ML16228A042

From kanterella
Jump to navigation Jump to search
WCAP-18054-NP, Rev. 0, Analysis of Capsule Y from the Exelon Generation Byron Unit 1 Reactor Vessel Radiation Surveillance Program.
ML16228A042
Person / Time
Site: Byron  Constellation icon.png
Issue date: 12/31/2015
From: Mays B
Westinghouse
To:
Office of Nuclear Reactor Regulation
Shared Package
ML16228A044 List:
References
BYRON 2016-0078 WCAP-18054-NP, Rev 0
Download: ML16228A042 (292)


Text

{{#Wiki_filter:WCAP-18054-N P Revision 0 Westinghouse Non-Proprietary Class 3 Analysis of Capsule Y from the Exelon Generation Byron Unit 1 Reactor Vessel Radiation Surveillance Program c @ Westinghouse December 2015 j Westinghouse Non-Proprietary Class 3 WCAP-18054-NP Revision 0 Analysis of Capsule Y from the Exelon Generation Byron Unit 1 Reactor Vessel Radiation Surveillance Program Benjamin E. Mays* Materials Center of Excellence Benjamin W. Amiri* Nuclear Operations and Radiation Analysis December 2015 Reviewers: Elliot J. Long* Materials Center of Excellence Arzu Alpan* Nuclear Operations and Radiation Analysis Approved: David B. Love*, Acting Manager Materials Center of Excellence Laurent P. Houssay*, Manager Nuclear Operations and Radiation Analysis *Electronically approved records are authenticated in the electronic document management system. Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA © 2015 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Non-Proprietary Class 3 ii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iii LIST OF FIGURES ..................................................................................................................................... vi EXECUTIVE

SUMMARY

........................................................................................................................

viii

SUMMARY

OF RESULTS .......................................................................................................... 1-1 2 INTRODUCTION ........................................................................................................................ 2-1 3 BACKGROUND .......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM .................................................................................................. 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Y ...................................................................... 5-1 5.1 OVERVIEW .................................................................................................................... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS ........................................................... 5-2 5.3 TENSILE TEST RESULTS ............................................................................................. 5-3 5.4 1/2T COMPACT TENSION SPECIMEN TESTS ........................................................... 5-4 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

........................................................................................................... 6-1 6.2 DISCRETE ORDINATES ANALYSIS ........................................................................... 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-5 6.4 CALCULATIONAL UNCERTAINTIES ........................................................................ 6-5 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ............................................................ 7-1 8 REFERENCES ............................................................................................................................. 8-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS .............................................................................................. A-1 APPENDIX B LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS .................................... B-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD ........................................................ C-1 APPENDIX D BYRON UNIT 1 UPPER-SHELF ENERGY EVALUATION ....................................... D-1 WCAP-18054-NP December 2015 Revision 0 Table 4-1 Table 4-2 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 5-6 Table 5-7 Table 5-8 Table 5-9 Table 5-10 Table 5-11 Table 6-1 Table 6-2 Table 6-3 Table 6-4 Westinghouse Non-Proprietary Class 3 iii LIST OF TABLES Chemical Composition (wt. %) of the Byron Unit 1 Reactor Vessel Surveillance Materials (Unirradiated) ................................................................................................... 4-3 Heat Treatment History of the Byron Unit 1 Reactor Vessel Surveillance Materials ..... .4-4 Charpy V-notch Data for the Byron Unit 1 Intermediate Shell Forging Irradiated to a Fluence of3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) ............................ 5-5 Charpy V-notch Data for the Byron Unit 1 Intermediate Shell Forging Irradiated to a Fluence of3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) .................................... 5-6 Charpy V-notch Data for the Byron Unit 1 Surveillance Program Weld Material (Heat# 442002) Irradiated to a Fluence of3.97 x 10 19 n/cm 2 (E > 1.0 MeV) .............................. 5-7 Charpy V-notch Data for the Byron Unit 1 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) ............................................ 5-8 Instrumented Charpy Impact Test Results for the Byron Unit 1 Intermediate Shell Forging 5P-5933 Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) ................................................................................................... 5-9 Instrumented Charpy Impact Test Results for the Byron Unit 1 Intermediate Shell Forging 5P-5933 Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) ......................................................................................................... 5-10 Instrumented Charpy Impact Test Results for the Byron Unit 1 Surveillance Program Weld Material (Heat # 442002) Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) .............................................................................................................................. 5-1 l Instrumented Charpy Impact Test Results for the Byron Unit 1 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of3.97 x 10 19 n/cm 2 (E > 1.0 MeV) ................ 5-12 Effect of Irradiation to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Byron Unit 1 Reactor Vessel Surveillance Capsule Y Materials ........................................................................................................................ 5-13 Comparison of the Byron Unit 1 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions ..................................................................................................................... 5-14 Tensile Properties of the Byron Unit 1 Capsule Y Reactor Vessel Surveillance Materials Irradiated to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) ............................................................... 5-15 Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1 Through 15 ..................................................................... 7 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1Through15 ......................................................................... 6-8 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1 Through 15 .................................................................................. 6-9 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Mid plane for Cycles 1 Through 15 ................................................................................ 6-10 WCAP-18054-NP December 2015 Revision 0 \ Table 6-5 Table 6-6 Table 6-7 Table 6-8 Table 6-9 Table 6-10 Table 6-11 Table 6-12 Table 7-1 Table A-1 TableA-2 TableA-3 TableA-4 TableA-5 TableA-6 TableA-7 TableA-8 TableA-9 Table A-10 TableA-11

Table A-12 TableA-13 TableA-14 TableA-15 Westinghouse Non-Proprietary Class 3 iv Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 Me V) at the Reactor Vessel Clad/Base Metal Interface ........................................................... 6-11 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 Me V) at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-12 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface ..................................................................... 6-13 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface .................................................................................. 6-14 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Byron Unit 1 ..................................................................................................................................... 6-l 5 Calculated Surveillance Capsule Lead Factors .............................................................. 6-15 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells ....................................................................................................................... 6-16 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells ....................................................................................................................................... 6-l 7 Surveillance Capsule Withdrawal Schedule .................................................................... 7-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors .................................. A-11 Monthly Thermal Generation during the First 16 Fuel Cycles of the Byron Unit 1 Reactor ...................................................................................................................................... A-12 Surveillance Capsules U, X, W, and Y Fast Neutron Fluence Rates for Ci Calculation, Core Midplane Elevation ............................................................................................. A-16 Surveillance Capsules U, X, W, and Y Ci Factors, Core Midplane Elevation .............. A-17 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U .............. A-18 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X .............. A-19 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W .............. A-20 Measured Sensor Activities and Reaction Rates for Surveillance Capsule Y ............... A-21 Measured Sensor Activities and Reaction Rates for EVND Capsule A ........................ A-21 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B ....... A-22 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C ....... A-22 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E ....... A-23 Measured Sensor Activities and Reaction Rates for Off-Mid plane EVND Capsule D ....... . ...................................................................................................................................... A-23 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F ........ . ...................................................................................................................................... A-24 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycle 1 Irradiation ................................................. A-25 WCAP-18054-NP December 2015 Revision 0 \ \ TableA-16 Table A-17 TableA-18 TableA-19 TableA-20 Table A-21 TableA-22 Table A-23 TableA-24 TableA-25 TableA-26 TableA-27 TableA-28 TableA-29 TableA-30 Table A-31 Table C-1 Table D-1 Table D-2 Westinghouse Non-Proprietary Class 3 v Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1 Through 5 Irradiation .............................. A-26 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane -Single Capsule Holder) Cycles 1 Through 8 Irradiation ........................... A-27 Least-Squares Evaluation of Dosimetry in Surveillance Capsule Y (29.0° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1 Through 15 Irradiation ............................ A-28 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 16 Irradiation ..................................................................................... A-29 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 16 Irradiation ..................................................................................... A-30 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 16 Irradiation ..................................................................................... A-31 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 16 Irradiation ..................................................................................... A-32 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 16 Irradiation ................................................................................. A-33 Least-Squares Evaluation of Dosimetry in EVND Capsule F ( 44.5° Azimuth, Bottom of Active Core) Cycle 16 Irradiation ................................................................................. A-34 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules .............................................. A-35 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel* Midplane Capsules .................................................. A-35 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Off-Midplane Capsules ........................................... A-35 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules ................................................................................................... A-36 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -Ex-Vessel Midplane Capsules ........................................................................................................ A-36 Summary of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules ...................................................................................................................................... A-36 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules ............................................ A-37 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH ................................................ C-1 Byron Unit 1 Pressure Vessel 1/4T Fast Neutron Fluence Calculation ........................... D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY ....................... D-4 WCAP-18054-NP December 2015 Revision 0 \ Figure 4-1 Figure 4-2 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Figure 5-10 Figure 5-11 Figure 5-12 Figure 5-13 Figure 5-14 Figure 5-15 Figure 5-16 Westinghouse Non-Proprietary Class 3 vi LIST OF FIGURES Arrangement of Surveillance Capsules in the Byron Unit 1 Reactor Vessel .................. .4-5 Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters ................................................................................................................ 4-6 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ...................................... 5-16 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ...................................... 5-18 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ...................................... 5-20 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) .............................................. 5-22 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) .............................................. 5-24 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) .............................................. 5-26 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-28 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-30 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-32 Charpy V-Notch Impact Energy vs. Temperature for Byron Unit I Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-34 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Heat-Affected Zone Material ......................................................................................... 5-3 6 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 1 Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-38 Charpy Impact Specimen Fracture Surfaces for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ............................................................ 5-40 Charpy Impact Specimen Fracture Surfaces for Byron Unit I Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) ................................................................... 5-41 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) .................................................. 5-42 Charpy Impact Specimen Fracture Surfaces for the Byron Unit I Reactor Vessel Heat-Affected Zone Material .................................................................................................. 5-43 WCAP-18054-NP December 2015 Revision 0 Figure 5-17 Figure 5-18 Figure 5-19 Figure 5-20 Figure 5-21 Figure 5-22 Figure 5-23 Figure 5-24 Figure 5-25 Figure 5-26 Figure 5-27 Figure 5-28 Figure 6-1 Figure 6-2 Figure 6-3 Figure 6-4 Figure D-1 Westinghouse Non-Proprietary Class 3 Vil Tensile Properties for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ................................................................................................. 5-44 Tensile Properties for Byron Unit I Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) ......................................................................................................... 5-45 Tensile Properties for the Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat # 442002) ............................................................................................... 5-46 Fractured Tensile Specimens from Byron Unit I Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) ..................................................................... 5-4 7 Fractured Tensile Specimens from Byron Unit I Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) ............................................................................. 5-48 Fractured Tensile Specimens from the Byron Unit I Reactor Vessel Surveillance Program Weld Material (Heat # 442002) ..................................................................................... 5-49 Engineering Stress-Strain Curves for Byron Unit I Intermediate Shell Forging 5P-5933 Tensile Specimens ALl3 and AL 14 (Tangential Orientation) ....................................... 5-50 Engineering Stress-Strain Curve for Byron Unit I Intermediate Shell Forging 5P-5933 Tensile Specimen AL 15 (Tangential Orientation) .......................................................... 5-51 Engineering Stress-Strain Curves for Byron Unit I Intermediate Shell Forging 5P-5933 Tensile Specimens ATI 3 and ATI 4 (Axial Orientation) ................................................ 5-52 Engineering Stress-Strain Curve for Byron Unit I Intermediate Shell Forging 5P-5933 Tensile Specimen ATI 5 (Axial Orientation) .................................................................. 5-53 Engineering Stress-Strain Curves for Byron Unit I Surveillance Weld Material Tensile Specimens AWl3 and AWl4 ......................................................................................... 5-54 Engineering Stress-Strain Curve for Byron Unit I Surveillance Weld Material Tensile Specimen AW15 ............................................................................................................. 5-55 Byron Unit I r,8 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration ............................................................ 6-18 Byron Unit 1 r,8 Reactor Geometry Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration .................................................. 6-19 Byron Unit I r,8 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration ................................................................ 6-20 Byron Unit 1 r,z Reactor Geometry Elevation View ..................................................... 6-21 Regulatory Guide 1.99, Revision 2 Predicted Decrease in Upper-Shelf Energy as a Function of Copper and Fluence ..................................................................................... D-3 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 viii EXECUTIVE

SUMMARY

The purpose of this report is to document the testing results of surveillance Capsule Y from Byron Unit I. Capsule Y was removed at 18.81 effective full-power years (EFPY) and stored in the spent fuel pool. Post-irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed during Cycle 20 to satisfy license renewal commitments. A fluence evaluation was performed utilizing discrete ordinates neutron transport calculations and dosimetry cross-section libraries derived from the Evaluated Nuclear Data File (ENDF) database (specifically, ENDF/B-VI). Capsule Y received a fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) after irradiation to 18.81 EFPY. The peak clad/base metal interface vessel fluence after 57 EFPY (end-of-license extension) of plant operation is projected to be 3.23 x 10 19 n/cm 2 (E > 1.0 MeV). This evaluation led to the following conclusions: I) The measured percent decreases in upper-shelf energy for the surveillance forging and weld materials contained in Byron Unit I Capsule Y are less than the Regulatory Guide 1.99, Revision 2 [Ref. I] predictions.

2) With consideration of surveillance data, all beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by IO CFR 50, Appendix G [Ref. 2]. The upper-shelf energy evaluation is presented in Appendix D. Lastly, a brief summary of the Charpy V-notch testing can be found in Section I. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve-fitting program. WCAP-18054-NP December 2015 Revision 0 \

Westinghouse Non-Proprietary Class 3 1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule Y, the fourth capsule removed and tested from the Byron Unit 1 reactor pressure vessel, led to the following conclusions:

  • Charpy V-notch test data were plotted using a symmetric hyperbolic tangent curve-fitting program. Appendix C presents the CVGRAPH, Version 6.02, Charpy V-notch plots for Capsule Y and previous capsules, along with the program input data.
  • Capsule Y received an average fast neutron fluence (E > 1.0 MeV) of 3.97 x 10 19 n/cm 2 after 18.81 effective full-power years (EFPY) of plant operation.
  • Irradiation of the reactor vessel Intermediate Shell Forging 5P-5933 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of -59.9°F and an irradiated 50 ft-lb transition temperature of -I 9.6°F. This results in a 30 ft-lb transition temperature increase of 27.8°F and a 50 ft-lb transition temperature increase of36. I °F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Intermediate Shell Forging 5P-5933 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of -59.4°F and an irradiated 50 ft-lb transition temperature of -14.9°F. This results in a 30 ft-lb transition temperature increase of 1 I .7°F and a 50 lb transition temperature increase of 18.9°F for the axially oriented specimens.
  • Irradiation of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 46.2°F and an irradiated 50 ft-lb transition temperature of 127.5°F. This results in a 30 ft-lb transition temperature increase of76.7°F and a 50 ft-lb transition temperature increase of 102.0°F.
  • Irradiation of the Heat-Affected Zone (HAZ) Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -54.7°F and an irradiated 50 ft-lb transition temperature of I I .7°F. This results in a 30 ft-lb transition temperature increase of 50.1°F and a 50 ft-lb transition temperature increase of 57.4 °F.
  • The average upper-shelf energy of Intermediate Shell Forging 5P-5933 (tangential orientation) resulted in an average energy decrease of 13 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 155 ft-lb for the tangentially oriented specimens.

  • The average upper-shelf energy of Intermediate Shell Forging 5P-5933 (axial orientation) resulted in an average energy decrease of 5 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 140 ft-lb for the axially oriented specimens.

  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an average energy decrease of 6 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 67 ft-lb for the weld metal specimens. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 1-2

  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 8 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of I 00 ft-lb for the HAZ Material.

  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. I] for the Byron Unit I reactor vessel surveillance materials are presented in Table 5-10.
  • Based on the upper-shelf energy evaluation in Appendix D, all beltline and extended beltline materials contained in the Byron Unit I reactor vessel exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2].
  • The maximum calculated 57 EFPY (end-of-license extension) neutron fluence (E > 1.0 MeV) for the Byron Unit I reactor vessel beltline using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation #3 in the Guide) is as follows: Calculated (57 EFPY): WCAP-18054-NP Vessel peak clad/base metal interface fluence* = 3 .23 x 10 19 n/cm 2 Vessel peak quarter-thickness (1/4T) fluence = 1.94 x 10 19 n/cm 2 *This fluence value is documented in Table 6-6 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Y, the fourth capsule removed and tested in the continuing surveillance program, which monitors the effects of neutron irradiation on the Exelon Generation (Exelon) Byron Unit I reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Byron Unit I reactor pressure vessel materials was designed and recommended by Westinghouse Electric Company, LLC. A detailed description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-9517 [Ref. 3 ], "Commonwealth Edison Co. Byron Station Unit No. 1 Reactor Vessel Radiation Surveillance Program." The surveillance program was originally planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-73 [Ref. 4], "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels." Capsule Y was removed from the reactor after 18.81 EFPY of exposure and stored in the spent fuel pool. During Cycle 20, it was shipped to the Westinghouse Materials Center of Excellence Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed. This report summarizes the testing and post-irradiation data obtained from surveillance Capsule Y removed from the Byron Unit 1 reactor vessel and discusses the analysis of the data. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties alloy, ferritic pressure vessel steels such as SA508 Class 2 (base material of the Byron Unit I reactor pressure vessel beltline) are well documented in the literature. Generally, low-alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during energy irradiation. A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 5]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RT NDT). RT NDT is defined as the greater of either the drop-weight nil-ductility transition temperature (NOTT per ASTM E208 [Ref. 6]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (axial) to the major working direction of the forging. The RT NDT of a given material is used to index that material to a reference stress intensity factor curve (K1c curve) which appears in Appendix G to Section XI of the ASME Code [Ref. 5]. The K1c curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the Kic curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors. RT NDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Byron Unit I reactor vessel radiation surveillance program, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens are tested. The increase in the average Charpy V-notch 30 ft-lb temperature (LiRTNnT) due to irradiation is added to the initial RT NDT, along with a margin (M) to cover uncertainties, to adjust the RT NDT (ART) for radiation embrittlement. This ART (initial RTNnT + M + LiRTNDT) is used to index the material to the K 1 c curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 4-1 4 DESCRIPTION OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the Byron Unit I reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The six capsules were positioned in the reactor vessel, as shown in Figure 4-1, between the core barrel and the vessel wall, at various azimuthal locations. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from the following:

  • Intermediate Shell Forging 5P-5933 (tangential orientation)
  • Intermediate Shell Forging 5P-5933 (axial orientation)
  • Weld metal fabricated with weld wire Heat Number 442002, Linde Type 80 flux, which is equivalent to the heat number and Flux Type used in the actual fabrication of the intermediate shell to lower shell circumferential weld seam
  • Weld heat-affected zone (HAZ) material of Intermediate Shell Forging 5P-5933 Test material obtained from the intermediate shell forging (after thermal heat treatment and forming of the forging) was taken at least one forging thickness from the quenched edges of the forging. All test specimens were machined from the Y4 thickness location of the forging after performing a simulated weld stress-relieving treatment on the test material.

Weld test specimens were removed from the weld metal of a stress-relieved weldment joining Intermediate Shell Forging 5P-5933 and adjacent Lower Shell Forging 5P-5951. All heat-affected zone specimens were obtained from the weld heat-affected zone of Intermediate Shell Forging 5P-5933. Charpy V-notch impact specimens from Intermediate Shell Forging 5P-5933 were machined in the tangential orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the axial orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core-region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular (normal) to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction. Tensile specimens from Intermediate Shell Forging 5P-5933 were machined both in the tangential and axial orientation. Tensile specimens from the weld metal were oriented perpendicular to the welding direction. Compact tension test specimens from forging 5P-5933 were machined in both the tangential and axial orientations. Compact tension test specimens from the weld metal were machined perpendicular to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue precracked according to ASTM E399 [Ref. 7]. All six capsules contain dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium-shielded dosimeters of Neptunium (2 37 Np) and Uranium (2 38 U) were placed in the capsules to measure the integrated flux at specific neutron energy levels. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 4-2 The capsules contain thermal monitors made from two low-melting-point eutectic alloys, which were sealed in Pyrex tubes. These thermal monitors were located in three different positions in the capsule. These thermal monitors are used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows: 2.5% Ag, 97.5% Pb 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 579°F (304°C) Melting Point: 590°F (310°C) The chemical composition and the heat treatment of the various mechanical specimens in Capsule Y are presented in Tables 4-1 and 4-2, respectively. The data in Tables 4-1 and 4-2 was obtained from the original surveillance program report, WCAP-9517 [Ref. 3], Appendix A. Capsule Y was removed after 18.81 EFPY of plant operation. This capsule contained Charpy V-notch specimens, tensile specimens, compact tension specimens, dosimeters, and thermal monitors. The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule Y is shown in Figure 4-2. WCAP-18054-NP December 2015 Revision 0 Table 4-1 Westinghouse Non-Proprietary Class 3 Chemical Composition (wt. %) of the Byron Unit 1 Reactor Vessel Surveillance Materials (Unirradiated)'al Element Intermediate Shell Surveillance Weld Forging 5P-5933 Metat<bl c 0.21 0.08 Mn 0.69 1.48 p 0.01 0.011 s 0.009 0.01 Si 0.27 0.57 Ni 0.73 0.71 Mo 0.56 0.44 Cr 0.36 0.11 Cu 0.05 0.026 Al 0.01 0.013 Co 0.01 0.011 w <0.002 <0.002 Ti 0.001 0.002 Zr <0.002 <0.002 v 0.003 0.006 Sn <0.002 0.008 As 0.005 0.004 Cb <0.002 <0.002 Sb <0.002 <0.002 Nz 0.005 0.011 B <0.0005 <0.003 Notes: (a) Data obtained from WCAP-9517, Table A-2 [Ref. 3] (b) Weld wire type Linde MnMoNi, Heat Number 442002, with a Linde 80 type flux, Lot Number 8873 4-3 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 4-4 Table 4-2 Heat Treatment History of the Byron Unit 1 Reactor Vessel Surveillance Materials<*> Material Temperature (°F) 1640 +/-10 1590 +/-10 Intermediate Shell Forging SP-5933 1240 +/-10 1125 +/-25 Weldment (Heat# 442002) 1125 +/-25 Note: (a) Data obtained from WCAP-9517, Table A-1 [Ref. 3]. WCAP-18054-NP Time (Hours) 3.5 3.5 5.5 12 hours, 16 min 12 hours, 16 min Cooling Water Quenched Water Quenched Air Cooled Furnace Cooled Furnace Cooled December 2015 Revision 0 Figure 4-1 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 4-5 1ac* PL.AN VIEW Arrangement of Surveillance Capsules in the Byron Unit 1 Reactor Vessel December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 LEGEND: AL -INTERMEDIATE SHELL FORGING 5P-5933 (TANGENTIAL) AT -INTERMEDIATE SHELL FORGING 5P-5933 (AXIAL) AW -WELD METAL (HEAT# 442002) AH -HEAT-AFFECTED ZONE MATERIAL Large Spacer Tensiles Compacts Compacts AW15 I AW20 I AWi* i I AWI8 I AWI7 I AW14 AW74 AH74 AWl3 AW73 AH73 TOP OF VESSEL AW72 AW71 AW70 Np231 u23s 4-6 Cu 1, 11 Al-. ISSCo I 1111 I Fe I 1111 I II I ............. 579°F nnr Al-.!SSCo (Cd) MONITOR I 11 I I 111 II I Nt I II Charpys AH72 AW69 AH69 AH71 AW68 AH68 AH70 AW67 AH67 CENTER Compacts Compacts Charpys Charpys Dosimeter Tensiles Charpys I AL20 I ALI* I CENTER Charpys AT72 AL72 AT71 AL71 AT70 AL70 CENTER EE Cu 579°F MONITOR Charpys AT69 AL69 AT68 AL68 AT67 AL67 AW66 AH66 AW65 AH65 AW64 AH64 Al-.ISXCo NI Charpys AT66 AL66 AT65 AL65 AT64 AL64 AW63 AH63 ;. ALIS AT75 AL75 AW62 AH62 407 ALl4 AT74 AL74 AW61 ALl3 AT73 AL73 "'" "" CENTER Cu Al-.15%Co Fe 590°F Al-.l5%Co (Cd) MONITOR Ni Compacts Compacts Tensiles I ATIO I ATI9 ! EB ATl5 AT62 AL62 ATl4 AT61 AL61 ATl3 BOTTOM OF VESSEL Figure 4-2 Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters WCAP-I 8054-NP December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 5-1 5 TESTING OF SPECIMENS FROM CAPSULE Y 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed at the Westinghouse Materials Center of Excellence Hot Cell Facility. Testing was performed in accordance with 10 CFR 50, Appendix H [Ref. 2] and ASTM Specification E 185-82 [Ref. 8]. Capsule Y was opened upon receipt at the hot cell laboratory. The specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-9517 [Ref. 3]. All of the items were in their proper locations. Examination of the thermal monitors indicated that the three temperature monitors had not melted. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579°F (304°C). The Charpy impact tests were performed per ASTM Specification E 185-82 [Ref. 8] and E23-12c [Ref. 9] on a Tinius-Olsen Model 74, 358J machine. The Charpy machine striker was instrumented with an Instron Impulse system. Instrumented testing and calibration were performed to ASTM E2298-13a [Ref. 10]. The instrumented striker load signal data acquisition rate was 819 kHz with data acquired for 10 ms. From the load-time curve, the load of general yielding (Fgy), the maximum load (Fm) and the time to maximum load were determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the brittle fracture initiation/load at initiation of unstable crack propagation (Fbr). The termination load after the fast load drop is identified as the arrest load (Fa). Fgy, Fm, Fbr, and Fa were determined per the guidance in ASTM Standard E2298-13a [Ref. 1 OJ. The pre-maximum load energy (Wm) was determined by integrating the load-time record to the maximum load point via the instrumented Charpy software. The pre-maximum load energy is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (W p) is the difference between the total impact energy (W 1) and the pre-maximum load energy (Wm). W 1 is compared to the absorbed energy measured from the dial energy (KV). Percent shear was determined from post-fracture photographs using the ratio-of-areas method in compliance with ASTM E23-12c [Ref. 9] and A370-13 [Ref. 11]. The lateral expansion was measured using a dial gage rig similar to that shown in the same ASTM Standards. Tensile tests were performed on a 250 kN lnstron screw driven tensile machine (Model 5985) per ASTM E185-82 [Ref. 8]. Testing met ASTM Specifications E8/E8M-13a [Ref. 12] for room temperature or E21-09 [Ref. 13] for elevated temperatures. The tensile specimens were, nominally, 4.230 inches long with a 1.000 inch gage length and 0.250 inch in diameter, per WCAP-9517 [Ref. 3]. Strain measurements were made using an extensometer, which was WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 5-2 attached to the 1.00 inch gage section of the tensile specimen. The strain rate obtained met the requirements of ASTM E8/E8M-13a [Ref. 12] and ASTM E21-09 [Ref. 13]. Elevated test temperatures were obtained with a three-zone electric resistance split-tube Instron SF-16 furnace with an I I-inch hot zone. For the elevated tests, temperature was measured by two Type N thermocouples in contact with the gage section of the specimen per ASTM E2 l-09 [Ref. 13]. Tensile specimens were soaked at temperature (+/-5°F) for a minimum of 20 minutes before testing. All tests were conducted in air. The yield load, ultimate load, fracture load, uniform elongation and elongation at fracture were determined directly from the load-extension curve. The yield strength (0.2% offset method), ultimate tensile strength and fracture strength were calculated using the original cross-sectional area. Yield point elongation (YPE) was calculated as the difference in strain between the upper yield strength and the onset of uniform strain hardening using the methodology described in E8/E8M-13a [Ref. 12]. The final diameter and final gage length were determined from post-fracture photographs. This final diameter measurement was used to calculate the fracture stress (fracture true stress) and the percent reduction in area. The final and original gage lengths were used to calculate total elongation after fracture.

5.2 CHARPY

V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule Y, which received a fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) in 18.81 EFPY of operation, are presented in Table 5-1 through 5-8 and are compared with the unirradiated and previously withdrawn capsule results as shown in Figures 5-1 through 5-12. The unirradiated and previously withdrawn capsule results were taken from WCAP-9517 [Ref. 3], WCAP-11651 [Ref. 14], WCAP-13880 [Ref. 15], and WCAP-15123, Revision 1 [Ref. 16]. The previous capsules, along with the original program unirradiated material input data, were updated using CVGRAPH, Version 6.02. The transition temperature increases and decreases in upper-shelf energies for the Capsule Y materials are summarized in Table 5-9 and led to the following results:

  • Irradiation of the reactor vessel Intermediate Shell Forging 5P-5933 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), resulted in an irradiated 30 ft-lb transition temperature of -59.9°F and an irradiated 50 ft-lb transition temperature of -19.6°F. This results in a 30 ft-lb transition temperature increase of 27.8°F and a 50 ft-lb transition temperature increase of 36.1°F for the tangentially oriented specimens.
  • Irradiation of the reactor vessel Intermediate Shell Forging 5P-5933 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (axial orientation), resulted in an irradiated 30 ft-lb transition temperature of -59.4°F and an irradiated 50 ft-lb transition temperature of-14.9°F.

This results in a 30 ft-lb transition temperature increase of l l.7°F and a 50 lb transition temperature increase of l 8.9°F for the axially oriented specimens.

  • Irradiation of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 46.2°F and an irradiated 50 ft-lb transition temperature WCAP-18054-NP December 2015 Revision 0 /

Westinghouse Non-Proprietary Class 3 5-3 of 127.5°F. This results in a 30 ft-lb transition temperature increase of76.7°F and a 50 ft-lb transition temperature increase of 102.0°F.

  • Irradiation of the HAZ Material Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -54.7°F and an irradiated 50 ft-lb transition temperature of l l.7°F. This decrease results in a 30 ft-lb transition temperature increase of 50. l °F and a 50 ft-lb transition temperature increase of 57.4°F.
  • The irradiated upper-shelf energy of Intermediate Shell Forging 5P-5933 (tangential orientation) resulted in an average energy decrease of 13 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 155 ft-lb for the tangentially oriented specimens.

  • The average upper-shelf energy of Intermediate Shell Forging 5P-5933 (axial orientation) resulted in an average energy decrease of 5 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 140 ft-lb for the axially oriented specimens.

  • The average upper-shelf energy of the Surveillance Program Weld Material (Heat# 442002) Charpy specimens resulted in an average energy decrease of 6 ft-lb after irradiation.

This decrease results in an irradiated average upper-shelf energy of 67 ft-lb for the weld metal specimens.

  • The average upper-shelf energy of the HAZ Material Charpy specimens resulted in an average energy decrease of 8 ft-lb after irradiation.

This results in an irradiated average upper-shelf energy of 100 ft-lb for the HAZ Material.

  • Comparisons of the measured 30 ft-lb shift in transition temperature values and upper-shelf energy decreases to those predicted by Regulatory Guide 1.99, Revision 2 [Ref. 1] for the Byron Unit 1 reactor vessel surveillance materials are presented in Table 5-10. The fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16. The fractures show an increasingly ductile or tougher appearance with increasing test temperature.

Load-time records for the individual instrumented Charpy specimens are contained in Appendix B. With consideration of the surveillance data, all beltline materials exhibit adequate upper-shelf energy levels for continued safe plant operation and are predicted to maintain an upper-shelf energy greater than 50 ft-lb through end-of-license extension (57 EFPY) as required by 10 CFR 50, Appendix G [Ref. 2]. This evaluation is contained in Appendix D. 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in Capsule Y irradiated to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19. The results of the tensile tests performed on the Intermediate Shell Forging 5P-5933 (tangential orientation) indicated that irradiation to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 5-4 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-17 and Table 5-11. The results of the tensile tests performed on the Intermediate Shell Forging 5P-5933 (axial orientation) indicated that irradiation to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-18 and Table 5-11. The results of the tensile tests performed on the Surveillance Program Weld Material (Heat # 442002) indicated that irradiation to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) caused increases in the 0.2 percent offset yield strength and the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19 and Table 5-11. The fractured tensile specimens for the Intermediate Shell Forging 5P-5933 (tangential orientation) material are shown in Figure 5-20, the fractured tensile specimens for the Intermediate Shell Forging 5P-5933 (axial orientation) are shown in Figure 5-21, and the fracture tensile specimens for the Surveillance Program Weld Material (Heat# 442002) are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28. 5.4 1/2T COMPACT TENSION SPECIMEN TESTS Per the surveillance capsule testing contract, the l/2T Compact Tension Specimens were not tested and are being stored at the Westinghouse Materials Center of Excellence Hot Cell Facility. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 5-5 Table 5-1 Charpy V-notch Data for the Byron Unit 1 Intermediate Shell Forging Irradiated to a Fluence of3.97x10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation) Sample Temperature Impact Energy Lateral Expansion Shear Number OF oc ft-lbs Joules mils mm % AL68 62 8 11 6 0.2 5 AL64 51 5 7 3 0.1 5 AL61 46 12 16 12 0.3 5 AL67 40 33 45 23 0.6 10 AL73 34 65 88 44 1.1 25 AL75 29 48 65 32 0.8 15 AL65 0 -18 107 145 71 1.8 45 AL74 20 -7 58 79 40 1.0 20 AL66 40 4 116 157 80 2.0 65 AL72 72 22 104 141 70 1.8 55 AL63 100 38 98 133 68 1.7 40 AL62 150 66 120 163 87 2.2 85 AL71 200 93 161 218 88 2.2 100 AL70 225 107 152 206 91 2.3 100 AL69 250 121 152 206 90 2.3 100 WCAP-18054-NP December 2015 Revision 0 Table 5-2 Sample Number AT75 AT65 AT7l AT69 AT68 AT62 AT70 AT63 AT64 AT73 AT67 AT66 AT6l AT74 AT72 Westinghouse Non-Proprietary Class 3 5-6 Charpy V-notch Data for the Byron Unit 1 Intermediate Shell Forging Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) Temperature Impact Energy Lateral Expansion Shear op oc ft-lbs Joules mils mm % 62 14 19 11 0.3 5 51 17 23 15 0.4 5 46 25 34 17 0.4 10 40 66 89 45 1.1 30 34 28 38 20 0.5 20 29 57 77 40 1.0 25 23 51 69 38 1.0 25 0 -18 69 94 43 1.1 35 40 4 74 100 48 1.2 40 72 22 103 140 68 1.7 60 100 38 105 142 68 1.7 70 150 66 113 153 75 1.9 85 200 93 141 191 85 2.2 100 225 107 142 193 88 2.2 100 250 121 137 186 82 2.1 100 WCAP-18054-NP December 2015 Revision 0 Table 5-3 Sample Number AW62 AW65 AW71 AW67 AW63 AW73 AW75 AW69 AW68 AW72 AW74 AW64 AW66 AW70 AW61 Westinghouse Non-Proprietary Class 3 5-7 Charpy V-notch Data for the Byron Unit 1 Surveillance Program Weld Material (Heat# 442002) Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV)

  • Temperature Impact Energy Lateral Expansion Shear OF oc ft-lbs Joules mils mm % 62 5 7 3 0.1 5 51 15 20 10 0.3 5 34 3 4 8 0.2 10 29 19 26 12 0.3 15 23 20 27 17 0.4 20 0 -18 21 28 14 0.4 15 20 -7 31 42 25 0.6 30 40 4 24 33 21 0.5 25 72 22 41 56 37 0.9 40 100 38 34 46 31 0.8 50 125 52 48 65 44 1.1 60 150 66 53 72 50 1.3 70 200 93 67 91 56 1.4 100 225 107 66 89 61 1.5 100 250 121 68 92 62 1.6 100 WCAP-18054-NP December 2015 Revision 0 Table 5-4 Sample Number AH72 AH74 AH61 AH63 AH69 AH71 AH75 AH73 AH68 AH70 AH64 AH66 AH67 AH65 AH62 Westinghouse Non-Proprietary Class 3 5-8 Charpy V-notch Data for the Byron Unit 1 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of3.97x10 19 n/cm 2 (E > 1.0 MeV) Temperature Impact Energy Lateral Expansion Shear OF oc ft-lbs Joules mils mm O/o 62 40 54 20 0.5 10 51 16 22 13 0.3 15 -40 ' -40 47 64 25 0.6 15 34 35 47 16 0.4 20 29 25 34 15 0.4 15 -IO -23 61 83 30 0.8 40 0 -18 42 57 26 0.7 20 20 -7 42 57 27 0.7 25 40 4 60 81 35 0.9 35 72 22 68 92 43 1.1 50 100 38 65 88 44 1.1 55 150 66 97 132 63 1.6 90 200 93 77 104 57 1.4 100 225 107 135 183 74 1.9 100 250 121 88 119 62 1.6 100 WCAP-18054-NP December 2015 Revision 0 Table 5-5 Sample Number AL68 AL64 AL61 AL67 AL73 AL75 AL65 AL74 AL66 AL72 AL63 AL62 AL71 AL70 AL69 Note: Westinghouse Non-Proprietary Class 3 5-9 Instrumented Charpy Impact Test Results for the Byron Unit 1 Intermediate Shell Forging 5P-5933 Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) (Tangential Orientation)

Total Dial Total Energy to General Test Energy, Instrumented Difference, Max Maximum Time to Yield Fracture Arrest Temp Energy, (KV-W 1)/KV Load, Load, Fm Fm Load, Fhr Load, F. (oF) KV W1 (%) Wm (lb) (msec) Load, Fl!Y (lb) (lb) (ft-lb) (ft-lb) (ft-lb) (lb) -80 8 7.86 1.75 3.54 4300 0.09 3900 3800 0 -60 5 4.80 4.00 3.41 4100 0.09 3500 4100 0 -50 12 11.42 4.83 3.38 4100 0.10 3400 3900 0 -40 33 30.28 8.24 29.40 4200 0.51 3300 4100 0 -30 65 59.82 7.97 47.33 4400 0.80 3400 4200 0 -20 48 43.61 9.15 35.46 4300 0.61 3200 4100 0 0 107 90.92(a) 15.03(a) 59.38(a) 4300<*) 0.99(a) 2900<*) 3300<*) 600(a) 20 58 52.42 9.62 34.80 4200 0.61 3300 4200 0 40 116 103.62 10.67 34.13 4100 0.60 3000 2500 800 72 104 91.22 12.29 32.23 4000 0.60 2700 2900 700 100 98 90.63 7.52 48.28 4000 0.87 2800 3400 1100 150 120 107.77 10.19 31.17 3900 0.60 2700 1600 700 200 161 146.97 8.71 41.88 4000 0.82 2500 0 0 225 152 137.98 9.22 49.30 3800 0.95 2400 0 0 250 152 139.29 8.36 30.17 3800 0.60 2500 0 0 (a) The difference between instrumented Charpy and dial values was greater than 15%, but the values were not adjusted as required by Reference 10 since this data is not required and is presented for informational purposes only. WCAP-18054-NP December 2015 Revision 0 Table 5-6 Sample Number AT75 AT65 AT71 AT69 AT68 AT62 AT70 AT63 AT64 AT73 AT67 AT66 AT61 AT74 AT72 Westinghouse Non-Proprietary Class 3 5-10 Instrumented Charpy Impact Test Results for the Byron Unit 1 Intermediate Shell Forging 5P-5933 Irradiated to a Fluence of3.97x10 19 n/cm 2 (E > 1.0 MeV) (Axial Orientation) Total Dial Total Energy to Time General Test Energy, Instrumented Difference, Max Maximum to Yield Fracture Arrest Temp KV Energy, (KV-W 1)/KV Load, Load, Fm Fm Load, Fe.v Load, Fhr Load, Fa {°F) W1 (%) Wm (lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb) (msec) (lb) -80 14 13.34 4.71 3.47 4200 0.10 3300 3900 0 -60 17 16.28 4.24 3.49 4100 0.10 3300 4000 0 -50 25 23.39 6.44 19.84 4100 0.36 3500 4000 0 -40 66 60.15 8.86 35.32 4200 0.61 3300 4000 0 -30 28 26.14 6.64 3.77 4500 0.12 3300 4200 0 -20 57 51.61 9.46 3.69 4500 0.12 3100 4000 0 -10 51 46.80 8.24 34.61 4100 0.61 3300 4000 0 0 69 61.35 11.09 34.46 4200 0.61 3000 3800 0 40 74 62.94 14.95 33.65 4100 0.61 2700 3800 700 72 103 94.22 8.52 32.86 4000 0.60 2800 2600 1000 100 105 96.75 7.86 32.61 4000 0.60 2800 2500 700 150 113 102.07 9.67 31.41 3900 0.60 2600 2300 1200 200 141 127.41 9.64 41.47 3900 0.80 2500 0 0 225 142 129.22 9.00 30.65 3800 0.60 2600 0 0 250 137 125.42 8.45 40.73 4000 0.80 2500 0 0 WCAP-18054-NP December 2015 Revision 0 Table 5-7 Westinghouse Non-Proprietary Class 3 5-II Instrumented Charpy Impact Test Results for the Byron Unit 1 Surveillance Program Weld Material (Heat # 442002) Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) Total Dial Total Energy to General Arrest Test Instrumented Difference, Max Maximum Time to Fracture Sample Energy, Yield Load, Temp Energy, (KV-Wr)/KV Load, Load, Fm Fm Load, Fhr Number KV Load, Fitv Fa (oF) Wr (%) Wm {lb) (msec) (lb) (ft-lb) (ft-lb) (ft-lb) (lb) (lb) AW62 -80 5 5.44 -8.80 4.37 3900 O.I2 2200 3900 0 AW65 -60 15 13.96 6.93 3.20 3800 0.09 3200 3600 0 AW7I -30 3 2.18<*) 27.33(a) I .38<*l 3000<*) 0.06(a) 2400(a) 3000(a) o<*> AW67 -20 19 I7.03 I0.37 I4.37 3700 0.29 3100 3700 0 AW63 -IO 20 I 7.98 IO.IO I4.23 3700 0.29 2900 3500 0 AW73 0 21 I 8.01 I4.24 I4.I9 3700 0.29 2900 3400 0 AW75 20 31 26.48 14.58 17.55 3600 0.36 2900 3500 IOO AW69 40 24 19.16(a) 20.17<*) l 7.25(a) 3600(a) 0.35(a) 2800<*) 3300<*) 300(a) AW68 72 41 36.44 11.12 I6.79 3500 0.36 2600 3100 600 AW72 100 34 29.39 13.56 16.78 3500 0.36 2600 3300 I300 AW74 I25 48 43.05 10.31 23.15 3400 0.48 2600 3000 I800 AW64 150 53 48.12 9.21 20.14 3400 0.43 2500 2900 2300 AW66 200 67 Note (b) Note (b) Note (b) Note (b) Note (b) Note (b) Note (b) Note (b) AW70 225 66 60.25 8.71 29.23 3500 0.60 2500 0 0 AW61 250 68 63.36 6.82 22.6I 3400 0.48 2400 0 0 Notes: (a) The difference between instrumented Charpy and dial values was greater than 15% and 25% for specimens A W69 and A W71, respectively, but the values were neither adjusted nor discarded as required by Reference 10 since this data is not required and is presented for informational purposes only. (b) A software error compromised the instrumented Charpy data from A W66. This error is not significant, because instrumented Charpy data is not required and is presented for informational purposes only. WCAP-18054-NP December 20 I 5 Revision 0 Table 5-8 Sample Number AH72 AH74 AH61 AH63 AH69 AH71 AH75 AH73 AH68 AH70 AH64 AH66 AH67 AH65 AH62 Note: Westinghouse Non-Proprietary Class 3 5-12 Instrumented Charpy Impact Test Results for the Byron Unit 1 Heat-Affected Zone (HAZ) Material Irradiated to a Fluence of 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) Total Dial Total Energy to General Arrest Test Energy, Instrumented Difference, Max Maximum Time to Yield Fracture Load, Temp KV Energy, (KV-Wr)/KV Load, Load, Fm Fm Load, Fitv Load, Fhr Fa {°F) W1 (%) Wm (lb) (msec) (lb) (ft-lb) (ft-lb) (ft-lb) (lb) (lb) -80 40 37.30 6.75 31.54 4600 0.51 3800 4500 0 -60 16 13.95 12.81 3.46 4300 0.09 3400 4100 0 -40 47 Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) -30 35 30.85 11.86 29.08 4400 0.48 3500 4400 0 -20 25 23.08 7.68 20.43 4300 0.36 3300 4100 0 -10 61 54.91 9.98 37.71 4500 0.61 3500 4500 700 0 42 38.16 9.14 30.34 4300 0.50 3300 4200 0 20 42 Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) 40 60 55.96 6.73 36.48 4400 0.60 3200 3800 0 72 68 61.06 10.21 35.95 4400 0.60 3200 4200 1100 100 65 58.45 10.08 35.98 4400 0.61 3100 3900 1300 150 97 89.53 7.70 44.79 4200 0.77 2900 3400 2700 200 77 Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) Note (a) 225 135 122.07 9.58 56.27 4300 0.95 2900 0 0 250 88 78.59 10.69 33.29 4100 0.60 2722 0 0 (a) Software errors compromised the instrumented Charpy data from AH61, AH73 and AH67. These errors are not significant, because instrumented Charpy data is not required and is presented for informational purposes only. WCAP-18054-NP December 2015 Revision 0 Table 5-9 Westinghouse Non-Proprietary Class 3 S-13 Effect of Irradiation to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) on the Charpy V-Notch Toughness Properties of the Byron Unit 1 Reactor Vessel Surveillance Capsule Y Materials Average 30 ft-lb Transition Average 35 mil Lateral Expansion Average 50 ft-lb Transition Average Energy Absorption

Material Temperature<aJ

(°F) Temperature<al {°F) Temperature<*l (°F) 95% ShearCbl (ft-lb) Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated Intermediate Shell Forging SP--87.7 -S9.9 27.8 -S3.6 -22.0 31.6 -SS.7 -19.6 36.1 168 lSS S933 (Tangential) Intermediate Shell Forging SP--71.1 -S9.4 11.7 -32.9 -14.3 18.6 -33.8 -14.9 18.9 14S 140 S933 (Axial) Surveillance Weld Material -30.S 46.2 76.7 12.8 88.4 7S.6 2S.S 127.S 102.0 73 67 (Heat# 442002) Heat-Affected Zone (HAZ) -104.8 -S4.7 SO.l -0.6 42.0 42.6 -4S.7 11.7 S7.4 108 100 Material Note: (a) Average value is determined by CVGRAPH, Version 6.02 (see Appendix C). (b) Upper-shelf energy values are a calculated average from unirradiated and Capsule Y Charpy test results for specimens that achieved greater than or equal to 9S% shear. WCAP-180S4-NP December 20 IS Revision 0 AE S 8 Westinghouse No n-Proprietary C lass 3 5-1 4 Table 5-10 Comparison of the Byron Unit 1 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper-Shelf Energy Decreases with Regulatory Guide 1.99 , Revision 2, Predictions Capsule 30 ft-lb Transition Upper-Shelf Energy Fluence Temperature Shift Decrease Material Capsule (x l0 1 9 n/c m 2 , Predicted<*l MeasuredChl Predicted<*l MeasuredChl E > 1.0 MeV) (oF) (oF) (%) (%) u 0.409 19.6 28.7 15.5 I Intermediate Shell Forging 5P-x 1.49 28.9 18.3 21 13 5933 (Tangential) w 2.26 31.7 49.5 23 5 y 3.97 35.2 27.8 26 8 u 0.409 19.6 18.6 15.5 o<c) Intermediate Shell Forging 5P-x 1.49 28.9 54.6 2 1 9 5933 (Axial) w 2.26 31.7 29.5 23 o (c) y 3.97 35.2 11.7 26 3 u 0.409 40.6 5.2 15.5 4 Surveillance Weld Material x 1.49 60.0 40.1 21 1 2 (Heat #442002) w 2.26 65.9 50.6 23 3 y 3.97 73.1 76.7 26 8 u 0.409 ----64.6 ---o<c) x 1.49 ---13.1 ---19 Heat-Affected Zone Material w 2.26 15.0 o<c) ------y 3.97 ---50.l ---7 Notes: (a) Based on Regulatory Guide 1.99 , Revision 2 , methodology using the capsule fluence and mean weight percent values of copper and nickel of the surveillance material. (b) Ca l culated by CVGRAPH , Version 6.02 u s in g measured Charpy data (See Appendix C). (c) An increa se in USE values was calculated. Physically , this should not occur; therefore , conservative va lu es of0% are shown in this table. WCAP-18054-NP December 2015 Revision 0 Westing h ouse on-Proprietary C lass 3 5-15 Table 5-11 Tensile Pr o perties of the Byron Unit 1 Capsule Y Reactor Vessel Surveillance Materials Irradiated to 3.97 x 10 19 n/cm 2 (E > 1.0 MeV) Test 0.2% Ultimate Fracture Material Sample Temp. Yield Strength Load Numbe r Strength (oF) (ksi) (ksi) (kip) ALl3 78 76.3 96.1 2.65 Intermediate She ll Forging SP-5933 AL14 200 72.5 90.7 2.58 (Tangentia l) ALIS 550 68.3 88.8 2.66 ATl 3 76 77.2 96.8 2.85 Intermediate She ll Forging 5P-5933 ATl4 250 7 1.9 89.4 2.69 (Axia l) AT l 5 550 68.8 90.4 2.91 AWl3 78 78.8 93.9 3.12 Survei ll ance Weld Mate ri a l AW l 4 300 71.5 84.9 2.84 (Heat #442002) AW15 550 68.8 85.1 2.92 WCAP-18054-P Fracture Fracture Strength True Stress (ksi) (ksi) 54.8 197 53.4 197 5 4.7 204 5 8.6 1 9 1 5 5.3 191 59.8 162 64.6 174 58.7 118 60 159 Uniform Elongation (%) 10.3 9.5 8.5 10.4 9 9.3 10.8 9.6 8.6 Total Reduction Elongation in Area (%) 2 6.5 2 5.0 22.3 2 6.3 23.4 22.4 24.3 2 1.6 21.8 (%) 72.1 72.9 7 3.2 69.3 71.0 6 3.2 6 2.9 5 0.2 62.2 December 2 01 5 R e vi s ion 0 C urve I 2 3 4 5 160 .... 140 .... W est in g h o u se No n-P ro priet ary C la ss 3 Intermediate Shell Forging SP-5933 (Tangential) C VGr a ph 6.02: H y p e rb o li c T a n ge nt Cu rve Pri n t e d o n 7/22/20 1 59: 19 AM Plan t C ap s ul e Mat e rial O ri. B yron I UNTR R S A S08 C L2 T a n ge nt i al B yron I u S AS0 8CL 2 T ange n tia l B yron I x SA508 C L2 Tan g en t i a l B y r on I w S A508 CL 2 Tan ge nt ia l B yron I y A508 C L2 Tan ge nt ia l ..

  • Heat# 5 P-5933 5 P-5 933 5 P-5 933 5 P-5933 5 P-5 9 33 -' --+0--1 ,-u ... , ..

..... r ---t-8-t--3 A//c v / -. -.-i.A....--5 ; fa 1 v.i 120 u 1 -100 80 a -200 -JOO 0 100 200 300 400 500 600 Te mp er a t u re (° F) 5-1 6 Figure 5-1 Charp y V-Notch Impact Energy vs. T e mperature for B y ron U nit 1 Reactor V e s s e l Int e rmediate S h e ll F or g ing 5P-5933 (Tangential Ori e ntation) W CA P-1 8054-NP D ece mb e r 20 1 5 R e v i s i o n 0 C u rve I 2 3 t-----4 I-5 Figure 5-1 W es ti n g h o u s e No n-P ropri e t a ry C l a ss 3 5-1 7 Int e rm e diat e Sh e ll For g in g SP-5 9 33 (Tan ge ntial) C\iGrap h 6.02: H y pe r bo l ic Ta n ge nt Cun*e Prin t ed o n 7 1 22 20 1 5 9: 1 9 A 1\I I F lu e n ee L E t: SE d-C E I T t., 3 0 d-T @, 30 T@SO : d-T@5 0 I I ---2.2 I 1 6 8 0 -87.7 0 -55.7 I 0 I ---2.2 1 67 -1 I -59 28.7 -42.6 13.1 I ---2.2 1 47 -2 1 -69.4 1 8.3 -43.1 1 2.6 r-----1---------------*----j ---2.2 1 59 38.2 49.5 -1 5.7 40 ---2.2 1 55 -1 3 -59.9 27.8 -1 9.6 36.1 I Charp y V-Notch Impact Energ y vs. Temperature for B y ron U nit 1 Reactor Ves se l Interm e diate S hell Forging 5P-5933 (Tangential Orientation) -Continu e d WCA P-1 80 5 4-N P D ece mb e r 2 01 5 R ev i s i o n 0 --"' -*-s -= 0 *-"' = c. II< -'"" ..... Curve I 2 3 4 5 100 90 70 -60 50 40 30 20 10 0 -300 Figure 5-2 West i ngho u se Non-Proprietary C l ass 3 Intermediate S hell Forging SP-5933 (Tangential) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/22/20 1 5 9: 20 AM Plant Capsule Material Ori. Byron I UNIRR SAS08CL2 Tangential B yron I u AS08CL2 Tangential B yron I x SA508CL2 Tan ge nt ial B yron I w SA508CL2 Tan gential B yron I y SA508CL2 Tangential () 0 1 o .. ,.. A M ...... _?:; 6 2 L-" I . 8 3 n $ 4 '/<: 6 5 l -c 1 l n () ' c "' ... I "' -> <> --; I I I I -200 -100 0 100 200 300 400 Temperature {° F) 5-18 Heat# 5 P-5933 5P-5933 5P-5933 5P-5933 5 P-5 933 I I 500 600 Charp y V-Notch Lateral Expansion v s. Temperatur e for B y ron U nit 1 Reactor Ves s el Intermediate S h e ll Forging 5P-5933 (Tangential Ori e ntation) WCA P-1 8054-NP D ece mb e r 2 01 5 R ev i s i o n 0 C urv e 1 2 3 --4 -5 Figure 5-2 Wes t i n g h o u se No n-P ro pri et a ry C l ass 3 Intermediate Shell Forging SP-5933 (Tangential) CVGrap h 6.02: H yperb o l ic Tange nt Curve Printed o n 7 22 20 1-9: 20. :\I Fluence L SE E d-U E T@35 d-T@35 I ---1 90.75 I 0 I -53.6 0 I I I ---1 86.58 -4.17 -47.6 6 I ---1 88.59 -2.1 6 -42.1 1 1.5 -----------------------1 82.25 -8.5 -14 39.6 ---1 84.1 9 -6.56 -22 31.6 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) -Continued 5-1 9 W C AP-18054-NP December 2015 Revi s ion 0 Curve I 2 3 4 5 100 90 80 Figure 5-3 West in g h o u se o n-P ro priet ary C l ass 3 Intermediate Shell Forging SP-5933 (Tangential) CVGraph 6.02: H yper b o l ic Tangent Curve Printed on 7/2212015 9: 33 AM Pl ant Capsule Material Ori. B yron I UNIRR SA508CL2 Tangenti a l Byron I u SA508CL2 Tangential Byron I x SA508CL2 Tan ge ntial Byron 1 w SA508CL2 Tangential Byron I y SA508CL2 Tangential Heat# 5P-5933 5P-5933 5P-5933 5P-5933 5P-5933 0 A 2 8

  • 4 A 5 -200 -100 0 100 200 300 Temperature

{° F) 400 500 600 5-20 Charpy V-Notch Percent Shear vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediate S hell Forging 5P-5933 (Tangential Orientation) WCAP-18054-NP D ecem b er 20 1 5 Revision 0 Cu n*e I 2 3 >--4 ,____ 5 Figure 5-3 Wes tin g h o u se o n-P ro p r ie t a ry C l ass 3 Interm e diate Shell For g in g SP-5933 (Tan ge ntial) CVGraph 6.02: Ta n gent Curve P r inted o n 7 , 22 1 20 1 5 9: 33 :\I I F lu e n c e L SE L 1 E ! d-U E I T@50 d-T@50 I I I 0 100 I I 0 I ---0 7.5 I I I I ---0 L OO 0 -1 6.3 -23.8 I I 0 1 00 0 -30.3 -37.8 I ---I --------26.6 1 ---0 1 00 0 34.1 I ---0 1 00 0 60.8 53.3 Charp y V-Notch P e rcent Shear v s. Temperature for B y ron Unit 1 Reactor Vessel Intermediate S hell Forging 5P-5933 (Tangential Ori e ntation) -Continued 5-2 1 WCA P-18 054-NP D ece mb e r 2 01 5 R e v isi o n 0 -.,Q -I -;;i.. Oil "" c u Curve I 2 3 4 5 180 ... 160 -... 140 -... 120 100 ... 80 ... 60 40 ... 20 ... 0 -300 Figure 5-4 W es ti n g h o u se o n-P ro pr i e t a ry C l ass 3 Intermediate Shell Forging SP-5933 (A x ial) CV G ra ph 6.02: H y p e rb o l ic Ta n g ent C u rve P ri nt e d o n 7/22/20 I 5 9: 24 AM Pl ant Capsule Material O ri. B yron I UN I RR A508C L 2 Axial B yron I u SA508CL2 Axial B yron I x SA508CL2 Axial B yron I w SA508CL2 Axial B yron I y SA508CL2 Axia l 0 1 A A 2 A. ,_ 8 3 /1 J 6 ';::;;. J.. 4 --I .. _ A.

  • p.....w 6 5 A b >£ cf fJ 7 A J -t 0 0 0 J. if u A -ll I: I I I I -200 -100 0 100 200 300 400 Temperature

{° F) 5-22 H eat# 5 P-5933 5 P-5933 5 P-5933 5 P-5 9 33 5 P-5933 I I 500 600 Charp y V-Notch Impact Energy vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediate S hell Forging 5P-5933 (Axial Orientation) WCA P-18 054-NP D ece mb e r 2 01 5 R ev i s i o n 0 Wes tin g h o u se o n-P ro p r i etary C l ass 3 5-23 Int e rm e diate S hell For g in g SP-5933 (Ax ial) CVGrap h 6.02: H y pe r b o l ic Tangent ur v e Prinkd on 7 1 22 1 20 1 5 9: 2 4 AM C u rve I F lu e n ee LSE I U'E d-L" E T@JO d-T@J O T@S O I d-T@SO I ' I ---2.2 1 45 0 I -7 1.1 0 -33.8 0 2 ---2.2 1 52 7 -52.5 1 8.6 -34.9 I -1.1 0 I I 3 ---2.2 1 32 -1 3 -1 6.5 54.6 11.2 45 ----_,___ -..__ -----------4 ---2.2 1 46 1 -4 1.6 29.5 -1 3.6 20.2 I I --2.2 1 40 59.4 1 1.7 -14.9 I 18.9 I Figure 5-4 Charp y V-Notch Impact Energ y vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediat e Shell Forging 5P-5933 (A x ial Orientation) -Continu e d WCA P-180 54-NP D ece mb e r 2 01 5 R ev i sio n 0 -.. fl'J -. *-s _.. c 0 *-fl'J = c.. ii< -,_ .... Curve I 2 3 4 5 100 90 70 -60 50 40 30 20 10 0 -300 Figure 5-5 Westinghouse o n-Proprietary C la ss 3 Intermediate S hell F or g ing SP-5933 (Ax ial) CVGraph 6.02: H yperbo l ic Tangent Curve Printed on 7/22/2015 9: 24 AM Plant Capsule Material Ori. B yron I I RR AS08CL2 Axial B yron I u SAS08CL2 Axial B yron I x AS08CL2 Axial B yron I w A508CL2 Axial B yron I y SA508CL2 Axial 0 1 D l Vn A 2

  • 3 A/ A a T.LI I 1!i,. t 4 c f'I A A 5 J4. JM 'J -., . /j, r ( -" ' r -0 J ' .. A !j ' a cP 2 I I I I -200 -100 0 100 200 300 400 Temperature

{° F) 5-24 Hea t# 5P-5933 5 P-5933 5 P-5933 5 P-5933 5 P-5933 I 500 600 Charp y V-N otch Lat e ral E x pan s ion vs. T e mp e r a tur e for B y ron U nit 1 R ea ctor Vesse l In te rm e di a t e S h e ll F orgin g 5P-5933 (Ax i a l Ori e nt a tion) WCA P-1 8054-NP D ece mb e r 20 1 5 R ev i sion 0 C un>e I 2 3 ---4 5 Figure 5-5 Westinghouse No n-P ro pri etary C l ass 3 Intermediate Shell Forging SP-5933 (Axial) CVGraph 6.02: I!yp.: rb o li c Tangent Cun*e Printed on 7 22*2015 9:2 4 r\..\I I F lu e n ce LE I l' E d-U E T (g 35 d-T@35 I ---l 90.76 I 0 I -32.9 0 I I ---I I 78.6 1 I -1 2.15 I -39.3 -6.40 -L-----1 85.08 ! -5.68 9 41.9 ----------------I ---1 79.46 -11.3 -9.6 23.3 I ---1 85.67 -5.09 -14.3 18.6 Charpy V-Notch Lateral Expansion vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) -Continued 5-25 I I I WCAP-18054-NP D ece mber 2015 R ev i sio n 0 i.. .c 00 .... = CJ i.. Curve 1 2 3 4 5 110 100 80 -70 60 50 40 30 20 10 0 -300 Figure 5-6 Westi n g h o u se No n-P ro pri e t a ry C l ass 3 Intermediate Shell Forgi ng SP-5933 (Axial) CV Gr a p h 6.02: H ype rb o l ic Tangent Curve P rinte d on 7/22/2015 9: 35 AM P lant Capsule Material O ri. B yron 1 UNl RR A508CL2 Axial B yron l A508CL2 Axial B yron I x SA508CL2 Axial B yron I w SA508CL2 Axial B yron 1 y SA508CL2 Axial 0 1 A ..... 1 1.t.l a ,. .. A 6 2 !'! v?; a 3 .L I ;f

  • 4 5 6 7 f .. i'-( q ' ,--J i l <> fl L ... ......: r 7-----2 00 -1 00 0 100 200 300 400 Temperature

{° F) 5-26 H eat# 5 P-5933 5 P-5933 5 P-5933 S P-5933 5 P-5933 500 600 Charpy V-Notch Percent Shear vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediate S hell Forging 5P-5933 (Axia l Orientation) W CA P-18054-NP December 2 015 R evi s ion 0 Curve I 2 3 ----4 5 Figure 5-6 Westingho u se Non-P roprietary C l ass 3 Interm e diate Shell Forging SP-5933 (Axial) CVGrap h 6.02: ll y p<!rbolic Ta n ge nt Curve Print.:d on 7*22 20 15 9: 35. 1\( F lu ence L E l.) E d-USE T@SO d-T@SO I i ---0 1 00 0 57.9 0 I I ---0 1 00 0 -14.8 -72.7 ---0 1 00 0 1 4 -43.9 --------------------------; ---0 1 00 0 47.2 -10.7 I I ---0 1 00 0 4 8.3 -9.6 I Cbarp y V-Notcb Percent Shear vs. Temperature for B y ron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) -Continued 5-27 WCA P-180 54-NP D ece mber 20 1 5 R evision 0 Westinghou se o n-Pr o priet ary C l ass 3 5-28 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7 1 2212015 9: 29 AM Curve Plant Capsule Material Ori. Heat# I Byron I UNIRR WEL D I A 442002 2 B yron I u WELD A 442002 3 B yron I x WELD I A 442002 4 B yron I w WELD I A 442002 5 B yron 1 y WELD I A 442002 0 l 70 A a 3 60 $ A 5 0 ....... ........ ....... ...... -300 Figure 5-7 -200 -100 0 100 200 300 400 500 600 Temperature {° F) Charpy V-Notch Impact Energy vs. Temperature for B yro n Unit 1 Reactor Vessel S ur ve illance Program Weld Material (Heat# 442002) WCAP-18054-NP December 2 015 R ev isi o n 0 C urv e I 1 I 2 3 ---4 5 Figure 5-7 Westing h ouse Non-Proprietary C l ass 3 5-29 Surveillance Pro g ram Weld Metal CVGraph 6.02: Tangent Curve Print.:d on 7 22 20 1 5 9: 2 9 M I ----! d-T@SO I l'luence LSE I u E d-U E T@JO d-T@JO T@SO I I ---2.2 I 73 0 I -30.5 0 25.5 0 ---2.2 70 25.3 5.2 41.2 I 1 -.7 I I ---2.2 64 -9 l 9.6 40.1 99.3 73.8 ---------------------------2.2 71 -2 20.1 50.6 86.4 60.9 2.2 67 -6 46.2 76.7 127.5 I 1 02 ---I Cha r py V-Notch Impact Energy vs. Temperature for B y ron Unit 1 Reactor Vessel Surveillance Program Weld Materia l (Heat# 442002) -Continued WCAP-18054-NP D ece mb er 2015 R ev i sio n 0 Cu rv e I 2 3 4 5 70 60 -. 50 = s -= 0 40 *-= Q., 30 -""' .... 20 10 Figure 5-8 We s tin g h o u se o n-P ro pri etary C l ass 3 5-30 Surveillance Program Weld Metal CVGraph 6.02: H y perb o l i c Tan g ent Curve Printed o n 7 1 2 2/201 5 9: 28 AM Plant Cap s ul e Ma t erial O ri. Heat# B y ron I UN lRR W E LD I A 44 2002 B y ron I u W E LD I A 442002 B y ron I x W E LD /A 44200 2 B y ron I w W E LD I A 44 2002 B y ron I y W E LD I A 4 4 2002 0 1 6 2 a 3

  • 4 6 5 -200 -100 0 100 200 300 400 500 600 Temperature

{° F) Charp y V-Notch Lateral Expansion vs. Temperature for B y ron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) WCA P-180 54-N P D ece mb e r 2 0 1 5 R ev i s i o n 0 C urv e I 2 3 4 5 Figure 5-8 West in ghouse No n-P ro pri etary C l ass 3 SurYCillanc e Pro g ram Weld Metal CVGraph 6.02: H y perb o lic Tan g.:nt Curv e Printed o n 7 1 22/2 0 1 5 9: 28 F lu e n ce LSE l' E d-SE T@35 d-T@35 ---l 65.87 0 1 2.8 I 0 ----l 64.84 -1.03 12.8 0 ---1 64.51 -1.3 6 53.4 40.6 *-1-------------I 59.6 7 -6.2 74.6 6 1.8 ---1 67.58 1.71 I 88.4 75.6 Charp y V-Notch Lateral Expansion vs. Temperature for B y ron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) -Continued 5-3 1 WCA P-180 54-NP D ece mb e r 20 1 5 R ev i s i o n 0 West in g h o u se No n-P ro p r i e t ary C l ass 3 Surveillance Program Weld Metal CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7 1 22/201 S 9: 27 AM Curve P lant Capsule Material Ori. Heat# I Byron I UNTRR WELD I A 442002 2 Byron I u WELD I A 442002 3 Byron l x WELD I A 442002 4 Byron I w WELD I A 442002 s Byron I y WELD I A 442002 110 ------------------ ...... ------.------------------------ ....... -----.... .... ..------'-----. 100 - -2 /-.... 90 .....

11. ( .... 80 -_...._ 5 ... .__ ... =----' I 70 t--....

60 'I 7 40 .... 1 , 30 r: i !VJ 10 0 " __ L.....J.1--..L--1...... 1...J ... -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) 5-32 Figure 5-9 Charp y V-Notch Percent Shear vs. Temperature for B y ron Unit 1 Reactor Vessel Sur v eillance Program Weld Material (Heat# 442002) W CA P-180 54-NP D ece mb e r 20 1 5 R ev i s i o n 0 Westing h ouse No n-Proprietary C lass 3 5-33 Surveillance Pro g ram Weld MetaJ CVGrap h 6.02: H ype rb o li c Ta n g e nt C un*e Pri nk d o n 7 2 2 20 1 5 9: 27 A .. \I Curve I F luenc e L E LT E d-U E T@50 d-T@SO I I I I ---0 1 00 0 8.9 0 I 2 I ---0 I 1 00 0 23 J.t.J 3 ---0 l J OO 0 46.2 3 7.3 r------* -----------------4 I ---0 1 00 0 55.9 47 1--I -5 I ---0 J OO 0 90.3 8 J .4 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for B y ron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) -Continued WCA P-1805 4-NP D ece mb e r 20 1 5 R ev i sio n 0 Westinghouse No n-Proprietary C l ass 3 Heat-Affected Zone CVGraph 6.02: H y perbolic Tangent Curve Printed on 7 1 22/2015 9:31 AM Curve Plant Capsule Material Ori. Heat# I B yron I UNIRR SA508CL2 I A 5P-5933 2 B yron I u SA508CL2 I A 5P-5933 3 B yron I x SA508CL2 I A 5P-5933 4 B yron I w SA508CL2 I A 5P-5933 5 B yron I y SA508CL2 I A 5P-5933 0 1 160 A 8 3 140

  • A 5 A i.. = 80 60

-300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) 5-34 Figure 5-10 Charp y V-Notch Impact Energy v s. Temperatur e for B y ron U nit l Reactor Ves s el H e at-Aff e ct e d Zon e Mat e rial WCA P-180 54-P D ece mb e r 2 01 5 R ev i sio n 0 C u rve I I I 2 I 3 -----4 5 Figure 5-10 W e st in g h o u se N o n-P ro pri e t ary C l ass 3 5-35 Heat-Affected Zone C V Graph 6.0 2: H ype rb o li c Ta n ge nt C ur ve Print e d on 7 2 2 1 2 0 1 5 9: 3 1 r\. .. \I F lu e nc e I SE I T@30 d-T@J O T@SO d-T@SO I LSE I d-l". E ---2.2 I 1 08 0 -1 04.8 0 -4 5.7 I 0 I I I I ---2.2 1 1 9 1 1 -1 69.4 -6 4.6 -90.2 -44.5 I ---2.2 88 -20 l-=?l! 13. I -6 8.7 -2 3 -----------------------2.2 1 1 8 1 0 I -89.8 15 -42.3 3.4 ---2.2 1 00 -8 I -54.7 50.1 1 1.7 i 7.4 Charpy V-Notch Impact Energy vs. Temperature for B y ron Unit 1 Reactor Vessel Heat-Affected Zone Material -Continued W CA P-180 54-NP D e cember 201 5 R ev i s i o n 0 Curve I 2 3 4 5 80 70 -. Cl} 60 := e _.. = 50 Q ..... Cl} = c= c.. 40 -c= i.. 30 ....-c= 20 IO 0 -300 Figure 5-11 Wes t i n g h ouse No n-Pr o pri e t ary C l ass 3 5-36 Heat-Affected Zone CVGraph 6.02: Hyperbo l ic Tangent C u rve P rinted on 7 1 22/20 1 5 9: 32 AM P lant Capsule Material Ori. H eat# B yron I UNTRR A508CL2 I A 5 P-5933 Byron I u A508CL2 I A 5P-5933 Byron I x A508CL2 I A 5 P-5933 Byron I w A508CL2 I A S P-5933 B yron I y SA508CL2 I A 5 P-5933 0 1 6 2 8 3

  • 4 6 5 a -200 -100 0 100 200 300 400 500 600 Temperature{° F) Charpy V-Notch Lateral Expansion vs. Temperature for B y ron Unit 1 Reactor Vessel Heat-Affected Zone Material W CA P-1805 4-N P December 2015 R ev i s i o n 0 C urv e I 2 3 ---4 5 Figure 5-11 Westinghouse o n-Propri etary C la ss 3 H e at-Affected Zone CVGraph 6.02: Il y perb o li c Tan g ent Cur v e Printed on 7 22 2015 9: 32 A.\I I Fluence L E I E d-E I T@35 d-T@35 I I ---I 74.5 6 0 -0.6 0 I ---I I 75.92 1.36 -38.3 -37.7 I I ---I 63.32 -l l.24 31.4 --r------------------I 57.82 -1 6.74 4.8 5.4 I ---I I 73.9 -0.66 42 42.6 Charpy V-Notch Lateral Expansion vs. Temperature for Byron Unit 1 Reactor Vessel Heat-Affected Zone Material -Continued 5-37 I I I WCAP-18054-NP Dec e mber 2 01 5 R evis i o n 0 C u rve I 2 3 4 5 100 90 80 Wes tin g h o u se No n-P ro pri e t ary C l ass 3 Heat-Aff ec ted Zone CV G raph 6.02: Hy p e r bo l ic Tange n t C u rve P rinted o n 7 1 22 1 2015 9: 32 AM Pl ant Ca p sule Material O ri. H ea t# B yron I UNIRR SA50 8 CL2 I A 5 P-5933 B y r o n I u A508CL2 I A 5 P-5933 By r o n I x A508CL2 I A 5 P-5933 B yron I w SA508CL2 I A 5 P-5933 B yron I y SA508CL2 I A 5 P-5933 0 "A 2 8
  • 4 A 5 5-3 8

-300 Figure 5-12 -200 -100 0 100 200 300 400 500 600 Temperature (° F) Charp y V-Notch Percent Shear vs. Temperature for B yro n Unit 1 Reactor Vessel Heat-Affected Zone Material W CA P-18054-NP December 20 15 R e v isi o n 0 Westing h ouse o n-P ro pri e t ary C la ss 3 5-39 Heat-Affected Zone CVGraph 6.02: H yperbo li c Ta n ge nt Curve Printed o n 7 22 1 20 1 5 9: 32 A.:\I C un*e F lu e n ce L E I l E I d-U E I T@50 d-T@50 I I I ---0 I 1 00 0 1 0.8 0 2 I ---0 L OO 0 -22.4 -33.2 3 ---0 1 00 0 -39.9 -50.7 c------


*-4 ---0 1 00 0 I 1 7.8 7 5 ---0 1 00 0 64.8 54 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Byron Unit 1 Reactor Vessel Heat-Affected Zone Material-Continued WCA P-180 54-NP De ce mb e r 2 015 R ev isi o n 0 W es tin g h o u se o n-Propriet ary C l ass 3 5-40 AL68 , -80°F AL64 , -60°F AL6 1 ,-50°F AL67 , -4 0°F AL73, -30°F AL 75 , -20°F AL65 , 0°F AL74 , 20°F AL66 , 40°F AL72 , 72°F AL63 , I 00°F AL6 2, 1 50°F AL 7 1 , 200°F AL 70 , 225°F AL69 , 250°F Figure 5-13 Charp y Impact S p e cimen Fracture S urfac e s for B y ron U nit 1 Re a ctor Ves s el Intermediate S hell Forging 5P-5933 (Tangential Orientation) W CA P-18054-NP Dece m be r 2 0 1 5 R e v isi o n 0 Westinghouse o n-Proprietary C lass 3 5-41 AT75 , -80°F AT65 , -60°F AT7 I , -50°F AT69 , -40°F AT68 , -30°F AT62 , -20°F AT70 , -10°F AT63 , 0°F AT64 , 40°F AT73 , 72°F AT67 , 100°F AT66 , 150°F AT61 , 200°F AT74 , 225°F AT72 , 250°F Figure 5-14 Charp y Impact Specimen Fracture Surfaces for Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation)

WCAP-18054-NP D ece mb er 20 1 5 R evis i o n 0 Westinghouse o n-Proprietary C l ass 3 5-4 2 AW62, -80°F AW65, -60°F AW71 , -30°F AW67 , -20°F AW63,-IO AW73 , 0°F AW75 , 20°F AW69 , 40°F AW68, 72°F AW72 , 100°F AW74 , 125°F AW64 , 150°F AW66 , 200°F AW70 , 225°F AW61 , 250°F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) WCAP-18054-NP De ce mb e r 20 1 5 R ev i s ion 0 We s tinghouse on-Proprietary Class 3 5-43 AH72 , -80°F AH74 , -60°F AH61 , -40°F AH63, -30°F AH69, -20°F AH71 ,-10°F AH75 , 0°F AH73 , 20°F AH68, 40°F AH70, 72°F AH64 , 100°F AH66 , 150°F AH67 , 200°F AH65 , 225°F AH62 , 250°F Figure 5-16 Charpy Impact Specimen Fracture Surfaces for the Byron Unit 1 Reactor Vessel Heat-Affected Zone Material WCA P-18054-P December 20 15 R evision 0 .. ., ., .; "' n ::J 0 Figure 5-17 Westinghouse o n-Proprietary C l ass 3 5-44 100 Ultimate Tens il e Strength 90 ----80 70 ...._ -60 0.2% Y i eld strenath -50 40 30 20 10 0 0 100 200 300 400 500 600 Temperature (0 F) Lege nd:*, *, a nd* are unirradi a t e d 11 , o, a nd o a r e irradiated to 3.97 x I 0 1 9 n/cm 2 (E > 1.0 MeV) 80 Area Reduction -70 60 50 I 40 30 20 I -Total Elongation I I 10 -I Un i form Elongation I 0 0 100 200 300 400 500 600 Temperature ('Fl Tensile Properties for B y ron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) WCAP-18054-P D ece mb e r 20 15 R ev i sio n 0 'ii "' "' .. !> co ,., "£ " 0 F i gure 5-18 Westinghouse o n-P rop ri etary C l ass 3 5-45 100 90 Ult i mate Tens i le Strength ---80 70 -60 ,,.,., v;_, .. .,. ___ 50 40 30 20 10 0 0 100 200 300 400 500 600 Temperature (" F) Legend: *, *, and

  • are uni rrad iated tl , o , and o are irradiated to 3.97 x 10 19 n/c m 2 (E > 1.0 MeV) 80 Area Reduction 70 60 50 40 30 Total Elong ation 20 10 Unifonn E l onga ti on 0 0 100 200 300 400 500 600 Temperature

(°F) Tensile Properties for B yro n Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axia l Orientation) WCAP-18 054-NP De ce mber 20 15 Re v isi o n 0 ii .. .. ti) >-ti " 0 Figur e 5-1 9 West in g h o u se No n-P ro pri e t ary C l ass 3 5-4 6 1 00 90 Ult i mate Te n s il e Strength 8 0 -----70 ----0.2% Y i e l d Strength -50 40 30 20 1 0 0 0 100 200 300 400 500 600 Temperature (0 F) L ege nd:*,*, a nd* ar e unirr a d i a ted ti, o , a nd o a r e ir ra di a ted t o 3.97 x 1 0 1 9 n/c m 2 (E > 1.0 M e V) 70 Area R educ ti on -60 50 _.----0 ---------------- I 40 30 -To t al E longa ti on 10 Uniform E l ongat i o n 0 0 100 200 300 400 500 600 Temperature ('F) T e n s il e Prop e rti es for th e B y ron U nit 1 R ea ct o r V e sse l S ur ve illanc e Pro g ram W e ld Mate ri a l (Heat# 442 00 2) W CA P-180 5 4-NP D ec emb e r 2 01 5 R ev i s i o n 0 West in g h o u se o n-P ro pri e t ary Class 3 5-47 AL13 -Tested at 78°F AL14 -Tested at 200°F AL15 -Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Byron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Tangential Orientation) W CA P-18054-N P De c ember 2 015 Re v isi o n 0 West in g h o u se on-Proprietary Class 3 5-48 AT13 -Tested at 76"F AT14 -Tested at 250"F AT15 -Tested at 550"F Figure 5-21 Fractured Tensile Specimens from B y ron Unit 1 Reactor Vessel Intermediate Shell Forging 5P-5933 (Axial Orientation) WCA P-180 54-P December 20 1 5 R ev i sio n 0 Figure 5-22 West in g h ouse No n-Pr op riet ary C l ass 3 5-49 A W13 -Tested at 78°F A W14 -Tested at 300°F A WIS -Tested at 550°F Fractured Tensile Specimens from the B y ron Unit 1 Reactor Vessel Surveillance Program Weld Material (Heat# 442002) WCA P-180 54-NP D ecember 20 1 5 R ev i sio n 0 ..... "iii ...... "' "' cu L. .,, We s ti n g h o u se o n-P ro priet a ry Cl ass 3 5-5 0 100 90 80 ------------


..-----------------------------,---------


*----


t------

__ -r----------=--=-- 70 60 50 40 30 20 10 ____________ _l _________ =------____ J I _________ 11 _j I ------I I ' 0 0 10 20 30 Strain(%) Tensile Specimen AL13 Tested at 78°F 90 80 . . . . . . . . . . . . . . ....... ' ............ '.... . -. ............... ... ,.................... . .......................... . 7 0 ...................................................... . 60 .................................. ................................... *:**** ............................ . . . . . . . so .................................. '. ................................... '. ................................. . . . . . . . 40 .. ***** .. **********************-.. :**** .. -* ........................... *: .................................. . 3 0 1 .................................. ................................. ; .............................. . . . . . . . 2 0 .................................. : .............. ..................... : .. **************** .. **************** . . . . 10 ...................................

  • .................................. ................................ , .. . . . . . . O+'------+-----

-+------+-----+---- -+-------< 0 10 20 30 Strain[%] Tensile Specimen AL14 Tested at 200°F Figure 5-23 Engineering S tre ss-Strain Curves for B y ron U nit 1 Intermediate S hell Forging 5P-5933 Ten s ile S pecimen s AL13 and AL14 (Tangential Orientation) WCA P-180 54-NP D e c e mb e r 2 0 I 5 Re v i s i o n 0 Westi n ghouse No n-Pr o pri e tary C l ass 3 5-5 1 90 .............. . ***********-*******'**- -** 80 70 '-" Vl 60 ....... .... '---' Vl 50 ............... (/) ..... 40 ............... lf) 30 ........................ ...... ****:****** ................. .......... **:****** ............................. . . . . . 20 ............ . . ..... ' . . . .. . . . ' ... . . . . . . . . . .. .. . . . . . . . . . . . .. ' .. -..... *: -...... 10 ............ . 0 10 20 30 Strain[%] Tensile Specimen ALIS Tested at SS0°F Figure S-24 Engineering St r ess-Strai n Curve for B y ron Unit I Intermediate She ll Forging S933 Tensile Spec i men ALIS (Tangential Orientat i on) WCAP-18054 -NP December 2 015 Re v isi o n 0 ,..... " iii ::ie. ..... Cit Cit cu a.. 100 90 80 70 60 50 40 30 20 10 0 0 We s tin g h o u se o n-P ro pri e t a ry C l ass 3 ------------------------,-------------------------------- ! -r-i I _____________ _L ___________ _ I ! 5-52 -------------------------*-*1 -**1 I ----*-------..!-------------------


! ! 10 20 Strain(%) Tensile Specimen AT13 Tested at 76°F 30 go r .............. .. _._ *_;;* ._ ****************

                  • , ****************************

80 .. ... . ................... *.* ................ . ' .. ******.* .............................. . I ,

  • 70 ....... ' ..........................................

' ................ ' ................. . I * * . . 60 ... O O' O O **** ee* O O O O eo oeoo o O I*:* OOOO oo 'O O O' OOOOO O O' I' 0 00 Oe O 0:1 0 IO 000 00 o o Io OOOOO O O O t O O 0 ooo . . . . . . 50 ............................

  • ...... ' ............

........ .......................... . 40 eoo o*o 0 I 0*00 00 0 0 1.0 MeV) and iron atom displacements (dpa) were established on a plant-and fuel-cycle-specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Y, withdrawn at the end of the I 5 1 h plant operating cycle, is provided. In addition, the sensor sets from the previously withdrawn and analyzed capsules (U, X, and W) were re-analyzed and are presented. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant-specific neutron transport calculations. These validated calculations subsequently form the basis for projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 60 EFPY. The use of fast neutron fluence (E > 1.0 Me V) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. However, in recent years, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall. Because of this potential shift away from a threshold fluence toward an energy-dependent damage function for data correlation, ASTM Standard Practice E853-13, "Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 17] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy-dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-94, "Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom" [Ref. 18]. The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials" [Ref. I]. All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on nuclear cross-section data derived from ENDF/B-VI and used the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 19]. Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC-approved methodology described in WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" [Ref. 20]. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-2 6.2 DISCRETE ORDINATES ANALYSIS The arrangement of the surveillance capsules in the Byron Unit 1 reactor vessel is shown in Figure 4-1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 58.5°, 61.0°, 121.5°, 238.5°, 241.0°, and 301.5°, as shown in Figure 4-1. These full-core positions correspond to the octant symmetric locations shown in Figures 6-2 and 6-3: 29.0° from the core cardinal axes (for the 61.0° and 241.0° capsules) and 31.5° from the core cardinal axes (for the 58.5°, 121.5°, 238.5°, and 301.5° capsules). The stainless steel specimen containers are 1.63-inch by 1.25-inch and are approximately 60 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the approximate central 5 feet of the 12-foot-high reactor core. From a neutronic standpoint, the surveillance capsules and associated support structures are significant. The presence of these materials has a significant effect on both the spatial distribution of neutron fluence rate and the neutron spectrum in the vicinity of the capsules. However, the capsules are far enough apart that they do not interfere with one another. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model. In performing the fast neutron exposure evaluations for the Byron Unit 1 reactor vessel and surveillance capsules, a series of fuel-cycle-specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique: cp(r, 8, z) = cp(r, 8) * (Eqn. 6-1) where is the synthesized three-dimensional neutron flux distribution, is the transport solution in r,8 geometry, is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,8 two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Byron Unit 1. For the Byron Unit 1 transport calculations, the r,8 models depicted in Figures 6-1 through 6-3 were utilized because, with the exception of the neutron pads, the reactor is octant symmetric. These r,8 models include the core, the reactor internals, the neutron pads -including explicit representations of octants not containing surveillance capsules and octants with surveillance capsules at 29° and 31.5°, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the primary biological shield wall. These models formed the basis for the calculated results and enabled making comparisons to the surveillance capsule dosimetry evaluations. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r,8 reactor model in Figure 6-1 consisted of 257 radial by 131 azimuthal intervals. The geometric mesh description of the r,8 reactor models in Figure 6-2 and Figure 6-3 consisted of 255 radial WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-3 by 143 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,8 calculations was set at a value of0.001. The r,z model used for the Byron Unit 1 calculations is shown in Figure 6-4 and extends radially from the centerline of the reactor core out to the primary biological shield and over an axial span from an elevation below the lower core support to several feet above the upper core plate. As in the case of the r,8 models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of these reactor models consisted of 153 radial by 216 axial intervals. As in the case of the r,8 calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of0.001. The one-dimensional radial model used in the synthesis procedure consisted of the same 153 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry. The core power distributions used in the plant-specific transport analysis for each of the first 21 fuel cycles at Byron Unit 1 included cycle-dependent fuel assembly initial enrichments, burnups, and axial power distributions (note that Cycles 1 through 19 have been completed; Cycles 20 and 21 are based on the expected core designs for those cycles and an assumed cycle length of 1.5 EFPY). This information was used to develop spatial-and energy-dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel-cycle-averaged neutron fluence rate, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial 235 U enrichment and burnup history of individual fuel assemblies. From these assembly-dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined. All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code [Ref. 23] and the BUGLE-96 cross-section library, which is based on ENDF/B-VI [Ref. 22]. The BUGLE-96 library provides a coupled 47-neutron, 20-gamma-group cross-section data set produced specifically for light-water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P 5 Legendre expansion, and angular discretization was modeled with an S 16 order of angular quadrature. Energy-and space-dependent core power distributions, as well as system operating temperatures, were treated on a fuel-cycle-specific basis. Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-12. In Tables 6-1 and 6-2, the calculated exposure rates and integral exposures expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and fast neutron fluence (E > 1.0 MeV), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. In Tables 6-3 and 6-4, the calculated exposure rates WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-4 and integral exposures expressed in terms of iron atom displacement rate (dpa/s) and iron atom displacements ( dpa), respectively, are given at the radial and azimuthal center of the surveillance capsule positions, i.e., for the 29.0° and 31.5° dual capsule holder locations and 31.5° single capsule holder location. All surveillance capsules have been removed from Byron Unit I, so results are not presented beyond Cycle 15 (as there are no capsules receiving fluence ). These results, representative of the average axial exposure of the material specimens, establish the calculated exposure of the surveillance capsules. Similar information in terms of calculated fast neutron fluence rate (E > 1.0 MeV), fast neutron fluence (E > 1.0 MeV), dpa/s, and dpa, are provided in Tables 6-5 through 6-8, for the reactor vessel inner radius at four azimuthal locations, as well as the maximum exposure observed within the octant. The vessel data given in Tables 6-5 through 6-8 were taken at the clad/base metal interface and represent maximum calculated exposure levels on the vessel. From the data provided in Table 6-6, it is noted that the peak clad/base metal interface vessel fluence (E > 1.0 Me V) at the end of the 19th fuel cycle (i.e., after 24.39 EFPY of plant operation) was l.34E+l9 n/cm 2. Tables 6-6 and 6-8 include both plant-and fuel-cycle-specific calculated neutron exposures at the end of the 19th fuel cycle, as well as future projected cycles 20 and 21, and further projections to 60 EFPY. The calculations account for the uprate from 3411 MWt to 3586.6 MWt that occurred during Cycle 11, and incorporate an uprate from 3586.6 MWt to 3658 MWt prior to Cycle 20. The projections are based on the assumption that the core power distributions and associated plant operating characteristics from the design of Cycles 20 and 21 are representative of future plant operation. The future projections are based on the uprated reactor power level of 3658 MWt. The calculated fast neutron exposures for all six surveillance capsules withdrawn from the Byron Unit I reactor are provided in Table 6-9. These neutron exposure levels are based on the plant-and specific neutron transport calculations performed for the Byron Unit I reactor. From the data provided in Table 6-9, Capsule Y received a fast neutron fluence (E > 1.0 Me V) of 3.97E+19 n/cm 2 after exposure through the end of the 15th fuel cycle (i.e., after 18.81 EFPY). Updated lead factors for the Byron Unit I surveillance capsules are provided in Table 6-10. The capsule lead factor is defined as the ratio of the calculated fast neutron fluence (E > 1.0 Me V) at the geometric radial and azimuthal center of the surveillance capsule to the corresponding maximum calculated fast neutron fluence at the pressure vessel clad/base metal interface. In Table 6-10, the lead factors for capsules that have been withdrawn from the reactor (Capsules U, X, W, V, Z, and Y) were based on the calculated fluence values for the irradiation* period corresponding to the time of withdrawal for the individual capsules. Table 6-11 presents the maximum fast neutron fluences (E > 1.0 Me V) and Table 6-12 presents the maximum dpa for pressure vessel materials. Differences in projected fluence between the values presented here and those in previous evaluations are primarily due to the core power distribution that is used to fill in the gap between current operation and the projected operation time. For example, at 57 EFPY more than half of the operation time is based on projected core power distributions (rather than actual operated cycles). It is standard practice to base the projected core power distribution on recent core design(s). Because of cycle-to-cycle variations, it is not unusual to see differences in projected fluence. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-5 6.3 NEUTRON DOSIMETRY The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least-squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serve to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and squares evaluation comparisons is documented in Appendix A. The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Y, which was withdrawn from Byron Unit 1 at the end of the 15 1 h fuel cycle, is summarized below. Reaction Reaction Rate (rps/atom) MIC Measured (M) Calculated (C) Cu-63(n,a)Co-60 3.98E-17 3.67E-17 1.08 Fe-54(n,p)Mn-54 3.70E-15 3.99E-15 0.93 U-238(Cd)(n,f)Cs-137 2.52E-14 2.13E-14 1.18 Np-237(Cd)(n,f)Cs-137 2.08E-13 2.07E-13 1.01 Average 1.05 % standard deviation IO.I The measured-to-calculated (M/C) reaction rate ratios for the Capsule Y threshold reactions range from 0.93 to 1.18, and the average MIC ratio is 1.05 +/- 10.1 % (1 cr). This direct comparison falls within the +/- 20% criterion specified in Regulatory Guide 1.190. This comparison validates the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Byron Unit 1. 6.4 CALCULATIONAL UNCERTAINTIES The uncertainty associated with the calculated neutron exposure of the Byron Unit 1 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages: 1. Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL). 2. Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.

3. An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant-specific transport calculations used in the neutron exposure assessments.

WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-6 4. Comparisons of the plant-specific calculations with all available dosimetry results from the Byron Unit 1 surveillance program. The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H.B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods-related and would tend to apply generically to all fast neutron exposure evaluations. The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations, as well as to a lack of knowledge relative to various plant-specific input parameters. The overall calculational uncertainty applicable to the Byron Unit 1 analysis was established from results of these three phases of the methods qualification. The fourth phase of the uncertainty assessment (comparisons with Byron Unit 1 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Byron Unit 1 analytical model based on the measured plant dosimetry is completely described in Appendix A. The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference

21. Description Uncertainty PCA Comparisons 3% H. B. Robinson Comparisons 3% Analytical Sensitivity Studies 11% Additional Uncertainty for Factors not Explicitly Evaluated 5% Net Calculational Uncertainty 13% The net calculational uncertainty was determined by combining the individual components in quadrature.

Therefore, the resultant uncertainty was treated as random, and no systematic bias was applied to the analytical results. The plant-specific measurement comparisons described in Appendix A support these uncertainty assessments for Byron Unit 1. WCAP-18054-NP December 2015 Revision 0 Table 6-1 Westinghouse Non-Proprietary Class 3 6-7 Calculated Fast Neutron Fluence Rate (E > 1.0 MeV) at the Surveillance Capsule Center at Core Midplane for Cycles 1 Through 15 Fluence Rate (n/cm 2-s) Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° 1 1.18 1.18 l.OIE+ll 1.lOE+l l l.09E+l l 2 1.04 2.21 6.53E+l0 6.90E+10 6.79E+l0 3 1.06 3.27 7.30E+l0 7.56E+l0 7.45E+l0 4 1.27 4.54 7.70E+10 8.31E+l0 8.19E+l0 5 1.13 5.67 6.96E+l0 7.48E+ 10 7.38E+IO 6 1.28 6.95 6.88E+l0 7.72E+10 7.63E+10 7 1.14 8.09 6.38E+10 6.91E+l0 6.81E+10 8 1.19 9.27 6.24E+10 6.64E+l0 6.55E+10 9 1.03 10.30 5.80E+l0 5.93E+10 5.83E+10 10 1.39 11.68 6.08E+10 6.68E+l0 6.59E+l0 11 1.41 13.10 6.32E+ 10 6.71E+l0 6.61E+10 12 1.49 14.59 6.27E+10 6.54E+10 6.44E+IO 13 1.37 15.96 5.62E+l0 6.07E+10 5.98E+10 14 1.46 17.41 6.3 lE+lO 6.62E+10 6.52E+10 15 1.40 18.81 6.26E+ 10 6.59E+10 6.49E+10 WCAP-18054-NP December 2015 Revision 0 Table 6-2 Westinghouse Non-Proprietary Class 3 6-8 Calculated Fast Neutron Fluence (E > 1.0 MeV) at the Surveillance Capsule Center at Core Mid plane for Cycles 1 Through 15 Fluence (n/cm 2) Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° I 1.18 1.18 3.77E+ 18 4.09E+l8 4.04E+l8 2 1.04 2.21 5.91E+l8 6.35E+l8 6.26E+l8 3 1.06 3.27 8.35E+l8 8.88E+l8 8.75E+l8 4 1.27 4.54 l.14E+l9 1.22E+ 19 l.20E+l9 5 1.13 5.67 l.39E+l9 l.49E+l9 l.47E+l9 6 1.28 6.95 l.67E+l9 l.80E+l9 l.77E+l9 7 1.14 8.09 l.90E+l9 2.05E+l9 2.02E+l9 8 1.19 9.27 2.13E+I9 2.30E+l9 2.26E+l9 9 1.03 10.30 2.32E+l9 2.49E+ 19 2.45E+l9 10 1.39 11.68 2.58E+l9 2.78E+l9 2.74E+l9 11 1.41 13.10 2.87E+l9 3.08E+l9 3.03E+l9 12 1.49 14.59 3.16E+l9 3.39E+l9 3.34E+l9 13 1.37 15.96 3.40E+l9 3.65E+l9 3.60E+l9 14 1.46 17.41 3.69E+l9 3.95E+l9 3.90E+l9 15 1.40 18.81 3.97E+l9 4.24E+l9 4.18E+l9 WCAP-18054-NP December2015 Revision 0 Table 6-3 Westinghouse Non-Proprietary Class 3 6-9 Calculated Iron Atom Displacement Rate at the Surveillance Capsule Center and at Core Midplane for Cycles 1 Through 15 Iron Atom Displacement Rate (dpa/s) Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° I 1.18 1.18 2.00E-10 2.17E-IO 2.14E-10 2 1.04 2.21 l .28E-l 0 l.35E-10 l.33E-10 3 1.06 3.27 l.43E-10 l.48E-10 l.45E-10 4 1.27 4.54 l.51E-10 l.63E-10 l.60E-10 5 1.13 5.67 l.36E-l 0 l.47E-10 l.44E-10 6 1.28 6.95 l.35E-10 l.51E-10 l.49E-10 7 1.14 8.09 l.25E-10 l.35E-10 l.33E-10 8 1.19 9.27 l .22E-l 0 l.30E-10 l.28E-10 9 1.03 10.30 l.13E-10 l.16E-10 l.13E-l 0 10 1.39 11.68 1.19E-l 0 l.30E-l 0 l.29E-10 11 1.41 13.10 l.23E-l 0 l.3 IE-10 l.29E-10 12 1.49 14.59 l.22E-10 l.28E-IO l.25E-10 13 1.37 15.96 1.IOE-10 l.18E-10 l.l 7E-10 14 1.46 17.41 l.23E-10 l.29E-10 l.27E-10 15 1.40 18.81 l.22E-10 l .29E-10 l.26E-10 WCAP-18054-NP December 2015 Revision 0 Table 6-4 Westinghouse Non-Proprietary Class 3 6-10 Calculated Iron Atom Displacements at the Surveillance Capsule Center at Core Midplane for Cycles 1 Through 15 Iron Atom Displacements (dpa) Cycle Total Single Cycle Length Time Dual Capsule Holder Capsule (EFPY) (EFPY) Holder 29.0° 31.5° 31.5° I 1.18 1.18 7.45E-03 8.08E-03 7.96E-03 2 1.04 2.21 l.16E-02 l.25E-02 l .23E-02 3 1.06 3.27 l.64E-02 l.74E-02 l.72E-02 4 1.27 4.54 2.25E-02 2.40E-02 2.36E-02 5 1.13 5.67 2.73E-02 2.92E-02 2.87E-02 6 1.28 6.95 3.28E-02 3.53E-02 3.47E-02 7 1.14 8.09 3.72E-02 4.0lE-02 3.95E-02 8 1.19 9.27 4.18E-02 4.50E-02 4.43E-02 9 1.03 10.30 4.55E-02 4.87E-02 4.80E-02 10 1.39 11.68 5.07E-02 5.44E-02 5.36E-02 11 1.41 13.10 5.62E-02 6.03E-02 5.93E-02 12 1.49 14.59 6.19E-02 6.63E-02 6.52E-02 13 1.37 15.96 6.67E-02 7.14E-02 7.03E-02 14 1.46 17.41 7.23E-02 7.73E-02 7.61E-02 15 1.40 18.81 7.77E-02 8.30E-02 8.17E-02 WCAP-18054-NP December 2015 Revision 0 Table 6-5 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<*) 21 (a) Note: Westinghouse Non-Proprietary Class 3 6-11 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence Rates (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Fluence Rate (n/cm 2-s) Length Time (EFPY) (EFPY) oo 15° 30° 45° Maximum 1.18 1.18 l.35E+l0 2.16E+l0 2.45E+l0 2.73E+l0 2.73E+l0 1.04 2.21 1.25E+l0 l.78E+l0 I.68E+l0 l.72E+l0 I.94E+ 10 1.06 3.27 l.05E+l0 l.68E+l0 l.70E+10 l.66E+l0 l.95E+l0 1.27 4.54 l.05E+l0 l.65E+l0 1.84E+l0 l.97E+l0 I.97E+l0 1.13 5.67 9.85E+09 l.52E+l0 1.72E+l0 l.86E+l0 I.86E+l0 1.28 6.95 1.00E+ 10 l.46E+l0 1.74E+l0 2.06E+l0 2.06E+l0 1.14 8.09 8.84E+09 l.38E+l0 l.58E+l0 l.71E+l0 l.71E+l0 1.19 9.27 9.27E+09 l.39E+l0 l.53E+ 10 l.48E+l0 l.62E+l0 1.03 10.30 9.06E+09 l.41E+l0 l.43E+l0 l.19E+l0 1.62E+l0 1.39 11.68 9.18E+09 l.34E+10 1.63E+ 10 l.77E+IO 1.77E+ IO 1.41 13.10 8.79E+09 l.34E+IO l.54E+10 l.44E+l0 l.60E+l0 1.49 14.59 9.32E+09 l.45E+10 l.57E+ 10 l.39E+l0 l.69E+10 1.37 15.96 9.09E+09 l.34E+l0 l.43E+l0 l.44E+l0 1.50E+l0 1.46 17.41 9.57E+09 l.46E+l0 l.57E+10 l.42E+l0 l.69E+ 10 1.40 18.81 9.85E+09 l.44E+IO l.56E+10 l.43E+l0 1.66E+l0 1.41 20.22 I.OOE+ 10 l.52E+l0 l.62E+l0 l.50E+l0 l.74E+l0 1.42 21.64 1.07E+l0 l.56E+10 l.67E+ 10 l.57E+l0 l.79E+l0 1.33 22.97 l.04E+l0 l.56E+10 I.65E+l0 l.50E+l0 l.79E+l0 1.41 24.39 9.93E+09 1.5IE+10 l.66E+ 10 l.59E+l0 l.75E+l0 1.50 25.89 1.05E+l0 l.63E+l0 l.78E+l0 l.63E+l0 l.92E+l0 1.50 27.39 l.03E+IO l.59E+10 l.73E+l0 l.55E+l0 I.87E+l0 (a) Values beyond end of cycle (EOC) 19 are projected. Cycles 20 and 21 are based on core designs for these cycles and an assumed cycle length of 1.5 EFPY. WCAP-18054-NP December 2015 Revision 0 Table 6-6 Cycle I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20(*} 21 (a) Note: Westinghouse Non-Proprietary Class 3 6-12 Calculated Azimuthal Variation of Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Reactor Vessel Clad/Base Metal Interface Cycle Total Fluence (n/cm 2) Length Time oo 15° 30° 45° Maximum (EFPY) (EFPY) 1.18 1.18 5.00E+ 17 8.04E+l7 9.IOE+l7 l.02E+l8 1.02E+l8 1.04 2.21 8.95E+l7 l.36E+l8 1.44E+l8 l.56E+l8 1.57E+l8 1.06 3.27 l.25E+l8 l.93E+l8 2.01E+l8 2.11E+l8 2.22E+l8 1.27 4.54 l.67E+l8 2.59E+l8 2.75E+l8 2.90E+l8 3.01E+l8 1.13 5.67 2.02E+l8 3.13E+l8 3.35E+l8 3.55E+l8 3.65E+l8 1.28 6.95 2.42E+18 3.72E+l8 4.05E+l8 4.39E+l8 4.39E+18 1.14 8.09 2.74E+l8 4.21E+l8 4.62E+l8 5.00E+18 5.00E+l8 1.19 9.27 3.08E+l8 4.73E+l8 5.19E+l8 5.54E+l8 5.54E+l8 1.03 10.30 3.37E+18 5.18E+18 5.65E+18 5.93E+l8 6.05E+l8 1.39 11.68 3.73E+l8 5.70E+18 6.28E+l8 6.62E+l8 6.67E+18 1.41 13.10 4.10E+l8 6.26E+18 6.93E+18 7.22E+18 7.34E+l8 1.49 14.59 4.53E+18 6.94E+l8 7.66E+18 7.87E+l8 8.13E+l8 1.37 15.96 4.92E+l8 7.51E+l8 8.28E+l8 8.48E+l8 8.78E+l8 1.46 17.41 5.35E+18 8.16E+l8 8.97E+l8 9.l IE+l8 9.53E+l8 1.40 18.81 5.78E+l8 8.80E+l8 9.66E+l8 9.74E+l8 l.03E+l9 1.41 20.22 6.23E+l8 9.47E+l8 l.04E+l9 l.04E+l9 1.IOE+l9 1.42 21.64 6.70E+l8 l.02E+l9 1.1 IE+l9 1.1 IE+l9 1.18E+l9 1.33 22.97 7.14E+l8 l.08E+l9 1.18E+l9 1.17E+ 19 1.26E+l9 1.41 24.39 7.58E+l8 l.15E+l9 l.25E+ 19 l.24E+l9 l.34E+l9 1.50 25.89 8.04E+l8 l.22E+l9 l.33E+l9 l.32E+19 l.42E+l9 1.50 27.39 8.53E+l8 l.30E+l9 l.41E+l9 l.39E+l9 l.51E+l9 32.00 9.98E+l8 l.52E+l9 l.66E+l9 l.61E+l9 l.77E+l9 36.00 1.12E+l9 l.72E+l9 l.87E+l9 l.80E+l9 2.01E+l9 40.00 l.25E+l9 l.91E+l9 2.09E+l9 2.00E+l9 2.24E+l9 44.00 l.38E+l9 2.l IE+l9 2.30E+l9 2.19E+l9 2.47E+l9 48.00 1.5lE+19 2.31E+l9 2.52E+l9 2.39E+19 2.71E+l9 52.00 l.63E+l9 2.51E+19 2.73E+l9 2.58E+l9 2.94E+l9 54.00 1.70E+l9 2.61E+l9 2.84E+19 2.68E+19 3.06E+l9 57.00 l.79E+19 2.76E+19 3.00E+l9 2.83E+l9 3.23E+l9 60.00 l.89E+l9 2.91E+l9 3.17E+l9 2.97E+l9 3.41E+l9 (a) Values beyond EOC 19 are projected. Cycles 20 and 21 are based on core designs for these cycles and an assumed cycle length of 1.5 EFPY. WCAP-18054-NP December 2015 Revision 0 Table 6-7 Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20(*) 21 (a) Note: Westinghouse Non-Proprietary Class 3 6-13 Calculated Azimuthal Variation of Maximum Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacement Rate (dpa/s) Length Time oo 15° 30° 45° Maximum (EFPY) (EFPY) 1.18 1.18 2.09E-l l 3.33E-ll 3.78E-l l 4.33E-l I 4.33E-l l 1.04 2.21 1.94E-l I 2.74E-l I 2.60E-l l 2.72E-l l 2.97E-l l 1.06 3.27 l.64E-l l 2.59E-l l 2.63E-l l 2.62E-l l 2.98E-l l 1.27 4.54 l.63E-l l 2.55E-l l 2.85E-l l 3.12E-l l 3.12E-l l 1.13 5.67 l.53E-ll 2.34E-l l 2.66E-l l 2.95E-l l 2.95E-l l 1.28 6.95 l.56E-l l 2.26E-l l 2.70E-l l 3.26E-l l 3.26E-l l 1.14 8.09 l.38E-ll 2.13E-ll 2.44E-l l 2.70E-l l 2.70E-l l 1.19 9.27 1.44E-l l 2.14E-l l 2.37E-l l 2.35E-l l 2.48E-l l 1.03 10.30 l.41E-ll 2.17E-l l 2.21E-l l l.88E-l l 2.48E-l l 1.39 11.68 1.43E-l l 2.06E-l l 2.51E-l l 2.80E-l l 2.80E-l l 1.41 13.10 l.37E-l l 2.07E-l l 2.38E-l l 2.28E-l l 2.46E-l l 1.49 14.59 l.45E-ll 2.23E-l l 2.42E-l l 2.20E-l l 2.60E-l l 1.37 15.96 1.42E-l l 2.06E-l l 2.22E-l l 2.27E-l l 2.3 IE-11 1.46 17.41 l .49E-l l 2.25E-l l 2.42E-l l 2.26E-l l 2.60E-l l 1.40 18.81 1.53E-l l 2.22E-l l 2.41E-ll 2.26E-l l 2.55E-l l 1.41 20.22 1.56E-l l 2.34E-l l 2.50E-l l 2.38E-ll 2.67E-l l 1.42 21.64 l.66E-l l 2.40E-l l 2.58E-l l 2.49E-l l 2.75E-l l 1.33 22.97 l.62E-l l 2.40E-l l 2.54E-l l 2.37E-l l 2.75E-l l 1.41 24.39 1.54E-l l 2.33E-l l 2.56E-l l 2.51E-ll 2.69E-l l 1.50 25.89 l .63E-l l 2.51E-l l 2.74E-l l 2.58E-l l 2.95E-l l 1.50 27.39 l.60E-l l 2.46E-l l 2.66E-l l 2.45E-l l 2.87E-l l (a) Values beyond EOC 19 are projected. Cycles 20 and 21 are based on core designs for these cycles and an assumed cycle length of 1.5 EFPY. WCAP-18054-NP December 2015 Revision 0 Table 6-8 Cycle I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20(a) 21C*l Note: Westinghouse Non-Proprietary Class 3 6-14 Calculated Azimuthal Variation of Maximum Iron Atom Displacements at the Reactor Vessel Clad/Base Metal Interface Cycle Total Displacements (dpa) Length Time oo 15° 30° 45° Maximum (EFPY) (EFPY) 1.18 1.18 7.78E-04 1.24E-03 l.41E-03 1.61E-03 l.61E-03 1.04 2.21 1.39E-03 2.10E-03 2.22E-03 2.46E-03 2.46E-03 1.06 3.27 l.94E-03 2.96E-03 3.IOE-03 3.34E-03 3.41E-03 1.27 4.54 2.59E-03 3.98E-03 4.25E-03 4.59E-03 4.61E-03 1.13 5.67 3.13E-03 4.81E-03 5.18E-03 5.62E-03 5.62E-03 1.28 6.95 3.76E-03 5.72E-03 6.26E-03 6.94E-03 6.94E-03 1.14 8.09 4.26E-03 6.48E-03 . 7.14E-03 7.91E-03 7.91E-03 1.19 9.27 4.79E-03 7.28E-03 8.02E-03 8.77E-03 8.77E-03 1.03 10.30 5.25E-03 7.98E-03 8.73E-03 9.38E-03 9.38E-03 1.39 11.68 5.80E-03 8.78E-03 9.71E-03 l.05E-02 l.05E-02 1.41 13.10 6.37E-03 9.64E-03 I.07E-02 l.14E-02 l.14E-02 1.49 14.59 7.05E-03 l.07E-02 1.18E-02 l.25E-02 l.25E-02 1.37 15.96 7.66E-03 l .16E-02 l.28E-02 l .34E-02 l .35E-02 1.46 17.41 8.32E-03 l.26E-02 l.39E-02 l.44E-02 l.46E-02 1.40 18.81 8.99E-03 l.35E-02 l.49E-02 l.54E-02 l.57E-02 1.41 20.22 9.69E-03 l.46E-02 I.60E-02 l.65E-02 1.69E-02 1.42 21.64 l.04E-02 1.56E-02 l.72E-02 l.76E-02 l .8 lE-02 1.33 22.97 1.l IE-02 l.66E-02 l.82E-02 l.86E-02 l.93E-02 1.41 24.39 l .l 8E-02 l.77E-02 l.94E-02 l.97E-02 2.05E-02 1.50 25.89 1.25E-02 l.88E-02 2.06E-02 2.08E-02 2.18E-02 1.50 27.39 1.33E-02 2.00E-02 2.18E-02 2.20E-02 2.31E-02 32.00 1.55E-02 2.34E-02 2.56E-02 2.55E-02 2.72E-02 36.00 1.75E-02 2.64E-02 2.89E-02 2.86E-02 3.07E-02 40.00 l.95E-02 2.95E-02 3.22E-02 3.16E-02 3.43E-02 44.00 2.15E-02 3.25E-02 3.56E-02 3.47E-02 3.79E-02 48.00 2.34E-02 3.56E-02 3.89E-02 3.78E-02 4.15E-02 52.00 2.54E-02 3.87E-02 4.22E-02 4.09E-02 4.51E-02 54.00 2.64E-02 4.02E-02 4.39E-02 4.25E-02 4.69E-02 57.00 2.79E-02 4.25E-02 4.64E-02 4.48E-02 4.96E-02 60.00 2.94E-02 4.48E-02 4.89E-02 4.71E-02 5.22E-02 (a) Values beyond EOC 19 are projected. Cycles 20 and 21 are based on core designs for these cycles and an assumed cycle length of 1.5 EFPY. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-15 Table 6-9 Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Byron Unit 1 Irradiation Cumulative Fluence Capsule Cycle(s) Irradiation Time (E > 1.0 MeV) (EFPY) (n/cm 2) u 1 1.18 4.09E+l8 x 1-5 5.67 l.49E+l9 w 1-8 9.27 2.26E+l9 v<*J 1-12 14.59 3.16E+l9 z<*J 1-12 14.59 3.34E+l9 y 1-15 18.81 3.97E+19 Note: (a) Capsules V and Z have been placed in storage and have not been analyzed. Table 6-10 Calculated Surveillance Capsule Lead Factors Capsule Location Status 58.5° (Capsule U) Withdrawn EOC 1 238.5° (Capsule X) Withdrawn EOC 5 121.5° (Capsule W) Withdrawn EOC 8 61° (Capsule V) (a) Withdrawn EOC 12 301.5° (Capsule Z)(a) Withdrawn EOC 12 241° (Capsule Y) Withdrawn EOC 15 Note: (a) Capsules V and Z have been placed in storage and have not been analyzed. WCAP-18054-NP Iron Atom Displacements (dpa) 8.08E-03 2.92E-02 4.43E-02 6.19E-02 6.52E-02 7.77E-02 Lead Factor 4.03 4.08 4.08 3.89 4.11 3.87 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-16 Table 6-11 Calculated Maximum Fast Neutron Fluence (E > 1.0 MeV) at the Pressure Vessel Welds and Shells Material 24.39 EFPY Outlet Nozzle Forging to 3.94E+l6 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to 5.21E+ 16 Vessel Shell Welds (WR-19) Nozzle Shell 4.62E+l8 Nozzle Shell to Intermediate Shell 4.62E+l8 Circumferential Weld (WR-34) Intermediate Shell l.33E+l9 Intermediate Shell to Lower Shell Circumferential Weld (WR-18) l.29E+l9 Lower Shell l.34E+l9 Lower Shell to Lower Vessel Head 6.0IE+l5 Circumferential Weld (WR-29) Material 48 EFPY Outlet Nozzle Forging to 8.29E+l6 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to l.IOE+l7 Vessel Shell Welds (WR-19) Nozzle Shell 9.72E+l8 Nozzle Shell to Intermediate Shell Circumferential Weld (WR-34) 9.72E+l8 Intermediate Shell 2.71E+l9 Intermediate Shell to Lower Shell Circumferential Weld (WR-18) 2.61E+19 Lower Shell 2.70E+l9 Lower Shell to Lower Vessel Head Circumferential Weld (WR-29) l.22E+ 16 WCAP-18054-NP Fast Fluence 27.39 EFPY 4.50E+l6 5.94E+l6 5.27E+l8 5.27E+l8 l.50E+l9 l.46E+ 19 l.51E+ 19 6.80E+l5 Fast Fluence S4EFPY 9.40E+l6 l.24E+ 17 l.IOE+l9 l.IOE+l9 3.06E+19 2.95E+l9 3.04E+l9 l.38E+ 16 n/cm 2) 32 EFPY 5.35E+l6 7.07E+l6 6.26E+l8 6.26E+l8 l.77E+l9 l.72E+ 19 l.77E+l9 8.0IE+l5 n/cm 2) 57 EFPY 9.95E+16 l.32E+l7 l.17E+l9 l.17E+l9 3.23E+l9 3.l IE+l9 3.22E+19 l.46E+16 36 EFPY 6.08E+l6 8.04E+l6 7.13E+ 18 7.13E+l8 2.00E+l9 1.94E+l9 2.0IE+l9 9.06E+l5 60 EFPY l.05E+l 7 l.39E+l 7 1.23E+l9 1.23E+19 3.41E+l9 3.28E+l9 3.39E+19 1.54E+l6 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6-17 Table 6-12 Calculated Maximum Iron Atom Displacements at the Pressure Vessel Welds and Shells Material 24.39 EFPY Outlet Nozzle Forging to 9.45E-05 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to l.05E-04 Vessel Shell Welds (WR-19) Nozzle Shell 7.07E-03 Nozzle Shell to Intermediate Shell Circumferential Weld (WR-34) 7.07E-03 Intermediate Shell 2.04E-02 Intermediate Shell to Lower Shell Circumferential Weld (WR-18) l.99E-02 Lower Shell 2.05E-02 Lower Shell to Lower Vessel Head Circumferential Weld (WR-29) 3.73E-05 Material 48 EFPY Outlet Nozzle Forging to I.96E-04 Vessel Shell Welds (WR-20) Inlet Nozzle Forging to 2.18E-04 Vessel Shell Welds (WR-19) Nozzle Shell l.49E-02 Nozzle Shell to Intermediate Shell Circumferential Weld (WR-34) l.49E-02 Intermediate Shell 4.15E-02 Intermediate Shell to Lower Shell Circumferential Weld (WR-18) 4.02E-02 Lower Shell 4.13E-02 Lower Shell to Lower Vessel Head Circumferential Weld (WR-29) 7.53E-05 WCAP-18054-NP Disnlacements (dna) 27.39 EFPY 32 EFPY l.07E-04 l.27E-04 1.19E-04 l.4IE-04 8.06E-03 9.59E-03 8.06E-03 9.59E-03 2.30E-02 2.7IE-02 2.25E-02 2.64E-02 2.3 IE-02 2.72E-02 4.22E-05 4.96E-05 Displacements (dna) 54 EFPY 57 EFPY 2.22E-04 2.35E-04 2.46E-04 2.6IE-04 l.69E-02 l.79E-02 l.69E-02 l.79E-02 4.69E-02 4.96E-02 4.53E-02 4.79E-02 4.67E-02 4.93E-02 8.50E-05 8.98E-05 36 EFPY l.44E-04 l.60E-04 l.09E-02 l.09E-02 3.07E-02 2.99E-02 3.07E-02 5.60E-05 60 EFPY 2.47E-04 2.75E-04 l.88E-02 I.88E-02 5.22E-02 5.05E-02 5.20E-02 9.47E-05 December 2015 Revision 0 N ,...:_ .,., N "' .,;-"' D 0 0.0 Figure 6-1 85.8 Westinghouse on-Proprietary C l ass 3 171.5 [cm l 257.2 "' . Byron Unit 1 r,9 Reactor Geometry Plan View at the Core Midplane without Surveillance Capsules and 12.5° Neutron Pad Configuration 6-18 WCAP-18054 -NP D ece mb er 20 1 5 R evisio n 0 N ,..:_ "' N 00 .,;-'° 0 ci 0.0 Figure 6-2 85.B Wes tin g h o u se o n-P rop ri e t ary C l ass 3 171.5 [cm) 2 5 7.2 6-1 9 B y ron Unit 1 r , 0 Reactor Geometr y Plan View at the Core Midplane with a Single Capsule Holder and 20.0° Neutron Pad Configuration WCA P-180 54-NP D e c e mb e r 2 01 5 R evisio n 0 N ,..;_ "' N DO .nD() 0 0 o.o Figure 6-3 85.8 Westinghouse Non-Proprietary Class 3 1 71.5 [cm] 25 7.2 B y ron U nit 1 r , 0 Reactor Geometry Plan View at the Core Midplane with a Dual Capsule Holder and 22.5° Neutron Pad Configuration 6-20 WCA P-18 054-NP D ece mb e r 20 1 5 R evis i o n 0 E u Wes tin g h o u se No n-P ro p r i e t ary C l ass 3 1 ,.,., <O <X) <X) C'I I t') .,) '?o.o 85.8 1ns [cm l 257.2 Figure 6-4 Byron Unit 1 r , z Reactor Geometry Elevation View W CA P-1805 4-NP 343.o R 6-2 1 D ec emb e r 2 015 R ev i s i o n 0 Westinghouse Non-Proprietary Class 3 7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule (Table 7-1) meets the requirements of ASTM E 185-82 [Ref. 8]. Table 7-1 Surveillance Capsule Withdrawal Schedule Capsule ID and Capsule Lead Status Factor< al Location u (58.5°) Withdrawn (EOC 1) 4.03 x (238.5°) Withdrawn (EOC 5) 4.08 w (121.5°) Withdrawn (EOC 8) 4.08 y(d) ( 61.0°) Withdrawn (EOC 12) 3.89 z<*J (301.5°) Withdrawn (EOC 12) 4.11 y(f) (241.0°) Withdrawn (EOC 15) 3.87 Notes: (a) Updated in Capsule Y dosimetry analysis; see Table 6-10. (b) EFPY from plant startup. (c) Updated in Capsule Y dosimetry analysis; see Table 6-9. Withdrawal EFPY(b,cJ 1.18 5.67 9.27 14.59 14.59 18.81 Capsule Fluence (n/cm 2 , E > 1.0 MeVic) 4.09E+l8 l.49E+19 2.26E+19 3.16E+19 3.34E+19 3.97E+19 (d) Capsule V should remain in the spent fuel pool. Potential reinsertion and/or testing of this capsule can be revisited at a later date if additional metallurgical data are needed for Byron Unit 1. (e) Capsule Z was removed and placed in the spent fuel pool. Capsule Z could be reinserted into the Byron Unit 1 reactor vessel to provide meaningful metallurgical data for 80 years of plant operation. If Capsule Z were reinserted into either vacant 31.5° dual-capsule locations, it would receive the projected 80-year (76 EFPY) fluence of 4.37 x 10 19 n/cm 2 in 4.5 EFPY. Capsule Z would exceed two times the projected 80-year (76 EFPY) fluence of 8.74 x 10 19 n/cm 2 in 23.6 EFPY. However, since the Byron Unit 1 surveillance capsule positions have relatively high fast flux, reinsertion of this capsule can be revisited at a later date if an additional 20-year license extension is sought. (f) The neutron exposure of Capsule Y is greater than once, but less than twice the peak vessel fluence (3.23E+ 19) at 57 EFPY; therefore, Capsule Y satisfies the requirements for a license renewal capsule for 60 years of plant operation. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 8-1 8 REFERENCES

1. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials, May 1988. 2. Code of Federal Regulations, IO CFR 50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, Federal Register, Volume 60, No. 243, December 19, 1995. 3. Westinghouse Report WCAP-9517, Revision 0, Commonwealth Edison Co. Byron Station Unit No. I Reactor Vessel Radiation Surveillance Program, July 1979. 4. ASTM E185-73, Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels, ASTM, 1973. 5. Appendix G of the ASME Boiler and Pressure Vessel (B&PV) Code, Section XI, Division 1, Fracture Toughness Criteria for Protection Against Failure. 6. ASTM E208, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, ASTM. 7. ASTM E399, Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM. 8. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706 (IF), ASTM, 1982. 9. ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM, 2012. 10. ASTM E2298-13a, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM, 2013. 11. ASTM A370-13, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 2013. 12. ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2013. 13. ASTM E21-09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 2009. 14. Westinghouse Report WCAP-11651, Revision 0, Analysis of Capsule U from the Commonwealth Edison Co. Byron Unit I Reactor Vessel Radiation Surveillance Program, November 1987. 15. Westinghouse Report WCAP-13880, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Byron Unit I Reactor Vessel Radiation Surveillance Program, January 1994. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 16. Westinghouse Report WCAP-15123, Revision I, Analysis of Capsule Wfrom Commonwealth Edison Company Byron Unit 1 Reactor Vessel Radiation Surveillance Program, January 1999. 8-2 17. ASTM E853-13, Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, ASTM, 2013. 18. ASTM E693-94, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706 (ID), ASTM, 1994. 19. Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001. 20. Westinghouse Report WCAP-14040-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Coo/down Limit Curves, May 2004. 21. Westinghouse Report WCAP-16083-NP, Revision 1, Benchmark Testing of the FERRET Code for Least Squares Evaluation of Light Water Reactor Dosimetry, April 2013. 22. RSICC Data Library Collection DLC-185, Revision 1, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996. 23. RSI CC Computer Code Collection CCC-650, DOORS 3.2: One, Two-and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System, April 1998. WCAP-18054-NP December 2015 Revision 0 APPENDIX A Westinghouse Non-Proprietary Class 3 VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS A.I NEUTRON DOSIMETRY A-I Comparisons of measured dosimetry results to both the calculated and least-squares adjusted values for all surveillance capsules and ex-vessel neutron dosimetry (EVND) withdrawn and analyzed to date at Byron Unit 1 are described herein. The sensor sets have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. A-1]. One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least-squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of the four surveillance capsules analyzed to date as part of the Byron Unit 1 Reactor Vessel Materials Surveillance Program are presented.

The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows: Capsule Azimuthal Location Surveillance Capsule U 58.5° Surveillance Capsule X 238.5° Surveillance Capsule W 121.5° Surveillance Capsule Y 241° WCAP-18054-NP Withdrawal Time End of Cycle I End of Cycle 5 End of Cycle 8 End of Cycle 15 Irradiation Time (EFPY) 1.18 5.67 9.27 18.81 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-2 The passive neutron sensors included in the evaluations of surveillance Capsules U, X, W, and Y are summarized as follows: Sensor Material Reaction of Interest Capsule u Capsule x Capsule w Capsule Y Copper 63 Cu(n,a)6°Co x x x x Iron 54 Fe(n,p )54 Mn x x x x Nickel ssNi(n,p )ssco x x x Note (a) Uranium-238(Cd) 238 U(n,t)FP x x x x Neptunium-237(Cd) 237 Np(n,t)FP x x x x Cobalt-Aluminum(b) 59 Co(n,y}6°Co x x x x Notes: (a) The nickel monitors were not considered for Capsule Y. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule Y was pulled (March 2008) and when it was counted (May 2015). (b) The cobalt-aluminum and uranium monitors for this plant include both bare and cadmium-covered sensors. This section also includes the results of the evaluations of the four mid plane EVND capsules and two midplane EVND capsules analyzed to date. The EVND was irradiated during Cycle 16, then removed and analyzed. The capsule designation, azimuthal location outside the vessel, and axial location were as follows: Capsule Azimuthal Location from Cardinal Axis EVND Capsule A o.so EVND Capsule B 14.5° EVND Capsule C 29.5° EVND Capsule E 44.5° EVND Capsule D 44.5° EVND Capsule F 44.5° WCAP-18054-NP Axial Location Core Midplane Core Midplane Core Midplane Core Midplane Top of Active Core Bottom of Active Core December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-3 The passive neutron sensors included in the evaluations of EVND Capsules A, B, C, 0, E, and F are summarized as follows: Sensor Reaction Of Capsule Capsule Capsule Capsule Capsule Capsule Material Interest A B c D E F Copper 63 Cu( n,a.)6°co x x x x x x Titanium 46 Ti(n,p )46 Sc x x x x x x Iron 54 Fe(n,p )54 Mn x x x x x x Nickel 58 Ni(n,p )58 Co x x x x x x Niobium 93 Nb(n,n')93 mNb x x x x x x Cobalt-59 Co(n,y)6°Co x x x x x x Aluminum<*) Note: (a) The cobalt-aluminum monitors for this plant include both bare and cadmium-covered sensors. Pertinent physical and nuclear characteristics of the passive neutron sensors analyzed are listed in Table A-1. The use of passive monitors such as those listed above do not yield a direct measure of the dependent neutron fluence rate at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time-and energy-dependent neutron fluence rate has on the target material over the course of the irradiation period. An accurate assessment of the average neutron fluence rate level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

  • the measured specific activity of each monitor,
  • the physical characteristics of each monitor,
  • the operating history of the reactor,
  • the energy response of each monitor, and
  • the neutron energy spectrum at the monitor location.

Results from the radiometric counting of the neutron sensors from Capsules U, X, and Ware documented in References A-2, A-3, and A-4, respectively. The radiometric counting of the sensors from Capsule Y was carried out by Pace Analytical Services, Inc. The radiometric counting followed established ASTM procedures. Results from the radiometric counting of EVND irradiated during Cycle 16 are documented in Reference A-5. The irradiation history of the reactor over the irradiation periods experienced by Capsules U, X, and W was based on the monthly thermal power generation of Byron Unit 1 from initial reactor criticality through the end of the dosimetry evaluation period (Cycle 8). For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. Monthly thermal powers for Cycles 9 through 15 were not available. These cycles are only applicable to surveillance Capsule Y. For these. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-4 cycles, power was assumed to be constant for the duration of the cycle. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (March 2008) and when it was analyzed (May 2015). The effect of using constant monthly power for these cycles is therefore minimal. Analysis of EVND used the monthly powers listed for Cycle 16. The irradiation history applicable to surveiIIance Capsules U, X, W, and Y and EVND irradiated during Cycle 16 is given in TableA-2. Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation: where: R A No F y p. J A R=------------- F Y '°' pj [l -A.t*] [ -A.Id*] No L.-Cj -e ' e "' Pref Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus). Measured specific activity ( dps/g). Number of target element atoms per gram of sensor. Atom fraction of the target isotope in the target element. Number of product atoms produced per reaction. Average core power level during irradiation periodj (MW). Maximum or reference power level of the reactor (MW). Calculated ratio of > 1.0 Me V) during irradiation period j to the time weighted average > 1.0 MeV) over the entire irradiation period. Decay constant of the product isotope (I/sec). Length of irradiation period j (sec). Decay time following irradiation period j (sec). The summation is carried out over the total number of monthly intervals comprising the irradiation period. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-5 In the equation describing the reaction rate calculation, the ratio [Pj]/[Pred accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Ci, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in fluence rate level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Ci is normally taken to be 1.0. However, for multiple-cycle irradiations, the additional Ci term should be employed. The impact of changing fluence rate levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low-leakage to low-leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another. The fuel-cycle-specific neutron fluence rates and the computed values for Cj are listed in Tables A-3 and A-4, respectively, for Capsules U, X, W, and Y. These fluence rates represent the capsule-and dependent results at the radial and azimuthal center of the respective capsules at core midplane. Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 238 U cadmium-covered measurements to account for the presence of 235 U impurities in the sensors, as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the 238 U and 237 Np sensor reaction rates to account for gamma-ray-induced fission reactions that occurred over the course of the surveillance capsule irradiations. The correction factors corresponding to the Byron Unit 1 fission sensor reaction rates are summarized as follows: Correction Capsule U CapsuleX Capsule W Capsule Y 235 U Impurity/Pu Build-in 0.868 0.826 0.801 0.744 z3sU(y,f) 0.966 0.967 0.970 0.968 Net 238 U Correction 0.839 0.799 0.776 0.720 238 Np(y,f) Correction 0.990 0.990 0.991 0.991 The correction factors for surveillance Capsules U, X, W, and Y were applied in a multiplicative fashion to the decay-corrected cadmium-covered uranium fission sensor reaction rates. Results of the sensor reaction rate determinations for surveillance Capsules U, X, W, and Y are given in Tables A-5 through A-8. In Tables A-5 through A-8, the measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. The cadmium-covered fission sensor reaction rates are listed both with and without the applied corrections for 235 U impurities, plutonium build-in, and gamma-ray-induced fission effects. Results of the sensor reaction rate determinations for midplane EVND Capsules A, B, C, and E are given in Tables A-9 through A-12. Results of the sensor reaction rate determinations for off-midplane EVND Capsules D and F are given in Tables A-13 and A-14, respectively. In Tables A-9 through A-14, the WCAP-18054-NP December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 A-6 measured specific activities, decay-corrected saturated specific activities, and computed reaction rates for each sensor are listed. A.1.2 Least-Squares Evaluation of Sensor Sets Least-squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a best-estimate neutron energy spectrum with associated uncertainties. Best-estimates for key exposure parameters such as fluence rate (E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least-squares methods, as applied to dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, Ri +/- oR, = +/- ocr;.)(cpg +/- oljl.) g relates a set of measured reaction rates, Ri, to a single neutron spectrum, through the multigroup dosimeter reaction cross-sections, CTig, each with an uncertainty

8. The primary objective of the squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least-squares evaluation of the Byron Unit I dosimetry, the FERRET code [Ref. A-6] was employed to combine the results of the plant-specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (fast neutron fluence rate (E > I .O Me V) and dpa) along with associated uncertainties for the four in-vessel capsules and six ex-vessel capsules analyzed to date. The application of the least-squares methodology requires the following input: 1. The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2. The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set. 3. The energy-dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set. For the Byron Unit 1 application, the calculated neutron spectrum was obtained from the results of specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. I. I. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross section library [Ref. A-7]. The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least-squares procedure in the form of variances and covariances.

The WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-7 assignment of the input uncertainties followed the guidance provided in ASTM Standard E944, "Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance" [Ref. A-8]. The following provides a summary of the uncertainties associated with the least-squares evaluation of the Byron Unit 1 surveillance capsule and EVND sensor sets. Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is ensured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type. After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least-squares evaluation: Reaction Uncertainty 63 Cu(n,a)6°Co 5% 46 Ti(n,p)46 Sc 5% 54 Fe(n,p)5 4 Mn 5% 58 Ni( n,p )58 Co 5% 93 Nb(n,n')93 mNb 5% 238 U(n,f)FP 10% 237 Np(n,f)FP 10% 59 Co(n,y)6°Co 5% These uncertainties are given at the 1 cr level. Dosimetry Cross-Section Uncertainties The reaction rate cross sections used in the least-squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least-squares adjustment applications. These cross-sections were compiled from recent cross-section evaluations, and they have been tested for accuracy and consistency for least-squares evaluations. Further, the library has been empirically tested for use in fission spectra determination, as well as in the fluence and energy characterization of 14 MeV neutron sources. For sensors included in the Byron Unit 1 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-8 Reaction Uncertainty 63 Cu(n,a.)6°Co 4.08-4.16% 46 Ti(n,p)46 Sc 4.50-4.87% 54 Fe(n,p)54 Mn 3.05-3.11% 58 Ni(n,p )58 Co 4.49-4.56% 9JNb(n,n')9JmNb 6.96-7.23% 238U(n,t)1J1Cs 0.54-0.64% 2J7Np(n,t)l37Cs 10.32-10.97% 59 Co(n,y)6°Co 0.79-3.59% These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in L WR irradiations. Calculated Neutron Spectrum The neutron spectra inputs to the least-squares adjustment procedure were obtained directly from the results of plant-specific transport calculations for each surveillance capsule and EVND capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements. While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship: where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg* specify additional random groupwise uncertainties that are correlated with a correlation matrix given by: where WCAP-18054-NP (g-g')2 H=---2y2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-9 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (8 specifies the strength of the latter term). The value of 8 is 1.0 when g = g', and is 0.0 otherwise. The set of parameters defining the input covariance matrix for the Byron Unit 1 calculated spectra was as follows: Fluence Rate Normalization Uncertainty (R 0) Fluence Rate Group Uncertainties (Rg, Rg*) (E > 0.0055 MeV) (0.68 eV < E < 0.0055 MeV) (E < 0.68 eV) Short Range Correlation (8) (E > 0.0055 MeV) (0.68 eV < E < 0.0055 MeV) (E < 0.68 eV) Fluence Rate Group Correlation Range (y) (E > 0.0055 Me V) (0.68 eV < E < 0.0055 MeV) (E < 0.68 eV) A.1.3 Comparisons of Measurements and Calculations 15% 15% 25% 50% 0.9 0.5 0.5 6 3 2 Results of the least-squares evaluations of the dosimetry from the Byron Unit 1 surveillance capsules withdrawn to date are provided in Tables A-15, A-16, A-17, and A-18 for surveillance Capsules U, X, W, and Y, respectively. Results of the least-squares evaluations of the EVND midplane capsules withdrawn to date are provided in Tables A-19, A-20, A-21, and A-22 for EVND Capsules A, B, C, and E, respectively. Results of the least-squares evaluations of the EVND off-midplane capsules withdrawn to date are provided in Tables A-23 and A-24 for EVND Capsules D and F, respectively. In these tables, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in these tabulations are ratios of the measured reaction rates to both the calculated and least-squares adjusted reaction rates. These ratios of MIC and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. Additionally, comparisons of the calculated and best-estimate values of neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules. Note that for surveillance Capsule Y, nickel foils were omitted due to their lack of meaningful information. The reaction product has a relatively short half-life (70.82 days, see Table A-1), and decayed away beyond utility in the intervening period between when Capsule Y was pulled (March 2008) and when it was counted (May 2015). The data comparisons provided in Tables A-15 through A-22 show that the adjustments to the calculated spectra are relatively small and within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross sections. Further, these results indicate that the use of WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-10 the least-squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, the calculational uncertainty is specified as I 3% at the I cr level. Further comparisons of the measurement results with calculations are given in Tables A-25 through A-27 for in-vessel surveillance capsules, EVND midplane capsules, and EVND off-midplane capsules. In these tables, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. Calculations of fast neutron exposure rates in terms of fast neutron fluence rate (E > I .0 Me V) and dpa/s are compared with the estimate results obtained from the least-squares evaluation of the capsule dosimetry results in Tables A-28 and A-29 for in-vessel surveillance capsules and EVND midplane capsules, respectively. These comparisons yield consistent and similar results with all measurement-to-calculation comparisons falling within the 20% limits specified as the acceptance criteria in Regulatory Guide I .190 The measurement-to-calculation comparisons based on individual sensor reactions without recourse to the least-squares adjustment procedure are summarized in Table A-30. A similar comparison for exposure rates expressed in terms of fast neutron fluence rate (E > 1.0 MeV) and iron atom displacement rate (dpa/s) is summarized in Table A-31. These data comparisons show similar and consistent results with the linear average MIC ratio of 0.94 in excellent agreement with the resultant least-squares BE/C ratios of 0.94 and 0.97 for fast neutron fluence rate (E > I .0 Me V) and iron atom displacement rate, respectively. The comparisons demonstrate that the calculated results are validated within the context of the assigned 13% (lcr) uncertainty. Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Byron Unit I reactor pressure vessel. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-II Table A-1 Nuclear Parameters Used in the Evaluation of Neutron Sensors Surveillance Capsules Reaction of Product Target Atom 90% Response Fission Half-life(*) Yield Interest (Davs) Fraction(*) Range(bJ (MeV) (%) 63 Cu (n,a) 6°Co 1925.5 0.6917 5.0 -11.9 NIA 54Fe(n,p)54Mn 312.11 0.0585 2.1-8.5 NIA 58 Ni(n,p )58 Co 70.82 0.6808 1.5 -8.3 NIA 238 U (n,f) mes 10983.07 1.0000 1.3 -6.9 6.02 237Np (n,f) mes 10983.07 1.0000 0.3 -3.8 6.17 59 Co (n,y) 6°Co 1925.5 0.0015 non-threshold NIA Ex-Vessel Neutron Dosimetry Reaction of Product Target Atom 90% Response Fission Half-life(*l Yield Interest (Days) Fraction(*> Range(cJ (MeV) (%) 63 Cu (n,a) 6°Co 1925.5 0.6917 5.2-12.6 NIA 46 Ti(n,p )46 Sc 83.79 0.0825 4.1-11.2 NIA 54Fe(n,p )54Mn 312.11 0.0585 2.0-9.3 NIA 58 Ni(n,p )5 8 Co 70.82 0.6808 1.3 -9.1 NIA 93 Nb(n,n')93 mNb 5890.0 1.000 0.3 -4.6 NIA 59 Co (n,y) 6°Co 1925.5 0.0044 non-threshold NIA Notes: (a) Half-life data are from ASTM El005-10 [Ref. A-9]; target atom fraction data are from ASTM El005-10 [Ref. A-9], with the exception of 59 Co, which is from the materials specification for the cobalt foils. (b) The 90% response range is defined such that, in the neutron spectrum characteristic of the Byron Unit 1 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All surveillance capsules exhibit a similar response range with minor variations; the listed values are for surveillance Capsule Y (with the exception of 58 Ni, which was not used for Capsule Y -in this case Capsule W was used). (c) The 90% response range is defined such that, in the neutron spectrum characteristic of the Byron Unit l EVND capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit. All EVND capsules exhibit a similar response range with minor variations; the listed values are for EVND Capsule E. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-12 TableA-2 Monthly Thermal Generation during the First 16 Fuel Cycles of the Byron Unit 1 Reactor Cycle 1 Cycle2 Month MWt-h Month MWt-h Mar-85 81105 Mar-87 0 Apr-85 689973 Aor-87 0 May-85 980792 Mav-87 0 Jun-85 1584137 Jun-87 1703699 Jul-85 568273 Jul-87 2286523 Aug-85 1720850 Aug-87 1743294 Sep-85 774891 Sep-87 2181621 Oct-85 1764810 Oct-87 2343715 Nov-85 0 Nov-87 2272968 Dec-85 799491 Dec-87 2307217 Jan-86 2029647 Jan-88 2110908 Feb-86 1211423 Feb-88 2303251 Mar-86 2121673 Mar-88 2478098 Apr-86 2336975 Apr-88 934505 May-86 2141879 May-88 2145372 Jun-86 1777104 Jun-88 1417680 Jul-86 615385 Jul-88 2293717 Aug-86 2191871 Aug-88 2316529 Sep-86 2168895 Sep-88 148423 Oct-86 2018377 Nov-86 2292247 Dec-86 2301166 Jan-87 1687879 Feb-87 523101 WCAP-18054-NP Cycle3 Month MWt-h Oct-88 0 Nov-88 1273234 Dec-88 2509746 Jan-89 2435488 Feb-89 2133181 Mar-89 2186778 Apr-89 2196701 Mav-89 2322976 Jun-89 2210369 Jul-89 2420633 Aug-89 2395156 Seo-89 2334417 Oct-89 2473483 Nov-89 2426814 Dec-89 2197131 Jan-90 166102 Cycle4 Month Feb-90 Mar-90 Aor-90 Mav-90 Jun-90 Jul-90 Au12:-90 Sep-90 Oct-90 Nov-90 Dec-90 Jan-91 Feb-91 Mar-91 Apr-91 May-91 Jun-91 Jul-91 Aug-91 Seo-91 MWt-h 0 1724857 2130057 2226912 1866735 2309888 2112190 2247313 2395450 2253682 2178978 2464581 2195323 2336566 2343180 2517536 2007677 1466198 1042269 140704 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-13 Table A-2 Monthly Thermal Generation during the First 16 Fuel Cycles of the Byron Unit 1 Reactor (Continued) Cycles Cycle 6 Month MWt-h Month MWt-h Oct-91 0 Mar-93 0 Nov-91 1016765 Apr-93 931653 Dec-91 2400177 May-93 2295954 Jan-92 1910423 Jun-93 2308848 Feb-92 2309916 Jul-93 2429638 Mar-92 2435938 Aug-93 2331105 Apr-92 2381724 Sep-93 2339957 May-92 2421568 Oct-93 2463462 Jun-92 2261070 Nov-93 2391630 Jul-92 2276576 Dec-93 2471430 Aug-92 2274847 Jan-94 2486633 Sep-92 2295231 Feb-94 2271777 Oct-92 2420043 Mar-94 2504407 Nov-92 2354576 Apr-94 2392629 Dec-92 2310799 Mav-94 2479698 Jan-93 2382891 Jun-94 2406999 Feb-93 258240 Jul-94 2007974 Aug-94 1431846 Sep-94 259090 WCAP-18054-NP Cycle 7 Month MWt-h Oct-94 0 Nov-94 1872192 Dec-94 868645 Jan-95 2356851 Feb-95 2235859 Mar-95 2496842 Apr-95 2376751 May-95 2457445 Jun-95 2302879 Jul-95 2457632 Aug-95 2493519 Sep-95 2409646 Oct-95 1665557 Nov-95 0 Dec-95 468985 Jan-96 2430116 Feb-96 2313105 Mar-96 2473238 Apr-96 302723 Cycle 8 Month May-96 Jun-96 Jul-96 Aug-96 Sep-96 Oct-96 Nov-96 Dec-96 Jan-97 Feb-97 Mar-97 Apr-97 May-97 Jun-97 Jul-97 Aug-97 Sep-97 Oct-97 Nov-97 MWt-h 0 0 1669483 2435877 2195951 2448419 2356694 2428710 2448266 1036750 1962625 2376249 2261469 2116481 2445005 2442924 2380192 1998061 465066 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 TableA-2 Monthly Thermal Generation during the First 16 Fuel Cycles of the Byron Unit 1 Reactor (Continued) Cycle 9C*> Cycle 10CaJ Cycle 11C*l Cycle 12<*> Month MWt-h Month MWt-h Month MWt-h Month MWt-h Dec-97 1917390 Apr-99 2302364 Oct-00 2421124 Apr-02 2607785 Jan-98 1917390 Mav-99 2302364 Nov-00 2421124 Mav-02 2607785 Feb-98 1917390 Jun-99 2302364 Dec-00 2421124 Jun-02 2607785 Mar-98 1917390 Jul-99 2302364 Jan-01 2421124 Jul-02 2607785 Aor-98 1917390 Aug-99 2302364 Feb-01 2421124 Aug-02 2607785 Mav-98 1917390 Seo-99 2302364 Mar-01 2421124 Seo-02 2607785 Jun-98 1917390 Oct-99 2302364 Apr-01 2421124 Oct-02 2607785 Jul-98 1917390 Nov-99 2302364 May-01 2421124 Nov-02 2607785 Aug-98 1917390 Dec-99 2302364 Jun-01 2421124 Dec-02 2607785 Sep-98 1917390 Jan-00 2302364 Jul-0 I 2421124 Jan-03 2607785 Oct-98 1917390 Feb-00 2302364 Aug-OJ 2421124 Feb-03 2607785 Nov-98 1917390 Mar-00 2302364 Sep-01 2421124 Mar-03 2607785 Dec-98 1917390 Apr-00 2302364 Oct-01 2421124 Apr-03 2607785 Jan-99 1917390 May-00 2302364 Nov-01 2421124 May-03 2607785 Feb-99 1917390 Jun-00 2302364 Dec-01 2421124 Jun-03 2607785 Mar-99 1917390 Jul-00 2302364 Jan-02 2421124 Jul-03 2607785 Aug-00 2302364 Feb-02 2421124 Aug-03 2607785 Sep-00 2302364 Mar-02 2421124 Sep-03 2607785 Note: (a) Monthly power data was not available; constant power was assumed instead. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (March 2008) and when it was analyzed (May 2015). The effect of using constant monthly power for these cycles is therefore minimal. A-14 WCAP-18054-NP December 2015 Revision 0 TableA-2 Westinghouse Non-Proprietary Class 3 (Monthly Thermal Generation during the First 16 Fuel Cycles of the Byron Unit 1 Reactor (Continued) Cycle 13(a) Cycle 14<*> Cycle 15<*> Cycle16 Month MWt-h Month MWt-h Month MWt-h Month MWt-h Oct-03 2526307 Mar-05 2409307 Oct-06 2441851 Aor-08 1299762 Nov-03 2526307 Apr-05 2409307 Nov-06 2441851 Mav-08 2665271 Dec-03 2526307 May-05 2409307 Dec-06 2441851 Jun-08 2580 I 14 Jan-04 2526307 Jun-05 2409307 Jan-07 2441851 Jul-08 2664625 Feb-04 2526307 Jul-05 2409307 Feb-07 2441851 Aug-08 2666221 Mar-04 2526307 Aug-05 2409307 Mar-07 2441851 Sep-08 2579831 Apr-04 2526307 Sep-05 2409307 Apr-07 2441851 Oct-08 2665974 Mav-04 2526307 Oct-05 2409307 May-07 2441851 Nov-08 2579938 Jun-04 2526307 Nov-05 2409307 Jun-07 2441851 Dec-08 2665292 Jul-04 2526307 Dec-05 2409307 Jul-07 2441851 Jan-09 2665156 Aug-04 2526307 Jan-06 2409307 Aug-07 2441851 Feb-09 2364003 Sep-04 2526307 Feb-06 2409307 Sep-07 2441851 Mar-09 2662043 Oct-04 2526307 Mar-06 2409307 Oct-07 2441851 Aor-09 2578676 Nov-04 2526307 Apr-06 2409307 Nov-07 2441851 May-09 2665558 Dec-04 2526307 Mav-06 2409307 Dec-07 2441851 Jun-09 2573382 Jan-05 2526307 Jun-06 2409307 Jan-08 2441851 Jul-09 2656684 Feb-05 2526307 Jul-06 2409307 Feb-08 2441851 Aug-09 2665848 Aug-06 2409307 Mar-08 2441851 Sep-09 1095409 Sep-06 2409307 Note: (a) Monthly power data was not available; constant power was assumed instead. Any short-lived nuclides that would have been affected by month-to-month power variations power decayed away (beyond utility for dosimetry purposes) in the intervening period between when Capsule Y was pulled (March 2008) and when it was analyzed (May 2015). The effect of using constant monthly power for these cycles is therefore minimal. A-15 WCAP-18054-NP December 2015 Revision 0 Table A-3 Westinghouse Non-Proprietary Class 3 A-16 Surveillance Capsules U, X, W, and Y Fast Neutron Fluence Rates for Ci Calculation, Core Midplane Elevation cp(E > 1.0 MeV) rn/cm 2-s] Cycle Cycle Length (EFPY) Capsule U Capsule X Capsule W Capsule Y 1 1.18 1.lOE+l l l.lOE+l l l.09E+ 11 l.OlE+ll 2 1.04 6.90E+l0 6.79E+l0 6.53E+l0 3 1.06 7.56E+l0 7.45E+l0 7.30E+l0 4 1.27 8.31E+l0 8.19E+l0 7.70E+l0 5 1.13 7.48E+l0 7.38E+l0 6.96E+l0 6 1.28 7.63E+l0 6.88E+10 7 1.14 6.81E+l0 6.38E+10 8 1.19 6.55E+l0 6.24E+10 9 1.03 5.80E+l0 10 1.39 6.08E+l0 11 1.41 6.32E+l0 12 1.49 6.27E+l0 13 1.37 5.62E+10 14 1.46 6.31E+l0 15 1.40 6.26E+l0 Average -1.lOE+ll 8.31E+l0 7.74E+l0 6.69E+10 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-17 TableA-4 Surveillance Capsules U, X, W, and Y Ci Factors, Core Midplane Elevation Cycle Cycle Length (EFPY) Capsule U 1 1.18 1.00 2 1.04 3 1.06 4 1.27 5 1.13 6 1.28 7 1.14 8 1.19 9 1.03 10 1.39 11 1.41 12 1.49 13 1.37 14 1.46 15 1.40 WCAP-18054-NP C; Capsule X CapsuleW 1.32 1.41 0.83 0.88 0.91 0.96 1.00 1.06 0.90 0.95 0.99 0.88 0.85 Capsule Y 1.51 0.98 1.09 1.15 1.04 1.03 0.95 0.93 0.87 0.91 0.95 0.94 0.84 0.94 0.94 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-18 TableA-5 Measured Sensor Activities and Reaction Rates for Surveillance Capsule U Measured Saturated Reaction Target Activity Activity Rate Isotope {dpslgia) (dps/g) (rps/atom) 63 Cu (n,a) 6°Co 5.37E+04 4.14E+05 6.32E-17 63 Cu (n,a) 6°Co 4.87E+04 3.76E+05 5.73E-17 63 Cu {n,a) 6°Co 4.93E+04 3.80E+05 5.80E-17 54 Fe (n,p) 54 Mn l.46E+06 3.77E+06 5.99E-15 54 Fe (n,p) 54 Mn l.35E+06 3.49E+06 5.54E-15 S4Fe (n,p) 54Mn l.36E+06 3.52E+06 5.58E-15 ssNi {n,p) ssco l.04E+07 5.39E+07 7.72E-15 ssNi (n,p) ssco 9.55E+06 4.95E+07 7.09E-15 58 Ni (n,p) 58 Co 9.55E+06 4.95E+07 7.09E-15 s9Co (n,y) 6oCo l.07E+07 8.25E+07 5.38E-12 s9Co (n,y) 6oCo 9.61E+06 7.41E+07 4.84E-12 59Co (n,y) 6oCo 1.08E+07 8.33E+07 5.43E-12 s9Co (n,y) 6oCo 8.83E+06 6.81E+07 4.44E-12 59Co (n,y) 6oCo 9.40E+06 7.25E+07 4.73E-12 59Co (n,y) 6oCo l.06E+07 8.18E+07 5.33E-12 59 Co(Cd) {n,y) 6°Co 5.16E+06 3.98E+07 2.60E-12 59 Co(Cd) {n,y) 6°Co 5.35E+06 4.13E+07 2.69E-12 59 Co(Cd) (n,y) 6°Co 5.20E+06 4.01E+07 2.62E-12 238 U(Cd) {n,f) mes l.50E+05 5.82E+06 3.82E-14 237 Np(Cd) {n,f) mes l.30E+06 5.04E+07 3.22E-13 Note: (a) Measured activity decay connected to July I, 1987. WCAP-18054-NP Average Reaction Rate (rps/atom) 5.95E-17 5.70E-15 7.30E-15 5.03E-12 2.64E-12 3.82E-14 3.22E-13 Corrected Average Reaction Rate (rps/atom) 5.95E-17 5.70E-15 7.30E-15 5.03E-12 2.64E-12 3.20E-14 3.19E-13 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-19 TableA-6 Measured Sensor Activities and Reaction Rates for Surveillance Capsule X Measured Saturated Reaction Target Activity Activity Rate Isotope (dps/g)'*l (dps/g) (rps/atom) 63 Cu (n,a) 6°Co l.4 IE+05 3.22E+05 4.92E-17 63 Cu (n,a) 6°Co l.29E+05 2.95E+05 4.50E-17 63 Cu (n,a) 6°Co l.26E+05 2.88E+05 4.39E-l 7 54Fe (n,p) 54Mn l .49E+06 2.93E+06 4.65E-15 s4Fe (n,p) 54Mn l.37E+06 2.70E+06 4.28E-15 54Fe (n,p) 54Mn l.36E+06 2.68E+06 4.25E-15 ssNi (n,p) ssco 6.01E+06 4.43E+07 6.35E-15 ssNi (n,p) ssco 5.60E+06 4.13E+07 5.92E-15 58 Ni (n,p) 58 Co 5.55E+06 4.10E+07 5.86E-15 59Co (n,y) 6oCo 2.56E+07 5.85E+07 3.82E-12 59 Co (n,y) 6°Co 2.33E+07 5.33E+07 3.48E-12 59Co (n,y) 60Co 2.IOE+07 4.80E+07 3.13E-12 59Co (n,y) 60Co 2.50E+07 5.72E+07 3.73E-12 59 Co (n,y) 60 Co 2.42E+07 5.53E+07 3.61E-12 59Co (n,y) 6oCo 2.08E+07 4.76E+07 3.IOE-12 59 Co(Cd) (n,y) 6°Co l.27E+07 2.90E+07 l.89E-12 59 Co(Cd) (n,y) 6°Co l.27E+07 2.90E+07 l.89E-12 59 Co(Cd) (n,y) 6°Co l.27E+07 2.90E+07 l.89E-12 238 U(Cd) (n,f) mes 5.52E+05 4.69E+06 3.08E-14 237 Np(Cd) (n,f) mes 3:54E+06 3.0IE+07 l.92E-13 Note: (a) Measured activity decay corrected to August 8, 1993. WCAP-18054-NP Average Reaction Rate (rps/atom) 4.60E-17 4.39E-15 6.04E-15 3.48E-12 l.89E-12 3.08E-14 1.92E-13 Corrected Average Reaction Rate (rps/atom) 4.60E-l 7 4.39E-15 6.04E-15 3.48E-12 l.89E-12 2.46E-14 l.90E-13 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-20 TableA-7 Measured Sensor Activities and Reaction Rates for Surveillance Capsule W Measured Saturated Reaction Target Activity Activity Rate Isotope (dps/g)(a) (dps/g) (rps/atom) 63 Cu (n,a) 6°Co l.75E+05 3.27E+05 4.99E-17 63 Cu (n,a) 6°Co l.58E+05 2.95E+05 4.50E-17 63 Cu (n,a) 6°Co l.55E+05 2.90E+05 4.42E-17 54 Fe (n,p) 54 Mn l.3 !E+06 3.21E+06 5.09E-15 54Fe (n,p) 54Mn l.16E+06 2.84E+06 4.51E-15 54Fe (n,p) s4Mn l.14E+06 2.79E+06 4.43E-15 ssNi (n,p) ssco 3.70E+06 5.02E+07 7.18£-15 ssNi ( n,p) ssco 3.34E+06 4.53E+07 6.48£-15 58 Ni (n,p) 58 Co 3.33E+06 4.52E+07 6.47£-15 59Co (n,y) 6oCo 2.63E+07 4.91E+07 3.21E-12 59Co (n,y) 6oCo 2.97E+07 5.55E+07 3.62E-12 59Co (n,y) 6oCo 2.55E+07 4.76E+07 3.l lE-12 59 Co (n,y) 6°Co 2.86E+07 5.34E+07 3.49E-12 59Co (n,y) 6oCo 2.80E+07 5.23E+07 3.41E-12 59 Co(Cd) (n,y) 6°Co l.56E+07 2.91E+07 l.90E-12 59 Co(Cd) (n,y) 6°Co l.63E+07 3.05E+07 l.99E-12 238 U(Cd) (n,f) mes l.04E+06 5.73E+06 3.76£-14 237 Np(Cd) (n,f) mes 7.35E+06 4.05E+07 2.58E-13 Note: (a) Measured activity decay corrected July 1, 1998. WCAP-18054-NP Average Reaction Rate (rps/atom) 4.64£-17 4.67£-15 6.7!E-15 3.37E-12 l.94E-12 3.76£-14 2.58£-13 Corrected Average Reaction Rate (rps/atom) 4.64£-17 4.67£-15 6.71£-15 3.37£-12 1.94£-12 2.92£-14 2.56£-13 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-21 TableA-8 Measured Sensor Activities and Reaction Rates for Surveillance Capsule Y Average Corrected Measured Saturated Reaction Average Target Activity Activity Rate Reaction Reaction Isotope (dps/g)'*> (dps/g) (rps/atom) Rate Rate (rps/atom) (rps/atom) 63 Cu (n,a) 6°Co 8.69E+04 2.77E+05 4.23E-17 63 Cu (n,a) 6°Co 8.07E+04 2.57E+05 3.93E-17 3.98E-17 3.98E-17 63 Cu (n,a) 6°Co 7.76E+04 2.48E+05 3.78E-17 54 Fe (n,p) 54 Mn 7.15E+03 2.60E+06 4.13E-15 54 Fe (n,p) 54 Mn 6.22E+03 2.26E+06 3.59E-15 3.70E-15 3.70E-15 54Fe (n,p) s4Mn 5.89E+03 2.14E+06 3.40E-15 s9Co (n,y) 6oCo l.48E+07 4.72E+07 3.08E-12 s9Co (n,y) 6oCo l.48E+07 4.72E+07 3.08E-12 59 Co (n,y) 6°Co l.28E+07 4.08E+07 2.66E-12 59 Co (n,y) 6°Co 2.75E-12 2.75E-12 l.18E+07 3.76E+07 2.46E-12 59Co (n,y) 6oCo l.35E+07 4.3 IE+07 2.81E-12 59 Co (n,y) 6°Co l.17E+07 3.73E+07 2.43E-12 59 Co(Cd) (n,y) 6°Co 7.58E+06 2.42E+07 l.58E-12 59 Co(Cd) (n,y) 6°Co l.55E-12 l.55E-12 7.35E+06 2.34E+07 l.53E-12 238 U(Cd) (n,f) 137 Cs 1.34E+06 4.68E+06 3.50E-14 3.50E-14 2.52E-14 237 Np(Cd) (n,f) 137 Cs 8.24E+06 2.88E+07 2.IOE-13 2.lOE-13 2.08E-13 Note: (a) Measured activity decay corrected to May 5, 2015. TableA-9 Measured Sensor Activities and Reaction Rates for EVND Capsule A Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/g)'*> (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 4.49E+02 2.79E+03 4.25E-19 4.25E-19 46 Ti (n,p) 46 Sc l.86E+03 5.74E+03 5.53E-18 5.53E-18 54 Fe (n,p) 54 Mn 9.76E+03 l.93E+04 3.07E-17 54Fe (n,p) s4Mn 3.07E-17 9.78E+03 l.94E+04 3.07E-17 58 Ni (n,p) 58 Co 7.26E+04 2.73E+05 3.90E-17 3.90E-l 7 93Nb (n,n') 93mNb 5.21E+04 9.01E+05 l.39E-16 l.39E-16 59 Co (n,y) 6°Co 3.10E+05 l.93E+06 4.30E-14 4.30E-14 59 Co(Cd) (n,y) 6°Co 1.89E+05 l.17E+06 2.62E-14 2.62E-14 Note: (a) Measured activity decay corrected to January 25, 2010. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-22 TableA-10 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule B Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/g)(a) (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 5.73E+02 3.56E+03 5.43E-19 5.43E-19 46 Ti (n,p) 46 Sc 2.55E+03 7.87E+03 7.58E-18 7.58E-18 s4Fe (n,p) 54Mn l.40E+04 2.77E+04 4.40E-17 54 Fe (n,p) 54 Mn 4.32E-17 l.35E+04 2.68E+04 4.24E-l 7 58 Ni (n,p) 58 Co l.02E+05 3.83E+05 5.48E-17 5.48E-17 93 Nb (n,n') 93 mNb 7.IOE+04 l.23E+06 l.89E-16 l.89E-16 59 Co (n,y) 6°Co 5.22E+05 3.24E+06 7.24E-14 7.24E-14 59 Co(Cd) (n,y) 6°Co 2.92E+05 l.81E+06 4.05E-14 4.05E-14 Note: (a) Measured activity decay corrected to January 25, 2010. TableA-11 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule C Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dpslgi*l (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 4.69E+02 2.91E+03 4.44E-19 4.44E-19 46 Ti (n,p) 46 Sc 2.04E+03 6.30E+03 6.07E-18 6.07E-18 54 Fe (n,p) 54 Mn l.14E+04 2.26E+04 3.58E-17 54 Fe (n,p) 54 Mn 3.58E-17 l.14E+04 2.26E+04 3.58E-17 ssNi (n,p) ssco 8.61E+04 3.23E+05 4.63E-17 4.63E-17 93 Nb (n,n') 93 mNb 6.91E+04 l.20E+06 l.84E-16 l.84E-16 59 Co (n,y) 6°Co 5.36E+05 3.33E+06 7.44E-14 7.44E-14 59 Co(Cd) (n,y) 6°Co 3.05E+05 l.89E+06 4.23E-14 4.23E-14 Note: (a) Measured activity decay corrected to January 25, 2010. WCAP-I 8054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-23 Table A-12 Measured Sensor Activities and Reaction Rates for Midplane EVND Capsule E Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/g)'*> (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co 3.55E+02 2.20E+03 3.36E-19 3.36E-l 9 46 Ti (n,p) 46 Sc l.51E+03 4.66E+03 4.49E-18 4.49E-l 8 54 Fe (n,p) 54 Mn 9.07E+03 l.80E+04 2.85E-17 54 Fe (n,p) 54 Mn 2.SOE-17 8.76E+03 l.74E+04 2.75E-17 58 Ni (n,p) 58 Co 6.82E+04 2.56E+05 3.66E-17 3.66E-17 93 Nb (n,n') 93 mNb 6.08E+04 l.05E+06 l .62E-16 l .62E-l 6 59 Co (n,y) 6°Co 3.31E+05 2.06E+06 4.59E-14 4.59E-14 59 Co(Cd) (n,y) 6°Co 2.21E+05 l.37E+06 3.07E-14 3.07E-14 Note: (a) Measured activity decay corrected to January 25, 2010. TableA-13 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule D Measured Saturated Reaction Average Target Activity Activity Rate Reaction Isotope (dps/g)'*> (dps/g) (rps/atom) Rate (rps/atom) 63 Cu (n,a) 6°Co l.21E+02 7.51E+02 l.15E-l 9 l.l 5E-l 9 46 Ti (n,p) 46 Sc 6.22E+02 l.92E+03 l.85E-l 8 l.85E-l 8 54 Fe (n,p) 54 Mn 3.00E+03 5.94E+03 9.43E-l 8 54 Fe (n,p) 54 Mn 9.86E-18 3.27E+03 6.48E+03 l.03E-l 7 ssNi (n,p) ssco 2.95E+04 l.l 1E+05 l.59E-17 l .59E-l 7 93 Nb (n,n') 93 mNb 2.42E+04 4.19E+05 6.46E-17 6.46E-l 7 59 Co (n,y) 6°Co l.48E+05 9.19E+05 2.05E-14 2.05E-14 59 Co(Cd) (n,y) 6°Co 9.93E+04 6. l 7E+05 l.38E-14 l.38E-14 Note: (a) Measured activity decay corrected to January 25, 2010. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-24 TableA-14 Measured Sensor Activities and Reaction Rates for Off-Midplane EVND Capsule F Measured Saturated Reaction Target Activity Activity Rate Isotope (dpslgi*> (dps/g) (rps/atom) 63 Cu (n,a) 6°Co 1.42E+02 8.82E+02 l.35E-19 46 Ti (n,p) 46 Sc 7.03E+02 2. l 7E+03 2.09E-18 54Fe (n,p) 54Mn 3.98E+03 7.89E+03 1.25E-l 7 54 Fe (n,p) 54 Mn 3.68E+03 7.29E+03 l.16E-17 58 Ni (n,p) 58 Co 3.29E+04 l.24E+05 1.77E-I 7 93Nb (n,n') 93mNb 2.46E+04 4.25E+05 6.56E-17 59 Co (n,y) 6°Co l .86E+05 l.16E+06 2.58E-14 59 Co(Cd) (n,y) 6°Co I.26E+05 7.82E+05 l.75E-14 Note: (a) Measured activity decay corrected to January 25, 20 I 0. WCAP-18054-NP Average Reaction Rate (rps/atom) l.35E-19 2.09E-18 l .20E-l 7 l.77E-l 7 6.56E-l 7 2.58E-14 l.75E-14 December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 A-25 TableA-15 Least-Squares Evaluation of Dosimetry in Surveillance Capsule U (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycle 1 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 5.95E-17 5.54E-l 7 5.62E-l 7 S4Fe (n,p) S4Mn 5.70E-15 6.33E-15 5.75E-15 ssNi (n,p) ssco 7.30E-15 8.91E-15 7.84E-15 59 Co (n,y) 6°Co 5.03E-12 5.38E-12 4.99E-12 59 Co(Cd) (n,y) 6°Co 2.63E-12 3.46E-12 2.67E-12 238 U(Cd) (n,f) 137 Cs 3.20E-14 3.47E-14 3.05E-14 237 Np(Cd) (n,f) 137 Cs 3.18E-13 3.44E-13 3.09E-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E>l.OMeV l.IIE+ll 13 9.63E+l0 (n/cm 2-s) Fluence rate E > 0.1 MeV 4.96E+ 11 -4.45E+l l (n/cm 2-s) dpa/s 2.14E-10 13 l.9 IE-10 WCAP-18054-NP MIC 1.07 0.90 0.82 0.94 0.76 0.92 0.93 0.93 9.7% % Unc. 6 10 8 M/BE BE/C 1.06 1.01 0.99 0.91 0.93 0.88 1.01 0.93 0.99 0.77 1.05 0.88 1.03 0.90 1.01 0.92 5.2% 5.9% BE/C 0.87 0.89 0.89 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-26 TableA-16 Least-Squares Evaluation of Dosimetry in Surveillance Capsule X (31.5° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1 Through 5 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 4.60E-17 4.41E-17 4.43E-l 7 54Fe (n,p) s4Mn 4.39E-15 4.89E-15 4.47E-15 58 Ni (n,p) 58 Co 6.04E-15 6.87E-15 6.19E-15 59Co (n;y) 6oCo 3.48E-12 3.99E-12 3.46E-12 59 Co(Cd) (n,y) 6°Co l.89E-12 2.56E-12 l.92E-12 238 U(Cd) (n,f) 137 Cs 2.46E-14 2.64E-14 2.31E-14 237 Np(Cd) (n,f) 137 Cs l.90E-13 2.58E-13 2.04E-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 8.35E+IO 13 7.13E+l0 (n/cm 2-s) Fluence rate E>O.IMeV 3.70E+l l -3.llE+II (n/cm 2-s) dpa/s l.60E-10 13 l.37E-10 WCAP-18054-NP MIC 1.04 0.90 0.88 0.87 0.74 0.93 0.74 0.90 12.0% %Unc. 6 10 7 M/BE BE/C 1.04 1.00 0.98 0.91 0.98 0.90 1.00 0.87 0.99 0.75 1.06 0.87 0.93 0.79 1.00 0.89 5.2% 8.5% BE/C 0.85 0.84 0.85 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-27 TableA-17 Least-Squares Evaluation of Dosimetry in Surveillance Capsule W (31.5° Azimuth, Core Midplane -Single Capsule Holder) Cycles 1 Through 8 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 4.64E-17 4.12E-17 4.52E-l 7 S4Fe (n,p) S4Mn 4.67E-15 4.55E-15 4.83E-15 58 Ni (n,p) 58 Co 6.71E-15 6.39E-15 6.80E-15 59 Co (n,y) 6°Co 3.37E-12 3.38E-12 3.35E-12 59 Co(Cd) (n,y) 6°Co l.94E-12 2.20E-12 l.96E-12 238 U(Cd) (n,f) mes 2.92E-14 2.45E-14 2.62E-14 237 Np(Cd) (n,f) mes 2.56E-13 2.40E-13 2.56E-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E>l.OMeV 7.77E+l0 13 8.32E+l0 (n/cm 2-s) Fluence rate E > 0.1 MeV 3.44E+ll -3.66E+ll (n/cm 2-s) dpa/s l .49E-IO 13 l.59E-IO WCAP-18054-NP MIC 1.12 1.03 1.05 1.00 0.88 1.19 1.07 1.09 5.9% % Unc. 6 10 8 M/BE BE/C 1.02 1.10 0.97 1.06 0.99 1.07 1.00 0.99 0.99 0.89 I.I I 1.07 1.00 1.07 1.02 1.07 5.4% 1.4% BE/C 1.07 1.06 1.06 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-28 TableA-18 Least-Squares Evaluation of Dosimetry in Surveillance Capsule Y (29.0° Azimuth, Core Midplane -Dual Capsule Holder) Cycles 1Through15 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 3.98E-17 3.67E-17 3.84E-l 7 S4Fe (n,p) S4Mn 3.70E-15 3.99E-15 3.96E-15 s9Co (n,y) 6oCo 2.75E-12 3.12E-12 2.74E-12 59 Co(Cd) (n,y) 6°Co l.55E-12 2.02E-12 l.57E-12 238 U(Cd) (n,f) 137 Cs 2.52E-14 2.13E-14 2.l7E-14 237 Np(Cd) (n,f) 137 Cs 2.08E-l3 2.07E-l3 2.0lOE-13 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 6.72E+IO 13 6.85E+l0 (n/cm 2-s) Fluence rate E > 0.1 MeV 2.96E+l l -3.02E+l l (n/cm 2-s) dpa/s l.29E-10 13 l.3 IE-10 WCAP-18054-NP MIC 1.08 0.93 0.88 0.77 1.18 1.01 1.05 10.1% % Unc. 6 IO 8 M/BE BE/C 1.03 1.05 0.93 0.99 1.00 0.88 0.99 0.78 l.16 1.02 0.99 1.01 1.03 l.02 9.5% 2.5% BE/C l.01 1.02 1.02 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-29 TableA-19 Least-Squares Evaluation of Dosimetry in EVND Capsule A (0.5° Azimuth, Core Midplane) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 4.25E-19 4.64E-19 4.20E-19 46Ti (n,p) 46Sc 5.53E-18 6.22E-18 5.57E-18 s4Fe (n,p) s4Mn 3.07E-17 3.30E-l 7 3.0lE-17 58 Ni (n,p) 58 Co 3.90E-17 4.62E-17 4.14E-17 93 Nb (n,n') 93 mNb l.39E-16 l.3 IE-16 l.35E-16 59 Co (n;y) 6°Co 4.30E-14 4.28E-14 4.31E-14 59 Co(Cd) (n,y) 6°Co 2.62E-14 2.44E-14 2.61E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 5.60E+08 13 5.46E+08 (n/cm 2-s) Fluence rate E>O.lMeV 5.25E+09 -5.51E+09 (n/cm 2-s) dpa/s 1.79E-12 13 l.84E-12 WCAP-18054-NP MIC 0.92 0.89 0.93 0.84 1.06 1.00 1.07 0.93 8.8% %Unc. 6 10 8 M/BE BE/C l.01 0.91 0.99 0.90 l.02 0.91 0.94 0.90 1.03 1.03 1.00 1.01 1.00 1.07 1.00 0.93 3.6% 6.0% BE/C 0.97 1.04 l.02 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-30 Table A-20 Least-Squares Evaluation of Dosimetry in EVND Capsule B (14.5° Azimuth, Core Midplane) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 5.43E-19 5.7 IE-19 5.43E-19 46 Ti (n,p) 46 Sc 7.58E-18 7.87E-18 7.52E-18 54Fe (n,p) 54Mn 4.32E-17 4.36E-17 4.21E-17 ssNi (n,p) ssco 5.48E-17 6.13E-17 5.79E-l 7 93 Nb (n,n') 93 mNb I.89E-16 I.80E-16 l.86E-16 59 Co (n,y) 6°Co 7.24E-14 7.94E-14 7.28E-14 59 Co(Cd) (n,y) 6°Co 4.05E-14 3.86E-14 4.03E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 7.62E+08 13 7.61E+08 (n/cm 2-s) Fluence rate E>0.1 MeV 7.31E+09 -7.59E+09 (n/cm 2-s) dpa/s 2.50E-12 13 2.57E-12 WCAP-I 8054-NP MIC 0.95 0.96 0.99 0.89 1.05 0.91 1.05 0.97 6.0% % Unc. 6 10 8 M/BE BE/C 1.00 0.95 1.01 0.96 1.03 0.97 0.94 0.94 1.02 1.03 0.99 0.92 1.01 1.04 1.00 0.97 3.5% 3.6% BE/C 0.99 1.03 1.02 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-31 Table A-21 Least-Squares Evaluation of Dosimetry in EVND Capsule C (29.5° Azimuth, Core Midplane) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 4.44E-19 5.52E-19 4.42E-19 46 Ti (n,p) 46 Sc 6.07E-18 7.66E-18 6.09E-l 8 54Fe (n,p) s4Mn 3.58E-17 4.33E-17 3.52E-17 ssNi (n,p) ssco 4.63E-17 6.14E-17 4.91E-17 93 Nb (n,n') 93 mNb l.84E-16 l.93E-16 l.79E-16 59 Co (n,y) 6°Co 7.44E-14 8.95E-14 7.49E-14 59 Co(Cd) (n,y) 6°Co 4.23E-14 4.36E-14 4.21E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 8.07E+08 13 7.08E+08 (n/cm 2-s) Fluence rate E>O.lMeV 8.16E+09 -7.83E+09 (n/cm 2-s) dpa/s 2.76E-12 13 2.58E-12 WCAP-18054-NP MIC 0.80 0.79 0.83 0.75 0.96 0.83 0.97 0.83 9.7% %Unc. 6 10 8 M/BE BE/C 1.00 0.80 1.00 0.80 1.02 0.81 0.94 0.80 1.03 0.93 0.99 0.84 1.01 0.97 1.00 0.83 3.5% 6.9% BE/C 0.87 0.95 0.93 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-32 TableA-22 Least-Squares Evaluation of Dosimetry in EVND Capsule E (44.5° Azimuth, Core Midplane) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co 3.36E-19 3.82E-19 3.31E-19 46 Ti (n,p) 46 Sc 4.49E-18 5.34E-18 4.54E-18 54Fe (n,p) 54Mn 2.80E-17 3.19E-17 2.74E-17 58 Ni (n,p) 58 Co 3.66E-17 4.62E-17 3.89E-17 93 Nb (n,n') 93 mNb l.62E-16 l.67E-16 l.58E-16 59 Co (n,y) 6°Co 4.59E-14 5.64E-14 4.65E-14 59 Co(Cd) (n,y) 6°Co 3.07E-14 3.25E-14 3.04E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 6.99E+08 13 6.28E+08 (n/cm 2-s) Fluence rate E> 0.1 MeV 7.28E+09 -7.0IE+09 (n/cm 2-s) dpa/s 2.40E-12 13 2.27E-12 WCAP-18054-NP MIC 0.88 0.84 0.88 0.79 0.97 0.81 0.94 0.87 7.6% %Unc. 6 10 8 M/BE BE/C 1.02 0.87 0.99 0.85 1.02 0.86 0.94 0.84 1.02 0.95 0.99 0.82 1.01 0.94 1.00 0.87 3.5% 5.0% BE/C 0.89 0.96 0.94 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-33 TableA-23 Least-Squares Evaluation of Dosimetry in EVND Capsule D (44.5° Azimuth, Top of Active Core) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co I.15E-19 l.68E-19 l .20E-19 46 Ti (n,p) 46 Sc l .85E-I 8 2.37E-18 l.76E-18 S4Fe (n,p) S4Mn 9.85E-l 8 l.42E-17 l.04E-17 58 Ni (n,p) 58 Co l.58E-l 7 2.05E-l 7 l.56E-l 7 93 Nb (n,n') 93 mNb 6.46E-17 7.38E-l 7 6.34E-17 59 Co (n,y) 6°Co 2.05E-14 2.61E-14 2.08E-14 59 Co(Cd) (n,y) 6°Co l.38E-14 l.50E-14 l.37E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E> 1.0 MeV 3.08E+08 13 2.52E+08 (n/cm 2-s) Fluence rate E>O.I MeV 3.22E+09 -2.87E+09 (n/cm 2-s) dpa/s 1.06E-12 13 9.28E-13 WCAP-18054-NP MIC 0.68 0.78 0.70 0.77 0.87 0.79 0.92 0.76 9.9% %Unc. 6 10 8 M/BE BE/C 0.96 0.71 1.05 0.75 0.94 0.74 1.01 0.76 1.02 0.86 0.99 0.80 1.0 l 0.91 l.00 0.76 4.5% 7.4% BE/C 0.81 0.89 0.87 December 2015 Revision 0 -- Westinghouse Non-Proprietary Class 3 A-34 TableA-24 Least-Squares Evaluation of Dosimetry in EVND Capsule F (44.5° Azimuth, Bottom of Active Core) Cycle 16 Irradiation Reaction Rate (rps/atom) Reaction Measured Calculated Best-(M) (C) Estimate (BE) 63 Cu (n,a) 6°Co l.34E-19 I.59E-19 I.39E-I 9 46 Ti (n,p) 46 Sc 2.09E-18 2.23E-18 2.03E-I 8 54Fe (n,p) 54Mn I .20E-I 7 I.33E-I 7 1.2 IE-I 7 58 Ni (n,p) 58 Co l.77E-17 1.94E-I 7 l.77E-17 93Nb (n,n') 93mNb 6.56E-17 7.06E-17 6.58E-17 59 Co (n,y) 6°Co 2.58E-14 2.56E-14 2.60E-14 59 Co(Cd) (n,y) 6°Co l.75E-14 l.46E-14 l.73E-14 Average of Fast Energy Threshold Reactions Standard Deviation Calculated Best-Integral Quantity (C) %Unc. Estimate (BE) Fluence rate E>l.OMeV 2.94E+08 13 2.73E+08 (n/cm 2-s) Fluence rate E>O.lMeV 3.11E+09 -2.94E+09 (n/cm 2-s) dpa/s l.02E-12 13 9.64E-13 WCAP-18054-NP MIC 0.85 0.94 0.90 0.91 0.93 1.01 1.19 0.91 3.9% %Unc. 6 10 8 M/BE BE/C 0.96 0.88 1.03 0.91 1.00 0.91 1.00 0.91 1.00 0.93 0.99 1.02 1.01 1.18 1.00 0.91 2.5% 2.0% BE/C 0.92 0.94 0.94 December 2015 Revision 0 TableA-25 TableA-26 TableA-27 Westinghouse Non-Proprietary Class 3 A-35 Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules Reaction Capsule Average Std. Dev. u x w y 63 Cu (n,a) 6°Co 1.07 1.04 1.12 1.08 1.08 3.1% s4Fe (n,p) 54Mn 0.90 0.90 1.03 0.93 0.94 6.6% ssNi (n,p) ssco 0.82 0.88 1.05 -0.92 13.0% 238 U(Cd) (n,f) 137 Cs 0.92 0.93 1.19 1.18 l.06 14.2% 237 Np(Cd) (n,f) 137 Cs 0.93 0.74 1.07 1.01 0.94 15.3% Average ofM/C Results 0.99 12.1% Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Midplane Capsules Reaction Capsule Aver:age Std. Dev. A B c E 63 Cu (n,a) 6°Co 0.92 0.95 0.80 0.88 0.89 7.3% 46 Ti (n,p) 46 Sc 0.89 0.96 0.79 0.84 0.87 8.3% 54 Fe (n,p) 54 Mn 0.93 0.99 0.83 0.88 0.91 7.5% 58 Ni (n,p) 58 Co 0.84 0.89 0.75 0.79 0.82 7.4% 93Nb (n,n') 93mNb 1.06 1.05 0.96 0.97 1.01 5.2% Average of MIC Results 0.90 9.6% Comparison of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -Ex-Vessel Off-Midplane Capsules Reaction Capsule D F 63 Cu (n,a) 6°Co 0.68 0.85 46 Ti (n,p) 46 Sc 0.78 0.94 54 Fe (n,p) 54 Mn 0.70 0.90 58 Ni (n,p) 58 Co 0.77 0.91 93 Nb (n,n') 93 mNb 0.87 0.93 WCAP-18054-NP December 2015 Revision 0 TableA-28 Westinghouse Non-Proprietary Class 3 A-36 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules Fast Neutron Fluence Rate (E > 1.0 MeV) Capsule Iron Atom Displacement Rate BEIC Std. Dev. BEIC Std. Dev. u 0.87 6.0% 0.89 8.0% x 0.85 6.0% 0.85 7.0% w 1.07 6.0% 1.06 8.0% y 1.0 I 6.0% 1.02 8.0% Average 0.95 11.3% 0.96 10.6% TableA-29 Comparison of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -Ex-Vessel Midplane Capsules Capsule Fast Neutron Fluence Rate (E > 1.0 MeV) Iron Atom Displacement Rate BE/C Std. Dev. BEIC Std. Dev. A 0.97 6.0% 1.02 8.0% B 0.99 6.0% 1.02 8.0% c 0.87 6.0% 0.93 8.0% E 0.89 6.0% 0.94 8.0% Average 0.93 6.3% 0.98 5.0% TableA-30 Summary of Measured/Calculated (MIC) Sensor Reaction Rate Ratios for Fast Neutron Threshold Reactions -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Reaction Avg. MIC Std. Dev. 63 Cu (n,u) 6°Co 1.08 3.1% 46 Ti (n,p) 46 Sc --54Fe (n,p) 54Mn 0.94 6.6% 58 Ni (n,p) 58 Co 0.92 13.0% 93 Nb (n,n') 93 mNb --238 U(Cd) (n,t) 137 Cs 1.06 14.2% 237 Np(Cd) (n,t) 137 Cs 0.94 15.3% Average 0.99 12.1% WCAP-18054-NP Ex-Vessel Midplane Avg.MIC Std. Dev. 0.89 7.3% 0.87 8.3% 0.91 7.5% 0.82 7.4% I.OJ 5.2% ----0.90 9.6% Combined Avg. MIC 0.98 0.87 0.92 0.87 1.01 1.06 0.94 0.94 Std. Dev. 5.2% 8.3% 7.1% 10.9% 5.2% 14.2% 15.3% 7.8% December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-37 Table A-31 Summary of Best-Estimate/Calculated (BE/C) Exposure Rate Ratios -In-Vessel Surveillance Capsules and Ex-Vessel Midplane Capsules In-Vessel Reaction Avg. MIC Std. Dev. Fast Neutron Fluence Rate (E > 1.0 MeV) 0.95 11.3% Iron Atom Displacement Rate 0.96 10.6% WCAP-18054-NP Ex-Vessel Midplane Avg. Std. MIC Dev. 0.93 6.3% 0.98 5.0% Combined Avg. Std. MIC Dev. 0.94 6.5% 0.97 5.8% December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 A-38 A.2 REFERENCES A-1 U.S. Nuclear Regulatory Commission Regulatory Guide 1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, March 2001. A-2 Westinghouse Report, WCAP-11651, Revision 0, Analysis of Capsule U from the Commonwealth Edison Co. Byron Unit 1 Reactor Vessel Radiation Surveillance Program, November 1987. A-3 Westinghouse Report, WCAP-13880, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Byron Unit 1 Reactor Vessel Radiation Surveillance Program, January 1994. A-4 Westinghouse Report, WCAP-15123, Revision l, Analysis of Capsule W from Commonwealth Edison Company Byron Unit 1 Reactor Vessel Radiation Surveillance Program, January 1999. A-5 Westinghouse Report WCAP-17250-NP, Revision 1, Ex-Vessel Neutron Dosimetry Program for Byron Unit 1 Cycle 16, October 2012. A-6 A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979. A-7 RSICC Data Library Collection DLC-178, SNLRML Recommended Dosimetry Cross Section Compendium, July 1994. A-8 ASTM Standard E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA), 2013. A-9 ASTM Standard El 005-10, Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706 (IIIA), 2010. WCAP-18054-NP December 2015 Revision 0 APPENDIXB Westinghouse Non-Proprietary Class 3 LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS * "ALXX" denotes Intermediate Shell Forging 5P-5933, tangential orientation

  • "ATXX" denotes Intermediate Shell Forging 5P-5933, axial orientation
  • "A WXX" denotes weld material * "AHXX" denotes heat-affected zone material Note that the instrumented Charpy data is not required per ASTM Standards E185-82 or E23-12c. B-1 WCAP-18054-NP December 2015 Revision 0 6000001 soooooi 3000001 I 2000.001 1000.00' Westinghouse Non-Proprietary Class 3 O.OD 1.00 2.00 3.00 T11E-1{ms)

AL68: Tested at -80°F 4.00 5.00 6.00 6000.00------------------------------------ _,,r l 4000001 I 3000001 2000.00 r 1000.00 0.00 1.00 3.00 tme-1 (rm) AL64: Tested at -60°F 4.00 5.00 6.lro B-2 WCAP-I 8054-NP December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 Trre-1 -0.32ms 5000.00 3000.00 2000.00 1000.00 0.00 6000.001 5000001 <rnIDOOl g l

  • 1 '"'ooj 1000.00 1.00 3.00 Tsre-1(1!!!1)

AL61: Tested at-50°F *.oo 5.00 6.00 w -T11e-l(ms) AL67: Tested at -40°F B-3 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 1000.00 O.llO """1 i -001 4000Wr l' 3ll00001 i """1 1000.00 1.llO 2.llO 3.00 Trre-1(111!) AL73: Tested at -30°F 5.00 6.llO O.llO 1.llO 100 Tme-1 (ms) AL 75: Tested at -20°F .,, 6.00 B-4 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-5 l -*1 2000.Dlli 1000.00 o.ool* 0.00 1.00 200 600000) I ""'*oor ! I .. 000.00; 30etl.00r l 2000.00 1 1000.00 0.00 0.00 1.1)() 200 WCAP-18054-NP 3.00 Tire-1(111!) AL65: Tested at 0°F 100 Tme-1 (ms) AL 74: Tested at 20°F .... *.oo .,0 5.00 '*" 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-6 ti>>D.0-0! 0.00 1.00 200 eMn L0.1d--12J.6Tb -*" 2000.001 1000.00 1.00 200 WCAP-18054-NP J.00 rme-1 (rm} AL66: Tested at 40°F Tme-1 -O.<<m 100 Troe-1 {ms) AL72: Tested at 72°F <.OO 5.00 5.00 6.00 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6000.00.------------------------------------------, 5000.00 1000.00 1.00 2.00 3.00 Trre-l{ms) AL63: Tested at 100°F <.00 5.00 6.00 sooo.00,-------------------------------------------, 5000.00 4000.00 11JOO.OD. o.oo 2.00 3.00 Tme-f {ms) AL62: Tested at 150°F 4.00 S.00 6.00 B-7 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-8 o.oo 1.00 1000.00 3.00 Tl!'e-1(rm) AL 71: Tested at 200°F *. oo 5.00 6.00 0.00 1.00 WCAP-18054-NP 2.00 3.00 Trne.f{ms) AL 70: Tested at 225°F 4.00 5.00 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 "'°*" ---------------------------------------., _J t ..aao.ooI -"/ i 2000. 1.00 '" 3.00 Ttre-1(ms) AL69: Tested at 250°F <.O-O 5.00 '*" l SGOO.ooj 4000.J 3000.00 1000.00 D.0-0 1.0-0 lDD 3.00 Tme-1 {111!) AT75: Tested at-80°F '*" 5.00 6.00 B-9 WCAP-18054-NP December 2015 Revision 0 600il1 -"l -ijvl 3000001 1 200000: I 1000.00 Westinghouse Non-Proprietary Class 3 °"" 1.00 3.00 Tme-1 {rm) AT65: Tested at-60°F *.oo 5.00 6.QIJ -00, JOOOOOi _J I 1000.00 OOOt'----'--'1"-"UUJ-".ilJJµ...UlllW>-l-4-'-J..lA..ACLI..l..\JlLLl!U;'""--llj!4..1UL.LLL)'1l..l!:!.l-""'L-11-Ll....fill.JlL!.+1!l---1l..o..J.'-"-"'.___fl._..._,:l._LL.lJC.-..J!LJ"'--ll g Trrr-1 {ms) AT71: Tested at -50°F 8-10 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 1000.00 0.00 t.00 200 3.00 Tme-1(11B} AT69: Tested at -40°F <.oo 6.00 6000.00*; 1 -001 r 'O.OOr i 300000! l 2000.001 I 1000.00* 0.00 1.00 200 3.00 Tme-1(ms) AT68: Tested at -30°F 4.00 5.00 6.00 B-11 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-12 SOOO.OOLO&d-13.-4711 Tlne-1 -OM ms 5000.00 2000.00 1000.00 0.00 1.00 1000.otl 200 3.00 Tme-1 (rm} AT62: Tested at -20°F <.00 5.00 6.00 0.00 1.00 WCAP-18054-NP 2.00 3.00 Tme-1 {rm) AT70: Tested at-10°F *.oo 5.00 6.00 December 2015 Revision 0 BOOOJJC1Loaij..1f3.831b 5000.tlO -4000.00 3000.00 20-00.00 1.00 1000.00 Westinghouse Non-Proprietary Class 3 ll'le-t -M2ms 3.00 Trre-l{nn} AT63: Tested at 0°F *.OO B-13 5.00 6.00 o.ool-* .......................... --t.1 0.00 1.00 WCAP-18054-NP 200 3.00 Trne-1 (ms) AT64: Tested at 40°F *.oo 5.00 6.00 December 2015 Revision 0 ,,,,,,,. Lae0-134591l -.oo 5000.QO 40QMO 2000.00 1000.00 1.00 1000.00 1.00 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 200 200 TEE*1 -O . .i2ms 3.00 Tme-1 (rm} AT73: Tested at 72°F 3.00 Tsre-t{ms) AT67: Tested at 100°F 4.00 '*" 5.00 5.00 B-14 6.00 6.00 December 2015 Revision 0 8000.001 I -1 2000.00! i 1000.00 Westinghouse Non-Proprietary Class 3 B-15 0.00 UlO 200 J.00 fme-1 (rm) AT66: Tested at 150°F "" 5.0-0 6.0-0 '""' 1.0-0 WCAP-18054-NP 2.00 3.0-0 frre-1(ms) AT61: Tested at 200°F "" 5.00 .,, December 2015 Revision 0 60.001 Westinghouse Non-Proprietary Class 3 _J 1000.00 B-16 0.00 f.00 2000.0ll 1000.00 200 3.00 rrre.t(ms) AT74: Tested at 225°F .ao 6.00 0.00....._ _________________ +-__________ _,__, __ ........ 0.00 f.00 WCAP-18054-NP 200 100 Tme-1 (ms) AT72: Tested at 250°F 4.00 .00 6.00 December 2015 Revision 0 6'00001 -ool j <000001 I 300000! 2000.J 1000.00 6'00.00 5000.00 l *OOOOO! I 360-000! l 2000.001 1000.00 D.00 0.00 WCAP-18054-NP 1.00 1.00 Westinghouse Non-Proprietary Class 3 J.00 Trre-l(rm) A W62: Tested at -80°F 200 100 Trne-1(rm) A W65: Tested at -60°F *.oo ... , 5.00 5.00 B-17 6.00 6.00 December 2015 Revision 0 I _,J I DO! 2000.00 1 1000.00 1.DO Westinghouse Non-Proprietary Class 3 2DO 3.00 Trre-l(ms) A W71: Tested at -30°F <.DO B-18 6.DO I sooo.oor I I 20.00' 1000.00 O.DO I.DO WCAP-18054-NP 200 lDO TJrJe..1(ms) A W67: Tested at -20°F <.DO 5.DO 6.110 December 2015 Revision 0 6000001 I -"1 I ,/I 300-0001 h 2000.J 1000.00 1 Westinghouse Non-Proprietary Class 3 B-19 0.00 1.00 200 3.0!1 A W63: Tested at -10°F 4.00 5.00 6.00 3000.00 2G00.00 1000.0!l 1.00 200 WCAP-18054-NP 3.00 Tme-1 (ms) AW73: Tested at 0°F 4.00 5.00 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-20 2000.00 1 1000.00 .... 1.CO -.00 1 socooo) 1 4000.0llr 1 """! 2000.CO rnoo.oo o.co 0.00 1.00 WCAP-18054-NP 200 3.CO ffm..1 (118) A W75: Tested at 20°F 2.CO >CO Tw-1(ms) A W69: Tested at 40°F <.CO 5.CO 4.00 S.OD G.00 '*" December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-21 -ool _J j Nt -w ..... 0.00 1.CO -.00 WCAP-18054-NP 3.01) rme-1 (ms} A W68: Tested at 72°F Trne.l -D.-1-lnts 3.0Q Tllll*l(ms) A W72: Tested at 100°F 4.00 4.00 6.00 6.0Q December 2015 Revision 0 "'°"1 i -oot l 3000.lllJI l 20-00.0-01 t000.00 Westinghouse Non-Proprietary Class 3 B-22 0.110'----------"--"-'llL.l"'-"LJtµ"""'"'-"'1.4""""""'" ............................. .,,,._ ....... ............... 0.0-0 1.00 5000.00 4000.00 1.0-0 WCAP-18054-NP "' 3.0-0 Tme-l(ns) AW74: Tested at 125°F 20-0 3.0-0 Tune-1(rns) A W64: Tested at 150°F '*" 5.00 '*" 5.0-0 6.0-0 6.0-0 December 2015 Revision 0 6000.001 ! ' -001 4000001 ! _J ! 2000.00: i tD.DD Westinghouse Non-Proprietary Class 3 B-23 O.OD 1.00 SOOO.DOLoad-127.8311 5000.00 4GOl>.!HI 11J0{).00 1.00 WCAP-18054-NP lOO 3.00 rme-1 (rm) A W70: Tested at 225°F '" rm:-1 10C Tme-t{m) A W61: Tested at 250°F 4.00 5.00 4.00 S.00 '*"" 6.00 December 2015 Revision 0 60000-01 _,,j i """l I 3000.DOr T I 2000.0-01 11)Q1).0-0 0.0-0 0.00 1.00 6000.00 I S000.01Jl -*!J '""'"f I I 2000.00j ll}0{).00 0.00 0.00 , .. WCAP-18054-NP Westinghouse Non-Proprietary Class 3 3.00 Tme-1{111!} AH72: Tested at-80°F Tm!-l(rm) AH74: Tested at -60°F 4.0-0 *.oo iOO S.0-0 B-24 6.00 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 8-25 Lomi-124.J.711 Tme-1 -0.4-lms 5000.00 -*" 3000.00 2000.00 1GOO.llO 0.00 1.00 GOOO.OOLcad-10.00I> SG00.00 3000.00 200D.OO 1000.00 200 3.0D Trre-1 (rm) AH63: Tested at -30°F Trte-1 -0.4lrm .... 5.00 6.00 0.00 1.00 WCAP-18054-NP 2.00 3.00 Trne-1(ms) AH69: Tested at -20°F 4.00 S.00 6.00 December 2015 Revision 0 ""'.!Jl)I I l 5000.QDr t I 2000.00; 1000.00 Westinghouse Non-Proprietary Class 3 O.llll SllllOllllj I 5000.0IJI ' 1GOD.ll0 1.00 J.llll rme..l{rm) AH71: Tested at -10°F <.CO 5.00 6.llll m m -g TrM-1 (ms) AH75: Tested at 0°F 8-26 WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 6000.00LO&d-10001b Tm::-1 -Q.4'ms 5000.00 3000.00 2000.00 1000.00 0.00 1.00 2.00 3.00 Ttre-l(rm) AH68: Tested at 40°F <.OO 5.00 6.00 5000.0G 4000.00 NI 3000J)ij 2000.001 1000.00 ........ 0.00 1.00 3.00 Trre-l(rm) AH70: Tested at 72°F 5.00 6.00 B-27 WCAP-18054-NP December 2015 Revision 0 SOM.DO 4000l ""! 2000.D!I Westinghouse Non-Proprietary Class 3 B-28 ........ .......... 0.00 1.00 200 3.00 rrre-1(11B} AH64: Tested at 100°F <.OO 5.00 6.00 6000.00,..----------------------------------------i

jr fC00.00 1.00 WCAP-18054-NP 2.00 3.00 Trre-1(ms)

AH66: Tested at 150°F 4.00 S.00 6.00 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 B-29 200ll.OO 1000.00 0.00 1.00 1000.00 2.00 3.00 Tme-1 {ms) AH65: Tested at 225°F 5.00 6.00 ...... 0.00 1.00 WCAP-18054-NP J.00 Tme-1 (ms) AH62: Tested at 250°F <.OO 5.00 6.00 December 2015 Revision 0 APPENDIXC Westinghouse Non-Proprietary Class 3 CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD C.1 METHODOLOGY C-1 Contained in Table C-1 are the upper-shelf energy (USE) values that are used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 6.02. The definition for USE is given in ASTM E 185-82 [Ref. C-1 ], Section 4.18, and reads as follows: "upper shelf energy level -the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy." Westinghouse reports the average of all Charpy 95% shear) as the USE, excluding any values that are deemed outliers using engineering judgment. Hence, the Capsule Y USE values reported in Table C-1 were determined by applying this methodology to the Charpy data tabulated in Tables 5-1 through 5-4 of this report. USE values documented in Table C-1 for the unirradiated material, as well as Capsules U, X, and W, were also determined by applying the methodology described above to the Charpy impact data reported in WCAP-9517 [Ref. C-2], WCAP-11651 [Ref. C-3], WCAP-13880 [C-4], and WCAP-15123 [Ref. C-5]. The USE values reported in Table C-1 were used in generation of the Charpy V-notch curves. The lower-shelf energy values were fixed at 2.2 ft-lb for all cases. The lower-shelf lateral expansion values were fixed at 1.0 mil in order to be consistent with the previous capsule analysis [Ref. C-5]. Table C-1 Upper-Shelf Energy Values (ft-lb) Fixed in CVGRAPH Capsule Material Unirradiated u x w y (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) (ft-lbs) Intermediate Shell Forging 5P-168 167 147 159 155 5933 (Tangential Orientation) Intermediate Shell Forging 5P-145 152 132 146 140 5933 (Axial Orientation) Surveillance Weld Metal 73 70 64 71 67 (Heat #442002) Heat-Affected Zone (HAZ) 108 119 88 118 100 Material CVGRAPH,. Version 6.02 plots of all surveillance data are provided in this appendix, on the pages following the reference list. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-2 C.2 REFERENCES C-1 ASTM El85-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, E706(IF), ASTM, 1982. C-2 Westinghouse Report WCAP-9517, Revision 0, Commonwealth Edison Co. Byron Station Unit No. 1 Reactor Vessel Radiation Surveillance Program, July 1979. C-3 Westinghouse Report WCAP-11651, Revision 0, Analysis of Capsule U from the Commonwealth Edison Co. Byron Unit 1 Reactor Vessel Radiation Surveillance Program, November 1987. C-4 Westinghouse Report WCAP-13880, Revision 0, Analysis of Capsule Xfrom the Commonwealth Edison Company Byron Unit 1 Reactor Vessel Radiation Surveillance Program, January 1994. C-5 Westinghouse Report WCAP-15123, Revision 1, Analysis of Capsule W from Commonwealth Edison Company Byron Unit 1 Reactor Vessel Radiation Surveillance Program, January 1999. WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C.3 CVGRAPH VERSION 6.02 INDIVIDUAL PLOTS BYRON UNIT 1 UNIRRADIATED (TANGENTIAL) CVGr.iph 6.02: Hyperbolic Tangent Curve Printed on 9/1/20154:16 PM A= 85.10 B = 82.90 C = 91.49 TO= -14.43 D = 0.00 Correlation Coefficient = 0. 961 Equation is A+ B * [Tanh((T*TO)/(C+DTI)f Upper Shelf Energy = 168.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) Temp@JO ft-lbs=-87.70° F Temp@;J5 ft-lbs=-78.40° F Temp@50 fl*lbs=-55.70° F C-3 Plant: Byron l Orientation: Tangential Material: SA508CL2 Capsule: UNIRR Heat: SP-5933 140 -120 .,Q -I ¢:: '-' 100 >. ell i.. = 80 60 u 40 ... 20 0 -300 CVGr.iph6.02 WCAP-18054-NP 1 *-* -1/0. /-... po ... r;{'J o I -200 -100 I ; 0 100 200 300 Temperature {° F) 09/0!12015

400 500 600 Page 112 December 2015 Revision 0 Plant
Byron 1 Orientation:

Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: UNIRR C-4 Heat: SP-5933 BYRON UNIT I UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Tem perature (" F) InputCVN -135 6.0 -135 14.0 -100 72.0 -100 18.0 -75 32.0 -75 10.0 -50 32.0 -40 82.0 -40 63.0 0 104.5 0 102.0 40 134.0 40 115.0 100 144.0 100 172.0 150 163.0 210 170.0 210 165.0 CVGraph 6.02 WCAP-18054-NP Computed CVN 13.3 13.3 24.3 24.3 37.0 37.0 54.4 62.5 62.5 98.1 98.1 129.3 129.3 155.4 155.4 163.6 166.8 166.8 09/01/2015 Differential -7.29 0.71 47.67 -6.33 -5.04 -27.04 -22.40 19.49 0.49 6.44 3.94 4.68 -14.32 -l l.44 16.56 -0.57 3.22 -1.78 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIATED (TANGENTIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/1/20154:16 PM A= 45.88 B = 44.88 C = 64.54 TO = -37. 70 D = 0.00 Correlation Coefficient = 0.943 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf L.E. = 90. 75 Lower Shelf L.E. = 1.00 (Fixed) Temp'.QIJ5 mils=-53.60° F Plant: Byron l Material: SA508CL2 Capsule: UNIRR Heat: 5P-59JJ Orientation: Tangential 100 90 6 70 -.... e .... ... '-' = 60 Q j *-.. '. = 50 c. Ii< ..... . .. -40 :i.. ...... 30 **I ,.J lo-.. -' .. 10 0 __ ___ .1-*--L-....1.*---1.---L'. -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 09/01/2015 Page 1/2 C-5 WCAP-18054-NP December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietal}' Class 3 Material: SA508CL2 C'.apsule: UNJRR C-6 Heat: 5P-5933 BYRON UNIT 1 UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Tern peruture (0 F) Input L. E. -135 2.0 -135 6.0 -100 48.0 -100 9.0 -75 20.0 -75 4.0 -50 20.0 -40 58.0 -40 45.0 0 72.5 0 73.0 40 90.0 40 73.5 100 86.0 100 94.0 150 87.0 210 93.0 210 90.0 CVGraph 6.02 WCAP-18054-NP Computed L. E. 5.2 I 5.2 12.4 12.4 22.5 22.5 37.4 44.3 I 44.3 69.5 69.5 83.3 83.3 89.5 89.5 90.5 90.7 90.7 09/01/2015 Differential -3.20 0.80 35.63 -3.37 -2.49 -18.49 -17.42 13.72 0.72 3.03 3.53 6.66 -9.84 -3.51 4.49 -3.49 2.29 -0.71 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-7 BYRON UNIT 1 UNIRRADIATED (TANGENTIAL) Plant: Byron 1 Oricnlation: Tangential 100 .... 90 ... 80 70 .... -eo: 60 .= ... ...... 50 = I-"' -40 30 .... 20 10 ... 0 CVGraph 6.02: Hyperbolic Tangent Ctm*c Printed on 9/1/20154:17 PM A= 50.00 B = 50.00 C = 84.20 TO= 7.47 D = 0.00 Correlation Coctricicnt

0.955 Equalion is A+ B * [Tanh((T-TO)/(C+Dl))j Upper Shclf%Shcar

100.00 (Fixed) Lower Shclf%Shcar = 0.00 (Fixed) /** /* ---Temperature at 50% Shear= 7.50 J Material: SA508CL2 Capsule: UNIRR I I ... ,, 'O I I ; I -300 -200 -100 0 100 200 300 400 Temperature {° F) CVGraph 6.02 09/0112015 WCAP-18054-NP Heat: SP-5933 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: UNIRR C-8 Heat: 5P-5933 BYRON UNIT 1 UNIRRADIATED (TANGENTIAL) Charpy V-Notch Data Temperature{° F) Input %Shear -135 00 -135 0.0 -100 0.0 -100 0.0 -75 0.0 -75 0.0 -50 0.0 -40 46.0 -40 38.0 0 57.0 0 61.0 40 48.0 40 61.0 100 79.0 100 100.0 150 100.0 210 100.0 210 100.0 CVGraph 6.02 WCAP-18054-NP I Computed %Shear I 3.3 I I 3.3 7.2 7.2 12.4 12.4 20.3 24.5 I 24.5 45.6 45.6 68.4 68.4 90.0 90.0 96.7 99.2 99.2 09/0112015 Differential -3.28 -3.28 -7.23 -7.23 -12.36 -12.36 -20.34 21.54 13.54 11.42 15.42 -20.41 -7.41 -11.01 9.99 3.28 0.81 0.81 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT I UNIRRADIA TED (AXIAL) CVGraph 6.02: HypcrlJolic Tangent Curve Printed on PM A= 73.60 B = 71.40 C = 101.71 TO= l.06 D = 0.00 Correlation Coefficient= 0.931 Eqwllion is A+ B

  • ITanh((f-TO)/(C+DT))]

Upper ShclfEncrg_v = (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-9 Temp@30 ft-lbs=-71.10° F Temp@35 ft-1bs=-{)0A0° F Temp@50 rt-lbs=-33.80° F Plant: Byron 1 Orientation: Axial -,.Q -100 I It: --...... e.D 80 a.i = z > 60 u 40 CVGraph 6.02 WCAP-18054-NP -200 -100 I i Material: SAS08CL2 Capsule: UNIRR ... 0 0 100 200 300 Temperature{° F) 09/01/2015 Heat: SP-5933 400 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: UNIRR C-10 Heat: SP-5933 BYRON UNIT 1 UNIRRADIA TED (AXIAL) Charpy V-N otch Data ----I r--Temperature{° F) InputCVN Computed CVN -125 I 38.0 13.2 -125 ! 19.0 13.2 -80 16.0 26.3 -80 47.0 26.3 -45 32.0 43.3 -45 21.0 43.3 -15 61.0 62.4 -15 50.0 62.4 0 103.5 72.9 0 86.5 72.9 50 99.0 105.5 50 66.0 105.5 100 148.0 127.1 100 151.0 127.l 100 125.0 127.1 210 146.0 142.7 210 137.0 142.7 210 152.0 142.7 CVGraph 6.02 09/0112015 WCAP-18054-NP


I Differential 24.76 5.76 -10.31 20.69 -11.31 -22.31 -1.42 -12.42 30.65 13.65 -6.53 -39.53 20.86 23.86 -2.14 3.31 -5.69 9.31 Page 2/2 December 2015 Revision 0 Plant: Byron l Orientation: Axial 100 90 .... 80 ..... .... s '-' .. = 60 Q .... .... = 50 ..... -40 ;... ...... QJ ...... 30 ..... 20 10 CVGrnph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIATED (AXIAL) -200 CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/1/2015-1:19 PM A= -15.88 B = -14.88 C = 88.63 TO= -11.03 D = 0.00 Correlation Coefficient = 0.94 7 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper ShelfL.E. = 90.76 Lower Shelf L.E. = LOO (Fixed) -100 (r) Temp'f!l.35 mils=-32.90° F Material: SA508CL2 Capsule: UNIRR /-" D I ;*-1* 0 100 200 300 Temperature {° F) 09/01/2015 400 C-11 Heat: SP-5933 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 Material: SA_.:;osCL2 01psule: UNIRR BYRON UNIT 1 UNIRRADIATED (AXIAL) Charpy V-Notch Data T ----Temperature{° F) Input L. E. Computed L. E. -125 I 25.0 7.4 I -125 9.0 7.4 -80 8.0 16.6 -SO 30.0 16.6 -45 19.5 29.5 -45 12.5 29.5 -15 45.0 43.9 -15 36.0 43.9 0 72.0 51.4 I 0 61.0 51.4 50 67.5 72.7 50 64.0 72.7 100 89.5 84.0 100 89.0 84.0 100 79.0 l 84.0 210 90.0 90.1 210 87.0 90.l I 210 92.0 ! 90.l I CVGraph 6.02 09/0112015 WCAP-18054-NP C-12 Heat: SP-5933 Differential 17.63 1.63 -8.63 13.37 -9.97 -16.97 1.13 -7.87 20.57 9.57 -5.17 -8.67 5.52 5.02 -4.98 -0.15 -3.15 1.85 Page 2/2 December 2015 Revision 0 Plant: Byron l Orientation: Axial Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIATED (AXIAL) CVGrnph 6.02: Hyperbolic T;mgcnt Cun-e Printed on 9/1/2015 4:19 PM A= 50.00 B = 50.00 C = 106.81 TO= 57.84 D = 0.00 Correlation Coefficient= 0.940 Equation is A+ B * (Tanh((T-TO)/(C+DD)J Upper Shclf%Shcar = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Tempcrnturc at 50% Shear= 57. 90 Material: SA508CL2 Capsule: UNIRR Heat: 5P-5933 100 .. v-/ : 90 1-------1---l-...;...__+--+-*-/_,_* .. ---'---l----+---'--+----* 80

  • 1 70
    • / 60 . "()

__ _,_ __ <) /* 40 j: 30 ) 10 0 L-......1 .... C-13 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 09/01/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Westinghouse Non-Proprietary Class 3 l'vfaterial: SA508CL2 Capsule: UNIRR BYRON UNIT 1 UNIRRADIA TED (AXIAL) Charpy V-Notch Data Temperature (0 F) Input %Shear Computed %Shear -125 0.0 3.2 -125 0.0 I 3.2 -80 0.0 7.0 -80 0.0 7.0 -45 0.0 12.7 -45 0.0 12.7 -15 10.0 20.4 -15 10.0 I 20.4 0 42.0 25.3 0 54.0 25.3 50 59.0 46.3 50 53.0 46.3 100 50.0 68.8 100 47.0 68.8 100 77.0 68.8 210 100.0 94.5 210 100.0 94.5 210 100.0 94.5 CVGraph 6.02 09/01/2015 WCAP-18054-NP C-14 Heat: 5P-5933 Differential -3.16 -3.16 -7.04 -7.04 -12.72 -12.72 -I 0.36 -10.36 16.71 28.71 12.66 6.66 -18.77 -21.77 8.23 5.47 5.47 5.47 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIA TED (WELD) CVGmph 6.02: Hyperbolic Tangent Cnr\"C Printed on 9/1/2015 4:22 PM A= 37,(i() B = 35.40 C = 95.95 TO= -9.67 D = 0.00 Correlation Coefficient= 0.960 Equation is A+ B * [Tanh((T-TO)/(C+DT))] Upper Shelf Energy = 73 .00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) C-15 Temp'?j)30 ft-lbs=-30.50° F Temp@35 ft-lbs=-16.70° F Temp@.50 ft-lbs= 25.50° F Plant: Byron t Orientation: N/ A 80 70 60 -...... ,.Q -50 I '-' :r.. 40 al = z 30 ;;.... u ... 20 10 .... . 0 -300 CVGmph6.02 WCAP-18054-NP Material: WELD Capsule: UNIRR J. Q ..l.. T/. --'.¥ I b 0 [g* ,. ;-.... -J*----. **-J -L/ . 0 I -200 -100 0 100 200 Temperature {° F) 09/01/2015 I 300 400 Heat: 442002 1. I 500 600 Page 1/2 December 2015 Revision 0 Plant: li)Ton 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 lv!atcrial: \VELD Capsule: UNTRR BYRON UNIT 1 UNIRRADIA TED (WELD) Charpy V-Notch Data I I Temperature {° F) I Input CVN _J_ Computed CVN -80 r 3.0 I 15.5 ' ' i -80 15.0 15.5 1----.. -50 37.0 23.5 -45 31.0 25.1 -45 32.0 25.1 -10 35.5 37.5 -IO 30.0 37.5 30 43.0 51.5 30 46.0 51.5 30 50.0 51.5 65 64.0 60.7 65 63.0 60.7 100 70.0 66.5 100 73.5 66.5 150 74.0 70.5 ' 150 I 74.0 70.5 210 77.0 72.3 210 71.0 72.3 CVGraph 6.02 09/0li2015 WCAP-18054-NP C-16 Heat: 442002 Differential -12.48 -0.48 13.46 5.88 6.88 -1.98 -7.48 -8.45 -5.45 -1.45 3.33 2.33 3.53 7.03 3.45 3.45 4.72 -1.28 Page 212 December 2015 Revision 0 Plant: I Orientation: N/A Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIA TED (WELD) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 911/2015 4:23 PM A= 33.44 B = 32.44 C = 87.30 TO= 8.57 D = 0.00 Correlation Coefficient= 0.977 Equalion is A+ B * (Tanh((f-TO)/(C+DT))] I Upper ShelfL.E. = 65.87 Lower Shelf L.E. = l.00 (Fixed) Temp@35 mils= 12.80° F Material: WELD Capsule: UNIRR ...... :-C-17 Heat: 442002 0 -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 09/01/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Temperature (0 F) 80 45 10 -10 30 30 30 65 65 100 100 150 150 210 210 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 lvlaterial: WELD Capsule: UNIRR BYRON UNIT 1 UNIRRADIA TED (WELD) Charpy V-Notch Data Input L. E. Computed L. E. 0.0 I 8.5 7.0 8.5 23.0 14.4 20.0 15.7 22.0 15.7 26.0 26.6 21.0 26.6 34.0 41.2 39.0 41.2 40.0 41.2 55.0 51.9 56.0 51.9 62.0 58.8 62.0 58.8 65.0 63.4 62.0 63.4 63.0 65.2 62.0 ! 65.2 09/0112015 C-18 Heat: 442002 Differential -8.54 -1.54 8.56 4.29 6.29 -0.64 -5.64 -7.24 -2.24 -1.24 3.10 4.10 3.24 3.24 1.57 -1.43 -2.24 -3.24 Page 2/2 December 2015 Revision 0 Plant: Byron l Orienlalion: N/A 100 '-* , . 90 ,.. 80 70 '-* -= 60 '"' .c 00 .... 50 = '"' ,... i:.J -40 '"' 30 20 10 0 -300 CVGrnph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIA TED (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/1/2015 4:23 PM A= 50.00 B = 50.00 C = 67.20 TO= 8.83 D = 0.00 Correlation CocITicicnt = 0.989 Equalion is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= 8. 90 Material: WELD Capsule: UNIRR Fluence: .. --.. .v _J 7 I I l* ./ . ._.,,,; -I I I -200 -100 0 100 200 300 400 Temperature {° F) 09/01/2015 C-19 Heat: 442002 I 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Temperature (0 F) 80 45 10 -IO 30 30 30 65 65 100 100 150 150 210 210 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 lvlaterial: \VEW Capsule: UNIRR BYRON UNIT 1 UNIRRADIATED (WELD) Charpy V-Notch Data Input %Shear Computed %Shear 0.0 6.6 0.0 6.6 20.0 14.8 I 25.0 16.8 18.0 16.8 38.0 36.3 40.0 36.3 52.0 65.2 59.0 I 65.2 I 64.0 65.2 90.0 84.2 90.0 84.2 100.0 93.8 100.0 93.S 100.0 98.5 100.0 98.5 100.0 99.7 100.0 99.7 09/0!i2015 C-20 Heat: 442002 Diffcrentlal -6.64 -6.64 5.21 8.23 I _,., *-'--' 1.66 3.66 -13.25 -6.25 -1.25 5.82 5.82 6.22 6.22 1.47 1.47 0.25 0.25 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-21 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 9/1/2015 4:24 PM A= 55.10 B = 52.90 C = 141.19 TO= -32.05 D = 0.00 Correlation CocJTicicut = 0. 740 Equation is A+ B * [Tanh((f-TO)/(C+DD)] Upper Shelf Energy = !08.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) Temp@30 ft-lbs=-IO-l.80° F Temp@35 ft-lbs=-88.500 F Temp(it50 ft-lbs=-45. 70° F Plant: Byrn n 1 Orientation: N/A Material: SA508CL2 Capsule: UNIRR () Heat: SP-5933 0 ............ ..._ ...... ............. ...... ..... *------............... -300 -200 -100 0 100 200 300 Temperature {° F) CVGrnph 6.02 09/01/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: UNIRR C-22 Heat: 5P-5933 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) Input CVN I -150 12.0 -150 19.0 -100 86.0 -100 17.0 -50 62.0 -50 42.0 0 61.0 0 40.0 20 54.0 20 42.0 20 45.0 50 95.0 50 124.0 100 110.0 100 136.0 150 118.0 210 93.0 210 81.0 I CVGraph 6.02 09/0112015 WCAP-18054-NP Computed CVN 19.0 19.0 31.4 31.4 48.4 48.4 66.9 66.9 73.8 73.8 73.8 82.8 82.8 93.9 93.9 100.5 104.7 104.7 Differential -6.95 0.05 54.56 -14.44 13.59 -6.41 -5.91 -26.91 -19.76 -31.76 -28.76 12.21 41.21 16.12 42.12 17.46 -11.68 -23.68 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-23 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Plant: Byron l Orientation: N/A 70 -60 t'll -.... e ,_. 50 = Q .... .... . t'll = c. 40 -30 :i.. ;..o ,_;i 20 CVGraph 6.02: Hypelbolic Tangent CuIYe Printed on 9/1/2015 4:25 PM A= 37.78 B = 36.78 C = 150.40 TO= 10.71 D = 0.00 Correlation Coefficient= 0.850 Equation is A+ B * [Tanh((f-TO)/(C+Dl))] Upper ShclfL.E. = 74.56 Lower Shelf LE. = 1.00 (Fixed) () Temp@35 mils= -0.60° F j o-* 8 Material: SA508CL2 Capsule: UNIRR 0 Heat: SP-5933 0 .................. ....... ...... ............ ....... ....... ...... -300 -200 -100 CVGraph 6.02 WCAP-18054-NP 0 100 200 300 Temperature {° F) 09/01/2015 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: UNIRR C-24 Heat: 5P-5933 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Charpy V-N otch Data -1 Temperature {° F) Input L. E. -150 I 4.5 -150 6.0 1----100 42.0 -100 8.0 -50 36.0 -50 22.0 0 35.0 0 28.5 20 30.0 20 24.0 20 25.0 50 44.0 50 61.0 100 64.0 100 78.0 150 72.0 210 66.0 210 57.0 CVGraph 6.02 WCAP-18054-NP Computed L. E. 8.8 8.8 14.7 14.7 23.7 23.7 35.2 35.2 40.1 40.1 40.I 47.2 47.2 57.4 57.4 64.6 69.7 69.7 0910112015 Differential -4.26 -2.76 27.27 -6.73 12.31 -1.69 -0.17 -6.67 -10.05 -16.05 -15.05 -3.18 13.82 6.63 20.63 7.41 -3.71 -12.71 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Plant: Byron t Orientation: NIA CVGmph 6.02* Hyperbolic Tangent Curve Printed on 9/1/2015 4:25 PM A= 50.00 B = 50.00 C = 6 l.63 TO = 10. 71 D = 0.00 Correlation Coefficient= 0.984 Equation is A+ B * (Tanh((f-TO)/(C+DDll Upper Shclf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= l0.80 Material: SA508CL2 Capsule: UNIRR Heat: SP-5933 100 _* l * .......... . 60 '6 J /tl----+---l-----+----+---+----1 20 i------,..--i--------t. -.-'--#' ;., .--+-----+---+---- ... -+-, -. .-t 10 .* 0 C-25 -300 -200 -100 0 100 200 300 400 500 600 Temperature{° F) CVGmph6.02 09/01/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SAS08CL2 Capsule: UNIRR C-26 5P-5933 BYRON UNIT 1 UNIRRADIATED (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature(° F) Input %Shear -150 0.0 -150 0.0 -100 0.0 -100 0.0 -50 29.0 -50 25.0 0 30.0 0 34.0 20 52.0 20 59.0 20 56.0 50 81.0 50 89.0 100 100.0 JOO 100.0 150 100.0 210 100.0 210 100.0 CVGraph 6.02 09/01/2015 WCAP-18054-NP Computed %Shear 0.5 0.5 2.7 2.7 12.2 12.2 41.4 41.4 57.5 57.5 57.5 78.2 78.2 94.8 94.8 98.9 99.8 99.8 Differential -0.54 -0.54 -2.68 -2.68 16.76 12.76 -I 1.40 -7.40 -5.48 1.52 -1.48 2.84 10.84 5.23 5.23 1.08 0.16 0.16 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (TANGENTIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:-16 PM A = 8.J.60 B = 82 . .JO C = 46.88 TO = -21. 70 D = 0.00 Correlation CocITicicut = 0.991 Equa1ion is A+ B * (Tanh((f-TO)/(C+Dl))] Upper ShclfEncrgy = 167.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) Tcmp@35 ft-lbs=-54J0° F Temp@50 ft-lbs=--12.60° F Plant: Byron I Orientation: Tangential Material: SA508CL2 Capsule: U Heat: 5P-5933 180 o 0 n-*- ... 140 -( { -l;'-l 120 .c -I .._. 100 ....... OJ) QI = 80

  • I I z > 60 u -40 d .... 20 -lo i 0 ....-1) : I I C-27 -300 -200 -100 0 100 200 300 400 500 600 Temperature

{° F) CVGrnph 6.02 07120/2015 WCAP-18054-NP Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U BYRON UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data C-28 Heat: 5P-5933 Temperature{° F) I Input CVN Computed CVN Differential ---100 5.0 -75 20.0 -75 32.0 -60 10.0 -60 34.0 -50 37.0 -50 43.0 -25 78.0 -25 79.0 0 127.0 50 144.0 75 170.0 125 174.0 250 169.0 350 158.0 CVGraph 6.02 0712012015 WCAP-18054-NP 7.8 17.6 17.6 29.1 29.l 40.l 40.1 78.8 78.8 120.2 159.6 164.4 166.7 167.0 167.0 -2.84 2.42 14.42 -19.11 4.89 -3.13 2.87 -0.81 0.19 6.77 -15.61 5.62 7.31 2.00 -9.00 --Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (TANGENTIAL) Plant: l Orientation: Tangential 90 ., 80 .... *-s .._ .... = 60 0 *-..... = eoJ c.. 50 l"-1 -40 eoJ ;i.., ...... Q,) .. 30 eoJ ..... 20 .... to ..... 0 -300 -200 CVGrnph 6.02 WCAP-18054-NP CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:-16 PM A= 43.79 B = 42.79 C = 38.99 TO= -39.48 D = 0.00 ... Correlation Coefficient= 0.979 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper ShelfL.E. = 86.58 Lower Shelf L.E. = 1.00 (Fixed) : I . -' -I\ ..;. I) . (I I. /*:* Iv: I -100 Temp:fE35 mils=-47.60° F Material: SA508CL2 Capsule: U . ,... 1/A 0 0 I J I . -*i 0 100 200 Temperature {° F) 07/20/2015 0 ; 300 400 C-29 Heat: SP-5933 ,!.

  • 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation:

Tangential Westinghouse Non-Proprietary Class 3 Material: SAS08CL2 Capsule: U BYRON UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data C-30 Heat: SP-5933 Tcm pcraturc (0 F) I Input L. E. Computed L. E. Differential -JOO I 5.0 I -75 17.5 I -75 30.0 -60 9.5 -60 24.0 -50 I 28.0 -50 31.0 -25 60.5 -25 61.0 0 81.5 50 81.0 I 75 90.5 125 83.0 I 250 85.0 350 88.0 CVGraph 6.02 07/2012015 WCAP-I 8054-NP 4.7 ' 12.9 12.9 23.l 23.1 32.5 32.5 59.0 59.0 76.6 85.7 86.3 86.6 86.6 86.6 0.33 4.59 17.09 -13.64 0.86 -4.51 -1.51 1.52 2.02 4.90 -4.72 4.16 -3.56 -1.58 l.42 Page 2/2 December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (TANGENTIAL) Plant: Byron I Orientation: Tangential CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/'20/2015 PM A = 50.00 B = 50.00 C = 511.96 TO = -16.40 D = 0.00 Correlation Coefficient= 0.972 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shclf%Shear = L00.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Tempernturc at 50% Shear= -16.30 Material: SA508CL2 Capsule: U Heat: 5P-59JJ 100 r ... -. 90 t---1-. -t-----+----t----,/'*-tc-. _-t-t-. --t----+---t----;-----t 80 t---... 70 I "'!' .... 0 C-31 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U BYRON UNIT 1 CAPSULE U (TANGENTIAL) Charpy V-Notch Data --C-32 Heat: SP-5933 Temperature{° F) Input %Shear Computed %Shear Differential -100 0.0 -75 5.0 -75 20.0 -60 5.0 -60 15.0 -50 15.0 -50 25.0 -25 55.0 -25 55.0 0 65.0 50 70.0 75 90.0 125 100.0 250 100.0 350 100.0 CVGraph 6.02 07120/2015 WCAP-18054-NP 5.5 12.0 12.0 18.6 18.6 24.2 24.2 42.8 42.8 63.6 90.5 95.7 99.2 100.0 100.0 -5.54 -7.05 7.95 -13.56 -3.56 -9.23 0.77 12.25 12.25 1.44 -20.48 -5.69 0.82 0.01 0.00 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (AXIAL) CVGr.tph 6.02: Hyperbolic Tangc!U Curve Printed on 7/20/2015 2:4 7 PM A= 77.10 B = 74.90 C = 48.86 TO= -16.45 D = 0.00 Correlation Coefficient= 0.985 Equa1ion is A+ B * [Tanh((f-TO)/(C+on)J Upper Shelf Energ_y = 152.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-33 Temp@30 ft-lbs=-52.50° F Temp@35 ft-lbs=-47.50° F Temp@.50 ft-lbs=-34.90° F Plant: Byron 1 Oricnlation: Axial 160 140 .-. 120 .c "T ¢:: '-' 100 ..... OJ) ;I. Qj c 80 z -* > 60 u ... 40 .... 20 .... 0 -300 CVGrnph 6.02 WCAP-18054-NP -200 ... Material: SAS08CL2 Capsule: U 0 0 *7 /o /. 0 .h -. -: J l _j ' ; ' ' -100 0 100 200 Temperature {° F) 07/20/2015 ...... --' . 300 400 Heat: SP-5933 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature (0 F) -100 75 60 50 25 0 50 75 125 250 350 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U BYRON UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data InputCVN Computed CTh 8.0 ! 6.9 5.0 14.7 8.0 14.7 14.0 23.8 20.0 23.8 24.0 32.5 47.0 32.5 67.0 64.I 80.0 I 64.1 93.0 101.4 124.0 142.7 163.0 148.5 155.0 151.5 147.0 152.0 141.0 I 152.0 07/2012015 C-34 Heat: 5P-5933 Differential l.05 -9.70 -6.70 -9.77 -3.77 -8.48 14.52 2.87 15.87 -8.41 -18.74 14.47 3.46 -5.00 -l l.00 Page 212 December 2015 Revision 0 Plant: Bymn 1 Orientation: Axial 90 80 ...... 70 -.... .. -.... e 60 ,_, = .... '. c .... 50 = .... Q., 40 -.... 30 Q,) ..... I-* 20 .... 10 ...... 0 -300 -200 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (AXIAL) CVGmph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:47 PM A = 39.80 B = 38.80 C = 33.02 TO = -35.27 D = 0.00 Correlation CocITicicnt = 0.983 Equation is A+ B * [Tanh((f-TO)/(C+DD)] Upper Shelf L.E. = 78.61 Lower Shelf L.E. = 1.00 (Fixed) c -100 ,. -!) Temp'.g;J5 mils=-39.30° F Material: SA508CL2 Capsule: U 0 *O e . ... ' ; 0 0 100 200 300 Temperature {° F) 07/20/2015 400 C-35 Heat: SP-5933 I I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Tcm pernturc (° F) -JOO 75 60 50 25 0 50 75 125 250 350 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U BYRON UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data InputL E. I Computed L. E. ' 7.5 I 2.5 5.5 7.4 7.0 7.4 11.0 15.2 15.0 15.2 16.0 23.6 33.0 23.6 47.0 51.5 60.0 51.5 64.5 I 70.4 75.0 78.2 84.0 78.5 70.0 78.6 84.5 78.6 82.0 78.6 07/20/2015 C-36 Heat: 5P-5933 Differential 4.99 -1.91 -0.41 -4.18 -0.18 -7.55 9.45 -4.50 8.50 -5.91 -3.17 5.49 -8.60 5.89 3.39 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (AXIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:48 PM A= 50.00 B = 50.00 C = 50.09 TO = -14.88 D = 0.00 Correlation CoeITicicnt = 0.982 Equation is A+ B * [Tanh((T-TO)/(C+DT))J Upper Shelf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= -14.80 Plant: l Orientation: Axial Material: SA508CL2 Capsule: U Heat: SP-5933 100

90

_ __,_ ___ ____.__.,___--I 70 = 60 Qj -.c 00. ..... 50 = Qj u t 40 ., 30 c/-* 20 I----+-----+-, t-f-: ----------+---+---t 10 o,* ,* 0 ...... ...... ...... .... C-37 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature (0 F) -100 75 60 50 25 0 50 75 125 250 350 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U BYRON UNIT 1 CAPSULE U (AXIAL) Charpy V-Notch Data Input %Shear Computed %Shear I 5.0 3.2 I 2.0 I 8.3 5.0 8.3 10.0 14.2 10.0 14.2 15.0 19.7 25.0 19.7 30.0 40.0 60.0 40.0 I 65.0 64.4 80.0 93.0 95.0 97.3 100.0 99.6 100.0 100.0 100.0 100.0 07/2012015 C-38 Heat: SP-5933 Differential 1.77 -6.31 -3.31 -4.17 -4.17 -4.74 5.26 -10.03 19.97 0.57 -13.D3 -2.31 0.37 0.00 0.00 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7120/2015 2:-18 PM A= 36.10 B = 33.90 C = 107.58 TO =-5.73 D = 0.00 Correlation CocITicicnt = 0.980 Equation is A+ B * [Tanh((f-TO)/(C+Dn)J Upper Shelf Energy = 70.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-39 Temp'.f!l30 ft-lbs=-2.5.30° F Temp@35 ft-lbs= -9.20° F Temp@.50fl-lbs=-!1.20° F Plant: I Orientation: N/A Material: WELD Capsule: U Heat: 12002 80 __ .............. __ .............. ..,... ..................... --............................ __, .......................................... .._ .............. ....,... .............. ..... 70 60 -rll .c -50 I it: -40 = 30 u 20 10 I ) __ v L----() . **'-0 ..... ............

  • ..........

..... ....... ..... __ __. __ __. __ __. __ ...... -300 -200 -100 0 100 200 300 Temperature (° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Tem peratur<' (0 F) -100 25 -25 0 0 25 25 50 50 75 125 200 250 300 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WELD Capsule: U BYRON UNIT 1 CAPSULE U (WELD) Charpy V-Notch Data ---InputCVN Computed CVN 15.0 12.2 23.0 I 22.9 I ! 28.0 I 30.l 33.0 30.I 32.0 37.9 39.0 37.9 46.0 45.5 50.0 45.5 44.0 I 52.2 54.0 52.2 60.0 I 57.6 70.0 64.5 67.0 68.6 70.0 69.4 73.0 69.8 07120/2015 C-40 Heat: 442002 Differential 2.78 0.11 -2.09 2.91 -5.91 1.09 0.47 4.47 -8.24 1.76 2.36 5.48 -1.55 0.58 3.23 --Page 2/2 December 2015 Revision 0 Plant: Byron l Oricnration: N/A Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Primed on 7/'20/2015 2:49 PM A= 32.92 B = 31.92 C = 121.85 TO= 4.76 D = 0.00 Correlation Coefficient= 0.988 Equarion is A+ B * [Tanh((f-TO)/(C+DD)J Upper Shelf L.E. = 64.84 Lower Shelf L.E. = 1.00 (Fixed) Temp@35 mils= 12.80° F Material: WELD Capsule: U C-41 Heat: 442002 0 .......................... ____ . _______ . _______ .._. __ ...... __ , _________ . ____ ......... __ _.. _____ . ____ ..... __ ..... -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Temperature{° F) -100 25 -25 0 0 25 25 50 50 75 125 200 250 300 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WELD Capsule: U BYRON UNIT 1 CAPSULE U (WELD) Charpy V-N otch Data C-42 Heat: 442002 ---------------------- Input L. E. Computed L. E. 10.5 10.7 20.0 I 19.5 25.0 25.3 27.0 25.3 26.0 31.7 34.0 31.7 38.5 38.2 40.5 38.2 41.0 44.3 46.0 44.3 48.5 I 49.5 61.0 57.I 58.5 62.4 63.0 63.7 66.5 64.3 0712012015 Differential -0.20 0.53 -0.28 1.72 -5.67 2.33 0.33 2.33 -3.26 1.74 -1.02 3.95 -3.85 -0.72 2.16 Page 2/2 December 2015 Revision 0 Plant: Byron 1 Oricnlation: N/A Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE U (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7120/2015 2:-19 PM A= 50.00 B = 50.00 C = 73.41 TO= 22.91 D = 0.00 Correlation Coefficient= 0.977 Equa1ion is A+ B * [Tanh((f-TO)/(C+Dnll Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf '%Shear= 0.00 (Fixed) Tempernture at 50% Shear= 23.00 Material: WELD Capsule: U Heat: 442002 100 __ -_--, 90

  • /* -.. 80 t----:--t----,--+---+---.
+-+---,----i--1------+---'--+---'--I 50 t-----t---+----t-1-1-t-J---

--l----+--l-----t---i---,-----1 30

1

__ -_-1--__ -_-"----I 0 C-43 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA -Tern peraturc {° F) -100 25 -25 0 0 25 25 50 50 75 125 200 250 300 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WELD Capsule: U BYRON UNIT 1 CAPSULE U (WELD) Charpy V-Notch Data [ Input %Shear I Computed %Shear I 5.0 3.4 ! 10.0 12.1 15.0 21.3 25.0 21.3 30.0 34.9 40.0 34.9 55.0 51.4 65.0 51.4 50.0 67.7 60.0 67.7 90.0 80.5 100.0 94.2 100.0 99.2 100.0 99.8 100.0 99.9 07/2012015 C-44 Heat: 442002 Differential 1.61 -2.07 -6.33 3.67 -4.88 5.12 3.58 13.58 -17.66 -7.66 9.48 5.83 0.80 0.21 0.05 --Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-45 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:50 PM A= 60.60 B = 58.40 C = 198.80 TO= -53.74 D = 0.00 Correlation Coefficient=

0. 703 Equalion is A+ B * [Tanh((T-TO)/(C+DT))]

Upper Shelf Energy = 119 .00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) Temp@30 fl-lbs=-169.40° F Temp@35 ft-lbs=-147.20° F Temp@50 fl-lbs=-90.20° F Plaut: Byron 1 Orie11tation: N/A 160 140 -120 .c. -I ¢:: --100 ....... bl) ;... c 80 z ;;-.. 60 u 40 20 () .. 0 /4.: .. / 0 Material: SA508CL2 Capsule: U 0 / 0 v Heat: SP-5933 0 ._ .................. ...... ...... ..... ...... -JOO -200 -100 0 100 200 JOO Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietaiy Class 3 Material: SAS08CL2 Capsule: U C-46 Heat: SP-5933 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input CVN -150 25.0 ! -150 15.0 -100 11 LO -100 29.0 -75 55.0 -75 32.0 -50 94.0 -50 45.0 0 69.0 50 58.0 75 135.0 I 125 77.0 200 89.0 300 173.0 CVGraph 6.02 07/20/2015 WCAP-18054-NP Computed CVN --* 34.3 34.3 47.2 47.2 54.4 54.4 61.7 61.7 76.0 88.6 93.9 102.4 110.6 115.8 Differential -9.34 -19.34 63.75 -18.25 0.62 -22.38 32.30 -16.70 -7.01 -30.58 41.11 -25.41 -21.56 57.23 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-47 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Plant: By1*on 1 Orientation: N/A ..... 70 ...... -60 r:l:l -.... = .... . -50 = 0 .... r:l:l = c.. 40 ..... -i.. 30 -+-' 20 CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:50 PM A= 38.46 B = 37.46 C = 221.66 TO= -17.85 D = 0.00 Correlation Coefficient= 0.821 Equation is A+ B * [Tanh((T-TO)/(C+DD)] Upper ShelfL.E. = 75.92 Lower Shelf L.E. = LOO (Fixed) : . C) . I . rvi : ./ 0 mils=-38.30° F Material: SA508CL2 Capsule: U ;c Heat: SP-5933 0 .................... __.. __ ...... __ ...... ___ ;..___.. _____ . ____ ........ ..... *--..... -300 -200 -100 0 100 200 300 Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: U C-48 Heat: 5P-5933 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature {° F) Input LE. -150 16.5 -150 8.5 -100 54.5 -100 15.5 -75 29.0 -75 17.0 -50 44.0 -50 25.0 0 43.5 I 50 37.0 75 71.0 125 56.0 200 56.0 300 79.0 CVGraph 6.02 0712012015 WCAP-18054-NP Computed L. E. 18.4 18.4 25.2 25.2 29.0 29.0 33.l 33.l 41.5 49.6 53.3 59.7 66.7 71.9 Differential -1.94 -9.94 29.32 -9.68 -0.01 -12.01 10.94 -8.07 2.03 -12.58 17.71 -3.73 -10.72 7.11 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-49 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Plant: 1 Orientation: N/A 100 f-90 >-. 80 f-70 f-* = 60 .c >-00. 50 = cu rJ f-40 f-* 30 >-. 20 f-CVGraph 6.02 WCAP-18054-NP CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:51 PM A= 50.00 B = 50.00 C = 136.88 TO= -22.41 D = 0.00 Correlation Coefficient= 0.898 Equation is A+ B * [Tanh((f-TO)/(C+DT))] UppcrShclf%Shear= l00.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) .. -... -Temperature at 50% Shear= -22..lO Material: SA508CL2 Capsule: U -.---*O * /* I -I -I Heat: 5P-5933 -100 0 100 200 300 400 500 600 Temperature {° F) 07/20/2015 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: 'f:'/A Westinghouse Non-Proprietary Class 3 Material: SAS08CL2 Capsule: U C-50 Heat: SP-5933 BYRON UNIT 1 CAPSULE U (HEAT-AFFECTED ZONE) Charpy V-Notch Data I Temperature (0 F) Input %Shear l -150 I 10.0 -150 5.0 -100 60.0 -100 10.0 -75 35.0 -75 15.0 -50 60.0 -50 30.0 0 55.0 50 50.0 75 95.0 125 100.0 200 100.0 300 100.0 CVGraph 6.02 WCAP-18054-NP r I Computed %Shear I I I 13.4 I I I 13.4 I I 24.3 24.3 31.7 31.7 40.l 40.l I I 58.l 74.2 80.6 89.6 96.3 99.i 07/20/2015 Differential -3.42 -8.42 35.65 -14.35 3.32 -16.68 19.94 -10.06 -3.11 -24.23 14.41 10.40 3.73 0.89 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (TANGENTIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:55 PM A = 74.60 B = 72.40 C = 72.26 TO = -t 7.56 D = 0.00 Correlation CocJTicient = 0.867 Equation is A+ B * [Tanh((f-TO)/(C+Dn)J Upper Shelf Energ_y = l 4 7 .00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-51 Temp:{!!30 ft-lbs=-69A0° F Tcmp'?[!35 ft-lbs=-{) I. 90° F Temp@50 ft-lbs=-43.10° F Plant: Byron I Orientation: Tangential 160 140 -120 .c -I it: .._, 100 ...... CJ) c: 80 z > 60 u 40 I-.. 20 0 I J <) /C'> ,_ :_Y*o.o I Material: SA508CL2 Capsule: X 0 I I -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP I 400 Heat: 5P-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X BYRON UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data C-52 Heat: 5P-5933 Tern pcraturc {° F) Input CVN Computed CVN Differential -* -75 20.0 -60 8.0 -50 70.0 -40 8.0 -40 119.0 -25 43.0 0 77.0 0 118.0 25 109.0 40 i 130.0 75 127.0 I 100 124.0 150 157.0 250 167.0 300 161.0 CVGraph 6.02 07/20/2015 WCAP-18054-NP 26.7 36.4 I 44.1 52.8 52.8 67.2 9L9 91.9 112.9 122.5 136.6 141.6 145.6 146.9 147.0 -6.73 -28.37 25.88 -44.81 66.19 -24.17 -14.85 26.15 -3.91 7.46 -9.63 -17.61 11.39 20.09 14.02 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (TANGENTIAL) Plant: Byron I Orientation: Tangential 100 -. 90 80 -!;/} 70 -.... e .. .._, = 60 0 .... !;/} = eo:J c. 50 -40 eo:J ..... 30 eo:J ..:i 20 -*. 10 CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:55 PM A= 44. 79 B = 43. 79 C = 62.99 TO = -27.85 D = 0.00 Correlation Coefficient= 0.845 Equation is A+ B * [Tanh((T-TO)/(C+DD)J Upper Shelf LE. = 88.59 Lower Shelf L.E. = LOO (Fixed) Temp@35 mils=-42.10° F Material: SA508CL2 Capsule: X f: .. cl. "/** I . fo.'.. 0 * ,< C-53 Heat: 5P-5933 00 0 -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X BYRON UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data C-54 Heat: 5P-5933 I Tcm peraturc (0 F) I Input L. E. Computed L. E. Differential -75 ! I 13.0 -60 4.0 -50 51.0 -40 8.0 -40 81.0 ' -25 33.0 0 54.0 0 66.0 25 76.0 40 I 86.0 75 84.0 JOO 84.0 150 91.0 250 87.0 300 89.0 CVGraph 6.02 WCAP-18054-NP I 17.0 24.2 30.0 36.4 36.4 46.8 63.0 63.0 74.8 I 79.5 85.4 87.1 88.3 88.6 88.6 07/20/2015 -4.02 -20.20 21.00 -28.45 44.55 -13.77 -8.98 3.02 1.20 6.52 -1.37 -3.10 2.72 -1.57 0.42 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (TANGENTIAL) Plant: Byron l Orientation: Tangential CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/'20/2015 2:55 PM A = 50.00 B = 50.00 C = 62.20 TO = -30.34 D = 0.00 Correlation Coefficient= 0.876 Equation is A+ B * [Tanh((f-TO)/(C+Dn)J Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= -30.30 Material: SA508CL2 Capsule: X Heat: SP-5933 90 --_. ---i'------1----_ --f-.-f f .. --+---t----+----t---- .. _-r---1 70 -j 60 _______ ._._""_: l.._,_____,__ __ --+------+-------t 50 1----+------+--t-J_--f-. --+---t---.-. 40 1----+------+--+/*(- -*J-+-.... -. -+-----+-------f--t-----'--1 30>-----+-----+------+----+---+--__,f--_--+- __ --+-__ /. 20 10 --0 ..... ..... ...... ...... ...... C-55 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X BYRON UNIT 1 CAPSULE X (TANGENTIAL) Charpy V-Notch Data C-56 Heat: 5P-59JJ Temperature (0 F) Input %Shear Computed %Shear Differential -75 15.0 -60 10.0 -50 60.0 I -40 10.0 -40 80.0 -25 40.0 0 70.0 0 80.0 25 85.0 40 90.0 75 95.0 100 95.0 150 100.0 250 100.0 300 100.0 CVGraph 6.02 07/20/2015 WCAP-18054-NP 19.2 27.8 34.7 42.3 42.3 54.3 72.6 72.6 85.6 90.6 96.7 98.5 99.7 100.0 100.0 -4.22 -17.81 25.30 -32.30 37.70 -14.28 -2.62 7.38 -0.56 -0.57 -1.73 -3.51 0.30 0.01 0.00 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (AXIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:56 PM A= 67.10 B = 64.90 C = 73.06 TO= 30.89 D = 0.00 Correlation Coefficient = 0.962 Equation is A+ B * [Tanh((T-TO)/(C+DD)] Upper Shelf Energy= 132.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-57 Temp'.@30 ft-lbs=-16.50° F Temp'&J35 ft-lbs= -8.70° F Templ!:SO fl-lbs= 11.20° F Plant: Byron I Orientation: Axial 120 -fl.) .c -100 I ¢::: '-' ,..... 80 :.... = z 60 > u 40 20 : : Material: SA508CL2 Capsule: X _/ LI (JI Heat: SP-5933 --0 0 -300 -200 -100 CVGrnph 6.02 WCAP-18054-NP 0 100 200 300 400 500 600 Temperature {° F) 07/20/2015 Page 112 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature (0 F) 50 25 5 0 15 25 50 79 100 150 200 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X BYRON UNIT 1 CAPSULE X (AXIAL) Charpy V-N otch Data Input CYN Computed CVN 5.0 9.0 16.0 15.0 33.0 18.5 25.0 25.3 18.0 34.l 53.0 37.6 19.0 41.2 80.0 53.2 55.0 61.9 72.0 83.7 115.0 104.6 105.0 115.0 141.0 127.2 141.0 130.7 139.0 131.7 0712012015 C-58 Heat: SP-5933 Differential -3.98 1.02 -------14.50 -0.30 -16.15 15.44 -22.19 26.80 -6.88 -11.70 10.43 -9.99 13.79 10.25 7.32 Page 212 December 2015 Revision 0 Plant: Byron I Orientation: Axial 90 80 70 -(/.) ::= a 60 -= ,_ c *-50 (/.) = = ,_ c. 40 -= 30 ...... = 20 ,_ 10 0 -300 -200 CVGrnph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (AXIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:56 PM A = .u.o" B = -'2.0-' c = 78.06 TO = 2-'.1 t D = 0.00 Correlation Coefficient= 0.952 Equalion is A+ B * [Tanh((T-TO)/(C+DT))] Upper Shelf L.E. = 85.08 Lower Shelf LE. = 1.00 (Fixed) Temp@35 mils= 9.00° F Material: SAS08CL2 Capsule: X n ... . ... Ol. r-: o/ ...... / .. __.,,,,, 0 I I I -100 0 JOO 200 300 Temperature{° F) 07/20/2015 I 400 I C-59 Heat: SP-5933 500 600 Page 1/2 December2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature (0 F) 50 25 5 0 15 25 50 79 100 150 200 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: S;L"08CL2 Capsule: X BYRON UNIT 1 CAPSULE X (AXIAL) Charpy V-Notch Data ! Input L. E. _L Computed L. E. I 3.0 I 7.2 12.0 f 12.0 24.0 14.6 18.0 19.6 13.0 25.8 42.0 28.1 14.0 30.5 56.0 38.2 39.0 43.5 52.0 56.5 73.0 68.5 71.0 74.6 84.0 81.9 82.0 84.2 86.0 84.8 07/2012015 C-60 Heat: 5P-5933 Differential -4.15 0.05 9.37 -1.61 -12.76 13.95 -16.46 17.84 -4.52 -4.50 4.46 -3.56 2.13 -2.17 1.17 Page 2/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial 100 .... 90 ,.. 80 ... 70 ,__ -ci: 60 <l.l .c ,.. 00. .... 50 = <l.l ,.. C.J -40 <l.l ... -30 20 ... ' 10 ,.. 0 -300 CVGrnph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (AXIAL) CVGrnph 6.02: Hyperbolic Tm1gcn1 Curve Printed on 7/20/2015 2:56 PM A= 50.00 B = 50.00 C = 67.22 TO= 13.93 D = 0.00 Correlation Coefficient= 0.960 Equation is A+ B. [Tanh((f-TO)/(C+Dn)J Upper Shclf%Shcar = 100.00 (Fixed) Lower Shelf '%Shear= 0.00 (Fixed) -200 -100 Tempernture at 50% Shear= l-t.00 Material: SA508CL2 Capsule: X f T J c/ 0 100 200 300 Temperature {° F) 07/20/2015 400 C-61 Heat: SP-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature (0 F) 50 25 -IO -5 0 15 25 50 79 100 150 200 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X BYRON UNIT 1 CAPSULE X (AXIAL) Charpy V-Notch Data I Input %Shear Computed %Shear 5.0 6.6 15.0 13.0 25.0 16.7 20.0 23.9 20.0 32.9 45.0 36.3 20.0 39.8 75.0 50.8 60.0 58.2 70.0 74.5 80.0 87.4 95.0 92.8 100.0 98.3 100.0 99.6 IOO.O 99.9 0712012015 C-62 Heat: 5P-5933 Differential -1.62 2.02 8.27 -3.89 -12.91 8.72 -19.78 24.21 1.84 -4.52 -7.39 2.17 1.71 0.39 0.09 ' Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:57 PM A= 33. lO B = 30.90 C = 125.56 TO= 22.15 D = 0.00 Correlation Coefficient= 0.969 Equation is A+ B * [Tanh((f-TO)/(C+D'D)] Upper ShclfEncrg_v = <H.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-63 Temp@30 ft-lbs= 9.60° F Temp'.f!'.35 ft-lbs= 29.90° F Temp@50 fl-lbs= 99.30° F Plant: Byron 1 Orientation: N/A Material: WELD Capsule: X Heat: 442002 0 0 ..... ..... ...................... ..... ....... ...... ...... ...... ..... ...... ..... -300 -200 -100 0 100 200 300 Temperature {° F) CVGmph6.02 07/20/2015 WCAP-I 8054-NP 400 500 600 Page 1/2 December 20 I 5 Revision 0 Plant: Byron 1 Orientation: NIA Tcm peraturc {° F) 50 -25 0 15 25 35 50 75 100 100 125 200 240 275 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 i'vlaterial: WELD Capsule: X BYRON UNIT 1 CAPSULE X (WELD) Charpy V-Notch Data InputCVN Computed CVN 14.0 I 13.0 18.0 17.1 :no 22.0 28.0 27.7 29.0 31.3 33.0 33.8 35.0 36.3 44.0 39.8 48.0 45.4 42.0 50.1 44.0 50.1 63.0 53.9 60.0 60.6 69.0 62.1 65.0 62.9 07/20/2015 C-64 Heat: 12002 Differential 0.96 0.93 0.99 0.30 -2.34 -0.80 -1.25 4.16 2.6i -8.13 -6.13 9.06 -0.57 6.87 2.08 Page 212 December 2015 Revision 0 Plant: Byron I Orientation: N/A CVGmph6.02 WCAP-18054-NP -200 Westinghouse Non-Proprietary Class 3 BYRON UNIT l CAPSULE X (WELD) CVGmph 6.02: Hyperbolic Tangent Cnrvc Printed on 7/20/2015 2:57 PM A= 32. 76 B = 31.76 C = 155.31 TO= 42.42 D = 0.00 Correlation Coefficient = 0.990 Equation is A+ B * [Tanh((f-TO)/(C+DT))l Upper ShclfL.E. = 64.51 Lower Shelf L.E. = LOO (Fixed) Temp@J5 mils= 53.40° F Material: WELD Capsulc:X C-65 Heat: 442002 -100 0 100 200 300 400 500 600 Temperature{° F) 07/20/2015 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Temperature (0 F) 50 -25 0 15 25 35 50 75 100 100 125 200 240 275 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 \VELD Capsule: X BYRON UNIT 1 CAPSULE X (WELD) Charpy V-N otch Data ---Input L. E. Computed L. E. 11.0 I 12.5 16.0 15.8 20.0 19.8 24.0 24.3 26.0 27.2 33.0 29.2 30.0 31.2 36.0 34.3 40.0 39.3 I 40.0 44.0 41.0 44.0 53.0 48.2 56.0 57.1 60.0 59.9 62.0 61.5 0712012015 C-66 Heat: 442002 Differential -1.47 0.19 0.22 -0.29 -1.21 3.79 -1.24 1.69 0.68 -4.02 -3.02 4.79 -1.14 0.11 0.51 Page 212 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE X (WELD) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:58 PM A= 50.00 B = 50.00 C = 76.79 TO= 46.t 1 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B * [Tanh((f-TO)/(C+Dl))] Upper Shclf%Shear = 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= 46.20 Material: WELD Capsule: X Heat: 442002 100 90 ,(. 80 / 70 t------7---t----t--+--. ---j: *pr-1----t---+---t---+---I 60 1 50 i----;---1-----+--l---l.rH- ... 40 30 -cf C-67 -200 -100 0 100 200 300 400 500 600 Temperature{° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA -Temperature{° F) 50 -25 0 15 25 35 50 75 JOO 100 125 200 240 275 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WEW Capsule: X BYRON UNIT 1 CAPSULE X (WELD) Charpy V-Notch Data Input %Shear Computed %Shear 10.0 4.1 15.0 7.6 20.0 13.6 25.0 23.1 30.0 30.8 35.0 36.6 35.0 42.8 50.0 52.5 65.0 68.0 80.0 80.3 85.0 80.3 100.0 88.6 100.0 98.2 100.0 99.4 100.0 99.7 07/20/2015 C-68 Heat: 442002 --Differential 5.91 7.44 6.44 1.87 -0.78 -1.59 -7.81 -2.53 -2.97 -0.27 4.73 11.36 1.78 0.64 0.26 -Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-69 BYRON UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:58 PM A= -15.10 B = -12.90 C = -17. 78 TO = 1.20 D = 0.00 Correlation Coefficient=

0. 733 Equation is A+ B * [Tanh((T-TO)/(C+Dn)J Upper ShclfEnergy

= 88.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) Temp@30 ft-lbs=-91.70° F Temp@35 fl-lbs=-85.60° F Temp@50 fl-lbs=-68. 70° F Plant: Byron 1 Orientation: N/ A 0 I f Material: SA508CL2 Capsule: X 0 v "' 0 0 Heat: 5P-5933 I"\ ..... o* 20 ) 1-----f"'- o ..... -300 -200 -100 0 100 200 300 Temperature {° F) CVGrnph6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X C-70 Heat: 5P-5933 BYRON UNIT I CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) Input CVN I -125 23.0 I -100 22.0 -70 25.0 I -50 116.0 -40 43.0 -25 73.0 0 68.0 0 109.0 50 56.0 I 75 105.0 I JOO 87.0 I 150 86.0 200 77.0 225 89.0 275 98.0 CVGraph 6.02 07120i2015 WCAP-18054-NP Computed CVN 11.3 24.0 48.9 65.1 71.5 78.3 84.3 84.3 87.5 87.8 87.9 88.0 88.0 88.0 88.0 Differential 11.65 -1.96 -23.87 50.85 -28.45 -5.30 -16.32 24.68 -31.53 17.17 -0.94 -1.99 -11.00 1.00 10.00 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-71 BYRON UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Plant: Byron 1 Orientation: N/A CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 2:58 PM A= 32.16 B = 31.16 C = 122.86 TO= 43.26 D = 0.00 Correlation Coefficient= 0.862 Equalion is A+ B * [Tanh((f-TO)/(C+DT))] Upper ShelfL.E. = 63.32 Lower Shelf L.E. = 1.00 (Fixed) Temp1J>.35 mils=-32.00° F Material: SA508CL2 Capsule: X .0 o: .. Heat: SP-5933 0 ........................... ...... ....... ..... ...... ...... ...... ....... *--...... ...... ....... *--...... -300 -200 -100 CVGrnph 6.02 WCAP-18054-NP 0 100 200 300 400 500 600 Temperature {° F) 07/20/2015 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X C-72 Heat: 5P-5933 BYRON UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) Input L. E. -125 12.0 -JOO 9.0 -70 13.0 -50 58.0 -40 29.0 -25 38.0 0 40.0 0 53.0 50 37.0 75 57.0 100 50.0 150 62.0 200 62.0 225 66.0 275 68.0 CVGraph 6.02 0712012015 WCAP-18054-NP Computed L. E. 14.0 18.7 25.5 30.5 33.0 36.8 42.7 42.7 52.1 55.4 57.8 60.8 62.2 62.5 63.0 --Differential -2.03 -9.71 -12.49 27.55 -3.99 1.24 -2.70 10.30 -15.12 1.61 -7.81 1.25 -0.16 3.46 5.02 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-73 BYRON UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Plant: B)*ron l Orientation: N/A 100 90 -* 80 70 ---60 .c 00 ..... 50 = .... -40 30 . CVGrnph 6.02 WCAP-18054-NP CVGrnph 6.02: Hyperbolic Tangent Curve Printcdon 7/20/2015 2:59 PM A = 50.00 B = 50.00 C = 99.85 TO = -39.99 D = 0.00 Correlation Coefficient= 0.940 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf %Shear= L00.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) -* .... .. /. -200 -100 Tempernturc at 50% Shear= -39.90 Material: SA508CL2 Capsule: X ..... ............ ..... '/ . -O**** *-./* I I ; 0 100 200 300 Temperature {° F) 07/20/2015 I I 400 Heat: SP-5933 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: X C-74 Heat: SP-5933 BYRON UNIT 1 CAPSULE X (HEAT-AFFECTED ZONE) Charpy V-N otch Data Tcmperuturc (0 F) Input %Shear -125 15.0 -100 15.0 -70 20.0 I -50 65.0 -40 40.0 -25 70.0 0 70.0 I 0 80.0 50 65.0 75 90.0 100 85.0 I 150 100.0 200 100.0 225 100.0 275 100.0 CVGraph 6.02 07/20/2015 WCAP-18054-NP Computed %Shear 15.4 23.1 35.4 45.0 50.0 57.5 69.0 69.0 85.8 90.9 94.3 97.8 99.2 99.5 99.8 Differential -0.41 -8.l l -15.41 19.99 -10.00 12.55 0.98 10.98 -20.85 -0.92 -9.29 2.18 0.81 0.49 0.18 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE W (TANGENTIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:02 PM A= 80.60 B = 78.40 C = 63.45 TO= 10.41 D = 0,00 Correlation Coefficient= 0.982 Equation is A+ B * [Tanh((T-TO)/(C+Dl))] Upper ShclfEncrg_v = 159.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-75 Temp@30 ft-lbs=-38.20° F fl-lbs=-31. 70° F Temp@50 fl-lbs=-15. 70° F Plant: Byron I Orientation: Tangential 160 140 -fl) 120 ,Q -I it: ,_. 100 ....... bJ) ;... = 80 u 60 40 20 0 -300 -200 CVGraph 6.02 WCAP-I 8054-NP Material: SA508CL2 Capsule: W ' I *{o / *-'* 0 4*) . . . -I .. ."Q" t I J fo ..... :...........-4 I -100 0 100 200 Temperature {° F) 07/20/2015 .... I 300 400 Heat: SP-5933 ..... I 500 600 Page 112 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W C-76 Heat: SP-5933 BYRON UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-Notch Data -* I Temperature{° F) InputCVN -97 I 6.0 -60 11.0 -50 10.0 -45 18.0 -35 66.0 -25 28.0 -25 36.0 -15 57.0 0 68.0 50 128.0 75 127.0 JOO 159.0 150 154.0 200 155.0 250 166.0 CVGraph 6.02 WCAP-18054-NP Computed CVN 7.3 17.6 22.5 25.5 32.4 40.9 40.9 50.8 67.8 124.0 140.9 150.2 157.1 158.6 158.9 0712012015 Differential -1.33 -6.57 -12.53 -7.48 33.56 -12.89 -4.89 6.22 0.15 3.98 -13.89 8.79 -3.10 -3.60 7.08 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE W (TANGENTIAL) Plant: Byron l Orientation: Tangential 90 80 70 -Cl.l -*-e 60 ,_., = Q *-50 Cl.l = 40 -.. 30 ...... 20 10 --.. 300 -200 CVGraph 6.02 WCAP-18054-NP CVGrnph 6.02: Hypcibolic Tangent Curve Printed on 7/20/2015 3:03 PM A= 41.62 B = 40.62 C = 47.83 TO= -6.15 D = 0.00 Correlation Coefficient= 0.967 Equation is A+ B * [Tanh((T-TO)/(C+DD)J Upper ShelfL.E_ = 82.25 Lower Shelf LE. = LOO (Fixed) -100 _ 0_1 > c Temp:?_!:-35 mils=-1-1.00° F Material: SA508CL2 Capsule: W d> o -I _, --( J ,,,. I* ' ' 0 100 200 300 Temperature {° F) 07/20/2015 I 400 C-77 Heat: SP-5933 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W BYRON UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-Notch Data -----,-C-78 Heat: 5P-5933 Tcm peraturc {° F) I Input L. E. Computed L. E. Differential I -97 1.0 -60 3.0 -50 4.0 -45 8.0 -35 46.0 -25 17.0 -25 23.0 -15 38.0 0 46.0 50 73.0 75 75.0 100 87.0 150 81.0 200 82.0 250 84.0 CVGraph 6.02 07/21)/2015 WCAP-18054-NP 2.8 8.7 12.2 14.4 19.7 26.4 26.4 34.2 46.8 75.2 79.6 81.3 82.l 82.2 82.2 -1.78 -5.73 -8.19 -6.37 26.29 -9.39 -3.39 3.81 -0.82 -2.16 -4.61 5.70 -1.13 -0.23 1.76 Page 212 December 20 I 5 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE W (TANGENTIAL) Plant: Byron 1 Orientation: Tangential CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:03 PM A = 50.00 B = 50.00 C = 80.85 TO = 34.08 D = 0.00 Correlation CocITicicnt = 0.968 Equation is A+ B * [Tanh((f-TO)/(C+Dnll Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Temperature at 50% Shear= 34. l O Material: SA508CL2 Capsule: W Heat: 5P-5933 L-* 50 1-----'--!---!---,----!-/H .. ,.. 30 .J 20 t----t-----+-.-'--t;.llt-l--"'---t---+----'- .. -_-+---'--+-----!---I 10 /o""' OL-..J.......O .... C-79 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W C-80 Heat: 5P-5933 BYRON UNIT 1 CAPSULE W (TANGENTIAL) Charpy V-Notch Data Temperature{° F) I Input %Shear -97 2.0 -60 2.0 ! -50 2.0 -45 5.0 -35 35.0 -25 10.0 -25 I 20.0 -15 30.0 0 40.0 50 50.0 75 60.0 JOO 100.0 150 100.0 200 100.0 250 100.0 CVGraph 6.02 07/2012015 WCAP-18054-NP Computed %Shear 3.8 I 8.9 I I.I 12.4 15.3 18.8 18.8 22.9 30.J 59.7 73.3 83.6 94.6 98.4 99.5 Differential -1.76 -6.89 -9.10 -7.39 19.67 -8.82 1.18 7.11 9.91 -9.72 -13.35 16.37 5.38 1.62 0.48 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT l CAPSULE W (AXIAL) CVGraph 6.02: Hypetbolic Tangent Curve Pri1Ucd on 7/20/2015 3:0-1 PM A= 7.UO B = 71.90 C = 76.61 TO= 13.0-1D=0.00 Correlation Coefficient= 0.962 Equa1ion is A+ B * [Tanh((f-TO)/(C+DD)J Upper Shelf Energ_y = l-16.00 (Fixed) Lower Shelf Energy= 2.20 (Fixed) Temp@30 rt-Ibs=--11.60° F Tcmp@35 ft-lbs=-33.60° F Temp@50 rt-lbs=-13.60° F Plant: Byron I Oricnlation: Axial Material: SAS08CL2 Capsule: W Heat: SP-5933 160 .-----..----- ....... ------------------------------------------- .. 1 ..... n

  • 0 80 6 '(f'. 60 J

.. 20

o 8 0 C-81 -300 -200 -100 0 100 200 300 400 500 600 Temperature

{° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Tcm perature {° F) 50 45 35 -25 0 25 50 75 100 150 175 200 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W BYRON UNIT 1 CAPSULE W (AXIAL) Charpy V-Notch Data InputCVN Computed CVN 7.0 9.9 35.0 25.4 16.0 25.4 5.0 28.1 \0.0 31.0 42.0 34.1 67.0 41.l 79.0 62.0 74.0 85.2 103.0 106.3 114.0 122.2 148.0 132.5 123.0 142.l 146.0 143.9 145.0 144.9 07/2012015 C-82 Heat: 5P-5933 Differential l -2.90 9.55 -9.45 -23.11 -21.00 7.88 25.93 17.02 -11.24 -3.33 -8.20 15.46 -19.08 2.07 0.08 Page 2/2 December 2015 Revision 0 Plant: Byron I Orientation: Axial Westinghouse Non-Proprietary Class 3 BYRON UNIT l CAPSULE W (AXIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:0-1 PM A= 40.23 B = 39.23 C = 59.-12 TO= -1.72 D = 0.00 Correlation Coefficient= 0.956 Equation is A+ B * [Tanh((T-TO)/(C+Dl))] Upper Shelf L.E. = 79.-16 Lower Shelf L.E. = 1.00 (Fixed) Temp:Q"135 mils= -9.60° F Material: SA508CL2 Capsule: W Heat: SP-5933 : -. 80 . v-. **:/*O. 70 /,o .. 'i .. ";j 50

o /o 40

-; j 30 i 20 +----'---+------f---'---+---,..---!---i---+--'----1 10

    • -V 0 o* 0

__ ....L __ .l. __ C-83 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron l Orientation: Axial Tem peraturc (0 F) 50 45 35 -25 0 25 50 75 100 150 175 200 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA *. "08CL2 Capsule: W BYRON UNIT 1 CAPSULE W (AXIAL) Charpy V-Notch Data Input L. E. Computed L. E. 2.0 4.1 18.0 13.9 8.0 13.9 1.0 15.8 4.0 18.0 260 20.3 44.0 25.6 52.0 41.4 47.0 56.8 63.0 67.8 68.0 74.0 87.0 77.0 76.0 79.0 80.0 79.3 82.0 79.4 07/20/2015 C-84 Heat: 5P-5933 I Differential -2.05 4.09 -5.91 -14.83 -13.96 5.70 18.40 10.63 -9.78 -4.76 -5.95 10.01 -2.99 0.74 2.62 Page 2/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial 100 I-90 I-80 ._ 70 I-* .. ;... ei: 60 .c I-00. 50 = cu I-* CJ ;... 40 I-* 30 ... 20 I---10 I-0 I -300 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT t CAPSULE W (AXIAL) CVGmph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:04 PM A= 50.00 B = 50.00 C = 72.16 TO= 47.12 D = 0.00 Correlation Coefficient= 0.979 Equation is A+ B * (Tanh((T-TO)/(C+DT))] Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf 'YoShear = 0.00 (Fixed) ... -200 -100 Tempemture at 50% Shear= 4 7.20 Material: SA508CL2 Capsule: W -./ 0-. /* '* ' --r* --lo . ... ... I I ; 0 100 200 300 Temperature {° F) 07/20/2015 I 400 C-85 Heat SP-5933 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Tern perature {° F) 50 45 35 -25 0 25 50 75 100 150 175 200 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W BYRON UNIT 1 CAPSULE W (AXIAL) Charpy V-N otch Data Input %Shear Computed %Shear 00 1.8 10.0 6.3 5.0 6.3 0.0 7.2 5.0 8.2 15.0 9.3 20.0 11.9 30.0 21.3 25.0 I 35.l 50.0 52.0 60.0 I 68.4 100.0 81.2 85.0 94.5 100.0 97.2 100.0 98.6 07/2012015 C-86 Heat: :SP-5933 Differential -1.81 3.65 -1.35 -7.22 -3.21 5.69 8.07 8.68 -10.14 -2.00 -8.41 18.76 -9.54 2.81 1.42 Page 212 December 2015 Revision 0 \ Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE W (WELD) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:05 PM A = 36.60 B = 34.40 C = 109.5.J TO = .J l.34 D = 0.00 Correlation Coc1Ticient = 0.984 Equation is A+ B * [Tanh((f-TO)/(C+DT))] Upper Shelf Energy= 71.00 (fo:ed) Lower Shelf Energy = 2.20 (Fixed) C-87 Temp@JO fl-lbs= 20. !0° F Temp1@35 ft-lbs= 36.30° F Tcmp:g';50 ft-lbs= 86.40° F Plant: Byron l Orientation: N/A 80 I-70 60 --.c -50 I it: --sz 40 QI = -z 30 ;;;... u 20 I-10 LA Material: WELD Capsule: W ----y l'l' I f f (1) . r 1 0 of / Heat: 442002 0 **-.. :*0-0 ....... ............... ..... --* ..... --.......... -300 -200 -100 0 CVGraph 6.02 WCAP-18054-NP 100 200 300 400 Temperature {° F) 07/20/2015 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Temperature (0 F) -125 25 -!O 0 10 25 50 75 85 JOO 150 200 250 275 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WEID C'.apsule: W BYRON UNIT 1 CAPSULE W (WELD) Charpy V-Notch Data InputCVN Computed CVN *l.O 5.3 16.0 9.5 19.0 18.0 20.0 21.6 31.0 24.2 23.0 27.0 30.0 31.5 35.0 39.3 47.0 46.9 45.0 49.6 58.0 53.4 66.0 62.7 67.0 67.4 77.0 69.5 75.0 70.0 07120/2015 C-88 Heat: 442002 Differential -l.35 6.45 I.OJ -I.56 6.80 -4.02 -J.51 -4.31 0.15 -4.63 4.56 3.32 -0.40 7.49 4.95 Page 212 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A 70 60 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE W (WELD) CVGrnph 6.02: HyperlJolic Tangent Curye Printed on 7/20/2015 3:05 PM A= 30.33 B = 29.33 C = 108.15 TO= 57.20 D = 0.00 Correlation Coefficient= 0.985 Equation is A+ B

  • ITanh((T-TO)/(C+Dl))]

Upper Shelf L.E. = 59.67 Lower Shelf L.E. = 1.00 (Fixed) --100 Ternp@35 mils= 74.60° F Material: WELD Capsule: W 0 I 0 100 200 300 Temperature (° F) 07/20/2015 400 I C-89 Heat: 12002 I soo 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Temperature (0 F) -125 25 -!O 0 10 25 50 75 85 JOO 150 200 250 275 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 1'1aterial: WELD Capsule: W BYRON UNIT 1 CAPSULE W (WELD) Charpy V-Notch Data --InputL E. Computed L. E. 00 3.0 7.0 5.7 12.0 I 11.5 !0.0 14.1 22.0 16.1 17.0 18.3 24.0 21.8 26.0 28.4 33.0 I 35.l 34.0 37.7 47.0 41.4 53.0 50.7 51.0 55.8 61.0 58.I 58.0 58.6 07/20/2015 C-90 Heat: 442002 Differential -2.95 1.32 0.47 -4.14 5.88 -1.29 2.15 -2.38 -2.12 -3.71 5.63 2.27 -4.76 2.95 -0.64 Page 2/2 December 2015 Revision 0 Plant: 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 BYRON UNIT t CAPSULE W (WELD) CVGrnph 6.02: Hyperbolic Tangent Cmvc Printed on 7/20/2015 3:05 PM A = 50.00 B = 50.00 C = 71.87 TO = 55.85 D = 0.00 Correlation Coefficient= 0.990 Equation is A+ B * [Tanh((T-TO)/(C:on)J Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= !).OO (Fixed) Temperature at 50% Shear= 55. 90 Material: WELD Capsule: W Heat: 4'2002 100 90 --o/, --80 _, - 60 --------+-_-----/_------+---->----_ SO i---... 40 30 .---... --;--r---7:tt-; -i---t---t----J---t-----1 20 .---.-1*) 0 ... 0 v I I I C-91 -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: WELD Capsule: W BYRON UNIT 1 CAPSULE W (WELD) Charpy V-Notch Data Temperature{° F) J_ Input %Shear Computed %Shear I -125 2.0 0.6 -75 5.0 I 2.6 -25 10.0 9.5 -10 10.0 13.8 0 15.0 17.4 10 30.0 21.8 25 35.0 29.8 50 40.0 45.9 75 50.0 63.0 85 75.0 i 69.2 100 85.0 77.4 150 95.0 93.2 200 100.0 98.2 250 100.0 99.6 275 100.0 99.8 CVGraph 6.02 07/20/2015 WCAP-18054-NP C-92 Heat: 442002 ---DifTcrentlal 1.35 2.44 0.46 -3.79 -2.45 8.17 5.23 -5.94 -13.02 5.76 7.64 1.79 1.78 0.45 0.22 --Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-93 BYRON UNIT 1 CAPSULE W (REA T-AFFECTED ZONE) CVGrnph 6.02: Hyperbolic Tm1gcnt Curve Printed on 7/20/2015 3:06 PM A= 60.10 B = 57.90 C = 118.7-1 TO= -21.-15 D = 0.00 Correlation Coefficient= 0.701 Equation is A+ B * [Tanh((T-TO)/(C+Dn)J Upper ShclfEnerg_v = 118.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) Temp@30 ft-lbs=-89.80° F Temp@35 ft-lbs=-76.50° F Temp@50 fl-lbs=-42.30° F Plant: Byron 1 Orientation: N/A 180 ._ 160 140 120 t--. .. CVGraph 6.02 WCAP-18054-NP

  • ' I Material:

SA508CL2 Capsule: W I 0 0 100 200 300 Temperature {° F) 07/20/2015 j 400 Heat: 5P-59J3 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietaiy Class 3 Material: SAS08CL2 Capsule: \V C-94 Heat: SP-5933 BYRON UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature (0 F) Input CVN -125 3.0 -50 19.0 -35 90.0 -25 95.0 -15 40.0 0 41.0 10 70.0 25 114.0 40 103.0 60 72.0 75 107.0 JOO 78.0 175 87.0 225 177.0 275 90.0 CVGraph 6.02 WCAP-18054-NP Computed CVN 19.4 46.4 53.5 58.4 63.2 70.4 75.1 81.7 87.6 94.6 98.9 104.7 113.9 116.2 117.2 07120/2015 Differential -16.43 -27.44 36.48 36.63 -23.24 -29.45 -5.09 32.34 15.35 -22.57 8.06 -26.74 -26.92 60.80 -27.22 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-95 BYRON UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Plant: 1 Orientalion: N/A CVGrnph 6.02 WCAP-18054-NP CVGrnph 6.02: Hyperbolic Tm1gcnt Curve Printed on 7/21/2015 2:28 PM A= 29.41 B = 28.41 C = 86.22 TO= -12.47 D = 0.00 Correlation Coefficient= 0.855 Equation is A+ B * [Tanh((f-TO)/(C+DT))j Upper ShclfL.E. = 57.82 Lower Shelf L.E. = 1.00 (Fixed) Temp@35 mils= 4.80° F Material: SA508CL2 Capsule: W Heat: SP-5933 0 100 200 300 400 500 600 Temperature {° F) 07/21/2015 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W C-96 Heat: 5P-5933 BYRON UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) Input LE. -125 00 -50 7.0 -35 I 35.0 -25 41.0 -15 15.0 0 20.0 10 35.0 25 56.0 40 I 51.0 60 47.0 75 46.0 JOO 45.0 175 49.0 225 70.0 275 60.0 CVGraph602 07121!2015 WCAP-18054-NP I Computed L. E. 4.9 17.8 22.2 25.3 28.6 33.5 36.7 41.0 44.8 48.9 51.2 53.9 57.1 57.6 57.8 Differential -4.89 -10.77 12.85 15.69 -13.58 -13.49 -1.65 14.96 6.16 -1.90 -5.22 -8.93 -8.10 12.41 2.25 -Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-97 BYRON UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Plant: Byron 1 Orientation: N/A 100 90 80 70 -c-= 60 ..:: 00. 50 = C'j -40 30 20 10 0 -300 CVGmph 6.02 WCAP-18054-NP CVGmph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:06 PM A = 50.00 B = 50.00 C = 85.38 TO = 17. 71 D = 0.00 Correlation Coefficient= 0.975 Equation is A+ B * [Tanh((T-TO)/(C+DT))J Upper Shelf '%Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) -200 Temperature at 50% Shear= 17.80 Material: SAS08CL2 Capsule: W -*, */ Jo /. ' ""' .... ... - ' --! -100 0 100 200 300 Temperature{° F) 07/20/2015 400 Heat: SP-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: W C-98 Heat: 5P-5933 BYRON UNIT 1 CAPSULE W (HEAT-AFFECTED ZONE) Charpy V-Notch Data Temperature{° F) i Input %Shear I -125 I 5.0 -50 10.0 -35 35.0 -25 40.0 -15 25.0 0 30.0 10 40.0 25 60.0 40 60.0 60 65.0 75 90.0 100 90.0 175 100.0 225 100.0 275 100.0 CVGraph 6.02 WCAP-18054-NP I Computed %Shear 3.4 17.0 22.5 26.9 31.7 39.8 45.5 54.3 62.8 72.9 79.3 87.3 97.6 99.2 99.8 07/20/2015 Differential 1.59 -6.99 12.47 13.12 -6.73 -9.77 -5.50 5.74 -2.76 -7.92 10.72 2.70 2.45 0.77 0.24 ---Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (TANGENTIAL) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:07 PM A = 78.60 B = 76.40 C = 112.48 TO = 24.56 D = 0.00 Correlation Coefficient = 0.923 Equation is A+ B * [Tanh((T-TO)/(C+DD)] Upper ShclfEncrgy = 155.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-99 Temp@30 fl-lbs=-59.90° F Temp@35 n-Jbs=-48.30° F Temp@50 fl-lbs=-19.60° F Plant: l Orientation: Tangential 180 160 .... 140 ... -1'.l 120 .c -I .... ¢: ._, 100 ...... bl) ii-. ..... Qj = 80 z .... > **-* ¥* 0 Material: SA508CL2 Capsule: Y I 't. / . .. / ... ,.. of; .., . .. .. , . <) I (1 I u 60 -:J u ..... 40 J ... -20 .... -/ o*o . . . 0 0. -300 -200 -100 0 100 200 Temperature {° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP --I 300 400 Heat: SP-5933 . ' , ... I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CJ,2 Capsule: Y BYRON UNIT 1 CAPSULE Y (TANGENTIAL) Charpy V-Notch Data C-100 Heat: SP-5933 Temperature{° F) I InputCVN Computed CVN Differential -80 I 8.0 -60 5.0 -50 12.0 -40 33.0 -30 65.0 -20 48.0 0 107.0 20 58.0 40 116.0 72 104.0 100 98.0 I 150 120.0 200 161.0 225 152.0 250 152.0 CVGraph 6.02 07/20/2015 WCAP-18054-NP 22.8 30.0 34.3 39.0 44.2 49.8 62.2 75.5 89.0 109.0 123.3 140.2 148.5 150.8 152.3 -14.80 -24.99 -22.27 -6.00 20.80 -1.82 44.82 -17.50 26.98 -5.04 -25.33 -20.17 12.47 l.21 -0.27 ----Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (TANGENTIAL) Plant: Byron 1 Orientation: Tangential 100 lo-**-90 ..... 80 .-.. 70 -.... e .... . -'-"' c 60 c:i .... '"" -c 50 ll< lo-***--40 :r.. QJ ..... .... 30 20 .... 10 ..... 0 -300 -200 CVGrnph 6.02 WCAP-18054-NP CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:07 PM A= 42.60 B = 41.60 C = 60.54 TO= -10.91D=0.00 Correlation CocJTicienl = 0.93 7 Equation is A+ B * [Tanh((f-TO)/(C+Dl))] Upper Shelf L.E. = 84.19 Lower Shelf L.E. = 1.00 (Fixed) Temp'g!35 mils=-22.<l0° F l Material: SA508CL2 Capsule: Y - -* .... -:oj .... : . .-. . . *t* 0, I I I -100 0 100 200 300 Temperature {° F) 07/20/2015 I 400 C-101 Heat: SP-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SAS08CL2 Capsule: Y BYRON UNIT 1 CAPSULE Y (TANGENTIAL) Charpy V-Notch Data C-102 Heat: SP-S933 Temperature (0 F) Input L. E. Computed L. E. Differential -80 6.0 -60 3.0 -50 12.0 -40 23.0 -30 44.0 -20 32.0 0 71.0 20 40.0 40 80.0 72 70.0 100 68.0 150 87.0 200 88.0 225 91.0 250 90.0 CVGraph 6.02 07120/2015 WCAP-18054-NP 8.7 14.7 18.9 24.0 29.9 36.4 50.0 62.2 71.1 79.l 82.1 83.8 84.l 84.2 84.2 -2.70 -11.72 -6.94 -1.02 14.10 -4.40 20.99 -22.16 8.86 -9.14 -14.11 3.21 3.89 6.84 5.82 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (TANGENTIAL) CVGraph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:08 PM A= 50.00 B = 50.00 C = 116.95 TO = 60. 77 D = 0.00 Correlation Coefficient= 0.9-l4 Equation is A+ B

  • ITanh((f-TO)/(C+DT))]

Upper Shelf %Shear= 100.00 (Fixed) Lower Shelf %Shear= 0.00 (Fixed) Plant: Byron l Orientation: Tangential 100 90 ,.... 80 ,_ 70 ,_ -:r.. 60 QJ .c ,... .. 00. .... 50 = QJ ,.... :r.. 40 QJ ,. 30 20 10 0 -300 -200 CVGraph 6.02 WCAP-18054-NP -100 Temperature at 50% Shear= 60.80 Material: SA508CL2 Capsule: Y <(-/: .. -* I . 0 ""j .f () */-I **O* . . '/ ,.. 0 100 WO 300 Temperature {° F) 07/20/2015 400 C-103 Heat: SP-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Tangential Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: Y BYRON UNIT 1 CAPSULE Y (TANGENTIAL) Charpy V-Notch Data C-104 Heat: SP-5933 --Temperature {° F) Input %Shear Computed %Shear Differential -80 5.0 -60 5.0 -50 5.0 -40 10.0 -30 25.0 -20 15.0 0 45.0 20 20.0 40 65.0 72 55.0 100 40.0 150 85.0 200 100.0 225 100.0 250 100.0 CVGraph 6.02 07/20i2015 WCAP-18054-NP 8.3 11.3 13.1 15.1 17.5 20.I 26.l 33.2 41.2 54.8 66.2 82.l 91.5 94.3 96.2 -3.26 -6.25 -8.07 -5.14 7.53 -5.08 18.87 -13.24 23.79 0.21 -26.17 2.86 8.46 5.69 3.78 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (AXIAL) CVGrnph 6.02: Hypcibolic Tangent Curve PriIUcd on 7/20/2015 3:08 PM A= 71.10 B = 68.90 C = 119.84 TO= 22.98 D = 0.00 Correlation CoeITicicnt = 0.96 7 Equ.alion is A+ B * [Tanh((f-TO)/(C+Dl))] Upper Shelf Energy= 140.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-105 Ternp@30 ft-lbs=-59..10° F Temp@35 ft-Jbs=-46.70° F Temp:?f:50 ft-lbs=-14.90° F Plant: Byron 1 Orientation: Axial Material: SA508CL2 Capsule: Y Heat: SP-5933 160 .-----....... 140 -*-120 -C'-1 .c -100 I it: -;,;;.... OJ) 80 i... c r.;i z 60 > u 40 0 I -300 -200 -100 0 CVGrnph 6.02 WCAP-18054-NP 11\0 Vo **-/ I 100 200 Temperature {° F) 07/20/2015 I I 300 400 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Tempcruture (0 F) 60 40 20 -10 0 40 72 100 150 200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Jvfaterial: SA508CL2 Capsule: Y BYRON UNIT 1 CAPSULE Y (AXIAL) Charpy V-Notch Data I ------InputCVN Computed CVN 14.0 23.2 17.0 29.8 25.0 33.7 66.0 37.9 28.0 42.5 57.0 47.4 51.0 52.6 69.0 58.0 74.0 80.8 I 103.0 i 97.8 105.0 110.1 I 113.0 125.2 141.0 133.2 142.0 135.4 I 137.0 137.0 0712012015 C-106 Heat: 51'-5933 Differential -9.15 -12.79 -8.66 28.11 -14.48 9.60 -l.60 10.95 -6.82 5.19 -5.15 -12.23 7.83 6.57 0.05 Page 212 December 2015 Revision 0 Plant: Byron I Orienration: Axial -l;l:l = s 60 --= 0 ... 50 l;l:l = Q., 40 -... 30 Q,) ...... . 20 10 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (AXIAL) CVGrnph 6.02: Hypcmolic Tangent Curve Printed on 7/20/2015 3:08 PM A = 43.34 B = 42.34 C = 116.68 TO = 8.94 D = 0.00 Correlation CocfTicicnt = 0.964 Equarion is A+ B * [Tanh((f-TO)/(C+DT))J Upper Shelf L.E. = 85.67 Lower Shelf L.E. = 1.00 (Fixed) /d?---J n Temp@,35 mils=-14.30° F Material: SA508CL2 Capsule: Y */** C-107 Heat: SP-5933 ./. 0 ....... ....... ...... ....... ................. ....... ...... ...... ....... -300 -200 -100 0 100 200 300 Temperature (° F) CVGraph 6.02 07/20/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Temperature{° F) 60 40 20 -10 0 40 72 100 150 200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 lvfaterial: SA508CL2 Capsule: Y BYRON UNIT 1 CAPSULE Y (AXIAL) Charpy V-Notch Data -* Input LE. Computed L. E. !LO 16.1 15.0 20.9 17.0 23.6 45.0 26.6 20.0 29.7 40.0 33.0 38.0 36.5 43.0 40.1 48.0 54.3 68.0 64.2 68.0 I 71.0 75.0 78.7 85.0 82.6 88.0 83.6 I 82.0 84.3 07120/2015 C-108 Heat: 5P-5933 Differential -5.14 -5.88 -6.60 18.45 -9.71 6.95 1.48 2.90 -6.35 3.78 -2.98 -3.75 2.41 4.36 -2.34 Page 212 December 2015 Revision 0 Plant: Byron I Orientation: Axial 100 .... 90 .... 80 70 ..... C':S 60 .c .... r.'1 .... 50 = .... CJ 40 =-30 .... 20 ..... --lO .... 0 -300 CVGrnph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (AXIAL) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:09 PM A = 50.00 B = 50.00 C = I 10.41 TO= 48.24 D = 0.00 Correlation Coefficient= 0.989 Eqnation is A+ B * (Tanh((T-TO)/(C+DD)] Upper Shclf%Shcar = 100.00 (Fixed) Lower Shelf o/.Shear = 0.00 (Fixed) l .* .. --: 00 I I -200 -100 Temperature at 50% Shear= 48.30 Material: SA508CL2 Capsule: Y _*v-/ : *f-./ ... ***)** !** L I I ; 0 100 200 300 Temperature {° F) 07/20/2015 I 400 C-109 Heat: SP-5933 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: Axial Tem peraturc {° F) 60 40 -30 10 0 40 72 100 150 200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: Y BYRON UNIT 1 CAPSULE Y (AXIAL) Charpy V-Notch Data Input %Shear Computed %Shear 5.0 8.9 5.0 12.3 10.0 14.4 30.0 16.8 20.0 19.5 25.0 22.5 25.0 25.8 35.0 29.4 40.0 46.3 60.0 60.6 70.0 71.9 85.0 86.3 100.0 94.0 100.0 96.l 100.0 97.5 0712012015 C-110 Heat: 5P-5933 --Differential -3.92 -7.34 -4.44 13.18 0.49 2.49 -0.83 5.55 -6.28 -0.60 -1.86 -1.33 6.01 3.91 2.52 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3: 11 PM A = 34.60 B = 32..10 C = 123.19 TO = 63.80 D = 0.00 Correlation Coefficient= 0.968 Equation is A+ B * [Tanh((f-TO)/(C+DD)J Upper ShclfEncrgy = 67.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) C-111 Temp@30 ft-lbs= -16.20° F Temp 1 ii)35 ft-lbs= 65.-10° F Temp@.50 ft-lbs=127.50° F Plant: Byron l Orientation: N/A Material: WELD Capsule: Y Heat: 442002 0 .... ..... .... -300 -200 -100 0 CVGrnph 6.02 WCAP-18054-NP 100 200 300 400 Temperature {° F) 07/20/2015 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: i"/A Tem peruture {° F) 60 20 -IO 0 20 40 72 100 125 150 200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Nlateriul: WELD Capsule: Y BYRON UNIT l CAPSULE Y (WELD) Charpy V-Notch Data InputCVN Computed C\'N 5.0 7.9 15.0 9.9 3.0 13.8 19.0 15.4 20.0 17.2 21.0 19.2 31.0 23.5 24.0 28.4 41.0 36.8 34.0 43.9 48.0 49.5 53.0 54.2 67.0 60.6 66.0 62.6 68.0 64.0 07/20/2015 C-112 Heat: 442002 *-Differential -2.92 5.14 -10.80 3.57 2.78 l.82 7.46 -4.42 4.25 -9.86 -1.49 -1.18 6.40 3.41 4.01 Page 212 December 2015 Revision 0 Plant: Byron I Oricnll!lion: N/A 70 ,... .. 60 40 -20 --10 ----Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (WELD) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:11 PM A= 34.29 B = 33.29 C = 137.39 TO= 85.38 D = 0.00 Correlation Coefficient= 0.986 Equation is A+ B * (Tanh((T-TO)/(C+Dl))J Upper Shelf L.E. = 67.58 Lower Shelf L.E. = 1.00 (Fixed) Tcmp@35 mils= 88.40° F Material: WELD Capsule: Y I '°/.' 0 0 . I I ' I I -300 -200 -100 0 100 200 300 400 Temperature {° F) CVGmph6.02 07/20/2015 WCAP-18054-NP C-113 Heat: 442002 I 500 600 Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Temperature(° F) 60 20 -10 0 20 40 72 100 125 150 200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: WELD Capsule: Y BYRON UNIT 1 CAPSULE Y (WELD) Charpy V-Notch Data Input LE. Computed L. E. 3.0 6.5 10.0 8.2 8.0 11.5 12.0 12.8 17.0 14.3 14.0 15.9 25.0 19.5 21.0 23.7 37.0 31.1 31.0 37.8 44.0 43.6 50.0 48.9 56.0 57.0 61.0 59.9 62.0 62.0 07/20i2015 C-114 Heat: 442002 Differential -3.50 1.84 -3.46 -0.81 2.71 -1.91 5.45 -2.68 5.94 -6.82 0.37 1.11 -1.02 1.13 -0.03 Page 212 December 2015 Revision 0 Plant: Byron 1 Oricnlalion: N/A 100 ,_ -90 80 70 ,_ -. -;... = 60 <lJ .c ,_ 00 .... 50 = QJ ,_ ;... 40 <lJ Q.. ,_ 30 ,_ -20 ,_ -10 0 -300 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 BYRON UNIT 1 CAPSULE Y (WELD) CVGrnph 6.02: Hyperbolic Tm1gcnl Curve Printed on 7/20/2015 3:11 PM A= 511.00 B = 50.00 C = 109.61 TO= 90.28 D = 0.00 Correlation Coefficient= 0.989 Equalion is A+ B * (Tanh((f-TO)/(C+DT))) Upper Shclf%Shcar = 100.00 (Fixed) Lower Shelf o/.Shcar = 0.00 (Fixed) -200 -100 Temperature at 50% Shear= 90.30 Material: WELD Capsule: Y f " ,-I --I 0 100 200 300 Temperature{° F) 07/20/2015 I 400 C-115 Heat: .i.i2002 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: NIA Temperature(" F) 60 20 -10 0 20 40 72 100 125 150 .200 225 250 CVGraph 6.02 WCAP-18054-NP Westinghouse Non-Proprietary Class 3 Material: \VELD Capsule: Y BYRON UNIT 1 CAPSULE Y (WELD) Charpy V-Notch Data Input %Shear Computed %Shear 5.0 4.3 5.0 6.1 10.0 10.0 15.0 11.8 20.0 13.8 15.0 16.l 30.0 21.7 25.0 28.5 40.0 41.7 50.0 54.4 60.0 I 65.3 70.0 74.8 100.0 88.l 100.0 92.l 100.0 94.9 07120/2015 C-116 Heat: 442002 Differential O.T2 -1.05 -0.02 3.21 6.17 -1.!5 8.28 -3.55 -l.74 -4.42 -5.33 -4.83 11.90 7.88 5.14 Page 212 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-117 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:12 PM A= 51.10B=48.90C=151.15 TO= 15.08 D = 0.00 Correlation Coefficient= 0.860 Equation is A+ B * [Tanh((f-TO)f(C+DnJJ Upper ShclfEncrgy = 100.00 (Fixed) Lower Shelf Energy = 2.20 (Fixed) Temp1!"130 ft-lbs=-54.70° F Teml>'?!J35 ft-lbs=-36.60° F Temp:g;SO ft-lbs= 11.70° F Plant: Byron 1 Orientation: N/A ..... Material: SA508CL2 Capsule: Y Heat: 5P-5933 0 0 ...... ...... ...... ....... ...... --...... ...... ........... -300 -200 -100 0 100 200 300 Temperature {° F) CVGraph 6.02 07120/2015 WCAP-18054-NP 400 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: l'i/ A Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: Y C-118 Heat: SP-5933 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) Charpy V-Notch Data Tern peraturc {° F) I InputCVN -80 40.0 -60 16.0 -40 47.0 -30 35.0 -20 25.0 -10 61.0 0 42.0 20 42.0 40 60.0 72 68.0 100 65.0 150 97.0 200 77.0 225 135.0 250 88.0 I CVGraph 6.02 07120/2015 WCAP-18054-NP Computed CVN 23.8 28.6 34.0 36.9 40.0 43.I 46.2 52.7 59.l 68.7 76.0 86.0 92.2 94.3 95.8 Differential 16.16 -12.63 12.97 -1.93 -14.95 17.94 -4.24 -10.69 0.91 -0.69 -11.01 11.05 -15.21 40.73 -7.82 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-119 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) Plant: l Orientation: NIA 80 .... 70 60 -. 50 ..... 40 -CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/2015 3:13 PM A= 37.45 B = 36.45 C = 167.61 TO= 53.26 D = 0.00 Correlation Coc!Ticicnt = 0.96 l Equ.arion is A+ B * [Tanh((f-TO)/(C+Dl))J Upper ShclfL.E.

73.90 Lower Shelf L.E. = 1.00 (Fixed) Temp@35 mils

F Material: SA508CL2 Capsule: Y _/ f -t Heat: 5P-5933 ,. .. -.o J>o 20 l/c(<o 10 [__i.---/ 0 ...... ...... ....... ...... ....... ....... ...... ....... *--............. -300 -200 -100 0 100 200 300 400 500 600 Temperature {° F) CVGrnph 6.02 07/20/2015 WCAP-18054-NP Page l/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SAS08CL2 Capsule: Y C-120 Heat: SP-S933 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) Charpy V-Notch Data Tcmperatur" {° F) Input L. E. -80 20.0 -60 13.0 -40 25.0 -30 16.0 -20 15.0 -10 30.0 0 26.0 20 27.0 40 35.0 72 43.0 100 44.0 150 63.0 200 57.0 ' 225 74.0 250 62.0 CVGraph 6.02 07120/2015 WCAP-18054-NP Computed L. E. 13.3 16.0 19.0 20.7 22.5 24.3 26.2 30.3 34.6 41.5 47.4 56.4 63.1 65.6 67.5 Differential 6.65 -2.99 5.97 -4.70 -7.46 5.69 -0.24 -3.31 0.43 1.49 -3.36 6.57 -6.12 8.42 -5.54 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 C-121 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) Plant: Byron 1 Orienlation: N/A 100 90 --80 70 :i.. 60 .c 00. .... 50 = Cj -40 30 20 10 0 -300 CVGraph 6.02 WCAP-18054-NP CVGrnph 6.02: Hyperbolic Tangent Curve Printed on 7/20/20 !5 3: 13 PM A = 50.00 B = 50.00 C = 114.74 TO = 64.78 D = 0.00 Correlation Coe!Ticicnt = 0.978 Equation is A+ B * [Tanh((T-TO)/(C+DT))] Upper Shelf%Shcar= 100.00 (Fixed) Lower Shelf 'YoShcar = 0.00 (Fixed) Temperature at 50% Shear= 64.80 Material: SA508CL2 Capsule: Y I J -f

  • 7. I I; -200 -100 0 100 200 300 Temperature

{° F) 07/20/2015 400 Heat: 5P-5933 I 500 600 Page 1/2 December 2015 Revision 0 Plant: Byron 1 Orientation: N/A Westinghouse Non-Proprietary Class 3 Material: SA508CL2 Capsule: Y C-122 Heat: 5P-5933 BYRON UNIT 1 CAPSULE Y (HEAT-AFFECTED ZONE) Charpy V-Notch Data --Temperature{° F) Input %Shear -80 10.0 I -60 15.0 -40 15.0 -30 20.0 -20 15.0 -10 40.0 0 20.0 20 25.0 40 35.0 72 50.0 100 55.0 150 90.0 200 100.0 225 100.0 250 100.0 CVGraph 6.02 WCAP-18054-NP Computed %Shear 7.4 10.2 13.9 16.1 18.6 21.4 24.4 31.4 39.4 53.1 64.9 81.5 91.3 94.2 96.2 0712012015 Differential 2.58 4.80 I. 13 3.92 -3.58 18.64 -4.43 -6.42 -4.37 -3.14 -9.88 8.46 8.65 5.77 3.81 Page 2/2 December 2015 Revision 0 Westinghouse Non-Proprietary Class 3 D-1 APPENDIXD BYRON UNIT 1 UPPER-SHELF ENERGY EVALUATION

0.1 EVALUATION

Per Regulatory Guide 1.99, Revision 2 [Ref. D-1 ], the Charpy upper-shelf energy (USE) is assumed to decrease as a function of fluence and copper content as indicated in Figure 2 of the Guide (Figure D-1 of this appendix) when surveillance data is not used. Linear interpolation is permitted. In addition, if surveillance data is to be used, the decrease in USE may be obtained by plotting the reduced plant surveillance data on Figure 2 of the Guide (Figure D-1 of this appendix) and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line should be used in preference to the existing graph. The end-of-license extension (57 effective full-power years [EFPY]) USE of the vessel materials can be predicted using the corresponding quarter-thickness (1/4T) fluence projection, the copper content of the beltline materials and/or the results of the capsules tested to date using Figure 2 in Regulatory Guide 1.99, Revision 2 [Ref. D-1]. The Byron Unit 1 reactor vessel beltline region thickness is 8.5 inches. Calculation of the 1/4T vessel fluence values at 57 EFPY for the beltline materials is shown in Table D-1. The following pages present the Byron Unit 1 USE evaluation. Figure D-1, as indicated above, is used in making predictions in accordance with Regulatory Guide 1.99, Revision 2 [Ref. D-1]. Table D-2 provides the predicted USE values for 57 EFPY (end-of-license extension). WCAP-18054-NP December 2015 Revision 0 Westinghouse Non-Proprietal}' Class 3 Table D-1 Byron Unit 1 Pressure Vessel l/4T Fast Neutron Fluence Calculation 57 EFPY Fluence(x 10 19 n/cm2, Material E > 1.0 MeV) Surface l/4T<*l Beltline Materials Nozzle Shell Forging 1.17 0.703 Intermediate Shell Forging 3.23 1.94 Lower Shell Forging 3.22 1.93 Nozzle to Intermediate Shell Forging Circ. 1.17 0.703 Weld Seam Intermediate to Lower Shell Forging Circ. 3.11 1.87 Weld Seam Extended Beltline Materials Inlet Nozzle Forgings 0.0132 Note (b) Outlet Nozzle Forgings 0.00995 Note (b) Inlet Nozzle to Nozzle Shell Forging Circ. 0.0132 Note (b) Weld Seams Outlet Nozzle to Nozzle Shell Forging Circ. 0.00995 Note (b) Weld Seams Note: (a) l/4T fluence values were calculated from the surface fluence, the reactor vessel beltline thickness (8.5 inches) and equation f = fsurf

  • e-024 (x) from RegulatOI}'

Guide 1.99, Revision 2, where x =the depth into the vessel wall (inches). (b) Consistent with the time-limited aging analysis (TLAA) evaluation as documented in Reference D-3, the maximum fluence values for the extended beltline materials at 57 EFPY were less than the minimum fluence value displayed on Figure 2 of Regulatol}' Guide 1.99, Revision 2. The minimum fluence value (2 x 10 17 n/cm 2) displayed on Figure 2 of Regulatol}' Guide 1.99, Revision 2 was conservatively used to determine the projected USE decrease; see Table D-2. D-2 WCAP-18054-NP December 2015 Revision 0 w CJ) ;:) .E c. 0 ... c Cl) Cl < 1 MeV) F i g u re D-1 R eg ulatory G uid e 1.99, R ev i s ion 2 Pr e dic ted D e cr e a se in U pp e r-S h e lf E n e r gy as a Func t i o n of Copper and F lu e n ce WCAP-18054-P December 2 0 1 5 Revi s ion 0 Westingh o u s e Non-Proprietary C l as s 3 D-4 Table D-2 Predicted Positions 1.2 and 2.2 Upper-Shelf Energy Values at 57 EFPY Weight 1/4T EOLE Projected Projected Fluence U nirradiated EOLE Material %of (x 10 1 9 n/cm2, USE (ft-lb) USE Decrea se SE (ft-Cu E > 1.0 MeV) (%) lb) Position 1.2<" 1 Beltline Materials Nozzle Shell Forging 0.05 0.703 1 3 8 17.5 114 Int e rmediate Shell Forging 0.04 1.94 1 39 22 108 Lower Shell Forging 0.04 1.93 150 22 117 Nozzle to Int ermediate Shell Forging Circ. 0.03 0.70 3 77 17.5 64 Weld Seam (Heat #442011) Intermediate to Lower Shell Forging Circ. 0.04 1.87 77 22 60 Weld Seam (Heat #442002) Extended B e ltlin e Materials Inlet Nozz l e 0 3-00 I 0.12 Note (c) 11 3 10<c> 10 2 Inlet Nozzle 0 3-00 2 0.12 Note (c) 115 I o<c> 104 Inlet Nozzle 04-00 I 0.1 3 Note (c) 114 1o<c> 103 Inl et Nozzle 04-00 2 0.12 Note (c) 118 I o<c> 106 Outlet ozzle 0 1-00 I 0.11 Note (c) 131 I o<c> 118 Outlet ozzle 01-002 0.11 No te (c) 129 I o<c> 116 Outlet ozzle 02-00 I 0.11 Note (c) 111 10<c> 100 Outlet Nozz l e 02-002 0.11 Note (c) 95 I o<c> 86 Inlet ozzle to Nozz le Shell For gi ng Circ. 1 2<c> Weld Seam s (Heat# 442002) 0.15 Note (c) 98 86 Outlet Nozz le t o ozzle Shell Forging C ir c. I 4 (c) Weld Seams (Heat # I P54 I 2) 0.178 ote ( c) 75 65 Outlet Nozzle to ozzle Shell Forging C ir c. I o<c> Weld Seams (Heat# 504) 0.054 Note (c) 81 7 3 Position 2.2<hl Intermediate Shell Forging 5P-5933 0.04 1.94 1 39 14 120 Intermediate to Lower Shell Forging Circ. 0.04 1.87 77 1 3 67 Weld Seam (Heat #442002) Notes: (a) Ca l c ul ated u s ing the C u wt. % values and l/4T fluence va lue fo r each material and Regulatory Guide 1.99 , Revision 2 , P osit ion 1.2. In calculating Position 1.2 p e rcent USE decreases , the base metal and weld C u weight percenta ges were conservatively rounded up to the nearest line in Regulatory Guide 1.99, Revision 2 , Figure 2. (b) Calculated u s ing surveillance capsule mea s ured percent decrease in USE from Table 5-10 and Regulat ory Guide 1.99 , Revision 2 , Position 2.2; see Figure D-1. (c) The minimum fluence va lue (2 x 10 1 7 n/cm 2) displa ye d o n Figure 2 o f Re g ulat ory Guide 1.99 , Re v ision 2 was conservatively used t o d e termine the pr ojec ted USE decreas e. WCA P-1 8054-P December 2015 Re vis i o n 0 Westi n g h ouse Non-Propr i etary C l ass 3 D-5 USE Co nclu s ion A s s ho w n in Table D-2, a ll of the B y ron U nit I r eactor vesse l beltline and extended beltline mat er i a l s are proje c ted to remain above the USE sc r ee nin g cr it er ion of 50 ft-lbs (pe r 10 CFR 50 , Appendix G [Ref. D-2]) at 57 EF PY. D.2 REFERENCES D-1 U.S. Nuclear R eg ul atory Commission R eg ul atory Guide 1.99 , Re visio n 2 , R adiation Embrittl e m e nt of R eac t or Vessel Materia l s , M ay 1988. D-2 10 CFR 50 , Appendix G , Fra c tur e Toughn ess R equ ir e ments , Federal Re g i s ter , Volume 60 , No. 243 , D ecember 19 , 1995. D-3 W es tin g hou se Report WCAP-17606-NP , R evisio n 0 , B yro n Station Uni t s 1 and 2 R eac t or Vessel Int eg ri ty Evaluation t o Support Li ce ns e R e n ewa l Tim e-Limit ed Aging Ana l ysis, Dec em b e r 20 12. WCA P-18054-P December 2 015 R ev i sio n 0}}