9.9198 10.0119 10.0803 9.8775 9.9742 10.0882 9.8758 10.0316 9.9929 9.9259 10.0958 9.8673 9.8399 10.036 9.7678 9.783 10.0499 9.7536 9.8107 9.9998 9.8328 9.8867 10.0582 9.7948 9.9192 10.0231 9.8194 9.8834 10.0721 9.8903 9.8205 9.9896 9.8228 9.8464 9.9975 9.7863 9.9226 10.0371 9.9787 10.0661 10.119 9.8979 10.0794 10.0949 10.0825 10.0344 10.0995 10.005 10.0577 10.0749 10.0027 10.0713 10.1259 9.9883 10.0831 10.0579 9.9864 10.1187 1.0039 1.0007 1.0074 1.0111 1.0084 1.0069 1,0104 1.008 1.0081 1.0107 1.0076 1.0084 1.0089 1.0057 1.0074 1.0063 1.0051 1.0023 1.0102 1.0064 1.0154 1.0071 1.0038 1.0099 1.0082 1.0047 1.0128 0.9873 0.9906 0.9839 0.9892 0.9941 0.9856 0.9924 0.9953 0.9874 0.9915 0.9954 0.9875 0.9875 0.9904 0.9822 0.9887 0.9949 0.9831 0.9939 0.9977 Page 4 of 5

Hot-film Anemometer Calibration Checks Dat-Tim Ho-Fl U

Ulcl UUo of Meaureen NubrHtFl U

Thu Aug 01 2013 9:33 PM 1

10.059 10.05 0.9899 Thu Aug 01 2013 10:23 PM 3

10.0273 10.0849 0.9943 Thu Aug 01 2013 10:24 PM 2

9.9624 9.9938 0.9969 Thu Aug 01 2013 10:25 PM 1

10.0422 10.0262 0.9892 Thu Aug 01 2013 11:15 PM 3

9.9246 9.9574 0.9967 Thu Aug 01 2013 11:16 PM 2

10.0676 10.0446 1.0023 Thu Aug 01 2013 11:17 PM 1

10.1315 10.0825 0,9905 Fri Aug 02 2013 12:07 AM 3

9.8759 9.9555 0.992 Fri Aug 02 2013 12:08 AM 2

10.0068 10.02 0.9987 Fri Aug 02 2013 12:08 AM 1

10.0997 10.0913 0.9881 Fri Aug 02 2013 12:59 AM 3

9.9456 10.0137 0.9932 Fri Aug 02 2013 1:00 AM 2

10.0062 10.0438 0.9963 Fri Aug 02 2013 1:00 AM 1

10.0888 10.0757 0.9883 Fri Aug 02 2013 7:20 AM 3

9.7187 9.9456 0.9772 Fri Aug 02 2013 7:20 AM 2

9.8398 9.9912 0.9848 Fri Aug 02 2013 7:21 AM 1

9.9349 10.0305 0.9749 Fri Aug 02 2013 8:12 AM 3

9.8436 9.9767 0.9867 Fri Aug 02 2013 8:12 AM 2

9.9239 9.9934 0.993 Fri Aug 02 2013 8:13 AM 1

9.9747 10.0027 0.9821 Fri Aug 02 2013 9:03 AM 3

9.7979 9.8595 0.9938 Fri Aug 02 2013 9:04 AM 2

9.9927 9.996 0.9997 Fri Aug 02 2013 9:04 AM 1

10.0143 9.984 0.9884 Fri Aug 02 2013 9:55 AM 3

9.9599 9.9896 0.997 Fri Aug 02 2013 9:55 AM 2

10.024 10.0131 1.0011 Fri Aug 02 2013 9:56 AM 1

10.0763 10.0179 0.9927 Fri Aug 02 2013 10:46 AM 3

9.9453 9.9511 0.9994 Fri Aug 02 2013 10:47 AM 2

9.9684 9.9384 1.003 Fri Aug 02 2013 10:48 AM 1

10.0417 9.9587 0.9941 Fri Aug 02 2013 11:38 AM 3

9.996 10.0132 0.9983 Fri Aug 02 2013 11:39 AM 2

9.98 9.9492 1.0031 Fri Aug 02 2013 11:39 AM 1

10.094 10.0454 0.9934 Page 5 of 5

APPENDIX C PLOTS OF MEASURED DATA AND LOG LAW FIT

C-2 CPP Project 7.

Point 1; 0 deg Point 1; 22.5 deg Point 1; 45 deg Point 1; 67.5 deg 150 150 150 150 100 10 100 100[

N50 N50 50 50 0

01 0

01 0

0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

UAJpftot (m/s)

U/U.pitot (m/s)

UIUpitot (m/s)

UAJpilot (m/s)

Point 1; 90 deg Point 1; 112.5 deg Point 1; 135 deg Point 1; 157.5 deg 150 150 150 150 10100 100 N

N N

N N 50 50

/

50 50 0

0 0 1 0.6 0.8 1

0 0.5 1

0 0.5 1

0 0.5 1

Ulupitot (m/s)

UiUpitot (m/s)

UAJpitot (m/s)

UiUpltot (m/s)

Point 1; 180 deg Point 1; 202.5 deg Point 1; 225 deg Point 1; 247.5 deg 150 150 150 150 100 100 100 100 50 50 50 50 0

0l

-114 0.-

0ý 0

0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

UiUphtot (m/s)

U/Upltot (m/s)

U/Upitot (m/s)

UiJpitot (m/s)

Point 1; 270 deg Point 1; 292.5 deg Point 1; 315 deg Point 1; 337.5 deg 150 150 150 150 100 100 f

1 0 0 100 50 50 50 N50

/

0 0.5 1

0 0.5 0

0.5 1

0 0.5 1

UAJpUtot (mA)

UAJpitot (m/s)

UiUpitot (m/s)

UAJpitot (m/s) 255 Figure 1

C-3 CPP Project 7255 Point 2; 0 deg 150 100 J

50 Point 2; 22.5 deg Point 2; 45 deg 150 100 f

150, T

.4 'Af' N

N E

N E

N 50 0

0.5 1

UA.pltot (m/s)

Point 2; 90 deg 150 100 0

0 0

0.5 1

UAJpitot (m/s)

Point 2; 112.5 deg 150F I Vu E

50

/

00 0.5 1

U/Uplot (mis)

Point 2; 135 deg 150 100 50 0

0 0.5 1

UAJpitot (m/s)

Point 2; 225 deg 150 4

Point 2; 67.5 deg 150 100 50/

010.6 0.8 1

UAJpitot (m/s)

Point 2; 157.5 deg 150 100T 50 00 0.5 1

U/Upitot (m/s)

Point 2; 247.5 deg 150 i

100 N

E N

=.,

50 rn E

N E

N 0 0.6 0.8 1

UAJpitot (m/s)

Point 2; 180 deg 150 100 N

50 0

0 0.5 1

U/Upftot (m/s)

Point 2; 270 deg 150 9

100 100 1001 0 0.6 0.8 1

UAJpitot (m/s)

Point 2; 202.5 deg 150 I

,A E

N E

N 50 50 501 00 0.5 1

U/Upltot (m/s)

Point 2; 292.5 deg 150 100 50

/

0.0 0.5 1

U/Upltot (m/s) 0 0

0.5 1

U/Upitot (m/s) 0 0

0.5 1

UiUpfiot (m/s)

Point 2; 315 deg Point 2; 337.5 deg

.4 *t 100 N

50 150 100 7

50 00 0.5 1

UAJpitot (m/s)

E N

I1J 10 I50 0>

0 0.5 1

UAJpitot (m/s) 0l LýL 0

0.5 1

U/Upltot (m/s)

Figure 2 U

C-4 CPP Project 7255 E

N E

N g

a Point 3; 0 deg 150 100 E

50 02 0

0.5 1

UAJpitot (m/s)

Point 3; 90 deg 150 100 50 0 0.6 0.8 1

UAJpitot (m/s)

Point 3; 180 deg 150 150 Point 3; 22.5 deg Point 3; 45 deg 100 E

N 50 "IO 100 N

50 0'

0 0.5 1

U/Upltot (m/s)

Point 3; 135 deg 150[

Point 3; 67.5 deg 150 100 J 50 01 1'*

0 0.5 1

UiUpltot (m/s)

Point 3; 112.5 deg 150 1

T 100 50 100 E

N 0

0.6 0.8 1

UAJpltot (m/s)

Point 3; 202.5 deg 150 1

E 50 00 0.5 1

UAJpltot (m/s)

Point 3; 225 deg 00 01 J

0 0.5 1

UAJpltot (m/s)

Point 3; 157.5 deg 150 100 50 00 0.5 1

UAJpltot (m/s)

Point 3; 247.5 deg

150, 100 0

0.5 1

r 100l E

N 50 0

50 0

0.5 1

UAJptot (m/s)

Point 3; 292.5 deg

150, I Z)u 100 S-E 50 0

0 0.5 1

UAJpftot (m/s)

Point 3; 315 deg 150

,I 50 00 0.5 1

UAJpitot (m/s)

Point 3; 337.5 deg 150 100 50 f

100 150 100 E

N 100 50 j1 N

50 100 50 0

E N

01 L

J 0

0.5 1

UAJpftot (m/s) 01 l

0 0.5 1

U/Upltot (m/s) 0 0.5 1

UAJpitot (m/s) 0 0.5 1

UMUpHot (m/s)

Figure 3 UI

C-5 CPP Project 7255 E

N Point 4; 0 deg 150 100 50 0.

0 0.5 1

UAJpltot (m/s)

Point 4; 90 deg 150 1

Point 4; 22.5 deg 150 Point 4; 45 deg 150r E

N 100 50 100 Point 4; 67.5 deg

150, 100 N

E N

50 50 0

3 0

0.5 1

U/Upitot (m/s)

Point 4; 112.5 deg 150 r, 100 r

I

/

00 0.5 1

UAJpftot (m/s)

Point 4; 135 deg 150 100 i~I 50 010 0.5 1

U/Upftot (m/s) 0 0.6 0.8 1

UJUptot (m/s)

Point 4; 157.5 deg 150 100 7

100 N

50 0

0.6 0.8 1

UAJpltot (m/s)

Point 4; 180 deg 150 IO N

50 0

0.5 1

Uiupftot (m/s)

Point 4; 202.5 deg 150 100 N

50 0

0 0.5 1

UlUptot (mis)

Point 4; 292.5 deg 150 i

I 50 l

010 0.5 UAJpitot (m/s)

Point 4; 225 deg Point 4; 247.5 deg 150 r

150, P

100 i nn II N

N 50 N

50 0

0 0.5 1

U/upftot (m/s)

Point 4; 315 deg 100 50 0

IJ 0

0.5 1

UiUpItot (m/s)

Point 4; 270 deg 150 100 E

N N

501 100 50 0

E N

150 100 50 i.

/

E N

0 0.6 0.8 1

UAJpftot (m/s)

Point 4; 337.5 deg 150 100

/

50

/

0 0.6 0.8 1

UAJpitot (m/s) 0.6 0.8 1

00 0.5 UlUpltot (m/s) 010 0.5 1

UAJpftot (m/s)

U/Upitot (m/s)

Figure 4

C-6 CPP Project 7255 Point 5; 0 deg Point 5; 22.5 deg Point 5; 45 deg

150, 1
150, Point 5; 67.5 deg E

E N

100 50 001 0

0.5 1

UAJpItot (m/s)

Point 5; 90 deg 150 100 100 100 150 100 E

N N

F 50O 0

2 0

0.5 1

U.Jpitot (m/s)

Point 5; 112.5 deg 150 i

50 0.0 0.5 1

U/Lpitot (m/s)

Point 5; 135 deg 150 0.6 0.8 1

UMpitot (m/s)

Point 5; 157.5 deg 150 50 100 E

N I

E 100 50 F

r 100 N

50 I

0.6 0.8 1

UAUpitot (m/s)

Point 5; 180 deg N

N 100--

E N

50 00 0.5 1

U.Jpitot (m/s)

Point 5; 270 deg 150

-inn N

50 0.6 0.8 1

UiUpitot (m/s)

Point 5; 202.5 deg 150 100 N

50 00 0.5 1

UAUpitot (m/s)

Point 5; 292.5 deg 150 100 N

0

  • 2b 0

0.5 1

UAJpitot (m/s)

Point 5; 225 deg 150 9

100 50

/

010 0.5 1

U/Upitot (m/s)

Point 5; 315 deg

150, 00 0.5 1

UAJpItot (m/s)

Point 5; 247.5 deg 150 100 50 50 0.6 0.8 1 UAJpiltot (m/s)

Point 5; 337.5 deg 150 I VV /

N 50 0 0.6 0.8 1

U/Uptot (m/s) 50 0

i 100 50 0

)

3 E

N 0.6 0.8 1

UAJpitot (m/s) 0 0.5 1

U/Upitot (m/s) 00 0.5 1

UAJpltot (m/s) 100 50 I

Figure 5 I

C-7 CPP Project 7255 E

N Point 6; 0 deg 150 100 1f 50 00 0.5 1

UAJpdtot (m/s)

Point 6; 90 deg 150 P

100 1

Point 6; 22.5 deg 150 100 T

Point 6; 45 deg 150 150 1001 E

M E

I/

Point 6; 67.5 deg 100

/

N 50 501 50 00 0.5 1

UAJpltot (m/s)

Point 6; 112.5 deg 150 0 1 0

0.5 1

U/Upltot (m/s)

Point 6; 135 deg

150, 0

0 0.5 1

UJUpitot (m/s)

Point 6; 157.5 deg 150 N

N 100 50 1001 100 E

S N

50 501 50 0

0.6 0.8 1

UAJpitot (m/s)

Point 6; 180 deg 150 r,1 I

Inn E

N 50 00 0.5 1

UlUpitot (m/s)

Point 6; 270 deg

150, 1

d 0 0.6 0.8 1

UJUpitot (m/s)

Point 6; 202.5 deg 150 100 50 00 0.5 1

UlUpltot (mis)

Point 6; 292.5 deg 15011 0 1 0

0.5 1

UJpitol (m/s)

Point 6; 225 deg 150 100 50

/

00 0.5 1

U/Upitot (m/s)

Point 6; 315 deg

==

=.,

100 50 00 0.5 1

UAJpftot (m/s)

Point 6; 247.5 deg

150, 0>0.6 0.8 1

UAJpftot (m/s)

Point 6; 337.5 deg

.4 r~'

100 50 100 I0 lO E

N E

N 50 30 oo I 00 0.5 1

U/Upitot (m/s) 100 E

150, 501 01 or-i 0

0.5 1

UiUpttot (m/s) 00 0.5 1

U/Upftot (m/s) 00 0.5 1

UJUpitot (m/s)

Figure 6

C-8 CPP Project 7255 E

N Point 7; 0 deg 150 100 50

/

01

<4 0

0.5 1

UAJpitot (m/s)

Point 7; 90 deg 150 N

a Ij 50 N

50

/

50 0

0.5 1

0 0.5 1

U/Upltot (m/s)

U/Upitot (m/s)

Point 7; 112.5 deg Point 7; 135 deg

150, 150, 100 50 I Point 7; 22.5 deg Point 7; 45 deg Point 7; 67.5 deg R t*'t'=.

,~4EF.*

I I

U 0

0.5 1

UAJpdtot (m/s)

Point 7; 157.5 deg 150 100 NI I

1001 I.

I 100 100 E

N 50 50 L 50 50 0

0 0

0 0.6 0.8 1

0 0.5 1

0 0.5 1

0 0.5 1

UiUpltot (m/s)

U/Upltot (m/s)

UAJpltot (m/s)

UAJpltot (m/s)

Point 7; 180 deg Point 7; 202.5 deg Point 7; 225 deg Point 7; 247.5 deg 150 150 150 150 100 10 100 100 N50/

/

N 50 5

50 0

0 0'

0 0

0.5 1

0 0.5 1

0 0.5 1

0.6 0.8 1

UAJpltot (m/s)

UAJpltot (m/s)

UJUpitot (mts)

UAJpitot (m/s)

Point 7; 270 deg Point 7; 292.5 deg Point 7; 315 deg Point 7; 337.5 deg 150 150 150[ 1 150 [

100

[

100 100 100 E

N 50 E

N E

N 50 I

0o0.6 0.8 1

UAJpitot (m/s) 0.6 0.8 1

UAJpitot (m/s) 00 0

0.5 1

UAJpitot (m/s)

E N

0 4

0 0.5 U)Upitot (m/s) 50 Figure 7

C-9 CPP Project 7255 E

N Point 8; 0 deg 150 100 J

50

/

00 0.5 1

UAJpitot (m/s)

Point 8; 90 deg 150 100

=

A.

Point 8; 22.5 deg Point 8; 45 deg 150 100 50 I

150 1001 I

N Point 8; 67.5 deg 150 E

N 100 501 50 E

N

'J'J 010 0.5 1

U/Upltot (m/s)

Point 8; 112.5 deg 150 100 J

E

/

N 50

/

0.6 0.8 1

UiUpitot (m/s)

Point 8; 202.5 deg 150 100 E

=;n

/.N 150-f 100 100 01 l

0 0.5 1

UIUpftot (m/s)

Point 8; 135 deg 0 1 0.6 0.8 1

UiUpftot (m/s)

Point 8; 180 deg 150 50 0

0 0.5 1

U/UpitoI (m/s)

Point 8; 225 deg

=.,

4 0.6 0.8 1

UAJpftot (m/s)

Point 8; 157.5 deg 150I 00 0

0.5 1

UAJpitot (m/s)

Point 8; 247.5 deg 150 50

150, 100 100 E

N N

/

E PN

~100I 50 50 0

0 0.5 1

UAJpitot (m/s)

Point 8; 270 deg 150 100 50 0 0.6 0.8 1

UAJpltot (m/s) 00 0.5 1

UJUpitot (m/s)

Point 8; 292.5 deg 150 100 I

N 0 0.6 0.8 1

U~pitot (m/s)

Point 8; 315 deg

150, 50 0>0.6 0.8 1

UAJpftot (m/s)

Point 8; 337.5 deg 150 1

100 50 100 N

50 50 0 0.6 0.8 1

UAUpitot (m/s) 0 A,-

0 0.5 1

U/Upltot (m/s) 0 1 k6 0

0.5 UiUpftot (m/s)

Figure 8 U

C-IO CPP Project 7255 N

N NN Point 9; 0 deg 150 100 50 00 0.5 1

UAJpitot (m/s)

Point 9; 90 deg 150 150 1

Point 9; 22.5 deg 1001 E

N

/

Point 9; 45 deg 150 E

N 100 50 E

N 501 Point 9; 67.5 deg 150 100 J

50

/

0 0

0.5 1

UApItot (nms)

Point 9; 157.5 deg 150 010 0.5 1

UAJpitot (m/s)

Point 9; 112.5 deg 15011 010 0.5 1

UiUpftot (m/s)

Point 9; 135 deg 100 50

/

0 0.6 0.8 1

UAJp"tot (MIS)

Point 9; 180 deg 1001

.?

.z E=

I,JV 100 E

N 50 0

0 0.5 UAJpitot (m/s)

Point 9; 270 deg 150 100 1

S N

50 0

0.6 0.8 1

UiUpltot (m/s)

Point 9; 202.5 deg 150 100 N

50 00 0.5 1

U/Updtot (m/s)

Point 9; 292.5 deg 150 100 E

I Jv 100 50 0

0 0.5 1

UAJpItot (m/s)

Point 9; 225 deg 150 r]

01 0

0.5 1

UftJpltot (m/s)

Point 9; 247.5 deg 150 100 50 n

100 50 IlJll 50 0

0 0.5 1

U/Upltot (m/S)

Point 9; 315 deg 150 0.6 0.8 1

UAJpftot (m/s)

Point 9; 337.5 deg 150 r--

N 100 E

N 100

/

50 0 0.6 0.8 1

U/Upftot (m/s) 50

/

N I

00 0.5 1

U/Upitot (mIs) 0 0

0 0.5 1

.5 0

0 0.5 1

UJupltot (m/s)

UAJpltot (m/s)

Figure 9

C-11 CPP Project 7255 Point 10; 0 deg 150 100 E

50 0

0.5 1

UJUpltot (m/s)

Point 10; 90 deg 150 100 Point 10; 22.5 deg

150, Point 10; 45 deg 150 100 T

1001 E

,,4 d

N E

N 501 01 3

0 0.5 1

UiUpItot (m/s)

Point 10; 112.5 deg 150 50 00 0.5 1

UAJpftot (m/s)

Point 10; 135 deg 9

100o

=l t

N 50 0

0.6 0.8 1

UAJpitot (m/s)

Point 10; 180 deg 150 100 501 150 100 50 01 0

0.5 1

UIUpitot (m/s)

Point 10; 225 deg Point 10; 67.5 deg 150 100 50 0 0.6 0.8 1

UAJpfiot (m/s)

Point 10; 157.5 deg 150 100 50 010 0.5 1

UAJpitot (m/s)

Point 10; 247.5 deg 150 100 50 0

0 0.5 1

UiUpItot (m/s)

Point 10; 337.5 deg 0

0.5 1

UAJpdtot (m/s)

Point 10; 202.5 deg 150 100 E

50 00 0.5 1

UJUpltot (m/s)

Point 10; 292.5 deg 150 T

100 150 I

E 50 00 0.5 1

UALJpltot (m/s)

Point 10; 270 deg 150 N

50 00 0.5 1

UAJpitot (m/s)

Point 10; 315 deg 150 150 1

I 100 10 50 0

0.5 1

UiUpitot (m/s)

E N

I 0 0

0 0.5 1

UAJpItot (m/s)

E ha 550 0

0 0.5 1

U/Upitot (m/s)

I1 nn E

N 100 50 0

0 o

0 0.5 UJUpltot (m/s)

Figure 10

C-12 CPP Project 7255 Point 11; 0 deg 150 Point 11; 22.5 deg Point 11; 45 deg Point 11; 67.5 deg 150 1

150, 150, 1001 100 E

N E

N

/

E N

100 50 /

100 E

N 501 50 50 01oI 0

0.5 1

UAJpltot (m/s)

Point 11; 90 deg N

N N

I DU 100 50

//

0 0.6 0.8 1

U/Upitot (m/s)

Point 11; 180 deg 150 100 N

50 0

0 0.5 1

UiUpltot (m/s)

Point 11; 270 deg 150 100

=A-.¢

[

01

'?

0 0.5 1

UAipftot (mis)

Point 11; 112.5 deg 150 100 F

50 0 0.6 0.8 1

UlUpltot (m/s)

Point 11; 202.5 deg

150, 150, 0 L~~

0.6 0.8 1

UlUpftot (m/s)

Point 11; 135 deg 100 50 N

100 50 0 0.6 0.8 1

UJUptot (m/s)

Point 11; 157.5 deg 150

/

o L 0

0.5 1

UAJpitot (m/s)

Point 11; 225 deg

.4 e

00 0.5 1

UAJpitot (m/s)

Point 11; 247.5 deg 150.1 f

100 N

50 00 0.5 1

UAUpitot (m/s)

Point 11; 292.5 deg 150 100 50 A

,*v[

100 N

50 00 0.5 1

Ui~pftot (mis) 1 Point 11; 315 deg 150 100 50 }

0 0

0.5 1

UA~pftot (m/s) 9 100 50 0

0.5 1

UAJptot (m/s)

Point 11; 337.5 150 i nn deg 50

-I'.,

0 0.6 0.8 1

UAJpItot (m/s) 0 0.5 1

UAJpltot (m/s) 0o' 2 0

0.5 1

UAJpltot (m/s)

Figure 11 UB

C-13 CPP Project 7255 Point 12; 0 deg 150.

Point 12; 22.5 deg Point 12; 45 deg 150 1

Point 12; 67.5 deg

150, 1

150-E N

100 50 IT

/

100

/

N 100 E

N 1001 E

N 50 50 501 00 0.5 1

UAJphtot (m/s)

Point 12; 90 deg 150 p,

o'11-0 0

0 0.5 1

0.6 0.8 1

U/Upitot (m/s)

U/Upltol (m/s)

Point 12; 112.5 deg Point 12; 135 deg 0 0.6 0.8 1

UAJpdtot (m/s)

Point 12; 157.5 deg 150

/,

E N

E 100 50 1001 E

N E

N 501 0 0.6 0.8 1

UA~pftot (m/s)

Point 12; 180 deg

.4 */'

100 E

N 50 0

0 0.5 1

UAJpltot (m/s)

Point 12; 270 deg 150 100

-N 0.6 0.8 1

UiUpltot (m/s)

Point 12; 202.5 deg 150 100 E

N 50 0

0 0.5 1

U/Upltot (m/s)

Point 12; 292.5 deg 150 150 100 IE 50 0

0 0.5 1

UAJpltot (m/s) i Point 12; 225 deg 150 100 50 0I 0

0.5 1

U/Upltot (m/s) 1 Point 12; 315 deg 150

150, I

100O Point 12; 247.5 deg 150 0/

00 0.5 1

UAJpitot (m/s) 100 50 0 0.6 0.8 1

UUpitot (m/s)

Point 12; 337.5 150 100 deg Iuv 50 E

N 10 5

50 10 0.

0 0.5 1

U/Upitot (m/s)

N 5

0 0.5 1

UlJpltot (m/s) 00 0.5 U/Upitot (m/s) 0 0.0 0.5 1

U/Jpitot (m/s)

Figure 12

C-14 CPP Project 7255 g Point 13; 0 deg 150 100 Point 13; 22.5 deg Point 13; 45 deg Point 13; 67.5 deg

150, 1

150-

150, I

100 E

N N

N E

=,

/

100 1001 I E

N E

N

/

0 0

0.5 1

UAJp"tot (m/s)

Point 13; 90 deg 150 50 50 501 0

0.5 1

0.6 0.8 1

UAJpltot (m/s)

U/Upitot (m/s)

Point 13; 112.5 deg Point 13; 135 deg 0.6 0.8 1

UAJpftot (m/s)

Point 13; 157.5 deg 150 100 J

150 T.

100 1001 N

N 50 50 150 100 T

50

/

00 0.5 1

U/Upitot (m/s)

E N

I 0.6 0.8 1

UAJpitot (m/s)

Point 13; 180 deg

.4 i-t, I :JU 100 N

50 0

0 0.5 1

UAJpitot (m/s)

Point 13; 270 deg 150 00 0.5 1

UiUpltot (m/s)

Point 13; 202.5 deg 150 100 50 0'0 0.5 1

UAJpltot (m/s)

Point 13; 292.5 deg 150 i Point 13; 225 deg 150 100 N

50 0

0 0.5 1

UAJpitot (m/s) i Point 13; 315 deg Point 13; 247.5 deg 150 100 50 000 0.5 1

UAJpftot (m/s)

Point 13; 337.5 deg 150 100f 50

/

00 0.5 1

UAJpltot (m/s)

I jU 100 50 J 0

0.5 1

UAJpltot (m/s)

E

/

100 50 100 N

50 0 0.6 0.8 1

E N

0 0 0.6 0.8 1

0 0.5 1

UI~pitot (m/s)

UAJpitot (m/s)

UAJptot (m/s)

Figure 13

C-15 CPP Project 7255 E

N Point 14; 0 deg 150 100 50 Point 14; 22.5 deg 150 i

I Point 14; 45 deg 150 100 f E

N E

N Point 14; 67.5 deg 150 1

100 50 100 N

50 50 E

N N

0.6 0.8 1

uAJpitot (m/s)

Point 14; 90 deg 150 100 N

50 0 0.6 0.8 1

UJUpltot (m/s)

Point 14; 180 deg 150 100 N

50 0V0.6 0.8 1

UAJpltot (m/s)

Point 14; 270 deg 150 i

0o<

0.6 0.8 1

UIJpltot (m/s)

Point 14; 112.5 deg 150 100 F*

4 0.6 0.8 1

UiUpitot (m/s) i Point 14; 135 deg N

50 0.6 0.8 1

UAJpitot (mis)

Point 14; 202.5 deg 150 100

/

50 00 0.5 1

u/Jpltot (m/s)

Point 14; 292.5 deg 1501 IOU 100 f

E 50

/

0 0.6 0.8 1

UAJpitot (m/s)

I Point 14; 225 deg 150 100 N

50 0

0 0.5 1

UlUpitot (m/s) p Point 14; 315 deg 150 100 N

50 0 "

0.6 0.8 1

U/Upltot (m/s)

Point 14; 157.5 deg 150 r

100 50 00 0.5 1

UAJpitot (m/s)

Point 14; 247.5 deg 150 1

100 50 00 0.5 1

UAJpftot (m/s)

Point 14; 337.5 deg 150 100 50 0.6 0.8 1

UiUpltot (m/s) 100

'p N

N 50 100 50 0

0 0 0.6 0.8 1

0.6 0.8 1

UAUJplot (m/s) 0.6 0.8 1

UiUpitot (mts)

U/Upitot (m/s)

Figure 14 U

C-16 CPP Project 7255 Point 15; 0 deg Point 15; 22.5 deg

150, 150 100 50 Point 15; 45 deg 150

'P Point 15; 67.5 deg 1501 1001 E

N E

g N

100 50 E

N 100

/P 501 50 0*J0.6 0.8 1

UAJpltot (m/s)

Point 15; 90 deg 150 100 0.6 0.8 1

UAJpitot (m/s)

Point 15; 112.5 deg 150 P

0 0.6 0.8 1

UJpitot (m/s)

Point 15; 135 deg 0 0.6 0.8 1

UAJpitot (m/s)

Point 15; 157.5 deg 150 r 150 1001 E=100 50

/P N

100 50 0' 0.6 0.8 1

UAJpltot (m/s)

Point 15; 180 deg E

N E

100 E

N 50 0 0.6 0.8 1

UAJpltot (m/s)

Point 15; 270 deg 150 100 N

50 0 0.6 0.8 1

UAJpftot (m/s) 50

/

0.6 0.8 1

UAJpitot (m/s)

Point 15; 202.5 deg 150 100 N

50 0 0.6 0.8 1

UiUpltot (m/s)

Point 15; 292.5 deg 150 100t 50 0 0.6 0.8 1

U/Upltot (m/s)

Point 15; 225 deg 100 E

N 50 0

0 0.5 1

UIUpitot (m/s) l Point 15; 315 deg 150 Y

100 0

0.6 0.8 1

UAJpltot (m/s)

Point 15; 247.5 deg 150 50 0 0.6 0.8 1

UiUpftot (m/s)

Point 15; 337.5 1501 deg E

10 50 /

0 0

0.5 E

100 50 50 0 0.6 0.8 1

U/UJptot (m/s) 1 0.6 0.81

)

U/UpItot (m/s)

U/Upitot (m/s s*

Figure 15

C-17 CPP Project 7255 Point 16; 0 deg Point 16; 22.5 deg 150 Point 16; 45 deg Point 16; 67.5 deg 150U E

N N

100 50 -

1001 150 100 50 150 100

/

E N

E 50 0

0 0.5 1

UAJpltot (m/s)

Point 16; 90 deg 150 100 50j N

50 0.6 0.8 1

UAJpitot (m/s)

Point 16; 180 deg 150r 0

0.5 1

U,,pItot (m/s)

Point 16; 112.5 deg 150F 0.6 0.8 1 UAJpitot (m/s) 50

/

0 0.6 0.8 1

UAJpltot (m/s)

Point 16; 157.5 deg Point 16; 135 deg 150 150 100 100 E

100 50 E

50 100 I

N 0 0.6 0.8 1

UAJpdot (m/s)

Point 16; 202.5 deg 150 100 N

50

/

00 0.5 1

UA/Jpltot (m/s)

Point 16; 292.5 deg 150 00 0.5 1

UAJptot (mis)

Point 16; 225 deg 150 100 50 00 0.5 1

UAJpitot (mis)

Point 16; 315 deg 100 50 150 FI.

50

/

0 0

0.5 1

UJUpltot (m/s)

Point 16; 247.5 deg 50 50 0

0.5 1

UAJpftot (m/s)

Point 16; 270 deg 150 0

0 0.5 UAiJptot (m/s)

Point 16; 337.5 deg

-4,*A' E

N 100 50 1001 I5 E

N E

N 501 Iv 0

0 0

0.5 1

UAJpftot (m/s)

E N

100 50

/

150 i

01 0

0.5 1

UAJpltot (m/s) 00 0.5 UAJpftot (m/s) 0 0

0.5 UAJpftot (m/s)

Figure 16 U

C-18 CPP Project 7255 Point 17; 0 deg 150 100 E

E N

N g

N

.Jv Point 17; 22.5 deg 150 100 PN 50 0

0.5 1

ULJlpitot (m/s)

Point 17; 112.5 deg 150 100 50 Point 17; 45 deg 150 150 100 g

N 50 Point 17; 67.5 deg 0o1 0

0.5 1

UAUpltot (mis)

Point 17; 90 deg 0

0.6 0.8 1

UiUpitot (m/s)

Point 17; 135 deg

150, 010.6 0.8 1

UiUpftot (m/s)

Point 17; 157.5 deg 150U 100 E

50N 0

0.6 0.8 1

U/Upltot (m/s)

Point 17; 180 deg 150

150, 1001 I 100 I

100 E

N E

N 501 50 50 0

0 0.5 1

0 A

0 0.5 1

UAJpitot (m/s)

Point 17; 225 deg 150 01 0

0.5 1

UAJpltot (m/s)

Point 17; 247.5 deg 150.r UAJpltot (m/s)

Point 17; 202.5 deg 150r 100 50 00 0.5 1

UAJpltot (m/s)

Point 17; 270 deg 150 9

4 AA*

0 0

0.5 1

UiUpftot (m/s)

Point 17; 292.5 deg 150 100 50 0

I 100 N

0 0.5 1

UAJpitot (m/s) 50 0

0 0.5 1

UJUpftot (m/s)

I Point 17; 315 deg

150, 100 50 0

E I 0 50 N

100 50 0

.0/

0.6 0.8 1

N Point 17; 337.5 150l 100 deg 50 0 0.6 0.8 1

0L21 0

0.5 1

UAJpItot (Mrs) 0 0.5 1

UAJpitot (m/s)

UAJpltot (mIs)

UAJpitot (m/s)

Figure 17 U

G-19 CPP Project 7255 Point 18; 0 deg 150 100 E

N 50 Point 18; 22.5 deg 150 100 N

50 0 0.6 0.8 1

UiUpltot (m/s)

Point 18; 112.5 deg 150 p

Point 18; 45 deg 150 100 I

i N

50 i

Point 18; 67.5 deg 150 100

/

50

/

0 0.6 0.8 1

UAJpltot (m/s)

Point 18; 157.5 deg 150 0.6 0.8 1

UiUpltot (m/s)

Point 18; 90 deg 150 100 50 N

50 0.6 0.8 1

U/Upitot (m/s)

Point 18; 180 deg

150, 0.6 0.8 1

UAJpftot (m/s)

Point 18; 135 deg 150 p

f 100 50 1001 100 E

N 1001 E

N 0.6 0.8 1

Uiupltot (mIs)

Point 18; 202.5 deg 150 100 5°II N

50 0.6 0.8 1

U/Upftot (m/s)

Point 18; 292.5 deg 150 1

E N

50 0 0.6 0.8 1

UAJpitot (m/s)

Point 18; 225 deg 1501 I

1001 0

0 0.5 1

UiUpltot (m/s)

Point 18; 247.5 deg 150 Ip 100 50 E

50 010 0.5 1

UiUpftot (m/s)

Point 18; 270 deg 150 100 50

/

0 0.6 0.8 1

UAJpitot (m/s) 50 00 0.5 1

UAJpitot (m/s)

Point 18; 315 deg 150 0L-16.

0.6 0.8 1

UAJpdtot (m/s)

Point 18; 337.5 deg 150 50 100 50 0

1001 E

N 7p E

N 501 100 50 0

It 0.6 0.8 1

UAJpftot (m/s) 0 0.6 0.8 1

UAJpitot (m/s) 0.6 0.8 1

UAJpltot (m/s)

Figure 18

C-20 CPP Project 7255 E

N N

Point 19; 0 deg 150 100 50 0

0.5 1

UAJpftot (m/s)

Point 19; 90 deg 150 Point 19; 22.5 deg 150 100

/

E N

50 0

0.6 0.8 1

UAJpftot (m/s)

Point 19; 112.5 deg 150 Point 19; 45 deg 150 100 50 0 /

0.6 0.8 1

U/Upltot (m/s) 100 Point 19; 67.5 deg

150, E

N 50 0 0.6 0.8 1

UAJpftot (m/s)

Point 19; 135 deg Point 19; 157.5 deg 150r 150 100 1001 E

N E

N 100 50 100 E

N 50 50 50 0~0.6 0.8 1

UJUpitot (m/s)

Point 19; 180 deg 010.6 0.8 1

UiUpftot (m/s)

Point 19; 202.5 deg

150, 0 0.6 0.8 1

UAJpltot (m/s) i Point 19; 225 deg 150,

0 0.6 0.8 1

UAJpltot (m/s)

Point 19; 247.5 deg 150 N

E N

100 N

50 00 0.5 1

UAfJpftot (mis)

Point 19; 270 deg 150 I flA r

-N 50 0

0.6 0.8 1

UAiJptot (m/s)

Point 19; 292.5 deg 150 100 E

N 50 0

J 0

0.5 1

UIUpitot (m/s)

Point 19; 315 deg 0 0.6 0.8 1

UAJpltot (m/s)

Point 19; 337.5 deg 150 1

150 100 50 /

0.6 0.8 1

U/Upitot (m/s)

N 100 50 100 100 0.6 0.8 1

UAJpitot (mIs)

N 50 0.6 0.8 1

N 50 0

0 0

0 LŽJ 0

0.5 1

UAJpltot (m/s)

UiJpftot (m/s)

Figure 19

C-21 CPP Project 7255 Point 20; 0 deg 150 1

Point 20; 22.5 deg Point 20; 45 deg 150 1

150, Point 20; 67.5 deg 1501 100 E

N 100 E

N p

100 100

[

E N

50 50 0 1 r-0 0.5 1

UJUpltot (m/s)

Point 20; 90 deg 150 0

0 0.5 1

U/Upitot (m/s)

Point 20; 112.5 deg 150 5

N 00 0.5 1

UJUpitot (m/s)

Point 20; 135 deg 150-0 0.6 0.8 1 UAJpHot (m/s)

Point 20; 157.5 deg 150 100 50

/

50 100 10 100 E

N N

100 E

N50 J0 E

N 50 50 0 0.6 0.8 1

UAJpitot (m/s)

Point 20; 180 deg 0

0.6 0.8 1

UAUpltot (m/s)

Point 20; 202.5 deg 150 0.6 0.8 1

UAJpftot (m/s)

Point 20; 225 deg 150 N

N 100 N

50 0

0 0.5 1

U/Up"tot (m/s)

Point 20; 270 deg 150 100 E

N 50 0 '0.6 0.8 1

UAJpltot (m/s) i1,n N

50 00 0.5 1

UAJpitot (m/s)

Point 20; 292.5 dec 150 1

100 50

?

N 0

0.

0.6 0.8 1

UAPJpitot (m/s)

Point 20; 247.5 deg 150 100 50 0

0.6 0.8 1

UAiJpltot (m/s)

Point 20; 337.5 deg

150, 0 0.6 0.8 1

U/Upitot (m/s)

I Point 20; 315 deg 100 50 10 E

N I 0 0

0 0.5 1

U/Upitot (mis)

E N

100 50 I

0 0.5 1

UAJpitot (m/s) 00 0.5 1

U/Upitot (m/s)

Figure 20

C-22 CPP Project 7255 Point 21; 0 deg 150 1

Point 21; 22.5 deg

150, 1-Point 21; 45 deg Point 21; 67.5 deg 150-
150, 100 1001 E

N N

N 100 50 /

100 E

N P

50 501 50 0

0.5 1

UAJpitot (m/s)

Point 21; 112.5 deg 150 1

0Lp 0.6 0.8 1

UAJpitot (m/s)

Point 21; 135 deg 150r i

0 1

ý 0.6 0.8 1

UAJpItot (m/s)

Point 21; 157.5 deg 150 1

UJUpitot (m/s)

Point 21; 90 deg 150 100 N

50

/

0.6 0.8 1

UIUpitot (m/s)

Point 21; 180 deg 150 100 50 0

0 0.5 1

UAJpltot (m/s)

Point 21; 270 deg 150 1001 E

v 100 50 9

100 E

N 1'

5 N

50 0

0.6 0.8 1

UAJpitot (m/s)

Point 21; 202.5 deg 150 100 N

50 0

0 0.5 1

UJUpitot (m/s)

Point 21; 292.5 deg 150 50 00 0.5 1

UlUpitot (m/s)

Point 21; 225 deg 0

0 0.5 UiUpltot (m/s) 150 100 N

50 0

0 0.5 1

UAJpltot (m/s)

Point 21; 315 deg Point 21; 247.5 deg 150 100 50 0

0 0.5 1

UAJpltot (m/s)

Point 21; 337.5 deg 150 150r 100 50 0 0.6 0.8 1

U&Jptot (m/s) 100 N

50 100 N

50 0

Jr N

100 50 0

)

0.6 0.8 1

0.6 0.8 1

0 0.6 0.8 1

UiUpltot (m/s)

UAJpitot (m/s)

UAJpitot (m/s)

Figure 21

C-23 CPP Project 7255 E

N Point 22; 0 deg 150 100 E

50 Point 22; 22.5 deg Point 22; 45 deg 150 r

150, p'

I 100 50 1001 100 E

N E

N

/

Point 22; 67.5 deg 150 1

501 50 0.6 0.8 1

UAJpltot (m/s)

Point 22; 90 deg 150.

100 E

N E

N I

N 50 0 0.6 0.8 1

UAJpitot (m/s)

Point 22; 180 deg 150 100 N

50 0 0.6 0.8 1

UAUJptot (m/s)

Point 22; 270 deg 150 0o1-90 0.6 0.8 1

U/lpltot (m/s)

Point 22; 112.5 deg 150 100 E

50

/

0.

0.6 0.8 1

UiUplot (m/s)

Point 22; 202.5 deg 150 100 N

50 00 0.5 1

UfJpltot (m/s)

Point 22; 292.5 deg 150 100 r

50

/

1001 150 E

N 0

L" J 0.6 0.8 1

UiUpitot (m/s)

Point 22; 135 deg 100 0

0.6 0.8 1

UAJpltot (m/s)

Point 22; 225 deg 150 1

50 0.6 0.8 1

UIUpitot (m/s)

Point 22; 157.5 deg 150F1 0

0 0.5 1

U/Upltot (m/s)

Point 22; 247.5 deg 150 r

100 1001 550 00 0.5 1

E N

f II

/

501 0 0.6 0.8 1

UlUpftot (m/s)

UAJpftot (m/s)

Point 22; 337.5 deg 150 100 50 0

A

/

0.6 0.8 1

UAJpftot (m/s) 100 E

N 501 0

V 0.6 0.8 1

U/lpltot (m/s) 0.6 0.8 1

UAJpltot (m/s)

U/Upitot (m/s)

Figure 22 U

C-24 CPP Project 7255 Point 23; 0 deg 150 Point 23; 22.5 deg Point 23; 45 deg 1001 E

N 1001 f

150o 100 E

N E

N E

N 501 50 50 Point 23; 67.5 deg 150 100 50

/

50 0.6 0.8 1

UiUJplot (m/s)

Point 23; 157.5 deg 150,

0

,1-4 0.6 0.8 1

UAJpdtot (m/s)

Point 23; 90 deg

150, 0.6 0.8 1

UAJpltot (m/s)

Point 23; 112.5 deg 150 0 L'-,10 0.6 0.8 1

UAJpitot (m/s)

Point 23; 135 deg 150 1

1001

'p E

N E

N 100 50 /

100 N

N50 E

N 100 50 1

50o 0.6 0.8 1

UAJphtot (m/s)

Point 23; 180 deg 150.

p IArA' N

N 100N 50 0 0.6 0.8 1

uAJpftot (m/s)

Point 23; 270 deg 150 r 0

0.6 0.8 1

UAJpItot (mts)

Point 23; 202.5 deg 150 100 50 0

0.6 0.8 1

UAUpitot (m/s)

Point 23; 292.5 deg 150 1001 0

N UAJpitot (m/s)

Point 23; 225 deg 150 0 0.6 0.8 1

UAJpltot (mis)

Point 23; 247.5 deg 150 100 50 0.6 0.8 1

UAJpftot (m/s)

Point 23; 337.5 deg

150, 0~0.6 0.8 1

UAUpitot (m/s)

Point 23; 315 deg 150r 100 0

0.6 0.8 1

100 E

N E

N 50 50 100 50 0

ý E

N 100 0

0 0.6 0.8 1

0.6 0.8 1

U/Upitot (m/s) 00 0.5 1

UAJphlot (m/s) 50 UAJpfltot (m/s)

UAJpltot (m/s)

Figure 23

C-25 CPP Project 7255 Point 24; 0 deg 150 1

Point 24; 22.5 deg Point 24; 45 deg 1501 Point 24; 67.5 deg 150 100 E

N 9

150 100 N

E 100 50 1001 E

N 50 0

0.5 1

UAUpitot (m/s)

Point 24; 90 deg 150-50 N

0.6 0.8 1

UI.pdot (m/s)

Point 24; 112.5 deg 150 100 1

i E

50 0

501 0.6 0.8 1

UiUpltot (m/s)

Point 24; 135 deg 150 1

0.6 0.8 1

UAJptot (m/s)

Point 24; 157.5 deg 1501 100 E

N

/

N 100 50 1001 E

50 501 0

  • 0.6 0.8 1

UAJpftot (m/s)

Point 24; 180 deg 150 0.6 0.8 1

UAUpftot (m/s)

Point 24; 202.5 deg 150

/

0 0.6 0.8 1

UAJpitot (m/s)

Point 24; 225 deg 50 0.6 0.8 1

UA.Jpitot (m/s)

Point 24; 247.5 deg 150 4 r r~

I *U 100 1001 g

N E

N E

N 100 50 50 501 f

0.6 0.8 1

UJUpitot (m/s) 100 N

I 50 01 0.6 0.8 1

UiUpftot (m/s)

Point 24; 270 deg 0.6 0.8 1

UAJpftot (m/s)

Point 24; 292.5 deg 150 0

0 0.6 0.8 1

UAJpltot (m/s)

Point 24; 315 deg Point 24; 337.5 deg 1 50 100 50 E

N

/

0.6 0.8 1

UAJpitot (m/s)

E N

1001 /

10 I15 E

N 501 5

'U 10f5o I

~0/

0.0 0.5 1

U/Upitot (m/s)

E N

1 50,I 100 50' 0

0 1 0

0.5 1

0L0 0.5 1

U/Upltot (m/s)

UAJpltot (m/s)

Figure 24 U

C-26 CPP Project 7255 Point 25; 0 deg

150, Point 25; 22.5 deg Point 25; 45 deg Point 25; 67.5 deg 150r1 150-1501 1001 100 100 100 N

E N

E N

E N /

501 50 50 50 0 0.6 0.8 1

UAJpltot (mis)

Point 25; 90 deg

150, 1

0o 0

0.5 1o, 1

1 0

0.5 00 0.5 1

UAUpltot (m/s)

UiUpitot (m/s)

U/Upntot (m/s)

Point 25; 112.5 deg Point 25; 135 deg Point 25; 157.5 deg 150, i 150-150 1001 100 E

N N

I 1001 E

N

/

100 N

501 50 50 50 0>0.6 0.8 1

UiUpitot (m/s)

Point 25; 180 deg 150 100 N

N N

50 0

0 0.5 1

UAJpltot (m/s)

Point 25; 270 deg

150, 00 0.5 1

U/Upltot (m/s)

Point 25; 202.5 deg 150 100 50N 00 0.5 1

UAJpltot (m/s)

Point 25; 292.5 deg 150 100 50 00 0

0 0.5 1

U/Ipitot (m/s)

Point 25; 225 deg

150, 00 0.5 1

u.Jpftot (m/s)

Point 25; 247.5 deg

150, 0.5 1

100 9

I E

N 50 00 0

0.5 1

UAJp"ot (m/s)

Point 25; 337.5 deg 150 UJUpitot (m/s)

Point 25; 315 deg 4 l*"

1T 100 50 N

100 50 0

E N

I1 50 50 0.6 0.8 1

UAJpitot (m/s) 1001

'P E

N 501 0 0.6 0.8 1

0.6 0.8 1

U/Upltot (m/s) 0 0.6 0.8 1

UiUpltot (m/s)

UiUpitot (m/s)

Figure 25

C-27 CPP Project 7255 E

N E

N Point 26; 0 deg 150 100 50 0 0.6 0.8 1

U/Upftot (m/s)

Point 26; 90 deg 150 Point 26; 22.5 deg Point 26; 45 deg 150 150 150 100 It 100 1001 Point 26; 67.5 deg N

E N

50 50 501 100 N

0 '--'t 0.6 0.8 1

UAJpltot (m/s)

Point 26; 112.5 deg 150 100 50 0i 0.6 0.8 1

UiUpttot (m/s)

Point 26; 202.5 deg 150 1

0 0

0.5 1

U/Upitot (m/s)

Point 26; 135 deg 150 100 1

7;I N

50 50 0 IyL7

.J 0.6 0.8 1

UAJpitot (m/s)

Point 26; 180 deg 150 1

01,,1 0.6 0.8 1

UAJpltot (m/s)

Point 26; 225 deg 0.6 0.8 1

UAJpdtot (m/s)

Point 26; 157.5 deg 150 P

100 50 0 0.6 0.8 1

UAJpltot (m/s)

Point 26; 247.5 deg 150 100 50 0 0.6 0.8 1

UAJpdtot (m/s)

Point 26; 337.5 deg 150 1

150 10 100('

1(00 100 E

N E

N 50 0 0.6 0.8 1

UAJpltot (m/s)

Point 26; 270 deg 150 100 50

/

0 0.6 0.8 1

UAJpftot (m/s)

N 50 0

0.6 0.8 1

UiUpltot (m/s)

Point 26; 292.5 deg 150 N

50 0 0.6 0.8 1

U/Upitot (m/s)

Point 26; 315 deg 150.

1001 E

N 100 50 E

N 100 50 50 0.6 0.8 1

0.6 0.8 1

0 0

0 0.6 0.8 1 UAJpitot (m/s)

U/Upitot (mis)

U/Upitot (m/s)

Figure 26 U

C-28 CPP Project 7255 Point 27; 0 deg 150 Point 27; 22.5 deg Point 27; 45 deg Point 27; 67.5 deg I )UII I OU I 100 100 100 E

N E

N N

I E

N 50 50 501 I Z)U 100 50 0.0 0.5 1

UAJpitot (m/s)

Point 27; 157.5 deg 150I 0.6 0.8 1

UAJpftot (m/s)

Point 27; 90 deg

150, 0o -.

0.6 0.8 1

UAJpitot (m/s)

Point 27; 112.5 deg 150 1

0.6 0.8 1

UAJpitot (m/s)

Point 27; 135 deg

150, 100 N

E N

100 50 1001 100 N

E N

50 501 50 00 0.5 1

UAJpltot (m/s)

Point 27; 180 deg

.4 ["t E

N 100

/

N 50 0 0.6 0.8 1

UAJpftot (m/s)

Point 27; 270 deg 150 r 0

0.6 0.8 1

Ulupitot (mis)

Point 27; 202.5 deg 150 100 E

50

/

0 j

0.6 0.8 1

UAJpltot (m/s)

Point 27; 292.5 deg 150

~0 i nn 50 0 0.6 0.8 1

0.6 0.8 1

UAJp"tot (m/s)

Point 27; 225 deg 150 N

0.6 0.8 1

UAJpltot (m/s)

Point 27; 247.5 deg 150 100 50 0

0.6 0.8 1

UAJpftot (m/s)

Point 27; 337.5 deg

150, UAJpitot (m/s)

Point 27; 315 deg

150, 1

100 E

N 100 50 0

f

//

0.6 0.8 1

UJUpitot (m/s) 1001 E

N N

501 100 50 0

pI 50 0

I 0.6 0.8 1

UAJpltot (m/s) 0' 0.6 0.8 1

0.6 0.8 1

UAJpdtot (m/s)

UAJpftot (m/s)

Figure 27 U

C-29 CPP Project 7255 E

N N

Point 28; 0 deg 150 100 50 0.6 0.8 1

UAJphtot (m/s)

Point 28; 90 deg 150 100 I

E 50

/b N

0 0.6 0.8 1

UAJpitot (m/s)

Point 28; 180 deg 150 Point 28; 22.5 deg Point 28; 45 deg

150, 150r 100 50 f

100 rI 100 Point 28; 67.5 deg

150, E

N 50 R0 0, 0.6 0.8 1

UiUpltot (m/s)

Point 28; 112.5 deg 1501 0.6 0.8 1

UAJpitot (mis)

Point 28; 135 deg

150,

- 1 /

0 0.6 0.8 1

UJupitot (m/s)

Point 28; 157.5 deg 150 r P

f 100 N

100 50 100 N

50 50 0 0.6 0.8 1

UUJpitot (m/s)

Point 28; 202.5 deg

150, 0.6 0.8 UAJpitot (m/s Point 28; 225
150, 0

1 0.6 0.8 1

)

UAJpltot (m/s) deg Point 28; 247.5 deg 150i P

1n Io 100 50 0 0.6 0.8 1

UAJpftot (m/s)

Point 28; 270 deg 150

/

E N

100 50 pI N

  • 't3 JUv

/

0 0.6 0.8 1

UAJpftot (m/s)

Point 28; 292.5 deg 150 100 N

50 0.6 0.8 1

UIUpitot (m/s)

N 100 50 0

0.6 0.8 1

UJUpitot (mIs)

Point 28; 315 deg 150 100 50 0.6 0.8 1

UAJpitot (m/s)

E 50 0 0.6 0.8 1

U/Upftot (m/s)

Point 28; 337.5 deg 150 100 0

0 0.6 0.8 1

UlUpitot (m/s) 50 00 0.5 1

UApitot (m/s)

Figure 28

C-30 CPP Project 7255 Point 29; 0 deg 150 1

Point 29; 22.5 deg Point 29; 45 deg 150 150 100 100 It E

N E

N 100 E

N 50 E

N 50 50 0

U/Upttot (m/s)

Point 29; 90 deg 150 100 E

N 50 E

N N

0 Lý 0.6 0.8 1

U/Upltot (m/s)

Point 29; 112.5 deg 150 100 50 0

2*'

0 0.5 1

UiJpitot (m/s)

Point 29; 202.5 deg 150 1

150 100

/

01 l

0 0.5 1

U/Upitot (m/s)

Point 29; 135 deg E

N 50 Point 29; 67.5 deg 150 100 50 0o 0

0.5 1

UAJpfiot (m/s)

Point 29; 157.5 deg 150 100

[

50 00 0.5 1

UAJpitot (m/s)

Point 29; 247.5 deg 150 100 50

/

00 0.5 1

UAJpitot (m/s)

Point 29; 337.5 deg 1501 0

0.5 1 0

0.5 1

U/IJptot (m/s)

Point 29; 180 deg 150 100 E

N 50 00 0.5 1

UAJpltot (m/s)

Point 29; 270 deg 150 100 50 N

0 0

0.5 1

U.Jpktot (m/s)

Point 29; 225 deg

.4 t'

100 I

E N

50 I;JU 100 50 0

0 0.5 1

UAJpitot (m/s)

Point 29; 315 deg 150 00 0.5 1

UlUpdtot (m/s)

Point 29; 292.5 deg 150 100 E

-N 1001 100 E

N J

Z) 00 0.5 U

00 0.5 1

00 0.5 UAJpttot (m/s) 50 0 l 0.6 0.8 1

UiJpltot (m/s)

UAJpitot (m/s)

UAJpltot (m/s)

Figure 29

C-31 CPP Project 7255 Point 30; 0 deg 150 100 g

50 N

0 0.6 0.8 1

UAJpltot (m/s)

Point 30; 90 deg 150 1005O J N 50N 0

0.5 1

U/AJptot (m/s)

Point 30; 180 deg 150 100 E

50 N

0 0.6 0.8 1

UAJpitot (m/s)

Point 30; 270 deg 150.

Point 30; 22.5 deg Point 30; 45 deg Point 30; 67.5 deg

150, 150, 150 100

/

1001 100 E

N E

N 50 501 50 0 0.6 0.8 1 UIUpltot (m/s)

Point 30; 112.5 deg 150 1 011 0

0.5 1

UAJpitot (m/s)

Point 30; 135 deg 0 1 0

0.5 1

UiUpitot (m/s)

Point 30; 157.5 deg 150 150 100 50 1001 /

N E

N 501 100 50 0

01 0 1 0

0.5 1

0.6 0.8 1

UAJpitot (m/s)

UJUpitot (m/s)

Point 30; 202.5 deg Point 30; 225 deg 0

/

9 0.6 0.8 1

UAJpItot (m/s)

Point 30; 247.5 deg

150,

.4 C' rl 100 50 E

100 50 0 0.6 0.8 1 UAJpftot (m/s) 15 10 E

5

'V 5O 0

0 0.5 1

UAJpfiot (m/s) 0.6 0.8 1

UJUpltot (m/s)

Point 30; 292.5 deg 150 100 E

Point 30; 315 deg Point 30; 337.5 deg 1501

150, 100 50 N

50 100 50 0

N 0L0 0.5 1

0.6 0.8 1

0.6 0.8 1

1001 50 0 0.6 0.8 1

UAUpitot (m/s)

UAUpItot (m/s)

UAJpftot (m/s)

UAJpntot (m/s)

Figure 30 U

C-32 CPP Project 7255 Point 31; 0 deg 150 1

Point 31; 22.5 deg Point 31; 45 deg Point 31; 67.5 deg

150, 150, i 150r 100 E

N 100 100 100 F

N E

N E

N 50 50 50 50 0

0.6 0.8 1

UJUpltot (m/s)

Point 31; 90 deg 150 1

40 0.6 0.8 1

U/Upltot (m/s)

Point 31; 112.5 deg

150, 0

0.5 1

U/Upitot (m/s)

Point 31; 135 deg

150, 00 0.5 1

UAJpItot (m/s)

Point 31; 157.5 deg

150, 100 100 E

N I

100 E

S50 100 E

50 50 50 500 0

0.5 1

UAJpftot (m/s)

Point 31; 180 deg 150i p

0.6 0.8 1

UApltot (m/s)

Point 31; 202.5 deg 150 0 0.6 0.8 1

UAJpitot (m/s)

Point 31; 225 deg 0 0.6 0.8 1

UAJpitot (m/s)

Point 31; 247.5 deg 150r

.4 ~

'1 nfl N

N N

50 0~

0.6 0.8 1

UAJpftot (m/s)

Point 31; 270 deg 150 100 50 N

I I 100 N

50 01 0

0.5 1

U/upntot (m/s)

Point 31; 315 deg 100 50 0

0.6 0.8 1

UAJpdtot (m/s)

Point 31; 292.5 deg

150, 0 0.6 0.8 1

UAUJptot (m/s)

Point 31; 337.5

150, deg 150 100 50 N

100 50 0

N 100 50 0

f N

100 50 0

f 0 0.6 0.8 1

U/Upftot (m/s) 0.6 0.8 1

/

0.6 0.8 1

0.6 0.8 1

U/Upllot (m/s)

U/Upltot (m/s)

U/Upitot (m/s)

Figure 31

C-33 CPP Project 7255 Point 32; 0 deg

150, Point 32; 22.5 deg Point 32; 45 deg
150, 1

g N

E N

100 50 1001 E

N 150 100 50 0

i Point 32; 67.5 deg 150 100 E

501 50

/

0 0.6 0.8 1

UAJpftot (m/s)

Point 32; 90 deg 0o1 0

0.5 1

U/Updtot (m/s)

Point 32; 112.5 deg 15011 0.6 0.8 1

U/Upltot (m/s) 0 I

0 0.5 UA~pflot (m/s)

Point 32; 135 deg Point 32; 157.5 deg

150, 150 I ;IV 100 50

/

00 0.5 1

UAJpftot (m/s)

Point 32; 180 deg

150, 1001 50 00 0.5 1

U/Upitot (m/s)

Point 32; 202.5

150, N

deg E

100 50 N

100 50 010 0.5 1

U/Upntot (m/s)

I Point 32; 225 deg

150, 0 0.6 0.8 1 UiUpltot (m/s)

Point 32; 247.5

150, deg 100 100 N

100 50 1nn E

t 50 50 0

0.6 0.8 1

UJipltot (m/s)

Point 32; 270 deg 0.6 0.8 1

UAJpitot (m/s)

Point 32; 292.5 deg 1501 0 0.6 0.8 1

U/Upltot (m/s)

Point 32; 315 deg

  • 4 J*/A 50 J

0 0.6 0.8 1

U/UpHtot (m/s)

Point 32; 337.5 deg

150, 1*0 100 N

50 0.6 0.8 1

UIUpitot (m/s)

E N

/

150U E

100 50 100 50 0

0.6 0.8 1

U/Upitot (m/s)

N 100 7

50 0

0 0.6 0.8 1

0 0.6 0.8 1

UAJpftot (m/s)

U/Upltot (m/s)

Figure 32 U

C-34 CPP Project 7255 Point 33; 0 deg 150 100 50 0

0.5 UAJpttot (m/s)

Point 33; 90 deg 150 100 50 Point 33; 22.5 deg Point 33; 45 deg Point 33; 67.5 deg

,al *"/'L

,.I *" #'%

d 100 100 N

N 50 50 0

0l 0

0.5 1

0 0.5 1

UAJpitot (m/s)

U/Upltot (mis)

Point 33; 112.5 deg Point 33; 135 deg 150 1

150 1

1001 /

150 501 0

0.5 1

UAJpdtot (m/s)

Point 33; 157.5 deg 150 4

100 p

N 100 50 1001 E

N 50 501 0

0 0.5 1

UAJpitot (m/s)

Point 33; 180 deg 150 100 N

50 0 0.6 0.8 1

U/Upltot (m/s)

Point 33; 270 deg 150 100 50 0 0.6 0.8 1

UAJpRtot (m/s) 0 J 0.6 0.8 1

U/Upitot (m/s)

Point 33; 202.5 deg 150 P

100 50

/

N 0.

0.6 0.8 1

UAUpitot (mis)

Point 33; 292.5 deg 150F

.AA

  • p 0

0.6 0.8 1 UJUpitot (m/s)

Point 33; 225 deg 150 100 N

50 0 0.6 0.8 1

U/lUpitot (m/s)

Point 33; 315 deg 150 0 0.6 0.8 1

UAUpltot (m/s)

Point 33; 247.5 deg I J)U 100 50

//

0 0.6 0.8 1

UAJpitot (mis)

Point 33; 337.5 150 100 deg 100 E

N 100 50 0

i I

E 501 5

0 0.6 0.8 1

0.6 0.8 1

UAJpftot (m/s) 50 0

0.5 UAJpitot (m/s)

U/Upitot (m/s)

Figure 33

C-35 CPP Project 7255 E

N Point 34; 0 deg 150 100 50

/

0*

Point 34; 22.5 deg Point 34; 45 deg 150-

.4 r*'1 100 1

E E

50 I 'U 100 50 0

0.5 1

UAJpitot (m/s)

Point 34; 135 deg Point 34; 67.5 deg

.4.i*

L I 00 I100 50 0

0.5 1

UAJpitot (m*s) 0.6 0.8 1

UAJpftot (mis)

Point 34; 90 deg

150, i

0 0.6 0.8 1

UiUpltot (m/s)

Point 34; 112.5 deg

150, 1

0 Point 34; 157.5 deg

150, 150, 100 E

N E

N E

N r r't 100 50 0

3 E

100 N

1001 50 00 0.5 1

UAJpitot (m/s)

Point 34; 180 deg 150 100

'E N

50 0

0 0.5 1

UAJpftot (m/s)

Point 34; 270 deg 150 1

0 0.5 1

UAUpItot (m/s)

Point 34; 202.5 deg

150,

?

.4 (~t~

IL 5

ot /

00 0.5 0

0 0.5 1

UAJpitot (m/s)

Point 34; 225 deg 150 100 N

50 0

0 0.5 1

U/Upitot (m/s)

Point 34; 315 deg

150, 50 0

Point 34; 247.5 deg 150 100 N

0 0.5 1

UiUpftot (m/s) 50 1

0.6 0.8 1

U/Upftot (m/s)

Point 34; 337.5 deg 150 U..Upltot (m/s)

Point 34; 292.5 deg

150, 1

100 50 0

0.6 0.8 1

100 N

I N

100 50

/r 1001 N

T 501 501 0.6 0.8 1

0.6 0.8 1 0

0 0

0 0.6 0.8 1

UAJpftot (m/s)

UAJpitot (m/s)

U/Upltot (m/s)

UUJpflot (m/s)

Figure 34

C-36 CPP Project 7255 Point 35; 0 deg 150 Point 35; 22.5 deg Point 35; 45 deg 150r 1001 E

N 100 N

E N

501 50 100 E

N 50 I

0.0 0.5 1

Ui~phot (mls)

Point 35; 135 deg

150, Point 35; 67.5 deg 150 100 f

50

/

00 0.5 1

uAJpitot (M/s)

Point 35; 157.5 deg 150 r 0

0.6 0.8 1

UAJpltot (m/s)

Point 35; 90 deg 0.6 0.8 1

UIUpitot (mis)

Point 35; 112.5 deg 150 E

N 100 50 0

0.5 1

UAJpltot (m/s)

Point 35; 180 deg 150 100 50 100 9

E N

r E N

100 50 PI 50 000 0.5 1

UAJpftot (m/s)

Point 35; 202.5 deg 150 00 0.5 1

UiUpItot (m/s)

Point 35; 225 deg

.4 L.t-r E

N 100 50 100 E

N E

N 50 I00 E

50 0

0.6 0.8 1

UAJpitot (m/s)

Point 35; 315 deg

150, 0 0.6 0.8 1

U&Jpitot (m/s)

Point 35; 270 deg 150 --

0 0.6 0.8 1

UAJpitot (m/s)

Point 35; 292.5 deg 150 100 50 0.6 0.8 1

0 0.6 0.8 1

UAJpitot (m/s)

Point 35; 247.5 deg 150 100 50 0.6 0.8 1

UAJpltot (m/s)

Point 35; 337.5 deg 150 100 J

50 0 0.6 0.8 1

U/Upitot (m/s) 100 1001 N

E N

N 50 50 0 0.6 0.8 1

0 0.6 0.8 1

U/Upitot (m/s)

U/Upitot (m/s)

U/Upftot (m/s)

Figure 35 UI

C-37 CPP Project 7255 Point 36; 0 deg Point 36; 22.5 deg Point 36; 45 deg Point 36; 67.5 deg 150 100 150 100 I

15U0 150 E

N N

100 50 lf 100 E

50 50 50

.I 0

0.5 1

UAJpltot (m/s) 0.6 0.8 1

UJUpltot (mis)

Point 36; 90 deg 150 100 j

50 N

00 0.5 1

UJUpltot (m/s)

Point 36; 112.5 deg 150 0

0.5 1

UJUpltot (mis) 0 Point 36; 135 deg Point 36; 157.5 deg 150 150 100

.v d

E N

100 50

/

f 1001 E

N 50 501 0.0 0.5 1

UAJpitot (m/s)

Point 36; 180 deg 150 100 E

50 N

00 0.5 1

U/Upltot (m/s)

Point 36; 270 deg 150 100 JN 50 0ý 0

0.5 1

UAUpitot (m/s) 00 0.5 1

UAJphtot (m/s)

Point 36; 202.5 deg 150 100 2'

0 0

0.5 1

U/UpItot (m/s)

Point 36; 225 deg 150 0

0 0

0.5 1

Uinptot (m;27s)

Point 36; 247.5 deg l1 1C 100 50 E

50 5

09 50 0

A 0

0.5 1

U/Upitot (m/s) 00 0.5 1

UJUpItot (m/s)

Point 36; 292.5 deg 15011 0

0.5 1

UAJpitot (m/s)

Point 36; 315 deg Point 36; 337.5 deg 4 ~

I 50 1001 100 E

N 550

?I 00 0

0.5 1

U/JUptot (m/s) 50 I

0.6 0.8 1

U/Jpftot (m/s)

N 100 50 0.6 0.8 1

U/Upitot (m/s) 1501 0

0 Figure 36

C-38 CPP Project 7255 Point 37; 0 deg 150 Point 37; 22.5 deg 150 1

Point 37; 45 deg Point 37; 67.5 deg 150 150 100 100 E

N E

N E

100 50 100 E

N J

50 50 50 0 0.6 0.8 1

UAJpftot (m/s)

Point 37; 90 deg 150 0

0 0.5 1

UiUpltot (m/s)

Point 37; 112.5 deg 150 i

0

/

0 0.5 1

UAJpitot (m/s)

Point 37; 135 deg 150r 00 0.5 1

UAJpltot (m/s)

Point 37; 157.5 deg 150 100 1001 E

N N

E E

100 50 N

100

/

50 L N

0 0.5 1

UAJpftot (mis)

Point 37; 180 deg 150 501 50 00 0.5 00 0.5 1

UAJpitot (m/s) 00 0.5 UAJpltot (m/s)

UiUpltot (m/s)

Point 37; 202.5 deg 150[

-- 7 i Point 37; 225 deg 1U5r I UU 50 I

N I UU 50 100

'p/

E N

50 Point 37; 247.5 deg 150 100 50

/

0 0.6 0.8 1

UiUpltot (m/s)

Point 37; 337.5 deg

150, 0

0.6 0.8 1

UAJpitot (m/s)

Point 37; 270 deg

150, 0

0 0.6 0.8 1

0.6 0.8 1

UAJpftot (m/s)

UiUpltot (m/s)

Point 37; 292.5 deg Point 37; 315 deg

150, 150, 100 /

N E

N 50 100 50 0

E N

100 50 0

100 50 E

N 100 50 0

0 0.6 0.8 1

UAJpitot (m/s) 0.6 0.8 1

UAJpltot (mis) 0.6 0.8 1

U/Upltot (m/s) 0.6 0.8 1 UAJpiltot (m/s)

Figure 37 m

C-39 CPP Project 7255 Point 38; 0 deg Point 38; 22.5 deg Point 38; 45 deg Point 38; 67.5 deg E

N 1 5u 100 E

50 0

0.5 UAJpitot (m/s)

Point 38; 90 deg 150

150, 100 100

.?

4 150 E

150 100 TI E

50 50 50 o'

0 L 0

0.5 1

0 0.5 1

UAJpltot (m/s)

UJpitot (m/s)

Point 38; 112.5 deg Point 38; 135 deg 150 150 0

0 0.5 1

UAJpftot (m/s)

Point 38; 157.5 deg 150 7

100 T

100 /

100 10 E

N 50 50 5

0 0

0 0

0 0.5 1

E N

50 00 0

0.5 1

UAJpftot (m/s)

Point 38; 180 deg

150, 1

00 0.5 1

UAJpltot (m/s)

Point 38; 202.5 deg

150, 0

0 0.5 1

U/Upitot (m/s)

Point 38; 247.5 deg 100 N

N

,1 t00l E

f 50 0

0.6 0.8 1

UAJpftot (m/s)

Point 38; 270 deg 150 100 N

50 0 0.6 0.8 1

100 50 0 0.6 0.8 1

U/Upitot (m/s)

Point 38; 292.5 deg 150 UA~pitot (m/s)

Point 38; 225 deg 150 E

100N 50

/

0*

0.6 0.8 1

U/Upftot (m/s)

Point 38; 315 deg 150 100

/

150,r

.4 (I",

50 0 0.6 0.8 1

uAupntot (m/s)

Point 38; 337.5 deg 150 100 100 E

50 0

50 0.6 0.8 1

/

0.6 0.81 50 N

0 0.5 1

UJUpftot (m/s) 0' 0

UiUpftot (m/s)

UAJpltot (m/s)

UAJpitot (m/s)

Figure 38 U

CPP, Inc.

40 Project Error! Reference source not found.

U