HNP-04-122, Cycle 13 Core Operating Limits Report

From kanterella
Jump to navigation Jump to search
Cycle 13 Core Operating Limits Report
ML042940285
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 10/08/2004
From: Corlett D
Carolina Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
HNP-04-122
Download: ML042940285 (16)


Text

i cP&L C

APrgress Energy CorrffpN SERIAL: HNP-04-122 U. S. Nuclear Regulatory Commission OCT 0 8 2004 Document Control Desk Washington, DC 20555 SHEARON HARRIS NUCLEAR POWER PLANT, UNIT NO. 1 DOCKET NO. 50-400/LICENSE NO. NPF-63 CYCLE 13 CORE OPERATING LIMITS REPORT Ladies and Gentlemen:

In accordance with Technical Specifications (TS) 6.9.1.6.4, Carolina Power & Light Company, doing business as Progress Energy Carolinas, Inc., hereby submits the Harris Nuclear Plant (HNP) Cycle 13 Core Operating Limits Report (COLR).

Attachment 1 provides a summary of the Cycle 13 COLR revision. Attachment 2 contains a copy of the Cycle 13 COLR.

Please refer any questions regarding this submittal to me at (919) 362-3137.

Sincerely, David H. Corlett Supervisor Licensing / Regulatory Programs Harris Nuclear Plant RGH/rgh Attachments:

1. Summary of Cycle 13 COLR Revision
2. Copy of the Cycle 13 COLR c: Mr. R.A. Musser, NRC Senior Resident Inspector, HNP Mr. C. P.Patel, NRC Project Manager Dr. W. D.Travers, NRC Regional Administrator, Region II Harris Nuclear Plant 5413 Shearon Harris Road New Hill, NC 27562

Attachment 1 to SERIAL: HNP-04-122 SHEARON HARRIS NUCLEAR POWER PLANT DOCKET NO. 50-400/LICENSE NO. NPF-63 CYCLE 13 CORE OPERATING LIMITS REPORT

SUMMARY

OF CYCLE 13 COLR REVISIONS

- Section Description of Change Cycle 12, Rev. 1 was revised to Cycle 13, Rev. 0 throughout the document.

2.2.2 The 300 ppm/ARO/RTP MTC limit was updated from -42.6 pcm/IF to

-42.8 pcm/'F.

2.6.1.b Fq limit changed from 2.33 to 2.41.

2.6.2 and Change in V(z) curves and applicability ranges.

Figures 5 & 6 2.7.b Fdh limit changed from 1.60 to 1.66.

2.8 Refueling water boron concentration updated to 2280 ppm.

References Updated with editorial changes.

3.1, 3.4, and 3.14 4.1.1.b Minimum thimbles required updated from 25 to 38.

4.1.1.c Minimum thimbles required per quadrant updated from 3 to 2.

Figures 1-4 Replaced to improve graph quality.

Al-i of 1

Attachment 2 to SERIAL: HNP-04-122 4 .

SHEARON HARRIS NUCLEAR POWER PLANT DOCKET NO. 50-400/LICENSE NO. NPF-63 CYCLE 13 CORE OPERATING LIMITS REPORT Attachment 9 to HNP Procedure PLP-106, "Technical Specification Equipment List Program and Core Operating Limits Report," Rev. 35 A2-1 of 14

'Attachment 2 to SERIAL: HNP-04-122 -

Attachment 9 Sheet 1 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Shearon Harris Unit 1 Cycle 13 has been prepared in accordance with the requirements of Technical Specification 6.9.1.6.

The Technical Specifications affected by this report are listed below:

3/4.1.1.2 SHUTDOWN MARGIN - Modes 3, 4, and 5 3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor - FQ(Z) 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor - FaH 3/4.9.1.a Boron Concentration During Refueling Operations 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC-approved methodologies specified in Technical Specification 6.9.1.6 and given in Section 3.0.

2.1 SHUTDOWN MARGIN - Modes 3, 4, and 5 (Specification 3/4.1.1.2)

The SHUTDOWN MARGIN versus RCS boron concentration - Modes 3, 4, and 5 is specified in Figure 1.

2.2 Moderator Temperature Coefficient (Specification 3/4.1.1.3)

1. The Moderator Temperature Coefficient (MTC) limits are:

The Positive MTC Limit (ARO/HZP) shall be less positive than

+5.0 pcm/OF for power levels up to 70% RTP with a linear ramp to 0 pcm/OF at 100% RTP.

The Negative MTC Limit (ARO/RTP) shall be less negative than

-50 pcm/OF.

A2- 2 of 14

Attachfnent 2 to SERIAL: HNP-04-122 Attachment 9 Sheet 2 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 2.2 Moderator Temperature Coefficient (Specification 3/4.1.1.3) (continued)

2. The MTC Surveillance limit is:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-42.8 pcm/OF.

where: ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER RTP stands for RATED THERMAL POWER 2.3 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5)

Fully withdrawn for all shutdown rods shall be 225 steps.

2.4 Control Rod Insertion Limit (Specification 3/4.1.3.6)

The control rod banks shall be limited in physical insertion as specified in Figure 2. Fully withdrawn for all control rods shall be 225 steps.

2.5 Axial Flux Difference (Specification 3/4.2.1)

The AXIAL FLUX DIFFERENCE (AFD) target band is specified in Figure 3.

2.6 Heat Flux Hot Channel Factor - FQ(Z) (Specification 3/4.2.2)

1. The FQ(Z) Limit as referenced in TS 3.2.2 is:

FQ(Z) S F RTP

  • K(Z)/P for P > 0.5 FQ(Z) S FQRTP
  • K(Z)/0.5 for P S 0.5 where:
a. P = THERMAL POWER/RATED THERMAL POWER
b. FgRTP = 2.41
c. K(Z) = the normalized FQ(Z) as a function of core height, as specified in Figure 4.
2. V(Z) Curves versus core height for PDC-3 Operation, as used in T.S.

4.2.2, are specified in Figures 5 and 6. The first V(Z) curve (Figure 5) is valid for Cycle 13 burnups from 0 up to but not including 15000 MWD/MTU. The second V(Z) curve (Figure 6) is valid for Cycle 13 burnups greater than or equal to 15000 MWD/MTU to a maximum cycle energy of 20932 MWD/MTU.

A2- 3 of 14

Attachment 2to SERIAL: HNP-04-122 Attachment 9 Sheet 3 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH (Specification 3/4.2.3)

FAH S F*H * (1 + PFA, * (1 - P) where:

a. P = THERMAL POWER/RATED THERMAL POWER
b. F&HRT" = FAN Limit at RATED THERMAL POWER = 1.66
c. PFAH = Power Factor Multiplier for FAH = 0.35 FAH = Enthalpy rise hot channel factor obtained by using the movable incore detectors to obtain a power distribution map, with the measured value of the nuclear enthalpy rise hot channel factor (FAHN) increased by an allowance of 4%

to account for measurement uncertainty.

2.8 Boron Concentration for Refueling Operations (Specification 3/4.9.1.a)

Through the end of Cycle 13, the boron concentration required to maintain Keff less than or equal to .95 is equal to 2280 ppm. Boron concentration must be maintained greater than or equal to 2280 ppm during refueling operations.

3.0 METHODOLOGY REFERENCES

1. XN-75-27(A) (June 1975) and Supplements 1 (September 1976), 2 (December 1977), 3 (November 1980), 4 (December 1985), and 5 (February 1987),

"Exxon Nuclear Neutronics Design Methods for Pressurized Water Reactors,"

Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.1.1.2 - SHUTDOWN MARGIN - Modes 3, 4, and 5, 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor, and 3.9.1 - Boron Concentration).

2. ANF-89-151(A), and Correspondence, "ANF-RELAP Methodology for Pressurized Water Reactors: Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation, Richland, WA 99352, May 1992.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

3. XN-NF-82-21(A), Revision 1, "Application of Exxon Nuclear Company PWVR Thermal Margin Methodology to Mixed Core Configurations," Exxon Nuclear Company, Richland, WA 99352, September 1983.

(Methodology for Specification 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

A2-4of 14

" Attachment 2 to SERIAL: HNP-04-122 -

Attachment 9 Sheet 4 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 3.0 METHODOLOGY REFERENCES (continued)

4. XN-75-32(A), (April 1975) Supplements 1 (July 1979), 2 (July 1979), 3 (January 1980), and 4 (May 1982), 'Computational Procedure for Evaluating Fuel Rod Bowing,' Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

5. EMF-84-093(A), Revision 1, 'Steamline Break Methodology for PWRs,'

Siemens Power Corporation, February 1999.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

6. EMF-2087(A), Revision 0, 'SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCA Applications," Siemens Power Corporation, June 1999.

(Methodology for Specification 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

7. XN-NF-78-44(A), 'A Generic Analysis of the Control Rod Ejection Transient for Pressurized Water Reactors," Exxon Nuclear Company, Richland, WA 99352, October 1983.

(Methodology for Specification 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, and 3.2.2 - Heat Flux Hot Channel Factor).

8. ANF-88-054(A), 'PDC-3: Advanced Nuclear Fuels Corporation Power Distribution Control for Pressurized Water Reactors and Application of PDC-3 to H. B. Robinson Unit 2," Advanced Nuclear Fuels Corporation, Richland, WA 99352, October 1990.

(Methodology for Specification 3.2.1 - Axial Flux Difference, and 3.2.2 - Heat Flux Hot Channel Factor).

9. EMF-92-081(A), and Supplement 1, 'Statistical Setpoint/Transient Methodology for Westinghouse Type Reactors," Siemens Power Corporation, Richland, WA 99352, February 1994.

(Methodology for Specification 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

10. EMF-92-153(A), and Supplement 1, 'HTP: Departure from Nucleate Boiling Correlation for High Thermal Performance Fuel,' Siemens Nuclear Power Corporation, Richland, WA 99352, March 1994.

(Methodology for Specification 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

11. XN-NF-82-49(A), Revision 1, April 1989 and XN-NF-82-49(P), Revision 1, Supplement 1, December 1994, 'Exxon Nuclear Company Evaluation Model EXEM PWR Small Break Model," Exxon Nuclear Company, Richland, WA 99352.

(Methodology for Specification 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

A2- 5 of 14

Attachient:2 to SERIAL: HNP-04-122 ' ' :.

Attachment 9 Sheet 5 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 3.0 METHODOLOGY REFERENCES (continued)

12. EMF-96-029(A), Volumes 1 and 2, "Reactor Analysis Systems for PWRs, Volume 1 - Methodology Description, Volume 2 - Benchmarking Results,"

Siemens Power Corporation, January 1997.

(Methodology for Specification 3.1.1.2 - SHUTDOWN MARGIN - Modes 3, 4, and 5, 3.1.1.3 - Moderator Temperature Coefficient, 3.1.3.5 - Shutdown Bank Insertion Limits, 3.1.3.6 - Control Bank Insertion Limits, 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor, and 3.9.1 - Boron Concentration).

13. EMF-2328 (A), Revision 0, IPWR Small Break LOCA Evaluation Model, S-RELAP5 Based,, Siemens Power Corporation, March 2001 (Methodology for Specification 3.2.1 - Axial Flux Difference, and 3.2.2 - Heat Flux Hot Channel Factor), and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).
14. Mechanical Design Methodologies XN-NF-81-58(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," Exxon Nuclear Company, March 1984.

ANF-81-58(A), Revision 2 and Supplements 3 and 4, "RODEX2 Fuel Rod Thermal Mechanical Response Evaluation Model," Advanced Nuclear Fuels Corporation, June 1990.

XN-NF-82-06(A), Revision 1 and Supplements 2, 4, and 5, "Qualification of Exxon Nuclear Fuel for Extended Burnup," Exxon Nuclear Company, October 1986.

ANF-88-133(A), and Supplement 1, "Qualification of Advanced Nuclear Fuels' PWR Design Methodology for Rod Burnups of 62 GWd/MTU," Advanced Nuclear Fuels Corporation, December 1991.

XN-NF-85-92(A), "Exxon Nuclear Uranium Dioxide/Gadolinia Irradiation Examination and Thermal Conductivity Results," Exxon Nuclear Company, November 1986, and letter, R. A. Copeland (SPC) to R. C. Jones (USNRC),

RAC: 050: 91, dated May 13, 1992.

EMF-92-116(A), Revision 0, "Generic Mechanical Design Criteria for PWR Fuel Designs," Siemens Power Corporation, February 1999.

(Methodologies for Specification 3.2.1 - Axial Flux Difference, 3.2.2 - Heat Flux Hot Channel Factor, and 3.2.3 - Nuclear Enthalpy Rise Hot Channel Factor).

A2- 6 of 14

- 'Attkhrnient 2 to SERIAL: HNP-04-122 Attachment 9 Sheet 6 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 4.0 OTHER REQUIREMENTS 4.1 Movable Incore Detection System

1. Operability: The Movable Incore Detection System shall be OPERABLE with:

R a. At least 38 detector thimbles at the beginning of cycle (where the beginning of cycle is defined in this instance as a flux map determination that the core is loaded consistent with design),

b. A minimum of 38 detector thimbles for the remainder of the operating cycle,
c. A minimum of two detector thimbles per core quadrant, and
d. Sufficient movable detectors, drive, and readout equipment to map these thimbles.
2. Applicability: When the Movable Incore Detection System is used for:
a. Recalibration of the Excore Neutron Flux Detection System, or
b. Monitoring the QUADRANT POWER TILT RATIO, or
c. Measurement of FAH and F0 (Z)
3. Surveillance Requirements: The Movable Incore Detection System shall be demonstrated OPERABLE, within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to use, by irradiating each detector used and determining the acceptability of its voltage curve when required for:
a. Recalibration of the Excore Neutron Flux Detection System, or
b. Monitoring the QUADRANT POWER TILT RATIO, or
c. Measurement of FAH and FQ(Z)
4. Bases The OPERABILITY of the movable incore detectors with the specified minimum complement of equipment ensures that the measurements obtained from use of this system accurately represent the spatial neutron flux distribution of the core. The OPERABILITY of this system is demonstrated by irradiating each detector used and determining the acceptability of its voltage curve.

For the purpose of measuring FQ(Z) or FAH, a full incore flux map is used.

Quarter-core flux maps, as defined in WCAP-8648, June 1976, may be used in recalibration of the Excore Neutron Flux Detection System, and full incore flux maps or symmetric incore thimbles may be used for monitoring QUADRANT POWER TILT RATIO when one Power Range channel is inoperable.

A2- 7 of 14

Attachment 2 to SERIAL- HNP-04 -122 '2 Attachment 9 Sheet 7 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 4.0 OTHER REQUIREMENTS (continued)

R 5. Evaluation Requirements In order to change the requirements concerning the number and location of operable detectors, the NRC staff deems that a rigorous evaluation and justification is required. The following is a list of elements that must be part of a 50.59 determination and available for audit if the licensee wishes to change the requirements:

a. How an inadvertent loading of a fuel assembly into an improper location will be detected,
b. How the validity of the tilt estimates will be ensured,
c. How adequate core coverage will be maintained,
d. How the measurement uncertainties will be assured and why the added uncertainties are adequate to guarantee that measured nuclear heat flux hot channel factor, nuclear enthalpy rise hot channel factor, radial peaking factor and quadrant power tilt factor meet Technical Specification limits, and
e. How the Movable Incore Detection System will be restored to full (or nearly full) service before the beginning of each cycle.

A2- 8 of 14

. - '  : Attachfiient2to SERIAL: HNP-04-122  : -

Attachment 9 Sheet 8 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 1 Shutdown Margin Versus RCS Boron Concentration Modes 3, 4, and 5/Drained 7000-7000 (2600, 775) 6500 - .

6000 ---- I I II I I I I I I Is I I

I I I I I I I I I I I I I I I I I I I I I I I sI I I 5500 - I I

--- I

+I I I I I I I s I I I I I I I I I I I I I s I I I I I I I I I I I I I I I 5000- -- r ---

I I I I l-------T-----r----r----l-I I I I i------

I

-- /

s I 1 ---

I 11----

I l1 ----------

I I g I I I I I I I I I I I I I I I I I I I I b

_M4500 E

Mode4ith no RCPsin oDeratiofn. and Mode 5 4000 -I I ---- - - - - - - - - -

3500 -----

I I I I I I s I I I I I I I 0 35000 ---- ,-- , ----- F -/ --- ---------- .--- r -- -- r --- --- --- I 3~~~Md ' ,ode 3 an ' ' '

s l t / 8Mod 3 nd ldod ,4with (2600, 2~600) cl) 2500 - L ---. 6tieast-one-RC~in

' ' ' '/ ' ' 'operation _

2000 -- oes3-ad--,, -- , ,l l el / , , , (1500 770) 15uu-

  • 0 ---- ---- ---

4 or w3anModMode with u in o i ,

O -I I i I . i I Requird RCSoron oncenration(pm Cl)200 2500Applicandle


J---- to Mod---- 4witho ihu Csiprto A2of 14 9

  • ' Attachment 2 to SERIAL: IHNP-04-122 Attachment 9 Sheet 9 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 2 Rod Group Insertion Limits Versus Thermal Power (Three Loop Operation) 240

' 'l ' (1bO,225, 220 - I / (52:2,225)-52 200 -

Bank C 1 (10,186) 180 -

C

~~~~~r~~-~~ ---- w-l------------- ---------------- ------

III III I I I I- 160-M 140 -

a-cn

= 120- - - - - - - - -

0 IL (12 lzOO o 100 - Iank D 40 - - - - -- -- - - - -- - -

40 -

M 20 20 - -- - - 4I--- - -

40- I I I I 0 10 20 30 40 50 60 70 80 90 100 Power %

Notes: 1. Fully withdrawn position shall be 225 steps

2. Control Banks A and B must be withdrawn from the core prior to power operation A2- 10 of 14

. :':. I Attachment 2 toSERIAL: HNP-04-122 Attachment 9 Sheet 10 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 3 Axial Flux Difference Limits as a Function of Rated Thermal Power 110 (10,1i00) (7,100) 100 90 80 a)

0. 70 0.

E I ~Acceptable 0) 60 la 50 4- ------ - -------- -- - ---- - 28 -50) -- --

0 I I I I I I I I I I I I I I I I 4-I I I I I I I I C-a) 40 - -- - - - - - - - - - --

I

- - -IL I

-I--

I I

- - - -I-I I

I I

U 1.-

I I I I I I I I I I I I I I I I C) 0M I I I I I I

II II I I I I 30 - - - - --- L L I I - - - - - - - - - - - - - - - - - - - -

II I

20 -

- - - - - - -I- - - - - - -

10 -

II I I 0 4* *1 -. *I

-50 -40 -30 -20 -10 0 10 20 30 40 50 Axial Flux Difference (% Delta I)

(Deviation from Target AFD)

Note: At power levels less than HFP, the deviation is applied to the target AFD appropriate to that power level. The target AFD varies linearly between the HFP target and zero at zero power.

A2- 11 of 14

- -II . < I Attachment 2 to SERIAL: HNP-04-122.

Attachment 9 Sheet 11 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 4 K(Z) - Local Axial Penalty Function for FQ(Z) 1.2 II I I

I I

I I I~~ I .

II I I I I I I

I I

II I

I I I I I I I I

I I I I 1.1 - I I I I

II I I I II I I I II (0,1,-0) I II I

I I (6,1 ,0)

I - . - . -

_ , , I, 0.9 -

I I I I I I _ I X 0.8-L 0

4-

'W 0.7 - I-I

-- L I

L - - - - _L _ _ _ _ I_ _ _ _ _ -J - - - - J - - - -

LL I I I I I I I I I I I I I I I I I I I _

I I I 0) am 0.65 I I wN 0.5 - I-Ir -r-----I -I ---- :I --- i- - I I I I a 0.4 - I I

I I

I -

I I _L _ _ _ I_

z 0.2 I I I 0.3- _ - - - - --

I I I I 0.2- I- - -I - -

I

- I-I I

I I 0.1

  • I II I - - - - - - - - -I I I I I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I 0~ I I I I I I i I i 0 1 2 3 4 5 6 7 8 9 10 11 12 Core Height (feet)

A2- 12 of 14

- Attachm'ent'2 to SERIAL: HNP-04'122.

Attachment 9 Sheet 12 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 5 Cycle 13 V(Z) Versus Core Height 0 MWD/MTU < burnup < 15000 MWD/MTU Height (feet) V(Z) 0.0

  • 1.000 0.2
  • 1.000 1.260 0.4
  • 1.000 0.6
  • 1.000 0.8
  • 1.000 1.240 T - - - - 1.0
  • 1.000 I - - - ---I- -IL - - I- - - -- -

1.2

  • 1.000 1.4
  • 1.000 1.220 1.6
  • 1.000 1.8 1.190 2.0 1.183 1.200 2.2 1.174 2.4 1.165 2.6 1.157 1.180 2.8 1.148

'AII IA A 6 7I I 9I 10 1 12 A I I A AiAA I I I I 3.0 1.140 AAAL I I I:

I I I I I .. ^ lA I I 3.2 1.133 1.160 3.4 1.128 I I I I * . A I I I A I I I 3.6 1.125 I I. I Ig I I I 3.8 1.126 1.140 I ' '- A- 1 1 1 4.0 1.129 I ' I I* I I I I *' I I ' A 'A I I I I I ' ' 4.2 1.133 4.4 1.138 1.120 4.6 1.143 I I ' I I I I 'A A' I 4.8 1.147 I I I I I I I

  • I 5.0 1.149 1.100 I I ' I I I I I '
  • I' 5.2 1.150 5.4 1.151 5.6 1.156 1.080 5.8 1.162 6.0 1.165 6.2 1.167 1.060 I I I I I I I I I I I 6.4 1.168

.__'__ ' I____ I___ I____ I _____ I ___L___I __

6.6 1.166 6.8 1.170 1.040 .___ I__ I__ __ I____ I __I___L_____L__I ___ 7.0 1.173 7.2 1.175

. _ __ _ , , , , , j , , , _ _ _ _ 7.4 1.176 1.020 0 1 2 3 4 5 6 7 8 9 10 1I 1 7.6 1.174 I~C I I I r Hegh I I I 7.8 1.171 8.0 1.166 1.000 8.2 1.159 8.4 1.150 8.6 1.140 8.8 1.129 9.0 1.118 9.2 1.111 9.4 1.108 9.6 1.108 9.8 1.112 10.0 1.116 10.2 1.120 10.4

  • 1.000 10.6
  • 1.000 10.8
  • 1.000 11.0
  • 1.000 11.2
  • 1.000 11.4
  • 1.000 11.6
  • 1.000
  • 1.000 12.0
  • 1.000 A2- 13 of 14
c* --
  • I . I .I Attachment 2 to'SERIALi HNP-04-122 ':

Attachment 9 Sheet 13 of 13 Harris Unit 1 Cycle 13 Core Operating Limits Report - Rev. 0 Figure 6 Cycle 13 V(Z) Versus Core Height 15000 MWD/MTU S burnup 5 20932 MWD/MTU Height (feet) V(Z)

_ A_

0.0

  • 1.000 0.2
  • 1.000 1.260 . . .I , . I I 0.4
  • 1.000 0.6
  • 1.000 0.8
  • 1.000 1.240 I I I I I I I I I 1.0
  • 1.000 I

' I ' I I * *. I I I 1.2

  • 1.000 I I I , I * , *I , , ,

1.4

  • 1.000 1.220 I I I I Is 1
  • I ,

1.6

  • 1.000 I I I I I I
  • I

-s_ -- -- _^o -_ 4- - s- -- 1_

__J - - - - L -J -^- - - - *- - - --- - - -- 1.8 1.200

, I I I

  • I I I 2.0 1.190 1.200 I I I I I I I Il I I I 2.2 1.179

, I t---------------------- I I t----r- 2.4 1.168 I

I I I

I I

  • AI A I I A

I A

  • I I I 2.6 1.158 1.180 2.8 1.148 I I I I A 3.0 1.140 A 3.2 1.133 1.160 3.4 1.129 I 1 I^ I I I I I I I I 3.6 1.135 3.8 1.145 1.140 .

_g _ _ _ J A___J____L____ __j____L___*____A____L 4.0 1.155 I I ---I -

^1- -- I - - r- - -I IF--1--4-F I ---rI - -Al-- I T. ---- I^---'

4.2 1.165 I I I I 1 I 1 4.4 1.173 1.120 A I I I I *^I I 4.6 1.180 I I I , , , , , , * , I 4.8 1.186 II I -- I - ,A----

-- -- ,A --- --- 5.0 1.196 1.100 5.2 1.208 5.4 1.218 I I I I I I I I I I I I I I I I I I I I I I 5.6 1.225 1.080 I- - - - -I- -- - - - - - --- - - --I--- - I-- -- r - I- I -- -- -- r - -I- - - - - - - I 5.8 1.230 6.0 1.232 6.2 1.231 1.060 6.4 1.227 6.6 1.223

, J - - - - , , I, - - - - I 6.8 1.218 1.040 7.0 1.215 7.2 1.213

_. _ _ _ _ _ , .I , . _ _ _ _ 7.4 1.212 1.020 7.6 1.209 7.8 1.204 8.0 1.196 1.000 8.2 1.185 0 1 2 3 4 5 6 7 8 9 10 11 12 8.4 1.173 Core Height (feet) 8.6 1.159 8.8 1.141 9.0 1.125 9.2 1.112 9.4 1.105 9.6 1.107 9.8 1.107 10.0 1.119 10.2 1.139 10.4

  • 1.000 10.6
  • 1.000 10.8
  • 1.000 11.0
  • 1.000 11.2
  • 1.000 11.4
  • 1.000 11.6
  • 1.000
  • 1.000 12.0
  • 1.000 A2- 14 of 14