ML062890145

From kanterella
Jump to navigation Jump to search
Dose Calculation Write-up, Including Input/Output Files for the Radtrad and Pavan Codes, Attachment 1, Reference 7.6, Attachment 2, CRDA Radtrad Input Source Term Gap Release and Attachment 3, CRDA Radtrad Input Source Term Pellet Release
ML062890145
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 09/01/2006
From:
Duane Arnold
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CAL-R02-001
Download: ML062890145 (26)


Text

TABLE OF CONTENTS Title Page TABLE OF CONTENTS ............................................................................................... i LIST OF TABLES .................................................................................................. ii LIST OF ATTACHMENTS .......................................................................................... iii DEFINITIONS AND UNITS: ................................................................................................................... iv 1.0 PURPOSE/OBJECTIVE: ................................................................................................................ 1 2.0

SUMMARY

AND CONCLUSIONS: ............................................................................................. 1

3.0 ASSUMPTIONS

............................................................................................................................. 2 4.0 DESIGN INPUTS: ........................................................................................................................... 3

5.0 METHODOLOGY

......................................................................................................................... 6

6.0 CALCULATIONS

........................................................................................................................ 10

7.0 REFERENCES

.............................................................................................................................. II PAGEi

TABLE OF CONTENTS - continued Page List of Tables:

Table No. I - Control Rod Drop Accident Radiological Consequences ..................................................... 1 Table No. 2 - BWR Core Inventory Released from Gap ........................................................................ 3 Table No. 3 - BWR Core Inventory Fraction Released from Melted Fuel ............................................ 4 Table No. 4 - Ground Level Release X/Q's to EAB and LPZ ............................................................... 4 Table No. 5 - Ground Level Release X/Q's to CR and TSC ................................................................. 5 Table No. 6 - Stack Release X/Q's to EAB and LPZ ............................................................................. 5 Table No. 7 - Stack Release X/Q's to CR .............................................................................................. 5 Table No. 8 - Stack Release X/Q's to TSC ........................................................................................... 5 Table No. 9 - CRDA File Name/Attachment Key .................................................................................. 6 List of Figures:

Figure No. I - CRDA With MVP Operation ................................................................. 13 PAGE ii

TABLE OF CONTENTS - continued List of Attachments: - Reference 7.6 - EXCEL Spreadsheet - CRDA RADTRAD Input Source Term (Gap Release) - EXCEL Spreadsheet - CRDA RADTRAD Input Source Term (PELLET Release) - RADTRAD Source Term File - CRD-GAP RG1-183.NIF - RADTRAD Source Term File - CRD-EIV RGI -183.NIF - RADTRAD Release Fractions and Timing File- CRD-GAP 5 sec. RFT - RADTRAD Release Fractions and Timing File- CRDPELLET 5 sec. RFT - Selected RADTRAD Output - Case I Gap Release No MVP Operation - Selected RADTRAD Output - Case 2 Gap Release No MVP Operation TSC 0- Selected RADTRAD Output - Case 3 Pellet Release No MVP Operation 1 - Selected RADTRAD Output - Case 4 Pellet Release No MVP Operation TSC 2- Selected RADTRAD Output - Case 5 Gap Release MVP Operating 3- Selected RADTRAD Output - Case 6 Gap Release MVP Operating TSC 4- Selected RADTRAD Output - Case 7 Pellet Release MVP Operating 5- Selected RADTRAD Output - Case 8 Pellet Release MVP Operating TSC 6- Selected RADTRAD Output - Case 9 Gap Release MVP Trip 10 Minutes 7- Selected RADTRAD Output - Case 10 Gap Release MVP Trip 10 Minutes TSC 8- Selected RADTRAD Output - Case I I Pellet Release MVP Trip 10 Minutes 9- Selected RADTRAD Output - Case 12 Pellet Release MVP Trip 10 Minutes TSC PAGE iii

DEFINITIONS AND UNITS:

DAEC - Duane Arnold Energy Center DBA - Design Basis Accident CR - Control Room CRDA - Control Rod Drop Accident AST - Alternate Source Terms RG - Regulatory Guide AEP - Asset Enhancement Program DE - Dose Equivalent EPU - Extended Power Uprate EIV - Early In-vessel GE - General Electric MVP Mechanical Vacuum Pump TEDE - Total Effective Dose Equivalent TSC - Technical Support Center PAGE iv

A 1.0 PURPOSE/OBJECTIVE:

This calculation was prepared to support a Licensing Action Request to eliminate Technical Specifications requirements for automatic isolation of Main Steamline Drains and tripping of the Mechanical Vacuum Pump on High Main Steamline Radiation Levels.

This Calculation will supersede calculation CAL-R02-001 when the licensing amendment is approved.

This analysis was performed in accordance with the requirements of USNRC Regulatory Guide (RG) 1.183 (Reference No. 7.1), RG 1.194 (Reference 7.2), and the Code of Federal Regulations (CFR), Title 10, Section 50.67 (Reference No. 7.3).

2.0

SUMMARY

AND CONCLUSIONS:

The radiological dose consequences are summarized in Table 1 below: Results are shown for two sources (Gap Release and Pellet [fuel melt] Release), and Total dose.

PAGE 1

Table No. 1: Control Rod Drop Accident Radiological Consequences Exclusion Area Low Population Control Room TSC Boundary Zone Cnr Roo) T0C Accident Type (2 hr) (30 day) (30 Day) (30 Day)

TEDE (rem)

MVP 7.0065e+00 3.3335e+00 8.5277e-01 6.6960e-01 Operating I Gap MVP Release Trip 10 2.6990e+00 1.2172e+00 4.5996e-01 5.2669e-01 Dose Min MVP scr 6.3551e-02 3.8052e-02 3.5649e-01 5.1556e-01 secured MVP 3.9007e-01 1.8532e-01 2.8787e-02 2.2001 e-02 Fuel Operating MVP Melt Release MP Trip 10 1.5098e-01 6.7943e-02 1.5133e-02 1.6889e-02 Dose Min Do se 3.4575e-03 1.8803e-03 secured 1.1413e-02 1.6316e-02 MVP Operating 7.3966E+00 3.5188E+00 8.8156E-01 6.9160E-01 MVP Total Manual Dose Trip 10 Min 2.8500e+00 1.2851 e+00 4.7509e-01 5.4358e-01 MVP secured RG 1.1833 6.7009E-02 3.9932E-02 3.6790E-01 5.3188E-01 RGpa 13 . 6.25 (25% Of 10 CFR 6.25 (25% Of 10 CFR Acceptance Criteria 50.67 Limit) 50.67 Limit) 5 5 Guideline Standard Review Well Within 10 CFR Well Within 10 CFR Plan Limit 50.67 Limit 50.67 Limit 10 CFR 50.67 25 25 5 5 Limits Fraction of 10 CFR 50.67 Limit for No 29.59% 14.08% 17.63% N/A MVP Trip Case I III_ I Numerical precision of results is shown based on results of software. Some inputs are only specified to 2 significant digits, therefore results are not considered to be accurate beyond two significant digits.

PAGE 1

3.0 ASSUMPTIONS

The following assumptions are used to evaluate the radiological consequences of a control rod drop accident:

3.1 For the radiological consequences of a control rod drop accident for a Boiling Water Reactor, the accident dose limit per 10 CFR 50.67 (Reference 7.3) at the EAB and LPZ is 25 rem TEDE. The NRC Standard Review Plan states "The plant site and dose mitigating engineered safety features are acceptable with respect to the radiological consequences of a postulated control rod drop accident if the calculated whole-body and thyroid doses at the exclusion area boundaries (EAB) and at the low population zone (LPZ) boundaries are well within the exposure guideline values in 10 CFR Part 100, paragraph 11 (Ref. 1). "Well within" is defined as 25% of the 10 CFR Part.

100 exposure guideline values or 75 rem for the thyroid and 6 rem for whole-body doses."

Regulatory guidance for dose limits is provided in Table 6 of RG 1.183 (Reference 7.1). RG 1.183 establishes an acceptance criterion of 6.3 Rem TEDE in Table 6 of section 4.4.

3.2 The core inventory for the analysis was obtained from General Electric Report T0802 for the Duane Arnold Energy Center Asset Enhancement Program, "Radiation Sources and Fission Products" (Reference 7.4) Appendix B Table 3.

3.3 Assumptions for the release of radioactivity from the fuel are in accordance with RG 1.183 (Reference 7.2), Appendix C.1. The release from the breeched fuel clad (gap release) is based on 10% of the core noble gas and halogen inventory being in the gap and the estimate of clad damage (1200 rods per Reference 7.5 - see attachment 1). The release from melted fuel is based on release of 100% of the core noble gasses and 50% of the core radioiodine and the percent of fuel that melts (0.77% of the 1200 rods damaged per Reference 7.5 - see attachment 1). Release of other fission products from the fuel is per RG 1.183 Table 3 for the gap release and from Table I (Early in Vessel) for the pellet release (fuel melt).

The inventory of fission products in the reactor core and available for release to the containment is based on the maximum full power operation of the core times 1.02 the current licensed rated thermal power per RG 1.183 and RG 1.49 (References 7.1 and 7.5). Fission product inventory is adjusted for the radial peaking factor (1.46).

3.3 The activity released from the fuel gap and from fuel melting is assumed to be instantaneously mixed in the reactor coolant within the pressure vessel in accordance with RG 1.183 (Reference 7.1), Section 3.3 and Appendix C, Section 3.1.

3.4 Credit is not assumed for partitioning in the pressure vessel or by removal by the steam separators in accordance with RG 1.183 (Reference 7.1), Appendix C, Section 3.2.

3.5 Of the activity released from the reactor coolant within the pressure vessel, 100% of the noble gases, 10% of the iodines, and 1% of the remaining radionuclides are assumed to reach the turbine and the condensers in accordance with RG 1.183 (Reference 7.1, Appendix C, Section 3.3.

3.6 Of the activity that reaches the turbine and the condenser, 100% of the noble gases, 10% of the iodines, and 1% of the particulate radionuclides are available for release to the environment. The turbine and condensers leak to the atmosphere as a ground level release at a rate of 1% per day for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, at which time the leakage is assumed to terminate. No credit is assumed PAGE 2

for dilution or holdup in the TB. Radioactive decay during holdup in the turbine and the condenser is assumed in accordance with RG 1.183 (Reference 7.1), Appendix C, Section 3.4.

3.7 The release from the reactor coolant within the pressure vessel is assumed to consist of 95% CsI as an aerosol, 4.85% elemental, and 0.15% organic. The release from the turbine and condenser is assumed to be 97% elemental and 3% organic in accordance with RG 1.183 (Reference 7. 1),

Appendix C, Section 3.6.

3.8 All radiological nuclides released from damaged or melted fuel are assumed to be transported to the condenser within 5 seconds in accordance with the timeline in GNF Standard Application For Reactor Fuel (US) (reference 7.8) S2.2.3.1.1. This assumption takes no credit for automatic or manual isolation of Main Steam Isolation Valves or Steamline Drains.

3.9 Per the US Supplement to the GESTAR II manual (Reference 7.8) section S2.2.3.1.1 Sequence of Events, the gap release phase is conservatively modeled to begin at T = 0 seconds with a duration of 5 seconds and the fuel melt phase begins at T = 0 seconds with a duration of 5 seconds. This assumption conservatively ignores transport time and assumes the full source term is transported to the condenser during the same period in which it is released from the fuel.

3.10 No automatic or manual isolation of the Control Room or TSC is assumed. Normal ventilation flow rates are assumed. Control room ventilation also assumes 1000 CFM of unfiltered inleakage.

3.11 Mechanical Vacuum Pump operation is modeled at a constant 1800 cfm (design flow capacity).

4.0 DESIGN INPUTS:

The following design inputs are used to evaluate the radiological consequences of a control rod drop accident:

4.1 The design thermal power, for licensed power uprate, is 1912 MWt per section 2.C.1 of the Facility Operating License (Reference 7.9). A thermal power of 1950 MWt was utilized to account for a power uncertainty factor of 1.02 (see Section 3.2.2), as required per RG 1.183 and RG 1.49 (References 7.1 and 7.5).

4.2 Per NSA-00-145 (Reference 7.6) (Attached), the CRDA results in fuel clad damage and melted fuel.

4.3 Per RG 1.183 (Reference 7.1), Appendix C. 1, and Section 3.2 Table 3, the fraction of equilibrium core inventory assumed to be in the gap for the various radionuclides is as follows:

Table No. 2:

Released from Gap (1200 Rods damaged but not melted)

Release Group Fraction Noble Gases 0.10 Halogens 0.10 Alkali Metals 0.12 PAGE 3

4.4 Per RG 1.183 (Reference 7.1) section 3.2 Tables 1 and 3, and Appendix C. 1 the fuel melt release fractions are as follows:

Table No. 3: BWR Core Inventory Fraction Released from Melted Fuel (9.24 equivalent rods) (0.77% of 1200 rods Damaged)

Release Fraction Group Gap Fuel Melt Total Release(') Release(')

Noble Gases 0.10 0.9 1.0 Halogens 0.10 0.4 0.5 Alkali Metals 0.12 0.13 0.25 Tellurium Metals 0.00 0.05 0.05 Ba, Sr 0.00 0.02 0.02 Noble Metals 0.00 0.0025 0.0025 Cerium Group 0.00 0.0005 0.0005 Lanthanides 0.00 0.0002 0.0002 (1) Release from gap already accounted for in gap release described in 4.3. Pellet release calculations from melted fuel fraction release the remainder as calculated in column headed Fuel Melt Release.

4.5 Maximum core fission product inventory at T = 0 seconds is taken from GE Power Uprate Task Report T0802 (Reference 7.4), Appendix B, Table 3. This is conservative, because the limiting CRDA occurs when the reactor is just at the point of criticality. Using the full power equilibrium source term ignores decay that would have occurred since the reactor was at full power.

4.6 Post-accident offsite meteorology (z/Q's) at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) for the CRDA are provided in the following tables from the referenced calculations:

Table 4 Ground Level Release X/Q's to EAB and LPZ (sec/m 3) - CAL-R00-PUP-001 (Ref. 7.10)

Calculated Using PAVAN code Time Period EAB (629m, ENE) LPZ (3218m, NE) 0 - 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 5.57E-04 1.34E-04 2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.42E-04 6.43E-05 8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 2.69E-04 4.46E-05 1 - 4 days 1.59E-04 2.01E-05 4 - 30 days 7.43E-05 6.42E-06 PAGE 4

Table 5 Ground Level Release X/Q's to CR and TSC from the Condenser (sec/m 3) to the TSC and CR - CAL-ROO-PUP-002 (Ref. 7.11)

Calculated Using ARCON96 code Includes Occupancy Adjustment Factors for ARCON96 Values Time Period CR TSC 0 - 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.48E-03 2.14E-03 2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.27E-03 1.86E-03 8 - 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 5.56E-04 8.44E-04 1 - 4 days 2.04E-04 3.66E-04 4 - 30 days 1.06E-04 1.88E-04 Table 6 Stack Release X/Q's to EAB and LPZ (References 7.1, 7.2 per RG 1.194)

Time Period EAB LPZ 0-30 min (Fumigation) 7.03E-05 3.15E-05 30 min to 2 hrs 6.95E-06 6.69E-06 2 - 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.61E-06 3.58E-06 8-24 hours 2.61E-06 2.61E-06 1 - 4 days 1.28E-06 1.32E-06 4 - 30 days 4.64E-07 4.99E-07 4.7 Post-accident meteorology atmospheric dispersion factors (X/Q's) for the Control Room and TSC were calculated using inputs from CAL-ROO-PUP-002 (Reference 7.11) and the methodology described in RG 1.194 (Reference 7.2) section C.3.2.2. The maximum X/Q using PAVAN or ARCON96 is used for the 0 - 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> interval. ARCON96 values are used for the intervals from 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The "1 - 4 Day" and "4 - 30 Day" intervals are calculated using a weighted average assuming 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> at the PAVAN value and 23 hours2.662037e-4 days <br />0.00639 hours <br />3.80291e-5 weeks <br />8.7515e-6 months <br /> at the ARCON96 value per day. Results are summarized as follows:

Table 7 Stack Release X/Q's to CR Time Period ARCON96 PAVAN CR CAL-ROO-PUP-002 RG 1.194 0-30 Min (Fumigation) Not Calculated 2.62E-4 N/A 0 - 8 Hours 3.80E-07 4.70E-06 N/A 0 - 2 Hours 3.93E-07 1.68E-05 1.68E-05 2 - 8 Hours 3.75E-07 Not Calculated 3.75E-07 8 - 24 Hours 1.33E-07 2.49E-06 1.33E-07 1 - 4 Days 6.24E-08 3.74E-07 7.54E-08 4 - 30 Days 3.75E-08 3.42E-08 3.74E-08 PAGE 5

Table 8 Stack Release X/Q's to TSC Time Period ARCON96 PAVAN TSC CAL-ROO-PUP-002 RG 1.194 0- 30 Min (Fumigation) Not Calculated 2.38E-04 N/A 0- 8 Hours 2.20E-07 3.65E-06 N/A 0- 2 Hours 2.32E-07 1.37E-05 1.37E-05 2- 8 Hours 2.16E-07 Not Calculated 2.16E-07 8- 24 Hours 8.OOE-08 1.89E-06 8.OOE-07 1- 4 Days 3.69E-08 2.71 E-07 4.67E-08 4- 30 Days 2.16E-08 2.31E-08 2.17E-08 4.8 The core radial peaking factor is 1.46 as per GEDA-AEP-0208 (Reference 7.12).

4.9 The total number of damaged fuel rods for 10 X 10 fuel as a result of the CRDA is 1,200, per NSA-00-145 (Reference 7.6).

4.10 The fraction of damaged fuel rods that melt as a result of the CRDA is 0.0077, per NSA-00-145 (Reference 7.6).

4.11 The total number of GE 14X14 full length fuel rods per assembly is 87.33 per NSA-00-145 (Reference 7.6) and the total number of assemblies in the DAEC core is 368 as per Reference AE-39-0484 (Reference 7.13).

4.12 The condenser free air volume is 55,000 ft3 per CAL-M94-010 (Reference 7.14).

4.13 The Control Building Volume is 155,000 cubic feet per NG-00-503 (Reference 7.15).

4.14 The Control Building Normal Ventilation Rate is 3150 cfm per NG-00-503 (Reference 7.15). An allowance of 1000 cfm is assumed for unfiltered inleakage for a total of 4150 cfm.

4.15 The TSC Volume is 68,300 cubic feet per reference 7.15.

4.16 The TSC normal ventilation rate is 900 cfm per reference 7.15.

5.0 METHODOLOGY The following methodology is used to evaluate the radiological consequences of a control rod drop accident that considers fuel damage and fuel melt:

5.1 Source Term 5.1.1 Calculation of Gap Activity Released into the Reactor Coolant (0 to 5 see)

GARRC = *(CA,* DR *PI*AJ GARRCCA i DRF

  • GA4RF)

FRPA

  • APC where:

GARRC = Gap activity released to reactor coolant (Ci/MWt)

CAi = Core activity for isotopei (Ci/MWt) at T = 0 seconds, Section 4.5 DRF = # damaged fuel rods, Section 4.9 PAGE 6

FRPA =# fuel rods per assembly, Section 4.11 APC = # assemblies per the core, Section 4.11 RPF = Core radial peaking factor, Section 4.8 GARF = Gap activity release fraction, Section 4.3, Table 3 5.1.2 Calculation of Total Gap Activity In Condenser Available for Release to the Envir. (0 - 5 sec)

GARE = GARRC

  • FGARC
  • FGARE where:

GARE Gap activity released to the environment (Ci/MWt)

GARRC = Gap activity released to react-or coolant (Ci/MWt), Section 5.1.1 FGARC = Fraction of gap activity reaching the condenser, Section 3.5 FGARE = Fraction of gap activity available for release from the condenser/turbine to the environment, Section 3.6 Utilizing the methodology of Sections 5.1.1 and 5.1.2, the gap activity in the condenser available to be released to the environment is calculated in Attachment 2 (EXCEL Spreadsheet).

5.1.3 Calculation of PELLET Activity Released into the Reactor Coolant (0 to 5 see - see See 4.6)

PELLETARRC=rCA,*F DRF *FDFRWM* RPF* PELLETAPRF

~'FRPA*APC) where:

PELLETARRC PELLET activity released to reactor coolant (Ci/MWt)

CAi = Core activity for isotope, (Ci/MWt) at T = 0 seconds, Section 4.5, Table 11 DRF = # damaged fuel rods, Section 4.9 FRPA = # fuel rods per assembly, Section 4.11 APC = # assemblies per the core, Section 4.11 FDFRWM = Fraction of damaged fuel rods which melt, Section 4.10 RPF = Core radial peaking factor, Section 4.8 PELLETARF= PELLET activity release fraction, Section 4.3, Table 9 5.1.4 Calculation of Total PELLET Activity In Condenser Available for Release to the Envir. (0 - 5 sec.)

PELLETARE = PELLETARRC

  • FPELLETARC
  • FPELLETARE where:

PELLETARE PELLET activity released to the environment (Ci/MWt)

PELLETARRC = PELLET activity released to reactor coolant (Ci/MWt), Section 5.3 FPELLETARC = Fraction of PELLET activity reaching the condenser, Section 3.5 PAGE 7

FPELLETARE A= Fraction of PELLET activity available for release from the condenser/turbine to the environment, Section 3.6 Utilizing the methodology of Sections 5.3 and 5.4, the PELLET activity in the condenser available to be released to the reactor coolant is calculated in Attachment 3 (EXCEL Spreadsheet).

5.2 Calculation Of Doses 5.2.1 RADTRAD Model (See Figure 1)

Dose Consequences were calculated with the RADTRAD code version 3.03 (Reference 7.7).

This code is classified as a safety-related application in accordance with the DAEC Software Quality Assurance Program.

Two basic models were used Mechanical Vacuum Pump Operating and Mechanical Vacuum Pump Secured. In all cases the entire source term is assumed to be released to the condenser within 5 seconds of the Control Rod Drop in accordance with assumption 3.8.

For the cases with Mechanical Vacuum Pump Secured, the activity released to the environment calculated in the previous Sections is assumed to be released at ground level from the Condenser at a leakage rate of 1%/day over a 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period (Section 3.2.6). All leakage is immediately released to the environment via direct leakage out of the TB without holdup, plateout, or dilution (Section 3.6).

RADTRAD cases were run to account for the damaged (gap release) and fuel melt (pellet release) activity releases. The RADTRAD model inputs for the cases consist of 4 volumes (Condenser, Environment, a holdup volume (1.75 minute delay for the offgas treatment system piping used for the MVP Operating case only) and Control Room or TSC), 5 flow pathways (Condenser to Environment for the MVP secured scenario, Environment to CR or TSC Intake, CR or TSC Exhaust and MVP flow from the condenser to the holdup volume and from the holdup volume to the environment), and 3 dose locations (EAB, LPZ, and CR or TSC).

A total of 12 computer runs were performed.

5.2.2 Mechanical Vacuum Pump Secured (Case I Gap, Case 2 Gap TSC, Case 3 Pellet, Case 4 Pellet TSC) 5.2.2.1 Volumes RADTRAD Volume I represents the DAEC Condenser:

" DAEC condenser is modeled as 55,000 ft3 (Section 4.12)

  • 1% per day for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of the available AST CRD source term is released to the Environment (Section 3.6)

" Natural Deposition - N/A

" No additional inputs RADTRAD Volume 2 represents the Environment:

" No inputs RADTRAD Volume 3 represents the Control Room (Cases 1, 3) or TSC(Cases 2, 4)

PAGE 8

  • Control Room Volume is 155,000 ft3 (Section 4.13)

" TSC Volume is 68,300 ft3 (Section 4.15) 5.2.2.2 Pathways RADTRAD Pathway I represents the arbitrary Condenser leakage term (total release within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />):

" Condenser leakage rate modeled as 1 % per day for a total of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (Section 3.6). Note, given a 1% per day leak rate, the volume selected in Section 5.5.1 does not impact the amount of activity released.

"No additional inputs RADTRAD Pathway 2 represents the Control Room or TSC Normal Ventilation Intake

  • Control Room Ventilation rate is 4150 cfm (Section 4.14).

" TSC Ventilation Rate is 900 cfm (Section 4.16).

RADTRAD Pathway 3 represents the Control Room or TSC Normal Ventilation Exhaust

" Exhaust rate for CR and TSC equals the ventilation rate.

5.2.2.3 Dose Locations RADTRAD Dose Location I - EAB:

" X/Q values per Section 4.6 Table 4.

  • Use RADTRAD default breathing rate values which are consistent with Reference 7.1
  • No additional inputs RADTRAD Dose Location 2 - LPZ:

" X/Q values per Section 4.6 Table 4.

" Use RADTRAD default breathing rate values which are consistent with Reference 7.1

" No additional inputs RADTRAD Dose Location 3 - Control Room or TSC

" Control Room and TSC dose locations used the default occupancy and breathing rates.

" X/Q values per Section 4.6 Table 5.

5.2.2.4 RADTRAD Source Term:

" User Inventory file CRD-GAP.NIF.

  • Modeled DAEC AEP power level as 1950 MWth (Section 4.1)

" Model isotopic decay and daughter in-growth

" Use the user defined RADTRAD release fraction file, CRD-GAP.RFT

" Use the default RADTRAD FGR 11 & 12 (Reference 7.7) dose conversion factors for the MACCS 60 isotope inventory, FGRI 1&12.inp PAGE 9

" Iodine chemical fraction is 97% elemental & 3% organic (Section 3.2.7)

" No additional inputs 5.2.2.5 RADTRAD Control Options:

" All Control Options are selected for the additional data supplied in the output printout

" Supplemental Time Steps are selected to allow for detailed assessment of the early transient 5.2.2.6 Changes to RADTRAD Base Case Inputs - Model PELLET Activity Release (Cases 3, 4)

  • Replace user Inventory file CRD-GAP.NIF with CRD-EIV.NIF
  • Replace user defined RADTRAD release fraction file CRD-GAP.RFT with CRD-EIV.RFT

" No additional inputs 5.2.3 Mechanical Vacuum Pump Operating (Case 5 Gap, Case 6 Gap TSC, Case 7 Pellet, Case 8 Pellet TSC) 5.2.3.1 Volumes

  • Volume 3 is a 1.75 minute holdup volume representing the offgas system delay time. At MVP flow rate of 1800 cfm the volume is 3150 ft3 .

5.2.3.2 Pathways

" The leakage pathway from the condenser to the environment is eliminated in this scenario

  • The Mechanical Vacuum Pump Operation is modeled at a constant flow rate of 1800 cfm (Section 3.11).

5.2.3.3 All other model inputs are consistent with Cases I through 4 described in section 5.2.2.

5.2.4 Mechanical Vacuum Pump Manually Tripped at 10 Minutes (Case 9 GAP, Case 10 Gap TSC, Case 11 Pellet, Case 12 Pellet TSC) 5.2.4.1 These cases use the same RADTRAD model as the MVP Operating Case. At 10 minutes the Mechanical Vacuum Pump is assumed to be manually secured by the operators. Up until 10 minutes all inputs in the RADTRAD model are identical to the MVP Operating Cases. After 10 minutes all inputs are identical to the MVP secured cases except that the MVP Holdup Volume model is still present. Since it has zero flow rate after the assumed pump trip it does not affect results after that time.

6.0 CALCULATION 6.1 The activity released to the environment for the gap and pellet releases are determined in Attachment Nos. 2 & 3, utilizing an EXCEL Spreadsheet. The EAB, LPZ, CR, and TSC doses were determined for the bounding fuel damage/melt case described previously, utilizing the RADTRAD computer code and summing the results. RADTRAD computer outputs are included as Attachment Nos. 8 through 15 of this calculation as follows:

PAGE 10

Table No. 9: CRDA File Name/Attachment Key Case .psf Attachment File Name I CRDA GAP.psf 8 2 CRDA GAP TSC.psf 9 3 CRDA PELLET.psf 10 4 CRDA PELLET TSC.psf 11 5 CRDA GAP MVP.psf 12 6 CRDA GAP MVP.psf 13 7 CRDA PELLET MVP.psf 14 8 CRDA PELLET MVP TSC.psf 15 9 CRDA GAP MVP TRIP 10 MIN.psf 16 10 CRDA GAP MVP TRIP 10 MIN TSC.psf 17 11 CRDA PELLET MVP TRIP 10 MIN.psf 18 12 CRDA PELLET MVP TRIP 10 MIN TSC.psf 19 6.2 Accident Summaries The analyzed CRDA event is bounding for a CRDA with no/minimal fuel damage. The resultant doses at the EAB for the CRDA without crediting a trip of the mechanical vacuum pump listed in Table 1 of Section 2.0 exceeds the guideline for acceptance criteria dose of 6.25 rem TEDE (25% of 25 rem) in Regulatory Guide 1.183 (Reference 7.1). However, if approved by NRC, the EAB calculated dose may be considered to meet the Standard Review Plan acceptance criteria of "well below" the 10 CFR 50.67 limit of 25 Rem TEDE. If credit for manual isolation is taken at 10 minutes all doses meet regulatory guidelines. All other calculated doses meet the acceptance criteria of RG 1.183, 10 CFR 50 Appendix B Criterion 19, and 10 CFR 50.67.

7.0 REFERENCES

7.1 Regulatory Guide 1.183, "Alternative Radiological Source Terms For Evaluating Design Basis Accidents At Nuclear Power Reactors", dated July 2000.

7.2 Regulatory Guide 1.194 "Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants", dated June 2003 7.3 Code of Federal Regulations, Title 10, Section 50.67, "Accident Source Term.".

7.4 GE Project Task Report T0802 for the Duane Arnold Energy Center Asset Enhancement Program, "Radiation Sources and Fission Products", GE-NE-A22-00100-58-01, RO, Class III, dated May 2000.

7.5 USNRC Regulatory Guide 1.49, "Power Levels of Nuclear Power Plants", Revision 1.

PAGE 11

7.6 GE Letter No. NSA 00-145, Nader Sadeghi (GE) to Juan Cajigas (AAC), "DAEC EPU Response to Information Request", dated April 20, 2000. (See Attachment 17) 7.7 NUREG/CR-6604 Supplement 2 "RADTRAD: A Simplified Model for RADioactive Nuclide Transport and Removal and Dose Estimation" dated October 2002.

7.8 Global Nuclear Fuels - Americas Report NEDE-2401 1-P-A-14-US "General Electric Standard Application for Reactor Fuel (US Supplement)", dated June 2000.

7.9 DAEC Facility Operating License Number DPR-49 7.10 CAL-ROO-PUP-001 Revision 1, "Accident Offsite Radiological Atmosphere Dispersion Factors (Chi/Q)"

7.11 CAL-ROO-PUP-002 Revision 1, "Accident Control Room and TSC Radiological Atmosphere.

7.12 GE Letter No. GEDA-AEP-208, W. F. Farrell (GE) to Juan Cajigas (AAC), "Request for DAEC PUREC Radial Peaking Factor Data", dated April 19, 2000.

7.13 GE Document AE-39-0484, "DAEC Radiological Effects of Power Uprate", April 1984.

7.14 CAL-M94-010 7.15 R. McGee to J. Cajigas, "Transmittal of DIR T0901 Accident Radiological Analyses" (AAC DIR

  1. T0901-4), NG-00-0503, 3/23/00.

PAGE 12

Elevated Stack Release while MVP operating Control Room 3150 cfm vent 155,000 ftA3 1.75 Technical Support Center Offgas Stack 900 cfm vent 68,300 ftA3 1%/day ground release leakage after MVP secured or not running 0 Exclusion Area Boundary Source Term: Uprated Power 1950 MWt FTR T0802 NUREG-1465 and RG 1,183 O Low Population Zone FUE-AI E FE=~C Figure 1: CRFW1-f~fl-QJTO MR~i F~T PAGE 13 Reference 7.6

4/09/2002 13:44 6107961204 APPLIED ANALYSIS COR PAG3E 02 g I.

cWMxWWW Ge-rA.azj~S.~J~ G40t~

April 20, 2000 NSA 00-145 From: Sadeghi, Nader To: Juan Cajigas, Applied Analysis Corporation

Subject:

DAEC EPU Response to Information Request The following input was required from GENE to support the non-LOCA accident analyse*s for Task T0901: Number of fuel rods postulated to fail as a result of the Control Rod Drop Accident (CRDA).

The number of 6el rods postulated to fail is 1200 for IWxlO fuel (GE14). This is based on GBI4 (I Ox 0) having 87.33 equivalent full-length standard fuel rods. The number of failed rods obtained includes an allowance of 10% for uncertainties in the calculation.

I Please call me if there are any questions on this information.

Nader Sadeghl Nuclear & Safety Analysis (408) 925-1162 J

cc: Jason Post Margaret Harding Jose Casillas

(

Attachment 2 CRDA RADTRAD Input Source Term Gap Release

.~. ...-.-

ATTACHM=NT NO. 2 CRDA - INPUT RADTRAD SOURCE TERM (GAP RELEASE)

A B C D E F- G H T Ref. 7.3 Damaged Ref. 7.1 Gap Fraction Fraction of Total Gap Activity 2 App. B, Table 3 Damaged Fuel Table 3 Activity of Gap Gap Activity in Condenser 3 Isotope/ DAEC EPU Fuel Radial Gap Released Activity in Condenser Available for 4 RADTRAD Core Inventory Fraction Peaking Fraction Into RC Reaching Available to Release (0-0.5 Hr)

5. No. (CIIMWt) T = 0 of Core Factor Released (Ci/MWt) Condenser the Environ. (Ci/MWt) 7 1-131(33) 2.749E+04 3.734E-02 1.46 0.10 1.499E+02 0.10 0.10 1.499E+00 8 1-132(34) 3.950E+04 3.734E-02 1.46 0.10 2.153E+02 0.10 0.10 2.153E+00 9 1-133(35) 5.496E+04 3.734E-02 1.46 0.10 2.996E+02 0.10 0.10 2.996E+00 10 1-134(36) 6.021E+04 3.734E-02 1.46 0.10 3.282E+02 0.10 0.10 3.282E+00 11 1-135(37) 5.1 50E+04 3.734E-02 1.46 0.10 2.808E+02 0.10 0.10 2.808E+00 12 _

13 Kr-85(3) 4.501E+02 3.734E-02 1.46 0.10 2.454E+00 1.00 1.00 2.454E+00 14 Kr-85m(4) 6.702E+03 3.734E-02 1.46 0.10 3.654E+01 .1.00 1.00 3.654E+01 15 Kr-87(5) 1.274E+04 3.734E-02 1.46 0.10. 6.945E+01 1.00 1.00 6.945E+01 16 Kr-88(6) 1.792E+04 3.734E-02 1.46 0.10 9.769E+01 1.00 1.00 9.769E+01 17 18 Xe-1 33(38) 5.279E+04 3.734E-02 1.46 0.10 2.878E+02 1.00 1.00 2.878E+02 19 Xe-1 35(39) 1.908E+04 3.734E-02 1.46 0.10 1.040E+02 1.00 1.00 1.040E+02 21 21 Cs-134(40) 1.065E+04 3.734E-02 1.46 0.12 6.967E+01 0.01 0.01 6.967E-03 22 !Cs-136(41) 2.964E÷03 3.734E-02 1.46 0.12 1.939E+01 0.01 0.01 1.939E-03 23 Cs-137(42) 5.233E+03 3.734E-02 1.46 0.12 3.423E+01 0.01 0.01 3.423E-03 24 25 Rb-86(7) 9.876E+01 3.734E-02 1.46 0.12 6.461E-01 0.01 0.01 6.461E-05 26 27 CRDA - Damaged Fuel Rods = 1200 28 GE 14x14 Full Fuel Rods per Assembly = 87.33 29 DAEC - Total Assemblies per Core = 368 30 DAEC - GE 14x14 Radial Peaking Factor = 1.46 31 Fraction - CRDA Damaged Fuel Rods Which Melt = 0.0077 32 33 DAEC FHA - Elemental Species Fraction = 0.97 34 DAEC FHA - Organic Species Fraction = 0.03 4

ATTACHNI,.,4T NO. 2 CRDA - INPUT RADTRAD SOURCE TERM (GAP RELEASE)

A B C D E F G H I 1 Ref. 7.3 Damaged Ref. 7.1 Gap Fraction Fraction of Total Gap Activity 2 App. B, Table 3 Damaged Fuel Table 3 Activity of Gap Gap Activity In Condenser 3 Isotope/ DAEC EPU Fuel Radial Gap Released Activity In Condenser Available for 4 RADTRAD Core Inventory Fraction Peaking Fraction Into RC Reaching Available to Release (0-0.5 Hr) 5 No. (CIIMWt) T =0 of Core Factor Released (CI/MWt) Condenser the Environ. (CiIMWt) 6 -_

7 1-131(33) 27490 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B7*$C7*$D7*$E7) 0.1 0.1 =$F7*$G7*$H7 8 1-132(34) 39500 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B8*$C8*$D8*$E8) 0.1 0.1 =$F8*$G8*$H8 9 1-133(35) 54960 =$E$271($E$28*$E$29) =$E$30 0.1 =($B9*$C9*$D9*$E9) 0.1 0.1 =$F9*$G9*$H9 10 1-134(36) 60210 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B10*$C10*$D10*$E10) 0.1 0.1 =$FIO*$G1O*$H1O 11 1-135(37) 51500 =$E$271($E$28*$E$29) =$E$30 0.1 =($B11*$C11*$D11*$E11) 0.1 0.1 =$F11*$G11*$H11 121 13 Kr-85(3) 450.1 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B13*$C13*$Dl3*$E13) 1 1 =$F13*$G13*$H13 14 Kr-85m(4) 6702 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B14*$C14*$D14*$E14) 1 1 =$F14"$G14*$H14 15 Kr-87(5) 12740 =$E$271($E$28*$E$29) =$E$30 0.1 =($B15*$C15*$D15*$E15) 1 1 =$F15*$G15*$H15 16 Kr-88(6) 17920 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B16*$C16*$D16*$E16) 1 1 =$F16*$G16*$H16 17 18 Xe-133(38) 52790 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B18*$C18*$D18*$E18) 1 1 =$F18*$G18*$Hl18 19 Xe-135(39) 19080 =$E$27/($E$28*$E$29) =$E$30 0.1 =($B19*$C19*$D19*$E19) 1 1 =$F19*$G19*$H19 21 1 21 Cs-134(40) 10650 =$E$27/($E$28*$E$29) =$E$30 0.12 =($B21*$C21*$D21*$E21) 0.01 0.01 =$F21*$G21*$H21 22 Cs-136(41) 2964 =$E$27/($E$28*$E$29) =$E$30 0.12 =($B22*$C22*$D22*$E22) 0.01 0.01 =$F22*$G22*$H22 23.Cs-137(42) 5233 =$E$27/($E$28*$E$29) =$E$30 0.12 =($B23*$C23*$D23*$E23) 0.01 0.01 =$F23"$G23*$H23 241 25 Rb-86(7) 98.76 =$E$27/($E$28*$E$29) =$E$30 0.12 =($B25*$C25*$D25*$E25) 0.01 0.01 =$F25*$G25*$H25 27 CRDA - Damaged Fuel Rods = 1200 28 ' GE 14x14 Full Fuel Rods per Assembly = 87.33 29 DAEC - Total Assemblies per Core = 368 30 DAEC - GE 14x14 Radial Peaking Factor = 1.46 31 Fraction - CRDA Damaged Fuel Rods Which Melt = 0.0077 32 33 DAEC FHA - Elemental Species Fraction = 0.97 34 DAEC FHA - Organic Species Fraction = 0.03 I

Attachment 3 CRDA RADTRAD Input Source Term PELLET Release

(.

ATTACHMENT NO. 3 CRDA - INPUT RADTRAD SOURCE TERM (Pellet Release) i, I l B (C O F G~z H FTR T012 molt fradl,. RG 1.183 Civ FrP*dlmo. Fraoloo I To.* EJIVActity App.S.T.B4,2 X Dad*d MU.Id FNel .f EIV EIWAcIfolty I. Cod_,,

1.6tov DAIC EPU F"* R.dW ENvFtodio, A.lWtVy I1 Cod.enser Av4,bl. f,,

RADTAD Ca, hw~nioty PldnI R.ho,.d fklo.ed to RC R.olo Avokide 1. Ro.1 10.5-2 4)

(C~l I -F.,l ,- IiIA

..1 WWI4.

Not. I CROA* Dl,, Feel Rod. - 1200 124 GW14K14FA FNelRoW. perAlsm" - $7.33 VAEC - Tobf AuadMb per Coe. 36 DAEC- GE 14X14RPdIWl po**dd Fedt 1.48 12L F-6lon - CRDA D.-god Fool Rode 0hk . - 0.C0A7 DAEC FHA- .. Specoi Fnciof a 1oI 0.07 DAECFHA- Oradc Spe Fmcdon - 0.03 N0ol 1: Th o8aWCw loyPWpMd kr Co-5 &CoJO, wonsmluoay I"o dut kms value Intie RADTRADCa .. Picom g Ret 7j)

ýd

ATTACHMENT NO. 3 CRDA - INPUT RADTRAD SOURCE TERM (Pellet Release)

A 1 C D E F G H I J FIR T0M Me.l Fdio O...og.9 D RG 1.11S e0Y ?roo r ,06900rof 7.

T11 EJVAcsvfty App. 8.7.1"3 X 0ogod F-ol T7b I WN NW MWlh of F2N A dtiy InC ondýooo.

...oop," DAEC EP.U Fud It." EN FmcPo A'0Oft Aceft M Codý60. AaoObWMfto RADTRAD Cm Wo.obuy FrscGon pea.9ki Rol..Sod Ro(.f.-d woRC R..e " Avotb" to R.I.l-e (f06-2 NO 0 No. T 0 ofiiCof . Folo to RC ( t Co.u,. .W I0 Ewo. (c50086

_ A-241058) 8.356 .- 0ES*.KE$W30,E$094D"$ -$E$05 05DO5 -Sor r$$EE0 0.01 .1Ot IFO'0G7..H7 L B-13.(43) OI!*720 -*F 9E$3$E94r$EG0  ;,0E$05 0.00 4oro'9CS'sO 0001 0j.01 =$FrSG6SHO o0B,144X44) 4T= f0E$..4$E$9T0$E0S940$E00 SE05 1002 -10'1C0D10$E010 0.0 0.01 =SFICSGIOH10 12 .I-4ft481 .49" 50 660910410 SESO 0.10005 -87020l$1 l0.0 0.0 .$F1r$G132SH12 t3 Ce-143(491 40930 -(g$E00 ES94WOCOg6

$ -$E095 0.009 -V910SC17D013"E13 0.01 0,01 . . FI3$G13"$H13 t4 Ce-44(501 37010 t$UM$E*09T30E0941)o$ES96 -,ES95 0s.05 $6i4"$C14)14"0t14 0.01 0.01 -$F14019G4*$HI4 15 _____________ ____

I_____________ ________________

16 C-24Z(59) 2636 =( S900063'"$r;$04))!'.96 *40056 0000 $B16$C16S0j1M616 '0.M 001 -F"016"1H10 17 Cm-244l00) 310.4 4SE*M$E$093'$E$094D1SN .$0590 OM020 0017 $C17t17m17 0.041 01 .$F17'*1Gt7H17 18 19Lq-g(oL... '529 '(06W0000009n'ES9401r$E96 4U906 0mom -SB rCj"0 59 0L.0... 0.01 -4Fjr01619119 6.

Z- C- 1-93) mWs000S1r3'S0941r$$sEs .E$gF5 0s -$Bl0'$C2l$01S029 0.01 9.01 1 Nd. 1 C0-I491 -05.0 S 45,*40C0920" 0.1063 -VL 20* _ 0.01 0.01 -$F20"$G22 C-'136(41 Z4- ..- 137(42) 2m 5233 4$SJS ES a,,0E0I0E$094E91*40)$E096 4E$96 0090 SE 0.13 0.13

-$0Br~j23'0C r2031 1R324$C24*$VW'0$24 '.01

~0. 01 0001

  • 23*S4Fý3k 4$F245424"$H24

-P-1-11(3) 279400 q~ 693 S94)rSE6 0$E96 0A -$2S~r)69 01 0.1

  • FZ'092G26'00127 1-132(341

_7-.2L1133(35) 39500 M-(S.'.. WJ.$.E$93"S$9411-$ES9G ,,4E05 0+4 0,4 -4K12C7O'002n 5Z7 U.$p8meuvancze-jr

  • 0.*

0.1 0.1 0.A ,,,F.2r

-Sgr$G2"-H20 5,4"o -$$2$$0$$41$$*

4ES%*

0 1-7134504 6)310 =mS _$.34 ))-gE

$C2M$9m$E$03Il l...I *.34"$_o4"'O 9 0.1 0A 4F2V1G30- 9 30 -13037) 51500 *ERs E3'SOSE401ME _0E 0.4 .$B3.SC35E30 .1 0.1 $,FW3G3f5ýH30 IU K 3 460.1 .(0E$U0o20fS0o5E04)rSES( --- 5 01.9...... -S t2 I________ 4.....n.....

-U Oo'glffl. 67g?~ 1fSF9ES6S003'094WjE$9 .4Ej0 '.44.1 483r$C3$3r$E33 -. I I ____ -5F331g3M11M

_: 1147M 12740 4"E$92f(5$EM93$5940))SE)*_V6 .E$056 ."0.0t ,63C34-$034-3D E34 t.01 I-_F324*(134 0.0 K.4010 17020 4059290$QrE10i0001r50L96 -4$9 -0. 1...... oB35j9XEL)N-$30'S2.1 IF05313 2L 913S0(j5 500600 -f$E 0O2SgJf93*S 494$l5S6 -SE1M 0000$ 90ipoJ 42 ?5 0.01 0 +O"l -. F314,G37'"H37 0-141146i 44370...... 455rt(E022S9If96 -4E$956 0.0002 $93r$C391$Q3'R3 L.0 '0.01 4F('*3B'013H38 IL-142ff71 422 -409200000350E9W41 lg96_ 4E0 0-o '00391$C3M9'S03'39 01.01 '1.01 -FVGQS3 S(-W9j. 5.400 1Egfl -E$E$-SE1$ *.5 $84M0'5C41*o'41'5E41 0.01 0.01 .$F41'"3234H41 43 0-201S) l445S0 -f$E$QifSESr"$1ES04)r$E$L"96 406 0,000 SB43'SC4n0g3Z0$43 001Di 0.01 .F43"04r' 01 $643 L0.01 ,O1. -045F *..."..

$0522!

_I4171 "1712 ',?1 1797 ,5009200 S03"$0$41700006 -U$065 0.13 4Wj45-1C5(

_t7 NýM53) W _/($ES9W"E$WE$ $SQ4)r$E$96

"$S95 0.02 - 61470CsArSD47IE4o Q.01 0.01 -4F47SG4SCG71 49 .122IL) 139470. .* 4

-q 3 93"1ES$0941r1"9 -SEW 0.00 -,b94YSC491D4V$E49 0m01 0.01 ,-F4'SG4SHI49

-U 30flM5.. 254.......... ý0wiS09-ES94 rEV9eý I'gWý '1.000 4510C51*SD5100051 ('01 OM QI 4F5V0G515rH5j

. mo-l5*2 54000$ES93*E$F* $N4)fI 40E$% 0,0W -. B2"C7r00r"$072 001 0.0i 9r.2tGS2j0 53 '5.240(501 21.26 -000o2j$E$gTtE$94)1TE6 SG 56 0.005 =,pTi0$C1T$077$E0 3 0,01 001 'SI'-/G53'*$H53 Te.-13m2410571 64 i2l(i0$93000941110009 431E6 0.00 -

,90 -$C64-SD704E0 0.01

. 0.01 0541OWWA'7 e".0 9T1R~ go.?6 x4009J1E$0 T041$ ES96 $ .0$5 0.13 48Tr$5;C0 561E050 0.01 '1,01.r$ G 89

  • 4ic $400 -l"$F 200Q530$E941r0E096 $ 40090 ,o -MO*$C58 1D$E58 100 0.0SFsnqM1"Ht 11715) 09m500 3366Q 'f12uTs$ m93" 30F0$06).. $ '002 0.00215 1-8co0'$"5E7 0.01 0.01 4F67'G67*$H87

-W R*7(lw 20910 $3.0m 1

-$$925 0.02 -04BS96.. S*0 .0 .01 0.01 .SF00TG92'0"H62

.3 2_E_ 14x1 F, p_ 40F____Rods out a"___4__7 J-a 2712. 1 3200- 020rSES4)r$95. -$E$96 '0,0 4564c1$DW*S68E 4660jc0~pwEx" 0m"1 '101 0.0I....... '(-oAa40o4 4sFe"00rt(69

-n 11101o 30470 '400029000031ES9417S000 40090 0.02

.0S111 133310 - GmSE0505100414R0adi6 40006 10, 1.4$G70*H70 . -R7SC7M750E70 0F01 Mot To1271-RD 3190 wD0692 E05 Fuelrod Wmh Me 05 7F?4'5174-$H74$074*$CT4jQ74*$E74 0.01 00T 432, U10)7o29 4500290093-$r;94jMP-6 0-105. . <.,'5C70'%ETfI

-. 0.01 0.01 SF7557'SG?*SW5 6 1.12(29 9114 4. *40000210000T0041110596 -4E$5 '009 -S97r5C76'06E7f0.0 0.0 S~Fl$G?"H7G

.aD 7+/-19rOD)L - 1356 4$UM$ES009n0E$Q4jM105G - a -$E95.osI10 '1.05 07rrSC~1rDT*SLZ... 1.......... 0,0........7MH.T 8 7.131.4311 4064 '(06057000093'095940'00596 -$ES% 0.05 'SS7'CTr8D7§:LE76 0.01 . 01 0Fsr5G76's"78 am3f~~9 46010630419608 40035 0.96 'tB6'10$Cr%79007E79 0.01 0.01 $qsG1$q 8 X.13539)M 52760 40FS02/fW$93jE$W941$ES9G 40556 0.j.1 'spollcollm9'008 I_____ I F81'$G~*SH~t S_____

82X.(35049) 16060 40090l0003'ES O41IESOO$9 -4E$96 0A0 '-$88Z*$QMVlr62. I_____ I _____

SYE1(13) '130 FH60- O*9200Eo$4E$05 Frc96 0.0002 W*'W 000 0.01 4 1 Y-9'2(14) 335470- (40U5q$E69V3jE$Q4jr$ES96 $E$2 0(0002 'l18"§I"!0IS!L. 001l 0 -L.............

m77i43"15) 39150 -W 002f($ES93*$E094j)'SE$96 -$E$95 0.0002 S56675QfrD&70E87 0.01 0.01 4F67G7*SHO7 60 '19646 is02(F035541'9 443 $1395 0 '0015 15s~5~9 0.

0.01

. .0.

0-01 -$* G"B 4F90'sGOO'5149 __7

.2a 7.97(1? 44930 1(00093J(00003'500041116S59 400$90 0.0002 489"M90'0 0'000'50 .

1m2CIA.OogW Fw-dRods- 120 93GE 14x14 6,2 Fuel Rods pwoAssoff"4 87.33 ALo 95 DAC -0GE14014R.,OolP.Wldo 6.96wo 1.46 Prdoo.CIODA Oog~d Pod Rods 6014,8,(8.- 0.O0n 99 OA~~ECFOA - VI..Z. Syodo. Fomdjo- ".7 09 ~DAEC FHIA-Opcg4 Gp.d.. Floolio - 0.03 MNaol 1: Them.boo 01- 00dsmypwo'ded for o-S & 5.40, ooo.qoool t. 6461.4 961.. inI-RAL1TPAD Co.poA.o Pg..go (Rd. 7.7) 102 - b.o-d