ML13004A470

From kanterella
Jump to navigation Jump to search
Attachment 2, Diablo Canyon Power Plant Units 1 & 2 Process Protection System (PPS) Replacement Interface Requirements Specification, Revision 7
ML13004A470
Person / Time
Site: Diablo Canyon  
Issue date: 10/23/2012
From:
Pacific Gas & Electric Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML130040687 List:
References
Download: ML13004A470 (62)


Text

Attachments 8-13 to the Enclosure contain Proprietary Information - Withhold Under 10 CFR 2.390 Enclosure PG&E Letter DCL-12-120 PG&E Document "Diablo Canyon Power Plant Units I & 2 Process Protection System (PPS) Replacement Interface Requirements Specification, Revision 7" (Non-Proprietary)

Attachments 8-13 to the Enclosure contain Proprietary Information When separated from Attachments 8-13 to the Enclosure, this document is decontrolled.

Pacific Gas and Electric Company Diablo Canyon Power Plant (J

Units I & 2 Process Protection System (PPS) Replacement Interface Requirements Specification Nuclear Safety-Related Rev 7

Ž~w iLu~

Prepared Sig.

Print Last Name Reviewed Sig.

Print Last Name Coord Sig.

Print Last Name Approval Sig.

Print Last Name Z eri " -

"I NI11 Lint Date L"

User ID JWW3 Date 2//i 1.1z.-

User ID RAL4 Date User ID Date JA7A I

User ID i$

This page left blank by intent

REVISION HISTORY Revision Affected Reason for Revision Number Pages 1

All Initial Issue 1.4.4.8 Added STP 1-33 1.4.5.4 ALS Topical Report is Rev 1 1.5.2 Revised Tricon PLC description 1.5.3.1 Deleted STB and COM boards - not used 1.5.3.2 Clarified ASU capability 1.5.3.3 Added section and new Figure 1-1 to clarify ALS A and ALS B connections to SSPS 1.5.5 Revised section to clarify signal characteristics and open RTD detection 1.5.5.6 Revised TCM communications description 1.5.7 Added PPS Gateway Computer Scope and CC4 system health HMI unit 1.5.8 Added Response Time Allocation Clarified PRXM and RRXM chasses notation Figure 1 2 Reassigned safety-related OOS switches to safety-related PRXM Chassis 2

through Replaced Class 2 PS Failure contact inputs to Class 2 RRXM with safety-Figure 1 21 related + 24 Vdc PS output to safety-related PRXM chassis Removed FW flows from Class 2 RRXM Appendix 3.1 (1/O General revision List) 2.1.1 Clarified ALS input loop power supply Clarified PTC Thermistor terminology 2.1.2 Deleted reference to Fig 2-2 through Fig 2-4 2.3.3 Added new section - one-way communications link from ALS to Maintenance Workstation.

Renumbered remaining sections.

2.3.6.3 Protocol is Ethernet based Appendix 3.1 General revision (All sheets)

Clarified "Safety-Related" and "Non-Safety-Related" items Entire Document Changed MVDU to Maintenance Workstation 1.3.1 Added Electrical Class 1E definition, clarified instrument class definitions 1.4.4.9, 1.4.5.5, Added references 1.4.5.6, 1.4.5.7 1.5.7 Clarified port aggregator tap description and scope 1.5.8 ALS response time is 150 ms for temperature channels per ALS comment Figure 11 Added loopback from trip switch load side; port aggregator tap is PG&E scope; Figure 1 21 Figure 1-14, Figure 1-19 corrected typos in descriptions Figure 1 22 Updated figure per ALS topical report 2.1 Clarified I/O power supply requirements and scope Figure 2 2 Clarified TE-413A and TE-423 for illustration only 2.3 2.7.1 Updated communications Figure 2 1 S

Figure 2 3 Added new figures per ALS coordination meeting 05/17-18/2011 Figure 2 3 1.5.3.3 Figure 11 Updated per ALS design documentation 1.5.7 Updated isolation per ALS design documentation 1.5.8 Updated response time per ALS documentation

REVISION HISTORY, continued Revision Affected Reason for Revision Number Pages Figure 1 2 Figure 1 3 Figure 1 7 Figure 1 8 Updated figures to illustrate ALS Line Sense Modules and external Trip Switches Figure 1 12 Figure 1 13 Figure 1 17 Figure 1 18 Figure 1 6 Figure 1 11 Updated figures to include Class II power supply failure discrete inputs Figure 1 16 4, cont.

Figure 1 21 Figure 1 22 Corrected class break 2.1.2 Clarified Triconex Al cards Figure 2 1 Figure 2 2 Reformatted Figure 2 2 2.1.4 Added LSM description Figure 2 4 Added figures Figure 2 5 2.7.2.3 Updated per ALS design documentation Global (not Deleted proprietary information designations marked) 1.4.3.4 Added reference 1.4.4.4 Deleted reference to SCM - not relevant to this document 1.5.5 Revised section title for clarity

1.5.6 Clarified

Maintenance Workstation is not used to configure the Tricon Discussed TAB connection to ALS 1.5.7 Editorial Figure 1 2 through Updated and replaced Figure 1 22 2.1 Moved Figures to end of Section.

2.2 Updated 2.1.1 Revised Item 5 and 6 -Power supply output voltage will be determined in the 5

detailed design.

Moved item 4 from 2.1.2 to Item 4 in this section and renumbered.

Updated Item 7 2.1.2 Updated Editorial corrections Removed unused items - not requirements Figure 2 2 Updated per Triconex Field Termination Guide Figure 2 3 2.3 Updated section per vendor hardware descriptions 2.3.1 I/O power supply locations determined by detailed design 2.3.2.1 Editorial corrections 2.3.6 Updated description -There are two TCM cards in the Tricon Main Chassis.

2.3.6.1 Updated communications

REVISION HISTORY, continued Revision.

Affected Reason for Revision Number Pages 1.1 Removed "... Later..." discussion - Later items resolved at this revision 1.3.2 Updated acronym list 1.5.4 Updated Isolation device description Figure 1-1 Updated Title Figures 1-2, 1-3, Updated Prot Set I instrument tags and power supplies 1-5, 1-6 Figures 1-7, 1-8, Updated Prot Set II instrument tags and power supplies 1-10, 1-11 6

Figures 1-12,1-Updated Prot Set III instrument tags and power supplies 13, 1-15, 1-16 Figures 1-17,1-Updated Prot Set IV instrument tags and power supplies 18, 1-20, 1-21 Deleted descriptive sections; information not needed here - contained in other 2.7.1 documents.

Updated section title Vendor CS Innovations 2.7.2 Deleted descriptive sections; information not needed here - contained in other documents 2.8 Added new alarm interface requirements section 1.3.2 Added HMI, KVM to Acronyms Table 1.4.5.6 Corrected document number 1.4.5.8 Added DCPP ALS System Design Specification 6116-00011 1.4.5.9 Added ALS Platform Specification 6002-00011 1.4.5.10 Added DCPP ALS-ASU Communications Protocol Revised last sentence; trip switches may be used to generate a partial channel trip independently of the ALS logic 1.5.6 Split MWS into two units; one each for Tricon and ALS Added KVM switch, KVM Figure 1-2

1.

Change BYP/OOS Alarm to BYP Alarm Figure 1-7

2.

Updated ALS power supply tagnames and descriptions Figure 1-12

3.

Added RCS flow isolators (except Prot Set IV)

Figure 1-17

4.

Updated ALS TxB1 and TxB2 interfaces

1.

Change BYP/OOS Alarm to BYP Alarm Figure 1-3

2.

Updated ALS power supply tagnames and descriptions 7

Figure 1-8

3.

Added RCS Flow isolators (except Prot Set IV)

Figure 1-13

4.

Added ALS Maintenance Workstation (Cont. sheet)

Figure 1-18

5.

Added KVM Switch, HMI peripherals (Cont. Sheet)

6.

Updated ALS TxB1 and TxB2 interfaces Figure 1-5 Figure 1-10 Changed "Manual Trip Switch" to "Trip Status" Figure 1-15 Corrected directional arrows between from PRXM to RRXM (Figure 1-20 only)

Figure 1ý20

1.

Added TC454B alarm DO (Set IV Only)

2.

Delete "PCS" from TM-454A analog output (Set IV Only)

Figure 1-6

3.

Changed BYP/OOS alarm to BYP alarm (New OOS alarm below)

Figure 1-11

4.

Added "PPS Set x Channel Out of Service Alarm" DO to MAS Figure 1-16

5.

Added "PPS Set x Time Synch" DI

6.

Remove ALS data links to MWS; clarified MWS is Tricon

7.

Added KVM Switch, HMI peripherals Figure 1-22 Split MWS~into two units; one each for Tricon and ALS. Added KVM switch, KVM

REVISION HISTORY, continued Revision I Affected Resnfrevio Number Pages ResnfrRvso 2.1.1.3 2.1.1.6.i Deleted manufacturer reference (Moore) - implementation detail 20 ohm isolator input is estimated 2.1.1.6 Deleted "adjustable" Added "input" 2.1.1.7.a Add "24 Vdc"; deleted sharing of Tricon analog input and output power supplies 2.1.1.7.c Analog output power supply cannot be shared with discrete signals per Tricon vl0 qualification 2.1.4 Added new figure to illustrate LSM functions Figure 2-1 Renumbered remaining figures Updated ALS analog input loop power supply designation; clarified 24 Vdc Figure 2-2 (was Changed ALS-321 from internal current shunt mode to external current shunt Figure 2-1)

(voltage) mode Added example Rs calculation for information only e2-4 Changed ALS-321 from internal current shunt mode to external current shunt Figure 2 (voltage) mode Figure 2-3 (was Updated Tricon analog input loop power supply designation; clarified 40 Vdc Figure 2-2) 2.3 Revised to reflect separate ALS and Tricon MWS computers and disconnection of 2.7.1 the TAB when the ASU is not in use.

2.7.2 Added KVM switch description Added ALS TxB and TAB protocol references Figure 2-6 (was Updated to show SSPS and RNASA ETT DO Power Supply voltage TBD by Figure 2-5) detailed design Figure 2-7 Added New figure to illustrate TAB communication cable connections 2.8.3.2.2)

Added reference to FRS New Section - Application constraints and requirements:

2.9.1 Tagname length restriction 2.9.2 Modbus aliases 2.9 2.9.3 Tagname convention 2.9.4 Disallowed function block names 2.9.5 Quality Codes 2.9.6 Online Maintenance and Test Interface 7, cont.

Appendix 3.1 Reformatted Corrected tagnames and engineering units various sheets Added new points and Tricon quality check for Gateway Computer all sets Corrected ALS Power Supply failure alarm descriptions PSII and PS Ill Revised cells are shown in red text Separated into individual appendices for each Protection Set

Process Protection System Revision: 7 Interface Requirements Specification Page 1 of 55 Contents I INTRO DUCTIO N......................................................................................................................................

............. 3 1.1 P U R P O S E....................................................................................................................................................

....... 3 1.2 S C O P E................................................................................................................................................................

3 1.3 DEFINITIONS AND ACRONYMS................................................................................................................................

3 1.4 REFERENCED DOCUMENTS...................................................................................................................................

5 1.5 IDENTIFICATION....................................................................................................................................................

7 2

INTERFACE REQ UIREM ENTS.............................................

................................... 36 2.1 PROCESS INTERFACE REQUIREMENTS.................................................................................................................. 36 2.2 SAFETY-RELATED ALS/TRICON INTERFACE REQUIREMENTS.................................................................................. 44 2.3 DATA COMMUNICATION INTERFACE REQUIREMENTS........................................................................................... 44 2.4 SYSTEM POW ER REQUIREMENTS.........................................................................................................................

46 2.5 INSTRUMENT POWER SUPPLY LOCATIONS......................................................................................................... 46 2.6 SYSTEM POWER S6URCES PROVIDED BY PG&E..............................................................................................

46 2.7 W ORKSTATIONS.................................................................................................................................................

46 2.8 ALARM INTERFACE REQUIREMENTS......................................................................................................................

47 2.9 SOFTWARE CONSTRAINTS AND REQUIREMENTS.................................................................................................... 50 3

APPENDICES......................................................................................................................................................

55 3.1 PROTECTION SET Il/0 LIST 3.2 PROTECTION SET 111/0 LIST 3.3 PROTECTION SET IIl I/O LIST 3.4 PROTECTION SET IV I/0 LIST TABLES Table 1 Tagnam e Convention.................................................................................................................................

50 Table 2 Restricted Function Block Nam es.............................................................................................................. 51 Table 3 Quality Code Assignm ent...........................................................................................................................

52

Process Protection System Revision: 7 Interface Requirements Specification Page 2 of 55 Figures Figure 1-1 A LS D iversity A rchitecture C oncept..........................................................................................................

8 Figure 1-2 Replacement PPS Architecture - Set I ALS-A.....................................................................................

11 Figure 1-3 Replacement PPS Architecture - Set I ALS-B and Isolation Devices................................................

12 Figure 1-4 Replacement PPS Architecture - Set I Safety-Related Tricon Main Chassis.....................................

14 Figure 1-5 Replacement PPS Architecture - Set I Safety-Related Tricon Primary RXM Chassis........................ 15 Figure 1-6 Replacement PPS Architecture - Set I Non-Safety-Related Tricon Remote RXM Chassis................ 16 Figure 1-7 Replacement PPS Architecture - Set II ALS-A..................................................................................

17 Figure 1-8 Replacement PPS Architecture - Set II ALS-B and Isolation Devices................................................

18 Figure 1-9 Replacement PPS Architecture - Set II Safety-Related Tricon Main Chassis...................................

20 Figure 1-10 Replacement PPS Architecture - Set II Safety-Related Tricon Primary RXM Chassis.......................

21 Figure 1-11 Replacement PPS Architecture - Set II Non-Safety-Related Tricon Chassis......................................

22 Figure 1-12 Replacement PPS Architecture - Set Ill ALS-A..................................................................................

23 Figure 1-13 Replacement PPS Architecture - Set III ALS-B and Isolation Devices..............................................

24 Figure 1-14 Replacement PPS Architecture - Set III Safety-Related Tricon Main Chassis...................................

26 Figure 1-15 Replacement PPS Architecture - Set III Safety-Related Tricon Primary RXM Chassis..................... 27 Figure 1-16 Replacement PPS Architecture - Set Ill Non-Safety-Related Tricon Chassis...................................

28 Figure 1-17 Replacement PPS Architecture - Set IV ALS-A................................................................................

29 Figure 1-18 Replacement PPS Architecture - Set IV ALS-B and Isolation Devices..............................................

30 Figure 1-19 Replacement PPS Architecture - Set IV Safety-Related Tricon Main Chassis...................................

32 Figure 1-20 Replacement PPS Architecture - Set IV Safety-Related Tricon Primary RXM Chassis...................... 33 Figure 1-21 Replacement PPS Architecture - Set IV Non-Safety-Related Tricon Chassis...................................

34 Figure 1-22 Replacement PPS Non-Safety-Related Communications Architecture...............................................

35 F ig u re 2-1 LS M F u nctio n s........................................................................................................................................

3 8' Figure 2-2 Typical A LS A nalog Input W iring.............................................................................................................

39 Figure 2-3 Typical Tricon Analog Input Wiring....................................................................................................

40 Figure 2-4 Tricon/ALS PT-455 Interface Wiring...................................................................................................

41 Figure 2-5 ALS-A and ALS-B SSPS Connections (Deenergize to Trip Configuration).......................................

42 Figure 2-6 ALS-A and ALS-B SSPS Connections (Energize to Trip Configuration)............................................

43 Figure 2-7 Typical TAB Communication Link Connection...................................................................................

48

Process Protection System Interface Requirements Specification Revision: 7 Page 3 of 55 1

Introduction 1.1 1.2 Purpose This document specifies the requirements imposed on the Process Protection.System (PPS), its subsystems, and other system components to achieve interfaces among these entities that are required for the PPS to perform its design function.

This document is intended to be revised as the PPS replacement design progresses.

Scope The PPS is comprised of Tricon equipment provided by Invensys/Triconex and Advanced Logic System (ALS) equipment provided by Westinghouse CS Innovations, LLC.

This Interface Requirement Specification (IRS) provides: (1) requirements for the interfaces between external field devices such as process transmitters and the Tricon and the ALS; (2) electrical and communication interfaces between the Tricon and ALS and their associated peripheral devices; and (3) other interfacing Diablo Canyon Power Plant (DCPP) systems such as the Plant Process Computer (PPC), Main Annunciator System (MAS), Safety Parameter Display System (SPDS) and the Safety-Related 120 Vac and 125 Vdc Power Systems.

I All external interface requirements for each of these systems will be defined.

1.3 Definitions and Acronyms 1.3.1 Definitions The following definitions are used in this document:

TERM DEFINITION Channel An arrangement of components, modules, and software as required to generate a single protective action signal when required by a generating station condition. A channel loses its identity where single action signals are combined.

Electrical Class IE Design Class I electrical systems, components and equipment

[1.4.4.9]

perform safety-related functions. Instrument Class IA and IB Category 1 devices below are considered to serve Class 1 E functions. All other instrument classes are considered to serve non-Class 1 E functions.

Instrument Class IA Instrument Class IA instruments and controls are those that

[1.4.4.6]

initiate and maintain safe shutdown of the reactor, mitigate the consequences of an accident, or prevent exceeding 10 CFR 100 [1.4.5.2] off-site dose limits.

InstrUment Class IB Instrument Class IB instruments and controls are those that

[1.4.4.6]

are required for post-accident monitoring of Category 1 and 2 variables in accordance with Regulatory Guide 1.97, Revision 3 [1.4.3.2].

Instrument Class IC Instrument Class IC instruments and controls have the

[1.4.4.6]

passive function of maintaining the pressure boundary integrity of PG&E Design Class I piping systems.

Instrument Class ID Instrument Class ID instruments and controls are components

[1.4.4.6]

that have certain Design Class I attributes, but do not require conformance with all Class IA, IB, or IC requirements.

Process Protection System Interface Requirements Specification Revision: 7 Page 4 of 55 1.3.2 TERM

-DEFINITION Instrument Class II Instrument Class II components are Design Class II devices

[1.4.4.6]

with non-safety-related functions. However, certain Class II components are subjected to some graded quality assurance requirements.

Protection Set The physical grouping of process channels with the same channel designation. Each of the four redundant protection sets is provided with a separate and independent power feed and process instrumentation transmitters. Thus, each of the four redundant protection sets is physically and electrically independent from the other sets.

Acronyms

.ACRONYM 1iDEFINITION ALS Advanced Logic System AMSAC ATWS Mitigation System Actuation Circuitry ASU (ALS) Auxiliary Service Unit ATWS Anticipated Transient Without Scram CDD Conceptual Design Document CLB Core Logic Board COM Communications Board DCM Design Criteria Memorandum DDE Dynamic Data Exchange DCPP Diablo Canyon Power Plant DFWCS Digital Feedwater Control System FRS Functional Requirements Specification HMI Human Machine Interface I&C Instrumentation and Controls IEEE Institute of Electrical and Electronic Engineers I/O Input/Output IPB (ALS) Input Board IRS Interface Requirements Specification KVM Keyboard, Video display, and Mouse HMI peripheral devices LLC Limited Liability Corporation MAS Main Annunciator System MCR Main Control Room NQEL Nuclear Qualified Equipment List NR Narrow Range NRC (USNRC)

(United States) Nuclear Regulatory Commission OPB (ALS) Output Board OPDT Overpower Delta T OTDT Overtemperature Delta T PG&E (PGE)

Pacific Gas & Electric Company

Process Protection System Interface Requirements Specification Revision: 7 Page 5 of 55 ACRONYM DEFINITION PCS Process Control System PLC Programmable Logic Controller PPC Plant Process Computer PPS Process Protection System PRXM Primary Remote Expansion Module PSU (ALS) Power Supply Unit RCS Reactor Cooling System RNARA Auxiliary Relay Rack A RNASA Auxiliary Safeguards Rack A RNPxy PPS Racks X = 1-4 (Protection Sets I - IV)

Y = A, B, C, D, E (Protection Sets 1, 11)

Y= A, B, C (Protection Sets Il1, IV)

RNSIA/RNSIB SSPS Input Relay Cabinet Train A/Train B RRXM Remote RXM RTD Resistance Temperature Detector RXM Remote Expansion Module RVLIS Reactor Vessel Level Indication System SCM Software Configuration Management SPDS Safety Parameter Display System SRS Software Requirements Specification SSPS Solid State Protection System STB (ALS) Service and Test Board TCM Triconex Communication Module TMR Triple Modular Redundant TSAP TriStation 1131 Application Project WR Wide Range Referenced Documents General References and Standards The following codes, standards, and regulations referenced in this Section are totally or partially applicable to the activities covered by this Specification:

Institute of Electrical and Electronics Engineers (IEEE) 1.4.2.1 IEEE Standard 279-1971, "Criteria for Protection Systems for Nuclear Power Generating Stations" 1.4.2.2 IEEE Standard 603-1991, "IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations" United States Nuclear Regulatory Commission (USNRC) Regulatory Guides 1.4.3.1 Regulatory Guide 1.75, Rev. 2, "Physical Independence of Electric Systems" 1.4 1.4.1 1.4.2 1.4.3

Process Protection System Revision: 7 Interface Requirements Specification Page 6 of 55 1.4.3.2 Regulatory Guide 1.97, Rev. 3, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident" 1.4.3.3 Regulatory Guide 1.180, Rev. 1, "Guidelines for Evaluating Electromagnetic and Radio-Frequency Interference in Safety-Related Instrumentation and Control Systems" 1.4.3.4 U.S., Nuclear Regulatory Commission, Digital Instrumentation and Controls, Revision 1, "DI&C-ISG-04, Task Working Group #4: Highly-Integrated Control Rooms - Communications Issues (HICRc)," March 6, 2009 (ADAMS Accession No.ML083310185) 1.4.4 Implementing Documents 1.4.4.1 Process Protection System Replacement Conceptual Design Document (CDD) 1.4.4.2 Process Protection System Replacement Functional Requirements Specification (FRS) 1.4.4.3 Process Protection System Replacement System Software Requirements Specification (SRS) 1.4.4.4 Deleted 1.4.4.5 DCM S.-38A, Plant Protection System 1.4.4.6 DCM T-24, DCPP Instrumentation and Controls 1.4.4.7 DCM S-65, 120 VAC System 1.4.4.8 STP 1-33, Reactor Trip Time Test Program 1.4.4.9 DCM T-19, Electrical Separation and Isolation 1.4.5 Other References 1.4.5.1 Triconex Corporation Nuclear Qualified Equipment List (NQEL), latest version 1.4.5.2 Title 10 Code of Federal Regulations Part 100, Reactor Site Criteria 1.4.5.3 Letter No. NRC-V1 0-09-01, J. Polcyn (Invensys) to NRC, "Nuclear Safety-Related Qualification of the Tricon TMR Programmable Logic Controller (PLC) - Update to Qualification Summary Report Submittal and "Application for withholding Proprietary Information from Public Disclosure," dated September 9, 2009 1.4.5.4 Diablo Canyon Power Plant, Unit Nos. 1 and 2 - Safety Evaluation for Topical Report, "Process Protection System Replacement Diversity & Defense-In-Depth Assessment" (TAC Nos. ME4094 and ME4095), dated April 19, 2011 (ADAMS Accession No. ML110480845) 1.4.5.5 6002-00301, CS Innovations ALS Topical Report and Supporting Documents Submittal, July 29, 2010 (ADAMS Accession No. ML102160471) 1.4.5.6 6002-32102, CS Innovations, ALS 321 Design Specification 1.4.5.7 9700052-019, Field Terminations Guide for Tricon v9-1 0 Systems

Process Protection System Revision: 7 Interface Requirements Specification Page 7 of 55 1.4.5.8 6116-00011, DCPP ALS System Design Specification 1.4.5.9 6116-00100, ALS-ASU Communications Protocol 1.4.5.10 6002-00011, ALS Platform Specification 1.5 Identification This section identifies the systems, interfacing entities, and other interfaces to which this document applies.

1.5.1 Protection Sets The PPS consists of sixteen (16) racks (per DCPP Unit) of instrumentation located in the Cable Spreading Rooms (Auxiliary Building, elevation 128). The sixteen racks are divided into four Protection Sets; five racks each for Protection Sets I and II, three racks each for Protection Sets III and IV. Each Protection Set is. physically separated and electrically isolated from the other sets. Figure 1-1 illustrates the hardware that comprises the sixteen (16) protection sets.

Protection Set I is comprised of Racks 1 thru 5 (RNP1A, RNP1B, RNP1C, RNP1D, and RNP1E).

Protection Set II is comprised of Racks 6 thru 10 (RNP2A, RNP2B, RNP2C, RNP2D, and RNP2E).

Protection Set III is comprised of Racks 11 thru 13 (RNP3A, RNP3B, and RNP3C).

Protection Set IV is comprised of Racks 14 thru 16 (RNP4A, RNP4B, and RNP4C).

Physical equipment will be assigned to specific PPS racks during detailed design.

The existing Eagle 21 HMI units are located in Racks 5 (RNP1E), 9 (RNP2D), 12 (RNP3B) and 14 (RNP4A). These racks are expected to house the replacement PPS Maintenance Workstation and communications equipment.

1.5.2 Triconex Tricon Programmable Logic Controllers (PLC)

The Tricon PLC shown in the following figures comprises the Main Chassis and two Remote Expansion Chassis (RXMs), all within a given protection set. The Main Chassis is connected to a "Primary" RXM via triplicated copper I/O expansion bus cables. The Primary RXM (PRXM) is connected to a "Remote" RXM chassis using multimode fiber-optic cables. The Remote RXM (RRXM) chassis allows extending the I/O bus over longer distances than copper cables can support, and to provide electrical isolation for non-safety-related I/O signals, as required.

Refer to the Triconex licensing Topical Report [1.4.5.3] for additional information.

1.5.3 CS Innovations Advanced Logic System (ALS) 1.5.3.1 A typical ALS rack configuration as shown in the following figures contains two sets of the following components (See Reference 1.4.5.5 for additional details):

ALS CLB - Core Logic Board ALS IPB - Input Board ALS OPB - Output Board ALS PSU - Power Supply Unit 1.5.3.2 ALS ASU -Auxiliary Service Unit The ASU shown in Figure 1-22 is a dedicated piece of test equipment which can be

Process Protection System Interface Requirements Specification Revision: 7 Page 8 of 55 connected to the ALS rack during diagnostics or testing by plant personnel. The ASU provides non-intrusive diagnostic tools that allow plant personnel to access detailed status and configuration information of the system while the system is online. The ASU also provides post-event analysis information about the system to plant personnel for evaluation of an event after it has occurred.

The ASU can modify setpoints and tuning constants, but cannot alter functional programming (i.e., alter the algorithm) of the CLB.

In the PPS Replacement project, the Maintenance Workstation will perform the functions of the ASU.

1.5.3.3 The ALS A and ALS B conceptual architecture to provide built-in diversity and defense in depth per the D3 evaluation approved by NRC [1.4.5.4] is illustrated in Figure 1-1. Wiring details are illustrated In Figure 2-5 and Figure 2-6.

The manual bypass switches in Figure 1-1 allow one ALS diversity Group (i.e., ALS-A or ALS-B) to be bypassed and removed from service without tripping the channel.

The manual trip switch may be used to initiate a partial channel trip independently of the ALS logic.

Figure 1-1 ALS Diversity Architecture Concept O.-.n.,gio. to Trip Cofiguraon Ent-gi. to Trip Configuraton

.1.5.4 Isolation Devices The isolation devices shown in Figure 1-3, Figure 1-8, Figure 1-13, and Figure 1-18 are safety-related components powered from the Class II 24 Vdc I/O power supplies provided by PG&E. The isolation devices are separate and independent from both the Tricon and the ALS. All isolation devices are 4-20 mA DC input and 4-20 mA DC output. Input and output range information is provided in the I/O List [Appendix 3.1]. The qualified isolation devices perform the required isolation function when powered from non-safety-related I/O power. That is, credible faults (short circuit, open circuit, application of fault potential) on the Class II terminals will not adversely affect the Class I circuit.

Process Protection System Revision: 7 Interface Requirements Specification Page 9 of 55 1.5.5 ALS Signal Conditioning 1.5.5.1 The ALS shall provide signal conditioning and isolation for the Reactor Coolant System (RCS) non-safety-related flow analog output signals with capability to normalize the scaling periodically.

1.5.5.2 The ALS shall provide signal conditioning for the RCS narrow range Resistance Temperature Detector (RTD) safety-related signals to the Overpower Delta Temperature (OPDT) and Overtemperature Delta T (OTDT) reactor trip functions, and for the RCS Wide Range Temperature and Pressurizer Vapor Space Temperature RTD signals.

1.5.5.3 The ALS shall convert the RTD signals from resistance to temperature. The ALS shall provide capability to update the resistance to temperature conversion coefficients periodically. Analog temperature signal input and output range information is provided in the I/O List [Appendix 3.1]

1.5.5.4 Temperatures shall be transmitted from the ALS to the Tricon via 4-20 mA analog signals scaled per Appendix 3.1.

1.5.5.5 All temperatures shall be transmitted from the ALS to the Gateway computer via RS-422 signals scaled for the full input range per Appendix 3.1.

1.5.5.6 The ALS.shall provide down-scale open RTD protection. If the ALS detects an open or failed RTD, it shall output an analog signal below the Tricon signal failure threshold, which is -5% of span = 3.20 mA per the FRS [6]. If the actual temperature is below the low scale value provided in Appendix 3.1, the ALS shall output the low scale value, or 0% of span = 4.00 mA. This allows the Tricon to provide RTD failure alarming and ensures that the Tricon does not indicate RTD failure when the temperature is below low scale but still functioning correctly, a condition that exists during plant shutdown. In the latter case, the actual temperature shall be available from the ALS via the.

Gateway computer.

1.5.6 Maintenance Workstation Separate and independent Maintenance Workstation computers [Section 2.7] shownin Figure 1-22 are provided for the Tricon and ALS subsystems, respectively, for each Protection Set to allow PPS information processing and display. The two MWS computers in each Protection Set share common HMI peripheral devices such as the keyboard, video display, mouse (KVM), and touchscreen interface through a KVM switch

[Section 2.3.7].

The Tricon will be isolated from its dedicated Maintenance Workstation computer by the qualified safety-related Triconex Communications Module (TCM). Fiber optic cable electrically isolates the Tricon from external non-safety-related devices.

The ALS broadcasts data to its dedicated Maintenance Workstation computer via the isolated one-way TxB2 RS-422 data links. TAB communications between the ALS and the MWS take place via RS-485 data link. The TAB is physically disconnected from the MWS when the TAB is not in use. The TAB is connected and enabled only when maintenance is being performed on the ALS. It is disconnected at all other times. The TAB is enabled for short periods only when ALS maintenance is being performed, and maintenance will be performed under administrative controls by qualified individuals.

This arrangement satisfies NRC DI&C ISG-04, Staff Position 10 of Section 1, Interdivisional Communications [1.4.3.4].

A Maintenance Workstation computer may access data only within its own protection set subsystem (i.e., Tricon or ALS). Communication with other protection sets or between subsystems within a Protection Set is not possible.

Process Protection System Revision: 7 Interface Requirements Specification Page 10 of 55 1.5.7 Plant Process Computer Gateway and Other Non-Safety-Related Communications Interfaces The safety-related Tricon and ALS are connected to the non-safety-related PPC and workstation via the Gateway computer shown in Figure 1-22. The Gateway computer will be installed by PG&E in the Process Control System (PCS) replacement project. The ALS Core Logic Board (CLB) provides isolation for the TxB1 and TxB2 one-way EIA-422 communication links to the PPC Gateway and the Maintenance Workstation, respectively. The ALS transmits data to the non-safety-related Gateway computer, which is common to all four protection sets, and to the Maintenance Workstation using serial, unidirectional, one-way communications channels that do not require any handshaking.

The Tricon will be isolated from the Gateway computer by a data isolation device such as the port aggregator network tap shown in Figure 1-22, which permits two-way communications between the Maintenance Workstation belonging to a specific protection set and the Tricon in that protection set, yet allows only one-way communication to the PPC Gateway Computer. The port aggregator tap will be provided by PG&E.

For system health displays, the PPS will share a HMI unit in the Control Room on CC4 that will also be installed by the Process Control System (PCS) replacement project.

1.5.8 Response Time The reactor trip response time is the time interval from when the monitored parameter exceeds its trip setpoint at the channel sensor, until loss of control rod stationary gripper coil voltage. The ESF response time is the time interval from when the monitored parameter exceeds its trip setpoint until the ESF equipment is capable of performing its safety function. The PPS is allocated a maximum response time of 409 ms [1.4.4.8].

The ALS performs signal conditioning for the narrow range RTD's that support the Overtemperature AT (OTDT) and Overpower AT (OPDT) reactor trips, and the Tricon performs setpoint calculation and comparison and trip output. Therefore, the PPS time response allocation is shared between the ALS and Tricon portions of the PPS for these functions.

The preliminary worst case (deterministic) OTDT and OPDT PPS response time allocations are as follows:

ALS:

175 ms for RTD processing Tricon:

200 ms Contingency:

34 ms Total PPS Allocation:

409 ms The vendor shall provide means of verifying the actual response time if the system does not support deterministic methods of calculating worst case response time characteristics.

1.5.9 Accuracy The FRS specifies existing Eagle 21 accuracy requirements with the intent to maintain currently licensed Channel Statistical Allowance (CSA) margins such that no setpoint changes are required. Accuracy allocation between the ALS and Tricon for the RCS temperature parameters will be determined during the detailed design.

Process Protection System Interface Requirements Specification Revision: 7 Page 11 of 55 Figure 1-2 Replacement PPS Architecture - Set I ALS-A PPS Protection Set I RS-485 TAB Data Link Disconnected when no in. usein/

P-422 Data Li 1~ 7

'r -1 FPP Gat

... eway TX Only R..4.2 Data ln TOP TX Only til lI+

I I

+l Loop 1 RCS Flow (SI) FT-414 (4-20 otA)

Loop 2PRC Flow (4-20 mA)

Loop 3 RCS Flow (4-20 mA)

Loop 4 RCS Flow (4-20 tA)

Loo. 1 DnZA T)ld-t (2o 0 D)

Loopy1 DiTA Thot-tA (2000)

TE4tI A Loop 1 DTfA Thot-2A (200 D)

Loop t DUTA Thot-23A (20D 0)

TE-413A Loop I WP Tamp Hot Lag (2:0 D)

TE-413B Loop 1 WR Temp Cold Leg (2000)

PZR Pressure (4-20 mA)

(S6) PT-937 Containment Pressure (4-20 mA)

FC*414_FB_LSM A

FC-414 Loop I Lo Flow LSM A O

(Disotete)

PC-424 PB LSM A FC-424 Loop 2 Low Flow LSM A (Discrete)

FC-434 Loop 3 Low Flow LSM A FC-434 PBLOM A (Disotete)

FC-444 FBLSMOA FC-444 Loop 4 Low Flow LSM A (Disrete)

PC-40HFB LOM APC-55AOFO Pressure High LSM A (Discrete)

PC-455B Unblock S1, P1t1 LSM A (Discrete)

- PC-455C PZR Pressure Low LSM A (Discrte)

PC-455D FPR Pressure Low-Low LOM A PC-455DFB LOP A (Discrete)

PC-455E PZR Pressure High - PORV LSM A P0-455EPBLOPA (Discrete)

A PC-937B Ctmt Press High-High Ctmt Spray.

Ph B Isn LSM A PC-B37BPB_LOPA (Discrett)

FC414_BypA PC414 Loop 1 Lo Flow, Bypass A

(Discreta)

FCC424 Loop 2 Low Flow Bypass A FC4I24_BypA N

(Discrete)

AFC-34 Loop 3 Low Flow Bypass A (Discrate)

FC0 F-444 Loop 4 Low Flow Bypass A FC-4-OByp-A (Discr.t.)

PC.45HBypP APC-455A PZR Presure High Bypass A PC-45A Bp A(Discrete)

PC055B Unblock St. P1 I Bypass A PC-455BBPOH (Oisuwte)

PC455CBypA PC-455C PZR P.-ssore Low Bypass A (Diaonte)

PC-455D Pop_

Pr-455D PZR Pwesura Low-Low Bypass A PC45 Z

-(Di-ette)

PC4455E_Byp

-PO Presur High - PORV Bypass A A

(Dicrete)

PC-937BBypA PC-937B Ctmt Press High-High Ctmt Spray, Ph B hso Bypass A P

PS I Chassis Ppep Supply PS2-R1 Fail-P2R PFAILIA P

Disp rete F

PI ii7RIFAIL-IA(Discrete) 1 FF 1 TA

"-'to PF0IIyaChaCearsAPowe Aatpl PdooRIalr (Discrete)

PS5R2FAl-LIA PS I Di*e Powe, Su I_ PS5-R2 Failure (Discret)

P.

ALPS I Discrete power SplyP2RFaue PS2R2FIL" IA(Discrete)

FPS I TABBratm uA 9-'

(Discret)

ClearPS I Alarm Clear ALS-A I

FC-414 A Loop 1 Low Plow R. Tip T

(Discete)

SSPS FC-424HA Loop 2 Law Flow Ro Trip SOPS (04 rete)

SP P0-424 A Loop 3 Low Plow Po Trip SP (Discrete)

~

SP FC-44 A Loop 4 Low Flow Ro Trip t

SSPS (Disctate)

TE-4t3A Loop t Hot Leg Temp (4-20 mA) o-PS I Tricon TE413B Loop I Cold Leg Temp (4-20 mA)

TE410B Loop 1 OTTA Tcold-1 1

PS I Tricon (4-20 mA)

TE-41tA Lop t DTTA Thot-A (4-20 mA)PSITi TE*I 1A Loop 1 DTTA Thot-2A PSITio (4-20 mA)

PSI Tticon TE-412A Loop 1 DTTA Thot-3A Ir PStTtoon (4-20 mA)

PC455AA PZR Pressure High RP Trip x

(Discrete)

PCH455BPA Unblock S0 P1 t SSPS (Discrete)

PC455CA PZR Pressure Low RX Trp f

SSPS (Discrete)

P0-4500_A POP Frasoure Low-Low SI (Disorete) t SP PC-937B A Ctmt Press High-High Ctmt Spray, Ph B lsan (Diascete)

PC-4550_A PZR Pressur High - PORV FM-414B R. Coolant Flow Loop I42 A

ISOL 4-0mA)

OL FMP424B RP Coolant Fl.. Loop 2 1

(4-20 mA) r OL YC-937A Containment Press High-Hign Channe in Test Aarm m

(Disorata) 1 P

UY-PStA DIV-A Protection Set I Troble A-m (Diourata) 9-MA UY-PS1 B Div-A Prtection Oat I C, o

MAS (DocAete)

UY-PS1C DIV-AProtection Seti Pollute AlMAO (Disurteo) l MA Loop Puiso A (Disete)

. t, (Discrete)

"t

Process Protection System Interface Requirements Specification Revision: 7 Page 12 of 55 Figure 1-3 Replacement PPS Architecture - Set I ALS-B and Isolation Devices PPS Protection Set I RS-485 TAB Dana Link Workstobon/ASU Disconnected when not in use RS-422 Dana Lin TXBi 07 P

TX Only RS422 Dana

,.n TD.B)

TX Only 82 Worktation fll Ilt II Loop t I ($1) FT-414 (4-(.20 n)

(52) FT-424 Loac 2 (4-20 mA)

Loop 3 (S3) FT-434 Lacy 3 (4-2o rru)

Loop 4 D

(S4) FT-444 (L20 mA)

TE411B Loop I DTTA Tcold-2 (200 :)

TE410C Loop I DTTA Thot-tB (200D )

TE4*41C Loop I DTTA Thot-2B (2000D)

Loop 1 DTTA Thot-3B TE-412C (200 TE-423A Loop 2 WR Temp Hot Leg TIEý23A(200(l)

Loop 2 WR Temp Cold Leg (2000n)

PZR Pressure (SS) PT-455 (2D (S6)

T-937Containment Pres 3-) PT-37A)

FC414_FBLSMB FCO14 Loop 1 Low Flow LSM B (Discrete)

FC-424FBLSMB FC-424 Loop 2 Low Flow LSM B (Discrete)

P043F BSIM a FC-434 Loop 3 Low Flow LSM B (Discrete)

FB44PBLDM B P0FC-444 Loop 4 Low Flow LSM B (Discrete)

PC-455A PZR Pressure High LSM B PC455AFBLSMB Discrete)

PC-435B Unback SI. Pll LSM B P-45BFBLSMB (Discrete)

PO455CfB L3MB PC-455C PZR Pressure Low LSM B (Discrete)

P0-43D0 PZP Pressure L-ow LSM B P0-4330_FB_LSM_B I

(Siscrete)

PC045E PZR Pressure High - PORV LSM 8 PC455EFBLSMB (Orscrete)

PC-937B Cmat Press High-High Cutt Spray, Ph B loIn LSM B Pc-7BFBLBMB (Discrete)

FC-414 Loop 1 Low Flow Bypass B FC414_BypB (Discrete)

FC-424 Loop 2 Low Flow Bypass B F-424_BypB (Discrete)

F-434BypB FC.,434 Loop 3 Low Flow Bypass B (Discrete)

FC444BypB FCP444 Loop 4 Low Flow Bypass B (Discrete)

PC-455A PZR Pressure High Bypass B PC455ABypB (Discrete)

PC0455B Unblock SI, P11 Bypass B PC..455BByp_B (Discrete)

PC-455C PZR Pressure Low Bypass B PC-45CBypB (Discrete)

P0-4550 PZR Pressure Low-Low Bypass B PC055DBypB (Discrete)

PC0455E PZR Pressure High - PORV Bypass B P-455EBypB (Discrete)

PC-937B C0m0 Press High-High Ctnr Spray, Ph B Isn Bypass B Pc-g37BBypB f,*

A7 PS2PRtFAILBIS PS I Chassis Power Supply PS2-R1 Failure__

1-A ii (Discrete)

I PS7RIFAIL IB PSI Chassis PowerSupply PS7-R1 Failure (Disree FS"POPAIL B PS I Analog Power Supply PS0-R1 Failure (Discrete)

PSDR2FAIL 18 PS I Analog Power Supply P35-R2 Failure (Discrete)

PB2R2FAIL IB PS I Discrete Power Supply PS2-R2 Failure (Discrete)

PS7P2FAIL IS PSI Discrete Power Supply PS7-R2 Failure (Discrete).---

PPS I TAB Status.B PS I TAB Swtch Status (Discrete)

PPS I AlarmClearB PSI AJarm Clean (Discrete)

(Discrete)

ID SP FCP24 B Loop 2 Pb Low Plow Tnp (Discrete)

S FC-434_B Loop 3 Pc Low Flow Trip (Discrete)

FP-444 B Loop 4 RF Low Flow Trip (Discrete)

TE-41B DOTTA Loop I Tcold-2 P I Dricon (4-20 mA)

TE410C OTTA Loop 1 Thor-1B 0I PS I Thcco (4-203 A)

TE-411C DTTA Loop 1 Thot-2B

$0 PS I Tricon (4-20 mA)

TE-412C DTTA Loop 1 Thot-3B 10 PS Tdcon (4-20 rnA)

ALS-B TE-423A Loop 2 Hot Leg Temp No PS I Tdcon (4-20 r*A)

TE-423B Loop 2 Cold Leg Temp (4-5 ruh PS I Tricon (4-20 rnA) 1 PC-455AB PZR Pressure High Rx Trip (Discrete)

PC-45588 Unblock SI P-1t1 SSPS (Discrete)

PC-455C B PZR Pressure Low RP Trip IN, SSPS (Discrete)

PC-455DDB PZR Pressure Low-Low SI (Discrete)

PC-937BP B CDmP Press High-High Ph B Isn, Ctmr Spray (Discrete)

PC-455EB PZR Pressure High PORV o

A IM-434B1 LJoo-p 31 R[SoOLt l FM-444B Loop 4 Rx Coolant Flow IO (4 -20 mA)

I1 IS L Yc-g37_B Containment Press High-High Channel in Test A~ar MAS (Discrete)

Uy-oS1A DIV-B Protection Set I Trouble Alarm nA (Discrete)

I MA UY-PB1 B OIV-B Protection Set I Chke YAlm (Discrete) 10 MAS UY-PSCý_DIV-B Protection Set I Failure Alar7r 10 MA Loop Pulse B IN.

(Discrete) t, lit

Process Protection System Interface Requirements Specification Revision: 7 Page 13 of 55 Figure 1-3, continued INDICATIONS DIRECT FROM TRANSMITTER INPUT LOOP 1rk088(S8)

LT.484 P878 v*

b L}-

5g uV2,L-use8 3103)

Trloo (s$1) P1-514 m-~

2 p14-40(34. Peven 43 (Hsp). ERFOS Nu34)

  • . r 8c

( 1) PT-444 1480 3 S*nI Pl P0434A (43). P1-$440 (I.SP) ERP1DS (V84)

T11 (sI P1-)

8r.44 L8 Pr I44401 4

NWI P1444 (Hs0

),

300(484)

Ism~

INm T r.4 0 (S 0 () FI.8 t L O I -

T1144(SII3-12 L

T*

($1) LT4329

ý5`

(4-400)

Trký (wt)L49 S*3L~

1 (4-24840 TrY ("I) LT-.

(4-400m) 18408((4(1.4-44 pZ4 (4-400)

T318 (MI8) T1418 01 Tio(St*pT4 ao2 INd*'

(4-38m0 A-(3)

T.134

-r 1,400(33)P1-453 P0 Pm814 ISOLATION DEVICES 41 (4.400)3 384.442118834518.41.48 (4-40840 (4.480)1 T-1--.

-s4_l.038P b00 pm0(

P4

[(-,4 (480)

MCR, D0-S, AMW AUSAC
PCsC, S

8 CR.810.4S (44M11)

D-OFCS

-4340 L-3 S-8 P-0s(4 -40)

PM.04 L-1493384.P.41

-041 DWRS P t4244*1488 (4-400 Ro q 2t F-44(x F

400403R. 8340F1440(V"4 F x t Lo p 4 1 F 082)

C FSL('_OOS F522_OOS F542ýO0S

-IF-

-IF-HF

-IF-

-IF HF 44480 F-II oo,$800-tl 0 08 PS84 000 P544oO00 1414._000 1"488t000 T440._O0 1440t00 HH HH HH HH HH HH Kt

=ýo IA

.19

+

Process Protection System Interface Requirements Specification Revision: 7 Page 14 of 55 Figure 1-4 Replacement PPS Architecture - Set I Safety-Related Tricon Main Chassis PPS Protection Set I O*-w-y 1 Data Unk T

n TNAT2 1

.1`2)

Dat ofn 2 To PPC Gotowrap 0010 Lof 2

A PORT (Tpp f

2)

AGGRrGATOR TrlgooEoHT2 TAP B _:t!

Lte (Typof 2)

(Tpo2(

c lto (S5)PZR PrPT-e (DTTA)

(4-20 mA)

From (ALS) TE-413A Loop I WRTemP Hot)Le (4-20 nmA)

From (ALS) TE-4138 Loop 1IW1 Temp Cold Leg (4-20 mA)

From (ALS) TE-423

-Loop 2WR Temp Hot Leg.9 S(4-20 mA)

From (ALS) TE-42301 Loop 2111 Temp Cold Log (4-20 MA) r NTE41AA UpperF o I (0-0 voc)

LFmowr F41o (0-10 VOC)

From (ALS) TE-41A Loop 1 DTTA Tcold-l (4-20 MA)

From (ALS) TE-411C Loop I OTTA Tcold-2 (4-20 mA)

From (ALS) TE-412A Loop L DOA Thot-A I

(4-20 M)

From (ALS) TE-412C Loop I D TAThot-18 (4-20 mA)

Loop f DTrTA Thot-2A From (4S9) TE-415A (4-20 :7) 1 From(ALS TE-t tC Loop I DTTA Thot-2B Froo(LS T-OIC (4-200 mA)

From (ALO;) TE-.41 2A Loop 1 OTTA Thot-2A (4-20 A)

From(ALS TE-12C Loop I OT"FA Thot-30

-P From(ALO TE-l2C (4-200rnA)

PZI1 Leve(l (00)

LT-459

(-0m)

(010) FT-512 Loop I Stmflow (4-20 mnA)

(Sl1)

FT-522 Loop 2 eStomflow (4.20 NA)

(812)

T-532 Loop 3 Stoamfiow v-(012) FT-52 (4-20 etA)

(013) FT-542 L

(4-2 8btA ll o -

_4-0 m).

N (S14) PT-514 Loop I S0000 Pres (4-20 mA)

N

($15) PT-524 Loop 2S~ n ePress (4-20 rnA)

Loop 3 Slrrlnc Press (SIB) PT-534 LOO-L(4-20 mA)

(S17) PT-544 Loop 4 SmLne Press (4-20 mA) lG 2 Leoel (810) LT-529 L"

(4-20 mk)

S 3 Level (010) LT-539 (4-20 mA)

(S20) PT-605 Turbine 1:pol. Pr re -

(4-20 mA)

TRICON MAIN CHASSIS TM-413A Loop I Hot Leg Temp to TR-413 (V82) & RVIS (PAMd4) 11 (4-20 n-A)

TM-413B Loop I Cold Leg Temp to TR-413 CVt2)

(4-20 mA)

TM-423A Loop 2 Hot Leg Temp to TR-423 (VB2) & RVLIS (PAM00)

MCR MCR MCR MCR (4-20 mA)

TM-423B Loop 2 Cold Leg Temp to TR-423 0/1)2)

(4-20 mA)

FM-512D Loop I Stoamfloo to FM-512-2 Isolator (4-20 rA)

FM-522D Loop I Stearmflo to FM-522-2 Isolator (4-20 mA)

/

FM-W12_2 Loop I Steamflow to F1-512(VB3) 8 ERFDS (VBI)

(

BD2 (4-20 mA) 0 MCR m1 FM-522_2 Loop 2 Steaniow to Fi-522 (VB3) & ERFDS (VB1)

-4CR 1002 (4-20 mA)

I ID2 FM-532_2 Loop 3 Stemflow to IA' F1-532 (083) & ERFDS M/04)

Y42 (4.20MA)

MCR I

IB02 I FM542 2 Loop 4 Weamllow

(

I to F1I-42 0/03) 8 ERFDS Z_

OfflR4) 0-MCR (4-20 mA)

I 1(002 FM-532D Loop I Steomiow to FP54-322 Ito~ro (4-20 mA)

FM-5,2D Loop 1 Steamoitm to FM-542-2 Isolator (4-20 mA)

  • 0-10 VDC Powered Input from NIS Copper G1100

Process Protection System Revision: 7 Interface Requirements Specification Page 15 of 55 Figure 1-5 Replacement PPS Architecture - Set I Safety-Related Tricon Primary RXMV Chassis PPS Protection Set I P2RL.A Log TOSind LMM

- LTOPT RnTTP PZROO D.W01OS9.hRM 11GIMh F512LOOS LoI SnO-4 Ci, OOS S.Ach LC-2SL 2

D T15i

ý L.oinpný i

P F2 IN SS4 (DD-iO)

FUI4.OOS Loo 4 SV

ý0 SnPOoCR

ýh2~

LC-529A SAG 2 Io-Lo 0no aspsoo

~ nnoj ononocs ~=

OMn20non.Pn~C 0 Sofn LC-$3M Sr.3 HV4fph L"n Torimo Top, Rwnn P4 OP PSU3000 M=

C OO &-

IC-Loe 0 Sr.

3 o

L Loo e

lipo iuonnPo 0

SOPS Wg~~~~~jSOGopoS CO L

r 006 200000.W

ý It~

.P H

PWSSO OOn Ton*n M.nn- ) ~

1 ssPS T43-O w

0=00*0) c PC-S24C LOoW 2 SononoOo Noepn nRý SUNmn, i

(Onof)

SOPS T41330OS Lo-I VM

~

Oninop F0OOL Snoo r-0230.00 L=o 200 WA oo ODS OSe.

(Df-p)

O MC-60648 Ron 1010 mf POOR Hnh W P13 byp SONxf M1 0000 (D~non) ~SSPS T001 10 z

-LOP N(ý T8541c0AT 150Q,20 100012-M OOSO

-L-MT.S-7

'no-7Z)

~LSM4APn PS2&OhbIA4Tf S

PSF2 S 2W=Am&

PLS514 SIG00 3eon P.000h L"

P 4 t

PS(2.5*

(0-ft)

PS0SJAIL5J PSOSJM15 PUSYAJIJS1 PS4SFA1LjS 4 SSFL1 DLno.o~Poo

ano,

=

Fi" SopO LWO Wp0o0 Pooýo~

Fppeftf0 00000 Lon 0mO0

. SOý Fino "Y ANfo Lo Ooooo Ponoospe FepýeR.*

PnO 0+

Lklo F*

Process Protection System Interface Requirements Specification Revision: 7 Page 16 of 55 Figure 1-6 Replacement PPS Architecture - Set I Non-Safety-Related Tricon Remote RXM Chassis PPS Protection Set I A

A7 1

Prot Set I Prot Set I P**.AL 2

KVM HMI W -"r Switch Peripherals

Process Protection System Interface Requirements Specification Revision: 7 Page 17 of 55 Figure 1-7 Replacement PPS Architecture - Set I1 ALS-A PPS Protection Set II RS1495 TAIB 09.:Z104ktsorAS R18 0 3 9 2 Ottill i

=2 7

oowo 11,t FC8415_A Loo 1 Low Fow R Trip IS%)91-008 (S2) I'-435 (83) FT-433 (S4) 1-445 TE-433A.

¶8-033 TE-AM3 18-42342 TE-421IA

¶8-022A (8S) PT-458 (SO) PT-938 FC-415-I'.80.0.A 9042-43GL8L184.0 90~3!-03E8LSM-A 90 45 98LSM-.A PC-.856AJ8BLOO&A P0-4568 98 2SI&.A P0-FLS-40

.8 A

PC04580P8.LSMA#

P"W438...Fj32&A PO-93WAj3.1804.A POG-89FB.LSM-A 90-415.YP-A FC25-Op-A FO-435.6p8,PA PC-443_DypA P0-456A,-YP-A PC-450_BypA PO~w-4388)A P0-458%eW9.A P"-4538lip-A PO.030.ABYP-A PC-933888gpA

)4-20 A)-

(200283 Loop 3 (4-280A)

L1 ow oop 4)3L FC-43!$-A Loop 3

LOW Flow Ri Trip w

FC-445-..A Low00 Flow Fix TA TE-433A Loo 3 Hot Log (4-20 A)

TE-4338 Loop 3 Cold Leg (4-20 MA)

TE.4208 TLd2l (4-20 1)

TE420A "thot-lA (2M0)

1.

2 DTTA ToId-0 (2000-)

Loop 2 DTTA Thoa-t A (2000)

Loo, 2 T30ot-2A (20088)

Loco 2 That-3A (2000)

PZR P 4-20 mA CooMe Pn (4-280A)1)90-435 O1,0.1 Low fPlo. 1024*

A Wo2o 1)

FC12.5 Loop 2 L-w Fl-w LSM A FC-435 Loo, 3 Low Flw LSM A FC-44 Loap4 Low Flow LSM A PC-456A PZR P

. Hih LSM A ALS~A

(-280 A)

¶8.42142Th0.-24 (42.00TLA TE-422A Thot-3A 141-20 A).

PC-456A4A PZ8 Pwoinu High2 31Trip PC456C_A PZR 2P2 Law R,3 Tr, SSM S i

SSPS SSPS PS n1 Tricon PS 11 Td*n PS It Trico PS I1 Trdcon PS It Tdcon SSPS SSPS SSPS SSPS PC-45630A PZR P-es9u. Low,.LwSt PC-4568 A Ublock SI P-11 (U--2w)

PC-936A-A 002, Po. Hig2h

81. Pho.

A bin "30_88SA Ow, P-o. 2IU-228248 Ph. 6280 Oi C

Spoy. 32.00000(08 P0-4588.4 P28 P -000 H458-PORV PC-408 Unblok SI P-I LSM A

PC-48PZ PZ -

LowLSM A

(0lcft)0 P0-08PM2 Pnmw.201-, 1-S! LOU A

PC.4588 922 P-000 Hh 51o-OV 1800 A

(8)000A7 900-4288 Lo-o 2 ft C2.""'

SOoo (4-20 A)2 YC-806 Contati01ow Pr-. 2482.fth OCooooin 80M Aot..

U2P0'.022V.A P38.010Set011 T-fwbAt-.200 280002)

-/

07\\

UY0-PSX2802V-A P00801800811.22 ooooikh-At Noo 22-82 0.4 rooco 812PoO4J0o-(0)0Pd.)A P-9368 C0M08 Pr... 2o442h.M B P813,, Coot SPMy, S0a0l. t2 I10n L4M A (D- 0 8t1

)

FC-415 tLc I Lo-Flo. Dypm A FC-425 LOW 2 Low Flow Bypm. A FC-435 loop 3 Low P3w, Bypas A P0-41842928 P -.0, High By,-. A PC-456BtUnblock SIP-10 I090004A PC-4W8 P28

)L P00 B0lw -

A0oo P0-438 P28 P0000Lo.Low8 Wopo..4A (D-)

P0.838 0003 P-.. 2481.482 Pho.

W :C)

OproY, 8200.8 Win2.00 P

.A A 7 PS2RIFA 2L-ILA PS 211 C

Po-S pply M A7-I PFall.

PSORIF0IL.JIA FS1 hsi

=

M IFk PS56P11j0.QL 9S822 Aooiog 90000 MAI82 985ail902 PS5t2AJ,-tAP8221 Analogo Pooeop~pl 933-62.0.'.

PS292FA2122IA PSi P

.I P072P422Lj2A P8221100.00900.0080SW*.907-222 Path2.

PPS2214 TAI 0.0.42 PPS 11 TAB Switch 820.0i AanýClrjk lo8i2m02..

I990 "2

42009 01.0.

lit

Process Protection System Interface Requirements Specification Revision: 7 Page 18 of 55 Figure 1-8 Replacement PPS Architecture - Set II ALS-B and Isolation Devices PPS Protection Set II P30400 TAB_

Solo 134VA RS1422 D-10 PK301.7 PPTGloo TX 2So0LoT0*

.C tit lit (31) P1.415 (S2) FT-425 (3W) FT-436 (34O FT-445 TE1-431 TE-438 TE-421B TE-420C TE.421C(

(M3 P1T458 (M0) PT.938 F0-415ý_BL5&.P PC42SFP.LSM..B FC-43$200LLSKG FC-45JjBLSM...P PC-OSOAJBJLSM_

P0-4568LFELLSM-B PO-455CLFLLSM-.6 PC-43568..LSILB P0-9338A,_YLSI&t.B PO-O3O3FBLSMB PC-035P0LSIktP FO-OlS Byp B FC 4

ZS..Byp..

FC.435-Pyp B

FO.44SBWS PO4S-40A.Byp-B PO-45038oyp)

P0-936E3yp...

PC.4511E.Pyp..B FC-415ýB Loop 1 P, Low Flo UP

(-20 A)

L-o 2 FCP-2.6B Loop 2 Rx Low Flow TAp (4-20 A)

LO-p 3 (4-20 AI)

Loop 4 (4-20 r)

MR Tlmp Loop 4 Hol Log (Diu-w.)

FO-433..P

ý_LOn3 Low Fl T6p I

FC-445 %PLoop4L-w Flaw TdP TE.443A L0,l4Kt Log (2C00 )

VWR T-ow 1-0 4 Cold Leo TE-443 L04 Cold Log (4-20 00)

TP-421BTcold-2 (2000)

LOop 2 DTTA Toold-2 (2000)

Loop 2OTTATolIB (20001,)

(2000)

IPop 2 DTPA Thoto B PZR P_*u (4-20 "r4 T"E420C Tnot-ib (4-20 IM)

TE-421C Thol-2B ALS-B (4-20 )A) 0oo1000001Pwo (4-2001MA)-

TP-4223Th01-3B W4230 f)

PC-456k8. P23 P10,00 High 30 Trip PO.456B0P LWOOO I

P-PC-456C.P POP P110,= Law P. Tdp PC-456DB P23 P-o~o L~ow-SI SSPS SSPS SSPS SSPS PS II T1O-PS 11 Tdon PS 11 Trkn PS 1 Tri0on PS It Trito PS II Troon SSPS 0SPS SSPS SSPS SSPS SSPS RNASA (4-2O m,)

FC-415 Loop 1 Low Flow LSM B FC-425 Loop 2 Low Flow LAM S

FC-435 Loop 3 Low Flow LSM a (2)00134)

PC-93Pk-8 CM0 Po.- High SI, Ph. B I&

1000010)L*F~vL*

PC4030 S 00,0 P-oo 010111001 Ph. R i1. C-1S-o, Sbolol 1,10 PC-456A PZR P -

- h 1LSM P (51screte)

PG-450E-PZR P--m High - PORV (Discfte)

PC-4050 U0 SI P-I 1 SM B A7 PC456C PZR P-Lo LBSM PC-456 PZR P-,.

w owL-SI LSM B (0100010)

P0-93311 COM P100High 81, Ph. A tai0 LAMBP (010001)

P0-033 Co P-0,0000-000 Ph1.

8 P,,0.010-30S-.S-5-011 LA B (4-200A)

I yC-3_B co tPwo Hih-High Chann1e i Test Alt-o UY-Ps2A.0.DI-8 P1o101000 S Il Troble A"-

MAS (Di0-f,)

UY-PS2BDIV-B P0otec10on Set 11 Ch.2ný.. B 0P Mn (D...We)

UY-PS2C_DIV.-

Pf0W0fP Set It Failoe Aa1000 Loop PI,0 a PC-45SE PZR Press-w H-gh-POiv LSM B FG-415 Loo-1 L-0 Flow 600000 P

(2 t)owol F0-423 Loop 2 Low Plow BP 3001 P FC-435 Loop 3 Low FIow Bypoop B

P-5.0o) o" FC-445 L-o 4 Lo-Flow B_ a*

(0D*-Ie)

P0-456A PZR P--

High BypO B PC-456C PZR P-Low BYP0 B PC0456D PZR Pre-0010 LowLow1 sI BYpo B (D0-P0000011 lol140l~OPh-P3,10Sly 30301,Pp.

A PS2RI FA L_JI P PS 11 C01 0 Poa -

S op ply PS2-RI F PSSR1FAJL.[IPI PSI ItwooLo Po S*wolI Py-R1 Fwmoo PSSWPIFALIS PS 1130An,,

PwoI="l PSOFa-PIP0 PSSR2FAJLIIP 11S 1 00 Poow=ot PS24-2 Fol, PS7R2FAILIPB PS II 1 P 0

PS7-02 F.&op PPS IlAM Ste.r 1

PPS It Alr. CieA T--ut.

1-

,,+

I

" I

Process Protection System Interface Requirements Specification Revision: 7 Page 19 of 55 Figure 1-8, continued INDICATIONS DIRECT FROM TRANSMITTER INPUT LOOP "1t00 00 Lr-e (4.~--------.

Lj4S&,

(00,2. 0(4608(00))

000 (SI?) 90r445 L,o0*0k Pf 4Loo03.8M

'MU(M T6 1000(

£0001 LP0.0,ro..000 01030000$

9S~0 00$

9520000 9000

-t H L540-0_O L$1,..OOS e0,4t000

-IF-

-HF--

-IF-

-IF-I-

90000$

H-

$0$$0~00$

I-F-

045$S~~

T-.

p5l%ý

  1. 1

Process Protection System Interface Requirements Specification Revision: 7 Page 20 of 55 Figure 1-9 Replacement PPS Architecture - Set II Safety-Related Tricon Main Chassis PPS Protection Set II Onow-ay Trion-o 3402 1

Y2)

P t

D.V

('yk* 2 To PPC Gabt-fy

(

A PORT Trp of 2)

AGGOOGA700 TriOoO.E NE32 (TAP E

T L

otk (TYP of2) 0f12 c Woo~imeoo t

4 )3 TRICON Fro- (A-S1)

TE433A Loop 3 7WR Twnpemr Ho) Le0 (4-200rn)

PFr0 (ALs) TE-4330 1.009300A0T00010001,Coldl.

(4-20,A)

F-oo 0LS 0

TE-438 o

Tonperatuo Hot L3g L

(4-20 rn!)

Frn(AL TE*4A3 Loop 4 WRTT tum00

.ColdL (4-20 sA)

F-K N)E.42A Loop 2 M

i-A 00p00 Colu (0- 20 0 C)

NE-42 LOOp 2 DTTA 1.owe Flux (0.10 0VC)

NE428 Loop 2 iTlA T Fokml (4-20 IA)

Fro- (ALS) TE-4210 Loop 2 DTTA Tcold-2 (4-20 mA)

From (ALS) TE-421B Loop 2 DTTA Tot-2A (4-20 0A)

Fro (AL TE-420C Loop 2 OTTA Thot-1B (4-20 fA)

F-, (AL.2) TE-4210 Loop 2 DTTA TWo-2A B

0 (4-20 oA)

Fo- (ALS) TE-421A Loop 2 D0rA Thor-2A (4-20 mA)

F-ro. (AL) TE-422A Loop 2 DTTA Tho-3IA (4-20 0A)

F-C") T

,-4 Loop 2 DTTA Thor-3B (4-20 m0)

F-,3 (ALS) (M) PT-450 Loop 2 DTTA PZR Pm-oOu (4-20 A)

(30)1LT-450 PZR L"0 (4.20 "0)

(SI0)FT-513 Loop) I S3*01_

(4-20 -A)

(11) FT-523 Loop 2 S0oaotMoo (4-20o A)

(S12) FT-533 2Loop S=o)III, (S32(

7-523 (4-2,0 rnA)

(S13) FT-543 Loop 4 Stoooo y-(4-20 IA)

(014) PT7.15 LOOp 1 S0M3n* P09000 (4-2D IWA)

( $15) PT-525 Loop 2 0300, r0i0e P r0 u (4-20 :A)

(Sa TMLoop 3 !tei;r.*Presr (Sl) F-s~

(420 mA) op (S17) PT-545 Loop 4 0300mr00.

Presue (4-20 mA)

SIG i L-1l (SIT) PT-451 (4-20 rnA)

(019) LT-54.9 (4-2eel)

(4-20 MA)

(7,09r, 0.0Tu~n blpobO P000000 *1 (020)7-000 (4-20 IA=)

MAIN (4-T0 n)o o T*4.430B LOOp 3 Cold 1.00 T.oop to TR-43230302) h r..QQ I

(4-20 IA)

TM3-443A Loo 4 HCR Lm Tw0,030TR-433 302)&001.10(90112) v (4-20 IA)

TM.4443B Loop 4 Cold Log Te7 tW TR-443 (M2)

(4-20 09A)

FMP-13D L3op 1 St0 nf0o0 t0 FM-513-2 I0lator (4-20 0n)

FP-95230 Loop I 0t30,,

tW FM-0-230 03o0t,

(,-20 A)

FP'533D Loop I S00mf0ow to FMP533-2 L-2 to (4-20 MA)

FM-043D Loop I St0m3row tW FM-543.-2 301o.0r (4-20 IA) 0-10 VDC Powered Input from NIS MCR MCR MCR MCR 1

FM-51332 Loo-p i S3t0.00,loo 3

FI513(V03).&ERFP (01)

MCR (4-20 IA) 1BD2 tn FM-523 2 L.0 2 SW-onflow t.

FI.52370V3) & F0)(V"1)

MCR 00)2 (4-20 IA)

WI F-533.2 Loop 30Strnf.ow0.

P4"0*

.- 33(00,3)400ERFO0(re4)

MO

-* 10I-f--

(ý-0m) 7 1

MCR FM.543 2 Loop 4 SW00 W.

toF-543 (M3) & ERFD

-BMR TIT 0or,0,00000.o 1.r5 Co0010

Process Protection System Revision: 7 Interface Requirements Specification Page 21 of 55 Figure 1-10 Replacement PPS Architecture - Set II Safety-Related Tricon Primary RXM Chassis PPS Protection Set II C

-o 0.10..002 I

TC.4830180 3 CO 1.00,8 T

8-L P

k- -

F5t13_008 Low I 808)O (Din F523PZ 10.)0 00823.08,O S

1030.008(3(080)

FS33.

CTS008 3.30 PM-00S Lý(20S-=)Ch (D-P5800 10003 SGl,

P1CK 0.0800 (00800)

T4018810.0)

On 00M3) 9 1840008 (31T= &

00000808.00¶0,40 P1.00.

(D 00308 TS.210 TC (008100) s 1888&008 100040001 0008 5o0 monO 00-42100~h P14Td TT 8 Ss (Sý L&n,1 0-0 LC498M 3L TOO Slts (D-10.8850p

ý H h P110.

30 TOO OOSI0 18800 1000 (8331881 P4On lb I'MLX-SOOB SC 4 L04.l ITO-HihI O St

-kl P1525C8 (DC)

P81.000 P0400,811001000010 3

I PlO TOO 003 Pan=03 P08BAC4 10=S0s I_

3

~

a~

PSý(D-o) 00-000018004 OSW-l P-.High Ng 0TOSls P0380 0s3.

P 003830_1 P0A 810 0 38 50- 1

.oO Slat 78_1SO 10O S flO,.

P Fa-03 00,0 O

10 RNASA 010TC21C o0DT TOp TRSCON (0000)

PRIMARY T-802G OPD0 RO TftT RXM D

)

CHASSIS T04220 T.0 1 P12 TC4220 T00

.ow10.-. 0 on10 (08- -)-

M 10.81M 418 K433110 1.40 0801 Tdp. M010 P14 1003 01318.8 1000 800OO08W P,10530 00.300 0,0.0 2

108 03.0a809

&300PIV (008p t

ý

-. va

.)

l 00.00 L00o L3 SSI8, 0,008808,"0800 I

P0K5 180p0041 0,.. 500 High

,3ft *00000 13 (D-0) 3808 SanS USPS SSI'S USPS USPS "a'a USPS SSPS SanS USPS SSP$

SSPS t

I

Process Protection System Interface Requirements Specification Revision: 7 Page 22 of 55 Figure 1-11 Replacement PPS Architecture - Set II Non-Safety-Related Tricon Chassis PPS Protection Set II C=nic.1, On Fiber T

T T

ý11 TRICON REMOTE RXM CHASSIS TMA21E Delta-T to TI-421A (VB2) & TM-411 Q2JR (R31) 14 (4-20 T4A)

TMA21F Overpower Setpoint to TI41 1A (CCI) & TI-421B (VB2)

(4-20 tA)

TM-421G Overtemp Setpoint to T/41 1A (CC1) & TIA21C (VB2)

TS/42'0 OTDT Interlock C3 Manual Trip Switch (Discrete)

TSI421H OPDT Intedrock C4 Manual Trip Switch i rte)

PSNFI 6

Class 11 Analooq Power Supply Failure Relay

/

\\(Discrete

)

SPSSNFAIL 16 Class 11 Analooq Power Supply Failure Relay PS3N_FAIL_16 Isolator Power Supply Failure Relay

\\

\\(Discrete)

PSBNFAIL 16 Isolator" Power Supply Failure Relay

~(Discrete)

PCS, MCR MCR MCR PCS. MCR MCR (4-20 nA)

TMA22F Tavg to TI-422 (VB2) & TM-422G.R, TC-422A-H/R (R31)

(4-20 tA)

PM-506A Turbine Impulse Pressure to PI-506 (VB3)

(4-20 mA)

TC421D OTDT Interlock C3 (Discrete)

TC-421H OPDT Interlock C4 (Discrete)

LY-519H PS2 S/G Low-Low Level TTD Timer Actuated Alarm (Discrete)

UY-PS2ATRICON Protection Set II Trouble Alarm RNARA RNARA MAS MAS (Discrete)

UY-PS2B TRICON Protection Set0I Chanbel 13YPFbAtMrm (Discrete)

/7\\

UY-PS2CTRICON Protection Set RTD Failure Alarm (Discrete)

TYA21_TRICON Protection-Set II DTTA RTD Failure Alarm 1b MAS (Discrete)

MAS A

Process Protection System Interface Requirements Specification Revision: 7 Page 23 of 55 Figure 1-12 Replacement PPS Architecture-Set III ALS-A PPS Protection Set III RSI4OS TAB 000. U,,)

AI RS/422 0.

1.

FI "rxo 0*j f

ll

,1 t (SI) FT-416 Loop1 (4-20 -nA)

(S2) FT42 Loop 2 (4-20 mA)

(S3) FT-436 Loop 3 (4-20 mA)

(S4) FT,440 LoOp4 (4-20 MA)

TE-4308 Loop 3 OT'A TMd-I TE-430A Loop 3 D"-A Th-IA (2000)

TE-431A Loop 3 DTrA TI10-*

(2000)

TE-432A Loop 3 DT "A Th75 -3 A (2000)

(0S) PT-457 PZ0 Pressure 10 (4-20 mA)

(00) 7-020Ooo1inme0 P10.

(S6) PT-935 I1'edPrs (4-20 mA) 00.40000000 0-410 10001 Low Flow LIll A FC-426 Loop 2 Low Flaow LSM A FC-42AF0.LSMA (FC-02 21.-

F

-43I_FBLSMA FC-436 Loop 3 Lw Flow LOM A

C440LF0LLSM-A FC-440 Loop 4 Low Flo LSM A PC-44A8FB_LSM A

PC-457A PZ

.0.1,.) High LSM A PC-4578 Ulblodk SI P-ll LSM A P0-407PB__LO MA (Disrot)

PC-457C PZR P-I.-oo LSM A PC,,407CF._LS M..A (0,11.0)

I 00- 07DJ0MA P0-PC457D PZ0 Pr,.pwo Low-Low LSM A (Dwo.10(ta 00-030A C00t Pl000015l. PSI h A 010n LOM A

PO-020F0_!SU.A (0.10r0)

P0-035L 0001 CM IP HOigh Ph 0 I0n, Coolt Sp"y. 5t-loe Isin LSM A PC-457EF8_LSMA PC-457 PZ P-o High PORV LSM A FC-416 LOOp 1 Low Flow By0P10 A

FC-4aIByp.A

((1ý051 FC-byp_A FC42 Loop 2 Low Flow B010.0 A F0-43M_BypA FC-436 Loop 3 Low Fk00Bypass A F0044 01yp4A FC-446 Loop LoLow Flow Byp... A PC47ABY-AP"-40A P20

)H,

p-~l BpoA P0457LPC-4570 Uto Sl P-I I A

PC-457CByp.A PC-457C P00 P-0.0 P-I BypL.. A PC-46TDBypA 00.4570 pZ2 Pr.e-iu Low-L*w Bypas A PC-W03 Cam, Pre.. High Sl Ph, A I01 BYPAS A

PC4-35_ypA PC.-*00B CMn Press Hfigh Ph B a1n, Chit Spray. S0lkn. Is5, 0

s. A Is, PC-457E_B-_A PC4-57E PR P,--

High PORV Bypas A A7 PS2RIFAJUI.A PS III Chass] Powr Suppy PS2-01 F.50 PS7RIFAjLIILA PS III Ch0, i.Powrt=

PS7-R1 F0.i PSSR 1FAILIIA PS III AnaIg Pow uftSp1)

PS5-.R

$ F.dW PS05,R2ILJIIA n [it An4alo Pwg SPpPlo P.5-RI F.-

-1 P$2O2FAILJIIIA P8 I' I0 Pow Soowf= PS2"R2 F-.1re.

PS7R2FAJLJIIL*A 11

[I P=

PSTR2 Fa-0o PPS 0II A3 mC1eP A Alarm Cl

-2 I

~(D-010et)

FC-416_A Loop I Low Flow R. Trip (000)*wPr 00-42-A L-oB2 Lmw Flow R. Tol (04'011)

FC-436_A Lop 3 L-w Flaw R. Trip (0Ao.,

FC-446A Loo4LoW FloW R Trp TE-430B DTSA Loo 3 Tod1-1 (4-20 mA)

TEO-00A DOVA Lo00 3 7ho-IAA (4-204A)

TE-431A DSOA Loo-3 Th-2A (4.20 nA)

TE-432A4 DSA Loop 3 Tho-34A SSPS SSPS SSPS SSPS PS III Tn7n PS III TrIo PS III Tricon PS III Triton SSPS SSPS SSPS SSPS SSPS ALS-A I

(4200.A) 00-4574.4 020 P--.l High50.

T dp MhOo.0.(

00-4VBLA Ur%1 S01P-1 I

(too.1.

P0-4570.4 P20 P-.~o Low P. Tra, P0-45M A PZ P-Low Sl PC0-035_A CMt Prs High S0 Ph. A ISM 1

PC-407E A PM0 P--.u, H1h P50V 10 RNASA FM0.4108 P, Coola0 Flow Loop 1 (4-20 -A) 1

[SOL FM-4260 Ft. Co-kn Flow Loop 2 ISO.

(4-20,A)

I YC-M-A Crondm'am P-.

Hi-19.Igh Ch0*. l in T-A4.m0 LIY-PS3AD00-A Pn: oooo SOt III Trouble 410rm UY-PS3BDIV-A PýU.c Se III Ch-6 BYp A UY-.S030_DFV-A 000 0 St III F00e11m01O-(11.1a)

(01.10.1.)

11 t

Process Protection System Interface Requirements Specification Revision: 7 Page 24 of 55 Figure 1-13 Replacement PPS Architecture-Set III ALS-B and Isolation Devices PPS Protection Set III RS/485 TAB SooLol, Woo

."Ulo(

00)022 Sal.

1~~IB X7 U'P 0aeo t"

l1 t (SI) FT.416 (S2) FT-426 (S3) FT-436 (S4) FT446 TE-431B TE-430C TE-431C TE-432C (S5) PT-457 (SS) PT-935 (4-20 mA)

LoDP 2 (4-20 mA) 10003 (4-20 r1)

Loop 4 (4-20 mA)

Loop 3 DTTA T00k-2 (2000*)

Loop 3 DA Thor-IB (2000a)I LP 3 OTTA Thot-2B (200 0)

Loop 3 DTnA Thot-3B (2000)

PZR P0.0ur.

(4-20 rn)

ContaiCMent P1r.,

(4-20 nA)

FC-416 LOO-I Low Flow LSM B FC-416 8 L001 RI Lowp Fw T 46D2m)

FC-42_B Loop 2 RxLow Flow Top FC-438_B Loop 3 x Low FPow Trp SSPS PC-446-0

BLo4, 0

010w low Tdp TE.431B STTA 1003T00002 SSPS TE-430C OTTA Loop 3 Thot-lB PIII Tw..

(4-:l0 nA)

TE-431 C DTIA o3 ThoP28-(4-:WO 0A)

TE-432C DTTA LooP 3 T70-38 (4-2000A)

PC-457AB PZRP-_

1'oo High 00 Trip s

S PC-457B6 B Lf000 SI P11Il ALS-B IN-*'?.

P0-570.) POP P-m00 Lmo PTrip FC416..FB..LSM_B (D00 ?t.)"

FC-426 Loop 2 Low FPls LSM 8 FC-426_FB LSM B (Di*:ft)

F03LOLM8FC.43 Loop 3 LO-FkOw LSM B P

403&

BLLSM.B PF-448 Loop 4 Low Flow LSM B F0-446_FBLSMJ S040Lop4Lo lw 50 PC-4FSMB457A PO =m)

High LOM B

P0-450~PB~004~B(000w.)

PC45M FB LSM) 8PC-457B UnbSck SI P-Il LSM B PC4-57DB 'OR PZrPsu Low-Low S

SSPS P"-0353AB C-I-'P Hl S. Ph. A loin (50w?)

PC-0308.8 01,01 P-w High-High Ph 130.0, CMo Spoy, 5000w loPn PC-457CFBLLSM_8 PC457C PZR P-es-uw Low LSM B PC470_FELS 8PC..457D PZR P-uu Low-Lo LSM B PC-457D F'_LOS_(

.)

PC.935A Ctmt Press High SI, Ph. A Is~n LSM B PC4wA_FBLSM_B (D-1.)-I PC-93_FB_LSM_B PC-035B Ct" Pw-High-HIgh Ph 5 Is0n, Ctt Sproy, SOhl.no LSM B1.4 PC-45M70y95.B PC-457M P2R P.u-High PORV LSM O

PC-457_F0LMB)'".

FC-415-DyPB FC-416 Loop I Low Fow BypIs-9 FC-428 L oop 2

Plow BypF s s B F0-428yBo(Dr)

FP-4430_B oy FC-4A Loop 3 Low FlOw Byp a B FC-44S7ByP B 446 L owFlo B

PCS~~yBPC457A PZR

=0reut High 8

PC-457B Unb-o SI P-1 I ypa.1 0

  • =-4'*_S*_S(Dtscý)

_SPC-457C PZR Presu-I- Bypm PC-457C.Byp..

).)

PC-457 FPM Ph--un Lo-Low Byp-B PC-45TD Byp_O (D.:M.)

PC-M35A Clht Phi-* High Sl, Ph. A Isln Bypan, B PC-63MI BP-8_

(Mi-')

PByp_

PC-*

rd Pr-ss High-il Ph B I.ln. CfMt Spry. SnmIbI. Ibn Bypa B P043-lo35B (Ds.f)

PC-457E PZR P--ow. High PORV BOypss B PS2RIFAIL IlA PS III C l1a0. p o0 $5p0l0 PS 2-RI FlloW r0 w

'1 PC-457E0B PZR P1.0--w High PORV 0

0 FM-430BLDo3R.

M Flow 1001SO A

PM-MO6B Loop4 0.MFI.

Plo SO (4-20 A)

I Y0-0J35.

B ontirlopw Prin. -High-High Channel 0n Test A#2m.10*

UY-P3ASDIV-B Pn00in U5t III TIoubi A00m0 UYP-PS38 DIV-B Prt on.?et11060n5'r U

Y -P S 30 _D IV -B P o0I o5.n Se l III Fa n6.E0

-larm (h -P")

Po l

Loop Pub. 8 A

PO7RIPAILJUA PS III 00000 PowSpLqo P0701 P.R.1.

P S O 0 IF A d I L )I I A P S I I I 0 0 0 0 P - 0 U p p l y P 0 0-R I P. 1w PS2Ft2PAAIILA PS1 III 08 P,=w PSlo 1 0.24 P.I0 PS2R2FA1J110II PS III 50.001 P-w. Soosh P02-112 P.0,1 PPS III TAB..SMOl._

PS III TAB 000000 4-PPO III AJarm_.001.B III Aloop Door

[it

Process Protection System Interface Requirements Specification Revision: 7 Page 25 of 55 Figure 1-13, continued INDICATIONS DIRECT FROM TRANSMITTER INPUT LOOP O-2-NO

$O()

TdO,:*(S$)

CT-Of (402

-ros 42o Nfl Tr*)

-sN)

LT-(ALVA0)

I S NO)

E RFIS (V(W)

T**i (SIR)

CT-O2S lSIL SON)L,,v (ii Tri-T (51I$)

CT-IfS1

.,58(*)

EFS(11 A

(*-)) PT*SO Ci~iloi*

ICIINl) ETIS IT A7 CPR_.TTIOO*

CP* i-lCs

  • 4SI_00SI H

H H

H H

H--i

-O

.55110-

"'t8oos H-tl io9 A7

+I

Process Protection System Interface Requirements Specification Revision: 7 Page 26 of 55 Figure 1-14 Replacement PPS Architecture - Set III Safety-Related Tricon Main Chassis PPS Protection Set III One-Way Triconen NET2 1

Data Link Data Link A

PORT

  • Tp of 2)

W To PPC Gateway Typ of 2)

AGGREGATOR Tnconex NET2 TAP B

Data Link (TypTof2)

(.4 oF2)

C Wraakstation t 1 t 11 From (ALS) ($5) PT-457 PZR Pressure (DTA)

(4-20 mA)

From (ALS) TE-430B Loop 3 DT-A Tcold-1 (4-20 mA)

From (ALS) TE-431B Loop 3 DTTA Tcold-2 (4-20 rnA)

From (ALS) TE-430A Loop 3 D-rA lTnot-lA (4-20 mA)

From (ALS) TE-430C Loop 3 DTTA Tiot-1R1 (4-20 mA)

From (ALS) TE-431A Loop 3 DTTA Thot-2A (4-20 mA)

From (ALS) TE-431C Loop 3 D rA Thot-2B (4-20 mA)

From (ALS) TE-432A Loop 3 DTTA Thot-3A (4-20 mA)

From (ALS) TE-432C Loop 3 DTTA Thot-3B 1 (4-20 mA)

NE-438 Lower Flux)

(0-10 VOC)

NE-43A Upper Flux (0-10 VOC)

(SO)

T-451 PZR Level (S9)

LT-461 LZ!_

(4-20 mnA)

(010)

PT-52

/G2 Stline Press (4-20 mA)

(S) T-3

/G3 Simline Press (4-20 mA)

(S12)

LT-518

/0 1e (4-20 mA)

(013)

LT-528 SIG 2 Lel (4-20 mA)

($14)

LT-538

$/03 L (4-20 mA)

SG 4 Lve (S15)

LT-548

$104 L)

(4-20 mA)

Loop 4 Wde Range Pressure

()

PT-403mA)

(SO) PT-403A LooP 4 Wde Range Pressureal=

(4-20 mA)

TRICON MAIN CHASSIS OF

  • 0-10 VDC Powered Input from NIS Communication Links Copper

Process Protection System Interface Requirements Specification Revision: 7 Page 27 of 55 Figure 1-15 Replacement PPS Architecture-Set III Safety-Related Tricon Primary RXM Chassis PPS Protection Set III

~joooooir..oo L

OTTA Loop 3 Ch.

OOS SINch O (Di3m11) 31TD Loop 3 Ch. 00S Swifth P403_OOSdet Range PrassruLop4 Ch. OOS Switch P403_1OOS M.

00 (DS.=)

tc PZR L*3 1

Ch+ OOS Swftoh L46100OS P(0101)

L3 3Lo op 2 Ste rb e P -

u Ch. OOS Switchd P

Loo1p 3 Sta nuriR P8702 Ch. OOS Swich P314 P00orS. G I Laval Ch. OOS Sw itch LSISOOS (O*==t) 1.528closSr, 2 Levol Ch. OOS Swtch

)(Di e )

T1_5 39 10 O SIG 3 L.e-l Ch OOS Swlth T3131C_.rOro 3(1-rO Trro 0.1)

L.548_0OOS SfG 4 L-wd Ch. OO*S Sf#4th t3o0 P-~u L-g (RHR *o I~)Trip Stetua PS1403A.

13(D te) 7k PS/4'3 D P-HlghUteHR (LwOW) Tri statuý TS432D Los-uow To Foow Trip Status V7 Low.

Ta F

Te*:J Trip Status TS-432G (Isre) li LS1431IA(

PZRpLI H(.o

)h Trip Stoma PS/432D S2LowSnlnelDý

),

I edTo~LuI*

(Diree P0(53A 3.)

310 Low 0001wn Pr... SI & Sr ow 1./n Trip St.1us P3/3o 0102 31S.0rnow Pr... Hi Negatie R0 111.

Or.* Iso13on Trip1.0 TC-432 SG 1 H.H Tu-b TI, Fd-.e P-4To p Stoma

  • 1 (DOrow.)

LSP4/1A SG1 o0 o

Llr... Trip, A1W. u

6.

terw.0p1tatus Tri (Di00te)

LO(S

/0 11Hi TurO Trp, F.06.1.t I$ P-14 Trip Statu (Da1et..)

LS/5Z86 SI 2 LOW-Low LPess Tripo. Rabaut o0.1t Trip Se.I.

S(D,*-M) 10 LSJS53B SIG 3 LmwLo LtimPessel &TSa, mF Slain Trip StatusDtote

/SIG I H2-H1 To Trip, F8ed-atr o1., P.14 Trp Statu LS/153A 1310.1.)

LS/51B SG0 Low

-Low L.0. Trip. AFW P. p Srtat Trip Status (A000.)

p LTJFA36_1 0)03 LwLow boo Trip t

43 pFa.ilTrip R1.ay S/G 2FAIi T17 Trip, L

.oopnptor 1311. P14 Trip 3Sto LS~aA(Dis-le)

(S.S_/34 3S/0 LwLow bop) Trip, P

Plr Trip ply FStomeay An1538A LooS Output Pow.r upatsl Fa. irP6.1 PS MOBFAL,17 SIG 4te)4 Loop (0

1,Pwo Up PS71kFAJL_17 30alo1 Loop DrOt Pow Ser 4 Faiure Raw PS303FAI0_7 3100.1. Lop Irpot S

Po l~opy Faio.. 6.I.V PS4SFAI.17Analog Loo Output P-osr Supply Fal/or. 110/4 PM1M 7

1ow)0 Loop 03Ot ýPow" IF0051.1.-

Rt I

I T

(61.0.10)

-~

TRICON I.

or.4030P High00 r4(RR Nut 0000010) b PRIM CHAS ARY PC-4030 P0.o-Hih. LTOPM RXM 1..

SSIS TC-431G Oorpo-r D.te-T TrUp (310.1.o)

TC-431 C Oorep Dem.-T Trip TC-432D Low-Low Taog P.12 TC-432G Low TmV Foedwatof hin LC-4S1A PZR L-1) High R. Trip (Di-ot.)

PC.526A S/G:2 Low StmOln Pro.. ST & Strrn. 1/n (Diawote)

PC4521 S/G 2 Steamlir. Presiswlo1a1 i Raft Stem1iierr (

3lation00 (Di-to)

PC-531A SIG 3 Low S30ll1r Pres S3 1 SSrmline Isn PC-530 S0G 3 Steam",- P Hi Nega1114 Raba Steamline Notation RUSI RNSL SSPS SSPS SSPS SSPS SSPS SSPS SPS SSPS SPS 5053 0355 SOPS 0353 SOPS SO53 SOPS SOPS LC-519A SIG 11 Hi-H Turb Trip, Fordwateu hdn, P-14 (Di.-Mt)

L0-511 0101 LooLow Leowl Trip, AFW Pumop 31.0 LC-A 010 2111.HI-Hiub uTrip, Feedowar Wn, P-14 LC-626 3/G02 Low-Low Lev1l Trip, AFW Pu-p Start (DmToT.)

L.C-.0A SIG 3 Hi-Hi Turb Trip, Foedweter Win, P-14 (Diot.))

LC-5I38 S/G3 Low-Low Levi Trip, AFW Pomp Sltr (Di/).T ITP LC-U4SA SIG 4 Hi-Hi Turb Trip, Fed.0-tr Ildn, P-14 (D-~rt.)

LC-548B S/G 4 Low-Low Lboo Trip, AFW Pump Sta0 (3100.1.)

tL It Lok. Fi-I I

Process Protection System Interface Requirements Specification Revision: 7 Page 28 of 55 Figure 1-16 Replacement PPS Architecture-Set III Non-Safety-Related Tricon Chassis PPS Protection Set III LitFbrTT T014311H Trip Switch TRICON REMOTE TM-432F Tara to "r-43211VN2)

& TM-42 Gi. TC432A-HR (R31t 14 (4-20 -A)

TM-431 G0-lr Oubaft5.00 to T/41l M CC: 1)& T1,131C N521 0VU i-MCR Ovepower Deita-T Interock N4 Manual Trp Switch Io-u -)l (DslooMA)

ý_ ~ ~

~ ~

o TLl41FblPWSWjTfbASC1&

I43IB(B2

_MCR TS0431ID Toip Switch (Discrat.)

CPS2ýLAIL17 010.011 A=

.PurbSppl Failure PS31,LFIL.17 IsooLot Pow., Supply Failure Relay

_.olotu ;

s F.

PSOIIFAIL_7 (SwusPt=o) R~

(Dra-ft)

TM-43lE Drl-T to -l-431A )VB2) & Th411 03/R (R31) b (4-20 -At)

TC-431H1 Ouwpowol 00110.7 Inbtocoo C4 PCS, MCR (O-t.ut)

TC-431D Overltaop De11-T Iot~rokol C3 (D.1.1W.)

PC-5268 SIG2 Stawoli. Lmw Pra-ire Alarm (Dcrat.)

PC-530Sr. 3 StowotO, Lmw Pressure Aolarm

/71 (D.-tD5 (S8 IGLWLw Utot. rr ie cutd N

MAO (Discreta)

UY-PS3A TR)CON Protctin0 Set IMl Trouble Alarn UY-PS3T "0ICON6 StIII CPro'to No M.A1S (DrOota)

UY-PS3CTRICON Protodlol Set RTD Failure Alam (D.*rol)

TY-431_TRICON Protaction Set III DT"A RTD FailPu Alrm o

MAS PS Set III Chm t 0 Servic Alorn MA A

(Diol-.)

11 A

Process Protection System Interface Requirements Specification Revision: 7 Page 29 of 55 Figure 1-17 Replacement PPS Architecture - Set IV ALS-A PPS Protection Set IV RS4854 TAB D5a ULkil I

RS/422 D.1 L M4 7082 C/ t Irftffbo t.

11 t

TE-440A TE.441A TE-442A TE-454 (SI) PT-474 (S2) PT-0.34 PC-474&AjB..LSKA PC-474CJi5.LSMA PC-741215.SM-A PC-934AJFBjSMA PC-9348j8...LSK-A P0.4748 08 LSMA PC-474AjF8.8y9.A PC-9W4C.BýByp.A PC-4745.PB.Byp..A PC-9341AýFO6 1 pA PC-G348BFkypA ALS-A Loop 4 DT1A TO-(2000)

P LoP 4 DrrAThoI.IA Loop 4 DTTA Thot-2A (2000)

Loop 4 D'TA Thot-3A TE-44C0 OTTA Lop 4 T-oI (4-20W A)

TE-440, OTTA Loop 4 Thot-IA 14-2 OA) 79-4A1AOTTALoop4 71,01-Z4 (4-2000A) 79-442Ak DTTA Loop 4 ThoO" (2000)

PZR Vopo"T-mp (200 0)

PZR P-(4-20 rnA)

TE-454 PZR VaoporTompmno u.

(4-20 WA PC-474AA PR Po Low Rxo Trp P004740d04 PS0M4T4i0m PS IV Tinon PS IV Trk.n Ps IV T_0 5090 0090 009S 0090 S0PS RNASA (4-20 nA)

C*inlot P000 (4-20 oA)(

PC474A PZP P -buna Lo LSM A (Dis0 t0)

PC-474CAp PZP P a

High RSo T

np (D-W)

PC-474DA PZR P-,00._ 0 Lo-Low SI PC-934A-A Cot Po High SI, Ph. A Isln (D-,ýt)

C-S34B..A Cont P9-.s Hith-High Ph B 0n, Cont Spray, Sonfine 101n PC-4748-A PZR Press-re High - PORV (Dse)

PC-474D PZR P-,su. Low-Low LSM A PC-934A CoMt P9. High SI, Ph. A Isln LSM A PC-9348 CMot Press High-High Ph 8 131n, Coot Spray, Sfnlime t1n LSM A (D..cft)

PC-474B PZR P-oouo High - PORV LSM A PC-474A PZR P-0.0,m Lm Bypan. A PC-474C PZR P-essure High B-pa.. A (Dýce)

PC-474D PZR Pres Lse 4-Byp-o A PC-934A Cbot P9e0s High SI, Ph. A 1.1n Byp-o A PC-934B Cool Pt.. High-High Ph B Is8n, Cool Sprty, S0n00. I&0 Byp9. A PC-4741 PZR P-H.h-PORV 8oo. A

  • I lY-'PS4A_D0V0.,

Protmwoo Set IV Toble Alarm UY-PS4CD4V-A Prtoloon Set IVCIF oAture (DL :

)

tA.

Lmo Put..A MMS MAS MAS MAS (Difto)

PC-474B0F 00 O0A

~

PS IV Chanss Po-e SuppiyPS2-R11 F.iWn.

PS7RFAILIVAPS IV Chmisz Pý Sutor/PS7-I F.1u.

b P-S5R1FA.L-LVA PSIVnll m:* Por Supý MAI Fl.Au.1 P Z : L

_(D i

= )

PS512FAIL_1VA PS IV Anabg*Powe Su;ý*PSS-R12 F.um i

PSM22FAIL.IVA PS RV DIO'

.oe luy

.PS2-R2 F.,1-*

AIL IVA PS IVID-sft*Po S= /PS7-Rt2 FPan-PS WV TAELStas._A PS IV TAD.

M)t PS IV Alh-Clkr 1,PS IV Al-rm ciar..*(D*Am 11 t

Process Protection System Interface Requirements Specification Revision: 7 Page 30 of 55 Figure 1-18 Replacement PPS Architecture - Set IV ALS-B and Isolation Devices PPS Protection Set IV RS(485 TAB Do%. Uok SworreoWdot h orne.'k..

RS122.Ia.=I-L\\_PPCOty RS/422

.7=0 t Il "It

15.

Lo0p 4 DTTA TooI-2 (200 0)

TE-44 0C Loop 4 DT FA Tho B-I B

(20002)

TE-441C LOOP4 DTTA ThoI-2B (200 1)

TE-442C Loo04 DTOA Tho*A B (20002)

(S1) PT-474 PZR P-(4-20 mA)

(S2) PT-934 C-_ni-e Pr (4-20 nrA)

PC474A PC-474A PZR P- - -r Lo-LSM B PC44_FB_LSM_B (DI1s PC-474C FBLSKM _B PC-474C PZR P rm-o ur High LSM B (Drooet)

PC-4740 P LSU B PC-474D PZR P-n L0w-Low LSM (Drot)

PC434AJ5..,LS PC-934A Coot Press High SI, Ph. A In LSM 1

PC-O4AF..LS..S(Dsm-f)

PC34BFB_LSMP PC-934B Clt P-s. Hig, Hh Ph B WIn. Ctmt Spray. Smftnfl I.In LSM B PC-474BFB-LSB PC-474B PZR Press-re Hih - PORV LSM B PC-474ABypB PC-474A PZR P-muu Low Byps B 1

(Dreorte)

PC-474C.yPBI PC-474C PZR P-eur High Byps.. B (Di-t)

PC-474D PZR P-euom LOw-Low Byp.S 8B PC-474 D_.Byp_..B (Discre*)

PC034AByp B PC-534A Cot P-.

High SI. Ph0. A hdn Bypess B PC-934B CoMt P High-HPh B ldn, CbMot Spay. 5twintn Bypass B PC-43045..Bypj (O4sot*)

PC-474BBPB PC-474B PZR Pr-.. High - PORV Byps B A7 PSP h

sP(-

Sup

-O M

I F iur P S7R 1FAIL IVB PS IV Chassis Po er Supply PS7-RI Falu r.

PSSRIFA(LIVB PS 0V A0a05 Power Brow', P0S-RI PFgore PSSR2FAILIB PS IV Analog Power S 5p.*lPSS-02 Faium0 (Dreonte)

PS2R2FAJLJVB PS NV DOserete Power Suppl PS2-R2 FP..re

.:R:MIP (DM-w*

PS72FALMPS A/ DI-W* Powe Supply PS74R2 Failum TAB Switch Statns PPSW ITABStesB A.l-,

A P VslmCmr.

Ataoo Cleer I

ALS-B TE-4418 OtTA 10004 Tcokd-2 (4-20 0A)

TE-440C DOiA Loop 4 Thol-lB (4-20 A,)

TE-441C OTTA LOOp 4 Thot-28 (4-20 mA)

TT-442C DfrA 100 4 Thot-3B (4-20 oA)

PC-474AjB PZR P-uor Low Rx Trip PC-474CB PZR Pressure High Rx T

rip PC.474ErB PZR Prmumre Low-Low SI PS IV Trkon PS IV Toion PS IV Tdro PS NV Trk-o SSPS SSPS UOPS SOPS SSPS RNASA.

(Di-tae)

PC-9344 B Coot Press High SI. R. Tnp (Dia M) g PC-9340B,_ Ctrd P-w.. Higl-tgh Ph B.0n, Cboo Spray, Srreinin PC-4748B PZR P-reesor High - PORV

" I YC.934.B Continment Pr High-High Chranne in Test Alamn UY.PS4AO3V-B Prototio SLt PV Troubl Ala.

UY-PS4BIV-tl Protecton Set IV Chon (. BYP Mor (UD srtet F

UY-P540-DPJ-B Propedi Sot IV Peilor 41.00 M~AS

+

MAS MMS MAS LP 1.)e Loop Pulses B

(Swoete) j "4.t

Process Protection System Interface Requirements Specification Revision: 7 Page 31 of 55 Figure 1-18, continued INDICATIONS DIRECT FROM TRANSMITTER INPUT LOOP u-o~ (SO)

P1-405

!ý P-Pý5.8N5)). ERFO NU8). 8VIJ (P4883) lodoo M5) PT-518 Lop W. P"16 ()88)

Tsd- (S4) P7.588 L-4op W.R~oPR

~

)

Tsboo(S5)IT-517 1ýL"17 W31-E557855)4)

Td-s (58) LT-57 0

1-5 (585)ý ERFDS NU)4 Td5I)

T47 3

O

1.

4 V3'X85 ERD (518)

Tsý (SO)LT-547 (8-2 U-547 VIEFS(M TToo ((8)11-587 LOOP8 I583 78585 L-88)

TAo ALýS LT53 LW1_ SIGh Is.o L..

D5)81)A Td-20(SO)

'4 (5-25 ns)

.V.)8 so54 (52 nN

~ -10 DFSCS.

Tý (S5) LT-537

)8 IGS.)

'5318 sr.

535 I 0

s.),AF (4-20 MAl)

(4-20 nsA) 5)81 ISO(AT)ON N,5L 8))1W.

SDsSA.

Isboosý_

(85)

IT-i P41474 DVIE (V2 ) PZ aN)CI ALM88 (58)11.274 (8.20 A)8 (4-255482C T 0n

5) IT-40AV4 a2 O?ý M

ý L

V 11-57))51082. )

gN C

(8--

Is,)

(8-200)8 i.5 1P8 01"r0 OO MP8TTDo00S

-H HI T858.008 H-P85505-o P405A_00S P51600$S

-H

-1 K)

P0885005.5)A0

+1

Process Protection System Interface Requirements Specification Revision: 7 Page 32 of 55 Figure 1-19 Replacement PPS Architecture - Set IV Safety-Related Tricon Main Chassis PPS Protection Set IV One-Way Tnconex NET2 1

Data Link

,exNET2(Typ of 2)

Data Link A

PORT

(

o To PPC Gateway (Typ of 2)

AGGREGATOR TBconex NET2 TAP B

Data Link (Typ of 2)p of 2)

(

Workstation t*

II PZR Pressure (DTTA)

From (ALS) (Si) PT-474 (2r From (ALS) TE-440B Loop 4 DTTA Tcold-1 N

(4-20 mA)

Prom (ALS) TE-441 B Loop 4 DTTA Tcold-2 (4-20 mA)

From (ALS) TE-440A Loop 4

_TTA That-fA (4-20 mA)

From (ALS) TE-440C Loop 4 1TTA That-f B (4-20 mA)

Prom (ALS) TE-441 A Loop 4 DTTA Thot-2A (4-20 mA)

From (ALS) TE-441 C Loop 4 DTTA Thot-2B (4-20 MsA)

From (ALS) TE-442A Loop 4 1TTA Thot-3A (4-20 mA)

From (ALS) TE-442C Loop 4 DTTA Thof-3B (4-20 mA)

From L E-44B Lower Flan (0-I0VDC)

NE-44A Upper Flux (0-10 VDC)

(S3)PT-56 -0/0 2 Strotine Press (4-20 rnA)

() P/4 Sttine Presot Frm(04) PT-E-442AnA (4-20,mA) 5/0 1 Lenel (S5) LT-517 (4-20 mA)

(LS6) LT-52SG2 Leoe (4-20 mA)

S/G 3Level (07) LT-537 (4-20 nsA)

L/- 4 Lenel (SO) T-047 (4-20 MA)

(S9) PT-405 Wid Range Presure Loop 3O (4-20 MA)

SWide Range Pressre Loop 4 (4-20 mA)

From (ALS) TE-54h P

(-

ag )m (4-20 mN)

TRICON MAIN CHASSIS

  • 0-10 VDC Powered Input from NIS

-Y~--~--~Cromm Links Copper

Process Protection System Interface Requirements Specification Revision: 7 Page 33 of 55 Figure 1-20 Replacement PPS Architecture - Set IV Safety-Related Tricon Primary RXM Chassis PP* Protection Set IV Coppermin TRICON PRIMARY RXM T454_OOS LP4 DTTAOOS LP4 TTD COS p405_OOS P405ACOS P51600S P546_OOS L517OOS L527_OOS L537 0OS L547_OOS PS/405A PS/4058 PS1405D TS/441G TS1441C TS/442D TS/442G PS/516A PS/516C PS/546A PS'546C LS/517A LS1517B PS/527A PS/527B LS/537A LS1537S LS/547A LS/547B PS2S FAIL 18 PS7S FAIL 18 PS3SFAIL 18 PS6S FAIL 18 PS4SFAIL_18 PS5S_FAIL_18 PZR Vapor TeMperature Ch. 0OS §witch (Discrete)

DTTA Loop 4 Ch 0OS Switch lO (Discrete)

TTS Loop 4 Ch. 008 Swotch Wde Range Press= op4 Ch. 008 Soitoh (Discrete)

. VAde Range Pressure Loop 4 Ch. OCS Swatch (Discrete)

Loop I Steadngre Pesoopre Ch. 0OS Switoh (Discrete)

Loop 4 Steaniine Pressure Ch. OS Swotch Dscrete)

Loo 1 Lteaveelrssr COS OSv Switc (Discrete)

S/G 1 Level 0OS Switch (Discrete)

S/G 2 Level COS Swotco (Discrete)

S/G 3 Level 0OS Switch (isc/rete)

Pressure Low (9

.81 ole/look) Trip 50//

(OoDisrete)

Pressu/re Hi 8(RHR Not Isolated) Trip Status (Discrete)

Prasor High (LTOPS) Trip Status

)S/Dorete)

Overo r Delta-T Trip Status (Discrete)

Overte Delta-T Trip Status (Cisorete)

Low-Low avg P-12 Trip Status LwTg Fee =er Irn Trip Status Low Toog Fee o*atr S~n Trip 8108/s 0

rete)

S/G 2 Low StAi Press Trip Status S/G 2 Stearrnle Press Hi egative Rate Trip Status (Disc eAs)

S/G 3 Low Strdine Press Trip Status (D. sc t)

S/G 3 Steaamine Press Hi 'egat0e Rate Trip Status (isc ale)

S/G I Hi-Hi P-4 Trip Status (Disc ete)

S/G 1 L-Low I evel Trip Status (000c eon)

S/G 2 Hi-Hi P-4 Trip Status (Diso ete)

S/G 2 LovLow I evel Tp Status (Disw ete)

S/G 3 Hi-Hi P-4 Tnp Status (Dic ete)

S/G 3 Low-Low oIevel Trip Status p"is ete)

SIG 4 Hi-/F P-4 Trip Status S/G 4 Low-Low La Trip Status An.Io Loop Input Power Su F]~

e (Discrete)

Analog Loop nput Power Supply Failure Rel/y Discrete Loop /npu Power Soppy Failure Relay (Discrete)

Discrete Loop Input Power Supply Failure Relay (Siscrele)

Analog Loop Output Power Supply Failure Relay (Discrete)

Anlsog Loop Output Power Supply Failure Relay (Discrete)

PC-s05A Pressur0 Lcw (RHR 8701 Interlock)

(D ',rate)

PC-4058 Pressure High (RHR Not Isolated)

(Discrete)

PC-405D Pressure High (LTOPS)

(Disrte)

TC-441G Overpower Dellt-T Trip (Disrete)

TC-441C Overtenmp Deta-T Trip (Discrete)

TC-442D Low-Low Tiog P-12 (Discrete)

TC-442G Low T mg Feedwater Is~n (Discrete)

PC-516A S/G 2 Low Str1ine Press SI & Strdine Isln (Discrete)

PC-516C SIG 2 Steamline Press Hi Negative Rate Steaarln Isolation (Discrete)

PC-546A S/G 3 Low Stmline Press Si & Stmline Isn RNSIB RNSIB RNASA SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS SSPS (Discrete)

PC-546C SIG 3 Staamline Press Hi Ne-ative Rate Steamline Isolation (0 screta )II LC-517A S/G 1 Hi-Hi Tuob Trip, Feedwater Isin, P-14 (Discrete)

LC-517B /G 1 Low-Low Level Trip, AFW Pump Start (Discrete)

LC-527A S/G 2 Hi-Hi Turb Trip, Fedwealter loin, P-14 8 (-sLeTrei)

LC-527B SIG 2 Low-Low Level Trip, AFW Pump Start (Dscrete)

LC-537A /G 3 Hi-Hi TuSb Trp, Feedweter Irin, P-14 LC-537B S/G 3 Low-Low Level Trip AFW Pump Start (Discrete)

LC-547A S/G 4 Hi-Hi Turb Trip, Feedwater Isin, P-14 (Discrete)

LC-547B S/G 4 Low-Low Level Trip, AFW Pump Start (D.,0ete)

I +

CommuooatS A7

Process Protection System Interface Requirements Specification Revision: 7 Page 34 of 55 Figure 1-21 Replacement PPS Architecture - Set IV Non-Safety-Related Tricon Chassis PPS Protection Set IV C

-6.

/-.1% T TS/441H Overpowr Defta-T Intertock C4 Manoel Trip Swh0 (Di=wet.)

TS/441D Oortemrp Deft.-T Interlock C3 M-nosI Trip Swftdh (D

eta)

PS2NFA Clasn II Anal power Sp Failure Relay PS5NYAILS C/ass 11 Ana Power Suoly Faolure Relay P/3.....L...1 teltr oe So P0,, Re/

PS3NFAIolato PowerS l

Faiure Relay PS8N-FA/L.18 oeS a F.u1..,

or,. S tchmnior00o Puos.

TM-442F Tow, TRICON REMOTE (4-20 t-A)

TM-441 Overu/wp S-Wpoint RXM (4-20 toA)

UMADTMe-441F r-Setoin MCR. PCS MCR MCR MCR, PCS rMCO2 11 (4-20 eta)

"rM-441E Delta-T (4-20 nA)

TMA454A PZR Vapor Temp (4-20 tA)

TC-441H Overpower Delta-T Intarkxtk C4 (DT4 cretI)

TC-441D Oviertwrtp Delta-T Intetlockr C3 RNARA (D-w1tnl PC-5IRS S/G I Steewlie. Low, Presweo Alant

/7 (D/amtea)

PC-546S SIG 4 Stwline Lw Presure Al-ow (Disrete)

LY-517H S0G Low-Low La.e iTD T1-er Arooted MAS MAS l//arata UY-PS4A*A O1CN Protecion Set IV Trouble Ala UY-PS4B TRICON Protecton Set

=

o Chtn (Di-lree)

UY-PS4CTRICON Protoct/n Sat RTh Felow Alar-r TY-441_TRICON Prottion Set/V DTTA RTD Fallure Alam MAS TC-454B Prw-aft.er Vapor Teo! ratute High Aawt

'=

mAS (DaOte r

aM PPS Sat/V Chtanel OtM f SorM., A/tt

-o MAO (Dlaoreta A

Process Protection System Interface Requirements Specification Revision: 7 Page 35 of 55 Figure 1-22 Replacement PPS Non-Safety-Related Communications Architecture 7 ~ ~ ~~&2

-ti ft-~/,Z%

4 O~rALS

--- 7 P.Ao Set 911 ALS '

Zvpte~

/r 3

.11 VALS A8 n'

PoSdI11ALS*B

-/

/7 MStIV-ST Pta~so IV 1 a Aeg~gmtoTTap (Typ 04 2)

S ToitAS3.(

)

(TyfbrLS wdALSWONSB RS bB1R-45Seria or OEAoeTCope MWSP MatatN AL W roan LSo-r R CS422 llrfc Cr

Process Protection System Revision: 7 Interface Requirements Specification Page 36 of 55 2

Interface Requirements This section specifies the requirements imposed on the systems, subsystems, configuration items, or other system components to achieve required interfaces among these entities.

2.1 Process Interface Requirements Appendix 3.1 describes process inputs and outputs for the PPS replacement project.

The I/O list contains the following information for each protection set. As noted below, some I/O list information is outside the scope of this interface specification.

2.1.1 I/O Power Supplies The Triconex qualification requires that separate power supplies be used for analog and digital i/o.

1. All Tricon discrete inputs and outputs will be powered in accordance with the requirements provided in the I/O list.
2.

The Containment Pressure Bypass switch inputs to the ALS will be dry contacts wetted by 48 Vdc supplied by PG&E.

3.

The Pressurizer pressure loops are shared among the ALS, Tricon, and the control system, via qualified isolator modules, and will be powered by the Tricon ETP as shown in Figure 2-3.

4. Where the analog input signal source is a process transmitter, bounding loop resistances per the I/O list are as follows:
a.

Max resistance < 750 ohms

b.

Min resistance > 200 ohms

5. All 4-20 mA analog signals are powered from power supplies located within the PPS cabinets. The 0-10 VDC analog signals from the Nuclear Instrumentation System (NIS) are powered by the NIS.
6.

PG&E will provide power supplies which will accommodate the above bounding loop resistance values. Analog input loop power supply voltage should not exceed 40 Vdc, and may be as low as 24 Vdc based on the following considerations and assumptions:

a.

Rosemount 1154 and 1154 Series H

1) Max qualified power supply voltage: 45 Vdc
2)

Max Design loop resistance at 45 Vdc input: 1575 ohms

3)

Min Design loop resistance at 45 Vdc input: 500 ohms

4)

Max Design loop resistance at 24 Vdc input: Approx. 700 Ohms

5)

Min Design loop resistance at 24 Vdc input: 0 Ohms

b.

Rosemount 1153 Series B&D Output Code P

1) Max qualified power supply voltage: 40 Vdc
2) Max Design loop resistance at 40 Vdc input: 1325 ohms
3)

Min Design loop resistance at 40 Vdc input: 500 ohms

4) Max Design loop resistance at 24 Vdc input: Approx. 600 Ohms
5)

Min Design loop resistance at 24 Vdc input: 0 Ohms

Process Protection System Revision: 7 Interface Requirements Specification Page 37 of 55

c. Rosemount 1153 Series B&D Output Code R
1) Max qualified power supply voltage: 45 Vdc
2)

Max Design loop resistance at 45 Vdc input: 1575 ohms

3)

Min Design loop resistance at 45 Vdc input: 500 Ohms

4) Max Design Loop Resistance at 24 Vdc input: Approx. 700 ohms
5)

Min Design Loop Resistance at 24 Vdc input: 0 ohms

d.

Barton 763 max power supply voltage: 50 Vdc

e. Barton 763 Max loop resistance at 40 Vdc input: Approx. 1250 ohms
f.

Barton 763 Min loop resistance at 40 Vdc input: Approx. 190 ohms

g. Triconex 3805N Analog Output module OVP: 42.5 Vdc
h. ALS input resistance is 220 ohms [Figure 2-4] when both "A" and "B" 302 boards are in the circuit.
i.

Triconex 9792-61 ON Reg. Guide 1.180 FTP Max 48 Vdc (Approx. input resistance: (250 + 1/(1/250 + 1/3300)) - 482 ohms)

j.

Input and output loop resistances as shown in Appendix 3.1 based on Triconex resistance above and:

Isolator input 4-20 mA into 20 ohms (estimated)

Westinghouse VX-252 indicator: 5 ohms (including estimated wire resistance)

ERFDS: 50 ohms RVLIS: 250 ohms

k.

ALS 4-20 mA analog outputs are powered by the ALS. Therefore, temperature inputs to the Tricon will not use the Positive Temperature Coefficient (PTC) thermistor for loop overcurrent protection and the input resistance for Tricon temperature inputs is 250 ohms.

7.

Tricon Analog Output Power Supply

a. Analog outputs in the safety-related Triconex Main Chassis will be powered by redundant 24 Vdc power supplies furnished by PG&E.
b.

Analog outputs in the non-safety related Triconex Remote RXM chassis will be powered by redundant 24 Vdc power supplies furnished by PG&E and mounted in the rack housing the RRXM chassis.

c. The Tricon analog output power supply shall not be shared with any discrete input or output signals.

2.1.2 Analog Inputs Figure 2-2, Figure 2-3, and Figure 2-4 illustrate typical PPS analog input signal wiring

[1.4.5.6, 1.4.5.7]:

1. PT-455 signal shared among Tricon (DTTA functions), ALS-A, ALS-B and an isolation device
2.

LT-459 signal shared among Tricon, Control Board indicators and an isolation device

3.

PT-505 signal shared among the Tricon, and an isolation device

4.

RCS Temperature signals are conditioned by ALS-A and ALS-B, respectively before they are input to the Tricon. Example wiring for these signals is shown in Figure 2-3.

5.

Tricon Al cards 3721 (where used) and 3721N shall be configured for 14-bit resolution, unipolar. These cards are used for all 4-20 mA analog inputs to the PPS

Process Protection System Revision: 7 Interface Requirements Specification Page 38 of 55

6.

Tricon Al cards 3703E (where used) and 3703EN shall be selected for 0-10 Vdc input, fail downscale. These cards are used for Nuclear Instrumentation (NI) inputs to the PPS.

7.

Signals from redundant field devices shall be processed on separate input boards.

2.1.3 Discrete Inputs Signals from redundant field devices shall be processed on separate input boards.

2.1.4 Discrete Outputs Figure 2-5 and Figure 2-6 illustrate typical ALS discrete output signal wiring that implements the diversity architecture [Figure 1-1] using a Line Sense Module (LSM) to provide a hardwired OR configuration between Diversity Groups ALS-A and ALS-B and to enable the ALS to perform continuous error checks for detecting the following conditions:

Failure to Trip on Demand Trip without Demand Failure to Bypass Illegal Bypass The LSM is illustrated in Figure 2-1. Configuration of the LSM for use in an Energize to Trip (ETT) or Deenergize to Trip (DTT) circuit is done through field wiring terminations on the LSM and does not require any modification of any electrical properties of the LSM itself. Thus, a single LSM can be used in an ETT or DTT circuit without the need to electrically configure the module for the trip circuit type before use. This allows a single part number to be used to provide spares for both ETT and DI7 circuit configurations.

Refer to the ALS Design Specification [1.4.5.6] for additional information regarding the LSM and field wiring interface.

Figure 2-1 LSM Functions Feedback* to Feedback to ALS-302-A DI ALS-302-B 01 tt Fro. ALS-402-A DO LSMA Fro-By DoP M-o Sw-"0 A kDoptW EEE To SPSPIOONASA Frow AL-*402-B DO U LSM B13SM F-o Bypme

Revision: 7 Page 39 of 55 ecification Figure 2-2 Typical ALS Analog Input Wiring ALS 321 Cwd "A External Current Shunt Mode ALS 321 Card "B External Current Shunt Mode DIN Rail Terminal Board with Disconnect Notes:

External shunt resistor Rs across ALS En and An terminals allows Al card to be removed without interrupting the 4-20 mA field circuit.

Example (Informati on Only) :

Calculate Rs for 0.4 - 2.0 VDC Input (4-20mADC)

I I

I 100 260 K Rs RS (260KXl°°)

260K - 100 Rs = 100.03850

Revision: 7 Page 40 of 55 ecification Figure 2-T3 Typical Tricon Analog Input Wiring TB-A TB-A-Il.IIETPI-OllT-r)

PANEL MODEL zizv Tat 9792-61ONJ ETP1 (For 3721 N Al)

J4 J3 J2 JP17 TB-A-I(-)/ETPl-0(T-)

TBK TB-A--/TP 1-0T-l +)

1K K.

-- TB-A-8 (-)ETPI-02('Tl-) W L TB-A-O(+)ETPKI.3fl+)

BK K. TB-A.Io(-;STPI-o3(-)

.r K. TB-AI11+YSTPI-04<T-)BKI T&-A-I 1,+YETP -O4IAIWT Li TB-A-12(+tETPi-05(A)

W2 I I/O Power Supply PRI PS(+YT82-1 RD PS2S I

R S(IDII)

B (40 VOC L---

SEC PS(+)/TB3-1 RD O Power Supply-PSS p S(-)/DCI(-)

BK (40 VDC)

I aPT 2 aLT 3

F'T 4 eTl 5 8P' ISa1 TB2-TBS P2 455 459 TS05 JP1 JP2 JP3 E413A T423A 0

JP4 0

JPS JPie TBM I

Notes:

PT-455, PT-505, and LT-459 are powered by the Tricon ETA.

The TE-413A and TE-423A RTD signals are conditioned by the ALS before they are input to the Tncon and provided to the Tricon as 4-20 mA analog signals. They are powered by the ALS, externally from the Tricon ETA.

The DCPP PPS NIS input signals are 0-10 VDC and will utilize a 3703EN Al card and 9783-1 1ONJ ETA Do not remove Jumper JP-17 when using the 9792-610NJ with the 3721N A1 card.

DIN Rail Terminal Board with Di-eonnrec

Revision: 7 Page 41 of 55 ecification Figure 2-4 Tricon/ALS PT-455 Interface Wiring TRICON TB-A TB-A-I (+)/ETP 1-01(T+)

JUMPER JUMPER JUMPER TB-A-4(-)/ETP1 -01 (T-)

with Disconnect ALS-A ALS 321 Card A PT-455 TB-A Externa Cunent Shnt Mode From Tricon TB-A I N E-n 2 50 AntAn 2()

()E-IAn-10K-A A/

DIN Rail Terminal Board with Disconnect ALS-B ALS 321 Card B" PT-55T1313Extennal C-ren ShuntS Mode PT-455 TB-B

,ne h*

o From Tricon TB-A I NEn 2-.1 E -

R sA nJ 10 K -

1DI

(-)

\\-

~

An

=An

]

DIN Rail Terminal Board with Disconnect Note:

Rs across 1 (+) and 1 (-) on TB-A and TB-B allows ALS-321 card to be removed without breaking the 4-20 mA field circuit.

Revision: 7 Page 42 of 55 ecification Figure 2-5 ALS-A and ALS-B SSPS Connections (Deenergize to Trip Configuration)

NOTES:

1. Normally Open, Open to Alarm
2. Normally Open, Close to Actuate I A and LSM B are parts of a single LSM.

Revision: 7 ecification Page 43 of 55 Figure 2-6 ALS-A and ALS-B SSPS Connections (Energize to Trip Configuration)

ALS-B wamn Supply AL33 DI 1 W.Wng&Spply 4

C1

)

8 C Logic ALS-A CHN(n)

ALS-B 2D

,TN ALS,.402-2 D, (2.)

(2.)

2 'v Ind t.

hdicaW

  • LSM LSM B L5A

,A (Relays)

IlL B

NA SA (I Relay.)

I A and LSM B are parts of a single LSM.

Process Protection System Revision: 7 Interface Requirements Specification Page 44 of 55 2.2 Safety-Related ALS/Tricon Interface Requirements

1. ALS shall provide 4-20 mA analog Temperature channel inputs to Tricon
2.

ALS output signals shall be powered by ALS 2.3 Data Communication Interface Requirements As shown in in Figure 1-22, the Tricon portion of the PPS replacement will utilize two TCM cards in each main chassis (Slots 7L and 7R), as well as two Media converters, two Port Aggregator Network Taps, and two sets of associated media. This arrangement provides two non-safety-related communication paths to the MWS and the PPC Gateway Computer from each Protection Set to ensure continued communications if a single non-safety-related communication component fails.

2.3.1 Non-Safety-Related Communications from Tricon to Port Aggregator Tap (2-way) 2.3.1.1 Hardware: Net Optics PA-CU 10/10BaseT Port Aggregator Tap supplied by PG&E 2.3.1.2 Media: Optical Fiber from TCM 100baseT Ethernet Media Converter to port aggregator. Supplied by Triconex.

2.3.1.3 Data Interface Protocol: Triconex Standard Ethernet NET2 2.3.2 Non-Safety-Related Communications from Port Aggregator Tap to Tricon Maintenance Workstation Computer (2-way) 2.3.2.1 Hardware: See Section 2.3.1.1 2.3.2.2 Media: 100baseT Ethernet 2.3.2.3 Data Interface Protocol: Triconex Standard Ethernet NET2 2.3.3 Non-Safety-Related Data Communications from ALS to ALS Maintenance Workstation Computer (1-way) 2.3.3.1

==

Description:==

Core Logic Board communication channel TxB2 2.3.3.2 Media: RS-422 twisted pair copper to maintenance workstation 2.3.3.3 Data Interface Protocol: TxB1/TxB2 Data Packet [Reference1.4.5.9, App A; 1.4.5.10, App A]

2.3.4 Non-Safety-Related Communications from Test ALS Bus (TAB) to ALS Maintenance Workstation Computer (physically disconnected when TAB is not in use). Refer to Figure 2-7 for TAB communication interface connections.

2.3.4.1

==

Description:==

TAB interface with ALS chassis 2.3.4.2 Media: RS-485 twisted pair copper to TAB enable switch and MWS 2.3.4.3 Data Interface Protocol: TAB [Reference 1.4.5.10, Section 5.2]

2.3.5 Non-Safety-Related Communications from ALS to Gateway computer (One-way) 2.3.5.1

==

Description:==

Core Logic Board communication channel TxB1 2.3.5.2 Media: RS-422 twisted pair copper to Gateway computer

Process Protection System Revision: 7 Interface Requirements Specification Page 45 of 55 2.3.5.3 Data Interface Protocol: TxB1iTxB2 Data Packet [Reference1.4.5.9, App A; 1.4.5.10, App A]

2.3.6 Non-Safety-Related Communications from Port Aggregator Tap to Gateway computer (One-way) 2.3.6.1 Hardware: See Section 2.3.1.1.

2.3.6.2 Media: 100baseT Ethernet + network hub supplied by PG&E 2.3.6.3 Data Interface Protocol: Ethernet-based.

2.3.7 Keyboard, Video Display, and Mouse (KVM) Switch 2.3.7.1 The KVM switch shall enable sharing a high resolution screen and USB HMI peripheral devices (including keyboard, mouse and touchscreen interface) between multiple computers.

a. The KVM switch shall enable up to four computers to be controlled from one single high resolution KVM console using high definition analog VGA video links to a single VGA monitor.
b. The KVM switch shall permit only connections between the video display and USB interface devices and the single selected computer.

Connection between the computers or to multiple computers shall not be permitted.

C. The KVM switch shall support switching the video display and HMI interface devices between the connected computers via the following means:

Keyboard hotkeys Front panel switch Mouse button (requires a 3-button mouse)

d.

The KVM switch shall enable USB 2.0 enhanced feature mouse and keyboard input devices to be switched instantaneously and reliably between the connected computers without requiring the devices to be enumerated upon transfer. Item f, below explains enumeration.

e. The KVM switch shall include two independently switchable USB 2.0 channels for other devices. The first channel (USB1) will be used for the Touchscreen interface device. The second channel (USB2) may be used to connect a printer to the workstation as determined by the detailed design.
f.

The independently switchable USB 2.0 channels shall provide enumerated switching, which requires the connected USB device to perform a full initiation process (i.e., enumeration) every time it is switched. The enumerated switch shall pass signals straight through the switch between the USB device and the computer without interpretation.

g.

The switch shall utilize the default switching mode, in which the video display, keyboard and mouse and the enumerated USB ports are all switched simultaneously.

h.

The KVM Switch provides an Options Port that can be utilized for remotely controlled switching or firmware update.

The PPS replacement application will not utilize the remotely controlled switching feature.

0 DCPP may utilize the Options Port to update the KVM switch firmware. If needed. such a maintenance update will be performed

Process Protection System Revision: 7 Interface Requirements Specification Page 46 of 55 using approved DCPP configuration management procedures

i.

The PPS replacement application will not utilize the audio interface.

j.

Multiple KVM stations are not required for the DCPP PPS Replacement application.

2.3.7.2 Media: Copper 2.3.7.3 Data Interface Protocol: Analog VGA; USB 2.0 2.4 System Power Requirements 2.4.1 I/O Power Refer to Section 2.1.1 2.4.2 Tricon System Power Requirements The Tricon portion of the PPS replacement will use the standard Triconex V10 AC power distribution design. An external independent vital 120 VAC 60 HZ power source will be provided by PG&E for each Protection Set. The single vital 120 VAC source for each Protection Set will be connected in parallel to the dual input power supply for each Tricon V10 Protection Set. Power filters will reduce conducted noise to acceptable levels in accordance with USNRC Regulatory Guide 1.180, Rev 1.

2.4.3 ALS System Power Requirements The ALS "A" and ALS "B" chassis in each Protection Set requires two redundant safety related sources of 48 VDC power, which are necessary to power the ALS chassis and the individual boards within the chassis. The power supplies are provided by PG&E. As with the Tricon, the single vital 120 VAC power source provided by PG&E for each protection set will be connected in parallel to the two ALS chassis power supplies.

2.5 Instrument Power Supply Locations To be determined by detailed design.

2.6 System Power Sources Provided by PG&E 2.6.1 The following power sources are available for the Process Protection System:

2.6.1.1 120 Vac vital instrument power [1.4.4.7]:

Voltage:

120V +/-10% [DC 6010908-397]

Frequency:

60 HZ +/-5% [DC 6010908-397]

2.6.1.2 Non-safety-related 120 Vac utility power 2.6.2 Harmonic Distortion Limitations PG&E practices power supply quality monitoring. As-found and as-left Total Harmonic Distortion (THD) measurements will be performed on power supply at PPS 120 Vac power supply input terminals before and after installation of equipment powered from the 120 Vac vital instrument power supply. Refer to USNRC Reg. Guide 1.180 [1.4.3.3].

2.7 Workstations 2.7.1 Maintenance Workstations Separate and independent Maintenance Workstation computers are provided for the

Process Protection System.

Revision: 7 Interface Requirements Specification Page 47 of 55 Tricon and ALS subsystems in each Protection Set to allow independent processing and display of information from both Triconex and ALS portions of the PPS. The HMI application in the Tricon MWS computers shall interface (2-way) with the Tricon. The TS1 131 PPS application contains function blocks that allow WRITE-access to a limited set of parameters programmed into the application software with the Tricon keyswitch in the RUN position. Without these function blocks programmed into the application program application program parameters cannot be modified with the keyswitch in the RUN position. The Tricon protection set is considered inoperable when the keyswitch is not in RUN position.

The HMI application in the ALS MWS computers shall interface (1-way) with the ALS via the isolated TxB2 RS-422 data link. The two MWS computers in each Protection Set share peripheral devices through a KVM switch. Refer to Section 2.3.7 for details.

2.7.2 Auxiliary Service Unit Application Software Software application shall be provided by Vendor CS Innovations to run on the ALS Maintenance Workstation Computers. The ASU application utilizes a two-way RS-485 communication link to communicate with the Test ALS Bus (TAB) that is physically disconnected from the MWS computer when it is not in use. The activation of the TAB via connecting the TAB data link to the MWS computer does not interfere with the ability of the ALS safety channels to perform their respective safety functions and the ALS is still operable during activation of the TAB. Therefore, individual instrument loops may be placed is bypass for maintenance and the rest of the ALS safety channel is still operable with respect to its safety function.

To detect the TAB connection, the ALS-1 02 DI #2 needs to be connected to ALS-1 02

'lnput.Rtn as shown in Figure 2-7 [Reference 1.4.5.8, Figure 4-2].

2.8 Alarm Interface Requirements The PPS shall provide the following alarm output signals from each Protection Set for connection to the Main Annunciator System (MAS) in the DCPP Main Control Room (MCR). Separate input signals shall be provided for these alarms from each Protection Set per Section 3.2.1.5 of the FRS [1.4.4.2].

2.8.1 PPS Failure (Deenergize to Alarm with Reflash capability)

The conditions listed in FRS Section 3.2.1.5.1 shall provide signals to initiate the PPS Failure alarm in the Main Control Room.

2.8.2 PPS Trouble (Deenergize to Alarm with Reflash capability)

The following platform-specific inputs to the Main Control Room PPS Trouble Alarm shall be provided in addition to those listed in FRS Section 3.2.1.5.2. Other alarms not listed here or in the FRS may be provided to meet platform diagnostic requirements.

2.8.2.1 Controller keyswitch not in RUN (Tricon only) 2.8.2.2 TAB communication enabled (ALS Only)

Revision: 7 Page 48 of 55 ecification Figure 2-7 Typical TAB Communication Link Connection ILS BACKPI P3-C2 I

P3-E6 PI-AI0 PI-AII LANE CONNECTOR ALS BACKPA 13 102-1.C2 INPUT.C2 i I O-E6 J3-102-l.E6 k3PUT.R1N

-,Z J0-D5 J1 102-1.AI0 TAB' TAB JII-A6 JI-102-.AII TAB+

TAB JII-A2 BACKPLANE PCB ENEL CONNECTOR P10-E6 1_

0 2 ASU COM ENABLED F-<<

PIO-D5 2

INPUT.RTN P1bA6 1

2 TAB-TAB PI -A2 '

1 1,*

2 TAB+

TAB+-

TAB TO MAINTENANCE TERMFNAL CONNECTOR CABINET WIRING ALS RACK

Process Protection System Revision: 7 Interface Requirements Specification Page 49 of 55 2.8.3 PPS Channel in Bypass [Energize to Alarm with Reflash capability]

2.8.3.1 External comparator Bypass switches, where used, are provided with two (2) separate and independent output contacts.

1)

One contact physically bypasses the comparator trip/actuation output per FRS Section 3.2.1.3.6.

2)

One contact satisfies Bypassed Indication requirements per Section 3.2.1.5.3.a) of the FRS 2.8.3.2 External Channel Out-of-Service (OOS) switches, where used, are provided with two (2) separate and independent output contacts.

1)

One contact satisfies PPS functional logic requirements per FRS Section 3.2.1.3.7.

2)

One contact for use by the MAS, independent of the PPS per FRS Section 3.2.1.5.5.b).1.

Process Protection System Interface Requirements Specification Revision: 7 Page 50 of 55 2.9 2.9.1 2.9.2 2.9.3 Software Constraints and Requirements Tagnames shall consist of no more than 14 alphanumeric characters for compatibility with the DCPP Training simulator.

Modbus Aliases 2.9.2.1 Tricon application physical input and output tagnames shall utilize the Modbus aliases assigned automatically by the TS1131 Developer's Workbench to ensure compatibility with the MWS WonderWare application.

2.9.2.2 All other tagname Modbus aliases shall be user-defined. Default aliases are not acceptable.

Tagname Convention 2.9.3.1 Tricon The tagname convention shown in Table 1 shall be used in developing the PPS application.

Global variables shall be assigned a lower case letter (per the following table) as a unique designator dependent on the variable type. The remainder of the tagname shall be assigned based on the variable's function within the application. Tagnames for I/O variables and variables transmitted to external systems shall be assigned in accordance with Appendix 3.1, I/O list.

2.9.3.2 ALS The tagname convention shown in Table 1 shall be used for display of PPS variables that are transmitted to the MWS. The MWS displays shall utilize the tagnames provided in Appendix 3.1, 1/0 List.

Table 1 Tagname Convention First Character Description a

Scaled signal from analog input module c

Discrete output points d

Discrete input points e

Enterable Analogs f

Internal Discrete g

Enterable Discrete i

Integer values k

Fixed Constant m

Alarm / Trip Flag o

Override Discrete (Not used in PPS) ov Override Value Real (Not used in PPS) p Pulse Inputs (Not used in PPS) q Quality Code DINT r

Internal Analog Real w

Raw Analog Input y

Raw Analog Output

Process Protection System Interface Requirements Specification Revision: 7 Page 51 of 55 2.9.4 Disallowed Function Block Names The function block names listed in the following table are in use in other Tricon applications at DCPP. The listed function block names shall not be used in the PPS application to ensure compatibility with the DCPP Training Simulator. A listed function block may be used if the function block is obtained from PG&E and is not modified in any way.

Table 2 Restricted Function Block Names Function Name Used Function Name Used I Function Name Used AIFailAIm AlScale GTLT LINIT1l103 PIDOScale Sel_12_Real SEL_6_DINT WOODTOREAL SCHED SPDSELECT03 VLVSTAT ALARM LATCH AMSTATIONR Change_Rate Cycle8Bools DEV ALM DEV ALM FF ARB DEV ALM FWT DEVALMSFARB EightScanAve FW ARBITRATOR MAPQC MEDIANSEL MEDIANSELFWT NEWALARM PIDCONTROL QualifiedAverage Ramp_Block RAMPRATE RampToZero RESET RollingAve RollingAve60 MTCS MTCS MTCS MTCS MTCS MTCS MTCS MTCS MTCS MTCS MTCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS DFWCS RunningAveTime SGThermalPower STEPPER STMARBITRATOR AlPROCA_1'4 LINIT1i103 AIPROCHR AI02_PROCA_14 A103_PROCA_14 AMSMan_1 AMSMan_2 AMS Man 3 AMSSP_1 AMSSP_2 AMSSP_3 AMSSP_4 CycleNBools Log toLinear P_ONLYCONTROLLER PID_R_PGE Pulse Cycler Ramp_R_Trig_l Ramp_RTrig_2 Real2NormExp AlarmCheck AlarmCheck FanMonitor FanStart PosCompil PosComp_2 ACPIRM AFWAM AFW SP SEL DFWCS DFWCS DFWCS DFWCS RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI RI POV POV POV POV POV PCSS PCSS PCS S AISCALES DCKFTM HIAGEDB LOALEDB MEDIANSEL RAMP AlarmCheck AlarmCheck AIPROCA vl AIPROCHR vi RTDOhms2FABCR AMINTERFACE Highest4 DCKFTM HIAGEDB MEDIANSEL OOSTP RAMP RATELAG SPSEL AC PI RM LAGLEAD SGPAM SGPSPSEL PZLAM PZLSPSEL CWFAM CWFSPSEL LAG LINIT6_03 AINHR_0 PCSS PCSS PCSS PCSS PCS_S PCSS PCS_S PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS PCSNS

Process Protection System Revision: 7 Interface Requirements Specification Page 52 of 55 2.9.5 Quality Codes A method shall be provided to identify the validity of data being transmitted to the MWS and external systems for the purpose of displaying the status of displayed information.

2.9.5.1 ALS Channel integrity information shall be included in the TXB1/TxB2 data stream.

2.9.5.2 Tricon As required by the I/O List, provide read-only Modbus aliased Quality Code tagnames for analog input variables. The Quality Code (DINT) value shall be assigned per the following definitions:

Table 3 Quality Code Assignment Code Quality Description 0

Good; QC is Not 1, 2, 3, 4, or 5.

1 Not Used 2

Not Used 3

Not Used 4

OOR;lnstrument that is beyond the allowable scale.

5 OOS; Instrument has been removed from service.

2.9.6 On-Line Maintenance and Test Interface 2.9.6.1 The PPS shall provide capability for maintenance bypass during power operation; that is, the PPS shall permit removal of the capability of an individual channel or channels to perform its protective action due to a requirement for replacement, repair, test, or calibration [GDC 21].

2.9.6.2 The maintenance and test functions shall be accomplished without lifting electrical leads or installing temporary jumpers.

2.9.6.3 The channel or channels subject to the maintenance bypass may remain in the bypassed condition within administrative time limits in accordance with DCPP technical specifications established to meet the single failure criterion per IEEE-603-1991 Sections 5.1 and 6.3.1.

2.9.6.4 Capability to initiate protective action (i.e., to initiate partial trip or actuation) from a channel that has been removed from service for maintenance shall be provided per IEEE 603-1991 Section 6.3.2 and DCPP Technical Specifications.

2.9.6.5 Capability of the PPS to accomplish its safety function shall be retained during maintenance bypass per IEEE-603-1991 [1.4.2.2] Section 6.7.

2.9.6.6 Tricon PPS Subsystem Specific Requirements

1. External trip switches will be provided on PPS partial trip and actuation outputs that de-energize to trip. The switches may be used for SSPS input relay testing or to trip or actuate the channel manually if needed. External trip switches are not required for energize to trip outputs.

0

Process Protection System Revision: 7 Interface Requirements Specification Page 53 of 55

2.

On-line testing shall be controlled by the safety-related Tricon processor enabled via a permissive from an external safety-related hardwired Out of Service (OOS) switch.

3.

When the OOS switch is activated, the safety-related function processor shall allow the associated instrument channel to be taken out of service while maintaining the remainder of the Protection Set operable. Features to limit inadvertently placing a channel OOS shall include, but not be limited to:

a. Approved PG&E procedures are required to perform testing operations.
b. Operation of the hardware OOS switch alone shall not place the channel out of service.
c.

More than one specific action shall be required at the Maintenance Workstation to perform the maintenance functions. In order to perform any test operation from the maintenance workstation, the user must:

(1) Activate the OOS switch for the specific loop to be tested (2) Log in as a maintenance user on the maintenance workstation (3) Open the maintenance screen for the specific loop being tested (a) On the maintenance screen, request the desired test mode (b) On the maintenance screen, confirm the requested test mode (Loop

.is placed OOS only after the requested mode is confirmed)

(c) If it is desired to change the test mode, repeat steps 3.(a) and 3.(b) while the channel is OOS; selecting a different test mode alone shall not cause or require returning the channel to service.

(4) The channel shall return to service:

(a) When the OOS switch is returned to its normal position; or (b) When so commanded from the MWS

d.

Feedback is provided to the user on the maintenance workstation that the hardware OOS switch for the loop to be tested has been activated.

e. Continuous indication is provided in the control room that a loop is OOS.
f.

If the safety-related hardware out of service switch is not activated, non-safety-related actions or failures cannot adversely affect the safety-related function.

g.

An instrument loop is not permitted to be bypassed if external trip switch is in the trip position. The user may test in trip in this condition following request and confirmation as described above.

4. Maintenance modes allowable under 3.c.(3) above shall include:
a. Test in Bypass: The channel trip output is maintained in the untripped condition while in this mode; that is, Test in Bypass mode shall override the output of the channel trip comparator to prevent generation of a partial trip from the channel being tested.
b. Test in Trip: The channel trip output is maintained in the tripped condition while in this mode; that is, Test in Trip mode shall override the output of the channel trip comparator to initiate partial trip or actuation from the channel being tested.
c.

Parameter Update: Capability to update parameters such as trip setpoints or tunable parameters.

(1) The parameter values to be updated are limited by the software application to pre-determined ranges.

Process Protection System Revision: 7 Interface Requirements Specification Page 54 of 55 (2)

The Maintenance Workstation software application shall request operator confirmation that the parameter update process is complete prior to saving the new tuning constant.

2.9.6.7 ALS PPS Subsystem Specific Requirements

1. ALS bypass and test functions are accomplished through ALS Service Unit (ASU) software implemented in the MWS as discussed in Section 2.7.2.
2.

Placing a specific channel in maintenance bypass shall not affect the safety function of other channels in the same ALS chassis that are not subject to the same maintenance bypass.

3.

Placing an individual channel in maintenance bypass in one ALS chassis (e.g.,

Chassis "A") shall not affect the safety function of any channels in the diverse ALS chassis (e.g., Chassis "B) in the same protection set.

4.

Multiple channels may be placed in maintenance bypass concurrently within an ALS chassis. However, placing multiple channels in maintenance bypass shall require individual bypass actions for each channel. Multiple channels shall not be placed in maintenance bypass by a single action.

5.

The Test ALS Bus (TAB) must be physically connected to the MWS as shown in Figure 2-7 to allow two-way communications on the TAB between the ALS chassis and the MWS.

6. The ALS-A and ALS-B chassis partial trip outputs are hardwire OR'd to the SSPS input relays through an external LSM to allow either ALS chassis to initiate a trip or actuation. Refer to Figure 2-5 and Figure 2-6 for LSM usage.
7. The LSM shall not allow an ALS chassis to prevent the diverse ALS chassis from initiating a required trip or actuation.
8.

External bypass switches are provided for the individual ALS-A and ALS-B partial trip outputs to allow removal of an ALS circuit board in without initiating a false trip or actuation.

Process Protection System Revision: 7 Interface Requirements Specification Page 55 of 55 3

Appendices 3.1 Protection Set i I/O List 3.2 Protection Set 11 1/0 List 3.3 Protection Set Ill I/O List 3.4 Protection Set IV I/O List Appendix Notes Analog Inputs:

(1) Not used.

(2) Can be downgraded to IB,D,2 if properly isolated from IA equipment.

(3) Transmitter input of 4-20 mA to be converted by PPS hardware such that input card removal will not break transmitter loop continuity.

(4) Input impedance is an estimate.

(5) The "w" tagname is for the raw D/A count input (DINT); the "a" tagname is for the scaled input (REAL).

Analog Outputs:

(6) Output loop impedance is conservatively estimated and should not exceed the value shown (7) From analog sensor input loop, isolation not required (8) Part of transmitter input loop impedance (9) The "y" tagnames are counts to the D/A (DINT).

(10) Signal is isolated to Class II via qualified isolation device.

(11) Continuity supervision is not required for this ETT output to the PORV interlock in RNASA.