ML13018A103
ML13018A103 | |
Person / Time | |
---|---|
Site: | River Bend |
Issue date: | 01/26/2009 |
From: | Castor A Entergy Operations |
To: | Wang A Plant Licensing Branch IV |
Wang A | |
Shared Package | |
ML13018A081 | List: |
References | |
TAC ME7767 G13.18.6.3-009 | |
Download: ML13018A103 (45) | |
Text
ANO-1 ANO-2 GGNS IP-2 IP-3 PLP JAF PNPS RBS VY W3 (1) (2)
CALCULATION EC # 11753 Page 1 of 45 COVER PAGE (3) Design Basis Calc. YES NO (4) CALCULATION EC Markup (5 ) (6)
Calculation No: G13.18.6.3-009 Revision: 0 (7)
Title:
Drift Study for ABB ITE-62 Timers (8) (9)
System(s): 302 Review Org (Department): NSBE3 (I&C Design)
(10) (11)
Safety Class: Component/Equipment/Structure Type/Number:
Safety / Quality Related ENS-SWG1A-62-1 ENS-SWG1A-62-2 Augmented Quality Program Non-Safety Related ENS-SWG1A-62-6 ENS-SWG1B-62-1 ENS-SWG1B-62-2 ENS-SWG1B-62-6 (12)
Document Type: F43.02 (13)
Keywords (Description / Topical Codes): Drift
REVIEWS (14) (15) (16)
Name/Signature/Date Name/Signature/Date Name/Signature/Date
_Aaron Castor / R.J. Hannigan /
See AS for electronic signature
/ 1-26-09 / 1-26-09 Responsible Engineer Design Verifier Supervisor/Approval Reviewer Comments Attached Comments Attached
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 2 OF 14 CALCULATION CALCULATION NO: G13.18.6.3-009 REFERENCE SHEET REVISION: 0 I. EC Markups Incorporated None II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.
- 1. 350911 NA ! " N
- 2. 350912 NA ! " N
- 3. 350917 NA ! " N
- 4. 350918 NA ! " N
- 5. 358908 NA ! " N
- 6. 358909 NA ! " N
- 7. 364930 NA ! " N
- 8. 364931 NA ! " N
- 9. 364932 NA ! " N
- 10. 364935 NA ! " N
- 11. ECH-NE-08-00015 000 ! " N
- 12. G13.18.6.2-ENS-006 0 000 " ! Y 11753
- 13. STP-302-1600 1 11 ! " N
- 14. STP-302-1600 1 12 ! " N
- 15. STP-302-1600 1 13 ! " N
- 16. STP-302-1601 1 10 ! " N
- 17. STP-302-1601 1 11 ! " N
- 18. STP-302-1601 1 12 ! " N
- 19. STP-302-1602 1 11 ! " N
- 20. STP-302-1602 1 12 ! " N
- 21. STP-302-1602 1 13 ! " N
- 22. STP-302-1603 1 11 ! " N
- 23. STP-302-1603 1 12 ! " N
- 24. STP-302-1603 1 13 ! " N
- 25. WO-00053890 0 ! " N
- 26. WO-50688142 0 ! " N
- 27. WO-50688143 0 ! " N
- 28. WO-50688144 0 ! " N
- 29. WO-50688145 0 ! " N
- 30. WO-50994404 0 ! " N
- 31. WO-50994405 0 ! " N
- 32. WO-50994516 0 ! " N
- 33. WO-50994517 0 ! " N
- 34. WO-51041195 0 ! " N
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 3 OF 14 CALCULATION CALCULATION NO: G13.18.6.3-009 REFERENCE SHEET REVISION: 0 II. Relationships: Sht Rev Input Output Impact Tracking Doc Doc Y/N No.
- 35. WO-51041196 0 ! " N
- 36. WO-51041842 0 ! " N
- 37. WO-51041843 0 ! " N III. CROSS
REFERENCES:
- 1. American National Standard N15.15-1974, Assessment of the Assumption of Normality (Employing Individual Observed Values)
- 2. ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation
- 3. DOE Research and Development Report No. WAPD-TM-1292, Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference, February 1981
- 4. EPRI TR-103335R1, Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs, October 1998
- 5. ISA-RP67.04-Part II-2000, Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation, Second Printing, June 12, 1995
- 6. NRC Generic Letter 91-04, Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle, April 2, 1991
- 7. VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0
- 8. VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 IV. SOFTWARE USED:
Title:
N/A Version/Release: Disk/CD No.
V. DISK/CDS INCLUDED:
Title:
N/A Version/Release Disk/CD No.
VI. OTHER CHANGES:
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 4 OF 14 Revision Record of Revision Initial issue.
0
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 5 OF 14 TABLE OF CONTENTS 1 Purpose!.................................................................................................................................................!6 2 Conclusions!...........................................................................................................................................!7 3 Design!Inputs!.........................................................................................................................................!7 4 References!.............................................................................................................................................!7 5 Assumptions!..........................................................................................................................................!8 6 Method!of!Analysis................................................................................................................................!8 7 Analysis!................................................................................................................................................!10 8 Atttachments!.......................................................................................................................................!14 Attachment 1 - Drift Analysis Supporting Information (Excel Spreadsheet) - 23 pages Attachment 2 - DVR Forms with comments - 8 pages
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 6 OF 14 1 Purpose 1.1 The purpose of this analysis is to establish more realistic drift values and characteristics to be used by instrument uncertainty calculations for determination of setpoints and allowable values for the subject instrumentation. The drift values are determined by historical As Found / As Left data analysis.
1.2 Specifically, this analysis addresses Asea Brown Boveri Model (ABB) ITE-62 Undervoltage Timers with tag numbers as shown in Table 1.2-1 below. Also shown in the table are the calibration procedure numbers, device functions, and applicable Technical Specification (TS) sections. The results of this analysis can be conservatively applied to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station that meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
TABLE 1.2-1 COMPONENT LIST PROCEDURE NO. TAG NO. FUNCTION TS SECTION Loss of Power (LOP) Instrumentation STP-302-1600 ENS-SWG1A-62-1 Divisions 1 and 2 - 4.16 kV Emergency 3.3.8.1.3-1.b STP-302-1601 ENS-SWG1B-62-1 Bus Undervoltage Loss of Voltage - Time Delay Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency STP-302-1602 ENS-SWG1A-62-2 Bus Undervoltage 3.3.8.1.3-1.d STP-302-1603 ENS-SWG1B-62-2 Degraded Voltage - Time Delay (No LOCA)
Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency STP-302-1602 ENS-SWG1A-62-6 Bus Undervoltage 3.3.8.1.3-1.e STP-302-1603 ENS-SWG1B-62-6 Degraded Voltage - Time Delay (LOCA)
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 7 OF 14 2 Conclusions 2.1 The bounding Analyzed Drift (DA) for the ITE-62 Time Delay Relays (See Table 1.2-1) has been determined to be ! 2.072 % Setpoint for a 30 month (24 months + 25%)
calibration interval, with no significant bias. The Analyzed Drift should be treated as a normally distributed, 2" value for uncertainty analysis.
2.2 The results of this analysis can be conservatively applied to all of the Undervoltage Timers in Table 1.2-1 and to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station, which meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
3 Design Inputs 3.1 Pages 1 through 3 of Attachment 1 provide a listing of the historical As Left (AL) and As Found (AF) data, as obtained from Reference 4.2.1, with any data exclusions or modifications noted. All dates of calibration are also entered to provide time intervals between calibrations.
4 References 4.1 METHODOLOGY 4.1.1 ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation 4.1.2 ISA-RP67.04-Part II-2000, "Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation," Second Printing, June 12, 1995 4.1.3 ECH-NE-08-00015, Instrument Drift Analysis Design Guide," Rev. 0, Generated by EXCEL Services Corporation, July 2008 4.1.4 EPRI TR-103335R1, "Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs," October, 1998 4.1.5 DOE Research and Development Report No. WAPD-TM-1292, "Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference," February 1981 4.1.6 NRC Generic Letter 91-04, "Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle," April 2, 1991 4.1.7 American National Standard N15.15-1974, "Assessment of the Assumption of Normality (Employing Individual Observed Values)"
4.2 PROCEDURES 4.2.1 Historical Calibration Records from RBS Surveillance Test Procedure Results for STP-302-1600, 1601, 1602, and 1603
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 8 OF 14 4.3 MISCELLANEOUS REFERENCES 4.3.1 VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0 4.3.2 VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 5 Assumptions 5.1 This drift report employs those assumptions customarily used for standard statistical analyses, as directed by Reference 4.1.3, such as the assumption that a distribution is normal and the use of statistical tests to confirm this hypothesis.
5.2 This drift report is based on analysis of historical As Found and As Left data from calibration records for the devices listed in Table 1.2-1. The results of this analysis can also apply to any ABB Model ITE-62 Undervoltage Timers used at RBS, but care must be taken when applying these results. Specifically, in order to apply the results of this analysis to other similar devices, the devices must meet the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
6 Method of Analysis 6.1 The methodology used for this analysis is Reference 4.1.3, which is written in accordance with Reference 4.1.4, using References 4.1.1, 4.1.2 and 4.1.7 to supplement. An overview of the methodology is given herein, and any deviation from Reference 4.1.3 or any supplemental methods used herein are described.
6.2 This analysis determines the drift values for the subject instrumentation by analysis of historical As Found / As Left data from calibration records. Drift for a given device for a calibration period is determined by subtracting the previous As Left setting from a more recent As Found setting. The time interval for that calibration period is determined by subtracting the previous date from the more recent date, in units of days. All retrievable As Left and As Found data is collected for each calibration performed on each device covered by this report, for the study period. From this information, the drift and calibration interval is generated for each possible instance. Per Section 3.4.2 of Reference 4.1.3, "The goal is to collect enough data for the instrument or group to make a statistically valid pool." It goes on to explain that there is no hard fast number.
However sufficient data should be collected to yield at least 30 valid drift values for analysis, or at least 20 under justifiable circumstances. Also, as noted in Section 3.4.2.4 of Reference 4.1.3, "For each selected component in the sample, enough historic calibration data should be provided to ensure that the component's performance over time is understood." The devices covered by this report are currently calibrated on an 18 Month basis, and the proposed extension is for a 24 Month nominal calibration interval. Therefore, a study period of 10 years represents more than six of the present calibration cycles, and five of the proposed calibration cycles, which is adequate to understand the component's performance over time. Also, a sufficient number of valid drift values are provided as a result of the selected study period to make a statistically
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 9 OF 14 valid pool. Therefore, As Found and As Left Data values are entered from calibrations occurring for approximately the last 10 years.
6.3 Determination of the Analyzed Drift is generally accomplished through the following steps.
6.3.1 Gather and Generate Raw Drift Data: In addition to gathering the As Found and As Left data, and computing the drift values and time intervals, this step also involves an investigation into whether all of the devices should be analyzed together, or whether they should be separated into smaller analysis groups. Additionally, this step involves careful screening of the input data for errors or other situations that would not allow proper determination of drift. Finally, this step involves careful screening of the input data for errors or other situations that could disrupt the proper determination of drift.
6.3.2 Determination of Outliers and Statistical Summary: In order to properly model the drift characteristics for a device, it could be proper to remove up to one more data value, which obviously does not conform to the vast majority of the data. A t-Test is performed on the data to detect any outliers, and remove up to one if appropriate, per the guidelines of Reference 4.1.3. Additionally, the basic statistical values which describe the group of drift data are derived in this step, including such parameters as Mean, Standard Deviation, Count, Median, Minimum, Maximum, etc.
6.3.3 Tests for Normality: Per Reference 4.1.3, a statistical test (W or D-Prime, depending on sample size) is performed on the drift data to support the hypothesis that the data conforms to a normal distribution. If this test is unable to support that hypothesis, then a Coverage Analysis is performed to ensure that the data can be conservatively modeled by a normal distribution and to provide an adjustment to the standard deviation of the drift model, if necessary to conservatively envelop the observed data population.
6.3.4 Time-Dependency
Per Reference 4.1.3, Scatter Plots and a time-based Binning Analysis are developed for the data to establish the time-dependency of the drift. If enough drift data exists for significantly different time intervals, regression analysis is performed to aid in the determination of time-dependency. The drift data is determined to be strongly time dependent or moderately time dependent, for the purpose of extrapolation.
6.3.5 Analyzed Drift Derivation and Characterization: The drift values are determined for the current calibration interval. These values are conservatively extrapolated to the desired calibration interval, based on the methods prescribed in Reference 4.1.3, depending on the degree of time-dependency derived for the drift data.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 10 OF 14 6.4 The mathematical computations of the statistical analysis are performed within an Excel spreadsheet. Supporting information from the spreadsheet is printed out as Attachment 1 to this analysis. Microsoft Excel spreadsheets generally compute values to an approximate 15 decimal resolution, which is well beyond any required rounding for engineering analyses. However, for printing and display purposes, most values are displayed to lesser resolution. It is possible that hand computations will produce slightly different results, because of using rounded numbers in initial and intermediate steps, but the Excel computed values are considered highly accurate in comparison.
6.5 Acceptance Criteria: Since the purpose of the analysis is to generate a value and description of the characteristics of the drift of the evaluated make/model, there are no specific acceptance criteria.
7 Analysis 7.1 Gather and Generate Raw Error Data 7.1.1 Specifically, this analysis addresses ABB Model ITE-62 Undervoltage Timers, with the tag numbers as shown in Table 1.2-1 of this analysis. These relays have the same manufacturer and very similar model numbers. All are ABB ITE-62 series time delay relays, but some are model ITE-62K and others are ITE-62L. Per References 4.3.1 and 4.3.2, these relays have somewhat similar specifications, and are of the same manufacturer and series. It is postulated that these two models will perform similarly. Additionally, these relays have some differences in setpoints.
Therefore, pooling tests are required to group the data for analysis.
7.1.2 Pages 1 through 3 of Attachment 1 provide a listing of the initial As Found and As Left data from available historical plant calibration records for the subject Undervoltage Timers. Note that the calibration dates are also recorded, and notes are provided to clarify the activities performed or to provide additional information about the data, as appropriate. This data was entered into an Excel spreadsheet for computation of the drift values, time intervals between calibrations and statistical analysis.
7.1.3 A screening of the initial input data from pages 1 through 3 of Attachment 1 was performed. To help identify erroneous data, an informal critical T-test was performed, with the Critical T values reduced incrementally until approximately 10%
of the data population was identified as outliers. Those outliers were researched, and no data errors were revealed. The specific informal T-tests performed are not documented, as they are only used as tools to identify potentially erroneous data and do not contribute to the analysis of the valid data.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 11 OF 14 7.1.4 Data not entered into the analysis is listed in the table below, showing the reasoning used in not entering the data.
Table 7.4.2-1 Data Not Entered in the Drift Analysis Procedure Tag Number Surveillance Comments/Disposition Number Date(s)
Relay failed calibration and was replaced STP-302-1602 ENS-SWG1A-62-6 09/19/1997 per CR 97-1494 and MAI 313634 7.1.5 Per the methodology of Section 4.1.1.11 of Reference 4.1.3, drift is computed by subtracting the As Left data of one calibration from the As Found data of the next calibration, as documented in pages 7 through 9 of Attachment 1. These pages also document the time interval between calibrations (in the number of days and months) by subtracting the As Left date of one calibration from the As Found date of the next calibration, per Section 4.1.1.10 of Reference 4.1.3. Pages 7 through 9 of Attachment 1 import the Sequence ID, the Tag No., the AF / AL flags, the dates of calibration and the As Found and As Left data from pages 1 through 3 of the Addendum and computes the interval between calibrations. Pages 7 and 8 of Attachment 1 compute the drift values and summarize the time intervals computed.
As an example of the equations used, the first drift value and time interval are computed as follows. The rest of the values are computed identically.
Drift (Seq 1) = AF (02/17/08) - AL (05/08/06) [For Tag ENS-SWG1A-62-1]
= 97.167 (From Seq. 1 on Left) - 97.833 (From Seq. 4 on Left)
= -0.6667 % Setpoint Cal Interval (Seq 1) = 02/17/08 - 05/08/06
= 650 Days Cal Interval (Mo.) = Cal Interval (Days) x 12 Months / 365.25 Days
= 21.4 Months 7.1.6 Specific pooling tests are performed on the data as documented on page 12 of Attachment 1. The data is split into three groups by setpoint and model number.
The specific groups analyzed are as follows:
- 1) ENS-SWG1(A-B)-62-1 relays with a setpoint of 3 seconds (Model ITE-62K)
- 2) ENS-SWG1(A-B)-62-6 relays with a setpoint of 3 seconds (Model ITE-62L)
- 3) ENS-SWG1(A-B)-62-2 relays with a setpoint of 57.8 and 60 seconds (Model ITE-62K)
The pooling tests determine the acceptability of combining the data from the different model numbers and setpoints into one data set for analysis. First, to test for the difference in model numbers, group 1 is tested versus group 2. These groups have identical setpoints, and this test should isolate the difference to the model number. The second test is performed for the data from groups 1 and 2 versus group 3, to test for the difference in setpoints. In each case, a t Test is
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 12 OF 14 performed per Section 3.5.4 of Reference 4.1.3, to determine acceptability for pooling, between the groups on page 12 of Attachment 1. For both tests, the t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations are reasonably similar. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis.
Therefore, all of the data is combined for analysis in units of % Setpoint.
7.2 Determination of Outliers and Statistical Summary 7.2.1 The outlier analysis is recorded on pages 10 and 11 of Attachment 1 to this drift analysis. This page displays the Sequence No., Tag No., Drift, and Calibration Interval (in units of Days). The critical T value used in the outlier analysis comes directly from Table 2 of Reference 4.1.3. As shown on page 10 of Attachment 1, no outliers are detected. The Final Data Set (FDS) for this analysis is documented on pages 10 and 11 of Attachment 1 and is identical to the original data set.
7.2.2 A summary of the required statistical values for the Final Data Set, per Section 4.2 of Reference 4.1.3, is developed on page 10 of Attachment 1. Cell formulas for the determinations of statistical quantities are used directly from Section 4.2 of Reference 4.1.3.
7.3 Tests for Normality 7.3.1 Since the FDS contains less than 50 samples, the W Test is performed on the data to test for normality, as shown on page 13 of Attachment 1. Per the methodology of Section 3.7.2 of Reference 4.1.3, the details of the W Test methodology are shown in Reference 4.1.7. Equations used are listed on page 13 of Attachment 1. Since the calculated W statistic (0.9576) is greater than the critical value for W (0.9420),
this test does not reject the assumption of normality for this data set. Therefore, the data is established as normally distributed, and no coverage analysis is necessary.
7.3.2 Since the W Test did not reject the assumption of normality, a Coverage Analysis is not necessary, but a Histogram is developed for information only. The Histogram is developed and documented on pages 14 and 15 of Attachment 1, per Sections 3.7.5 and 4.4 of Reference 4.1.3. To generate the Histogram data, the drift values are categorized into 12 bins, in relation to the mean and standard deviation. These bins are generated in multiples of 1/2 Standard Deviation increments, and the bin maximum values are derived in accordance with the methods given in Section 19 of Reference 4.1.4. (See page 14 of Attachment 1 for specific formulas used for the maximums.)
The expected populations within each bin are developed from normal distribution percentages, as shown on page 14 of Attachment 1. The data passes normality test and the results are displayed in the Histogram on page 15 of Attachment 1.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 13 OF 14 7.4 Time-Dependency 7.4.1 In order to determine time-dependency of the drift data, the data is first plotted as a scatter plot on page 16 of Attachment 1, in accordance with the methodology of Section 4.5.1 of Reference 4.1.3. The trend line within this scatter plot starts at a small negative value and crosses zero near the end of the analysis period. The data scatter appears to increase over time. The trend line and the associated equation are noted on the scatter plot on page 16 of Attachment 1.
7.4.2 The binning analysis is performed on pages 17 and 18 of Attachment 1. The drift and time interval data are divided into bins, based on the intervals between calibrations as defined in Section 3.8.3.1 of Reference 4.1.3. Statistical summaries for each bin, including count, mean, standard deviation, mean time interval and maximum observed time interval are computed. Excel functions are used to determine the statistical summary values for each bin, and are used explicitly from Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.7 of Reference 4.1.3. This information is presented on page 17 of Attachment 1. Per Section 3.8.3.4 of Reference 4.1.3, after removing those bins with 5 or less data points and those with less than or equal to 10% of total population, only Bins 4 and 5 remain.
Page 18 of Attachment 1 displays a plot of the mean and standard deviations of the drift data versus the average time interval between calibrations for the subject bins, in accordance with Section 4.5.2 of Reference 4.1.3. It also provides all of the binning parameters and statistics that are a part of the binning analysis. The mean value of the data starts from a negative value in Bin 4 and barely crosses zero for Bin 5. This represents a decrease in the magnitude of the mean which is not indicative of time dependency. Also, from this plot, the standard deviation increases from Bin 4 to Bin 5. In addition, the ratio of the variances (Bin 5 / Bin 4) is compared to the F critical value, as directed by Section 4.5.2 of Reference 4.1.3. Only the standard deviation plot could be indicative of potential time dependency, but strong time dependency is not indicated from the variance test (Sections 3.8.3.4 and 4.5.2 of Reference 4.1.3).
7.4.3 Per Section 3.8.4 of Reference 4.1.3, a drift regression analysis is performed within pages 19 and 20 of Attachment 1. The equations and functions used by Excel are taken specifically from Section 3.8.4 of Reference 4.1.3. The regression analysis output shows an R Squared Value (0.002014) less than 0.09, a P Value greater than 0.05 (0.777790) and F Value (0.080720) less than F Critical (3.231727).
These results all indicate that the bias portion of the drift is not time dependent. The regression line crosses zero within the analysis period, which per the last paragraph of Section 3.8.4 of Reference 4.1.3, is not expected and is an improper model of the drift-versus-time characteristic of the device. The fact that this is an improper model of the drift-versus-time characteristic of the device would override any conclusions based on the three statistical tests. The bias portion of drift is conservatively treated as moderately time dependent for the purpose of extrapolation.
7.4.4 Per Section 3.8.4 of Reference 4.1.3, an absolute value drift regression analysis is performed within pages 21 and 22 of Attachment 1. The drift data is converted into absolute value via the Excel ABS function for each drift data value. The equations and functions used by Excel for the Regression analysis are taken specifically from Section 3.8.4 of Reference 4.1.3. This regression analysis output shows an R Squared Value (0.004453) less than 0.09, a P Value (0.674582) greater than 0.05,
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 14 OF 14 and an F Value (0.178904) less than F Critical (3.231727). These results all indicate a random portion of drift that is not time-dependent. The absolute value drift regression line increases over time, and the binning plot shows an increasing standard deviation over time. Based on these results, per Section 3.8.4 of Reference 4.1.3, the random portion of drift is conservatively treated as moderately time-dependent for the purpose of extrapolation.
7.5 Analyzed Drift (DA) Derivation and Characterization 7.5.1 As shown on page 23 of Attachment 1, per Section 3.11 of Reference 4.1.3, the drift bias error is evaluated for significance. The critical value for significance of the bias term is computed and shown therein. The bias is determined to be negligible.
Therefore, the computed Analyzed Drift Bias term (DAbias) is negligible.
7.5.2 Per Section 4.6.6 of Reference 4.1.3, the random portion of the Analyzed Drift is determined from multiplying the standard deviation of Bin 5 by the Tolerance Interval Factor (TIF) and extrapolating as required to a calibration interval of 30 months. No normality adjustment is required per section 6.3.1. The random portion of drift has been determined to be moderately time-dependent for the purpose of extrapolation. For conservatism, the standard deviation of Bin 5 is used with the average observed time interval from Bin 5 on page 17 of Attachment 1 as the starting point. The TIF is obtained from Table 1 of Reference 4.1.3 as 2.445 for a 95/95 significance. The computation of this value is shown on page 23 of Attachment 1 to result in a DArandom (extrap) term of ! 2.072 % Setpoint for a 30 month (24 months + 25%) calibration interval.
8 Attachments Attachment 1 - Analysis Spreadsheet (23 pages)
Spreadsheet Contents:
Pages Input Data 1-3 Data Conversion 4-6 AF-AL Data 7-9 Outliers & Summary 10-11 Pooling Tests 12 W Test 13 Histogram 14-15 Scatter Plot 16 Binning Analysis 17-18 Regression - Drift 19-20 Regression - AV of Drift 21-22 Analyzed Drift (DA) 23 Attachment 2 - DVR Form (8 pages)
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Input Data Attachment 1 Page 1 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 1 ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AF 3.0 2.9150 sec 2 ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AL 3.0 2.9160 sec 3 ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 4 ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AL 3.0 2.9350 sec 5 ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 6 ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 7 ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 8 ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 9 ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 10 ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 11 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 12 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 13 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 14 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 15 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 16 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 17 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AF 57.8 59.1040 sec 18 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AL 57.8 59.0850 sec 19 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AF 57.8 59.2000 sec 20 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AL 57.8 59.0800 sec 21 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AF 57.8 58.9400 sec 22 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AL 57.8 58.9400 sec Setpoint set halfway between MIN and MAX. Setpoint 23 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AF 60.0 59.2900 sec changed from 60 sec to 57.8 sec.
24 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AL 57.8 59.2600 sec 25 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AF 60.0 59.1700 sec Setpoint set halfway between MIN and MAX.
26 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AL 60.0 59.2500 sec 27 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AF 60.0 59.5000 sec Setpoint set halfway between MIN and MAX.
28 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AL 60.0 59.5000 sec 29 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AF 60.0 59.6500 sec Setpoint set halfway between MIN and MAX.
30 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AL 60.0 59.7300 sec 31 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AF 60.0 59.8300 sec Setpoint set halfway between MIN and MAX.
32 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AL 60.0 59.8800 sec 33 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AF 3.0 2.9700 sec 34 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AL 3.0 2.9700 sec 35 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 36 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AL 3.0 2.9900 sec 37 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AF 3.0 3.0100 sec
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Input Data Attachment 1 Page 2 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 38 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AL 3.0 3.0100 sec 39 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 40 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 41 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 42 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 43 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 44 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 45 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AF 3.0 2.9600 sec 46 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AL 3.0 2.9600 sec Relay failed calibration and was replaced per CR 97-1494 47 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AF 3.0 FAIL sec and MAI 313634.
48 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AL 3.0 2.9990 sec 49 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 50 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 51 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 52 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 53 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 54 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 55 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AF 3.0 2.9100 sec 56 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AL 3.0 2.9200 sec 57 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 58 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AL 3.0 2.9300 sec 59 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AF 3.0 2.9190 sec 60 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AL 3.0 2.9180 sec 61 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AF 3.0 2.9400 sec 62 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 63 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AF 3.0 2.9660 sec 64 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 65 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AF 57.8 59.3100 sec 66 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AL 57.8 59.2700 sec 67 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AF 57.8 58.6700 sec 68 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AL 57.8 59.0600 sec 69 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AF 57.8 59.2100 sec 70 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AL 57.8 59.1400 sec 71 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AF 60.0 60.9700 sec Setpoint changed from 60.0 sec to 57.8 sec.
72 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AL 57.8 58.5900 sec 73 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AF 60.0 60.9200 sec Setpoint set halfway between MIN and MAX.
74 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AL 60.0 60.9300 sec
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Input Data Attachment 1 Page 3 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 75 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AF 60.0 60.9100 sec Setpoint set halfway between MIN and MAX.
76 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AL 60.0 60.6400 sec 77 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AF 60.0 61.1000 sec Setpoint set halfway between MIN and MAX.
78 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AL 60.0 60.8400 sec 79 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AF 60.0 66.7200 sec Setpoint set halfway between MIN and MAX.
80 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AL 60.0 60.4000 sec 81 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 82 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 83 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 84 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 85 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 86 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 87 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 88 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 89 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 90 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 91 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 92 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AL 3.0 3.0250 sec 93 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AF 3.0 2.8800 sec 94 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 95 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AF 3.0 2.9100 sec 96 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AL 3.0 2.9100 sec
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Data Conversion Attachment 1 Page 4 of 23 AF / AL Data Setpoint AF / AL Data (% Setpoint)
Seq. ID Tag ID Date AF/ AL (Seconds) (Seconds) [(AF AL)/SP
- 100] Notes 1 ENS-SWG1A-62-1 2/17/08 AF 3.00 2.915 97.167 2 ENS-SWG1A-62-1 2/17/08 AL 3.00 2.916 97.200 3 ENS-SWG1A-62-1 5/8/06 AF 3.00 2.930 97.667 4 ENS-SWG1A-62-1 5/8/06 AL 3.00 2.935 97.833 5 ENS-SWG1A-62-1 11/11/04 AF 3.00 2.920 97.333 6 ENS-SWG1A-62-1 11/11/04 AL 3.00 2.930 97.667 7 ENS-SWG1A-62-1 3/29/03 AF 3.00 2.920 97.333 8 ENS-SWG1A-62-1 3/29/03 AL 3.00 2.920 97.333 9 ENS-SWG1A-62-1 9/27/01 AF 3.00 2.920 97.333 10 ENS-SWG1A-62-1 9/27/01 AL 3.00 2.920 97.333 11 ENS-SWG1A-62-1 3/10/00 AF 3.00 2.930 97.667 12 ENS-SWG1A-62-1 3/10/00 AL 3.00 2.930 97.667 13 ENS-SWG1A-62-1 4/21/99 AF 3.00 2.940 98.000 14 ENS-SWG1A-62-1 4/21/99 AL 3.00 2.940 98.000 15 ENS-SWG1A-62-1 9/19/97 AF 3.00 2.940 98.000 16 ENS-SWG1A-62-1 9/19/97 AL 3.00 2.940 98.000 17 ENS-SWG1A-62-2 2/17/08 AF 57.80 59.104 102.256 18 ENS-SWG1A-62-2 2/17/08 AL 57.80 59.085 102.223 19 ENS-SWG1A-62-2 5/8/06 AF 57.80 59.200 102.422 20 ENS-SWG1A-62-2 5/8/06 AL 57.80 59.080 102.215 21 ENS-SWG1A-62-2 11/11/04 AF 57.80 58.940 101.972 22 ENS-SWG1A-62-2 11/11/04 AL 57.80 58.940 101.972 Setpoint set halfway between MIN and MAX.
23 ENS-SWG1A-62-2 3/28/03 AF 60.00 59.290 98.817 Setpoint changed from 60 sec to 57.8 sec.
24 ENS-SWG1A-62-2 3/28/03 AL 57.80 59.260 102.526 25 ENS-SWG1A-62-2 9/27/01 AF 60.00 59.170 98.617 Setpoint set halfway between MIN and MAX.
26 ENS-SWG1A-62-2 9/27/01 AL 60.00 59.250 98.750 27 ENS-SWG1A-62-2 3/10/00 AF 60.00 59.500 99.167 Setpoint set halfway between MIN and MAX.
28 ENS-SWG1A-62-2 3/10/00 AL 60.00 59.500 99.167 29 ENS-SWG1A-62-2 4/21/99 AF 60.00 59.650 99.417 Setpoint set halfway between MIN and MAX.
30 ENS-SWG1A-62-2 4/21/99 AL 60.00 59.730 99.550
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Data Conversion Attachment 1 Page 5 of 23 AF / AL Data Setpoint AF / AL Data (% Setpoint)
Seq. ID Tag ID Date AF/ AL (Seconds) (Seconds) [(AF AL)/SP
- 100] Notes 31 ENS-SWG1A-62-2 9/19/97 AF 60.00 59.830 99.717 Setpoint set halfway between MIN and MAX.
32 ENS-SWG1A-62-2 9/19/97 AL 60.00 59.880 99.800 33 ENS-SWG1A-62-6 2/17/08 AF 3.00 2.970 99.000 34 ENS-SWG1A-62-6 2/17/08 AL 3.00 2.970 99.000 35 ENS-SWG1A-62-6 5/8/06 AF 3.00 2.990 99.667 36 ENS-SWG1A-62-6 5/8/06 AL 3.00 2.990 99.667 37 ENS-SWG1A-62-6 11/11/04 AF 3.00 3.010 100.333 38 ENS-SWG1A-62-6 11/11/04 AL 3.00 3.010 100.333 39 ENS-SWG1A-62-6 3/28/03 AF 3.00 2.990 99.667 40 ENS-SWG1A-62-6 3/28/03 AL 3.00 2.980 99.333 41 ENS-SWG1A-62-6 9/27/01 AF 3.00 2.980 99.333 42 ENS-SWG1A-62-6 9/27/01 AL 3.00 2.980 99.333 43 ENS-SWG1A-62-6 3/10/00 AF 3.00 2.980 99.333 44 ENS-SWG1A-62-6 3/10/00 AL 3.00 2.980 99.333 45 ENS-SWG1A-62-6 4/21/99 AF 3.00 2.960 98.667 46 ENS-SWG1A-62-6 4/21/99 AL 3.00 2.960 98.667 Relay failed calibration and was replaced per 47 ENS-SWG1A-62-6 9/19/97 AF 3.00 FAIL FAIL CR 97-1494 and MAI 313634.
48 ENS-SWG1A-62-6 9/19/97 AL 3.00 2.999 99.967 49 ENS-SWG1B-62-1 2/1/08 AF 3.00 2.990 99.667 50 ENS-SWG1B-62-1 2/1/08 AL 3.00 2.990 99.667 51 ENS-SWG1B-62-1 4/29/06 AF 3.00 2.990 99.667 52 ENS-SWG1B-62-1 4/29/06 AL 3.00 2.990 99.667 53 ENS-SWG1B-62-1 10/31/04 AF 3.00 2.950 98.333 54 ENS-SWG1B-62-1 10/31/04 AL 3.00 2.940 98.000 55 ENS-SWG1B-62-1 3/20/03 AF 3.00 2.910 97.000 56 ENS-SWG1B-62-1 3/20/03 AL 3.00 2.920 97.333 57 ENS-SWG1B-62-1 10/6/01 AF 3.00 2.950 98.333 58 ENS-SWG1B-62-1 10/6/01 AL 3.00 2.930 97.667 59 ENS-SWG1B-62-1 3/25/00 AF 3.00 2.919 97.300 60 ENS-SWG1B-62-1 3/25/00 AL 3.00 2.918 97.267 61 ENS-SWG1B-62-1 4/30/99 AF 3.00 2.940 98.000 62 ENS-SWG1B-62-1 4/30/99 AL 3.00 2.940 98.000 63 ENS-SWG1B-62-1 10/4/97 AF 3.00 2.966 98.867 64 ENS-SWG1B-62-1 10/4/97 AL 3.00 2.940 98.000 65 ENS-SWG1B-62-2 2/1/08 AF 57.80 59.310 102.612
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Data Conversion Attachment 1 Page 6 of 23 AF / AL Data Setpoint AF / AL Data (% Setpoint)
Seq. ID Tag ID Date AF/ AL (Seconds) (Seconds) [(AF AL)/SP
- 100] Notes 66 ENS-SWG1B-62-2 2/1/08 AL 57.80 59.270 102.543 67 ENS-SWG1B-62-2 4/29/06 AF 57.80 58.670 101.505 68 ENS-SWG1B-62-2 4/29/06 AL 57.80 59.060 102.180 69 ENS-SWG1B-62-2 10/31/04 AF 57.80 59.210 102.439 70 ENS-SWG1B-62-2 10/31/04 AL 57.80 59.140 102.318 71 ENS-SWG1B-62-2 3/21/03 AF 60.00 60.970 101.617 Setpoint changed from 60.0 sec to 57.8 sec.
72 ENS-SWG1B-62-2 3/21/03 AL 57.80 58.590 101.367 73 ENS-SWG1B-62-2 10/6/01 AF 60.00 60.920 101.533 Setpoint set halfway between MIN and MAX.
74 ENS-SWG1B-62-2 10/6/01 AL 60.00 60.930 101.550 75 ENS-SWG1B-62-2 3/25/00 AF 60.00 60.910 101.517 Setpoint set halfway between MIN and MAX.
76 ENS-SWG1B-62-2 3/25/00 AL 60.00 60.640 101.067 77 ENS-SWG1B-62-2 4/30/99 AF 60.00 61.100 101.833 Setpoint set halfway between MIN and MAX.
78 ENS-SWG1B-62-2 4/30/99 AL 60.00 60.840 101.400 79 ENS-SWG1B-62-2 10/4/97 AF 60.00 66.720 111.200 Setpoint set halfway between MIN and MAX.
80 ENS-SWG1B-62-2 10/4/97 AL 60.00 60.400 100.667 81 ENS-SWG1B-62-6 2/1/08 AF 3.00 3.030 101.000 82 ENS-SWG1B-62-6 2/1/08 AL 3.00 3.030 101.000 83 ENS-SWG1B-62-6 4/29/06 AF 3.00 3.030 101.000 84 ENS-SWG1B-62-6 4/29/06 AL 3.00 3.030 101.000 85 ENS-SWG1B-62-6 10/31/04 AF 3.00 3.010 100.333 86 ENS-SWG1B-62-6 10/31/04 AL 3.00 3.020 100.667 87 ENS-SWG1B-62-6 3/21/03 AF 3.00 3.010 100.333 88 ENS-SWG1B-62-6 3/21/03 AL 3.00 3.020 100.667 89 ENS-SWG1B-62-6 10/6/01 AF 3.00 3.020 100.667 90 ENS-SWG1B-62-6 10/6/01 AL 3.00 3.030 101.000 91 ENS-SWG1B-62-6 3/25/00 AF 3.00 3.020 100.667 92 ENS-SWG1B-62-6 3/25/00 AL 3.00 3.025 100.833 93 ENS-SWG1B-62-6 4/30/99 AF 3.00 2.880 96.000 94 ENS-SWG1B-62-6 4/30/99 AL 3.00 3.020 100.667 95 ENS-SWG1B-62-6 10/4/97 AF 3.00 2.910 97.000 96 ENS-SWG1B-62-6 10/4/97 AL 3.00 2.910 97.000
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION AF-AL Data Attachment 1 Page 7 of 23 CAL INTERVAL = DRIFT = (Current CAL INTERVAL =
AF/AL DATA OUTLIERS Seq. CAL DATE AF/AL (Current Date - Seq. Cal AF Data - (Current Date -
VALUE COMMENTS Previous Date) Prev Cal AL Data) Previous Date)
ID Make/Model Number Tag ID mm/dd/yy Status (% Setpoint) Days Months ID Tag ID (% Setpoint) Days Months 1 ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AF 97.167 650 21.4 1 ENS-SWG1A-62-1 -0.6667 650 21.4 2 ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AL 97.200 3 ENS-SWG1A-62-1 0.0000 543 17.8 3 ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AF 97.667 543 17.8 5 ENS-SWG1A-62-1 0.0000 593 19.5 4 ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AL 97.833 7 ENS-SWG1A-62-1 0.0000 548 18.0 5 ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AF 97.333 593 19.5 9 ENS-SWG1A-62-1 -0.3333 566 18.6 6 ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AL 97.667 11 ENS-SWG1A-62-1 -0.3333 324 10.6 7 ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AF 97.333 548 18.0 13 ENS-SWG1A-62-1 0.0000 579 19.0 8 ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AL 97.333 9 ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AF 97.333 566 18.6 17 ENS-SWG1A-62-2 0.0415 650 21.4 10 ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AL 97.333 19 ENS-SWG1A-62-2 0.4498 543 17.8 11 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AF 97.667 324 10.6 21 ENS-SWG1A-62-2 -0.5536 594 19.5 12 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AL 97.667 23 ENS-SWG1A-62-2 0.0667 547 18.0 13 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AF 98.000 579 19.0 25 ENS-SWG1A-62-2 -0.5500 566 18.6 14 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AL 98.000 27 ENS-SWG1A-62-2 -0.3833 324 10.6 15 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AF 98.000 29 ENS-SWG1A-62-2 -0.3833 579 19.0 16 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AL 98.000 17 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AF 102.256 650 21.4 33 ENS-SWG1A-62-6 -0.6667 650 21.4 18 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AL 102.223 35 ENS-SWG1A-62-6 -0.6667 543 17.8 19 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AF 102.422 543 17.8 37 ENS-SWG1A-62-6 1.0000 594 19.5 20 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AL 102.215 39 ENS-SWG1A-62-6 0.3333 547 18.0 21 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AF 101.972 594 19.5 41 ENS-SWG1A-62-6 0.0000 566 18.6 22 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AL 101.972 43 ENS-SWG1A-62-6 0.6667 324 10.6 23 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AF 98.817 547 18.0 45 ENS-SWG1A-62-6 -1.3000 579 19.0 24 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AL 102.526 25 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AF 98.617 566 18.6 49 ENS-SWG1B-62-1 0.0000 643 21.1 26 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AL 98.750 51 ENS-SWG1B-62-1 1.6667 545 17.9 27 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AF 99.167 324 10.6 53 ENS-SWG1B-62-1 1.0000 591 19.4 28 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AL 99.167 55 ENS-SWG1B-62-1 -0.6667 530 17.4 29 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AF 99.417 579 19.0 57 ENS-SWG1B-62-1 1.0667 560 18.4 30 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AL 99.550 59 ENS-SWG1B-62-1 -0.7000 330 10.8 31 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AF 99.717 61 ENS-SWG1B-62-1 0.0000 573 18.8 32 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AL 99.800 33 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AF 99.000 650 21.4 65 ENS-SWG1B-62-2 0.4325 643 21.1 34 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AL 99.000 67 ENS-SWG1B-62-2 -0.8131 545 17.9
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION AF-AL Data Attachment 1 Page 8 of 23 CAL INTERVAL = DRIFT = (Current CAL INTERVAL =
AF/AL DATA OUTLIERS Seq. CAL DATE AF/AL (Current Date - Seq. Cal AF Data - (Current Date -
VALUE COMMENTS Previous Date) Prev Cal AL Data) Previous Date)
ID Make/Model Number Tag ID mm/dd/yy Status (% Setpoint) Days Months ID Tag ID (% Setpoint) Days Months 35 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AF 99.667 543 17.8 69 ENS-SWG1B-62-2 1.0727 590 19.4 36 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AL 99.667 71 ENS-SWG1B-62-2 0.0667 531 17.4 37 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AF 100.333 594 19.5 73 ENS-SWG1B-62-2 0.4667 560 18.4 38 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AL 100.333 75 ENS-SWG1B-62-2 0.1167 330 10.8 39 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AF 99.667 547 18.0 77 ENS-SWG1B-62-2 1.1667 573 18.8 40 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AL 99.333 41 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AF 99.333 566 18.6 81 ENS-SWG1B-62-6 0.0000 643 21.1 42 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AL 99.333 83 ENS-SWG1B-62-6 0.3333 545 17.9 43 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AF 99.333 324 10.6 85 ENS-SWG1B-62-6 -0.3333 590 19.4 44 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AL 99.333 87 ENS-SWG1B-62-6 -0.6667 531 17.4 45 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AF 98.667 579 19.0 89 ENS-SWG1B-62-6 -0.1667 560 18.4 46 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AL 98.667 91 ENS-SWG1B-62-6 0.0000 330 10.8 47 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AF FAIL 93 ENS-SWG1B-62-6 -1.0000 573 18.8 48 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AL 99.967 49 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AF 99.667 643 21.1 50 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AL 99.667 51 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AF 99.667 545 17.9 52 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AL 99.667 53 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AF 98.333 591 19.4 54 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AL 98.000 55 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AF 97.000 530 17.4 56 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AL 97.333 57 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AF 98.333 560 18.4 58 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AL 97.667 59 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AF 97.300 330 10.8 60 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AL 97.267 61 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AF 98.000 573 18.8 62 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AL 98.000 63 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AF 98.867 64 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AL 98.000 65 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AF 102.612 643 21.1 66 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AL 102.543 67 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AF 101.505 545 17.9 68 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AL 102.180
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION AF-AL Data Attachment 1 Page 9 of 23 CAL INTERVAL = DRIFT = (Current CAL INTERVAL =
AF/AL DATA OUTLIERS Seq. CAL DATE AF/AL (Current Date - Seq. Cal AF Data - (Current Date -
VALUE COMMENTS Previous Date) Prev Cal AL Data) Previous Date)
ID Make/Model Number Tag ID mm/dd/yy Status (% Setpoint) Days Months ID Tag ID (% Setpoint) Days Months 69 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AF 102.439 590 19.4 70 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AL 102.318 71 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AF 101.617 531 17.4 72 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AL 101.367 73 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AF 101.533 560 18.4 74 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AL 101.550 75 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AF 101.517 330 10.8 76 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AL 101.067 77 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AF 101.833 573 18.8 78 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AL 101.400 79 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AF 111.200 80 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AL 100.667 81 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AF 101.000 643 21.1 82 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AL 101.000 83 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AF 101.000 545 17.9 84 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AL 101.000 85 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AF 100.333 590 19.4 86 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AL 100.667 87 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AF 100.333 531 17.4 88 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AL 100.667 89 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AF 100.667 560 18.4 90 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AL 101.000 91 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AF 100.667 330 10.8 92 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AL 100.833 93 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AF 96.000 573 18.8 94 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AL 100.667 95 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AF 97.000 96 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AL 97.000
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Outliers & Summary Attachment 1 Page 10 of 23 Extreme Final Drift Drift (% Cal Interval Cal Interval Seq. ID Tag ID Studentized Data Set (%
Setpoint) (Days) (Days)
Deviate (T) Setpoint) 1 ENS-SWG1A-62-1 -0.6667 650 1.025 -0.6667 650 3 ENS-SWG1A-62-1 0.0000 543 0.009 Raw Drift Data Statistics Summary 0.0000 543 5 ENS-SWG1A-62-1 0.0000 593 0.009 (Initial Data Set) 0.0000 593 7 ENS-SWG1A-62-1 0.0000 548 0.009 Mean (Average) -0.0056 0.0000 548 9 ENS-SWG1A-62-1 -0.3333 566 0.508 Variance 0.416 -0.3333 566 11 ENS-SWG1A-62-1 -0.3333 324 0.508 Std. Dev. 0.6449 -0.3333 324 13 ENS-SWG1A-62-1 0.0000 579 0.009 Sample Size (Count) 42 0.0000 579 Maximum 1.67 17 ENS-SWG1A-62-2 0.0415 650 0.073 Median 0.00 0.0415 650 19 ENS-SWG1A-62-2 0.4498 543 0.706 Minimum -1.30 0.4498 543 21 ENS-SWG1A-62-2 -0.5536 594 0.850 Range 2.97 -0.5536 594 23 ENS-SWG1A-62-2 0.0667 547 0.112 Sum -0.237 0.0667 547 25 ENS-SWG1A-62-2 -0.5500 566 0.844 Kurtosis 0.104 -0.5500 566 27 ENS-SWG1A-62-2 -0.3833 324 0.586 Skewness 0.523 -0.3833 324 29 ENS-SWG1A-62-2 -0.3833 579 0.586 -0.3833 579 Critical T-Value (Upper 5% Signif.) 2.92 33 ENS-SWG1A-62-6 -0.6667 650 1.025 -0.6667 650 35 ENS-SWG1A-62-6 -0.6667 543 1.025 Equation for Each Studentized Deviate: T= lDrift-Meanl/Std. Dev. -0.6667 543 37 ENS-SWG1A-62-6 1.0000 594 1.559 Crit T Value Lookup Value from Ref. 4.1.3 Table 2, per sample 1.0000 594 39 ENS-SWG1A-62-6 0.3333 547 0.526 size. See Sections 3.6.1 and 3.6.2 of Reference 4.1.3. 0.3333 547 41 ENS-SWG1A-62-6 0.0000 566 0.009 Outliers will be Denoted as such in "Final Data Set" column. 0.0000 566 43 ENS-SWG1A-62-6 0.6667 324 1.043 No Outliers Detected. 0.6667 324 45 ENS-SWG1A-62-6 -1.3000 579 2.007 -1.3000 579 Drift Data Statistics Summary 49 ENS-SWG1B-62-1 0.0000 643 0.009 (Final Data Set) 0.0000 643 51 ENS-SWG1B-62-1 1.6667 545 2.593 Mean (Average) -0.0056 1.6667 545 53 ENS-SWG1B-62-1 1.0000 591 1.559 Variance 0.416 1.0000 591 55 ENS-SWG1B-62-1 -0.6667 530 1.025 Std. Dev. 0.6449 -0.6667 530 57 ENS-SWG1B-62-1 1.0667 560 1.663 Sample Size (Count) 42 1.0667 560 59 ENS-SWG1B-62-1 -0.7000 330 1.077 Maximum 1.67 -0.7000 330 61 ENS-SWG1B-62-1 0.0000 573 0.009 Median 0.00 0.0000 573 Minimum -1.30 65 ENS-SWG1B-62-2 0.4325 643 0.679 Range 2.97 0.4325 643 67 ENS-SWG1B-62-2 -0.8131 545 1.252 Sum -0.237 -0.8131 545 69 ENS-SWG1B-62-2 1.0727 590 1.672 Kurtosis 0.104 1.0727 590 71 ENS-SWG1B-62-2 0.0667 531 0.112 Skewness 0.523 0.0667 531 73 ENS-SWG1B-62-2 0.4667 560 0.732 0.4667 560 75 ENS-SWG1B-62-2 0.1167 330 0.190 0.1167 330 77 ENS-SWG1B-62-2 1.1667 573 1.818 1.1667 573 81 ENS-SWG1B-62-6 0.0000 643 0.009 0.0000 643
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Outliers & Summary Attachment 1 Page 11 of 23 Extreme Final Drift Drift (% Cal Interval Cal Interval Seq. ID Tag ID Studentized Data Set (%
Setpoint) (Days) (Days)
Deviate (T) Setpoint) 83 ENS-SWG1B-62-6 0.3333 545 0.526 0.3333 545 85 ENS-SWG1B-62-6 -0.3333 590 0.508 -0.3333 590 87 ENS-SWG1B-62-6 -0.6667 531 1.025 -0.6667 531 89 ENS-SWG1B-62-6 -0.1667 560 0.250 -0.1667 560 91 ENS-SWG1B-62-6 0.0000 330 0.009 0.0000 330 93 ENS-SWG1B-62-6 -1.0000 573 1.542 -1.0000 573
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Pooling Tests Attachment 1 Page 12 of 23 Group 1: ENS-SWG1(A,B)-62-1 relays [Setpoint = 3 seconds] Model = ITE-62K Group 2: ENS-SWG1(A,B)-62-6 relays [Setpoint = 3 seconds] Model = ITE-62L Group 3: ENS-SWG1(A, B)-62-2 relays [Setpoint = 57.8 and 60 seconds] Model = ITE-62K Model Group 1: ITE-62K Setpoint Group 1, 2: 3 Sec Model Group 2: ITE-62L Setpoint Group 3: 60 sec. or 57.8 sec.
t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances Group 1 Group 2 Group 1,2 Group 3 Mean 0.073809524 -0.17619 Mean -0.05119 0.085459 Variance 0.49541514 0.414945 Variance 0.454525 0.354231 Observations 14 14 Observations 28 14 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 df 26 df 29 t Stat 0.980386667 t Stat -0.6705 P(T<=t) one-tail 0.167965223 P(T<=t) one-tail 0.253922 t Critical one-tail 1.705617901 t Critical one-tail 1.699127 P(T<=t) two-tail 0.335930445 P(T<=t) two-tail 0.507844 t Critical two-tail 2.055529418 t Critical two-tail 2.04523 StDev 0.70385733 0.644162 StDev 0.674185 0.595173 t Stat < t Critical two-tail? TRUE t Stat < t Critical two-tail? TRUE Sample Means from same pool? TRUE Sample Means from same pool? TRUE
==
Conclusion:==
Conclusion:
The t Statistic is less than the t Critical two-tail value, indicating that combination The t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations of the groups for analysis is appropriate. The means and standard deviations deviations are reasonably similar among groups. From an engineering standpoint, deviations are reasonably similar among groups. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint. hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION W Test Attachment 1 Page 13 of 23 Drift
- bi (Per Values "i" an-i+1 Step 4)
-1.3000 1 0.3917 1.1620 Specific W Normality Test Methodology from Reference 4.1.7 and Section 19 of Reference 4.1.4
-1.0000 2 0.2701 0.5852
-0.8131 3 0.2345 0.4422 Steps to Perform:
-0.7000 4 0.2085 0.3684 1. Paste all final drift data into column 1.
-0.6667 5 0.1874 0.3123 2. Sort in ascending order.
-0.6667 6 0.1694 0.2823 3. Calculate S2 taking the variance of the drift data adjusted by (Count-1)
-0.6667 7 0.1535 0.2047
-0.6667 8 0.1392 0.1578 S2 = (n-1)(Variance (Drift))
-0.6667 9 0.1259 0.1406
-0.5536 10 0.1136 0.1120 where: n = Count
-0.5500 11 0.1020 0.0901
-0.3833 12 0.0909 0.0651 4. Calculate the Quantity b:
-0.3833 13 0.0804 0.0402
-0.3333 14 0.0701 0.0280 b = Sum[(an-i+1)(xn-i+1 - xi)]
-0.3333 15 0.0602 0.0241
-0.3333 16 0.0506 0.0190 where: i = 1 to k
-0.1667 17 0.0411 0.0068 k = (n)/2 0.0000 18 0.0318 0.0000 xi = Drift value at point number i 0.0000 19 0.0227 0.0000 an-i+1 values are taken from Table 1 of Reference 4.1.7 0.0000 20 0.0136 0.0000 5. Calculate b2.
0.0000 21 0.0045 0.0000 6. Compute the W Statistic and compare to the critical value at the 5% confidence 0.0000 level. The table of critical values is given as Table 2 on page 9 of Reference 4.1.7.
0.0000 b= 4.0409 0.0000 (Per Step 4) 0.0000
- From Table 1 of Ref. 4.1.7 2 2 0.0000 W = b /S Results:
0.0415 Since the W statistic, 0.9576, is greater than the 0.0667 Computed Values critical value for W, 0.9420, this test does not 0.0667 S2 = 17.0515 reject the assumption of normality for this data set.
0.1167 b= 4.0409 0.3333 b2 = 16.3289 0.3333 Count (n): 42 0.4325 W = b2/S2 = 0.9576 0.4498 W Critical = 0.9420 5% Significance From Table 2 of Reference 4.1.7.
0.4667 0.6667 1.0000 1.0000 1.0667 1.0727 1.1667 1.6667
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Histogram Attachment 1 Page 14 of 23 Normal Cumulative Expected Bin No. StDev Bin Maximums = Observed Distribution Bin Descriptions Probability (CPi) Frequency No. (NS) Mean + (NS*StDev) Frequency Probability (Table 18-2 Ref 4.1.4) (Ei = Pnorm*N)
(Pnorm = CPi-CPi-1) 1 Up to - 2.5 Standard Deviations from Mean -2.5 -1.618 0 0.0062 0.0062 0.2604 2 -2.5 to -2.0 Standard Deviations from Mean -2.0 -1.295 1 0.0228 0.0166 0.6951 3 -2.0 to -1.5 Standard Deviations from Mean -1.5 -0.973 1 0.0668 0.0441 1.8501 4 -1.5 to -1.0 Standard Deviations from Mean -1.0 -0.651 7 0.1587 0.0919 3.8577 5 -1.0 to -0.5 Standard Deviations from Mean -0.5 -0.328 7 0.3086 0.1499 6.2958 6 -0.5 Standard Deviations from Mean to Mean 0.0 -0.006 1 0.5000 0.1915 8.0409 7 Mean to +0.5 Standard Deviations from Mean 0.5 0.317 13 0.6915 0.1915 8.0409 8 +0.5 to +1.0 Standard Deviations from Mean 1.0 0.639 5 0.8414 0.1499 6.2958 9 +1.0 to +1.5 Standard Deviations from Mean 1.5 0.962 1 0.9332 0.0919 3.8577 10 +1.5 to +2.0 Standard Deviations from Mean 2.0 1.284 5 0.9773 0.0441 1.8501 11 +2.0 to +2.5 Standard Deviations from Mean 2.5 1.607 0 0.9938 0.0166 0.6951 12 More than Mean + 2.5 Standard Deviations More More 1 1.0000 0.0062 0.2604 Totals 42 42 Percentage for Observed Observed
+/- Sigma Bounds Normal Drift Values Percentages Distribution 2.5 (Bins 2-11) 41 97.62% Mean -0.0056 2 (Bins 3-10) 40 95.24% 95.45% Std. Dev. 0.6449 1.5 (Bins 4-9) 34 80.95% Sample Size 42 1 (Bins 5-8) 26 61.90% 68.27%
0.5 (Bins 6-7) 14 33.33%
Methodology for Histogram Taken from Section 19 of Reference 4.1.4 and Section 3.7.5 of Reference 4.1.3
- 1. Order the drift data in ascending order.
- 2. Obtain mean, standard deviation, and sample size.
- 3. Establishing bins in 1/2 sigma increments from the mean to 2.5 sigma in both directions, derive the upper bin limits, in units of drift, based on the values of the mean and standard deviation.
- 4. Obtain expected frequency for a normal distribution in each bin.
- 5. Manually compute the number of observed drift data points within each bin, and list under observed frequency.
- 6. Plot the Expected Frequency and the Observed Frequency Data on the Histogram for comparison to each other.
Results: Since the data passed the W Test for normality, a Coverage Analysis is not necessary. The Histogram shows that the data conforms closely to a normal distribution.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Histogram Attachment 1 Page 15 of 23 Histogram of Drift - River Bend Station ABB ITE-62 Time Delay Relays 14 12 Observed Frequency Normal 10 Distribution Population 8
6 4
2 0
-1.618 -1.295 -0.973 -0.651 -0.328 -0.006 0.317 0.639 0.962 1.284 1.607 More Drift (% Setpoint)
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Scatter Plot Attachment 1 Page 16 of 23 Scatter Plot - River Bend Station ABB ITE-62 Time Delay Relays 2.0 y = 0.0003x - 0.1709 1.5 Linear (Drift)
Drift (% Setpoint) 1.0 0.5 0.0
-0.5
-1.0
-1.5 200 250 300 350 400 450 500 550 600 650 700 Time (Days)
Note: Equation on Scatter Plot is computer generated, based on the associated trend line.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Binning Analysis Attachment 1 Page 17 of 23 Bin Statistics Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Count 6 36 Standard Dev. 0.4773 0.6728 Mean -0.1056 0.0110 Mean Interval 327.00 576.75 Max Interval 330 650 Bin Definition and Selection Bin Hi Valid Limit Bin Population Bins Bins (Days) Count Percentage Included 1 45 0 0.0%
2 135 0 0.0%
3 230 0 0.0%
4 460 6 14.3% 4 5 690 36 85.7% 5 6 915 0 0.0%
7 Over 0 0.0%
Total Count: 42 100%
See Section 3.8.3 of Reference 4.1.3 for Binning Analysis Methodology.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Binning Analysis Attachment 1 Page 18 of 23 Graph Summary Test of Variances F Critical 4.478 Bin Time Std Dev Mean Variance Ratio 1.987 4 327.00 0.4773 -0.1056 Potential Strong No 5 576.75 0.6728 0.0110 TD of Random Binning Analysis - River Bend Station ABB ITE-62 Time Delay Relays 0.8 0.7 0.6 Drift (% Setpoint) 0.5 0.4 0.3 0.2 0.1 std dev 0.0
-0.1 mean
-0.2 200 300 400 500 600 Time (Days)
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Regression - Drift Attachment 1 Page 19 of 23 Regression Analysis - Drift REGRESSION ANALYSIS
SUMMARY
OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.044877 R Square 0.002014 Adjusted R Square -0.022936 Standard Error 0.652249 Observations 42 ANOVA df SS MS F Significance F Regression 1 0.0343406 0.0343406 0.080720 0.777790 Residual 40 17.0171331 0.4254283 Total 41 17.0514737 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -0.170887 0.590267 -0.289508 0.773688 -1.363861 1.022087 -1.363861 1.0220869 X Variable 1 0.000305 0.001075 0.284113 0.777790 -0.001867 0.002478 -0.001867 0.0024780 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Regression - Drift Attachment 1 Page 20 of 23 Drift Regression Line Fit Plot 2.0 Drift (% Setpoint) 1.5 1.0 0.5 Drift 0.0 Predicted Drift
-0.5
-1.0
-1.5 200 300 400 500 600 700 Time (Days)
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Regression - AV of Drift Attachment 1 Page 21 of 23 Regression Analysis - AV of Drift ABSOLUTE VALUE REGRESSION ANALYSIS
SUMMARY
OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.066729 R Square 0.004453 Adjusted R Square -0.020436 Standard Error 0.429297 Observations 42 ANOVA df SS MS F Significance F Regression 1 0.0329713 0.0329713 0.178904 0.674582 Residual 40 7.3718283 0.1842957 Total 41 7.4047996 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.317367 0.388502 0.816899 0.418825 -0.467824 1.102558 -0.467824 1.102558 X Variable 1 0.000299 0.000708 0.422971 0.674582 -0.001131 0.001729 -0.001131 0.001729 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Regression - AV of Drift Attachment 1 Page 22 of 23 AV of Drift Regression Line Fit Plot 1.8 1.6 AV of Drift (% Setpoint) 1.4 1.2 1.0 AV of Drift 0.8 Predicted AV of Drift 0.6 0.4 0.2 0.0 200 300 400 500 600 700 Time (Days)
DRIFT ANALYSIS ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION Analyzed Drift (DA) Attachment 1 Page 23 of 23 Drift Bias Determination First, the bias term is evaluated for significance per Section 3.10 of Reference 4.1.3.
Per Outlier Statistical Summary, Count (N) 42 Drift Data Points Drift Bias Term (Mean) -0.0056 % Setpoint Standard Deviation (Stdev) 0.6449 % Setpoint t for Count = 42 Data Points 2.000 (Ref. 4.1.3, Table 4)
[Bias (Crit) = t
- Stdev / (N)^0.5]
Signficant Bias Critical Value 0.199 % SP Therefore, the bias value for this drift data set is not signficant, since the magnitude of the Bias is less than the Critical Bias Value.
DAbias = Negligible Random Drift Determination Time Dependency Moderate Count (N) 42 Drift Data Points Bin 5 Standard Deviation (Stdev) 0.6728 % Setpoint Mean Bin 5 Time Interval 577 Days Maximum Required Cal Interval 915 Days Tolerance Interval Factor (TIF) 2.445 (Ref. 4.1.3, Table 1)
[Current Interval Drift = Stdev
- TIF]
DArandom (current) = +/- 1.645 % Setpoint
[Extrap Drift = DArandom (current) * (Required Cal Interval / Mean Bin 5 Cal Interval)1/2]
DArandom (extrap) = +/- 2.072 % Setpoint for up to 915 Days
G13.18.6.3-009 Attachment 2 Page 1 of 8 DESIGN VERIFICATION COVER PAGE ANO-1 ANO-2 IP-2 IP-3 JAF PLP PNPS VY GGNS RBS W3 NP Document No. G13.18.6.3-009 Revision No. Page 1 of 0
Title:
Drift Study for ABB ITE-62 Timers Quality Related Augmented Quality Related DV Method: Design Review Alternate Calculation Qualification Testing VERIFICATION REQUIRED DISCIPLINE VERIFICATION COMPLETE AND COMMENTS RESOLVED (DV print, sign, and date)
Electrical Mechanical Richard J. Hannigan /
Instrument and Control
/ 1-26-09 Civil/Structural Nuclear Originator:
Aaron Castor / / 1-26-09 Print/Sign/Date After Comments Have Been Resolved
G13.18.6.3-009 Attachment 2 Page 2 of 8 DESIGN VERIFICATION CHECKLIST SHEET 1 OF 3 IDENTIFICATION: DISCIPLINE:
Document
Title:
Drift Study for ABB ITE-62 Timers Civil/Structural Electrical Doc. No.:G13.18.6.3-009 Rev. 0 QA Cat. 1 I&C Mechanical Richard J. Hannigan 1-26-09 Nuclear Print Sign Date Other Verifier:
Manager authorization for supervisor performing Verification.
N/A Print Sign Date METHOD OF VERIFICATION:
Design Review Alternate Calculations Qualification Test The following basic questions are addressed as applicable, during the performance of any design verification. These questions are based on the requirements of ANSI N45.2.11 - 1974.
NOTE The reviewer can use the Comments/Continuation sheet at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.
- 1. Design Inputs - Were the inputs correctly selected and incorporated into the design?
(Design inputs include design bases, plant operational conditions, performance requirements, regulatory requirements and commitments, codes, standards, field data, etc.
All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.
All inputs need to be retrievable or excerpts of documents used should be attached.
See site specific design input procedures for guidance in identifying inputs.)
Yes No N/A
- 2. Assumptions - Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verification when the detailed activities are completed? Are the latest applicable revisions of design documents utilized?
Yes No N/A
- 3. Quality Assurance - Are the appropriate quality and quality assurance requirements specified?
Yes No N/A
G13.18.6.3-009 Attachment 2 Page 3 of 8 DESIGN VERIFICATION CHECKLIST SHEET 2 OF 3
- 4. Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?
Yes No N/A
- 5. Construction and Operating Experience - Have applicable construction and operating experience been considered?
Yes No N/A
- 6. Interfaces - Have the design interface requirements been satisfied and documented?
Yes No N/A
- 7. Methods - Was an appropriate design or analytical (for calculations) method used?
Yes No N/A
- 8. Design Outputs - Is the output reasonable compared to the inputs?
Yes No N/A
- 9. Parts, Equipment and Processes - Are the specified parts, equipment, and processes suitable for the required application?
Yes No N/A
- 10. Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?
Yes No N/A
- 11. Maintenance requirements - Have adequate maintenance features and requirements been specified?
Yes No N/A
- 12. Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
Yes No N/A
- 13. Accessibility for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?
Yes No N/A
- 14. Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?
Yes No N/A
- 15. Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?
Yes No N/A
- 16. Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?
Yes No N/A
G13.18.6.3-009 Attachment 2 Page 4 of 8 DESIGN VERIFICATION CHECKLIST SHEET 3 OF 3
- 17. Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?
Yes No N/A
- 18. Identification Requirements - Are adequate identification requirements specified?
Yes No N/A
- 19. Records and Documentation - Are requirements for record preparation, review, approval, retention, etc., adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?
Yes No N/A
- 20. Software Quality Assurance- ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN- IT-104 or previous site SQA Program?
ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?
Yes No N/A
- 21. Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?
Yes No N/A
G13.18.6.3-009 Attachment 2 Page 5 of 8 DESIGN VERIFICATION COMMENT SHEET SHEET 1 OF 1 Comments / Continuation Sheet Question Comments Resolution Initial/Date NONE
G13.18.6.3-009 Attachment 2 Page 6 of 8 During the independent review of calculation G13.18.6.3-009, alternate applications Lotus 1-2-3 and Quattro Pro were used to validate the results generated by MS Excel in the calculation. The reviewer independently generated the G13.18.6.3-009 results. In the table below the results of the validation for the G13.18.6.3-009 values and the values produced by Lotus 1-2-3 and Quattro Pro are illustrated.
Since there were not any outliers the Initial Data Set and the Final Data Set are the same. The results from Lotus 1-2-3 and Quattro Pro validated the calculation G13.18.6.3-009 results generated by MS Excel. Minor differences in the values between the MS Excel generated results and the Lotus 1-2-3 and Quattro Pro generated results were reviewed and can be attributed to rounding and conversion between applications. Below is a partial listing of some of the values from G13.18.6.3-009 that were validated:
G13.18.6.3-009 Validation Validation Parameter Value Value Application Valid?
Mean -0.0056 -0.0056 Lotus 1-2-3 Yes Variance 0.416 0.416 Lotus 1-2-3 Yes Standard 0.6449 0.6449 Lotus 1-2-3 Yes Deviation Count 42 42 Lotus 1-2-3 Yes Max 1.67 1.67 Lotus 1-2-3 Yes Median 0.00 0.00 Lotus 1-2-3 Yes Min -1.30 -1.30 Lotus 1-2-3 Yes Range 2.97 2.97 Lotus 1-2-3 Yes Sum -0.237 -0.237 Lotus 1-2-3 Yes Kurtosis 0.104 0.104 Lotus 1-2-3 Yes Skewness 0.523 0.523 Lotus 1-2-3 Yes Outliers None None Lotus 1-2-3 Yes Visual inspection Drift scatter plot N/A shows agreement Lotus 1-2-3 Yes with trend line between the scatter plots and trend lines Drift scatter plot trend line Y = 0.0003x - 0.1709 Y = 0.000305x - 0.171 Lotus 1-2-3 Yes 0.9576 (does not reject 0.9576 (does not reject W Test Value assumption of assumption of Lotus 1-2-3 Yes normality) normality)
Visual inspection Histogram N/A shows agreement Lotus 1-2-3 Yes between the two histograms
G13.18.6.3-009 Attachment 2 Page 7 of 8 G13.18.6.3-009 Validation Validation Parameter Value Value Application Valid?
Data within 0.5 Standard 14 14 Lotus 1-2-3 Yes Deviations Data within 1.0 Standard 26 26 Lotus 1-2-3 Yes Deviation Data within 1.5 Standard 34 34 Lotus 1-2-3 Yes Deviations Data within 2.0 Standard 40 40 Lotus 1-2-3 Yes Deviations Data within 2.5 Standard 41 41 Lotus 1-2-3 Yes Deviations Bin 4 count 6 6 Lotus 1-2-3 Yes Bin 4 drift Lotus 1-2-3 Yes Standard 0.4773 0.4773 Deviation Bin 4 drift mean -0.1056 -0.1056 Lotus 1-2-3 Yes Bin 4 interval 327.00 327.00 Lotus 1-2-3 Yes mean Bin 4 interval Lotus 1-2-3 Yes maximum 330 330 Bin 5 count 36 36 Lotus 1-2-3 Yes Bin 5 drift Lotus 1-2-3 Yes Standard 0.6728 0.6728 Deviation Bin 5 drift mean 0.0110 0.0110 Lotus 1-2-3 Yes Bin 5 interval 576.75 576.75 Lotus 1-2-3 Yes mean Bin 5 interval Lotus 1-2-3 Yes maximum 650 650 Binning Analysis Ratio of 1.987 1.987 Lotus 1-2-3 Yes Variances Binning Analysis 4.478 4.478 Quattro Pro Yes F Critical
G13.18.6.3-009 Attachment 2 Page 8 of 8 G13.18.6.3-009 Validation Validation Parameter Value Value Application Valid?
Visual inspection Drift Regression NA shows agreement Lotus 1-2-3 Yes Scatter Plot between the two scatter plots and trend lines.
Drift Regression Scatter Plot Trend Y = 0.000305x Y = 0.000305x Quattro Pro Yes Line -0.170887 -0.170836 Drift Regression R Square Value 0.002014 0.002013 Quattro Pro Yes Drift Regression Quattro Pro Yes F Value 0.080720 0.080673 F Crit Value 3.231727 3.231727 Quattro Pro Yes Drift Regression P-Value 0.777790 0.777817 Quattro Pro Yes Visual inspection AV Drift Regression NA shows agreement Lotus 1-2-3 Yes Scatter Plot between the two scatter plots and trend lines.
AV Drift Regression Y = 0.000299x Y = 0.000299x Scatter Plot Trend +0.317367 +0.317369 Quattro Pro Yes Line AV Drift Regression R Square Value 0.004453 0.004453 Quattro Pro Yes AV Drift Regression F Value 0.178904 0.178900 Quattro Pro Yes F Crit Value 3.231727 3.231727 Quattro Pro Yes AV Drift Regression P-Value 0.674582 0.674531 Quattro Pro Yes Other values, including those based on the above parameters, were checked using hand calculations.