BYRON 2016-0078, WCAP-18056-NP, Rev. 0, Analysis of Capsule Y from the Exelon Generation Byron Unit 2 Reactor Vessel Radiation Surveillance Program.

From kanterella
Revision as of 16:03, 30 October 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
WCAP-18056-NP, Rev. 0, Analysis of Capsule Y from the Exelon Generation Byron Unit 2 Reactor Vessel Radiation Surveillance Program.
ML16228A043
Person / Time
Site: Byron  Constellation icon.png
Issue date: 12/31/2015
From: Mays B
Westinghouse
To:
Office of Nuclear Reactor Regulation
Shared Package
ML16228A044 List:
References
BYRON 2016-0078 WCAP-18056-NP, Rev 0
Download: ML16228A043 (294)


Text

--~-------

Westinghouse Non-Proprietary Class 3 WCAP-18056-NP December 2015 Revision 0 Analysis of Capsule Y from the Exelon Generation Byron Unit 2 Reactor Vessel Radiation Surveillance Program

@ Westinghouse

Westinghouse Non-Proprietary Class 3 WCAP-18056-NP Revision 0 Analysis of Capsule Y from the Exelon Generation Byron Unit 2 Reactor Vessel Radiation Surveillance Program Benjamin E. Mays*

Materials Center of Excellence Andrew E. Hawk*

Nuclear Operations and Radiation Analysis December 2015 Reviewers: Elliot J. Long*

Materials Center of Excellence Benjamin W. Amiri*

Nuclear Operations and Radiation Analysis Approved: David B. Love*, Manager Materials Center of Excellence Laurent P. Houssay*, Manager Nuclear Operations and Radiation Analysis

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC I 000 Westinghouse Drive Cranberry Township, PA 16066, USA

© 2015 Westinghouse Electric Company LLC All Rights Reserv~d

Westinghouse Non-Proprietary Class 3 ii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iii LIST OF FIGURES ..................................................................................................................................... vi EXECUTIVE

SUMMARY

........................................................................................................................ viii

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRODUCTION ........................................................................................................................ 2-1 3 BACKGROUND .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .................................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Y ...................................................................... 5-1 5.1 OVERVIEW .................................................................................................................... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TENSILE TEST RESULTS ............................................................................................. 5-3 5.4 l/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-4 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

............................................................................................................ 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-5 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS*************************************************************.******************************** A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS .................................... B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ........................................................ C-1 APPENDIX D BYRON UNIT 2 UPPER-SHELF ENERGY EVALUATION ....................................... D-1 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 iii LIST OF TABLES Table 4-1 Chemical Composition (wt. %) of the Byron Unit 2 Reactor Vessel Surveillance Materials (Unirradiated) ................................................................................................... 4-3 Table 4-2 Heat Treatment History of the Byron Unit 2 Reactor Vessel Surveillance Materials ...... 4-4 Table 5-1 Charpy V-notch Data for the Byron Unit 2 Lower Shell Forging Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) .............................................. 5-5 Table 5-2 Charpy V-notch Data for the Byron Unit 2 Lower Shell Forging Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) ..................................................... 5-6 Table 5-3 Charpy V-notch Data for the Byron Unit 2 Surveillance Program Weld Material (Heat#

442002) Irradiated to a Fluence of 4.19 x 10 19 n/cm2 (E > 1.0 MeV) ......................... :.... 5-7 Table 5-4 Charpy V-notch Data for the Byron Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) ............................................ 5-8 Table 5-5 Instrumented Charpy Impact Test Results for the Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-1 Irradiated to a Fluence of 4.19 x 10 19 n/cm2 (E > 1.0 MeV)

(Tangential Orientation) ................................................................................................... 5-9 Table 5-6 Instrumented Charpy Impact Test Results for the Byron Unit' 2 Lower Shell Forging

[49D330/49C298]-l-1 Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV)

(Axial Orientation) ......................................................................................................... 5-10 Table 5-7 Instrumented Charpy Impact Test Results for the Byron Unit 2 Surveillance Program Weld Material (Heat# 442002) Irradiated to a Fluence of4.19 x 10 19 n/cm 2 (E > 1.0 MeV) .............................................................................................................................. 5-11 Table 5-8 Instrumented Charpy Impact Test Results for the Byron Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of4.19 x 10 19 n/cm 2 (E > 1.0 MeV) ................ 5-12 Table 5-9 Effect of Irradiation to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Byron Unit 2 Reactor Vessel Surveillance Capsule Y Materials ........................................................................................................................ 5-13 Table 5-10 Comparison of the Byron Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions ..................................................................................................................... 5-14 Table 5-11 Tensile Properties of the Byron Unit 2 Capsule Y Reactor Vessel Surveillance Materials Irradiated to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) ............................................................... 5-15 Table 6-1 Calculated Fast Neutron Fluence Rate (E > 1.0 Me V) at the Surveillance Capsule Center at Core Mid plane for Cycles 1-15 .................................................................................... 6-7 Table 6-2 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-15 ........................................................................................ 6-8 Table 6-3 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1-15 ................................................................................................ 6-9 Table 6-4 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-15 .............................................................................................. 6-10 Table 6-5 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 Me V) at the Reactor Vessel Clad/Base Metal Interface ........................................................... 6-11 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 IV Table 6-6 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-12 Table 6-7 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-13 Table 6-8 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface .................................................................................. 6-14 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Byron Unit2 ............................................................................................................................. 6-15 Table 6-10 Calculated Surveillance Capsule Lead Factors .............................................................. 6-15 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 Me V) at the Pressure Vessel Welds and Shells ....................................................................................................................... 6-16 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells

....................................................................................................................................... 6-17 Table 7-1 Surveillance Capsule Withdrawal Schedule .................................................................... 7-1 Table A-I Nuclear Parameters Used in the Evaluation of Neutron Sensors .................................. A-11 Table A-2 Monthly Thermal Generation during the First 15 Fuel Cycles of the Byron Unit 2 Reactor

...................................................................................................................................... A-12 Table A-3 Surveillance Capsules U, W, X, and Y Fluence Rates for Ci Calculation, Core Midplane Elevation ....................................................................................................................... A-16 Table A-4 Surveillance Capsules U, W, X, and Y Ci Factors, Core Mid plane Elevation .............. A-17 Table A-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U .............. A-18 Table A-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W .............. A-19 Table A-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X .............. A-20 Table A-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule Y .............. A-21 Table A-9 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A ....... A-21 Table A-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B ....... A-22 TableA-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C ....... A-22 Table A-12 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E ....... A-23 TableA-13 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D ....... .

...................................................................................................................................... A-23 Table A-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F ........ .

...................................................................................................................................... A-24 TableA-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (3 I .5° Azimuth, Core Midplane - Dual Capsule Holder) Cycle 1 Irradiation ................................................. A-25 Table A-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane - Single Capsule Holder) Cycles 1-4 Irradiation .......................................... A-26 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 v Table A-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane - Dual Capsule Holder) Cycles 1-7 Irradiation ............................................ A-27 Table A-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule Y (29.0° Azimuth, Core Mid plane - Dual Capsule Holder) Cycles 1-15 Irradiation .......................................... A-28 Table A-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 15 lrradiation ..................................................................................... A-29 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 15 Irradiation ..................................................................................... A-30 Table A-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 15 Irradiation ..................................................................................... A-31 Table A-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 15 Irradiation ..................................................................................... A-32 Table A-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 15 Irradiation ................................................................................. A-33 Table A-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth, Bottom of Active Core) Cycle 15 Irradiation ................................................................................. A-34 Table A-25 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules .............................................. A-35 Table A-26 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - Ex-Vessel Midplane Capsules .................................................. A-35 Table A-27 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions-Ex-Vessel Off-Midplane Capsules ........................................... A-35 Table A-28 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules ................................................................................................... A-36 Table A-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - Ex-Vessel Midplane Capsules ........................................................................................................ A-36 Table A-30 Summary of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules

...................................................................................................................................... A-36 Table A-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel SurveiJlance Capsules and Ex-Vessel Midplane Capsules ............................................ A-37 Table C-1 Upper-ShelfEnergy Values (ft-lb) Fixed in CVGRAPH ................................................ C-1 Table D-1 Byron Unit 2 Pressure Vessel 1/4T Fast Neutron Fluence Calculation ........................... D-2 Table D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY ....................... D-4 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 VI LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Byron Unit 2 Reactor Vessel .................. .4-5 Figure 4-2 Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters ................................................................................................................ 4-6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]- l- l (Tangential Orientation) ..................................... 5-16 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]-l-l (Tangential Orientation) .......................... 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]-l-l (Tangential Orientation) ..................................... 5-20 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]- l- l (Axial Orientation) ............................................. 5-22 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]-l-l (Axial Orientation) .................................. 5-24 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]- l- l (Axial Orientation) ............................................. 5-26 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-28 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-30 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-32 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-34 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-36 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-38 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Byron Unit 2 Reactor Vessel Lower Shell Forging [490330/49C298]- l-1 (Tangential Orientation) .............................................. 5-40 Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-l-l (Axial Orientation) ...................................................... 5-41 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-42 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 2 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-43 Figure 5-17 Tensile Properties for Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]- l- l (Tangential Orientation) ............................................................ 5-44 Figure 5-18 Tensile Properties for Byron Unit 2 Reactor Vessel Lower Shell Forging

[490330/49C298]- l- l (Axial Orientation) .................................................................... 5-45 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 vii Figure 5-19 Tensile Properties for the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat # 442002) ............................................................................................... 5-46 Figure 5-20 Fractured Tensile Specimens from Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-l-l (Tangential Orientation) ............................................................ 5-47 Figure 5-21 Fractured Tensile Specimens from Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-1-1 (Axial Orientation) .................................................................... 5-48 Figure 5-22 Fractured Tensile Specimens from the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat # 442002) ..................................................................................... 5-49 Figure 5-23 Engineering Stress-Strain Curves for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-l Tensile Specimens YLl3 and YLl4 (Tangential Orientation) .. 5-50 Figure 5-24 Engineering Stress-Strain Curve for Byron Unit 2 Lower Shell Forging

[49D330/49C298] I Tensile Specimen YL 15 (Tangential Orientation) ..................... 5-51 Figure 5-25 Engineering Stress-Strain Curves for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-l Tensile Specimens YTl3 and YT! 4 (Axial Orientation) .......... 5-52 Figure 5-26 Engineering Stress-Strain Curve for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-l Tensile Specimen YT15 (Axial Orientation) ............................. 5-53 Figure 5-27 Engineering Stress-Strain Curves for Byron Unit 2 Surveillance Weld Material Tensile Specimens YW13 and YW14 ........................................................................................ 5-54 Figure 5-28 Engineering Stress-Strain Curve for Byron Unit 2 Surveillance Weld Material Tensile Specimen YW15 ............................................................................................................ 5-55 Figure 6-1 Byron Unit 2 r,8 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration ............................................................ 6-18 Figure 6-2 Byron Unit 2 r,8 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration .................................................. 6-19 Figure 6-3 Byron Unit 2 r,8 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration ................................................................ 6-20 Figure 6-4 Byron Unit 2 r,z Reactor Geometry Elevation View ..................................................... 6-21 Figure D-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... D-3 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 viii EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule Y from Byron Unit 2.

Capsule Y was removed at 20.05 effective full-power years (EFPY) and stored in the spent fuel pool.

Post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed during Cycle 19 to satisfy license renewal commitments. A fluence evaluation was performed utilizing discrete ordinates neutron transport calculations and dosimetry cross-section libraries derived from the Evaluated Nuclear Data File (ENDF) database (specifically, ENDF/B-VI). Capsule Y received a fluence of 4.19 19 2 x 10 n/cm (E > 1.0 MeV) after irradiation to 20.05 EFPY. The peak clad/base metal interface vessel fluence after 57 EFPY (end-of-license extension) of plant operation is projected to be 3.04 x 10 19 n/cm 2 (E

> 1.0 MeV).

This evaluation led to the following conclusions: 1) The measured percent decreases in upper-shelf energy for the surveillance forging and weld materials contained in Byron Unit 2 Capsule Y are less than the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions. 2) With consideration of surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix D.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section I. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule Y, the fourth capsule removed and tested from the Byron Unit 2 reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program.

Appendix C presents the CVGRAPH, Version 6.02, Charpy V-notch plots for Capsule Y and previous capsules, along with the program input data.

  • Capsule Y received an average fast neutron fluence (E > 1.0 MeV) of 4.19 x 10 19 n/cm 2 after 20.05 effective full-power years (EFPY) of plant operation.
  • Irradiation of the reactor vessel Lower Shell Forging [49D330/49C298]- l- l Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of l l.4°F and an irradiated 50 ft-lb transition temperature of 48.3°F. This results in a 30 ft-lb transition temperature increase of 44.5°F and a 50 ft-lb transition temperature increase of 57.3°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Forging [49D330/49C298]- l- l Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 2 l.6°F and an irradiated 50 ft-lb transition temperature of 56.0°F. This results in a 30 ft-lb transition temperature increase of 68.6°F and a 50 ft-lb transition temperature increase of72.3°F for the axially oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -12.5°F and an irradiated 50 ft-lb transition temperature of 100.2°F. This results in a 30 ft-lb transition temperature increase of 58.7°F and a 50 ft-lb transition temperature increase of 106.5°F.
  • Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -127. l °F and an irradiated 50 ft-lb transition temperature of -90.8°F.

This results in a 30 ft-lb transition temperature increase of 55 .2°F and a 50 ft-lb transition temperature increase of 54.8°F.

  • The average upper-shelf energy of Lower Shell Forging (490330/49C298]- l-1 (tangential orientation) resulted in an average energy decrease of 20 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 149 ft-lb for the tangentially oriented specimens.
  • The average upper-shelf energy of Lower Shell Forging [490330/49C298] l (axial orientation) resulted in an average energy decrease of 35 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 119 ft-lb for the axially oriented specimens.
  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an average energy decrease of 9 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 58 ft-lb for the weld metal specimens.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 1-2

  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy increase of 9 ft-lb after irradiation. Although physically unreasonable, this increase results in an irradiated average upper-shelf energy of 140 ft-lb for the HAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. l] for the Byron Unit 2 reactor vessel surveillance materials are presented in Table 5-10.
  • Based on the upper-shelf energy evaluation in Appendix D, all beltline and extended beltline materials contained in the Byron Unit 2 reactor vessel exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].
  • The maximum calculated 57 EFPY (end-of-license extension) neutron fluence (E > 1.0 MeV) for the Byron Unit 2 reactor vessel beltline using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation# 3 in the Guide) is as follows:

Calculated (57 EFPY): Vessel peak clad/base metal interface fluence* = 3.04 x 10 19 n/cm 2 Vessel peak quarter-thickness (l/4T) fluence = 1.83 x 10 19 n/cm 2

  • This fluence value is documented in Table 6-6 WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Y, the fourth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Exelon Generation (Exelon) Byron Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Byron Unit 2 reactor pressure vessel materials was designed and recommended by Westinghouse Electric Company, LLC. A detailed description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-10398 [Ref. 3], "Commonwealth Edison Co. Byron Station Unit No. 2 Reactor Vessel Radiation Surveillance Program." The surveillance program was originally planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E 185-79 [Ref. 4 ], "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels." Capsule Y was removed from the reactor after 20.05 EFPY of exposure and stored in the spent fuel pool. During Cycle 19, it was shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing and post-irradiation data obtained from surveillance Capsule Y removed from the Byron Unit 2 reactor vessel and discusses the analysis of the data.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low-alloy, ferritic pressure vessel steels such as A508 Class 3 (base material of the Byron Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNoT).

RTNOT is defined as the greater of either the drop-weight nil-ductility transition temperature (NOTT per ASTM E208 [Ref. 6]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (axial) to the major working direction of the forging. The RT NOT of a given material is used to index that material to a reference stress intensity factor curve (K1ccurve) which appears in Appendix G to Section XI of the ASME Code [Ref. 5].

The Kic curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the Kic curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTNoT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Byron Unit 2 reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ilRTNOT) due to irradiation is added to the initial RTNOT, along with a margin (M) to cover uncertainties, to adjust the RT NOT (ART) for radiation embrittlement. This ART (initial RTNOT + M + ilRTNDT) is used to index the material to the K1c curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Byron Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel, as shown in Figure 4-1, between the core barrel and the vessel wall, at various azimuthal locations. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from the following:

  • Lower Shell Forging [49D330/49C298]- l- l (tangential orientation)
  • Lower Shell Forging [49D330/49C298]-l-l (axial orientation)
  • Weld metal fabricated with weld wire Heat Number 442002, Linde Type 80 flux, which is equivalent to the heat number and Flux Type used in the actual fabrication of the intermediate shell to lower shell circumferential weld seam
  • Weld heat-affected zone (HAZ) material of Lower Shell Forging [49D330/49C298]-1-l Test material obtained from the lower shell forging (after thermal heat treatment and forming of the forging) was taken at least one forging thickness from the quenched edges of the forging. All test specimens were machined from the Yi thickness location of the forging after performing a simulated post-weld stress-relieving treatment on the test material. Weld test specimens were removed from the weld metal of a stress-relieved weldment joining Lower Shell Forging [49D330/49C298] l and adjacent Intermediate Shell Forging [49D329/49C297]- l-I. All heat-affected zone specimens were obtained from the weld heat-affected zone of Lower Shell Forging [49D330/49C298]- l- l.

Charpy V-notch impact specimens from Lower Shell Forging [49D330/49C298] l were machined in the tangential orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the axial orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular (normal) to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from Lower Shell Forging [49D330/49C298]-1-l were machined both in the tangential and axial orientation. Tensile specimens from the weld metal were oriented perpendicular to the welding direction.

Compact tension test specimens ( 1/2T) from forging [49D330/49C298] l were machined in both the tangential and axial orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue precracked according to ASTM E399 [Ref. 7].

All six capsules contain dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium-shielded dosimeters of Neptunium (2 37Np) and Uranium (2 38 U) were placed in the capsules to measure the integrated flux at specific neutron energy levels.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 4-2 The capsules contain thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex tubes. These thermal monitors were. located in three different positions in the capsule.

These thermal monitors are used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag, 97.5% Pb Melting Point: 579°F (304°C) 1.5% Ag, 1.0% Sn, 97.5% Pb Melting Point: 590°F (310°C)

The chemical composition and the heat treatment of the various mechanical specimens in Capsule Y are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-10398 [Ref. 3], Appendix A.

Capsule Y was removed after 20.05 EFPY of plant operation. This capsule contained Charpy V-notch specimens, tensile specimens, compact tension specimens, dosimeters, and thermal monitors.

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule Y is shown in Figure 4-2.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 4-3 Table 4-1 Chemical Composition (wt. %) of the Byron Unit 2 Reactor Vessel Surveillance Materials (Unirradiatedi*l Lower Shell Forging Lower Shell Forging Surveillance Weld Surveillance Weld Element Metal(d,e) Metal(d,f)

[49D330/49C298]- l - I Cb> [49D330/49C298]- l-l Cc>

c 0.21 0.18 0.08 0.09 Mn 1.27 1.18 1.3 1.34 p 0.008 0.005 0.009 0.01 s 0.009 0.006 0.01 0.013 Si 0.22 0.23 0.37 0.55 Ni 0.73 0.65 0.62 0.65 Mo 0.52 0.43 0.31 0.45 Cr 0.04 0.06 0.08 0.08 Cu 0.05 0.07 0.06 0.03 Al 0.020 0.026 --- 0.003 Co 0.008 <0.01 --- <0.01 Pb <0.001 <0.001 --- <0.001 w <0.01 <0.02 --- <0.02 Ti <0.01 <0.005 --- <0.005 Zr <0.001 <0.002 -- - <0.002 v <0.01 <0.001 0.05 <0.001 Sn 0.011 <0.005 --- <0.005 As 0.011 <0.005 --- 0.005 Cb <0.01 <0.003 --- <0.003 N1 0.009 0.007 -- - 0.006 8 <0.001 <0.005 -- - 0.005 Notes:

(a) Data obtained from WCAP-10398, Tables A-1 and A-3 [Ref. 3]

(b) Chemical analysis by Japan Steel Works, Ltd.

(c) Westinghouse analysis from the surveillance test plate.

(d) The surveillance weld is identical to that used in the intermediate to lower shell circumferential weld seam. The weld wire is heat number 442002, with a Linde 80 type flux, Lot Number 8064.

(e) Chemical analysis of"Filler Wire Qualification Test" by Babcock and Wilcox.

(t) Westinghouse analysis from the surveillance program test weldment.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 4-4 Table 4-2 Heat Treatment History of the Byron Unit 2 Reactor Vessel Surveillance Materials<*l Time Material Temperature (°F) Cooling (hours)

Austenitizing: 9(b) Water Quenched 1600 +/- 25 Lower Shell Forging Tempered: 10.25(b) Air Cooled

[49D330/49C298]- l-1 1225 +/- 25 Stress Relief: 12.75(c) Furnace Cooled 1150 +/- 50 Intermediate to Lower Shell Stress Relief: l2.75(c) Furnace Cooled Circumferential Weld Seam 1150 +/- 50 Surveillance Program Test Material Surveillance Program Test Post-Weld Stress Relie(d>: 13.75(c) Furnace Cooled Forging [490330/49C298] l 1150 +/- 50 Surveillance Program Test Post-Weld Stress Relie(dl: 13.50(c) Furnace Cooled Weldment (Heat# 442002) 1150 +/- 50 Notes:

(a) Data obtained from WCAP-10398, Table A-5 [Ref. 3].

(b) Data obtained from Japan Steel Works, Ltd. Material Test Reports.

(c) Data from Babcock and Wilcox, Co. Certifications.

(d) The stress relief heat treatment received by the surveillance test forging and weldment have been simulated.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 4-5 REACTOR VESSEL NEUTRON PAD (301.5°) z CAPSULE U (SS.5°)

v (61 °)

goo (241 ") y 123a.s*i x w (121.5°)

1ao 0 PLAN VIEW ELEVATION WiW Figure 4-1 Arrangement of Surveillance Capsules in the Byron Unit 2 Reactor Vessel WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 4-6 Cu Al-.tsico LEGEND: YL - LOWER SHELL FORGING [49D330/49C298]-1-1 (TANGENTIAL)

YT -LOWER SHELL FORGING [49D330/49C298]-1-1 (AXIAL) 579°F YW - WELD METAL (HEAT# 442002) MONITOR YH - HEAT-AFFECTED ZONE MATERIAL Large Spacer Tensiles Compacts Compacts Charpys

~

YWl5 YW72 YH72 YW69 YH69 YW14 YW74 YH74 YW71 YH71 YW68 YH68 I YW20 I YW19 I I YWIS I YWl7 I YW13 YW73 YH73 YW70 YH70 YW67 YH67 TOP OF VESSEL CENTER Np231 0 23s Compacts Compacts Charpys Charpys Dosimeter Tensiles Charpys EJ3 YW66 YH66 YW63 YH63 YL15 YT75 YL75 I YL20 I YL19 I YW65 YH65 YW62 YH62 505 YL14 YT74 YL74 YL73 YW64 YH64 YW61 YLl3 YT73 CENTER Cu A1-.15XCo Cu Fe

'* ..

I It ti I I 11 11 1 Al-.lSZCo 590'F

.... ....::.J

,., n,..,

579°F A1-.15%CO (Cd) A1-.15%Co (Cd) l'ONITOR MONITOR 11 II I II 11 I I II I Ni If I I Charpys Charpys Charpys Compacts Compacts Tensiles EB YT72 YL72 YT69 YL69 YT66 YL66 YT63 YL63 YTl5 YT71 YL71 YT68 YL68 YT65 YL65 YT62 YL62 YTl4 YT70 YL70 YT67 YL67 YT64 YL64 YT61 YL61 I YTIO I YTI9 I YTl3 CENTER BOTTOM OF VESSEL Figure 4-2 Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE Y 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Westinghouse Materials Center of Excellence Hot Cell Facility. Testing was performed in accordance with I 0 CFR 50, Appendix H [Ref. 2] and ASTM Specification E 185-82

[Ref. 8].

Capsule Y was opened upon receipt at the hot cell laboratory. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-10398 [Ref. 3]. All of the items were in their proper locations.

Examination of the thermal monitors indicated that the three temperature monitors had not melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304°C).

The Charpy impact tests were performed per ASTM Specification El85-82 [Ref. 8] and E23-12c [Ref. 9]

on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an Instron Impulse system. Instrumented testing and calibration were performed to ASTM E2298- l 3a [Ref.

10].

The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ms.

From the load-time curve, the load of general yielding (Fgy), the maximum load (Fm) and the time to maximum load were determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the brittle fracture initiation/load at initiation of unstable crack propagation (F bf). The termination load after the fast load drop is identified as the arrest load (Fa). Fgy, Fm, Fbr, and Fa were determined per the guidance in ASTM Stand_ard E2298- l 3 a [Ref. IO].

The pre-maximum load energy (Wm) was determined by integrating the load-time record to the maximum load point via the instrumented Charpy software. The pre-maximum load energy is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Wp) is the difference between the total impact energy (W1) and the pre-maximum load energy (Wm)* W 1 is compared to the absorbed energy measured from the dial energy (KV).

Percent shear was determined from post-fracture photographs using the ratio-of-areas method in compliance with ASTM E23-12c [Ref. 9] and A370-13 [Ref. 11]. The lateral expansion was measured using a dial gage rig similar to that shown in the same ASTM Standards.

Tensile tests were performed on a 250 kN Instron screw driven tensile machine (Model 5985) per ASTM E 185-82 [Ref. 8]. Testing met ASTM Specifications E8/E8M- I 3a [Ref. 12] for room temperature or E2 l-09 [Ref. 13] for elevated temperatures.

The tensile specimens were, nominally, 4.230 inches long with a 1.000 inch gage length and 0.250 inch in diameter, per WCAP-10398 [Ref. 3]. Strain measurements were made using an extensometer, which was WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-2 attached to the 1.00 inch gage section of the tensile specimen. The strain rate obtained met the requirements of ASTM E8/E8M- l 3a [Ref. 12] and ASTM E2 l-09 [Ref. 13].

Elevated test temperatures were obtained with a three-zone electric resistance split-tube Instron SF-16 furnace with an 11-inch hot zone. For the elevated tests, temperature was measured by two Type N thermocouples in contact with the gage section of the specimen per ASTM E2 l-09 [Ref. 13]. Tensile specimens were soaked at temperature (+/-5°F) for a minimum of 20 minutes before testing. All tests were conducted in air.

The yield load, ultimate load, fracture load, uniform elongation and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. Yield point elongation (YPE) was calculated as the difference in strain between the upper yield strength and the onset of uniform strain hardening using the methodology described in E8/E8M-13a [Ref. 12]. The final diameter and final gage length were determined from post-fracture photographs. This final diameter measurement was used to calculate the fracture stress (fracture true stress) and the percent reduction in area. The final and original gage lengths were used to calculate total elongation after fracture.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule Y, which received a fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) in 20.05 EFPY of operation, are presented in Table 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1through5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-10398 [Ref. 3], WCAP-12431 [Ref. 14], WCAP-14064 [Ref. 15], and WCAP-15176 [Ref. 16]. The previous capsules, along with the original program unirradiated material input data, were updated using CVGRAPH, Version 6.02.

The transition temperature increases and decreases in upper-shelf energies for the Capsule Y materials are summarized in Table 5-9 and led to the following results:

  • Irradiation of the reactor vessel Lower Shell Forging [490330/49C298]- l- l Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of l l.4°F and an irradiated 50 ft-lb transition temperature of 48.3°F. This results in a 30 ft-lb transition temperature increase of 44.5°F and a 50 ft-lb transition temperature increase of 57.3°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Lower Shell Forging [49D330/49C298]- l-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of 2 l.6°F and an irradiated 50 ft-lb transition temperature of 56.0°F. This results in a 30 ft-lb transition temperature increase of 68.6°F and a 50 ft-lb transition temperature increase of72.3°F for the axially oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of - l 2.5°F and an irradiated 50 ft-lb transition WCAP- I 8056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-3 temperature of 100.2°F. This results in a 30 ft-lb transition temperature increase of 58.7°F and a 50 ft-lb transition temperature increase of 106.5°F.

  • Irradiation of the HAZ Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -127. l °F and an irradiated 50 ft-lb transition temperature of -90.8°F. This decrease results in a 30 ft-lb transition temperature increase of 55.2°F and a 50 ft-lb transition temperature increase of54.8°F.
  • The irradiated upper-shelf energy of Lower Shell Forging [49D330/49C298]-l-l (tangential orientation) resulted in an average energy decrease of 20 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 149 ft-lb for the tangentially oriented specimens.
  • The average upper-shelf energy of Lower Shell Forging [49D330/49C298]-1-l (axial orientation) resulted in an average energy decrease of 35 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 119 ft-lb for the axially oriented specimens.
  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an average energy decrease of 9 ft-lb after irradiation. This decrease results in an irradiated average upper-shelf energy of 58 ft-lb for the weld metal specimens.
  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy increase of 9 ft-lb after irradiation. This results in an irradiated average upper-shelf energy of 140 ft-lb for the HAZ Material.
  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. l] for the Byron Unit 2 reactor vessel surveillance materials are presented in Table 5-10.

The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16. The fractures show an increasingly ductile or tougher appearance with increasing test temperature. Load-time records for the individual instrumented Charpy specimens are contained in Appendix B.

With consideration of the surveillance data, all beltline and extended beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation is contained in Appendix D.

5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule Y irradiated to 4.19 x 10 19 n/cm2 (E > 1.0 Me V) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the Lower Shell Forging [49D330/49C298]-l-l (tangential orientation) indicated that irradiation to 4.19 x 10 19 n/cm 2 (E > 1.0 Me V) caused increases in the 0.2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-4 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3].

See Figure 5-17 and Table 5-11.

The results of the tensile tests performed on the Lower Shell Forging [49D330/49C298]-1-l (axial orientation) indicated that irradiation to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3].

See Figure 5-18 and Table 5-11.

The results of the tensile tests performed on the Surveillance Program Weld Material (Heat # 442002) indicated that irradiation to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11.

The fractured tensile specimens for the Lower Shell Forging [49D330/49C298]-1-1 (tangential orientation) material are shown in Figure 5-20, the fractured tensile specimens for the Lower Shell Forging [49D330/49C298]-l-1 (axial orientation) are shown in Figure 5-21, and the fracture tensile specimens for the Surveillance Program Weld Material (Heat# 442002) are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.

5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the 1/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Materials Center of Excellence Hot Cell Facility.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Charpy V-notch Data for the Byron Unit 2 Lower Shell Forging Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm  %

YL75 -50 -46 2.5 3 4 0.1 3 YL65 -30 -34 13 18 11 0.3 5 YL72 -10 -23 23 31 20 0.5 10 YL66 -5 -21 9 12 10 0.3 5 YL64 0 -18 16 22 13 0.3 10 YL71 5 -15 18 24 17 0.4 15 YL68 IO -12 41 56 34 0.9 20 YL73 20 -7 46 62 36 0.9 20 YL63 40 4 58 79 45 1.1 30 YL69 72 22 77 104 56 1.4 45 YL70 120 49 77 104 54 1.4 60 YL67 175 79 128 174 86 2.2 85 YL61 225 107 151 205 95 2.4 100 YL74 250 121 154 209 98 2.5 100 YL62 275 135 142 193 92 2.3 100 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-6 Table 5-2 Charpy V-notch Data for the Byron Unit 2 Lower Shell Forging Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm O/o YT67 -30 -34 10 14 10 0.3 5 YT75 -20 -29 10 14 9 0.2 5 YT62 -10 -23 30 41 25 0.6 15 YT74 0 -18 26 35 23 0.6 15 YT72 10 -12 25 34 20 0.5 20 YT71 20 -7 40 54 32 0.8 20 YT69 30 -1 31 42 30 0.8 20 YT65 40 4 24 33 23 0.6 20 YT63 50 10 37 50 34 0.9 30 YT70 72 22 72 98 58 1.5 45 YT61 120 49 90 122 71 1.8 65 YT66 175 79 108 146 80 2.0 80 YT64 225 107 122 165 86 2.2 100 YT73 250 121 123 167 87 2.2 100 YT68 275 135 113 153 88 2.2 100 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-7 Table 5-3 Charpy V-notch Data for the Byron Unit 2 Surveillance Program Weld Material (Heat# 442002) Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm O/o YW67 -110 -79 15 20 11 0.3 5 YW74 -70 -57 20 27 18 0.5 5 YW62 -50 -46 21 28 18 0.5 5 YW61 -30 -34 22 30 20 0.5 15 YW69 -10 -23 31 42 27 0.7 35 YW71 0 -18 29 39 24 0.6 35 YW62 10 -12 36 49 35 0.9 45 YW70 20 -7 40 54 33 0.8 50 YW72 40 4 40 54 41 1.0 55 YW66 72 22 50 68 45 1.1 75 YW73 120 49 52 71 50 1.3 90 YW75 175 79 51 69 48 1.2 90 YW64 225 107 61 83 58 1.5 100 YW63 250 121 59 80 56 1.4 100 YW68 275 135 55 75 54 1.4 100 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-8 Table 5-4 Charpy V-notch Data for the Byron Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm O/o YH70 -180 -118 2 3 2 0.1 3 YH61 -150 -101 17 23 9 0.2 5 YH75 -120 -84 32 43 16 0.4 10 YH65 -110 -79 27 37 16 0.4 10 YH74 -100 -73 71 96 45 1.1 25 YH67 -70 -57 67 91 40 1.0 35 YH72 -50 -46 84 114 52 1.3 50 YH63 -30 -34 56 76 36 0.9 35 YH69 -10 -23 117 159 72 1.8 75 YH66 0 -18 126 171 71 1.8 75 YH68 10 -12 110 149 69 1.8 70 YH71 40 4 108 146 71 1.8 75 YH73 72 22 135 183 88 2.2 100 YH64 100 38 144 195 82 2.1 100 YH62 175 79 140 190 87 2.2 100 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Byron Unit 2 Lower Shell Forging [49D330/49C298]-1-l Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation)

Total Energy to Total Dial General Test Instrumented Difference, Max Maximum Time to Fracture Arrest Sample Energy, Yield Temp Energy, (KV-W 1)/KV Load, Load, Fm Fm Load, Fhr Load, F.

Number KV Load, Fi:y

{°F)

(ft-lb) wt (%) Wm (lb) (msec)

(lb)

(lb) (lb)

(ft-lb) (ft-lb)

YL75 -50 2.5 2.24 10.52 1.60 3200 0.07 2400 3200 0 YL65 -30 I3 I 1.8 I 9.I8 3.24 3800 0.09 3200 3400 0 YL72 -IO 23 20.72 9.9I I8.37 3900 0.36 3IOO 3600 0 YL66 -5 9 7.85 I2.77 3.36 3800 0.09 3200 3300 0 YL64 0 I6 I3.5 I5.52(a) I2.44(a) 3700(a) 0.26(a) 3 I oo(a) 3700(a) 0 YL71 5 I8 I4.88 I 7.33(aJ 3. I 9<aJ 3700(a) 0.09(a) 3000(a) 3700<*) 0 YL68 IO 41 37.23 9.20 32.51 4000 0.60 2900 3800 0 YL73 20 46 42.04 8.60 32.56 4000 0.6I 2900 3800 0 YL63 40 58 51.93 I0.47 32.0I 4000 0.6I 2800 3800 300 YL69 72 77 68.65 I0.84 3I.34 3900 0.60 2800 3400 1000 YL70 I20 77 65.35 I5.13(a) 30.78(a) 3900(a) 0.60(a) 2700(a) 3800(a) 18oo<*l YL67 175 128 I I6.I5 9.26 5I.66 3800 0.99 2500 3000 I900 YL61 225 151 137.50 8.94 47.03 3600 0.95 2400 0 0 YL74 250 154 140.76 8.60 46.7I 3600 0.95 2300 0 0 YL62 275 142 129.3 I 8.94 46.53 3600 0.95 2300 0 0 Note:

(a) The difference between instrumented Charpy and dial values was greater than 15%, but the values were not adjusted as required by Reference 10 since this data is not required and is presented for informational purposes only.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Byron Unit 2 Lower Shell Forging [49D330/49C298]-1-1 Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation)

Total Energy to Total Dial Time General Test Instrumented Difference, Max Maximum Fracture Arrest Sample Energy, to Yield Temp Energy, (KV-W 1)/KV Load, Load, Fm Load, Fhr Load, F.

Number KV Fm Load, Fitv

{°F)

(ft-lb) wt (%) Wm (lb)

(msec) (lb)

(lb) (lb)

(ft-lb) (ft-lb)

YT67 -30 10 8.79 12.07 3.33 3900 0.09 3300 3500 0 YT75 -20 IO 9.52 4.85 3.20 3900 0.09 3200 3700 0 YT62 -IO 30 27.91 6.98 26.00 3900 0.48 3100 3900 0 YT74 0 26 9.61 63.Q4(a) 3.24(a) 45QQ(a) 0.15(a) 31 oo<*> 3900<*) 0 YT72 10 25 23.52 5.92 22.65 3900 0.43 2900 3900 0 YT71 20 40 36.59 8.51 32.72 4000 0.60 2900 3900 0 YT69 30 31 27.83 10.22 27.07 3900 0.50 2900 3900 0 YT65 40 24 21.14 11.92 17.78 3700 0.36 3000 3600 0 YT63 50 37 31.80 14.05 26.32 3800 0.50 2800 3700 200 YT70 72 72 65.19 9.46 42.50 4100 0.79 2900 3500 1100 YT61 120 90 78.73 12.52 31.01 3900 0.60 2700 3100 1800 YT66 175 108 98.30 8.98 30.15 3800 0.60 2600 3000 2000 YT64 225 122 110.80 9.18 29.06 3600 0.61 2400 0 0 YT73 250 123 112.76 8.33 40.41 3600 0.83 2100 0 0 YT68 275 113 103.09 8.77 28.14 3500 0.60 2400 0 0 Note:

(a) The difference between instrumented Charpy and dial values was greater than 25%, but the values were not discarded as required by Reference I 0 since this data is not required and is presented for informational purposes only.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Byron Unit 2 Surveillance Program Weld Material (Heat # 442002)

Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-W 1)/KV Load, Load, Fm Fm Load, Fhr Number KV Load, Fgy Fa (OF) Wr (%) Wm (lb) (msec) (lb)

(ft-lb) (lb) (lb)

(ft-lb) (ft-lb)

YW67 -110 15 14.80 1.33 3.53 4300 0.09 3400 3800 0 YW74 -70 20 19.53 2.36 3.38 3900 0.09 3100 3800 0 YW62 -50 21 19.74 6.02 18.49 3800 0.36 3100 3800 0 YW61 -30 22 19.76 10.20 17.95 3800 0.36 3300 3500 0 YW69 -10 31 27.73 10.54 18.02 3800 0.36 3000 3600 0 YW71 0 29 25.99 10.39 23.09 4000 0.46 3100 3700 0 YW65 10 36 30.72 14.67 17.83 3700 0.36 3000 3300 500 YW70 20 40 34.00 15.00 17.51 3600 0.36 2900 3400 700 YW72 40 40 34.62 13.46 17.57 3700 0.36 2900 3500 1400 YW66 72 50 44.93 10.15 13.43 3600 0.29 2700 3200 2000 YW73 120 52 47.18 9.28 16.82 3500 0.36 2700 2800 2500 YW75 175 51 46.69 8.44 16.26 3400 0.36 2600 2400 1900 YW64 225 61 55.68 8.72 23.25 3500 0.49 2300 0 0 YW63 250 59 53.41 9.47 21.66 3300 0.48 2400 0 0 YW68 275 55 49.89 9.28 21.53 3200 0.48 2300 0 0 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Byron Unit 2 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 4.19 x 10 19 n/cm 2 (E > 1.0 MeV)

Total Energy to Total Dial General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-W 1)/KV Load, Load, Fm Fm Load, Fhr Number KV Load, Fl!.v Fa (oF) W1 (%) Wm (lb) (msec) (lb)

(ft-lb) (lb) (lb)

(ft-lb) (ft-lb)

YH70 -180 2 2.10 -5.13 1.61 3600 0.06 3500 3600 0 YH61 -150 17 17.24 -1.42 3.74 4800 0.10 3700 4300 0 YH75 -120 32 30.25 5.47 3.69 4500 0.09 3600 4400 0 YH65 -110 27 25.26 6.45 3.75 4500 0.09 3600 4300 0 YH74 -100 71 65.68 7.50 37.10 4400 0.61 3400 4100 0 YH67 -70 67 61.83 7.72 36.10 4300 0.61 3400 4200 0 YH72 -50 84 76.24 9.23 41.33 4400 0.73 3200 3500 0 YH63 -30 56 48.77 12.91 35.11 4200 0.61 3100 4200 700 YH69 -10 117 100.25 14.32 58.58 4200 0.99 3000 2700 700 YH66 0 126 115 .36 8.45 58.19 4200 0.99 3000 2500 900 YH68 10 110 97.35 11.50 38.34 4400 0.73 2800 3100 700 YH71 40 108 98.80 8.51 43.49 4100 0.77 3000 2500 1200 YH73 72 135 124.53 7.75 55.32 4000 0.99 2700 0 0 YH64 100 144 132.89 7.72 42.78 4100 0.77 2900 0 0 YH62 175 140 127.92 8.63 52.14 4000 0.95 2700 0 0 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-13 Table 5-9 Effect of Irradiation to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Byron Unit 2 Reactor Vessel Surveillance Capsule Y Materials Average 30 ft-lb Transition Average 35 mil Lateral Expansion Average 50 ft-lb Transition Average Energy Absorption ;::

Material Temperature<a) (°F) Temperature<aJ (°F) Temperature<*J (°F) 95% Shear(bJ (ft-lb)

Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AE Lower Shell Forging

[49D330/49C298]-1-1 -33.1 11.4 44.5 -17.7 39.0 56.7 -9.0 48.3 57.3 169 149 -20 (Tangential)

Lower Shell Forging

[49D330/49C298]-1-1 -47.0 21.6 68.6 -28.7 40.8 69.5 -16.3 56.0 72.3 154 119 -35 (Axial)

Surveillance Weld Material -71.2 -12.5 58.7 -29.3 25.8 55.1 -6.3 100.2 106.5 67 58 -9 (Heat# 442002)

Heat-Affected Zone

-182.3 -127.1 55.2 -133.8 -78.4 55.4 -145 .6 -90.8 54.8 131 140 9 (HAZ) Material Notes:

(a) Average value is determined by CVGRAPH, Version 6.02 (see Appendix C).

(b) Upper-shelf Energy (USE) values are a calculated average from unirradiated and Capsule Y Charpy test results for specimens that achieved greater than or equal to 95% shear.

WCAP-18056-NP December 2015 Revision 0

Westinghouse No n-Proprietary Class 3 5-14 Table 5-10 Comparison of the Byron Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions Capsule 30 ft-lb Transition Upper-Shelf Energy Fluence Temperature Shift Decrease Material Capsule (x 10 19 n/cm 2 , Predicted(a) Measured<hl Predicted(a) Measured(h)

E > 1.0 MeV) (Of) (of) (%) (%)

u 0.406 27.8 o.o<c) 15 .5 o(d)

Lower Shell Forging w 1.21 39.0 2.5 20 7

[49D330/49C298] I (Tangential) x 2.18 44.8 14.9 23 4 y 4.19 50.5 44.5 27 12 u 0.406 27.8 20.4 15.5 o<dl Lower Shell Forging w 1.21 39.0 32 . I 20 16

[49D330/49C298]-1-1 (Axial) x 2.18 44.8 39.5 23 3 y 4.19 50.5 68.6 27 23 u 0.406 20.3 8.7 15 .5 o(d)

Surveillance Weld Material w 1.21 28.4 28.8 20 o<d>

(Heat # 442002) x 2.18 32.7 54.2 23 I y 4.19 36.9 58.7 27 13 u 0.406 --- 6.5 --- o<d>

w 1.21 --- 30 .8 --- o<d>

Heat-Affected Zone Material x 2.18 --- 34.5 --- o<d>

y 4.19 --- 55.2 --- o<d>

Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the capsule tluence and mean weight percent values of copper and nickel of the surveillance material.

(b) Calculated by CVGRAPH, Version 6.02 using measured Charpy data (See Appendix C).

(c) A negative l1RT NOT value (-4 .8° F) was calculated. Physically, this should not occur; therefore, a conservative value of zero is shown in this table.

(d) An increase in USE values was calculated. Physically, this should not occur; therefore, conservative values of0% are shown in this table.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 5-15 Table 5-11 Tensile Properties of the Byron Unit 2 Capsule Y Reactor Vessel Surveillance Materials Irradiated to 4.19 x 10 19 n/cm 2 (E > 1.0 MeV) 0.2% Fracture Test Ultimate Fracture Fracture Uniform Total Reduction Sample Yield True Material Temp. Strength Load Strength Elongation Elongation in Area Number Strength Stress

(°F)

(ksi)

(ksi) (kip) (ksi)

(ksi)

(%) (%) (%)

YLl3 75 74.6 95 .7 2.87 58 .5 194.7 I I. I 26.8 70 Lower Shell Forging

[49D330/49C298] I YLl4 250 70.5 89.4 2.64 54.6 179. 1 10 .5 25 .4 69 (Tangential )

YLl5 550 65 .9 89.4 2.77 57.3 179.9 9.6 22.3 68 YTl3 74 75.1 97.2 2.93 60.7 163 .6 I 1.7 26.4 63 Lower Shell Forging

[49D330/49C298]- I - I YTl4 250 68.4 87.6 2.70 55.1 188 .6 9.5 22.7 71 (Axial)

YTl5 550 66.9 88.5 3.03 62.3 158 .5 9.8 20.9 61 YWl3 76 78.5 92.9 3.18 65.3 177.6 9.4 2 1.5 63 Surveillance Weld Material YWl4 250 73 .8 86.2 3.03 62.8 167.0 8.5 19.5 62 (Heat # 442002)

YWl5 550 70.4 87.0 3.07 63.6 158 .6 8.0 19.3 60 WCAP-18056-NP December 20 15 Revision 0

Westinghouse o n-Pro pri etary Class 3 5-1 6 Lower Shell Forging [-t9D330/-t9C298j-l-1 (Tangential)

CV Graph 6.02: Hyperbolic Tangen t Curve Prin ted on 8 28 20 15 3:38 P:'vl Curve Plant Capsule Material Ori . Heat #

1 lJyron 2 U. IRR s 508CL3 Tangenti al [490330149C298]-

1-1 I

I 2 lJyron 2 u S. 508CL3 Timgential [49D330149C298J-I 1-1 3 Byron 2 \\' SA508CL3 Tangential [4903J0149C298 J-1- 1 4 Byron 2 x SA508CL3 Tangenti al [49D330/49C298]-

1-1 5 Byron 2 y SA508CL3 Tangenti al [49D330/49C298]-

I 1- 1 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging (49D330/49C298]-1-1 (Tangential Orientation)

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary C lass 3 5-17 Lower Shell Forging [49D330/49C298]-1-1 (Tangential)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/2015 3:38 PM 250 ..-~~--~~--~~--.~~~.--~~ .......~~-.-~~.......~~--..--~---

0 6===~~~~~:.__j__l_...i._..J__,__L---1._JL_"'-.L.....L....~

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

Curve Fluence LSE USE d-USE T@30 d-T @30 T@SO d-T@SO I --- 2.2 169 0 -33. 1 0 -9 0 2 - -- 2.2 192 23 -37.9 -4 .8 -6.2 2.8 3 -- - 2.2 157 -12 -30.6 2.5 7.1 16. l 4 --- 2.2 162 -7 -18.2 14.9 22.2 31.2 5 --- 2.2 149 -20 11.4 44.5 48 .3 57.3 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-1 (Tangential Orientation) - Continued WCA P- 18056-NP December 201 5 Revision 0

Westinghouse No n- Propr ietary C lass 3 5- 18 Lower Sh ell Forgin g [.t9D330/.t9C298]-1-1 (Tan gential)

C VGraph 6.02 : Hyperbolic Tang.mt Curve Printed on 82812015 3:39 P:VI

- I Curve Plant Capsule Material Ori . Heat /1-I I Byron 2 l IRR S. 508CL3 Tangential [.i9D330/49C298 1-I 1- 1 I 2 Byron 2 c SA508CL3 Tangential [49D330i49C298] -

1-1 3 Byron 2 w SA508CL3 Tange ntia l [49D330/49C298]-

1-1 4 Byron 2 x SA508CL3 Tangentia l [49D330/49C298]-

1-1

--

5

- --

Byron 2

- - l --

y A508CL3

- ---*--

Tan gentia l [49D330/49C298]-I 1- 1

- __J Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-l (Tangential Orientation)

WCA P-1 8056-N P December 20 15 Revisio n 0

- - - - -- - - - - - - - - --

Westinghouse Non-Proprietary Class 3 5- 19 Lower Shell Forging [49D330/49C298]-l-J (Tangential)

CV Graph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 3 :39 PM 100 t-i-~----~....-t---t----t----t---:;A~-t----t---T-----t

--f'0~) M ~...-

90 - ~A'l--2 1-+-~~+--~0-4..-@...,""'"i!~ FP.~AA~.......,.......,*"""'.......,"""'*'"""""""~

==:::=;1-+----+-~~~A~.~:  !.' r* ~7"""l~~*-~W-*~*--,,oc---+-~~+-~--1 80 -

-A-5 10 ----i~--+~-+--

r;:q J, ~" -- 7-------"~~-+-~-+---t a <> ~ ~~

60 t--~~-+-~~-+-~~-+.,.,..~~f--~~+-~~-+-~~-+-~~-+~~--t

<;, ~f/ >A so t--~~+-~~-+-~~u~~ . .....,_~

++-+-~~-+-~~-+-~~-t-~~-+~~--1 401--~~t-~~t-~-dlH=R--~t-~~1--~---jf--~---j~~---jf--~--t 30 l-----+--+---f3:J~I H!D+~--+-----+---+---+----+--"'----i ii ~ I 20 t - -- - - t - - - + -[-11:. ~ ~

10 ) - ~

t--~~+-~~+-~~11'\-~~-+-~~-+-~~-+-~~-+-~~-+~~---t

~~~ .

0 b::::::c::::::~!!!~~-""Cl'~.~-~1---1.* ~J_~*L-.l.~~*~.L.....J.*~..L~.1.- * .l~~*~J

-300 -200 -100 0 100 200 300 400 soo 600 Temperature {° F)

C urve Fluence LSE USE d- SE T @35 d-T 5 90.65 0 -17.7 0 2 82.3 -8 .35 -13 4.7 3 84.81 -5 .84 3.5 21.2 4 82.82 -7.83 25 .1 42.8 5 97.36 6.71 39 56.7 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging (49D330/49C298]-1-1 (Tangential Orientation) -

Continued WCAP-18056-NP December 20 15 Revision 0

Westinghouse No n-Propri etary Class 3 5-20 Lower Shell Forgin g [-t9D330/-t9C298]-1-1 (Tangential)

C\-Graph 6.02 : Hyp.::rbolic Tangent Curv.:: Print.:d on 8128120 15 3:39 P\I

-

Curve Plant Cap ul .:: Material Ori. Heat #

1 Byron 2 u IRR SA508CL3 Tangential f490330 49C2981-1- l 2 Byron 2 (j SA508CL3 Tang.::ntial [490 330 49C298)-

I 1- l 3 B)TOll 2 w SA508CL3 Tange nti al [49D330i49C298)-

1- l 4 Byron 2  :\ SA508CL3 Tangential [49D330/49C298]-

1-1 5 Byron 2 y s 508CL3 Tangential [ 49D330/49C298].I 1- 1

- -- ~- - - -*-- -- ______J Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298)-l-1 (Tangential Orientation)

WCAP-18056-NP December 2015 Revision 0

Westinghouse on-P ro pri etary C lass 3 5-2 1 Lower Shell Forging [49D330/49C298]-l-1 (Tangential)

CVGraph 6.02 : Hyperbolic Tangen t Curve Pri nted on 8/28/20 I 5 3:39 PM 90 0 1 t-t-~~--t~~--i-+~-U,H-~~-t-~~-+~~~t--~---t A 2 80 a 3 t-t-~~--1~....,#tt--t---#-#~-t-~~-t-~~-+~~~t--~---t

$ 4 70 A 5 1-t-~~+--f---jB-1~~-+~~-+-~~+--~-+~~-1 i..

~ 60 t-~~-t-~~-+-~~-+--H~_.!IA~~-+-~~-+-~~-+~~--11--~---I

~

.c 00

...... 50 t--~~-t-~~-t-~~--tt-t-~-.-+-t--~~-+-~~-t-~~-t-~~--tt--~---t c

~

(,J

~ 40 t--~~-t-~~-t-~~-fi-t--..-iH-t--~~-+-~~-t-~~-t-~~--tt--~---t

~

o L-...i--J:::::::=:!!!!~~--l.~L..-...L.-'--l~"--...L-L..---l~..1-....L---1..__J

-300 -200 -100 0 100 200 300 400 500 600 Temperature(° F)

Curve Fluence LSE USE d-USE T @SO d-T @SO 1 -- - 0 100 0 28.2 0 2 --- 0 100 0 7.1 -2 1.1 3 -- - 0 100 0 73 .9 45 .7 4 --- 0 100 0 75.9 47.7 s --- 0 100 0 88 .5 60.3 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature fo r Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298] 1 (Tangential Orientation) - Continued WCA P- 18056-NP December 20 15 Revision 0

Westinghouse No n-Proprietary Class 3 5-22 Lower Shell Forging [.t9D330/.t9C298]-l -1 (Axial)

C\"Graph 6.02 : Hyperbolic Tangent Curve Printed on 8 28 20 15 3:40 P\!

Curve Plant Capsule Mat.:rial Ori. Heat Fl 1 Byron 2 UNIRR s 508CL3 Axial [490330 '49C298] -I 1-l 1

2 Byron 2 c SA508CL3 . xial [490330 49C298]-

1-1 3 8)'TOl1 2 w SA508CL3 xial [49D330/49C298]-

1-1 4 Byron 2 x SA508CL3 Axial [490330i49C298 )-

1-1 5 y SA508CL3 Axial [490330/49C298 J-Byro: __ L 1- 1

- - --*-- ~ ---- * - - - - - -- -- ---

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298)-1-1 (Axial Orientation)

WCA P-180 56-NP December 2015 Rev ision 0

Westingho use No n-Pro pri etary C lass 3 5-23 Lower Shell Forging [49D330/49C298]-1-1 (Axial)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/2015 3:40 PM 180 ....-~~..-~~...-~~....-~~ .......~~--.-~~......~~---r~~~.--~---.

0 1 160 A 2 t-t------:-~t-~-t---1.r-t:;;;;..--+_..,.._-t--:----t~----1 a 3 140

  • 4 A 5 100 80 60 40 20 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

C urve Fluence LSE USE d-USE T @JO d-T @JO T@SO d-T @SO 1 - -- 2.2 154 0 -47 0 -16.3 0 2 --- 2.2 160 6 -26.6 20.4 2.7 19 3 -- - 2.2 129 -25 -14.9 32.1 25 .3 41.6 4 --- 2.2 150 -4 -7.5 39.5 31.2 47.5 5 --- 2.2 119 -35 2 l.6 68 .6 56 72.3 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging (49D330/49C298]-1-1 (Axial Orientation) - Continued WCA P-18056-NP December 20 15 Revisio n 0

Westi nghouse o n-Proprietary C lass 3 5-24 Lower Shell Forging [-'90330/-'9C298l-1-1 (Ax ial)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8 28/2015 3:4 1 P\ I I

Curve Plant Capsuk Material Ori . Heat # I 1 Byron 2 UN I RR Sr\508CL3 Axial [49D330"49C298]-

1-1 2 Byron 2 Li SA508CL3 x.ial [49D330 1 49C298]-I 1-1 3 B)TOn 2 w SA508CL3 Axia l [49D330149c298J-J 1- 1 4 Byron 2 x SA508CL3 Axial [49D330/49C298]-I 1-1 5 Byron 2 y SA508CL3 Axia l [49D330/49C298]_1 1-1 _ _J

- -- -- --~-- -- ----- - - -

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-l (Axial Orientation)

WCAP-18056- P December 20 I 5 Revision 0

Westi nghou se No n-Proprietary C lass 3 5-25 Lower Shell Forging [49D330/49C298]-1-1 (Axial)

CVGraph 6.02 : Hyperboli c Tangent Curve Printed on 8/28/2015 3:41 PM 100 0 1 A

" ..

90 f-

......

A 2 '

0 ., J

  • ~ -

~ ""

80 f-a 3 ~

v ~

...

..... Ii f 1~

£.a.

$ 4

.- 0

  • -e- - A 5

{ll 70

'-"

c 60 I / 1I

  • - Q

{ ll c

~ 50 oj I

~ A~ ~ >

c..

~

4~ f; ~

-....

~

~

i..

~

40

.

0 [

j:> ~j ~

~ 30

.J 20

~

i- A

' I')

~

10 A ~~n". .

0 T

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

C urve Fluence LSE USE d-USE T@35 d-T @35 1 --- 1 82.49 0 -28.7 0 2 --- l 79.62 -2.87 -4.1 24.6 3 --- 1 86.8 4.31 17.5 46.2 4 -- - I 81.3 -1.1 9 31.7 60.4 5 --- I 88.47 5.98 40.8 69.5 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-1 (Axial Orientation) - Continued WCA P-18056- P December 201 5 Revis io n 0

Westi ngho use o n-P roprietary Class 3 5-26 Lower Shell Forging [.i9D330/.i9C298]-1-1 (Ax ial)

CVGraph 6.02: Hypcrbolic Tang ..:nt Curve Printed on 812812015 3:42 P~1 Curve Plant Capsule ~l atcria l Ori. Heat #

I Byron 2 NIRR SA508CL3 Axia l [49D330'49C298]-

1-1 I 1

2 Byron 2 lj s 508CL3 Axial [49D330,49C298]-

1-1 3 Byron 2 w s 508CL3 Axia l [49D330149C298)-

1-1 4 Byron 2 x SA508CL3 Axial [49D330/49C298)-

1-1 5 Byron 2 y SA508CL3 xial [490330/ 49C298)-

1- 1

-- - ~

- - - - --

Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298)-1-1 (Axial Orientation)

WCAP- 18056-NP December 20 15 Revision 0

West inghouse Non-Pro pri etary Class 3 5-27 Lower Shell Forging [49D330/49C298]-1-1 (Axial)

CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/2015 3:42 PM 90 0 1 1-+~~--1r-~~+-EY--H~~~-t-~~--t~~~t-~--1 A 2 80 a 3 1-+-~~-+-~--e1t1--1&-A-11---'--+~~-+-~~-+-~--1

  • 4 70 A 5 t-t-~~--t-~----ttt-:r----ir--~-+~~-r-~~--t-~---t o l.....--=~~~=--i~..L_-1.--1........i..~L-..1....-...L---1...--1~J...-..L_-1.-....J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

C urve Fluence LSE USE d-USE T @SO d-T @SO I -- - 0 100 0 32.4 0 2 -- - 0 100 0 45.4 13 3 --- 0 100 0 73 .6 41.2 4 --- 0 100 0 66.9 34.5 5 --- 0 100 0 89.8 57.4 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298)-1-1 (Axial Orientation) - Continued WCA P- 18056-NP December 20 15 Revis ion 0

Westinghouse Non-Proprietary C lass 3 5-28 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 812812015 3:43 PM Curve Plant Capsule Material Ori . Heat #

I Byron 2 UNIRR WELD NIA 442002 2 Byron 2 u WELD NIA 442002 3 Byron 2 w WELD NIA 442002 4 Byron 2 x WELD NIA 442002 5 Byron 2 y WELD NIA 442002 0 1 80 A 2 1--+-~~-+-~~+--'--+~---+-~~-1-~~+-~~

8 3 70

  • 4

-rlJ

..c

"'i'

~

60 A 5 1--~~-+-~~--j~~~-+---..~~q:}~G-+...£.Lt.,-----+-~~--lf--~~-+-~~--1

._, so 1--~~--+-~~--1~~~-Al.~,_.r-,!1."--~~+-~~--+-~~---1f--~~-+-~~-1

~

i...

~

= 40

~

1--~~-+-~~-+~-l-il---/,f-A-A--~-1-~~-1-~~-+~~~+--~~-+-~~~

~ 30 r-_;__,~~--j--H.Eff:ia-~~-+-~~-t-~~+-~---ll--~-+~~--I 0 ..___..~...._~..___.~_._~...._~...___..~ ......~...___..~ .......~..___......__._~.......~...___.

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCA P- 18056-NP December 20 15 Revision 0

Westinghouse on-Propri etary Class 3 5-29 Surycillance Program Weld Metal CV Graph 6.02: llyperbolic T:mgl!nt Curve Printed on 8128 '2015 3:43 P\J C urve Fluen ce LSE I USE I d-U E T @30 d-T @30 : T @50 d-T ra;so 1 1 -- - I 2.2 67 I 0 -71.2 0

-t-

-6.3 0 I

__,

2 --- 2.2 77 10 -62.5 8.7 7.3 13.6 3 --- t I

2.2 68 f I

1 -42.4 28.8 l 37.4 t 43 .7 l

I

--- I I 4 2.2 66 I -1 -17 54.2 48.3 I 54.6 I

5 -- - I 2.2 58 I -9 - 12.5 58.7 I 100.2 I 106. 5 I Figu re 5-7 Charpy V-Notch Impact Energy vs. Tempe rature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) - Continued WCAP-18056-NP December 201 5 Revision 0

Westinghouse on- Prop rietary C lass 3 5-30 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic Tangent Curve Priated oa 8/28/2015 3:44 PM Curve Plant Capsule Material Ori . Heat #

I Byron 2 UNJ RR WELD N/A 442002 2 Byron 2 u WELD N/A 442002 3 Byron 2 w WELD NIA 442002 4 Byron 2 x WELD NIA 442002 s Byron 2 y WELD IA 442002 0 1 70 A 2~~--t~~+-~-t-~1'""'1!~111==t====l===::===t D 3

$ 4 t-+-~~-+-~Hri~:t-~+-~--t~~-+~~-+-~~,

A 5

-~

i..

Q.>

30 1--~~+-~~+-~-l-l!J'-W~~-+~~-+~~--t~~~t--~~+-~~~

......

~

~ 201--~---+~~---1-MeAiH-~~-+-~~+-~----1f--~---t~~-+~~,

0~§;3~::::l~_l--J...._L--L-_L-'--_L__._J_..L-l_~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCA P-180 56-NP Decemb er 2 01 5 Revisio n 0

Westi nghouse on-Proprietary Class 3 5-3 1 Surveillance Program Weld Metal CVGraph 6.02 : Hyperbolic T:mgent Curve Printed on 8/28/2015 3:44 PM I

C urve Fluence I

LSE CE d- SE T @35 d-T @35 1 - --

! 1 65 .93 0 -29.3 0 2 --- 1 70.82 4.89 -20. l 9.2 3 - -- f 1 66. 76 0.83 -3.3 26 4 -- - I 1 53.4 -12.53 27.6 56.9 5 -- - I 1 55.95 -9.98 25 .8 SS . I Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) - Continued WCAP-18056-NP December 20 15 Revision 0

Westingho use o n- Propri etary C lass 3 5-32 Surveillance Program Weld Metal CVGraph 6.02 : Hyperboli c Tangent Curve Printed on 8128/2015 3:44 PM Curve Plant Capsule Material Ori . Heat #

I Byron 2 UNlR R WELD NIA 442002 2 Byron 2 u WELD NIA 442002 3 Byron 2 w WELD IA 442002 4 Byron 2 x WELD IA 442002 5 Byron 2 y WELD NIA 442002 100 r------r-----,-------r-~-r---~§::1 -- ~~~- ~~*~&~*~--~*r-"T'~~--,r-~--,

90 -

---4'0~ 1 ~ H- 'V?: ~

80 -

::=;======1i:rht:~:r==-==============

---4$~ 4 c 70 -""'A-5

-L_~~_:::J-t~~-HH'l'-lr-~-r~~r-~-t~~;-~--i 60 1~ ~*

t--~~t--~~t--~-rEflt'jff---ir-~--,r-~--1r-~--1r-~~r-~--i 50 ----+-~-+--

/c , ~

, ----__.~-+-~-+----+-~-+---o 40 1--~~+-~~-+-~-f-ilfllif--~--1~~~+-~~-+----,,.--+-~~--+~~--t 30~ ~ ~.--+~--hl

&

~6

¢). ~

~~~ , .---t-~-t-~-+-~-t-~+---t 20 1--~~-+-~~~*m~H'~til:J~~,__t--~~-+-~~-+~~~+-~~-t-~~--+~~-----1

&

AA c fAJj~J ~

_ ).

lO t---'--~ ~~~"./'

~ ~ cvm~ __..~

A>--f--..,---t-~--+--.,---1f--~-+-~--+--..,.--i o L.-a;;;:=:!i:::l~-

~L-...1-....J.........1_.L-....1..........L-L..-...L..--1....---1._.1...-...L--1..__J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCA P- 18056-NP December 2 0 15 Revis io n 0

Westinghouse No n-Propri etary Class 3 5-33 Surveillance Program W eld Metal CV Graph 6.02 : Ilyperbolic Tangent Curw Print.:d on 8128120 15 3:44 n1 Cu rn Flue nee LSE LE d-USE T @50 d-T @'SO II I I 1 - -- 0 100 0 -27.5 0 2 --- 1 0 100 0 1.5

~~

29 1

j 3 - -- 1 0 100 0 -0. 1 27.4 4 --- 0 100 0 18.7 46.2 5 --- 0 100 0 25.6 53. 1 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) - Continued WCA P- 18056-NP December 20 15 Rev ision 0

Westinghouse on- Prop ri etary Class 3 5-34 Heat-Affected Zon e C\-Graph 6.02 : Hyp;:rbolic Tangent Curv;: Printed on 8128 '2015 3:46 P\I Curve Plant Caps uh: 1'. latcria l Ori. Heat #

I I

1 Byron 2 UN IRR SA508CI .3

" [49D330 '49C298]-

1-1 I 2 Byron 2 SA508CL3 NI [49D330t49C298]-1 1-1 3 B)'TO!l 2 w SA508CL3 NI [49D330149c298J-I 1- 1 I 4 Byron 2 x SA508CL3 NIA [49D330/49C298] _1 1-1 5 Byron 2 _L- - - - -

Y SA508CL3

__

NIA [49D330/49C298J _I 1- I

- - -- - ---- --- - ._____ -- --~ -- _J Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-18056-NP December 20 15 Revision 0

West inghouse on-Proprietary Class 3 5-35 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/20 IS 3:46 PM 200

.... .j~

180 - 0 1 A 2 .

8 3 .,,,,. ,,,....-

160 - '

I~

$ 4 Dn

...-... 140

-

.c

{I)

I it: 120

- A 5 j v('\~

~

u

- v

~ -----&

,...

v

.

o~ {.

'-'

A

~ JOO ()

"'

"""

uf/ <~

~

~ = 0 0 z

>-

u 80 60 .

~o

rl . .

'(/ <>!>.

40

~

'/) ~

..a I"\

20

~l 0 - -o ~

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

Curve Flue nee LSE USE d-USE T @30 d-T @30 T@SO d-T @SO I --- 2.2 131 0 -1 82.3 0 -145 .6 0 2 -- - 2.2 17 1 40 -175 .8 6.5 -136 9.6 3 -- - 2.2 ISi 20 -1s1.5 30.8 - 118.3 27.3 4 --- 2.2 148 17 - 147.8 34.S -104.6 41 s - -- 2.2 140 9 -127.1 55 .2 -90.8 54.8 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCA P-18056-NP December 2015 Revision 0

Westingho use No n-Proprietary C lass 3 5-36 Heat-Affected Zone CVGraph 6.02: Hyperbolic Tang.mt Curve Printl!d on 812812015 3:46 P~I Curve Plant Capsule Material Ori. Heat # I I Byron 2 UN IRR SA508CL3 NIA [49D330149C298]-

1-1 2 Byron 2 c SA508CL3 NI [49D330149C298]-

1-1 3 B)'TOll 2 w SA508CL3 NIA [49D330149C298]-

1-1 4 Byron 2 x SA508CL3 NIA [49D330149C298]-

1- 1 5 Byrnn 2 y SA508CL3 NI [490330149C298]-

1-1

--

Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-18056-NP December 2015 Re vision 0

Westinghouse on-Proprietary C lass 3 5-37 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/2015 3:46 PM 100 .--~~...-~~--~~-...~~~.--~~..-~~--~~-.-~~--.~~---.

90 0 1 >--+-~~~+-~~---~~--+~~~-+-~~-+-~~----1~~---

A 2 80 8

$

3 1-t-~-.~~~------..-

4

......~.........

A S H---1----F>~....-~1---~--+~~-+-~~+-~---+~~---1 0 &;;......l...Q-~:....i..~..1---L~-'---"l..--l-~'----'-~.l.---l.~..l---L~-'---"~-I-~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

Curve Fluence LSE SE d-USE T @35 d-T @35 1 --- 1 79.58 0 - 133 .8 0 2 --- I 79.71 0.13 - 122.4 11.4 3 --- 1 80.35 0.77 -102 .7 31.1 4 --- I 80.87 1.29 -73 .6 60.2 5 --- I 87.53 7.95 -78.4 55.4 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCA P- 18056-NP December 20 15 Rev ision 0

Westinghouse Non-P roprietary Class 3 5-38 Heat-Affected Zone CV Graph 6.02 : Hyperbolic Tangent Curve Printed on 8128120 I 5 3:47 P.\I Cur\'C Plant Capsule Material Ori . Heat # I I Byron 2 N IRR S. 508CL3 NI [490330, 49C298]-

1-1 2 Byron 2 LI SA508CL3 NI [49033 0149C298]-

1-1 3 ByTon 2 w s 508CL3 *1 [49D330/49C298]-

l-1 4 Byron 2  :\ SA508CL3 NI [49D330/49C298]-

1-1 5 Byron 2 y SA508CL3 NI [49D330/49C298JJ 1- 1

--- - ---- -- - *-- -----

Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material WCA P-18056-NP December 20 15 Rev ision 0

Westinghouse on-Proprietary Class 3 5-39 Heat-Affected Zone CVGraph 6.02 : Hyperbolic Tangent Curve Printed on 8/28/2015 3:47 PM 90 0 1 1-+~~-#-t-+--i~--b"~~-t-~~~t--~~-+-~~-+~~--t A 2 80 a 3 t-t--:i1r.--,1m-cfe'-~+-~--1f---~-+~~-t-~~-t-~--t

$ 4 70 A S H--+--+--fft--e---11--~-+~~-t-~~t--~-+~~-t o ~~::r=::~_L.---1..--1~1...-1-...1.-..L--1...-1..--'---1~'--.i_-1-~

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

C urve Fluence LSE SE d-USE T@SO d-T @SO I --- 0 100 0 -53 .5 0 2 --- 0 100 0 -111.3 -57.8 3 --- 0 100 0 -67.3 -13 .8 4 --- 0 100 0 -38. J 15.4 5 --- 0 100 0 -36. J 17.4 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 2 Reactor Vessel Heat-Affected Zone Material - Continued WCA P-180 56-NP December 201 5 Rev isio n 0

Westingho use on-Proprietary C lass 3 5-40 YL75 , -50°F YL65 , -30°F YL72 , -10°F YL66, -5° F YL64 , 0°F YL71 , 5°F YL68 , 10°F YL73 , 20°F YL63 , 40° F YL69, 72°F

'"-"*--~* .. ..**

  • ' ~~~~.;!'.~

..-: --~~ ~,

.-. ~

~ ..

~*~- ~..;,:;.; .

.?'*'r.'f"**

_.:.~**.

YL70, 120°F YL67 , 175°F YL61 , 225°F YL 74, 250°F YL62 , 275°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-1 (Tangential Orientation)

WCAP-18056-NP December 20 15 Revision 0

Westing house on-Proprietary Class 3 5-4 1 YT67, -30°F YT75 , -20°F YT62, - 10°F YT74, 0°F YT72, 10°F YT71 , 20°F YT69, 30°F YT65, 40°F YT63 , 50°F YT70, 72°F YT6 I, 120°F YT66, 175°F YT64, 225 °F YT73 , 250°F YT68, 275 °F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Byron Unit 2 Reactor Vessel Lower Shell Forging [49D330/49C298]-1-1 (Ax ial Orientation)

WCAP-18056-NP December 2015 Revision 0

Westingho use o n-Pro pri etary C lass 3 5-42 YW67, -l 10°F YW74, -70°F YW62 , -50°F YW61 , -30°F YW69, -10°F YW7 l , 0°F YW65 , I 0°F YW70 , 20°F YW72 , 40°F YW66 , 72°F YW73 , 120°F YW75 , l 75 ° F YW64, 225° F YW63 , 250°F YW68 , 275°F Figure 5-15 Cbarpy Impact Specimen Fracture Surfaces for the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCA P- 18056-N P December 201 5 Rev is ion 0

Westinghouse Non-Propri etary C lass 3 5-43 YH70, - I 80° F YH61 , -150°F YH75 , - I 20°F YH65 , -110° F YH74, - I 00 °F YH67, -70°F YH72 , -50°F YH63 , -30°F YH69, - I 0°F YH66, 0° F YH68 , 10°F YH71 , 40°F YH73 , 72°F YH64, I 00°F YH62, I 75 °F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 2 Reactor Vessel Heat-Affected Zone Material WCAP-18056-NP December 2015 Rev is io n 0

Westinghouse on-P ro pri etary Class 3 5-44 100.0 90 .0 "------

.._____

Ultimate Tensile Strength

-* -~

80 .0 70 .0

- -

-

60 .0 0.2% Yield Strength

~

."' .

50 .0 u;

e 40 .0 30.0 20 .0 10.0 0.0 0 100 200 300 400 500 600 Tempe rature (' Fl Lege nd : ~ , * , and

  • are uni rradi ated ti, o , and o are irradi ated to 4. 19 x I 0 19 n/cm 2 (E > 1.0 MeV) 80 Area Reduction 70 -

60 50

~

~u 40

J c

Total Elongation 30 I

- I 20 I

10 Uniform Elongation I

0 0 100 200 300 400 500 600 Temperature (' Fl Figure 5-17 Tensile Properties for Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-1-1 (Tangential Orientation)

WCA P-18056-NP December 20 15 Revision 0

West inghouse on-Pro pri etary C lass 3 5-45 100.0


"------------- Ultimate Tensile Strength 90 .0

-

80 .0 70 .0

,,_________

60 .0

  • 0.2% Yield Strength

~

... 50 .0

-

~

40 .0 30.0 20 .0 10.0 0.0 0 100 200 300 400 500 600 Temperature (' F)

Legend : .&. , * , and

  • are un irradiated fl, o, and o are irrad iated to 4. 19 x I 0 19 n/cm 2 ( E > 1.0 Me V) 80

---

Area Reduction

~

70 60 ~ I 50 I

~

~ 40 I u

~

c 30 Total Elongation 20 - I I

10

-

Uniform Elongation 0

0 100 200 300 400 500 600 Temperature (' F)

Figure 5-18 Tensile Properties for Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-1-1 (Axia l Orientation)

WCAP-18056- P December 20 15 Revision 0

Westinghouse Non- Prop ri etary C lass 3 5-46 100.0


Ultimate Tensile Strength 90 .0 "---

-

80.0 70 .0

-

60 .0 0.2o/, Yield Strength

'iii

~

. 50.0 e

v; 40 .0 30.0 20 .0 10.0 0.0 0 100 200 300 400 500 600 Temperature (°F)

Legend: .A ,* , and

  • are unirrad iated

, o , and o are irradi ated to 4. 19 x I 0 19 n/c m2 (E > 1.0 Me V) 70 ~

Area Reduction 60 50

~ 40

~u

J c 30 Total Elongation 20 10 Uniform Elongation 0

0 100 200 300 400 500 600 Temperature (' F)

Figure 5-19 Tensile Properties for the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCA P- 18056-NP December 201 5 Rev ision 0

Westing house Non-Proprietary Class 3 5-47 YL13 - Tested at 75°F YL14 - Tested at 250°F YL15 -Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-1-1 (Tangential Orientation)

WCA P- 18056-NP December 20 15 Rev ision 0

Wes tingho use on-P ro pri etary Class 3 5-48 YT13 - Tested at 74°F YT14 -Tested at 250°F YT15 -Tested at 550°F Figure 5-2 1 Fractured Tensile Specimens from Byron Unit 2 Reactor Vessel Lower Shell Forging

[49D330/49C298]-1-1 (Axial Orientation)

WCAP-18056-NP December 20 15 Revis ion 0

Westinghouse on-Propri etary Class 3 5-49 YW13 - Tested at 76°F YW14 - Tested at 250°F YW15 - Tested at 550°F Figure 5-22 Fractured Tensile Specimens from the Byron Unit 2 Reactor Vessel Surveillance Program Weld Material (Heat# 442002)

WCAP- 18056-NP December 2015 Revision 0

Westingho use Non-Proprietary Class 3 5-50 110 100 ......................... .*............... . . .... .. .. :. ........................ .

90 80 ...... . .... .. . ... ........ .. ... ..... .... .. . .. . . ....... .. ........... .. ... ..

,.--,

.iii 70

.::it. .. .

L.....J 60 . . .. .. ... . . ...... . .. . . .. ...... ..... .. ....... ... .. ................. . . .... . ...

Vl Vl Q)

!.....

so

µ

(/) 40 ......................... *.......................... :. .. .. .. . .. . ............. .

30 20 ......................... .*.. . ......... .. ... .. ... . ' . :. . ...... ....... .. ..... . .. .

10 0

0 10 20 30 Strain [%]

Tensile Specimen YL13 Tested at 75°F 100

. .

90 **** ***** **** **** **** ***** ***** ******* ***** **** **** **** ***** **** **** **:** ** ******* **** ***** **** *** ***** ***

  • 80 ..... .... ..... .. .... ..... .... .... , ........................... .

.

.. .......................................................................................................

.

..

70

.--.

. .

Vl

.::,t. 60 ***********************************:***********************************.***************

.. .. *******************

L.....J . . ..

Vl so ..........................................................................................................

.. .. .

!!'.) ... ..

.

....,!..... 40 ***********************************:***********************************.************************* ... ... ... .

IJ) ..

..

..

..

30 ****** *** ***** ** ******* ***** *** **** ..**** ***** **** **** **** ***** **** ***** ***.. ******* **** *** **** ****** ** ***** ****

. .

20 I o o o o I o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 ~ 0 0 0 0 I 0 t 0 0 0 0 0 0 I t 0 0 0 0 0 0 0 0 0 I 0 0 0 0 I t I 0 0 0:0 0 I 0 0 0 0 0 0 0 0 t I 0 0 0 0 0 0 ' 0 I I I 0 0 0 t 0 I 0 t 0 0 0 0 10 ................................... .., ... ..... ..... .......... .. .... .... ........ .

.. .. ... .. ... .... ..... ... ........ .

.. .

0 0 10 20 30 Strain[%]

Tensile Specimen YL14 Tested at 250°F Figure 5-23 Engineering Stress-Strain Curves for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-1 Tensile Specimens YL13 and YL14 (Tangential Orientation)

WCAP-18056-NP December 20 15 Revision 0

Westingho use on-Pro prietary Class 3 5-5 1 90 ..... . . ... .... . .. ................. *** * ********* * ***** ** * * ** *** * *****:*** ** ****** ** * * **** ** * ** *** ** * * ****

80 70 .... .. .. ............. .......... ....... ... ........ ...... .. ....... .... **** ***** ******* ***** *** ****** *** ****

,.......,

. .

U) 60 ******** ** **** ** ******* **** **** ****:*** . *** ******* ** ***** ********** *****.*** . ** * ..... ....... .. ........ .. .... .

~

......... .. ...

....... ................ .... ..... ........ - ... .. ..... ... .... .. .. ...... .. ........

U) 50 -- . ......... ..... ........ .... .....

!{! .. ...

40 ***** *** ****** ********** ******* ** **:***

. . ***** *** *** ..... ... ....... .. .... .

.. ** *** **** **** **** *** ****** **** **.**

!.....

+.J V)

..

.. ..

30 ..... .... ..... .... ..... ........ .... ...... ..... .... ........ .. ....... .... ...... .. ........ ........ ........ ... .. ...

. .

20 < 0 0 0 0 I 0 o 0 o 0 0 0 0 0 0 0 0 0 0 o o I t ' ' '0 0 o o ' * ' 0 ~ 0 o 0 t 0 0 0 ' 0 0 0 0 ' I 0 o" o 0 o 0 I 0 0 o o o o o > ' ' ' o *:* o o ' ' ' o o o o o ' ' ' o o o o o 0 ' t ' ' 0 0 0' 0 < > o 0 o 0 o 10 ..... ..... .... .... .... ..... .... .... ., ... ..... .... .... .... .. ... .... .... ..... . ..... ...... .. .... .. ... .... .. ..... .

.. ..

0 0 10 20 30 Strain[%]

Tensile Specimen YL15 Tested at 550°F Figure 5-24 Engineering Stress-Strain Curve for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-1-1 Tensile Specimen YL15 (Tangential Orientation)

WC AP- 18056-NP December 20 15 Revis ion 0

Westing house No n-Pro prietary Class 3 5-5 2 110 100 ......................... .*... . ............. . .. . .... :. ................ . .... .. . .

90 80 ........................ .*......... . ............... :. ......... . ..... . . . ..... .

,.......,

  • v; 70
,t,

'--' 60 ............. . .... . ...... .*.......... . .............. :. ........... . ........... .

Vl . .

Vl so . . . . . .................. . .... . .. . ...... . ...... .. . . .. . ..... . ..... .. ..... .. .... .

...

Q)

L..

(fJ 40 ......................... .*. ..................... . .. :. ... . ........ .. ......... .

30 20 ...................... . ..... .. . . . . . ... . ............. ... ....... .. ....... . ........

10 0

0 10 20 30 Strain [ %]

Tensile Specimen YT13 Tested at 74°F 100 90 .... .. ... .... .. ........ . ' ....... .. ... ..... ... ' .' . .... ~ ' ' .... ...... ... *:* .. .... ... ... ........ ...... .. ..... .

80

... .. ..... ... ....... ........ ........ - ......... .. .............. ... *****- *** ** *** *** ****** ** ******* **** ***

70 - -

,......., . ..

  • u;

.::,(, 60 .... ..... .... ................. .... .., ... .... ..... ........... ...... ................ .

... ......... ...... ....... .

........ ..

. ..

. .... .... ......... .. ..... ...... .

Vl so ..... ..... .... .... ..... ... ...... ... .., ... .. ... ... .... ....... .. .... ........... ..

...~

- -

          • *** *************** ******** ** **:***** -

... ********* ***** ************ ****.**** .. ******* ** ** ...... ...... ... ... .

L.. -

40 rJ)

.

30 ..... ..... .... ..... .... ............ .... -

.. .... ... ... ..... .... ......... *-.- ..... .... ... . .. .. ..... ... .. ..... .

' ' ' '

20

... ..

' o o o o 0 0 0 ' 0 o o o 0 ' ' ' o o o o o ' t 0 0 ' 0 0 0 0 o t o o ~ o o 0 t 0 t ' ' 0 o 0 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 I I ' *:o 0 0 0 I 0 I 0 0 0 0 I I ' 0 o 0 o 0 ' I 0 0 o 0 0 0 o 0 o 0 0 0 0 o o

.... ... ....... ....... ..... .... .. .. ,,. ... ..... ... .. ....... ..... ... ... .......

.

10 . ... ..... ......... ... ... .. ..... .. .

... ...

0 0 10 20 30 Strain [%]

Tensile Specimen YT14 Tested at 250°F Figure 5-25 Engineering Stress-Strain Curves for Byron Unit 2 Lower Shell Forging

[49D330/49C298)-1-1 Tensile Specimens YT13 and YT14 (Axial Orientation)

WCA P-18056-NP December 2015 Revis ion 0

Westinghouse on-Propri etary Class 3 5-53 100

. .

90 ** ******** *** ***** ******** ** ******'* ** ****** ** ****** ******** *********-=** ****** ** ******* ** ************* ***

  • 80 ..... .... ... .... .... .. ... .... .. ...,. ... ..... ... ..... ... . ...... ..... ..... .. ..... ... ..... .... ..... ........ ... .

.. ..

70 .. .. ..... .... ......... .... ..... ....... ...... ... .... .... ...... .. .... **** *** ***** *** *** *** *** *** **** *** ***

~

U) 60 **** ******* ****** **** ***** ***** ***1 .. *** ****** ******* **** ****** ** ***** *-=**

.. ** .. ... ...... ........ ..... ... .. . .

.......... .. ..

U) 50 ...... .... .... ... ..... ..... .... .... .., ... ...... ........ .. ...... ... ..... ..........

.. ... .. ..... .... ..... ..... ... .

~

I...

..

.

..

.

...... 40 ****** **** **** ******* ******* *** *** *:.. ******** **** **** *********** ******* *.*.. ****** *** ***** **** ***** *** ***** ****

l/)

.

. .

.

30 ' .... ..... .... ' ..... .. ..... ........ ... .. ...... .. ................. ..... '. *-.. ... ' .. ... . ' ... .... ........ ..... ... .

. .

20 **** ****** ** *************** **** **** .:* ******* ** ** **** **** ***** *** ***** **:** . **** **** ********* *** ***** ***** ****

.. ..

10 ... ...... .... .. ... ... .. ... .... .... .,, ... ...... ....... .... ..... ... ..... ..... .

...... .. ..... ......... .. ........ ..

0 0 10 20 30 Strain[%]

Tensile Specimen YT15 Tested at 550°F Figure 5-26 Engineering Stress-Strain Curve for Byron Unit 2 Lower Shell Forging

[49D330/49C298]-l-l Tensile Specimen YT15 (Axial Orientation)

WCA P- 18056-NP December 20 15 Revision 0

Westi nghouse on-P ro prietary Class 3 5-54 110 100 ......................... *.......... .. ...... . ....... :. .......... .. ............ .

90 80 .. . .... . ........ . .. *> ... . .. . . .... .... ... .... : .... ... .. . . .. ...... . .... .

70 ........ . . . . . ........ . . . ....... . . . .. . .... ..... .. . .. . . .... .. . .......... .... ..

r---.

Vl

~

60 ... ..................... *:- ......... . ............. . : ........... ...... . . . .. .

..._,

.. . ...... . .................

Vl .

Vl Q) so ........ . ..........................................

I...

40 . ...... .. ....... ........ *:- ............. ... . .... .. . : ........ . . . . ............ .

(/)

. .

30 ........................ ....... . ........ . ...... . ... . ... . .. . ....... . . . ........

20 . . . . . . . . . . . . . . . . . . . . . . . . . > .. .. .. . .... . . .. ....... .. : ..*................*.....

. .

10 .................................................. .. ...................... . ..

0 0 10 20 30 Strain[%]

Tensile Specimen YW13 Tested at 76°F 100

. .

90 **** ** ******* *** ************* *****:*************** ***** **************-:** *********** ****** **** ******** *****

. . ..... .... .... ....... .. ... ..... ... .

80 .... .. .. .... ... .... ... .. .... .... .., ........ ......... ........ ...... ..... ...

.. .

70 ..... .... .... .... ..... .... ...... ....... ... ..... .... ... .......... . ***** ******* ... *** *** ***** **** ***** *** ***** ****

,.......,

Vl 60 ..... .. .................. .. ....... ..:; ...... .. ............ ..... ... ... ... .:.. ..... ...... .. .................... .

~

...........

..... .. ................... ............. . ..... .... .... .... ...... .. ..... ...... . ..... ... ... .... ..... ... ..... ... .

..

Vl 50 ..

i!J . .

I...

.µ l/)

40 ******* ** ************** *** *********:******** ** *************************.**** .............................. .

30 ....................... ... ........ .... '

. ' .... ...... .... .. ..... ... .. .... *-. ... ...... ... ...... ..... ... .. ...... .

20 **** ****** *** **** **** ** **** ****** *:** .. ****** ******* ** **** **** ***** *** *-:** .. ***** *** **** *** ******* ***** *** ****

. .

10 ...................................................................... ..... .. .. .. ....... .. ...... ........ .

_..

0 0 10 20 30 Strain [%]

Tensile Specimen YW14 Tested at 250°F Figure 5-27 Engineering Stress-Strain Curves for Byron Unit 2 Surveillance Weld Material Tensile Specimens YW13 and YW14 WCA P-18056-N P December 20 15 Revision 0

Westinghouse on-Proprietary Class 3 5-55 100 90 ............... ' ................... ..... ' ' ..... ' ....... .. ...... .. ' . ' . *:* .... ... .. ' ...... ... .. ..... ..... ... .

~

80

. . ..... ...... .. ..... ....... ... ......

70 ..... ... .. .. ...... .............. ....... .. ..... .... .... ..... .... .. .... ..... ..

,....., .. ..

'Ui 60 .... . . ... .... ' . ' . ...... ... .... ' .. .: ... . ' ... ............ .... .... ... . . *>. '.' ...................... '. . .. .

~ . .

..........

.

.... ... .. .... .... ...... .... .... ... .... ..... .... ....... ...... ... ... ............... . .... ............. ... ....

(/)

so .... ....

ll1 .

....

I...

(/)

.

40 ***********************************!***********************************.*** ... .... .... .... ... .. ... ..... ... .

30 .... ..... .... .... ..... .... .... .... ...... . ... .... '.' ..... .......... .. *-.

' '

. ' .. ... ..... .... ... ... ...... .

. ' ' '

        • ***** **** **** **************** *:***** .. **************** *** ******* ** **:**

20

.. .. ***** *** *** ******* **** **** *** *****

.

10 ........ .. .... .... .... ... ......... ..... ..... ..... ... ..... ......... .. ... .. .... .... ..... ....... .... ..... ... .

.

_.

0 0 10 20 30 Strain [%]

Tensile Specimen YW15 Tested at 550°F Figure 5-28 Engineering Stress-Strain Curve for Byron Unit 2 Surveillance Weld Material Tensile Specimen YW15 WCAP-18056-NP December 20 15 Revision 0

Westinghouse Non-Proprietary Class 3 6-1 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates (Sn) transport analysis performed for the Byron Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant- and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Y, withdrawn at the end of the l 51h plant operating cycle, is provided. In addition, the sensor sets from the previously withdrawn and analyzed capsules (U, W, and X) were re-analyzed and are presented. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently form the basis for projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 effective full-power years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel.

However, in recent years, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-13, "Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 17] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 Me V) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-94, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 18]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. 1].

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on nuclear cross-section data derived from ENDF/B-VI and used the latest available calculational tools.

Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 19]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Ref. 20].

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-2 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Byron Unit 2 reactor vessel is shown in Figure 4-1.

Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.5°, 61.0°, 121.5°,

238.5°, 241.0°, and 301.5°, as shown in Figure 4-1. These full-core positions correspond to the octant symmetric locations shown in Figures 6-2 and 6-3: 29.0° from the core cardinal axes (for the 61.0° and 241.0° capsules) and 31.5° from the core cardinal axes (for the 58.5°, 121.5°, 238.5°, and 301.5° capsules). The stainless steel specimen containers are 1.63-inch by 1.25-inch and are approximately 60 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the approximate central 5 feet of the 12-foot-high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a significant effect on both the spatial distribution of neutron fluence rate and the neutron spectrum in the vicinity of the capsules. However, the capsules are far enough apart that they do not interfere with one another. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Byron Unit 2 reactor vessel and surveillance capsules, a series of fuel-cycle-specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

cp(r, e, z) = cp(r, e)

  • cp~~r;) (Eqn. 6-1) where ~(r,8,z) is the synthesized three-dimensional neutron flux distribution, ~(r,e) is the transport solution in r,8 geometry, ~(r,z) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and ~(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,e two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Byron Unit 2.

For the Byron Unit 2 transport calculations, the r,8 models depicted in Figure 6-1 through 6-3 were utilized because, with the exception of the neutron pads, the reactor is octant symmetric. These r,8 models include the core, the reactor internals, the neutron pads - including explicit representations of octants not containing surveillance capsules and octants with surveillance capsules at 29° and 31.5°, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel-cycle-specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,e reactor model in Figure 6-1 consisted of 257 radial by 131 azimuthal intervals. The geometric mesh description of the r,8 reactor models in Figure 6-2 and Figure 6-3 consisted of 255 radial by 143 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-3 iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,8 calculations was set at a value of0.001.

The r,z model used for the Byron Unit 2 calculations is shown in Figure 6-4 and extends radially from the centerline of the reactor core out to the primary biological shield and over an axial span from an elevation below the lower core support to several feet above the upper core plate. As in the case of the r,8 models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of these reactor models consisted of 153 radial by 216 axial intervals. As in the case of the r,8 calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant-specific transport analysis for each of the first 19 fuel cycles at Byron Unit 2 included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions (note that Cycles 1 through 18 have been completed; Cycle 19 is based on the expected core design for this cycle and an assumed cycle length of 1.5 EFPY). This information was used to develop spatial- and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel-cycle-averaged neutron fluence rate, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and burnup history of individual fuel assemblies. From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code [Ref. 23] and the BUGLE-96 cross-section library, which is based on ENDF/B-VI

[Ref. 22]. The BUGLE-96 library provides a coupled 47-neutron, 20-gamma-group cross-section data set produced specifically for light-water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P5 Legendre expansion, and angular discretization was modeled with an S 16 order of angular quadrature. Energy- and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-12. In Tables 6-1 and 6-2, the calculated exposure rates and integral exposures expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and fast neutron fluence (E > 1.0 MeV), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29 .0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. In Tables 6-3 and 6-4, the calculated exposure rates and integral exposures expressed in terms of iron atom displacement rate (dpa/s) and iron atom WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-4 displacements (dpa), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. All surveillance capsules have been removed from Byron Unit 2, so results are not presented beyond Cycle 15 (as there are no capsules receiving fluence ). These results, representative of the average axial exposure of the material specimens, establish the calculated exposure of the surveillance capsules.

Similar information in terms of calculated fast neutron fluence rate (E > 1.0 Me V), fast neutron fluence (E > 1.0 Me V), dpa/s, and dpa, are provided in Tables 6-5 through 6-8, for the reactor vessel inner radius at four azimuthal locations, as well as the maximum exposure observed within the octant. The vessel data given in Tables 6-5 through 6-8 were taken at the clad/base metal interface and represent maximum calculated exposure levels on the vessel. From the data provided in Table 6-6, it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 Me V) at the end of Cycle 18 (i.e., after 24.23 EFPY of plant operation) was l.30E+l9 n/cm 2

  • These data tabulations include both plant- and fuel-cycle-specific calculated neutro~ exposures at the end of Cycle 18, at the end of projected Cycle 19, and at further projections to 60 EFPY. The calculations account for the uprate from 3411 MWt to 3586.6 MWt that occurred during Cycle I 0, and incorporate an uprate from 3586.6 MWt to 3658 MWt that occurred during Cycle 18. The projections are based on the
  • assumption that the core power distributions and associated plant operating characteristics from the design of Cycle 19 are representative of future plant operation. The future projections are based on the uprated reactor power level of 3658 MWt.

The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Byron Unit 2 reactor are provided in Table 6-9. These neutron exposure levels are based on the plant- and fuel-cycle-specific neutron transport calculations performed for the Byron Unit 2 reactor. From the data provided in Table 6-9, Capsule Y received a fast neutron fluence (E> 1.0 MeV) of 4.19E+l9 n/cm 2 after exposure through the end of the 15th fuel cycle (i.e., after 20.05 EFPY).

Updated lead factors for the Byron Unit 2 surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 Me V) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, W, X, V, Z, and Y) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules.

Table 6-11 presents the maximum fast neutron fluences (E > 1.0 Me V) and Table 6-12 presents the maximum dpa for pressure vessel materials.

Differences in projected fluence between the values presented here and those in previous evaluations are primarily due to the core power distribution that is used to fill in the gap between current operation and the projected operation time. For example, at 57 EFPY more than half of the operation time is based on projected core power distributions (rather than actual operated cycles). It is standard practice to base the projected core power distribution on recent core design(s). Because of cycle-to-cycle variations, it is not unusual to see differences in projected fluence.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-5 6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serve to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least-squares evaluation comparisons is documented in Appendix A.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Y, which was withdrawn from Byron Unit 2 at the end of the 15 1h fuel cycle, is summarized below.

Reaction Rate (rps/atom)

Reaction MIC Measured (M) Calculated (C)

Cu-63 ( n,a )Co-60 4.lOE-17 3.66E-17 1.12 Fe-54(n,p)Mn-54 3.89E-15 3.96E-15 0.98 U-23 8(Cd)(n,f)Cs-137 2.56E-14 2.llE-14 1.21 Np-237(Cd)(n,f)Cs-137 2.06E-13 2.0SE-13 1.01 Average 1.08

% Standard Deviation 9.8 The measured-to-calculated (M/C) reaction rate ratios for the Capsule Y threshold reactions range from 0.98 to 1.21, and the average MIC ratio is 1.08 +/- 9.8% (1cr). This direct comparison falls within the

+/- 20% criterion specified in Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Byron Unit 2.

6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Byron Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190.

In particular, the qualification of the methodology was carried out in the following four stages:

1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H.B. Robinson power reactor benchmark experiment.
3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-6

4. Comparisons of the plant-specific calculations with all available dosimetry results from the Byron Unit 2 surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H.B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods-related and would tend to apply generically to all fast neutron exposure evaluations.

The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations, as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the Byron Unit 2 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Byron Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Byron Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.

The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 21.

Description Capsule and Vessel IR PCA Comparisons 3%

H. B. Robinson Comparisons 3%

Analytical Sensitivity Studies 11%

Additional Uncertainty for Factors not Explicitly 5%

Net Calculational Uncertainty 13%

The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random, and no systematic bias was applied to the analytical results. The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Byron Unit 2.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-7 Table 6-1 Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-15 Fluence Rate (n/cm 2-s)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 l.19 1.19 9.95£+10 1.08£+11 1.06£+11 2 1.16 2.35 6.51£+10 6.99£+10 6.89£+10 3 1.13 3.48 6.43£+10 6.87£+10 6.77£+10 4 1.19 4.67 7.70£+10 8.39£+10 8.28£+ 10 5 1.23 5.90 7.46£+10 8.10£+10 7.99£+10 6 1.32 7.22 7.1 lE+lO 7.72£+10 7.61£+10 7 1.41 8.63 6.84£+10 7.29£+10 7.18£+10 8 1.41 10.04 6.19£+10 6.52£+10 6.42£+10 9 1.39 11.43 6.28£+10 6.89£+10 6.80£+10 10 1.40 12.82 5.12£+10 5.48£+10 5.40£+10 11 1.46 14.28 5.89£+10 6.15£+10 6.05£+10 12 1.45 15.74 5.37£+10 5.77£+10 5.69£+10 13 1.45 17.19 6.24£+10 6.60£+10 6.50£+10 14 1.39 18.58 6.26£+10 6.69£+10 6.59£+10 15 1.47 20.05 6.88£+10 7.19£+10 7.08£+10 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-8 Table 6-2 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1-15 Fluence (n/cm 2)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.19 1.19 3.74E+l8 4.06E+ 18 4.00E+l8 2 1.16 2.35 6.13E+18 6.62E+18 6.53E+l8 3 1.13 3.48 8.42E+18 9.07E+ 18 8.94E+ 18 4 1.19 4.67 l.13E+19 l.22E+19 l.21E+l9 5 1.23 5.90 l.42E+l9 l.54E+19 l.51E+19 6 1.32 7.22 l.72E+l9 l.86E+19 l.83E+l9 7 1.41 8.63 2.02E+19 2.18E+19 2.15E+19 8 1.41 10.04 2.30E+19 2.47E+19 2.44E+19 9 1.39 11.43 2.57E+19 2.77E+l9 2.73E+19 10 1.40 12.82 2.80E+19 3.01E+19 2.97E+ 19 11 1.46 14.28 3.07E+19 3.30E+ 19 3.25E+19 12 1.45 15.74 3.31E+19 3.56E+19 3.51E+19 13 1.45 17.19 3.60E+19 3.87E+ 19 3.81E+19 14 1.39 18.58 3.88E+l9 4.16E+19 4.10E+19 15 1.47 20.05 4.19E+19 4.49E+l9 4.43E+l9 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-9 Table 6-3 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1-15 Iron Atom Displacement Rate (dpa/s)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY)

Holder 29.0° 31.5° 31.5° 1 1.19 1.19 l.97E-10 2.13E-10 2.lOE-10 2 1.16 2.35 l.27E-10 l.36E-10 l .34E-10 3 1.13 3.48 l.26E-10 1.34£-10 l .32E-10 4 1.19 4.67 1.51E-10 1.65£-10 l.62E-10 5 1.23 5.90 l.46E-10 1.59£-10 l.56E-10 6 1.32 7.22 l.39E-10 l.51E-10 l.49E-10 7 1.41 8.63 l.34E-10 1.43£-10 l.40E-10 8 1.41 10.04 l.21E-10 1.27£-10 l.25E-10 9 1.39 11.43 l.23E-10 1.35£-10 l.33E-10 10 1.40 12.82 9.99E-11 1.07£-10 1.05£-10 11 1.46 14.28 l.15E-10 1.20£-10 1.18£-10 12 1.45 15.74 1.05E-10 1.12£-10 l. llE-10 13 1.45 17.19 1.22E-10 1.28£-10 1.26£-10 14 1.39 18.58 l.22E-10 1.30£-10 l .28E-10 15 1.47 20.05 1.34E-10 l.40E-10 1.38E-10 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-10 Table 6-4 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1-15 Iron Atom Displacements (dpa)

Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.19 1.19 7.40E-03 8.02E-03 7.90E-03 2 1.16 2.35 l.21E-02 1.30E-02 l .28E-02 3 1.13 3.48 1.65E-02 l.78E-02 l.75E-02 4 1.19 4.67 2.22E-02 2.40E-02 2.36E-02 5 1.23 5.90 2.79E-02 3.0lE-02 2.97E-02 6 1.32 7.22 3.37E-02 3.64E-02 3.59E-02 7 1.41 8.63 3.96E-02 4.28E-02 4.21E-02 8 1.41 10.04 4.50E-02 4.84E-02 4.77E-02 9 1.39 11.43 5.04E-02 5.43E-02 5.35E-02 10 1.40 12.82 5.48E-02 5.90E-02 5.81E-02 11 1.46 14.28 6.0lE-02 6.45E-02 6.35E-02 12 1.45 15.74 6.49E-02 6.97E-02 6.86E-02 13 1.45 17.19 7.05E-02 7.56E-02 7.44E-02 14 1.39 18.58 7.58E-02 8.13E-02 8.00E-02 15 1.47 20.05 8.21E-02 8.78E-02 8.64E-02 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-11 Table 6-5 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Fluence Rate (n/cm 2-s)

Cycle Length Time (EFPY) (EFPY) oo 15° 30° 45° Maximum I I. I 9 I. I 9 l.33E+IO 2.I4E+IO 2.42E+IO 2.69E+IO 2.69E+IO 2 I. I 6 2.35 l.05E+IO I.57E+IO l.60E+IO l.67E+ IO I.75E+IO 3 I. I3 3.48 1.2 lE+IO 1.61E+I0 1.62E+IO I.63E+IO I.76E+IO 4 I. I 9 4.67 l.02E+IO I.6IE+IO l.86E+ IO 2.06E+IO 2.06E+IO 5 1.23 5.90 l.04E+IO l.60E+IO I.83E+IO 2.00E+IO 2.00E+IO 6 1.32 7.22 I.OlE+IO l.54E+IO I.75E+IO I.9IE+IO I.9IE+IO 7 1.4 I 8.63 9.46E+09 l.49E+IO I.66E+ IO I.70E+IO I.77E+IO 8 1.4 I I0.04 8.68E+09 l.39E+IO l.54E+IO l.43E+IO l.64E+ IO 9 1.39 I 1.43 8.64E+09 l.32E+IO I.55E+IO I.66E+IO I.66E+IO IO 1.40 I2.82 8.9IE+09 l.24E+ I 0 I.25E+10 I.23E+IO l.36E+IO II 1.46 I4.28 8.79E+09 l.33E+ IO l.42E+IO l.27E+IO I.54E+IO 12 1.45 I5.74. 8.68E+09 l.25E+ I 0 l.33E+IO l.32E+IO l.4IE+IO I3 1.45 I 7. I 9 8.82E+09 l.36E+IO l.51E+IO l.41E+IO l.60E+IO I4 1.39 I8.58 9.63E+09 l.40E+IO l.56E+IO I.48E+IO l.62E+IO I5 1.47 20.05 9.59E+09 l.54E+IO l.70E+IO l.56E+IO l.83E+IO I6 1.34 2I.40 l.OOE+IO I.47E+IO I.56E+10 l.46E+IO 1.68E+ I 0 I7 1.43 22.83 9. I2E+09 I.46E+IO I.60E+IO l.48E+IO l.73E+IO I8 1.40 24.23 I.03E+IO I.49E+IO l.57E+IO l.50E+IO l.69E+IO I 9<*l 1.50 25.73 9.76E+09 I.44E+IO l.60E+IO l.55E+IO l.68E+IO Note:

(a) Values beyond end of cycle (EOC) 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-12 Table 6-6 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle . Total Fluence (n/cm 2)

Cycle Length Time oo ID 15° 30° 45° Maximum (EFPY) (EFPY) 1 1.19 1.19 5.00E+17 8.05E+17 9.10E+l7 l.01E+l8 l.01E+l8 2 1.16 2.35 8.82E+ 17 l.38E+ 18 l.49E+l8 1.62E+l8 l.62E+ 18 3 1.13 3.48 l.30E+l8 l.94E+l 8 2.05E+l8 2.18E+l8 2.22E+ 18 4 1.19 4.67 l.69E+ 18 2.54E+l8 2.75E+l8 2.96E+l8 2.96E+l8 5 1.23 5.90 2.09E+l8 3.16E+l8 3.46E+l8 3.72E+l8 3.72E+l8 6 1.32 7.22 2.51E+l8 3.79E+l8 4.18E+l8 4.52E+l8 4.52E+l8 7 1.41 8.63 2.93E+l8 4.46E+l8 4.92E+l8 5.28E+l8 5.28E+l8 8 1.41 10.04 3.32E+l8 5.07E+l8 5.61E+l8 5.91E+l8 5.94E+l8 9 1.39 11.43 3.69E+l8 5.65E+l8 6.29E+l8 6.64E+l8 6.64E+l8 10 1.40 12.82 4.09E+l8 6.20E+l8 6.84E+l8 7.18E+l8 7.22E+l8 11 1.46 14.28 4.49E+ 18 6.81E+l8 7.49E+l8 7.76E+l8 7.92E+l8 12 1.45 15.74 4.87E+l8 7.35E+l8 8.07E+l8 8.34E+l8 8.54E+l8 13 1.45 17.19 5.27E+ 18 7.97E+l8 8.76E+l8 8.98E+J8 9.27E+l8 14 1.39 18.58 5.69E+l8 8.59E+l8 9.44E+l8 9.63E+l8 9.98E+l8 15 1.47 20.05 6.11E+l8 9.26E+l8 l.02E+l9 l.03E+l9 l.08E+ 19 16 1.34 21.40 6.53E+l8 9.88E+l8 l.08E+l9 l.09E+l9 l.15E+l9 17 1.43 22.83 6.95E+l8 LOSE+ 19 1.16E+l9 l.16E+l9 l.23E+ 19 18 1.40 24.23 7.39E+l8 l.12E+l9 l.22E+l9 l.22E+ 19 l.30E+l9 19<*> 1.50 25.73 7.85E+l8 l.19E+l9 l.30E+l9 l.30E+l9 l.38E+l9 30.00 9.17E+l8 l.38E+l9 l.51E+l9 l.51E+I9 l.61E+l9 32.00 9.78E+l8 l.47E+l9 l.62E+l9 l.60E+ 19 l.71E+l9 36.00 1. lOE+ 19 l.65E+ 19 l.82E+l9 l.80E+l9 1.92E+l9 40.00 l.22E+l9 l.83E+l9 2.02E+l9 l.99E+l9 2.14E+l9 44.00 l.35E+ 19 2.01E+l9 2.22E+I9 2.19E+l9 2.35E+l9 48.00 l.47E+ 19 2.20E+l9 2.42E+l9 2.39E+l9 2.56E+l9 52.00 l.59E+l9 2.38E+l9 2.62E+l9 2.58E+l9 2.77E+l9 54.00 l.66E+ 19 2.47E+l9 2.73E+l9 2.68E+l9 2.88E+l9 57.00 1. 75E+ 19 2.60E+l9 2.88E+l9 2.83E+l9 3.04E+l9 60.00 l.84E+l9 2.74E+l9 3.03E+l9 2.97E+l9 3.20E+l9 Note:

(a) Values beyond EOC 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY.

WCAP-18056-NP December 2015 Revision 0

-i Westinghouse Non-Proprietary Class 3 6-13 Table 6-7 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacement Rate (dpa/s)

Cycle Length Time oo ID 15° 30° 45° Maximum (EFPY) (EFPY) 1 1.19 1.19 2.07E-l l 3.29E-11 3.73E-11 4.26E-l l 4.26E-l l 2 1.16 2.35 l.64E-l l 2.42E-l l 2.47E- l l 2.64E-l l 2.69E-l l 3 1.13 3.48 l.87E- l l 2.47E-11 2.50E-l l 2.57E-l l 2.70E- l l 4 1.19 4.67 l .59E- l l 2.47E-l l 2.88E-l l 3.26E-ll 3.26E- l l 5 1.23 5.90 l .62E- l l 2.47E-1 l 2.83E-11 3. l 7E-l 1 3.17E-11 6 1.32 7.22 l .57E- l 1 2.37E-11 2.70E-11 3.03E-ll 3.03E-1 l 7 1.41 8.63 l.47E-1 l 2.29E-1 l 2.56E-11 2.69E-1 l 2.71E-11 8 1.41 10.04 l.35E-11 2.13E-11 2.38E-11 2.27E-l 1 2.51E-l l 9 1.39 11.43 l.35E- l 1 2.04E-1 l 2.40E-11 2.63E-ll 2.63E-1 l 10 1.40 12.82 l.39E-11 l.91E-1 l 1.93£-11 1.94E-11 2.08E-11 11 1.46 14.28 1.37£-11 2.06£-11 2.20£-11 2.02£-11 2.37£-11 12 1.45 15.74 l.35E- l l 1.92E- l l 2.06E-1 l 2.09£-11 2.16E-11 13 1.45 17.19 1.37£-11 2.lOE-11 2.33£-11 2.23£-11 2.45£-11 14 1.39 18.58 1.50£-11 2.15£-11 2.41£-11 2.35£-11 2.49£-11 15 1.47 20.05 1.49£-11 2.37E-11 2.62£-11 2.47E- l l 2.81£-11 16 1.34 21.40 1.56£-11 2.26£-11 2.40£-11 2.30£-11 2.57E-11 17 1.43 22.83 1.42£-11 2.25£-11 2.46£-11 2.34£-11 2.65£-11 18 1.40 24.23 1.60£-11 2.29E-l l 2.43£-11 2.37£-11 2.59£-11 19(*) 1.50 25.73 1.52£-11 2.22£-11 2.47£-11 2.45E-11 2.58£-11 Note:

(a) Values beyond EOC 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-14 Table 6-8 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacements (dpa)

Cycle Length Time oo ID 15° 30° 45° Maximum (EFPY) (EFPY) 1 1.19 1.19 7.77E-04 1.24E-03 1.40E-03 1.60E-03 1.60E-03 2 1.16 2.35 l .37E-03 2.12E-03 2.30E-03 2.56E-03 2.56E-03 3 1.13 3.48 2.02E-03 2.98E-03 3.17E-03 3.46E-03 3.46E-03 4 1.19 4.67 2.62E-03 3.91 E-03 4.25E-03 4.68E-03 4.68E-03 5 1.23 5.90 3.25E-03 4.86E-03 5.34E-03 5.90E-03 5.90E-03 6 1.32 7.22 3.90E-03 5.84E-03 6.46E-03 7.15E-03 7.15E-03 7 1.41 8.63 4.56E-03 6.86E-03 7.60E-03 8.35E-03 8.35E-03 8 1.41 10.04 5. l 6E-03 7.81E-03 8.66E-03 9.36E-03 9.36E-03 9 1.39 11.43 5.75E-03 8.70E-03 9.71E-03 1.05E-02 1.05E-02 10 1.40 12.82 6.36E-03 9.54E-03 1.06E-02 1.14E-02 1.14E-02 11 1.46 14.28 6.98E-03 1.05E-02 1.16E-02 1.23E-02 l.23E-02 12 1.45 15.74 7.57E-03 1.13E-02 1.25E-02 1.32E-02 l.32E-02 13 1.45 17.19 8.20E-03 1.23E-02 1.35E-02 1.42E-02 l .42E-02 14 1.39 18.58 8.85E-03 l.32E-02 1.46E-02 l.52E-02 l .53E-02 15 1.47 20.05 9.50E-03 1.43E-02 1.57E-02 1.63E-02 1.65E-02 16 1.34 21.40 1.02E-02 l .52E-02 1.67E-02 1.73E-02 1.76E-02 17 1.43 22.83 1.08E-02 l.62E-02 1.79E-02 1.84E-02 1.88E-02 18 1.40 24.23 l .15E-02 l.72E-02 l .89E-02 1.94E-02 I .99E-02 19(a) 1.50 25.73 1.22E-02 1.83E-02 2.0lE-02 2.05E-02 2. l lE-02 30.00 1.43E-02 2.12E-02 2.34E-02 2.38E-02 2.46E-02 32.00 1.52E-02 2.26E-02 2.50E-02 2.54E-02 2.62E-02 36.00 l.71E-02 2.54E-02 2.81 E-02 2.85E-02 2.95E-02 40.00 1.91E-02 2.82E-02 3.12E-02 3.16E-02 3.28E-02 44.00 2.lOE-02 3. IOE-02 3.43E-02 3.47E-02 3.60E-02 48.00 2.29E-02 3.38E-02 3.74E-02 3.78E-02 3.93E-02 52.00 2.48E-02 3.66E-02 4.05E-02 4.09E-02 4.25E-02 54.00 2.58E-02 3.80E-02 4.21E-02 4.24E-02 4.42E-02 57.00 2.72E-02 4.0 I E-02 4.44E-02 4.47E-02 4.66E-02 60.00 2.86E-02 4.22E-02 4.68E-02 4.70E-02 4.90E-02 Note:

(a) Values beyond EOC 18 are projected. Cycle 19 is based on the core design for this cycle and an assumed cycle length of 1.5 EFPY.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-15 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Byron Unit 2 Cumulative Fluence Iron Atom Irradiation Capsule Irradiation Time (E > 1.0 MeV) Displacements Cycle(s)

(EFPY) (n/cm 2 ) (dpa) u 1 1.19 4.06E+18 8.02E-03 w 1-4 4.67 1.21E+19 2.36E-02 x 1-7 8.63 2.18E+19 4.28E-02 y(a) 1-11 14.28 3.07E+19 6.0lE-02 zl*) 1-11 14.28 3.25E+19 6.35E-02 y 1-15 20.05 4.19E+19 8.21E-02 Note:

(a) Capsules V and Z have been placed in storage and have not been analyzed.

Table 6-10 Calculated Surveillance Capsule Lead Factors Capsule Location Status Lead Factor 58.5° (Capsule U) Withdrawn EOC 1 4.02 121.5° (Capsule W) Withdrawn EOC 4 4.08 238.5° (Capsule X) Withdrawn EOC 7 4.13 61° (Capsule vi*J Withdrawn EOC 11 3.87 301.5° (Capsule zi*J Withdrawn EOC 11 4.10 241° (Capsule Y) Withdrawn EOC 15 3.89 Note:

(a) Capsules V and Z have been placed in storage and have not been analyzed.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-16 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells Fast Fluence (n/cm 2 )

Material 24.23 EFPY 25.37 EFPY 30 EFPY 36 EFPY Outlet Nozzle Forging to 3.28E+16 3.S2E+l6 4.20E+16 S.1SE+l6 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 4.34E+16 4.66E+16 S.S6E+16 6.82E+l6 Vessel Shell Welds (WR-19)

Nozzle Shell 4.08E+18 4.36E+18 S.17E+18 6.31E+18 Nozzle Shell to Intermediate Shell 4.08E+18 4.36E+ 18 S.17E+18 6.31E+18 Circumferential Weld (WR-34)

Intermediate Shell 1.29E+19 1.37E+19 l.59E+19 1.91E+19 Intermediate Shell to Lower Shell 1.26E+19 l.34E+19 I.SSE+ 19 1.86E+19 Circumferential Weld (WR-18)

Lower Shell l.30E+19 l.38E+19 1.6lE+19 1.92E+l9 Lower Shell to Lower Vessel Head S.68E+1S 6.06E+ lS 7.12E+lS 8.61E+1S Circumferential Weld (WR-29)

Fast Fluence {n/cm 2)

Material 48 EFPY 54 EFPY 57 EFPY 60 EFPY Outlet Nozzle Forging to 7.0SE+16 8.01E+16 8.48E+16 8.96E+16 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 9.3SE+16 1.06E+17 l.12E+ 17 l.19E+17 Vessel Shell Welds (WR-19)

Nozzle Shell 8.S8E+18 9.72E+18 1.03E+19 1.09E+19 Nozzle Shell to Intermediate Shell 8.S8E+18 9.72E+18 1.03E+19 1.09E+19 Circumferential Weld (WR-34)

Intermediate Shell 2.S3E+19 2.8SE+19 3.00E+19 3.16E+19 Intermediate Shell to Lower Shell 2.47E+19 2.78E+19 2.93E+19 3.08E+19 Circumferential Weld (WR-18)

Lower Shell 2.S6E+19 2.88E+19 3.04E+19 3.20E+19 Lower Shell to Lower Vessel Head l.16E+16 l.31E+16 l.38E+16 1.46E+16 Circumferential Weld (WR-29)

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-17 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells Displacements (dpa)

Material 24.23 EFPY 25.37 EFPY 30 EFPY 36 EFPY Outlet Nozzle Forging to 8.64E-05 9.22E-05 l.09E-04 l .32E-04 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to 9.59E-05 l.02E-04 l .20E-04 l .46E-04 Vessel Shell Welds (WR-19)

Nozzle Shell 6.25E-03 6.69E-03

  • 7.93E-03 9.67E-03 Nozzle Shell to Intermediate Shell 6.25E-03 6.69E-03 7.93E-03 9.67E-03 Circumferential Weld (WR-34)

Intermediate Shell l.98E-02 2.lOE-02 2.45E-02 2.93E-02 Intermediate Shell to Lower Shell l.94E-02 2.06E-02 2.39E-02 2.86E-02 Circumferential Weld (WR-18)

Lower Shell l.99E-02 2. l IE-02 2.46E-02 2.95E-02 Lower Shell to Lower Vessel Head 3.55E-05 3.77E-05 4.42E-05 5.35E-05 Circumferential Weld (WR-29)

Disolacements (doa)

Material 48 EFPY 54 EFPY 57 EFPY 60 EFPY Outlet Nozzle Forging to l.78E-04 2.0IE-04 2.12E-04 2.24E-04 Vessel Shell Welds (WR-20)

Inlet Nozzle Forging to l.97E-04 2.23E-04 2.36E-04 2.49E-04 Vessel Shell Welds (WR-19)

Nozzle Shell l.32E-02 l.49E-02 l.58E-02 l .66E-02 Nozzle Shell to Intermediate Shell l.32E-02 l.49E-02 l.58E-02 l.66E-02 Circumferential Weld (WR-34)

Intermediate Shell 3.89E-02 4.37E-02 4.61E-02 4.85E-02 Intermediate Shell to Lower Shell 3.80E-02 4.28E-02 4.51 E-02 4.75E-02 Circumferential Weld (WR-18)

Lower Shell 3.93E-02 4.42E-02 4.66E-02 4.90E-02 Lower Shell to Lower Vessel Head 7.20E-05 8.12E-05 8.58E-05 9.04E-05 Circumferential Weld (WR-29)

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 6-18

"'

.n-

"'

0 0

0.0 85.8 171.5 257.2

[cml Figure 6-1 Byron Unit 2 r,0 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration WCA P-18 056-NP December 20 15 Revis ion 0

Westingho use on-Pro prietary Class 3 6-1 9 0

...;_

...,....

N

,..: _

"'

N DO

.,.;-

DO 0

0 0.0 85.8 171.S 257.2

[cml Figure 6-2 Byron Unit 2 r,0 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration WCA P- 18056-NP December 20 15 Rev isio n 0

Westinghouse No n-Proprietary Class 3 6-20 0

...;_

.,,....

N

~-

"'

co

.,.;-

co

<.!'

0 0

0 0.0 85.8 1715 257.2

[cml Figure 6-3 Byron Unit 2 r,0 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration WCA P-180 56-NP December 20 15 Revis io n 0

Westin ghouse on-Proprietary C lass 3 6-2 1

],

,.,)

....

,.,,

"'...j-

<D N

....

cD

~

"',....:

~

,.,,

N en E

0 N

en

....I

,.._

,....:

N I

N cD 0

N I

<X>

...j-

<X>

N I

,.,,

,.,)

<D

";'o.o 85.8 171.5 257.2 343.o R

[cml Figure 6-4 Byron Unit 2 r,z Reactor Geometry Elevation View WCA P- 18056-NP December 201 5 Rev is io n 0

Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM E 185-82 [Ref. 8].

Table 7-1 Surveillance Capsule Withdrawal Schedule Capsule ID and Capsule Lead Withdrawal Capsule Fluence Status Location Factor(a) EFPY(b,cJ (n/cm 2 , E > 1.0 MeVic) u (58.5°) Withdrawn (EOC 1) 4.02 1.19 4.06E+18 W(121.5°) Withdrawn (EOC 4) 4.08 4.67 1.2lE+19 x (238.5°) Withdrawn (EOC 7) 4.13 8.63 2.18E+19 y(d) ( 61.00) Withdrawn (EOC 11) 3.87 14.28 3.07E+l9 z(e) (301.5°) Withdrawn (EOC 11) 4.10 14.28 3.25E+l9 y(f) (241.0°) Withdrawn (EOC 15) 3.89 20.05 4.19E+l9 Notes:

(a) Updated in Capsule Y dosimetry analysis; see Table 6-10.

(b) EFPY from plant startup.

(c) Updated in Capsule Y dosimetry analysis; see Table 6-9.

(d) Capsule V should remain in the spent fuel pool. Potential reinsertion and/or testing of this capsule can be revisited at a later date if additional metallurgical data are needed for Byron Unit 2.

(e) Capsule Z was removed and placed in the spent fuel pool. Capsule Z could be reinserted into the Byron Unit 2 reactor vessel to provide meaningful metallurgical data for 80 years of plant operation. If Capsule Z were reinserted into either vacant 31.5° dual-capsule location, it would receive the projected 80-year (76 EFPY) fluence of 4.05 x 10 19 n/cm 2 in 3.6 EFPY. Capsule Z would exceed two times the projected 80-year (76 EFPY) fluence of 8.11 x 10 19 n/cm 2 in 22.2 EFPY. However, since the Byron Unit 2 surveillance capsule positions have relatively high fast flux, reinsertion of this capsule can be revisited at a later date if an additional 20-year license extension is sought.

(f) The neutron fluence exposure of Capsule Y is greater than once, but less than twice the peak vessel fluence (3.04 x 10 19 n/cm 2 ) at 57 EFPY; therefore, Capsule Y satisfies the requirements for a license renewal capsule for 60 years of plant operation.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988.
2. Code of Federal Regulations, 10 CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995.
3. Westinghouse Report WCAP-10398, Revision 0, Commonwealth Edison Co. Byron Station Unit No. 2 Reactor Vessel Radiation Surveillance Program, December 1983.
4. ASTM E185-79, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, ASTM, 1979.
5. Appendix G of the ASME Boiler and Pressure Vessel (B&PV) Code,Section XI, Division 1, Fracture Toughness Criteria for Protection Against Failure.
6. ASTM E208, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, ASTM.
7. ASTM E399, Test Method for Plane-Strain Fracture Toughness ofMetallic Materials, ASTM.
8. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), ASTM, 1982.
9. ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM, 2012.
10. ASTM E2298-13a, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM, 2013.
11. ASTM A370-13, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 2013.
12. ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2013.
13. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 2009.
14. Westinghouse Report WCAP-1243 1, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, October 1989.
15. Westinghouse Report WCAP-14064, Revision 0, Analysis of Capsule W from the Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, July 1994.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 8-2

16. Westinghouse Report WCAP-15176, Revision 0, Analysis of Capsule X from Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, March 1999.
17. ASTM E853-13, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, ASTM, 2013.
18. ASTM E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706 (ID), ASTM, 1994.
19. Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
20. Westinghouse Report WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Coo/down Limit Curves, May 2004.
21. Westinghouse Report WCAP-16083-NP, Revision 1, Benchmark Testing of the FERRET Code for Least Squares Evaluation ofLight Water Reactor Dosimetry, April 2013.
22. RSICC Data Library Collection DLC-185, Revision 1, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDFIB-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996.
23. RSICC Computer Code Collection CCC-650, DOORS 3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998.

WCAP- I 8056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.1 NEUTRON DOSIMETRY Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for all surveillance capsules and ex-vessel neutron dosimetry (EVND) withdrawn and analyzed to date at Byron Unit 2 are described herein. The sensor sets have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four surveillance capsules analyzed to date as part of the Byron Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Capsule Azimuthal Withdrawal Time Irradiation Time (EFPY)

Location Surveillance Capsule U 58.5° End of Cycle 1 1.19 Surveillance Capsule W 121.5° End of Cycle 4 4.67 Surveillance Capsule X 238.5° End of Cycle 7 8.63 Surveillance Capsule Y 241° End of Cycle 15 20.05 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-2 The passive neutron sensors included in the evaluations of surveillance Capsules U, W, X, and Y are summarized as follows:

Sensor Material Reaction Of Interest Capsule U Capsule X CapsuleW Capsule Y Copper 63 Cu(n,u) 6°Co x x x x Iron 54 Fe(n,p ) 54 Mn x x x x Nickel 58 58 Ni(n,p ) Co x x x Note (a)

Uranium-238(Cd) 238 U(n,t)FP x x x x Neptunium-237(Cd) 237 Np(n,t)FP x x x x Cobalt-Aluminum<bl 59 Co(n,y) 6°Co x x x x Notes:

(a) The nickel monitors were not considered for Capsule Y. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule Y was pulled (April 2010) and when it was counted (June 2015).

(b) The cobalt-aluminum and uranium monitors for this plant include both bare and cadmium-covered sensors.

This section also includes the results of the evaluations of the four midplane EVND capsules and two off-midplane capsules analyzed to date. The EVND was irradiated during Cycle 15, then removed and analyzed. The capsule designation, azimuthal location outside the vessel, and axial location were as follows:

Capsule Azimuthal Location Axial Location from Cardinal Axis EVND Capsule A 0.5° Core Midplane EVND Capsule B 14.5° Core Midplane EVND Capsule C 29.5° Core Midplane EVND Capsule E 44.5° Core Midplane EVND Capsule D 44.5° Top of Active Core EVND Capsule F 44.5° Bottom of Active Core WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-3 The passive neutron sensors included in the evaluations of EVND Capsules A, 8, C, D, E, and F are summarized as follows:

Sensor Reaction Of Capsule Capsule Capsule Capsule Capsule Capsule Material Interest A B c D E F Copper 63 Cu(n,a,)6°Co x x x x x x 46 Ti(n,p )46 Sc x x Titanium x x x x Iron 54Fe(n,p)54Mn x x x x x x Nickel 58 Ni(n,p )58 Co x x x x x x 93 Nb( n,n') 93 mNb Niobium x x x x x x Cobalt- 59 Co(n,y)6°Co x x x x x x Aluminum(*)

Note:

(a) The cobalt-aluminum and uranium monitors for this plant include both bare and cadmium-covered sensors.

Pertinent physical and nuclear characteristics of the passive neutron sensors analyzed are listed in Table A-I.

The use of passive monitors such as those listed above do not yield a direct measure of the energy-dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time- and energy-dependent neutron fluence rate has on the target material over the course of the irradiation period. An accurate assessment of the average neutron fluence rate level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • the measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

Results from the radiometric counting of the neutron sensors from Capsules U, W, and X are documented in References A-2, A-3, and A-4, respectively. The radiometric counting of the sensors from Capsule Y was carried out by Pace Analytical Services, Inc. The radiometric counting followed established ASTM procedures. Results from the radiometric counting of EVND irradiated during Cycle 15 are documented in Reference A-5.

The irradiation history of the reactor over the irradiation periods experienced by Capsules U, W, and X was based on the monthly power generation of Byron Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period (Cycle 7). For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. Monthly powers for Cycles 8 through 14 were not available. These cycles are only applicable to surveillance Capsule Y. For these cycles, power was WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-4 assumed to be constant for the duration of the cycle. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (April 20 I 0) and when it was analyzed (June 2015). The effect of using constant monthly power for these cycles is therefore minimal.

Analysis of EVND used the monthly powers listed for Cycle 15. The irradiation history applicable to surveillance Capsules U, W, X, and Y and EVND irradiated during Cycle 15 is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R=-------------

No FY I __!J_ Cj [1- e*"-tj ][e-Ald,j]

Pref where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A Measured specific activity ( dps/g).

No Number of target element atoms per gram of sensor.

F Atom fraction of the target isotope in the target element.

y Number of product atoms produced per reaction.

P*J Average core power level during irradiation period j (MW).

Pref Maximum or reference power level of the reactor (MW).

Calculated ratio of ~ (E > 1.0 Me V) during irradiation period j to the time weighted average~ (E > 1.0 MeV) over the entire irradiation period.

Decay constant of the product isotope (I/sec).

tJ Length of irradiation period j (sec).

Decay time following irradiation periodj (sec).

The summation is carried out over the total number of monthly intervals comprising the irradiation period.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-5 In the equation describing the reaction rate calculation, the ratio [Pj]/[Prerl accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Ci, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Ci is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Ci term should be employed. The impact of changing fluence rate levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel-cycle-specific neutron fluence rates and the computed values for Ci are listed in Tables A-3 and A-4, respectively, for Capsules U, W, X, and Y. These fluence rates represent the capsule- and cycle-dependent results at the radial and azimuthal center of the respective capsules at core midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238 U cadmium-covered measurements to account for the presence of 235 U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238 U and 237Np sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the surveillance capsule irradiations. The correction factors corresponding to the Byron Unit 2 fission sensor reaction rates are summarized as follows:

Correction Capsule U Capsule W Capsule X Capsule Y mu Impurity/Pu Build-in 0.868 0.837 0.803 0.736 mU(y,t) 0.966 0.970 0.967 0.968 238 Net U Correction 0.839 0.812 0.777 0.712 238 Np(y,f) Correction 0.990 0.991 0.990 0.991 The correction factors for surveillance Capsules U, W, X, and Y were applied in a multiplicative fashion to the decay-corrected cadmium-covered uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for surveillance Capsules U, W, X, and Y are given in Tables A-5 through A-8. In Tables A-5 through A-8, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed both with and without the applied corrections for mu impurities, plutonium build-in, and gamma-ray-induced fission effects.

Results of the sensor reaction rate determinations for midplane EVND Capsules A, B, C, and E are given in Tables A-9 through A-12. Results of the sensor reaction rate determinations for off-midplane EVND Capsules D and F are given in Table A-13 and A-14. In Tables A-9 through A-14, the measured specific WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-6 activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed.

A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with associated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R i +/- 0 R, = 2)O" ig +/- 0 o-,)(cp g +/- 0'I')

g relates a set of measured reaction rates, Ri, to a single neutron spectrum, ~g, through the multigroup dosimeter reaction cross-sections, O"ig, each with an uncertainty o. The primary objective of the least-squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least-squares evaluation of the Byron Unit 2 dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (fluence rate (E > I .O Me V) and dpa) along with associated uncertainties for the four in-vessel capsules and six ex-vessel capsules analyzed to date.

The application of the least-squares methodology requires the following input:

I. The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
3. The energy-dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Byron Unit 2 application, the calculated neutron spectrum was obtained from the results of plant-specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. I. I. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-7].

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least-squares procedure in the form of variances and covariances. The WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-7 assignment of the input uncertainties followed the guidance provided in ASTM Standard E944, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-8].

The following provides a summary of the uncertainties associated with the least-squares evaluation of the Byron Unit 2 surveillance capsule and EVND sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation:

Reaction Uncertainty 63 Cu(n,a.)6°co 5%

46 46 Ti(n,p ) Sc 5%

54 54 Fe(n,p ) Mn 5%

58 58 Ni(n,p ) Co 5%

93 Nb(n,n') 93 mNb 5%

238 U(n,f)FP 10%

237 Np(n,f)FP 10%

59 Co(n;y)6°co 5%

These uncertainties are given at the 1a level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross-sections were compiled from recent cross-section evaluations, and they have been tested for accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination, as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Byron Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-8 Reaction Uncertainty 63 Cu(n,o./0 co 4.08-4.16%

46 Ti(n,p )46 Sc 4.50-4.87%

54 Fe(n,p )54 Mn 3.05-3.11 %

58Ni(n,p ) 58 Co 4.49-4.56%

93Nb( n,n'/ 3mNb 6.96-7.23%

238u (n,f) t37 Cs 0.54-0.64%

231Np(n,f)131Cs 10.32-10.97%

59 Co(n,y) 6°Co 0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule and EVND capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

where R0 specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg* specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Where:

(g-g')2 H=---

2y2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-9 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (8 specifies the strength of the latter term). The value of 8 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Byron Unit 2 calculated spectra was as follows:

Fluence Rate Normalization Uncertainty (R 0 ) 15%

Fluence Rate Group Uncertainties (Rg, Rg*)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 25%

(E < 0.68 eV) 50%

Short Range Correlation (8)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Fluence Rate Group Correlation Range (y)

(E > 0.0055 Me V) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least-squares evaluations of the dosimetry from the Byron Unit 2 surveillance capsules withdrawn to date are provided in Tables A-15, A-16, A-17, and A-18 for surveillance Capsules U, W, X, and Y, respectively. Results of the least-squares evaluations of the EVND midplane capsules withdrawn to date are provided in Tables A-19, A-20, A-21, and A-22 for EVND Capsules A, B, C, and E, respectively.

Results of the least-squares evaluations of the EVND off-midplane capsules withdrawn to date are provided in Tables A-23 and A-24 for EVND Capsules D and F, respectively. In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in these tabulations are ratios of the measured reaction rates to both the calculated and least-squares adjusted reaction rates. These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules. Note that for surveillance Capsule Y, nickel foils were omitted due to their lack of meaningful information. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule Y was pulled (April 2010) and when it was counted (June 2015).

The data comparisons provided in Tables A-15 through A-22 show that the adjustments to the calculated spectra are relatively small and within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-10 the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as 13% at the 1a level.

Further comparisons of the measurement results with calculations are given in Tables A-25 through A-27 for in-vessel surveillance capsules, EVND midplane capsules, and EVND off-midplane capsules, respectively. In these tables, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. Calculations of fast neutron exposure rates in terms of fast neutron fluence rate (E > 1.0 Me V) and dpa/s are compared with the best-estimate results obtained from the least-squares evaluation of the capsule dosimetry results in Tables A-28 and A-29 for in-vessel surveillance capsules and EVND midplane capsules, respectively.

These comparisons yield consistent and similar results with all measurement-to-calculation comparisons falling within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

The measurement-to-calculation comparisons based on individual sensor reactions without recourse to the least-squares adjustment procedure are summarized in Table A-30. A similar comparison for exposure rates expressed in terms of fast (E > 1.0 MeV) flux and iron atom displacement rate (dpa/s) is summarized in Table A-31.

These data comparisons show similar and consistent results with the linear average MIC ratio of 0.98 in excellent agreement with the resultant least-squares BE/C ratios of 0.98 and 1.02 for neutron flux (E > 1.0 Me V) and iron atom displacement rate, respectively. The comparisons demonstrate that the calculated results are validated within the context of the assigned 13% (la) uncertainty.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Byron Unit 2 reactor pressure vessel.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-II Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Surveillance Capsules Product Fission Reaction of Half-life(a) Target Atom 90% Response Yield Interest Fraction<*) Range<hl (MeV)

(Days) (%)

63 Cu (n,a) 6°Co 1925.5 0.6917 5.0-11.9 NIA 54 Fe(n,p )54 Mn 312.11 0.0585 2.1- 8.5 NIA ssNi(n,p )ssco 70.82 0.6808 1.5 - 8.3 NIA 238 U (n,f) mes 10983.07 1.0000 1.3 - 6.9 6.02 z31Np (n,f) mes 10983.07 1.0000 0.3 -3.8 6.17 59Co (n,y) 6°Co 1925.5 0.0015 non-threshold NIA Ex-Vessel Neutron Dosimetry Product Fission Reaction of Target Atom 90% Response Half-life<aJ Yield Interest Fraction<*l Range(cl (MeV)

(Davs) (%)

63 Cu (n,a) 6°Co 1925.5 0.6917 5.2 - 12.6 NIA 46 Ti(n,p )46 Sc 83.79 0.0825 4.1 - 11.2 NIA S4p e(n,p )s4Mn 312.11 0.0585 2.0-9.3 NIA 58Ni(n,p ) 58 Co 70.82 0.6808 1.3-9.1 NIA 93Nb(n,n') 93 mNb 5890.0 1.000 0.3 -4.6 NIA 59Co (n,y) 6°Co 1925.5 0.0044 non-threshold NIA Notes:

(a) Half-life data are from ASTM El005-10 [Ref. A-9]; target atom fraction data are from ASTM E1005-10 [Ref. A-9], with the exception of 59 Co, which is from the materials specification for the cobalt foils.

(b) The 90% response range is defined such that, in the neutron spectrum characteristic of the Byron Unit 2 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All surveillance capsules exhibit a similar response range with minor variations; the listed values are for surveillance Capsule Y (with the exception of 58Ni, which was not used for Capsule Y - in this case, Capsule X is used).

(c) The 90% response range is defined such that, in the neutron spectrum characteristic of the Byron Unit 2 EVND capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All EVND capsules exhibit a similar response range with minor variations; the listed values are for EVND Capsule E.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-12 Table A-2 Monthly Thermal Generation during the First 15 Fuel Cycles of the Byron Unit 2 Reactor Cycle 1 Cycle2 Cycle 3 Cycle4 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Feb-87 363797 Feb-89 0 Oct-90 0 Mar-92 0 Mar-87 1415388 Mar-89 1562613 Nov-90 357848 Apr-92 17935 Apr-87 1246567 Apr-89 1788916 Dec-90 2236204 May-92 2119282 May-87 1899415 May-89 1384279 Jan-91 2474926 Jun-92 1914673 Jun-87 934938 Jun-89 1621163 Feb-91 2190398 Jul-92 1696730 Jul-87 1607744 Jul-89 1758790 Mar-91 2418372 Aug-92 2181089 Aug-87 635140 Aug-89 1929930 Apr-91 2341058 Sep-92 2246867 Sep-87 1756522 Sep-89 2075112 May-91 2374353 Oct-92 2420657 Oct-87 1996878 Oct-89 2373790 Jun-91 2192168 Nov-92 2363421 Nov-87 1735646 Nov-89 1643966 Jul-91 2303117 Dec-92 2286284 Dec-87 347977 Dec-89 2447222 Aug-91 2315476 Jan-93 2377986 Jan-88 1803457 Jan-90 2280789 Sep-91 2263850 Feb-93 2208878 Feb-88 1765813 Feb-90 1925799 Oct-91 2078036 Mar-93 2500150 Mar-88 1875876 Mar-90 2443545 Nov-91 1800203 Apr-93 2371849 Apr-88 2215387 Apr-90 2225364 Dec-91 2455371 Mav-93 2032342 May-88 2155660 May-90 2443122 Jan-92 2413559 Jun-93 2341733 Jun-88 1944550 Jun-90 2075512 Feb-92 1571240 Jul-93 2462305 Jul-88 2041982 Jul-90 1509466 Aug-93 1958439 Aug-88 1696191 Aug-90 1245104 Sep-93 96047 Sep-88 1375537 Sep-90 1030 Oct-88 1215220 Nov-88 1299352 Dec-88 964228 Jan-89 156411 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-13 Table A-2 (cont.) Monthly Thermal Generation during the First 15 Fuel Cycles of the Byron Unit 2 Reactor Cycle 5 Cycle 6 Cycle 7 Cycle g<a)

Month MWt-h Month MWt-h Month MWt-h Month MWt-h Oct-93 252032 Mar-95 205820 Sep-96 0 May-98 2340506 Nov-93 2265593 Apr-95 2323403 Oct-96 1802942 Jun-98 2340506 Dec-93 2440690 May-95 2503149 Nov-96 2446246 Jul-98 2340506 Jan-94 2450108 Jun-95 2419746 Dec-96 2493274 Aug-98 2340506 Feb-94 2241085 Jul-95 2460467 Jan-97 2419944 Sep-98 2340506 Mar-94 2492817 Aug-95 2509988 Feb-97 2217600 Oct-98 2340506 Apr-94 2416032 Sep-95 2331326 Mar-97 1938325 Nov-98 2340506 May-94 2001960 Oct-95 2517318 Apr-97 2444797 Dec-98 2340506 Jun-94 2413890 Nov-95 2423294 May-97 2486377 Jan-99 2340506 Jul-94 2492196 Dec-95 2498987 Jun-97 2434465 Feb-99 2340506 Aug-94 2440724 Jan-96 2524034 Jul-97 2472252 Mar-99 2340506 Sep-94 2096254 Feb-96 2360739 Aug-97 2457250 Apr-99 2340506 Oct-94 2489426 Mar-96 2519682 Sep-97 2433203 May-99 2340506 Nov-94 2394467 Apr-96 2424413 Oct-97 1527309 Jun-99 2340506 Dec-94 2502958 May-96 1919793 Nov-97 2435369 Jul-99 2340506 Jan-95 2291063 Jun-96 2445046 Dec-97 2524379 Aug-99 2340506 Feb-95 532744 Jul-96 2438756 Jan-98 2524331 Sep-99 2340506 Aug-96 486347 Feb-98 2225429 Oct-99 2340506 Mar-98 2338605 Apr-98 610023 Note:

(a) Monthly power data was not available; constant power was assumed instead. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (April 2010) and when it was analyzed (June 2015). The effect of using constant monthly power for these cycles is therefore minimal.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-14 Table A-2 (cont.) Monthly Thermal Generation during the First 15 Fuel Cycles of the Byron Unit 2 Reactor Cycle 9(a) Cycle lO(a) Cycle ll(a) Cycle 12(a)

Month MWt-h Month MWt-h Month MWt-h Month MWt-h Nov-99 2305623 May-01 2581345 Oct-02 2553568 Apr-04 2539595 Dec-99 2305623 Jun-01 2581345 Nov-02 2553568 May-04 2539595 Jan-00 2305623 Jul-01 2581345 Dec-02 2553568 Jun-04 2539595 Feb-00 2305623 Aug-01 2581345 Jan-03 2553568 Jul-04 2539595 Mar-00 2305623 Sep-01 2581345 Feb-03 2553568 Aug-04 2539595 Apr-00 2305623 Oct-01 2581345 Mar-03 2553568 Sep-04 2539595 May-00 2305623 Nov-01 2581345 Apr-03 2553568 Oct-04 2539595 Jun-00 2305623 Dec-01 2581345 May-03 2553568 Nov-04 2539595 Jul-00 2305623 Jan-02 2581345 Jun-03 2553568 Dec-04 2539595 Aug-00 2305623 Feb-02 2581345 Jul-03 2553568 Jan-05 2539595 Sep-00 2305623 Mar-02 2581345 Aug-03 2553568 Feb-05 2539595 Oct-00 2305623 Apr-02 2581345 Sep-03 2553568 Mar-05 2539595 Nov-00 2305623 May-02 2581345 Oct-03 2553568 Apr-05 2539595 Dec-00 2305623 Jun-02 2581345 Nov-03 2553568 May-05 2539595 Jan-01 2305623 Jul-02 2581345 Dec-03 2553568 Jun-05 2539595 Feb-01 2305623 Aug-02 2581345 Jan-04 2553568 Jul-05 2539595 Mar-01 2305623 Sep-02 2581345 Feb-04 2553568 Aug-05 2539595 Apr-01 2305623 Mar-04 2553568 Sep-05 2539595 Note:

(a) Monthly power data was not available; constant power was assumed instead. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (April 2010) and when it was analyzed (June 2015). The effect of using constant monthly power for these cycles is therefore minimal.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-15 Table A-2 (cont.) Monthly Thermal Generation during the First 15 Fuel Cycles of the Byron Unit 2 Reactor Cycle 13(a) Cycle 14<*> Cycle 15 Month MWt-h Month MWt-h Month MWt-h Oct-05 2536102 Apr-07 2422571 Oct-08 548377 Nov-05 2536102 May-07 2422571 Nov-08 2583604 Dec-05 2536102 Jun-07 2422571 Dec-08 2666128 Jan-06 2536102 Jul-07 2422571 Jan-09 2665748 Feb-06 2536102 Aug-07 2422571 Feb-09 2407749 Mar-06 2536102 Sep-07 2422571 Mar-09 2662290 Apr-06 2536102 Oct-07 2422571 Apr-09 2569698 May-06 2536102 Nov-07 2422571 May-09 2665672 Jun-06 2536102 Dec-07 2422571 Jun-09 2567547 Jul-06 2536102 Jan-08 2422571 Jul-09 2664711 Aug-06 2536102 Feb-08 2422571 Aug-09 2666393 Sep-06 2536102 Mar-08 2422571 Sep-09 2579328 Oct-06 2536102 Apr-08 2422571 Oct-09 2665629 Nov-06 2536102 May-08 2422571 Nov-09 2578285 Dec-06 2536102 Jun-08 2422571 Dec-09 2665479 Jan-07 2536102 Jul-08 2422571 Jan-10 2665224 Feb-07 2536102 Aug-08 2422571 Feb-10 2407763 Mar-07 2536102 Sep-08 2422571 Mar-10 2662290 Apr-10 1460327 Note:

(a) Monthly power data was not available; constant power was assumed instead. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (April 2010) and when it was analyzed (June 2015). The effect of using constant monthly power for these cycles is therefore minimal.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-16 Table A-3 Surveillance Capsules U, W, X, and Y Fluence Rates for Ci Calculation, Core Midplane Elevation co<E > 1.0 MeV) fn/cm 2-s]

Cycle Length Fuel Cycle (EFPY) Capsule U Capsule W Capsule X Capsule Y 1 1.19 l.08E+ll l.06E+ 11 l.08E+l l 9.95E+l0 2 1.16 6.89E+l0 6.99E+IO 6.51E+l0 3 1.13 6.77E+10 6.87E+10 6.43E+10 4 1.19 8.28E+l0 8.39E+l0 7.70E+IO 5 1.23 8.IOE+lO 7.46E+l0 6 1.32 7.72E+10 7.llE+lO 7 1.41 7.29E+l0 6.84E+l0 8 1.41 6.19E+IO 9 1.39 6.28E+10 10 1.40 5.12E+l0 11 1.46 5.89E+10 12 1.45 5.37E+10 13 1.45 6.24E+l0 14 1.39 6.26E+ 10 15 1.47 6.88E+l0 Average -- l.08E+l 1 8.16E+IO 8.0lE+IO 6.63E+IO WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-17 Table A-4 Surveillance Capsules U, W, X, and Y Ci Factors, Core Midplane Elevation c

Cycle Length Fuel Cycle (EFPY) Capsule U Capsule W Capsule X Capsule Y 1 1.19 1.00 1.30 1.35 1.50 2 1.16 0.84 0.87 0.98 3 1.13 0.83 0.86 0.97 4 1.19 1.01 1.05 1.16 5 1.23 1.01 1.13 6 1.32 0.96 1.07 7 1.41 0.91 1.03 8 1.41 0.93 9 1.39 0.95 10 1.40 0.77 11 1.46 0.89 12 1.45 0.81 13 1.45 0.94 14 1.39 0.94 15 1.47 1.04 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-18 Table A-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope Rate (dps/gp> (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 eu (n,a) 60 eo 5.36E+04 4.18E+05 6.38£-17 63 eu (n,a) 60 eo 6.18£-17 6.18£-17 5.02E+04 3.92E+05 5.97£-17 54 Fe (n,p) 54 Mn l .43E+06 3.99E+06 6.34£-15 54 Fe (n,p) 54 Mn l.33E+06 3.71E+06 5.98£-15 5.98£-15 5.89£-15 s4Fe (n,p) s4Mn l.29E+06 3.60E+06 5.72£-15 58 Ni (n,p) 58 eo 8.64E+06 5.80E+07 8.31£-15 58 Ni (n,p) 58 eo 5.19E+07 7.75E-15 7.75£-15 7.73E+06 7.43E-15 58 Ni (n,p) 58 eo 7.80E+06 5.24E+07 7.50E-15 s9eo (n,y) 6oeo l.11E+07 8.66E+07 5.65E-12 59 eo (n,y) ?0 eo l.13E+07 5.70E-12 5.70E-12 8.81E+07 5.75E-12 59 eo (n,y) 60 eo l.12E+07 8.74E+07 5.70E-12 59 eo(ed) (n,y) 60 eo 5.63E+06 4.39E+07 2.87E-12 59 eo(ed) (n,y) 60 eo 5.00E+06 3.90E+07 2.54E-12 2.79£-12 2.79£-12 59 eo(ed) (n,y) 60 eo 5.82E+06 4.54E+07 2.96E-12 238 U(ed) (n,t) mes l.70E+05 6.59E+06 4.33E-14 4.33E-14 3.63£-14 237Np(ed) (n,t) mes l.34E+06 3.32£-13 5.20E+07 3.32E-13 3.28E-13 Note:

(a) Measured activity decay corrected to May 17, 1989.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-19 Table A-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope (dps/g)(a) Rate (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 60 eu (n,a) eo l.37E+05 3.57E+05 5.44E- l 7 63 60 eu (n,a) eo l.23E+05 3.20E+05 4.89E-17 5.05E-17 5.05E-17 63 60 eu (n,a) eo l.21E+05 3.15E+05 4.81E-l 7 54 54 Fe (n,p) Mn l.63E+06 3.18E+06 5.0SE-15 54 54 Fe (n,p) Mn l.47E+06 2.87E+06 4.56E-15 4.70E-15 4.70E-15 54 54 Fe (n,p) Mn l.45E+06 2.83E+06 4.49E-15 58 58 Ni (n,p) eo 6.42E+06 4.95E+07 7.09E-15 58 58 Ni (n,p) eo 5.81E+06 4.48E+07 6.41E-15 6.61E-15 6.61E-15 58 58 Ni (n,p) eo 5.73E+06 4.42E+07 6.33E-15 59 60 eo (n,y) eo 2.30E+07 5.99E+07 3.91E-12 59 60 3.90E-12 3.90E-12 eo (n,y) eo 2.29E+07 5.96E+07 3.89E-12 59 60 eo(ed) (n,y) eo l. l 5E+07 3.00E+07 l.95E-12 59 60 l.98E-12 l.98E-12 eo(ed) (n,y) eo l.18E+07 3.07E+07 2.0IE-12 238 U(ed) (n,f) mes 5.04E+05 5.15E+06 3.38E-14 3.38E-14 2.75E-14 237 Np(ed) (n,f) mes 3.85E+06 3.94E+07 2.51E-13 2.51E-13 2.49E-13 Note:

(a) Measured activity decay corrected to March 18, 1994.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-20 Table A-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope (dps/g)(a) Rate (dps/g) (rps/atom) Rate (rps/atom)

(rns/atom) 63 eu (n,a) 60 eo l.81E+05 5.05E-l 7 3.3 IE+05 63 eu (n,a) 60 eo l.66E+05 3.04E+05 4.63E-l 7 4.75E-17 4.75E-17 63 eu (n,a) 60 eo l.64E+05 3.00E+05 4.57E-l 7 54 Fe (n,p) 54 Mn l.37E+06 3.12E+06 4.96E-15 54 54 4.67E-15 4.67E-15 Fe (n,p) Mn 1.25E+06 2.85E+06 4.52E-15 54Fe (n,p) 54Mn l.25E+06 2.85E+06 4.52E-15 58 Ni (n,p) 58 eo 2.47E+06 4.78E+07 6.85E-15 58 Ni (n,p) 58 eo 2.35E+06 4.55E+07 6.51E-15 6.57E-15 6.57E-15 58 Ni (n,p) 58 eo 2.29E+06 4.43E+07 6.35E-15 59eo (n,y) 60 eo

3. l IE+07 5.69E+07 3.71E-12 59eo (n,y) 60 eo 3.06E+07 5.60E+07 3.65E-12 3.66E-12 3.66E-12 59eo (n,y) 6oeo 3.03E+07 5.54E+07 3.61E-12 59 eo(ed) (n,y) 6 1.60E+07 2.93E+07 l.91E-12

°Co 59 eo(ed) (n,y) 60 eo l.61E+07 2.94E+07 l .92E-12 l.92E-12 l.92E-12 59 eo(ed) (n,y) 60 eo l.63E+07 2.98E+07 l.94E-12 238 137 3.26E-14 2.53E-14 U(ed) (n,f) es 8.51E+05 4.96E+06 3.26E-14 237 Np(ed) (n,f) 137es 7.49E+06 4.36E+07 2.78E-13 2.78E-13 2.76E-13 Note:

(a) Measured activity decay corrected to January 20, 1999.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-21 Table A-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule Y Corrected Average Measured Saturated Reaction Average Target Reaction Activity Activity Rate Reaction Isotope Rate (dps/gi*> (dps/g) (rps/atom) Rate (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co l.24E+05 2.90E+05 4.42E-17 63 Cu (n,a) 6°Co 1.11 E+05 2.59E+05 3.96E-17 4.IOE-17 4.lOE-17 63 Cu (n,a) 6°Co 1.1 OE+05 2.57E+05 3.92E-17 54Fe (n,p) 54Mn 3.83E+04 2.57E+06 4.08E-15 54Fe (n,p) 54Mn 3.62E+04 2.43E+06 3.86E-15 3.90E-15 3.90E-15 54Fe (n,p) 54Mn 3.51E+04 2.36E+06 3.74E-15 s9Co (n,y) 6oCo l.84E+07 4.30E+07 2.81E-12 59Co (n,y) 60Co l.80E+07 4.2IE+07 2.74E-12 2.72E-12 2.72E-12 s9Co (n,y) 6oCo l.71E+07 4.00E+07 2.61E-12 59 Co(Cd) (n,y) 6°Co l.OOE+07 2.34E+07 l.52E-12 59 Co(Cd) (n,y) 6°Co 9.36E+06 2.19E+07 l.43E-12 l.48E-12 l.48E-12 59 Co(Cd) (n,y) 6°Co 9.85E+06 l.SOE-12 2.30E+07 238 U(Cd) (n,f) 137 Cs l.53E+06 4.81E+06 3.59E-14 3.59E-14 2.56E-14 237Np(Cd) (n,f) 137 Cs 9.08E+06 2.85E+07 2.09E-13 2.09E-13 2.07E-13 Note:

(a) Measured activity decay corrected to June 12, 2015.

Table A-9 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule A Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dpslgi*> (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 4.46E+02 2.68E+03 4.09E-19 4.09E-19 46 Ti (n,p) 46 Sc l.49E+03 5.48E+03 5.28E-18 5.28E-18 54 Fe (n,p) 54 Mn 9.30E+03 l.89E+04 2.99E-17 54 Fe (n,p) 54 Mn 2.95E-17 9.03E+03 l.83E+04 2.91E-17 58 Ni (n,p) 58 Co 5.74E+04 2.66E+05 3.80E-17 3.SOE-17 93Nb (n,n') 93mNb 5.36E+04 8.89E+05 l.37E-16 l.37E-16 59Co (n,y) 6oCo 3.07E+05 1.84E+06 4.12E-14 4.12E-14 59 Co(Cd) (n,y) 6°Co l.89E+05 l.14E+06 2.54E-14 2.54E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-22 Table A-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dpslgia) (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 6.16E+02 3.70E+03 5.64£-19 5.64£-19 46 Ti (n,p) 46 Sc 2.14E+03 7.87E+03 7.59£-18 7.59£-18 54 Fe (n,p) 54 Mn l.39E+04 2.82E+04 4.47E-17 54 4.27E-17 Fe (n,p) 54 Mn l.26E+04 2.56E+04 4.06E-17 58 58 Ni (n,p) Co 8.59E+04 3.98E+05 5.69£-17 5.69E-l 7 93Nb (n,n') 93mNb 8.08E+04 l.34E+06 2.07£-16 2.07£-16 59 6 Co (n,y) °Co 5.86E+05 3.52E+06 7.86£-14 7.86£-14 59 6 Co(Cd) (n,y) °Co 3.12E+05 l.87E+06 4.19£-14 4.19E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

Table A-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope (dps/g)(a) Rate (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 4.93E+02 2.96E+03 4.52£-19 4.52£-19 46 Ti (n,p) 46 Sc l.75E+03 6.44E+03 6.20£-18 6.20£-18 54 Fe (n,p) 54 Mn l.14E+04 2.31E+04 3.67£-17 54 3.65E-l 7 Fe (n,p) 54 Mn l.13E+04 2.29E+04 3.64E-l 7 58 Ni (n,p) 58 Co 7.00E+04 3.24E+05 4.64£-17 4.64E-17 93 Nb (n,n') 93 mNb 7.86E+04 l.30E+06 2.0lE-16 2.0IE-16 59 Co (n,y) 6°Co 5.59E+05 3.36E+06 7.50E-14 7.50£-14 59 6 Co(Cd) (n,y) °Co 3.32E+05 l.99E+06 4.45E-14 4.45E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-23 Table A-12 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dpslgia) (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 3.84E+02 2.31E+03 3.52E-19 3.52E-19 46Ti (n,p) 46Sc 1.34E+03 4.93E+03 4.75E-18 4.75E-18 54 Fe (n,p) 54 Mn 9.39E+03 l.91E+04 3.02E- l 7 2.96E-17 54 Fe (n,p) 54Mn 9.00E+03 l.83E+04 2.90E-17 58 58 Ni (n,p) Co 6.0IE+04 2.78E+05 3.98£-17 3.98E-17 93 93 Nb (n,n') mNb 7.09E+04 l.18E+06 1.82£-16 l.82E-16 59 Co (n,y) 6°Co 3.71E+05 2.23E+06 4.98E-14 4.98E-14 59 Co(Cd) (n,y) 6°Co 2.40E+05 l.44E+06 3.22E-14 3.22E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

Table A-13 Measured Sensor Activities and Reaction Rates for Off-Mid plane EVND Capsule D Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope Rate (dpslgia) (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co l.10E+02 6.61E+02 1.0 lE-19 1.0lE-19 46 46 Ti (n,p) Sc 4.63E+02 l.70E+03 l.64E-18 l.64E-18 54 54 Fe (n,p) Mn 2.53E+03 5.13E+03 8.14E-18 54 8.48E-18 Fe (n,p) 54Mn 2.74E+03 5.56E+03 8.82E- l 8 58 58 Ni (n,p) Co 2.04E+04 9.44E+04 I.35E-l 7 l.35E- l 7 93 93 Nb (n,n') mNb 2.36E+04 3.92E+05 6.04E-17 6.04E-17 59 Co (n,y) 6°Co l.39E+05 8.35E+05 l.87E-14 l.87E-14 59 Co(Cd) (n,y) 6°Co 9.31E+04 5.59E+05 l .25E-14 l.25E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-24 Table A-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F Average Measured Saturated Reaction Target Reaction Activity Activity Rate Isotope (dps/g)(a) Rate (dps/g) (rps/atom)

(rps/atom) 63 Cu (n,a) 6°Co 1.73E+02 l .04E+03 1.59£-19 1.59£-19 46 46 Ti (n,p) Sc 7.18E+02 2.64E+03 2.55£-18 2.55£-18 54 54 Fe (n,p) Mn 4.82E+03 9.78E+03 1.55£-17 54 l .49E-l 7 Fe (n,p) 54 Mn 4.42E+03 8.97E+03 1.42£-17 58 58 Ni (n,p) Co 3.33E+04 1.54E+05 2.21E-17 2.21E-17 93Nb (n,n') 93mNb 3.25E+04 5.39E+05 8.32£-17 8.32E-17 59 Co (n,y) 6°Co l.94E+05 l.17E+06 2.60£-14 2.60£-14 59 Co(Cd) (n,y) 6°Co l.25E+05 7.51E+05 1.68£-14 l.68E-14 Note:

(a) Measured activity decay corrected to September 20, 2010.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-25 Table A-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane - Dual Capsule Holder) Cycle I Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,a) 6 °Co 6.17E-17 5.41£-17 5.85E-17 1.14 1.05 1.08 54 54 Fe (n,p) Mn 5.98E-15 6.20£-15 6.07E-15 0.97 0.98 0.98 58 58 Ni (n,p) Co 7.74E-15 8.72£-15 8.3 lE-15 0.89 0.93 0.95 59 6 Co (n,y) °Co 5.70E-12 5.27E-12 5.64E-12 1.08 1.01 1.07 59 6 Co(Cd) (n,y) °Co 2.79E-12 3.39E-12 2.83E-12 0.82 0.99 0.83 238 137 U(Cd) (n,t) Cs 3.63E-14 3.40E-14 3.26E-14 1.07 1.11 0.96 237 137 Np(Cd) (n,f) Cs 3.28E-13 3.37£-13 3.25£-13 0.97 1.01 0.96 Average of Fast Energy Threshold Reactions 1.01 1.02 0.99 Standard Deviation 9.7% 6.7% 5.4%

Best-Calculated Integral Quantity %Unc. Estimate 0

/o Unc. BE/C (C)

(BE)

Fluence Rate E> 1.0 MeV l.08E+l 1 13 1.03E+ll 6 0.95 (n/cm 2 -s)

Fluence Rate E>O.l MeV 4.86E+l 1 -- 4.71£+11 10 0.96 (n/cm 2-s) dpa/s 2.lOE-10 13 2.03E-10 8 0.96 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-26 Table A-16 Least-Squares Evalua.tion of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane - Single Capsule Holder) Cycles 1-4 Irradiation Reaction Rate (rps/atom)

Reaction Best- BE/C Measured Calculated MIC M/BE Estimate (M) (C)

(BE) 63 eu (n,a) 60 eo 5.05E-17 4.32E-17 4.81E-17 1.17 1.05 1.11 54 54 Fe (n,p) Mn 4.70E-15 4.79E-15 4.87E-15 0.98 0.96 1.02 58 58 Ni (n,p) eo 6.61E-15 6.73E-15 6.79E-15 0.98 0.97 1.01 59 eo (n,y) 60 eo 3.90E-12 3.58E-12 3.86E-12 1.09 1.01 1.08 59 60 eo(ed) (n,y) eo l.98E-12 2.33E-12 2.0lE-12 0.85 0.99 0.86 238 U(ed) (n,f) mes 2.75E-14 2.58E-14 2.57E-14 1.06 1.06 1.00 237 Np(ed) (n,f) mes 2.49E-13 2.54E-13 2.49E-13 0.98 1.00 0.98 Average of Fast Energy Threshold Reactions 1.03 1.01 1.02 Standard Deviation 8.1% 4.5% 4.9%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E > 1.0 MeV 8.21E+IO 13 8.07E+10 6 0.98 (n/cm 2-s)

Fluence Rate E>O.l MeV 3.64E+ll -- 3.59E+l 1 10 0.98 (n/cm 2-s) dpa/s l.58E-10 13 l.56E-10 8 0.99 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-27 Table A-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane - Dual Capsule Holder) Cycles 1-7 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,u) 6°Co 4.7SE-17 4.29E-17 4.S9E-17 1.11 1.03 1.07 54 54 Fe (n,p) Mn 4.67E-1S 4.73E-1S 4.77E-1S 0.99 0.98 1.01 58 58 Ni (n,p) Co 6.S7E-1S 6.64E-1S 6.68E-1S 0.99 0.98 1.01 59 6 Co (n,y) °Co 3.66E-12 3.83E-12 3.64E-12 0.96 1.01 0.9S 59 6 Co(Cd) (n,y) °Co l.92E-12 2.46E-12 l.9SE-12 0.78 0.99 0.79 238 U(Cd) (n,f) mes 2.S3E-14 2.SSE-14 2.SSE-14 0.99 0.99 1.00 237 Np(Cd) (n,f) mes 2.76E-13 2.48E-13 2.61E-13 1.11 I.OS I.OS Average of Fast Energy Threshold Reactions 1.04 1.01 1.03 Standard Deviation 6.3% 3.2% 3.0%

Best-Calculated Integral Quantity  % Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 8.0SE+IO 13 8.04E+ 10 6 0.99 (n/cm 2-s)

Fluence Rate E> 0.1 MeV 3.SSE+ll -- 3.61E+ll 10 1.01 (n/cm 2-s) dpa/s I.SSE-IO 13 1.S6E-10 8 1.01 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-28 Table A-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule Y (29.0° Azimuth, Core Mid plane - Dual Capsule Holder) Cycles 1-15 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,u) 6°Co 4.IOE-17 3.66E-17 3.97E-17 1.12 1.03 1.09 54 54 Fe (n,p) Mn 3.89E-15 3.96E-l 5 4.12E-15 0.98 0.94 1.04 59 6 Co (n,y) °Co 2.72E-12 3.08E-12 2.71E-12 0.88 1.00 0.88 59 60 Co(Cd) (n,y) eo 1.48E-12 2.00E-12 1.51E-12 0.74 0.99 0.75 238 U(Cd) (n,f) mes 2.56E-14 2.llE-14 2.22E-14 1.21 1.15 1.05 237 Np(Cd) (n,f) mes 2.06E-13 2.05E-13 2.IOE-13 1.01 0.98 1.02 Average of Fast Energy Threshold Reactions 1.08 1.03 1.05 Standard Deviation 9.8% 8.9% 2.8%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 6.66E+l0 13 6.99E+10 6 1.04 (n/cm 2-s)

Fluence Rate E> 0.1 MeV 2.93E+ll -- 3.03E+l 1 10 1.03 (n/cm 2 -s) dpa/s 1.28E-10 13 1.33E-10 8 1.03 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-29 Table A-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,a) 6°Co 4.08E-19 4.44E-l 9 4.03E-19 0.92 1.01 0.91 46 Ti (n,p) 46 Sc 5.28E-18 5.94E- l 8 5.34E-18 0.89 0.99 0.90 54Fe (n,p) 54Mn 2.95E-17 3.15E-17 2.90E-17 0.94 1.02 0.92 58 Ni (n,p) 58 Co 3.80E-17 4.40E-l 7 4.0lE-17 0.86 0.95 0.91 93Nb (n,n') 93mNb l.37E-16 l.26E-16 l.33E-16 1.09 1.03 1.06 59 Co (n,y) 6°Co 4.12E-14 4.18E-14 4.13E-14 0.98 1.00 0.99 59 Co(Cd) (n,y) 6°Co 2.53E-14 2.39E-14 2.52E-14 1.06 1.00 1.06 Average of Fast Energy Threshold Reactions 0.94 1.00 0.94 Standard Deviation 9.5% 3.2% 7.2%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fl uence Rate E > 1.0 MeV 5.35E+08 13 5.34E+08 6 0.99 (n/cm 2 -s)

Fluence Rate E>O.IMeV 5.05E+09 -- 5.44E+09 IO 1.07 (n/cm 2 -s) dpa/s l.72E-12 13 l.81E-12 8 1.05 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-30 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,a) 6°Co 5.64E-l 9 5.68E-l 9 5.56E-19 0.99 1.01 0.98 46 46 Ti (n,p) Sc 7.59E-18 7.82E-18 7.60E-18 0.97 1.00 0.97 54 54 Fe (n,p) Mn 4.26E-l 7 4.33E-l 7 4.27E-17 0.98 1.00 0.98 58 58 Ni (n,p) Co 5.69E- l 7 6.09E-17 5.95E-17 0.93 0.95 0.98 93 93 Nb (n,n') mNb 2.07E-16 l.79E-16 2.00E-16 1.16 1.03 1.12 59 6 Co (n,y) °Co 7.86E-14 7.91E-14 7.89E-14 0.99 1.00 1.00 59 6 Co(Cd) (n,y) °Co 4.19E-14 3.84E-14 4.17E-14 1.09 1.00 1.09 Average of Fast Energy Threshold Reactions 1.01 1.00 1.01 Standard Deviation 8.9% 3.0% 6.3%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E> 1.0 MeV 7.58E+08 13 8.01E+08 6 1.05 (n/cm 2-s)

Fluence Rate E>O.lMeV 7.27E+09 -- 8.21E+09 10 1.12 (n/cm 2-s) dpa/s 2.49E-12 13 2.76E-12 8 1.10 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-31 Table A-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,u) 6°Co 4.52E-19 5.70£-19 4.49E-l 9 0.79 1.01 0.79 46 46 Ti (n,p) Sc 6.20£-18 7.90E-18 6.20£-18 0.79 1.00 0.78 54 54 Fe (n,p) Mn 3.65E-l 7 4.47E-17 3.60E-17 0.82 1.02 0.80 58 58 Ni (n,p) Co 4.64E-17 6.33E-17 5.00E-17 0.73 0.93 0.79 93 93 Nb (n,n') mNb 2.0lE-16 l.97E-16 l.93E-16 1.02 1.04 0.98 59 6 Co (n,y) °Co 7.50E-14 9.IOE-14 7.57E-14 0.82 0.99 0.83 59 6 Co(Cd) (n,y) °Co 4.45E-14 4.42E-14 4.42E-14 1.01 1.01 1.00 Average of Fast Energy Threshold Reactions 0.83 1.00 0.83 Standard Deviation 13.4% 4.2% 10.3%

Best-Calculated Integral Quantity  % Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E> 1.0 MeV 8.29E+08 13 7.43E+08 6 0.89 (n/cm 2-s)

Fluence Rate E>O.lMeV 8.32E+09 -- 8.40E+09 10 1.00 (n/cm 2-s) dpa/s 2.82E- l 2 13 2.76£-12 8 0.97 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-32 Table A-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best- M/BE BE/C Measured Calculated MIC Estimate (M) (C)

(BE) 63 Cu (n,a) 6 °Co 3.52E-19 3.90E-19 3.47E-19 0.90 1.01 0.89 46 46 Ti (n,p) Sc 4.75E-18 5.45E-18 4.79E-18 0.87 0.99 0.88 54 54 Fe (n,p) Mn 2.96E-17 3.25E-17 2.92E-17 0.91 1.01 0.90 58 58 Ni (n,p) Co 3.98E-17 4.72E-17 4.19E-17 0.84 0.95 0.89 93 93 Nb (n,n') mNb l.8 lE-16 l.70E-16 l.76E-16 1.06 1.03 1.03 59 6 Co (n,y) °Co 4.98E-14 5.72E-14 5.02E-14 0.87 0.99 0.88 59 6 Co(Cd) (n,y) °Co 3.22E-14 3.30E-14 3.20E-14 0.98 1.01 0.97 Average of Fast Energy Threshold Reactions 0.92 1.00 0.92 Standard Deviation 9.3% 3.0% 6.9%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E> 1.0 MeV 7.12E+08 13 6.89E+08 6 0.96 (n/cm 2 -s)

Fluence Rate E>O.lMeV 7.40E+09 -- 7.71E+09 10 1.04 (n/cm 2-s) dpa/s 2.44E-12 13 2.SOE-12 8 1.02 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-33 Table A-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best- M/BE BE/C Measured Calculated MIC Estimate (M) (C)

(BE) 63 Cu (n,a) 6°Co l.OlE-19 l.84E-19 l.05E-l 9 0.55 0.96 0.57 46 Ti (n,p) 46 Sc l.64E-18 2.58E-18 l.55E- l 8 0.63 1.06 0.60 54 Fe (n,p) 54 Mn 8.48E-18 l.55E-l 7 9.07E-18 0.55 0.93 0.59 58 Ni (n,p) 58 Co l.35E-17 2.24E-l 7 l .36E-l 7 0.60 0.99 0.61 93Nb (n,n') 93mNb 6.04E-17 8.02E-17 5.87E-17 0.75 1.03 0.73 59 Co (n,y) 6°Co l.86E-14 2.81E-14 l .89E-14 0.66 0.99 0.67 59 Co(Cd) (n,y) 6°Co I .25E-14 l.61E-14 l.24E-14 0.78 1.01 0.77 Average of Fast Energy Threshold Reactions 0.62 0.99 0.62 Standard Deviation 13.4% 5.3% 10.2%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 3.35E+08 13 2.26E+08 6 0.67 (n/cm 2-s)

Fluence Rate E> 0.1 MeV 3.48E+09 -- 2.73E+09 10 0.78 (n/cm 2 -s) dpa/s l.15E-12 13 8.71E-13 8 0.75 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-34 Table A-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth, Bottom of Active Core) Cycle 15 Irradiation Reaction Rate (rps/atom)

Reaction Best-Measured Calculated MIC M/BE BE/C Estimate (M) (C)

(BE) 63 Cu (n,a) 6°Co 1.58E-19 l.53E-19 l.66E-19 1.03 0.96 1.08 46 46 Ti (n,p) Sc 2.54E-18 2.15E-18 2.46E-18 1.18 1.03 1.14 54 54 Fe (n,p) Mn l.49E-l 7 l.29E-17 l.49E-l 7 1.15 1.00 1.16 58 58 Ni (n,p) Co 2.21E-17 l.87E-l 7 2.19E-17 1.18 1.01 1.17 93 93 Nb (n,n') mNb 8.32E-17 6.81E-17 8.25E-l 7 1.22 1.01 1.21 59 6 Co (n,y) °Co 2.60E-14 2.47E-14 2.62E-14 1.05 0.99 1.06 59 6 Co(Cd) (n,y) °Co l.68E-14 l.41E-14 l .66E-14 1.19 1.01 1.18 Average of Fast Energy Threshold Reactions 1.15 1.00 1.15 Standard Deviation 6.3% 2.6% 4.1%

Best-Calculated Integral Quantity %Unc. Estimate %Unc. BE/C (C)

(BE)

Fluence Rate E>l.OMeV 2.83E+08 13 3.4 IE+08 6 1.20 (n/cm 2-s)

Fluence Rate E> 0.1 MeV 3.00E+09 -- 3.53E+09 10 1.17 (n/cm 2 -s) dpa/s 9.87E-13 13 l.16E-12 8 1.17 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-35 Table A-25 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules Capsule Reaction Average Std. Dev.

u w x y 63 Cu (n,a) 6°Co 2.3%

1.14 1.17 1.11 1.12 1.14 54 Fe (n,p) 54 Mn 0.97 0.98 0.99 0.98 0.8%

0.98 58 Ni (n,p) 58 Co 0.89 0.98 0.99 -- 0.95 5.8%

238 137 U(Cd) (n,f) Cs 1.07 1.06 0.99 1.21 1.08 8.5%

237 137 6.3%

Np(Cd) (n,f) Cs 0.97 0.98 1.11 1.01 1.02 Average of MIC Results 1.04 8.1%

Table A-26 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions- Ex-Vessel Midplane Capsules Capsule Reaction Average Std. Dev.

A B c E 63 Cu (n,a) 6°Co 0.92 0.99 0.79 0.90 0.90 9.2%

46 Ti (n,p) 46 Sc 0.89 0.97 0.79 0.88 8.4%

0.87 54Fe (n,p) 54Mn 0.94 0.98 0.82 0.91 0.91 7.5%

58 Ni (n,p) 58 Co 0.86 0.93 0.73 0.84 0.84 9.9%

93 Nb (n,n') 93 mNb 1.09 1.16 1.02 1.06 1.08 5.5%

Average of MIC Results 0.92 11.7%

Table A-27 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - Ex-Vessel Off-Midplane Capsules Capsule Reaction D F 63 Cu (n,a) 60 Co 0.55 1.03 46Ti (n,p) 46Sc 0.63 1.18 54Fe (n,p) 54Mn 0.55 1.15 ssNi (n,p) ssco 0.60 1.18 93Nb (n,n') 93mNb 0.75 1.22 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-36 Table A-28 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules Fast Fluence Rate (E > 1.0 MeV) Iron Atom Displacement Rate Capsule BE/C Std. Dev. BE/C Std. Dev.

u 0.95 6.0% 0.96 8.0%

w 0.98 6.0% 0.99 8.0%

x 0.99 6.0% 1.01 8.0%

y 1.04 6.0% 1.03 8.0%

Average 0.99 3.8% 1.00 3.0%

Table A-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - Ex-Vessel Midplane Capsules Fast Fluence Rate (E > 1.0 MeV) Iron Atom Displacement Rate Capsule BE/C Std. Dev. BE/C Std. Dev.

A 0.99 6.0 1.05 8.0 B 1.05 6.0 1.10 8.0 e 0.89 6.0 0.97 8.0 E 0.96 6.0 1.02 8.0 Average 0.97 6.8% 1.04 5.3%

Table A-30 Summary of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Ex-Vessel Midplane Combined Reaction Avg. MIC Std. Dev. Avg. MIC Std. Dev. Avg. MIC Std. Dev.

63 eu (n,u) 60 eo 1.14 2.3% 0.90 9.2% 1.02 6.0%

46 Ti (n,p) 46 Sc

-- -- 0.88 8.4% 0.88 8.4%

54 Fe (n,p) 54 Mn 0.98 0.8% 0.91 7.5% 0.95 5.1%

58Ni (n,p) 58 Co 0.95 5.8% 0.84 9.9% 0.90 7.8%

93Nb (n,n') 93mNb -- -- 1.08 5.5% 1.08 5.5%

238 U(ed) (n,f) mes 1.08 8.5% -- -- 1.08 8.5%

237Np(ed) (n,f) mes --

1.02 6.3% -- 1.02 6.3%

Average 1.04 8.1% 0.92 11.7% 0.98 7.0%

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-37 Table A-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios - In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Ex-Vessel Midplane Combined Reaction Avg. Std. Avg. Std.

Avg. MIC Std. Dev.

MIC Dev. MIC Dev.

Fast Fluence Rate (E > 1.0 Me V) 0.99 3.8% 0.97 6.8% 0.98 3.9%

Iron Atom Displacement Rate 1.00 3.0% 1.04 5.3% 1.02 3.1%

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 A-38 A.2 REFERENCES A-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, March 2001.

A-2 Westinghouse Report, WCAP-1243 1, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, October 1989.

A-3 Westinghouse Report, WCAP-14064, Revision 0, Analysis of Capsule W from Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, July 1994.

A-4 Westinghouse Report, WCAP-15176, Revision 0, Analysis of Capsule X from Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, March 1999.

A-5 Westinghouse Report WCAP-17333-NP, Revision 1, Ex-Vessel Neutron Dosimetry Program for Byron Unit 2Cycle15, October 2012.

A-6 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-7 RS ICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross-Section Compendium, July 1994.

A-8 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA), 2014.

A-9 ASTM Standard E844-09, Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (!IC), 2014.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 8-1 APPENDIXB LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

  • "YLXX" denotes Lower Shell Forging [490330/49C298] l, tangential orientation
  • "YTXX" denotes Lower Shell Forging [490330/49C298]-1-1, axial orientation
  • "YWXX" denotes weld material
  • "YHXX" denotes heat-affected zone material Note that the instrumented Charpy data is not required per ASTM Standards E 185-82 or E23-12c.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-2

-'°!

4000.ooT i~ooct i

1 2000.00

- ~ -

T~l[nn}

-

o.oo,LL.illlillllLlllloil-mLJ...LillU.l--JJ'4..Ln..i;""-'L'-"'--'-l..A.:\.oM.ll.....1.L;.lL.l'-11..&.-i!iJ!;.."-"'ii_f,,"->OLJ~._fl--"">--A-1>'-"--...._b.-JJ......,__,'"--'l,_,,>......<~

~ ~

YL 75: Tested at -50°F

~*ocl 40~0.0Ct

!~ 3000.0011 20\10.00 I

ooo'-----'-""'""'-'""'-.L...lll.-'-l..""-'-'--'-""-"_,._,WWc.m.-"'-.llm'-""""-4"--'-.._........_.,.--'Ll_,,,____,,,,D..l!"'-<"'--"'-"L..Ll-A...CJ"-'~""'-_,,,__-"'-~.._ci__,,__,~

o.co 1.00 5.00 lme-1 (ms)

YL65: Tested at -30°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-3 6000.00~--------------------------------------~

10CICl.OOI I.DD ,.,

o.no'-----"-ll.l...JCJUL'-"'.-.LJ.AUU-w..t.,Jl.l.'-"1"'-"'-4L-""-&Wl.A..<"'--".L,£"'-'>l.Ll-"""-_!YJ_.J!l-l'--"-"'"--""---'"--""-"'---L>--"-.,,,_,""-""'--"-'~--"_,...,

s.nn

'"' Tme-1 (ms}

YL 72: Tested at -10°F 4000.001 f,.,.. 1 2000.00 I

.... 1.00

'*"

rme-1 (ms)

....

noo'---'-"'-'-"'"'"-ill..ill'"-l....__,_.Wll-""lWL"-'--""'--""""'-'""-'-"""-",.._""'--""'-""'""",,,_..."-">.b-""'-"""-"'--4~"'-"~"'--"'~""""".....,___.,,~~,,__....._..__,,_..

YL66: Tested at -5°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-4

~ '"'"!

2000,00 YL64: Tested at 0°F sooo.00,-----------------------------------------~

g j 300000 2000.001 I

IOllD.00 rme-1 (ms)

YL 71: Tested at 5°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 8-5

=~ _..__j_J]""""-'1."~~.JLL'.l'.l.J.1~....,.._,._,~~~~......._,,,,~"-"--"~.........,,._~

o.oo'---1 MO 200 e.oo Tme-1 (IMJ YL68: Tested at 10°F 5000.IJ-O 2000.00 1000.00 o.ooJ--------'-"=>._,_,,"-"--'-'-'~""'-=-""-..a.."""-'-"'-"'ia."'-"--"1-<-'-'--.MllL>,LJ--.L~U..""--'-'-...O..-.'---'"-'..._,_."---,,_,_,,,,,_,,,,...._,,._....

0.00 1.00 3.00 5.00 6.00 Trne-1(1115)

YL73: Tested at 20°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-6 g:

~ 3000.0D 2000.00 YL63: Tested at 40°F 5000.00 2000.00 1000.00" o.0-01-----------'--L_JLJO>l:.;.J_!42'.J.e~!U!l..&'1ol>o&l""'1.M.l..,..~"""'"""""IM.o.&..J....,"°""...._ _....__,,,__,....,,,.........,...,.,

0.0-0 MO Tme-1 (ms)

YL69: Tested at 72°F WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 B-7 600G.Ollload-1243311 Tine-1 ...0."'4rm 5000.00

<<IOCl.00 YL 70: Tested at 120°F 5000.0<I g """!

~ ~OOMj 2000.00, 1000.(l{)

i ooo'----~-----------------------~--------------"'="""'"'

a.oo 000 1.DO Tine-1(111!1)

'*""

YL67: Tested at 175°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 8-8

.000.00 o.aol----------------------------------------"-'~

0.00 5.00 6.00 Tme.1 (111!1}

YL61: Tested at 225°F 600000Lood-10001b Tere-1 ..(J.41ll0 5'100.CO (Ll00.00 2000.00 100l1Jll) i 0.00~-----------------------------------~------<

0.00 1.00 2.CO >CO *.oo 5.00 6.00 Trre-1~)

YL74: Tested at 250°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-9 1000.00 0 0.00. 0 0 ' ' - - - - - - - - - -2.00

- - - - - - - ->00- - - - - - - - - - - - - - - - - " " " " " '

5.00 Tme-1 {~i YL62: Tested at 275°F YT67: Tested at -30°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-10 6000.001

-*1

'0.()Qj

" r I I 300*"!

2000.00 ~

o.oo'-_wJl.Llllll4ll-"""llJ.LI-'-4JJL!.cl..ill-"-'.!....wiLL0-'1Lil.ll>-J~A4..ru;'-""....U.......,.,,_.111LJ,,_.,.ll,.Jl__.,,'-C._,.L..A--'-'--""'--""---1L..._..'"'-.£L..l'------"I-"'-_..._~

0.00 1.00 2.00 3.00 *.oo 5.00 6.00 Trre-1 (ms; YT75: Tested at -20°F YT62: Tested at -10°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-11 60CICl.OOr----------------------------------------,

SOOQ,00 400Cl.00i I

i" 30000JI 2000001 rme-1 (ms)

YT74: Tested at 0°F 6000.00r-------------------------------------~

5000.00

~OilBOOr g

~

l

'3-000.CICll l

2000,00 1000.00 YT72: Tested at 10°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-12 1

200000 I

Tme-1 {msi YT71: Tested at 20°F

~1

"

'000.001 l-*I wf' 2000.ooj T~1(!m)

YT69: Tested at 30°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-13 100Q.ll0° o.oal-----'-4-'W'-l-'--"'""-"µ.i-".UlUW_j'-1'-'WL!'-""4U'-'M""'-tl-4"-"'"'-""-_...."""-""'-4-"--'->LL1"'--'~-'""--'-l..A~~-_,..__,,,,___,,,_,,,_...._.,___,..

0.00 1.00 5.00 600 YT65: Tested at 40°F

~GO.oo, 1000.00 o.ocL-----1L!llllll1'1fLl-LLLLJcl..ll.-LJ._.LL.ru.<Jc.A.1..Lill.M"'-'>"'-..,._-l!'!l-'W'-Ll"-4-1Ll\.,l>l>.,"""-J:!i_..J!J......_n....J.L.."---".....0-"'~-1>1 o.co 3.00 Tine-1 (ms)

YT63: Tested at 50°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-14 saaa.oo

JGQ0.00

~

1000.00 o.oo,__-------'-"llil.1""'-"'-'--'-""""'-"'-"""Lr,!..l'-'-"'.'-1..lo.-'""-""',_...,,...Jhl>..-.-.-"'-'CA.__.._.,,,___,,~....,__...,_.~~..o 0.00 2.IW 3.00 *.00 6.00 rvn&-ttrnl YT70: Tested at 72°F 5000.00 Tme.1(111!1}

YT61: Tested at 120°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-15 5000.0{I ofOOD.00 ie 3000.DG 21>00.00 HlOO.DO s.oa

'*" 2.00 Trne--1 {1!15) 6.00 YT66: Tested at 175°F 6000.0D,-------------------------------------------;

5000.00 40011.00 YT64: Tested at 225°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-16 ooo.L--~--~--~--~-~--~--~-~_:::=::::::::::~~~=o~,,,.._~~

0.00 2.00 3,00 Tm!'*l(ms)

'*"' 6.00 YT73: Tested at 250°F 6GOOOO~-------------------------------~

-*1 g '""]

! """!

.:?il00.00, 1000.00' 3.-0\1 r.me-1(ms)

S.DO

'*""

YT68: Tested at 275°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-17 6000.00~------------------------------------~

2000.00 0.00 D.GO 1.00 3.llO <.oo 5.00 8.00 Tme-1 (Rl'li YW67: Tested at-110°F 6'0000

-*1 41Ul0.~i l

e

! .......

2000.1)01 1000.0ll D.00 1.00 G.DO Trne-1 (ms)

'*"° YW74: Tested at-70°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-18

.=1~

~ 300DOQ[

2000.001 I

o.ooJ------'-"lJl'.llil'1-illl..1-41-L-"'1l-'-'--U..O..U...""'--'J..4L-""--'""'-'-'-'""""--"'"-L1-""-'""--01.L1~itll...ll.ol.i-'>'l.-"'-"'-'"--""-"'---"""-"--'-'--"-.,._,,_,,_,~

'*"' l.00 Tue-l{ln'li

'*"' '*" 6.00 YW62: Tested at -50°F GOOO.ao-------------------------------------~

4{100.00 g

~ '"'"/

2000,00, Ul00.00 o.0-0l-----1Jl\WILllfil.!:n.J-Uilll-LlLLJ.<LJJLI!l..1UY.J...1.kJ!<1,,ILLl..,,,_,!L.ll__,_,,,,..,...tn..J><U.:i..o.....t...J>-._/}L-"'L..__."-l'l~.._.,._..,.~L>....n...,,A..1L.fu~

0.00 rme-1{ms) "'

YW61: Tested at-30°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-19 6000.00~------------------------------------~

4001l.GO 1l

~ 3000.00 oco 000

'*" 10-0 rme-1 (1m)

.... 6.00 YW69: Tested at -10°F 600000 5000.00

<OCOOC!

1 11 2000.001

'"'"

'*"0.00 1.0-0 rme-1 (ms)

YW71: Tested at 0°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-20 g

2000.00, 1

1000.00 ll.00 0.00 1.00

'*" ..... S.0-0 6.00 Tme-1 {ms)

YW65: Tested at 10°F 6000.DO

""'""

r 4Cl00.00 g

~ 3000.00 2000.001 1000.00 0.011

""' 1.00 rme-1(ms)

'*""

YW70: Tested at 20°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-21 600lHlOLoad-I !lOOb Ttne..1-0'4-4111'l 4COO.-OO 1000.00' 0.0<J

  • .oo

'*" '*"' 2.00 3.00 Tme-1 (llEI)

S.00 6.00 YW72: Tested at 40°F 6001lDO 5000.00 4aoo.ool i""J 2<1oa.-00 I

1000.0<l,

'" '*"'

rane-1{ms) "' 6.00 YW66: Tested at 72°F WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 B-22 soao.co YW73: Tested at 120°F 6000.00,-----------------------------------------,

SDW.00 4001100

".00

  • ool----~--~-----"~'-"'""""""LC:"--""--'"...._,...__,.._.......,.__..._..~......~.-....._~_..~~~~~~,_,,__,,.._~

,.,

'*"' 1.0-0 3.00 Tme--1{ms) 4.CO

'*"

YW75: Tested at 175°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-23 60all.GO~--------------------------------------~

1 l-"J 200-0.001 0.00 0.00 1.00 5.00 Trne-l{=i YW64: Tested at 225°F SllOOOO 5000.00

.fllQO,llO a Nvlt/

i 3000.00 3

200000 1000.00 0.00 000 1.00 >CO 3.00 Tme-1 (ms) 4.00 S.oo

'*"

YW63: Tested at 250°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-24 YW68: Tested at 275°F 60000ll,~------------------------------------~

200000!

1000.00" YH70: Tested at -180°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-25 6000.M.-------------------------------------------,

SOM.00 e

j 30M.OO I

1 2000.00 ooo'----'-"'"'"'..LU>"'""-""---U-"""--'--LI.LL4ll-.=.-"""L-UL-"L"'-""'-'""--,_...._-"""-."---"-'--'-'...._,""-"""--L-'-...LL"-'-'-""'--'-'--n..o.--"IA-'-'-'-'~"-'-'"'--~~

2.00

"' 1.00 Tme-l{lmi

'*" 5.11<> 6.00 YH61: Tested at -150°F 600000.-----------------------------------------,

~00001 l

"""jW e ]

~ 3000.00, T

1 2000.00 o.ool-------WJCJULILLJ--'-'.lllLJ..L!lW1~0..Uc.o'-'l.1'LlJ..LJ""-L4--""'~41-ll!!Ll.il...._.L!l.-llliLo.J..ll>...u.<OLL!J.LLl.......<-"'-l!>lL.L!l.L--U-L..J"--<i,._j,>.....~>...ll.lw 0.00 1.00 3.00 4.CO 5.00 6.00 Tifie..t(rre)

YH75: Tested at -120°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-26 6000.0-01~-------------------------------------

5000001

,,,,J ~t~\

~

j 300000 2000.0J 1

1Gll000 :

'*"'j___ _l_J)filJJUl.hlJlllj_j.LJ!llltlL.-1.l(J-1..lJ...l!'l..fil..!CILLlLlll~IL.LIA..LL/l>.fu..r;._Jlj)L4.ol,.._lli._llAl~U1.,__~...__,!"Lo._A.n__.&.-A._ll_,...__n_J!~

2.00 100 *.oo 5.00 6.00

'"' Tme-l{lll!lli YH65: Tested at -ll0°F MO-OOO~------------------------------------~

S000.00 e:

3000.00 j

2000001 1000.001 o.ocl----~------'-"""'1LIJJJl-IWLJLLLllLll-1.JJ1JL/LL...J.'!C-1J..1JUU'-"<l!l.-""-"ol....l?Ll!W..<0<-'A_l_l_,._,,,,,'-lJ<__,,LLLI4.8-ffi_"°-">1U""""~

000 1.00 3.00 4.00 5.00 6.00 Tflle-1(~}

YH74: Tested at -100°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-27 6000.00*~-------------------------------------

~ ::.oan.oc YH67: Tested at-70°F 10'00.0<I, oooJ----~--~-----'.LU>'-'-"'Jl!WCLJ..L..J!.l.ll.L~OL"1u"--""..L'0'--""'-""4..1'"'-"'-""4-J.,.._LL"'-'....o.--""'-""_.,,,__._..._.,~.__.,~

O.CO

"' J.CO 4.CO *co 6.00 rme.1 {ms)

YH72: Tested at -50°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-28

~ JC(I0.00 YH63: Tested at -30°F 6DODOO*.,----------------------------------------~

5000.IJll 200000, 1000.00 onol---~--~---~-_J_~-"'--'-"----"--~'---"'-'"-'""-'-J<t__-'L-'>>l'--'-LiLJ."""'~'l...l>i.J"->._.,_...o....A,_..o......~~

0.00 1.00 ,.,. 4.00 5.00 8.0<J Tme-1 (ms)

YH69: Tested at -10°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-29 6000.00--------------------------------~

SOll0.00 1

100000

  • o.ooL-~----------~o:_:_:.:_:~_::_:_:::__:::~~~~~~~~"""'"'"""'""""'.,_.....,,....-/

""' '"" J.00 Tme--1 (rm) 5.00 6.0()

YH66: Tested at 0°F 600000lo!H1-1208.Slb 5000.00 YH68: Tested at 10°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-30 601lO.OO,----------------------------------~

i 100(101),

ooo'---------------'----~-'---'--'"--'"----'"'--"'--'"'"'-"""""""'-"...._.....,.__........._~-""-

o.oo 1.00 5.00 6.00 2.00

'°'

Tme-1 tms}

YH71: Tested at 40°F 6000.00,----------------------------------~

YH73: Tested at 72°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 B-31 6000.00,~---------------------------------

woo.col tOOO.DO

-

ooo'------------------------------:::'.'::::~'::::::~d

~ ~

T~1{msj

~ 6.00 YH64: Tested at 100°F

~0001~---------------------------------

5000.IJO 1::'r 2000 .00 ~

1000.00'.

~ - -

o.ooL----------------------".~::::~~~,,,,_,,~~------1

~

Ttn&-l(ms)

~ ~ 0.00 YH62: Tested at 175°F WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-1 APPENDIXC CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD C.1 METHODOLOGY Contained in Table C-1 are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 6.02. The definition for USE is given in ASTM E185-82 [Ref. C-1], Section 4.18, and reads as follows:

"upper shelf energy level - the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."

Westinghouse reports the average of all Charpy data (2: 95% shear) as the USE, excluding any values that are deemed outliers using engineering judgment. Hence, the Capsule Y USE values reported in Table C-1 were determined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-1 for the unirradiated material, as well as Capsules U, W, and X, were also determined by applying the methodology described above to the Charpy impact data reported in WCAP-10398 [Ref. C-2], WCAP-12431 [Ref. C-3], WCAP-14064 [Ref. C-4], and WCAP-15176 [Ref. C-5]. The USE values reported in Table C-1 were used in generation of the Charpy V-notch curves.

The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansion values were fixed at 1.0 mil in order to be consistent with the previous capsule analysis [Ref. C-5].

Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH Capsule Material Unirradiated u w x y (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs)

Lower Shell Forging

[49D330/49C298]-l- l 169 192 157 162 149

{Tangential Orientation)

Lower Shell Forging

[49D330/49C298]- l-l 154 160 129 150 119 (Axial Orientation)

Surveillance Weld Metal 67 77 68 66 58 (Heat# 442002)

Heat-Affected Zone (HAZ) 131 171 151 148 140 Material CVGRAPH, Version 6.02 plots of all surveillance data are provided in this appendix, on the pages following the reference list.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-2 C.2 REFERENCES C-1 ASTM E 185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982.

C-2 Westinghouse Report WCAP-10398, Revision 0, Commonwealth Edison Co. Byron Station Unit No. 2 Reactor Vessel Radiation Surveillance Program, December 1983.

C-3 Westinghouse Report WCAP-12431, Revision 0, Analysis of Capsule U from the Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, October 1989.

C-4 Westinghouse Report WCAP-14064, Revision 0, Analysis of Capsule W .from the Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, July 1994.

C-5 Westinghouse Report WCAP-15176, Revision 0, Analysis of Capsule X .from Commonwealth Edison Company Byron Unit 2 Reactor Vessel Radiation Surveillance Program, March 1999.

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-3 C.3 CVGRAPH VERSION 6.02 INDIVIDUAL PLOTS BYRON UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGmph 6.02: Hypcmolic T:mgcnt CurYc Printed on 8/28/2015 2:09 PM A = 85.60 B = 83AO C = 69.18 TO = 22.53 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B * [Tanh((T-TO)/(C+DTJJ]

Upper Shclr Energy = 169.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tempfi)30ft-lbs=-33.10° F Templil;35 ft-lbs=-26.10° F Temp'!j;50 fi-lbs= -9.00° F Plant: Byron 2 Material: SA508CLJ Heat: ]4903J0/49C298]-l-l Oricntalion: Tangential Capsule: UNlRR 180 I  !. 0: . -~*

I

~ 1) I 160 i

I ~ I I

/ ...

I

  • -

140 :al

--t ll

,Q 120

!

I f I

  • 1 I I I

¢::

I

..._.,

>. 100

-1*** ... -- --*

1:)1) i..

~

.. 1:

i

~= 80

. !

z

>

...

/3* I u 60

-

. -1 I

40 I *_JI I!

I

..

l'~ .. -- **- -. -.

20

~v 0

~

-300 -200

--

-100 I

0 100 i

200 i

300 400 500 600 Temperature ( F) 0 CVGmphG.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-4 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-I Orientation: Tangential Capsule: U!'.1RR BYRON UNIT 2 UNIRRADIA TED (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-75 9.0 11.6 -2.59 I

-* ------

-60 7.0 16.3 -9.25

-60 10.0 16.3 -6.25

-40 18.0 25.7 -7.71

-40 21.0 25.7 -4.71

-40 39.0 25.7 13.29

-25 45.0 35.9 9.ll

-25 60.0 35.9 24.l l

-25 45.0 35.9 9.11 0 38.0 59.4 -21.36 0 63.0 59.4 3.64 25 73.0 88.6 -15.58 25 77.0 88.6 -11.58 I

40 112.0 106.2 5.77 40 118.0 106.2 l 1.77 70 132.0 135.3 -3.27 70 143.0 135.3 7.73 125 161.0 160.8 0.20 125 167.0 160.8 6.20 210 173.0 168.3 4.74 210 174.0 168.3 5.74 300 17'1.0 168.9 3.05 CVGraph 6.02 08/2812015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-5 BYRON UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:10 PM A= 45.83 B = 44.83 C = 52.66 TO= -4.74 D = 0.00 Correlation Coefficient= 0.964 Equation is A+ B * [Tmtl1((T-TO)/(C+DT))j Upper ShelfL.E. = 90.65 Lower ShelfL.E. = 1.00 (Fixed)

Tcmp:(V35 mils=-17.70° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298j-1-1 Orientation: Tangential Capsule: UNffiR 100 - - - - - - - - - - - - - - ,- - - - - - - - - - -

o* t '. .. 0.

90~~~1--~--J'---'--+-.-~~:~~.__......~~,..,...""""""'*"'""""""""""*""'"""""""""~"""""=""1 so~-'--+~~-1-___,~-1-/....,*---1~~-+-~,--~~~-'---1---'~-+-~--i 70 ~~~--<-~~~-t-~~~+--c,1--~-t-~~~-t--~~~!--~~-+~~~-r-~~--t

-100 0 100 200 300 400 500 600 Temperature(° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

'

Westinghouse Non-Proprietary Class 3 C-6 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: Tangential Capsule: UNIRR BYRON UNIT 2 UNIRRADIA TED (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Co111puted L. E. Differential

-75 2.0 6.8 -4.81 i 1------------- --- ---- *------------

-60 1.0 10.8 -9.79

-60 4.0 10.8 -6.79

-40 12.0 19.6 -7.61

-40 13.0 19.6 -6.61

-40 30.0 19.6 10.39

-25 35.0 29.4 5.62

-25 49.0 29.4 19.62 I

-25 36.0 29.4 6.62 0 31.0 49.8 -18.85 0 54.0 49.8 4.15 25 61.0 68.8 -7.75 25 63.0 68.8 -5.75

-*

40 81.0 76.8 4.21 40 82.0 76.8 5.21 I 70 87.0 85.7 1.30 70 94.0 85.7 8.30 125 93.0 90.0 2.99 125 94.0 90.0 3.99 210 95.0 90.6 4.37 f 210 90.0 90.6 -0.63 300 74.Ll 90.7 -16.65 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-7 BYRON UNIT 2 UNIRRADIATED (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2: 11 PM A = 50.00 B = 50.00 C = 82.06 TO = 28.10 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 28.20 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298j-1-1 Orientation: Tangential Capsule: UNIRR 100 - --

90

...

I I ,.

I

/ . .

80

)

70

1 *'

f I

.... --- \

I

-*

...

~ 60 l

QI

.c ... '.

rJJ.

..... 50

=

QI

~

... f **I QI 40 Q., I

... 0 30 - 1)

\

2?

I

....

20 IO

}

~

£ 0 I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-8 Plant: Byron 2 Material: SA508CLl Heat: [49D330/49C298]-1-1 Orientation: Tangential Capsule: U~lRR BYRON UNIT 2 UNIRRADIATED (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear DilTerential

-75 5.0 7.5 -2.50 1--- ---- ----

-60 10.0 10.5 -0.46

-60 10.0 10.5 -0.46

-40 15.0 16.0 -0.98

-40 20.0 16.0 4.02 I

-40 23.0 16.0 7.02

-25 25.0 21.5 3.49

-25 30.0 21.5 8.49

-25 25.0 21.5 3.49 0 280 33.5 -5.52 0 30.0 33.5 -3.52 25 35.0 48.l -13.11 . i 1

25 45.0 48.l -3.ll

~* - - f--*

40 60.0 57.2 2.80 40 60.0 57.2 2.80 70 70.0 73.5 -3.52 70 75.0 73.5 1.48 125 100.0 91.4 8.62 125 1000 91.4 8.62 210 100.0 98.8 Ll7 210 100.0 98.8 l.17 I 300 100.0 99.9 0.13 CVGraph 6.02 08128/2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-9 BYRON UNIT 2 UNIRRADIATED (AXIAL)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2: 12 PM A= 78.10 B = 75.90 C = 85.35 TO= 16.79 D = 0.00 Correlation Coefficient= 0. 982 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy = 15-1.00 (Fixed) Lo\\*cr Shelf Energy= 2.20 (Fixed)

Temp'.!'!130 ft-lbs=--17.00° F Tcmp@35 ft-lbs=-38.20° F Tcmp:Q\50 ft-Ibs=-16.30° F Plant: Byron 2 Material: SA508CL3 Heat: j49D330/49C298]-1-l Orientation: Axial Capsule: UNIRR 180

..

.. **I .. 1 ...

0 160 140

  • yo 1--~~-+-~~--t~-'-~+-___,.~-+->,rv*\--~-+-~'---+~~~-1--~~-t-~~--t

--~

.c 120

~-

-

I i!::

100 /

-

~

OJ)

~

c 80

~

z

> 60 u

40 20 l

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGrnph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-10 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-I Ori~ntation: Axial Capsule: Ul\lRR BYRON UNIT 2 UNIRRADIA TED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential I

-75 8.0 18.0 -10.02 i

-60 9.0 23.7 -14.74 I

-60 10.0 23.7 -13.74

-40 32.0 33.9 -1.93 __,

-40 49.0 33.9 15.07

-25 43.(1 43.6 -0.65

-25 65.0 43.6 21.35 0 64.0. 63.4 0.64 0 70.0 63.4 6.64 40 79.0 98.2 -19.25 40 98.0 98.2 -0.25 80 126.0 125.9 0.12 80 130.0 125.9 4. !:!

>--*

125 139.0 142.9 -3.86 125 149.0 142.9 6.14 210 150.0 152.4 -2.38 2IO 165.0 152.4 12.62 300 152.0 153.S -1.80 CVGraph 6.02 08/28/2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-11 BYRON UNIT 2 UNIRRADIATED (AXIAL)

CVGrnph 6.02: Hyperbolic Tangent Cmvc Printed on 8/28/2015 2: 13 PM A= -U. 7-1 B = -10. 7-1 C = 46.97 TO= -20.90 D = 0.00 Correlation Coefficient= 0.964 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf L.E. = 82.-19 Lower Shelf L.E. = LOO (Fixed)

Tcmp@35 mils=-28.70° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49DJJ0/49C298j-l-l Orientation: Axial Capsule: UNIRR 100 90 80

--e

....

Cl.l u

-

70

...

cQ 60

....

Cl.l >-

c

=Q.,

50 i

~ >-

bl*

-.

r;;.J

~

40 I a.I

......

~ 30 I

..J >-

20 10

...

....

-**

I I 0

I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-12 Plant: Byron 2 Material: SA508CL3 . Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: UNIRR BYRON UNIT 2 UNIRRADIA TED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-75 1.0 8.4 -7.40

-- ----

-60 3.0 14.0 -10.97

-60 4.0 14.0 -9.97

-40 24.0 26.0 -2.03 I

-40 42.0 26.0 15.97

-25 33.0 38.2 -5.20

-25 53.0 38.2 14.80 0 55.0 58.8 -3.77 0 58.0 58.8 -0.77 40 62.0 76.8 -14.82 40 75.0 76.8 -1.82 80 81.0 81.4 -0.39 80 85.0 81.4 3.61

_J I

125 90.0 82.3 7.67 125 91.0 82.3 8.67 210 79.0 82.5 -3.48 210 300 84.0 79.0 82.5 82.5 1.52

-3.49 l

CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-13 BYRON UNIT 2 UNIRRADIATED (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/20152:13 PM A= 50.00 B = 50.00 C = 91.3-1TO=32.37 D = 0.00 Correlation Coefficient= 0.986 Eqnation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf '%Shear= 0.00 (Fixed)

Temperature at 50% Shear= 32.-10 Plant: B)*ron 2 Material: SA508CL3 Heat: [-19D330/49C298)-l-l Orientation: Axial Capsule: UNIRR 100

.....

90

( ..

80 70

-

~

~

60

....

/

.c 00.

......

=

50 I

-

~

~

I.

~

~ 40

.... (

. c . '.

-.

' .-. ~)

30

....

20 10 l*

0  ; I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-14 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-I Orientation: Axial Capsule*. UJ.'lolRR BYRON UNIT 2 UNIRRADIA TED (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear DiITerential

-75 5.0 8.7 -3.70 1-----

-60 10.0 11.7 -1.68

-60 10.0 11.7 -1.68

-40 20.0 17.0 2.99

-40 25.0 17.0 7.99

-25 25.0 22.2 2.84

-25 30.0 22.2 7.84 0 32.0 33.0 -0.99 0 35.0 33.0 2.01 40 40.0 54.2 -14.17 40 45.0 54.2 -9.17 80 75.0 73.9 1JJ6 80 80.0 73.9 6.06 125 90.0 88.4 1.63 125 100.0 88.4 11.63 210 100.0 98.0 2.00 210 100.0 98.0 2.00

~*

300 100.0 99.7 0.28 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-15 BYRON UNIT 2 UNIRRADIA TED (WELD)

CVGmph 6Jl2: Hyperbolic Tangent Cun,c Printed on 9/3/20154:11 PM A= 34.60 B = 32.40 C = 98.48 TO= -57.22 D = 0.00 Correlation Coefficient= 0,976 Equation is A+ B * [Tmtlt((T-TOJ/(C+DT))l Upper Shelf Energy= 67.00 (Fixed) Lower Shelf Energy= 2,20 (Fixed)

Tcmp@30 ft-lbs=-71.20° F Tcmp@35 ft-Ibs=-56,00° F Tcmpr@50 ft-lbs= -6.30° F Plant: 8)'ron 2 Material: WELD Heat: 442002 Orientation: NIA Capsule: UNIRR 80

.... '"

70 0

,u

'. ~.' i,...-.-.0 .. '. .. **-*

60

'/ -.... .

-

-- l'I.)

,.Q 50

.. ,( I

,,. .. ...

-

I 1~

~

' ..

>.

OJ) ii-< 40 l

~

~ = I z 30

~

u (!)/

I

~

OJ 20 10 jf .. ,, . '

~

I 0 I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGmph6Jl2 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-16 Plant: Byron 2 l\faterial: WELD H~at: 442002 Orientation: NIA Capsuk UNIRR BYRON UNIT 2 UNIRRADIA TED (WELD)

Charpy V-Notch Data I

Temperature (0 F) Input CVN Computed CVN Differential I

-175 6.0 7.6 -1.63 I

--* - *-----

-175 8.0 7.6 0.37

-130 17.0 14.2 2.76

-130 21.0 14.2 6.76

-100 18.0 21.3 -3.35

-100 26.0 21.3 4.65

-100 26.0 21.3 4.65

-50 28.0 37.0 -8.97

-50 30.0 37.0 -6.97

-50 37.0 37.0 0.03 0 46.0 51.6 -5.56 0 49.0 51.6 -2.56 (I 54.0 51.6 2.44 40 65.0 59.l 5.90 40 67.0 59.l 7.90 40 68.0 59.l 8.90 125 60.0 65.4 -5.44 125 67.0 65.4 1.56 125 67.0 65.4 1.56 210 69.0 66.7 2.28 210 71.0 667 4.28 300 67.0 67.0 0.05 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-17 BYRON UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: Hyperbolic Tangent Cun*e Printed on 9/3/2015~:12 PM A= 33.46 B = 32.46 C = 77. 75 TO = -33.02 D = 0.00 Correlation Coefficient= 0.979 Equation is A+ B * [Tauh((T-TO)/(C+DT))]

Upper ShclfL.E. = 65.93 Lower Shelf L.E. = 1.00 (Fixed)

Temp:(i!.35 mils=-29.30° F Plant: Byron 2 Material: WELD Heal: "-'2002 Orientation: N/A Capsule: UNIRR 70 .,,

~"'

0 ~

0

-

  • r ... .*

0/ 0 60

--

.-

-

.... 50 r'-l e

._,

,,/

I 0

I

....=

0 r'-l I

=

I 40

/I i:=

c..

~ I

-

~

30 I l

i:=

lo.

Q,j ..

""""'

i:=

~ 20 I/~

  • o V.,

I 10

..

I 0 I I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGrnph6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-18 Plant: Byron 2 lvfaterial: WELD H~at: 442002 Orientation: NIA Capsule: UNJRR BYRON UNIT 2 UNIRRADIA TED (WELD)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-175 4.0 2.6 1.36


-------- -----

-175 5.0 2.6 2.36

-130 8.0 5.9 2.05

-130 11.0 5.9 5.05 I

-100 8.0 10.8 -2.84

-100 19.0 10.8 8.16

-100 14.0 10.8 3.16

-50 200 26.5 -6.48

-50 :20.0 26.5 -6.48

-50 28.0 26.5 1.52 0 41.0 46.5 -5.48 0 44.0 46.5 -2.48 (I 51.0 46.5 4.52 l 40 59.0 57.3 1.68 I 40 64.0 57.3 6.68 40 66.0 57.3 8.68 125 55.0 64.8 -9.83 125 60.0 64.8 -4.83 125 68.0 64.8 3.17 210 63.0 65.8 -2.80 210 66.0 65.8 0.20 300 70.0 65.9 4.09 CVGraph 6.02 09/0312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-19 BYRON UNIT 2 UNIRRADIATED (WELD)

CVGraph 6.02: Hyperbolic Tangent Cuf\*e Printed on 913/2015-l:13 PM A= 50.00 B = 50.00 C = 71.66 TO= -27.58 D = 0.00 Corrcl:!lion Coefficient= ll.990 Equation is A+ 8 * [Tanh((T-TOJ/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lo\\'er Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -27.50 Plan!: Byron 2 Material: WELD Heat: 442002 Orientation: N/ A Capsule: UNIRR 100 -

_. -

,,...._... -

,_.

.. o:/ . . ..

90 80

  • f

.. ,{

70

. ... )'

..

~

/I Q,j 60

.c 00.

..

..... 50

.=

~

Q,j Q,j 40

.. l "

..

~

Q..

30 20 . /o

-.

cf .

~

/'

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-20 Plant: Byron 2 "Material: WELD Heat: 12002 Orientation: NIA Capsule: Ui'lilRR BYRON UNIT 2 UNIRRADIA TED (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-175 5.0 1.6 3.39

-175 5.0 1.6 3.39

-130 10.0 5.4 4.58

-BO 10.0 5.4 4.58

-100 10.0 117 -1.70

-100 15.0 11.7 3.30

-100 20.0 11.7 8.30

-50 35.0 34.8 0.15

-50 25.0 34.8 -9.85

-50 37.0 34.8 2.15 0 55.0 68.3 -13.35 0 65.0 68.3 -3.35 (I 75.0 68.3 6.65 40 100.0 86.8 13.17 40 85.0 86.8 -1.83 40 95.0 86.8 8.17

--

125 100.0 98.6 1.39 125 100.0 98.6 1.39 125 100.0 98.6 1.39 210 100.0 99.9 0.13 210 100.0 99.9 0.13 300 100.0 100.0 O.ol CVGraph 6.02 09/03/'2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-21 BYRON UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/3/20154:16 PM A= 66.60 B = 64.40 C = 96.43 TO= -120.19 D = 0.00 Correlation Coefficient= 0.930 Equation is A+ B * [Tm1h((T-TO)/(C+DT))(

Upper Shelf Energy = 13 LOO (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp@30 ft-lbs=-l82.30° F Tcmpg35 ft-lbs=-171.90° F Temp1J)50 ft-lbs=-145.60° F Plant Byron 2 Material: SA508CL3 Heat: (49D330/49C298(-1-1 Orientation: NIA Capsule: UNffiR 160

... -* I

~I .....

140 ID

. 0 ... I .. .

r-

  • ~ - + ..

120

--rl:l

.Q I 100 of,, I 1)

  • -

I i

l

¢:: 1)

'-"' . . ..

~

OJ) 0 0

~

Q,j 80

~

z

= I i I . .. ~

r 60

>

u ,_

40 I

.' ...

20 0

-300

/'o

. n ..

ol

-200

' -100

0 100

200 I

300 400 I I 500

600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-22 Plant: Byron 2 Material: SA508CLJ Heat: [49DJJ0/49C298]-1-I Orientation: N/A Capsule: UNIRR BYRON UNIT 2 UNIRRADIA TED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-225 3.0 15.4 -12.35

-*

-225 21.0 15.4 5.65

-180 11.0 31.1 -20.10

-180 23.0 31.1 -8.10

-180 24.0 31.1 -7.10

-150 41.(1 47.3 -6.30

-150 51.0 47.3 3.70

-150 57.0 47.3 9.70

-120 75.0 66.7 8.28

-120 87.0 66.7 20.28

-75 85.0 94.7 -9.75

-75 l 10.0 94.7 15.25 (I 93.0 121.2 -28.16

_J 0 101.0 121.2 -20.16 I

0 145.0 121.2 23.84

~

40 86.0 126.5 -40.52 40 130.0 126.5 3.48 JOO 104.0 129.7 -25.68 100 140.0 129.7 10.33 210 138.0 130.9 7.14 210 141.0 130.9 10.14 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-23 BYRON UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

CVGrnph6.02: Hyperbolic Tangent Curve Printed on 9/3/2015-1:15 PM A= -10.29 B = 39.29 C = 61.79 TO= -125.52 D = 0.00 Correlation Coefficient= 0.969 Equation is A+ B * [Tanh((T-TOJ/(C+DTJ)]

Upper Shelf L.E. = 79.58 Lower Shelf L.E. = LOO (Fi',ed)

Tcmp"qi35 mils=-!33.80° F Plan!: B~*ron 2 Material: SA508CL3 Heat: [49DJJ0/49C298]-1-1 Orientation: NIA Capsule: UNIRR 100

..... .... .. b .. ..

90 I lb

... .....

~

I-* **-* . .

0 I I

-*--

r'-l 80 70

.... y.p <!> ...

\'}

._s ....

fa .. ... ..

0

  • -==

0 60 I r'-l ..... 0 . ~ .. .. .. .. ..

OJ i:: 50 I

7 Q.,

~ I-

-

~

40 I

i::

...

0..

QJ i:: 30

.... . . . ~. ' .. .. .. *. .. . ..

i-I

.J 20 10 j ..  :

0 'O

..

0 L2- 0 I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-24 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-l-I Orientation: NIA Capsule: U1'1RR BYRON UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-225

-225 0.0 8.0 4.0 4.0

-4.02 3.98 J

-180 2.0 12.5 -10.50

-180 8.0 12.5 -4.50

-180 11.0 12.5 -1.50

-150 22.0 25.5 -3.49

-150 27.0 25.5 1.51

-150 29.0 25.5 3.51

-120 49.0 43.8 5.21

-120 54.0 43.8 10.21

-75 56.0 66.8 -10.76

-75 64.0 66.8 -2.76 (I 75.0 78.3 -3.25 0 69.0 78.3 -9.25 (I 80.0 78.3 1.75 40 62.0 79.2 -17.21 I

40 83.0 79.2 3.79 I

100 77.0 79.5 -2.53 100 85.0 79.5 5.47 210 88.0 79.6 8.42 i 210 97.0 79.6 17.42 CVGraph 6.02 09/0312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-25 BYRON UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Cnl\*e Printed on 913/2015 -1: 1-1 PM A= 50.00 8 = 50.00 C = 149.71 TO= -53.58 D = 0.00 Correlation Coefficient = 0. 971 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'YoShear = 0.00 (Fixed)

Temperature at 50% Shear= -53.50 Plant: 8)-ron 2 Material: SA508CL3 Heat: (49D330/49C298]-l-l Orientation: N/A Capsule: UNIRR 100 -

1- .

~:

- ..

90

..

_*;-

  • 1 80 ~

.

70 I

.c

-

~

~

rJJ

......

60 0 I~')

I 0 50

= /:

~,

I

-

~ ..

Coj

~ 40 Q.. r **-

30 9' 20 1~

i I

-~

10

~*

0

-300

--200

......

-100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-26 Plant: Byron 2 Material: SA508CL.3 Heat: [49D330/49C298]-1-I Ori~ntation: NIA Capsule: Ul'lRR BYRON UNIT 2 UNIRRADIATED (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Tern iwrature (0 F) Input %Shear Computed %Shear Differential

  • 225 0.0 9.2 -9.19 i--------------- --*----------- - - - - - - - - - * - -----------------
  • 225 W.O 9.2 0.81

-180 15.0 15.6 -0.59

-180 15.0 15.6 -0.59

-180 15.0 15.6 -0.59

-150 24.0 21.6 2.38

-150 :mo 21.6 -1.62

-150 25.0 21.6 3.38

-120 33.0 29.2 3.84

-120 30.0 29.2 0.84

-75 40.0 42.9 -2.89

-75 55.0 42.9 12.11 (I 50.0 67.2 -17.17

~

(I 55.0 67.2 -12.17 0 80.0 67.2 12.83 40 80.0 77.7 2.27 40 65.0 77.7 -12.73 100 100.0 88.6 11.39 100 100.0 88.6 11.39 I

210 100.0 97.l 2.87 210 100.0 97.1 2.87 CVGraph 6.02 091031'.W 15 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-27 BYRON UNIT 2 CAPSULE V (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:2 l PM A = 97.10 B = 9-1.90 C = 9-1.08 TO = -15.00 D = 0.00 Correlation Coefficient= 0.979 Equation is A+ B * [Tm1h((T-TO)/(C+DT))]

Upper Shelf Energy= 192.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp:IT.30 ft-lbs=-37.90° F Tcmp@.35 ft-lbs=-28.60° F Tcmp@50 ft-lbs= -0.20° F Plant: B)*ron 2 Material: SA508CL3 Heat: [-19DJ30/49C298l-l-l Orientation: T*tn)!.Cntial Capsule: U 250 I-. .. 0 J

200

,,,

--!;I}

.Q I

I- .-.

(lo

_, 150 it:

I

>.

OJ)

~ I- *- .. *-

QJ

~= 100 z

> I u I- ..

I I

.-C. 0 50 0

I

!

)j

__.,,, 00 I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature(° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-28 Plant: Byron 2 Material: SA~8CL.3 Heat: [49D.330/49C298]-1-1 Orientation: Tange11tiul Capsule: u BYRON UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

~

-80 5.0 14.6 -9.64

--

-50 34.0 24.4 9.56

-50 10.0 24.4 -14.44

-25 50.0 37.2 12.84

-25 21.0 37.2 -16.16

-10 54.0 47.2 6.82

-IO 41.0 47.2 -6.18 0 68.0 54.9 13.12 20 58.0 7'2.5 -14.46 50 115.0 102.1 12.86 72 125.0 123.6 1.39 150 160.0 173.6 I -13.61 25(1 1760 189.6 -13.60 350 228.0 191.7 36.29 400 202.0 191.9 10.10 CVGraph602 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-29 BYRON UNIT 2 CAPSULE U (TANGENTIAL)

CVGraph 6.02: Hypelbolic Tangent Cur\'c Printed on 8/28/2015 2:21 PM A= 41.65 B = 40.65 C = 59.50 TO= -3.19 D = 0.00 Correlation Coefficient = 0. 957 Equation is A+ B * [Tanh((T-TOJ/(C+DT))J Upper Shelf L.E. = 82.30 Lower Shelf L.E. = 1.00 (Fixed)

Temp 1035 mils=-13.00° F Plant: B)*ron 2 Material: SA508CLJ Heat: (49D330/49C298l-1-1 Orientation: Tangential Capsule: U 90 u 0

- .. . .

n 80 y

~

..

--

0 (j) 70

....

/

t 'll e 60

._, I

....c=

t'll

= 50

~

Q.

....

f

/*

~

0

-

~

~

i..

QJ

...... 30 40

J

~

~

~ ..

o/ 1.

20 10 Jo

__,..,, l£o 0 I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-30 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-l-1 Orientation: Tangential Capsule: U BYRON UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed J,. E. DiITerential

-80 4.0 6.7 -2.72

~----- ----- -- '---- ---

-50 26.0 15.0 11.04

-50 7.0 15.0 -7.96

-25 39.0 27.4 11.62

-25 18.0 27.4 -9.38

-10 40.0 37.0 2.98

-10 33.0 37.0 -4.02 0 49.0 43.8 5.17 I!

I 20 42.0 56.7 -14.74 50 79.0 70.6 8.35 72 81.0 76.3 4.71 150 89.0 81.8 7. 17 I

250 88.0 82.3 5.72 _J 350 74.0 82.3 -S.30 400 73.0 82.3 -9.30 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 C-31 BYRON UNIT 2 CAPSULE U (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Ctm*e Printed on 8/28/2015 2:22 PM A= 50.00 B = 50.00 C = 6-1.02 TO= 7.0-' D = 0.00 Correlation Coefficient= 0. 985 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf o/oShear = 0.00 (Fixed)

Temperature at 50% Shear= 7.1 O Plant: Byron 2 Material: SA508CL3 Heat: (49D330/-19C298l-1-l Orientation: Tangential Capsule: U 100 ......

90 I

80 70

-

~

Cl)

..c 60

...

00 50 ,

=

- c Cl)

"

Cl) 40

~

30 20

.I.

/

10

__.,,,,, /o 0 . Ii 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-32 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-l-1 Orientation: Tangential Capsule: U BYRON UNIT 2 CAPSULE U (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-80 2.0 6.2 -4.18


-- ----

-50 15.0 14.4 0.60

-50 5.0 14.4 -9.40

-25 35.0 26.9 8.13

-25 15.0 26.9 -11.87

-10 45.0 37.0 8.01

-10 35.0 37.0 -1.99 0 55.0 44.5 10.48 20 55.0 60.0 -4.98

~*

50 80.0 79.3 0.7'2.

72 80.0 88.4 -8.38 150 100.0 98.9 1.14 250 1000 99.9 0.05

- --

350 100.0 100.0 0.00 400 100.0 1000 0.00 CVGraph 6.02 08/28f2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-33 BYRON UNIT 2 CAPSULE U (AXIAL)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:23 PM A= 81.10 B = 78.90 C = 82.6-J TU= 37.07 D = 0.00 Correlation Coefficient = 0. 978 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 160.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@30 ft-lbs=-26.60° F Tcmp:@.35 ft-lbs=-18.20° F Tcmp"{_li.50 ft-lbs= 2.70° F Plant: B)*ron 2 Material: SA508CL3 Heat: (49D330/49C298]-1-l Orientation: Axial Capsule: U 180

... ..

.... 0 ,.... I 160

- .,..

/

I 1)

  • -***-

140 I....

--~

.Q 120  !

..

J

"

.. ... ...

--

¢::

I

....... 100 f OJ)

~

~

=

r,.;i 80

/, ..

z

> 60 - I

,,f

  • u v r

j 40 20 i

_/c,o

_,.,.,

0 I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-34 Plant: .Byron 2 Material: SA508CLl Heat: [49D330/49C298]-1-I OrientHtion: Axial Capsule: U BYRON UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN ComputedCVN Di!Terential

-50 9.0 19.3 -10.30

~*


  1. 25 59.0 30.9 28.o?

-25 14.0 30.9 -16.93

-*

-25 25.0 30.9 -5.93 I

-10 32.0 40.5 -8.46

-10 35.0 40.5 -5.46 0 62.0 47.9 14.10 0 620 47.9 14.10 20 60.0 65.0 -5.03 50 84.0 93.3 -9.34 72 I 12.0 I 12.6 -0.59 150 160.0 150.4 9.63 250 165.0 159.l 5.91 350 161.0 159.9 1.08 400 154.0 160.0 -5.98 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-35 BYRON UNIT 2 CAPSULE U (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Cmvc Printed on 8/28/2015 2:2-1 PM A= -10.31 B = 39.31 C = 69.03 TO= 5.27 D = 0.00 Correlation Coefficient= 0.9-17 Equation is A+ B * [Tm1h((T-TO)/(C+DT))]

Upper ShclfL.E. = 79.62 Lower Shelf L.E. = 1.00 (Fb*cd)

Tcmp~}35 mils= --1. 10° F Plant B)-ron 2 Material: SA508CLJ Heat: [-19DJ30/-19C298!-l-1 Orientation: Axial Capsule: U 90 80 I

- -** c 0

0

  • -

+ 1...

v \'J

...

I I

--= ~

.....

70

.. ..

t/o .!

--....=

0

~

60 50

=

~

Q..

~

40

.'

ol f

-

~

~

...

....... 30 Q,)

~

I

. -- .

~

~

20 I f I 10 /~

/o'"'

~

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-36 Plant: Byron 2 Material: SA508CLl Heat: [49D330/49C298)-l-1 Orientation: Axial Capsule: U BYRON UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-50 7.0 14.2 -7.19 I

-- -------- --------

-25 45.0 24.I 20.90

-25 10.0 24.l -14.10

-25 20.0 24.1 -4.10

-IO 25.0 31.8 -6.75

-10 29.0 31.8 -2.75 0 460 37.3 8.69 0 45.0 37.3 7.69 20 48.0 48.6 -0.57 50 56.0 62.7 -6.73 72 68.0 69.7 -1.68 150 85.0 78.5 6.55  :

250 78.0 79.6 -1.55 350 79.0 79.6 -0.62 400 79.0 79.6 -0.62 CVGraph 6.02 08/2812015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-37 BYRON UNIT 2 CAPSULE U (AXIAL)

CV Graph 6.ll1: Hyperbolic Tangent Curve Printed on 8/28/2015 2:24 PM A = 50.00 B = 50.00 C = 87.81 TO = .J5.39 D = 0.00 Correlation Coefficient= 0.984 Equation is A+ B * [Tanh((T-TOJ/(C+DT))]

Upper Shelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 45.40 Plant: BJron 2 Material: SA508CL3 Heat: [49D330/.J9C298)-l-1 Orientation: Axial Capsule: U 100 - - - .

/)~

"":"" '

,_. ... - *- - - ... ..

90 I i I

,_ t

'

80 I 70

,_.

_/ *-

r..

I!':

<l.l 60

  • ]* -* ,_ -*

I

.c 00.

......

= 50

.. ,

I I-

<l.l

~

r..

,_ _,

/_-  :

Q.

<l.l 40 i¥ 30 e ,,-

I .. . ..

20 9 I 10

-~

0

___,, /o"" I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-38 Plant: Byron 2 rdaterial: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: U BYRON UNIT 2 CAPSULE U (AXIAL)

Charpy V-Notch Data I

Temperatun (0 F) Input %Shear Computed %Shear Differential

-50 5.0 10.2 -5.23

-* ---- - - - - f-- -------

<?.5 30.0 16.S 13.24

-25 10.0 16.8 -6.76

-25 15.0 16.8 -l.76

-10 '.?.5.0 22.1 2.93

-10 25.0 22.l 2.93 0 30.0 26.2 3.76 0 30.0 26.2 3.76 20 30.0 35.9 -5.94 50 40.0 52.6 -12.63 72 70.0 64.7 5.29 150 100.0 91.5 845 250 100.0 99.1 0.94

'

350 100.0 99.9 0. IO 400 100.0 100.0 0.03 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-39 BYRON UNIT 2 CAPSULE U (WELD)

CVGrnph 6.02: Hypcibolic Tangen! Curve Printed on 9/3/2015.i:16 PM A= 39.60 B = 37.40 C = 127.42 TO= -29.12 D = 0.00 Corrclalion Cocfficienl = 0.980 Equation is A+ B * [Tanh((T-TO)/(C+DTJ)]

Upper Shelf Energy = 77 .00 (Fixed) Lo\l'cr Shelf Energy= 2.20 (Fixed)

Tcmp.f!.30 ft-lbs=-62.50° F Temp'.?!!35 ft-lbs=-+l.80° F Temp@50 ft-lbs= 7.30° F Plant: B~*ron 2 Malcrial: WELD Heal: 442002 Orientation: N/A Capsule: U 90 80 I 0 0

I 70

....

0

,y

--- ...

--~

.Q 60

    • -

I l f

t

-. I ct:

>. 50 eJl Q,,)

f-.

-1 ..

= 40

~

o/o*

I z ~

>

v 30 u

~

20 10

~

o/ 0

~ I 0 I I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-40 Plant: Byron 2 rvfatcrial: WELD Heat: 442002 Orientation: NIA Capsule: U BYRON UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data

-~

Temperature (0 F) Input CVN Computed CVN Differential

-180 14.0 8.6 5.39

-* --

-150 18.0 12.0 6.05

-125 19.0 15.8 3.21

-75 33.0 26.7 6.31

-75 18.0 26.7 -8.69

-60 28.0 30.7 -2.71

-25 38.0 40.8 -2.81 I

-25 35.0 40.8 -5.81 25 56.0 54.6 1.40 25 56.0 54.6 1.40 7'2 72.0 64.3 7.70 150 73.0 72.8 0.24 260 79.0 76.2 2.79 350 82.0 76.8 5.19 CVGraph6.0'.?. 09/03/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-41 BYRON UNIT 2 CAPSULE U (WELD)

CVGrnph 6.02: Hyperbolic Tangent Cnn*e Printed on 9/3/20154:17 PM A= 35.91 B = 34.91C=127.42 TO= -16.85 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * [Tmtlt((T-TOJ/(C+DT))]

Upper ShelfL.E. = 70.82 Lower Shelf L.E. = l.00 (Fixed)

Tcmp@35 mils=-20.10° F Plant: B)*ron 2 Material: WELD Heat: 442002 Orientation: N/A Capsule: U 80

... . ..

,..

70 ....-- v

-

~

.. I ..

' ,.. ,

-.. 60

-e~

.....

._,

50

_!

....=

Q

~

= 40 e'3 Q..

.<
..

! ...

-

1-'

~

C::I

)!...

30 C!,)

.....C::I

~

20 I ..

0 o/

'.

IO

~

/ *1 I

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-42 Plant: Byron 2 lv!aterial: WELD Hoat: 442002 Orient.~tion: NIA Capsule: U BYRON UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-180 9.0 6.0 2.99

-150 13.0 8.7 4.31

-125 12.0 11.8 0.19

-75 27.0 21.0 6.00

-75 15.0 21.0 -6.00

-60 22.(1 24.5 -2.52

-25 32.0 33.7 -1.68

-25 30.0 33.7 -3.68 25 50.0 47.0 3.02 25 48.0 47.0 1.02 72 60.0 57.0 3.05 150 64.0 66.1 -2.08 260 69.0 69.9 -0.93 350 71.0 70.6 0.40 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-43 BYRON UNIT 2 CAPSULE U (WELD)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/3/2015 4: 17 PM A= 50.00 B = 50.00 C = 108.56 TO= 1.42 D = 0.00 Correlation Coefficient= 0. 979 Equation is A+ B * [Tm1h((T-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 1.50 Plant: Byron 2 Material: WELD Heat: 442002 Orientation: NIA Capsule: U 100

--  :.--- >

- --

90 i

0

/

/

I ..

80 I 70

. ,

I

"""

~ 60 I ..

I I *- ~ ~

I

/o Q;,I

.c 00

..... so

= i I

/ ...

Q;,I

    • -.

~

"""

Q;,I 40

~

Q.,

..

30 lvfv ..

I 20

....

00 I

Vo 10 0

_v  ;

..

I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-44 Plant: Byron 2 lvfaterial: '""ELD Heat: 442002 Orientation: NIA Capsule: U BYRON UNIT 2 CAPSULE U (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear DiITerential

-180 10.0 3.4 6.59

- - - - - - - - - - - - f---* I------- --

-150 15.0 5.8 9.21

-125 15.0 8.9 6.13

-75 30.0 19.7 10.34

-75 15.0 19.7 -4.66 I

-60 25.0 24.4 0.61

-25 35.0 38.1 -3.07

-25 30.0 38.1 -8.07 25 55.0 60.7 -5.69

--

25 55.0 60.7 -5.69 72 95.0 78.6 16.41 150 100.0 93.9 6.08 260 100.0 99.2 0.85

--

350 100.0 99.8 0.16 CVGraph 6.02 09/03/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-45 BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Cuffe Printed on 9/3/2015~:18 PM A= 86.60 B = 84.40 C = 114.54 TO= -82.85 D = 0.00 Correlation Coefficient= 0.937 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 17 l.OO (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp@JO fi-lbs=-175.80° F Tcmp@.35 ft-lbs=-164.30° F Temp'il,\50 fl-lbs=-136.00° F Plant: B)*ron 2 !vlatcrial: SA508CL3 Heat: [49D3J0/49C298]-1-l Orientation: N/A Capsule: U 200 f.-*** --- Q 180

--1 I

I I

-1 _/

.,,,...--- h 160

-~ I

--c::

>-

!

140 rl.l

.Q >-

/'-

-

I 120 100

>-* -

0 -**1-80

"'

I

/- :

60

--/

I I I I

-100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-46 Plant: Byron 2 Makrial: SA508CL3 Heat: [49D330/49C298]-1-l Orientation: NIA Capsule: U BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN DiITerential

-200 10.0 21.5 -11.53

-175 59.0 30.3 28.66

-175 23.0 30.3 -7.34

-150 32.0 42.1 -10.10

-

-150 28.0 42.1 -14.10

-125 52.0 56.9 -4.87

-125 109.0 56.9 52.13

-125 37.0 56.9 -19.87

-100 78.0 74.1 3.94

-100 52.0 74.1 -22.06

-50 115.0 110.2 4.84 n 159.0 160.4 -141 205 162.0 169.9 -7.90 300 193.0 170.8 22.21 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-47 BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Cun-c Printed on 9/3/2015 4: 19 PM A= 40.35 B = 39.35 C = 100.32 TO= -108. 75 D = 0.00 Correlation Coefficient = 0. 900 Equation is A+ B * [Tanh((T-TOJ/(C+DTJ)J Upper Shelf LE. =79.71 Lower Shelf L.E. = 1.00 (Fixed)

Tcmp'.?j;35 mils=-122.40° F Plant: Byron 2 Material: SA508CL3 Hc.'lt: (49D330/49C298j-1-l Orientation: N/A Capsule: U 90

..

r--

0 80 ~

I

' ...

J

. .

.. .

" <!> I ...

70

-.--._..e rl.I 60

.. ,.

-

...... ¥ ... . ,. ~ .

I

. ....

c

.....0 rl.I 50

/. ..

c c=

Q.,

-- .. .. l ._ ..

."1 40 '

-

~

c~=

...... 30 Cl,)

0

/0

~

c=

20 fT I

/o ..

10 J

-

...,

0

/c I

)

.I i

!

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-48 Plant: Byron 2 Material: SA508CI,J Heat: [49D330/49C298]-1-I Orientation: NIA Capsule: U BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. DiITerential

-200 5.0 12.0 -6.98 I


--

-175 38.0 17.6 W.42

-175 10.0 17.6 -7.58

-150 26.0 25.0 0.97

~

-150 15.0 25.0 -10.03 I

-125 29.0 34.0 -5.03

-125 60.0 34.0 25.97

-125 26.0 34.0 -8.03

-100 46.0 43.8 2.22

-100 28.0 43.8 -15.78

-50 65.0 61.1 3.92 72 83.0 77.6 5.38 205 80.0 79.6 0.44 300 74.0 79.7 -5.68 CVGraph6.0'.?. 0910312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-49 BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Ctm*c Printed on 9/3/2015-1:19 PM A= 50.00 B = 50.00 C = 89.72 TU= -111.40 D = 0.00 Correlation Coefficient= 0.941 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shclf%Shear = I00.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -111.30 Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298[-1-l Orientation: N/A Capsule: U 100 - -,... ..

... I ..

90 /

80 j

70 -

...,  !

.c

..

~

~

60 I -*

I 00

...... 50 i

=

~

~

~

..

40 l . -* . '"

-1~

Q.  :

30

~..., ..

20 10

}b" 0

/6II I  ; I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-50 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: U BYRON UNIT 2 CAPSULE U (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-200 5.0 12.2 -7.18

-175 40.0 19.5 20.50

-175 15.0 19.5 -4.50

-150 25.0 29.7 -4.72

-150 20.0 29.7 -9.72

-125 35.0 42.5 -7.48

-125 70.0 42.5 27.52

-125 30.0 42.5 -12.48

-100 60.0 56.3 3.68

-100 50.0 56.3 -6.32

-50 80.0 79.7 0.28 72 100.0 98.4 l.65 205 100.0 99.9 0.09 300 100.0 100.0 0.01 CVGraph 6.02 0910312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-51 BYRON UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:29 PM A= 79.60 B = 77.40 C = 105.68 TO =49.61D=0.00 Correlation Coefficient= 0.98-1 Equation is A+ B * [Tanh((T-TO)/(C+DTJ)J Upper Shelf Energy= 157.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp1_i'.30 ft-lbs=-30.60° F Tcmp1?.35 ft-lbs=-19.80° F Tcmp@50 ft-lbs= 7.10° F Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: Tangential Capsule: W 180 u

...

160 I I ...

140 0/.~

--~

.Q 120

..

I I

-

I I

¢:! ---* --- - .. . -

...... 100

}'

fa*

~

lo.. -* ... ..

~

~= 80 z o(

u

> 60 I

II -~ )

I ..

40 20

~ ..

I!

fa

~

__.,/ Vo 0 I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-52 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-I Orientation: Tangential Capsule: W BYRON UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Tem pt>rature (0 F) Input CVN Computed CVN Differential I

-50 8.0 22.6 -14.60 I

-- - - - - * *

-35 35.0 28.2 6.82

-25 37.0 32.5 4.47

-20 26.0 34.9 -8.90

-10 47.0 40.1 6.95 0 44.0 45.7 -1.72 15 70.0 55.1 14.88 50 79.0 79.9 -0.89

!

75 87.0 97.8 -10.85 100 108.0 113.9 -5.95 125 125.0 127.0 -2.03 150 148.0 136.9 11.14 200 147.0 148.5 -1.51 250 154.0 153.6 0.41 275 178.0 154.9 23.14 CVGraph 6.02 08/28/2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-53 BYRON UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:30 PM A = 42.90 B = -U.90 C = 83.29 TO = 19.32 D = 0.00 Correlation Coefficient= 0. 966 Equation is A+ B * (Tanh((T-TO)/(C+DT))]

Upper ShclfL.E. = 84.81 Lower Shelf L.E. = 1.00 (Fixed)

Tcmpr(i,135 mils= 3.50° F Plant: B)*ron 2 l\faterial: SA508CL3 Heat: (49DJJ0/49C298f-l-l Orientation: Tangential Capsule: W 90 ......

" 0

- . -*.

o~

.i~ ...

80

-...

,,/ 0

...

-erl!I

.....

._, 60 70

....

lo i

.....=

Q rl!I

=

=

50

.... ..

oi . .

-.=

~

c..

~

40

....

....

/I QJ

...... 30 0

=

~

20

.... I 1 I

.,

10

.... ,.

j°o ..

/

0

....

I _/

. .

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGrnph 6.02 08128/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-54 Plant: Byron 2 Material: SA508CU Heat: (49D330/49C298]-1-1 Orientation: Tangential Capsule: W BYRON UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Temperature(° F) Input L. E. Computed L. E. Differential

-50 160 14.3 1.66

- - - - - -- ---

-35 27.0 18.9 8.11

-25 28.0 22.5 5.50

-20 18.0 24.5 -6.47

-10 15.0 28.7 -13.73 0 32.0 33.4 -1.36 15 51.0 40.7 10.27 50 580 57.7 0.32 75 62.0 67.4 -5.38 JOO 710 74.3 -3.25 125 83.0 78.7 4.33 150 90.0 81.3 8.68 I 200 85.0 83.7 1.27 250 89.0 84.5 4.52 275 72.0 84.6 -12.63 C\IGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-55 BYRON UNIT 2 CAPSULE W (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:3 l PM A = 50.00 B = 50.00 C = 88.25 TO= 73.89 D = 0.00 Correlation Coefficient= 0.986 Equation is A+ B * [Tanlt((T-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'Ye.Shear= 0.00 (Fixed)

Temperature at 50% Shear= 73.90 Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298[-1-l Orientation: Tangential Capsule: W 100 -

~

--

.... ~- . ..

90 I /

.... I . .

I 80 70

....

....

L

/"'

r..

co:

Q,j 60 Ii

.c 00.

......

=

50

....

I I

~

~

i:J

r..

40

......

j Q.

30 I-

,. f"'

J:

I I-20 7

10 I-j

-~

I-0

-300 I

-200 -100

-..... 0 I

100 I

200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-56 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: Tangential Capsule: W BYRON UNIT 2 CAPSULE W (TANGENTIAL)

Charpy V-Notch Data Tern perature {° F) Input %Shear Computed %Shear Differential 1}0 II

-50 5.7 -5.69


-- --

-35 5.0 7.8 -2.82

-25 10.0 9.6 0.39

-20 10.0 10.6 -0.64

-10 15.0 13.0 2.00 0 20.0 15.8 4.22 15 30.0 20.8 9.16 50 40.0 36.8 3.21 I

75 40.0 50.6 -10.63 I 100 60.0 64.4 -4.38 125 70.0 76.1 -6.10 150 100.0 84.9 1512 200 100.0 94.6 5.43

~*~~~~~~~~

-*

250 100.0 98.2 1.8 I 275 100.0 99.0 1.04 CVGraph 6.02 0812812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-57 BYRON UNIT 2 CAPSULE W (AXIAL)

CV Graph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:32 PM A= 65.60 B = 63.40 C = 104.61TO=51.49 D = 0.00 Correlation Coefficient = 0. 968 Equation is A+ B * (Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 129.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp@30 ft-lbs=-1-1.90° F TempQ!35 ft-lbs= -3.50° F Tcmp@50 ft-lbs= 25.30° F Plant: B)'ron 2 Material: SA508CL3 Heat: [49D330/49C298)-1-l Orientation: Axial Capsule: W 140 o!*~

120

~ 100 I

-

.c

¢::

'-'

I I

.... 80 OJ)

I

'Q.I""

~= 60 I

z

>

u 40 I

....

20

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-58 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: W BYRON UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Tem iwrature (0 F) Input CVN Computed CVN Differential

-50 9.0 18.l -9.13


-35 13.0 22.6 -9.57

-25 33.0 26.1 6.95 I

-10 25.0 32.1 -7.11 0 57.0 36.7 20.31 0 39.0 36.7 2.31 15 39.0 44.3 -5.34 25 70.0 49.9 20.12 50 45.0 64.7 -19.70 75 73.0 79.6 -6.61 125 102.0 104.0 -2.03 160 127.0 114.9 12.15

!

200 123.0 122.0 LOO i 275 127.0 127.3 -0.26 I

325 140.0 128.3 I 1.68 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-59 BYRON UNIT 2 CAPSULE W (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:32 PM A= 43.90 B = 42.90 C = 99.88 TO= 38A4 D = 0.00 Correl:1tion Coefficient= 0.967 Equation is A+ B * [T~mh((T-TO)/(C+DT))j Upper ShclfL.E. = 86.80 Lower Shelf L.E. = 1.00 (Fixed)

Tcmp-:q)35 mils= 17.50° F Phml: Byron 2 Material: SA508CL3 Heal: [49D330/49C298]-1-l Orientation: Axial Capsule: W 90 ,...

........

80 0/ ~o* **-**

f I

70 ,

-

,-._

..... . . ... ..

.... 60 rl.l J

- e

....=

0 rl.l 50 nf

=

~

Q.

ii< 40

~.

(1) I ..

-~

~

~

...... 30

~

cL*- 0

~

,...;j oJ 20 10

.... - Lo 0 Vo

~ i 0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-60 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/-19C298]-1-I Orientation: Axial Capsule: W BYRON UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-50 5.0 13.5 -8.48

--

-35 11.0 17.0 -6.03

-25 24.0 19.8 4.20

-10 18.0 24.6 -6.58 (I 42.0 28.2 13.84 0 32.0 28.2 3.84 15 30.0 34.0 -4.01 25 51.0 38.2 12.84 50 36.0 48.8 -12.84

            • -**--*-**-**--* -.. ,. **-**"~**"**

75 55.0 58.9 -3.93 125 76.0 73.9 2.09 160 84.0 79.9 4.12 200 84.0 83.5 0.45 275 83.0 86.l -3.05 325 87.0 86.5 0.48 CVGraph 6.02 08/28/2015 Page2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-61 BYRON UNIT 2 CAPSULE W (AXIAL)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:33 PM A= 50.00 B = 50.00 C = 99.37 TO = 73.53 D = 0.00 Correlation Coefficient= 0.979 Equation is A+ B * [Tanh((T-TOJ/(C+DT))j Upper Shelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 73.60 Plant: B)*ron 2 Material: SA508CLJ Heat: [49DJJ0/49C298l-1-l Orientation: Axial Capsule: W 100 -..... -.

-

90

  • - *-

/

  • V- '

.- -* . -

80

,_ ..

I 70

/*

II  :

.c

-

~

CJ rJ1 60

...

I I

II I

.;.

..

..... 50

= j

-

CJ .. ...

i:.J 40 CJ Q..

of-30 20 v.

a

,..

11 10

__.,,. /~

0

-300 -200 -100

-- 0 100 200 300 400 500 I

600 Temperature (° F)

CVGrnph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-62 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: W BYRON UNIT 2 CAPSULE W (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-50 0.0 7.7 -7.68


- - - - - - - - - - --

-35 5.0 10.1 -5.12

-25 10.0 12.1 -2.10

-10 15.0 15.7 -0.69 0 25.0 18.5 6.46 0 20.0 18.5 1.46 15 30.0 23.5 6.46 25 35.0 27.4 7.65 I 50 40.0 38.4 l.62 75 400 50.7 -10.74 125 60.0 73.8 -13.81 160 100.0 85.1 14.93

!

200 100.0 92.7 7.27

~

275 100.0 98.3 1.70 325 100.0 99.4 0.63 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-63 BYRON UNIT 2 CAPSULE W (WELD)

CVGrnph 6.02: Hyperbolic Tangent Cm.-c Printed on 913/2015 4:2 l PM A= 35.10 B = 32.90 C = 123.78 TO= -23.06 D = 0.00 Correlation Coefficient= 0.961 Equation is A+ B * [Tanh((T-TOJ/(C+DT))J Upper Shelf Energy= 68.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Temp:l!'JO ft-lbs=~2A0° F Tcmp'.£!!35 ft-lbs=-23A0° F Tcmp1])50 ft-lbs= 37.40° F Plant: Byron 2 Material: WELD Heat: "'-'2002 Orientation: N/A Capsulc:W 70

' /-

0 c:>

I- ..

60 I

--

~

~

50 I-ol ..

!

--

I

¢::: I-. ..

V' .. ..

-=

>.. 40 el)

~

QJ I- '.

oL

  • )/,-

30 z

u> I- -* . _,

20

/0 cP 10 I-

<</ ..

/

~

0 I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature{° F)

CVGrnph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietal)' Class 3 C-64 Plant: Byron 2 ~faterial: WELD Heat 442002 Orientation: NI A Capsule: \V BYRON UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN DilTerential

-140 17.0 10.8 6.16


-125 18.0 12.8 5.17

-100 no 16.9 5.07

-75 '.?3.0 22.1 0.95

-60 19.0 25.6 -6.56

-50 33.0 28.l 4.95

-40 23.0 30.6 -7.63

-25 30.0 34.6 -4.58

-10 30.0 38.6 -8.56 IO 49.0 43.7 5.32 25 52.0 47.3 4.73 65 54.0 55.2 -1.22 100 66.0 60.I 5.92

--

150 68.0 64.2 3.79 200 69.0 66.3 2.74 CVGraph 6.02 09/0312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-65 BYRON UNIT 2 CAPSULE W (WELD)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/3/2015 -1:20 PM A= 33.88 B = 32.88 C = 11-l.7S TO= -7.29 D = 0.00 Correlation Coefficient= 0.968 Equation is A+ B * [Tanh((T-TO)/(C+DT))j Upper Shelf LE.= 66.76 Lo\\*cr Shelf L.E. = 1.00 (Fixed)

Temp'.{!)35 mils= -3.30° F Plant: Byron 2 Material: WELD Heat: 12002 Orientation: N/A Capsule: W 70 60 d

  • /****

-....6

';i' 50

--

.s= 40 rl).

I

=

~

Q.

.....

i>'1 J t

~ 30 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-66 Plant: Byron 2 l'vfaterial: WELD Heat: 442002 Orientation: NIA Capsule*. W BYRON UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-140 ll.O 6.9 4.08

~*

-- ~~------~-~ -------------

-125 11.0 8.5 2.51

-100 14.0 11.9 2.10

-75 16.0 16.5 -0.46

-60 19.0 19.8 -0.76

-50 27.0 22.2 4.82

-40 14.0 24.8 -10.75

-25 27.0 28.8 -1.85

-10 27.0 33.1 -6.10 10 49.0 38.8 10.20 25 46.0 42.9 3.10 65 49.0 52.2 -3.23 100 58.0 58.0 0.02

-

150 66.0 62.8 3.22 200 62.0 65.0 -3.03 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-67 BYRON UNIT 2 CAPSULE W (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 913/2015 -1:20 PM A= 50.00 B = 50.00 C = 59.79 TO= -0.14 D = 0.00 Correlation Coefficient= 0.999 Equation is A+ B * [Tanh((T-TOJ/(C+DT))J Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'YoShear = 0.00 (Fixed)

Temperature at 50% Shear = -0. 10 Plant B)*ron 2 Material: WELD Heat: 4-12002 Orientation: N/A Capsule:W 100 90 I

80 70 l.

r

-

~

~

.c rJ1 60 l..J 17

.... 50

=

- . I ..

~ ._.

r.J

~ 40 Q..

30 ***I 20 10

._

l 0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-68 Plant: Byron 2 lv!aterial: WELD Heat: 442002 Orientation: NIA Capsule: W BYRON UNIT 2 CAPSULE W (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear DiITerential

-140 00 0.9 -0.92


-------

-125 5.0 1.5 3.49

-100 5.0 3.4 1.58

-75 5.0 7.6 -2.56

-60 10.0 11.9 -1.89

-50 20.0 15.9 4.13

-40 20.0 20.9 -0.86

-25 30.0 30.3 -0.33

-10 40.0 41.8 -1.83 10 60.0 58.4 1.60 25 70.0 69.9 0.13 65 90.0 89.8 0.17 100 95.0 96.6 -l.61 150 100.0 99.3 0.65 200 100.0 99.9 0.12 CVGraph 6.02 0910312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-69 BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent CurYe Printed on 9/3/2015 4:22 PM A= 76.60 B = 74.40 C = 91.92 TO= -84.00 D = 0.00 Correlation Coefficient= 0.941 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 151.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp@30 ft-lbs=-151.50° F Tcmp@.35 ft-lbs=-142.00° F Tcmp@)50 ft-lbs=-118.30° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49D3J0/49C298)-1-l Orientation: N/A Capsule: W 160 0

140 1)0/ - r. "'.

I ...

/

--~

.Q I

120

/a u

--

c::

......

~

....

100

...

Jo - -**

CJ 80

~

z

= 0 1

60

>

u 40 I 20

/~ ...

/

0 / 0 I

100 I

200 I

300 I I I

-300 -200 -100 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-70 Plant: Byron 2 Matorial: SA508CL.3 Heat: [49D3.30/49C298]-1-1 Orientation: N/A Capsule: W BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN DilTerential

-140 30.0 36.2 -6.16

--

-125 28.0 45.5 -17.45

-115 53.0 52.4 0.58

-100 66.0 63.8 2.22

-90 98.0 71.7 26.25

-90 76.0 71.7 4.25

-80 84.0 79.8 4.17

-50 85.0 102.9 -17.93

-25 103.0 118.7 -15.72 0 146.0 130.4 15.61 25 149.0 138.3 10.70 75 118.0 146.5 -28.46 115 157.0 149.1 7.93 150 152.0 150.I 1.91 CVGraph 6.02 0910312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-71 BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/3/2015 4:22 PM A= 40.67 B = 39.67 C = 71.04 TO= -92.49 D = 0.011 Correlation Coefficient= 0.945 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf L.E. = 80.35 Lower Shelf L.E. = 1.00 (Fixed)

Temp(ij;35 mils=-!02.70° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49D3311/49C298[-1-1 Orientation: NIA Capsule: W It"\ Q 80

....

70

.-..

~ ...... ..

._, 60

=

50 40

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-72 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-l-1 Orientation: N/A Capsule: W BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. DiITerential

-140 14.0 17.5 -3.50

~--

-125 13.0 23.7 -10.69

-115 29.0 28.5 0.49

-100 37.0 36.5 0.50

-90 56.0 42.l 13.94

-90 44.0 42.l 1.94

-80 55.0 47.6 7.42

-50 46.0 61.9 -15.93

-25 60.0 70.0 -10.03 0 84.0 74.9 9.12 25 83.0 77.5 5.45 75 75.0 79.6 -4.64 115 81.0 80. l 0.88 150 82.0 80.3 1.74 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-73 BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

CVGraph 6.02: Hyperbolic Tangent Cuf\*e Printed on 9/3/2015 4:23 PM A= 50.00 B = 50.00 C = 79.16 TO = -67.39 D = O.OD Correlation Coefficient= 0. 94 7 Equation is A+ B

  • lTan!t((T-TO)/(C+DT))]

Upper Shelf%Shear = 100.00 (Fi"ed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -67.30 Plant: B)*ron 2 Material: SA508CLJ Heat: [49D330/49C298j-l-l Orientation: N/A Capsule: W 100

...

90

./ 0 80 J I 70 lo.

~ 60

~

.c ....

00

..i 50

=

~

r.J lo.

....

~ 40

~

30

... I 20 10

. /o f

__..,,.,,

0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-74 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: W BYRON UNIT 2 CAPSULE W (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Difffrential

-l-10 5.0 13.8 -8.77

~---- ---- -- ---

-l25 15.0 18.9 -3.92

-115 20.0 23.1 -3.10

-JOO 30.0 30.5 -0.50

-90 50.0 36.1 13.90

-90 30.0 36.1 -6.10

-80 60.0 42.l 17.90

-50 50.0 60.8 -10.81

-25 55.0 74.5 -19.48 0 1000 84.6 15.41 25 100.0 91.2 8.83 75 85.0 97.3 -12.33 115 100.0 99.0 0.99 150 100.0 99.6 0.41 CVGraph 6.02 09/031:2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-75 BYRON UNIT 2 CAPSULE X (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Cur'\'c Printed on 8/28/2015 2:39 PM A = 82.10 B = 79.90 C = I 14.4 7 TO= 70.92 D = 0.00 Correlation Coefficient= 0.989 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 162.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp.~30 ft-lbs=-18.20° F Tcmp~!35 ft-lbs= -6.50° F Tcmp~50 ft-lbs= 22.20° F Plant: B)*ron 2 Material: SA508CLJ Heat: (49D330/49C298f-1-1 Orientation: Tanl(cntial Capsule: X 180

.... . .. . .... -- . ...

0 0 I I 160 140

.... --

/

v

- t;l.l

.Q 120

... ...

  • i* ... .. .

-

"'i i!:

...... 100 I

OJ)

....

Q,j c 80

...

fl --

>

~

z

60 oj u

1~ --

40 20

-j/

Vc0 I

<l>  ; I I 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-76 Plant: Byron 2 Material: SA508CLl Heat: [49D330/49C298)-1-I Orientation: Tangential Capsule: X BYRON UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data Tem pt>rature (0 F) Input CVN Computed CVN Differential

-100 4.0 9.9 -5.88

~----------- ------------

-50 11.0 19.4 -8.44

-30 22.0 25.6 -3.59

-15 27.0 31.3 -4.32 0 37.0 38.1 -1.09 10 47.0 43.2 3.81 25 73.0 51.7 21.34 35 64.0 57.8 6.18 50 62.0 67.7 -5.66 100 88.0 102.0 -13.97 150 124.0 129.9 -5.92 200 157.0 146.8 10.l 7 i 250 164.0 155.3 8.70 300 160.0 159.l 0.87 350 165.0 160.8 4.21 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-77 BYRON UNIT 2 CAPSULE X (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:40 PM A= 41.91 B = 40.91C=84. 71TO=39.50 D = 0.00 Correlation Coefficient = 0. 987 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf L.E. = 82.82 Lower Shelf L.E. = 1.00 (Fixed)

Temp!(l'.;35 mils= 25.10° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298)-1-1 Orientation: Tangential Capsule: X 90 r-~~-.-~~.....,..~~---,~~~~--,~...,....~~---ro~~~,....-~~-:-~--,-,

o o I

_.......-~=---=1~,~~~~;--~~-r~~---1 l-

i--~~+--___:_~1--~---1~~---+.-~--=-*~--'**"l-~---'¥-~u---+~-'---+-~.;__-i

-

-....e r;,.i I"

'

-=

c

  • j 60 50

=

!!"=

Q.,

~ 40

~

~ .. '

IT 0

20 ~~~~-t-~~-t--.-."'-.+.'t--~--t~~-i-~~--i-~~-r-~~--~--..

10 t--~~-t-~~-;-~-1---t~~~-r-~~-i-~~-r~~~r------,-~-t---c:----f

~/o ol::::::::::+/-:::::t=::::i:~~~...L--.1...--1__;1...-l_-1-......L---1.~1--...J....-L---1..---1

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGmph6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-78 Plant: Byron 2 Material: SA508CL3 Heat: (49D330/49C298]-1-I Orientation: Tangential Capsule: X BYRON UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data I

Temperature (0 F) Input L. E. Computed L. E. DiITerential I

-JOO 0.0 3.9 -3.93

-*

-50 4.0 9.8 -5.82

-30 13.0 14.3 -1.28

--

-15 17.0 18.7 -1.71 0 24.0 24.1 -0.11 10 30.0 28.2 1.79 25 46.0 35.0 11.02 35 41.0 39.7 1.26 50 42.0 47.0 -4.96 JOO 580 67.0 -9.00 150 82.0 77.2 4.79 200 86.0 81.0 4.99 250 84.0 82.3 1.74

-*

300 81.0 82.6 -1.65 350 79.0 82.8 -3.77 CVGraph 6.02 08/28i2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-79 BYRON UNIT 2 CAPSULE X (TANGENTIAL)

CVGmph 6.02: Hypclbolic Tangent Curve Printed on 8/28/2015 2:4 l PM A= 50.00 B = 50.00 C = 93. U TO= 75.88 D = 0.00 Correlation Coefficient= 0.997 Equation is A+ 8 * [Tanh((T-TOJ/(C+DT))]

Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Tcmpcra!Urc at 50% Shear= 75.90 Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298l-1-1 Orientation: Tangential Capsule: X 100 90 80

-f 70

'""

./

I

r.. I co:: 60

~

.c 00.

....... 50

=

~

i:.J

r.. j

~ 40 J

Q.

30 20

!:

10

"*J*>

0

>-

I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-80 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-I Orientation: Tangential Capsule: X BYRON UNIT 2 CAPSULE X (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-100 2.0 2.2 -0.24


--

-50 5.0 6.3 -1.28

-30 10.0 9.3 0.67

-15 15.0 12.4 2.56 0 15.0 16.4 -1.39 10 20.0 19.5 0.45 25 25.0 25.l -0.11 35 30.0 29.4 0.64 50 40.0 36.5 3.55 100 55.0 62.7 -7.66 150 85.0 83.l 1.92 200 100.0 93.5 6.51 l 250 100.0 97.7 2.32

-- - --

300 100.0 99.2 0.81 350 100.0 99.7 0.28 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-81 BYRON UNIT 2 CAPSULE X (AXIAL)

CV Graph 6.02: Hyperbolic Tangent Cu1Tc Printed on 8/28/2015 2:42 PM A= 76.10 B = 73.90 C = 106.86 TO= 70.62 D = 0.00 Correlation Coefficient= 0. 982 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 150.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@'GO f\-lbs= -7.50° F Temp@35 f\-lbs= 3.60° F Temp:ilJ50 f\-lbs= 31.20° F Plant: B~*ron 2 Material: SA508CL3 Heat: (49D330/49C298(-1-l Orientation: Axial Capsule: X 160

,... ..

~*)

140 120

,...

I. 1)

..-

-

-

.Q

~

I it: 100

,....

f .. '* ..

>> . ...

)

..

-

~

)'

OJ)

~ 80

~

c r;i;;J 0.

z 60

>

u 40 20

__..,.,,,V J

0 0

\.j

'

.,.,

...

~

0 I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-82 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: X BYRON UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-50 2.0 16.2 -14.20

-25 17.0 23.4 -6.35

-15 11.0 27.0 -15.98

-10 38.0 29.0 903 0 37.0 33.3 3.68 10 38.0 38.2 -0.16 25 43.0 46.3 -3.34 40 69.0 55.5 13.51 50 73.0 62.0 10.99 100 89.0 95.9 -6.92 150 119.0 122.7 -3.72 200 122.0 137.9 -15.95 225 146.0 1-12.2 3.79 250 159.0 145.0 13.97 300 145.0 148.0 -3.01 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-83 BYRON UNIT 2 CAPSULE X (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/2812015 2:4; PM A= 41.15 B = 40.15 C = 73.80 TO= 43.09 D = 0.00 Correlation Coefficient= 0.983 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper ShelfL.E. = 81.30 Lower Shelf L.E. = l.00 (Fixed)

Tcmp1i.{'35 mils= 31.70° F Plant: B)*ron 2 Material: SA508CLJ Heat [49D330/49C298J-1-l Orientation: Axial Capsule: X 90

.....

80

--

70 f

......

....

!;I:)

5 60

._..

....=

0

!;I:) 50

=

~

Q.;

..... ...

~ 40

-

~

~

...

.....~

CJ 30

....

I

....:l 20

,_

10

,_.

0

-300 -200 -100 -

-

0 100 200 300 400 I

500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-84 Plant: Byron 2 Mat~rial: SA508CLl Heat: [49D330/49C298]-1-1 Orientation: Axial Capsule: X BYRON UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Tem pna ture (° F) Input L. E. Computed L. E. Differential

-50 0.0 7.0 -6.96

~------

---

.25 10.0 12.0 -1.96

-15 5.0 14.8 -9.78

-10 22.0 16.4 5.60 0 25.0 20.1 4.95 10 24.0 24.3 -0.26 25 29.0 31.5 -2.50 40 45.0 39.5 5.53 50 49.0 44.9 4.10 100 56.0 67.2 -11.15 150 82.0 77.1 4.90 200 75.0 80.2 -5.18 225 83.0 80.7 2.27 250 85.0 81.0 3.99 300 81.0 81.2 -0.23 CVGraph 6.02 08/28/2015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-85 BYRON UNIT 2 CAPSULE X (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Cmve Printed on 8/28/2015 2:43 PM A= 50.00 B = 50.00 C = 99.26 TO= 66.87 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B' [Tanh((T-TO)/(C+DTJ)]

Upper Shclf%Shcar = 100.00 (Fixed) LO\Yer Shelf o/oShear = 0.00 (Fixed)

Temperature at 50% Shear= 66.90 Plant: B)*ron 2 Material: SA508CL3 Heat: (49D330/49C298]-1-l Orientation: Axial Capsule: X 100

~ . ', ..

---

1-~. . .. ..

90 80

... !w /.

1~

70 I

.. . .

I

.. LI

=

Qj 60

.c

...

rJ1

=

50 / ..

'

Qj , ... .. ;.

~

..

Qj 40 Q..

30 1 ...

20 I ' (

~

10

..

~

0 l __... I/_;

. .

0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-86 Plant: Byron 2 Matorial: SA508CL3 Hoat: [49D330/49C298]-l-I Orienwtion: Axial Capsuk X BYRON UNIT 2 CAPSULE X (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-50 2.0 8.7 -6.67


-- -----

<!5 5.0 13.6 -8.57

-15 10.0 16.l -6.12

-10 15.0 17.5 ~2.52 0 25.0 20.6 4.37 10 25.0 24.l 0.88 25 35.0 30.1 4.92 40 45.0 36.8 8.21 50 45.0 41.6 3.42 100 60.0 66.l -6.10 150 80.0 84.2 -4.22 200 90.0 93.6 -3.60 225 100.0 96.0 3.97 250 100.0 97.6 2.44 300 100.0 99.l 0.90 CVGraph 6.02 08128/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-87 BYRON UNIT 2 CAPSULE X (WELD)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 913/2015 .u.i PM A= :U.lU B = Jl.90 C = 96.49 TO= -4.56 D = 0.00 Correlation Coefficient= 0.978 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy = 66.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Temp@30 ft-lbs=-17.00° F Temp:IT135 ft-lbs= -1.80° F Tcmp1!~50 ft-lbs= 48.30° F Plant: B)*ron 2 Material: WELD Heat: 442002 Orientation: NIA Capsule: X I

70 I ct>O 0

I .. ..

60 / ....:

-- rl:l

.:::.. 50 I

-* -*

ol

/0 0

. -

--

¢::

...... 40 en

~

--.*

4,

  • - ...

QJ ..

~ = 30 I z

u

...

20 I - . ... .. - *-

to l *- *-

0 I

/ I 0

I I I I i I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGr:iph6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-88 Plant: Byron 2 "tvlalerial: WELD Heat: 442002 Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Comput.d CVN Differential I

-- '-*--___:~-~

-75 6.0 14.2


-65 19.0 16.4 2.62

-50 22.0 20.1 1.90

-25 28.0 27.4 0.56

-15 29.0 30.7 -1.66 0 36.0 35.6 IJ.39 15 42.0 40.5 1.52 25 51.0 43.6 7.42 50 48.0 50.4 -2.43 72 49.0 55.2 -6.16 110 58.0 60.6 -2.57 150 66.0 63.5 2.49 175 60.0 64.5 -4.49 200 68.0 65.l 2.91 I

225 69.0 65.5 3.54 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-89 BYRON UNIT 2 CAPSULE X (WELD)

CVGrnph 6.02: Hyperbolic Tangent Curce Printed on 9/3/2015 .u.i PM A= 27.20 8 = 26.20 C = 77.36 TO= 3.85 D = 0.00 Correlation Coefficient= 0. 978 Equation is A+ B * [Tanh((T-TOJ/(C+DT))J Upper Shelf L.E. = 53AO Lower Shelf L.E. = l .00 (Fixed)

Temp:'.&:'.35 mils= 27.60° F Plant: B)-ron 2 Material: WELD Heat: 442002 Orientation: N/A Capsule: X 60 1) 0 I .1 I

50 /"O'O

-.-e..

C"ll o/o . *-* ..

._ 40

...ccc C"ll

~ 30 I lo c.

~

r q )*

-....

~

~

QJ 20 I

... . .

~

~

10

>- . . ..

} . . . ""

~ 0

! 1*

0 I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-90 Plant: Byron 2 Material: WELD Heat: 442002 Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (WELD)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential i

-I

-75 2.0 7.0 -5.04

-65 9.0 8.6 0.44

-50 11.0 11.4 -0.43

-25 14.0 17.9 -3.86

-15 26.0 20.9 5.06 0 25.0 25.9 -0.90 I 15 30.0 30.9 -0.95 25 42.0 34.2 7.81 50 40.0 41.2 -1.20 T2 39.0 45.7 -6. 7'2 110 48.0 50.2 -2.23 150 51.0 52.2 -1.23 175 52.0 52.8 -0.78 200 58.0 53.l 4.93 225 55.0 53.2 1.77 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-91 BYRON UNIT 2 CAPSULE X (WELD)

CVGraph 6.02: Hyperbolic Tangent CurYe Printed on 91312015 -U~ PM A = 50.00 B = 50.0U C = 70..18 TU= 18.61 D = 0.00 Correlation Coefficient= 0. 987 Equation is A+ B * [Tanh((T-TU)/(C+DTJ)l Upper Shelf%Shcar = 100.00 (Fixed) Lo\\'er Shelf %.Shear= 0.00 (Fixed)

Temperature at 50% Shear = 18. 70 Plant: B)-ron 2 Material: WELD Heat: 4-12002 Orientation: N/A Capsule: X 100

.... .. .. . , ... 0

- ........-

.. ... .. ..

90 **I *-::-

-

80 I

_Jo '.

-

~

~

70 60

"

-r .. I ..

.c rJJ

.....

=

50 I '.

-

~

~

~

Q.;

40 f ... . ..

30 9 20 I

I  :

10 Jo I __.,..,,. £ 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGrnph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-92 Plant: Byron 2 tvfaterial: WELD Heat: .u2002 Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (WELD)

Charpy V-Notch Data i

Temperature (0 F) Input %Shear Computed %Shear Differential

-75 5.0 6.6 -l.56

--~-

-65 IO.O 8.5 l.47

-50 IO.O 12.5 -2.49

-25 15.0 22.5 -7.49

-15 35.0 27.8 7.19 0 30.0 37.1 -7.10 15 45.0 47.4 -2.44 25 70.0 54.5 15.48 50 70.0 70.9 -0.90 T2 75.0 82.0 -6.98 110 90.0 93.0 -3.04 150 95.0 97.7 -2.65 175 100.0 98.8 1.17 200 100.0 99.4 0.58 225 100.0 99.7 0.29 CVGraph 6.02 0910312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-93 BYRON UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hypcibolic Tangent Cuf\*c Printed on 9/3/2015 4:25 PM A= 75.10 B = 72.90 C = 118.63 TO= -62.11 D = 0.00 Correlation Coefficient= 0.958 Equation is A+ B

  • lTanh((T-TO)/(C+DT))]

Upper Shelf Energy= 148.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp'.f!!JO ft-lbs=-147.80° F Tcmp@J5 ft-lbs=-135.-10° F Tcmp@50 ft-lbs=-10-1.60° F Plant: Byron 2 lv!atcrial: SA508CL3 Heat: [-19D330/-19C298)-l-l Orientation: N/A Capsule: X 160 140

.... '**

l l~(i)I --' ...

120

..... . ~ . .

o/ '*

--~

.Q I 100

.....

n 0

J I ..

0

..

--

¢::

~

ell

... 80

.....

l 0l

~

=

r.:l

.... ...

z 60 u

> I 0

40 <:/

20

-

/

j ... ..

0 V*~ I I I I

'.

I I I  ; I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-94 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (REA T-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) InputCVN Comput.d CVN DilTerential

-190 4.0 17.3 -13.33

~--*------ - - - - - - - - * - ----- * -- - - - - - - * *

-150 26.0 29.2 -3.19

-140 33.0 33.1 -0.10

-120 46.0 42.1 3.90  !

-100 63.0 52.6 10.43

-75 69.0 67.2 1.79

-50 101.0 82.5 18.49

-45 52.0 85.5 -33.54

-15 112.0 102.6 9.38 IO 1260 114.7 I 1.34 50 106.0 128.9 -22.87 100 143.0 139.1 3.90 I

150 148.0 144.0 3.97 I'

~*

200 152.0 146.3 5.74 CVGraph 6.02 09/031'.!015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-95 BYRON UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CV Graph 6.02: Hyperbolic Tangent CurYc Printed on 9/3/2015 -1:26 PM A= 411.94 B = 39.94 C = 103.38 TU= -58.20 D = 0.00 Correlation Coefficient= 0.960 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper ShelfL.E. = 80.87 Lower Shelf L. E. = 1.00 (Fixed)

Temp:p35 mils=-73.60° F Plant: B)*ron 2 Material: SA508CL3 Heat: l49D330/49C298l-1-1 Orientation: N/A Capsule: X 90

...... 0 80

...

~

.,

I* . .

~

v--

70

.... . .

/ ..

--- *ol(.* *.*

.....

.... 60

~

._ e i I

....c= 50

~

.... . ..

9/ 0

=

~

Q.,

ii< 40

....

/

-

~

~

lo.

Q.l 30

....

I

,~In* ..

......

~ I

~

!

20 d voI

.... . ...

10 I 0

l-/ I ,_

_.

I I I I I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-96 Plant: Byron 2 lv!akrial: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-190 0.0 6.8 -6.79


---~-------- *------------ --------------

-150 8.0 12.6 -4.57

-140 15.0 14.6 0.39

-120 21.0 19.6 1.45

-100 31.0 25.6 5.38

-75 34.0 34.5 -0.51

-50 54.0 44.1 9.90

-45 31.0 -16.0 -15.01

-15 64.0 56.7 7.28 JO 69.0 64.0 4.97 50 55.0 72.1 -17.11 100 80.0 77.3 2.70 150 86.0 79.5 6.52 200 80.0 80.3 -0.34 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 20 I 5 Revision 0

Westinghouse Non-Proprietary Class 3 C-97 BYRON UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

CV Graph 6.02: Hyperbolic Tangent Curve Printed on I0/912015 l l: 12 AM A= 50.00 B = 50.00 C = 107.17 TO =-38.11 D = 0.00 Correlation Coefficient= 0.980 Equation is A+ B * (Tanh((T-TO)/(C+DT))]

Upper Shclf%Shcar = 100.00 (Fixed) Lo\l'cr Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -38. JO Plant: B)*ron 2 Marerial: SA508CL3 Heat: (49D330/49C298)-1-1 Orientation: NIA Capsule: X 100 -

90

.. .,

/

?- .. ...

80 0

I 70

..

,1~ ~

..

""'

ci: 60 9

./

Cl,)

.c ..

00.

..... 50

=

Cl,)

~

""'

Cl,) 40 l ...

Q.

30 f~ ..

~t ... ..

20 -'

10 i ..

~

ef'.

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 10/09/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-98 Plant: Byron 2 Material: SA508CLJ Heat: [49DJJ0/49C298]-1-I Orientation: NIA Capsule: X BYRON UNIT 2 CAPSULE X (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shc11r Difforcnti11I

-190


------

5.0 5.5 -0.55 _J

-150 15.0 11.0 3.97

-140 15.0 13.0 2.00

--

-120 20.0 17.8 2.17

-100 25.0 24.0 1.04

-75 35.0 33.4 1.56

-50 40.0 44.5 -4.48

-45 35.0 46.8 -11.79

-15 65.0 60.6 4.38 10 85.0 71.1 13.95 50 70.0 83.8 -13.81 100 100.0 92.9 7.06 I I

150 100.0 97.l 2.90 200 100.0 98.8 1.16 CVGraph 6.02 10/0912015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-99 BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

CVGrnph 6.02: Hyperbolic Tangent Cun-e Primed on 8/28/2015 2:50 PM A= 75.60 B = 73.40 C = 101.49 TO= 85.15 D = 0.00 Correlation Coefficient= 0. 979 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy= 149.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp@30 fl-lbs= 11 .40° F Temp:f!!35 ft-lbs= 22.00° F Tcmp@50 ft-lbs= -18.30° F Plant: Byron 2 Material: SA508CLJ Heat: !49DJ30/49C298l-1-1 Orientation: Tangential Capsule: Y 160 o 0. .

140 v

/'O" 120 t-

  • f

.-

-

.Q

~

1/

-it:

I

...,

100 t- I

~

-=

z; OJ)

~

80 t-*

7

' o.

60

>

u 40 t-

!

20 I-(j I  :

-*

/4~

0

-300 -200

--

-100 6

(I 0 100 200 300 400 500 600 Temperature{° F)

CVGrnph 6.02 08/28/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-100 Plant: Byron 2 Material: SA508CL.3 Heat: [49DJJ0/49C298]-1-1 Orientation: Tangential Capsule: Y BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-50 2.5 11.8 -9.27

>---

-30 130 16.0 -2.96

-10 23.0 21.7 1.28

-5 9.0 23.4 -14.45 0 16.0 25.3 -9.30 5 18.0 27.3 -9.28 10 41.0 29.4 11.60 20 46.0 34.0 l l.96 40 58.0 44.9 13.06 72 77.0 66.1 10.86 120 77.0 99.9 -22.85 175 128.0 127.6 0.36 225 151.0 140.2 10.77 250 154.0 143.5 10.49 275 142.0 145.6 -3.60 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-101 BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

CVGrnph 6.02: Hyperbolic Tangent Ctt!YC Printed on 8/28/2015 2:51 PM A= 49.18 B = 48.18 C = 108.75 TO= 71.97 D = 0.00 Correlation Coefficient= 0.975 Equation is A+ B * [Tanh((T-TOJ/(C+DT)))

Upper Shelf LE.= 97.36 Lower Shelf L.E. = l.00 (Fixed)

Tcmp@35 mils= 39.00° F Plant: B)*ron 2 Material: SA508CL3 Heat: [49D330/49C298f*l*l Orientation: Tangential Capsnlc: Y 100 1-----+----t---;----1--~-1---'--+---'--t---'---+--,----11--------1 0

90 1--~--t-~~--t-~--t--~-t--~--;,_--+--~-t-~~-1-----t

  • yo f
  • ---

80 _________,_,---+--+---+-----/*#--+--~--+----+---I

(;I}

5 70 1---~-+-~~--+~~~+-~--l--1----+---+-~~--i--~-i----4

._,

I 60 ------+---+---'--+---o--ii"I- o--'-*-+--~+----+-----'--+-------I so1------+-~-+---+---~/_,_-+---t--~---t-~-+-~-+----1 0

40 1--~--1---,--t----+--1--1----+----t--.,---+----11--------1

'c9/

301----+-~-+-~~/-#-'--4-_.___-l--~-'--+-~-4----t 20 1--~~-+~~~-+-~-'--4-F-I-~~~+-~~-+~~~4-~-'-~+-~~-+~~~-1

Jp

~9' 10 1------+i-~-. -..-.l -.

j -.-~6~.,.c.,.__--4---l----+----+-----"----

O l::::::::=:::!:::~_L_.,i._J___;L,__L.,..l.-.J_......l-_L---1._JL_.i.........l__i__J

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-102 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/-19C298]-1-1 Orientation: Tangential Capsuk Y BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

Charpy V-Notch Data Te m peru tu re (0 F) Input L. E. Computed L E. Differential

-50 4.0 10.2 -6.25

-- --

-30 11.0 13.8 -2.81

-10 20.0 18.5 1.53

-5 10.0 19.8 -9.83

~

0 13.0 21.3 -8.26 5 17.0 22.8 -5.77 10 34.0 24.4 9.64 20 36.0 27.8 8.24 40 45.0 35.4 9.59 72 56.0 49.2 6.81 120 54.0 69.2 -15.18 175 86.0 84.8 1.23 225 95.0 91.9 3.09 250 98.0 93.8 4.15 275 92.0 95.1 -3.11 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-103 BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:53 PM A = 50.00 B = 50.00 C = 92. 74 TO= 88.46 D = 0.00 Correlation Coefficient= 0.996 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shclf%Shcar= 100.00 (Fixed) Lmver Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 88.50 Plant: Byron 2 Material: SA508CL3 Heal: [49D330/49C298[-1-1 Orientation: Tangential Capsule: Y 100 90

...

I I

I* *V-*

'

...

80 70

...

I

.c lo.

~

Col 60

...

L*

...

...c 00.

50 I Col >-**

u lo.

Col 40

~

30

...

_/

20 I I

...

10

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-104 Plant: Byron 2 Material: SA508CL3 H~at: [49D330/49C298)-1-l Orientation: Tangential Capsule: Y BYRON UNIT 2 CAPSULE Y (TANGENTIAL)

Charpy V-Notch Data Tcm pcraturc (° F) Input %Shear Computed %Shear Differential

-50 3.0 4.8 -1.81

-*---

-30 5.0 7.2 -2.21

-10 10.0 10.7 -0.68

-5 5.0 l l.8 -6.76 0 10.0 12.9 -2.92 5 15.0 14.2 0.82 10 20.0 15.5 4.45 20 20.0 18.6 1.41 40 30.0 26.0 3.99 72 45.0 41.2 3.79 120 60.0 66.4 -6.38 175 85.0 86.6 -1.60 225 100.0 95.0 5.00 250 100.0 97.0 2.98 275 100.0 98.2 1.76 CVGraph 6.02 08/2812015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-105 BYRON UNIT 2 CAPSULE Y (AXIAL)

CVGrnph 6.02: Hyperbolic Tangent CurYe Printed on 8/28/2015 2:5+ PM A= 60.60 B = 58.40 C = 86.31 TO= 71.75 D = 0.00 Correlation Coefficient= 0.982 Equation is A+ B * [Tanh((T-TO)/(C+DT))J Upper Shelf Energy= 119.00 (Fixed) Lo\\'er Shelf Energy = 2.20 (Fixed)

Tcmp:{jl30 ft-lbs= 21.60° F Temp:?{!35 ft-lbs= 3 l.20° F Tcmp?.!)50 ft-lbs= 56.00° F Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298(-1-1 Orientation: Axial Capsule: Y 140

. ,_. .. .. .. ... .. .. . **--- . ..

120 QO I

- .. .. 0 I

.. . ,. .. '"

-- 100

~

~

..Q

.._,

>.

I 80

,..

/

i CJ)

~ ..

Q.l

=

r;i;;1 60 u

z

> _/

40 20

0

(

lo .. ..

0 L~ I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08/28/2015 Page 1/2 WCAP-1805.6-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-106 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/-19C298]-1-I Orientation: Axial Capsule: Y BYRON UNIT 2 CAPSULE Y (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-30 10.0 12.3 -2.30

--

-20 10.0 14.6 -4.65

-10 30.0 17.5 12.53 0 26.0 20.8 5.18 10 25.0 24.7 0.26 20 40.0 29.3 10.75 30 31.0 34.4 -3.36 40 24.0 40.0 -16.03 50 37.0 46.2 -9.18 72 720 60.8 11.23 120 90.0 90.2 -0.22 175 108.0 109.2 -1.22 225 122.0 I 15.7 6.26 250 123.0 117.2 5.85 275 113.0 - 118.0 -4.96 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-107 BYRON UNIT 2 CAPSULE Y (AXIAL)

CVGraph G.02: Hyperbolic Tangent Cmvc Printed on 8/28/2015 2:55 PM A= *H.74 B = 43.74 C = 91.27 TO= 61.43 D = 0.00 Correlation Coefficient= 0.984 Equation is A+ B * [T:mh((T-TO)/(C+DT))j Upper ShclfL.E. = 88A7 Lower Shelf L.E. = 1.00 (Fixed)

Temp't(!35 mils= 40.80° F Plant: BJron 2 Material: SA508CLJ Heal: [49D330/49C298[-1-1 Orientation: Axial Capsule: Y 90 ,... I

  • 2 ~*

>-* ... . __ , , , ..

80

>-* ..

1~ ..

--e~

.....

"-"

70 60

>- ..

/ .,

.....=

0

~

= 50

>-

I ..

/

~

Q. >-. -

~

-

~

~

....

aJ 40

~

Jo ..

...... 30

~

~

20

~ . ..

9 [o

-

10 j ..

.*

/~ .

. __.,..

. .

0 1 1 I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 08/28/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-108 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/.t9C298]-1-1 Orientation: Axial Capsule: Y BYRON UNIT 2 CAPSULE Y (AXIAL)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-30 10.0 11.4 -1.40


~----

-20 9.0 13.6 -4.58

-10 25.0 16.1 8.87 0 23.0 19.1 3.93 10 20.0 22.4 -2.41 20 32.0 26.l 5.85 30 30.0 30.2 -0.25

!

40 23.0 34.7 -11.65 50 34.0 39.3 -5.29 72 580 49.8 8.22 120 71.0 69.5 l.51 175 80.0 81.8 -l.77 225 86.0 86. l -0.11 250 87.0 87.l -0.09 275 88.0 87.7 0.33 CVGraph 6.02 08/28/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-109 BYRON UNIT 2 CAPSULE Y (AXIAL)

CVGraph 6.02: Hyperbolic Tangent Curve Printed on 8/28/2015 2:56 PM A = 50.00 B = 50.00 C = 94.97 TO = 89. 79 D = 0.00 Correlation Coefficient= 0.995 Equation is A+ B

  • lTanh((T-TO)/(C+DTJ)(

Upper Shclf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 89.80 Plant: B~*ron 2 tvlatcrial: SA508CL3 Heat: (49D330/49C298(-1-1 Orientation: Axial Capsule: Y

. 1-~.

100 r---:~~~~~'T'"~~~r---:~-r--~~~"""e-i""":H:"""~===~--..,.--~~'T'"~~-,

90 t--------+-----+---+--- L-lr---~-1-----+---'---+---t

.

80 t--------+------t----t-----1--/-++-:. _11--+-.- - - - ' - - - - - - l - - - - . , - - - t - - - t

~ 70 i-------1,__---t---+---+-f-f---.-1-----1---+----+-~--1

~ 60 1--~~-t-~~--t-~~~+-~~-t-1~~--t~~~-t--~~-+-~~~1--~--1

~ I

.c 00.

...... so t--~~-t-~~--t--~~--t-~~-1-'1--~~+-~~-t-~~-+~~--1c---'----t

~ 40 t--~~-t-~~~t--~~-t--~~**-~~--t-~~~;--~~-+-~~~t--~~-t-~~--t Q., 30r~---+----+----1,----*~~;J~-+---t------+---+----J-------i 20 t-----+----'--+----Elll_le--"_*+-----+--t----+-__;__+----1 arr 10 1--~~-t-~~--t--~~~j-+--~~-1--~~-+~~--1~-'-~+-~~-l-~~-1

  • __0*

0 L-....L.........11..-..i::::::;;J.~..J.---L.~..L--L.~.l.-....L...---JL....-..J---L~..l---L~...l---L.---I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 08128/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-110 Plant: Byron 2 Material: SA508CLl Heat: [49D330/49C298]-1-I Orientation: Axial Capsule: Y BYRON UNIT 2 CAPSULE Y (AXIAL)

Charpy V-N otch Data Temperature (0 F) Input %Shear Computed %Shear Differential

-30 5.0 7.4 -2.43

-20 5.0 9.0 -4.01

-10 15.0 10.9 4.10 0 15.0 13.1 1.89 10 20.0 15.7 4.29 20 20.0 18.7 1.30 30 20.0 22.l -2.11 40 20.0 26.0 -5.95 50 30.0 30.2 -0.20 72 45.0 40.7 4.26 120 65.0 65.4 -0.39 175 80.0 85.7 -5.75 225 100.0 94.5 5.48 250 100.0 96.7 3.31 275 100.0 98.0 1.98 CVGraph 6.02 08/28/2015 Page2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-111 BYRON UNIT 2 CAPSULE Y (WELD)

CVGraph 6.02: Hyperbolic Tangent Cun*e Printed on 9/3/2015 -U7 PM A= 30.10 B = 27.90 C = 125.52 TO= -12.07 D = 0.00 Correlation Coefficient = 0. 982 Equation is A+ B * [Tanh((T-TOJ/(C+DT))]

Upper Shelf Energy = 58.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed)

Tcmp'.g\30 fl-lbs=-12.50° F Tcmp@35 ft-lbs= I0.30° F Temp@.50 ft-lbs= 100.20° F Plant: B)*ron 2 Material: WELD Heal: 4-t2002 Orientation: N/A Capsule: Y 70

>- ' ... . .. .. ***-

60 00

,_...-

~

>- .. ... 0

--rl.l

.c 50

-* _!

' ,..

- r:

I

¢:

40

.....

~

~ >- .. .. ..

~

~= 30 m u

z

> ,...

_i~

20

-

/

o/ ...

10

~

I v

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09/03/2015 Page 1/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-112 Plant: Byron 2 tvfaterial: WELD Heat: 442002 Orkntation: NIA Capsule: Y BYRON UNIT 2 CAPSULE Y (WELD)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential I

-110 15.0 11.9 3.11

-- --

-70 20.0 18.1 1.93

-50 21.0 21.9 -0.92

-30 22.0 26.1 -4.14

-JO 31.0 30.6 0.44 0 29.0 32.8 -3.77 10 36.0 35.0 1.04 20 40.0 37.1 2.92 40 40.0 41.l -1.05 72 50.0 46.4 3.58 120 52.0 51.9 0.06 175 51.0 55.3 -4.30 225 61.0 56.8 4.25 250 1---*

59.0 57.2 1.84 --1 275 55.0 57.4 -2.43 CVGraph 6.02 0910312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-113 BYRON UNIT 2 CAPSULE Y (WELD)

CVGraph 6.02: Hyperbolic Tangent Cur\'e Printed on 9/3/2015 -U7 PM A= 28.48 B = 27.48 C = 123.94 TO= --U9 D = 0.00 Correlation Coefficient= 0. 983 Equation is A+ B * [Tanh((T-TOJ/(C+DTJ)]

Upper ShclfL.E. = 55.95 Lower Shelf L.E. = l.00 (fr<cd)

Tcmp't'i.;35 mils= 25.80° F Plant: Byron 2 Material: WELD Heat: 442002 Orientation: N/A Capsule: Y 60 0

.. n ..

.;..;.--- 0 .!

_/ I

---s 50

~

~ 0

..... ... .. . ..

of

--* .. "

._,

40

.....=

Q of:

~ .. . .. ..

=

i:-=

c..

.< 30

-~

1~

- ,-

~

...

QJ

~ 20

~

...

10 c 0

-

~ I

.

l/ I I I  ; I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-114 Plant: Byron 2 1'.<faterial: WELD H~at: 442002 Orientation: NIA Capsule: Y BYRON UNIT 2 CAPSULE Y (WELD)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-110 11.0 9.4 1.56

--

-70 18.0 15.1 2.88

-50 18.0 18.8 -0.76

-30 20.0 22.8 -2.84

-10 27.0 27.2 -0.19 0 24.0 29.4 -5.40 10 35.0 31.6 3.39 20 33.0 33.8 -0.77 40 41.0 37.9 3.12 72 45.0 43.5 1.48 120 50.0 49.4 0.58 175 48.0 53.1 -5.06 225 58.0 54.6 3.38 250 56.0 55.l 0.94 275 54.0 55.3 -l.35 CVGraph 6.0?. 09/0312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-115 BYRON UNIT 2 CAPSULE Y (WELD)

CVGraph 6.02: Hyperbolic Tangent Cun*e Printed on 9/3/2015 *!:28 PM A= 50.00 B = 50.00 C = 79.67 TO = 25.59 D = 0.00 Correlation Coefficient= 0.99~

Equation is A+ B * [T:mh((T-TOJ/(C+DT))I Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= 25.60 Plant: B)*ron 2 Material: WELD Heat: 4-12002 Orientation: N/A Capsule: Y 100 - -

90 r

80 /I 70

-:f

.c

-

~

Cl.I 60 I rJl

..... 50

=

-

Cl.I

~

Cl.I 40 I Q.,

0) 30 20

  • /

IO 0 I I I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/03/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-116 Plant: Byron 2 tv!aterial: WELD Heat: 442002 Orientation: N/A Capsule: Y BYRON UNIT 2 CAPSULE Y (WELD)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear DiITcrential

-110 5.0 '~

.>.- 1.78 r-------- --

-70 5.0 8.3 -3.32

-50 5.0 13.0 -8.04

-30 15.0 19.9 -4.85

-10 35.0 29.0 5.96 0 35.0 34.5 0.53 JO 45.0 40.3 4.66 20 50.0 46.5 3.50 40 55.0 58.9 -3.95 72 75.0 76.2 -1.23 120 90.0 91.5 -1.45 175 90.0 97.7 -7.70 225 100.0 99.3 0.67

-

250 100.0 99.6 0.36 I

275 100.0 99.8 0.19 I CVGraph 6.02 09/0312015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-117 BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

CVGr:iph 6.02: Hyperbolic Tangent Cun*c Printed on 9/3/2015 -US PM A= 71.10 B = 68.90 C =97.83 TO =-59.92 D = 0.00 Correlation Coefficient= 0.950 Equation is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy = 140.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed)

Tcmp'.i'/'30 ft-lbs=-127.10° F Tcmp@:35 fl-lbs=-116.80° F Tcmp'.{!)50 ft-lbs=-90.80° F Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: Y 160 140

>- ..

l -

120

- .-

.,7 ~

..

--~

.c I 100

~60 I .

...

--

it::

>..

OJ) i... 80

....

j '

I Q,j

~= .. I

'

u z

>

60

....

I 0 40 20 Jo '"

/°. ..

~ o:

0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 09103/2015 Page 112 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-118 Plant: Byron 2 Material: SA508CLJ Heat: [49D330/49C298]-1-1 Orientation: NIA Capsule: Y BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input CVN Computed CVN Differential

-180 2.0 13.l -l 1.10

-

-150 17.0 21.1 -4.06

-120 320 33.4 -1.41

-110 27.0 38.6 -11.62

-100 71.0 44.4 26.65

-70 67.0 64.0 2.97

-50 84.0 78.l 5.93

-30 56.0 91.5 -35.54

-10 117.0 103.5 13.50 0 126.0 108.7 17.29 10 110.0 113.4 -3.38 40 108.0 124.2 -16.18 72 135.0 131.3 3.70 100 144.0 135.0 9.05 175 140.0 138.9 1.12 CVGraph 6.02 09/0312015 Page 2/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-119 BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/3/2015 -l:29 PM A= .i.i.27 B = .t3.27 C = 98..tJ TO= -57.01 D = 0.00 Correlation Coefficient= 0. 957 Equation is A+ B

  • iTan.h((T-TO)/(C+DT))]

Upper ShelfL.E. = 87.53 Lower Shelf L.E. = 1.00 (Fixed)

Tcmp@35 mils=-78.40° F Plant: Byron 2 Material: SA508CL3 Heat: [49D330/49C298[-1-1 Orientation: N/A Capsule: Y 90 80

--

... 1 /

70

<i/n~

r l:l

.....

-....e=

0 rl:l 60 j-J

=i:':I Q.

ii<

50

1) j.

-

~

i:':I l.c Qj 40 t-

[o

...... 30 I i:':I

~

)

20 t-10

-200 -100 0 100 200 300 400 500 600 Temperature (° F)

CVGraph 6.02 09/0~/2015 Page 1/2 WCAP-18056-NP December2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-120 Plant: Byron 2 Makrial: SA508CLJ Heat: [49D330/49C298J-l-I Orientation: N/A Capsuk Y BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input L. E. Computed L. E. Differential

-l80 2.0 7.6 -5.57

-150 9.0 12.4 -3.36

-120 16.0 19.8 -3.83

-110 16.0 23.0 -6.99

-100 45.0 26.5 18.52

-70 40.0 38.6 1.41

-50 52.0 47.3 4.66

-30 36.0 55.8 -19.85

-10 72.0 63.5 8.51 0 71.0 66.9 4.15 10 69.0 69.9 -0.88 40 71.0 77.0 . -5.95 72 88.0 81.7 6.33 100 82.0 84.1 -2.11 175 87.0 86.8 0.24 CVGraph 6.02 09/03/2015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-121 BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

CV Graph G.02: Hyperbolic Tangent CurYc Printed on l0/9/2015 l l: 10 AM A= 50.00 B = 50.00 C = 86.89 TO= -36.16 D = 0.00 Correlation Coefficient= 0.977 Equation is A+ B * [Tanh((T-TO)/(C+DT))J Upper Shelf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed)

Temperature at 50% Shear= -36.10 Plant: B)*ron 2 Material: SA508CL3 Heat: [49D3J0/49C298l-l-l Orientation: N/A Capsule: Y 100

.-

  • 7 ,,,- ....

90 80 I 70 a/o_

..... .

i..

~ 60

~

.c

...c 00.

50

~

~

i..

~ 40 Q.

30 20 10 0

  • --~- I I

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F)

CVGraph 6.02 10/09/2015 Page l/2 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 C-122 Plant: Byron 2 Material: SA508CL3 Heat: [49D330/-19C298]-1-I Orientation: NIA Capsule: Y BYRON UNIT 2 CAPSULE Y (HEAT-AFFECTED ZONE)

Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %She;ir DilTerential

-180 3.0 3.5 -0.52


-150 5.0 6.8 -1.78

-120 10.0 12.7 -2.68

-110 10.0 15.5 -5.45

-100 25.0 18.7 6.30

-70 35.C> 31.5 3.55

-50 50.0 42.1 7.90

-30 35.0 53.5 -18.54

-10 75.0 64.6 10.39 0 75.0 69.7 5.32 10 70.0 74.3 -4.31 40 75.0 85.2 -10.23 72 100.0 92.3 7.66 100 100.0 95.8 4.17 175 100.0 99.2 0.77 CVGraph 6.02 10/0912015 Page 212 WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 D-1 APPENDIXD BYRON UNIT 2 UPPER-SHELF ENERGY EVALUATION D.1 EVALUATION Per Regulatory Guide 1.99, Revision 2 [Ref. D-1 ], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure D-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in USE may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure D-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph.

The end-of-license extension (57 effective full-power years [EFPY]) USE of the vessel materials can be predicted using the corresponding quarter-thickness (l/4T) fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2 [Ref. D-1].

The Byron Unit 2 reactor vessel beltline region thickness is 8.5 inches. Calculation of the l/4T vessel fluence values at 57 EFPY for the beltline and extended beltline materials is shown in Table D-1. The following pages present the Byron Unit 2 USE evaluation. Figure D-1, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2 [Ref. D-1]. Table D-2 provides the predicted USE values for 57 EFPY (end-of-license extension).

WCAP-18056-NP December 2015 Revision 0

Westinghouse Non-Proprietary Class 3 D-2 Table D-1 Byron Unit 2 Pressure Vessel l/4T Fast Neutron Fluence Calculation 57 EFPY Fluence(x 10 19 n/cm 2 ,

Material E> 1.0 MeV)

Surface 1/4T(*l Beltline Materials Nozzle Shell Forging 1.03 0.619 Intermediate Shell Forging 3.00 1.80 Lower Shell Forging 3.04 1.83 Nozzle to Intermediate Shell Forging 1.03 0.619 Circumferential (Circ.) Weld Seam Intermediate to Lower Shell Forging Circ.

2.93 1.76 Weld Seam Extended Beltline Materials Inlet Nozzle Forgings 0.0112 Note (b)

Outlet Nozzle Forgings 0.00848 Note (b)

Inlet Nozzle to Nozzle Shell Forging Circ.

0.0112 Note (b)

Weld Seams Outlet Nozzle to Nozzle Shell Forging Circ.

0.00848 Note (b)

Weld Seams Notes:

(a) l/4T fluence values were calculated from the surface fluence, the reactor vessel beltline thickness (8.5 inches) and equation f = fsurf

(b) Consistent with the time-limited aging analysis (TLAA) evaluation as documented in Reference D-3, the maximum fluence values for the extended beltline materials at 57 EFPY were less than the minimum fluence value displayed on Figure 2 of Regulatory Guide 1.99, Revision 2. The minimum fluence value (2 x 10 17 n/cm 2 ) displayed on Figure 2 of Regulatory Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease; see Table D-2.

WCAP-18056-NP December 2015 Revision 0

Westinghouse on- Proprietary Class 3 D-3 Limiting Forging Percent USE Decrease 23% from Capsule Y (axial-orientation)

ILimiting Weld Percent USE Decrease 13% from Capsule Y I

....._

100.0

,___ 'Yo Copper ' -,

,___ ........ I Base Metal Weld ........... I

,___ 0.35 0.30

--

--

I';

,___ 0.30 0.25

-

I I

""'

,___ 0.25 I 0.20 Upper Limit __..

-

....

0.20 0.15

\ - ~

--- - I

~

--

,___ 0.15 I I 0.10

~

~


f- Forging

---

!"-. ~

0.10 I I o.o5  !.- i..- .--

~

~ .__... "---- v

-

Line

- ---- --

~

,___ -~

......

-- -

I

-

I

- - ::::::::-:: t= -----

~

- --

i.--

..........

__..

- --- i..- ~

- '-

w

- * -

i..-

- -:::...--- ... ~ i--- --1

--

~

--


..,_ - -

- '-

~

- - 1- - i..-

"' ~

-- -

~

-- -

t

>

-- -:-.----

~

- ...L ___:: e:..:: -

~

.E i---:::

...---

_.. --- --

_..,

~

-  :=----- l.---  !.- ~ """" - - -


i..- ~

-~

_t--- ~ i....- l..-

i.-

I

--

c.

..,_

'-

...

0

~ ......

L--- ""' i--

-

~ ~ ~

c G> 0.0 ....-

- - - -- --

-- Line

-... ----- - -- - -- -

C'I _......... ~

IU c:

G>

u

~ i.---

- i__.-

-- "I ~

~


i--- Lower Shell Forging 57 EFPY 1/4T G> - ..,.i..---

-- Fluence = 1.83 x 1019 n/cm2 1

--

D.

-

~ I I I I I 1 i.---

L------ Nozzle Shell Forging and Nozzle to 1-

~

-

  • Surveill ance Malena!:

Intermed iate Shell Forging Circ. Weld - Lower Shell Forging

  • ~ r---...... 57 EFPY 1/4T Fluence = 0.619 x 101s n/cm2

...._ I I I I

  • Surveill ance Material:

Weld Heat # 442002 l'-k ~ ...........

\

Outlet Nozzles and Outlet Nozzle to Nozzle Shell Forging Circ. Welds 57 EFPY 1/4T Fluence < 0.020 x 1019 n/cm 2 Jf .....

I Intermediate Shell Forging 57 EFPY 1/4T Fluence = 1.80 x 1019 n/cm2 I

1.0

""

1.00E+17 \ 1.00E+18 1 .00E+19 / 1.00E+20 Inlet Nozzles and Inlet Nozzle to Intermediate to lower Shell Nozzle Shell Forging Circ. Welds Neutron Fluence, n/cm2 (E > 1 MeV) Forging Circ . Weld 57 EFPY 1/4T 57 EFPY 1/4T Fluence < 0.020 x 1019 n/cm2 Fluence = 1.76 x 10 1s n/cm2 Figure D-1 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence WCAP-18056- P December 201 5 Revision 0

Westinghouse Non-Proprietary Class 3 D-4 Table D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Ener gy Va lu es at 57 EFPY 1/4T EOLE Flu ence P rojected P rojected Weight Un irradiated Materia l (x 10 19 n/c m 2, USE Decrease EOLE

%Cu USE (ft-lb)

E > 1.0 MeV) (%) USE (ft-lb)

Position 1.2<*>

Beltline Materials ozzle Shell Forging 0.05 0.619 155 17.0 129 Intermediate Shell Forging 0.0 1 1.80 149 22.0 116 Lower Shell Forging 0.06 1.83 127 22.0 99 Nozzle to Intermed iate Shell Forging Circ.

Weld Seam (Heat # 4420 I I) 0.03 0.619 80 17.0 66

[ntermediate to Lower Shell Forging Circ.

Weld Seam (Heat # 442002) 0.04 1.76 80 22 .0 62 Extended Beltline Materials Inlet Nozzle 01 -00 I 0.07 Note (c) 129 7.S (c) 119 In let Nozzle 0 1-002 0.07 Note (c) 118 7.5 (cl 109 Inlet Nozzle 02-00 I 0.07 Note (c) 122 7.5(cl 113 Inlet Nozzle 02-002 0.07 Note (c) 118 7.5<cl 109 Outlet ozzle 01-00 I 0.09 Note (c) 108 7.5<cl 100 Outlet Nozzle 01-002 0.08 Note (c) 119 7.S(c) 110 Outlet Nozzle 02-00 I 0.09 Note (c) 136 7.S (c) 126 Outlet Nozzle 02-002 0.09 Note (c) 118 7.S (c) l09 Inlet ozzle to Nozzle Shell Forging Circ.

Note (c) 70 12.0(c) 62 Weld Seams (Heat # 4 1403) 0. 15 Outlet Nozzle to ozzle She ll Forging Ci rc.

Note (c) 79 16.0(c) 66 Weld Seams (Heat # 4420 10) 0.22 Outlet ozzle to ozzle Shell Forging Circ.

ote (c) 70 12.0(c) 62 Weld Seams (Heat # 4 1403) 0.15 Position 2.ibl Lower Shell Forging 0.06 1.83 127 19.0 103 Intermediate to Lower Shell Forging Circ.

Weld Seam (Heat # 442002) 0.04 1.76 80 10.5 72 No tes:

(a) Calculated using the Cu wt. % values and l/4T fluence value for each material and Regulatory Guide 1.99, Rev ision 2, Position 1.2. In calculating Position 1.2 percent USE decreases, the base metal and weld Cu weight percentages were conservatively rounded up to the nearest line in Regulatory Guide 1.99, Revision 2, Figure 2.

(b) Calculated using surveillance capsule measured percent decrease in USE from Tab le 5-10 and Regulatory Guide 1.99, Revis ion 2, Position 2.2; see Figure D-1 .

(c) The minimum fluence value (2 x 10 17 n/cm 2) displayed on Figure 2 of Regulatory Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease.

WCA P-1 8056-NP December 2015 Revision 0

Westinghouse No n-Proprietary C lass 3 D-5 USE Conclusion As shown in Table D-2, all of the Byron Unit 2 reactor vessel beltline and extended beltline material s are projected to remain above the USE screening criterion of 50 ft-lbs (per I 0 CFR 50, Appendix G [Ref. D-2]) at 57 EFPY.

D.2 REFERENCES D-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988.

D-2 10 CFR 50, Appendix G, Fracture Toughness Requirements, Federal Register, Volume 60, No.

243 , December 19, 1995.

D-3 Westinghouse Report WCAP-17606-NP, Revision 0, Byron Station Units 1 and 2 Reactor Vessel Integrity Evaluation to Support License Renewal Time -Limited Aging Analysis, December 2012.

WCAP-18056-NP December 20 15 Revision 0