ML040120049

From kanterella
Jump to navigation Jump to search
Undated SDP - Harris Fire Zone 1-A-4-CHLR
ML040120049
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 12/22/2003
From:
- No Known Affiliation
To:
Office of Nuclear Reactor Regulation
References
FOIA/PA-2003-0358
Download: ML040120049 (27)


Text

SDP - HARRIS FIRE ZONE 1-A-4-CHLR (AKA SAFE SHUTDOWN ANALYSIS AREAS 1-A-BAL-B-B2 AND 1-A-BAL-B-B1)

  • Ignition sources: Two chiller compressors, each with 12 gal. of lube oil (per licensee engineers)

Two chilled water pumps, each with 1 gal. of lube oil Two 480V motor control centers 5 ventilation system fans Electrical junction boxes Miscellaneous hydrogen fires Transients Welding/Ordinary Combustibles Welding/Cables

  • Combustibles: 55 gal. drum of oil (staging area location: 1-A-4-CHLR zone, chiller room, 261' RAB - per FPP-004, Transient Combustible Control) 55 gal. drum of oil (staging area location: 1-A-4-COM-B, 261' RAB, Boric Acid Tank area, at the edge of SSA area 1-A-BAL-B-B2 - per FPP-004)

HP cart w/ standard contents (permanent storage location: 1-A CHLR zone, RAB 261' East hallway, across from VCT - per FPP-004) 2 gal. transient flammable liquids, with no transient combustible permit required (per FPP-004) 5 gal. transient combustible liquids, with no transient combustible permit required (per FPP-004)

Combustible thermal insulation on chiller piping (Assume Rubatex foam pipe insulation, HRR 47 Kw/sq. meter, 10.6 sq. meters, burning with 500 Kw HRR) - per inspector observation 7,968 lbs. of cable insulation, per UFSAR (IEEE-383)

Transient combustibles up to one million Btu above the analyzed combustible loading for a given fire zone are considered a low fire load and no fire watch or other compensatory action is required -

per FPP-004.

Dimensions: Since the 1-A-4-CHLR zone (13,860 sq. ft.) is not separated from 1-A-4-COMB (4,187 sq. ft.) or 1-A-4-COR (1,944 sq. ft.), a total area of 19,991 sq. ft. was assumed. Then, to account for isolated rooms included in these areas (e.g., the BAT room and the VCT room),

1500 sq. ft. was deducted. The net area assumed was 18,500 sq. ft. Equivalent room dimensions of 80 ft. wide by 231 ft. long by 23 ft. high were used to input the Fire Dynamics Worksheets. Also, a vent opening (walkway to fire zone 1-A-COM-E) of 12 feet high and 10 feet wide and natural ventilation were assumed. Stacks of cable trays were estimated to be about 15 ft. above floor level and higher over the 'B' chiller in SSA area 1-A-BAL-B-B2 and about 12 ft. above floor level and higher over the RAB 261' hallway in SSA area 1-A-BAL-B1.

Analysis: 12 gallons of oil spill from the 'B' chiller and burn, plus 500 Kw HRR from insulation on the chiller piping Pool Pool Pool Flame Pool Hot Gas Hot Gas Hot Gas Hot Gas Plume Fire Fire Fire Imping Fire Layer Layer Layer Layer CA.

Area Heat Flame ement Burning Temp. Temp. Temp. Temp. Temp (sq. Release Height to Duratio After 1 After 2 After 3 After 4 (deg.

ft.) Rate (ft.) Cable n (min.) Minute Minutes Minutes Minutes F)

(kW) Tray (deg. F) (deg. F) (deg. F) (deg. F) 20 3333 14.6 yes 8 184 197 206 212 495 40 6667 18.8 yes 4 240 260 273 282 710 60 10000 21.8 yes 2.65 287 313 329 NA 889 NOTE: Burning of the thermal insulation on the chiller piping would increase this flame height so that it would reach the cable trays.

==

Conclusion:==

A credible fire from the 12 gal. of oil in the 'B' chiller and the insulation on the chiller piping could have flames impinging the cable trays above the 'B' chiller. The hot gas layer remains well below the 700 degrees F needed to ignite all of the IEEE-383 cables in the room. If the oil spread over about 40 to 60 sq. ft. (approx. 7.1 to 8.7 ft. diameter) and the thermal insulation of the chiller piping burned, then a the plume centerline temperature could exceed the 700 degrees needed to ignite the IEEE-383 cables in the cable trays above the 'B' chiller. A credible fire involving a spill of one of the allowed 55 gal drums of oil could produce a higher heat release rate, flame height, and hot gas layer.

Worksheet NRRI0SSANPL8 1.Rev. 3.0 -, re March 2002Workshop A d t L2' L- \ D t- SC~~l' t&Adz (;-z4-t--- ,, W' LAt >\XiE se

'a)

METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 Parameterseshould be specified ONLY-IN THE YELLOW-INPUT, PARAMETER At

. 0404 be. . E _

INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) 80.00 ft Compartment Length (Ic) 231.00 It Compartment Height (hc) 23.00 ft El Vent Width (Wv) ZW .00 ft Vent Height (hv) 12.00 ft Top of Vent from Floor (VT) ... '12.00 ftt Interior Lining Thickness (8) .in' .112.00 in For thermally thick case the Interior lining thickness should be greated then 1 Inch.

AMBIENT CONDITIONS Ambient Air Temperature (To) l -- 77.00 OF Impaw",

Specific Heat of Air (cp) 1.00l kJ/kg-K Ambient air Density (Po) 1 1.201 kq/m3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR Interior Lining Thermal Inertia (kpc) -K. 2.9 (kW/m 2-K)2-sec Interior Lining Thermal Conductivity (k) -:O1 j§0.0016 kW/m-K Interior Lining Specific Heat (cp) z'x:-.- :0.75 kJ/kg-K Interior Lining Density p) i' ?k- 2400 kg/M3 INTERIOR LINING EXPERIMENTAL THERMAL PROPERTIES FOR COMMON MATERIALS

~~*iU~oncree~oc n Q.OQ~jS 0.84

, 900 fl6¶is i :No a rateciflon~et p. 2 6b 28 .9

~~~ I~~ica~pad008 bc' na'si~~~~r~~te '12~~~~9 a 10 001~~37E00 0 4 *47~Iit -I.'4 I ' ' -A Expandelosfn 001'.E5 1

Worksheet NRRtDSSNVSPLB 1, Rev. 3.0

  • Marh 2002Worfshop Wr' I EWORFW-FIRE SPECIFICATIONS Fire Heat Release Rate (Q) :E^10500.00l kW METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH) a or ATg = 6.85[Q 2/(Ao(hv)1"2) (AThk)] 1/

Where ATg = Tg - To, upper layer gas temperature rise above ambient (K)

Q = heat release rate of the fire (kW)

Ao = area of ventilation opening (m2) h = height of ventilation opening (m) hk = convective heat trensfer coefficient (kW/m2 -K)

AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (rr?)

Area of Ventilation Opening Calculation Ao = (wv)(hv)

Ao = 11.15 M2 Thermal Penetration Time Calculation D&:e a _

tp= (pcp/k)(&2) 2 Where p = interior construction density (kg/mre) cp = interior construction heat capacity (kJ/Kg-K) k = interior construction thermal conductivity (kW/m-K) 8 = interior construction thickness (m) tp = 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpc/t) 112 for t < tp Where kpc = interior construction thermal inertia (kW/M2 -K)2 -sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

Area of Compartment Enclosing Surface Boundaries AT = [2(wCXlc) + 2(hcxwc) +2(hcxlc)] - Ao AT= 4751.62 M2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2 /(Ao(hv)" 2 ) (AThk)] 1'3 ATg = Tg- To Tg ATg + To RESULTS:

Time After l_ __ hk ATq Tq l T (min) l (s) l kW-/m--KT (K} (K) (0<c) §(F 1 60 0.22 116.74 414.74 141.74 12811 2 120 0.16 131.04 429.04 156.04 312.8 3 180 0.13 14020 438.20 16520 29z3 4 240 0.11 147.09 445.09 172.09 "341TZ 5 300 0.10 152.66 450.66 177.66 1=117B8I 2

'Worksheet NRRIDSSAISPLB 1. Rev. 3.0

' March 2002Worshop 10 600 l 0.07 l 171.35 l 469.35 l 196.35 122385V 15 I 900 I 0.06 l 183.33 l 481.33 l 208.33 It4077- l 20 1200 1 0.05 7 192.34 1 490.34 1 217.34 T42321; Hot Gas Temperature Natural Ventilatio 0 5 10 is 20 time (min)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA Z = ((2kQlr3 t/3Ac) + (llhcm))-3'2 Where z = smoke layer height (m) 0 = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m)

Ac = compartment floor area (m2 )

k = a constant given by k = 0.076/pg pg = hot gas layer density (kg/rrP) pg is given by pg = 353frg Tg = hot gas layer temperature (K)

Compartment Area Calculation AC = (Wc) (Ic)

Ac = 1716.85 M2 Hot Gas Layer Density Calculation pg= 353frg Calculation for Constant K k= 0.076/pg Smoke Gas Layer Height With Natural Ventilation Z= ((2kQ11 3 t/3Ac) + (1/hm))-32 RESULTS:

3

  • Worksheet NRR/DSSNSPLB 1, Rev. 3.0 March 2002Workshop (min) kg/m3 l l__ l__a 1 0.85 0.089 5.56 8 2 0.82 0.092 5.52 3 0.81 0.094 5.49 4 0.79 0.096 5.48 5 0.78 0.097 5.46 10 0.75 0.101 5.41 15 0.73 0.104 5.38 20 0.72 0.106 5.35 Smoke Gas Layer Height Natural Ventila 18.30-1820-S18.100 E 17.90 -

- 17.80 -

I 17.70 -

17.60 -

17.50 0 5 10 is 20 time (min) 4

Worksheet NRR/DSSANSPLB 9, Rev.0 - ,

March 2002 Workshop L - L-,

METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0 IParameters should be specified ONLY INTHE YELLOW INPUT PARAMETER BOXES.

  • X~s~e 0-z~lSel- l . l-.. - .-. l*ll\: my!= =11-e@

I_ 1 neb!

INPUT PARAMETERS Heat Rlease Rate of the Fire (0) -10500.00 kW Distance from the Top of the Fuel to the Ceiling (z) .: -20.00 ft Area of Combustible Fuel (AC) _ -60.00 ft2 RAW AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00 0F .,v ". 4, Z, 21Z Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient Air Density (Po) 1.20 kglm3 Acceleration of Gravity (g) 9.81 rn~seC2 Convective Heat Release Fraction (Yc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE OD~~~~~~-Ke:=-"

Tp(cenlerline) - To = 9.1 (To/g cp2 po2)1" QC2 (z - Zo)-M Where Qc = Convective portion of the heat release rate (kW)

To = ambient air temperature (K) g = acceleration of gravity (m/sec 2 )

cp = specific heat of air (kJ/kg-K) po = ambient air density (kg/rn3) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation Qc = xcQ Where 0 = heat release rate of the fire (kW) x= convective heat release fraction Qc= 5250 kW Pool Fire Diameter Calculation Adike = ntD 2/4 D= (4 Adike/n)112 D= 2.66 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (Q02 5)/D Where zo = virtual origin of the fire (m)

O = heat release rate of fire (kW)

D = diameter of pool fire (m) zo/D = 0.24 zo= 0.65 in 1

Worksheet NRRIDSSAISPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation 2 3 5 Tp(cenleriine) - To = 9.1 (To/g cP2 pa )1" QC2M (z - zo)- 3 Tp(centerfine) - To= 450.84 Tp(cenlerline) = 748.84 K

_ _ 475.84 C ~ ~888.51 ANSWER NOTE I. x I --

  • 0. -
  • - I 6
  • 0 4 0 2

Worksheet NRR/DSSNSPLB 1. Rev. 3.0t -Ad a G L 4 t )

March 2002Workshop J..AJ-. )

METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 k II0 7a 4- . 00. *.X ..

  • Fe, 04*1 -

Parameters-should be specified ONLY IN THE YELLOW INPUT PARAMETER BOXES.*-. i- :.i---

.Em 0- . - .a. -0.S - 00 4 - * . .

INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) 80.00 f Compartment Length (Ic) [j231.00 l ft Compartment Height (hc) - ft Vent Width (wv) 10.00 fttO m Vent Height (N) A12.00 ft Top of Vent from Floor (VT) .0f Interior Lining Thickness (5)  ;;12.00 in For thermally thick case the interior lining thickness should be greated then 1 Inch.

AMBIENT CONDITIONS Ambient Air Temperature (To) OF77.001 Specific Heat of Air (cp) 10 kJ/kg-K Ambient air Density (po) 1 1.201 kgIrn3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR Interior Lining Thermal Inertia (kpc) - 2.9 (kW/rn 2-K)2 -seC Interior Lining Thermal Conductivity (k) 0.0016 kW/rm-K Interior Lining Specific Heat (cp). 0.75 kJ/kg-K Interior Lining Density (p) 400 kg/m3 1

  • Worksheet NRR/DSSAISPLB 1. Rev. 3.0 March 2002Workshop FIRE SPECIFICATIONS Fire Heat Release Rate (0) 7167.00 kW METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

ATg = 6.85[Q2/(Ao(hvY)1 2

) (AThk)] 1/

Where ATg = Tg - To, upper layer gas temperature rise above ambient (K) 0 = heat release rate of the fire (kW)

Ao = area of ventilation opening (rin) h.= height of ventilation opening (m) hk= convective heat trensfer coefficient (kW/m2 -K)

AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (rr?)

Area of Ventilation Opening Calculation Ao = (wv)(hV)

Ao= 11.15 m2 Thermal Penetration Time Calculation tp = (pcp/k)(8/2) 2 Where p = interior construction density (kg/ms) cp = interior construction heat capacity (kJ/Kg-K) k = interior construction thermal conductivity (kW/m-K) 8 = interior construction thickness (m) tp= 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpc/t)1" 2 for t < tp Where kpc = interior construction thermal inertia (kW/m2 -K) 2 -sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

Area of Compartment Enclosing Surface Boundaries AT = [2(WcXlc) + 2(hcxwc) + 2(hcxlc)] - Ao AT= 4751.62 m2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2 /(Ao(hv)F 2 ) (AThk)]' 13 ATg = Tg- To Tg = ATg + To RESULTS:

Time After hk ATqg l l(min) (S) (kW/ml-K) (K) (K) (QC) (OF)1 1 60 0.22 90.50 388.50 115.50 239.9 2 120 0.16 101.58 399.58 126.58 259 3 180 0.13 108.69 406.69 133.69 2 1 4 240 0.11 114.03 412.03 139.03 282I25 5 300 0.10 118.35 416.35 143.35 =2902 2

- Worksheet NRRIDSSASPLB 1, Rev. 3.0 March 2002Workshop 10 600 l 0.07 l 132.84 l 430.84 l 157.84 P316Z1 15 900 I 0.06 1 142.13 1 440.13 1 167.13 13218M 20 1200 0.05 1 149.11 447.11 174.11 W345:32 Hot Gas Temperature Natural Ventilatio 0 5 10 15 20 time (min)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA 3

Z = ((2kQ1" t/3Ac) + (1/hC2J3))-3,2 Where z = smoke layer height (m) 0 = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m)

Ac = compartment floor area (M2) k = a constant given by k = 0.076/pg pg = hot gas layer density (kgrrPi) pg is given by pg = 353rr/

Tg = hot gas layer temperature (K)

Compartment Area Calculation Ac = (wc) (Ic)

Ac = 1716.85 m2 Hot Gas Layer Density Calculation Ps = 353/Tg Calculation for Constant K k= 0.076 /pg Smoke Gas Layer Height With Natural Ventilation Z= ((2kQ1 13t3Ac) + (1/hcM3))32 RESULTS:

3

Worksheet NRR/DSSAISPLB 1. Rev. 3.0 March 2002Workshop t Ps k z z l (min) kg/M 3 __ (m) 1 0.91 0.084 5.78 l 2 0.88 0.086 5.75 8EW. a 3 0.87 0.088 5.73 A S K 4 0.86 0.089 5.71 ig1grs 5 0.85 0.090 5.70 10 0.82 0.093 5.67 8:59 15 0.80 0.095 5.64 20 0.79 0.096 5.62 A te Smoke Gas Layer Height Natural Ventila 0 5 10 15 20 time (min) 4

Worksheet NRR/DSSANSPLB 1, Rev. 3.0 /- (2a i En I t t.t March 2002Workshop .

METHOD OF PREDICTING HOT GAS LAYER TEMPERATURE AND SMOKE LAYER HEIGHT IN ROOM FIRE WITH NATURAL VENTILATION COMPARTMENT WITH THERMALLY THICK BOUNDARIES 8 > 1 inch VERSION 1.03 a in 0*R noI li.tro4om

  • k.,.T -. - M--- .. - * . i _

Parameters should be'specified ONLY IN THE YELLOW INPUT PARAMETER BOXES. .-  :. ::

40 . * .. * .* * - *

  • INPUT PARAMETERS COMPARTMENT INFORMATION Compartment Width (wc) 80.00 t 4 73 Compartment Length (Ic) 231.00 e 7.0Bm.. .

Compartment Height (hc)2[.0Ofe Vent Width (wv) -10.00 ft Vent Height (N) 12.00 ft S<

Top of Vent from Floor (VT) 12.00 ft Interior Lining Thickness (8) - 12.00 in For thermally thick case the Interior lining thickness should be greated then 1 inch.

AMBIENT CONDITIONS_

Ambient Air Temperature (To) lOF OF77.00 Specific Heat of Air (cp)1.00 kJ/kg-K Ambient air Density (po) 1.201 kgm3 THERMAL PROPERTIES OF COMPARTMENT ENCLOSING SURFACES FOR Interior Lining Thermal Inertia (kpc) 2.9 (kW/m 2-K) 2-sec Interior Lining Thermal Conductivity (k) 0.0016 kW/m-K Interior Lining Specific Heat (cp) 0.75 kJ/kg-K Interior Lining Density (o) 2400 k/Mr3 EXPERIMENTAL THERMAL PROPERTIES FOR COMMON MATERIALS 1

Worksheet NRRIDSSNSPLB 1. Rev. 3.0 March 2002Workshop FIRE SPECIFICATIONS Fire Heat Release Rate (0) F 3833.00 kW METHOD OF McCAFFREY, QUINTIERE, AND HARKLEROAD (MQH)

S i:_e i:_ I- f ATg = 6.85[02 /(Ao(hv)" 2 ) (AThk)] 1/3 Where ATg = Tg - To, upper layer gas temperature rise above ambient (K) 0 = heat release rate of the fire (kW)

Ao = area of ventilation opening (m?)

h. = height of ventilation opening (m) hk = convective heat trensfer coefficient (kW/m2 -K)

AT = total area of the compartment enclosing surface boundaries excluding area of vent openings (in2)

Area of Ventilation Opening Calculation Ao = (wV)(hv)

Ao= 11.15 m2 Thermal Penetration Time Calculation t = (pcdk)(5/2) 2 Where p = interior construction density (kgfni3 )

cp = interior construction heat capacity (kJ/Kg-K) k = interior construction thermal conductivity (kW/m-K) 5 = interior construction thickness (m) tp= 26128.98 sec Heat Transfer Coefficient Calculation hk = (kpc/t)lr2 for t < tp Where kpc = interior construction thermal inertia (kW/m2 -K) 2 -sec (a thermal property of material responsible for the rate of temperature rise) t = time after ignition (sec)

Area of Compartment Enclosing Surface Boundaries AT = [2(w0Xlc) + 2(hcxwc) + 2(hcxlc)] - Ao AT= 4751.62 M2 Compartment Hot Gas Layer Temperature With Natural Ventilation ATg = 6.85[Q2 /(Ao(hv)1 2 ) (AThk)] 1"3 ATg = Tg- To Tq ATg

& + To RESULTS:

Time After l hk AT l Tq l T T l (i (s) (kW/ml-K) (K) (K J.CLl IC) { .I 1 60 0.22 59.63 357.63 84.63 Al84.3 2 120 0.16 66.93 364.93 91.93 197A8D 3 1 180 0.13 71.61 369.61 96.61 05.90 4 240 0.11 75.13 373.13 100.13 21223k 5 300 0.10 77.97 375.97 102.97 217 2

, Worksheet NRRA)SSA/SPLB 1, Rev. 3.0 March 2002Workshop 10 600 0.07 l 87.52 l 385.52 l 112.52 M234'54 15i 900 0.06 93.64 391.64 1 118.64 IK245!5S 20 1200 0.05 98.24 396.24 123.24 1 253¢84$

Hot Gas Temperature Natural Ventilatlo 260.00 -

250.00-240.00

,230.00-I220.00-E 210.00- _

200.00 P 190.00- /

180.00 0 5 10 15 20 time (min)

ESTIMATING SMOKE LAYER HEIGHT METHOD OF YAMANA AND TANAKA Z = ((2kQ 1l 3t/3Ac) + (11hcm))-32 Where z = smoke layer height (m) 0 = heat release rate of the fire (kW) t = time after ignition (sec) hc = compartment height (m)

AC = compartment floor area (m2 )

k = a constant given by k = 0.076/pg pg = hot gas layer density (kg/rrP) pg is given by pg = 353fr, Tg = hot gas layer temperature (K)

Compartment Area Calculation Ac = (wc) (Ic)

AC= 1716.85 m2 Hot Gas Layer Density Calculation Pg = 353/Tg Calculation for Constant K k= 0.0 7 6 /pg Smoke Gas Layer Height With Natural Ventilation Z= ((2kQ 1 '3 tI3Ac) + (1/hc2'3))-=

RESULTS:

3

Worksheet NRR/DSSNSPLB 1, Rev. 3.0 March 2002Workshop t pq P k z (min) kg/m 3 (m) (ft) 1 0.99 0.077 6.05 9.8'd 2 0.97 0.079 6.04 19.

3 0.96 0.080 6.02 1 4 0.95 0.080 6.02 14 S 0.94 0.081 6.01 10 0.92 0.083 5.99 19 15 0.90 0.084 5.97 9. 0 20 0.89 0.085 5.96 - a i d Smoke Gas Layer Height Natural Ventila 0 5 10 is 20 time (min)

NOTE 4

  1. 7 ~~~\~ ~-..-L - C'

'/ Worksheet NRRIDSSANSPLB 3. Rev.3.0 March 2002 Workshop , \beLo V 4A_

METHOD OF ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT VERSION 1.03

-Parametersshoul beSeiid ONLY IN THE YELLOW INPUT PARAMETER BOXES. -

INPUT PARAMETERS Fuel Spill Volume (V) 12.00 gallons Fuel Spill Area or Dike Area (Adike) 60.00 ft2 Mass Burning Rate of Fuel (m") 0.039 kg/m2-sec Effective Heat of Combustion of Fuel (AHcen) 46000 kJ/kg Fuel Density (p) 760 kg/m3 THERMAL PROPERTIES DATA BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS

,ce;_,$_F r f4widbo K :P- '. ---1 .9-tM__e_460__qf LliR,164 o = m'6Hc.enAt Where 0 = pool fire heat release rate (kW) m" = mass burning rate of fuel per unit surface area (kgfm2 -sec)

AHc.etf = effective heat of combustion of fuel (kJ/kg)

At= Adike = surface area of pool fire (area involved in vaporization) (rr?)

1

Worksheet NRRIDSSANSPLB 3, Rev.3.0 March 2002 Workshop Heat Release Rate Calculation (Uquids with relatively high flash point, like transformer oil require Q = m"AHcAH localized heating to achieve Ignition)

Q: u~ ~1O00O08 ~7828B U~se ANSWER ESTIMATING POOL FIRE BURNING DURATION MR=

2 to = 4VhrD v Where to = burning duration of pool fire (sec) 3)

V = Volume of liquid (mn D = pool diameter (m) v = regression rate (m/sec)

Pool Fire Diameter Calculation Af= 7nD2 /4 2

D = (4Ar/t)"

D= 2.664 m Calculation for Regression Rate v = m"/p 2

Where rn" = mass burning rate of fuel (kg/m -sec) 3 p = liquid fuel density (kg/rm )

v= 0.000051 m/sec Burning Duration Calculation 2

b = 4V/hD v iji~i 5_A N S WE RANSWER Note that a liquid pool fire with a given amount of fuel can bum for long periods of time over small area or for short periods of time over a large area.

ESTIMATING POOL FIRE FLAME HEIGHT Hi = 0.235 Q215_- 1.02 D Where Hi = pool fire flame height (m) o = pool fire heat release rate (kW)

D = pool fire diameter (m)

Pool Fire Flame Height Calculation Hr = 0.235 0OJ5- 1.02 D a-M '2M ANSWER NOTE 2

\ - -hi - Ca Worksheet NRRIDSSANSPLB 3, Rev.3.0 4- b Ct 2 ' .- >j tI March 2002 Workshop -

METHOD OF ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT VFRSqION 1 03 INPUT PARAMETERS Fuel Spill Volume (V)

  • 12.00 gallons 04054km.-

Fuel Spill Area or Dike Area (Adike)

  • 40.00 ft2 I A" i3.e 2

Mass Burning Rate of Fuel (m")

  • 0.039 kg/m _sec Effective Heat of Combustion of Fuel (AHc.eff) - 46000 kJ/kg Fuel Densitv (P) -760 kafm 3 THERMAL PROPERTIES DATA BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS ESTIMATING POOL jqjfjj qEff.'- -.9dbook qlp' - n 9'-2m-9L VAw-;q-"-G, o= m'6Hc.eHAt Where a = pool fire heat release rate (kW) m" = mass burning rate of fuel per unit surface area (kg/m 2 -sec)

AHc.et = effective heat of combustion of fuel (kJ/kg)

At= Adike = surface area of pool fire (area involved in vaporization) (rr?)

1

Worksheet NRRIDSSANSPLB 3. Rev.3.0 March 2002 Workshop Heat Release Rate Calculation (Uquids with relatively high flash point, like transformer oil require 0 = mrHcAr localized heating to achieve Ignition) iz: 6&66.72tkW'g' 6E I

E18.BTtJ/; ANSWER ESTIMATING POOL FIRE BURNING DURATION tb = 4VhtD 2 v Where th = burning duration of pool fire (sec)

V = Volume of liquid (in3)

D = pool diameter (m) v = regression rate (m/sec)

Pool Fire Diameter Calculation Af = itD2 /4 D= (4Ai/IT)12 D= 2.175 m Calculation for Regression Rate

= m"/p Where m" = mass burning rate of fuel (kg/m 2 -sec) p = liquid fuel density (kg/rr9) v= 0.000051 m/sec Burning Duration Calculation b = 4V/nD2 v

_____ 7 , i~iiite~ANSWER Note that a liquid pool fire with a given amount of fuel can bum for long periods of time over small area or for short periods of time over a large area.

ESTIMATING POOL FIRE FLAME HEIGHT H. = 0.235 21 5- 1.02 D Where Hf = pool fire flame height (m) a = pool fire heat release rate (kW)

D = pool fire diameter (m)

Pool Fire Flame Height Calculation Hi = 0.235 Q'25 - 1.02 D

~ _~~i~z-2;5.74 P..i8.82~ ~ ANSWER NOTE 2

0 Worksheet NRR/DSSAISPLB 3, Rev.3.0 March 2002 Workshop 0 0 0 0 - _0 *0* S 0 0 *00 *i* tTM 0I . it. i i fit -: S 0AI 3

Worksheet NRRIDSSNSPLB 3, Rev.3.0 March 2002 Workshop I--,- , -,!;,(-- . 0 %L- i ' 7-C, METHOD OF ESTIMATING BURNING CHARACTERISTICS OF LIQUID POOL FIRE, HEAT RELEASE RATE, BURNING DURATION, AND FLAME HEIGHT VERSION 1.03 Parameters should be specified ONLY IN THE YELLOW INPUT PARAMETER BOXES.-;:-.

INPUT PARAMETERS Fuel Spill Volume (V) 12.00 gallons Fuel Spill Area or Dike Area (Adike) 20.00 ft2 Mass Burning Rate of Fuel (m") 0.039 kglm2 -sec Effective Heat of Combustion of Fuel (AHc,eff) :46000 kJ/kg Fuel Density (P) I 760j kqrm3 THERMAL PROPERTIES DATA BURNING RATE DATA FOR LIQUID HYDROCARBON FUELS ML~~f~~r~ti~~a I (F g4iA'4' o = m"AHc.e"Af Where 0 = pool fire heat release rate (kW) m" = mass burning rate of fuel per unit surface area (kg/m2 -sec)

AHc.ett = effective heat of combustion of fuel (kJ/kg)

At= Adike = surface area of pool fire (area involved in vaporization) (rri) 1

Worksheet NRR(DSSNSPLB 3. Rev.3.0 March 2002 Workshop Heat Release Rate Calculation (Liquids with relatively high flash point, like transformer oil require Q = mAHcAt localized heating to achieve ignition)

[1~Y336wjT~jj~ gANSWER ESTIMATING POOL FIRE BURNING DURATION 2

tb = 4V/nD X' Where tb = burning duration of pool fire (sec)

V = Volume of liquid (i 3 )

D = pool diameter (m) v = regression rate (m/sec)

Pool Fire Diameter Calculation Af = tD2 /4 D= (4AhtE)1 t 2 D= 1.538 m Calculation for Regression Rate v = m"/p 2

Where m" = mass burning rate of fuel (kg/m -sec) p = liquid fuel density (kg/rri)

V= 0.000051 m/sec Burning Duration Calculation 2

th = 4V/itD v 2 1jse A N SW94;ml~EsANSWER Note that a liquid pool fire with a given amount of fuel can bum for long periods of time over small area or for short periods of time over a large area.

ESTIMATING POOL FIRE FLAME HEIGHT Ht = 0.235 Q2/5 - 1.02 D Where Hf = pool fire flame height (m) o = pool fire heat release rate (kW)

D = pool fire diameter (m)

Pool Fire Flame Height Calculation Hf= 0.235 Q215.- 1.02 D y .~r ANSWER NOTE 2

Worksheet NRRIDSSANSPLB 9, Rev.0 March 2002 Workshop C>O \( u:A.2 k ". C.1,4L.61K 4-,q METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0

  • .:.I:.. . * - - * *. ~~~~~~~~~~~~~~~~~~~~~~~~

i- .71 Parameters should be specified ONLY INTHE YELLOW INPUT PARAMETER BOXES;;-- - .-.

h=3Z7B ... 1~*1^lisirlilm14 INPUT PARAMETERS Heat Rlease Rate of the Fire (Q) 3833.00 kW Distance from the Top of the Fuel to the Ceiling (z) . :20.06 ft %06IU O 1 Area of Combustible Fuel (Ac) 20.00 ft2 _14, AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00 0F Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient Air Density (po) 1.20 kg/m3 Acceleration of Gravity (g) 9.81 rn/sec2 Convective Heat Release Fraction (Yc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE RS--6feo QBL g: bolE p iki6ef9,oe Tp(centerhine) - To = 9.1 (To/g cp2 po2 )" 3 QPf3 (z - zo) 5 Where Qc = Convective portion of the heat release rate (kW)

To = ambient air temperature (K) g = acceleration of gravity (m/sec 2) cp = specific heat of air (kJ/kg-K) po = ambient air density (kg/n3) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation Qc = xc 0 Where 0 = heat release rate of the fire (kW) xc = convective heat release fraction QC= 1916.5 kW Pool Fire Diameter Calculation Adike = -tD2/4 D= (4 Adike/ir)" 2 D= 1.54 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (Q2 15 )/D Where zo = virtual origin of the fire (m) 0 = heat release rate of fire (kW)

D = diameter of pool fire (m) zo/D = 0.44 ZO= 0.68 m 1

I!

Worksheet NRR/DSSAISPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation Tpccenterline) - To = 9.1 (To/g cp2 po2)1/3 QJ13 (z zo)-3 Tp(centerline) - To= 232.46 Tp(centerline) = 530.46 K E_ ~ 257~46~C~d~. .* ~ ~ L~~495:43~cF ~ ANSWER NOTE I

Y ylaibaiawAv I WN1-<

"I .]IN

-iIf-MK~jjT ~ I klY I IN~LIII'I i IU~j~- IIiiy 1~C WEIMMM AP "HU, 5N, III Lk wdlibWA ikffi ! M fflhi im-H!

i !

0 0 00 e 0 ~~~~~~~~~~~~-.

...... -I Z-O 0.......... " - . 111-I.0 I .

I k .rl 11jIffm IY;&QII11;W 2

\~~~p 4 I - .-

Worksheet NRRJDSSANSPLB 9, Rev.0 & 12 s \ v A -

March 2002 Workshop p )

METHOD OF ESTIMATING TEMPERATURE OF A BUOYANT FIRE PLUME VERSION 1.0 Parameters should be specified ONLY IN THE YELLOW INPUT PARAMETER BOXES&*--::-.i 00 00 S.11 .

E - - -OM -. 13 I INPUT PARAMETERS Heat Rlease Rate of the Fire (Q) 7167.00 kW Distance from the Top of the Fuel to the Ceiling (z) 20.00ift Area of Combustible Fuel (AC) 40.00 ft 2 5J10.

AMBIENT CONDITIONS Ambient Air Temperature (To) 77.00 OF Specific Heat of Air (cp) 1.00 kJ/kg-K Ambient Air Density (po) 1.20 kgIM 3 Acceleration of Gravity (g) 9.81 nJsec2 Convective Heat Release Fraction (yc) 0.50 ESTIMATING PLUME CENTERLINE TEMPERATURE F Prajcgn _ir Tp(centerline) - To = 9.1 (T/g cP2 pa2)" 3 QC2, 3 (z - zo) 5 Where Qc = Convective portion of the heat release rate (kW)

To = ambient air temperature (K) g = acceleration of gravity (mfse&)

cp = specific heat of air (kJ/kg-K) po = ambient air density (kg/m3) z = distance from the top of the fuel package to the ceiling (m) zo = hypothetical virtual origin of the fire (m)

Convective Heat Release Rate Calculation QC= xC Where 0 = heat release rate of the fire (kW) xc = convective heat release fraction Qc= 3583.5 kW Pool Fire Diameter Calculation Adike = ntD 2/4 2

D= (4 Adke/h)"t D= 2.18 m Hypothetical Virtual Origin Calculation zo/D = -1.02 + 0.083 (Q2!5)1D Where zo = virtual origin of the fire (m) o= heat release rate of fire (kW)

D = diameter of pool fire (m) zo/D= 0.31 zr= 0.67 m 1

U

  • Worksheet NRRIDSSANSPLB 9, Rev.0 March 2002 Workshop Centerline Plume Temperature Calculation Tp(centerune) - To = 9.1 (Tofg Cp2 po2)1/3 QC2' 3 (z Zo)-V3 Tp(centetfine) - To= 351.80 Tp(cenferline) = 649.80 K

. 00" ANSWER NOTE I

,1 . U69b

§ffikw00SYiNMwAi-dd --dio-'UM-ft!

!I L**j 1 r-rr r ii Nii'!M 10

- ...III,.JJI, j i-11its-HY

_4

_Q i I 1- -

NIMU IN MM. A-,- 4JI.L.,A ,... 1.h, L LI L E -

,I . *e I - - - .-

1ll rfr.

-- 11 1- - l 42 1 -1 D 1 w,- !II g-VI V- I IMA"WiWil -ran 2