ML033140582

From kanterella
Jump to navigation Jump to search
License Amendment Request: Increase the Unit 2 Spent Fuel Pool Maximum Enrichment Limit with Soluble Boron and Burnup Credit, Continuation of Attachment 5 Through 6
ML033140582
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 09/30/2003
From:
Constellation Energy Group
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML033140582 (115)


Text

. U

  • I. "a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h IgJ LEGEND VOID

_ MATERIAL 1

_ MATERIAL 2

_ MATERIAL 3 MATERIAL 4

_ MATERIAL 5

_ MATERIAL 6

= MATERIAL 7 MATERIAL 8

= MATERIAL 9 MATERIAL 10

N- >

C) A CD

_ m CC nv CZb

"-__ I _X21 I

  • IAMR a g LEGEND VOID

_ MATERIAL 1 W MATERIAL 2

_ MATERIAL 3 MATERIAL 4

_ MATERIAL 5

_ MATERIAL 6 10 MATERIAL 7 MATERIAL 8

_ MATERIAL 9 MATERIAL 10

- CR, c,

C ono rn 01 r

CzO

Tlb___ -le LEGEND VOID

_ MATERIAL 1

_ MATERIAL 2

_ MATERIAL 3 MATERIAL 4

_ MATERIAL 5

_ MATERIAL 6 MATERIAL 7 MATERIAL 8

_ MATERIAL 9 MATERIAL 10

-0 o-m c, CD T

coDo

Ino- I _ rI LEGEND VOID

= MATERIAL 1

_ MATERIAL 2

_ MATERIAL 3 MATERIAL 4

= MATERIAL 5

_ MATERIAL 6 god MATERIAL 7 MATERIAL 8

= MATERIAL 9 MATERIAL 10 m C1

T___ _-11 o i11I I -Ia a a I I LEGEND VOID

_ MATERIAL

_ MATERIAL 2

_ MATERIAL 3 MATERIAL 4

_ MATERIAL 5

_ MATERIAL 6 WX MATERIAL 7 MATERIAL 8

_ MATERIAL 9 MATERIAL 10 C) C)

C-D K . (

rh_ - 1 _r LEGEND VOID

_ MATERIAL 1

= MATERIAL 2

_ MATERIAL 3 MATERIAL 4

_ MATERIAL 5

_ MATERIAL 6

=I MATERIAL 7 MATERIAL 8

= MATERIAL 9 MATERIAL 10 C., C.,

no M =

C s

-zcn CZl

CA06015 Revision 0 Page O ATXACLB ENT I AXIAL, BURNUP PROFELES

AA Worst Case Axial Bumup Distributions from ORNL/TM-1999/246 Midpoints Endpoints Delta 0.00 46+ 42-46 38-42 34-38 30-34 26-30 22-26 18-22 14-18 10-14 6-10 6-2.78 5.56 5.56 0.573 0.615 0.607 0.520 0.537 0.551 0.544 0.540 0.502 0.489 0.478 0.470 8.33 11.11 5.56 0.917 0.918 0.914 0.888 0.895 0.886 0.869 0.860 0.817 0.772 0.773 0.775 13.89 16.67 5.56 1.021 1.020 1.024 1.009 1.007 1.007 0.962 0.965 0.925 0.944 0.950 0.955 19.44 22.22 5.56 1.040 1.045 1.041 1.046 1.045 0.974 0.918 0.921 0.796 0.857 1.059 1.064 25.00 27.78 5.56 1.126 1.120 1.124 1.155 1.141 1.146 1.138 1.174 1.260 1.179 1.205 1.141 30.56 33.34 5.56 1.123 1.112 1.117 1.143 1.140 1.138 1.140 1.176 1.254 1.151 1.201 1.162 36.11 38.90 5.57 1.118 1.116 1.108 1.136 1.135 1.140 1.153 1.171 1.242 1.186 1.211 1.180 41.69 44.46 5.56 1.113 1.114 1.107 1.137 1.130 1.135 1.153 1.166 1.234 1.181 1.215 1.189 47.22 50.00 5.55 1.109 1.104 1.103 1.137 1.125 1.138 1.172 1.167 1.277 1.180 1.218 1.192 52.78 55.56 5.56 1.105 1.107 1.102 1.133 1.121 1.166 1.192 1.185 1.323 1.236 1.216 1.191 58.33 61.11 5.56 1.101 1.101 1.099 1.130 1.138 1.173 1.201 1.188 1.336 1.261 1.209 1.185 63.89 66.67 5.55 1.098 1.101 1.101 1.145 1.145 1.173 1.203 1.186 1.335 1.265 1.194 1.172 69.44 72.22 5.56 1.101 1.107 1.111 1.145 1.142 1.169 1.199 1.182 1.325 1.261 1.170 1.158 75.00 77.78 5.56 1.098 1.104 1.112 1.143 1.136 1.157 1.185 1.173 1.299 1.244 1.151 1.130 80.56 83.34 5.56 1.028 1.025 1.029 1.025 1.020 1.022 1.014 1.008 0.756 0.951 0.976 1.021 86.11 88.89 5.55 0.986 0.981 0.981 0.970 0.953 0.882 0.871 0.898 0.614 0.847 0.806 0.900 91.67 94.45 5.55 0.831 0.800 0.823 0.743 0.738 0.701 0.689 0.669 0.481 0.650 0.596 0.714 97.22 100.00 5.56 0.512 0.512 0.498 0.393 0.451 0.444 0.396 0.373 0.225 0.348 0.370 0.403 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 AXBU.xls Page 1

M Worst Case Axial Bumup Distributions from ORNL/TM-1999/246 Bumup= 50 gwd/mtu Axial AA AB AC AD AE AF AG AH Al AJ AK AL cm 46+ 42-46 38-42 34-38 30-34 26-30 22-26 18-22 14-18 10-14 6-10 8-0.000 28.650 30.750 30.350 26.000 26.850 27.550 27.200 27.000 25.100 24.450 23.900 23.500 19.288 45.850 45.900 45.700 44.400 44.750 44.300 43.450 43.000 40.850 38.600 38.650 38.750 38.576 51.050 51.000 51.200 50.450 50.350 50.350 48.100 48.250 46.250 47.200 47.500 47.750 57.864 52.000 52.250 52.050 52.300 52.250 48.700 45.900 46.050 39.800 42.850 52.950 53.200 77.152 56.300 56.000 56.200 57.750 57.050 57.300 56.900 58.700 63.000 58.950 60.250 57.050 96.457 56.150 55.600 55.850 57.150 57.000 56.900 57.000 58.800 62.700 57.550 60.050 58.100 115.745 55.900 55.800 55.400 58.800 58.750 57.000 57.650 58.550 62.100 59.300 60.550 59.000 135.068 55.650 55.700 55.350 56.850 56.500 58.750 57.650 58.300 61.700 59.050 60.750 59.450 154.356 55.450 55.200 55.150 56.850 58.250 58.900 58.600 58.350 63.850 59.000 60.900 59.600 173.609 55.250 55.350 55.100 58.650 58.050 58.300 59.600 59.250 66.150 61.800 60.800 59.550 192.897 55.050 55.050 54.950 58.500 56.900 58.650 60.050 59.400 66.800 63.050 60.450 59.250 212.185 54.900 55.050 55.050 57.250 57.250 58.650 60.150 59.300 66.750 63.250 59.700 58.600 231.473 55.050 55.350 55.550 57.250 57.100 58.450 59.950 59.100 68.250 63.050 58.500 57.900 250.761 54.900 55.200 55.600 57.150 56.800 57.850 59.250 58.650 64.950 62.200 57.550 56.500 270.066 51.400 51.250 51.450 51.250 51.000 51.100 50.700 50.400 37.800 47.550 48.800 51.050 289.354 49.300 49.050 49.050 48.500 47.650 44.100 43.550 44.900 30.700 42.350 40.300 45.000 308.642 41.550 40.000 41.150 37.150 36.900 35.050 34.450 33.450 24.050 32.500 29.800 35.700 327.930 25.600 25.600 24.900 19.650 22.550 22.200 19.800 18.650 11.250 17.400 18.500 20.150 347.218 50.000 50.006 50.003 49.994 49.997 50.006 49.997 50.006 50.003 50.008 49.994 50.006 M =

cm

=0 M

Ic AXlBU.xls Page 2

AA Worst Case Axial Bumup Distributions from ORNL/TM-1999/246 Bumup= 62.00 46.00 42.00 38.00 34.00 30.00 26.00 22.00 18.00 14.00 10.00 6.00 Axial M AB AC AD AE AF AG AH IAI AJ AK AL cm 46+ 42-46 38-42 34-38 30-34 26-30 22-26 18-22 14-18 10-14 6-10 6-0.000 35.526 28.290 25.494 19.760 18.258 16.530 14.144 11.880 01.36 6.846 4.780 2.820 19.288 56.854 42.228 38.388 33.744 30.430 26.580 22.594 18.920 14.706 10.808 7.730 4.650 38.576 63.302 46.920 43.008 38.342 34.238 30.210 25.012 21.230 16.650 13.216 9.500 5.730 57.864 64.480 48.070 43.722 39.748 35.530 29.220 23.868 20.262 14.328 11.998 10.590 6.384 77.152 69.812 51.520 47.208 43.890 38.794 34.380 29.588 25.828 2.680 16.506 12.050 6.846 96.457 69.626 51.152 46.914 43.434 38.760 34.140 29.640 25.872 2.572 16.114 12.010 6.972 115.745 69.316 51.336 46.536 43.168 38.590 34.200 29.978 25.762 2 .356 16.604 12.110 7.080 135.068 69.006 51.244 46.494 43.206 38.420 34.050 29.978 25.652 22.212 16.534 12.150 7.134 154.356 68.758 50.784 46.326 43.206 38.250 34.140 30.472 25.674 22.986 16.520 12.180 7.152 173.609 68.510 50.922 46.284 43.054 38.114 34.980 30.992 26.070 2i814 17.304 12.160 7.146 192.897 68.262 50.646 46.158 42.940 38.692 35.190 31.226 26.136 24.048 17.654 12.090 7.110 212.185 68.076 50.646 46.242 43.510 38.930 35.190 31.278 26.092 2 .030 17.710 11.940 7.032 231.473 68.262 50.922 46.662 43.510 38.828 35.070 31.174 26.004 2 .850 17.654 11.700 6.948 250.761 68.076 50.784 46.704 43.434 38.624 34.710 30.810 25.806 2 .382 17.416 11.510 6.780 270.066 63.736 47.150 43.218 38.950 34.680 30.660 26.364 22.176 13.608 13.314 9.760 6.126 289.354 61.132 45.126 41.202 36.860 32.402 26.460 22.646 19.756 1.052 11.858 8.060 5.400 308.642 51.522 36.800 34.566 28.234 25.092 21.030 17.914 14.718 8.58 9.100 5.960 4.284 327.930 31.744 23.552 20.916 14.934 15.334 13.320 10.296 8.206 4.050 4.872 3.700 2.418 347.218 62.00 46.01 42.00 38.00 34.00 30.00 26.00 22.00 118.00 14.00 10.00 6.00 C-,

CZ C- n I

ii i

I I

AXBU.xls i Page 3 I

AB Worst Case Axial Bumup Distributions from NUREG/CR-ORNLITM-2001/33 Midpoints Endpoints Delta 0.00 46+ 42-46 38-42 34-38 30-34 26-30 22-26 18-22 14-18 10-14 6-10 6-2.78 5.56 5.56 0.573 0.674 0.660 0.585 0.652 0.619 q.630 0.668 0.649 0.633 0.662 0.574 8.33 11.11 5.56 0.917 0.949 0.936 0.957 0.967 0.924 .936 1.034 1.044 0.989 0.930 0.947 13.89 16.67 5.56 1.066 1.053 1.044 1.091 1.074 1.056 11.066 1.150 1.208 1.019 1.049 1.091 19.44 22.22 5.56 1.106 1.085 1.080 1.121 1.103 1.097 1.103 1.094 1.215 0.857 1.059 1.105 25.00 27.78 5.56 1.114 1.095 1.091 1.126 1.108 1.103 1.108 1.053 1.214 0.776 1.108 1.094 30.56 33.34 5.56 1.111 1.095 1.093 1.111 1.106 1.101 1.109 1.048 1.208 0.754 1.144 1.087 36.11 38.90 5.57 1.106 1.093 1.092 1.094 1.102 1.103 1.112 1.064 1.197 0.785 1.168 1.086 41.69 44.46 5.56 1.101 1.091 1.090 1.093 1.097 1.112 1.119 1.095 1.189 1.013 1.183 1.087 47.22 50.00 5.55 1.097 1.089 1.089 1.092 1.094 1.125 1.126 1.121 1.188 1.185 1.189 1.091 52.78 55.56 5.56 1.093 1.088 1.088 1.091 1.094 1.136 1.132 1.135 1.192 1.253 1.190 1.096 58.33 61.11 5.56 1.089 1.086 1.088 1.092 1.095 1.143 1.135 1.140 1.195 1.278 1.183 1.102 63.89 66.67 5.55 1.086 1.084 1.086 1.099 1.096 1.143 1.135 1.138 1.190 1.283 1.167 1.105 69.44 72.22 5.56 1.081 1.081 1.084 1.096 1.095 1.136 1.129 1.130 1.156 1.276 1.135 1.105 75.00 77.78 5.56 1.073 1.073 1.077 1.087 1.086 1.115 1.109 1.106 1.022 1.251 1.079 1.096 80.56 83.34 5.56 1.051 1.053 1.057 1.073 1.059 1.047 1.041 1.049 0.756 1.193 0.976 1.066 86.11 88.89 5.55 0.993 0.987 0.996 1.003 0.971 0.882 a4.871 0.933 0.614 1.075 0.806 0.986 91.67 94.45 5.55 0.832 0.800 0.823 0.796 0.738 0.701 0 .689 0.669 0.481 0.863 0.596 0.806 97.22 100.00 5.56 0.512 0.524 0.525 0.393 0.462 0.456 d.448 0.373 0.284 0.515 0.375 0.474 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 mo --,

(Xc~fl 4= C AXBU.xls Page 1

AB Worst Case Axial Bumup Distributions from NUREG/CR-ORNL/TM-2001/33 Bumup= 62.00 46.00 42.00 38.00 34.00 30.00 26.00 22.00 B.00 14.00 10.00 6.00 Axial BA BB BC BD BE BF BG BH Bi BJ BK BL cm 46+ 42-46 38-42 34-38 30-34 26-30 22-26 18-22 4-18 10-14 6-10 6-0.000 35.526 31.004 27.720 22.230 22.168 18.570 16.380 14.696 .682 8.862 6.620 3.444 19.288 56.854 43.654 39.312 36.366 32.878 27.720 24.336 22.748 1.792 13.846 9.300 5.682 38.576 66.092 48.438 43.848 41.458 36.516 31.680 27.716 25.300 .744 14.266 10.490 6.546 57.864 68.572 49.910 45.360 42.598 37.502 32.910 28.678 24.068 .870 11.998 10.590 6.630 77.152 69.068 50.370 45.822 42.788 37.672 33.090 28.808 23.166 .852 10.864 11.080 6.564 96.457 68.882 50.370 45.906 42.218 37.604 33.030 28.834 23.056 .744 10.556 11.440 6.522 115.745 68.572 50.278 45.864 41.572 37.468 33.090 28.912 23.408 .546 10.990 11.680 6.516 135.068 68.262 50.186 45.780 41.534 37.298 33.360 29.094 24.090 .402 14.182 11.830 6.522 154.356 68.014 50.094 45.738 41.496 37.196 33.750 29.276 24.662 .384 16.590 11.890 6.546 173.609 67.766 50.048 45.696 41.458 37.196 34.080 29.432 24.970 [.456 17.542 11.900 6.576 192.897 67.518 49.956 45.696 41.496 37.230 34.290 29.510 25.080 [.510 17.892 11.830 6.612 212.185 67.332 49.864 45.612 41.762 37.264 34.290 29.510 25.036 [.420 17.962 11.670 6.630 231.473 67.022 49.726 45.528 41.648 37.230 34.080 29.354 24.860 ).808 17.864 11.350 6.630 250.761 66.526 49.358 45.234 41.306 36.924 33.450 28.834 24.332 .396 17.514 10.790 6.576 270.066 65.162 48.438 44.394 40.774 36.006 31.410 27.066 23.078 1.608 16.702 9.760 6.396 289.354 61.566 45.402 41.832 38.114 33.014 26.460 22.646 20.526 1.052 15.050 8.060 5.916 308.642 51.584 36.800 34.566 30.248 25.092 21.030 17.914 14.718 .658 12.082 5.960 4.836 327.930 31.744 24.104 22.050 14.934 15.708 13.680 11.648 8.206 .112 7.210 3.750 2.844 347.218 62.00 46.00 42.00 38.00 34.00 30.00 26.00 22.00 8.00 14.00 10.00 6.00

-= C"3 C0 "C m~

i AXBU.xts Page 2

Unit I Cycle 1 As Built Depletion EOC Fufl Assembly Bumup Distribution CCNPP Assembly Bumups In Tenth GWD/MTU plane node (in) node (cm) 1-S0 2-SO 3-S1 4-VO 5-T( 6-V1 7-VO 8"2 9-VO 10-TO 11-V1 bottom 1 3.500 0.000 2.668f 2.5499 2.7430 0.7488 1.95, 1.1234 1.1822 2.8928 0.9750 1.9232 1.4213 2 3.500 8.890 3.5647I 3.4090 41 3.6629 1.0180 2.60A 1.5108 1.5895 3,8669 1.3112 2.5659 1.9100 3 3.500 17.780 4.2539 4.7860 4.3705 1.2591 3.13 1.8421 1.9399 4.5995 1.6087 3.1028 2.3209 4 1.500 26.670 4.566E 4.3857 4.6899 1.3771 3.38- 1.9933 2.1043 4.9156 1.7529 3.3540 2.5076 5 2.000 30.480 4.710 4.5290 4.8355 1.4350 3.50' 2.0526 2.1802 5.0419 1.8230 3.4723 2.5828 I 4 6 5.466 35.560 4.901f 4.7204 5.0402 1.5171 3.65' 2.0998 2.2787 5.2346 1.9223 3.6317 2.6502 7 7.874 49.444 5.064C 4.8832 5.2188 1.5879 3.78 2.1673 2.3609 5.4138 2.0088 3.7675 2.7344 8 7.874 69.444 5.124( 4.9448 5.2858 1.6152 3.82 2.1957 2.3908 5.4851 2.0424 3.8188 2.7690 9 5.796 89.444 5.1354 4.9560 5.2983 1.6205 3.83 2.2002 2.3947 5.4994 2.0489 3.8276 2.7739 10 5.796 104.166 5.135( 4.9555 5.2985 1.6204 3.83! 2.1988 2.3925 5.5001 2.0487 3.8260 2.7712 11 7.874 118.888 5.132% 4.9523 5.2963 1.6187 3.831 2.1955 2.3882 5.4979 2.0466 3.8216 2.7657 12 7.874 138.888 5.129( 4.9486 5.2937 1.6165 3.82 2.1914 2.3829 5.4952 2.0437 3.8160 2.7589 13 5.796 158.888 5.127: 4.9463 5.2924 1.6147 3.82 2.1880 2.3785 5.4939 2.0414 3.8115 2.7531 14 5.796 173.610 5.126E I 4.9451 5.2923 1.6135 3.821 2.1854 2.3751 5.4937 2.0398 3.8083 2.7485 15 7.874 188.332 5.127, I4.9451 5.2934 1.6125 3.811 2.1830 2.3717 5.4950 2.0384 3.8054 2.7437 16 7.874 208.332 5.1281 4.9462 5.2958 1.6116 3.811A 2.1804 2.3681 5.4976 2.0371 3.8027 2.7384 17 5.796 228.332 5.1301 4.9465 5.2975 1.6101 3.81! 2.1773 2.3640 5.4992 2.0353 3.7994 2.7326 18 5.796 243.054 5.1274 4.9429 5.2951 1.6068 3.81( 2.1719 2.3578 5.4962 2.0313 3.7928 2.7241 19 7.874 257.776 5.107t 4.9212 5.2742 1.5954 3.791 2.1560 2.3406 5.4728 2.0176 3.7702 2.7017 20 7.874 277.776 5.016( 4.8296 5.1793 1.5553 3.71( 2.1039 2.2851 5.3706 1.9693 3.6894 2.6335 21 5.466 297.776 4.798' 5 4.6147 4.9504 1.4677 3.54f 1.9947 2.1672 5.1322 1.8630 3.5099 2.4946 22 2.000 311.660 4.5621 4.3827 4.7016 1.3759 3.361 1.8857 2.0446 4.8810 1.7513 3.3202 2.3572 3

23 1.500 316.740 4.398f 4.2226 4.5335 1.3145 3.23' 1.8215 1.9627 4.7192 1.6764 3.1917 2.2745 24 3.500 320.550 4.06913 4.9017 4.1970 1.1954 2.98j 1.7042 1.8002 4.3989 1.5303 2.9371 2.1214 25 3.500 329.440 3.3681 3 3.2237 3.4738 0.9602 2.451 1.3961 1.4651 3.6564 1.2384 2.4109 1.7387 top 26 3.500 338.330 2.4801 3 2.3743 2.5572 0.7051 1.84; 1.0377 1.0882 2.6869 0.9186 1.8003 1.2920 136.701 347.220 4.801:. 4.6688 4.9523 1.4894 3.561 2.0408 2.2090 5.1485 1.8880 3.5485 2.5651 Bumup Gwd/Mtu 48.013'0 4.6878 49.5234 14.8945 35.69 6 20.4081 22.0901 51.4849 18.8796 35.4847 25.6513 c,

n 1 ~~~~~~~~~~~

I ~ ~~ ~ ~ ~ ~

~~~~~~~m AXBU.xls Page c=

Unit 1 Cycle 16 As Built Depletion EOC Fuol Assembly Bumup Distribution CCNPP Assembly Bumups in GWD/MTU plane node (In) node (cm) 1-SO 2-SO 3-SI 4-VO S-TI 6-V1 7-VO 8-S2 9-VO 10-TO 11-VI b ottom 1 3.500 0.000 26.68M 25.499 27.430 7.488 19.5 11.234 11.822 28.928 9.750 19.232 14.213 2 3.500 8.890 35.64i 34.090 36.629 10.180 26.0 15.108 15.895 38.669 13.112 25.659 19.100 3 3.500 17.780 42.53f 47.860 43.705 12.591 31.3 18.421 19.399 45.995 16.087 31.028 23.209 4 1.500 26.670 45.66( ) 43.857 46.899 13.771 33.8 19.933 21.043 49.156 17.529 33.540 25.076 5 2.000 30.480 47.102 45.290 48.355 14.350 35.O 20.526 21.802 50.419 18.230 34.723 25.828 6 5.466 35.560 49.01f 47.204 50.402 15.171 36.5 20.998 22.787 52.346 19.223 36.317 26.502 7 7.874 49.444 50.64( 48.832 52.188 15.879 37.8 21.673 23.609 54.138 20.088 37.675 27.344 8 7.874 69.444 51.24( 49.448 52.858 16.152 38.2 21.957 23.908 54.851 20.424 38.188 27.690 9 5.796 89.444 51.35i 49.560 52.983 16.205 38.3 22.002 23.947 54.994 20.489 38.276 27.739 10 5.796 104.166 51.35( 49.555 52.985 16.204 38.3 21.988 23.925 55.001 20.487 38.260 27.712 11 7.874 118.888 51.32 I 49.523 52.963 16.187 38.31 21.955 23.882 54.979 20.466 38.216 27.657 12 7.874 138.888 51.29( ) 49.486 52.937 16.165 38.21 21.914 23.829 54.952 20.437 38.160 27.589 13 5.796 158.888 51.27: 49.463 52.924 16.147 38.2. 21.880 23.785 54.939 20.414 38.115 27.531 14 5.796 173.610 51.26f 49.451 52.923 16.135 38.21 21.854 23.751 54.937 20.398 38.083 27.485 15 7.874 188.332 51.27. 49.451 52.934 16.125 38.1 21.830 23.717 54.950 20.384 38.054 27.437 16 7.874 208.332 51.2813 49.462 52.958 16.116 38.1 21.804 23.681 54.976 20.371 38.027 27.384 17 5.796 228.332 51.30' 3 49.465 52.975 16.101 38.11 21.773 23.640 54.992 20.353 37.994 27.326 18 5.796 243.054 51.27i 49.429 52.951 16.068 38.1( 21.719 23.578 54.962 20.313 37.928 27.241 19 7.874 257.776 51.071 49.212 52.742 15.954 37.9' 21.560 23.406 54.728 20.176 37.702 27.017 20 7.874 277.776 50.161 48.296 51.793 15.553 37.1 21.039 22.851 53.706 19.693 36.894 28.335 21 5.466 297.776 47.98' 3 46.147 49.504 14.677 35.4, 19.947 21.672 51.322 18.630 35.099 24.946 22 2.000 311.660 45.621 43.827 47.016 13.759 33.6' 18.857 20.446 48.810 17.513 33.202 23.572 3

23 1.500 316.740 43.981 42.226 45.335 13.145 32.3! 18.215 19.627 47.192 16.764 31.917 22.745 D

24 3.500 320.550 40.691 49.017 41.970 11.954 29.8' 17.042 18.002 43.989 15.303 29.371 21.214 25 3.500 329.440 33.681S 32.237 34.738 9.602 24.51 13.961 14.651 36.564 12.384 24.109 17.387 bop 26 3.500 338.330 24.801S 23.743 25.572 7.051 18.4: 10.377 10.882 26.869 9.186 18.003 12.920 136.701 347.220 48.0130 46.6878 49.5234 14.8945 35.69 56 20.4081 22.0901 51.4849 18.8796 35.4847 25.6513 Bumup Gwd/Mtu 48.013 46.688 49.523 14.894 35.61 P6 20.408 22.090 51.485 18.880 35.485 25.651 In AXBU.xls Page 2 C

Unit I Cycle 16 As Built Depletion EOC FuLl Assembly Bumup Distribution 12-TO 13-TI 14-T2 15-VO 16-T2 17-VI 18-T2 19- 1 20-T2 21-SO 22-%rO 23-T2 24-VI 25-T2 2.2953 2.4129 1.9834 0.9950 2.6685 1.4846 2.8927 1.52.6 2.8369 2.7829 1.00:37 2.6807 1.4740 2.7428 3.0365 3.1875 2.6303 1.3378 3.5139 1.9904 3.8034 2.04 5 3.7257 3.7036 1.35:23 3.5304 1.9743 3.6136 3.6417 3.8148 3.1625 1.6403 4.1852 2.4135 4.5148 2.47 0 4.4207 4.4119 1.661iO5 4.2051 2.3917 4.2998 3.9190 4.1012 3.4026 1.7866 4.4837 2.6046 4.8262 2.667 4.7248 4.7331 1.81 104 4.5054 2.5791 4.6022 4.0466 4.2309 3.5023 1.8576 4.6084 2.6812 4.9532 2.73!9 4.8493 4.8814 1.88:38 4.6310 2.6533 4.7261 4.2139 4.3962 3.6083 1.9576 4.7465 2.7499 5.0877 2.804j39 4.9816 5.0772 1.98,74 4.7707 2.7176 4.8560 4.3550 4.5404 3.7265 2.0461 4.8872 2.8368 5.2215 2.88 1 5.1140 5.2429 2.071'83 4.9129 2.8013 4.9881 4.4084 4.5934 3.7753 2.0816 4.9456 2.8741 5.2782 2.91 i8 5.1704 5.3068 2.11: 36 4.9721 2.8386 5.0440 4.4182 4.6026 3.7848 2.0892 4.9584 2.8807 5.2918 2.92+8 5.1847 5.3209 2.121!3 4.9850 2.8464 5.0561 4.4174 4.6020 3.7849 2.0897 4.9598 2.8793 5.2946 2.9235 5.1884 5.3235 2.11 4.9864 2.8462 5.0570 4.4138 4.5991 3.7826 2.0884 4.9587 2.8753 5.2952 2.92 1 5.1902 5.3243 2.11, 72 4.9852 2.8437 5.0553 4.4091 4.5954 3.7794 2.0865 4.9569 2.8700 5.2954 2.91 t7 5.1917 5.3252 2.11' 38 4.9832 2.8401 5.0527 4.4055 4.5928 3.7770 2.0851 4.9557 2.8656 5.2961 2.91 i0 5.1933 5.3270 2.11, 10 4.9820 2.8371 5.0509 4.4030 4.5912 3.7754 2.0842 4.9553 2.8622 5.2972 2.91 0 5.1953 5.3294 2.101 4.9815 2.8350 5.0500 4.4010 4.5903 3.7744 2.0837 4.9558 2.8587 5.2994 2.9112 5.1985 5.3334 2.10, 72 4.9819 2.8331 5.0499 4.3992 4.5899 3.7737 2.0835 4.9569 2.8549 5.3025 2.90 3 5.2026 5.3393 2.10!54 4.9829 2.8310 5.0502 4.3967 4.5888 3.7724 2.0827 4.9568 2.8504 5.3040 2.90 6 5.2050 5.3440 2.10' 31 4.9827 2.8281 5.0493 4.3905 4.5842 3.7679 2.0795 4.9525 2.8430 5.3010 2.90 8 5.2028 5.3443 2.091186 4.9782 2.8221 5.0441 4.3672 4.5631 3.7488 2.0667 4.9299 2.8216 5.2793 2.88 9 5.1826 5.3270 2.08' 37 4.9552 2.8027 5.0196 4.2809 4.4787 3.6740 2.0187 4.8385 2.7532 5.1871 2.81',7 5.0943 5.2382 2.03: 24 4.8627 2.7375 4.9250 4.0869 4.2815 3.5039 1.9114 4.6291 2.6119 4.9732 2.68 3 4.8873 5.0184 1.92 4.6514 2.6005 4.7132 3.8803 4.0680 3.3263 1.7980 4.4087 2.4713 4.7472 2.54 8 4.6668 4.7761 1.80' 37 4.4292 2.4635 4.4930 3.7393 3.9236 3.2150 1.7220 4.2667 2.3862 4.6002 2.45 9 4.5229 4.6074 1.72!56 4.2861 2.3806 4.3515 3.4565 3.6358 3.0009 1.5733 3.9864 2.2274 4.3053 2.29'4 4.2340 4.2665 1.57 37 4.0038 2.2249 4.0699 2.8596 3.0123 2.4833 1.2744 3.3250 1.8291 3.6034 1.8911 3.5446 3.5396 1.27;20 3.3391 1.8296 3.3995 2.1509 2.2666 1.8633 0.9452 2.5091 1.3615 2.7233 1.41 1 2.6811 2.6192 0.94117 2.5192 1.3632 2.5657 4.1171 4.2997 3.5350 1.9295 4.6518 2.6726 4.9829 2.72$7 4.8874 4.9941 1.95 3O6 4.6756 2.6492 4.7452 41.1714 42.9968 35.3501 19.2955 46.5177 26.7260 49.8292 27.2! 73 48.8735 49.9415 19.5057 46.7559 26.4922 47.4521 ... v 2M D V-Cn Am rr" AXBU.xlsP Page 3 c

Unit I Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 12-TO 13-TI 14-T2 15-VO 16-T2 17-VI 18-T2 19-VI 20-T2 21-SO 22-VO 23-T2 24-VI 25-T2 22.953 24.129 19.834 9.950 26.685 14.846 28.927 15.266 28.369 27.829 10.037 26.807 14.740 27.428 30.365 31.875 26.303 13.378 35.139 19.904 38.034 20.425 37.257 37.036 13.523 35.304 19.743 36.136 36.417 38.148 31.625 16.403 41.852 24.135 45.148 24.700 44.207 44.119 16.605 42.051 23.917 42.998 39.190 41.012 34.026 17.866 44.837 26.046 48.262 26.607 47.248 47.331 18.104 45.054 25.791 46.022 40.466 42.309 35.023 18.576 46.084 26.812 49.532 27.359 48.493 48.814 18.838 46.310 26.533 47.261 42.139 43.962 36.083 19.576 47.465 27.499 50.877 28.009 49.816 50.772 19.874 47.707 27.176 48.560 43.550 45.404 37.265 20.461 48.872 28.368 52.215 28.821 51.140 52.429 20.783 49.129 28.013 49.881 44.084 45.934 37.753 20.816 49.456 28.741 52.782 29.168 51.704 53.068 21.136 49.721 28.386 50.440 44.182 46.026 37.848 20.892 49.584 28.807 52.918 29.238 51.847 53.209 21.203 49.850 28.464 50.561 44.174 46.020 37.849 20.897 49.598 28.793 52.946 29.235 51.884 53.235 21.197 49.864 28.462 50.570 44.138 45.991 37.826 20.884 49.587 28.753 52.952 29.211 51.902 53.243 21.172 49.852 28.437 50.553 44.091 45.954 37.794 20.865 49.569 28.700 52.954 29.177 51.917 53.252 21.138 49.832 28.401 50.527 44.055 45.928 37.770 20.851 49.557 28.656 52.961 29.150 51.933 53.270 21.110 49.820 28.371 50.509 44.030 45.912 37.754 20.842 49.553 28.622 52.972 29.130 51.953 53.294 21.090 49.815 28.350 50.500 44.010 45.903 37.744 20.837 49.558 28.587 52.994 29.112 51.985 53.334 21.072 49.819 28.331 50.499 43.992 45.899 37.737 20.835 49.569 28.549 53.025 29.093 52.026 53.393 21.054 49.829 28.310 50.502 43.967 45.888 37.724 20.827 49.568 28.504 53.040 29.066 52.050 53.440 21.031 49.827 28.281 50.493 43.905 45.842 37.679 20.795 49.525 28.430 53.010 29.008 52.028 53.443 20.986 49.782 28.221 50.441 43.672 45.631 37.488 20.667 49.299 28.216 52.793 28.819 51.826 53.270 20.837 49.552 28.027 50.196 42.809 44.787 36.740 20.187 48.385 27.532 51.871 28.177 50.943 52.382 20.324 48.627 27.375 49.250 40.869 42.815 35.039 19.114 46.291 26.119 49.732 26.813 48.873 50.184 19.206 46.514 26.005 47.132 38.803 40.680 33.263 17.980 44.087 24.713 47.472 25.428 46.668 47.761 18.037 44.292 24.635 44.930 37.393 39.236 32.150 17.220 42.667 23.862 46.002 24.579 45.229 46.074 17.256 42.861 23.806 43.515 34.565 36.358 30.009 15.733 39.864 22.274 43.053 22.974 42.340 42.665 15.737 40.038 22.249 40.699 28.596 30.123 24.833 12.744 33.250 18.291 36.034 18.911 35.446 35.396 12.720 33.391 18.296 33.995 21.509 22.666 18.633 9.452 25.091 13.615 27.233 14.101 26.811 26.192 9.417 25.192 13.632 25.657 41.1714 42.9968 35.3501 19.2955 46.5177 26.7260 49.8292 27.2573 48.8735 49.9415 19.5057 46.7559 26.4922 47.4521 41.171 42.997 35.350 19.295 46.518 26.726 49.829 27.257 48.874 49.941 19.506 46.756 26.492 47.452 c c,

~co1 AXBU.xls Page 4

Unit I Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 26-VI 27-T2 28-VI 29-VO 30-TO 31-Vl 32-T2 33-V2 34-T2 35-V2 36-T2 37-TO 38-VI 39-T2 1.5674 2.9135 1.5555 0.7569 1.9338 1.4911 2.7455 1.5828 2.9159 1.5780 2.8950 1.9602 1.4251 2.8968 2.0958 3.8271 2.0795 1.0292 2.5802 1.9992 3.6172 2.1172 3.8292 2.1094 3.8028 2.6049 1.9150 3.8071 2.5314 4.5383 2.5114 1.2732 3.1201 2.4242 4.3041 2.5546 4.5376 2.5437 4.5068 3.1404 2.3271 4.5183 2.7242 4.8478 2.7023 1.3928 3.3728 2.6163 4.6069 2.7451 4.8439 2.7319 4.8110 3.3885 2.5144 4.8293 2.7991 4.9727 2.7763 1.4518 3.4920 2.6934 4.7310 2.8139 4.9660 2.7992 4.9320 3.5038 2.5898 4.9555 2.8617 5.1032 2.8375 1.5354 3.6527 2.7630 4.8614 2.8542 5.0906 2.8366 5.0549 3.6560 2.6578 5.0901 2.9404 5.2337 2.9149 1.6076 3.7899 2.8506 4.9938 2.9251 5.2148 2.9041 5.1766 3.7838 2.7425 5.2255 2.9753 5.2905 2.9493 1.6356 3.8419 2.8882 5.0499 2.9589 5.2697 2.9365 5.2294 3.8307 2.7772 5.2836 2.9832 5.3054 2.9574 1.6410 3.8507 2.8949 5.0621 2.9669 5.2851 2.9449 5.2440 3.8382 2.7821 5.2977 2.9837 5.3092 2.9583 1.6408 3.8491 2.8935 5.0630 2.9677 5.2899 2.9464 5.2489 3.8366 2.7794 5.3004 2.9820 5.3111 2.9574 1.6390 3.8446 2.8895 5.0613 2.9665 5.2931 2.9460 5.2524 3.8327 2.7740 5.3008 2.9794 5.3125 2.9556 1.6366 3.8388 2.8842 5.0587 2.9643 5.2961 2.9449 5.2559 3.8281 2.7671 5.3007 2.9772 5.3142 2.9542 1.6347 3.8342 2.8798 5.0569 2.9626 5.2991 2.9441 5.2594 3.8246 2.7614 5.3010 2.9757 5.3161 2.9533 1.6333 3.8309 2.8763 5.0559 2.9614 5.3022 2.9437 5.2628 3.8222 2.7568 5.3019 2.9745 5.3193 2.9529 1.6322 3.8279 2.8729 5.0558 2.9606 5.3067 2.9438 5.2678 3.8203 2.7521 5.3038 2.9733 5.3234 2.9526 1.6311 3.8250 2.8692 5.0561 2.9598 5.3124 2.9440 5.2742 3.8189 2.7468 5.3064 2.9710 5.3257 2.9511 1.6295 3.8216 2.8647 5.0552 2.9578 5.3162 2.9430 5.2787 3.8170 2.7410 5.3075 2.9655 5.3232 2.9465 1.6261 3.8149 2.8573 5.0498 2.9525 5.3149 2.9386 5.2784 3.8122 2.7326 5.3039 2.9464 5.3018 2.9288 1.6142 3.7919 2.8358 5.0252 2.9336 5.2957 2.9212 5.2610 3.7929 2.7103 5.2811 2.8814 5.2101 2.8664 1.5732 3.7101 2.7669 4.9303 2.8690 5.2080 2.8595 5.1771 3.7183 2.6418 5.1865 2.7440 4.9982 2.7320 1.4839 3.5288 2.6247 4.7180 2.7334 5.0020 2.7278 4.9754 3.5468 2.5024 4.9703 2.6051 4.7747 2.5950 1.3906 3.3376 2.4830 4.4975 2.5985 4.7833 2.5959 4.7592 3.3628 2.3644 4.7437 2.5198 4.6293 2.5107 1.3283 3.2081 2.3973 4.3557 2.5194 4.6405 2.5182 4.6175 3.2371 2.2814 4.5971 2.3574 4.3362 2.3497 1.2075 2.9519 2.2374 4.0737 2.3731 4.3506 2.3737 4.3295 2.9858 2.1276 4.3038 1.9435 3.6336 1.9378 0.9695 2.4228 1.8371 3.4026 1.9622 3.6499 1.9645 3.6323 2.4592 1.7437 3.6029 1.4505 2.7484 1.4466 0.7118 1.8091 1.3673 2.5679 1.4648 2.7627 1.4676 2.7493 1.8430 1.2956 2.7236 2.7861 5.0026 2.7664 1.5073 3.5690 2.6856 4.7505 2.7782 4.9939 2.7639 4.9592 3.5707 2.5728 4.9860 27.8612 50.0264 27.6636 15.0726 35.6902 26.8562 47.5053 27.7820 49.9388 27.6388 49.5922 35.7070 25.7281 49.8601 _:

m G rr_

AXBU.xls Page 5 cm

Unit I Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 26-VI 27-T2 28-VI 29-VO 30-TO 31-VI 32-T2 33-V2 34-T2 35-V2 36-T2 37-TO 38-VI 39-T2 15.674 29.135 15.555 7.569 19.338 14.911 27.455 15.828 29.159 15.780 28.950 19.602 14.251 28.968 20.958 38.271 20.795 10.292 25.802 19.992 36.172 21.172 38.292 21.094 38.028 26.049 19.150 38.071 25.314 45.383 25.114 12.732 31.201 24.242 43.041 25.546 45.376 25.437 45.068 31.404 23.271 45.183 27.242 48.478 27.023 13.928 33.728 26.163 46.069 27.451 48.439 27.319 48.110 33.885 25.144 48.293 27.991 49.727 27.763 14.518 34.920 26.934 47.310 28.139 49.660 27.992 49.320 35.038 25.898 49.555 28.617 51.032 28.375 15.354 36.527 27.630 48.614 28.542 50.906 28.366 50.549 36.560 26.578 50.901 29.404 52.337 29.149 16.076 37.899 28.506 49.938 29.251 52.148 29.041 51.766 37.838 27.425 52.255 29.753 52.905 29.493 16.356 38.419 28.882 50.499 29.589 52.697 29.365 52.294 38.307 27.772 52.836 29.832 53.054 29.574 16.410 38.507 28.949 50.621 29.669 52.851 29.449 52.440 38.382 27.821 52.977 29.837 53.092 29.583 16.408 38.491 28.935 50.630 29.677 52.899 29.464 52.489 38.366 27.794 53.004 29.820 53.111 29.574 16.390 38.446 28.895 50.613 29.665 52.931 29.460 52.524 38.327 27.740 53.008 29.794 53.125 29.556 16.366 38.388 28.842 50.587 29.643 52.961 29.449 52.559 38.281 27.671 53.007 29.772 53.142 29.542 16.347 38.342 28.798 50.569 29.626 52.991 29.441 52.594 38.246 27.614 53.010 29.757 53.161 29.533 16.333 38.309 28.763 50.559 29.614 53.022 29.437 52.628 38.222 27.568 53.019 29.745 53.193 29.529 16.322 38.279 28.729 50.558 29.606 53.067 29.438 52.678 38.203 27.521 53.038 29.733 53.234 29.526 16.311 38.250 28.692 50.561 29.598 53.124 29.440 52.742 38.189 27.468 53.064 29.710 53.257 29.511 16.295 38.216 28.647 50.552 29.578 53.162 29.430 52.787 38.170 27.410 53.075 29.655 53.232 29.465 16.261 38.149 28.573 50.498 29.525 53.149 29.386 52.784 38.122 27.326 53.039 29.464 53.018 29.288 16.142 37.919 28.358 50.252 29.336 52.957 29.212 52.610 37.929 27.103 52.811 28.814 52.101 28.664 15.732 37.101 27.669 49.303 28.690 52.080 28.595 51.771 37.183 26.418 51.865 27.440 49.982 27.320 14.839 35.288 26.247 47.180 27.334 50.020 27.278 49.754 35.468 25.024 49.703 26.051 47.747 25.950 13.906 33.376 24.830 44.975 25.985 47.833 25.959 47.592 33.628 23.644 47.437 25.198 46.293 25.107 13.283 32.081 23.973 43.557 25.194 46.405 25.182 46.175 32.371 22.814 45.971 23.574 43.362 23.497 12.075 29.519 22.374 40.737 23.731 43.506 23.737 43.295 29.858 21.276 43.038 19.435 36.336 19.378 9.695 24.228 18.371 34.026 19.622 36.499 19.645 36.323 24.592 17.437 36.029 14.505 27.484 14.466 7.118 18.091 13.673 25.679 14.648 27.627 14.676 27.493 18.430 12.956 27.236 27.8612 50.0264 27.6636 15.0726 35.6902 26.8562 47.5053 27.7820 49.9388 27.6388 49.5922 35.7070 25.7281 49.8601 27.861 50.026 27.664 15.073 35.690 26.856 47.505 27.782 49.939 27.639 49.592 35.707 25.728 49.860 rn r AXBU.xls Page 6

  • Unit 1 Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 40-VI 41-T2 42-V2 43-T2 44-V2 45-SO 46-VI 47-TO 48-Vl 49-T2 50-V2 51-T2 52-V2 53-TO 1.5688 2.9112 1.5845 2.8765 1.5910 2.6683 1.1244 2.2978 1.5279 2.9126 1.5783 2.8744 1.5605 2.3043 2.0977 3.8228 2.1177 3.7831 2.1276 3.5646 1.5121 3.0409 2.0444 3.8259 2.1098 3.7803 2.0854 3.0348 2.5337 4.5299 2.5524 4.4901 2.5647 4.2538 1.8437 3.6470 2.4723 4.5369 2.5442 4.4866 2.5135 3.6278 2.7267 4.8354 2.7400 4.7974 2.7535 4.5664 1.9950 3.9247 2.6632 4.8463 2.7325 4.7935 2.6985 3.8944 2.8018 4.9569 2.8064 4.9206 2.8205 4.7100 2.0545 4.0524 2.7386 4.9712 2.7998 4.9166 2.7641 4.0140 2.8646 5.0809 2.8416 5.0461 2.8567 4.9017 2.1018 4.2199 2.8037 5.1015 2.8372 5.0418 2.7992 4.1652 2.9435 5.2049 2.9060 5.1711 2.9206 5.0643 2.1694 4.3612 2.8851 5.2318 2.9047 5.1665 2.8613 4.2886 2.9784 5.2598 2.9372 5.2252 2.9506 5.1253 2.1979 4.4148 2.9198 5.2886 2.9372 5.2204 2.8896 4.3368 2.9862 5.2752 2.9453 5.2385 2.9581 5.1362 2.2024 4.4246 2.9267 5.3034 2.9456 5.2337 2.8967 4.3486 2.9866 5.2802 2.9469 5.2411 2.9593 5.1359 2.2010 4.4238 2.9263 5.3073 2.9470 5.2363 2.8980 4.3513 2.9850 5.2835 2.9467 5.2414 2.9589 5.1331 2.1977 4.4203 2.9239 5.3092 2.9467 5.2367 2.8980 4.3523 2.9824 5.2868 2.9459 5.2410 2.9579 5.1300 2.1935 4.4158 2.9205 5.3107 2.9456 5.2364 2.8975 4.3529 2.9803 5.2900 2.9452 5.2410 2.9570 5.1283 2.1902 4.4123 2.9178 5.3124 2.9447 5.2366 2.8971 4.3538 2.9788 5.2932 2.9449 5.2415 2.9564 5.1278 2.1876 4.4099 2.9158 5.3144 2.9443 5.2372 2.8969 4.3550 2.9776 5.2979 2.9452 5.2431 2.9563 5.1284 2.1851 4.4080 2.9141 5.3177 2.9443 5.2388 2.8973 4.3573 2.9765 5.3039 2.9456 5.2452 2.9564 5.1303 2.1825 4.4063 2.9122 5.3219 2.9445 5.2411 2.8980 4.3605 2.9742 5.3079 2.9447 5.2458 2.9552 5.1316 2.1795 4.4039 2.9094 5.3243 2.9435 5.2418 2.8974 4.3625 2.9687 5.3069 2.9405 5.2417 2.9508 5.1290 2.1741 4.3978 2.9037 5.3219 2.9391 5.2377 2.8938 4.3605 2.9497 5.2881 2.9234 5.2184 2.9338 5.1085 2.1582 4.3746 2.8848 5.3007 2.9217 5.2147 2.8782 4.3436 2.8848 5.2009 2.8624 5.1250 2.8731 5.0172 2.1061 4.2884 2.8206 5.2092 2.8599 5.1217 2.8209 4.2694 2.7472 4.9955 2.7322 4.9137 2.7429 4.7993 1.9966 4.0943 2.6840 4.9975 2.7282 4.9108 2.6952 4.0937 2.6081 4.7774 2.6016 4.6931 2.6116 4.5627 1.8875 3.8876 2.5453 4.7741 2.5962 4.6905 2.5671 3.9018 2.5226 4.6351 2.5246 4.5502 2.5338 4.3993 1.8232 3.7464 2.4603 4.6288 2.5185 4.5479 2.4909 3.7684 2.3599 4.3463 2.3808 4.2620 2.3884 4.0706 1.7058 3.4630 2.2995 4.3358 2.3740 4.2600 2.3487 3.4948 1.9455 3.6468 1.9716 3.5696 1.9773 3.3694 1.3973 2.8645 1.8928 3.6333 1.9648 3.5681 1.9449 2.9053 1.4519 2.7605 1.4733 2.6982 1.4770 2.4807 1.0386 2.1538 1.4113 2.7482 1.4678 2.6971 1.4539 2.1978 2.7890 4.9858 2.7667 4.9325 2.7779 4.8021 2.0428 4.1236 2.7284 5.0012 2.7644 4.9287 2.7236 4.0843 27.8904 49.8577 27.6672 49.3253 27.7794 48.0211 20.4280 41.2359 27.2841 50.0122 27.6441 49.2867 27.2356 40.8434
3 C) c-AXBU.xls Page 7 Q

Unit 1 Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 40-VI 41-T2 42-V2 43-T2 44-V2 45-SO 46-VI 47-TO 48-VI 49-T2 50-V2 51-T2 52-V2 53-TO 15.688 29.112 15.845 28.765 15.910 26.683 11.244 22.978 15.279 29.126 15.783 28.744 15.605 23.043 20.977 38.228 21.177 37.831 21.276 35.646 15.121 30.409 20.444 38.259 21.098 37.803 20.854 30.348 25.337 45.299 25.524 44.901 25.647 42.538 18.437 36.470 24.723 45.369 25.442 44.866 25.135 36.278 27.267 48.354 27.400 47.974 27.535 45.664 19.950 39.247 26.632 48.463 27.325 47.935 26.985 38.944 28.018 49.569 28.064 49.206 28.205 47.100 20.545 40.524 27.386 49.712 27.998 49.166 27.641 40.140 28.646 50.809 28.416 50.461 28.567 49.017 21.018 42.199 28.037 51.015 28.372 50.418 27.992 41.652 29.435 52.049 29.060 51.711 29.206 50.643 21.694 43.612 28.851 52.318 29.047 51.665 28.613 42.886 29.784 52.598 29.372 52.252 29.506 51.253 21.979 44.148 29.198 52.886 29.372 52.204 28.896 43.368 29.862 52.752 29.453 52.385 29.581 51.362 22.024 44.246 29.267 53.034 29.456 52.337 28.967 43.486 29.866 52.802 29.469 52.411 29.593 51.359 22.010 44.238 29.263 53.073 29.470 52.363 28.980 43.513 29.850 52.835 29.467 52.414 29.589 51.331 21.977 44.203 29.239 53.092 29.467 52.367 28.980 43.523 29.824 52.868 29.459 52.410 29.579 51.300 21.935 44.158 29.205 53.107 29.456 52.364 28.975 43.529 29.803 52.900 29.452 52.410 29.570 51.283 21.902 44.123 29.178 53.124 29.447 52.366 28.971 43.538 29.788 52.932 29.449 52.415 29.564 51.278 21.876 44.099 29.158 53.144 29.443 52.372 28.969 43.550 29.776 52.979 29.452 52.431 29.563 51.284 21.851 44.080 29.141 53.177 29.443 52.388 28.973 43.573 29.765 53.039 29.456 52.452 29.564 51.303 21.825 44.063 29.122 53.219 29.445 52.411 28.980 43.605 29.742 53.079 29.447 52.458 29.552 51.316 21.795 44.039 29.094 53.243 29.435 52.418 28.974 43.625 29.687 53.069 29.405 52.417 29.508 51.290 21.741 43.978 29.037 53.219 29.391 52.377 28.938 43.605 29.497 52.881 29.234 52.184 29.338 51.085 21.582 43.746 28.848 53.007 29.217 52.147 28.782 43.436 28.848 52.009 28.624 51.250 28.731 50.172 21.061 42.884 28.206 52.092 28.599 51.217 28.209 42.694 27.472 49.955 27.322 49.137 27.429 47.993 19.966 40.943 26.840 49.975 27.282 49.108 26.952 40.937 26.081 47.774 26.016 46.931 26.116 45.627 18.875 38.876 25.453 47.741 25.962 46.905 25.671 39.018 25.226 46.351 25.246 45.502 25.338 43.993 18.232 37.464 24.603 46.288 25.185 45.479 24.909 37.684 23.599 43.463 23.808 42.620 23.884 40.706 17.058 34.630 22.995 43.358 23.740 42.600 23.487 34.948 19.455 36.468 19.716 35.696 19.773 33.694 13.973 28.645 18.928 36.333 19.648 35.681 19.449 29.053 14.519 27.605 14.733 26.982 14.770 24.807 10.386 21.538 14.113 27.482 14.678 26.971 14.539 21.978 27.8904 49.8577 27.6672 49.3253 27.7794 48.0211 20.4280 41.2359 27.2841 50.0122 27.6441 49.2867 27.2356 40.8434 27.890 49.858 27.667 49.325 27.779 48.021 20.428 41.236 27.284 50.012 27.644 49.287 27.236 40.843 -3 a, mc m

AXBU.xIs Page 8

Unit I Cycle 16 As Built Depletion EOC Fuel Assembly Burnup Distribution 54-SO 55-VO 56-TI 57-T2 58-VI 59-T2 60-V2 61-TO 62-J*

2.5546 1.1824 2.4124 2.8184 1.5557 2.8936 1.5886 2.4846 2.8810 3.4157 1.5897 3.1869 3.7005 2.0797 3.8009 2.1241 3.2682 3.7742 4.0867 1.9402 3.8140 4.3901 2.5117 4.5051 2.5605 3.8978 4.4609 4.3944 2.1046 4.1004 4.6918 2.7026 4.8103 2.7489 4.1800 4.8199 4.5380 2.1806 4.2300 4.8152 2.7767 4.9327 2.8157 4.3062 4.8708 4.7301 2.2791 4.3952 4.9466 2.8379 5.0562 2.8516 4.4662 5.1030 4.8935 2.3613 4.5393 5.0781 2.9153 5.1775 2.9154 4.5969 5.2642 4.9554 2.3912 4.5923 5.1339 2.9497 5.2299 2.9453 4.6478 5.3319 4.9666 2.3951 4.6016 5.1484 2.9578 5.2442 2.9529 4.6598 5.3539 4.9660 2.3929 4.6009 5.1525 2.9588 5.2488 2.9542 4.6623 5.3641 4.9628 2.3886 4.5980 5.1549 2.9578 5.2521 2.9539 4.6629 5.3736 4.9590 2.3833 4.5943 5.1570 2.9560 5.2554 2.9529 4.6631 5.3838 5.1283 2.3789 4.5917 5.1593 2.9546 5.2587 2.9521 4.6636 5.3931 4.9554 2.3755 4.5902 5.1618 2.9537 5.2620 2.9516 4.6644 5.4017 4.9553 2.3721 4.5893 5.1656 2.9533 5.2669 2.9516 4.6664 5.4124 4.9562 2.3685 4.5889 5.1704 2.9530 5.2730 2.9518 4.6692 5.4247 4.9565 2.3644 4.5878 5.1735 2.9515 5.2775 2.9507 4.6707 5.4337 4.9528 2.3583 4.5832 5.1719 2.9468 5.2771 2.9464 4.6681 5.4369 4.9309 2.3410 4.5621 5.1530 2.9292 5.2597 2.9295 4.6496 5.4226 4.8388 2.2855 4.4778 5.0672 2.8667 5.1758 2.8690 4.5698 5.3405 4.6232 2.1675 4.2807 4.8635 2.7322 4.9741 2.7391 4.3819 5.1328 4.3905 2.0450 4.0672 4.6454 2.5953 4.7574 2.6082 4.1776 4.8523 4.2301 1.9630 3.9228 4.5026 2.5109 4.6150 2.5306 4.0358 4.7934 3.9085 1.8005 3.6351 4.2157 2.3499 4.3252 2.3856 3.7454 4.3922 3.2292 1.4654 3.0118 3.5303 1.9380 3.6279 1.9750 3.1186 3.6616 2.3780 1.0884 2.2662 2.6712 1.4468 2.7464 1.4755 2.3601 2.7259 4.6417 2.2094 4.2987 4.8568 2.7667 4.9583 2.7735 4.3765 5.0648 46.4167 22.0939 42.9873 48.5683 27.6671 49.5834 27.7353 43.7650 50.6483 CZ M

Err0 AXBU.xls Page 9

Unit 1 Cycle 16 As Built Depletion EOC Fuel Assembly Bumup Distribution 54-S0 55-VO 56-TI 57-T2 58-Vl 59-T2 60-V2 61-TO 62-J' 25.546 11.824 24.124 28.184 15.557 28.936 15.886 24.846 28.810 34.157 15.897 31.869 37.005 20.797 38.009 21.241 32.682 37.742 40.867 19.402 38.140 43.901 25.117 45.051 25.605 38.978 44.609 43.944 21.046 41.004 46.918 27.026 48.103 27.489 41.800 48.199 45.380 21.806 42.300 48.152 27.767 49.327 28.157 43.062 48.708 47.301 22.791 43.952 49.466 28.379 50.562 28.516 44.662 51.030 48.935 23.613 45.393 50.781 29.153 51.775 29.154 45.969 52.642 49.554 23.912 45.923 51.339 29.497 52.299 29.453 46.478 53.319 49.666 23.951 46.016 51.484 29.578 52.442 29.529 46.598 53.539 49.660 23.929 46.009 51.525 29.588 52.488 29.542 46.623 53.641 49.628 23.886 45.980 51.549 29.578 52.521 29.539 46.629 53.736 49.590 23.833 45.943 51.570 29.560 52.554 29.529 46.631 53.838 51.283 23.789 45.917 51.593 29.546 52.587 29.521 46.636 53.931 49.554 23.755 45.902 51.618 29.537 52.620 29.516 46.644 54.017 49.553 23.721 45.893 51.656 29.533 52.669 29.516 46.664 54.124 49.562 23.685 45.889 51.704 29.530 52.730 29.518 46.692 54.247 49.565 23.644 45.878 51.735 29.515 52.775 29.507 46.707 54.337 49.528 23.583 45.832 51.719 29.468 52.771 29.464 46.881 54.369 49.309 23.410 45.621 51.530 29.292 52.597 29.295 46.496 54.226 48.388 22.855 44.778 50.672 28.667 51.758 28.690 45.698 53.405 46.232 21.675 42.807 48.635 27.322 49.741 27.391 43.819 51.328 43.905 20.450 40.672 46.454 25.953 47.574 26.082 41.776 48.523 42.301 19.630 39.228 45.026 25.109 46.150 25.306 40.358 47.934 39.085 18.005 36.351 42.157 23.499 43.252 23.856 37.454 43.922 32.292 14.654 30.118 35.303 19.380 36.279 19.750 31.186 36.616 23.780 10.884 22.662 26.712 14.468 27.464 14.755 23.601 27.259 46.4167 22.0939 42.9873 48.5683 27.6671 49.5834 27.7353 43.7650 50.6483 46.417 22.094 42.987 48.568 27.667 49.583 27.735 43.765 50.648 IN e cm

-m AXBU.xls Page 10

CA06015 Revision 0 Page /;

ATTACHMDENT J EFFECT OF INTEGRAL BURNABLE ABSORBERS

CA060 15 REV 0 PAGE /7 DIT K-INF Values for 4.8 w/o VAP Fuel with 2 wlo Erbia Exposure Erbia Pins Erbla Pins Erbla Pins Erbia Pins MWDIMTU 0 20 44 68 0 1.31307 1.26372 1.20639 1.15650 50 1.27950 1.23185 1.17629 1.12818 500 1.26885 1.22299 1.16954 1.12310 1000 1.26271 1.21857 1.16714 1.12226 2000 1.25366 1.21263 1.16487 1.12278 3000 1.24457 1.20644 1.16215 1.12270 5000 1.22566 1.19280 1.15479 1.12022 7000 1.20669 1.17850 1.14604 1.11588 9000 1.18831 1.16426 1.13664 1.11045 11000 1.17063 1.15020 1.12678 1.10413 14000 1.14551 1.12964 1.11145 1.09335 17000 1.12173 1.10948 1.09540 1.08105 20000 1.09893 1.08945 1.07847 1.06712 23000 1.07690 1.06949 1.06081 1.05177 26000 1.05550 1.04960 1.04261 1.03534 30000 1.02799 1.02348 1.01804 1.01244 34000 1.00115 0.99753 0.99308 0.98861 38000 0.97493 0.97186 0.96805 0.96432 42000 0.94932 0.94662 0.94323 0.93999 46000 0.92436 0.92189 0.91879 0.91590 50000 0.90014 0.89785 0.89496 0.89229 54000 0.87688 0.87471 0.87198 0.86948 58000 0.85465 0.85256 0.84996 0.84759 62000 0.83357 0.83155 0.82906 0.82677 66000 0.81378 0.81181 0.80939 0.80718 70000 0.79539 0.79345 0.79110 0.78893 74000 0.77848 0.77656 0.77425 0.77210

CA06015 REV PAGE /5YP DIT K-INF Values for 3.8 w/o VAP Fuel with 2 wlo Erbla Exposure Erbia Pins Erbla Pins Erbla Pins Erbia Pins MWD/MTU 0 20 44 68 0 1.25725 1.20557 1.14494 1.09252 50 1.22277 1.17309 1.11454 1.06416 500 1.21204 1.16455 1.10860 1.06026 1000 1.20655 1.16113 1.10767 1.06119 2000 1.19765 1.15601 1.10709 1.06402 3000 1.18804 1.14992 1.10522 1.06537 5000 1.16783 1.13597 1.09876 1.06474 7000 1.14762 1.12120 1.09040 1.06155 9000 1.12819 1.10643 1.08105 1.05672 11000 1.10959 1.09180 1.07100 1.05058 14000 1.08335 1.07035 1.05499 1.03948 17000 1.05854 1.04909 1.03773 1.02599 20000 1.03483 1.02791 1.01934 1.01042 23000 1.01193 1.00676 1.00016 0.99329 26000 0.98975 0.98578 0.98053 0.97512 30000 0.96145 0.95850 0.95439 0.95029 34000 0.93414 0.93177 0.92835 0.92504 38000 0.90783 0.90579 0.90279 0.89996 42000 0.88267 0.88082 0.87808 0.87555 46000 0.85887 0.85712 0.85456 0.85221 50000 0.83658 0.83489 0.83244 0.83021 54000 0.81587 0.81420 0.81184 0.80966 58000 0.79685 0.79520 0.79288 0.79074 62000 0.77962 0.77796 0.77566 0.77353 66000 0.76418 0.76249 0.76021 0.75806 70000 0.75050 0.74877 0.74649 0.74432 74000 0.73853 0.73677 0.73446 0.73227

K vs Burnup @ 3.8 w/o VAP 1.30 1.20 1.10

- 00 Erbia Pins a20 Erbia Pins Xe 1.00 44 Erbia Pins

?468 Erbia Pins 0.90 0.80 0.70 a,

0 20000 40000 60000 80000 m Burnup (mwd/mtu) Nl~ C-

K vs Burnup @ 48 w/o VAP 1.40 1.30 1.20 1.10 -00 Erbia Pins 420 Erbia Pins t 1.00 44 Erbia Pins 0.90 68 Erbia Pins 0.80 0.70 0.60 0 20000 40000 60000 80000 rn ox Burnup (mwd/mtu) n c0 r"

CA06015 Revision 0 Page S7 ATrACHENT K SAS2H FUEL TEMPERATURE CALCULATIONS

SAS2H-Tfuel CA060 15 REV PA6E /Sz-SAS2H Tfuel Calculations Tfuel = Tmod + (Al *BA2 + A2*B + A3)*L + (B1*BA3 + B2*BA2 + B3*B + B4)*LA2 Al= -2.34607E-07 A2= 1.10995E-03 A3= 1.30080E+02 BI= -9.50512E-13 B2= 5.13836E-08 B3= -5.11639E-04 B4= -1.67177E+00 L=(2700000kw)*(l.1)*(1.65)/(11.39167')/(217)/(176)= 11.263688 kw/ft Tmod= 601 Assembly Power = (2700

  • 1.1 1.65 / 217) = 22.582949 MW/assm Specific Power = (2700
  • 1.1
  • 1.65 / 217/ 0.410372) = 55.030434 MW/MTU Vfuel=176*PI*(0.96774/2)A2*(347.218)= 44949.183 cc Mfuel=(10.96)*(0.945)*Vfuel*(238/270)= 410371.65 gm Bumup Tfuel Tfuel EFPD mwd/mtu deg-F deg-K 0 1854.08 1285.42 0.00 1000 1805.43 1258.39 18.17 2000 1763.80 1235.26 36.34 3000 1728.49 1215.64 54.52 4000 1698.75 1199.12 72.69 5000 1673.87 1185.30 90.86 6000 1653.13 1173.78 109.03 7000 1635.80 1164.15 127.20 8000 1621.16 1156.02 145.37 9000 1608.48 1148.97 163.55 10000 1597.04 1142.62 181.72 11000 1586.13 1136.55 199.89 12000 1575.00 1130.37 218.06 13000 1562.95 1123.68 236.23 14000 1549.24 1116.06 254.40 15000 1533.16 1107.13 272.58 16000 1513.97 1096.47 290.75 17000 1490.96 1083.69 308.92 18000 1463.41 1068.38 327.09 19000 1430.58 1050.14 345.26 20000 1391.76 1028.57 363.44 25000 1391.76 1028.57 454.29 30000 1391.76 1028.57 545.15 35000 1391.76 1028.57 636.01 40000 1391.76 1028.57 726.87 45000 1391.76 1028.57 817.73 50000 1391.76 1028.57 908.59 55000 1391.76 1028.57 999.45 60000 1391.76 1028.57 1090.31 65000 1391.76 1028.57 1181.16 70000 1391.76 1028.57 1272.02 x2inp.xIs Page 1

SAS2H-Tfuel (2) CA060 15 REV PAGE /3 SAS2H Tfuel Calculations Tfuel = Tmod + (Al *BA2 + A2*B + A3)*L + (Bl*BA3 + B2*BA2 + B3*B + B4)*LA2 Al= -2.34607E-07 A2= 1.10995E-03 A3= 1.30080E+02 BI= -9.50512E-13 B2= 5.13836E-08 B3= -5.11639E-04 B4= -1.67177E+00 L=(2700000kw)*(1.1)*(1.65)/(11.39167')/(217)1(176)= 11.263688 kwlft Tmod= 601 Assembly Power = (2700 / 217) = 12.442396 MW/assm Specific Power = (2700/ 217/ 0.410372) - 30.319798 MW/MTU Vfuel=176*PI*(0.967742)A2*(347.218)= 44949.183 cc Mfuel=(1 0.96)*(0.945)*Vfuel*(238/270)= 410371.65 gm Bumup Tfuel Tfuel EFPD mwd/mtu deg-F deg-K 0 1854.08 1285.42 0.00 1000 1805.43 1258.39 32.98 2000 1763.80 1235.26 65.96 3000 1728.49 1215.64 98.95 4000 1698.75 1199.12 131.93 5000 1673.87 1185.30 164.91 5800 1656.98 1175.92 191.29 6000 1653.13 1173.78 197.89 7000 1635.80 1164.15 230.87 8000 1621.16 1156.02 263.85 9000 1608.48 1148.97 296.84 10000 1597.04 1142.62 329.82 11000 1586.13 1136.55 362.80 12000 1575.00 1130.37 395.78 13400 1557.70 1120.76 441.96 13500 1556.35 1120.01 445.25 14000 1549.24 1116.06 461.74 15000 1533.16 1107.13 494.73 16000 1513.97 1096.47 527.71 17000 1490.96 1083.69 560.69 18000 1463.41 1068.38 593.67 19000 1430.58 1050.14 626.65 20000 1391.76 1028.57 659.63 25000 1391.76 1028.57 824.54 26300 1391.76 1028.57 867.42 30000 1391.76 1028.57 989.45 32000 1391.76 1028.57 1055.42 35000 1391.76 1028.57 1154.36 37500 1391.76 1028.57 1236.82 40000 1391.76 1028.57 1319.27 43000 1391.76 1028.57 1418.22 x2inp.xis Page 1

SAS2H-Tfuel (2) CAO6o15 REV PA E 1*t 45000 1391.76 1028.57 1484.18 50000 1391.76 1028.57 1649.09 55000 1391.76 1028.57 1814.00 60000 1391.76 1028.57 1978.90 65000 1391.76 1028.57 2143.81 70000 1391.76 1028.57 2308.72 x2inp.xis Page 2

.,t.

CA06015 REV 0 PAGE /

600 601 F 590 U-580 0

570 574.5 0 F w.

W 560 0r w

550 548 F C-,

540 I

w 532 530 520 510 500 0 10 20 30 40 50 60 70 80 90 100 NSSS Power. Percent 100% = 2700 Mwt N-LE-THIS FIGURE SHOWS MAX 1MUMThot AND Taveroge ASSUMING MINIMUM RCS FLOW.

GAS BALT IMORE ELECTRIC CC. REX I Calvert Cliffs TEMPERATURE CONTROL PROGRAM Nuclear Power Plant 24 I

CA06015 Revision 0 Page /15' AITACHMIENT L WATER DENSITY SPREADSBEET

H20DEN CA060 15 REV 0 PAG E/-

Subcooled Water Density (gm/cc) as a Function of Temperature and Pressure I______ P(psia) I T(F) 3000 2500 2250 2000 1500 1000 800 600 400 200 T(K) 50 1.0084 1.0069 1.0062 1.0055 1.0040 1.0025 1.0019 1.0013 1.0007 1.0000 283.15 100 1.0018 1.0004 0.9997 0.9989 0.9975 0.9960 0.9954 0.9948 0.9942 0.9936 310.93 150 0.9893 0.9878 0.9871 0.9864 0.9849 0.9834 0.9828 0.9822 0.9815 0.9809 338.71 200 0.9725 0.9709 0.9702 0.9694 0.9679 0.9663 0.9656 0.9650 0.9644 0.9637 366.48 250 0.9522 0.9505 0.9497 0.9489 0.9472 0.9455 0.9449 0.9442 0.9435 0.9428 394.26 300 0.9289 0.9271 0.9262 0.9252 0.9234 0.9215 0.9208 0.9200 0.9192 0.9185 422.04 350 0.9026 0.9006 0.8996 0.8985 0.8964 0.8943 0.8934 0.8925 0.8916 449.82 400 0.8733 0.8709 0.8697 0.8685 0.8660 0.8634 0.8624 0.8613 0.8603 477.59 450 0.8405 0.8375 0.8360 0.8345 0.8314 0.8281 0.8268 0.8255 505.37 500 0.8029 0.7992 0.7972 0.7952 0.7911 0.7869 0.7851 533.15 510 0.7947 0.7907 0.7887 0.7866 0.7822 0.7776 538.71 520 0.7862 0.7820 0.7798 0.7776 0.7729 0.7680 544.26 530 0.7775 0.7729 0.7706 0.7682 0.7632 0.7579 549.82 532 0.7710 0.7686 0.7662 550.93 540 0.7683 0.7635 0.7610 0.7584 0.7530 0.7472 555.37 548 0.7557 0.7530 0.7502 559.82 550 0.7589 0.7537 0.7510 0.7482 0.7423 560.93 560 0.7490 0.7434 0.7404 0.7374 0.7310 566.48 567.6 0.7352 0.7320 0.7288 570.71 570 0.7386 0.7326 0.7294 0.7261 0.7190 572.04 572.5 0.7298 0.7264 0.7231 573.43 580 0.7278 0.7212 0.7177 0.7141 0.7062 577.59 590 0.7164 0.7092 0.7052 0.7012 0.6923 583.15 600 0.7043 0.6963 0.6919 0.6874 588.71 601 0.6949 0.6905 0.6860 589.26 610 0.6915 0.6825 0.6775 0.6724 _ 594.26 620 0.6777 0.6676 0.6617 0.6558 599.82 630 0.6629 0.6512 0.6441 0.6370 605.37 640 0.6467 0.6329 610.93 650 0.6288 0.6119 ______ _ X __ _ 616.48 660 0.6086 0.5866 _ _ 622.04 670 0.5850 _ 627.59 680 0.5559 __633.15 x2inp.xls

CA06015 Revision 0 Page /6O ATTACHMENT M SAS2HED50 CODE

D:\Keno\kenoinp2\Sas2hedSO\SAS2HED5O.for CA0601 5 REV a PAGE /7~

PROGRAM SAS2HED50 C* D:\KENO\KENOINP2\SAS2HED5O.FOR C* COMPILE COMMAND IS FORT51 SAS2HED50 C* LINK51 SAS2HED50 C* EDIT SAS2H OUTPUT FOR MOLES OF ACTIVITY C* CONVERT MOLES TO ATOMS/B-CM C* PRINT INPUT FOR KENO DIMENSION AlA(14),AlB(14),BlA(14),B1B(14)

DIMENSION A2A(36),A2B(36),B2A(36),B2B(36)

CHARACTER AlA*8,AlB*8,AlC*8,AlD*8,AlE*8,AlF*8,AT*8 CHARACTER A2A*8,A2B*8,A2C*8,A2D*8,A2E*8,A2F*8 DATA AA/' u234 ',' u235 ',

1 ' u236 ',' u238 ','np237 ',

2 'pu238 ','pu239 ',

3 'pu240 ','pu241 ','pu242 ','am241 ',

4 'cm242 ','cm243 ','cm244 '/

DATA AlB/'U-234 ','U-235 ',

1 'U-236 ','U-238 ','NP-237 ',

2 'PU-238 ','PU-239 ',

3 'PU-240 ','PU-241 ','PU-242 ','AM-241 1, 4 'CM-242 ','CM-243 ','CM-244 '/

DATA AC/'actinide'/

DATA AlD/'decay, f'/

DATA AlE/'gram atol/

DATA AlF/'tal 'I DATA A2A/'kr 83 ','kr 84 ','kr 86 ',

1 'mo 95 ',

2 'tc 99 ',

3 'rulOl ','rhlO3 ',

4 'aglO9 ','snl26 ',

5 ' i29 ','xel3l ','xel32 ',

6 'cs133 ','xel34 ','csl34 ','cs135 ',

7 'cs137 ','ndl43 ',

8 'nd144 ','ndl45 ','ndl46 ',

9 'pm147 ','sml47 ','ndl48 ',

a 'sml48 ','sml49 ','ndl50 ','smlso ',

b 'sm151 ','eul5l ','sml52 ','eul53 ','eul54 ',

c 'gdl54 ','eul55 ','gdl5 '1 DATA A2B/'KR-83 ','KR-84 ','KR-86 ',

1 'MO-95 ',

2 'TC-99 ',

3 'RU-101 ','RH-103 ',

4 'AG-109 ','SN-126 ',

5 'I-129 ','XE-131 ','XE-132 1, 6 'CS-133 ','XE-134 ','CS-134 ','CS-135 ',

7 'CS-137 ','ND-143 ',

8 'ND-144 'ND-145 ','ND-146 ',

9 'PM-147 ','SM-147 ','ND-148 ',

a 'SM-148 ','SM-149 ','ND-150 ','SM-150 ',

b 'SM-151 ','EU-151 ','SM-152 ','EU-153 ','EU-154 ',

c 'GD-154 ','EU-155 ','GD-155 'I/

DATA A2C/'fission 'I/

DATA A2D/'decay, f'/

DATA A2E/'gram ato'/

DATA A2F/'tal '/

CALL START C* OPEN ALL FILES TO BE USED:

  • C* 6 = OUTPUT (OPENED IN SUBROUTINE START)
  • Page 1 (02/14/2003 9:51:05 AM)

D:\Keno\kenoinp2\Sas2hedSO\SAS2HED5O.for CA06015 REV a PAE /

C* 9 = INPUT (DATA FOR CASE OPENED IN SUBROUTINE START)

  • C READ ACTINIDE DATA DO 10 I=1,14 10 BIA(I)=1.E-20 100 READ(9,200,END=990) AT IF(AT.NE.A1C) GO TO 100 READ(9,201 AT IF(AT.NE.A1D) GO TO 100 READ(9,202)

READ(9,203) AT IF(AT.NE.A1E) GO TO 100 READ(9,202)

READ(9,202) 105 READ(9,204) AT IF(AT.EQ.A1F) GO TO 120 DO 110 I=1,14 IF(AT.NE.A1A(I)) GO TO 110 BACKSPACE 9 READ (9, 205)X BLA(I)=X GO TO 105 110 CONTINUE GO TO 105 120 CONTINUE DO 130 I=1,14 130 BIB(I)=BlA(I)*0.6023/44949.183 WRITE (6,210)

DO 140 1=1,14 140 WRITE(6,211) AlB(I),BlA(I),BlB(I) 200 FORMAT(101X,A8) 201 FORMAT(A8) 202 FORMAT(1X) 203 FORMAT(67X,A8) 204 FORMAT(4X,A8) 205 FORMAT(72X,EB.2) 210 FORMAT(' SAS2H ACTINIDE EDIT',/

1,5X,' NUCLIDE',15X,'MOLES',1OX,'ATOMS/B-CM')

211 FORMAT(SX,A8,lP2E20.5)

C READ FISSION PRODUCT DATA DO 20 I=1,36 20 B2A(I)-1.E-20 300 READ(9,400,END'990 AT IF(AT.NE.A2C) GO TO 300 READ(9,401). AT IF(AT.NE.A2D) GO TO 300 READ(9,402)

READ(9,403) AT IF(AT.NE.A2E) GO TO 300 READ(9,402)

READ(9,402) 305 READ(9,404) AT IF(AT.EQ.A2F) GO TO 320 DO 310 I=1,36 IF(AT.NE.A2A(I)) GO TO 310 BACKSPACE 9 READ (9, 405) X B2A(I)=X GO TO 305 310 CONTINUE Page 2 (02/14/2003 9:51:05 AM)

D:\Keno\kenoinp2\Sas2hedsO\SAS2HEDS0.for CA060 5 RE 0 GO TO 305 PAtE /6/

320 CONTINUE B2A(39)=1.E-20 DO 330 I=1,36 330 B2B(I)=B2A(I)*0.6023/44949.183 WRITE(6,410)

DO 340 I=1,36 340 WRITE(6,411) A2B(I),B2A(I),B2B(I) 400 FORMAT(94X,A8) 401 FORMAT(A8) 402 FORMAT(1X) 403 FORMAT(67X,A8) 404 FORMAT(4X,A8) 405 FORMAT(72X,E8.2) 410 FORMAT{//,' SAS2H FISSION PRODUCT EDIT',/

1,5X,' NUCLIDE',15X,'MOLES',10X,'ATOMS/B-CM')

411 FORMAT(5X,A8,lP2E20.5)

C PRINT DATA IN KENO FORMAT WRITE(6,600)

DO 500 I=1,36 500 WRITE(6,601) A2B(I),B2B(I)

DO 501 I=1,14 501 WRITE(6,601) AlB(I),B1B(I) 600 FORMAT(//,'KENO INPUT DATA')

601 FORMAT(A8,' 1 0 ',1PE11.5,' END')

C GO TO 995 990 WRITE(*,991) 991 FORMAT(' END OF DATA AT 100')

995 CONTINUE CLOSE(6)

CLOSE(9)

STOP END SUBROUTINE START C

C*

  • C* ROUTINE TO GET THE REQUIRED DATA TO GET STARTED C*

C CHARACTER INFILE*100 10 CONTINUE PRINT 20 20 FORMAT(/////,2X,'WHAT IS THE NAME OF THE INPUT FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ? ')

READ(*,30) INFILE 30 FORMAT(A100)

OPEN(9,FILE=INFILE,STATUS='OLD',IOSTAT=IERROR)

IF(IERROR .EQ. 0) GO TO 50 PRINT 40 40 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 50 CONTINUE OPEN(6,FILE='SAS2HED.OUT',STATUS='UNKNOWN')

RETURN END Page 3 (02/14/2003 9:51:05 AM)

CA06015 Revision 0 Page f$-Z ATTACHMENT N SAS2HED101 CODE

D:\ .. \Sas2hedlOl\SAS2HED1O.for CA060/~.5 REV PAGE o PROGRAM SAS2HED C* D:\KENO\KENOINP2\SAS2HED.FOR C* COMPILE COMMAND IS FORT51 SAS2HED C* LINK51 SAS2HED C* EDIT SAS2H OUTPUT FOR MOLES OF ACTIVITY C* CONVERT MOLES TO ATOMS/B-CM C* PRINT INPUT FOR KENO DIMENSION AlA(28),AlB(28),BlA(28),BlB(28)

DIMENSION A2A(73),A2B(73),B2A(73),B2B(73)

CHARACTER AlA*8,AlB*8,AlC*8,AlD*8,AlE*8,AlF*8,AT*8 CHARACTER A2A*8,A2B*8,A2C*8,A2D*8,A2E*8,A2F*8 DATA AlA/'th232 ',' u232 ',' u233 ',' u234 ',' u235 ',

1 ' u236 ',' u237 ',' u238 ','np237 ','np238 ',

2 'pu236 ','pu237 ','pu238 ','pu239 ',

3 'pu240 ','pu241 ','pu242 ','am241 ','am242 ',

4 'am242m ','am243 ','cm242 ','cm243 ','cm244 ',

5 'cm245 ','cm246 ','cm247 ','cm248 '/

DATA AlB/'TH-232 ','U-232 ','U-233 ','U-234 ','U-235 ',

1 'U-236 1,'U-237 ','U-238 ','NP-237 ','NP-238 ',

2 'PU-236 ','PU-237 ','PU-238 ','PU-239 ',

3 'PU-240 ','PU-241 ','PU-242 ','AM-241 ','AM-242 ',

4 'AM-242M ','AM-243 ','CM-242 ','CM-243 ','CM-244 ',

5 'CM-245 ','CM-246 ','CM-247 ','CM-248 '/

DATA AIC/'actinide'/

DATA AID/'decay, f'/

DATA AlE/'gram ato'/

DATA AlF/'tal '/

DATA A2A/'kr 83 ','kr 84 ','kr 85 ','kr 86 ','zr 91 ',

1 'zr 92 ','zr 93 ','zr 94 ','nb 95 ','mo 95 ',

2 'zr 96 ','mo 97 ','mo 98 ','tc 99 ','rulOO ,

3 'rulOl ','rulO2 ','rulO3 ','rhlO3 ','rulO4 ',

4 'pdlO4 ','rhlOs ','pdlO5 ','rulO6 ','pdlO6 ,

5 'pdlO7 ','pdlO8 ','aglO9 ','cdll3 ','snl26 ',

6 ' i27 ',' i29 ','xel3l ','xel32 ','xel33 ',

7 'cs133 ','xel 3 4 ','cs134 ','xel35 ','cs135 ',

8 'cs137 ','lal39 ','prl4l ','prl43 ','ndl43 ',

9 'cel44 ','ndl44 ','ndl45 ','ndl46 ','ndl47 ',

A 'pm147 ','sml47 ','ndl48 ','pml48 ','pml48m ',

B 'sml48 ','pml49 ','sml49 ','ndl50 ','smlSO ',

C 'smlSl ','eul5l ','sd52 ','eul53 ','eul54 ',

D 'gdl54 ','eul55 ','gdl55 ','eul56 ','gdl56 ',

E 'gdl57 ','gdl58 ','gdl6O '/

DATA A2B/'KR-83 ','KR-84 ','KR-85 ','KR-86 ','ZR-91 ',

1 'ZR-92 ','ZR-93 ','ZR-94 ','NB-95 ','MO-95 ',

2 'ZR-96 ','MO-97 ','MO-98 ','TC-99 ','RU-100 ',

3 'RU-101 ','RU-102 ','RU-103 ','RH-103 ','RU-104 ',

4 'PD-104 ','RH-105 ','PD-105 ','RU-106 ','PD-106 ',

5 'PD-107 ','PD-108 ','AG-109 ','CD-113 ','SN-126 ',

6 'I-127 ','I-129 ','XE-131 ','XE-132 ','XE-133 ',

7 'CS-133 ','XE-134 ','CS-134 ','XE-135 ','CS-135 ',

8 'CS-137 ','LA-139 ','PR-141 ','PR-143 ','ND-143 ',

9 'CE-144 ','ND-144 ','ND-145 ','ND-146 ','ND-147 ',

A 'PM-147 ','SM-147 ','ND-148 ','PM-148 ','PM-148M ',

B 'SM-148 ','PM-149 ','SM-149 ','ND-150 ','SM-150 ',

C 'SM-151 ','EU-151 ','SM-152 ','EU-153 ','EU-154 ',

D 'GD-154 ','EU-155 ','GD-155 ','EU-156 ','GD-156 ',

E 'GD-157 ','GD-158 ','GD-160 'I/

DATA A2C/'fission 'I/

DATA A2D/'decay, f'/

DATA A2E/'gram ato'/

DATA A2F/'tal 'I CALL START C* OPEN ALL FILES TO BE USED:

  • C* 6 OUTPUT (OPENED IN SUBROUTINE START)
  • Page 1 (02/14/2003 9:50:12 AM)

114060 15 REV, D:\ . \Sas2hedlOl\SAS2HED101.for E 0E C* 9 = INPUT (DATA FOR CASE OPENED IN SUBROUTINE START)

  • C READ ACTINIDE DATA DO 10 1=1,28 10 BIA(I)ml.E-20 100 READ(9,200,END.990) AT IF(AT.NE.A1C) GO TO 100 READ(9,201) AT IF(AT.NE.A1D) GO TO 100 READ(9,202)

READ(9,203) AT IF(AT.NE.A1E) GO TO 100 READ(9,202)

READ(9,202) 105 READ(9,204) AT IF(AT.EQ.A1F) GO TO 120 DO 110 I=1,28 IF(AT.NE.A1A(I)) GO TO 110 BACKSPACE 9 READ(9,205)X BLA(I) X GO TO 105 110 CONTINUE GO TO 105 120 CONTINUE DO 130 I=1,28 130 BlB(I)=BlA(I)*0.6023/44949.183 WRITE(6,210)

DO 140 I=1,28 140 WRITE(6,211) AlB(I),BlA(I),B1B(I) 200 FORMAT(1O1X,A8) 201 FORMAT(A8) 202 FORMAT(1X) 203 FORMAT(67X,A8) 204 FORMAT(4X,A8) 205 FORMAT(72X,E8.2) 210 FORMAT(' SAS2H ACTINIDE EDIT',/

1,5X,' NUCLIDE',15X,'MOLES',10X,'ATOMS/B-CM')

211 FORMAT(5X,A8,1P2E20.5)

C READ FISSION PRODUCT DATA DO 20 I1,73 20 B2A(I)-1.E-20 300 READ(9,400,END=990) AT IF(AT.NE.A2C) GO TO 300 READ(9,401) AT IF(AT.NE.A2D) GO TO 300 READ(9,402)

READ(9,403) AT IF(AT.NE.A2E) GO TO 300 READ(9,402)

READ(9,402) 305 READ(9,404) AT IF(AT.EQ.A2F) GO TO 320 DO 310 1=1,73 IF(AT.NE.A2A(I)) GO TO 310 BACKSPACE 9 READ (9,405)X B2A(I)=X GO TO 305 310 CONTINUE GO TO 305 320 CONTINUE B2A(39)=1.E-20 DO 330 I=1,73 330 B2B(I)=B2A(I)*0.6023/44949.183 WRITE(6,410)

Page 2 (02/14/2003 9:50:12 AM)

D: \... \Sas2hedl0l\SAS2HED101.for CA06o15 REV o PAGE /C DO 340 =1,73 340 WRITE(6,411) A2B(I),B2A(I),B2B(I) 400 FORMAT(94X,A8) 401 FORMAT(A8) 402 FORMAT(lX) 403 FORMAT(67X,AB) 404 FORMAT(4X,A8) 405 FORMAT(72X,E8.2) 410 FORMAT(//,' SAS2H FISSION PRODUCT EDIT',/

1,5X,' NUCLIDE',1SX,'MOLES',10X,'ATOMS/B-CM')

411 FORMAT(5X,A8,1P2E20.5)

C PRINT DATA IN ENO FORMAT WRITE(6,600)

DO 500 =1,73 500 WRITE(6,601) A2B(I),B2B(I)

DO 501 I1,28 501 WRITE(6,601) AlB(IBlB(I) 600 FORMAT(//,'KENO INPUT DATA')

601 FORMAT(A8,' 1 0 ',1PE11.5,' END')

C GO TO 995 990 WRITE(*,991) 991 FORMAT(' END OF DATA AT 100')

995 CONTINUE CLOSE(6)

CLOSE(9)

STOP END SUBROUTINE START C

C*

  • C* ROUTINE TO GET THE REQUIRED DATA TO GET STARTED
  • C*

C CHARACTER INFILE*100 10 CONTINUE PRINT 20 20 FORMAT(/////,2X,'WHAT IS THE NAME OF THE INPUT FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ?'

READ(*,30) INFILE 30 FORMAT(A100)

OPEN(9,FILE=INFILE,STATUS='OLD',IOSTAT=IERROR)

IF(IERROR .EQ. 0) GO TO 50 PRINT 40 40 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 50 CONTINUE OPEN(6,FILEs'SAS2HED.OUT',STATUS='UNKNOWN')

RETURN END Page 3 (02/14/2003 9:50:12 AM)

CA06015 Revision 0 Page A J ATTACHMENT 0 SAS2HLIN CODE

D: \Keno\kenoinp2\sas2hlin\SAS2HLIN. for PROGRAM SAS2HLIN CC***************************************************************

PAGE /6 7 C* D:\KENO\KENOINP2\SAS2HLIN.FOR C* COMPILE COMMAND IS FORT51 SAS2HLIN C* LINK51 AS2HLIN C* INTERPOLATE SAS2H EDIT FILES AS A FUNCTION OF BURNUP C* LINEAR INTERPOLATION C* PRINT INPUT FOR ENO CHARACTER AA*8,AD*4 REAL*8 BA,ClA,C,B,XXX,ENR,D1,D2 DIMENSION AA(50),BXA(15,50),ClA(15)

DIMENSION D1(70),D2(70,30),AD(70)

DIMENSION B(30,50),C(30)

CALL START(NP,NS)

C* OPEN ALL FILES TO BE USED:

C* * - ONSCREEN INPUT C* NP PROFILE NUMBER (70 MAX)

C* NS - 1(SINGLE BURNUP POINT), 2(MULTIPLE BURNUP POINTS)

C* 6 OUTPUT (OPENED IN SUBROUTINE START)

C* 9 INPUT (ISOTOPE DATA OPENED IN SUBROUTINE START)

C* ENR ENRICHMENT IN W/O C* CiA(15) - BURNUP POINTS IN GWD/MTU C* AlA(50) ISOTOPE LABEL C* BlA(15,50) - ISOTOPICS IN ATOMS/BN-CM C* 10 INPUT (PROFILE DATA OPENED IN SUBROUTINE START)

C* NB - NUMBER OF AXIAL BURNUPS (30 MAX)

C* NF - NUMBER OF PROFILES (70 MAX)

C* AD(NF) - PROFILE LABEL C* Dl(NF) - AVERAGE PROFILE BURNUP IN GWD/MTU C* D2(NF,NB) - PROFILE BURNUPS IN GWD/MTU Ct*******************************************************

C READ ACTINIDE DATA DO 10 1115 1

READ(9,100) ENR,C1A(I)

DO 11 J-1,50 11 READ(9,101) AlA(J),BlA(I,J) 10 CONTINUE 100 FORMAT(F4.2,F7.2) 101 FORMAT(A8,SX,E11.5)

C READ PROFILE DATA READ(10,20) NS READ(10,20) NF DO 21 I-1,NF READ(10,22) AD(I)

READ(10,23) D1(I) 21 READ(10,24) (D2(I,J)LJ-1,NB) 20 FORMAT(23X,I2) 22 FORMAT(A4) 23 FORMAT(2X,F7.3) 24 FORMAT(2X,10F7.3)

C**C**********CCC***C*****CCC***CC***C*****C****

C INTERPOLATE NEW DATA GO TO (30,35),NS 30 N-1 C(1)-Dl(NP)

GO TO 39 35 N=NB DO 36 I1,N 36 C(I)-D2(NP,I) 39 DO 40 K-1,N DO 42 I-2,15 IF(C(K).GT.C1A(I)) GO TO 42 I1-I-1 I2-I GO TO 43 42 CONTINUE 11-14 12-15 43 CONTINUE XXX-(C(K)-ClA(I2))/(ClA(Il)-ClA(I2))

DO 44 J-1,50 B(K,J)-BlA(I2,J)+(BlA(Il,J)-BlA(I2,J))*XXX 44 IF(B(R,J).LT.1.E-24) B(K,J)=l.E-24 Page 1 (02/25/2003 3:53:56 PM)

D: \Keno\kenoinp2\sas2hlin\SAS2HLIN.for CA060 15 REV 40 CONTINUE PAGE UiS C PRINT DATA IN KENO FORMAT WRITE(6,601) ENR WRITE(6,602) N WRITE(6,603) (C(K),K=1,N)

DO 500 K1,N MX-100+K DO 501 J-1,50 501 WRITE(6,600) A1A(J),MX,B(K,J) 500 CONTINUE 600 FORMAT(A8,I4,' 0 ',1PE11.5,' END')

601 FORMAT(2X,'ENRICHMENT - ',F5.2) 602 FORMAT(2X,'NUMBER OF BURNUPS - ',15) 603 FORMAT(2X, 'BURNUPS=',10F7.3)

C CLOSE (6)

CLOSE(9)

CLOSE(10)

STOP END SUBROUTINE START(NP,NS)

C C*

  • C* ROUTINE TO GET THE REQUIRED DATA TO GET STARTED
  • C*
  • C CHARACTER INFILE*100 10 CONTINUE PRINT 11 11 FORMAT(/////,2X,'WHAT IS THE NAME OF THE ISOTOPE FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ? ')

READ(*,12) INFILE 12 FORMAT(A100)

OPEN(9,FILE-INFILE,STATUS-'OLD',IOSTAT-IERROR)

IF(IERROR .EQ. 0) GO TO 14 PRINT 13 13 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 14 CONTINUE 20 CONTINUE PRINT 21 21 FORMAT(/////,2X,'WHAT IS THE NAME OF THE PROFILE FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ? )

READ(*,22) INFILE 22 FORMAT(A100)

OPEN(10,FILE-INFILE,STATUS-'OLD',IOSTAT-IERROR)

IF(IERROR .EQ. 0) GO TO 24 PRINT 23 23 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 24 CONTINUE OPEN(6,FILE-'SAS2HLAG.XXX',STATUSs'UNNOWN')

PRINT 60 60 FORMAT(/////,2X,'READ NUMBER OF PROFILE '

READ(*,*) NP PRINT 70 70 FORMAT(/////,2X,'READ MULTI OR SINGLE')

READ(*,*) NS RETURN END Page 2 (02/25/2003 3:53:57 PM)

CA06015 Revision 0 Page ff 2 ATTACHMENT P SAS2HLAG CODE

D:\Keno\kenoinp2\sas2hlag\SAS2HLAG.for PROGRAM SAS2HLAG PAoeE / c)

C* D:\KENO\KENOINP2\SAS2HLAG.FOR C* COMPILE COMMAND IS FORT51 SAS2HLAG C* LINKS1 SAS2HLAG C* INTERPOLATE SAS2H EDIT FILES AS A FUNCTION OF BURNUP C* SECOND ORDER LAGRANGIAN INTERPOLATION C* PRINT INPUT FOR ENO CHARACTER A1A*8,AD*4 REAL*8 BA,CA,C,B,XX1,XX2,XX3,ENR,D1,D2,Y,Yl DIMENSION AlA(50),BlA(15,50),ClA(15)

DIMENSION Dl(70),D2(70,30),AD(70)

DIMENSION B(30,50),C(30)

CALL START(NP,NS)

C* OPEN ALL FILES TO BE USED:

C*

  • ONSCREEN INPUT C* NP PROFILE NUMBER (70 MAX)

C* NS 1(SINGLE BURNUP POINT), - 2(MULTIPLE BURNUP POINTS)

C* 6 OUTPUT (OPENED IN SUBROUTINE START)

C* 9 - INPUT (ISOTOPE DATA OPENED IN SUBROUTINE START)

C* ENR - ENRICHMENT IN W/O C* CIA(15) BURNUP POINTS IN GWD/MTU C* AlA(50) - ISOTOPE LABEL C* BlA(15,50) ISOTOPICS IN ATOMS/BN-CM C* 10 INPUT (PROFILE DATA OPENED IN SUBROUTINE START)

C* NB NUMBER OF AXIAL BURNUPS (30 MAX)

C* NF NUMBER OF PROFILES (70 MAX)

C* AD(NF) - PROFILE LABEL C* Dl(NF) - AVERAGE PROFILE BURNUP IN GWD/MTU C* D2(NF,NB) PROFILE BURNUPS IN GWD/MTU C READ ACTINIDE DATA DO 10 I-1,15 READ(9,100) ENR,C1A(I)

DO 11 -1,50 11 READ(9,101) AlA(J),BlA(IJ) 10 CONTINUE 100 FORMAT(F4.2,F7.2) 101 FORMAT(A8,5X,Ell.5)

C READ PROFILE DATA READ(10,20) NB READ(10,20) NF DO 21 I1,NF READ(10,22) AD(I)

READ(10,23) D1(I) 21 READ(10,24) {D2(I,J),J-1,NB) 20 FORMAT(23X,I2) 22 FORMAT(A4) 23 FORMAT(2X,F7.3) 24 FORMAT(2X,10F7.3)

C INTERPOLATE NEW DATA GO TO 30,35),NS 30 N-1 C(1)-Dl(NP)

GO TO 39 35 N-NB DO 36 I-1,N 36 C(I)-D2(NP,I) 39 DO 40 K1,N Y-C(K)

DO 42 I-2,14 Y1.(ClA(I)+ClA(I+1))/2.

IF(Y.GT.fl) GO TO 42 10-1-1 I1-I I2=I+l GO TO 43 42 CONTINUE I0-13 I1114 I2-15 43 CONTINUE Page 1 (02/25/2003 3:53:38 PM)

D:\Keno\kenoinp2\sas2hlag\SAS2HLAG.for CA0605 sREV XX1-=Y-ClA(Il))*(Y-C1A(12))/(ClA(I0)-ClACIl))/(ClA(I0)-ClA(2)) PACE /7/

XX2=(Y-ClA(I0))*CY-ClA(I2))/(ClA(Il)-ClA(I0))/(ClA(Il)-ClA(12))

XX3- Y-ClA(IO))*(Y-ClA(I1))/(ClA(12)-ClA(IO))/(C1A(12)-ClA(Il))

DO 44 J1,50 B(Q,J)-XX1*81A(I0,J)+XX2*B1A(Il,J)+XX3*BE1A(I2,J) 44 IF(B(K,J).LT.l.E-24) B(K,J)-1.E-24 40 CONTINUE C PRINT DATA IN ENO FORMAT WRITE(6,601) ENR WRITE(6,602) N WRITE(6,603) (C(K),K-1,N)

DO 500 K-1,N MX-100+K DO 501 J1.50 501 WRITE(6,600) AA(J),MXB(K,J) 500 CONTINUE 600 FORMAT(AS,I4,' 0 ',lPE11.5,' END')

601 FORMAT(2X,'ENRICHMENT = ',F5.2) 602 FORMAT(2X,'NUMBER OF BURNUPS - ',I5) 603 FORMAT(2X,'BURNUPS-',1OF7.3)

C CLOSE(6)

CLOSE(9)

CLOSE(10)

STOP END SUBROUTINE START(NP,NS)

C C*

  • C* ROUTINE TO GET THE REQUIRED DATA TO GET STARTED
  • C*
  • C CHARACTER INFILE*100 10 CONTINUE PRINT 11 11 FORMAT(/////,2X,'WHAT IS THE NAME OF THE ISOTOPE FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ? ')

READ(*,12) INFILE 12 FORMAT(A100)

OPEN(9,FILE-INFILE,STATUS-'OLD',IOSTAT-IERROR)

IF(IERROR .EQ. 0) GO TO 14 PRINT 13 13 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 14 CONTINUE 20 CONTINUE PRINT 21 21 FORMAT(/////,2X,'WHAT IS THE NAME OF THE PROFILE FILE ',

+ '(DO NOT FORGET DIRECTORY)',/,'  ? ')

READ(*,22) INFILE 22 FORMAT(A100)

OPENl10,FILE-INFILE,STATUS='OLD',IOSTAT-IERROR)

IF(IERROR .EQ. 0) GO TO 24 PRINT 23 23 FORMAT(' CANNOT FIND FILE PLEASE TRY AGAIN',///)

GO TO 10 24 CONTINUE OPEN(6,FILE-'SAS2HLAG.XXX',STATUS-'UNINOWN')

PRINT 60 60 FORMAT(/////,2X,'READ NUMBER OF PROFILE ')

READ(*,*) NP PRINT 70 70 FORMAT(/////,2X,'READ MULTI OR SINGLE')

READ(*,*) NS RETURN END Page 2 (02/25/2003 3:53:38 PM)

CA06015 Revision 0 CA06o 15 REV Page PAG6E 1/7; ATTACHMENT Q SAS2HLIN/LAG INPUT FILES

D:\Keno\kenoinp2\sas2hlag\Saxl8.inp CA06015 REV 0 NUMBER OF URNUPS - 18 PAGE /73 NUMBER OF FILES = 24 06AL 6.000 2.820 4.650 5.730 6.384 6.846 6.972 7.080 7.134 7.152 7.146 7.110 7.032 6.948 6.780 6.126 5.400 4.284 2.418 lOAX 10.000 4.780 7.730 9.500 10.590 12.050 12.010 12.110 12.150 12.180 12.160 12.090 11. 940 11.700 11.510 9.760 8.060 5.960 3.700 14AJ 14.000 6.846 10. 808 13.216 11.998 16.506 16.114 16.604 16.534 16.520 17.304 17.654 17.710 17.654 17.416 13.314 11.858 9.100 4.872 ISAI 18.000 9.036 14.706 16.650 14.328 22.680 22.572 22.356 22.212 22.986 23.814 24.048 24.030 23.850 23.382 13.608 11.052 8.658 4.050 22AH 22.000 11.880 18.920 21.230 20.262 25.828 25.872 25.762 25.652 25.674 26.070 26.136 26.092 26.004 25.806 22.176 19.756 14.718 8.206 26AG 26.000 14.144 22.594 25.012 23.868 29.588 29.640 29.978 29.978 30.472 30.992 31.226 31.278 31.174 30.810 26.364 22.646 17.914 10.296 3OAF 30.000 16.530 26.580 30.210 29.220 34.380 34.140 34.200 34.050 34.140 34.980 35.190 35.190 35.070 34.710 30.660 26.460 21.030 13.320 34AE 34.000 18.258 30.430 34.238 35.530 38.794 38.760 38.590 38.420 38.250 38.114 38.692 38.930 38.828 38.624 34.680 32.402 25.092 15.334 38AD 38.000 19.760 33.744 38.342 39.748 43.890 43.434 43.168 43.206 43.206 43.054 42.940 43.510 43.510 43.434 38.950 36.860 28.234 14.934 42AC 42.000 25.494 38.388 43.008 43.722 47.208 46.914 46.536 46.494 46.326 46.284 46.158 46.242 46.662 46.704 43.218 41.202 34.566 20.916 46AB 46.000 28.290 42.228 46. 920 48.070 51.520 51.152 51.336 51.244 50.784 50.922 50.646 50.646 50.922 50.784 47.150 45.126 36.800 23.552 62AA 62.000 35.526 56.854 63.302 64.480 69.812 69.626 69.316 69.006 68.758 68.510 68.262 68.076 68.262 68.076 63.736 61.132 51.522 31.744 06BL 6.000 3.444 5.682 6.546 6.630 6.564 6.522 6.516 6.522 6.546 6.576 6.612 6.630 6.630 6.576 6.396 5.916 4.836 2.844 lOBE 10.000 6.620 9.300 10.490 10.590 11.080 11.440 11.680 11.830 11.890 11.900 11.830 11.670 11.350 10.790 9.760 8.060 5.960 3.750 14BJ 14.000 8.862 13.846 14.266 11.998 10.864 10.556 10.990 14.182 16.590 17.542 17.892 17.962 17.864 17.514 16.702 15.050 12.082 7.210 18BI 18.000 11.682 18.792 21.744 21.870 21.852 21.744 21.546 21.402 21.384 21.456 21.510 21.420 20.808 18.396 13.608 11.052 8.658 5.112 22BH 22.000 14.696 22.748 25.300 24.068 23. 166 23.056 23.408 24.090 24.662 24.970 25.080 25.036 24.860 24.332 23.078 20.526 14.718 8.206 26BG 26.000 16.380 24.336 27.716 28.678 28.808 28.834 28.912 29.094 29.276 29.432 29.510 29.510 29.354 28.834 27.066 22.646 17.914 11.648 3OBF 30.000 Page 1 (02/25/2003 3:53:24 PM)

D:\Keno\kenoinp2\saa2hlag\Saxl8.inp CA060 15 REV a PAGE /7%

18.570 27.720 31.680 32.910 33.090 33.030 33.090 33.360 33.750 34.080 34.290 34.290 34.080 33.450 31.410 26.460 21.030 13.680 34BE 34.000 22.168 32.878 36.516 37.502 37.672 37.604 37.468 37.298 37.196 37.196 37.230 37.264 37.230 36.924 36. 006 33.014 25.092 15.708 38BD 38.000 22.230 36.366 41.458 42.598 42.788 42.218 41.572 41.534 41.496 41.458 41.496 41.762 41.648 41.306 40.774 38.114 30.248 14.934 42BC 42.000 27.720 39.312 43.848 45.360 45.822 45.906 45. 864 45.780 45.738 45.696 45.696 45.612 45.528 45.234 44.394 41. 832 34.566 22.050 46BB 46.000 31.004 43.654 48.438 49.910 50.370 50.370 50.278 50.186 50.094 50.048 49.956 49.864 49.726 49.358 48.438 45.402 36.800 24.104 62BA 62.000 35.526 56.854 66.092 68.572 69.068 68.882 68.572 68.262 68.014 67.766 67.518 67.332 67.022 66.526 65.162 61.566 51.584 31.744 Page 2 (02/25/2003 3:53:24 PM)

D:\Keno\kenoinp2\sas2hlag\Sax26.inp CA060 15 REV NUMBER OF BURNUPS = 26 NUMBER OF FILES = 43 PA6E/27 olso 48.013 26.689 35.647 42.539 45.666 47.102 49.019 50.640 51.246 51.354 51.350 51.322 51.290 51.273 51.266 51.272 51.289 51.301 51.274 51.070 50.160 47.985 45.620 43.986 40.699 33.688 24.808 02S0 46.688 25.499 34.090 47.860 43.857 45.290 47.204 48.832 49.448 49.560 49.555 49.523 49.486 49.463 49.451 49.451 49.462 49.465 49.429 49.212 48.296 46.147 43.827 42.226 49.017 32.237 23.743 03S1 49.523 27.430 36.629 43.705 46.899 48.355 50.402 52.188 52.858 52.983 52.985 52.963 52.937 52.924 52.923 52.934 52.958 52.975 52.951 52.742 51.793 49.504 47.016 45.335 41.970 34.738 25.572 04V0 14.895 7.488 10.180 12.591 13.771 14.350 15.171 15.879 16.152 16.205 16.204 16.187 16.165 16.147 16. 135 16.125 16.116 16.101 16.068 15.954 15.553 14.677 13.759 13.145 11.954 9.602 7.051 05TO 35.696 19.598 26.043 31.397 33.877 35.030 36.551 37.828 38.298 38.372 38.356 38.317 38.270 38.235 38.210 38.191 38.175 38.156 38.108 37.914 37.167 35.453 33.614 32.357 29.845 24.581 18.422 06V1 20.408 11.234 15.108 18.421 19.933 20.526 20.998 21.673 21.957 22.002 21.988 21.955 21.914 21.880 21.854 21.830 21.804 21.773 21.719 21.560 21.039 19.947 18.857 18.215 17.042 13.961 10.377 07V0 22.090 11.822 15.895 19.399 21.043 21.802 22.787 23.609 23.908 23.947 23.925 23.882 23.829 23.785 23.751 23.717 23.681 23.640 23.578 23.406 22.851 21.672 20.446 19.627 18.002 14.651 10.882 08S2 51.485 28.928 38.669 45.995 49.156 50.419 52.346 54.138 54.851 54.994 55.001 54.979 54.952 54.939 54.937 54.950 54.976 54.992 54.962 54.728 53.706 51.322 48.810 47.192 43.989 36.564 26.869 o9vO 18.880 9.750 13.112 16.087 17.529 18.230 19.223 20.088 20.424 20.489 20.487 20.466 20.437 20.414 20.398 20.384 20.371 20.353 20.313 20.176 19.693 18.630 17.513 16.764 15.303 12.384 9.186 10TO 35.485 19.232 25.659 31.028 33.540 34.723 36.317 37.675 38.188 38.276 38.260 38.216 38.160 38.115 38.083 38.054 38.027 37.994 37.928 37.702 36.894 35.099 33.202 31.917 29.371 24.109 18.003 liVi 25.651 14.213 19.100 23.209 25.076 25.828 26.502 27.344 27.690 27.739 27.712 27.657 27.589 27.531 27.485 27.437 27.384 27.326 27.241 27.017 26.335 24.946 23.572 22.745 21.214 17.387 12.920 12T0 41.171 22.953 30.365 36.417 39.190 40.466 42.139 43.550 44.084 44.182 44.174 44.138 44.091 44.055 44.030 44.010 43.992 43.967 43.905 43.672 42.809 40.869 38.803 37.393 34.565 28.569 21.509 13TI 42.997 24.129 31.875 38.148 41.012 42.309 43.962 45.404 45.934 46.026 46.020 45.991 45.954 45.928 45.912 45.903 45.899 45.888 45.842 45.631 44.787 42.815 40.680 39.236 36.358 30.123 22.666 Page 1 (02/25/2003 3:53:06 PM)

D:\Keno\kenoinp2\sas2hlag\Sax26.inp CA06015 REV 0 PAGE /7c 14T2 35.350 19.834 26.303 31.625 34.026 35.023 36.083 37.265 37.753 37.848 37.849

37. 826 37.794 37.770 37.754 37.744 37.737 37.724 37.679 37.488 36.740 35.039 33.263 32.150 30.009 24.833 18.633 15VO 19.296 9.950 13.378 16.403 17.866 18.576 19.576 20.461 20.816 20.892 20.897 20.884 20.865 20.851 20.842 20.837 20.835 20.827 20.795 20.667 20.187 19.114 17.980 17.220 15.733 12.744 9.452 16T2 46.518 26.685 35.139 41.852 44.837 46.084 47.465 48.872 49.456 49.584 49.598 49.587 49.569 49.557 49.553 49.558 49.569 49.568 49.525 49.299 48.385 46.291 44.087 42.667 39.864 33.250 25.091 17V1 26.726 14.846 19.904 24.135 26.046 26.812 27.499 28.368 28.741 28.807 28.793 28.753 28.700 28.656 28.622 28.587 28.549 28.504 28.430 28.216 27.532 26.119 24.713 23.862 22.274 18.291 13.615 18T2
49. 829 28.927 38.034 45.148 48.262 49.532 50.877 52.215 52.782 52.918 52.946 52.952 52.954 52.961 52.972 52.994 53.025 53.040 53.010 52.793 51.871 49.732 47.472 46.002 43.053 36.034 27.233 19V1 27.257 15.266 20.425 24.700 26.607 27.359 28.009 28.821 29.168 29.238 29.235 29.211 29.177 29.150 29.130 29.112 29.093 29.066 29.008 28.819 28.177 26.813 25.428 24.579 22.974 18.911 14.101 2OT2 48.874 28.369 37.257 44.207 47.248 48.493 49. 816 51.140 51.704 51.847 51.884 51.902 51.917 51.933 51.953 51.985 52.026 52.050 52.028 51.826 50.943 48.873 46.668 45.229 42.340 35.446 26.811 24V1 26.492 14.740 19.743 23.917 25.791 26.533 27.176 28.013 28.386 28.464 28.462 28.437 28.401 28.371 28.350 28.331 28.310 28.281 28.221 28.027 27.375 26.005 24.635 23.806 22.249 18 296 13.632 25T2 47.452 27.428 36.136 42.998 46.022 47.261 48.560 49.881 50.440 50.561 50.570 50.553 50.527 50.509 50.500 50.499 50.502 50.493 50.441 50.196 49.250 47.132 44.930 43.515 40.699 33.995 25.657 26V1 27.861 15.674 20.958 25.314 27.242 27.991 28.617 29.404 29.753 29.832 29.837 29.820 29.794 29.772 29.757 29.745 29.733 29.710 29.655 29.464 28.814 27.440 26.051 25.198 23.574 19.435 14.505 27T2 50.026 29.135 38.271 45.383 48.478 49.727 51.032 52.337 52.905 53.054 53.092 53.111 53.125 53.142 53.161 53.193 53.234 53.257 53.232 53.018 52.101 49.982 47.747 46.293 43.362 36.336 27.484 28V1 27.664 15.555 20.795 25.114 27.023 27.763 28.375 29.149 29.493 29.574 29.583 29.574 29.556 29.542 29.533 29.529 29.526 29.511 29.465 29.288 28.664 27.320 25.950 25.107 23.497 19.378 14.466 33V2 27.782 15.828 21.172 25.546 27.451 28.139 28.542 29.251 29.589 29.669 29.677 29.665 29.643 29.626 29.614 29.606 29.598 29.578 29.525 29.336 28.690 27.334 25.985 25.194 23.731 19.622 14.648 34T2 49.939 Page 2 (02/25/2003 3:53:06 PM)

D:\Keno\kenoinp2\sas2hlag\Sax26.inp CA06oi5 REv 0 PAGE 122 29.159 38.292 45.376 48.439 49.660 50.906 52.148 52.697 52.851 52.899 52.931 52.961 52.991 53.022 53.067 53.124 53.162 53.149 52.957 52.080 50.020 47.833 46.405 43.506 36.499 27.627 3 5V2 27.639 15.780 21.094 25.437 27.319 27.992 28.366 29.041 29.365 29.449 29.464 29.460 29.449 29.441 29.437 29.438 29.440 29.430 29.386 29.212 28.595 27.278 25.959 25.182 23.737 19.645 14.676 36T2 49.592 28.950 38.028 45.068 48.110 49.320 50.549 51.766 52.294 52.440 52.489 52.524 52.559 52.594 52.628 52.678 52.742 52.787 52.784 52.610 51.771 49.754 47.592 46.175 43.295 36.323 27.493 42V2 27.667 15.845 21.177 25.524 27.400 28.064 28.416 29.060 29.372 29.453 29.469 29.467 29.459 29.452 29.449 29.452 29.456 29.447 29.405 29.234 28.624 27.322 26.016 25.246 23.808 19.716 14.733 43T2 49.325 28.765 37.831 44.901 47.974 49.206 50.461 51.711 52.252 52.385 52.411 52.414 52.410 52.410 52.415 52.431 52.452 52.458 52.417 52.184 51.250 49.137 46.931 45.502 42.620 35.696 26.982 44V2 27.779 15.910 21.276 25.647 27.535 28.205 28.567 29.206 29.506 29.581 29.593 29.589 29.579 29.570 29.564 29.563 29.564 29.552 29.508 29.338 28.731 27.429 26.116 25.338 23.884 19.773 14.770 52V2 27.236 15.605 20.854 25.135 26.985 27.641 27.992 28.613 28.896 28.967 28.980 28.980 28.975 28.971 28.969 28.973 28.980 28.974 28.938 28.782 28.209 26.952 25.671 24.909 23.487 19.449 14.539 53T0 40.843 23.043 30.348 36.278 38.944 40.140 41.652 42.886 43.368 43.486 43.513 43.523 43.529 43.538 43.550 43.573 43.605 43.625 43.605 43.436 42.694 40.937 39.018 37.684 34.948 29.053 21.978 54S0 46.417 25.546 34.157 40.867 43.944 45.380 47.301 48.935 49.554 49.666 49.660 49.628 49.590 51.283 49.554 49.553 49.562 49.565 49.528 49.309 48.388 46.232 43.905 42.301 39.085 32.292 23.780 55VO 22.094 11.824 15.897 19.402 21.046 21.806 22.791 23.613 23.912 23.951 23.929 23.886 23.833 23.789 23.755 23.721 23.685 23.644 23.583 23.410 22.855 21.675 20.450 19.630 18.005 14.654 10.884 56T1 42.987 24.124 31.869 38.140 41.004 42.300 43.952 45.393 45.923 46.016 46.009 45.980 45.943 45.917 45.902 45.893 45.889 45.878 45.832 45.621 44.778 42.807 40.672 39.228 36.351 30.118 22.662 57T2 48.568 28.184 37.005 43.901 46.918 48.152 49.466 50.781 51.339 51.484 51.525 51.549 51.570 51.593 51.618 51.656 51.704 51.735 51.719 51.530 50.672 48.635 46.454 45.026 42.157 35.303 26.712 58V1 27.667 15.557 20.797 25.117 27.026 27.767 28.379 29.153 29.497 29.578 29.588 29.578 29.560 29.546 29.537 29.533 29.530 29.515 29.468 29.292 28.667 27.322 25.953 25.109 23.499 19.380 14.468 5 9T2 49.583 28.936 38.009 45.051 48.103 49.327 50.562 51.775 52.299 52.442 52.488 52.521 52.554 52.587 52.620 52.669 52.730 52.775 52.771 52.597 51.758 Page 3 (02/25/2003 3:53:06 PM)

D:\Keno\kenoinp2\sas2hlag\Sax26.inp CA060 5 REV 49.741 60V2 47.574 46.150 43.252 36.279 27.464 PAGE /f 27.735 15.886 21.241 25.605 27.489 28.157 28.516 29.154 29.453 29.529 29.542 29.539 29.529 29.521 29.516 29.516 29.518 29.507 29.464 29.295 28.690 27.391 26.082 25.306 23.856 19.750 14.755 61TO 43.765 24.846 32.682 38.978 41.800 43.062 44.662 45.969 46.478 46.598 46.623 46.629 46.631 46.636 46.644 46.664 46.692 46.707 46.681 46.496 45.698 43.819 41.776 40.358 37.454 31.186 23.601 62J0 50.648 28.810 37.742 44.609 48.199 48.708 51.030 52.642 53.319 53.539 53.641 53.736 53.838 53.931 54.017 54.124 54.247 54.337 54.369 54.226 53.405 51.328 48.523 47.934 43.922 36.616 27.259 Page 4 (02/25/2003 3:53:06 PM)

D:\Keno\kenoinp2\sas2hlag\s5xx.ed CAO6O1S REV 0 S.00 00.00 ~ ~~ 1/7?

C-E~~~~PA 5.003 10 1.33996E-25 END KR-94 1 0 1.33996E-25 EDD nR-86 1 0 1.46055E-12 EDI MO-95 1 0 1.33996E-25 END TC-99 1 0 2.84071E-12 DD RU-101 1 0 3.85908E-12 END RH-103 1 0 1.33996E-25 END AG-109 1 0 1.33996E-25 END SN-126 1 0 1.33996E-25 EDD I-129 1 0 1.33996E-25 END XE-131 1 0 1.33996E-25 END XE-132 1 0 1.8934E-12 END CS-133 1 0 1.33996E-25 EDD XE-134 1 0 5.88241E-12 MD CS-134 1 0 1.33996E-25 D CS-135 1 0 4.91764E-12 ED CS-137 1 0 4.71665E-12 D ND-143 1 0 1.339963-25 EDI ND-144 1 0 1.33996E-25 ED ND-145 1 0 2.96131E-12 END ND-146 1 0 2.25113E-12 MD PM-147 1 0 1.33996E-25 END SM-147 1 0 1.33996E-25 END ND-148 1 0 1.33996E-25 MDD 8M-148 1 0 1.33996E-25 ]DD SM-149 1 0 1.33996E-25 D ND-150 1 0 1.33996E-25 DM SM-150 1 0 1.33996E-25 D SM-151 1 0 1.33996E-25 DD 30-151 1 0 1.33996E-25 ED SM-152 1 0 1.33996E-25 DM WU-153 1 0 1.33996E-25 DM U-154 1 0 1.33996E-25 ED GD-154 1 0 1.33996E-25 ED 30-155 1 0 1.339963-25 DD GD-155 1 0 1.33996E-25 ED U-234 1 0 1.33996E-25 D U-235 1 0 1.16979E-03 3ND U-236 1 0 1.0000O0-20 ED U-238 1 0 2.19753E-02 EDD NP-237 1 0 1.33996E-25 MD PU-238 1 0 1.33996E-25 END PV-239 1 0 2.411923-11 MD PU-240 1 0 1.33996E-25 MD PU-241 1 0 1.33996E-25 MDD PU-242 1 0 1.33996E-25 MD AM-241 1 0 1.33996E-25 D CM-242 1 0 1.33996E-25 D CM-243 1 0 1.33996E-25 D CM-244 1 0 1.33996E-25 D 5.00 05.00 XR-83 1 0 6.230803-07 D KR-84 1 0 1.28234E-06 MD XR-86 1 0 2.30473E-06 MD MO-95 1 0 2.67992E-06 EDI TC-99 1 0 7.47696E-06 ED RU-101 1 0 6.36490E-06 END RH-103 1 0 2.90051E-06 ED AG-109 1 0 1.76874E-07 MD SN-126 1 0 6.53899E-08 MD 1-129 1 0 9.41990E-07 MD XE-131 1 0 3.32309E-06 MD XE-132 1 0 5.54742E-06 EDI CS-133 1 0 7.97275E-06 MD XE-134 1 0 9.64770E-06 END CS-134 1 0 1.09609E-07 END CS-135 1 0 3.47049E-06 END CS-137 1 0 7.71815E-06 END ND-143 1 0 6.28440E-06 END ND-144 1 0 1.39356E-06 MD ND-145 1 0 4.68985E-06 D ND-146 1 0 3.72509E-06 EDD PM-147 1 0 2.25113E-06 MD SM-147 1 0 1.28904E-07 MD ND-148 1 0 2.09033E-06 EDI SM-148 1 0 1.02641E-07 MD SM-149 1 0 1.36676E-07 MD ND-150 1 0 8.64273E-07 ED SM-150 1 0 1.27296E-06 EDD SM-151 1 0 3.41699E-07 EDI 30-151 1 0 4.32806E-10 END SM-152 1 0 5.64122E-07 ED 30-153 1 0 2.65312E-07 END 30-154 1 0 1.55435E-08 END GD-154 1 0 2.023343-10 END 30-155 1 0 2.09033E-08 END Page 1 (02/19/2003 2:29:40 PM)

D:\Keno\kenoinp2\sas2hlag\s5xx.ed CA06015 REV 0 GD-155 1 0 3.12210E-10 END U-234 1 0 8.46853E-09 END PAGE f6b U-23S 1 0 1.03311E-03 END U-236 1 0 1.00000-20 END U-238 1 0 2.18413E-02 END NP-237 1 0 6.21740E-07 END PU-238 1 0 2.33153E-08 END PU-239 1 0 4.75685E-05 END PU-240 1 0 3.16230E-06 END PU-241 1 0 6.78019E-07 END PU-242 1 0 1.84914E-08 END AM-241 1 0 4.16727E-09 END CM-242 1 0 1.43375E-10 END CM-243 1 0 1.33996E-25 END 0-244 1 0 1.10814E-11 END 5.00 10.00 KR-83 1 0 1.18988E-06 END XR-84 1 0 2.51912E-06 END KR-86 1 0 4.44866E-06 END 140-95 1 0 9.13851E-06 END TC-99 1 0 1.47395E-05 END RU-101 1 0 1.27162E-05 END RH-103 1 0 6.76679E-06 END AG-109 1 0 5.34643E-07 END SN-126 1 0 1.51415E-07 END 1-129 1 0 1.99654E-06 END XE-131 1 0 6.59259E-06 END XE-132 1 0 1.15504E-05 END CS-133 1 0 1.59455E-05 END XE-134 1 0 1.91614E-05 END CS-134 1 0 4.32806E-07 END CS-135 1 0 6.94098E-06 END CS-137 1 0 1.54095E-05 END ND-143 1 0 1.27430E-05 END ND-144 1 0 4.89085E-06 END ND-145 1 0 9.15191E-06 END ND-146 1 0 7.49036E-06 END PM-147 1 0 4.03327E-06 END SM-147 1 0 4.86405E-07 END ND-148 1 0 4.18067E-06 END SM-148 1 0 4.34146E-07 END SM-149 1 0 1.48735E-07 END ND-ISO 1 0 1.75534E-06 END SM-150 1 0 2.81391E-06 END SM-151 1 0 4.87745E-07 END EU-151 1 0 8.58913E-10 END SM-152 1 0 1.31048E-06 END EU-153 1 0 6.51219E-07 END EU-154 1 0 6.39160E-08 END GD-154 1 0 1.58115E-09 END EU-155 1 0 3.34989E-08 END GD-155 1 0 5.29283E-10 END U-234 1 0 1.62135E-08 END U-235 1 0 9.12511E-04 END U-236 1 0 1.OOOOOE-20 END U-238 1 0 2.18413E-02 END NP-237 1 0 1.79554E-06 END PU-238 1 0 1.33996E-07 END PU-239 1 0 8.12014E-05 END PU-240 1 0 9.52710E-06 END PU-241 1 0 3.53749E-06 END PU-242 1 0 2.076932-07 END AM-241 1 0 4.31466E-08 END CM-242 1 0 2.90771E-09 END CM-243 1 0 1.67495E-11 END 04-244 1 0 5.560821-10 END 5.00 15.00 R-83 1 0 1.70175E-06 END KR-84 1 0 3.72508E-06 END KR-86 1 0 6.472002-06 END 10-95 1 0 1.63475E-05 END TC-99 1 0 2.18413E-05 END RU-101 1 0 1.90274E-05 END RH-103 1 0 1.07063E-05 END AG-109 1 0 1.01569E-06 END SN-126 1 0 2.53252E-07 END 1-129 1 0 3.09530E-06 END XE-131 1 0 9.63429E-06 END XE-132 1 0 1.795S4E-OS END CS-133 1 0 2.35833E-05 END XE-134 1 0 2.86751E-05 END CS-134 1 0 9.32610E-07 END CS-135 1 0 1.03847E-05 END CS-137 1 0 2.29133E-OS END ND-143 1 0 1.86254E-05 END ND-144 1 0 9.83S29E-06 END ND-145 1 0 1.33862E-05 END Page 2 (02/19/2003 2:28:40 PM)

D: \Keno\kenoinp2\sas2hlag\s5xx.ed ND-146 10 1.13226E-05 END CA060 5 REV PM-147 8K-147 1 0 1 0 5.33303E-06 9.90229E-07 END END PAGE M/

ND-149 1 0 6.24420E-06 END 8M-148 1 0 9.56730E-07 END 8M-149 1 0 1.56775E-07 END ND-1So 1 0 2.67992E-06 END 8M-150 1 0 4.43526E-06 END 8M-151 1 0 5.72162E-07 END 8U-151 1 0 1.10145E-09 END 8M-152 1 0 2.07693B-06 END EU-153 1 0 1.15504E-06 END EU-154 1 0 1.47395E-07 END GD-154 1 0 5.35983E-09 END EU-155 1 0 5.11864E-08 END GD-155 1 0 8.07994E-10 END U-234 1 0 2.34493E-08 END U-235 1 0 8.02635E-04 END U-236 1 0 1.OOOOOE-20 END U-238 1 0 2.17073E-02 END NP-237 1 0 3.34989E-06 END PU-238 1 0 3.79208E-07 END PU-239 1 0 1.05455E-04 END PU-240 1 0 1.70175E-05 END PU-241 1 0 8.03975E-06 END PU-242 1 0 7.49036E-07 END 2

AM- 41 1 0 1.46055E-07 END CM-242 1 0 1.42036E-08 END Cf-243 1 0 1.29708E-10 END CM-244 1 0 4.95784E-09 END 5.00 20.00 XR-83 1 0 2.17073E-06 END KR-84 1 0 4.90424E-06 END XR-86 1 0 8.40153E-06 END MD-95 1 0 2.33153E-OS END TC-99 1 0 2.86751E-05 END RU-101 1 0 2.53252E-05 END RH-103 1 0 1.44715E-05 END AG-109 1 0 1.58115E-06 END 8N-126 1 0 3.65809E-07 END I-129 1 0 4.22087E-06 END XE-131 1 0 1.24080E-05 END XE-132 1 0 2.46552E-05 END CS-133 1 0 3.10870E-05 END XE-134 1 0 3.81888E-05 END CS-134 1 0 1.59115E-06 END CS-135 1 0 1.38016E-05 END CS-137 1 0 3.04170E-05 END ND-143 1 0 2.39852E-05 END ND-144 1 0 1.58115E-05 END ND-145 1 0 1.741948-05 END ND-146 1 0 1.52755E-05 END PM-147 1 0 6.257608-06 END 8M-147 1 0 1.58115E-06 END ND-148 1 0 8.29434E-06 END 8M-148 1 0 1.64815B-06 END 8M-149 1 0 1.62135E-07 END ND-150 1 0 3.631288-06 END 8M-150 1 0 6.11021E-06 END SM-151 1 0 6.35140E-07 END EU-151 1 0 1.24080E-09 END 8M-152 1 0 2.80051E-06 END EU-153 1 0 1.75534E-06 END EU-154 1 0 2.67992E-07 END GD-154 1 0 1.27564E-08 END EU-155 1 0 7.517168-08 END GD-1SS 1 0 1.18720B-09 END U-234 1 0 3.08190E-08 END U-235 1 0 7.03478E-04 END U-236 1 0 1.OOOOOE-20 END U-238 1 0 2.17073E-02 END NP-237 1 0 5.19904E-06 END PU-238 1 0 7.94595E-07 END PU-239 1 0 1.23008E-04 END PU-240 1 0 2.47892E-05 END PU-241 1 0 1.33460E-05 END PU-242 1 0 1.74194E-06 END AM-241 1 0 3.20250E-07 END CM-242 1 0 3.96627E-08 END 01-243 1 0 4.99804E-10 END CM-244 1 0 2.21093E-08 END 5.00 25.00 XR-83 1 0 2.58612E-06 END XR-84 1 0 6.05661E-06 END XR-86 1 0 1.02239E-05 END MO-95 1 0 3.01490E-OS END TC-99 1 0 3.52409E-05 END Page 3 (02/19/2003 2:28:40 PM)

D:\Keno\kenoinp2\sas2hlag\sxx.ed CA EV RU-101 RB-103 1 0 3.16230E-05 END 1 0 1.80894E-05 END CA060 15 RE n AG-109 SN-126 1 0 1 0 2.22433E-06 4.87745E-07 END END P

A E IfZ 1-129 1 0 5.37323E-06 END XE-131 1 0 1.48735E-OS END XE-132 1 0 3.16230E-05 END CS-133 1 0 3.81888E-05 END XE-134 1 0 4.75685E-05 END CS-134 1 0 2.34493E-06 END CS-135 1 0 1.70175E-05 END CS-137 1 0 3.77868E-05 END ND-143 1 0 2.89431E-05 END ND-144 1 0 2.2S113E-05 END ND-145 1 0 2.13053E-05 END ND-146 1 0 1.91614E-05 END PM-147 1 0 6.88738E-06 END SM-147 1 0 2.19753E-06 END ND-148 1 0 1.03445E-05 END SM-148 1 0 2.465522-06 END SM-149 1 0 1.63475E-07 END ND-150 1 0 4.59605E-06 END SM-150 1 0 7.81195E-06 END SM-151 1 0 6.87398E-07 END EU-151 1 0 1.32522E-09 END SM-152 1 0 3.49729E-06 END EU-153 1 0 2.43872E-06 END EU-154 1 0 4.19407E-07 END GD-154 1 0 2.49232E-08 END EU-155 1 0 1.05723E-07 END GD-155 1 0 1.66155E-09 END U-234 1 0 3.89928E-08 END U-235 1 0 6.12361E-04 END U-236 1 0 1.00000E-20 END U-238 1 0 2.15733E-02 END NP-237 1 0 7.23577E-06 END PU-238 1 0 1.40696E-06 END PU-239 1 0 1.35336E-04 END PU-240 1 0 3.26950E-05 END PU-241 1 0 1.88934E-05 END PU-242 1 0 3.21590E-06 END AM-241 1 0 5.52063E-07 END CM-242 1 0 8.22734E-08 END C4-243 1 0 1.32924E-09 2ND CM-244 1 0 6.76679E-08 END 5.00 30.00 KR-83 1 0 2.97471E-06 END XR-84 1 0 7.19557E-06 END KR-86 1 0 1.19658E-05 END M0-95 1 0 3.67148E-05 END TC-99 1 0 4.16727E-05 END RU-101 1 0 3.77868E-05 END RB-103 1 0 2.15733E-05 END AG-109 1 0 2.90771E-06 END SN-126 1 0 6.19060E-07 2ND 1-129 1 0 6.53899E-06 END XE-131 1 0 1.72855E-05 END XE-132 1 0 3.88588E-05 END CS-133 1 0 4.50226E-05 END XE-134 1 0 5.69482E-OS END CS-134 1 0 3.215902-06 ND CS-135 1 0 2.03674E-05 END CS-137 1 0 4.51566E-05 END ND-143 1 0 3.33649E-05 END ND-144 1 0 2.988112-05 END ND-145 1 0 2.49232E-05 END ND-146 1 0 2.33153E-05 2ND PM-147 1 0 7.31617E-06 2ND SM-147 1 0 2.81391E-06 END ND-148 1 0 1.23678E-05 2ND SM-148 1 0 3.41689E-06 END SM-149 1 0 1.63475E-07 END ND-150 1 0 5.58762E-06 END SM-150 1 0 9.51370E-06 END SM-151 1 0 7.31617E-07 END 2U-151 1 0 1.38016E-09 END 8M-152 1 0 4.15387E-06 END EU-153 1 0 3.17570E-06 END EU-154 1 0 5.98961E-07 END GD-1S4 1 0 4.26107E-08 END 2U-155 1 0 1.42036E-07 END GD-155 1 0 2.22433E-09 END U-234 1 0 4.85065E-08 END U-235 1 0 5.30623E-04 END U-236 1 0 1.oOOOOE-20 END U-238 1 0 2.14393E-02 END NP-237 1 0 9.40650E-06 END Page 4 (02/19/2003 2:28:40 PM)

D: \Keno\kenoinp2\sas2hlag\sxx.ed PU-238 10 2.25113E-06 END CA060 15 REY O PU-239 1 0 1.44715E-04 END PU-240 1 0 4.03327E-05 END PU-241 1 0 2.42532E-05 END PAGE PU-242 1 0 5.15884E-06 END AM-241 1 0 8.25414E-07 END CM-242 1 0 1.42036E-07 END CM-243 1 0 2.80051E-09 END CM-244 1 0 1.63475E-07 END 5.00 35.00 XR-B3 1 0 3.30970E-06 END XR-B4 1 0 8.32114E-06 END KR-B6 1 0 1.36676E-05 END 140-95 1 0 4.30126E-05 END TC-99 1 0 4.77025E-05 END RU-101 1 0 4.39506E-05 END RH-103 1 0 2.46552E-05 END AG-109 1 0 3.6312BE-06 END SN-126 1 0 7.55736E-07 END I-129 1 0 7.71815E-06 END XE-131 1 0 1.92954E-05 END XE-132 1 0 4.64965E-05 END CS-133 1 0 5.14544E-05 END XE-134 1 0 6.61939E-05 END CS-134 1 0 4.16727E-06 END CS-135 1 0 2.34493E-05 END CS-137 1 0 5.23923E-05 END ND-143 1 0 3.72508E-05 END ND-144 1 0 3.76528E-05 END ND-145 1 0 2.82731E-05 END ND-146 1 0 2.74691E-05 END PM-147 1 0 7.58416E-06 END SM-147 1 0 3.41689E-06 END ND-148 1 0 1.43375E-05 END SM-148 1 0 4.48886E-06 END SK-149 1 0 1.62135E-07 END ND-1SO 1 0 6.59259E-06 END SM-150 1 0 1.12020E-05 END SM-151 1 0 7.71816E-07 ND WU-151 1 0 1.40696E-09 END SM-152 1 0 4.75685E-06 END EU-153 1 0 3.9394BE-06 END EU-154 1 0 7.98615E-07 END GD-154 1 0 6.65959E-08 END EU-155 1 0 1.83574E-07 END GD-155 1 0 2.85411E-09 END U-234 1 0 6.00301E-08 END U-235 1 0 4.56926E-04 END U-236 1 0 1.OOOOOE-20 END U-238 1 0 2.14393E-02 END NP-237 1 0 1.16308E-05 END PU-238 1 0 3.309702-06 END PU-239 1 0 1.50075E-04 END PU-240 1 0 4.7568SE-05 END PU-241 1 0 2.90771E-05 END PU-242 1 0 7.S30S6E-06 END AM-241 1 0 1.11618E-06 END CM-242 1 0 2.17073E-07 END CM-243 1 0 5.05164E-09 END CM-244 1 0 3.39009E-07 END 5.00 40.00 XR-83 1 0 3.59109E-06 END KR-94 1 0 9.43330E-06 END XR-86 1 0 1.52755E-05 END MO-95 1 0 4.90424E-05 END TC-99 1 0 5.35983E-05 END RU-101 1 0 4.99804E-05 END RH-103 1 0 2.76031E-05 END AG-109 1 0 4.36826E-06 END SN-126 1 0 B.99112E-07 END 1-129 1 0 B.89732E-06 END XE-131 1 0 2.10373E-05 END XE-132 1 0 5.426838-05 END CS-133 1 0 5.77522E-05 END XE-134 1 0 7.543962-05 END CS-134 1 0 5.18564E-06 END CS-135 1 0 2.66652E-05 END CS-137 1 0 5.94941E-05 END ND-143 1 0 4.07347E-05 END ND-144 1 0 4.5826SE-05 END ND-145 1 0 3.16230E-05 END ND-146 1 0 3.17570E-05 END PM-147 1 0 7.7181SE-06 END SM-147 1 0 3.96627E-06 END ND-148 1 0 1.63475E-05 END SM-148 1 0 5.64122E-06 END SM-149 1 0 1.60795E-07 END Page 5 (02/19/2003 2:28:40 PM)

D:\Xeno\kenoinp2\sas2hlag\sxx.ed ND-150 1 0 7.61096E-06 END 1.28636E-05 END SM-150 SM-151 1 0 1 0 8.06654E-07 END CA060 15 REV EU-151 1 0 1.42036E-09 END SM-152 W1-153 1 0 1 0 5.33303E-06 4.73005E-06 END END PAGE /

EU-154 1 0 1.01167E-06 END GD-154 1 0 S.70129E-08 END EU-155 1 0 2.29133E-07 END GD-155 1 0 3.52409E-09 END U-234 1 0 7.42336E-08 END U-235 1 0 3.91268E-04 END V-236 1 0 1.OOOOOE-20 END U-238 1 0 2.13053E-02 END NP-237 1 0 1.39356E-05 END PU-238 1 0 4.60945E-06 END PU-239 1 0 1.5409SE-04 END PU-240 1 0 5.42683E-05 END PU-241 1 0 3.34989E-05 END PU-242 1 0 1.02909E-05 END AM-241 1 0 1.40696E-06 END CM-242 1 0 3.04170E-07 END CM-243 1 0 8.12014E-09 END CM-244 1 0 6.23080E-07 END 5.00 45.00 XR-83 1 0 3.84568E-06 END XR-84 1 0 1.05321E-05 END XR-86 1 0 1.67495E-05 END MO-95 1 0 5.48043E-05 END TC-99 1 0 5.92261E-05 END RU-101 1 0 5.58762E-05 END RH-103 1 0 3.04170E-05 END AG-109 1 0 5.11864E-06 END SN-126 1 0 1.04919E-06 END 1-129 1 0 1.00765E-05 END XE-131 1 0 2.26453E-05 END XE-132 1 0 6.23080E-05 END CS-133 1 0 6.36480E-05 END XE-134 1 0 8.455133-05 3ND CS-134 1 0 6.25760E-06 END CS-135 1 0 2.96131E-05 END CS-137 1 0 6.65959E-05 END ND-143 1 0 4.36826E-05 END ND-144 1 *05.42683E-05 EWD ND-145 1 0 3.47049E-05 END ND-146 1 0 3.60449E-05 END PM-147 1 0 7.77175E-06 END SM-147 1 0 4.47546E-06 END 10-148 1 0 1.83574E-05 END SM-148 1 0 6.88738E-06 END SM-149 1 0 1.58115E-07 END ND-150 1 0 8.64273E-06 END 6M-150 1 0 1.44715E-05 END SM-151 1 0 8.37473E-07 MDI EU-151 1 0 1.42036E-09 END SM-152 1 0 5.88241E-06 END EU-153 1 0 5.534023-06 END EU-154 1 0 1.23008E-06 END GD-154 1 0 1.33862E-07 END EU-155 1 0 2.77371E-07 END GD-155 1 0 4.20747E-09 N V-234 1 0 9.16531E-08 END U-235 1 0 3.32309E-04 END U-236 1 0 1.OOOOOE-20 END U-238 1 0 2.13053E-02 END SP-237 1 0 1.60795E-05 END PU-238 1 0 6.12361E-06 END PU-239 1 0 1.55435E-04 END PU-240 1 0 6.05661E-05 END PU-241 1 0 3.73848E-05 END PU-242 1 0 1.339963-05 END AM-241 1 0 1.67495E-06 END CM-242 1 0 3.97967E-07 N CM-243 1 0 1.19926E-08 END CM-244 1 0 1.04919E-06 N 5.00 50.00 XR-83 1 0 4.06007E-06 END 1R-84 1 0 1.16174E-05 END XR-86 1 0 1.82234E-05 END MO-95 1 0 6.02981E-05 END TC-99 1 0 6.45860E-OS END RU-101 1 0 6.17720E-05 END RN-103 1 0 3.28290E-05 END AG-109 1 0 5.86901E-06 END SN-126 1 0 1.20328E-06 END 1-129 1 0 1.12690E-05 END XE-131 1 0 2.39852E-05 END Page 6 (02/19/2003 2:28:40 PM)

D:\Xeno\kenoinp2\sas2hlag\sxx.ed XE-132 CS-133 1 0 1 0 7.06158E-05 6.92758E-05 END END CA060 15 REY o XE-134 CS-134 1 0 1 0 9.37970E-05 7.38317E-06 END END PAGE /6'r-CS-135 1 0 3.25610E-05 END CS-137 1 0 7.35637E-05 END ND-143 1 0 4.62285E-05 END ND-144 1 0 6.31120E-05 END ND-145 1 0 3.75188E-05 END ND-146 1 0 4.04667E-05 END PM-147 1 0 7.75835E-06 END SM-147 1 0 4.91764E-06 END ND-148 1 0 2.03674E-05 END SM-148 1 0 8.21394E-06 END SM-149 1 0 1.54095E-07 END ND-150 1 0 9.70129E-06 END SM-150 1 0 1.60795E-05 END SM-151 1 0 8.62933E-07 END EU-151 1 0 1.40696E-09 END SM-152 1 0 6.39160E-06 END EU-153 1 0 6.31120E-06 END EU-154 1 0 1.44715E-06 END GD-154 1 0 1.76874E-07 END WU-155 1 0 3.26950E-07 END GD-155 1 0 4.90424E-09 END U-234 1 0 1.12556E-07 END U-235 1 0 2.80051E-04 END U-236 1 0 1.OOOOE-20 END U-238 1 0 2.11713E-02 END NP-237 1 0 1.82234E-05 END PU-238 1 0 7.82535E-06 END PU-239 1 0 1.56775E-04 END PU-240 1 0 6.61939E-05 END PU-241 1 0 4.06007E-05 END PU-242 1 0 1.67495E-05 END AM-241 1 0 1.91614E-06 END CM-242 1 0 4.95784E-07 END CM-243 1 0 1.64815E-08 END CM-244 1 0 1.64815E-06 END 5.00 5;5. 00 XR-83 10 4.23427E-06 END XR-84 1 0 1.27028E-05 END XR-86 1 0 1.95634E-05 END MO-95 1 0 6.56579E-05 END TC-99 1 0 6.96778E-05 END RU-101 10 6.76679E-05 END RH-103 10 3.49729E-05 END AG-109 10 6.61939E-06 END SN-226 1 0 1.36676E-06 END 1-129 1 0 1.24482E-05 END XE-131 1 0 2.51912E-05 END XE-132 1 0 7.91915E-05 END CS-133 1 0 7.45016E-05 END XE-134 1 0 1.02775E-04 END CS-134 1 0 8.52213E-06 END CS-135 1 0 3.55089E-05 END CS-137 10 8.03975E-05 END ND-143 10 4.82385E-05 END ND-144 1 0 7.22237E-05 END ND-145 10 4.03327E-05 END ND-146 10 4.51566E-05 END PM-147 10 7.67796E-06 END SM-147 I 0 5.29283E-06 END ND-148 1 0 2.23773E-05 END SM-148 1 0 9.60750E-06 END SM-149 1 0 1.51415E-07 END ND-150 1 0 1.07599E-05 END SM-150 1 0 1.75534E-05 END SM-151 1 0 8.87052E-07 END EU-151 10 1.39356E-09 END SM-152 1 0 6.86058E-06 END EU-153 1 I0 7.08838E-06 END EU-154 0 1.66155E-06 END GD-154 0 2.25113E-07 END EU-155 0 3.77868E-07 END GD-155 0 5.58762E-09 END U-234 0 1.38016E-07 END U-235 0 2.33153E-04 END U-236 1 0I 1.00000E-20 END U-238 0 2.10373E-02 END NP-237 1' 0 2.02334E-05 END PU-238 0 9.70129E-06 END PU-239 0 1.56775E-04 END PU-240 1' 0 7.11517E-05 END PU-241 0 4.32806E-05 END PU-242 2.03674E-05 END 1 10 AM-241 0 2.11713E-06 END Page 7 (02/19/2003 228:40 PM)

D:\Keno\kenoinp2\bas2hlag\S5xx.ed CM-242 CK-243 1 0 1 0 5.92261E-07 END 2.15733E-08 END CAO015 RE.Y O CM-244 1 0 5.00 60.00 2.45212E-06 END PAGE KR-83 1 0 4.36826E-06 END XR-84 1 0 1.38016E-05 END XR-86 1 0 2.07693E-05 END M0-95 1 0 7.07498E-05 END TC-99 1 0 7.45016E-05 END RU-101 1 0 7.32957E-05 END RH-103 1 0 3.69828E-05 END AG-109 1 0 7.35637E-06 END SN-126 1 0 1.52755E-06 END 1-129 1 0 1.36676E-05 END XE-131 1 0 2.61292E-05 END XE-132 1 0 8.79012E-05 END CS-133 1 0 7.94595E-05 END XE-134 1 0 1.11886E-04 END CS-134 1 0 9.70129E-06 END CS-135 1 0 3.84568E-05 END CS-137 1 0 8.72312E-05 END ND-143 1 0 4.99804E-05 END ND-144 1 0 8.14694E-05 END ND-145 1 0 4.28786E-05 END ND-146 1 0 4.97124E-05 END PM-147 1 0 7.58416E-06 END SM-147 1 0 5.60102E-06 END ND-148 1 0 2.43872E-05 END SM-148 1 0 1.10546E-05 END SM-149 1 0 1.47395E-07 END ND-150 1 0 1.18318E-05 END SM-150 1 0 1.90274E-05 END SM-151 1 0 9.07151E-07 END EU-151 1 0 1.36676E-09 END SM-152 1 0 7.30277E-06 END W -153 1 0 7.82535E-06 END WU-154 1 0 1.86254E-06 END GD-154 1 0 2.78711E-07 END EU-155 1 0 4.27446E-07 END GD-155 1 0 6.25760E-09 END U-234 1 0 1.66155E-07 END U-235 1 0 1.92954E-04 END U-236 1 0 1.00000E-20 END U-238 1 0 2.09033E-02 END NP-237 1 0 2.21093E-05 END PU-238 1 0 1.16844E-05 END PU-239 1 0 1.56775E-04 END PU-240 1 0 7.54396E-05 END PU-241 1 0 4.52906E-05 END PU-242 1 0 2.41192E-05 END AM-241 1 0 2.27793E-06 END CM-242 1 0 6.84718E-07 END CM-243 1 0 2.67992E-08 END CM-244 1 0 3.47049E-06 END 5.00 65.00 XR-83 1 0 4.47546E-06 END XR-84 1 0 1.48735E-05 END RR-86 1 0 2.21093E-05 END MO-95 1 0 7.55736E-OS END TC-99 1 0 7.91915E-05 END RU-101 1 0 7.89235E-05 END R1-103 1 0 3.87248E-05 END AG-109 1 0 8.09334E-06 END SN-126 1 0 1.68835E-06 END 1-129 1 0 1.47395E-05 END XE-131 1 0 2.67992E-05 END XE-132 1 0 9.67449E-05 END CS-133 1 0 8.41493E-05 END XE-134 1 0 1.20864E-04 END CS-134 1 0 1.08805E-05 END CS-135 1 0 4.12707E-05 END CS-137 1 0 9.39310E-05 END ND-143 1 0 5.11864E-05 END ND-144 1 0 9.11171E-05 END ND-145 1 0 4.51566E-05 END ND-146 1 O 5.45363E-05 END PM-147 1 0 7.45016E-06 END SM-147 1 0 5.84221E-06 END ND-148 1 0 2.62632E-05 END SM-148 1 0 1.25420E-05 END SM-149 1 0 1.44715E-07 END ND-1S0 1 0 1.29172E-OS END SM-150 1 0 2.03674E-05 END SM-151 1 0 9.27251E-07 END EU-151 1 0 1.33996E-09 END SM-152 1 0 7.71815E-06 END EU-153 1 0 8.53553E-06 END Page 8 (02/19/2003 2:28:40 PM)

D:\Xeno\kenoinp2\saa2hlag\s5xx.ed EU-1s4 1 0 2.06353E-06 END GD-154 1 0 3.37669E-07 END 4.74345E-07 END EU-155 GD-155 1 0 1 0 6.90078E-09 END CA06015 REV U-234 1 0 1.98314E-07 END U-235 U-236 1 0 1 0 1.59455E-04 1.0000O-20 END END PAGE le7 U-238 1 0 2.09033E-02 END NP-237 1 0 2.38512E-05 END PU-238 1 0 1.38016E-05 END YU-239 1 0 1.55435E-04 END PU-240 1 0 7.932sse-05 END PU-241 1 0 4.70325E-OS END PU-242 1 0 2.800S1E-05 END AM-241 1 0 2.39852E-06 END CM-242 1 0 7.67796E-07 END CM-243 1 0 3.21590E-08 END CM-244 1 0 4.74345E-06 END 5.00 70.00 KR-83 10 4.55586S-06 END XR-84 10 1.59455E-05 END KR-86 10 2.33153E-05 END MO-95 10 8.01295E-05 END TC-99 10 8.34794E-05 END RU-101 10 8.45513E-05 END RH-103 10 4.01987E-05 END AG-109 10 8.79012E-06 END SN-126 10 1.86254E-06 END 1-129 10 1.59455E-05 END XE-131 10 2.74691E-05 END XE-132 10 1.05723E-04 END CS-133 10 8.85712E-05 END XE-134 10 1.29709E-04 END CS-134 10 1.20596E-05 END CS-135 10 4.40846E-05 END CS-137 10 1.00497E-04 ED ND-143 10 5.21243E-05 FND ND-144 10 1.00765E-04 END ND-145 10 4.74345E-05 END ND-146 10 5.94941E-05 END YM-147 10 7.31617B-06 END SM-147 10 6.029818-06 END ND-148 10 2.82731E-05 END SM-148 10 1.40696E-05 END SM-149 10 1.42036E-07 END ND-Iso 10 1.40696E-05 END SM-150 10 2.15733E-05 END SM-151 10 9.433302-07 END EU-151 10 1.32120E-09 END SM-152 10 8.10674E-06 END EU-153 10 9.20551E-06 END EU-154 10 2.23773E-06 END GD-154 10 3.97967E-07 END EU-155 10 5.19904E-07 END GD-155 10 7.51716E-09 END U-234 10 2.34493E-07 END U-235 10 1.29708E-04 END U-236 10 1.000OE-20 END U-238 10 2.076932-02 END NP-237 10 2.54592E-05 END PU-238 10 1.58115E-OS END PU-239 10 1.54095E-04 END PU-240 10 8.25414E-05 END PU-241 10 4.82385E-05 END PU-242 10 3.18910E-05 END AM-241 10 2.47892E-06 END CM-242 10 8.41493E-07 END CM-243 10 3.73848E-08 END CM-244 10 6.25760E-06 END Page 9 102/19/2003 2:28:40 PM)

CA06015 Revision 0 Page By' ATTACHMENT R ISOTOPIC BENCHMARK CASES

CA06015 REV a CCNPP PAGE f9t I *I* 1 I I I Isotopic Benchmark Cases for Calvert Cliffs Fuel 4 + I I t D047 D047 D047 D101 D101 D101 BT03 BT03 BT03 Percent MHP109 MHP109 MHP109 MLA098 MLA098 MLA98 NBDI07 NBDI07 NBDI07 Difference nuclide 27.35 37.12 44.34 18.68 26.62 33.17 31.40 37.27 46.46 (c-m)/m U234 -1.875 -3.571 0.833 12.857 14.876 4.167 -23.529 -15.748 25.901 1.546 U235 -5.431 -8.704 -9.322 -1.463 -4.179 -1.883 -1.036 -4.428 1.707 -3.860 U236 2.866 2.833 1.626 -0.00 -0.669 -1.227 1.049 -0.990 -0.658 0.448 U238 -0.653 -0.324 -0.109 -1.181 -1.616 -0.974 -0.781 -1.280 -0.387 -0.812 Pu238 -9.406 -6.349 -5.576 -23.299 -12.693 -6.271 -3.927 -2.928 -3.941 -8.266 Pu239 -1.970 -1308 0.987 -3.676 -3.340 1.982 3.304 4.042 8.072 0.899 Pu240 -2.269 -3.528 -4.444 -2.655 -3.171 -2.890 -1.306 -1.766 -1.116 -2.572 Pu241 -2.349 -2.879 -1.961 -6.869 -3.987 -0.062 -4.132 -3.567 0.542 -2.807 Pu242 3.460 4.688 2.738 -3.874 -0.333 -0.621 -3.716 -3.908 -5.902 -0.830 Np237 5.970 16.011 7.479 -1.626 -8.057 6.224 21.739 19.027 24.436 10.134 Cs133 1.529 2.752 3.226 2.503 Csl34 -2.800 -12.500 -18.333 -11.211 Csl35 3.889 2.000 1.395 3.943 3.526 4.819 8.911 11.566 5.637 5.076 Csl37 1.688 1.923 1.600 0.218 0.306 1.117 -0.669 2.921 -1.786 0.813 Nd143 0.489 -0.140 0.393 0.248 Ndl44 0.848 0.897 0.426 0.724 Ndl45 0.196 -0.459 -0.538 -0.267 Nd146 1.020 1.173 1.325 1.173 Ndl48 0.755 0.279 0.234 0.422 Ndl5O 2.419 3.488 4.327 3.412 Pm147-Sm147 -0.769 -3.031 -4.888 -2.896 Sml48 -17.642 -14.634 -18.018 -16.765 Sml49 -31.379 -27.333 -49.149 -35.954 Sml50 -2.415 3.690 -5.540 -1.422 Sm151-Eul51 11.028 26.559 35.276 24.288 Sml52 14.598 24.038 22.314 20.317 Eu153 1.013 11.009 2.703 4.908 m154-Eul54-Gdl5 -5.072 3.130 -2.969 -1.637 Eu155-Gd155 -26.160 -19.577 -24.440 -23.393 Asn241 -5.023 -11.017 -10.687 -7.946 -4.844 -3.333 -3.390 -14.384 -36.697 -10.813 Cm243-Cm244 -6.812 -4.130 -3.438 -18.902 -8.221 0.474 0.535 -3.893 -2.028 -5.157 Se79 8.791 9.013 18.952 12.252 Sr9O 8.932 6.102 7.143 7.392 Tc99 5318 6.504 12.593 0.707 4.696 5.310 45.455 45.089 41.284 18.551 Sn126 179.070 180.882 201.183 248.227 283.125 286.190 153.186 1129 -11.429 -6.224 -14.583 -10.745 orbench.xis Page

CA06015 Revision 0 Page ftb ATTACHMENT S BURNUP VS ENRICHMENT REGRESSION ANALYSIS

C:\Toolkit\Fit.out CA60 15 REV Y = A + (1) x + (2) x2 + B(3) x3 + B(4) x4 + ... PAGE //

Degree Of Fit, Standard Deviation, and Coefficient A Are:

Degree Of Fit: .......... 3 Standard Deviation:..... .9449E-01 Coefficient A: .......... -.3597023810E+02 Coefficients B(i) Are:

______26__5__________

.2657539683E+02 -.3238095238E+01 .2222222222E+00 x Y(entered) Y(calculated) Diff%

2.00000 6.00000 6.00595 .09921 2.50000 13.75000 13.70238 .34632 3.00000 20.50000 20.61310 .55168 3.50000 27.00000 26.90476 .35273 4.00000 32.75000 32.74405 .01818 4.50000 38.25000 38.29762 .12449 5.00000 43.75000 43.73214 .04082 Page 1 (02/27/2003 9:48:27 AM)

ATTACHMENT (6)

CALVERT CLIFFS UNIT 2 SFP DILUTION ANALYSIS Calvert Cliffs Nuclear Power Plant, Inc.

September 30, 2003

E;N-1-100 Forms Appendix Revisioyn 2 ESP No.: ES200100780 Supp No. I ORev. No. l0 Page 1 of 1 FORM 19, CALCULATION COVER SHEET INIIATION (Control Doc Type DCALC) Page 1 of '/6 DCALC No.: CA06016 RevisionNo.: 0 Vendor Calculation (Check one): 1 Yes 0 No Responsible Group: NEU Responsible Engineer. Gerard E. Gryczkowski CALCULATION ENGINEERING 0 Civil El sItr &Controls 03 NucEngrg DiSCIPLNE:

O Electrical 0 Mechanical O. Diesel Gen Project O Life Cycle Magmt 5 Reliability Engrg O Nuc Fuel Mngt O Other:

Tide: UNITS 1 AND 2 SPENT FUEL POOL DiLUTON ANALYSIS I i Unit O UNIT O tJNIT2 0n3 COMMON Proprietary or Safeguards Calculation O YES [ NO Comments:

Vendor Calc No.: REVisIONNO.:

Vendor Name:

Safety Class (Check one): 0 SR AQ 0 NSR There ane assumptions that require Verification during walkdon A1T #:

This calculation SUPERSEDES:

REVIEW AND APPROVAL:

Responsible Engineer: Gerard E. Gryczkowski Date:

lzxlya Ihependent Reviewer:

=

KLRnippel

:

%R

=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ..... ...

Date: /Z23

s. s ,=W Approval: M.T.Finley / /J Date: l (soZ I

CA06016 Rev.0 Page 2

2. LIST OF EFFECTIVE PAGES Page Latest Page Latest Page Latest Page Latest Page Latest Rev Rev Rev Rev Rev 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 0 010 0 011 0 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 022 0 023 0 024 0 025 0 026 0 027 0 028 0 029 0 030 0 031 0 032 0 033 0 034 0 035 0 036 0 037 0 038 0 039 0 040 0 041 0 042 0 043 0 044 0 045 0 046 0

CA06016 Rev.0 Page 3

3. REVIEWER COMMENTS

CA06016 Rev.0 Page 4

4. TABLE OF CONTENTS
01. COVER SHEET .......................... 1
02. LIST OF EFFECTIVE PAGES .2
03. REVIEWER COMMENTS ....................... ,.3
04. TABLE OF CONTENTS......................................................................................................4
05. PURPOSE .5
06. INPUT DATA AND TECHNICAL ASSUM IONS .................................................. ,.7
07. REFERENCES...................................................................................................................1 1
08. METHODOLOGY, CALCULATIONS, AND RESULTS .14
09. DOCUMENTATION OF COMPUTER CODES .25
10. CONCLUSIONS...............................................................................................................26 ATTACHMENT A: DENSITY CALCULATIONS..........................................................30 ATACHMENT B: FUEL DATA SPREADSHEET .34 ATTACHMENT C: SEP SNGLE RACK PLANAR GEOMETRY .36 ATTACHMENT D: UNIT 1 SFP PLANAR GEOMETRY...............................................38 ATTACHMENT E: UNIT 2 SFP PLANAR GEOMETRY .41 ATTACHMENT F: SFP AXIAL GEOMETRY .44 LAST PAGE OF REPORT .46

CA06016 Rev.0 Page 5 S. PURPOSE The objective of this evaluation is to confirm that design features, instrumentation, administrative procedures, and sufficient time are available to detect and mitigate boron dilution in the spent fuel pool (SFP) before the boron concentration is reduced below the value assumed in the SFP criticality analyses which credit boron to remain below the design basis criticality limit of 0.95 k-eff. This report identifies the potential boron dilution sources and dilution events, the instrentation available for detection of dilution, and the operating and administrative procedures available for the detection and mitigation of dilution. The report also identifies the potential events which could dilute the soluble boron contained in the Calvert Cliffs Nuclear Power Plant (CCNPP) Units 1 and 2 SFPs and quantifies the dilution rates and response times of each event. This report provides a methodology to evaluate potential spent fuel pool dilution events and is provided in conjunction with the criticality methodology of References 1 and 2.

Per Ref.45, allowing credit for soluble boron will allow the fresh fuel enrichment limit to be increased and the number of fresh fuel assemblies per cycle to be decreased. This will decrease fuel cycle costs, increase SFP cyclic capacities, decrease ISFSI requirements, decrease permanent DOE storage requirements, and result in an inherently safer operation.

CCNPP currently has Technical Specification requirements on the boron concentration in the spent fuel pool that are applicable during the movement of fuel assemblies. The precedents for crediting soluble boron to provide negative reactivity in the spent fuel pool have already been established when considering abnormal or accident conditions with respect to fuel handling and misleading by applying the double contingency principle. During refueling operations, the subcritical requirement of the fuel assemblies in the reactor core is met solely by controlling the boron concentration in the filled portions of the reactor coolant system. Credit for the boron in the spent fuel pool is an extension of the use of soluble boron for reactor core reactivity control purposes.

For an infinite axial and radial array of storage cells of nominal dimensions containing the maximum enrichment of 5.0 w/o Value Added Pellet (VAP) fuel at the worst case temperature of 40 0F, the maximum unborated k-effective value of 0.986 is calculated with all biases and uncertainties, which is less than the 10 CFR 50.68 regulatory value of 1.0. The maximum k-effective value of 0.947 at a moderator boron concentration of 300 ppm with all biases and uncertainties is less than the 10 CFR 50.68 regulatory value of 0.95. (If credit is taken for soluble boron, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel assembly reactivity must not exceed 0.95, at a 95% probability, 95% confidence level, if flooded with borated water, and the k-effective must remain below 1.0 (subcritical) at a 95%

probability, 95% confidence level, if flooded with unborated water.). Note that 300 ppm is a minimum boron concentration requirement. Per the Technical Assumptions of Refs. 1 and 2, 15% should be added to this value to account for all uncertainties. Thus a boron level of 350 ppm with uncertainties is required to credit soluble boron in the SFP and to safely store 5 w/o VAP fuel in the SFP.

The potential initiating events that could cause dilution of the boron in the spent fuel pool to a level below that credited in the criticality analyses fall into three categories: dilution by flooding, dilution by loss of coolant induced makeup, and dilution by loss of cooling system induced makeup. It is not credible that dilution could occur for the required length of time without c>; era6 n~~~~~tice~~~~~

w ~~i~~~t~~i1~~~~

~~i~~~br e event w~~~~~~~~d~~

S Et i araig a~~~~~~~~dSeCctiiaT-ile-gYeiey i ffe~~~~~ij~~~~Te~~~Eilifm and~iiit~x~t Building flooding. In addition, in excess of 1043000 gallons of unborated water must be added to the SFP to reach 350 ppm soluble boron concentration. This is more water volume than is contained in both pretreated water storage tanks and also more water volume than is contained in

CA06016 Rev.0 Page 6 the demineralized water storage tank and both condensate storage tanks combined. Even in the unlikely event that the SFP is completely diluted of boron, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986 including all biases and uncertainties.

CA06016 Rev.0 Page 7

6. INPUT DATA AND TECHNICAL ASSUMPTIONS (6.A) Spent Fuel Pool Geometry The SFP is a large rectangular structure that holds the spent fuel assemblies from the reactors in both units. Borated water fills the SFP and completely covers the spent fuel assemblies. The SFP is constructed of 6' of reinforced concrete and is lined with a 3/16" stainless steel plate, which serves as a leakage barrier. A 3.5' dividing wall separates the SFP, with the north half being associated with Unit-1 and the south half associated with Unit-2. A slot in the dividing wall has removable gates, which allow movement of fuel assemblies between the two halves of the pool. The SFP is located in the Auxiliary Building between the two containment structures.

(Ref.8)

Each half of the SFP is equipped with vertical spent fuel racks installed on the pool bottom. The fuel rack cells are individual double-walled containers approximately 14' 1" in height. The inner wall of each cell is made from a 0.06 inch thick sheet of stainless steel formed into a square cross-section container, indented on the comers, with an inside dimension of 8.5625 inches. The outer, or external, wall is also formed from a stainless steel sheet 0.06 inches thick. Plates of borated, neutron absorbing material are inserted between the two walls, in each of the four spaces formed by the indentations in the inner wall. The plates are made of a boron carbide ( 4 C) composite material (carborundum in Unit 1 and Boraflex in Unit 2) and are 6.5 inches wide by 0.09 inches thick. Each plate contains at least 0.020 grams of boron-10 per square centimeter of plate. Attachments C and F display a single SF? planar and axial storage cell geometry. The spacing between the cells is maintained at 10 3/32 inches, center to center, by external sheets and welded spacers. he boron plate inserts and assembly spacing help maintain the SFP assemblies in a subcritical condition. (Ref.15)

Storage Cell Pitch = 10.09375" (Ref.15)

Storage Cell Inner Dimension = 8.5625" (Ref.15)

Poison Sheet = 6.5"

  • 0.09" (Ref.15)

Inner Steel Wall = 0.06" (Ref.15)

Outer Steel Wall = 0.06" (Ref.15)

Storage Cell Height =14' 1"(Ref.25)

(6.B) SFP Levels (6.B. 1) The SFP low level alarm point is at 66'6" per Refs. 25 and 66.

(6.B.2) The SFP operating level is at 67'0" per Refs.08 and 32.

(6.B.3) The SFP overflow level (pipe centerline of 4" pipes) to the Auxiliary Building gravity drains is at 67'3" per Refs. 8 and 23. Note that the Auxiliary Building floor drains and the SFP overflow drains are connected, thus any backup would flood the 5' elevation first.

(6.B.4) The SFP floor elevation is 69'0" per Ref,32.

(6.B.5) The SF? curb elevation is 69'6" per Ref.32.

(6.B.6) The fuel transfer tube midpoint elevation is 35'6" per Ref.32.

. (6.B.7) The SFP upper level alarm point is at 67'2.75" per Ref. 66.

(6.C) Spent Fuel Pool Water Inventories at Lower Alarm Limit The Unit 1 SFP Gross Volume (VGSl) can be derived from the dimensions delineated in Attachments D and F, assuming that the SFP water level is at the lower alarm limit of 66'6" per VGS1 = (43'3")*(25'0"-96.0")*(666-30'0") + (54'0")*(96.0")*(66'6"-29'6"I) +

(1 8E'0")*(9'0")*(3040"-28'0.)

= 7.433618E+07 i&1 = 43018.63 Rt3

CA06016 Rev.0 Page 8 The Unit 2 SFP Gross Volume (VGS2) can be derived from the dimensions delineated in Attachments E and F, assuming that the SFP water level is at the lower alarm limit of 66'6" per Ref.25:

VGS2 = (43'31)*(25'0I-96.0)*(6616l -300'o') + (54'0H)*(96.0'I)*(66'6I-29'6"}

= 7.399404E+07 in3 = 42820.63 ft3 The corresponding Unit 1,Unit 2, and total SFP areas are AS1 = (43'3I)*(2510'1-96.0')+ (54'0")*(96.0") = 168084.0 in2 = 1167.250 ft2 AS2 = (43'3")*(25'0"'-96.0")+ (5410')*(96.0") = 168084.0 in2 = 1167.250 ft2 AST = 2334.500 ft2 It is necessary to adjust the SFP gross volumes by the assembly and storage rack displacements.

The Unit 1 SFP contains 830 assemblies and storage rack structures, while the Unit 2 SFP contains 1000 assemblies and storage rack structures (UFSAR 9.7.2.1). Each assembly and storage cell is composed of 176 VAP fuel pins of volume VFP, 5 guide tubes of volume VGT, an upper end fitting of volume VUEF, a lower end fitting of volume VLEF, and a storage cell of volume VSR. The data for the following calculations was extracted from Attachments A and B.

VFP = *(0.440'/2)2*(145.9")*(176) = 3904.480 in3 = 2.259537 ft3 VGT = n*(l .115 -1.035 2/4*(145.9")*(5) 98.54705 in3 = 0.057030 R3 VUEF = (1008.46665 in )*(l.-0.886177)= 114.7867 in3 = 0.066427 ft3 VLEF = (345.89186 in3 )*(1.-0.859993) = 48.42728 in:3 = 0.028025 ft3 VSR =4*(136.7")*f6.5")*(0.09") + 4*(169")*(8.5625"+0.12")*(0.12")

=1024.202 in = 0.592710 ft3 The Units 1 and 2 and combined SFP Net Volumes can thus be calculated.

VNS1 = 43018.63 ft3 - 830*(2.259537+0.057030+0.066427+0.028025+0.592710)

= 40525.53 ft3 VNS2 =42820.63 3 - 1000*(2.259537+0.057030+0.066427+0.028025+0.592710)

= 39816.90 ft3 VNS = 40525.53 ft3 + 39816.90 ft3 = 80342.43 3 A total SFP Net Volume of 79000 ft3 to the lower alarm limit will conservatively be used in all calculations in this work.

(6.D) Spent Fuel Pool Water Inventories at Overflow Limit The Unit 1 SFP Gross Volume (VGS1) can be derived from the dimensions delineated in Attachments D and F, assuming that the SFP water level is at the overflow limit of 67'3" per Ref.08:

VGS1 = (43'3")*(2510"-96.0")*(67'1 -30'0") + (54'0")*(96.0")*(67'1"-29'6") +

(11l'0")*(9'0")*(30'0"-28'0")

= 43699.52 ft3 The Unit 2 SFP Gross Volume (VGS2) can be derived from the dimensions delineated in Attachments E and F, assuming that the SFP water level is at the overflow limit of 67'3" per Ref08:

VGS2 = (43'3")*(25'0"-96.0")*(67'11"-30'0") + (54'0")*(96.0")*(67'1"-29'6")

= 43501.52 ft3 The Unts 1 anaW and comdeSSEP Net Volues can thus be calculated.

VNS 1 = 43699.52 ft3 - 830*(2.259537+0.057030+0.066427+0.028025+0.592710)

= 41206.42 ft3

. CA06016 Rev.0 Page 9 VNS2 = 43501.52 ft3 - 1000*(2.259537+0.057030+0.066427+0.028025+0.592710)

= 40497,79 fL3 VNS = 41206.42 ft3 + 40497.79 f = 81704.21 ft3 A total SF? Net Volume of 80000 ft3 to the overflow limit will conservatively be used in all calculations in this work.

(6.E) Maximum SFP Decay Heat Rate The maximum decay heat rate anticipated for 1830 fuel assemblies stored in the SF1 is 37.6x10 6 Btu/hr per UFSAR 9.4.1.

(6.F.) SFP Temperature Per UFSAR 9.4.1, in the event that any one loop is lost, the remaining two loops (either two SFPC loops or one SFPC loop and one SDC loop) can continue to maintain the pool temperature at or below 155 0 F (680C or 341.48 0K @ 0.9785 gm/cc per Ref 16) for 1830 fuel assemblies in the SFP including a full core offload.

(6.G) SFP Time to Boil Assuming that the SFP is at 155 0 F (See 6F), the time to boil excluding assembly heatup can be computed from the appropriate Ref.16 specific enthalpies and volumes:

Tsar 1550F Vs=0.01637 ft3/lbm hl=123.0 btu/lbm hfg=1005. 2 btu/bm 0

Tsi= 212 F Vs=0.01672 ft /lbm 3 h 1=l 80.2 btu/lbm hfg= 970.3 btu/bm t = (79000 ft3)/(0.01637 fO/lbm)*(180.2-123.0 btu/lbm)/(37.6E+06 btu/hr)

=7.3415 hr (6.H1) Bounding SF Boron Concentration The normal boron concentration maintained in the spent fuel pool is expected to be at least the same as that for the refueling boron Technical Specification. Per Refs.47 and 48, the Technical Specification Refueling Boron Concentration is greater than 2150 ppm. 2000 ppm will be conservatively used in this work.

(61) Time to Dilute to 350 PPM from 2000 PPM Due to Loss of Cooling Assuming that the water added to the SFP is unborated and at 1000F and assuming that sufficient unborated water is added to the SFP to maintain the SFP at 212F, the flow rate of water out of the SFP and down the gravity drains can be calculated to be Tsa= 100 0F Vs=0.01613 f 3 /lbm hf=68.0 btu/lbm hfg=10 3 7 .1 btulbm Tst= 212 0F Vs0.01672 ft3/lbm ht=180.2 btu/lbm hfg= 970.3 btu/bm F = (37.6E+06 btu/hr)*(0.01672 fl3 /lbm)/(180.2-68.0 btu/lbm)=5603.137 ft3/hr = 698.57 gpm SFP dilution can be modeled by the following algorithm (Ref,45):

dC/dt = F*CIV C = C

  • exp(-t*FN) t = (V/F)*ln(Co/C) t = (80000 fV / 5603.135 ft3/hr)
  • n(2000/350) = 24.88 hr The amount of water flowing down the gravity drain is vw(24.88 r) -(56O3.137 t37hr) -1394T.0 fl- =1042827 gals

CA06016 Rev.0 Page 10 (6.J) Time to Fuel Uncovery Due to Loss of Cooling:

The boioffrate due the maximum decay heat rate is B = (37.6E+06 btu/hr)*(0.01672 fi3 /lbm)/(970.3 btu/lbm) = 647.9151 ft3 /hr The time rate of decrease in ool level is D = B/AST =647.9151 fW1hr/ 2334.5 fL2 =0.2775 f/hr The time to fuel uncovery is thus t=(67'1"45'1.625")/(0.2775 ft/r) 79.09 hr (6.K) RWT Boron Concentration Per Technical Specification Surveillance Requirement 3.5.4.4 and Ref.58, the RWT boron concentration must be greater than or equal to 2300 ppm. This must be verified every 7 days.

(6.L) Water Sources (MAXIMUMS)

(6.L.1) 2 Pretreated Water Storage Tanks:

Vol=(23.25')(39.5)=67080 ft3 =501792 gal (Refs.49-50)

(6.L.2) 2 Condensate Storage Tanks:

Vol=n(20.25' 2 (32.66667)=42083 f=3 14801 gal (Refs.49-5 1)

(6.L.3) 1 Demineralized Water Storage Tank:

Vol=-(20.25') 2(36.33333')=46806 f3=350135 gal (Refs.49-52, TFSAR 9.4.4)

(6.L.4) 2 Refueling Water Tanks:

Vol = 420000 gal = 56146 ft3 (Refs.49 and UFSAR 9.4.4)

(6.L.5) Well water: 3 well water pumps and filters at 175 gpm each (Ref56 and UFSAR 9.4.4)

(6.L.6) Water for the fire protection system is supplied by two full-capacity fire pumps. One pump is an electrically driven 2500 gpm horizontal centrifugal pump, and the other is a diesel engine-driven 2500 gpm horizontal centrifugal pump. The fire pumps take suction from the two 500000 gallon capacity pretreated water storage tanks. (Ref.54 and UFSAR 9.9.4) Fire stations HS-69-4 and HS-69-6 service the fuel handling and storage area. (Ref.54)

(6.L.7) Plant service water isolation valves -PSW-140, -PSW-139, and 0-PSW-251 are low flow rate systems which take suction on the two 500000 gallon capacity pretreated water storage tanks. (Ref.54).

(6.L.8) Dernineralized water isolation valves 0-DW-302 and 0-DW-190 are low flow rate (150 gpm) systems which take suction on the 350000 gallon demineralized water storage tank (Ref.54 and UFSAR 9.4.4).

(6.L.9) Plant heating system valve 0-PH-281 is a low flow rate system which take suction on the two 500000 gallon capacity pretreated water storage tanks. (Ref54).

(6.L. 10) The two 1390 gpm SFP cooling pumps can supply 420000 gallons of borated water from each refueling water tank (Ref.54 and UFSAR 9.4.4).

(6.L. 11) No fire protection sprinkler system exists in the fuel handling area (Ref.54)

CA06016 Rev.0 Page 11

7. REFERENCES (01) "Unit 1 Spent Fuel Pool Enrichment Limit with Soluble Boron Credit", CA06011 (02) "Unit 2 Spent Fuel Pool Criticality Analysis with Soluble Boron and Burnup Credit but without Boraflex Credit", CA06015.

(03) "Criticality Accident Requirements", 10 CFR 50.68 (04) "Design Bases for Protection Against Natural Phenomena", 10 CFR 50 App.A GDC 2 (05) "Fuel Storage and Handling and Radioactivity Control", 10 CFR 50 App.A GDC 61 (06) "Monitoring Fuel and Waste Storage", 10 CFR 50 AppA GDC 63 (07) "Review and Acceptance of Spent Fuel Storage and Handling Applications", B.K.Grimes (NRC) to All Power Reactor Licensees, 4/14/78 (08) "Spent Fuel Pool and Cooling System Description", Rev.0, October 1997.

(15) "Nuclear Design Analysis Report for the CCNPP Unit 1 High Density Spent Fuel Storage Racks", NES Report 81A0567 Rev.2.

(16) 1967 Steam Tables, New York St. Martin's press, 1967 (17) "Impact of Zirlo on the Reactivity Bias", Westinghouse Interoffice Correspondence CA-2001-0026 (18) "mplementation of Zirlo Cladding Material in CE Nuclear Power Fuel Assembly Designs",

CENPD-404-P Rev.0 (19) "Nuclides and Isotopes, Chart of the Nuclides", GE Nuclear 14th Edition.

(20) "Introduction to Nuclear Engineering", J.R.Lamarsh, 12/77.

(21) "Standard Composition Library", NUREG/CR-0200 Rev.6 Volume 3 Section M8 (22) "Fuel Storage Rack Installation in Pool", BGE Drawing 13939-0014 Rev.5 (23) "Auxiliary Building SFP Liner Plan and Sections Sheet 1", BGE Drawing 61-706-E Rev.18.

(24) " Fuel Storage Rack Installation in Pool", BGE Drawing 13939-0038 Rev.2 (25) "uel Handling Accident during Reconstitution", CA04048 (26) "Design Input Data for CCNPP ISFSI", NEU-01-016.

a727) "'GuideTubeAsseimblyDetails", BGE Drawing E-STD-701-303 Re&.5.-'

(28) "Evaluation of Type A Irradiated Fuel Assembly Drop on SFP Floor", BGE Calculation 95-0128 Rev.02.

CA06016 Rev.0 Page 12 (29) "Evaluation of Type B Irradiated Fuel Assembly Drop on SFP Floor", BGE Calculation 95-0125 Rev.02.

(30) "Evaluation of Type C Irradiated Fuel Assembly Drop on SF? Floor", BGE Calculation 95-0180 Rev.01.

(31) "Evaluation of Fuel Assembly Drop on SFP Floor", BGE Calculation 95-0115 Rev.02.

(32) "Equipment Location Containment and Auxiliary Building Unit No.1 Section A-A", BGE Drawing 60215 Rev.3.

(33) "SFP Cooling, Pool Fill and Drain Systems", BGE Drawing 60716, Rev.51.

(34) "Area No.16 Piping Partial Plan and Sections El.27'0" ", BGE Drawing 60421, Rev.17.

(35) "Area No. 16 Spent Fuel Cooling", BGE Drawing 12530A-64, Rev.6.

(36) "Area No. 16 Spent Fuel Cooling Pipe MK. No. 8" HC-4-1020", BGE Drawing 12530A-65, Rev.4.

(37) "Area No. 16 Spent Fuel Cooling", BGE Drawing 12530A-55, Rev.3.

(38) "Area No. 16 Spent Fuel Cooling", BGE Drawing 12530A-14, Rev.2.

(39) "Area No. 16 Spent Fuel Cooling", BGE Drawing 13530A-35, Rev.4.

(40) "Area No. 16 Spent Fuel Cooling", BGE Drawing 13530A-14, Rev.5.

(41) "Auxiliary Building SFP Liner Sections and Details", BGE Drawing 61707SH0002, Rev. 19.

(42) "Spent Fuel Pool Storage", SRP 9.1.2 Rev.3, 7/81.

(43) "Spent Fuel Pool Cooling and Cleanup System", SRP 9.1.3, Rev.1, 7/81.

(44) "Spent Fuel Storage Facility Design Basis", Regulatory Guide 1.13, Rev.1, 12/75.

(45) "Crediting Soluble Boron in LWR Spent Fuel Pools", CE NPSD-985-P, 01/1995.

(46) "New Fuel Storage", SRP 9.1.1, Rev.2, 7/81.

(47) Irtnit 1 Cycle 15 Technical Data Book", NEOP-13 Rev.14.

(48) "Unit 2 Cycle 14 Technical Data Book", NEOP-23 Rev.14.

(49) "Plant Property and Buildings", BGE Drawing 61502SH0002 Rev.19 (50) "2 Pretreated Water Storage Tanks 46'6" Dia x 39'6" High", BGE Drawing 12329A-0001 (51) "Condensate Storage Tank #12", BGE Drawing 12329C-12 Rev.D

CA06016 Rev.0 Page 13 (52) "Demineralized Water Tank", BGE Drawing 12329D-O1.

(53) "CCNPP Unit 1 and 2 Filling Spent Fuel Pool", Procedure OI-24F Rev.3.

(54) "Exemption from Criticality Monitoring Requirements", Letter from C.H.Cruise to NRC, NRC-97-008, 8/19/96.

(55) "Fire Suppression Water System", Technical Requirements Manual 15.7.5.

(56) "Well Water", OI-23ARev.12 (57) "SFP Skimmer Operation", OI-24C Rev.I.

(58) "Specification and Surveillance Primary Systems", CP-204 Rev.15 (59) "Control of Shift Activities", NO-1-200 Rev.22 (60) "Beyond Design Basis Accidents in Spent Fuel Pools", NUREG- 1353, April 1989.

(61) "0-TIA-2001 Master Calibration Data Package", 11/13/97 (62) "0-TIA-2002 Master Calibration Data Package", 2/4/98 (63) "0-TS-1997 Master Calibration Data Package", 8/9/00 (64) "0-TS-1998 Master Calibration Data Package", 8/9/00 (65) "ISFSI Loading", ISFSI-Ol, Rev.6.

(66) "Setpoint File for System 067", NEQR440, 04/13/2000.

CA06016 Rev.0 Page 14

8. METHODOLOGY, CALCULATIONS, AND RESULTS The first step in the dilution analysis is to identify potential initiating events that could cause dilution of the boron in the spent fuel pool that could eventually lead to a substantial reduction of at least several hundred ppm in the pool boron concentration. A boron dilution event in the spent fuel pool could be initiated by external events, a variety of human errors, or component malfunctions. The potential initiating events were developed based-on a review of the events in NUREG -1353 (Ref.60) and a systematic evaluation of the unborated water sources that interface with the pool. External events include fire in the vicinity of the pool, external floods at the site, storms causing runoff into the spent fuel pool area, seismic induced failures of piping, missile generation causing leaks in the piping, and airplane crashes into the fuel handling building.

Other dilution events include small loss of inventory events, tank ruptures in the vicinity of the pool, breaks in the cooling system piping or heat exchangers, random breaks in the piping, dilution events initiated in the reactor coolant system, and misalignment of valves interfacing with the spent fuel pool. The NUREG-1353 initiating events include structural failures -

(Missiles, Aircraft Crashes, Heavy Load Drops), pneumatic seal failures, inadvertent drainage, loss of cooling/makeup, and seismic structural failure.

The methodology employed in this work entails calculation of the SFP volumes, dilution volumes, and dilution times for SFP boron dilution events with various dilution sources and flow rates. The initial SFP boron concentration was determined in Section 6.H, while the endpoint of the boron dilution event corresponds to the SFP boron concentration credited in the criticality analyses (Refs.1-2) to maintain k-eff.0.95. The time to dilute to this endpoint determines the available response time for the operators to detect and stop the dilution event.

(8.A) Flooding Per Ref.4, structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena, such as earthquakes, tornadoes, hurricanes, floods, and tsunami, without loss of capability to perform their safety functions. Even in the unlikely event that the SFP is completely diluted of boron, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986.

(8.A.1) Flooding by Tsunami Since there has been no record of tsunamis on the northeastern United States coast, it is not believed that the site will be subjected to a significant tsunami effect (UFSAR 2.6.6).

(8.A.2) Flooding by Hurricane The relative frequency of hurricane occurrence for the CCNPP site is slightly more than one hurricane per year. For the Probable Maximum Hurricane (PMi), it is assumed that the peak hurricane surge is coincident with normal high tide and with a 99th percentile wave height. The total predicted wave run-up is to Elevation 27.1', which is considerably less than the 69' elevation of the top of the SFP. Thus the maximum hypothetical flood level is below the top of the SFP elevation (UFSAR 2.8.3).

(8.A.3) Flooding by Storms The auxiliary building is a concrete structure and qualified for high winds. Therefore, severe storms with high winds are not expected to cause sufficient damage to the roof, thus allowing a large volume of rain to enter tne buldingand- becoming an unboraled source0t1 water othe pool.

The 6" lip around the SFP (BGE Drawing 61706E Sheet 1 Rev.18 - Ref.23) should cause the bulk of the entering rain water to flow out of the SFP area via the 13 floor drains, 13 doors, and 2 tendon end cap shafts.

CA06016 Rev.0 Page 15 (8SA4) Flooding by Ousite Water Sources The onsite water sources that can flood the SFP and cause dilution below the minimum boron concentration calculated in Refs.1-2 are detailed in Section 6.L. The large volume of water necessary to dilute the pool to the boron endpoint precludes many small tanks as potential dilution sources. The large unborated water sources such as reactor makeup water and demineralizer water are in tanks at the tank farm at elevations below the spent fuel pool, so that gravity feed from these tanks to the spent fuel pool is not possible. It would be very unlikely that the large volumes of water necessary, to substantially dilute the spent fuel pool (i.e., to the boron endpoint) could be 'silently" transferred from these tanks to the spent fuel pool without being detected by plant personnel. Dilution events that have the potential to dilute the SEP boron concentration to a value less than the minimum required are not credible events based on existing level alarms and the stored inventory of demineralized water in the systems interfacing with the SFP.

(8A4.a) Fire Protection System The possibility of a fire in the spent fuel pool area leading to a boron dilution event is not a credible event. Typically, combustible loadings around the pool area are expected to be minor.

If the fire hose stations were used to extinguish a fire, the volume of water required to extinguish a local fire is not expected to be of sufficient magnitude to dilute the pool such that a several hundred ppm reduction in the pool boron concentration would occur.

Water for the fire protection system is supplied by two full-capacity fire pumps. One pump is an electrically driven 2500 gpm horizontal centrifugal pump, and the other is a diesel engine-driven 2500 gpm horizontal centrifugal pump. The fire pumps take suction from the two 500000 gallon capacity pretreated water storage tanks. (Ref 54 and UFSAR 9.9.4) Fire stations HS-69-4 and HS-69-6 service the fuel handling and storage area. (Ref.54)

Fire in the fuel handling building could result in a large amount of unborated water entering the SFP while attempting to extinguish the fire. The rate of addition of unborated water from a fire would be insufficient to exceed the minimum boron level of 350 ppm, since sufficient time would exist to take compensatory measures (i.e., add additional boron to the SFP). In addition, the discussion on incomplete boron mixing indicates that the unborated water would tend to float on the surface of the pool and overflow the SFP as water continues to flow into the SFP. Thus the fuel assemblies should remain surrounded by borated water. Finally, assuming that the fire is not directly over the SFP, the 6" lip around the SFP (BGE Drawing 61706E Sheet 1 Rev.18 -

Ref£23) should cause the bulk of the water used to extinguish the fire to flow out of the SEP area via the 13 floor drains, 13 doors, and 2 tendon end cap shafts.

At a dilution rate of 2500 gpm directly into the SEP, it will take 6.95 hours0.0011 days <br />0.0264 hours <br />1.570767e-4 weeks <br />3.61475e-5 months <br /> to dilute the SEP from 2000 to 350 ppm.

t = (80000 ft3) / (20052.14 ft?/r)

  • ln(2000/350) = 6.95 hr It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarn and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of pretreated water must be added to the SFP to reach 350 ppm soluble boron concentration. This is twice the water volume that is contained in a single pretreated water storage tank. Assuming that a fire hose was inserted into the SFP and discharged at the maximum rate of 2500 gpm, it would exhaust the pretreated water storage tank

-it ithat p poproimat -3 .4 w n psw uld e actuate and pump 600 gpm into the pretreated water storage tank. An additional 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> would be required for the SFP to be diluted to 350 ppm at this rate.

CA06016 Rev.0 Page 16 (8.A.4.b) Plant Service Water Isolation Valves 0-PSW-140, O-PSW-139, and 0-PSW-251 Plant service water isolation valves 0-PSW-140, 0-PSW-139, and 0-PSW-251 are low flow rate systems which take suction on the two 500000 gallon capacity pretreated water storage tanks.

(Ref.54). Note that this case is bounded by 8A.4.a.

(8.A.4.c) Misalignment of Valves Interfacing with the SFP: Demineralized Water Isolation Valves 0-DW-302 and 0-DW-190 A path that interfaces with the spent fuel pool and unborated water sources could become a dilution path. If isolation valves are either left in the open position or fail in the open position, a potential dilution path is available. During spent fuel pool operation, makeup to the spent fuel pool may be required. The resins in the demineralizer tank may also have to be flushed or changed periodically. If valves are misaligned, it is possible that unborated water could be delivered to the spent fuel pool. Demineralized water isolation valves 0-DW-302 and 0-DW-190 are low flow rate (150 gpm) systems which take suction on the 350000 gallon dernineralized water storage tank (Ref.54 and UFSAR 9.4.4).

At a dilution rate of 150 gpm, it will take 115.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> to dilute the SFP from 2000 to 350 ppm.

t = (80000 ft?) / (1203.128 ft3/hr)

  • ln(2000/350) = 115.9 hr It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of demineralized water must be added to the SFP to reach 350 ppm soluble boron concentration. This is three times more water volume than is contained in the demineralized water tank.

(8.A.4.d) Plant Heating System Valve 0-PH-281 Plant heating system valve 0-PH-281 is a low flow rate system which take suction on the two 500000 gallon capacity pretreated water storage tanks. (Ref.54). Note that this case is bounded by 8.A.4.a.

(8.A.4.e) SFP Cooling Pumps The two 1390 gpm SFP cooling pumps can supply 420000 gallons of borated water from each refueling water tank (Ref.54 and UFSAR 9.4.4). Note that per 6.J, the RWT boron concentration exceeds that in the SF?. Thus this does not constitute a dilution event.

(8.A.4J) Incomplete Mixing Via Stratification The unlikely probability of an inadvertent boron dilution event reducing the SFP boron concentration to less than 350 ppm is based on the assumption of complete mixing of the boron in the SF?. The complete mixing assumption may not always be valid, if the circulation flow in the SF? is insufficient to prevent stratification. Where stratification has occurred (Robinson 2 12/20/88 and San Onofre 1 1/23/89 - Ref.45), it was observed that the diluted water floated on the higher borated water. This suggests that if stratification does occur, the water with the higher boron concentration will tend to be in the lower level of the SFP where the fuel assemblies are located. The possibility of boron stratification in the SFP can be eliminated by circulating the SFP water via the SFP cooling or purification systems.

(8.A.4.g) Incomplete Mixing Via Ribbon Effect Another type of incomplete boron mixing is a ribbon effect, where a channel of unborated water b-reg-i-twayaFPambiy lo-c-tion If theSFP- ooling-or p ffica ton tff e operation, mixing will occur in the piping systems eliminating any ribbon effects. Assuming that the SFP cooling and purification systems are not in operation, an analysis using turbulent jet and diffusion theory was performed to determine the extent of any ribbon effect. Per Ref.45,

CA06016 Rev.0 Page 17 the change in concentration per length of the jet flow can be estimated via the algorithm Q/Q. =

0.42* z/d, where Q. is the volumetric flow rate at the nozzle discharge, d is the nozzle diameter, and Q is the volumetric flow rate at a distance z from the nozzle along the axis of symmetry. The volumetric flow will increase along the jet flow path, due to entrainment of the bulk liquid as the jet flow diameter increases. The ratio of volumetric flow rate to the initial volumetric flow rate determines the amount of bulk fluid entrained in the jet flow and thus is representative of the boron concentration along the flow path C

  • Q=Co * (Q Qo)

Q/Qo = Co/(Co - C) = 0.42

  • z / d For a C. of 2000 ppm and a 10" diameter pipe (the largest discharge pipe in the SFP is an 8" diameter pipe, thus the use of a 10" pipe is conservative), C will reach 350 ppm within 29" of the nozzle discharge. Thus it is unlikely that a diluted ribbon flow of less than 350 ppm could reach the fuel, since the tops of the SFP racks and nearest nozzle are in excess of 27" above the active fuel region of the assemblies stored in the racks.

(8.A4.h) Tank Rupture in the Vicinity of the SFP No tanks containing any significant amount of water are stored in the vicinity of the SFPs.

(8-A4.i) Breaks in the Spent Fuel Pool Cooling System Piping or Heat Exchangers A break in the heat exchanger would cause a dilution of the spent fuel pool due to the inflow of water from the cooling water system. The SFPC heat exchangers are cooled by service water (UFSAR 9.4.2). The service water system is a closed system and uses plant denineralized water with a corrosion inhibitor added. Additional makeup may be provided by the condensate system.

(UFSAR 9.5.2.2) Assuming that the break occurs in one loop of the SFPC system and that the corresponding 1390 gpm pump stays in operation pumping unborated water into the SFP, the time to dilution is t = (80000 ft3) / (11149 ft3 /hr)

  • ln(2000/350) = 12.5 hr It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of demineralized water must be added to the SFP to reach 350 ppm soluble boron concentration. This is more water volume than is contained in the demineralized water storage tank and both condensate storage tanks combined.

(8.A.4.k) Dilution Events Initialed in the Reactor Coolant System Another set of dilution events could be initiated by failures that could dilute both the boron concentration in the reactor coolant system (RCS) and the spent fuel pool via the refueling pool.

There are valves from the CVCS to the spent fuel pool that could be left open so that an inadvertent dilution event of the reactor coolant system would not only deliver unborated water to the reactor vessel, but also to the spent fuel pool. Possible initiating events that could impact the reactor coolant system are operator error such as selecting dilution instead of makeup, failures in the makeup system (e.g., valves do not open, boric acid pumps do not operate) so that boric acid is not delivered to the blender, the valve for the emergency boration flushing line is left open, failures of the temperature control system in the thermal regenerative demineralizers during the storage mode of operation, valves left open following flushing operations of the demineralizer tanks, and valves left open after chemical addition to the chemical addition tank.

-- The-ab-v-inadvartent ditutiofven ithe--eacto-rslatsysem-woldbe-readily-obsrved and emergency boration would be initiated (which would provide borated water to the spent fuel pool). The amount of water required to dilute the SFP, the refueling pool, and the reactor coolant system is much greater than that required to dilute just the SFP. Thus more water volume than is

CA06016 Rev.0 Page 18 contained in the demineralized water storage tank and both condensate storage tanks combined would be required for dilution. It is not credible that dilution could occur for this length of time during a refueling outage without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding.

(8.A.4.1) Dilution Event Coupled with a Loss of Offsite Power The SFP instrumentation is not powered from the emergency diesel generators, thus a loss of offsite power would therefore affect the plant's ability to respond to a dilution event. However, the loss of offlite power would also affect electric pumps involved in the dilution event. The large unborated water sources such as reactor makeup water and demineralizer water are in tanks at the tank farm at elevations below the spent fuel pool, so that gravity feed from these tanks to the spent fuel pool is not possible. It would be very unlikely that the large volumes of water necessary, to substantially dilute the spent fuel pool (i.e., to the boron endpoint) could be

'silently" transferred from these tanks to the spent fuel pool without being detected by plant personnel. Dilution events that have the potential to dilute the SFP boron concentration to a value less than the minimum required are not credible events based on the stored inventory of unborated water in the systems interfacing with the SFP.

(8.B) Dilution by Loss of SFP Coolant Inventory Per Ref.44, the fuel handling and storage facilities should be designed to prevent loss of water from the fuel pool that would uncover fuel, via natural events (Seismic Category 1), dropping of heavy loads (single-failure proof crane), and small leaks (coolant makeup system and level and radiation monitors). Per Ref.5, the SFP fuel storage and handling systems shall be designed to prevent significant reduction in fuel storage coolant inventory under accident conditions. Per UFSAR 14.18.1, fuel pool structural integrity is assured by designing the pool and the spent fuel storage racks as Category I structures.

Only partial structural failures, where makeup can compensate for the loss of coolant, can cause a dilution event. Even in the unlikely event that the SFP is completely diluted of boron by a total loss of inventory and a refill with unborated water, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986.

(8.B.1) Earthquake and Tornado Induced Loss of Coolant Per Ref.4, structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena, such as earthquakes, tornadoes, hurricanes, floods, and tsunami, without loss of capability to perform their safety functions.

(8.B.1.a) Tornadoes Per UFSAR 5.6.1.1, the Auxiliary Building is primarily a reinforced concrete structure and the mat foundation supports a structural steel and reinforced concrete frame, which consists mainly of reinforced concrete walls and floors. On the top structure and over the fuel handling area is a secondary steel frame structure with missile resistant concrete walls and roof, which houses the Spent Fuel Cask Handling Crane. Per UFSAR 5.6.1.3, the steel-framed structure over the SFP is designed to resist tornadoes and missiles without partial or complete collapse, except for the west wall. A study indicates that the possibility of tornado missiles impacting the SFP from the west side is remote. A minimum of 18" thick concrete for missile protection is provided in the roof and the north, east, and south walls. In addition, a 2 foot thick concrete missile barrier positioned at rotfdtnthd-S F fhelf-1n4iteletifni

-ffbf i? igh -ct( ry-misil-eg-eri-earated -by -ta-binie-overspeed incident (Ref.08).

CA06016 Rev.O Page 19 (8.1B.1.b) Earthquakes In accordance with Seismic Category I requirements, the SP and SFPCS are designed to withstand the maximum calculated vibratory ground motion of an earthquake.

(8.B.2). Heavy Object Drop Induced Loss of Coolant Per Ref.4, the weight of all loads being handled above stored spent fuel shall not exceed that of one fuel assembly and its associated handling tool.

(8.B.2.a) Dropped Cask Per Ref 7, accidents shall include dropping of a fuel assembly on top of the racks and a cask or heavy object drop onto the SEP racks. Heavy loads in excess of 1600 lbs are prohibited from travel over spent fuel assemblies in the SFP unless such loads are handled by a single-failure proof device. The Spent Fuel Cask Handling Crane was upgraded to single-failure proof in 1992, is designed in accordance with the single-failure proof criteria of NTJREG-0554 and NUREG-0612, and is used to handle heavy loads in the SEP area. The maximum design rated load for the Spent Fuel Cask Handling Crane is 150 tons for the main hoist and 15 tons for the auxiliary hoist (UFSAR 9.7.2.4). Thus the cask or heavy object drop accident is not a credible event.

Per UFSAR 14.18, structural integrity of the fuel pool is further ensured due to the presence of an energy absorbing cask support platform in the cask pit area of Unit as a Seismic Category structure which can absorb the impact of a cask drop from the cask handling crane and safely transfer the loads to the pit floor. This platform provides a second line of defense against the extremely unlikely event of a cask drop, which is already precluded by the single-failure-proof spent fuel handling crane.

-(8.B.2.b) Dropped Assembly Per UFSAYR 14.18.1, the likelihood of a fuel handling incident is minimized by administrative controls and physical limitations imposed on fuel handling operations. All refueling operations are conducted in accordance with prescribed procedures under direct surveillance of a qualified supervisor. Inadvertent disengagement of a fuel assembly from the fuel handling machine is prevented by mechanical interlocks; consequently, the possibility of dropping and damaging of a fuel assembly is remote. The maximum elevation to which the fuel assemblies can be raised is limited by the design of the fuel handling hoists and manipulators to assure that themniu depth of water above the top of a fuel assembly required for shielding is always present.

Even though the assembly drop is unlikely, per Refs.28-3 1, the SEP concrete plus liner plate are stronger than the assembly bottom casting and fuel and guide tubes for impact of a fresh or irradiated VAP fuel assembly with an inserted CEA (1350-1360 bm). The bottom casting is, in turn, stronger than the fuel and guide tubes. Essentially all impact inetic energy absorption will take place in the fuel and guide tubes. Interface forces between the bottom assembly and the liner plate would be limited by the buckling of the fuel and guide tubes which isof insufficient magnitude to cause perforation of the liner plate. In addition, for impact over the collection trenches in the SEP, the interface forces between the bottom assembly and the liner plate would be limited by the buckling of the fuel and guide tubes which is of insufficient magnitude to cause perforation of the liner plate. Terefore, for both full contact impact and impact over the collection trenches of a fresh or irradiated VAP fuel assembly with an inserted CEA (1350-1360 lbm), the liner plate would not be perforated.

CA06016 Rev.0 Page 20 (8.B.2.C) Airplane Crash into the SFP Per UFSAR 5.6.1.1, the Auxiliary Building is primarily a reinforced concrete structure and the mat foundation supports a structural steel and reinforced concrete frame, which consists mainly of reinforced concrete walls and floors. On the top structure and over the fuel handling area is a secondary steel frame structure with missile resistant concrete walls and rooft which houses the Spent Fuel Cask Handling Crane. This steel-framed structure over the SFP will resist airplane crashes without partial or complete collapse. Two foot thick concrete for missile protection is provided in the roof and the north, east, and south walls. In addition, a 2 foot thick concrete missile barrier positioned at the 118-foot elevation protects the SFP from a high trajectory incident (Ref.08).

It is possible that an airplane crash that does not damage the spent fuel pool could cause damage in the immediate area of the spent fuel pool. It is likely that a large fire would occur. If water were used to extinguish the fire, it is possible that the boron concentration in the spent fuel pool could be diluted significantly. However, the mean hit frequency is estimated to be 6E-9/yr in NUREG- 1353 (Ref. 60). The frequency of this event is small enough that the event need not be analyzed firther.

(8.B.3) Pipe Break Induced Loss of Coolant Per Ref.43, the SFP and cooling systems must be designed so that in the event of failure of inlets, outlets, piping, or drains, the pool level will not be inadvertently drained below a point approximately 10 feet above the top of the active fuel. Pipes or external lines extending into the pool that are equipped with siphon breakers, check valves, or other devices to prevent drainage are acceptable as a means of implementing this requirement.

The most serious failure to the system is the loss of SF? water. This is avoided by routing all SFP piping connections and penetrations above the water level and providing them with siphon breakers to prevent gravity drainage UFSAR 9.4.4). Per Refs.33-41, the SFP inlets to the SFP cooling and purification systems (pipes 8"-HC-4-1020 and 8"-HC-4-2020) are above the spent fuel racks but penetrate the SFP liner at 65' 11" centerline elevation, while the SFP discharge pipes from the shutdown cooling system, purification system, RWT, and demineralized water tank (10"-HC-4-1042 and 10"-HC-4-2042) are above the spent fuel racks but also penetrate the SFP liner at 65' 11" centerline elevation. The SF? does not contain any permanent drains, thereby, preventing accidental drain down.

Per Ref.08, the SFP is located in the Auxiliary Building between the two containment structures.

During refueling operations, the SFP is connected to the refueling pool in containment by the water-filled transfer tube, which is the only SFP penetration below the waterline. The fuel transfer tube penetration consists of a 36" diameter stainless steel tube inside a 42" diameter stainless steel penetration sleeve. The two concentric tubes are sealed to each other by a bellows-type expansion joint. Thus transfer tube leakage would require an unlikely double pipe break.

During plant operations, the fuel transfer tube is closed in the SF? by a 36-inch stainless steel parallel slide gate valve. Inside the containment, the fuel transfer tube is sealed with a double 0-ring blind flange. Thus leakage during plant operations would also require the simultaneous failure of the gate valve and blind flange. Loss of SFP level via a pipe break in the refueling pool during refueling operations would be minimized by rapid closure of the transfer tube valve.

(8.B-4)-SFP Le kaige- -.-.-.-.------ --.--- ___

Per UFSAR 9.4.4, the SFP is designed to preclude the loss of structural integrity. Per UFSAR 5.6.1.2, a 3/16" solid stainless steel liner plate was used on the inside face of both pools for leak tightness, and all of the field welds have leak-test channels welded to the outer side of the liner

CA06016 Rev.0 Page 21 plates. The channels are grouped into ten zones, each with its own detector pipe to localize leaks in the liner seams. Even with the precautions described, small leaks may still occur in the SFF.

Early detection of pool leakage and prompt replacement of water is essential. Early leakage detection is assured by a surveillance, which requires that the minimum pool level be verified at least once every 7 days. In practice, level is checked once every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> as required by the Auxiliary Building log sheets. In addition, a level alarm keeps the Control Room Operator aware of level changes. PEO 0-067-02-0-M (SFP Leakage Test) requires a regular check for leakage, as well.

Per Ref.08, prompt replacement of water loss due to leakage prevents the fuel from being uncovered. Makeup water can be supplied, via the SFP Cooling and Purification System, from the refueling water tanks or the Demineralized Water System.

(8.C) Loss of Cooling System Per Ref.7, accidents shall include loss of cooling systems or flow unless single failure proof.

Even in the unlikely event that the SFP is completely diluted of boron due to a loss of cooling incident, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986.

The Spent Fuel Pool Cooling (SFPC) system is common to both units. The SFPC system is a closed-loop system consisting of two half-capacity 1390 gpm pumps and two half-capacity heat exchangers in parallel, a bypass 128 gpm cartridge-type filter which removes insoluble particulates, and a bypass 128 gpm mixed bed resin demineralizer which removes soluble ions.

The SFPC heat exchangers are cooled by service water (UFSAR 9.4.2 and Ref.08). The normal configuration for the cooling system is one pump/one cooler loop in operation on each half of the spent fuel pool to cool the water. However, the purity and clarity of the water is maintained by passing a portion of the flow through the purification system. The purification system consists of a filter to remove insoluble particulates and a dernineralizer (ion exchanger) which removes soluble ions. Ten skimmers are provided in the spent fuel pools to remove accumulated dust and debris from the surface of the water.

Connections are provided for tie-in to the Shut Down Cooling (SDC) system to provide for 2000 gpm of additional heat removal in the event that 1830 fuel assemblies are contained in the pool.

One shutdown cooling heat exchanger in the unit whose core was off-loaded may be operated to supplement the SEP cooling system. The SFP Cooling and Purification System has temporary connections which, with the installation of spool pieces, permit cross connection with the Safety Enjection System (SIS). The connections that go to the SIS are in the suction lines of the SFP pumnps. The connections that return the cooled water from the SIS tap in downstream of the SFP coolers. When the pressure in the SDC system is greater than the design pressure of the SFPC system, the SFPC system is isolated from the SDC system via two manual isolation valves.

Although not required by the design code, double valve isolation is provided at this system interface to meet the original FSAR design basis (UFSAR 9.4.2).

Per UFSAR 9.4.4, the design of the SFPC System and pool structural components (e.g., pool liner plate, SFPC piping and pumps) for a total loss of cooling is not part of the system's design basis. The entire SFPC system is tornado-protected and is located in a Seismic Category I structure (UFSAR 9.4.2).

EVe-itrough1oss-of SF? cd76liig-isnit- parft-dffig is ffect-fthat e analyzed. Assuming that the Units 1 and 2 SFPs contain 1830 assemblies generating the maximum possible heat load of 37.6E+06 btu/hr (Section 6E) and assuming the worst case initial SFP temperature of 155 0F (Section 6F), then the time to boil can be calculated as 7.34 hours3.935185e-4 days <br />0.00944 hours <br />5.621693e-5 weeks <br />1.2937e-5 months <br />

CA06016 Rev.0 Page 22 (Section 6G). Time to core uncovery is 78.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> (Section 6J). However, loss of coolant via boiling will not result in a loss of soluble boron, since the soluble boron is not volatile. Thus loss of SFPC system without makeup flow is not a mechanism for boron dilution. If sufficient unborated water is added to the SFP to just keep the water from boiling and if the excess fluid flows down the Auxiliary Building gravity drains associated with the SFP overflow level (Section 6.B.3), it would take 24.88 hours0.00102 days <br />0.0244 hours <br />1.455026e-4 weeks <br />3.3484e-5 months <br /> to dilute the SFP to 350 ppm (Section 61). It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of demineralized water must be added to the SFP to reach 350 ppm soluble boron concentration. This is three times more water volume than is contained in the demineralized water tank.

(8.D) Radiation Monitors and Alarms Per Ref.6, appropriate systems shall be provided in fuel storage and radioactive waste systems and associated handling areas (i) to detect conditions that may result in loss of residual heat removal capability and excessive radiation levels and (ii) to initiate appropriate safety actions.

Per Ref43, the SFPCS except for the cleanup portion of the system must withstand the effects of natural phenomena, must have an adequate monitoring system (leakage detection, radioactivity monitors, conductivity monitors, flow alarms, temperature alarms, level alarms), must have adequate valve isolation, must have an inservice inspection program.

(8D.1) Radiation Monitors Per UFSAR 14.18.1, radiation monitors located at the fuel handling areas would provide both audible and visual warning of high radiation levels in the event of a low water level or dropped assembly in the SFP. Per Ref.54, three area radiation monitors are provided for detecting high radiation levels in the fuel storage areas. The monitors are located in the SFP area, the Spent Fuel Handling Machine, and the New Fuel Storage Area. Each monitor contains a gamma sensitive Geiger-Mueller tube and has an indicating range of 10 4to 101 R per hour. The SFP area and New Fuel Storage Area monitor alarm setpoint is 5x10-3 R per hour, while the Spent Fuel Handling Machine monitor alarm setpoint is lxlO-2 R per hour. At the alarm setpoint, audible and visual alarms annunciate locally and in the Control Room. The output of each monitor is also recorded in the Control Room.

Radiation monitors are also installed in the Service Water return header from the SFP coolers to detect possible in-leakage of radioactive liquids through the heat exchangers (UFSAR 9.5.2.2).

(8.D.2) SFP High Level Alarms The spent fuel pool high level alarm would alert the operators to increasing volume in the spent fuel pool. If the alarm does not function, water would be flowing out of the pool and would drain to other levels in the building such that a dilution event would be readily noticed well before any substantial reduction in the spent fuel pool boron concentration occurs. Per Section 6.B.7, the high level alarm point is at 67' 2.75".

(8.D.3) SFP Low Level Alarms The spent fuel pool low level alarm would alert the operators to decreasing volume in the spent fuel pool. If the alarm does not function, the pool level could continue to drop. Eventually, radiation from the fuel in the SFP racks would cause the radiation alarms to activate. Per Section 6-B.-lIthe-low-level alarmris at66'6". ---

CA06016 Rev.0 Page 23 (8.D.4) SFP Temperature Alarm SFP temperature instrumentation 0-TIA-2001 and -TIA-2002 provides SP indication and alarm on the control room panel 1C13. The instrument temperature range is from 800F to 160 0F, while the upper alarm setpoint is at 1200F (Refs.61-62).

(8.D.5) SFP Cooling System Alarms Temperature switch 0-TS-1997 (-1998) on the SFP cooler outlet causes an audio-visual alarm to actuate in the Control Room if the outlet temperature reaches 100 F. This alarm (SFP Cooler Disch Temp Hi) is on panel 1C13 (Refs.63-64). Additional instrumentation is provided to monitor the pressure and flow of the spent fuel pool cooling and cleanup system.

(8.E) Supervision and Inspection Dilution of the SFP to below the minimum boron level of 350 ppm will be prevented by supervision and inspection activities.

(8.E.1) Filling the SFP Via Procedure O-24F Filling the SFP with demineralized water from the Demineralized Water Tank or with borated water from the Refueling Water Tank is controlled by Procedure OI-24F (Ref.53). In each case, an operator must be stationed on the 69 foot level to monitor SFP level, while lineup is being performed and while the pool is being filled. The operator monitoring the pool levels shall be in radio communication with the control room and with the person doing the lineup.

If demineralized water is being added to the SFP via the 69' demineralized water hose connection (150 gpm), the rate of SFP level rise is very slow (-1 inch/hr), therefore a continuous SFP watch is not required. However, frequent tours of the SFP area are required and the level must be closely monitored at C13 in the control room.

(8.E.2) Inspection of the Pretreated Water Storage Tank Via TRM 15.7.5 Technical Verification Requirement 15.7.5.1 requires verification that. each Pretreated Water Storage Tank contains greater than or equal to 300000 gallons of water every 7 days.

(8.E.3) SF? Skimmer Operation Via OI-24C Per Ref.57, prior to placing any skimmers on service, the SFP water level shall be at least one or two inches above the top edge of the skimmer plate. In addition, all SFP system evolutions shall be supervised by a Plant Watch Supervisor.

(8.E.4) SFP Boron Level Per Ref 58, the SFP boron concentration should be verified to be at the Refueling Boron Concentration Administrative Limit in Modes 1-5 at least once per week. In Mode 6, the verification shall be performed daily.

(8.E.5) Control of Shift Activities Via NO-1-200 Per Ref.59, the duties of Operations shall include (a) During core alterations, a Senior Reactor Operator shall be designated as Fuel Handling Supervisor, shall directly supervise alteration from the Containment 69' elevation, and have no other concurrent duties. His duties shall also include implementation of appropriate AOPs for abnormally rising count rates and reduction in SFP level.

tby-PlantOperators-shall-make-one-complete-rounuring-each-12-hour -shift including1e-veI-indication in the SFP area. The operator shall identify and contain all water leakage and shall look for damaged piping and instrument tubing, noting excessive vibration.

(c) An operator shall normally be present at a pump prior to startup.

CA06016 Rev.0 Page 24 (8.E.6) ISFSI Cask Loading Per Ref.65, approximately 1000 gallons of borated water are pumped from the SP to the DSC/IC prior to insertion of the DSC/TC into the SFP. In addition. demineralized water is used to wash down the TC and cables to control contamination and is used to fill the DSC/TC annulus. This has the potential to cause some dilution of the SFP. However, the following administrative controls minimize the dilution potential: (1) the control room supervisor and plant chemistry shall be notified prior to the discharge of water into the SP, (2) pipes and hoses passing into the SFP shall not be left unattended, (3) ensure that plant chemistry is notified to collect a SFP sample to verify a boron concentration greater than 1950 ppm prior to DSC/TC operations, (4) notify control room supervisor that no actions shall be taken that may reduce SFP boron concentration. Note that the maximum dilution rate for this operation is -200 gpm, thus the consequences of this operation are bounded by those of Section 8.A.4.a.

  • CA06016 Rev.0 Page 25
9. DOCUMENTATION OF COMPUTER CODES No computer codes were utilized in this work.

CA06016 Rev.0 Page 26

10. CONCLUSIONS The objective of this evaluation is to confirm that design features, instrumentation, administrative procedures, and sufficient time are available to detect and mitigate boron dilution in the spent fuel pool before the boron concentration is reduced below the value assumed in the SFF criticality analyses which credit boron to remain below the design basis criticality limit of 0.95 k-eff. This report identifies the potential boron dilution sources and dilution events, the instrumentation available for detection of dilution, and the operating and administrative procedures available for the detection and mitigation of dilution. The report also identifies the potential events which could dilute the soluble boron contained in the Calvert Cliffs Nuclear Power Plant (CCNPP) Units 1 and 2 SFPs and quantifies the dilution rates and response times of each event. This report provides a methodology to evaluate potential spent fuel pool dilution events and is provided in conjunction with the criticality methodology of References 1 and 2.

Per Refs.1-2, a boron level of 350 ppm with uncertainties is required to credit soluble boron in the SF? and to safely store 5.0 w/o VAP fuel in the SFP. The normal boron concentration maintained in the spent fuel pool is expected to be at least the same as that for the refueling boron Technical Specification, which is greater than 2150 ppm. 2000 ppm was conservatively used in this work.

The potential boron dilution sources include the two 500000 gallon Pretreated Water Storage Tanks, the two 314800 gallon Condensate Storage Tanks, the 350000 gallon Demineralized Waterae Tallo e Water Tanks, and thre well water pumps and filters at 175 gpm each. Water for the fire protection system is supplied by two full-capacity 2500 gpm fire pumps, which take suction from the two 500000 gallon capacity pretreated water storage tanks. No fire protection sprinkler system exists in the fuel handling area. Plant service water isolation valves 0-PSW-140, 0-PSW-139, and 0-PSW-251 are low flow rate systems which take suction on the two 500000 gallon capacity pretreated water storage tanks. Demineralized water isolation valves 0-DW-302 and 0-DW-190 are low flow rate (150 gpm) systems which take suction on the 350000 gallon demineralized water storage tank. Plant heating system valve 0-PH-281 is a low flow rate system which take suction on the two 500000 gallon capacity pretreated water storage tanks. The two 1390 gpm SP cooling pumps can supply 420000 gallons of borated water from each refueling water tank.

Potential initiating events that could cause dilution of the boron in the spent fuel pool to a level below that credited in the criticality analyses fall into three categories: dilution by flooding, dilution by loss of coolant induced makeup, and dilution by loss of cooling system induced makeup. Even in the unlikely event that the SFP is completely diluted of boron, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986.

Dilution by flooding includes the effects of tsunamis, hurricanes, storms, failure of the fire protection system, failure of the plant service water isolation valves, misalignment of the demineralized water isolation valves, failure of the plant heating system valves, effects of the SF? cooling pumps, tank rupture in the vicinity of the SFP, breaks in the SFP cooling system piping or heat exchangers, and reactor coolant system failures. Since there has been no record of tsunamis on the northeastern United States coast, it is not believed that the site will be subjected to a significant tsunami effect. While the relative frequency of hurricane occurrence for the CCNPP site is slightly more than one hurricane per year, the total predicted wave run-up is to

- Elevation-27-.1'-which is--congiderably-less-hantthe- 69'levationof-thtop of the -SEP.T The auxiliary building is a concrete structure and qualified for high winds; therefore, severe storms with high winds are not expected to cause sufficient damage to the roof and thus will not result in

CA06016 Rev.0 Page 27 a large volume of rain entering the building and becoming an unborated source of water to the pool. In addition, the 6"' lip around the SFP should cause the bulk of the entering rain water to flow out-of the SEP area via the 13 floor drains, 13 doors, and 2 tendon end cap shafts. Onsite water sources can flood the SFP and cause dilution below the minimum boron concentration.

The worst case dilution source is a 2500 gpm fire hose discharging directly into the SFP. At a dilution rate of 2500 gpm directly into the SFP, it will take 6.95 hours0.0011 days <br />0.0264 hours <br />1.570767e-4 weeks <br />3.61475e-5 months <br /> to dilute the SEP from 2000 to 350 ppm. It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of pretreated water must be added to the SFP to reach 350 ppm soluble boron concentration. This is more water volume than is contained in both pretreated water storage tanks and also more water volume than is contained in the demineralized water storage tank and both condensate storage tanks combined. Dilution events that have the potential to dilute the SP boron concentration to a value less than the minimum required are not credible events based on existing level alarms and the stored inventory of unborated water in the systems interfacing with the SFP.

The unlikely probability of an inadvertent boron dilution event reducing the SP boron concentration to less than 350 ppm is based on the assumption of complete mixing of the boron in the SEP. The complete mixing assumption may not always be valid, if the circulation flow in the SFP is insufficient to prevent stratification. Where stratification has occurred, it was observed that the diluted water floated on the higher borated water. This suggests that if strai -oes occur, t e th th higher oronconcentration will tnd to be in the lower level of the SP where the fel assemblies are located. The possibility of boron stratification in the SFP can be eliminated by circulating the SFP water via the SFP cooling or purification systems.

Another type of incomplete boron mixing is a ribbon effect, where a channel of unborated water bores its way to a SFP assembly location. If the SFP cooling or purification systems are in operation, mixing will occur in the piping systems eliminating any ribbon effects. If the SEP cooling and purification systems are not in operation, an analysis using turbulent jet and diffusion theory indicates that the fluid will homogenize within 29" of the nozzle discharge. Thus it is not possible that a diluted ribbon flow of less than 350 ppm could reach the fuel.

Dilution via loss of SEP coolant inventory includes the effects of tornadoes, earthquakes, cask drop, assembly drop, airplane crash, pipe break and general SP leakage. Structural failures caused by dropping of heavy loads or by missiles are postulated to cause enough damage to the pool so that there is no possibility of retaining water in the pool. Since the pool cannot hold water, this accident sequence directly leads to a zircaloy cladding fire and cannot cause a dilution event. Only partial structural failures, where makeup can compensate for the loss of coolant, can cause a dilution event. Even in the unlikely event that the SFP is completely diluted of boron by a total loss of inventory and a refill with unborated water, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986. The steel-framed structure over the SFP is designed to resist tornadoes and missiles. In addition, a 2 foot thick concrete missile barrier positioned at the 118-foot elevation protects the SP from a high trajectory missile generated by a turbine overspeed incident. In accordance with Seismic Category I requirements, the SFP and SFPCS are designed to withstand the maximum calculated vibratory ground motion of an earthquake.

The-SperFuel-CaskH dling Crane w pgraded tosingle-failure -prf in1992and-is-used-to handle heavy loads in the SFP area. Thus the cask or heavy object drop accident is not a credible event. Structural integrity of the fuel pool is further ensured due to the presence of an energy

CA06016 Rev.0 Page 28 absorbing cask support platform in the cask pit area of Unit 1 as a Seismic Category I structure which can absorb the impact of a cask drop from the cask handling crane and safely transfer the loads to the pit floor. This platform provides a second line of defense against the extremely unlikely event of a cask drop, which is already precluded by the single-failure-proof spent fuel handling crane. In addition. an analysis of the pool floor indicates that the SFP bottom is capable of safely withstanding the impact of the accidental drop of the cask. Cracks will be developed by diagonal tension near the support but they will be of microscopic type considering the sheer stresses. The structural integrity of the SFP bottom will not be impaired.

The likelihood of a fuel handling incident is minimized by administrative controls and physical limitations imposed on fuel handling operations. All refueling operations are conducted in accordance with prescribed procedures under direct surveillance of a qualified supervisor.

Inadvertent disengagement of a fuel assembly from the fuel handling machine is prevented by mechanical interlocks; consequently, the possibility of dropping and damaging of a fuel assembly is remote. For both full contact impact and impact over the collection trenches of a fresh or irradiated VAP fuel assembly with an inserted CEA (1350-1360 bm), the liner plate would not be perforated.

The steel-framed structure over the SFP will resist airplane crashes without partial or complete collapse. Two foot thick concrete for missile protection is provided in the roof and the north, east, and south walls. In addition, a 2 foot thick concrete missile barrier positioned at the 118-4oot..e leva~ion-protects the SEP r"high tmiectoryincident The most serious failure to the system is the loss of SF? water. This is avoided by routing all SFP piping connections and penetrations above the water level and providing them with siphon breakers to prevent gravity drainage. The SF? does not contain any permanent drains, thereby, preventing accidental drain down.

Dilution may also occur via loss of SFP cooling. The design of the SFPC System and pool structural components (e.g., pool liner plate, SFPC piping and pumps) for total loss of cooling is not part of the system's design basis. The entire SFPC system is tomado-protected and is located in a Seismic Category I structure. Even though loss of SFP cooling is not part of the design basis, the effect of that event was analyzed. Assuming that the Units 1 and 2 SFPs contain 1830 assemblies generating the maximum possible heat load of 37.6E+06 btu/hr and assuming the worst case initial SFP temperature of 155F, then the time to boil can be calculated as 7.34 hours3.935185e-4 days <br />0.00944 hours <br />5.621693e-5 weeks <br />1.2937e-5 months <br />.

Time to core uncovery is 78.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />. However, loss of coolant via boiling will not result in a loss of soluble boron, since the soluble boron is not volatile. Thus loss of SFC system without makeup flow is not a mechanism for boron dilution. If sufficient unborated water is added to the SFP to just keep the water from boiling and if the excess fluid flows down the Auxiliary Building gravity drains associated with the SFP overflow level, it would take 24.88 hours0.00102 days <br />0.0244 hours <br />1.455026e-4 weeks <br />3.3484e-5 months <br /> to dilute the SFP to 350 ppm. It is not credible that dilution could occur for this length of time without operator notice, since this event would activate the high level alarm and initiate Auxiliary Building flooding. In addition, in excess of 1043000 gallons of demineralized water must be added to the SFP to reach 350 ppm soluble boron concentration. This is three times more water volume than is contained in the demineralized water tank.

The instrumentation available for detection of dilution are the following: SFP Radiation

-Moitors-and--klarnsSFP -High-Level- Alarms, SF --Low-Ltevel larms7SFP -Temperature-Alarm, and SFP Cooling System Alarms. Additional instrumentation is provided to monitor the pressure and flow of the spent fuel pool cooling and cleanup system.

CA06016 Rev.0 Page 29 Operating and administrative procedures are available for the detection and mitigation of dilution events. Filling the SFP with demineralized water from the Demineralized Water Tank or with borated water from the Refueling Water Tank is controlled by Procedure OI-24F. In each case, an operator must be stationed on the 69 foot level to monitor SFP level, while lineup is being performed and while the pool is being filled. The operator monitoring the pool levels shall be in radio communication with the control room and with the person doing the lineup. The SFP boron concentration should be verified to be at the Refueling Boron Concentration Administrative Limit in Modes 1-5 at least once per week. In Mode 6, the verification shall be performed daily. Per procedure NO-1-200, during core alterations, a Senior Reactor Operator shall be designated as Fuel Handling Supervisor, shall directly supervise alteration from the Containment 69' elevation, and have no other concurrent duties. His duties shall also include implementation of appropriate AOPs for abnormally rising count rates and reduction in SFP level. Plant Operators shall make one complete round during each 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> shift including level indication in the SF? area. The operator shall identify and contain all water leakage and shall look for damaged piping and instrument tubing, noting excessive vibration. An operator shall normally be present at a pump prior to startup.

In conclusion, the potential initiating events that could cause dilution of the boron in the spent fuel pool to a level below that credited in the criticality analyses fall into three categories:

dilution by flooding, dilution by loss of coolant induced makeup, and dilution by loss of cooling system induced makeup. It is not credible that dilution could occur for the required length of tih,, wit iot perauw nntfre since this ent wudacti el alarm and initiate lvhigh Auxiliary Building flooding. In addition, in excess of 1043000 gallons of unborated water must be added to the SFP to reach 350 ppm soluble boron concentration. This is more water volume than is contained in both pretreated water storage tanks and also more water volume than is contained in the demineralized water storage tank and both condensate storage tanks combined.

Even in the unlikely event that the SFP is completely diluted of boron, the SFP will remain subcritical by a design margin of k-eff not to exceed 0.986.

CA06016 Rev.0 Page 30 ATTACHMENT A DENSITY CALCULATIONS

cdqo6qI' jyvt2 Densities

__ A B C D E l F G H t Carborundum Material Densities:

2 _ _ _ _

3 F= 1B4C density racthn B10L / PST I B1OA *MWB4C AWB4 / DB4C 4 F= - 0.240685 0.213007 0.191706 6 B10L = B10 Loading (gm/cm2) 0.020 0.017700 0.015930 Ref.15 7 PST = Poison Sheet Thickness (cm) = 0.090"

  • 2.54 = 0.2286 0.2286 0.2286 Ref.15 8 BI0A = Abundance of B10 In a/f 0.19900 0.19900 0.19900 Ref.19 9 B11A= 11 abundance in a/f _ 0.80100 0.80100 0.80100 Ref.19 10 AWB10 = B10 atomicweight in gm/mole 10.012937 10.012937 10.012937 Ref.19 11 AWB11 = S11 atomic weight in gm/mole 11.009306 11.009306 11.009306 Ref.19 12 AWB = B atomic weight in gm/mole 10.81103 10.81103 10.81103 calculated 13 AWC =Atomic Weight of C l 12.01100 12.01100 12.01100 Ref.19 14 MWB4C = Molecular Weight of B4C 55.2551 55.2551 55.2551 calculated 15 AWB4 = Atomic Weight of Natural B InB4C 43.2441 43.2441 43.2441 calculated 16 DB4C = Density of 4C in gm/cc 2.52 2.52 2.52 Ref.21 17 B1OW B10 abundance in w/f 0.18431 0.18431 0.18431 Ref.21 t8 19 20 ZIRLO Material Densities 21 __ __

22 IN(ATOMS/B-Ci A)=DZ

  • f
  • NA-IAW I C

-4 - 4 4. i 4.

4-I. . . . 4.

24 ffwto) AW(gm/mole) N 25 Sn 1.00 118.71 3.2594E-04 _

26 Fe 0.11 55.847 7.6211 E-05 _ -

27 Nb 1.00 92. 90638 4.1647E-04 28 Zr 97.89 91.224 4.1520E-02 29 100.00 30 31 f = Zrlo composition n w/o Refs.17-18 32 DZ = Zirlo density in gm/cc 6.425 Ref. 18 33 AW = Atomic weight In gm/mole _ Ref.19 34 NA = Avogadro's Number in atoms/mole 6.022E+23 Ref.20 35 C bams/cm2 .OOE24 _ _ Ref.20 41 44 45 42 _ _____ __._______ ____.___._

46 47 48 . - .- . -

49 50 z1 inpXLS

G6616

,~~'IF, Ar fa' O Densities Aj z A I B C D E F G H 51 OPTIN Material Densities 52 I 53 N(ATOMS/B-C )DZ *f

  • NA / AW / C 54_

55 f(w/o) AW(gm/mole) N.

56 Sn 1.25 118.71 4.1535E-04 57 Fe 0.21 55.847 1.4832E-04 58 Cr 0.10 51.996 7.5862E-05 59 0 0.12 15.9994 2.9585E-04 60 Zr 98.32 91.224 4.2514E-02 61 100.00 62 _

63 f = Optin composition In w/o Refs.17-18 64 DZ= Optin density In gm/cc 6.550 Ref.18 65 AW = Atomic weight in gm/mole RefI9 66 NA = Avogadro's Number in atoms/mole _ 6.022E+23 _ _ Ref.20 67 C = bams/cm2 1.00E+24 Ref.20 768 69 70 Soluble oron Density 71 1 I~

72 D(H3803) = f

  • D(H20)
  • MW( 13B03) I AWi = Density of H3i03 in am/cc 4

________ - +

_ . .. _. i i v -- I1 4 4 74 B10A = B10 abundance In w/o 19.9 Ref.19 75 B11A = 811 abundance in w/o _ 80.1 Ref.19 76 AWE110 = 810 atomic weight In gm/mole 10.012937 Ref.19 77 AWB1 = B11 atomic weight in gm/mole 11.009306 Ref.19 78 AWB = B atomic weight in gm/mole 10.81103 calculated 79 AWH = H atomic weight in gm/mole 1.00780 Ref.19 80 AWO = O atomic weight In gm/mole 15.99940 Ref.19 81 MWH3BO3 - 3BO3 molecula weight in gm/mole 61.53263 calculated 82 83 f DH20 DH3803 84 0.000100 1.0000 0.00057194 85 0.000200 1.0000 0.001143881 86 0.000300 1.0000 0.001715821 87 0.000400 1.0000 0.002287761 88 0.000500 1.0000 0.002859702 89 0.002000 1.0000 0.011438806 90 0.000100 1.0000 0.00067194 91 0.000200 0.9785 0.001119287 92 0.000300 0.9785 0.001678931 93 0.000400 0.9785 0.002238574 94 0.000500 0.9785 0.002798218 95 0.002000 0.9785 0.011192872 96 _

97 98I - - - - - --- . - ..... -- -1 .

1_0_0I I I _I _

z1 inp.XLS

C 60[6 14/KD Densities j5G, 3 I A I B C D E F G H 101TUpper End Fitting: _

10; L-ength 8.12 in 20.6248 cm UFSAR Fig.3.3-1 103 Width 8.12 in 20.6248 cm UFSAR Fig.3.3-1 104 Height 15.296 in 38.8493 cm Ref.25

  • 105 Total Volume 1008.46665 in3 16525.8075 cc 106 Inconel X-750 1100 gm Ref.26 .

10, SS_34 5080 gm Ref.26 10_ _ 680_r_-4 gm Ref.26 109 SS-302 7980 gm Ref.26 11 0 Inconel X-750 8.30 gm/cc-ref Ref.21 11 1 SS-304 7.94 gm/cc-ref Ref.21 11, Z _rc-4 6.56 gm/cc-ref Ref.21 11_3 SS-302 7.94 gm/cc-ref Ref.21 114 Inconel X-750 132.5301 cc 0.008020 vol frac 115 SS-304 639.7985 cc 0.038715 vol frac 116 Zirc-4 103.6585 cc 0.006273 vol frac 117 SS-302 1005.0378 cc 0.060816 vol frac 11 Water Vol 14644.7826 cc 0.886177 vol frac 121 121 Lower End Fit ing:

1221 Length 8.12 in 20.6248 cm UFSAR Fig.3.3-1 123_Width 8.12 in 20.6248 cm UFSAR Fig.3.3-1 1241 Height 5.246 in 13.32484 cm Ref.25 125 Volume 345.89186 in3 5668.152086 cc 1261 Inconel-625 1360 gm Ref.26 127ISS_304 5000 gm Ref.26 128 Inconel 8.30 gm/cc-ref Ref.21 129_SS-304 7.94 gm/cc-ref Ref.21 130 Inconel 163.8554 cc 0.028908 vol frac 131 SS-304 629.7229 cc 0.111098 vol frac 132 Water Vol 4874.5737 cc 0.859993 vol frac z1 inpXLS

CA06016 Rev.0 Page 34 ATTACHMENT B FUEL DATA SPREADSHEET

C6c0,1 At a Fuel Ai e 3f 217 l Assemblies per core UFSAR 3.1 77 CEAs per core UFSAR 3.1 176 Rods per assembly UFSAR 3.1 5 _______ _______ Guide tubes per assembly UFSAR 3.1 136.7 347.218 In-cm Active core height UFSAR 3.1 1.035 2.6289 in-cm Guide tube ID BGE Drwg E-550-701-303 - Ref.27 1.115 2.8321 in-cm Guide tube oD BGE Drwg E-550-701-303 - Ref.27 0.580 1.4732 In-cm Fuel rod pitch UFSAR Figure 3.3-1 0.20 0.508 In-cm Assembly spacing, fuel ros surface-surface UFSAR Table 3.3-5 8.12 20.6248 in-cm Assembly pitch (140.58) UFSAR Figure 3.3-1 0.06 0.1524 In-cm Assembly gap (8.18"-8.12") UFSAR Figure 3.3-1 548 deg F Tcoid UFSAR Figure 4-9 572.5 deg F Tave UFSAR Figure 4-9 599.4 deg F Thot UFSAR Figure 4-9 532 deg F Thzp UFSAR Figure 4-9 Standard Fuel Design 0.3795 0.96393 in-cm Pellet diameter (A-C Ul) UFSAR Table 3.3-1 15.4626 ln3 Pin fuel volume 0.3805 0.96647 in-cm Pellet diameter (A-C U2) UFSAR Table 3.3-2 15.5442 in3 Pin fuel volume 0.3765 0.95631 in-cm Pellet diameter (D-S U1, D-R U2) UFSAR Table 3.3-1/2 15.2191 1n3 Pin fuel volume 0.388 0.98552 in-cm Clad ID (A-C U1-U2) UFSAR Table 3.3-1/2 0.384 0.97536 in-cm Clad ID UFSAR Table 3.3-1/2 0.440 1.1176 In-cm Clad OD UFSAR Table 3.3-1/2 10.170 gm/cc Stack height density (max) UFSAR Table 3.3-1/2 0.9279 Stack height density (9/6 TD)

VAP Fuel Design 0.381 0.96774 In-cm Pellet diameter UFSAR Table 3.3-1/2 15.585 ln3 Pin fuel volume 0.388 0.98552 in-cm Clad ID UFSAR Table 3.3-1/2 0.440 1.1176 In-cm Clad OD UFSAR Table 3.3-1/2 10.310 / Stack height density UFSAR Table 3.3-1/2 0.9407 Stack height density (Yo TD)

SAS2H Larger Unit Cell Effective Radii for 176 pin assembly (Standard and VAP Fuel Design) 1.31445 cm Clad ID1/2 = 1.035"/2 = 0.5175" (H20) 1.41605 cm Clad OD/2 = 1.115 2 = 0.5575" (Zirc) 1.66233 cm SQRT 4*(0.58)A2/pql = 0.65446" (H20) 5.20391 cm jSQRT[196*(0.58)A2/5/pQ = 2.04878' (Fuel) 5.22314 cm ISQRT(8.15)A215/pql = 2.05635' (H20) In ORNLITM-12667, uses 8.18".

SAS2H Larger Unit Cell Effective Radii for 172 pin assembly (Standard and VAP Fuel Design) 1.314451 cm Clad ID/2 = 1.035"12 = 0.5175" (H20) 1.416051 cm Clad O/2 = 1.115"/2 = 0.5575" (Zirc) 1.66233 cm SQRT[4*(0.58)A2/pil 0.65446" (H20) 5.15054 cm SQRT[1 92*(0.58)A25/pi = 2.02777" (Fuel) 5.22314 _ -C _...nQR~T(8AW)2/5/pfj =2.05635' *1) _ ORNLrTMI12667,. uses &18 . ._..

Data.xls

CA06016 Rev.0 Page 36 ATTACHMENT C SFP SINGLE RACK PLANAR GEOMETRY

I I 4-

'.ole'I6,f&

a 37 L-T 'o ,

i w.

)%Ca1*

o I f CZZ PA j 7'r ri , VP,,

, ;%gt  % -eY 3V z ' /oz4775-04

CA06016 Rev.0 Page 38 ATTACHMENT D UNIT 1 SFP PLANAR GEOMETRY

. . -- . .. - . - . . ........ ..... .- - . . .. .. .. --- . . ... . v ..

i rL I' I'0- - _4 !W 2.r/-k-4 t) - -- -

<- I-s- / Ip W S,t'- . TI. g

' e /v ",

t TUO * - : - . pp.

to

.,_ O M A LI1 I k ,/C>/ lo f X r PAVX

.0 .,A (zz .9

(-Y-iurlo ro;) 0X1crs315 (OS, W I

o). 7. I . . .1_ 41% I0 I

/0IXofID S a Ati go

(-Xt'5-72r (OctC41Z) I- 1

-2 C~4W) _23.vl+J -M VIK I 1 ..0 - -Mt

~_,.-

0

~~ ._

II ~*

1 r- _er, L/r IV I7 rM)

.~~~~

1,4 %Q - . &I

-df

--\ -- Xv -

JA).

- 73 7- In I~

f^.

_1X199(6 L .. . - . " ; A ~ .~ j('*b2

, K

-a.0/97

(

- 6 5c- q~e"

-C fO. ,7 22tl (s 76C4,5 al~q (A.cff, 3)r -tC

_ pfo, 1If ( CiefS))

.~~.. .

.. _- ... .. 4.. .. . . ..... ...-

I R~~~~~~~~ I

cf) .0.2A-9o732f- Z13?5-1(4)3 7~ J~

u rtSw3?r - 1L ZL 6 (z@2'KoL

) DIF-C- - 2>Y 4 D

! 6X sw100%75- eQ,7"57_

I () 5r .

) /-o; aoJ~?'- i3Y - '2 2_,3 j Ce) jv*-.M--37#---i2A 2Z rp) 1tf S, (4--f-v-7 "o"4/p2

) /rI/22w j f) 0v t-0 4717 4TPv ,,

VA.

i

CA06016 Rev.0 Page 41 ATACHMENT E UNIT 2 SFP PLANAR GEOMETRY

4,'!IIP Je r ti7,t -Ad 21A .. U., <R

, . ,,,_ __ . - - = .... . _

.pX a PA Apj e)

A t -ai_

Aand-- )P f lb l 'j .ft

-Ip A'/A bx >

I ,>K M v i) g:. z'c"

I C40616 Sacs

- t C I .VIM A.. tz-f

-' I I(o) ZZ % act 4S 5 i4tf air fil-9 GaL 60 9 iq4 Z£-2,y i i

I I

2.2k+2uOoj3 -2sf 4AbKu412Y i

A I V7 I - --- Pb t,- .

i AA addw

(,) tM~O-5.ar a 2J I

I I

CA06016 Rev.0 Page 44 AITACHMENTF SFP AXIAL GEOMETRY

0.

I I

4 - --- -, -

r I

I~~~~~

lei.i ,K<

- o WZ0.V.z - I b6'7,12z7Oc, 4k/41l 6,10XY

(" 4 rece ZO I'o I ICAsP Iqws- 75T 4'?St Alec s.150" d

.W.a.. ev, I- ac.7 S ql . ze 4AM 0f V6,~e g A .--

I~

I 4r

,xie I

4 65 i

i t,

i i

12-i~ N , r i

i I

I I

1e6' 6ago

/

pe f6 p >or-I'~~~~~~ gVf . 5PV AZ 4l 4k . .~~~~~~~~~~~

! t~~~~~~~~~~~~~~~~I I q Ic I 4 M) -)

qt ad PA hi" /Af KX&41 d0o4I<tb

'I l

CL IIftr Te/ ONr6 no') 5-31-37/ky lti,9 olSe-3 .5067 L) ,o~7dI54S it /'IWnOli 10Alec -& (eA V cc) Oft(-;vo-A34

,"3) I&SI Iddp, ti ai-BY47