A04558, Rev 0 to CA04558, 400 Gal 80% 5-Amino-Pentanol CR Chemical Habitability

From kanterella
(Redirected from A04558)
Jump to navigation Jump to search
Rev 0 to CA04558, 400 Gal 80% 5-Amino-Pentanol CR Chemical Habitability
ML20210V288
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 10/06/1998
From: Gryczkowski G, Mihalcik J, Sommerville I
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20210V122 List:
References
CA04558, CA04558-R00, NUDOCS 9908230090
Download: ML20210V288 (55)


Text

F, .

t -

Engineering Services Process Oveniew EN-1-100 Revision 10 Page 105 of153 ATTACHMENT 19, CALCULATION COVER SHEET INITIATION (Control Doc Type - DCALC) j Page / of g

'DCALC No.: Up y(fb Revision No.:

p Vendor Calculation (Check one): 0 Yes )d' No ESP- f'f/f')f0/076 Supp No.: () Rev. No.: O Responsible Group: gfy Responsible Engineer: [fg/ E, f yd - ,/c CALCULATION ENGINEERING O Civil DE O Instr & Controls )B Nuc Engrg O Electrical O Mechanical O Diesel Gen Project O Life Cycle Mngmt O ReliabilityEngrg O Nuc Puel Mngmt O Other:

Title:

tpo Q[., p % 9 jpffgp'_f.fy g g Unit d&t_ & /ck k/fiM//.t7Y O UNIT 1 O UNIT 2 Jtr CO edON Proprietary or Safeguards Calculation O YES pfNO Conunents:

///)

Vendor Calc No.: gA

  • VendorName:

REVISION No.: p f//) '

Safety Class (Check one): gSR O AQ ONSR There are assumptions that require Verification during walkdown:

AIT # 4/A ,

This calculation SUPERSEDES: dbyJg i

REVIEW AND APPROVAL: -

1 Responsible Engineer: [,). /,# hch g, Date: 7y9 l

Independent Reviewer: I #f.ne$siv///[/g[ Date: /o TI Approval:

j,g, M,k _l et ' Il <_j Date:

C ocr S8 O

9908230090 990817 PDR ADOCK 05000317 O P _

PDR

t

.. .,- j l

CA04558 Rev,0

. Page 2

2. LIST OF EFFECTIVE PAGES Page Latest Page Latest . Page Latest Page Latest Page Latest Rev Rev Rev Rev Rev 001 0 002 0 003 0 004 0 005 0 006 - 0 007 0 008 0 009 0 010 0 011 0- 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 022 0 023 0 024 0 025 0 026 0 027. 0 028 0 029 0 030 0 031 0 032 0 033 0 034 0 035 0 036 0 037 0 038 0 039 0 040 0 l
041 0 042 0 043 0 044 0 045 0 l 046 0 047 0 048 0 049 0 050 0 I 051 0 052 0 053 0- 054 0 055 0 I l

l l

I I

CA04558 Rev.0 Page 3

3. REVIEWER COMMENTS

CA04558 Rev.0 Page 4

/

4. TABLE OF CONTENTS 01.COVERSHEET..................................................................................................................1
02. LI ST OF EFFECTIVE PAG ES.......... .. ................... ... ................ ...... ....... ....................... ...... 2
03. REVI EWER COMMENTS ............................. ............... .... ................ . . ... .............. .......... . .... 3
04. TAB LE OF CONTENTS...................... ...................... .................. .......... ....... ....... ......... ... ... 4
05. PURPOSE..........................................................................................................................5 06.INPUTDATA......................................................................................................................6 0 7. TECHNI CAL AS S UMPTION S ........... ............................ ........ .. .. .... . .. ... .... ... ..... .. ............. . 10 0 8. RE F EREN C ES . . . . . .. . . . .. . . . . . . .. . .. ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . ... . . .
09. M ETH ODS OF ANALYS I S .... .. .. ...... .. ... ....... ............ ....... ...... . . ..... .. ... ....... ....... .. . ... . ... . ... .. 13
10. C A LC U L ATI ON S .. . . . . . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . . . .... .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
11. DOCUMENTATION OF COMPUTER CODES..............................................................19 12.RESULTS.......................................................................................................................20 1 3 . C ON C LU S I ON S . . . . . . . . .. .. . . .. ... ... . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .

1 4. ATTA C H M ENTS . . . .. . . . . . . .. . . . .. . . .. . . . .. . . . ... . ... . .. . . . .. . . . .. .. . . . . . .. .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

ATTACHMENT A. MSDS FOR 5-AMINO-PENTANOL.................................... ........... 22 1

' ATTACHMENT B: ARCON96 RUNS FOR AUX BLDG ROOF INLET........................ 34 ATTACHMENT C: ARCON96 RUNS FOR WEST ROAD INLET PLENUM............... 39 I

ATTACHMENT D: EXCEL SPREADSHEET 5-AMINO-PENTANOL - AUX BLDG ROOF INLET.................... 44  :

1 ATTACHMENT E: EXCEL SPREADSHEET  !

5-AMINO-PENTANOL - WEST ROAD INLET............................. 48 i ATTACHMENT F: CROSS SECTIONAL AREAS.. ..... ............... .......................... ...... 52

. ATTACHMENT G: TELEPHONE CONFERENCE MEMORANDUM.......... .... .......... 54 LAST PAG E O F REPORT............ ....... .... ...... . ............. .. ...... . ..... .. ... ........ . ..... .. . . ..... . .. ... . ... . . . . 5 5 1

i i I

]

i 1

. , e CA04558 Rev.0-Page 5
5. PURPOSE l 10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess the habitability 'of the control room during and after a postulated external release of hazardous chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric

- dispersion coefficients (Ref.2). The explosion and flammability hazard of these chemicals must also be addressed (Ref.2).

5-amino-pentanol (SAP) is used in secondary plant systems as a chemical additive and as an alternate to AMP for condensate and feedwater dosing. Chemical Technical Services requested that a control room chemical habitability. analysis be performed for a 80% 400 gal 5AP solution stored at the 12' north service building, and the warehouse (Att.G). The chemical habitability of the control room after a chemical release involving 80% SAP was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration I with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4).

, The results of the toxicity calculations for 400 gals of 80% SAP are as follows:

Peak Concentration (ppm)

Warehouse NSB Current Configuration No Recirculation 0.03 0.26 With Recirculation 0.03 0.26 Modified Configuration With Recirculation 0.03 0.09 Toxicity Limit (TLV) 7.00 7.00 Results indicate that 400 gals of 80% 5AP can be stored at the warehouse and the 12' north service building without constituting a toxicological or fire hazard to the control room following a worst case accident for the modified and current control room configurations. The TLV

toxicity limit is defined as the concentration of the substance in air that can be breathed for five consecutive eight hour workdays by most people without adverse effect. SAP will not pose a flammability or explosion hazard in the control room, since the peak concentration is a small fraction of the lower explosion limit of 1.8%.

The current calculation incorporates many assumptions which make these results conservative.

(1) A maximum concentration limit (TLV) was utilized that could be tolerated for five eight hour workdays without p,hysical incapacitation of an average human. The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without  !

physical incapacitation of an average human. The TLV. (Threshold Limit Value) toxicity limit is i defined as the concentration of the substance in air that can be breathed for five consecutive eight l hour workdays by most people without adverse effect (Ref.5). l (2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8).

(3) The control room volume conservatively neglects dead spaces in the control room ceiling and .

. the volume of room A512.

(4) The most conservative methodology is utilized: turbulent evaporation. )

e ,.

i 1

CA04558 Rev.0 Page 6

6. INPUT DATA

-The following input data is incorporated into this work:

L (01) Chemical data for 5 Amino Pentanol:

CAS number 2508-29-4 Refs.10,19,20 Chemical formula C3 HnNO Refs.10,19,20 Toxicity Limit (ppm) 7. Refs.19,20 Odor threshold (ppm) NA Refs.19,20 Volume fraction 0.80 Att.G Specific gravity (gm/cc) 0.96 Refs.10,19,20 Vajmr pressure (mm Hg) VP 1.@20 C Refs.10,19,20 Boiling point (Degrees C) TB 122. Refs.10,19,20 Molecular weight (gm/ mole) MB : 103.17 Refs.10,19,20 Lower explosion limit (Vol%) 1.8% Refs.10,19,20 (02) Physical properties of air per Refs.13,14:

~ Molecular weight (gm/ mole) MA 28.97 Characteristic length in air (Angstroms) SIDA 3.711 Molecular energy of attraction / Boltzmann constant (K) E/KA 78.6 i Mass density of air (gm/cc) RHOA 1.204E-03 Viscosity of Air (gm/cm-sec) MU l.83E-04 Universal Gas Constant (torr-cm3/gmole-K) R 6.24E+04 (03) The updated control room volume of 234157 ft' was extracted from Ref.18.

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is defined as 8300 cfm or twice the maximum flowTate.

. (05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm.

(06) The Warehouse / North Service Building (NSB)-Control Room ARCON96 X/Q inputs were

' denved as follows (Att.B):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.82,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 (c) Height oflower wind instrument (m): 10. Ref.B3

. (d) Height of upper wind instrument (m): 60. Ref.B3 (e) Wind speed units type (l=m/s,2= mph. 3= knots): 1 Refs.B2,B10 (f) Release type (l= ground,2= vent,3= elevated): 1 (g) Release height (m): 0. Warehouse

-10.05 NSB l

i

t-CA04558 Rev.0 Page 7 k Release height = 10' - 45' = -35' = 10.05 m 2

(h) Building area (m ): 1155. Att.F The cross sectional area calculations age analyzed in Att.F. The calculation of containment cross sectional area yields 12435.63 ft above the rooftop level

' building cross sectional area can be calculated to be . For1938.93 ft,of wind a west-to-east 91'6". The auxiliary directiog the total cross-sectional area of the auxiliary building and the two containments is 26810 ft . For an eagt-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft . For a north-to-south and south-to-north wind firection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

(i) Effluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0 (k) Stack or vent radius (m): 6.94 2 2 r = SQRT(A/n) = SQRT[(400 gal)*(3785.422cc/ gal)/(1.cm)/x*(1.E-4m /cm )] = 6.94 m (1) Direction to source (deg): 174 Warehouse Refs.B12,B14 059 NSB Refs.B12,B14 (m) Source window (deg): 90 Refs.B13-B14 (n) Distance from source to receptor (m): 300 Warehouse Refs.B12,B14 067 NSB Refs.B12,B14 (o) Intake height (m): 15.62 91.5' + 4.75' - 45' = 51.25' = 15.62 m where 91.5' is the height of the Auxiliary Building roof (Ref.B6),4.75' is the control room exhaust height (Ref.B13), and 45' is ground level (Ref.B8).

(p) Grade elevation difference (m): 0 Ref.B1 (q) Primary output file name: CHWHCR.OUT - Warehouse

. CHNSBCR.OUT NSB (r) JFT file name: CHWHCR.JFD Warehouse CHNSBCR.JFD NSB (s) Surface roughness length (m): 0.1 Ref.B1

- (t) Minimum wind speed (m/s): 0.5 Ref.Bl (u) Sector averaging constant: 4 Ref.Bl (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.Bl

CA04558 Rev.0 Page 8 (x) Horizontal diffusion coeflicient (m): 3.22 c y=r/2.15=6.94/2.15=3.22 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.B1 (07) Atmospheric dispersion coefficients from the Warehouse /NSB to the Control Room:

Warehouse NSB 3

0- 2 hrs 9.12E-05 sec/m 2- 8 hrs 9.94E-4 7.71E-4 sec/m sec/m'3 8- 24 hrs 7.75E-05 3.20E-05 sec/m sec/m'3 3.41E-4 sec/m' 24- 96 hrs96-720 hrs 2.25E-05 sec/m 2.32E-4 1.88E-05 sec/m l.66E-4 sec/m sec/m'3 (Attachment B, Refs.B1, BIO, B15)

(08) The Warehouse /NSB-West Road Inlet ARCON96 X/Q inputs were derived 'as follows (Att.C):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 (c) Height oflower wind instrument (m): 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 (e) Wind speed units type (l=m/s,2= mph,3= knots): 1 Refs.B2,B10 l

l (f) Release type (l= ground,2= vent,3= elevated): 1  ;

i (g) Release height (m): 0. Warehouse

-10.05 NSB Release height = 10' - 45' = -35' = 10.05 m '

2 (h) Building area (m ): 1155. Att.F The cross sectional area calculations ape analyzed in Att.F. The calculation of containment cross sectional area yields 12435.63 ft above the rooftop level of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 ft2 . For a west-to-east wind directiory the total cross-sectional area of the auxiliary building and the two containments is 26810 fl . For an capt-to-west wind direction, the total cross sectional area of the turbine

- building is 27167 ft . For a north-to-south and south-to-north wind girection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

(i) Effluent vertical velocity (m/s): 0 (j) Stack or vent flow (m'/s): 0

CA04558 Rev.0 Page 9 i

(k) Stack or vent radius (m): 6.94 2

- r = SQRT(A/n) = SQRT[(400 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m /cm')] = 6.94 m (1) Direction to source (deg): 162 Warehouse Refs.B12,B14 i 050 NSB Refs.B12,B14 (m) Source window (deg): 90 Refs.B13-B14 (n) Distance from source to receptor (m): 262 Warehouse Refs.B12,B14 135 NSB Refs.B12,B14 (o) Intake height (m): 9.14 The Auxiliary Building roof above the control room and above A512 will be scaled tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the west road side (ES199702144). Per Ref.Bl1, the inlet plenum is 54'x10' with a bottom elevation of 70'. Thus the intake height is 75'-45'=30'=9.14 m (p) Grade elevation difference (m): 0 Ref.Bl (q) Primary output file name: CHWHWR.OUT Warehouse CHNSBWR.OUT NSB (r) JFT file name: CHWHWR.JFD Warehouse CHNSBWR.JFD NSB (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s): 0.5 Ref.Bl

'(u) Sector averaging constant: 4 - Ref.Bl (v) Hours in average: 1 2 4.8 12 24 96 168 360 720 Ref.Bl (w) Minimum number ofhours: 1 2 4 8 11 22 87 152 324 648 Ref.B1

. (x) Horizontal diffusion coefficient (m): 3.22 o y=r/2.15=6.94/2.15=3.22 m (Ref.B1)  ;

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.Bl (09) Atmospheric dispersion coefficients from the Warehouse /NSB to the West Road Inlet:

Warehouse- NSB 0- 2 hrs 2- 8 hrs 1.10E-4 sec/m'3 3.15E-4 8.72E-5 sec/m sec/m' 2.55E-4 sec/m 3

3 8- 24 hrs 3.22E-5 sec/m' l.20E-4 sec/m 24- 96 hrs 2.25E-5 sec/m' 8.21E-5 sec/m'96-720 hrs 1.93E-5 sec/m' 5.87E-5 sec/m'  ;

(Attaclunent C, Refs.B1, BIO, B15)

CA04558 Rev.0 Page 10

7. TECHNICAL ASSUMPTIONS The following technical assumptions were utilized in this work:

(01) Per Att.G, an 80% SAP Solution is stored in a 400 gal container in the warehouse or north service building.

(02) Per Ref.15 in a postulated accident, it is assumed that the entire container of the toxic substance ruptures.

(03) An average ambient atmospheric temperature of 30 C and pressure of 760 torr will be used in this calculation. . Variation in these parameters shows insignificant impact on the results (Ref.16). TA=30 PA=1 (04) The chemical spill will be assumed to spread in a circular shape with the maximum radius determined by a spill thickness of I cm per Ref.15.

(05) Based on the characteristics of the chemicals, the following release mechanisms will be assumed: For the SAP Solution, the turbulent mass transfer is the worst of three methodologies:

diffusion in still air, laminar mass transfer, and turbulent mass transfer.

(06)istent with the wind tunnel methodology and the CCNPP data of Ref cons Ref.17 (p.265), a flow with Reynold's Number less than SE+05 is laminar.

(07) The vapor pressure of the spilled material will be adjusted to the ambient conditions via the ideal gas law:

VP(@T ) = VP(@T yp )

  • T,/ T,,

t .,.

CA04558 Rev.0 Page 11

~ 8. REFERENCES /

(01)" Control Room",10CFR50, Appendix A, General Design Criterion 19.

(02) " Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78,6/74.

(03)"Res mnse to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FEA, and CEAEE", NRC-98-044.

- (04)" Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC 018.

(05)" Hazardous Chemicals Data Book", Second Edition, Edited by G. Weiss, Noyes Data Corporation.

(06)"Offsite and Control Room Doses Following a LOCA", Bechtel Calculatiori M-89-33

- Rev.3,7/9/91.

(07)" Fan Performance Curve", BGE DWG 12782-35, Rev.0.

(08)" Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24,11/9/92.

(09) " SAX's Dangerous Properties ofIndustrial Materials", Ninth Edition, Richard J. Lewis Sr.

_ (10) MSDS foES-Amino-Pentanol, Attachment A.

(11) "The Merck Index", Eleventh Edition,1989.

)

1 (12) " CRC Handbook of Physics and Chemistry",66th Edition,1985-1986.

- (13) " Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds", W.Lyman, W.Rechl, and D.Rosenblatt, McGraw Hill 1982.

(14) " Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410,1988.

(15)" Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release", NUREG-0570,6/79.

(16)"CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine",

Bechtel Calculation M-94-16 Rev.0,11/10/94.

(17) " Heat Transfer", Seventh Edition, J.P.Holman.

(18)"Modeling of the Control Room / Cable Spreading Room HVAC System Using GOTHIC I Software", CA02725,1/8/97.

. (19)" Chemical Habitability of the Control Room Due to the Accidental Release of 5-Amino-  !

Pentano!", DCALC-95-0174,6/20/94.

I

L CA04558 Rev.0 Page 12 (20)"CCNPP Control Room Habitability Chemical Spill of 5-Amin'o-Pentanol", CA00828, 11/8/95.

(BI)" Atmospheric Relative Concentrations in Building Wakes", NUREG/CR-6331 Rev.1,5/97.

(B2) CCMAIL from Mark Abrams at PLG to G.E.Gryczkowski,3/5/97.

(B3)" Wind Flows and Dispersion Conditions at Calvert Cliffs", Maria Gavrilas and Melissa

. Wieland, BG&E-EP1,9/85.

(B4)" Atmospheric Dispersion Coefficient Calculations from the MSG and ADV to the Control

~ Room", CA03533,1/17/97.

. (BS)" Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE

' Drawing 62-047-E, Rev.6 (B6) " Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(B7) " Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19. J (B8) " General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9)" Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10)"ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940,

~ 8/21/97.

(B11)" Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details",

BGE Drawing 60-330-E, Rev.14.

- (B12) " Wind Tunnel Modeling of CCNPP", CA00748 Rev.0,10/25/95 1

(B13)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0,5/8/97.

1 (B14)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0,7/1/97. i (B15) " Analytical Software Installation Test of ARCON96", CA03941, 8/21/97.  !

-l

CA04558 Rev.0 Page 13

9. MhCTHOD OF ANALYSIS '

This work utilizes three separate methodologies to calculate mass transfer from the spill site to

the control room.

(1) The first methodology is diffusion in still air for spills in closed areas and for liquids with high boiling points. The method of analysis utilizes the algorithms of Ref.15 to derive the toxic gas concentration inside the control room.

l (1a) Calculation of the Diffusion Coefficient of an air / toxic gas system for dilute gases at low l pressures per Ref.13 by the method of Wilke and Lee:

5 2 DAB = B'*TA'5*MR /(PA*SIGAB

  • OMEGA) I where 2

DAB =~ Diffusion coefficient (cm /sec)

B' = ~ 0.00217 - 0.00050 * (1/MA + 1/MB)'5 MA= Molecular weight of air (gm/ mole)

MB= Molecular weight of toxic gas (gm/ mole) I MR= (MA+MB)/(MA*MB) = Molecular weight of binary gas (gm/ mole)

TA = Air temperature (K)

PA = Air pressure (atm)

SIGAB = Characteristic length of molecule A interacting with molecule B (A)

=

(SIGA+SIGB)/2 SIGA = Characteristic length of molecule A (A)

SIGB = Characteristic length of molecule B (A) = 1.18*VB" VB = Lebas molal volume (cc/mol)

OMEGA = Collision integral The Lebas molal volume VB can be calculated as follows per Ref.13:

i VB= 14.8*(C) + 3.7*(H) + 7.4*(O) + 9.1*(O in Methyl Esters or Ethers)

+ 9.9*(O in Ethyl Esters or Ethers) + 11 *(O in Higher Esters or Ethers) i

+ 12*(O in Acids) + 8.3*(O Joined to S, P, N) + 15.6*(N Double Bonded) l

+ 10.5*(N in Primary Amines) + 12*(N in Secondary Amines) + 27*(Br) i

+ 24.6*(Cl) + 8.7*(F) + 37*(I) + 25.6*(S) - 6.0*(3-Membered Ring)

- 8.5*(4-Membered Ring) - 11.5*(5-Membered Ring) - 15*(6-Membered Ring)

- 30* Naphthalene - 47.5* Anthracene + (Molecular weight / density)*(Element)

The collision fs9plculatQ,9 ollows per Ref.13:

f

. OMEGA = integraj+0 AffS C/e meg E/e +can b+ G/e .

A= 1.06036 B= 0.lf610  :

C= 0.19300 l l D= 0.47635 i

! E= 1.03587- '

F= 1.52996 G= 1.76474 ,

L H= 3.89411 TS = . TA/(E/KAB) ~

E/KAB = SQRT(E/KA

  • E/KB) .

[ E/KB = 1.15*(TB+273.15)

CA04558 Rev.0 Page 14

- .(1b) Surface Area of a Spill Per Ref.15 -

l The rate of mass transfer of a liquid into the atmosphere is directly proportional to the surface area of the spill. Ref.15 approximates the initial shape of the liquid body by a cylinder, with the height equal to the radius of the base.

V0(m8) = Q*QF*(0.003785422 m'/ gal)

,I

. R0(m) = (V0/x)"'

2 2

~ A0(m ) = x*R0 The liquid spreads q uickly by gravity to a thin pancake on the ground. Its surface area may be estimated by the fol .owing equation:

2 2 A(m ) = x*(R0 +2*t*(g*V0*(SG-RHOA)/(n*SG))") +

where

. SG = . - Density of the liquid (gm/cc) 2 g= Gravitational constant = 9.81 m/sec t= Time (sec)

The surface area, however, does not expand indefinitely as the above equation indicates. The maximum area of the spill in an unconfined space is estimated from the initial volume by assuming a spill thickness ofI cm.

2 AF(m ) = V0/0.01 tA(sec) = Time to maximum area

= (AF-AO)/SQRT(4

  • x
  • g* V0 *(SG-RHOA)/SG)

The total mass of the liquid can be calculated as follows:

'M0 = Q*QF*SG*3785.422 gm

.where Q =- Storage c uantity (gal)

.QF = Volume Craction ofliquid or weight fraction of solid SG = Specific gravity (gm/cc)

(Ic) Vaporization Rate in Still Air:

When exposed to the atmosphere, liquids with boiling points above the ambient temperature will evaporate by diffusion into the air. The main driving force is the vapor pressure difference, i.e.,

, concentration gradient, between the lic uid phase and the air. The rate of a vapor diffusing into still air is computed from the Fickian c.iffusion equation in Ref.15 2

VR(gm/m -sec) = VP

  • RHOV
  • 10000. / p
  • SQRT(DAB /(n*t))

where f

V 1

CA04558 Rev.0 -

Page 15 VP(torr) = Vapor pressure of the liquid torr) =- -

fp(HOV(gm/cc)

R = Vapor density of the h,quidAmbient atmospheric pressure (7 t(sec) = 2 Time DAB (cm /sec) = Diffusion coefficient i The vapor density of the liquid RHOV is derived from Ref.14 as follows:

RHOV(Ibm /cf) = 144*P'(psia)/(R*T(R))

RHOV(gm/cc) = 144*14.696/(1545/MB*T(R))*(.01601846 gm/cc/lbm/cf)

= MB(gm/ mole)

  • 14.696*.01601846/(10.7292*T(R))

(1d) The vapor density outside the control room can be calculated via VD(gm/m3) = 2 2 VR(gm/m -sec)*AF(m )*X/Q(sec/m')

. The corresponding vapor density outside' the control room in ppm is (Ref.13)

PPM = (24500/MB)

  • VD(gm/m')

(1e) The vapor concentration inside the control room at time t can be calculated via the

. following: dCcn/dt = A

  • Cgxy- A
  • Ccn for t<ta Cca = Cgxy * (1. - exp(-A
  • t))
for tg<t<tm . Cen2 = Cgxy * {l. - exp[-A * (t-ta)]} + Ccat
  • exp[-A * (t-ta)]

for t>tm . Cca3 = Ca2

  • exp[-A * (t-t m .)]

where 3

Ccn = Control room concentration in gpi/m or ppm Ctxt = External concentration in gm/m or ppm A= Fca / Vcn = Turnover constant in 1/ min at time t Fca = Control room ingress and egress flow rate at tirne t Vcn=- Control room volume - l t=

ta =

t=

Time Time at wh(min)ich recirculation starts (min) l m Time at which evaporation of toxjc substance ceaseg (mip) l

=

. SO(gm/cc) * (1.cm) / {VR(gm/m -sec) * (0.0001 m /cm ) * (60.sec/ min)}

(1f) The spill area, vaporization rate, and vapor density are time-dependent quantities for i diffusion m still air for spills in closed areas. The peak vapor density occurs at the time to  ;

maximum area (tA), which should be used under these conditions. t (2) The second methodology is mass transfer to forced convection for laminar flow per Ref.15.

VD(gm/m3) = VFL'ADC*AF (1. - exp(-A

  • t)) ,

PPM = (24500/MB)*VD i

P ...,

-r L

- CA04558 Rev.0

Page 16

'. wheri )

ADC = . Atmospheric dispersion coefficient (sec/m3)

AFJ = - Final spill area (m2, See Ib.

MB x . Toxic gas molecular weight (gm/ mole) -

. VFL = - Lamint.r evaporation rate (gm/m2-sec)

=

HDL*MB*VP*10000./(R*(T(C)+273.15)) .

T(C) = ' Temperature in C at which VP is determined VP = Toxic gas vaporpressure (mmHg)

TA = Ambient air temperature (C)

R=-

Universal gas constant = 62400 torr-cm3/gmole-K HDL =

='

0.664*(DAB /L)*Re .

4 Sc Laminar mass transf coegjent (cm/sec)

DAB = - ' Diffusion coefficient (cm2/sec) See la.

L= Characteristiclgggth(cm)

=. (4*V0*l.E6/n)

V0= Initial volume (m3)-See 1b.

Re= Reynolds number

= L*VW*RHOA/MU VW = Wind velocity (cm/sec)

' RHOA = Mass density of air MU = Viscosity of air Sc = Schmidt number

=

- MU/(DAB *RHOA).

A= Fca / Vcn = Turnover constant in 1/ min Fea = . Control room ingress and eg ess flow rate

.Vcn= Control room volume t= Time to maximum concentration = 10000.*SG/ VFL (3) The third methodology is mass transfer to forced convection for turbulent flow per Ref.15.

VD(gm/m3) = VFT*ADC*AF (1. - exp(-A

  • t))

PPM = (24500/MB)*VD where -

ADC = Atmospheric dispersion coefficient (sec/m3)

AF = Final spill area (m2) See Ib. .

MB = Toxic gas molecular weight (gm/ mole)

VFT = Turbulent evaporation rate (gm/m2-sec) .

=

HDT* MB

  • VP' 10000./(R*(T(C)+273.15))

T(C)=. Temperature in C at which VP is determined -

VP =. Toxic gas vapor pressure (mmHg)

TA ' = - Ambient air temperature (C)

R= Universal gas constant = 62400 torr-cm3/gmole-K HDT == - Turbulent mass trangr cgcient (cm/sec) 0.037*(DAB /L)*Re Sc DAB = Diffusion coefficient (cm2/sec) See 1a.

L= Characteristic l

= - (4*V0*l.E6/x)gggth (cm)

VO = Initial volume (m3)-See Ib.

I'

I CA04558 Rev.0 Page 17 Re= Reynolds number- /

=. L*VW'RHOA/MU VW - = '

Wind velocity (cm/sec)

RHOA = Mass density of air MU = Viscosity of air Sc = . Schmidt number

=

MU/(DAB *RHOA)

A= Fca / Vcn = Turnover constantin 1/ min Fca = Control room ingress and egress flow rate Vca= . Control room volume t= Time to maximum concentration = 10000.*SG/VFT (04) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the. explosion and flammability limits.

I l

I

CA04558 Rev.0 Page 18

10. CALCULATIONS The chemical concentrations inside the control room for a chemical spill of 400 gal of 80% 5AP solution in the warehouse / north service building are calculated via EXCEL spreadsheets captured in the following attachmems using the methodologies of Section 9:

Attachment D: 80% SAP Solution for Current Control Room Configuration i 1

Attachment E: 80% SAP Solution.

for Modified Control Room Configuration

CA04558 Rev.0 Page 19.

.11. DOCUMENTATION OF COMPUTER CODES

.This work employed the ARCON96 computer code, which was verified, benchmarked, and documented in Ref. BIO. The installation is documented in Ref.B15. ARCON96 im11ements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in tae vicinity ofbuildings.

i

)

l 1

i i

j I

CA04558 Rev.0 Page 20

12. RESULTS 5-amino-pentanol (SAP) is used in secondary plant systems as a chemical additive and as an alternate to AMP for condensate and feedwater dosing. Chemical Technical Services requested that a control room chemical habitability analysis be performed for a 80% 400 gal 5AP solution stored at the 12' north service building or the warehouse (Att.G). The chemical habitability of the control room after a chemical release involving 80% SAP was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4).

The results of the toxicity calculations for 400 gals of 80% 5AP are as follows:

Peak Concentration (ppm)

Warehouse NSB Current Configuration No Recirculation 0.03 0.26 With Recirculation 0.03 0.26 Modified Configuration With Recirculation 0.03 0.09 Toxicity Limit (TLV) 7.00 7.00 l

1

CA04558 Rev.0 Page 21 l

13. CONCLUSIONS Results indicate that 400 gals of 80% SAP can be stored at the warehouse and the 12' north service building without constituting a toxicological or fire hazard to the control room following a worst case accident for the modified and current control room configurations. The TLV toxicity limit is defined as the concentration of the substance in air that can be breathed for five consecutive eight hour workdays by most people without adverse effect. SAP will not pose a flammability or explosion hazard in the control room, since the peak concentration is a small fraction of the lower explosion limit of 1.8%.

The current calculation incorporates many assumptions which make these results conservative.

(1) A maximum concentration limit (TLV) was utilized that could be tolerated for five eight hour workdays without physical incapacitation of an average human. The regulatory requirements of  :

Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without I physical incapacitation of an average human. The TLV (Threshold Limit Value) toxicity limit is defined as the concentration of the substance in air that can be breathed for five consecutive eight l hour workdays by most people without adverse effect (Ref.5).

(2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8).

(3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512.

(4) The most conservative methodology is utilized: turbulent evaporation.

1 i

l

1 I

CA04558 Rev.0 Page 22. I

14. ATTACHMENTS ATTACHMENT A MSDS FOR 5-AMINO-PENTANOL

18 1A '94 15:57 FAX 0879 429664 BECPILOO! LTD @ 001/005 .

l

!e i

/ Ez m j

PROPERTIES OP 5-7,INOPENTANOL 1M CA0455B REV0 PAGE 23 PHYSICAL AND CHEMICAL PROPERTIES

. l The phytsical and chemical properties of pure 5- Aminopentanol are listed below. l l

Names 0-Aminopentanol; 5-Aminoamylalkohol; delta-Hydroxypentylamines delt.u-Hydroxysmylamine CAS-N*: '2508-29-4

. - . RTECS-N's .. .. .No t, .tisted . ... - -

. - - - - l Permula and structurer -

Formula. C5 H13 N O Structure H HyHyy h)<-6-9-6-C-C-o-H bH88h Holer:ialer Weight : 103,17 Composition "8,2% Carbon; 12,6% Hydrogen; i'

13,6% Nitrogen; 15,5% Oxygen E h r.2.1.0 1_1 d a t.#.;

Melting Pointi 35'C .

Boiling Point: 222+C Vapor Pressure < 1 mm Hg / 20*C j Vapor Density: 3,6 Water St.$1ub111ty: Miccible '

l Specific Grevityi 0,942 (20*C) 0,987 (20*C; 50% aquous sol.) {

l l

Appearance White to yellow sol:1d or viscous , coloriesS )

l to yellow 11guld. ]

Odor l Utight ammoniacal odor Availabilitye Available as pure substance as well as j

' i. T;Y';i'/'.r.it;",,% 2,f. M MUS82 OlutionS.gpp.pg g g, g g,jg, l s

l

z O

k:

b m

ENVIRONMENTAL AND HEALTH AND SAFETY DATA CA04558 REVO '

Fire and Explosion Hazard Deta _

P /SE 2f Flash Points > 100'C (DIN 51758) l F1Ammable limits: Lower: 1,9 Vol %

- Upper: 9,2 Vol 'k Extingul.vhing Media: Water fog; Foam; Powder; CO2 Fire / Explosion Hazards: Not available Fire-Fighting Apparatus:F3sitive pressure self-contained breathing apparulue. ,

Stability: Stable under normal storage. conditions.

Incompatibility. A 1ds and oxid12ers. May be corrosive to copper and other meta 11s or alloys.

Passible reaction with halogerlated j compounds, resulting in temperature and/or  !

pressure increases.

Haz. Deacomp . Prods.: Possible nitrogen oxides. Heating in the presence of met.alla may release Hydrogen gas.

Haz. Polymerization Does not occur.

Environmental an'.' Disposal Informati_on Spills / Leaki Pick up mechanically or soak up with absorbent material or sand. Wear protective equipment.

Disposul: A? proved Chemical incinerator, in accordance with leWB.

Health Hazard Data.

Eye May cause severe irritation With corneal insur W.11ch may result in permanent impairment of vision, aven blindness.

Skin

Contact:

S3 ort single exposure may cause skin burns.

Carrosive.

Skin Absorption: Not known.

Ingestioni No cata known. Corrosive!

Inhalution: N3 desta known.

Systemic effects: No data known.

Teratology: No data known.

dN * .' I- .- / S , '

. s ,. . g ,gg ;pg . .eg

4 , . rp 2 ..., .... ..

. 16 ell '94 15:59 FAI 0279 429664 BECP,HAFJi LTD @o03foos se C A0455 B REV O g PAGE # 5 m

/ j Reproductive Effectsi Not known.

Mutagenicity: Nat kncun.

First Aids i

Eyes Immediate and continuous irrigation with I flowing water for at least 'JO minutes is I imperative. prompt medical consultation is essential.

Skin: In cuve of contact, immediatly flush skin with plenty of water for at least 15 minutes while removing cont,aminated clothing and shoes. Call a physician. Wash clothing before reuse.

Destroy contaminated shoes and other leather

- . . . . .. .. articles .. . .

i l

Ingostion Do not induce vomiting. Give large amounts of water or milk if available and transport to medical facility. Flush mouth with plenty of wnter.

}.[ latiengge g,.? Rif t gp efg,tsocodr.

onsult l vr[f in h t or not shuuld be made by an attending .

duceLWmi$ik j

~

physician. Muy cause tissue destruction leadinr i to stricture. If lavage is performed, suggest endotracheal and/or esophagoscopic control. If burn is present, treat as any thermal burn, after decontamination. No specific antidote.

Supportive cdcts. Treatment based on Judgment of the physician in response to reactions of the patient. Repeated exposure may aggravate preexisting liver and kidney disease.

Hand 11na Precautionst Exposure guidelines Not known.

Vent 11allon: Frovide general and/or local exaust vent 11atio Roopiratory Protection: When respiratory protection is required for certain operations, use An approved air-pt.rifying respirator. For emergency and other conditions, use un approved positive-pressure scif-contained breathing apparatus or positive pressure airline with auxiliary self-containec air supply.

. i.'45R;'$.*i.'t. . . .M.n;;i'ft.%G%Rtf%&RiQ'9kh.$$9;y'Qfff

1 g  :

a; g CA0455 8 REV O P AGE 26 l

m Skin protection: Use protective clothing impervious to this mdterial. Selection of specific items such as gloves, boots, apron, or full-body suit Will depend on operation. Safety shower should be I located in immediate work area. Remove contaminated clothing immediatly, Wash skin areu with soap and Water, and launder clothing before reuse. .

Bye protection: Use chemical goggles. Use a full-face respirator when there is any likelihood of splashee. If vapor exposure causes eye discomfort, use a full-raco respiratoc. Eye wach fountain should be located in immediate work area.

' Additier)pl ihformation: , ,,,,,, ,,_ , , , ,_ ___,,

Special precautions: Prevent :::ye end skin contact. Avoid breathing vapors. Do not eat, drink or smoke in Workrooms i or storage arne , , j STORAGE AND CHEMICAL PEED SYSTEMS .

Storage conditions: ambiet L temperature. Storage under nitrogen is - ;. , q ,.

recommended, because the rnaterini is hygroscopic and absorbs "g-atmospheric carbon dioxide to form carbcnates or carbamaten.

Storage tank materialsin stainless steel, polyethylene, polypropylene.

Lahr, 08.11.1994 -

i 0

l i

e M '

p' i

a

.07/05/1905 19:19 18002276701 . ACROS ORGANICS 1

. ~> PAGE 02

  • - nueev.n1en. t.en u. s o vu < s a ne et:t: e ne C Asp i ne . I- pen t n ain l, 000007(.*?2  ??A
    • A4 DEt;T18111 .I

' ("llElf J Col. I'tisll8!)G T AND CUltreifY f OriHTIf f CATION .L M

  • I ilGO!3 Ilatee s' 5- Aini no 1 r ou 8 is no t 2 '-' I' %

cu t o J.n u nui.tmi s i ny n n ,ty m s , CA0455B REVO

- Co rw a ny i dtt n L ific a t i o n s PAGE C A c r o n O r sut u le r.

. l a n n e.u n I'lini ma c c.u l. J e m i n u n 'In

410 rist.n J , n < 1g istm for .i n f o rma t i a n in Nortti AmerJcta, (* a l) : 000-ACROG- 01 l'e r . i n i'o r ma t i o n in Europst, call: 01/s/40 42.10 i

f* o r doe r g e n c i er n in 1. h e.. (19 , en11' CHirliTal*(' :

000-4.'!4 e/300 r*.1 r e? ras.> s g e nc i <,t s 4: u t si ile ilie (19, < re l l CHEff TilEC : 202-4fMI-7614

' A 4 /. *tlT11Ilu ;!

t'tilif'rls i T 1 I)N , ) firrlf.'11A l' t Oil 0?? INGREDIEliTU AAA4 i

s. . . . . . . . , . . . . . . . . .

.. . , . . . . . . . . . . . . ~ .

f;td14

.... - ....-..------+---.- .... . o.

.I  : Cliemh o i Nome

......-.......t.............. ...

l X  ! Einec.si

.............._..-..i,....-...:

yv.n.<*y ..1 ! ti- om i n a. p en t a ua t , ? 7e' n..... ..........-........... .

i !219-710-2 I ll a s. u r.1 Cytnlm i n : XJ I! i t.it l'fi e v ste t 'M 414

    • +> HECTIOid ;l - litt/. A lt Dfi IDENTIFICA TIuli +
  • A+

1:'llr.RiirHCY OUEttt/IEW Appear: nce: yel lo w urliiering cryntnis.

  • Ta r *J e t. O r g u n n : None.

)

P o t te n t i s .t H5ealth Erfori.4 \

i Eyo:

flo t nuniintin.

s u w 4-

  • p a y -. L i )

1 i

I 1

i-I I

/- \

s- t.  ;

\ l

\- l m

, ,07/03/1995 19:19 19002276701 ACROS ORGANICS PAGE 03 Net available.

I n n ot.t io n :

Not available.

Inhalation: C A0455B REV D i Not available.

' Chronic: P A GE 2)

Not uvuiluble.

        • -SECTION 4 - FIRGT AID NEASURES A***

Eyes:

Immediately f lu sh eyes with plenty of water for at least 15 minu te t

+

Sk in:

nccasionally lifting the upper and l o ueir lids.

. lilu sh skin with plenty of soap and uater for at leaut 15 minuter.

~

while removing contaminated clothing and shoec.

Inuvution: 1

~ 00 NOT induce vomiting. A11cu the victim to rinso his mouth and th i Inhalation:

to drink 2-4 cupfuls of water, and seek medical advice.

Romove from exposure'to fresh air imrno d ia t ely . '

~ Notes to Physician:

Trent r.y mo t o ms t i c a l ly .

1 A44* SECTION 5 - FIRE FIGHTING HEASURES A***

General Information An in any fire, wear a self-contained breathing apparututt in

  • p r es su r e-dersu n d , HSHA/NIOSH (approved or equivalent), and full protective year.

During a fire, irritating and highly to xic sas,es inay be generated thermal decompo sitio n o r cornbu stio n.

E x tingu i ching Medi:a: )

In case of fire, use unter, dry chemien1, chernical f o am, or l alcohol resistant fcan.

Anto ignitio n Tempera tu res Not uvnilmbio.

Flanh Point: 65xC (149.00xF)  ;

Explosion Limits, Lower: Not available. j Upper Hot availabic.

        • SECTION 6 - ACCIDENTAL RELEASE HEASURES **u  !

Goneral Information: Use proper perso ns1 protective equpiment as indica in Section B.

Sp i ll s/L ea k s:

Clean up spills irnmed i a tely , observing precautions in the Protectis '

liquipment disposal.

sectio n. Sweep up, than place into a suitaD3e cantninor *'

        • SECTION 7 --

HANULINr, and STORAGE ****

.- Hahdling:

Wash thoroushly after handling.

Remove contaminated clothing und wash before teuse.

Avoid contact with eyes, skin, and clo thine:.

Avo i d ingestion and inhalation.

S t o r .a g e :

Store in a cool, dry place  !'

Keep container closed when not in uso.

        • SECTION O - EXPOGURE CONTROLS, PERSONAL PROTECTION ****  !

Engineering Controls:

Use adesemate seneret or local exhoust ventilation to keep oirborno

n

. .,07/05/1995 19:19 18002276701

.; n.: 4., w a r e , ACROS ORGANICS PAGE 04

.t u t. . t e2nau at . e ws .s t u t t u u , or c uest = ..g s om e t .m L o s t o d to control airbo rne levolt" CA0455B REV O Expo sure Limi ts

_ _+-__ _ __+ ______ ______PA.GE,,.

2..#/ ..

! C h enil ca l  !

_ Name_ _ _ g _ _ _ _ _ _ACGIH 1 N10DH A- Final F

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ; .O. S

_ _H

! 5-Anino-1 pont a no 1, : no n e list ctd. !none lists,d i 97X i inone l i ts t ed

.s...._.____+_____.~.._____+i ._ _ . . - _,.___+__._

OSHA Vucated PELs:

3-A)ni no-i pen t .a n o l , 97.% a No OSHA Vacated PELs, are listed for this chem.tcal.

Perco nal Pen' tac tivo Equipincent Eyes: -

unne safety glasses and theincal 9 o g 91541, if sp1mshing is'possible.

Skin:

- Wear appropriate protectivo glovos and clothing to I prevont skin expo sure.

C lo thi ng Uear approprieto pro tective clo thing to minsmiro contact with skin, R e sp 2. ra t o r n s j

{

Wear a NIOSH/MSHA-approved (or equivalen t) full-facepiece airline. respirator in" the positive p ressu ro mo dse with ec.erssency esc a p e p r o vi:.io n s.

        • CECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES ****

Physical Stato Not available.

-Appearance:

Yeliuw edhering crystain Gdor pH:

Not available.

- Vapor Pressuro Not available.

Not availablo.

Vapor D u n s.i ty : Not a v a ). l ab l e.

Evaporation Rato Not availablo.

- Viscosity: Not available.

Goilinst Point: 122.0x0 Freezing / Melting Point: 35.00 - 37.00 C Decor =po sitio n Temper atu ro Not available. )

Solubility: Not available.

Specif'ic Gravity /Uwnsity: Not availablo.

Molecular Formula: C5 H13 N O Molecular Weicht: Not available.

i

        • SECTION 10 - STADILITY AND REACTIVITY ****

j Chemical Stability w ~

Stable under normal temperaturois and proccur a ,

Conditions to A vo id :

i n c o rnp a t i b l e materinin, strong oxidants.

Incormpatibilities with Other Materials:

Strong o xidiz ing agonts.

Hazardouc Decomposition Produc ini Nattogen owides, carbon ruo no h ide, i r r 1 ( a t i n:) and tuyic fumet. Und gases, carbon dioxide, nitrogen.

Hat ta r tlo u n Po lyuer i z a t io n : H 415 not been reported.

        • SECTION 11 - TOXJCOLOGICAL I NFCitMAT 7 DN * * * *

.- LD50/LC50t

07/05/1955 19:19 18002276701 ACnt)S ORGANICS CarcxnusenicityI PAGE B5 L Not listed by ACGIH, IARC, N105H. N1P, or USHA.

        • SECTION 12 - ECOLOGICAL INFORMATION +44*

tcotoxicsty, C A0455 8 REV 0 Not available.

  • P A SE .5#

l' ,

        • SECTION 13 + DISPOSAL CONSIDERATION 9 *A**

D i sp o nse of in a manner consistent with federal, state, and local regulations RCRA D-Series Ma ximum Cu ncentratio n of Cobtaminants: Not listed.

RCRA D-Series Chronic Toxicity Ruference Lovvis: Not l i t. la d .

RCRA F-Series: Not listed.

RCRA P-Series: Not listod.

RCRA ll-Series: 'Not listed.

Nut listed -as a Inaterial bunned from land disposal accordinD to RCRA.

        • SECTION 14 -

TRANSPORT INFORMATION ****

US DDT l

Contact Fisher Scientific for shipping informbtien.  !

IMCO: No information available.

IATA: No i n f* a rma t io n availablo. )

Canadion TOG Nu information avuiluule.

        • SECTION 15 - REGULATORY INFORMATION ****

A. Federal TSCA t CASA 2308-29-4 is not ljuted on the TSCA invuntory.

None of the chemicals a r re on the Hos1th & Saf ety Reporting Lint None of this chemicals in this product are under a Chemacul Tout Ru None of the chemicals are listed under TSCA Sect io n 1:10.

None of the chemicals in this material have u SNUR under TSCA.

CIIRCLA/ SARA None of the chemiculs in this material have un RQ.

None of the chemicals in this product have a 'IPQ.

No chemicali, are reportable under Section 313.

Clean Air Act:

This material does not contain any hazardous air pollutants.

This Material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Orone depleto r s.

None of the chemicals in this product are listed as Hazardout.

-Substantes under the CUA.

None of the chemicals in this product are lir.ted as Prio rity Pollutants under the CUA.

None.of the chamicals iii this product are listed as Toxic Pollutun

- undur the CUA.

0%HAs None of the chemicaln in this product nre considered highly huraede w by OSHA.

D. Otato Not preseat,on state 1i8t9 from CA, PA. NN, MA. FL, or NJ.

- Ca.lifornia No Significant Risk Level:

None of the chemicalti in ths.s p ro du ct are litited.

C. I nter n a tio na l Canndu Honee of the chemicais in this product are linted on tho OUL/NOGL~ l CAST.2508-29-4 is not listed on Canada's Insredient Disclosure Lis

- European Labeling in Accordance with EC D i r ec t i vsu; Hazard Gymbols XI Hisk Phrases:

w R 36/38 Irritating to eyes and skin.

. pt? '07/05/1995. 19:19 18882276701 -. ACROS ORGANICS .-

" ' " ~ '

PAGE B6 W 24/k'.b A vo 40 c o n t.a c t w 3. t h sktn and sty e n .

        • SECTION 16 - ADDITIONAL INFORMATION *u*

noottion.1 Information, CA0455 8 REV O No additional i nf o rtna t i o n a va i .l a b l o.

Referencesi: No references listed. P AGE 3/

MSDG Creation Date:

Modified by Fisher cientifica March 29, 1995 The information abo ve is believed to be accurate and reprosents the b is s. t.

information currently available to.us. However, ua make un warranty or ruer ch a n t abil ity or uny other u.s t r a n ty , exprous or implied, uith respect such information, and we as.sume no liability resulting from i t s u s;e . U+m should make their own investigations to determine the suitability of the information for their particular purpose 9 I

D I

i l

I 1

9 e

g p .-

..= --- - " 6a TEi.:4102604498 P.001 CA0455 8 REV O  !

PAGE N Dr. Gerard E. Gryczkowski

) Baldmore Gas & Electric )

Calvert Cliffs Nuclear Power Plant Lusby, Maryland 20657 410-260-6521' 410-260-4498 Fax Ken Khiancy May 18,1995 Bechtel Power Corporation 9801 Washingtonian Boulevard Gaithersburg, Maryland 20878 5356 301-417-8402 301-279-8906 Fax DNe Mr. Khianey:

' Enclosed are the inputs for the control roon1 chemical - n no- habitability pentanol (SAP). The release points are the warehouse and the no .

Fonnula:

C5H13NO ~

Quantity . 400 gals Concentration 80%-

Specific gravity Vapor pressure 0.942 @l00% concentration / 0.987 @ 50% concen I torr @ 20*C Boiling point 222'C Molecular weight 103.17gm/ mole Atmospheric dispersion coefficient Warehouse 2.84E-04 sec/m3 Controlroorn Volume 166000 ft' North Service Building 4.1IE 04 sec/m3 Control room inflow 8300 cfm i LC50 96-hour acute concentration for opossum shrimp 725.4 ppm LC50 96-hour acute concentration for sheepshead minnow 4218  !

LC50 96-hour acute concentration for fathead 763.6 ppmminnow Please perform the following:

(1)

Estimate the cost of two calculations: control room hatitability from warehouse and the north service building. i (2)

Estimate the time to complete the calculations. {

, (3)

Inform BGE of the results of(l) and (2) andperform the calculations S~ erely Gerard E. owski t I

l l

l l

r C A01,5 5 B REV D PASE33 MIKE FOUNTAIN ASSdCIATES To: Jagdish Tarpara Fax No: 301 670 0297 Dan Patten Bechtel Power Corp.

From: M J Fountain Tel/ Fax: 0161 485 4997 Date: 31 May,1995 No.of Pages: 1 Ref:

Subject:

SAP-aarety la handtlag

Dear Dan /Jagdish,

As promised, I have spoken to the chemist at Wylfa P.S. regarding the queries you mised abo spillages, vapors etc.. He said:

1. SAP has very little smell (quite pleasant) and no obvious effect when inhaled, unlik which can make a place impossible to work in. There have been no complaints from st i
2. There have been no spillages to date - but he is mindful of the possibility of a m when filling the main tanks from a tanker and is writing promdure to cover the event. Thisi cover the need to padhag the area to temporarily contain the spillage and inform the Nationa Rivers Authority and seek permission to sluice the SAP down the storm dmins an into the river.
3. He maximum amount of SAP within the turbine building is - 0.5 tonne - contained in pipes and dosing tanks. If there is a large spillage attempts will be made to recover the SAP (expensive stuff), otherwise it will be flushed down the turbine hall drains where it will be diluted with other waters.
4. The main hazard in working with SAP is the danger ofskin contact, due to its causticity.
5. Apart from the additional procedures mentioned in 2 above the chemist sees no reason to modify the original safety procedures, which you have.

I hope this is helpful.

Regards, iJD%

Mike Fountain

>MCfX?d&%*

l CA04558 Rev.0 Page 34 ATTACHMENT B ABf0N96 RUNS FOR AUX BLDG ROOF INI.ET l

1 i

i l

l i

I

7-Program Titlh ARCCN96.

Developed For: U.S. Nuclear Regulatory Commission t~A045 5 B REV 0 Office of Nuclear Reactor Regulation Division of Reactor Program Management PA6E 3 [

Datt June 25, 1997 11:00 a.m.

NRC Contacter J, Y, Lee Phones (301) 415 1080 e-mail: jyllenre. gov J. J. Hayes Phones (301) 415 3167 e-maili jjhenre. gov L. A Brown Phones (301) 415 1232 e-mails lab 2enre. gov Code Developer s J. V. Ramsdell Phone (509) 372 6316 e-mails j ramsdellepnl. gov Code Documentation: NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Governme - Neither th) United States Government nor any agency thereof, nor any of their 4 employees, makes any warranty, expressed or implied, or assumes any legal li:bility or responsibilities for any third party's use, or the results of such )

u:J, of any portion of this program or represents that its use by such third pcrty would not inf ringe privately owned rights.

Progr:m Run 9/10/1998 at 09:33:40

      • e**
  • ARCON INPUT * ""* * "
  • Number of Meteorological Data Files = 3 Meteoro1bgical Data File Names CC1991. MET CC1992. MET CC1993. MET H;ight of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 Cind speeds entered as meters /second Ground-level release R;1 ease height (m) = .0 Building Area (m*2) = 1155.0 Ef fluent vertical velocity (m/s) = .00 YInt or stack flow (m*3/s) = .00 V;nt or stack radius (m) = 6.94 Direction intake to source (deg) = 174 Wind direction sector width (deg) = 90 Cind direction window (deg) = 129 - 219 Distance to intake (m) = 300.0 Intake height (m) = 15.6 T rrain elevation dif ference (m) = .0 Cutput file names CHWHCR.out CHWHCR.jfd l

Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 '

S;ctor averaging constant = 4.0 Initial value of sigma y = 3.22 Initial value of sigma z = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 7071 Hours elevated plume w/ dir, in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 18325 DISTRIBUTION

SUMMARY

DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-03 1.00E-03 1.005-03 1.00F-03 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.0CE-04 LOW LIM. 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08

I i ABOVE PAWGE 0. O. O. O. O. O. D. O. O. D.

l I^) RANGE 7566. 9072. 10985. 13503. 15536. 19375. 24850. 25104. 25169. 2e910.

j BEtow RANoE 0. O. O. O. O. O. c. D. D. O. 1

)

EERO 18325, 16753. 14722. 11983. 10132. 6209. 355. D. O. O.

TOTAL X/Qs 25891. 25825, 25707. 25486. 25668. 25584. 25205. 25104. 25169. 24910.

4 NON EPRO 29.22 35.13 42.73 52.98 60.53 75.73 98.59 200.00 100.00 100.00 95th PEPCENTILE X/Q VALUES l 9.12E-65 8.92E-05 0.64E-05 8.09E-05 6.65E-05 4.83E-05 2.898-05 2.47E-05 2.20E-05 2.02E-05 /

955 E/0 for standard averagt:2g intervals i

0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 9.12E-05 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 7.755-05 55B EV 0  !

j 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 3.20E-05 5

4 to to 4 days 30 days 2.25E-05 1.88E-05 P A6E % l I

HOURLY VALUE RANGE MAX X/Q MIN X/Q  !

CENTERLINE 1.14E-04 1.04E-05 l SECTOR- AVERACE 7.14E-05 6.55E-06 I

\

NORMAL PROGRAM COMPLET10N l

l l

l

Program Tit 13: ' ARCON96. '

CA0455B REV 0 Developed Fors; U.S. Nuclear Regulatory Commission gagc

, Office of Nuclear Reactor Regulation- FMwL Division of Reactor Program Management iDets:- June'25,.1997 11:00 a.m. .

}

WRC Contacts: = J. V. Lee Phone $301) 415 1080 e-mail jy111nrc. gov J. Ji Rayes - Phones (304) 415 3167 e-mails jjhenro. gov L.'A . Brown Phone:- (301) 415 1232

. e-mails lab 2enrc. gov-Code Developers J. V. Ramsdell Phones (509) 372 6316 e-mails j,ramsdellopnl. gov Code Documentations NUREG/CR-6331 Rev. 1

,The program was prepared for an agency of the United States Government. Neither

= the United States Government nor any agency thereof, nor any of their L employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such use, af any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run '9/10/1998' at' 09:34:16 eeee**

  • ARCON INPW * * * * * * * * *
  • Number of' Meteorological Data Files = 3 Meteorological Data rile Names CC1991. NET CC1992. MET.

CC1993.METi-Height of lower wind instrument (m) = 10.0 Hilght of upper wind instrument (m) = .60.0 Wind speeds entered as meters /second.

Ground-level release -

R21 ease height (m) =' *10.1 4 Su11 ding Area (m*2). . .. . 1155.0 Effluent vertical. velocity (m/s) '= .00 Vant or stack flow (m*3/s) y .00 Vint or stack radius (m) = 6.94 Direction .. intake to source (deg) = 059 Wind direction sector width (dog) =; 30 Wind direction window (deg) = 014 - 104 Distance to intake (m). .- 67.0

' Intake height Am) = 15.6 Tarrain elevation difference (m) .. .0-

' Output file names

.'.i 7 , 000EDCR out CHNSBCR.j f d -

Minimum Nind Speed (m/s) = .5

- Surface roughness length (m) = .30 SSetor averaging constant = 4.0 Initial value of sigma y = 3.22 Initial value of sigma a =' .00 Expanded output for code testing not selected j Total number of hours of data processed - 26301 j

.; Hours of missing data ~ = 416 i Hours direction in window = 5333-Hours elevated plume w/ dir in window a 0 i Hours of calm winds = 495  !

Hours direction not in window or calm = 20063  !

l DISTRIBWION Sup04ARY DATA BY AVERAGING INTERVAL AVER, PER.' 1 2 4 8 ' 12 24 96 160 360 720

.VPPER LIM. 1.00E-02s 1,00E-02 1.005-02 1.00E-02 .1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E 02 IAN LIM. 1.00E-06 1.00E-06 1.00E-06. 1.00E-06 1.005-06 1.00E 06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 l

l

~

e e ABOVE RANGE 0. O. O. O. 0. O. D. D. O. D.

IN RANGE 5828. 7130, 8854. 11832. 13252. 17178. 24362. 24911. 25169. 24910.

BE!DW RANGE 0. D. O. O. C. D. O. O. O. D.

EERO 20063. 18695. 16853, 14254. 12416, 8406. 843. 193. D. c.

TOTAL X/Qs 25891. 25825. 25707, 25486. 25668. 25584. 25205. 25104. 25169. 24910.

NON EERO 22.51 27.61 34.44 44.07 51.63 67.14 96.66 99.23 100.00 100.00 95th PERf.Tff!LE X/Q VALtJES 9.945-04 9.57E-04 9.095-04 8.265 04 6.80E-04 / 5.03E-04 2. 99 E-04 2.55E-04 2.08E-04 1.84E-04 95% X/9 for standard averaging intervals G to 2 tu:mrs 9.94E-04 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 7.71; '4 CA0455B REV 0 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 3.41E-04 1 to 4 dSys 2.32E-04 PA6E 3b 4 to 30 days 1.66E-04 HOURLY VALUE RANGE MAX X/Q MIN X/Q CENTERLINE 1,37E-03 1.28E-04 SECTOR-AVERAGE 8.58E-04 8.01E-05 NORMAL PROGRAM COMPLETION l

l r

l t

J l

1 1

1 J

[

1 4

I i

CA04558 Rev.0 l Page 39

/

ATTACEMENT C ARCON96 RUNS FOR WEST ROAD INI ET Pl.ENUM .

1 1

I i

l t

Program Tit 13 ARCON96.

Developed for U.S. Nuclear Regulatory Comission CA04558 REV0 office of Nuclear Reactor Regulation Division of Reactor Program Management PASE 960 Dat:s . June 25, 1997 11:00 a.m.

J NRC Contacts: J. Y. Lee Phones (301) 415 1080 e-maili jyllenrc. gov J. J. Hayes Phones (301) 415 3167 e-neili jjhenrc. gov L. A Brown Phonet (301) 415 1232 e-mails lab 2enre. gov Code Developer: J. V. Ramsdell Phones (509) 372 6316 e-mail j_ramsdellepnl. gov Code Documentationi NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither th) United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal li:bility or responsibilities for any third party's use, or the results of such urts, of any portion of this program or represents that its use by such third p rty would not infringe privately owned rights.

Progrim Run 9/10/1998 at 09:33:58 ee***** ARCON INPUT ****

  • m Number of Met.corological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET CC1993. MET H11ght of lower wind instrument (m) = 10.0 HIight of upper wind instrument (m) = 60.0 Wind speeds entered as meters /second Ground-level release R31 ease height (m) = .0 Building Area (m*2) = 1155.0 Ef fluent vertical velocity (m/s) = .00 V:nt or stack flow (m*3/s) = .00 VInt or stack radius (m) = 6.94 Direction intake to source (deg) = 162 Cind direction sector width (deg) = 90 Wind direction window (deg) = 117
  • 207 Distance to intake (m) = 262.0 Intake height (m) = 9.1 T:rrain elevation difference (m) . .0 Output file names CHWHWR.out CHWHWR, j f d Minimum Wind Speed (m/s) = .5 Surface roughness length (m) . .10 SIctor averaging constant = 4.0 Initial valuc of sigma y - 3.22 Initial value of sigma z = .00 Expanded output for code testing not selected Total number of hours of data processed . 26307 Hours of missing data = 416 Hours direction in window = 5698 Hours elevated plume w/ dir, in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 19698 DISTRIBLTTION

SUMMARY

DATA BY AVERAGING INTERVAL AVER. PER, 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E 03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 LOW LIM. 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1 00E-07 1.00E-07 1.00E 07 1.00E-07 1.00E-07 1.00E-07 l

1 I'

  • i s I l l l \

l ABOVE RANGE 0. O. O. O. C. O. O. O. O. D. l

) IN RANGE 0193. 7584. 9475. 12141. 14358, 18559, 24524. 25030, 25169. 24910.

l BELOW RANGE 0. O. O. .O. D. D. O. C. O. O. I l 2ERO 19698. 18241. 16232. 13345, 11310. 7025. 661. 74. O. O.

TOTAL X/Qs 25891. 25825, 25707. 25486. 25668. 25584. 25205, 25104. 25169, 1

24910.  !

i n CDN ZERO 23.92 29,37 36.86 47.64 55.94 72.54 97.30 99.71 100.00 1 100.00 I 95th PERCENTILE X/Q VALUES I 1.105-04 1,06E-04 1.01E-04 e.29E-05 7.56E-05 5.245-05 3.00E-05 2.60E-05 2.30E-05 2.07E-05 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.10E-04 2 to a hours 8.725-05 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 3.22E-05 PA6E $//

1 to 4 days 2.258-05 4 to 30 days 1.93E-05 HOURLY VALUE RANGE MAX X/O MIN X/Q CENTERL?NE 1.44E-04 1.44E-05 SECTOR. AVERAGE 9.02E-05 9.01E-06 NOCMAL PROGRAM COMPLETION l

l l

l

W' . , ,

-E'iy h  !

i Program Titist1 AR N 96.

n

. Developed Forsi U.S. Nuclear' Regulatory Commission CA04558 REV O

', Dffice of Huclear Reactor Reguletion

. Division of Reactor Program Management 6E 4 Dates. < June 25, 19974 11:00 a.m.

NRC Contactsi . J, Y. 3,se . Phones (301) 415 1090 e-mails jyllento. gov 1 J, J, Hayes . Phones (301) 415 2167 .

e. mails jjhenre. gov-

' L, W Brown Phones (301) 415 1232 e-mails lab 2enre. gov i

Code Developers J. Vf Ramsdell Phone ($09) 372 6316 e-mails Lransdellepal. gov Code Documentations NUREQ/CR-6331 Rev, 1 sThe program was prepared for an agency of the United States Government. Neither 1the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal litbility or responsibilities for any third party's use, or the results of such '

use, of any portion of this program or represents that its use t.ry such third

. party would not infringe privately owned rights.

Progrs.m Run 9/10/1998 at 09:34:20 -

    • ee**
  • ARCON INPtff * * * * * * * * *
  • W aber of Meteorological Data Files .. 3 Meteorological Data File Names

' CC1991, MET-CC1992. MET

'CC1993. MET Height of lower wind' instrument (m) = 10,0 H31ght of upper wind thstrument (m)- = 60.0 Wind speeds entered as meters /second' Ground level release.

R31 ease height (m) = -10.1 Su11 ding Area (m*2) = 1155.0 Effluent vertical velocity (m/s) . .00

'V:nt or stack flow - (m*3/s) . .00 VInt or stack radius (m) = 6.94 ,

Direction'.. intake to source {deg) = 050 Nind direction sector width (deg) = 90 Kind direction window' (deg) = 005 095 Distance to intake (m) = 135.0 Intake height- (m) = 9,1 Tarrain elevation difference (m) = .0 Output file names CHNSBNR.out-

~ CHNSBWR.jfd-Minimum Nind speed (m/s) .= .5 Surface roughness length (m) = .10 83ctor averaging constant; a 4.0 j Initial value of sigma y ' = 3.22.

Initial value of sigma z e .00 Expanded output for code testing not selected i Total number of. hours of data processed = 26307

. Hours of missing data = 416

. Hours direction in window = 5965 Hours elevated plume w/ dir, in window _= 0

' Hours of calm winds - = 495

' Hours direction not in window or calm- = 19431

- DISTRIBUTION

SUMMARY

DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-03 1.00E-03 .1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 14N LIM. 1.00E-07 1.00E-07 1.00E-07 1,00E 07 1.00E-07 1.00E-07 1,00E-07 1.00E-07 1.00E-07 1.00E-07 s

p r-1' e .,,-

' AN NE RANGE 0. O. D. O. D. .O. O. O.

'10 RANGE 6460. -7712, O. O.

9395. 18745. 13756. 17618, 24509.

i DB!Of BANGE 24994. 25169. 24910,

.'0,' 0. O. O, D. .0. O.

- EERO ' O. O. O.

19431.- 18113. 16312. 13741. 11912. 1966. 696. 110. O. O.

j. . 77tAL 3/Qs 25491. - 25025. 25707 25466. 25668. 25584. -25205, l- 25104. 25169, 24910.

% NON EERO 24.95 ~ 29.04 36.55 46.08 53.59 - 68,86 97.24

! 99.56 100.00 100.00 i

95th PkRCENTILE X/Q VAwEs -

3.15E 04 3.082 04 2.93E 04 2.70E 04 2.25E-04 1.70E-04 1.04E 04 ' 8.82E 05 7.458-05 6.488-05 956 X/Q for standard averaging intervals 0 t.o 2' hours 3.158-04

,* 2 to a hours 2.55E-04 CA0455B REV 0 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1,20E 04' 1 to 4 days 4.213-05 g{

4 to 30-days 5.87E 05 HOURLY VALtJE RANGE MAK X/Q MIN X/Q CBNTRRLINE 4,56E 04 4.22E-05 SECTOR-AVERAGE 1,86E-04 2.64E-05,

. NORMAL PROGRAM COMPLETION J

1 1

i l

r, i

i l

1 1

- o CA04558 Rev.0 Page 44 j .- "

') ATTACHMENT D EXCEL SPREADSI1FFT i 5-AMINO-PENTANOL - AUX BLDG ROOF INLET Y

l i

1 3

I l

l l

l l

l I

l l

1 I

l J

  • s SAP-400 CR C A045 58 REV 0 PAGE/[

A B C D E F G 1 5-AMINO-PENTANOL 13 CHEMICAL C5H13N ')

4 TOXICITY LIMIT (PPM) TLV 7 )

5 ODOR THRESHOLD (PPM) OT ,

6 STORAGE QTY (GAL) Q 400 I 7 STORAGE PURITY (FRACTION) QF 0.80 8 SPECIFIC GRAVITY (GM/CC) SG 0.96 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.00 20 527.67 293.15 4 10 BOILING POINT (C-K-R) TB 122 395.15 711.27 11 MOLECULAR WT (GM/ MOLE) MB 103.17 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 _PffESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 [A_ ASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 8300 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 17753.56 17753.56 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*Tmax.NCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 5 74 31 H 3.7 13 48.1 32 O 7.4 1 7.4 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 1 10.5 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 I

44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING 6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 l

Page 1 l

l

5AP-400-CR CA04558 REV 0 PAGE %

A B C D E F G 49 6-MEMBERED RING -15.0 0 0 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 140 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 6.1271 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.9191 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 454.4225 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SORT (E/KA*E/KB)= 188.9910 60 TSTAR T* TA/(E/KAB)= 1.6040 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 8 0.15610 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^B +Cle^(T*D)+ E/e^(T* F)+G/e^(T*H) 1.1673E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0649E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l l 4.4211 E-02 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5*M R^0.5/(PA*SIG AB^2*O M EGA)= 8.1133E-02 73 l l l 8.1133E-02 74 VAPOR DENSITY (GM/CC) RHOV MB*14.696*0.01601846/(10.72*TVP) 4.2935E-03 75 l l 76 INITIAL MASS (GM) MO Q*QF*SG'(3785.422 CC/ GAL) 1.1629E+06 77 VOLUME (M3) VO Q*QF*(3.785422E-3 M3/ GAL) = 1.2113E+00 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.2784E-01 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.6643E+00 80 SPILL AREA FINAL (M2) AF VO/0.01 = 1.2113E+02 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4 *Pl*9.81 *VO*(SG-R H OA)/SG)) 1.2212E+ 01 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 9.7827E+00 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 1.2419E+03 -

84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 _

NSB WH 87 AL C (S/M3) ADC 9.94E-04 9.12E-05 88 TIME (SEC) T 1 5 9.7827 40 89 AREA (M2) A MIN (Pl*R0'2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 NSB 94 CASES T ADC A VR VD PPM l 95 1.0000 9.94E-04 1.39E+01 9.08E-03 1.25E-04 2.97E-02 96 5.0000 9.94E-04 6.27E+01 4.06E-03 2.53E-04 6.01 E-02 l Page 2 l

CA04558 REV 0 SAP-400-CR PAGE Y7 A B C D E F G l

97 9.7827 9.94E-04 1.21E+02 2.90E-03 3.50E-04 8.30E-02 j 98 40.0000 9.94E-04 1.21E+02 1.44E-03 1.73E-04 4.10E-02 i 99 WH 100 1.0000 9.12E-05 1.39E+01 9.08E-03 1.15E-05 2.73E-03 101 5.0000 9.12E-05 6.27E+01 4.06E-03 2.32E-05 5.52E-03_ ;

102 9.7827 9.12E-05 1.21E+02 2.90E-03 3.21 E-05 7.62E-03 103 ,

40.0000 9.12E-05 1.21 E+02 1.44E-03 1.59E-05 3.77E-03 104 105 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 106 REYNOLD NUMBER RE L*VW'RHOA/MU 8.1529E+05 107 SCHMIDT NUMBER SC MU/(D*RHOA) 1.8775E+00 108 l 109 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 1.5979E-01 110 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 9.0123E-03 111 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 112 PPM INSIDE CR PPM (24500/MB)*VD 113 CASES ADC VD PPM 114 NSB 9.94E-04 1.09E-03 2.58E-01 I 115 WH 9.12E-05 9.96E-05 2.36E-02  !

116  ;

117 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 4.8320E-02 '

118 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.7253E-03 119 VAPOR DEN INSIDE CR(GM/M3) VD VFL'ADC*AF*CRF 120 PPM INSIDE CR PPM (24500/MB)*VD 121 CASES ADC VD PPM 122 NSB 9.94E-04 3.28E-04 7.79E-02 123 WH 9.12E-05 3.01E-05 7.15E-03 124 laminar turbulent 125 Time to peak (sec) = t=1/ER/.0001*SG 3522610 1065213.3 126 Time to peak (min) = 58710.2 17753.6 127 Time to peak (hr) = 978.50 295.89 128 129 Turbulent Evaporation without Recirc inlow(cfm) 8300 8300 8300 8300 ADC 130 NSB Time (min) 20 17753.56 17783.56 17813.56 9.94E-04 131 PPM 0.13 0.26 0.09 0.03 132 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 133 WH Time (min) 20 17753.56 17783.56 17813.56 9.12E-05 134 PPM 0.01 0.02 0.01 0.00 135 136 Turbulent Evaporation with Rectre Inlow(cfm) 8300 3000 3000 3000 ADC 137 NSB Time (min) 20 17753.56 17783.56 17813.56 9.94E-04 138 PPM 0.13 0.26 0.09 0.03 139 Turbulent Evaporation with Recirc Intow(cfm) 8300 3000 3000 3000 ADC 140 WH Time (min) 20 17753.56 17783.56 17813.56 9.12E-05 141 PPM 0.01 0.02 0.01 0.00 Page 3

E CA04558 Rev.0 -

Page 48 ATTACHMENT E EXCEL SPREADSHEET -

5-AMINO-PENTANOL - WEST ROAD INLET

5AP-400-WR CA045 58 REV 0 PASE W ,

1 A B C D E F G 1 5-AMINO-PENTANOL 2 1 3 CHEMICAL C5H13NO f 4 TOXICITY LIMIT (PPM) TLV 7 5 ODOR THRESHOLD (PPM) OT 6 STORAGE QTY (GAL) Q 400 7 STORAGE PURITY (FRACTION) QF 0.80 8 SPECIFIC GRAVITY (GM/CC) SG 0.96 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.00 20 527.67 293.15 10 BOILING POINT (C-K-R) TB 122 395.15 711.27 1 MOLECULAR WT (GM/ MOLE) MB 103.17 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 1 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 3000 25 WIND VELOCITY (CM/SEC) VW 100 I 26 MAXIMUM TIME (MIN) Tmax 17753.56 17753.56 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*Tmax./VCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 5 74 31 H 3.7 13 48.1 32 O 7.4 1 7.4 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 1 10.5 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Page1

I C A04558 REV O 5AP-4004YR PA6E 9

, A B C l D E F G 49 6-MEMBERED RING -15.0 0 0 50 NAPHTHALENE -30.0 0 0 ,

51 ANTHRACENE -47.5 0 0 l 52 OTHER 0.0 0 0

~

53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 140 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 6.1271 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.9191 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 454.4225 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 188.9910 60 TSTAR T* TA/(E/KAB)= 1.6040 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 8 0.15610 63 C 0.19300 W D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^B +Cle^(T*D)+ E/e^(T*F)+Gle^(T*H) 1.1673E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0649E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l l 4.4211E-02 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5*M R^0. 5/( PA* SI GAB ^2 *O M EG A)= 8.1133E-02 73 l l l 8.1133E-02 74 VAPOR DENSITY (GM/CC) RHOV MB'14.696*0.01601846/(10.72*TVP) 4.2935E-03

,75_ l l  !

l

/7 INITIAL MASS (GM) MO Q*OF*SG*(3785.422 CC/ GAL) 1.1629E+06 VOLUME (M3) VO Q*QF*(3.785422E-3 M3/ GAL) = 1.2113E+00 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.2784E-01 l 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.6643E+00 80 SPILL AREA FINAL (M2) AF VO/0.01 = , 1.2113E+02 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4 *Pl* 9.81 *VO*(SG-R H OA)/S G)) 1.2212E+01 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 9.7827E+00 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/Pl) 1.2419E+03 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 NSB WH 87 ADC (S/M3) ADC 3.15E-04 1.10E-04 88 TIME (SEC) T 1 5 9.7827 40 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 NSB 94 CASES T ADC A VR VD PPM 95 1.0000 3.15E-04 1.39E+01 9.08E-03 3.97E-05 9.42E-03 96 5.0000 3.15E-04 6.27E+01 4.06E-03 8.02E-05 1.91E-02 l

Page 2  ;

l

a . . ,

C A04558 REV 0 SAP-400-WR P AGE 6 /

A B C D E F G 97 9.7827 3.15E-04 1.21E+02 2.90E-03 1.11 E-04 2.63E-02 98 40.00Q0 3.15E-04 1.21 E+02 1.44E-03 5.48E-05 1.30E-02 99 WH 100 1.0000 1.10'I-04 1.39E+01 9.08E-03 1.39E-05 3.29E-03 101 5.0000 1.10E-04 6.27E+01 4.06E-03 2.80E-05 6.65E-03 102 9.7827 1.10E-04 1.21 E+02 2.90E-03 3.87E-05 9.18E-03 103 40.0000 1.10E-04 1.21 E+02 1.44E-03 1.91 E-05 4.54E-03 104 105 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 106 REYNOLD NUMBER RE L*VW'RHOA/MU 8.1529E+05 107 SCHMIDT NUMBER SC MU/(D*RHOA) 1.8775E+00 108 l 109 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 1.5979E-01 110 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 9.0123E-03 111 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 112 PPM INSIDE CR PPM (24500/MB)*VD 113 CASES ADC VD PPM 114 NSB 3.15E-04 3.44E-04 8.17E-02 115 WH 1.10E-04 1.20E-04 2.85E-02 116 117 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 4.8320E-02 118 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.7253E-03 119 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 120 PPM INSIDE CR PPM (24500/MB)*VD 121 CASES ADC VD PPM 122 NSB 3.15E-04 1.04E-04 2.47E-02 123 WH 1.10E-04 3.63E-05 8.62E-03 124 laminar turbulent 125 Time to peak (sec) = t=1/ER/.0001*SG 3522610 1065213.3 126 Time to peak (min) = 58710.2 17753.6 127 Time to peak (hr) = 978.50 295.89 128 129 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 130 NSB Time (min) 20 17753.56 17783.56 17813.56 3.15E-04 131 _

PPM 0.02 0.08 0.06 0.04 132 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 133 WH Time (min) 20 17753.56 17783.56 17813.56 1.10E-04 134 PPM 0.01 0.03 0.02 0.01 i I

i Page 3

CA04558 Rev.0 Page 52

> ATTACHMENT F CROSS SECTIONAL AREAS 1 i

l I

l m

y . . . ,

(

~

l

' - ~ -

CA0455B REY 0 L y_7g ] ggzyl-- PA6E M

' g

  • ses

\g g, N< 796667' Rangy

% %ry > c=e7.c' na+

d=b4~WN[2Drkyr) e s$ s ~ -u.sw.c it

$ *03*l"// = 2,5LYun L = 196tn7 '

Au J< 21;c '

S=La=(6t.88Y/

. - - . - I"

_ y g. ,

nas -

+

L = Qs? c) {f(f.r- it,r)= 7287X~dt' A arr = J L Y3 C C 5 N ~

du: Guik*-9t't").

uar arp w.y >./ ) = (73ns-4

bpf'

  • 2*bverr Y6 $ = 168/A/1)f' WMs/s4 jasw&: c:7w Au = aa,s0s81833-nr)".(igyr77 wse ')= 27tc7,a /t'.

CMMNaty1'b PMWC A/L5/6: sm5 x smig Am = Gseosswp -1i.<) Or2.ic') = neoas ,je we Act.m Acr.g* ll#JC O $

g., , Apn c= 240lc,ST, N '

CA04558 Rev.0 Page 54 ATTACHMENT G TELEPHONE CONFERENCE MEMORANDUM l I

  • E.l,,Lia BALTIMORE GAS & ELECTRIC COMPANY

~ C A0455B REV 0 TELEPHONE AND CONFERENCE MEMORANDUM p ff DATE gyg r / PURCH ASE ORDER NO.

REQN.NO.

TCLEPHONE CALL CONFERENCE C SOR NO. l CITH: Y[ M [dMAM COMPANY:

1 SU:J ECTt Yb $$ Y$YYh l Y b $l*Yk h $.l Y VY l

NOTES: I

{Af /A 6'id-GAR / Hlb At/s o/ 9/w GMS AR T4f C6AtC4/7A F)7sf = 8 0a -

SM spaa totens.s : dat /nts.sract wwu 1 W444l}M.$( i l

COPIES TO:

1

.