BW220019, Steam Generator Tube Inspection Report Refueling Outage 22 (A2R22)

From kanterella
Jump to navigation Jump to search

Steam Generator Tube Inspection Report Refueling Outage 22 (A2R22)
ML22117A047
Person / Time
Site: Braidwood Constellation icon.png
Issue date: 04/27/2022
From:
Constellation Energy Generation
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22117A045 List:
References
BW220019
Download: ML22117A047 (28)


Text

Constellation Energy Generation BRAIDWOOD STATION UNIT 2 35100 South Rte. 53, Suite 84 Braceville, IL 60407

  • COMMERCIAL OPERATION: October 17, 1988 STEAM GENERATOR TUBE INSPECTION REPORT REFUELING OUTAGE 22 (A2R22)

October 2021 Mailing Address 4300 Winfield Road Warrenville, IL 60555 Page 1 of 28

TABLE OF CONTENTS Introduction ............................................................................................. 3 Steam Generator Inspection Scope (TS 5.6.9.a) .............................................. 3 Degradation Mechanisms Found (TS 5.6.9.b) .................................................. 5 Nondestructive Examination Techniques Utilized for Each Degradation Mechanism Found During A2R22 (TS 5.6.9.c) ................................................ 6 Location, Orientation (if linear), and Measured Sizes of Service Induced Indications (TS 5.6.9.d) .............................................................................6 Plugging Summary (TS 5.6.9.e and TS 5.6.9.f) ............................................... 9 Results of Condition Monitoring (TS 5.6.9.g) ................................................... 1O Primary to Secondary Leakage Assessment (TS 5.6.9.h and TS 5.6.9.i) .............. 12 Results of Monitoring for Tube Axial Displacement (Slippage) (TS 5.6.9.j) ............ 12 Attachment A - Westinghouse Model D-5 Tube Support Configuration ............... 13 Attachment B -Anti-Vibration Bar Wear Indications ........................................ 14-28 Page 2 of 28

Introduction Braidwood Station, Unit 2 operates with four (4) Westinghouse Model D-5 recirculating steam generators (SGs) in the four-loop pressurized water reactor system. Each SG contains 4570 thermally treated Alloy-600 U-tubes that have a nominal outside diameter of 0.75 inches and a nominal thickness of 0.043 inches. The tubes are hydraulically expanded into the full depth of the tubesheet. The tubes are supported by stainless steel quatrefoil support plates (TSPs) and chrome plated Alloy-600 anti-vibration bars (AVBs).

The tube support plates within the pre-heater region are 0.75" stainless steel drilled hole baffle plates. The lowest tube support plate (TSP 01) on the hot and cold leg sides is a flow distribution baffle that is also stainless steel of 0. 75" thick with enlarged drilled tube holes to distribute th~ feedwater flow. See Attachment A, for a diagram of the D-5 SG tube support plate (TSP) and AVB Configuration.

Technical Specification (TS) 5.5.9.d provides the requirements for SG inspection frequencies and requires periodic SG tube inspections to be performed. TS 5.5.9.d requires that 100% of the Unit 2 tubes are to be inspected at sequential periods of 120, 96, and thereafter 72 effective full power months (EFPM). The first sequential period shall be considered to begin after the first in service inspection* of the_SGs.

At the start of A2R22, the Braidwood Unit 2 SGs had accumulated a total of 29.82 EFPY, and 28.64 EFPY since the first in-service inspection (ISi) during A2R01 (subtracting the first operating cycle of 1.18 EFPY from the cumulative EFPY of 29.82 EFPY since commercial operation). At Braidwood A2R22, approximately 55.68 effective full power months (EFPM) of the 72 EFPM in the fourth sequential in$pection period have been accrued.

The A2R22 SG inspections were performed consistent with the Electric Power Research Institute (EPRI) "PWR Steam Generator Examination Guidelines: Revision 8," applicable interim guidance and Nuclear Energy Institute (NEI) 97-06, "Steam Generator Program Guideline's" Revision 3. The field inspection activities were conducted from October 21, 2021 through October 28, 2021 by the Westinghouse Electric Company LLC.

Steam Generator Inspection Scope (TS 5.6.9.a)

Braidwood Unit 2 Refueling Outage 22 (A2R22) was the second inspection outage of the fourth (4) outage inspection period of 72 EFPM; the next SG inspection is planned for A2R23, which will be the first refuel outage within the fifth inspection period. The following inspections were performed during A2R22 to ensure that 100% of the tubes were inspected within the period as required by TS 5.5.9.d.

Eddy Current Scope:

1.
  • Bobbin Coil Inspections
  • 100% full length examination of all in-service tubes in all four SGs.
  • Examined the hot leg and cold leg tubesheet region for tube slippage.
2. MRPC (+POINT') Inspections
  • 100% Row 1 and Row 2 U-bend region from TSP 11 Ii to 11 C.
  • 100% Dents/Dings >5.0 volts located in the hot leg, cold leg and U-bend.

Page 3 of 28

  • 100% Dents 2.0-5.0 volts located at TSPs 01 H, 01 C, 02C, 03C, 04C, 05C, and 06C.
  • 100% Dings 2.0-5.0 volts located below TSP 06C and TSP 01 H.
  • All quatrefoil TSP mix residual signals greater than or equal to 0.4 maximum vertical volts (Vvm) and baffle plate mix residual signals 0.4 Vvm or greater that could mask a flaw.
  • All "I-code" indications that were not resolved after history review.
  • Existing TSP wear indications based on bobbin inspection.
  • Inspection to bound (all surrounding tubes, at least 2 pitches removed) the tubes with potential loose part (PLP) signals identified during the current inspection as necessary to support the Operational Assessment.
  • All PLP signals and foreign objects left in service from the previous inspection.
  • All hot leg, cold leg, and U-bend dent/ding locations >2.0 volts and locations of tube wear in potentially high stress (minus 2-sigma) tubes.
3. Array (X-PROBE') Inspections
  • 100%hot leg TTS +3 inches/-14.01 inches. Data acquisition shall continue as required to assure that the required distance below the tubesheet (14.01 inches) is adequately covered.
  • 100% hot leg bulges/overexpansions within TTS-14.01 inches (H* region).
  • 100% preheater baffle plate expansions at TSP 02C and TSP 03C.
  • Hot leg peripheral tubes three tubes deep including the T-slot inspected from TSP 01 H to 14.01 inches into the tubesheet. Data *acquisition shall c.ontinue as required to assure that the required distance below the tubesheet (14.01 inches) is adequately covered.
  • Cold leg peripheral tubes three tubes deep including theT-slot three tubes inspected from TSP 01 C to 3 inches into the tubesheet.
  • 100% hot l.eg and cold leg expansion transitions and intersections of in-service potentially high stress tubes.

Other SG Inspections:

Visual Inspection of Installed Tube Plugs~ All previously installed tube plugs were visually inspected for signs of degradation and leakage. In addition, all plugs installed during A2R22 were visually inspected, and the installation parameters were reviewed for acceptable installation. No degradation or non-conformances were found.

SG Channel Head Bowl Visual Inspections- Each SG primary channel head was visually examined in accordance with the recommendations of Westinghouse NSAL 12-01 and NRC IN 2013-20 for evidence of breaches in the cladding or divider to channel head weld and for evidence of wastage of the carbon steel channel head. No evidence of cladding or weld breaches or evidence of channel head wastage was identified.

Page 4 of 28

Secondary Side Visual Inspections - SG secondary side Top of tubesheet (TTS) sludge lancing was performed during A2R22. In the TTS region, foreign object search and retrieval (FOSAR) was performed on all 4 SG's. Additionally, FOSAR was performed in the 28 and 2D SG preheater high flow regions on the pre-heater tube support baffle plate TSP 02C. In addition, visual inspections were performed on the preheater waterbox rib and cap plate region. No evidence of degradation or non-conformances were reported in the 28 and 2D SG preheaters.

Visual inspection was performed of the 2C SG upper bundle. The upper bundle region was inspected through the 2.5 inch inspection ports located at the 8th and 11th TSPs. The inspections included the tube lanes and four in-bundle columns at each TSP. The purpose of these inspections was to assess the general condition of the upper tube bundle, which included quatrefoil blockage. No evidence of degradation or non-conformances were reported in the 2C SG upper bundle.

Visual inspections supplemented, as applicable, by ultrasonic thickness measurements of the 2A and 28 SG primary moisture separator regions for trending purposes, were performed during the A2R22 outage. The results show Flow Accelerated Corrosion (FAC) continues to progress. The minimum component thickness measured by ultrasonic measurement techniques was 0.056 inches compared to the nominal component thickness of 0.25 inches. However, there were several locations not amenable to ultrasonic testing where localized through wall perforations were observed visually. No repairs were required or

. performed in A2R22 as it was concluded by the SG manufacturer that one additional operating cycle until a repair can be performed was justified with no adverse consequences or foreign material concerns for the continued operation of the primary moisture separators in all 4 SGs.

Degradation Mechanisms Found (TS 5.6.9.b)

The Table below provides a summary of aii the degradation, by mechanism, identified during the A2R22 inspections (all mechanisms were present during previous inspections). In addition, a single axial indication (SAi) was detected in a Row 1 U-bend and a geometric anomaly (believed to be a ding) and a volumetric indication (SVI) was detected near the 11th TSP at a tube dent.

Summary of A2R22 Degradation Indications by Mechanism Degradation Mechanism SG2A SG2B SG2C SG 2D Total AV8 Wear 458 142 324 214 1138 TSP Wear 1 3 0 3 7 Secondarv Side FO Wear 9 9 4 4 26 Single Axial Indication (SAi) 0 1 0 0 1 Single Volumetric Indication 0 1 0 0 1 (SVI)

Page 5 of 28

Nondestructive Examination Techniques Utilized for Each Degradation Mechanism Found During A2R22 (TS 5.6.9.c)

All SG eddy current examination techniques used (see Table below) were qualified in accordance with Appendix H or Appendix I of the EPRI PWRSG Examination Guidelines Revision 8. Each examination technique was evaluated to be applicable to the tubing and the degradation mechanisms found in the Braidwood Station Unit 2 SGs during A2R22.

EPRI APPENDIX H & APPENDIX I TECHNIQUES EPRI Technique Probe Degradation Applicability 1 ETSS 96041.1 Bobbin Detection of volumetric wear at AVBs 96004.1 Bobbin Detection of volumetric wear at AVBs and TSPs (Drilled and Broached) 96042.1 Bobbin Detection of volumetric wear at drilled TSPs 96004.3 Bobbin Sizinq of volumetric wear at AVBs and drilled TSPs 96910.1 +Point' Sizinq of volumetric wear (tapered) at TSPs Sizing of small diameter volumetric indications; Foreign 21998.1 +Point' Object wear, point TSP wear and SVI locations Detection of circumferential and axial PWSCC in low row U-96511.1 +Point' bend regions 2 Sizing for axial ODSCC within freespan, eggcrate and 128432 +Point' broached support structures with or without dents Notes: 1 AVB-Anti-Vibration Bar TSP - Tube Support Plate SVI - Single Volumetric Indication PWSCC - Primary Water Stress Corrosion Cracking ODSCC - Outside Diameter Stress Corrosion Cracking

2. Single axial indication in SG 2B R1C25_was originally detected as a PWSCC indication Location, Orientation (if linear), and Measured Sizes of Service Induced Indications (TS 5.6.9.d)
  • Anti-Vibration Bar (AVB) Wear - Tube degradation was found during bobbin coil examination in the U-Bend region due to fretting of the AVB on the outer surface of the tube. A total of 1138 indications were reported, an increase of 34 since the last SG inspection in A2R19. Six (6) tubes had indications of AVB wear meeting or exceeding 40% TW plugging limit, and the 6 tubes were removed from service by mechanical tube plugging. The largest AVB wear indication found during A2R22 was measured at 44% through-wall (TW). The Table below provides a summary of AVB wear degradation.

Page 6 of 28

A2R22 AVB Wear Summary SG 2A SG28 SG2C SG2D NDE Depth

  1. of Ind. # of Ind. # of Ind. # of Ind.

10-39% TW 457 139 322 214

>=40%TW 1 3 2 0 TOTAL 458 142 324 214

  • Mechanical Wear at Tube Support Plates (TSPs) - Tube degradation attributed to wear in the pre-heater TSPs, which are drilled support baffle plates, was identified. Additionally, tube degradation attributed to wear at broached quatrefoil TSPs. Two (2) tubes were identified as new TSP Wear. Five (5) tubes had pre-existing (legacy) TSP wear in the 2A, 28, & 2D SGs. The depth of the TSP wear ranged from 4% TWto 31% TW. The Table below provides a summary of the tubes that contain indications of pre-heater or quatrefoil TSP wear as identified during A2R22.

A2R22 TSP Wear Summary NDE SG Row Col Location Depth Wear Type Legacy

(%TW) orNew 2A 22 98 10C -0.00 31 Single Land Legacy 28 47 39 03C -0.27 4 Drilled Hole Leqacv 28 47 41 03C +0.42 4 Drilled Hole Leqacv 28 49 49 05C -0.30 4 Drilled Hole Legacy 2D 17 66 08H -0.65 22 Sinqle land New 20 44 26 10H -0.18 11 Single land New 2D 49 53 07C +0.46 15 Single Land Legacy

  • Foreign Object Wear - Foreign object (FO) wear is an existing degradation mechanism at Braidwood Unit 2 since foreign object wear was found during prior inspections. At these locations wear was again detected in A2R22 with no growth in size as all FOs associated with the legacy wear flaws were removed in a prior outage. In addition, a total of 9 new indications of secondary side foreign object (FO) wear were identified in 9 tubes in A2R22. These indications ranged from 12% TW to 38% TW. Since there was no evidence of a foreign object still present at any of the new or legacy foreign object wear locations, no tubes were plugged for foreign object wear in A2R22. The Table below lists all 26 foreign object wear indications detected during A2R22, 9 new and 17 legacy indications.

All newly identified indications of secondary side FO wear received additional

+Point' inspection of the surrounding tubes to make certain that the wear region was adequately bounded. Additional +Point' inspection was performed on tubes surrounding historical secondary side FOs that could not be confirmed in its originally identified location to ensure that no wear occurred due to the migration of the object. Furthermore, +Point' inspections were performed on tubes Page 7 of 28

surrounding newly found secondary side FOs (without wear) to ensure that no wear resulted from the object.

A2R22 Foreign Object Wear Summary 2A 2 2 08H -1.01 13 Legacy No Change-Object No Longer Present 2A 8 9 05H -0.64 18 Legacy No Change-Object No Longer Present 2A 8 94 07H -0.73 36 New Object Not Present 2A 15 47 07H -0.66 20 Legacy No Change-Object No Longer Present 2A 24 22 05H -0.80 17 New Object Not Present 2A 30 53 01H 0.51 11 Legacy No Change-Object No Longer Present 2A 31 52 01H 0.45 29 Legacy No Change-Object No Longer Present 2A 32 53 01H 0.34 16 Legacy No Change-Object No Longer Present 2A 42 22 02C 0.72 14 Legacy No Change-Object No Longer Present 2B 2 80 07H -0.76 16 Legacy No Change-Object No Longer Present 2B 17 59 10H -0.90 26 New Object Not Present 2B 20 64 05H -0.72 14 New Object Not Present 2B 21 108 07H -0.74 26 Legacy No Change-Object No Longer Present 2B 40 50 03H -0.76 17 Legacy No Change-Object No Longer Present 2B 49 51 TSC 0.64 20 Legacy No Change-Object No Longer Present 2B 49 52 TSC 0.43 21 Legacy No Change-Object No Longer Present 2B 49 52 TSC 1.06 34 Legacy No Change-Object No Longer Present 28 49 53 TSC 0.53 10 Legacy No Change-Object No Longer Present 2C 7 67 07H -0.56 38 New Object Not Present 2C 14 43 07H -0.76 29 New Object Not Present 2C 17 49 05H -0.76 22 New Object Not Present 2C 22 42 07H -0.73 12 New Object Not Present 2D 22 73 05H -0.72 31 New Object Not Present 2D 24 86 05H -0.77 21 Legacy No Change-Object No Longer Present 2D 31 48 01H 0.47 20 Legacy No Change-Object No Longer Present 2D 36 61 TSH 0.03 14 Legacy No Change-Object No Longer Present

  • Axial ODSCC at a Ding/Dent Location During A2R22, a single axial indication (SAi) in a low row U-Bend in SG 2B tube R 1C25 was detected and characterized as primary water stress corrosion cracking (PWSCC). Based in the eddy current signal phase response, it was assumed that the crack was located in the inside diameter (ID) plane. The official call after the review during the outage was an axial PWSCC indication at a low row U-Bend. After the outage, Exelon requested EPRI to review the data from this indication and provide an assessment to the nature and origin of the Page 8 of 28

indication. Through modeling with data union software (DUS), EPRI was able to inject several of different calibration standard notches scaled to simulate cracking into a donor signal and compared their results with the as found condition at A2R22. The notches simulated various PWSCC and ODSCC flaws at varying through wall depths. The donor signal was the previous eddy current data from the previous inspection of the same location. Through extensive modeling and evaluation, EPRI classified the indication in question as axial ODSCC at a ding.

EPRI further postulated that the ding could have been created by over-insertion of the tube during tube installation, as the ding coincided with a quatrefoil land location on the intrados of the U-bend.

A Westinghouse analyst team consisting of three senior analysts reviewed this indication as well with the same approach as EPRI. While backup data, signal to amplitude ratio, and historical indications at the same location is what lead the analysis to the conclusion of a PWSCC indication, this did not account for the influence of the ding on the eddy current signal response. Factoring in the influence of the ding, the analyst team confirmed that this indication was an ODSCC indication at a ding.

Axial ODSCC at a ding/dent is an existing degradation mechanism for Braidwood Unit 2. Details on the SG 2B R 1C25 11 H indication are shown in the table below.

Axial ODSCC in SG 2B Tube RlC25 U-Bend SG Row Col Volts Deg Ind Locn Inch 1 SEO SEL MD L (in)

(%TW) (in) (%TW) 28 1 25 1.14 27 SAi 1 lH 9.43 57.12 0.193 75.82 0.24

  • Single Volumetric Indication (SVI)

One tube in SG 2B (R25C35) was identified as having a volumetric indication within a dent at the 11 H tube support plate. The dent itself was >1V in size. Historical data re-analysis was performed on this location and showed slight changes dating back to 1997, with the most change in the signal occurring over the last inspection interval.

This indication was initially found during the bobbin program (1.18v at 154°, showing growth and rotation) and was subsequentially placed on the special interest test list.

The flaw was sized with ETSS 21998.1 for small round volumetric indications, resulting in a maximum depth of 25% TW with the same length and circumferential extent. The table below provides the details for this indication.

Axial Circ Max Depth

+PT SG Row Col Loe Ind Extent Extent ETSS Volts in. deg 21998 %TW 28 25 35 l lH+0.44 SVI 0.24 0.19 50.8 25 Plugging Summary (TS 5.6.9.e and TS 5.6.9.f)

As a result of the A2R22 SG inspections, performed in accordance with TS 5.5.9.d, the modes of tube degradation found were Anti-Vibration Bar (AVB) wear, tube support plate Page 9 of 28

(TSP) wear, and ODSCC. A total of eight (8) tubes with tube degradation were removed from service by mechanical tube plugging. The eight (8) tubes removed from service, are as follows:

  • One (1) tube had ODSCC in a Row 1 U-bend at a ding
  • One (1) tube had an SVI believed to be active wear at a dent at a TSP land. Due the presence of the dent potentially influencing the sizing accuracy, the tube was preventatively plugged as a conservative measure.

In addition to the tubes above with active degradation, another 39 tubes without any degradation were preventatively plugged during A2R22, these include:

  • Thirty-eight (38) low row (Row 1 and Row 2) tubes with known geometric anomalies in the U-bend from SG fabrication were plugged preventatively as they are assumed to be more susceptible to future stress corrosion cracking.
  • One (1) tube was plugged preventatively due to being screened as a high stress tube with similar eddy current behavior to those which have previously exp~rienced ODSCC at Braidwood Unit 2.

A2R22 Tube Plugging by Degradation Mechanism (TS 5.6.9.e)

Degradation Mechanism SG2A SG2B SG2C SG 2D Total AVB Wear 1 3 2 0 6 TSP/Pre-heater Wear 0 0 0 0 0 Foreion Obiect Wear 0 0 0 0 0 Axial ODSCC 0 1 0 0 1 SVI at Ding in TSP 0 1 0 0 1 Preventative 11 10 7 11 39 Total Plugged durina A2R22 12 15 9 11 47 Tube plugging was conducted in accordance with ASME Section XI, 2013 Edition with no Addenda. All tube plugging was performed by Westinghouse using an Alloy 690 mechanical tube plugging process in accordance with ASME Section XI IWA-4713,

'_'Heat Exchanger Tube Plugging by Expansion." All plugging was performed in accordance with Westinghouse approved procedures. There are no approved tube repair methods for the Unit 2 SGs. No tube sleeving or tube pulls were performed.

Tube Plugging to Date (Number and Percentage per SG) (TS 5.6.9.f)

SG2A SG 2B SG2C SG2D Total*

Total Pluaaed durinq A2R22 12 15 9 11 47 Total Pluooed throuoh A2R22 119 81 81 55 336 Total Percent Plugged through 2.60% 1.77% 1.77% 1.20% 1.84%

A2R22 1 Note: 1) Plugging percent is based on 4.570 tubes per SG for all 4 SGs.

Results of Condition Monitoring (TS 5.6.9.g)

A condition monitoring assessment was performed for each inservice degradation mechanism found during the A2R22 SG inspection. The condition monitoring Page 10 of 28

assessment was performed in accordance with TS 5.5.9.a and NEI 97-06 Rev. 3 using the EPRI Steam Generator Integrity Assessment Guidelines, Revision 3. For each identified degradation mechanism, the as-found condition was compared to the appropriate performance criteria for tube structural integrity, accident induced leakage, and operational leakage as defined in TS 5.5.9.b. For each degradation mechanism a tube structural limit was determined to ensure that SG tube integrity would be maintained over the full range of normal operating conditions, all anticipated transients in the design specifications, and design basis accidents. This includes retaining a safety factor of 3.0 against burst under normal steady state full power operation primary to secondary pressure differential and a safety factor of 1.4 against burst under the limiting design basis accident pressure differential. The structural limits for wear related degradation were performed in accordance with the EPRI Steam Generator Integrity Assessment Guidelines and the EPRI Steam Generator Degradation Specific Management Flaw Handbook, Revision 2 (Flaw Handbook).

The as-found condition of each degradation mechanism found during the A2R22 outage was shown to meet the appropriate limiting structural integrity performance parameter with a probability of 0.95 at 50% confidence, including consideration of relevant uncertainties thus satisfying the condition monitoring requirements. The NOE measured flaw depths are compared to the structural integrity condition monitoring (CM) limits, which account for tube material strength, burst relation, and NOE measurement uncertainties with a 0.95 probability at 50% confidence. Therefore, the NOE measured flaw sizes are directly compared to the CM limit. No indications met the requirements for proofer leakage testing; therefore, no In Situ Pressure tests were performed during A2R22. In addition, no tube pulls were performed during A2R22.

The sections below provide a summary of the condition monitoring assessment for each degradation mechanism found during A2R22.

AVB Wear - The largest AVB wear indication found during the A2R22 inspection was 44% TW as measured by the EPRI. Appendix H qualified technique 96004.3, Rev. 13.

This is below the AVB wear CM limit of 64.0% TW. The tube with this indication was plugged in accordance with TS 5.5.9.c SG tube plugging criteria.

Pre-Heater Baffle/TSP Wear and SVI - The largest drill hole baffle plate tube support wear left in service during A2R22 was measured at 4% TW by ETSS 96004.3, Revision 13 and the largest quatrefoil tube support wear left in service during A2R22 was measured at 22% TW by ETSS 96910.1, Revision 11. In addition, the largest indication of point wear within a quatrefoil land contact was detected and measured 31 % TW by

+POINT probe ETSS 21998.1, Revision 4. This bounds the SVI indication identified at a dent at TSP which was sized at 25% TW using the same ETSS. The above bounding wear depths are well below the drilled hole baffle plate, flat single land TSP and point wear condition monitoring limits of 58.7% TW, 52.4% TW, and 63.9% TW, respectively.

Foreign Object Wear - The largest foreign object wear indication found during the A2R22 inspection was 38% TW as measured by the EPRI Appendix H qualified technique 21998.1, Revision 4. This is below the foreign object wear CM limit of 59.3% TW calculated for this wear flaw geometry.

Single Axial Indication {ODSCC) - A single axial indication was detected at a ding location in SG 28 tube R1C25 during the +POINT inspections of Row 1 and 2 LI-bends.

To perform a condition monitoring assessment, line-by-line sizing of the indication, assumed to be outside diameter stress corrosion cracking (ODSCC), was performed Page 11 of 28

using ETSS 128432 as specified in the Degradation Assessment. The ETSS 128432 technique specifies an amplitude-based sizing of the flaw. The maximum depth of the flaw using this sizing technique is 75.8% TW and the total flaw length is 0.24 inches.

The Condition Monitoring assessment was performed using the burst effective flaw depth (BED) and burst effective flaw length (BEL) as determined using the "weak link" method. This method determined a BED of 57.12% TW and a BEL of 0.193 inches.

For these values, the calculated 95/50 burst pressure, when including burst relation, material property and NOE measurement uncertainties, is 4467 psi which satisfied the minimum burst pressure requirement of 4155 psi. Since it would require a greater differential pressure than the 3~P performance criteria value, structural integrity is demonstrated for this indication. The calculated 95/50 ligament tearing pressure, including all uncertainties, is 4237 psi. This is also greater than the leakage integrity performance criteria value of 2560 psi associated with a postulated steam line break.

With structural and leakage integrity having been demonstrated for the as-measured size of the flaw over the past operating cycles, CM is met for this indication.

Primary to Secondary Leakage Assessment (TS 5.6.9.h and TS 5.6.9.i)

Braidwood TS 5.6.9.h reporting requirement states:

"For Unit 2, the operational primary to secondary leakage rate observed (greater than three gallons per day) in each steam generator (if it is not practical to assign the leakage to an individual steam generator, the entire primary to secondary leakage should be conservatively assumed to be from one steam generator) during the cycle preceding the inspection which is the subject of the report,"

Braidwood Station, Unit 2 did not observe any confirmed operational SG primary to secondary leakage over the preceding cycle. This is based on chemistry sampling taken from the Steam Jet Air Ejector and liquid SG blowdown sample locations.

  • Braidwood TS 5.6.9.i reporting requirement states:

"For Unit 2, the calculated accident induced leakage rate from the portion of the tubes below 14.01 inches from the top of the tubesheet for the most limiting accident in the most limiting SG. In addition, if the calculated accident induced leakage rate from the most limiting accident is less than 3.11 times the maximum operational primary to secondary leakage rate, the report should describe how it was determined ... ,"

Braidwood Station Unit 2 did not observe any SG primary to secondary operational leakage over the preceding cycle, therefore the calculated accident leakage rate from flaws below 14.01 inches from the TTS is not quantifiable.

Results of Monitoring for Tube Axial Displacement (Slippage) (TS 5.6.9.j)

All in-service tubes were monitored for tube axial displacement (slippage) in both the hot and cold leg tubesheet region in accordance with industry developed guidance. This was performed to ensure tubes had not severed within the tubesheet in regions of the tubesheet that were not scheduled for inspection with X-Probe' in A2R22. The absence of tube sever indications (TSI) from the entirety of the collected bobbin coil inspection data confirms no tubes had tube slippage.

Page 12 of 28

ATTACHMENT A Westinghouse Model D-5 TSP and AVB Configuration AlitiM:bfation

~::;.e::::..._-\,,-U----*tlars 11H 11C 10H 10C 09H 09C OIH QBC 07H IJ1C U6C 051-1 DSC IMC Fttdwater Inlet OlH 03C 02C 01H 01C T$H.** TSC TEH TEC Note: AVB bars are denoted as AV in the figure Page 13 of 28

ATTACHMENT B Anti-Vibration Bar (AVB) Wear Indications 2A SG AVB Wear SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl A 16 74 0.57 11 AV4 0.03 A 29 77 0.73 15 AV3 -0.31 A 16 75 2.09 26 AV4 -0.39 A 29 78 1.28 19 AV2 0.18 A 20 60 3.37 34 AVl 0.38 A 29 87 0.74 12 AV2 0.33 A 20 60 1.64 25 AV4 0 A 29 100 1.03 17 AV2 0.15 A 20 89 0.71 12 AV4 -0.27 A 29 100 1.16 18 AV3 0.19 A 24 40 1.48 23 AVl -0.11 A 29 102 0.74 13 AV2 0.03 A 24 40 1.34 22 AV2 0.21 A 29 102 0.91 16 AV3 0.08 A 24 40 1.61 23 AV3 0.05 A 29 103 0.74 13 AVl 0.3 A 25 78 0.9 15 AV3 -0.18 A 29 103 0.64 10 AV3 -0.07 A 25 78 1.29 19 AV4 0.14 A 29 103 1 16 AV4 -0.33 A 25 105 0.68 12 AV2 0.18 A 29 104 1.42 21 AVl 0.4 A 25 106 1.43 21 AV2 0.38 A 29 104 3.33 33 AV2 0.46 A 25 106 1.17 19 AV3 0.13 A 29 104 3.35 33 AV3 0.44 A 25 106 0.9 15 AV4 0.21 A 29 105 2.25 27 AV2 -0.23 A 25 107 2.47 29 AVl 0.45 A 29 105 4.08 36 AV3 0.03 A 25 107 3.49 34 AV4 0.03 A 30 11

  • 1.23 20 AVl 0.18 A 25 108 1.28 20 AV4 0.16 A 30 11 2.22 27 AV3 0 A 26 8 3.2 33 AVl 0 A 30 12 1.72 24 AV2 0.15 A 26 8 1.52 22 AV2 0 A 30 13 2.1 24 .AV2 -0.18 A 26 8 1.67 24 AV4 0.03 A 30 13 0.72 11 AV3 0.26 A 26 10 0.96 16 AV2 -0.41 A 30 24 1.01 15 AV4 0.27 A 26 41 2.05 23 AV3 0.05 A 30 28 0.76 12 AV2 -0.2 A 26 97 0.86 14 AV3 0.08 A 30 28 0.87 13 AV3 0.12 A 27 105 1.86 24 AVl 0.03 A 30 39 1.29 17 AV2 0.13 A 27 105 1.59 21 AV2 0.03 A 30 39 2.4 26 AV3 0.05 A 27 105 1.18 17 AV3 ~0.45 A 30 39 0.88 12 AV4 0.08 A 27 106 2.04 26 AVl 0.05 A 30 41 1 14 AV3 0.32 A 27 106 1.84 25 AV2 0.18 A 30 42 1.23 16 AV3 0.1 A 27 106 2.05 26 AV3 -0.2 A 30 70 0.92 15 AVl -0.28 A 27 106 1.27 19 AV4 0 A 30 76 1.01 16 AV2 0.18 A 28 13 0.76 12 AV2 0.02 A 30 76 1.06 17 AV3 -0.13 A 28 99 0.74 13 AV3 0.31 A 30 103 2.55 28 AVl 0.35 A 28 104 1.71 24 AV2 -0.18 A 30 103 1.81 23 AV2 -0.08 A 28 105 1.31 19 AVl 0.38 A 30 103 2.2 26 AV3 0.05 A 28 105 0.83 14 AV2 -0.03 A 31 13 1.18 16 AV2 0.17 A 28 105 0.82 13 AV3 0 A 31 14 0.63 13 AV2 0.15 A 29 12 2.03 26 AV3 0 A 31 14 0.75 14 AV3 -0.08 A 29 35 1.03 16 AV4 -0.13 A 31 38 1.02 18 AV2 0 A 29 77 0.96 17 AV2 0.36 A 31 38 1.97 26 AV3 -0.33 Page 14 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl A 31 79 0.76 13 AVl 0.2 A 36 19 0.73 13 AV2 -0.34 A 31 79 1.26 19 AV2 0.41 A 36 26 1.22 17 AV2 -0.02 A 31 79 2.08 26 AV3 0.03 A 36 27 1.17 19 AV2 -0.13 A 31 90 1.08 18 AV3 -0.1 _A 36 30 1.6 20 AVl -0.2 A 31 93 0.66 11 AV2 0.25 A 36 30 0.94 14 AV2 0.2 A 31 93 1.07 16 AV3 -0.35 A 36 30 1.06 15 AV3 -0.31 A 31 102 1.09 17 AV3 0.05 A 36 36 0.69 10 AV2 -0.29 A 32 73 0.93 17 AVl 0.15 A 36 36 0.75 11 AV3 0 A 32 73 0.92 17 AV2 0.1 A 36 66 1.59 22 AV3 0.41 A 32 73 1.32 21 AV3 0.21 A 36 83 1.14 17 AV2 -0.03 A 32 73 0.73 15 AV4 0.08 A 36 85 0.58 10 AV2 0.28 A 33 13 0.7 12 AV3 0.28 A 36 85 0.66 11 AV4 0.17 A. 33 15 1.02 15 AV2 -0.1 A 36 87 1.17 19 AV3 0.08 A 33 15 2.23 25 AV3 -0.07 A 36 88 0.87 14 AV2 0.25 A 33 77 0.47 12 AVl 0 A 36 88 1.44 20 AV3 0.31 A 33 77. 0.77 15 AV2 0.38 A 36 89 0.66 11 AVl 0.4 A 33 81 0.92 15 AV2 0.18 A 36 89 0.79 13 AV2 0.33 A 33 88 1.48 20 AV2 d.18 A 36 89 1.04 16 AV3 0.1 A 33 91 0.73 12 AV2 0.33 A 36 90 0.92 15 AV2 0.3 A 33 94 0.58 10 AV2 0.03 A 36 92 1.44 21 AV2 0.15 A 33 94 0.7 12 AV3 0.05 A 36 92 1.68 23 AV3 -0.15 A 33 98 1.17 17 AV2 0.08 A 36 93 0.73 12 AV2 0.38 A 33 98 3.03 31 AV3 0.49 A 37 25 1.27 20 AV2 0.25 A 33 99 2.17 26 AV2 -0.13 A 37 25 1.07 18 AV3 -0.05 A 33 99 0.98 15 AV3 -0.13 A 37 26 0.97 14 AV3 0.15 A 34 14 1.64 23 AVl -0.16 A 37 42 0.88 12 AV2 0.1 A 34 14 1.93 25 AV2 0 A 37 42 0.92 13 AV3 -0.18 A 34 14 1.77 24 AV3 0 A 37 73 0.84 16 AVl -0.47 A 34 78 1.26 19 AV2 0.15 A 37 73 2.44 29 AV2 -0.1 A 34 81 1.46 21 AV2 0.4 A 37 73 0.94 17 AV3 0.13 A 34 94 0.99 17 AV2 -0.1 A 37 73 1.24 20 AV4 0.2 A 34 98 1.06 18 AV3 -0.12 A 37 74 0.91 15 AVl 0.32 A 35 14 0.99 17 AV4 0.22 A 37 74 1.05 17 AV2 0 A 35 19 1.15 17 AV3 0.13 A 37 74 0.74 13 AV4 -0.15 A 35 90 0.71 12 AVl 0.12 A 37 75 0.61 13 AVl 0.3 A 35 90 0.73 12 AV2 0.13 A 37 75 2.96 32 AV2 -0.05 A 35 90 2.14 26 AV3 0.16 A 37 75 1.34 21 AV3 0.13 A 35 93 0.68 12 AV3 0.1 A 37 75 0.77 15 AV4 0.03 A 35 96 2.17 26 AV2 0.48 A 37 76 1.36 20 AVl -0.06.

A 35 101 1.01 16 AV2 -0.23 A 37 76 3.56 34 AV2 0.43 A 36 16 3.1 32 AV2 -0.13 A 37 76 2.05 25 AV3 -0.13 A 36 16 0.85 15 AV3 -0.1 A 37 76 0.94 15 AV4 0.11 A 36 17 1.01 16 AV2 -0.29 A 37 77 1.1 20 AV2 0 A 36 17 0.62 11 AV3 0.12 A 37 77 0.79 15 AV4 -0.37 A 36 18 1.58 22 AV2 0.03 A 37 78 0.7 12 AVl 0.17 A 36 18 1.36 20 AV3 0.15 A 37 81 0.99 16 AVl -0.14 Page 15 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl A 37 81 2.73 30 AV2 -0.18 A 38 90 1.01 17 AV2 -0.1 A 37 81 2.49 29 AV3 0.1 A 38 90 1.25 19 AV3 -0.15 A 37 82 0.99 16 AVl 0.27 A 38 92 3.44 34 AV2 -0.2 A 37 82 0.96 16 AV3 -0.3 A 38 92 2.02 26 AV3 0.47 A 37 83 0.62 11 AVl 0.17 A 38 93 1.95 24 AV2 -0.41 A 37 83 2.21 25 AV2 0.33 A 38 93 3.1 32 AV3 -0.43 A 37 83 2.22 26 AV3 0.36 A 39 20 3.22 32 AVl 0.36 A 37 85 0.93 15 AV2 -0.05 A 39 20 1.24 18 AV2 0.4 A 37 90 1.05 18 AV2 -0.15 A 39 20 3.69 35 AV3 -0.02 A 37 92 0.94 16 AV3 0.26 A 39 20 1.31 19 AV4 0.08 A 37 93 1.37 19 AV3 0.08 A 39 21 1.13 17 AVl 0.32 A 38 20 0.93 16 AVl 0.18 A 39 21 3.12 32 AV2 0.38 A 38 20 2.27 27 AV2 -0.25 A 39 21 1.05 16 AV3 0.02 A 38 20 2.05 26 AV3 -0.23 A 39 21 1.33 19 AV4 0.06 A 38 20 2.39 28 AV4 -0.15 A 39 22 1.15 17 AVl 0.39 A 38 23 1.89 25 AV2 0.03 A 39 22 1.76 23 AV2 0.41 A 38 24 1 14 AVl 0 A 39 41 1.53 22 AV2 0.13 A 38 24 1.62 20 AV2 0.34 A 39 41 0.81 16 AV3 -0.08 A 38 24 1.6 20 AV3 -0.19 A 39 so 0.92 16 AV3 0.11 A 38 24 0.83 12 AV4 -0.15 A 39 51 0.94 13 AV3 -0.14 A 38 26 1 14 AVl 0.12 A 39 65 1.1 19 AVl 0.44 A 38 26 1.12 16 AV2 0.38 A 39 65 1.39 22 AV2 0.43 A 38 26 3.03 30 AV3 -0.38 A 39 65 1.9 26 AV3 0.36 A 38 27 1.31 20 AV2 0 A 39 67 1 18 AVl 0.32 A 38 27 1.93 25 AV3 0 A 39 67 1.52 23 AV2 0.43 A 38 28 0.66 10 AV2 0.15 A 39 68 0.5 10 AVl 0.17 A 38 28 1.86 22 AV3 -0.36 A 39 70 2.34 27 AV2 0.3 A 38 28 0.7 11 AV4 0.16 A 39 70 1.29 19 AV3 0.05 A 38 29 1.07 18 AV3 0.18 A 39 72 1.46 22 AV2 0.33 A 38 30 0.74 11 AVl -0.08 A 39 75 0.9 17 AV3 0.05 A 38 30 1.88 23 AV2 0.18 A 39 76 0.96 16 AVl 0.17 A 38 30 1.8 22 AV3 0.1 A 39 76 0.67 12 AV2 0.08 A 38 31 1.78 24 AV2 0.18 A 39 76 0.91 15 AV3 -0.28 A 38 31 2.44 28 AV3 0.08 A 39 76 0.73 13 AV4 0.08 A 38 31 0.75 14 AV4 0.14 A 39 78 1.95 25 AV2 0.2 A 38 33 0.82 16 AV2 0.15 A 39 78 1.77 23 AV3 0.18 A 38 33 1.47 22 AV3 0.16 A 39 84 1.05 18 AVl 0.17 A 38 34 0.84 12 AV2 -0.12 A 39 84 1.43 21 AV2 -0.23 A 38 35 1.66 24 AV2 -0.18 A 39 84 1.29 20 AV3 -0.1 A 38 86 0.66 13 AVl -0.25 A 39 84 0.84 15 AV4 0.08 A 38 86 1.58 23 AV2 -0.23 A 39 85 1.04 16 AV2 0.46 A 38 86 0.99 17 AV3 0 A 39 85 1.6 21 AV3 0.03 A 38 87 0.81 14 AV2 0.36 A 39 86 1.63 23 AV2 0.08 A 38 89 1.41 20 AV2 0.28 A 39 86 1.2 19 AV3 -0.1 A 38 89 1.02 16 AV3 -0.32 A 39. 90 0.76 14 AVl 0.22 A 38 90 0.82 14 AVl 0.32 A 39 90 4.48 38 AV2 0 Page 16 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per locn lnchl A 39 90 2.9 31 AV3 -0.15 A 40 74 0.76 13 AV3 -0.08 A 39 90 0.98 16 AV4 0.22 A 40 75 1.14 19 AV3 0.1 A 40 24 0.88 13 AVl 0.22 A 40 77 2.3 28 AV2 -0.1 A 40 24 3.75 34 AV2 0.26 A 40 78 1.08 17 AV2 0.15 A 40 24 0.9 13 AV3 0.03 A 40 78 0.96 16 AV3 0.21 A 40 24 1.07 15 AV4 -0.29 A 40 79 2.69 30 AV2 0.23 A 40 25 2.55 30 AVl 0 A 40 79 2.77 30 AV3 -0.03 A 40 25 2.28 28 AV2 0 A 40 80 4.69 39 AV2 0 A 40 25 3.54 34 AV3 0.46 A 40 81 1.87 24 AV2 0.1 A 40 25 0.64 12 AV4 0.08 A 40 82 2.32 27 AV2 -0.1 A 40 26 1.07 15 AV2 -0.14 A 40 82 2.82 30 AV3 0 A 40 26 3.16 31 AV3 -0.37 A 40 83 2.43 28 AVl 0.1 A 40 29 2.91 31 AV2 0.4 A 40 83 2.26 26 AV2 0.05 A 40 29 2.43 29 AV3 -0.39 A 40 83 1.37 19 AV3 -0.37 A 40 29 0.57 12 AV4 0.06

  • A 40 83 0.73 12 AV4 0.06 A 40 31 1.49 21 AVl -0.08 A 40 84 0.74 13 AV3 0.03 A 40 31 1.74 24 AV2 0.08 A 40 88 2.83 30 AV2 0 A 40 31 2.23 27 AV3 -0.38 A 40 88 2.08 25 AV3 0.03 A 40 31 1.14 18 AV4 0.2 A 40 88 0.85 14 AV4 -0.3 A 40 33 1.17 20 AV3 -0.12 A 40 89 0.77 13 AV2 0.1 A 40 34 1.13 15 AV2 0.15 A 40 89 *0.98 15 AV3 0.03 A 40 37 1.06 19 AV2 0.15 A 41 24 2.73 29 AV2 0.02 A 40 37 1.22 20 AV3 -0.4 A 41 24 2.28 26 AV3 -0.41 A 40 38 2.25 25 AVl 0.07 A 41 30 0.72 11 AV2 0.33 A 40 38 1.07 15 AV2 0 A 41 34 0.91 16 AV2 0.28 A 40 38 1.54 19 AV3 -0.3 A 41 34 1.23 20 AV3 -0.32 A 40 38 0.73 11 AV4 0.17 A 41 37 4.69 39 AV2 0 A 40 40 0.74 11 AV2 0.15 A 41 37 4.64 39 . AV3 0 A 40 40 1.09 15 AV3 -0.1 A 41 38 0.89 12 AV2 0.36 A 40 43 0.79 15 AVl -0.14 A 41 39 2.99 32 AV2 -0.15 A 40 43 1.05 19 AV2 0.13 A 41 39 2.87 31 AV3 -0.33 A 40 43 0.88 17 AV3 0.13 A 41 39 1.44 22 AV4 0.11 A 40 45 0.73 15 AV3 -0.15 A 41 41 0.73 14 AV2 0.23 A 40 47 1.3 17 AV2 0 A 41 41 1.46 23 AV3 -0.17 A 40 61
  • 3.84 36 AV2 0.45 A 41 42 1.88 22 AV2 -0.09 A 40 61 2.57 30 AV3 0.41 A 41 42 2.29 25 AV3 0.05 A 40 64 0.72 13 AV3 -0.02 A 41 52 1.21 20 AV2 0.15 A 40 66 0.7 12 AVl 0.05 A 41 53 0.72 11 AV3 -0.29 A 40 66 0.92 15 AV2 0.12 A 41 68 1.36 20 AV2 0.37 A 40 66 0.55 10 AV3 -0.17 A 41 68 2.57 29 AV3 0.36 A 40 68 1.55 21 AV2 0.35 A 41 69 0.8 15 AVl -0.08 A 40 68 0.75 13 AV3 0.15 A 41 69 0.78 15 AV2 0.08 A 40 69 0.61 13 AVl -0.08 A 41 69 1.27 21 AV3 0.05 A 40 73 0.53 12 AVl -0.36 A 41 70 0.7 12 AV3 -0.2 A 40 73 3.15 33 AV2 -0.03 A 41 72 1.45 21 AV3 -0.15 A 40 73 2.22 28 AV3 0.08 A 41 75 1.78 25 AVl 0.02 Page 17 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl A 41 75 3.98 36 AV2 0.48 A 44 60 0.97 18 AV4 0.14 A 41 75 1.89 26 AV3 -0.27 A 44 67 0.57 11 AVl 0.32 A 41 78 1.22 18 AV3 -0.15 A 44 92 0.88 16 AV4 0.08 A 41 79 0.91 15 AVl 0.07 A 45 40 0.47 7 AVl 0.1 A 41 79 1.36 20 AV2 -0.13 A 45 40 0.98 14 AV2 0.17 A 41 79 2.73 30 AV3 0.08 A 45 41 1.24 20 AV2 0.33 A 41 79 0.53 10 AV4 0.17 A 45 41 1.01 17 AV3 0.11 A 41 82 0.77 13 AVl 0.25 A 45 45 0.67 13 AVl 0.27 A 41 82 3.96 36 AV2 -0.15 A 45 45 2.6 30 AV2 0.2 A 41 82 1.96 25 AV3 0.13 A 45 45 1.24 21 AV3 -0.15 A 41 82 1.35 20 AV4 0.2 A 45 46 0.7 10 AV2 0.12 A 41 84 1.09 17 AV2 -0.15 A 45 48 0.99 14 AV3 0.1 A 41 85 2.25 26 AV2 0.08 A 45 49 1.01 14 AV2 0.12 A 41 85 1.27 18 AV3 0.11 A 45 51 1.16 15 AV3 0.34 A 41 87 3.99 36 AV2 0.43 A 45 52 0.73 14 AV2 0.3 A 41 87 2.39 28 AV3 -0.12 A 45 54 0.84 15 AV3 0.4 A 41 89 1.35 19 AV3 0.08 A 45 55 2.27 25 AV2 0.41 A 41 90 5.48 42 AV2 -0.05 A 45 55 2.5 27 AV3 0.32 A 41 90 1.13 18 AV3 0.08 A 45 59 0.97 15 AV2 0.28 A 42 26 0.79 12 AV2 0.2 A 45 59 2.19 26 AV3 -0.05 A 42 26 1.53 20 AV3 0.21 A 45 62 0.64 12 AV3 0.29 A 42 28 0.8 12 AV2 0.3 A 45 65 0.87 16 AVl 0.34 A 42 28 1.04 15 AV3 -0.25 A 45 65 0.9 17 AV3 0.14 A 42 28 0.85 13 AV4 -0.32 A 45 70 2.1 27 AV2 0.05 A 42 30 0.89 13 AV2 0.28 A 45 70 1.74 25 AV3 -0.37 A 42 30 1.35 18 AV3 -0.28 A 45 71 0.85 16 AVl 0.37 A 42 36 0.73 11 AV3 0.02 A 45 71 0.79 15 AV2 0.3 A 42 51 1.54 19 AV2 0.35 A 45 80 1.55 23 AV2 0.28 A 42 51 0.8 12 AV3 0 A 45 80 2.67 31 AV3 0 A 42 56 1.33 22 AV2 0.15 A 45 80 1.51 23 AV4 0.14 A 42 62 0.58 11 AV2 0.05 A 45 82 0.82 16 AV2 -0.13 A 42 62 0.59 11 AV3 0.21 A 45 82 1.94 26 AV3 0.08 A 42 71 0.92 17 AV3 0.18 A 45 91 1.62 22 AVl 0.37 A 42 89 1.4 20 AV2 0.43 A 46 26 0.78 15 AV4 -0.2 A 42 89 0.92 15 AV3 0.03 A 46 33 1 .18 AV3 -0.07 A 42 89 0.59 10 AV4 0.06 A 46 33 1.03 18 AV4 -0.1 A 42 94 0.9 16 AV4 -0.17 A 46 56 1.1 19 AV3 -0.07 A 43 71 1.46 22 AVl 0.32 A 46 60 1.52 24 AVl 0 A 43 71 2.75 31 AV2 0.48 A 46 60 2.48 30 AV2 0 A 43 71 1.62 24 AV3 -0.42 A 46 61 0.61 14 AVl 0.29 A 43 72 0.61 11 AVl 0.25 A 46 61 0.96 19 AV2 0.05 A 43 72 0.55 10 AV3 0.05 A 46 65 0.93 18 AV2 -0.1 A 43 93 0.87 15 AV3 -0.2 A 46 71 1.11 17 AV2 0.12 A 43 93 0.96 17 AV4 0.19 A 46 71 0.64 12 AV3 0.03 A 44 24 0.89 16 AVl 0.02 A 46 71 0.62 11 AV4 -0.15 A 44 55 0.64 10 AV3 0 A 46 73 0.66 14 AVl 0.29 Page 18 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl A 46 73 3.12 33 AV2 0 A 47 72 0.92 15 AVl 0.32 A 46 73 3.97 36 AV3 0.05 A 47 88 1.56 22 AV4 -0.15 A 47 29 2.23 27 AV2 0.2 A 49 41 0.67 14 AVl -0.11 A 47 34 1.15 15 AV3 0.17 A 47 34 0.86 12 AV4 0.06 Page 19 of 28

2B SG AVB Wear SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl B 21 110 1.3 16 AV4 0.07 B 36 73 1.04 16 AV2 0.06 B 22 109 1.19 15 AVl 0.63 B 36 81 1.08 17 AV2 0.1 B 22 109 1.31 15 AV4 0.52 B 36 93 0.92 14 AV2 0.3 B 24 78 1.07 15 AV4 0.13 B 36 96 2.12 25 AV2 -0.07 B 24 107 0.82 16 AVl -0.8 B 36 96 1.1 17 AV3 -0.05 B 24 107 0.56 12 AV3 0.2 B 36 96 1.45 20 AV4 -0.05 B 25 75 1.25 18 AV3 -0.63 B 36 97 1.98 24 AVl 0.1 B 25 107 1.02 14 AV3 -0.22 B 36 97 1.32 22 AV2 -0.38 B 25 108 2.62 26 AVl -0.07 B 36 97 1.75 22 AV3 0.03 B 25 108 0.82 10 AV2 -0.03 B 36 97 1.08 20 AV4 0.16 B 25 108 1.16 14 AV3 0.13 B 36 99 1.58 21 AVl 0 B 25 108 2.2 23 AV4 0.3 B 36 99 2.07 25 AV2 -0.15 B 27 106 0.77 11 AVl -0.05 B 36 100 1.22 18 AVl 0.12 B 27 106 1.28 15 AV3 0.08 B 36 100 1.77 23 AV2 0.12 B 28 34 0.86 14 AVl 0.21 B 37 36 1.15 16 AVl 0.31 B 28 34 1.36 20 AV2 0.39 B 37 36 1.23 17 AV2 0.15 B 28 104 1.88 20 AV2 0.05 B 37 36 1.71 21 AV3 0.15 B 29 85 0.82 16 AVl -0.43 B 37 36 1.11 15 AV4 0.08 B 29 85 1.13 20 AV3 -0.07 B 37 38 1.56 20 AVl 0.31 B 29 100 1.97 24 AV2 -0.18 B 37 38 4.9 38 AV2 0.2 B 29 100 1.34 19 AV3 0.13 B 37 38 3.95 34 AV3 0.45 B 29 104 1.65 18 AV3 0.03 B 37 38 0.72 11 AV4 0.05 n

B 30 101 1.25 21 AV2 0.2 D 37 98 1.26 18 AV4 -0.39 B 30 101 1.39 22 AV3 0.1 B 37 99 0.75 13 AV2 -0.08 B 30 103 0.94 17 AV3 -0.12 B 37 99 1.37 19 AV3 -0.27 B 31 38 0.62 10 AVl 0.38 B 38 24 1.19 19 AV2 0.34 B 32 39 1.09 17 AV2 0 B 38 24 1.03 17 AV3 -0.1 B 32 48 1.23 17 AV2 0.02 B 38 39 1.04 16 AV2 -0.07 B 32 101 2.49 30 AV3 0.08 B 38 41 2.02 24 AV2 0 B 32 101 0.67 14 AV4 0.23 B 38 41 2.08 24 AV3 -0.34 B 33 14 1.04 21 AVl 0.29 B 38 59 2.66 31 AV2 0.27 B 33 14 2.94 34 AV2 0.4 B 38 59 2.2 28 AV3 0.1 B 33 14 2 26 AV3 0.1 B 38 67 1.41 18 AV3 0.3 B 33 103 0.84 11 AV2 0.1 B 38 95 3.51 34 AV2 0 B 33 103 2.15 22 AV3 0.05 B 38 98 2.15 25 AV3 0.18 B 34 59 1.07 19 AV3 0.1 B 38 98 1.61 21 AV4 0 B 35 15 2.58 27 AV2 0.02 B 39 34 0.81 19 AVl 0.21 B 35 15 5.23 40 AV3 0.35 B 39 85 0.9 17 AVl 0.1 B 35 15 2.11 24 AV4 0 B 39 85 1.69 25 AV2 0 B 35 31 0.86 13 AV2 -0.05 B 39 85 2.21 29 AV3 -0.39 B 35 63 2.07 26 AV4 -0.29 B 39 96 2.5 28 AVl 0.37 B 35 98 1.47 20 AV3 0 B 39 96 1.9 24 AV2 0 Page 20 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl B 39 96 6.7 44 AV3 0.23 B 41 55 4.39 36 AV3 -0.24 B 39 96 0.85 14 AV4 -0.32 B 41 55 1.91 22 AV4 -0.05 B 39 97 2.37 27 AVl 0.37 B 42 44 1.24 18 AVl 0.47 B 39 97 2.2 26 AV2 -0.42 B 42 44 1.18 16 AV2 0.41 B 39 97 6.58 44 AV3 -0.54 B 42 44 1.21 17 AV3 -0.26 B 39 97 2.27 26 AV4 -0.34 B 43 30 2.11 27 AV2 0.02 B 40 18 0.97 13 AV2 -0.19 B 43 30 1.1 18 AV3 0.13 B 40 18 0.99 14 AV3 0.05 B 43 32 1.87 25 AVl 0.4 B 40 22 1.75 27 AV2 0 B 43 32 1.96 26 AV2 -0.15 B 40 22 1.51 26 AV3 -0.12 B 43 32 0.98 17 AV3 0.08 B 40 46 2 24 AV2 0 B 43 37 2.54 27 AVl 0.17 B 40 46 2.02 24 AV3 0 B 43 37 3.89 35 AV2 0.19 B 40 47 0.96 15 AV3 0.27 B 43 37 3.47 33 AV3 0.23 B 40 66 0.69 15 AVl 0 B 44 36 0.8 19 AVl 0.31 B 40 66 2.07 27 AV2 0.33 B 44 81 1.61 18 AV3 0.03 B 40 66 1.58 24 AV3 0.03 B 47 59 1.48 23 AVl 0.21 B 40 74 1.69 23 AV2 -0.07 B 47 59 2.85 33 AV2 0 B 40 74 1.9 25 AV3 -0.05 B 47 59 1.09 19 AV3 -0.12 B 40 82 1.28 20 AV2 0.3 B 40 82 3.87 35 AV3 -0.1 B 40 82 0.63 12 AV4 -0.22 B 40 87 1.19 21 AV2 0.29 B 40 87 1.57 24 AV3 0.3 B 40 90 1.84 23 AV2 0.4 B 40 90 2.29 26 AV3 0.2 B 40 92 1.69 22 AV2 0.12 B 40 92 3.5 33 AV3 0 B 40 92 1.44 20 AV4 0.19 B 40 93 2 24 AV2 0.02 B 40 93 2.34 27 AV3 -0.05 B 40 95 1.08 16 AV2 0 B 41 26 1.5 26 AV2 0.29 B 41 36 1.46 25 AVl 0.24 B 41 40 1.17 23 AV2 a.as B 41 40 2.35 29 AV3 0.05 B 41 so 2.11 27 AV3 0.05 B 41 55 1.23 16 AVl 0.14 B 41 55 3.17 30 AV2 0 Page 21 of 28

2C SG AVB Wear SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl C 22 92 0.48 9 AV4 -0.2 C 34 56 1.41 20 AVl 0.37 C 26 9 1.1 18 AVl -0.16 C 34 100 2.06 25 AV3 0.13 C 26 9 0.9 16 AV4 0 C 34 101 0.69 11' AV2 0.13 C 27 9 1.31 20 AVl 0.08 C 34 101 2.21 25 AV3 0.34 C 27 9 0.67 13 AV2 -0.1 C 35 54 1.67 21 AVl 0.05 C 27 *9 0.96 14 AV3 -0.21 C 35 56 0.95 15 AV2 0.3 C 27 9 1.86 22 AV4 0.15 C 36 17 2.45 28 AV2 0.5 C 27 103 0.56 12 AV2 0.03 C 36 17 1.81 23 AV3 0.05 C 28 42 1.01 15 AVl -0.03 C 36 17 0.87 13 AV4 -0.13 C 28 42 1.05 16 AV2 0.23 C 36 19 2.64 30 AV2 -0.34 C 28 42 1.36 19 AV3 -0.1 C 36 19 4 36 AV3 0.23 C 28 42 1 15 AV4 0.08 C 36 19 0.76 14 AV4 0.03 C 30 13 . 0.84 13 -AVl -0.14 C 36 20 1.12 '

18 AVl 0.25 C 30 60 2.66 28 AVl 0.15 C 36 20 1.45 21 AV2 0.45 C 30 60 2.05 23 AV2 -0.13 C 36 20 1.3 20 AV3 0.18 C 30 60 1.35 20 AV3 0 C 36 20 1.1 15 AV4 -0.15 C 30 c 60 0.95 16 AV4 0.09 C 36 21 0.86 15 AVl -0.06 C 30 62 0.81 15 AV2 0.28 C 36 21 1.33 20 AV3 -0.18 C 30 98 1.21 18 AV3 0.18 C 36 26 0.96 16 AV2 0.05 C 31 101 0.71 17 AV3 0.18 C 36 26 1.46 21 AV3 -0.1 C 31 102 0.94 14 AV2 0.23 C 36 26 1.21 19 AV4 -0.35 C 31 102 1.68 21 AV3 -0.15 C . 36 34 0.48 8 AV2 -0.03 C 32 16 0.8 14 AVl 0 C 36 34 1.93 23 AV3 0.08 C 32 16 1.03 17 AV2 0 C 36

  • 56 1.31 18 AV2 0 C 32 16 0.94 16 AV4 0 C 36 78 1.36 20 AV2 0 C 32 89 0.8 13 AV2 0 C 36 86 0.81 13 AVl -0.36 C 32 99 1.18 18 AV3 0 C 3_6 86 1.57 21 AV2 0.33 C 33 14 1.65 21 AV2 -0.1 C 36 86 3.09 31 AV3 0.05 C 33 14 1.53 20 AV3 -0.15 C 36 86 2.3 27 AV4 0.03 C 33 14 2.25 26 AV4 -0.15 C 36 89 0.78 13 AV2 0.18 C 33 16 0.84 13 AVl -0.03 C* 36 89 .1.59 22 AV3 0 C 33 72 0.89 15 AV2 0 C 36 90 1.09 16 AVl 0.13 C 33 72 1.76 23 AV3 0 C 36 90 2.69 29 AV2 0.36 C 33 76 0.62 11 AVl 0.2 C 36 90 3.97 36 AV3 0.03 C 33 85 0.96 15 AV3 0 C 36 90 1.64 22 AV4 0.06 C 33 90 0.96 15 AV2 0.28 C 36 93 1.17 18 AV2 0 C 33 90 0.84 14 AV3 0.05 C 36 93 0.89 15 AV3 0 C 33 92 1.36 19 AV3 0.13 C 36 95 1.12 17 AV3 0 C 34 16 0.83 15 AV3 0.15 C 36 96 1.31 19 AV2 -0.1 C 34 17 1.02 17 AVl -0.31 C 36 96 1.74 23 AV3 -0.05 C 34 17 0.83 15 AV2 -0.05 C 36 99 1.13 17 AVl -0.08 C 34 17 1.64 23 AV3 0.05 C 36 99 2.14 26 AV2 -0.13 C 34 18 1.11 15 AV2 0.1 C 36 99 4.28 35 AV3 -0.13 Page 22 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl C 36 99 1.97 25 AV4 -0.13 C 38 91 3.03 27 AV3 -0.05 C 37 17 0.62 11 AV2 0.05 C 38 95 1.09 15 AV2 0.05 C 37 23 0.69 12 AV3 -0.2 C 38 95 1.49 19 AV3 0.13 C 37 47 1.1 16 AV2 0.41 C 39 59 0.62 10 AV3 -0.1 C 37 77 1.43 20 AV2 0.36 C 39 64 0.78 15 AVl 0.15 C 37 77 2.75 30 AV3 0.05 C 39 65 1.03 15 AV2 -0.05 C 37 87 0.71 12 AVl 0.25 C 40 73 1.15 19 AV2 0.18 C 37 87 1.4 20 AV2 0.28 C 40 73 2.38 29 AV3 0.16 C 37 87 1.53 21 AV3 0 C 40 77 1.86 23 AV2 0.08 C 37 87 0.81 14 AV4 -0.1 C 40 77 2.24 25 AV3 0.16 C 37 88 0.77 13 AV2 0.1 C 40 81 1 15 AVl 0 C 37 89 0.83 14 AV3 -0.25 C 40 81 3.64 34 AV2 0.15 C 37 93 1.03 16 AV2 0.15 C 40 81 1.9 23 AV3 0.18 C 37 93 1.47 21 AV3 0.08 C 40 83 1.06 15 AVl 0.13 C 38 21 2.11 26 AV2 -0.08 C 40 83 3.92 35 AV2 0.08 C 38 21 1.64 23 AV3 0.08 C 40 83 4.66 39 AV3 0.03 C 38 27 0.77 14 AVl 0.07 C 40 84 1 18 AV3 0.37 C 38 27 2.59 29 AV2 0.37 C 40 85 2.65 28 AV2 0.21 C 38 27 1.97 25 AV3 0.1 C 40 85 1.58 20 AV3 -0.2 C 38 30 0.93 16 AVl 0.42 C 40 88 0.96 17

  • AVl -0.26 C 38 30 1.99 25 AV2 0 C 40 88 1.41 22 AV2 0.44 C 38 30 2.34 28 AV3 0.13 C 40 88 2.41 29 AV3 0.08 C 38 34 1.2 17 AV2 -0.18 C 40 88 0.79 15 AV4 0.15 C 38 34 0.77 13 AV3 -0.17 C 40 91 1.97 23 AV3 0.03 C 38 39 0.86 14 AV2 -0.28 C 40 91 0.91 13 AV4 -0.2 C 38 39 1.19 18 AV3 0.36 C 40 92 0.74 14 AVl -O.i7 C 38 42 0.85 13 AVl -0.11 C 40 92 2.24 28 AV2 0.03 C 38 56 1.37 19 AV3 -0.35 C 40 92 3.86 36 AV3 0.05 C 38 60 2.19 24 AVl -0.12 C 40 92 1.02 18 AV4 -0.2 C 38 60 1.97 25 AV2 0.3 C 40 94 0.86 16 AV2 0.15 C 38 60 1.65 23 AV3 -0.05 C 40 94 1.48 22 AV3 0.18 C 38 60 0.67 13 AV4 0 C 40 95 5.82 43 AV2 0.41 C 38 66 2.82 30 AV2 0 C 40 95 1.81 22 AV3 0.13 C 38 66 1.16 18 AV3 0 C 40 95 1.09 15 AV4 0.37 C 38 66 0.71 12 AV4 0 C 40 97 0.78 12 AV3 0 C 38 68 0.75 13 AVl 0.23 C 40 97 1.61 20 AV4 0.09 C 38 68 1.52 15 AV2 0.08 C 41 22 1.07 15 AV2 -0.38 C 38 68 0.97 10 AV3 -0.03 C 41 22 2.36 26 AV3 0.16 C 38 71 1.54 23 AV2 0.05 C 41 22 1.65 19 AV4 -0.28 C 38 71 1.22 20 AV3 -0.08 C 41 24 1.41 19 AV3 0.13 C 38 72 0.89 15 AV2 0.05 C 41 30 1.3 20 AV2 0.05 C 38 72 1.75 23 AV3 0 C 41 30 1.47 22 AV3 0.08 C 38 73 0.62 13 AVl -0.06 C 41 31 2.07 23 AVl 0.25 C 38 84 0.91 17 AV2 0.41 C 41 31 4 35 AV2 -0.03 C 38 84 0.75 15 AV3 0.52 C 41 31 2.74 27 AV3 0.08 C 38 91 0.99 16 AV2 0 C 41 31 1.18 15 AV4 0 Page 23 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl C 41 34 2.28 25 AV2 0.48 C 42 36 1.1 16 AV4 0.37 C 41 34 2.74 28 AV3 0.1 C 42 39 1.83 22 AV2 0.38 C 41 34 0.99 17 AV4 0 C 42 39 2.56 28 AV3 0.08 C 41 35 1.19 15 AVl 0.12 C 42 79 1.35 18 AV3 -0.1 C 41 35 1.33 16 AV2 0.38 C 42 79 1.14 16 AV4 -0.15 C 41 36 0.58 10 AVl 0.12 C 42 80 1.11 19 AV2 -0.21 C 41 36 2.63 28 AV2 0 C 42 80 1.88 25 AV3 0.11 C 41 36 1.68 21 AV3 -0.15 C 42 80 0.84 16 AV4 0.47 C 41 36 0.81 13 AV4 0.14 C 42 81 1.64 21 AVl 0 C 41 38 2.93 30 AV2 0.08 C 42 81 3.89 35 AV2 0.03 C 41 38 1.47 19 AV3 -0.1 C 42 81 2.4 27 AV3 -0.15 C 41 41 1.1 16 AV3 0.05 C 42 81 1.58 20 AV4 0.12 C 41 41 1.08 16 AV4 -0.32 C 42 82 2.24 28 AV2 0.51 C 41 44 0.86 14 AV2 0.15 C 42 82 1.41 22 AV3 0.08 C 41 49 1.4 20 AVl 0.4 C 42 83 1.06 15 AV2 -0.1 C 41 so 1.21 16 AVl 0.3 C 42 83 1.63 21 AV3 0.11 C 41 so 1.76 21 AV2 0.41 C 42 90 1.6 24 AVl 0.15 C 41 so 3.61 34 AV3 0.47 C 42 90 3.91 36 AV2 0.1 C 41 56 0.86 13 AVl 0.1 C 42 90 4.44 38 AV3 0.03 C 41 71 0.92 17 AVl -0.17 C 42 90 1.13 19 AV4 0.26 C 41 71 1.21 20 AV2 -0.13 C 42 94 0.89 13 AV3 0 C 41 71 1.5 22 AV3 -0.05 C 42 94 1.18 16 AV4 0.17 C 41 82 1.07 18 AV2 0.36 C 43 33 1.4 17 AVl -0.44 C 41 83 1.07 15 AVl 0.1 C 43 33 1.42 17 AV2 -0.42 C 41 83 1.07 15 AV2 0.18 C 43 44 0.53 10 AVl -0.06 C 41 83 1.14 16 AV3 0.13 C 43 44 0.68 11 AV3 0.14 C 41 88 0.8 15 AVl -0.03 ....r 43 54 0.89 14 AVl 0.2 C 41 88 1.36 21 AV2 0.43 C 43 54 1.71 21 AV2 0.05 C 41 88 1.04 18 AV3 0.18 C 43 54 2.07 24 AV3 -0.03 C 41 88 0.59 12 AV4 0.15 C 43 55 0.74 12 AV2 0.2 C 41 92 2.67 30 AV2 -0.47 C 43 56 4.46 38 AVl 0.45 C 41 92 1.84 25 AV3 0.16 C 43 56 1.9 22 AV4 0.44 C 41 92 1.01 18 AV4 0.35 C 43 78 0.63 13 AVl 0.18 c:: 41 94 0.97 17 AV2 0.15 C 43 78 0.81 16 AV2 0.13 C 41 94 1.25 21 AV3 -0.28 C 43 78 1.88 25 AV3 0.11 C 42 21 1.46 17 AV2 0.38 C 43 80 1.04 18 AVl -0.52 C 42 22 3.06 30 AV3 0.03 C 43 80 1.04 18 AV2 -0.05 C 42 22 1.97 22 AV4 0.44 C 43 80 0.87 16 AV3 -0.3 C 42 23 1.06 13 AV2 0.03 C 43 84 2.14 27 AV2 0.1 C 42 23 1.45 19 AV3 -0.31 C 43 84 2.22 28 AV3 0.08 C 42 23 0.88 12 AV4 -0.09 C 43 89 0.64 10 AV4 -0.07 C 42 25 3.12 31 AV2 0.45 C 43 91 1.24 17 AV4 -0.3 C 42 25 3.82 34 AV3 -0.08 C 43 93 0.96 14 AV4 0.2 C 42 25 1.33 18 AV4 -0.5 C 44 23 1.08 15 AVl 0.25 C 42 36 0.89 14 AV2 -0.03 C 44 23 5.48 42 AV2 0.13 C 42 36 3.58 34 AV3 0.23 C 44 23 4.46 37 AV3 -0.03 Page 24 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl C 44 28 1.26 16 AV2 -0.08 C 46 70 0.63 12 AVl 0.12 C 44 28 1.64 20 AV3 0.1 C 46 89 0.94 14 AV4 -0.12 C 44 28 0.62 12 AV4 0 C 47 29 0.99 13 AV2 0.28 C 44 so 1.72 21 AVl 0.25 C 47 44 1.11 17 AVl 0.15 C 44 so 1.33 18 AV2 -0.19 C 47 66 1.24 17 AVl -0.09 C 44 so 1.47 19 AV3 0.49 C 48 29 0.7 10 AV4 0.35 C 44 52 1.11 16 AV2 -0.13 C 48 30 1.07 14 AV4 0.09 C 44 52 1.22 20 AV3 0.05 C 48 56 1.16 17 AVl 0.3 C 44 54 1.47 19 AV3 0.39 C 49 41 0.67 11 AVl -0.38 C 44 55 0.71 12 AV3 -0.18 C 49 82 0.63 10 AV4 0 C 45 26 4.17 36 AV2 0.08 C 45 26 2.95 29 AV3 0.08 C 45 26 0.95 12 AV4 0.34 C 45 30 1.53 22 AV2 -0.05 C 45 30 4.4 38 AV3 0.29 C 45 30 1.3 20 AV4 0.11 C 45 36 1.08 16 AV2 0.33 C 45 36 0.9 14 AV3 -0.13 C 45 so 1.13 15 AVl 0.3 C 45 52 1.25

  • 18 AVl 0.3 C 45 52 1.8 22 AV2 0.05 C 45 52 3.11 31 AV3 0 C 45 53 0.77 12 AVl 0.09 C 45 53 1 15 AV3 0.08 C 45 54 1.04 14 AVl 0.25 C 45 54 1.05 16 AV3 -0.36 C 45 55 1.62 22 AVl. 0.42 C 45 55 1.99 24 AV2 0.35 C 45 55 1.22 18 AV3 0.13 C 45 61 1.91 21 AV2 -0.16 C 45 61 2.59 26 AV3 0.37 C 45 61 1.66 19 AV4 -0.27 C 45 85 0.78 12 AVl 0.03 C 45 85 1.12 16 AV2 0.21 C 45 85 3.4 33 AV3 0.05 C 46 34 1.96 25 AV2 -0.03 C 46 34 2.2 25 AV3 0.03 C 46 34 1.26 20 AV4 -0.05 C 46 55 0.54 10 AV3 -0.31 C 46 63 0.94 16 AVl 0.3 C 46 63 0.68 13 AV2 0.03 C 46 63 1.17 16 AV3 0.37 C 46 63 0.71 13 AV4 0 Page 25 of 28

2D SG AVB Wear SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl D 23 9 0.88 13 AV4 0 D 33 38 1.09 16 AV3 0.28 D 26 8 1.13 17 AVl 0.13 D 33 47 0.88 16 AV2 0.36 D 26 8 1.27 17 AV4 -0.08 D 33 52 0.79 15 AV3 0.3 D 26 48 1.1 17 AV3 -0.05 D 34 25 1.11 19 AV2 0.15 D 26 48 2.31 26 AV2 0.38 D 34 25 1.28 20 AV3 -0.1 D 26 so 1.09 16 AVl 0.2 D 34 41 0.78 15 AV2 0.18 D 26 so 1.09 16 AV3 -0.28 D 34 81 0.71 15 AV2 -0.28 D 26 so 1.16 17 AV2 0.36 D 34 81 0.85 16 AV3 0 D 26 103 0.99 15 AV2 0.1 D 34 82 1.22 18 AV2 -0.18 D 27 106 0.68 12 AVl 0.29 D 34 82 1.42 20 AV3 -0.2 D 27 106 0.73 13 AV4 0.31 D 35 75 0.88 18 AVl 0 D 28 18 1.18 18 AV3 0.08 D 35 75 1.59 24 AV3 0.26 D 29 10 2.02 24 AV2 -0.13 D 35 83 1.49 19. AV2 -0.1 D 29 10 1.99 25 AV3 0 D 35 84 1.23 18 AV4 -0.15 D 29 11 1.2 17 AV4 0.05 D 35 84 1.46 20 AV2 0 D 29 11 2.06 25 AV3 -0.32 D 35 97 0.79 16 AV3 0.21 D 29 11 2.48 27 AV2 0.36 D 35 97 2.83 28 AV2 0.05 D 29 12 2.1 24 AV4 0.08 D 36 17 1.28 19 AV2 0 D 29 13 1.23 18 AV2 0.56 D 36 39 2.34 26 AV3 -0.1 D 29 14 1.49 21 AV2 -0.33 D 36 39 4.13 34 AV2 0.03 D 29 14 1.57 21 AV3 0.21 D 36 75 0.94 17 AV2 0.25 D 29 19 0.93 15 AV2 0.23 D* 36 93 1.28 18 AV3 0.03 D 29 31 0.9 15 AVl 0.23 D 36 93 1.49 23 AVl 0.16 D 29 31 2 24 AV3 0.1 D 37 ......

Tl 1.26 19 AV2 0 D 29 31 3.27 31 AV4 0.11 D 37 23 1.15 19 AV3 -0.13 D 30 11 1.19 18 AV4 0.1 D 37 27 0.82 16 AVl 0.1 D 30 11 1.78 22 AV3 0.05 D 37 27 1.15 19 AV3 -0.15 D 30 11 3.47 33 AV2 -0.03 D 37 28 0.88 16 AV2 0.05 D 30 13 0.96 15 AV2 0.13 D 37 28 0.93 17 AV3 -0.08 D 30 13 1.6 21 AV3 -0.08 D 37 29 1.01 18 AV3 -0.18 D 30 101 1.2 17 AV3 -0.1 D 37 34 1.17 19 AV3 -0.15 D 30 101 1.42 22 AV2 0.28 D 37 34 1.44 21 AV2 0.2 D 31 14 1.13 17 AVl 0.41 D 37 43 0.99 17 AV2 -0.13 D 31 101 0.95 17 AVl 0.18 D 37 51 1.54 23 AV2 0.3 D 31 101 1.01 18 AV4 0.08 D 37 74 1.22 18 AV3 -0.1 D 32 37 1.45 20 AV3 0.23 D 37 74 1.46 20 AVl 0.1 D 33 14 0.74 12 AV2 0.08 D 37 74 1.5 20 AV2 0.15 D 33 14 0.69 12 AV3 0.05 D 37 79 0.86 16 AV2 0.46 D 33 15 1.25 18 AV2 -0.26 D 37 89 1.99 26 AV3 -0.03 D 33 36 1.13 17 AV3 0.21 D 38 41 0.66 12 AV2 0.2 D 33 37 1.17 17 AV3 0.13 D 38 41 0.98 15 AV3 0.13 Page 26 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl D 38 43 1.25 18 AV3 0.05 D 40 48 2.5 27 AV2 0.4 D 38 43 2.02 24 AV2 0.1 D 40 48 3.37 31 AV3 0.03 D 38 44 1.51 22 AV3 0.15 D 40 49 0.95 15 AV3 0 D 38 44 1.8 24 AV2 0.23 D 40 49 1.2 17 AVl -0.18 D 38 47 0.94 15 AV2 0.35 D 40 49 1.96 23 AV2 0 D 38 64 2.15 25 AV2 0.43 D 40 50 0.92 15 AV2 0 D 38 64 3.91 33 AV3 0.44 D 40 62 1.49 20 AV3 0 D 38 67 1.13 19 AVz 0.1 D 40 62 1.66 21 AV2 0 D 38 67 1.99 27 AV3 0 D 40 97 1.09 17 AV2 0.18 D 38 75 0.87 17 AV2 0.15 D 40 97 1.29 19 AV3 0 D 38 75 1.05 19 AV3 0.46 D 41 29 1.33 22 AV3 -0.15 D 38 85 1.5 21 AV3 0.08 D 41 33 0.9 16 AV3 0.33 D 38 97 1.88 25 AV2 0.41 D 41 33 1.93 26 AV2 0.43 D 38 97 2.03 26 AV3 0.13 D 41 34 0.73 16 AV2 0.13 D 38 97 3.28 30 AVl 0.38 D 41 34 1.2 20 AV3 -0.1 D 39 37 0.97 17 AV3 0.15 D 41 42 1.35 19 AV3 0.15 D 39 38 0.74 14 AV3 0.36 D 41 42 2.04 24 AV2 0.15 D 39 39 1.93 26 AV2 -0.08 D 41 46 0.98 17 AV2 0.4 D 39 40 0.95 17 AV3 0.23 D 41 46 2.27 28 AV3 -0.03 D 39 43 0.86 16 AVl 0.13 D 41 48 0.77 15 AV4 -0.08 D 39 43 1.1 18 AV3 -0.33 D 41 48 1.4 21 AV3 0 D 39 44 0.93 17 AV3 0 D 41 48 3.17 33 AV2 0 D 39 45 1.74 24 AV3 0.31 D 41 49 0.67 15 AV3 0.1 D 39 45 2.17 27 AV2 0.33 D 41 49 4.52 38 AV2 -0.1 D 39 47 0.74 15 AVl 0.18 D 41 65 1.73 23 AV3 -0.18 D 39 47 2.05 26 AV3 -0.03 D 41 67 1.05 19 AV2 0 D 39 47 2.28 28 AV2 0.18 D 41 67 1.67 24 AV3 0 D 39 48 0.98 17 AV3 -0.08 D 41 72 0.98 16 AVl 0.13 D 39 48 1.07 18 AV2 0.28 D 41 76 0.92 15 AV2 0.3 D 39 68 1.7 22 AV3 -0.1 D 41 76 1.2 17 AV3 0.26 D 39 68 1.86 23 AV2 0.56 D 41 76 1.86 23 AVl 0.23 D 39 70 1.72 22 AV2 0.13 D 41 78 1.15 17 AV2 0 D 39 70 1.94 23 AV3 0.13 D 41 78 1.31 18 AV3 0 D 39 76 1.15 17 AV2 0.18 D 41 84 0.85 14 AV2 0.18 D 39 93 1.19 20 AV2 0 D 41 84 1.4 18 AVl 0.36 D 39 95 1.04 16 AV3 0 D 41 84 2.7 28 AV3 -0.43 D 39 95 1.09 19 AV4 -0.3 D 42 35 1.27 18 AV4 -0.18 D 39 96 1.36 20 AV3 0.4 D 42 35 1.4 19 AV3 0.26 D 39 96 1.47 21 AV2 0.37 D 42 35 2.85 29 AV2 0.08 D 40 42 1.24 18 AV2 0 [) 42 45 1.34 19 AV4 0.08 D 40 48 0.99 16 AV4 0.03 D 42 47 2.87 29 AV3 0.08 Page 27 of 28

SG Row Col Volts Per Locn lnchl SG Row Col Volts Per Locn lnchl D 42 51 1.1 17 AV3 -0.08 D 46 56 2.27 25 AV3 0 D 42 51 1.28 18 AVl -0.11 D 46 56 2.44 26 AV2 0.05 D 42 51 1.65 21 AV2 0 D 48 37 0.77 13 AV3 -0.05 D 42 52 2.19 25 AV3 0 D 49 . so 0.61 14 AVl 0.18 D 42 52 5.18 38 AV2 0.05 D 49 51 0.97 17 AV4 0.08 0 42 66 1.08 16 AV3 0 D 49 61 1.62 22 AVl 0 D 42 80 0.99 15 AV3 -0.18 D 49 65 0.52 10 AVl 0.2 D 42 80 1.05 16 AVl 0.3 D 49 66 1.03 16 AVl 0 D 42 82 0.87 14 AV2 0.15 D 49 71 1.04 19 AVl 0.38 D 42 82 1.39 19 AV3 0.34 D 42 85 0.92 16 AV4 0.22 D 42 85 1.36 20 AV2 0.05 D 42 85 2.42 27 AV3 0.05 D 43 35 0.67 15 AV4 -0.15 D 43 36 1.89 25 AVl 0.18.

D 43 36 2.67 30 AV3 -0.48 D 43 40 1.13 17 AV4 0.13 D 43 40 1.77 22 AVl 0.35 D 43 40 2.29 25 AV2

  • 0.33 D 43 40 4.81 36 AV3 0 D 43 45 2.44 29 AV2 0.13 D 43 48 1.67 23 AVl 0.3 D 43 82 1.36 19 AV2 o.

D 43 84 1.24 17 AVl -0.13 D 43 84 2.07 25 AV3 0 D 44 43 1.38 19 'AV2

  • 0.25 D 44 56 1.94 23 AV3 0.08 D 44 56 2.31 26 AV2 0.13 D 44 86 0.96 17 AV2 0.05 D 44 92 0.96 17 AV4 0.08 D 45 44 0.92 18 AV4 -0.1 D 45 44 1.25 21 AV2 -0.1 D 45 44 1.9 25 AV3 0.05 D 45 46 1.32 21 AV4 0.14 D 45 46 1.64 23 AV3 0.08 D 45 so 2.15 27 AVl -0.16 D 45 so 3.12 32 AV3 0.36 D 45 so 3.48 34 AV2 0 D 45 56 1.72 24 AVl 0.3 D 45 56 3.04 32 AV2 0.08 D 45 56 3.1 32 AV3 0.18 Page 28 of 28