ML13246A010

From kanterella
Jump to navigation Jump to search
Technical Specification (TS) and Tech Spec Bases (Tsb) Manual Holders
ML13246A010
Person / Time
Site: Mcguire, McGuire  Duke Energy icon.png
Issue date: 08/20/2013
From: Beaver B
Duke Energy Corp
To:
Office of Nuclear Reactor Regulation
References
DUK132320015
Download: ML13246A010 (11)


Text

DISPOSITION OF THE ORIGINAL DOCUMENT WILL BE TO PRIORITY Normal THE TRANSMITTAL SIGNATURE UNLESS RECIPIENT IS Date: 08120/13 OTHERWISE IDENTIFIED BELOW Document Transmittal #: DUK132320015

1) 02361 QATS-MG01MM
2) 02388 BOB SCHOMAKER LYNCHBG, VA Duke Energy QA CONDITION [ Yes
  • No
3) 02532 RESIDENT NRC INSPECT MG01NRC OTHER ACKNOWLEDGEMENT REQUIRED 0 Yes DOCUMENT TRANSMITTAL FORM
4) 02546 WC LIBRARY - MG01WC IF QA OR OTHER ACKNOWLEDGEMENT REQUIRED, PLEASE
5) 03044 MCG DOC CNTRL MISC MAN MG05DM ACKNOWLEDGE RECEIPT BY RETURNING THIS FORM TO:

REFERENCE

6) 03614 MCG OPS PROCEDURE GP MG01OP
7) 03744 OPS TRNG MGR. MG03OT MCGUIRE NUCLEAR STATION Duke Energy
8) 03759 US NUC REG WASHINGTON, DC McGuire
9) 03796 SCIENTECH CLEARWTR, FL TECHNICAL SPECIFICATIONS (TS) DCRM MGO2DM
10) 04698 D E BORTZ EC07R 13225 Hagers Ferry Road
11) 04809 MCG PLANT ENG. LIBR. MG05SE TECHNICAL SPECIFICATIONS BASES Huntersville, N.C. 28078
12) 05262 J LFREEZE MG011E (TSB)
13) 05606 J C MORTON MG01EP
14) 08103 WESTINGHOUSE ELECTRIC CO LLC
15) 09665 JON H THOMPSON, USNRC RECORD RETENTION #698650 Rec'd By Page 2 of 2 Date 1 1 r r -r -------- ', -, _____ ______ ______ -4 -I DOCUMENT NO QACOND REV #/ DATE DISTR CODE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TOTAL t 1 I t t I ~ +/- I +/- 4 4 4 4 4-F + I MEMO NA - 05/13/13 MADM-04B V1 V1 V1 x V3 V1 V1 Vl V1 V1 V1 Vl vl 30 TSB LIST OF EFFECTIVE SECTIONS NA 115 05/13/13 TSB 3.4.13 NA 126 05/13/13 REMARKS: PLEASE UPDATE ACCORDINGLY. S D CAPPS VICE PRESIDENT MCGUIRE NUCLEAR STATION BY:

B C BEAVER MGO1RC BCB/BRG

May 13, 2013 MEMORANDUM To: All McGuire Nuclear Station Technical Specification (TS) and Tech Spec Bases (TSB) Manual Holders

Subject:

McGuire TSB Updates REMOVE INSERT TS Bases Manual TSB LOES (Entire Section) TSB LOES (Revision 1]5)

TSB 3.4.13 (Entire Section) TSB 3.4.13 (Entire Section) Rev 126 Revision numbers may skip numbers due to Regulatory Compliance Filing System.

Please call me if you have questions.

Bonnie Beaver Regulatory Compliance 875-4180

McGuire Nuclear Station Technical Specification Bases LOES TS Bases are revised by section Page Number Revision Revision Date BASES (Revised per section) i Revision 87 8/15/07 ii Revision 87 8/15/07 iii Revision 87 8/15/07 B 2.1.1 Revision 51 01/14/04 B 2.1.2 Revision 109 9/20/10 B 3.0 Revision 81 3/29/07 B 3.1.1 Revision 115 3/29/11 B 3,1.2 Revision 115 3/29/11 B 3.1.3 Revision 10 9/22/00 B 3.1.4 Revision 115 3/29/11 B 3.1.5 Revision 115 3/29/11 B 3.1.6 Revision 115 3/29/11 B 3.1.7 Revision 58 06/23/04 B 3.1.8 Revision 115 3/29/11 B 3.2.1 Revision 115 3/29/11 B 3.2.2 Revision 115 3/29/11 B 3.2.3 Revision 115 3/29/11 B 3.2.4 Revision 115 3/29/11 B 3.3.1 Revision 124 10/1/12 B 3.3.2 Revision 122 10/25/12 B 3.3.3 Revision 122 10/25/12 B 3.3.4 Revision 115 3/29/11 B 3.3.5 Revision 115 3/29/11 B 3.3.6 Not Used - Revision 87 6/29/06 B 3.4.1 Revision 115 3/29/11 B 3.4.2 Revision 0 9/30/98 B 3.4.3 Revision 115 3/29/11 B 3.4.4 Revision 115 3/29/11 B 3.4.5 Revision 115 3/29/11 McGuire Units 1 and 2 Page I Revision 115

Page Number Amendment Revision Date B 3.4.6 Revision 115 3/29/11 B 3.4.7 Revision 115 3/29/11 B 3.4.8 Revision 115 3/29/11 B 3.4.9 Revision 115 3/29/11 B 3.4.10 Revision 102 8/17/09 B 3.4.11 Revision 115 3/29/11 B 3.4.12 Revision 115 3/29/11 B 3.4.13 Revision 126 5/1/13 B 3.4.14 Revision 115 3/29/11 B 3.4.15 Revision 115 3/29/11 B 3.4.16 Revision 121 8/5/09 B 3.4.17 Revision 115 3/29/11 B 3.4.18 Revision 86 6/25/07 B 3.5.1 Revision 115 3/29/11 B 3.5.2 Revision 116 8/18/11 B 3.5.3 Revision 57 4/29104 B 3.5.4 Revision 122 10/25/12 B 3.5.5 Revision 115 3/29/11 B 3.6.1 Revision 53 2/17/04 B 3.6.2 Revision 115 3/29/11 B 3.6.3 Revision 115 3/29/11 B 3.6.4 Revision 115 3/29/11 B 3.6.5 Revision 115 3/29/11 B 3.6.6 Revision 122 10/25/12 B 3.6.7 Not Used - Revision 63 414/05 B 3.6.8 Revision 115 3/29/11 B 3.6.9 Revision 115 3/29/11 B 3.6.10 Revision 120 4/26/12 B 3.6.11 Revision 122 10/25/12 B 3.6.12 Revision 115 3/29/11 B 3.6.13 Revision 115 3/29/11 B 3.6.14 Revision 115 3/29/11 B 3.6.15 Revision 125 10/19/12 B 3.6.16 Revision 115 3/29/11 McGuire Units 1 and 2 Page 2 Revision 115

Page Number Amendment Revision Date B 3.7.1 Revision 102 8/17/09 B 3.7.2 Revision 105 2/22/10 B 3.7.3 Revision 102 8/17/09 B 3.7.4 Revision 115 3/29/11 B 3.7.5 Revision 115 3/29/11 B 3.7.6 Revision 115 3/29/11 B 3.7.7 Revision 115 3/29/11 B 3.7.8 Revision 115 3/29/11 B 3.7.9 Revision 120 4/26112 B 3.7.10 Revision 115 3/29/11 B 3.7.11 Revision 115 3/29/11 B 3.7.12 Revision 115 3/29/11 B 3.7.13 Revision 115 3/29/11 B 3.7.14 Revision 115 3/29/11 B 3.7.15 Revision 66 6/30/05 B 3.7.16 Revision 115 3/29/11 B 3.8.1 Revision 115 3/29/11 B 3.8.2 Revision 92 1/28/08 B 3.8.3 Revision 123 9/29/12 B 3.8.4 Revision 115 3/29/11 B 3.8.5 Revision 41 7/29/03 B 3.8.6 Revision 115 3/29/11 B 3.8.7 Revision 115 3/29/11 B 3.8.8 Revision 115 3/29/11 B 3.8.9 Revision 115 3/29/11 B 3.8.10 Revision 115 3/29/11 B 3.9.1 Revision 115 3/29/11 B 3.9.2 Revision 115 3/29/11 B 3.9.3 Revision 115 3/29/11 B 3.9.4 Revision 115 3/29/11 B 3.9.5 Revision 115 3/29/11 B 3.9.6 Revision 115 3/29/11 B 3.9.7 Revision 115 3/29/11 McGuire Units 1 and 2 Page 3 Revision 115

RCS Operational LEAKAGE B 3.4.13 B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.13 RCS Operational LEAKAGE BASES BACKGROUND Components that contain or transport the coolant to or from the reactor core make up the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS.

During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE.

10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.

The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public.

A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection.

This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA).

Per 10 CFR 50.2, RCPB means all those pressure-containing components of pressurized water-cooled nuclear power reactors, such as McGuire Units I and 2 B 3.4.13-1 Revision No. 126

RCS Operational LEAKAGE B 3.4.13 BASES BACKGROUND (Continued) pressure vessels, piping, pumps, and valves, which are: (1) Part of the reactor coolant system, or (2) Connected to the reactor coolant system, up to and including any and all of the following: (a) The outermost containment isolation valve in system piping which penetrates primary reactor containment, (b) The second of two valves normally closed during normal reactor operation in system piping which does not penetrate primary reactor containment, (c) The reactor coolant system safety and relief valves.

APPLICABLE Except for primary to secondary LEAKAGE, the safety analyses do not SAFETY ANALYSES address operational LEAKAGE. However, other operational LEAKAGE is related to the safety analyses for LOCA; the amount of leakage can affect the probability of such an event. The safety analysis (Ref. 3) for an event resulting in steam discharge to the atmosphere assumes a 389 gpd primary to secondary leakage as the initial condition (limited to 135 gpd per SG). Any event in which the reactor coolant system will continue to leak water inventory to the secondary side, and in which there will be a postulated source term associated with the accident, utilizes this leakage value as an input in the analysis. These accidents include the rod ejection accident, locked rotor accident, main steam line break, steam generator tube rupture and uncontrolled rod withdrawal accident. The rod ejection accident, locked rotor accident and uncontrolled rod withdrawal accident yield a source term due to postulated fuel failure as a result of the accident. The main steam line break and the steam generator tube rupture yield a source term due to perforations in fuel pins causing an iodine spike. Primary to secondary side leakage may escape the secondary side due to flashing or atomization of the coolant, or it may mix with the secondary side SG water inventory and be released due to steaming of the SGs. The rod ejection accident is limiting compared to the remainder of the accidents with respect to dose results. The dose results for each of the accidents delineated above are well within the 10 CFR 100 limits for the rod ejection accident, and below a small fraction of 10 CFR 100 limits for the remainder of the accidents.

The RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36 (Ref. 4).

LCO RCS operational LEAKAGE shall be limited to:

a. Pressure Boundary LEAKAGE No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher McGuire Units I and 2 B 3.4.13-2 Revision No. 126

RCS Operational LEAKAGE B 3.4.13 BASES LCO (continued)

LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. Pressure boundary LEAKAGE is nonisolable LEAKAGE from the RCPB through an RCS component body, pipe wall or vessel wall. LEAKAGE past seals and gaskets and SG LEAKAGE are not pressure boundary LEAKAGE.

b. Unidentified LEAKAGE One gallon per minute (gpm) of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring and containment sump level monitoring equipment can detect within a reasonable time period. Violation of this LCO could result in continued degradation of the RCPB, if the LEAKAGE is from the pressure boundary.
c. Identified LEAKAGE Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of unidentified or total LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE captured by the pressurizer relief tank and reactor coolant drain tank, as well as quantified LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered LEAKAGE). Violation of this LCO could result in continued degradation of a component or system.
d. Primary to Secondary LEAKAGE through All Steam Generators (SGs)

Total primary to secondary LEAKAGE amounting to 389 gpd through all SGs produces acceptable offsite doses in the accident analysis. Violation of this LCO could exceed the offsite dose limits for the previously described accidents. Primary to secondary LEAKAGE must be included in the total allowable limit for identified LEAKAGE.

e. Primary to Secondary LEAKAGE through Any One SG The limit of 135 gallons per day per SG is based on the LEAKAGE rate assumptions in the accident analyses (Ref. 9). This limit is more conservative than the performance criterion in NEI 97-06, Steam Generator Program Guidelines (Ref. 7) which is based on operating experience with SG tube degradation mechanisms that result in tube leakage. The 135 gallons per day limit in conjunction with the implementation of the Steam Generator Program is an McGuire Units 1 and 2 B 3.4.13-3 Revision No. 126

RCS Operational LEAKAGE B 3.4.13 BASES LCO (continued) effective measure for minimizing the frequency of steam generator tube ruptures.

APPLICABILITY In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized.

In MODES 5 and 6, LEAKAGE limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced potentials for LEAKAGE.

LCO 3.4.14, "RCS Pressure Isolation Valve (PIV) Leakage," measures leakage through each individual PIV and can impact this LCO. Of the two PIVs in series in each isolated line, leakage measured through one PIV does not result in RCS LEAKAGE when the other is leak tight. If both valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable unidentified LEAKAGE.

ACTIONS A. 1 Unidentified LEAKAGE or identified LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB.

B.1 and B.2 If any pressure boundary LEAKAGE exists, or primary to secondary LEAKAGE is not within limits, or if unidentified LEAKAGE, or identified LEAKAGE cannot be reduced to within limits within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE.

The reactor must be brought to MODE 3 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and MODE 5 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

McGuire Units 1 and 2 B 3.4.13-4 Revision No. 126

RCS Operational LEAKAGE B 3.4.13 BASES SURVEILLANCE SR 3.4.13.1 REQUIREMENTS Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance.

The RCS water inventory balance must be performed with the reactor at steady state operating conditions (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown flows, and RCP seal injection and return flows). The surveillance is modified by two Notes. Note 1 states that this SR is not required to be performed until 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after establishment of steady state operation. The 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established. See TS 1.4, example 3, for additional guidance on use of this provision.

Steady state operation is required to perform a proper inventory balance; calculations during maneuvering are not useful and a Note requires the Surveillance to be met when steady state is established. For RCS operational LEAKAGE determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown flows, and RCP seal injection and return flows.

An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the containment atmosphere radioactivity and the containment sump level. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These leakage detection systems are specified in LCO 3.4.15, "RCS Leakage Detection Instrumentation."

Note 2 states that this SR is not applicable to primary to secondary LEAKAGE because LEAKAGE of 135 gallons per day cannot be measured accurately by an RCS water inventory balance.

The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

SR 3.4.13.2 This SR verifies that primary to secondary LEAKAGE is less than or equal to 135 gallons per day through any one SG and less than or equal to 389 McGuire Units 1 and 2 B 3.4.13-5 Revision No. 126

RCS Operational LEAKAGE B 3.4.13 BASES SURVEILLANCE (continued) gallons per day total through all SGs. Satisfying the primary to secondary LEAKAGE limit ensures that the assumptions of the safety analyses are met (Ref. 3). If this SR is not met, compliance with this LCO, as well as LCO 3.4.18, "Steam Generator Tube Integrity," should be evaluated. The 135 and 389 gallons per day limits are measured at a temperature of 585 0 F as described in Ref. 3. The operational LEAKAGE rate limit applies to LEAKAGE through any one SG. If it is not practical to assign the LEAKAGE to an individual SG, all the primary to secondary LEAKAGE should be conservatively assumed to be from one SG.

The Surveillance is modified by a Note which states that the Surveillance is not required to be performed until 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> after establishment of steady state operation. For RCS primary to secondary LEAKAGE determination, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program. The primary to secondary LEAKAGE is determined using continuous process radiation monitors or radiochemical grab sampling in accordance with the EPRI guidelines (Ref. 8).

REFERENCES 1. 10 CFR 50, Appendix A, GDC 30.

2. Regulatory Guide 1.45, May 1973.
3. UFSAR, Section 15.
4. 10 CFR 50.36, Technical Specifications, (c)(2)(ii).
5. UFSAR, Table 18-1.
6. McGuire License Renewal Commitments MCS-1274.00-00-0016, Section 4.29, RCS Operational Leakage Monitoring Program.
7. NEI 97-06, "Steam Generator Program Guidelines".
8. EPRI, "Pressurized Water Reactor Primary-to-Secondary Leak Guidelines."
9. UFSAR, Table 15-24.

McGuire Units 1 and 2 B 3.4.13-6 Revision No. 126