ML19329B952
ML19329B952 | |
Person / Time | |
---|---|
Site: | Davis Besse |
Issue date: | 12/31/1974 |
From: | TOLEDO EDISON CO. |
To: | |
Shared Package | |
ML19329B951 | List: |
References | |
NUDOCS 8002110706 | |
Download: ML19329B952 (377) | |
Text
{{#Wiki_filter:O ! DAVIS-BESSE NUCLEAR POWER STATION l UNIT NO.1
;
PRE-OPERATIONAL ENVIRONMENTAL MONITORING PROGRAMS AQUATIC MONITORING PROGRAM RADIOLOGICAL MONITORING PROGRAM TERRESTRIAL MONITORING PROGRAM i i l l SEMI- ANNUAL REPORT JULY I,1974 - DECEMBER 31,1974 VOLUME H
.. p.. % _ lx a w9% ' ,
a -; ~ ' '
- . . cy:;,g.;. J_;;;3 -.: I;. . -,
I ss - ,5 i, '
^ (. ._ *p *- . ~~ ..,. 4 .4 'e .L.. . f. .i ~ '- '~' . ~ Q: p *.~ *; - ' -i -j ' '~_
N .., ' ,. f*? m' _; , , _ h ,
* ._;l ~ k : . *(';b-*W 'N* ^ } *. ' Ih [( + ' I I' f - y . , .'. ,. g.'. . ... - 7,; ~ , .,t. - -' .h < ww? &, l, g '. R -
- Y' '-
. .. s .y %.;t,ffRh .? .; + . . . . j.-" ' '., +'
s [... e n: ,; - _ _
<+r , .. ~'_, . ..
w ,- - , u. 4 ,, T r
,, . . ;: r .
s- ,
. f W7=;. e ' * # -E .' $, , y . ,,, i -,; 7 , , + ,' ,' p, ,g ' .[" : ,A ,
- x. , ,-
" *~ . .. ; _.
_ _ _ R _ _ ] , ;_ . . _ (_
- f __ #_ _ _ '
70tE0v
%ss EDISON 8002110 % h
DAVIS-BESSE NUCLEAR POWER STATION l UNIT NO.1 PRE-OPERATIONAL ENVIRONMENTAL MONITORING PROGRAMS l AQUATIC MONITORING PROGRAM l RADIOLOGICAL MONITORING PROGRAM TERRESTRIAL MONITORING PROGRAM l SEMI- ANNUAL REPORT . JULY I,1974 - DECEMBER 31,1974 1 VOLUME H i
____.m- *
~.,
9 I 1 _0 -3 g .
\.,1
"O?f(A s/ ::eg;,z.;.;&.,. ,As.. e . .. . 1, W s-y: M' ' f ' d;'_,.r,., N') ~ ',.E xc , "~
l, ~.(* W.d
+-,'.., ,';EIT.D v .-
hhh n's,f e f
. . . .- h PRE-OPERATIONAL AQUATIC f ECOLOGY MONITORING PROGRAM E FOR THE DAVIS-BESSE NUCLEAR i POWER STATION, UNIT 1 PROGRESS REPORT JULY 1 - DECEMBER 31 i.
1974 Prepared for Toledo Edison Company Toledo, Ohio Contract No.1780 CENTER FOR LAKE ERIE AREA RESEARCH THE OHIO STATE UNIVERSIW COLUMBUS, CHIC Feb ruary 1975 9 6
l . TABLE OF CONTENTS ( Page PR OJ ECT STAFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vil O BJ ECTIV ES . . . . . . . . . . . . . . . . . . . . .~ . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PR O C ED UR ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Sampling Station Location. . . . . . . . . . . ................. 1 Plankto n . . . . . . . . . . . . . . . . . . . . . . . . . .................... 1 Phyto g t ankto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Z oo pl a nkto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B e ntho s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Fish................................................. 4 G il l N e t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 S ho r e S e ine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 O tte r Trawl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Hoo p N e t . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . 4 F ry N e t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Wate r Qual i ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Field Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Laboratory Determinations. . . . . . . . . . . . . . . . . . . . . . . .
, , 5 R ES U LT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Plankton.............................................. 7 Phyto plankto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Z oo pl ankto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 B e ntho s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Fish................................................. 7 . G i ll N e t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
- S ho re S e i n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 O tte r T raw l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 H oo p N e t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fry N e t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Food Hab i ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Wate r Qua11ty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 D I S C U S S ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 P l ankto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1 P hyto pl a nkto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 41 l Z oo pl a nkto n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 B e ntho s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 l Fish................................................. 52 U
4 _ _ _ . . ~ -.., _._ . J 5
4 - Il Page Wate r Qu ality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Seasonal Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Statio n Variatio ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 - Wate r Quality Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LIT ERATUR E CIT ED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 APPENDICES A. Phytoplankton Populations at Locust Point, July - Nove mbe r 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
- 8. Zooplankton Populations at Locust Point, July - November 1974. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 C. Benthos Populations at Locust Point, July - N ove mb e r 1974. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 i
e e e
-st d'
e O
/
h -
- "*
- w -% _o ._%,,,
/
k e
ill LIST OF TABLES
, Page Table 1. Aquatic Monitoring Program Sampling D ate s - 19 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Table 2. Analytical Methods for Water Quality Dete rminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Phytoplankton Populations at Locust Point -
1974 Mo nthly Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TatAe 4. Total Phytoplankton Population per Liter - 1974.............................................. 9 Table 5. Zooplankton Populations at Locust Point - 1974 Monthly Means. . . ........................... 10 Table 6. Total Zooplankton Population per Liter - 1974............................................. 11 Table 7. Benthic Macrotnvertebrate Populations at Locust Point - 1974 Monthly Means. . . . . . . . . . . . . . . . 12 Table 8. Total Benthos Population per Square Meter - 1974............................................. 13 Table 9. Summary of Fishing Results at Locust Point - J uly - N ovemb e r 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 10. Analysis of Gill _ Net Catch at Locust Point
. Station 8 - July - November 1974. . . . . . . . . . . . . . . . . 16 Table 11. Analysis of Gill' Net Catch at Locust Point Station 12 - July - November 1974. . . . . . . . . . . . . . . .
18 Table 12. Analysis 'of Shore Seine Catch from Locust Point - July 9, 1974............................. 20 Table 13. Analysis of Shore Seine Catch from Locust Point - August 27, 1974.......................... 21 Table 14 Analysis of Shore Seine Catch from Locust Point - September 12, 1974...................... 22
-- -m
tv Table 15. Analysis of Shore Seine Catch from Locust Point - October 16, 1974......................... 23 Table 16. Analysis of Shore Seine Catch from Locust Point - November 14, 1974....................... 24 Table 17. - Analysis of Trawl Catch from Locust Point - July - Novembe r 1974. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 18. Analysis of Trawl Catch from the Intake Canal at the Davis-Besse Nuclear Power Station - 1974............................................. 27 Table 19. Results of Trawling Effort to Remove Fish . Prior to Poisoning the Intake Canal - September 24, 1974......................................... 28 Table 20. Analysis of Hoop Net Catch in Northwest Marsh (Station 21) - July - November 1974. . . . . . . . 29 Table 21. Analysis of Hoop Net Catch in Southeast Marsh (Station 22) - July - November 1974. . . . . . . . 30 Table 22. Analysis of Ichthyoplankton Collected at Locust . Point - July - November 1974. . . . . . . . . . . . . 31 Tabla 23. Lake Erie Water Quality Analyses for J uly 19 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 24 Lake Erie Water Quality Analyses for Augu st 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 25. Lake Erie Water Quality Analyses for Septembe r 197 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 26. Lake Erie Water Quality Analyses for ' O ctob e r 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 . Table 27. Lake Erie Water Quality Analyses for N ove mb e r 19 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 28. Lake Erie Water Quality Analyses for Decembe r 1974. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 29. Solar Radiation in Lake Erie at Locust Point for July - October 1974. . . . . . . . . . . . . . . . . . . 38
v
- - Table 30. Current Measurements in Lake Erie at Locust Point for July - O ctober 1974. . . . . . . . . . . . . . . . . . . . . . 39 Table 31. Mean Values and Ranges for Water Quality Parameters Tested in 1974. . . . . . . . . . . . . . . . . . . . . . . . 40 LIST OF FIGURES Page Figure 1. Location Map of Sampling Stations at the Davis-Besse Nuclear Power Station. . . . . . . . . . . . . . . 2 Figure 2. Mean Monthly Phytoplankton Populations for Lake Erie At Locust Point - 1974. . . . . . . . . . . . . . . .
42 Figure 3. Mean Monthly Bacillariophyceae, Chlorophyceae, and Myxophyceae Populations for Lake Eire at Lo cust Po int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 4. Mean Monthly Zooplankton Populations for Lake Erie at Locust Point, 1972 - 1974................. 45 Figure 5. Mean Monthly Rotifer Populations for ' Lake Erie at Locust Point, 1972 - 1974................. 46 Figure 6. Mean Monthly Copepod Populations for Lake Erie at Locust Point, 1972 - 1974................. 47 Figure 7. Mean Monthly Cladoceran Populations for Lake Erie at Locust Point, 1972 - 1974................. 48 Figure 8. Mean Monthly Benthic Macrotnvertebrate Populations for Lake Erie at Locust Point, - 1972 - 1974....................................... 50 Figure 9. Mean Benthic Macroinvertebrate Populations at Various Distances Off Shore along the Four Sampling Transects - 1974. . . . . . . . . . . . . . . . . . . . . . . . 51 Figure '10. Mean Monthly Hydrogen Ion, Temperature and Dissolved Oxygen Measurements for Lake Erie . at Locust Point During 1974. . . . . . . . . . . . . . . . . . . . . . . 54 Figure 11. Mean Monthly Turbidity", Suspended Solids and Transparency Measurements for Lake Erie at Lo cu st Point Du ring 1974. . . . . . . . . . . . . . . . . . . . . . . . . 55 e
.a NSD Ng -
_,_ 4
....ww .---
vt Figure 12. Mean Monthly Alkalinity, D'issolved Solids and Conductivity Measurements for Lake Erie at Locust Point During 1974. . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 13. Mean Monthly Calcium, Chloride and Sulfate Cencentrations in Laks Erie at Locust Point Du ri ng 19 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 14. Mean Monthly Nitrate, Phosphorus and Silica Concentrations in Lake Erie at Locust Point Du r i ng 1 9 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 15. Trends in Mean Monthly Temperature, .
;
Dissolved Oxygen, and Hydrogen Ions Measure-i ments for Lake Erie at Locust Point for i the Period 1972 - 1974........................... 60 i
! Figure 16. Trends in Mean Monthly Transparency and Phosphorus Measurements for Lake Erie at 6
Locust Point for the Period 1972 - 1974........... 61
? . Figure 17. Trends in Mean Monthly Conductivity, Alkalinity and Turbidity Measurements for Lake Erie at Locust Point for the Period 1972 - 1974........... 62 4
-l
;
{ , S e 9
*6***- ._. m.--- ,..ww-- .
vil PROJECT STAFF Charles E. Herdendorf - Principal Investigator - Analysis of Physical Parameters and Field Sampling 9 Jeffrey M. Reutter - Co-Principal Investigator - Analysis of Biological Parameters and Field Sampling Harold N. Cones, Jr. - Benthos and Fish Food Habits Analysis and Field Sampling Donald H. Davis - Head of Sampling Team and Ichthyoplankton Analysis William DeMott - Plankton Analysis Carolyn S. Jenkinson - Administrative Assistant Richard O. Moore, Jr. - Field Sampling and Clerical Aid Veronica M. Reutter - Plankton Analysis and Clerical Aid Marjorie A. Slagle - Secretarial Services Gerald L. Treon, Jr. - Field Sampling and Clerical Aid Nancy E. Zapotosky - Clerical Aid o O
" * --**+- * ...m . _ . _ ~*-
A OBJECTIVE The purpose of this ".1vestigation is to ascertain the existing character of the aquatic ecosystem at Locust Point, Lake Erie prior to operation of th 2vis-Besse Nuclear Power Station, Unit 1. Included in the a sessment are studies of existing plankton, benthos, and fish populations and water quality and recent trends in these parameters. The report contained herein is for the period July 1, 1974 to December 31, i374. PROCEDURES Sampling Station Location . Twenty-five stations, 18 along 4 transects in the open lake, 2 stations in the intake canal, 2 stations in the marshes, and 3 stations along the shoreline, were designated as sampling stations (Fig. 1). Of the 4 transects, one followed the intake conduit, one the discharge conduit, while control transects were set up on the east and west sides of the entire intake and discharge complex. Control west ran due north from the shore-end of the intake conduit with sampling stations located at 500 ft (Station f), 1000 ft (Station 2), 2000 ft (Station 3), and 3000 ft (Station 4) from the shore line, sampling stations on the intake were located at 500 ft (Station 5), 1000 ft (Station 6), 2000 ft (Station 7), 3000 ft (Station 8, proposed intake), and 4000 ft (Station 9) from shore. Along the discharge transect sampling stations were at dietances of 500 ft (Station 10), 1000 ft l (Station 11), 1500 ft (Static i 12, proposed discharge), 2000 ft (Station 13), and 3000 ft (Station 14 from shore. Additional stations were placed 500 ft due north of Station 12 (Station 15) and 500 ft south of i Station 12 (Station 16). Control east ran perpendicular to the shore line, parallel to the intake, and approximately 2500 ft east of the in-take. Stations were located 500 ft (Station 17) and 1000 ft (Station 18) , from shore. Station 19 was located in the center of the intake canal, l 1000 ft f. rom the lake shore. Station 20 was located in the center of the forebay, 2500 ft from shore. Stations 21 and 22 were located in the northwest and southeast marshes, respectively. Stations 23 - 25 were on the shoreline at the intersection of the intake conduit and 1500
' ft to either side.
Plankton Plankton was sampled monthly, July through November, from 12 stations,10 in the open lake and 2 in the intake canal and forebay (Table 1). Duplicate vertical tows, bottom to surface, were taken at each of the 12 ;ations with a Wisconsin, plankton net (12 cm mouth;
2 1 tesCMt(BAM LAtt a*
- f b
--
- f e Y @
r a.. , ( 4[ Sitt t.0 CAT?Pe g3 , 7 e
- s. ,2 !
s 5,
' - - N .,}e ntAR3H s' ,5 g j g,g g t ; .
f e t'P.*
'e' ! '
24 _10 ,11 _12
;
- g 1 AREA
'3 - - .-- @1, gI4 g/ ~,
w h #
}' * / \ 16 2 s.o =, G Vm, ' 3 i e#
t'. / 25 18 t P
- '. %e gy
[ p 1, 's 3
!: e - ' * ,f s2 )C. V / e :
(-s.rsarezasrane.rm -at.1.s r. r. . ners.w 4 - 1 ~ ' ~ " '
- t. .., \ :e-asQ
~
l i 'y
~
1
..* MARSH '.
p.*
- C. *
;l ,.* *) '.* .M :
L 8 *
./ '. s u : AagA ".
E ! , e'! i . 5: : ;
?
i. p ,, a. scaut ,s ratT FIGURE 1
]
LOCATION MAP OF SAMPLING STATIONS AT THE DAVIS-BESSE NUCLEAR POWER STATION LEGEND tmsTmc suit.eWo a s? .ficN A At A P8CP05CD wattR antaut ANO DISC 4170g Q7
%* entaat C.h3ust 0mta ==wrat ta'>'a3 m?anc c*.e w a.ge.tiae, e%.oo.G ,s .rc. .s.e a.a.x,cm ..
o .,.,.,t,.,.
- o. s., ......e . .a <e it t
$ 1;;:,i',',alll:"' ' evenitoring Stations a . ... .a.. WATER INTAKC ANO O!3CHA *4G5 @ paia,aou t 0 ciscu. arm .atte ststru p.=* = car OAVi$
- EESSE N'JCLEAR POnER ST; G *atte rotatute.? ents5 O resa, o ri ant t casa 6 ,
s i. em.e
-im-d-
i l 3 l
~
no. 25, 0.064 mm mesh). Each sample was concentrated to 50 ml and preserved in 57. formalin. The volume of each sample was l computed by multiplying the length of the tow by the area of the net mouth. The works of Chengalath, Fornando, and George (1971), Collins and Kalinsky (1972), Eddy and Hodson (1964), Jahoda (1948), ; Pennak (1953), Taft and Taft (1971), and Ward and Whipple (1959) - l were used in plankton identification. , j i l TABLE 1 l AQUATIC MONITORING PROGRAM SAMPLING DATES-1974 ) Sample Apr May Jun Jul Aug I Sect Oct Nov l Dec PLANKTON 18 22 19 17 22 10 9 7 BENTHOS 17-18 22-23 19-20 17 14 6 10 7 FISH I Gill Net 25-26 21-22 13 10-11 19-20 12-13 16-17 25 I Shore Seine 12 ' 21 13 9 27 12 16 14 Otter Trawl
~
Lake 25 21 21 19 16 13 10 8 Intake Canal 18 27 24 23 Hoop Net 24-25 21-22 13-14 9-10:19-20 17-18 16-17 25-26 Fry Net Lake 21 14 10 19 12 16 25 Intake Canal -27 WATER QUALITY 18 22 19 17 22 10 9 7 17 l CURRFNTS 24 l 21 18 16 12 17 SOLAR RADIATION 25 l1 & 29 26 7 31 4 Phytoplankton. Three 1-ml aliquots were withdrawn from each sample and placed in Sedgewick-Rafter cells. Twenty-five random Wipple Disk fields from each cell were counted for phytoplankton with a microscope at 100x. Identification was generally to the genus level. Results were reported as number per liter. Zooplankton. Again, three 1-ml aliquots were withdrawn from each sample and placed in Sedgewick-Rafter cells. The entire cell was scanned under a microscope at 60x while counting and identifying all zooplankters. Individuals were identified as far as possible (generally to the genus or species level) and reported as number per liter. i . l-
.- .c
4 Benthos Benthos, was sampled monthly, July through November, from Stations 1 to 20 (Table 1). Three replicate samples were tai <en at
; each station with a Ponar grab (A = 0.055 m2). Samples were sieved . through a U.S. #40 sieve, preserved in 10% formalin and returned to the laboratory. Individuals were identified as far as possible (usually to genus; to species where possible) and reported as numbers of individuals per.. square meter. The works of Brinkhurst (1c63),
(1964),,(1965), Brinkhurst, Hamilton, and Herrington (1968), Klemm (1972), Mason (1968), Pennak (1953), Stein (1962), Usinger (1956), Walter and Burch (1957), and Ward and Whippl.e (1959) were used
. for the benthos identification.
4 Fish Fish were sampled by 5 methods, gill nets, shore seine, otter trawl, hoop nets, and fry net, July through November (Table 1). All fish captured were weighed, measured, and identified to species (Trautman, 1957). Gill nets. Two experimental gill nets were set parallel to and
, near the end of the intake and discharge pipelines (Stations 8 and 12, respectively). Each net (125 ft x 6 ft) consisted of five 25 ft x 6 ft
, contiguous panels (1/2", 3/4", 1", 1 1/2", and 2" bar mesh). The ~ nets were fished for approximately 24 hours monthly. 4 - Shore Seine. Shore setning was accomplished monthly with a 100 ft bag seine at Stations 23, 24, and 25.- The seine was stretched perpendicular to the shoreline until the shore brail was at the water's edge. The far brail was then dragged through a 90 0 arc back to shore. O Two hauls were made at each station. Otter Trawl. Both a 16-ft and an 8-ft otter trawl were used to collect fish for estimates of relative abundance and to obtain live fish for . stomach analysis. The 16-ft trawl was used in the open lake. Four 5-minute tows between the intake (Station 8) and the discharge (Station 12) were completed monthly.' A representative number of stomachs were taken from these for stomach analysis. Stomachs were preserved in 5-10% formalin. The 8-ft trawl was used within the intake canal. Two tows of the entire canal length were conducted quarterly. Hoop nets. Hoop nets (2.5. ft diameter, 1" bar mesh) were set at Stations 21 and 22 in the northwest and southeast marshes. The nets ,were fished for approximately 24 hours monthly.-- These fish were ma 5 E *=.+ .' w '
~' , J-, ._ , - ,_ .
_ . . . _ . , . . ., . . . , , , _ . m
4
- 5 s ' identified, weighed, measured and released.
i Fry Net. A O.75-mater diameter oceanographic plankton net (no. ' 00, 0.75 mm mesh). was used to capture fry, larvae, and eggs
. (ichthyoplankton). Five-minute circular tows, surface and near bottom, ..around .the intake (Station 8) and discharge (Station 12), were completed '
monthly. Additional tows, surface and bottom, were made within the intake canal in August. Ichthyoplankton was preserved in 5% formalin and analyzed under a dissecting microscope. Individuals were identified
~
as far as possible (generally species) using the works of Fish (1932) and Norden (unpublished key to larval fishes). Water Qually Twenty water quality parameters were measured monthly during the entire period July - December at three stations in Lake Erie. These parameters and the analytical method employed are listed in Table 2. Field Measurements. Water quality measurements were made monthly in the field at Station 1, 8, and 12 (Figure 1). Temperature,
. dissolved oxygen and conductivity were measured from a small survey boat with submerged sensors and shipboard readout meters. Dissolved oxygen was determined with a YSI model 54 meter and conductivity ,
with a Beckman RB3-3341 solubridge temperature-compensated meter; each meter was equipped with a thermistor for temperature readings. ' Sensor readingc were taken at the surface and approximately 50 cm above the bottom. Transparency was determined with a 30 cm diameter Secchi disk lowered on a marked line until it was no longer visible. Solar radiation was measured at Station 8 with a GM Mfg. and Instr. j ' Corp. model 268WA-3OO submarine photometer at the surface and at one-meter depth intervals until the illumination equalled 1.0% of the
- surface value. Current velocity and direction were measured at Stations 8 and 12 with a HydroProducts model 65-A meter and surface drogues.
Laboratory Determinations. Surface and bottom (50 cm above) water samples were taken at Stations 1, 8, a,nd 12 with a 3-liter Kemmerer sampler at the same time that field measurements were being made. These samples were placed in polyethylene containers and taken to the laboratory for analysis; in most cases, analyses were completed within 24 hours of the sampling time. Fifteen water quality
- parameters (Ta'ule 2) were determined in the laboratory using the procedures prescribed in " Standard Methods for the Examination of Water, 13th Edition" (American Public Health Association, 1971) and in " ASTM Standards, Part 23, Water" (American Society for Testing and Materials, 1973). *W"#*** W %t. , _ , ~_%_%, . .. .. - . . .n... . . < - - - . - , -n ., n,- . ,
1 TABLE 2 ANALYTICAL METHODS FOR WATER QUALITY DETERMINATIONS Parameter Units Analytical Method
- 1. Temperature C Std. Methods, 13th Ed. ,162 (1971)
- 2. Dissolved oxygen ppm Std. Methods, 13th Ed., 210B (1971)
'3. Conductivity umhos/cm (25 C) ' ASTM D1135-64 (1973) 4 Transparency meters Secchi disk (Welch, 1948)
- 5. Solar radiation u amps G.M. Mfg. & Instr. Corp. ,
~
submarine photometer
- 6. Current knots HydroProducts, A-65 current meter J 7. Calcium (Ca) mg/l Std. Methods, 13th Ed. , 110C (1971)
- 8. Magnesium (Mg) mg/l Std. Methods, 13th Ed. ,1228 (1971) m
- 9. Sodium (Na) mg/l ASTM D1420-G4 (1973)
- 10. Chloride (Cl) mg/l Std. Methods, 13th Ed. , 1128 (1971)
- 11. Nitrate (NO3) mg/l ASTM D992-71 (1973)
, 12. Sulfate (SO4 ) mg/l ASTM D516-08C (1973)
- 13. Phosphorous (Total as P) mg/l Std. Methods, 13th Ed., 223F (1971)
- 14. Silica (SiO2) mg/l ASTM D 859-688 (1973)
- 15. Alkalinity (total as CACO 3) mg/l Std. Methods, 13th Ed. , 102 (1971)
- 10. Biochemical oxygen demand mg/l Std. Methods, 13th Ed. , 219 (1971)
- 17. Suspended solids mg/l Std. Methods, 13th Ed. , 224C (1971)
- 18. Discolved solids mg/l USEPA, Chem. Analysis, Watcr (1971)
- 19. Turbidity F.T.U. Std. Methods, 13th Ed., 163A (1971)
- 20. Hydrogen-ton conc. pH units ASTM D1293-65 (1973)
O
,a 7 ~
RE5ULTS Plankton Phytoplankton. Phytoplankters collected July through November 1974 were divided into 54 taxa, generally to the genus level (Table 3). Thirteen taxa were in the class 8acillariophyceae, 27 in the class Chlorophyceae, 1 in the class Chrysophyceae, . 3 in the class Dino-phyceae, 2 in the class Euglenophyceae, 6 in the class Myxophyceae, 1 consisted of unidentified bacteria, and 1 consisted of unidentified phytoplankter. The range of the total phytoplankton population per liter per station was 55 - S,855 in July, 410 - 2,274 in August, 1,385 - 9,543 in September, 11,757 - 38,151 in October, and 13,955 - 48,815 in November (Table 4). Additional data are contained in Appendix A. Zooplankton. Zooplankters collected July through November 1974 were divided into 51 taxa, 27 under Rotifera, 8 under Copepoda, 9 under Cladocera, and 7 under Protozoa (Table 5). Twenty-four taxa were identified to the species level, 22 to the genus level, 2 consisted of unidentified rotifers, and 3 contained immature copepods. The total zooplankton population per liter per station ranged from 216.7 - 2,202.2 in July, 224.8 - 431.3 in August, 213.1 - 1,018.3 in September, 92.3 i- 394.0 in October, and 208.0 - 372.4 in November (Table 6). Additional data are contained in Appendix B. Genthos
- Benthic macroinvertebrates collected at Locust Point July through November 1974 were divided into 40 taxa (Table 7). The population was dominated by Oligochaetes. The total benthic macrotnvertebrate population per square meter per station ranged from 51 - 3,185 in '
July, 89 - 7,659 in August, 83 - 7,175 in September, 38 - 3,737 in October, and 0 - 4,291 in November (Table 8). Additional data are contained in Appendix C. Fish The five fishing methods employed yielded 25,315 fish of 28 species during the period July through November 1974 A summary of these.results is contained in Table 9. Gill Net. Gill netting from July through November yielded 1,025 fish representing 19 species. The catch at Station 8 (intake) -***N**a-me*+ - . . _ . . , _ . _ , _ - - ****"_
8 TABLE 3 c PHYTOPLANKTON FOPULATIONS AT LOCUST POINT 1974 .VONTH' Y ME ANS Aortl May .une July Aug ' Scot cet Nov I TM ie ?? to 57 22 'O o 7 DACILLN410PHYCCAC
+ (Otatoms) 105 Asterior*lla sp. 1735 1600 551 il 2 2 65 10 0 49 63 Centete diatom Cyclotatla so. 4 2 43 O O Cymntopteura so. 14 25 3 6 0 8 9 Fraittarta sp. 435 455S 63 21 38 359 2153 Gyrostqrm so. 1 2 6 6 5 10 Metostem so. 3990 35597 350 238 719 754 3$30 3398 Naviculoid 12 21 9 16 43 58 123 Stephsnodiscus sp. 1 0 1710 4783 Sueiretta so. 12 19 4 0 1 7 g nedra so. 5 23 2 20 23 39 Tabettacta so. 1335 6259 81 6 2 1 13 66 Untcenttried Otatam GHLGR O W HY C t,.A::.
(Green Algae) Aettnastrum so. 9 68 34 Ankictrodestnus sp. 36 17 Diructemeta so. 22 384 629 Chlamydamorus sp. 38 Clostertoccis so. 43 11 2 25 0 105 632 Ctostertum so. 245 10 23 Coetastrum so. 3 62 SS 32 21 Cosmartum sp. 4 4 5 11 Cruct:;enta sp. 24 4 Cavetntatnia so. 6 111 124 M4astaarium Dimeennueva sp. so. 9 8 D nw -tm sp. 61 107 19 3 O Lacertv*lmia so. 3 Mteractin'um so. 2 0 55 36 Macectta ro. S 2 935 4140 1777C Coevstts sp. 47 Parw1orma sp. 2 12 27 26 64 47 39 Perst sstrum sp. 37 392 841 774 557 1403 1982 1551 Platydoet u so. O Rhtroctoneum so. 3 2 O Scenadasmus sp. 1 9 10 7 9 29 113 162 Seterustnam sp. 3 Soterv) yea, sp* 4 3 O O O staurastrum sp. 5 82 90 83 74 123 Ut othet x so. 3 s i_v_o_x_ so. 7 5 18 3 3 1 33 4 m CFRYSOPHYCEAC 3
-Dinobevon so.
DINOPHYCEAE .
. (Olnoflagettates)
Cecattum hirundinetta_' 3 14 e 1757 17 23 11 3
- GlenodinNm so. 41 O O O Peridtntum sp. 14 EUCLCNOPHYCEAE Einteru sp. 8 23 26 Tractwlomerus sp. 4 0 4 O MYXOPHYCEAC (Glue-green algae)
Arubearu so. 7 8 23 95 29 Aptuntromenon so. 204 1547 5414 1322 Chroncoccus so. 61 14 40 22 23 Mert=.noo.=da so. 2 O O O Microevstis so. 99' 39 13 265 307 124 Spiristtru so. Unidentlfted Bactoria 182 O 94 m h Unidenttfle'$ Pnvtoolae* tee imi g?51 ' t ?2M va% TOTAL .r.Ni Pet 7 con? w.7 Cata presented as nurreer/tttee.
' ' " a w, - . ^% . , . - %. ,, _ _ _ . _ _. _
w- . ..?'
~ . _W , TABLE 4 TOTAL PHYTOPLANKTON POPULATION PER LITER - 1974
-i Station April May June July August September October November 18 22 .19 17 22 10 9- 7 1 i 1 13282 12628 4205 6178 1393 7755 38151 35848 3 5929 78687 2047 2737 1329 3891 12016 33484 6 5510 84172 227G 3198 1680 5917 19424 27413 8 8250 100329 1593 2313 1562 5528 14883 43947 9 G227 57674 1657 1G80 1727 4917 1345G 48815
- 10 11758 240929 3357 6G50 1977 9543 29853 35775 12 8097 118453 2335 6855 2274 GOO 5 14540 32662 ,
- 13. 6657 103310 1892 2139 1A79 6444 17977 26406 14 5904 76162 1314 3440 1353 4258 16030 33901 18 8510 91900 1976 2513 2252 6038 23463 36200 19 6333 5753 361 56 410 1385 11757 13965 20*
This station had been drained of all water for further construction. ,_m
10 TABLE 5 O ZOOPLANKTON FO PUL ATIONS AT LOCUST POINT 1974 MONTHLY MEANS Apelt May Jure July /.ug Eeot' Oct Nov A 7 19 73 - in 17 23 10 9 T70TIFERA Asotanebro qireitti O.3 A. pettw keta 0.0 2.2 1.8 2.6 57.3 29.8 3.1 2.2 IIIaehtorus .iruut. sets 9.0 3.7 8.8 25.4 46.4 3.1 2.2 1.1
- 11. en tyet riorus 3.7 5.2 0.3 0.1 1.6 9.5 27.4 E havvwensis 0.1 0.2 1.3 1.0 0.1 II" (Platvtas) catulus 0.2
~li* ucceolarts 1.9 0.1 0.0 Chromoq1stee ovalls 1.0 2.3
- O.0 Conochit oice s 40. b.9 7.3 0.3 0.2 5.8 2.5 Euchtsats so. . O.1 0.0 0.0 F at tnia terminatts 1.8 12.7 0.4 5.4 0.7 0.3 0.3 0.1 Hewartera r :en O.4 0.1 Ketiteettu tornisotru O.6 4.C 3.2 0.1 Keratella cechlearts 3.1 155.0 25.1 16.8 11.6 21.S 12.4 90.2 K. cu.identa 3.9 35.4 8.1 1.1 2.0 0.5 1.0 9.3 Ucane (Manostyla) butta 0.0 y (Monostyta) turweis 0.0 0.1 Nothnica snuamuta 6.5 13.1 Pteosoma sp. O.3 Polyar. mea so. 5.8 73.1 128.5 512.8 103.5 215.0 37.1 33.1 Pomennivw suteata 1.1 SyneMarts so. 1.8 0.1 0.1 Tastudtrwita sp. O.1 Tetenocerca cylindeira 0.0 0.4 0.7 0.2 T
a muttlerint s 1.1 7.1 0.2 11.8 8.2 0.1 Unidentitled Rottfer= A O.1 1.8 2.7 33.1 0.3 27.5 Unidentu'ted Rotifee G ?.9 COPEPCOA Cataruid copepods Olsotorvus so. 0.5 15.5 13.1 5.1 1.0 0.0 1.0 0.6 Euryemoea sp. 0.0 Immatures 0.1 5.2 1.3 2.4 0.7 1.3 4.2 1.0
.Cyclocold copepods Cyclops so. 1.2 12.4 115.1 55.0 18.4 3.2 1.4 1.5 Mesocycloos sp. O.1 0.4 0.1 0.0 0.4 0.1 0.1 0.0 Tropocycteos peastrus 0.1 Immature s 1.3 18.4 13.8 27.9 9.3 0.1 6.5 5.3 Naupttus 28.5 180.7 259.1 123.S 48.1 78.8 59.3 15.0 CLADOCERA Bosmina so. 0.0 3.3 155.7 4's . ? 17.0 19.0 54.3 7.4 Certceachnia sp. 0.0 0.2 Chvdocus so. O.1 0.1 0.1 0.0 4.8 12.8 15.1 Daphnea caleata 0.1 0.4 0.0 0.0 - g Ntew 0.0 10.5 0.1 0.3 Og cet eceveva 74.5 137.8 2.8 2.2 0.1 Otacmnoema so. 0.0 0.0 1.4 0.2 Hotoperatum sp. 0.0 0.2 0.1 1.2 Leptodora hireeti 0.1 0.2 0.4 0.2 PROTOZOA Actrwta so. O.1 Amoniteceus sp. O.1 Diffluais so. 69.6 26.9 99.3 42.2 15.8 Orphryr+rvfron so. O.1 5:tauccoNvea sp'. 5.6 vortteetta sp. 0.6 0.5 Zootrumntum so. O.4 0.8 0.4 TOTAL 75.1 $22.3 787.9 ft31.8 3 %s . 5 550.3 254.3 355.0 Data presented as rumber/ liter'. - ww, .on, _ _*..m .s___ _ _ _ , , ,,
c . f 1-TABLE 6 i-TOTAL ZOOPLANKTON POPULATION PER LITER - 1974 f . Station April May June July August September October November 1 lf 18 22 19 17 22 10 9 7 . 1 152.0 598.8 83.6 1746.3 235.9 1018.3 394.0 265.7 3 53.5 414.5 639.7 1211.2 416.7 48N.7 213.5 253.3
. 6 51.7- 38.4 722.3 984.0 383.2 494.3 285.1 ? 246.1 8 55.6 265.0 732.5 917.6 424.2 D61.1 256.2 256.2 9 .
44.7 2G9.5 721.8 992.3 431.0 343.7 228.3 372.4 10 144.0 1270.1 1495.9 22O2.2 224.8 962.3 375.3 286.4 12 79.9 556.6 634.5 1027.6 387.5 694.4 209.9 234.2 - 13 62.5 453.9 829.0 1243.3 431.3 532.6 282.0 237.0 14 40.5 331.8 751.2 923.2 398.0 4G2.7 244.6 244.6
.18 71.6 529.7 1067.7' 954.9 319.8 549.5 270.1 208.0 19 69.4 1012.1 987.2 246.7 356.6 213.1 92.3 211.9 20*
This station had been draineu c,f all water. m__._______.__.__ _ _ - - _ _ _ _ _ _ _
12 Q.. ,. SENTHIC MACROINVERTEBRATE POPUL ATION5 AT LOCUST FOINT - 1974 MONTHLY MEANS April May June July Aug Sept Oct i Nov T#4 17-1e 22-23 tc-20 17 14 4 to 7 COELENTERATA Hedre sp. (budding polyp) 2 7 54 1 0 4 6
>*vera sp. (single polyp) 5 68 1 1 11 11 NEMATODEA 3 4 ANNELIDA Hirudinaa Heletxf Ita atomsta 2 2 3 stagnatts 1 1 2 O Oli2ocrueta (unidentified) 21 Immatures (hate setae) 3 5 1 4 1 ImrNtures (no hatr setae) 1163 1103 634 SSS 1071 G41 070 750 Branch *;ra rowerovt 13 14 6 2 7 12 la 15 LtmmsetNs cerviw 4 3 7 39 21 3 10 g etacarade-enas 1 10 33 15 22 11 4 6 b claosradegrus-cerviw 1 1 1 13 5 11 y hoffmantert O 3 b maum+*nsis 1 0 1 1 1 y udekami snus 2 10 Nais so. 1 5 Potamnteetw rMidaviands 9 0 21 24 31 11 11 & ve*dovset 2 1 Ftytant sp. O 7 ARTHRO 1-CDA Ctadocara l Leptodora kinotti 16 136 40 160 14 O Amontpoca Cammmes fuetatas 3 0 9 13 6 10 22 35 Mf alMia azteca 1 Decopoda Orcwetes so. O Chirorramidan Chironernes (chironomus) so. 111 40 60 29 109 67 45 23 Chironomus pupa O Coetotarvous so. 20 2 3 1 l Crtcotxus sp. 1 Crvotocsironnmus sp. 4 6 3 3 8 2 13 17 Polynecitam so. 1 1 1 1 Procteoius so. . 23 16 32 3 57 0 12 31 Prcctacius puca 2 0 1 0 , Psau5c%trercerus sp. O 1 0 1 Tanypo1tnae pupa 1 Tanyta-wa sp. 8 558 52 17 202 160 62 i Tanytarsus pupa 2 Ephemeroptera Caents sp. 2 1 0 Trichoptera Hydropsychidae O MOLLUSCA Gastropoda Duttmus so. O O O Pelecypoda Amblema plienta 1 2 1 Sptwerium so. 3 1 3 2 2 1 3 Station Total 1355 1219 1529 C54 1M07 1543 10r;9 t92 Data presented as rumber/m 2, l l
l o l l
. - . . . - - ~ . . . . . -. . --
r - _ . _ _ . - _ _ _ _ _ - __ _.-- . - _ - . ~ . - - _ - _ - . _ - .. -- - - . - _
.] t s ' r
- Il
~
i , TABLE 8 -p TOTAL BENTHOS POPULATION PER SQUARE -METER - 1974 Station April May June July August September October Novernber i 17-18 22-23 19-20 17 14 6 10 7 1 19 44 1700 127 592 83 579 210 2 96 516 147 76 102 274 528 210 3 1541 1662 4170 3185- 2776 1191 2003 3247 4 3228 2375 2693 1910 2782 1738 3737 1745 5 312 140 115 127 127 115 1904 32 6 16G 2041 191 204 7659 478 1413 548 7 3763 2413 433 267 624 834 471 255 8 3301 255 1585 458 535 1394 1445 751 9 808 1414 03G 1770 1343 4564 1G43 2005 y-i 10 57 57 191 51 185 127 185 38
~~
11 382 382 3361 471 3152 439 102 586
' ~
12 1178 2808 802 458 102 643 560 1159 13 1293 465 337 987 89 1827 337 1490 14 5857 3998 3769 3018 3090 5004 3444 4291 15 357 89 1452 1464 1388 840 1700 745 16 401 134 1101 1292 1127 1821 802 255 17 57 3082 2840 337 102 210 331 83 18 3G35 204 3050 1770 2184 7175 840 1108 19 325 G18 146 153 261 SG7 38 O - 20 178 *
- Th!s station had been drained of all water for further construction.
~
rI _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ m _
)
TABLE 9
SUMMARY
OF FISNING RESULTS AT LOCUST POINT - JULY - NOVEMBER 1974 JULY AUGUST SEPTEMBER OCTOBER NOVEMBER TOTAL METHOD OF CAPTURE No. ol' No. of No. of No. of No. of No. of No. of No. of No. of No. of No. of No. of Fish Species Fish Species Fish Species Fish Species Fish Species Fish Species Giu Net 179 13 260 11 408 10 168 9 10 5 1025 19 Shore Seine 13150 9 458 7 697 7 1555 4 2084 4 17944 13 Otter Trawl Lake 10 8 88 9 64 10 67 3 1038 6 1275 14 g Intake Canal 33 4 411' 18 1 1 445 18 Hoob Net 17 3 5 2 17 4 1 1 24 2 64 6 Fry Net Lake 4481 3 6 2 4 2 9 1 56 1 4556 5 Intake Canal 6 2 0 2 , TOTAL 17845 19 856 19 1601 24 1801 12 3212 11 25315 28 This was the total of more than 22 trawls made in an effort to remove as many fish (alive) as possible before poisoning the canal.
)
- .c 15 totaled 397 fish of 16 species, while at Station 12 (discharge) 328 fish of 97 species were captured (Tables 10 and 11).
Shor7 Seine. The yield from shore seines during the period July througn November was 17,944 fish of 13 species. The monthly catches ranged from 458 - 13,150 fish (Tables 12 - 16). Otter Taewl. Trawling in the lake during the period July through
' November yielded 1,275 fish of 14 species (Table 17). Scheduled trawling withia the intake canal yielded 34 fish of 4 species during the summer and autumn quarters (Table 18). Twenty-two plus trawls, yielding 411 fich of 18 species, were made i.n September to remove as many fish ar possible prior to poisoning' the canal (Table 19).
Hoop Net. Hoop nets set in the northwest marsh (Station 21) July through Nov6mber yielded 28 fish of 5 species and 5 painted turtles (Table 20). Nets set in the southeast marsh (Station 2) during the same period caught 36 fish of 4 species, 1 painted turtle, and 2 snapping turties (Table 21). Fry Net. The catch during July through November from the lake totaled 4,55S fish of 5 species (Table 22). Fry netting within the intake canal on 27 August 1974, yielded 4 Notropis a_. atharinoides (emerald shiner - mean length 77 mm) and 2 Moror.e chrysops (white bass - mean length 15 mm). These shiners are probably too large to be called fry. No sampling was done in the Fall due to the poisoning of the canal in September. Food Habits The results of the food habits study for the period July through November will be presented in a supplementary report.
# Water Cuality The results of the monthly water quality determinations at Stations 1, 8 and 12 are shown in Tables 23 - 28. Solar Radiation measurements for Station 8 are given in Table 29 and current
- measure-ments for Stations 8 and 12 are listed in Table 30. Water quality measurements for _ the ice-free period of the first half of 1974 and the second half (July - December) of 1974 showed moderate ranges for the parameters tested (Table 31).
1 Poisoning of the -intake canal took place on 25 September 1974
'in order to remove fish from ~ this area prior to plant operation.
Continued monitoring of the canal will permit an assessment of fish movements, if ar.y, thro.sgh the' intake crib .
1
- 16 TABLE 10 ANALYSIS OF GILL NET CATCH AT LOCUST POINT STATION 8 - JULY - NOVEMBER, 1974 Length (mm) Weight (g) l Date . Taxa No. Mean Range Mean Total July 10-11, 1974 Alosa pseudoharengus 4 184 173 58 232 i Ambloolites rupestris 1 196 16S 166 Aplodinotus grunniens 8 169 107-307 138 1104 Catostomus c. commersoni 1 320 410 410 Cyprinus carolo 5 327 238-377 497 2485 Ictaturus punctatus 4 301 213-374 322 1288 Morone chrysops 1 333 588 588 Notropis a. atherinoides 3 111 110-112 7 21 N. hudsonius 7 114 93-126 10 70 Perca navescens 51 160 105-207 54 2754 Subtotal 85 9118 August 19-20, 1974 Aplodinotus grunniens 1 250 170 170 Carassius auratus 2 243 240-245 215 430 Cyprinus carpio 5 287 230-333 373 1853 Dorosoma cepedianum 25 195 111-320 145 3624 Ictalurus nebulosus 2 151 137-165 55 110 Morone chrysops 1 223 175 175 Notropis budsonius 2 103 102-105 10 21 Perca navescens 56 174 95-207 75 4193 Pomoxis annularis 4 144 118-165 44 176 Subt,otal 98 10762 September 12-13, 1974 Alosa pseudoharenaus 72 103 93-184 12 864 Dorosoma ceaedianum 14 153 91-341 81 1140 Ictalurus nebulosus 2 146 141-150 42 84 Morone chrysops 1 90 10 10 ' Notropis' hudsonius 11 108 100-112 14- 152 Perca navescens 40 190 137-213 85 3414 Pomoxis annularis 5 177 155-215 85 426 Stizostedian v. vitreum 1 199 70 70 Subtotal 146 6160 ~me..- -5 _ . _ _ . _~.
~~- 17 TABLE 10 CONT.
ANALYSIS OF AILL NET CATCH AT LOCUST POINT STATICN 8 - JULY - NOVEMBER 1974 Length (mm) Weight (g) Date Taxa No. Mean Range Mean Total October 16-17, 1974 Alosa pseudoharengus 27 99 93-111 9 247 Dorosoma ceoedianum 2 146 135-156 34 67 Notropis hudsonius 19 113 104-128 15 287 Osmeng eperlanus mordax 1 159 21 21 - Perca navescens 14 181 147-211 75 1046 Stizostedion v. vitreum 1 220 107 107 Subtotal 64 1775 November 25-26, 1974 . Notropis hudsonius 3 108 101-112 14 43 Perca navescens 1 180 79 79 Subtotal 4 122 TOTAL 397 27937 l l 1 1 9
~1 I
17 l
. l TABLE 10 CONT.
ANALYSIS OF GILL NET CATCH AT LOCUST POINT STATION 8 - JULY - NOVEMBER 1974 Length (mm) Weight (g) Date Taxa No. Mean Range Mean l Total October 16-17, 1974 Alosa pseudoharengus 27 99 93-111 9 247 Dorosoma . cepedianum 2 146 135-153 34 67 Notropis hudsonius 19 113 104-128 15 287 Osmerus eperlanus mordax 1 159 21 21 Perca navescens 14 181 147-211 75 1046 Stizostedton v. vitreum 1 220 107 107 Subtotal 64 1775 l November 25-26, 1974 Notropis hudsonius 3 108 101-112 14 43 Perca Ravescens 1 180 79 79 Subtotal 4 122 i TOTAL 397 27937 ) D
. l I . i
18 TABLE 11 ANALYSIS OF GILL NET CATCH AT LOCUST POINT STATION 12 - JULY - NOVEMBER, 1974 i Length (mm) ' Weight (g)
,' Date Taxa No , Mean Range Mean Total July 10-11, 1974 Alosa pseudoharengus 72 172 142-207 47 3638 Aplodinotus grunniens 3 209 144-338 186 558 Dorosoma cecedianum 7 282 137-365 349 2443 Hyboosts storectana 1 181 62 62 letalurus punctatus 2 241 196-285 148 296 Notropis 3. atherinoides 1 110 10 10 $ hudsonius 1 125 22 22 Perca flavescens 5 160 115-197 46 230 Pomoxis annularis 2 136 121-151 36 72 Subtotal 94 7331 August 19-20, 1974 Carassius auratus 3 308 292-321 436 1307 Cyprinus carpio 18 292 123-398 454 8181 Dorosoma cepedianum 63 116 82-302 30 1885 !ctalurus nebulosus 4 146 136-167 48 190 - I_. punctatus 162 30 1 30 Morone chrysops 4 104 94-130 16 63 Not.copis hudsonius 7 11i 102-120 13 94 Perca navescens 5S 180 115-230 86 4847 Pomoxis annularis- 5 149 130-165 48 241 L nigromaculatus 1 150 52 52 Subtotal 162 16891 September 12-13, 1974 Alosa preudoharergus 146 103
- 90-200 14 204'4
.- Cyorinus carpio 2 323 320-32S 489 977 Dorosoma cepedianum 67 135 81-335 54 3641 Morore chrysops 6 226 130-257 202 1212 Notropis hudsonius 6 116 105-130 18 107 Perca flavescens 32 187 150-217 81 2590 Pomoxis arnularis 2 147 139-154 42 83 P. nigromaculatus 1 174 90 90 Subtotal 262 10744 u- . - .+
19 TABLE 11 CONT. ANALYSIS OF GILL NET CATCH AT LOCUST POINT STATION 12 - JULY - NOVEMBER, 1974 Length (mm) l Wetoht (g) Date Taxa No. Mean Range Mean Total October 16-17, 1974 Alosa pseudoharengus 25 104 94-189 10 246 Carassius auratus 2 267 229-304 314 S29 Dorosoma ceoediarum 24 128 84-320 40 952 Morone chrysoos 1 136 187 187 Notropis hudsonius 31 * ' 100-130 15 452
.)
Oncorhynchus kisutch 1 L 2321 2321 Osmerus epertanus mordax 1 176 37 37 Perca Ravescens 18 182 143-210 77 1387 Stizostedton v. vitreum 1 234 115 115 Subtotal 104 6326 November 25-2S, 1974 Cyortnus carolo 1 540 2973 2973 ' Dorosoma ceaedianum 1 325 390 390 Osmerus epertanus mordax 3 146 138-156 22 65 Perca Ravescens 1 190 90 90 Subtotal 6 3518 TOTAL 628 44810 O
20 TABLE 12 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT JULY 9, 1974 Length (mm) Weight (g) Station -Taxa No. Mean R snge Mean Total 23 Dorosoma cepedianum (AD) 2 026 224-228 146 292 Dorosoma cepedianum (YOY) 390 27 23-42 Morone chrysops (YOY) 112 25 17-37 Notropis a. atherinoides 2 96 91-101 N. hudsonius 3 58 29-108 Mrca navescens (YOY) 1 30 Percina caprodes 2 30 30-31 Subtotal 512 292 24
. Aplodinotus grunniens 1 97 Dorosoma cepedianum (AD) 57 236 208-261 201 11443 D, cepedianum (YOY) 10838 24-43 Morone chrysops (YOY) 809 20-37 Notropis a. atherinoides 3 66 52-80 N. hudsonius 8 43 25-112 Perca navescens (YOY) 23 26-35 Percina caprodes 1 28 Stizostedton v_. vitreum (YOY 1 65 2.5 2.5 Subtotal 11741 1144s 25
- Cyprinus carpio 1 285 339 339 Dorosoma cepedianum (YOY) 632 31 25-54 Morone chrysops (YOY) 230 28 19-47 Notropis a_. atherinoides 3 75 72-78 5 16 N. hudsonius 15 33 25-40 Perca navescens (YOY) 12 30 26-31 PercJna caprades 4 28 24-30 Subtotal 897 355
- TOTAL 13150 12093 o ~ -
A
21 TABLE 13 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT AUGUST 27, 1974 Length (mm) Weight (g) Station Taxa No. Mean Range Mean Total 23 Alosa pseudoharengus 22 62 30-81 4 81 Dorosoma cecedianum 1 87 10 10 Notropis a. atherinoides 182 75 40-105 4 740
, _ Subtotal 205 831 24 Alosa pseudoharengus 55 76 38-90 4 208 Dorosoma cepedianum 1 120 20 20 Notropis a_. atherinoides 95 66 40-105 3 284 Pomoxis annularis 1 40 1 1 Subtotal 152 513 25 Alosa pseudoharengus 4 61 30-75 3 13 Labidesthes sicculus 3 58 55-65 1 3 Notropis a. atherinoides 92 73 40-111 3 301 Osmerus eperlanus mordax 1 65 1 1 Percina _caprodes 1 65 4 1 Subtotal 101 319~
TOTAL 458 1663 9
- 22 TABLE 14 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT September 12, 1974 Length (mm) l Weight (g)
Station Taxa No. Mean Range Mean Total 23 Dorosoma cepedianum 15 68 57-88 4 59 Labidesthes sicculus 4 66 57-72 1 6 Notropis a. atherinoides 216 75 50-90 4 864
' Subtotal 235 929 24 Dorosoma cepedianum 124 96 44-290 14 1736 Morone chn/ sops 1 112 20 20 Notropis a,. atherinoides 169 71 50-107 3 570 Subtotal 294 2326 25 Dorosoma cepedianum 56 95 50-135 11 638 Labidesthes sicculus 5 65 53-70 2 8 Morone chrysops 1 70 4 4 Notropis a_. atherinoide_s 103 64 50-97 2 206 N hudsonius 1 65 3 3 Osmerus eperlanus mordax 1 70 2 2 Percina caprodes 1 53 1 1 Subtotal 168 862 TOTAL 697 4117 e
w . y -
1.,_' 23 TABLE 15 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT October 16, 1974 Length (mm) Weight (g Station Taxa' No. Mean Range Mean Total 23 Alosa pseudoharenaus 2 45 35-55 1 2 Dorosoma cepedlarum 15 83 57-110 7 98 Notropis a,. atherinoides 577 60 45-96 1 821 Subtatal 594 921 24 Dorosoma cepedianum 42 84 57-162 7 312 Notropis a. atherinoides 655 55 21-110 2 1048 697 Subtotal 13SO 25 Do. asoma cepedianum 21 71 50-102 5 103 Notropis a. atherinoides 242 56 36-105 2 284 Osmerus eperlanus mordax 1 140 16 16 Subtotal 264 403 TOTAL 1555 2584 O
+ e O / ~~
23 TABLE 15 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT October 15, 1974 Le gth (mm) Weight (g Station Taxa- No. Mean ' Range Mean Total
^7 Alosa. pseudoharenges 2 45 35-55 1 2 Dorosoma cepedianum 15 83 57-110 7 98 Notropis a. atherinoides 577 60 45-96 1 821 Subtotal 594 921 24 - Dorosoma cepedianum 42 84 57-162 7 312 Notropis a. atherir.oides 655 55 21-110 2 1048 Subtotal 897 1350 25 Dorosoma cepedianum 21 71 50-102 5 103 Notropis a. atherinoides 242 56 36-105 2 284 Osmerus epertanus mordax 1 140 16 16 Subtotal 264 403 TOTAL 1555 2684 e
9 0
_] 24 - TABLE 16 ANALYSIS OF SHORE SEINE CATCH FROM LOCUST POINT November 14, 1974 - Length (mm) ' Weight (g) Station Taxa No. Mean Range Mean Total 23
. Dorosoma cecedianum 1 91 9 9 Labidesthes sicculus 1 68 2 2 Notropis a. atherinoides 437 54 45-75 1 437 ' Subtotal 439 448 24 Notropis a_. atherinoides 174 53 45-80 1 174 Subtotal 174 53 45-80 1 174 .25 Dorosoma cepedianum 3 84 58-110 9 28 Labidesthes sicculus 1 58 1 1 Notropis a. atherinoides 1466 SS 43-79 1 1764 Pomoxis annularis 1 31 Subtotal 1471 1793 TOTAL 2084 2415 i
i O
=^ k
H 25 TABLE 17
- ANALYSIS OF TRAWL CATCH FROM LOCUST POINT JULY - NOVEMBER, 1974 - Length (mm) Weight (g)
Date Taxa No. Mean Range Mean Total
~
July 19, 1974 Cyprinus caroto 3 320 232-434 534 1601 Ictalurus nebulosus 2 248 247-250 235 470 I punctatus 5 125 97-145 20 101 Morone chrysops 2 171 150-192 80 160 Notropis a. atherinoides 2 98 95-101 10 21 N. hudsonius 2 106 94-117 15 30 Perca flavescens 1 166 64 64 Pomoxis nigromaculatus 1 134 37 37 Subtotal 18 2484 August 16, 1974 Alosa pseudoharengus 31 63 30-81 3 97 Aplodinotus grunniens 1 136 30 30 Cyprinus carpio 1 337 570 570 Dorosoma ceoedianum 40 52 30-66 3 102 Ictalurus punctatus 192 1 66 66 Morone chrysops 8 45 34-71 2 14 Notropis a. atherinoides 3 98 81-116 8 23 I
& hudsonius 2 30 27-33 1 2 Stizostedica v. vitreum 1 145 27 27 Subtotal 88 931 September 13, 1974 Alosa pseudoharengus 15 84 33-93 6 87 Aplodinotus grunniens 1 85 8 8 l Cyprinus caroto 1 280 315 3'S Dorosoma ceoedianum 3 66 47-97 5 16 l Morone chrysoos 21 48 23-78 2 44 Notropis a. atherinoides 3 50 )
30-90 2 7 N. hudsonius 12 101 70-121 12 143 Osmerus eperlanus mordax 3 49 44-57 1 3 Pcrea flavescens 4 124 63-180 37 146 Pomoxis nigromaculatus 1' 171 101 101 Subtotal 64 870 j l
. 26 TABLE 17 CONT.
ANALYSIS OF TRAWL CATCH FROM LOCUST POINT JULY - NOVEMBER, 1G74 Length (mm) Weight (g) Date Taxa No. Mean Range Mean Total October 10, 1974 Alosa pseudoharengus 25 87 65-95 8 193 Dorosoma cepedianum 38 92 70-117 12 445 Notropis a. atherinoides 4 63 32-85 3 14 Subtotal 67 652 November 8, 1974 Dorosoma cepedianum 56 83 61-135 . 7 381 Morone chrysops 5 114 91-138 23 113 Notropis a. atherinoides 917 56 43-123 1 1192 N. hudsonius 50 90 55-127 9 436 Perca Ravescens 8 182 138-204 85 684 Percina caprodes 2 55 48-62 2 4 Subtotal 1038 2810 TOTAL. 1275 7747 4 o
~
[ :- 27 TABLE 18 ANALYSIS OF TRAWL CATCH FROM THE INTAKE CANAL AT THE DAVIS-BESSE NUCLEAR POWER STATION - 1974 Length (mm) 'Neight (g) Date Taxa No. Mean Range Mean Total June 18, 1974 Carassius auratus 2 130 99-160 57 113 Ictaturus nebulosus 6 142 105-159 54 326 I_. ounctatus 1 90 9 9 Pomoxis annularis 21 89 76-126 11 224 L nigromaculatus 1 142 43 43 Subtotal 31 715 August 27, 1974 Cyprinus carpio (YOY) 1 35 Ictalurus melas 25 75 55-225 19 482 Lepomis gibbosus 3 116 110-120 37 110 Pomoxis annularis 4 86 5C-120 13 52 Subtotal 33 644 October 23, 1974* Cyprinus carpio 1 555 2066 2066 Subtotal 1 20S6 TOTAL 65 3425 YOY - Designates young-of-the year. The canal was poisoned on September 25, 1974 *
. . , 28 - . TABLE 19 ,RESULTS OF TRAWLING EFFORT TO REMOVE FISH PRIOR TO POISONING THE INTAKE CANAL SEPTEMBER 24, 1974 Scientific Name Common Name No. Captured Aplodinotus grunniens freshwater drum 2 Carassius auratus goldfish 9 Cyprinus carpio carp 1 Dorosoma cepedianum gizzard shad 51 Ictalurus melas black bullhead 56 I natalis yellow bullhead 7 I. nebulosus brown bullhead 118 I. punctatus channel catfish 1 Lepomis cyanellus green sunfish 1 h gibbosus pumpkinseed sunfish 36 b macrochirus bluegill sunfish 12 Morone chrysops white bass 2 Notropis a. atherinoides emerald shiner 6 Perca flavescens yellow perch 6 Percina caprodes logperch darter 2 Percoosts omiscomaycus troutperch 3 Pomoxis annularis white crappie 96 L nigromaculatus black crappie 2 crayfish 3 TOTAL 414 O
e
.a
a MM ' H % Wf 29 TABLE 20 ANALYSIS OF HOOP NET CATCH IN NORTHWEST MARSH (STATION 21) - JULY - NOVEMBER, 1974 Length (mm) l Weight (g) Date Taxa No. Mean Range Mean Total July 9-10, 1974 Carassius auratus 1 201 148 148 Cyprinus caroto 7 377 210-690 941 6589 Midland Painted Turtle 5 367 1834 August 19-20, 1974 Cyprinus carpio 3 407 280-610 964 2983 September 17-18, 1974 Amla calva 1 415 679 679 Cyprinus carolo 11 440 270-620 1303 14337 Dorosoma cepedianum 3 269 258-290 190 570 Pomoxis nigromaculatus 1 225 170 170 October 16-17, 1974 Pomoxis nigromaculatus 1 242 210 210 November 25-26, 1974 No fish TOTAL 33 27430 O e
30 i TABLE 21 ANA._ . SIS OF HOOP NET CATCH IN SOUTHEAST MARSH (STATION 22) - JULY - NOVEMBER, 1974 Length (mm) l Weight (g) Date Taxa No. Mean Range Mean Total July 9-10, 1974 Amia 'calva 3 473 362-5SO 934 2802 Cyprinus_ carpio 6 406 32S-444 769 4612 Midland Painted Turtle 1 227 227 August 19-20, 1974 Carassius auratus 1 230 190 190 Cyprinus carpio 270 224 1 224 September 17-18, 1974 Cyprinus carpio 462 1 883 883 Snapping Turtle 2 7380 14760 s October 16-17, 1974 No fish i November 25-26, 1974 Amia calva 23 459 345-525 1007 23162 ' Pomoxis annularis 1 222 453 453 ! TOTAL 39 47313 i 6 l o
. I
~ _ .
31 TABLE 22 ANALYSIS OF ICHTHYOPLANKTON COLLECTED AT LOCUST POINT JULY - NOVEMBER, 1974 Length Nos. of Individuals Collected Date Taxa (mm) Sta. 6 (Intake',1 Sta.12 (Oid:hnr :2) Ranac Surface l Bottom ' Surface 20ttom July 10, 1974 Carassius auratus G.5 1 Dorosoma cepedtanum . 7-18 6 8 45 39 Notropis a. atherinoides 8-18 3815 8 549 10 Subtotal 3821 1S 595 49 August 19, 1974 Alosa pseudoharenaus 18 1 Notropis a_. atherinoides 9-17 3 1 1 Subtotal 3 0 2 1 September 12, 1974 Labidosthes sicculus 57 1 Notropis a. atherinoides 52-53 3 Subtotal O O 4 0 October 16, 1974 Notropis a_, atherinoides 28-57 8 1 Subtotal O O 8 1 November 25, 1974- ' Notropis a_, atherinoides 46-85 56 Subtotal O O O 56 TOTAL 3824 16 609 107 1 l l 1 l 1
- . - - ~ - ,- ...,a.
- t .
TABLE 23 LAKE ERIE WATER QUALITY ANALYSES FOR JULY 1974 Dates: Field 7-17-74 Laboratory 7-18-74 Parameters Station No. 1- Station No. 8 Station No. 12 Range Mean Standard Surface Bottom Surface Bottom Surface Bottom Deviation Field Measurements: 1005 hrs 1005 hrs 1105 hrs 1105 hrs 1150 hrs 1150 hrs Temperature (OC) 24.5 23.8 25.3 24.0 25.4 24.1 23.8-25.4 24.5 0.7 Dissolved Oxygen (ppm) 8.6 7.4 8.1 6.3 N.A. 6.7 6.3-8.6 7.4 1.0 , Conductivity (umhos/cm) 259 255 255 N.A. 230 220- 220-259 244 18 Transparency (m) 0.35 0.55 0.35 0.35-0.55 0.42 0.12 Depth (m) 2.4 5.0 3.8 2.4-5.0 3.7 1.3 Laboratory Determinations: O Calcium (mg/l) 36.0 36.0 34.0 34.4 32.8 36.4 32.8-36.4 34.9 1.4 Magnesium (mg/l) 8.2 0.6 8.4 8.2 8.9 8.9 8.2-8.9 8.5 0.3 Sodium '(mg/l) 10.8 10.8 9.8 9.8 10.8 10.3 9.8-10.8 10.4 0.5 Chloride (mg/l) 17.0 17.0 16.3 16.0 17.0 16.8 16.O-17.0 16.7 0.4 Nitrate (mg/l) 0.84 O.84 3.10 2.40 3.10 1.60 0.84-3.10 1.98 1.04 Sulfate (mg/l) 27.0 28.5 24.5 24.0 25.5 24.5 24.0-28.5 25.7 1 ~. 8 Phosphorus (mg/1) 0.04 0.05 0.05 0.028 0.06 0.07 0.028-0.07 0.05 0.01
~ Silica (mg/l) 0.79. O.99 0.81 0.93 0.88 0.91 0.79-0.99 0.89 0.00 Total Alkalinity (mg/l) 96 96 86 86 94 96 86-96 92 5 B.O.D. (mg/l) N.A. N.A. N.A. N.A. N.A. N.A. - - -
Suspended Solids (mg/1) 37 38 20 27 36 37 20-38 33 7 Dissolved Solids (mg/l) 180 182 174 180 176 190 176-190 180 6 Turbidity (F.T.U .) 8 9 9 8 9 21 8-21 11 5
-pH 8.4 8.3 8.5 8.2 8.5 8.1 8.1-8.5 8.3 0.2
" Conductivity (umbos/cm) N. A. - Not Analyzed . t
t TABLE 24 r [ LAKE ERIE WATER QUALITY ANALYSES FOR AUGUST 1974 Dates: - Field 8-22-74 Laboratory 8-22-74 Parameters Station No. 1 Station No. 8 Station No. 12 Range Mean Standard Surface Bottom Surface Bottom Surface Bottom Deviation 1115 hrs 1115 hrs 1145 hrs 1145 hrs 1250 hrs 1250 hrs
, Fisld Measurements:
Temperature (OC) 24.9 24.2 25.2 24.2 25.4 24.5 24.2-25.4 24.7 0.5 Dissolved Oxygen (ppm) 6.9 5.7 8.1 7.3 8.4 6.6 5.7-8.4 7.2 1.0 Conductivity (umhos/cm) Transparency (m) 0.50 0.45 0.50 0.45-0.50 0.48 0.03 Depth (m) 1.9 5.0 2.8 1.9-5.0 3.2 1.6 Laboratory ' Determinations: O . Calcium (mg/l) 38.8 40.4 40.0 .39.2 38.4 40.4 38.4-40.4 39.5 0.9 Magnesium (mg/l) 6.2 7.2 5.8 5.5 7.0 5.3 5.3-7.2 6.2 0.8 SodiurA (mg/l) 12.8 12.8 10.3 10.3 10.3 10.3 10.3-12.8 11.1 1.3 Chloride (m'g/l) 18.3 21.0 18.3 18.3 18.3 18.3 18.3-21.0 18.8 1.0 Nitrate (mg/l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sulfate (mg/1) 26.5 32.0 25.0 23.0 25.5 23.5 23.0-32.0 25.9 3.3 Phosphorus (mg/l) 0.03 . O.03 -0.03 0.06 0.03 0.04 0.03-0.OG O.04 0.01 Silica (mg/l) 0.37 0.38 0.38 0.38 0.33 0.41 0.33-0.41 0.'38 0.03 Total Alkalinity (mg/l) 96 94 94 92 96 94 92-96 94 1.5 8.O.D. (mg/l) 4 4 2 3 3 3 2-4 3 0.8 Saspended Solids (mg/l) 16 19 18 15 14 22 14-22 17 3 Dissolved Solids (mg/1) .258 252 228 226 222 228 222-258 236 15 Turbidity (F.T.U .) 8 10 10 10 8 15 8-15 10 2.5 pH 8.5 8.0 8.6 8.5 8.3 0.3 8.0-8.5 8.4 0.2 Conductivity (umhos/cm) 300 325' 295 285 285 280 280-325 295 16 , e d M._.__.__ _ . _ - _ _ . _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ __
g~ p TABLE 25 LAKE ERIE WATER QUALITY ANALYSES FOR SEPTEMBER 1974 Dates: Field 9-10-74 Laboratory 9-10-74 Parameters Station No. 1 Station No. 8 Station No. 12 Range Mean Standard Surface Bottom Surface Bottom Surface Bottom Deviation 915 hrs 915 hrs 950 hrs 950 hrs 1030 hrs 1030 hrt Fitid Measurements: Temperature ( C) 19.5 19.5 19.5 19.5 19.0 19.0 19.O-19.5 19.3 0.3 Dissolved Oxygen (ppm) 7.9 7.8 9.2 8.9 8.5 8.2 7.8-9.2 8.4 O.6-Conductivity (umhos/cm) Transparency (m) 0.50 0.60 0.60 0.50-0.60 0.57 0.06 D pth (m) 1.7 4.1 3.2 1.7-4.1 3.0 1.2 Laboratory Determinations: o A Calcium (mg/l) 36.0 36.4 35.2 36.0 36.0 36.0 35.2-36.4- 35.9 0.4 Magnesium (mg/l) 7.4 6.7 7.2 6.5 6.7 6.7 6.5-7.4 6.9 0.4 Sodium' (mg/l) 9.6 9.6 9.3 9.6 9.6 9.6 9.3-9.6 9.6 0.1 Chloride (mg/l) 18.7 18.7 17.2 17.2 17.2 17.2 17.2-18.7 17.7 0.8 , Nitrate (mg/l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sulfate (mg/1) 24.0 22.5 24.5 22.5 21.0 22.0 21.0-24.5 22.8 1.3 Phosphorus (mg/l) 0.05 O.06 0.06 0.05 0.05 0.07 0.05-0.07 0.06 0,01 Silica (mg/l) 0.09 O.11 0.17 0.19 0.12 0.19 0.09-0.19 0.15 0.04 Total Alkalinity (mg/l) 94 93 96 94 96 94 93-96 95 1 B.O .D. (mg/1) 3 3 2 2 3 2 2-3 2.5 0.6 . Suspended Sollds (mg/1) 15 17 15 9 11 14 9-17 14 3 Dissolved Solids (mg/l) 150 146 148 156 150 150 146-150 150 3 Turbidity (F .T .U .) 5 8 5 5 5 4 4-8 5 1 pH 8.2 0.3 8.4 7.8 7.9 I 8.4 7.8-8.4 8.2 O.3 Conductivity (umhos/cm) 264 265 265 267 264 264 204-267 265 1
i-1 4 TABLE 26 LAKE ERIE WATER QUALITY ANALYSES FOR OCTOBER 1974 Dates: Field 10-9-74 Laboratory 10-10-74 Parameters Station No. 1' Station No. 8 Station No. 12 Range Mean Standard Surface Bottom Surface Bottom Surface Bottom Deviation 1100 hrs 1100 hrs 1130 hrs 1130 hrs 1210 hrs 1210 hrs Fistid Measurements: Temperature (OC) .12.0 11.0 12.0 11.5 12.0 11.5 11.0-12.0 11.7 0.4 Dissolved Oxygen (ppm) 11.2 11.1' 10.4 10.2 12.1 11.8' 10.2-12.1 11.1 0.8 Conductivity (emhos/cm) Transparency (m) 0.45 0.50 0.50 0.45-0.50 0.50 0.03 Depth (m) 1.5 4.0 2.8 1.5-4.0 2.8 1.3 Laboratory Determir,ations: O Calcium (mg/l) 34.4 34.4 34.4 32.8 32.8 32.8 32.8-34.4 33.6 0.9 Magnesium (mg/1) 6.7 6.7 6.7 7.2 7.9 7.9 6.7-7.9 7.2 0.6 Sodium'(mg/l) 12.0 13.3 15.3 15.3 14.4 15.3 12.0-15.3 14.3 1.4 Chloride (mg/1) 16.8 16.8 18.3 17.5 16.8 17.5 16.8-18.3 17.3 0.6-Nitrate (mg/1) 1.2 1.2 2.0 1.6 1.6 1.2 1.2-2.0 1.5 0.3 Sulfate (mg/1) 24.5 28.0 29.O 28.0 30.5 27.0 24.5-30.5 27.8 2.0 Phosphorus (mg/1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Silica (mg/l) 0.04. 0.06 0.05 0.06 0.05 0.09 0.04-0.09 0.06 0.02 Total Alkalinity (mg/L) 89 90 91 94 91 92 89-94 91 1.7 B .O .D. (mg/1) 2 3 3 3 3 2 2-3 2.7 0.5 Suspended Solids (mg/1) 9 14 10 14 9 10 9-14 11 2 Dissolved Solids (mg/1) 174 188 182 18S 194 194 174-194 186 8 Turbidity (F.T.U .) 9 10 10 10 10 10 9-10 10 0.4 pH 9.0 8.6 9.0 0.9 8.9 0.8 8.6-9.0 8.9 0.2 Conductivity (umhos/cm) 275 285 285 285 285 280 275-285 283 4 i_________________.._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~.
I 1 TABLE 27 LAKE ERIE WATER QUALITY ANALYSES FOR NOVEMBER 1974 Dates:
. Field 11-7-74 - Laboratory 11-8-74 Parameters . Station No. 1 Station No. 8 Station No. 12 Range Mean Standard Surface Bottom Surface Bottom Surface Bottom Deviation 1000 hrs 1000 hrs 1030 hrs 1030 hrs 1100 hrs 1100 hrs Finld Measurements:
Temperature (OC) 8.2 8.2 9.3 9.5 8.5 8.3 8.2-9.5 8.7 'O.6 Dissolved Oxygen (ppm) 11.4 11.2 11.1 11.0 11.5 11.3 11.0-11.5 11.3 0. 2. Conductivity (umhos/cm) Transparency (m) 0.30 0.30 0.30 - O.30 0.0 Ocpth (m) 2.3 4.0 3.0 2.3-4.0 3.1 0.9 Laboratory Determinations: $ Calcium (mg/l) 36.8 36.8 36.8 36.0 36.8 34.8 34.8-36.8 36.3. 0.8 Magnesium (mg/1) 7.0 6.2 4.8 7.4 7.4 8.6 4.8-8.6 6.9 1.3 Sodium (mg/l) 7.8 7.8 7.5 7.5 7.7 7.7 7.5-7.8 7.7 0.1 Chloride (mg/l) 14.3 12.4 15.0 14.5 14.5 15.0 12.4-15.0 14.3 1.0 Nitrate (mg/1) 3.84 3.52 2.9 2.6 1.7 5.1 1.7-5.1 3.3 1.2 Sulfate (mg/l) 24.0 24.0 24.0 24.0 25.0 25.5 24.0-25.5 24.4 0.7 Phosphorus (mg/l) 0.02 0.02 0.02 0.02 0.03 0.03 0.02-0.03 0.02 0.01 Silica (mg/l) 0.16 0.15 0.15 0.12 0.14 0.16 0.12-0.16 O.15 0.02 Total Alkalinity (mg/1) 94 95 88 87 ' 9D ; 90 87-95 91 . 3 B .O.D. (mg/l) 2 3 3 2 2 3 2-3 3 f Suspended Solids (mg/l) 42 23 25 28 30 34 23-42 30 7 Dissolved Solids (mg/l) 140 152 150 154 138 148 138-152 147 7 Turtidity (F.T.U .) 11 7 9 16 11 13 7-16 11 3 pH 8.3 8.3 0.5 8.4 8.3 7.9 7.9-8.5 8.3 0.2 Conductivity (umhos/cm) 265 265 260 258 265 268 258-268 264 4 1
TABLE 28 LAKE ERIE WATER QUALITY ANALYSES FOR DECEMBER 1974 Dates:
. Field 12-17-74 Laboratory 12-17-74 Parameters Statt. .' No . 1~ Station No. 8 Station No. 12 Range Mean Standard -
Surface Bottom Surface Bottom Surface Bottom Deviation 1115 hrs 1115 hrs 1115 hrs 1115 hrs 1130 hrs 1130 hrs Fisld Measurements: Temperature ( C) 0.5 0.5 0.5 0.5 0.3 0.3 0.3-0.5 0.4 0.1 Dissolved Oxygen
- ppm)
, 14.1 14.0 13.9 14.1 13.8 14.1 13.8-14.1 14.0 O .1, Conductivity (umtrs/cm)
Yransparency (m) 0.4 O.4 0.45 0.4-0.45 0.42 0.03 Depth (m) 1.5 3.9 2.7 1.5-3.9 2.7 1.2 , Laboratory Determi.7atio. s_: O Calcium (mg/l) 34.4 33.6 34.4 31.2 32.0 31.2 31.2-34.4 32.8 1.5 Magnesium (mg/l) 6.2 7.0 6.7 5.3 7.9 7.4 5.3-7.9 6.8 0.9 Sodium' (mg/l) 10.0 10.0 8.5 8.5 0.5 10.0 8.5-10.0 9.3 0.8 Chloride (mg/1) 16.5 15.8 15.5 15.0 15.5 15.0 15.0-16.5 15.6 0.6 Nitrate (mg/l) 2.6 2.6 3.2 3.6 2.0 2.0 2.0-3.6 2.7 0.6 Sulfate (mg/1) 22.0 23.0 21.0 21.0 21.5 21.5 21.0-23.0 21.7 0.8 Phosphorus (mg/l) 0.066 0.062 0.070 0.070 0.059 0.066 0.059-0.070 0.07 0.0 Silica (mg/l) 0.34 .O.12 0.19 0.24 0.17 0.26. O.12-0.34 0.22 0.08 Total Alkalinity (mg/1) 92 91 88 87 91 90 87-92 90 2 B .O .D. (mg/l) 2 2 1 1 - 2 2 1-2 2 0.5 Suspended Solids (mg/1) 32 33 17 17 21 23 17-33 24 7 Dissolved Solids (mg/l) 176 156 164 160 160 164 156-176 163 7 Turbidity (F.T.U .) 24 25 16 16 19 21 16-25 20 4 pH 8.3 8.3 8.4 8.3 8.4 8.4 8.3-8.4 8.4 0.1 Conductivity (umhos/cm) 310 298 280 283 285 285 280-310 290 12 i
~ . ~
38 TABLE 29 SOLAR RADIATION IN LAKE ERIE AT LOCUST POINT FOR JULY - OCTOBER 19741 Date: 26 July 1974 (1025 - 1055 hrs) Depth Percent of Photometer cleadino Surface Illumination 0.0 m 1825 u amp 0.1 100.0% 1325 76.2 ; 1.0 275 15.1 ' 2.0 52.5 2.88 3.0 13.0 0.71 4.0 3.25 0.18 Date: 7 September 1974 (1140 - 1155 hrs) i O.O m 6100 u amp 0.1 100.0% 4400 72.1 1.0 350 5.74 2.0 32.5 0.53 3.0 4.0 0.OS 4.0 0.5 0.01 Date: 31 October 1974 (1206 - 1216 hrs) 0.0 m 4100 u amp 1.0 100.0% 1300 31.7 2.0 700 17.1 3.0 375 9.15
'4.0 155 3.78 I
Photometer readings taken at Station No. 8, 3000 feet offshore at intake structure
, : ' ~^ . , - , . . - , .,,
39 TABLE 30 CURRENT. MEASUREMENTS IN LAKE ERIE AT LOCUST POINT FOR JULY - OCTOBER 1974 Station Velocity Direction Date/ Time No. (knots) (compass ) 7-18-74/1200 8 0.24 58 0 7-18-74/1200 12 0.21 80 8-16-74/1200 8 0.19 350 8-16-74/1200 12 0.18 355 0 9-12-74/1200 8 0 . ". 2 55 9-12-74/1200 12 O.14 25 10-17-74/1200 8 0.29 1300 10-17-74/1200 12
- rough conditions e
6 e
'~ ~~
40 TABLE 31 MEAN VALUES AND RANGES FOR WATER QUALITY PARAMETERS TESTED IN 1974 April - June 1974 l <!..ily - December 1974 Parameter Miean ' Range Mean Range
- 1) Temperature 14.0 7.7 - 20.0 14.9 0.3-25.40 C
- 2) Dissolved Oxygen 10.5 8.0 - 13.2 9.9 5.7 - 14.1 ppm 3)- Conductivity 309 275 - 360 274 220 - 325 umhos/cm
- 4) Transparency 0.26 0.1 - 0.6 0.45 0.30 - 0. 60 m
- 5) - Calcium 40.0 34.0 - 50.8 35.5 31.2 - 40.4 mg/l
- 6) Magnesium 7.4 5.0 - 11.0 7.1 4.8 - 8.9 mg/l
- 7) Sodium 11.1 7.0 - 15.0 10.4 8.5 - 15.3 mg/l
- 8) Chlorida 19.7 17.6 - 26.0 16.7 12.4 - 21. .O mg/l
- 9) Nitrate 0.69 0.0 - 2.4 0.45 0.0 - 5.1 mg/l
- 10) Sulfate 34.1 28.0 - 45.5 24.7 21.0 - 32.0 mg/l
- 11) Phosphorus 0.10 0.04 - 0.44- 0.04 0.00 - 0.07 mg/l
- 12) Silica 1.26 0.11 - 3.83 0.31 0.04 - 0.99 mg/l
- 13) Total Alkalinity 94 90 - 100 92 85 - 96 mg/l i - 14) BOD 2.0 0.5 - 4.72 2.6 1 - 4 mg/l
- 15) Suspended Solids 39.3 8 - 109 21.5 9 - 42 mg/l
- 10) Dissolved Solids 180 83 - 396 177 138 - 258 mg/l
- 17) Turbidity 47 9 - 120 11 4 - 25 F.T. U.
- 18) Hydrogen-lons 8.0 7.3 - 8.6 8.4 7.8 - 9.0 pH 19). Solar Radiation (1m) 332 70 - 500 642- 275 - 1300 u amps
- 20) Currents (speed) 0.37 0.20 - 0.80 2.0 0.12 - O.29 knots T
e
41 A DISCUSSION Plankton Phytoplankton. Phytoplankton populations were highest in the fall .and spring and lowest during the summer (Fig. 2). This .
. correlated-well with zooplankton populations which peaked during the summer and were lowest in the spring and fall. This type correlation was to be expected since zooplankters graze on phytoplankton.
Nol comparison could be made with results of previous years since this was the first year phytoplankton was analyzed quantitatively. However, a qualitative comparison with the results from this project during 1973 showed the same cycle of dominance by the three major groups, Bacillariophyceae (diatoms), Chlorophyceae (green algae), and Myxophyceae (blue-green algae). The 8acillariophyceans (cold ' water forms) dominated in the spring, Chlorophyceans (inter-mediate temperature forms) in the summer, Chlorophyceans and
Myxophyceans (warm water forms) in the early fall, and Chloro-phyceans and Bacillariophyceans in the late fall (Fig. 3). The large late summer or early fall bloom of Aphant=omenon sp. (Myxophyceae) was not as evident as in the past. It should be noted that although specimens from 54 taxa were collected, the blooms in May and November were each due to a pulse of one taxa, Melostra sp.. and Moupectia sp., respectively (Table 3). In May, Melostra sp. made up approximately 87 percent of the total phytoplankton population, while Mougeotia sp. made up approximately 53 percent of the November population. Moreover, the summer dominance by Chlorophyceans was mainly due to a decrease in the
. Melostra sp. population, as the water warmed, rather than an increase '
in the. Chlorophycean population (Fig. 3).
- There was some disagreement over the identification of what we have- called.'Cloctoriopsis sp. in that some algalogists feel-that it is ' Closterium' gracile while others identify it as Closterium acicu'are var'.
subpronum. It was often difficult to distinguish Binuclearia sp. from Mougeotia sp. and Melostra sp. from Steohanodiscus sp. When using this data, one must also realize that some of the very small forms such as Chlorella sp. may have passed through the sampling equipment. Y m _..
+.
42 E FIGURE 2. MEAN MONTHLY PHYTOPLANKTON POPULATIONS FOR LAKE ERIE AT LOCUST POINT - 1974. 100,000 N
- h.
40,000.
$5 30,000-ti 5m E
o c ce E o f 20,000-l
- 10,000-O Apr May June July Aug Sept Oct Nov Date
FIGURE 3. MEAN MONTHLY BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST POINT - 1974. 98,000 y N N g I. N
; ]Bacillariophyceae 20,000 - c ?-
2 Chlorophyceae l ': '*,.
; -; - ;]) ]7--Myxophyceae
- t. $' '
I ' q 15,000 - t , ~, to .!i.; E ;?i ?! 4 ld 0 C ' d: 80 /; 1 E @s{ o . "
,': -lJ 1Q,000 -
o ; D
-. ;[
C y t -; ese+1. ^g [?j ' T' 5,000 Ib: :m 7 ,. h '? L: . A / . Y' w 3;i.,
;
3
/ 3 e
f Y p o l _ a . E T-l _ _,J 6 EQ l (E / il / ild / APRIL MAY JUNE JULY AUG SEPT OCT NOV DATE
, j
44 Zooplankton. The zooplankton populations continued the rise, which was evident during the first half of the year, through July and then, with the exception of a very low August value, decreased steadily through November (Fig. 4). The populations from 1972 also peaked during the summer, August, but at a level 300 organisms per liter below that observed in 1974 -(Hair and Herdendorf, 1973). Populations computed during 19.73 on- this, project peaked in June, but at half the 1974 maximum and 360 organisms per liter below the 1972 maximum. The- 1974 values approached a bell-shaped curve more than 1972 or 1973 populations. The rotifer populations were the largest of the major groups and showed the greatest variation over the 3 year period (Fig. 5). In 1972 and 1974 the peaks occurred in the same month as the total zooplankton peaks occurred. In 1973 the rotifer peak occurred one month earlier, in May, than the total zooplankton peak. The copepod populations from the 3 years were very similar (Fig. 6). In 1973 and 1974 the peaks were in June. In 1972 the highest population occurred in July. However, no sampling had been done in June 1972, so the peak may have been missed. Generally the cladocerans had the lowest populations of the 3 groups (Fig. 7). The 1973 populations were the lowest of the 3 years. The 1972 and 1974 ,.,apulations were very similar. There are several plausible explanations for the differences described above. Samples in 1972 were collected with a 3-liter Kemmerer water bottle at the surface. In 1G73 and 1974 samples were collected by a vertical tow bottom to surface with a Wisconsin plankton net. A brief comparison study in 1973 showed that the vertical-tow captured approximately 50 percent more taxa. The stations sampled over the 3 years were similar but not the same. In 1973 the intake and discharge pipelines were being dredged, and in 1972 tropical storm Agnes affected the weather. Also, due to the weather, samples were nm :ollected on the same day of the month each year - and were not spaced exactly one month apart. Finally, these samples wet e collected monthly, and Hubschman (1960) pointed out the tremen~ dous differences which occurred when san ples collected every Monday were compared to samples collected every Tuesday. However, monthly samples give an overview and when done repetitively over a series of 3 years, provide a relatively strong base for predicting trends. During 6 of the 8 months that were sampled in 1974, the highest l populations were found at stations closest to shore. This indicates that the zooplankton populations were probably concentrating at the
FIGURE 4. 1200- MEAN MONTHLY ZOOPLANKTON POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1974. 1100 - 1000 - -
/ 1972 1973 -
900-1974 800- _ r _ E 700- / E U) E 600- a UI a v - 8 SDO-7- .. h
/
(' . E aw- I'i i
/r4-M / m~
- y. ;> 7;. ;
il; / aw- .; n
/i? / c ;i 7-e3 ' / -
7 ,
/
l;.;l V
~ / r.. . /l , f' /W /d f ". /. m ' f [ ., / p; f .t > / C 1 b
i- /g /; . nl _ / ;u - S
- o. . -
G - M /V A /L / ~.
/ -
- 3 .
APRIL MAY JUNE JULY- AUG SEPT OCT NOV DEC DATE _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ - - - - - - - - - - - - - - -- - - - - - - -- -~~
i L FIGURE 5. MEAN AT MONTHLY LOCUST POINT,ROTIFER 1972 - POPULATIONS 1974. FOR LAKE ' ERIE . 700-r 600-
/ F ) 1972 sb 500- / 1973 m 1974 E 400- / - 3 w
s !
/
8 -
/ -
l - jfj /
;,.. -
8 200- I
+
d
/. f.9i h / le
- P i;t 1
.: i- C 100-u F 'N-b r-{N' g '
L;U: O
*fl
- ridl *7 Ed Ti'k
/[] /E I/Il /lh rrr* }
id
- N 3
APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC DATE
- No samples were collected.
i FIGURE 6. MEAN MONTHLY COPEPOD POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1974. 700-1972 000- 7 J 1973 L 1974 - o 500- - if R m s E 400- F N
* ?I 4
.c c-as
@ 300- ;
r--1 o ' 3;. t ;
: i [
8 200- 1 I@ 7:::
~
J /j ,. 1 100- ;J} Ti 7.% / .
,I /
{- -
/
O --
*n *
- i M AJ ~ilL; V7l * /nm *m*
APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC DATE No samples wer o conected. 4 i
s FIGURE 7. MEAN MONTHLY CLADOCERAN POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1974. 700-1972 600-IL.)1973 *
~
h 500- 1974 s - D b E 400-m E h 300-o 5 200-100- r. O - -# ' '" I APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC DATE No samples were collected. A
49 surface . Thus, at the deeper stations this surface sample would be diluted by the bottom waters of the vertical tow. Overall, no populations which could be considered unusual have occurred from 1972 - 1974 The populations of 1974 are probably more representative of a " typical" year, since dredging and storms undoubtedly affected the 1972 and 1973 populations. The data from these years show the magnitude of natural variability in zooplankton populations prior to operation of the power station. There are always many difficulties involved
- the identification of zooplankton. These are compounded when the ganisms are preserved. It was especially difficult to identify the soft bodied rotifers . It was often difficult to distinguish between Pomoholyx sp. ,
Chromogaster ovalis, and rotifer eggs. Benthos Mean monthly benthic macroinvertebrate populations were , relatively stable in 1974 (Fig. 8). With the exception of July, they were slightly higher during the summer months, and, with the exception of November and possibly December, they were higher than those observed in 1972 and 1973. This in itself was a good indication that recolonization after dredging was successful. The monthly, populations were dominated by immature oligochaetes
(no hair setae) (Table 7). The only other taxa to occur in large numbers were Leptodora kindtil, Chironomus (chironomus) sp. , and Tanytarsus sp. Although the populations were dominated by these four taxa, the other taxa may be more important as indicators of community change. since species at the fringe of their tolerance will reflect changes in the environment first. Oligochaetes (sludge worms) are often used as pollution indicators. However, in this case, they probably indicate an unstable environment rather than polluted (sewage) water. Dredging the intake and discharge pipelines 'only add:d to the turbidity and shifting bottom material . To survive in this environment an organism must be able to burrow out when it becomes buried. Hence, a population dominated by oligochaetes and chironomids prevailed.
. Again, as in 1972 and 1973, a tendency of increasing populations with distance off shore was noted (Fig. 9). The greatest increase , occurred when going from 500 to 1000 ft. Once 1000 ft off shore, there.was little change in populations along the control west and intake transects as one progressed to the end. However, a tremendous
)
FIGURE 8. MEAN MONTHLY BENTHIC MACROINVERTEBRATE POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1974. 1972 1973 y
- a 3000 - -
1g74
/ ) - / 8 5 - /
1 p 2000 - j e
//
o /
/
^ s c
/ ~
l l 1000 - / y';
~ / - / ' / /
r 7 m / r / b ' - / /
/ / / / / 8 ('/ /
if, / / [ [' / [ '
/ *
[ *
- c.IY APR MAY JUNE JULY AUG SEPT OCT NOV DEC DATE No samples .were collected.
~
i i FIGURE 9. MEAN BENTHIC MACROINVERTEBRATE POPULATIONS AT VARIOUS DISTANCES OFF SHORE ALONG THE FOUR SAMPLING TRANSECTS - 1974. ! T Control West 4 - 4000 - Intake { Discharge
. T L
Control East a 3000 - E D r *
\ ,/ . .m E
2000 - \ / / b \ / / ,_ s N / / s
' p; C \ / / ph 1000 - r 9 2 +d lN N A ~ , /7F % \ )l;?].\ /L,! /H @l>
o N 9 \ /f /n 6 0-
,4 -
N 7a N * * - nl1 ~
/m .. .
500 1000 1500 2000 3000 4000 Distance off shore (ft) No sampling station at this distance off shore on this transect.
m _
.m .
l . 52 ,
. .; , :
increase was noted on the discharge transect at Station 14,
; - 3000. ft off shore. Populations at Stations 12 and 13, 1500 and 2000 ft -off shore, respectively, were probably inhibited due to dredging activities. The same thing, although to a lesser degree, was noted at Stations 7. and 8, 2000 ft and 3000 ft off shore, respectively, along t
the intake transect.
- As with the plankton, nothing out of the ordinary for western Lak's Erie was obse'eved in the benthos results.
Fish 4 In 1973, 5300 fish were captured for the monitoring program. _. During the first half of 1974, 6,098 fish were captured. Fr om July l through November an. additional 25,315 fish were captured for a total of 31,413 during 1974. The major reasons for this tremendous
increase are. increased sampling effort and ideal sampling conditions. In 1973, no fry netting was done, gill netting was accomplished on 5 dates instead of 8 as in 1974, trawling was done on 5 dates, fishing in I the marsh-was done only once, and shore setning was done 4 times and ! only once from Station 24 where the catch in 1974 was greatest. In 1973, foul weather conditions often forced us off the lake, while 1974 we were fortunate in to have had no serious setbacks due to weather i conditions. , Although the total number of fish captured increased, the number of predators (sport fish) decreased (fry excluded). Yellow perch (Perca flavescens) show this trend quite well. In 1973, 812 perch
-were captured using gill nets. In 1974, with 3 more sampling dates, only 345 perch were captured. In 1973, trawling yielded 170 perch.
In 1974, again with 3 more sampling dates, 82 -perch were captured -
- and 60 of these were young-of-the-year.
Meanwhile, the numbers of the forage species have increased.
, It is possible that this increase in the forage fish population was brought 'about by the decrease 4n the predator population. However, ,
the cause of the Icw predator populations is not known at this time. 4 It isl extremely important to note natural fluctuations of this type
. prior to discharge 'so .that any fluctuations which may occur after the plant.goes into operation are not blamed solely on the power plant.
e 4 i The gill- netting results showed that appro.<imately 50 percent more fish were. captured at Station 12 tnan at Station 8 (Tables 10
.and111).: -In 1973, the ' populations were quite similar with 1334 from Station .12 and 1262 icom Station 8.
s
, umas%
7
,,~w- -
53 , A *
^
Shore setning revealed Station 24 to be the most populous station (Tables 12 - 16). This was undoubtedly due to the outlet of the marsh control pump being in the vicinity. This should be a warm, nutrient-rich flow. Eits of fish have also been observed in this outflow. Trawls after the~ intake was poisoned indicated a complete kill had occurred (Table 18). The commercial toxicant "Noxfish" was used. The entire benthic macrotnvertebrate population was also destroyed in the process (Table 8). July was the last month in which significant numbers of fry were captured (Table 22). However, cvon the largest value was less than one third of that observed commonly at Sandusky Bay. Water Quality Seasonal Variations. The water quality in the vicinity of the Davis-Besse Nuclear Power Station during the period of July through December 1974 was typical for western Lake Eric and showed normal seasonal trends. Water temperature fell 20 C during the 6-month
^ period while the dissolved oxygen level rose 7 ppm (Fig. 10). The high turbulence and sediment load of the lake in early spring improved during the summer as indicated by a 6-fold increase in transparency, a 6-fold decrease in suspended solids, a 6-fold decrease in turbidity and an 8-fold increase in the amount of solar radiation at 1-mater below the surface (Fig. 11). Some d crease in water clarity was noted in the fall and early winter. Biochemical oxygen demand, which is related to the suspended organic material in the water, also showed a . marked improvement in the bottom water from April to December.
In a like manner the dissolved substances in the water were highest in the April samples; both conductivity and total dissolved solids showed a. significant decrease betweeri April and May tsun remained fairly stable through the rest of the year (Fig. 12). Specific ions such as calcium and sulfate were also highest in April, whereas other ions such as magnesium, sodium and chloride were fairly stable throughout the year (Fig.13). The important nutrients, such as nitrato, phosphate and silica, for primary productivity by green algae and diatoms had a peak in the spring and decreased markedly during the summer (Fig. 14). Silica, for example, had a 30-fold decrease in concentration between April and May.- Because ~ diatoms utilize silica for their. rigid cell walls, the decrease of this substance in the water appears to. be related to .the spring pulse of the organisms which is also shown on Figure 14. Nitrate showed a tsvild-up in the fall which may have resulted in the increased algal population 'during that season (Fig . 14).
. .m..m na ~ nuw + s-
FIGURE 10. MEAN MONTHLY HYDROGEN ION, 'TEMPERATUR,E AND DISSOLVED OXYGEN MEASUREMENTS FOR LAKE ERIE AT LOCUST POINT DURING 1974. 25 -- F / [ / ] Elydrogen Ions (pH) F Temperature ( C)
/ / 1 20 " / / _
Dissolved Oxygen (ppm) 7 / / /
/ / / / - / / / /
15 . 7 / / / /
/ / / / / ~ ~ / / / / / / / / / / 7 - ' " / / / / / / / / ~ / / / /
7 r / / m/ 7/ - /- T/ -7
/ iSj/ [1/ ? )/- i ' }/ _ / V ;} /
{',1l/ lIi/ m}) 7{.0/ iil / .
)/ '5/
i: ' l b; / / b
- .]/ [ l/ A/
/ W/ ,N/ S'j / ??h/ ?
l9
.I / :.l / f$ ./ / ul/ ('/ j{%/
f
$/ $/ l~/ 5kl/ / / $Y/ Q/
h/
..fj /
Ek/ y/
!l//
L /
/
i'b}V
^l Yis li/ / // $?/ 5 / ,S !iii 0"
h/ A:I/ La1 L.? / s bl/
;V.2}
L:,/ c'j/ E1 / [Q
/
dj/ M,', r
)l APR MAY JUNE JULY AUG SEPT OCT NOV DEC
i FIGURE 11. MEAN MONTHLY TURBIDITY, SUSPENDED SOLIDS AND TRANSPARENCY
'4EASUREMENTS FOR LAKE ERIE AT LOCUST POINT DURING 1974. 'I 125 .. FTU p; mg/l Turbidity (FTU)
- -
i
. 0.6m T Suspended Solids (mg/1)
_L yg _ Transparency (m) . 100. . 1 -
- 0.5 i) r}} ;d s
tg 7-z j - -
/
23 -- O.4 75 -- v f,. f.
} l/ -' r Ii; O.3 Q/
h 50 -- h 7 i
; / - O.2 V:. /
I' / 7 .
**~ / / /
Rl/ __ _ / / _7 . O.i b / / / 7- / (W [?;? / / Q'l,
/ / l , r- - / Ui;l/
I/ "
/ / !' l / /
II/ 'l/ -../ :. . . l/ O-~ M/ C/ M/ L/ Lj/ k_! / LI/ El/ h/ .. o,o APR MAY JUNE JULY AUG SEPT OCT NOV DEC
= - ?
FIGURE 12. MEAN MONTHLY ALKALINITY, DISSOLVED SOLIDS AND CONDUCTIVITY MEASUREMENTS FOR LAKE ERIE AT LOCUST POINT DURING 1974. Alkalinity (mg/1) 400-- Dissolved Solids (mg/1)
~
Conductivity (umhos/cm) V , 300--
/ -
[ _ s 200--- 3
/ r / r/ / / / r / r / / /. / / / / / / 7 / / / / / /
,co.. W p/
- F/
/ m/ m/
j r/ j r pj
/ /
m/ :. t /. i; ./ :V , TV f1// bi/ Ll/ l; i/ 3/ 3/ 'V V - v l/ t
/ ?V / ij -
a//
'i f i/ . ;
kV o.. & / wi / n/ d/ U/ w/ V at/ APR MAY JUNE JULY A JG SEPT OCT NOV DEC
i FIGURE 13. MEAN MONTHLY CALCIUM, CHLCRIDE AND SULFATE CONCENTRATIONS
IN LAKE ERIE AT LOCUST POINT DURING 1974. j
] Calcium (mg/l) 50 - - ] Chloride (mg/1) m -
Sulf' ate (mg/1) gj
. .r -
i,'.f . Y.-Q 3, 40 -- 8! Lt
~
A g*
; .i 7- t .
- O'
? *r - \. 1 ~.- '! ;' 1 -
Q~ Fi w, m Id ", 4
}
- e'
,a L. L' N 30 -- #1 Ok a 'j, i 'l P D). ' .1 l <,j ?..,
{ .' !1 l -l,e ', ;j
, 1-~
p: , 6'
,q Q
- r. , ,
l . q- o _',. {' .
] .
c.
, ;<
q ;.,
,; ']j <4 a .q e
fkl -
.v. ,
n
,4 v'. ..- ]
20 -- - *
,, k c , ' ; ' -, / ' ., b. ' / e d.
1- U ',. f 'f
; ,1 $,/ 9 / / i. . 7 Y. / "y / ..i /
il v\ / 'V l.l/ 1/ V Cil 4/ {:{7 R k,/ 6
.x /
s,/
. . :;/
j/ i W a. / F/ m / / W Ll/
~
1/
/ h. !W/ & i. I/ f.0/
g/ W "9/ :.1 yiv/ d/ L ../ 1/ ,V 5.V
,/ y U i .V .y 1 'i/ :-f/
p$ [ '/ J/ EV J/ LV EV h/ 13 / M/ O -- APR MAY JUNE JULY AUG SEPT OCT NOV DEC
f f i I FIGURE 14. MEAN MONTHLY NITRATE, PHOSPHORUS AND SILICA CONCENTRATIONS I j 3.5 -- IN LAKE ERIE AT LOCUST POINT DURING 1974. '
-- 100.000 I (no/1)
Nitrate (mg/l) '" lg ., 3.0 -- f1 [ _ Phosphorus (mg/l) ,p b I \ Silica (mg/1)
- [-
/ I.i.f, ..75,000 2.5 ~~ \ ~ - Diatoms (no./l) , ;
l , ,. ,.,. 1
\ Total Algae ,"no./l) *: 1 M< ;
I
\ v. . .- .'hjli P,. ?
2.O -- I \ .. :
,,,., N ' p.
l i ,. . L: '! n-
.. y ., ..L.* , n M, .
01
,. I 1 'Ty +-
g) 7 1 c W -- 50,000 j
*Jsj a .4 r.
W- 'i.:
\ .;q ,L .,
1.5 --
.N;. . ' .i
- ..i
. - ,v t .?j . , . ~ \ \ y-t: , i 30 ,, +9 s v , a ,.c.p< >.-
l 1 (:
\
i; I r . {sc. M i 5
'il .j . .a / ^ 1 N / s ,9 .
3 I .# f.5 j; 1.0 -- ;,'.g j sy l 4. i, py' f.< r,
- 1 k l $
, L .' O. !i - 25,000
- 1 '
\
1
)
i t. .
/ lJ ? , ~.
t.. f
..n l' ',. .. / .. ; y . i l ,'.. . l 0.5 -- )l9 l \ , '? ~ ?'.
nt f :.1,
-l: lC v \
1 f ',1 *l [
-] \ 4
- a. . "p. .
r 4
/ g ! .i - ' ., J w / g ;..
tqn ., . -
.O /-
t
-e-- / ..y dj n E vs . . .. __ _e_-- - -F.7 l
g .. _ __ . . ir; .. . r1 r a_ 6 7;
/a w, _ - - ._ o
j ' 59 ', c (- The alkalinity and pH of the water remained fairly constant
,- throughout the period (Figs. 10 and 12). Lake Erie is primarily a bicarbonato solution with a corresponding moderately alkaline pH of approximately 8. The bicarbonate in the water provides an abundant source of carban for algae production. The pH showed a slight rise in May and Octob'er which may correspond with the algae pulses.
Station Variations. Stations. 1, 8 and 12 are located approx-mately 500, 3,000 and 1,500 feet offshore respectively. Generally a slight tamperature decrease was noted in an offshore direction in the spring . More notlecable decreases were found for such parameters as conductivity, most of the specific ions, alkalinity, G .O . D . , suspended and dissolved solids, and turbidity in the early part of the year. Conversely, transparency increases away from the shore. Although Station 8 (the farthest offshore) had the best water quality, Station 12 (intermediate offshore) had the poorest quality for some parameters. This may be related to the condition of the lake bottom. Station 1 (nearshore) has a clean sand bottom whereas Station 12 has a recently disturbed mud bottom and is down 'urrent from the disturbed bottom along the intake pipeline. The diff erential in water quality values was greatest in the spring which may have been related to rough weather and leveling attempts along the p!rilines. During the summer and fall no significant difference was s oetween the inshore and offshore stations . Differences between.the surface and bottom water quality were slight.because of the shallowness of this portion of Lake Erie. Some depression in the level of dissolved oxygen and small increases in the concentrations of dissolved and suspended solids were noted near the bottom . Water Quality Trends. The Ohio State University, Center for Lake Erie Area Research initiated water quality studies at Locust Point in July 1972. Trends for eight water quality parameters from that date' through December 1974 are shown on Figures 15 - 17. Temperature and dissolved oxygen show typical seasonal trends for 1 each year with only minor variations from one year to the next.
. Dissolved oxygen appears to have undergone more depletion in 1974 - than;the two previous years. Hydrogen-ion concentration and alkalinity remained fairly stable over the three year period. Transparency, turbidity, _ phosphorus and conductivity values have shown radical variations.v.hich are probably due to storms and dredging activ! tics that have disturbed the bottom sediments. In general, no significant deviations from the normal quality of tho water in this part of western Lako - Eric have been observed in the past, three years.
w.--x-- m ~
if - FIGURE 15. TRENDS IN MEAN MONTHLY TEMPERATURE, DISSOLVED OXYGEN, AND HYDROGEN IONS MEASUREMENTS FOR LAKE. ERIE AT LOCUST POINT FOR THE PERIOD 1972 - 1974. 30 -- ' , l 1- . 25 -- Temperature (OC) g ,/ .* 20 -- e
. e e \
CD 15 -- U e Dissolved Oxygen (ppm)
/ -x * .x, . .- ,
s, s, , / , 10 -- f ' s,
,/ * ' ~ ~~T----~_ ', , * ,_ s * - drogen Ions (pH) , . - , - - . . ,./g/ 's
- o' 5--
----No Measurements Availnble 1
0 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'iiiie ! i e e e i J A SON D J F MAMJ J ASO N D J FMA MJJ A 5 ON D i 1972 1973 1974 -
!/J
!l. FIGURE 16. TRENDS IN MEAN MONTHLY TRANSPARENCY AND PHOSPHORUS MEASUREMENTS PERIOD 1972 - 1974. FOR LAKE ERIE AT LOCUST POINT FOR THE I' . 1.so \ N 1.00 -- - - No Measurements Available
\ \\ \
O.76 -- \ g e
\
1 gTransparency (m) *
-a l' ' \ =
0.s0 --
/ \
l\ ~
/ \ ./ .
i
\ / / i/ \. ~ \
- O.25 --
/ \ /* L \ \/ .~ ' \ ,,_~~~~___.% [ ' 'd Phosphorus (mg/1) 1 O '
J ASOND
-. . /*'
J FMAMJ JASO ND J FMAMJ J ASON D 1972 1973 1974 e.__________-_____ _ _ _ __-- _- - . _ . _ - - - - . - - - . - _ - - - - - - _ _ . - -
FIGURE 17. TRENDS IN MEAN MONTHLY CONDUCTIVITY, ALKALINI'P/ AN D TURBIDITY MEASt>.' EMENTS FOR LAKE ERIE AT LOCUST POINT FOR THE PERIOD 1972 - 1974. 500 . - - 4
\
I N s -- --No Measurements Available 400 -- N N N N
- N /g s Conductivity (umhos/cm) g ----_.
e
/ \ e . \
300 --
- s
's / * \, ,x/ \/ .
2'00 -- 100 -- e N ~--- Alkalinity (mg/1) g j e-.---.-+-*w-.-.., N N / N Turbidity (JTU) # j s -
._j s / w / -*\, f o bVi e i i i i i i i,iiiiii ie i i .'M t',M1'.
e , J A SO N D,J FMAMJ JA SO ND J FMAMJ J AS O ND 4 1972 1973 1974 .
\
63 LITERATURE CITED American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th ed. APHA, New York. 847 p. American Society for Testing and Materials. 1973. Annual book of ASTM standards, part 23, water; atmospheric analysis. ASTM, Philadelphia. 1108 p. - Brinkhurst, R. O. 1963. Taxonomical studies on the Tibificidae (annelida, Oligochaeta) in R. Woltereck, ed., Internationale review der gesamten hydrobiologie. Systematische bethefte
- 2. Akademie-Verlag, Berlin. pp. 1-89.
Brinkhurst, R. O. 1964. Studies on the North American aquatic Oligochaeta I: Naldidae and Opistocystidae. Proc. Acad. Nat. Sci . , Phila. 11S:195-230. Brinkhurst, R. O. 1965. Studies on the North American aquatic Oligochaeta II: Tubificidae. Proc. Acad. Nat. Sci . , Phila . 117:117-172. Brinkturst, R.O.,A. L. Hamtiton, and H. B. Herrington. 1968.
, Components of the bottom fauna of the St. Lawrence Great Lakes.
Univ. Toronto, Gt. Lakes Inst. PR 33. 49 p. Chengalath, R. , C. H. Fernando, and M. G. George. 1971. The planktonic Rotifera of Ontario with keys to genera and species. Univ. Waterloo Biology Series, No. 2. 40 p. Collins, G. B. , and R. O. Kalins'q. 1972. The diatoms of the Scioto River basin. The Ohio State Univ. Botany Dept. , unnumbered mimeo. Eddy, S. , and A. C. Hodson , 1964. Taxonomic keys to the common animals of the north central states. Burgess Publishing Company, Minnesota. 162 p. Fish, M. P. 1932. Contritutions to the early life histories of 62 species of fishes from Lake Erie and its tributary waters. Bur. Fish. Bull. XLVII(10):293-398. Hair, E. M. , and C. E. Herdendorf. 1973. Environmental evaluation of a nuclear power plant on Lake Erie. Study I. Federal Aid Proj . F-41-R-4. June 1, 1972 - May 31, 1973. 45 p.
64 Hubschman, J. H. 1960. Relative daily abundance of planktonic crustacea in the island region of western Lake Erie. Ohio J. Sci. 60(6):335-340.
'Jahoda, William J.
1948. Seasonal differences of Diaptomus (Cope-poda) in western Lake Erie. Ph.D. Thesis, Ohio State Univ. 100 p. Kle.T.m, D . J . 1972. Biota of freshwater ecosystems identification manual No. 8. Freshwater leeches (Anneli.:a: Hirudinea) of North America. U. S., E. P. A. 53 p. Mason, W . T. 1968. An introduction to the identification of chironomid larvae. Fed. Water Poll. Contr. Admin. 89 p. Norden, C. R. unpublished. A key to larval fishes from Lake Erie. Univ. Southwestern Loutstana. Lafayette, Louisiana. 4 p. Pennak, R. W. 1953. Fresh-water invertebrates of the United States. The Ronald Press Company, New York. 769 p. Stein, C. B. 1962. Key to the fresh-water mussels (Family Unionidae) of western Lake Erie. Ohio State Univ. Museum of Zool. Mimeo. 7 p. Taft, C . E . , and C. W . Taft . 1971. The algae of western Lake Erie. Bull. of Ohio Biol. Survey, New Series 4(1):1-185. Trautman, M. B. 1957. The fishes of Ohio. Ohio State Univ. Press, Columbus. 683 p. U. S. Environmental Protection Agency. 1971. Methods for chemical analysis of water and wastes. Analytical Quality Control Laboratory, Cincinnati, Ohio. 125 p. Usinger, R. L. 1956. Aquatic insects of California.
- Univ. Calif.
' Press, Berkeley. 508 p.
Walter, H. J. , and J. B. Burch. 1957. Key to the genera of fresh-water gastropods (snails and limpets) occurring in Michigan. Univ. Mich. Museum of Zool. , Cire. No. 3. 8 p. Ward, H. B. , and G. C. Whipple. 1959. Fresh-water biology.
' 2nd ed. , W. T. Edmondson, ed. John Wiley & Sons, New York.
1248 p. e ( - - .- -
65 Welch, P. S. 1948. Limnological methods. McGraw-Hill, New York. 381 p. h t -
. 66 o
s APPENDIX A PHYTOPLANKTON POPULAT'ONS AT LOCUST POINT JULY - NOVEMBER, 1974 O
t 67 i , TABLE A-1 ANALYSIS OF 'FHYTOPLANKTON FCPULATIONE 7 AT LOCUST FOINT - JULY 17, 1974 TAXA Station 1 1 Station 3 i Station 6 l Station a Mean . S . D. I Mean S.D. I Mean i S.D. Mean I S.D. BACILLARIOPHYCEAE (Diatoms)
~ Asterionella sp. 37 37 20 20 Centrte diatom Cyclocella s'p.
Cymatosteura sp. Frag!! aria sp.
- Gyrostoma sp.
. Melosir3, sp. 293 220 12S 20 Navicuiold 37 37 10 18 Ste=hanodiscus sp.
Surirella sp. Synedra sp. 20 20
; Tabettaria sp.
CHLOROPHYCEAE (Green Algae) Closterloosts so. 19 19 Coetastrum sp. 147 147 19 19 20 20 .140 55
- Cosmarium sp. - Eudorina sp.
Micractinium sp. Mouccotia sp. , Pandocina sp. 110 110 36 128 09 Pediastrum sp. 987 37 736 187 1131 39 711 98 Rhizoclonium sp. 37 37
- Scenedesmus sp. -
Spirogyra sp. Staurastrum sp. 329 36 54 19 85 46 28 28 Volvox sp. 37 37 20 20 DINOPFf(CEAE (Dinoflagellates) Cerat!um hirundinella 4168 878 1732 20/ 1606 865 1435 1435 Glenodinium sp. EUGLENOPH'OEAE ' Euglena sp. . - Trachelomonas sp. - MYXOPHYCEAE (Blue-green algae) Anabaena sp. 44 44 Achanizomenon sp. Chroccoccus sp. Merismocedia sp. Microcystis sp. 20 20 Unidentified Bacteria , l Un!dentified Phytoplankter ) l TOTAL 8178 548 2737 43 3199 1092 2313 446 I S.D. = Standard Deviation ' l I ' Data presented as numbar/ liter. '
63 TABLE A-1 CONT. ANALYSIS OF PHYTOPLANKTON POPULATIONS AT LOCUST POINT - JULY 17, 1974 7% station s i station to I station $ 2 a station 53 Mean S.D. I Mean s.D. Mean Is.D. Mean s.D. BACILLARICPHYCEAE (Diatoms) Asterienella sp. 14 14 53 53 Ce.9 cie diatom 107 107 Cyclotella so. 20 20 Cyr 'atosteura sp. Fra;ttaria sp. 1 Gyrosigma sp.
. Melostra sp. 28 28 958 107 642 369 176 59 Naviculoid 42 14 Ste:hanodiscus sp. _ _
Surtretta sp. Syredra sp. Tadstlaria sp. 53 53 CHLCROPHYCEAE (Greer. Algae) Cler:erloosts so. Cce'.astrum sp. 28 0 213 213 20 20 Cosmarium sp. Et.doeina sp. 14 14 266 266 233 194 98 98 Micractinium sp. Movgectia sp. , , Pancorina sp. 14 14 Pediastrum sp. 919 139 639 107 1053 117 871 169 Rhizoctonium sp. Scenedasmus sp. 39 O Spirmen sp. Staurastrum sp. 56 28 53 53 153 114 78 0 Volvox sp. DINOP'-NCEAE (Dinoflagellates) . Ceratium hirundinella 809 1S7 2022 319 3441 867 800 '176 Gierodinium sp. 431 314 20 20 EUGLENOPHYCEAE Euglena sp. Trachelomenas sp. MYXOPHYCEAE (Blue--green algae) Ansbaena sp. 20 20 AoPanizomenon sp. 1863 905 305 227 Chroccoccus 80. 413- 94 20 20 Merisenocedia -sp. 27 27 MicmcyI::.s sp. 42 14 , 160 24 119 41 20 20 Uniden tfied Sacteria
- j. Unidentified Phytoplankter 266 266
= TOTAL tego 28 6650 374 E855 3136 2139 501 S.D. = Standarc1 Deviation j Data presented as number / liter. s .V :.~. ' , _ , , ' >.* ,,- ' 1 ~ . - . , ., a q,----
69
' TABLE' A-1 CONT.
ANALYSIS OF PHYTOPLANKTON FOPULATIONS AT LOCUST FOINT - JULY 17, 1974 . TM Station 14 i S tation 18 Station 19 Mean # per* Mean l S .D. Mean S.D. Mean l S.D. Sta . Samolec BACILLMIOPHYCEAE (Olatems) -
- Astacionella sp. 11 Centr te diatom 10 Cycletalla so. 2 Cyma
- ooleur a sp.
Fragitar-ta so. 3 Gyros!;ma sp. 22 22 2
- Melostra sp. 137 49 260 130 238 Naviculoid 9 Ste:hanod!scus sp. 16 16 ,
1 Surtrella sp. 44 44 4 _Synsdra so. 2
,Tatsliar-ta sp. 16 16 6 CHLCRCPhYOEAE (Green Algas)
Clos'er~toosts so. 2 Coe'.as - .:m sp. 59 59 22 22 62 Cos.- ar tum sp. 44 15 4 Eudorir a sp. 15 15 44 44 61 Micrae:inium sp. " Mougeotia sp. , Pandorie.a so. 26
- Pedtastrum sp. 864 248 585 65 14 14 774 Rhizoclonium sp.
3 Scenedesn us sp. 15 15 22 22 7 Spiroovr a sp. Stauras rum sp. 45 14 22 22 82 Volvox sp. 3 DINOPHYCEAE (Dinoflagellates) ' Cer attum hirundinella 2145 1190 1127 174 42 14 1757 Gler.od!ntum sp. 41 EUGLENOPHYCEAE Euglera so. - Trachelomenas sp.' 44 44 4 MYXCPHYCEAE.
, (Blue--green algas)-
Anabaera sp. 15 15 7 AoPanizorvenen sp. 29 - 29 44 44 204 Chroce:ccus sp. 44 44 195 195 61
= Mar is.rcoedia sp.
Micr ocystts so. 2 65 22 39 Unidar :tflad Sacter-(a - Unidar.tified Phytoplankter- 22 22 TOTAL 26 3440 1532 2513 432 56 0 3A60 S.D. = Standar d Deviation Data pt esanted as number / liter . " P
70
. TABLE A-2 ANALYSIS OF PHYTOFLANKTON POPULATIONS AT LOCUST POINT - AUGUST 22, 1974 7g Station 1 i Station 3 i Station 6 '
Station 9 Mean i S.O. Mean ! S.D. I Mean 'S.D. Mean lS.D.
' BACILLARIOPHYCEAE (Diatoms)
Asterlonella sp. 18 18 Centric diatom Cyclotella so. Cymatopleura sp. 22 22 14 14 _Fragitaria sp. 53 53 27 0$ Gyrostoma sp. 18 18 Melostra sp. 531 0 461 36 894' 17 780 9 Naviculoid 53 53 22 22 14 ' Stephanediscus sp. , Suriretta sp. Synedra sp. Tabellaria sp. 22 22 CHLOROPHYCEAE
~
(Green Algae) Closterloosts sp. Coelastrum sp. 18 18 22 22 27 O Cosmarium sp. Eudorina sp. 100 54 44 44 40 40 Micractinium sp. Mougeotta sp. . 22 22 Pandocina so. Pediastrum sp. 319 213 588 231 525 178 538 21 Rhizoclonium sp. Scenedesmus sp. Spirocyra sp. Staurastrum sp. 213 0 106 71 59 59 109 109 Volvox sp.
. DINOPhYCEAE (Dinorlagallates) ' . Ceratium hirundinella 53 18 22 22 14 14
_Glenodinium sp. EUGLENOPWCEAE Euglena sp. - -
-Trachelomonas sp.
MYXOPWCEAE -
. (Blue-green algae) j Anabaena sp. 53 53 Aphanizomenon sp.
Chroccoccus - sp. 107 107 29 29 Merismocedia so. Microcystis sp. 53 53 18 18 22 22
- Unidentified Bactseta Unidentified Phytoplankter TOTAL 1393 12 1329 403 1680 75- 1562 71 S.D. = StandaN Deviation .
Data presented as number / liter. Z
- r. g- - ,- m. ,-- , . , - .--w
, .. --v.. -,-w, ..m.,
71 TABLE A-2 CONT. ANALYSIS OF PHYTOOLANKTON POPULATIONS AT LOCUST POINT - AUGUST 22, 1974-Tm statten s I station to sea: ten 12 { statien 13 4 Mean s.O. Mean lS.O. Mean i S.D. Mean i S.D. 1 BACILLARIOPHYCEAE (Diatoms) Astertonella sp. Centric diatom Cyclotella so..
' Cymatooleura sp. 31 31 Fragitaria sp. 28 28 57 575 Gyrosigma sp. 53 53 Matostra sp. 997 87 404 85 1109 62 755 113 Naviculoid 13 13 31 31 38 38 Stephanodiscus sp.
Suriretta sp. Synedra sp. Tabellaria sp. CHLOROPWCEAE (Green Algae) Closteriopsis sp. Coeta<.trum sp. 42 16 53 53 31 31 57 57 Cosmarium sp. Eudorina sp. 41 12 514 124 112 112 94 19 Micractinium sp. Moua.eotia sp. i- Pandorins sp. Pedtastrum sp. 487 59 603 178 871 . 132 623 132 Rhizoclonium sp. _Scenedesmus sp. 102 4 Spiropyra sp. Staurastrum sp. 67 38 147 147 31 31 57 19 Volvox, sp. 13 13 DINOPHYCEAE (Dinoflagellates)
- Ceratium hirundinella 54 25 49 49 Glenodinium sp.
EUGLENOPHYCEAE 4 Euglena sp. -
- Trachelomonas sp. -
MYXOPWCEAE . (Blue-green algae) Anabaena sp. 31 , 31 Aohantromenon sp. Chroococcus sp. 15- 15 Merismocedia sp. Microcystis sp. 53 53 Unidentified Bacteria
' Unidentified - Phytoplankter TOTAL'- 1727 42 1977 171 2274 178 1679 18 S.D. = Standard Deviation .
Data presented as number / liter.
.g.. ,- r - - - , - m-,,, , y . y,e- -
;.
L 72 TABLE A-2 CONT. ANALYSIS bF PHYTOPLANKTON POPULATIONS AT LOCUST POINT - AUGUST 22, 1974 TM Station f 4 i Station 18 l Station 1c i u m o oer Mean S.0. ! Mean 'S.D. Mean !S.D. ' Sea. Samoted BACILLARIOPHYCEAE (Diatoms) Asterionella sp.
,2 Centric diatom Cyclotella sp.
Cymatooteura sp. 6 Fragtlaria sp. 61 1 21 3 Gyrostgma sp. 6 Melostra sp. 791 71 1124 130 59 20 719 Naviculoid 16 Stephanndiscus sp. Surtrella sp. - Synedra sp. Tabellaria sp. 2 t CHLOROPHYCEAE (Green Algae) - Closterloosts sp. 25 Coelastrum sp. 21 21 Cosmar fum sp. Eudortna sp. 48 15 105 63 20 20 107 Micr* actinium sp. Mougeotta sp. , 2 _Pandorina sp. *
- . Pediastrum sp. 364 87 919 209 293 20 557 Rhtzoclonium sp.
Scenedesmus sp. 9
-Spiroovra sp.
Staurastrum sp. 77 47 84 42 39 0 90 Volvox sp. 15 15 3 a DINOPHYCEAE 4 (Dinoflagellates) ' Cerattum hirundinella
- 17 Glenodinium sp.
EUGLENOPHYCEAE Euglena sp. . - Trachelomenas sp. MYXOPHYCEAE (Blue-green algae) Anabaena sp. 8 Aohanizomenon sp. p Chroccoccus sp.
- 14 Merismocedia sp.
Microcystis sp. 13 Unidentified - Bacteria
.Unidentifled Phytoolankter TOTAL 1353 3 2252 79 410 20 1603 S.D. = Standard Ocviation .
Data presented as number / liter. .
- i. .
e -- - ,- - , , .
73 TABLE A-3 ANALYSIS OF PHYTOPLANKTON FOFULATIONS AT LOCUST POINT - SEPTEMBER 10, 1974 i tation e i Station 3 6 5tneton *J 4- 9tation d Mean '% O.# Mean NO. w an N o.Itv.sn S.O. DACit.1.AA10PHYCEAC (Diatoms) Astertonella sp. Centrte otatom Cyclotetta so. 81 81 29 29 44 44 Cymatcoteura sp. F raSitarta so. 93 13 40 2 67 22 12 12
~Gwees17ma so.
Meiostra sp. 1097 352 477 137 807 42 512 187
. Navtcutold 53 53 63 28 33 33 Stephanodiscus so.
Svetretta sp. Syneden sp. 40 40 18 18 Tabettaeta sp. Untoenttried Oletem CHLGRGPHYCEAC (Green Algae) Actinastrum so. 20 20 9 9 19 19 Ar*tstrodeserbs sp. Btnuctemeta so. 23 6 33 2 Chlamvcomonas so. Closteetoosts 30. Ctostertum so. 241 241 50 50 26S 255 190 190 Coetastrum so. 107 107 52 24 36 36 69 4 Costmetum sp. Cruct7enta so. Cmetnt7tata so. Otetyosonsertum sp. 9 9 Otmorrmcoccus sp. Eudoctru s.a. 9 9 39 27 L.aSern*4mte so. Micenettnium sp. Mougeotta sp. 1137 392 491 151 851 86 1296 516 Cocystis so. Pandoetru so. 242 242 41 3 E2 62 43 43 Pedtastrum so. 1876 147 1148 135 1568 188 1204 424 Platvdoetna so. Rhtroctonium 30. Scencoesmus so. 73 33 7 7 27 27 37 37 Seienastrum so. Sotrogyra sp. Staurastrum so. 133 27 15 15 112 24 75 to plotnaix so. Volvom so. CHAtYSCPWCF.AE Otnobryon so. h!NOPPffCEAE (Olnoflagettates) Cecatium hirundinetta 93 13 21 21 18 18 Glenootntum so. Pertetntum so. 60 60 9 9 6 6 - EUGLt.NOPHYCEAE Eugtene so. 7 7 Tracnetomonas 30. MYXOPHYCEAE (01ue-green algae) Anatuena so. 40 40 26 12 9 9 43 43 Achmtromenon so. 1609 4a3 1255 28 1515 165 1709 80 Chroococcus so. 181 181 21 21 44 44 25 25 Meetsmeoecta so. Microcystis so. 583 5S3 190 152 346 255 220 220 Sotruttna so. Unidenttfted Bocterta g a.ttr1*4 Anytectanktee TOTAL '7755 2324 ! J998 10 8 $387 691 5520 1755 S.D.
- Standard Deviatton Data presortb as meerAttse.
74 TABLE A-3 CO NT . ANALYSIS OF PHYTOPLANKTON FOPULATIONS AT LOCUST PCINT - SEPTEMBER 10, 1974 station o i statina m i station i3 t .ct ation o v.ean 3.0. I w an s.o. .w..n 3.n. .-aa s.o. DACILLAHIOPWCEAC
, (Otatoms)
Astectonella sp. 22 22 Centrte diatom Cycletetta so. 6 6 44 44 77 77 71 71 Cymatontmara so. Fraattarea so. 26 4 10 10 94 31 Gyrostoma so. 22 22 21 21 Melostra so. 401 116 1747 243 915 355 837 127 Navicutold 11 11 125 8 29 29 69 27 Stephanodiscus so. Suetrotta sp. Synedra so. 11 11 48 48 48 48 Tabellaria 30. 11 11 Unidenttrted Diatem GHLGHOPHYCEAc; (Green Algae) Acttnastrum so. 11 11 8 8 Ankistrodesmus so. Otruclearta sp. 11 0 48 40 74 4 24 24 Chlamvdomonas so. 398 398 24 24 Clostertoosis so. Closterium so. 167 167 376 376 M7 337 221 221 Coetastrum so. 59 27 81 37 *.d
. 4 61 19 Cosmartum sp. 02 22 Cructaenia sp.
Crucinigtnta sp. Dictyosernertum sp. 19 19 24 24 DimorThococcus sp. Eudocina so. 117 117 Lacermeimia 50. Mteracetnium sp. Mougeotta so. 1163 131 656 539 1527 127 1129 163
. Oocystis sp.
Penrsorina sp. 56 2 39 39 63 63 Pedtestrum sp. 1335 237 2312 498 1542 138 1723 33 Platvdoetna sp. 67 67 Rhizoclonism so. Scenedesmus sp. 44 44 19 19 61 19 Seten.sstrum so. Spirogyra sp. Staurastrum so. 61 4 103 15 195 60 56 56 tilotheiM sE. volvom so. l CFRYSOPHYCEAE Dirw>beven so. OtNOPHYCEAE (Dinoflagettates) Ceestium hirundinatta 6 6 22 22 10 10 35 4 Glenodintum so. Pertdinium so. 6 6 e 44 44 15 16 EUGLENOPHYCEAE E'ugtena so. 15 15 35 16 Teachelorennas so. MYXOPKfCEAE (Blue-geeen algaa) Anabaena so. W 60 19 19 8 8 Aonantromenon so. 1341 309 2789 797 1787 347 1664 371 Chroccoccus sp. 44 44 19 19 40 40 Meetsmooedta so. Iaterocystis sp. 194 194 455 455 234 132 150 1.'O Spiri.stina sp. Unidentified Dacterta tintdentift*d PMyeoptar*.ter
**sli 15, u 95 4 2MJ tet+S 1419 04a4 13M TOTAL S.O. = Standans Deviation cata presented as rummerAttee.
75 TABLE A-3 CONT. ANALYSIS OF PHYTOPLANKTON POPULATIONS AT LOCUST POINT - SEPTEMSER 10, 1974 statten 14 4 > tater.n 10i Festien G ve nn a sce I Mean s.o.t Mean d.0.t Mean .O. S ta . Samoted DACILLARIOPHYCCAC 2 (Diatoms) O Aster , nella so. Cents ac ctatom Cyctetetta so. 31 31 89 8% 43 Cymatopteur.s so. O
- Fragttacta so. 63
- 11 11 38
- Gvmstgma so. 27 21 6 Metostra so. 512 9 738 E 246 102 754 Navicutoid 49 43 44 4A 43 Stechanodiscus so. O Svetretta so. O Synedra so, 56 56 20 Tabettarta so. 1 Unidentarted Diatom GHLGROFMYCEAC (Green Algae)
Aettnastrum so. 13 13 22 22 g Arwistrocescrus so. Otructenets so, 21 1 9 3 22 Chlamydomonas so. 38 Clostectoosts so. O Clostertum so. 252 252 498 498 97 S7 245 Coetastrum so. 51 14 49 5 56 Cosmarium sp. 27 27 4 Cruetgenia sp. 13 13 33 33 Crsectnatnta so. 4 Otetyosomertum so. 13 13 6 Otmorrmococcus sp. Euccetna so. 17 17 27 27 19 L =cer**tmt a so. Micracttneum sp. O Mougeotia so. 727 207 1151 155 100 46 G35 Oocye.tts so. Pandoetna so. 37 37 11.2 122 64 Pediastrum sp. 1236 66 1426 11 65 22 1400 Platvdortna sp. 6 Rhtroctontum so. Scenedesmus so. 25 25 22 22 29 Seterustrum so. Sotro7yra so. O Staurastrum so. 10$ 57 60 7 83 Utetnetx so. Votwow so. 15 15 1 CHtYSOPHYCEAE Dinebryon so. OlNOPHYCEAti (Dinotta2ettates) Cerattum birundinetta 23 11 27 27 23 Glenodin8vm so. O 11 11 Pertdtntum so. 14 EUGLENOPHYCEAE Euglena sp. 27 27 8 Trachelomonas so. ry MYXOPHYCEAE (Blue-green algae) Anabaena so. 43 43 23 Aomntromanon sp. 929 104 1726 730 693 9 1547 Chroococcus so. 133 133 46 Meetsmocodia so. O Mteroevatts so. 123 123 310 310 103 103 265 Sotrutina so. Untdertifted Bacteria 8 Unidanttfted Pmvecolarmter TOTAL W as iPe6 t.su 2074 13a5 0*2 =?et
~
S.D. = Standard Deviation Data preserwed as rummer /ttter .
4 ew t 76 TABLE A-4 ANALYSIS OF PHYTOPLANKTON FOPULATIONS AT LdCUST POINT . OCTOBER 9, -1974
. Station c t stran J 6 i Station s 4 Fratten 4 vaan s.o. vean ..n. i m . n s.o. , ve., n - s.o.
DACit.LAHlon NCEAC (Olatoms) Astertonella so. 117 0 71 0 26 26 83 55 Centric diatom 29 29 36 36 64 84 45 45 Cyctntella so. Cymatooteura so. 9 9 13 13 Fraittarta so. 530 179 241 170 298 242 497 94 Gyrestoma so. Metostra so. 7636 441 3775 229 3332 431 2705 221 Navtcutold 177 60 18 18 - 67 11 9 9 Stephanodiscus so. 2273 150 1085 58 1472 222 1554 134
. Suetretta so. 13 13 Synedra sp. 18 18 13 13 9 9 Tabellaeta so. 54 18 20 25 45 9 19 98 125 125 Untdenttrieo Otatom GHLOROPHYCEAE (Green Algae)
Actinastrum so. 59 59 45 45 64 64 45 45 Anktstrodesrrus sp. 29 29 81 81 39 39 18 18 Biruclearla so. 793 93 194 57 224 33 187 11 Chlamydomonas so. Clostecioosts sp. 295 295 54 54 282 282 125 125 Clostertum so. 9 9 26 25 18 18 Coelastmm 30. 117 0 41 15 27 27 Cosmarium sp. 50 59 CmetSenta so. 59 59 9 9 26 2S O 9 Cructrugtnta so. , Otetyesorugetum so. 23S 238 72 72 141 141- 63 63 Olmorotw> coccus so. 9 9 13 10 27 27 Eudortna sp. 28 2b* La;;erheimia sp. Mteractintum sp. 59 59 27 27 26 2S 18 18 Mougeotts sp. 6201 817 2210 695 4681 859 3233 337 Oceystte sp. 29 29 27 27 90 90 9 9 Parw1ortrve tp. 59 59 3S 35 28 28 74 74 Pedteservm sp. 3115 423 1534 CG 23sa 443 1759 298
) Platydoctna sp. ,, Rhizoeton'um sp.
Scenadesmus so. 118 118 3S O 77 77 82 28 Setenastrum sp. Sptrewca sp.
- 24 72 Staurastrum so. 148 148 54 54 80 1 Ut othet x so.
Volvom so. 72 72 141 141 81 44 CHRYSOPHYCEAE Dinotaryon sp. 9 9 OINOPHYCCAE (Olnorta2ettates) Cecattum Mirundinatta . 13 13 9 9 Glenootntum sp. Peeldtntum so. EUGLENOPHYCEAE Euglena so. . Trachetomones sp. MYXOPHYCEAE (Blue-green algae) Annemena so. 382 87 45 45 118 ' 62 45 45 Aonantromenon sp. 15045 2353 2148 623 5041 3031 3597 771 Chroococcus so. 59 59 27 27 9 '9 Meetsmooedte so. Meerocystis so. 531 414 21 21 439 383 252 142 Spiruttn3 sp. Unidentifled Dacterla r
' Untetentifted At*v*eolar* tee TOTAL AISI 4W u t20sti 2376 19424 i 6972f1.t+ 11 1794 J S.D. = Standard Deviation Data presemed as numberWter.
hu. e-2.
.77 TABLE A-4 CONT.
ANALYSIS. OF PHYTOPLANKTON POPULATIONS
- AT LOCUST . POINT - OCTOBER 9, 1974 Station G htation 10 i Station 12 $ St at ion 13 vsan ' s.o. P.can %.D. Mean w.n. wan 5.0.
DACILLWttOPHYCEAE (Otatoms) Astertocells so. 43 43 135 12 SS 30 22 22 Centete ctatom 36 36 74 70 48 48 66 66 Cvetntetta so. Cymatooteuca no. 11 11 Fra7ttaeta so. 211 24 590 221 308 131 397 63 Gyeestoma so. 37 37 Metogica 30. 2838 321 5015 473 2689 7 3529 274 Navtcutold 22 22 37 37 19 19 54 12 Steom nodiscus sp. 1930 218 1919 146 1529 7 1487 111 Suctretta so. Synecea so. 7 7 48 48 55 55 Tabettarta so. 7 7 18 18 11 11
; t)ntoenttrieo Dietom l 74 74 cHLcacF HwcEAc.
(Green Algae) Actinastrum so. 15 15 221 221 67 67 E6 66 Anktstrodasrms sp. 7 7 19 19 66 66 Struclearia so. 362 17 794 18 427 50 319 53 Chlmmvoomonas so. Closternoosts sp. 180 180 185 185 48 48 131 131 Closteetum so. 7 7 37 37 Coetastrum sp. 29 0 37 37 18 18 11 11 Cosmarium sp. Cruct;=nts so. 29 29 37 37 38 38 Cmeent7teta sp. Otetvosexu etum sp. 35 30 258 258 105 105 99 99 Otmneonococcus sp. 22 22 to 10 Eudoctru sp. Lagernetmta sp. 37 37
- Mteractmtum so. 15 15 74 74 38 38 66 66 Maugeotta so. 2395 122 5573 31 3060 365 4468 655 Oocystts so. 29 29 148 148 57 57 66 66 Panricetna so. 30 30 123 123 36 36 84 84 Pediastrum sp. 1399 83 3260 58 1514 12 2239 186 Ptstydoctru so.
, Rhitectonium 30.
Scenedesmus sp. 66 23 332 37 98 56 Setenastrum sp. 10 to 22 22 Sptrooyee 30. Staurastrum so. 51 22 135 12 65 30 87 45 Utothetz sp. Volvou so. 3s og .
. CH4YSO PHYCCAE . Otnobeyon so. 10 10 ' DINOPHYCEAE.
(Dinotla2ellates)
' Cerattum hirundinett s 15 15 62 62 Glenoctetum so.
Peetetntum so. , EUCLtiNOPHYCEAE Euolene sp. 62 62 124 124 63 63 Trachetomonas sp. 7 7 37 37 - MYXOPHYCEAE (9tve-green atgae) . Arwsbaena sp.' 15 15 74 74 48 48 77 77 Aomntromenon so. 3349 193 8706 3164 3897 1202 4074 1550 Chroecoccus so. 22 22 74 74 22 22 Mertomooedia so. Microcystis so. 288 288 713 467 234 128 295 295 Sotruttna sp.
...Unidectified Bactorta tJntdenttrted 5%etoolanktee 22/S I N77 r.c q TOTAL hh ett udS3 5154 84540 '
S.D. = Standard Deviatton Data preserited as mmeer/tttee.
. .s A
m v . b 7 -
78 TABLE A-4 CONT. ANALYSIS OF PHYTOPLANKTON FOPULATIONS i - AT LOCUST POINT - OCTOSER 3, 1974
# seneinn i46 statioe m t st.uica v iuean e per sw n s. o. , . ...-an i s .o. eran is.o.;cto, e -ni.d DACILLN4tOPv&CEAC (Otatoms) -
Astertonetta so. 34 0 62 62 58 3 60 Centetc oistom 17 17 93 93 28 23 49 Cvetotella so. O Cymatopteura sp. 16 16 14 14 6 Fraytlarta so. 336 68 449 45 189 39 368 Gyeestprra so. 16 15 5 Metostra so. 1010 252 3282 60 2212 358 3800 Naviculoid 9 9' 109 109 112 82 58 Stenhinedtseus sp. 2006 7 1859 2. 1629 33 1710 Surteetta so. 1 Synecea so. 26 26 31 31 42 42 23 Ta:>ett seta so. 9 9 29 28 18 i Untaenttfled Diatom 202 7C? 155 155 29 Se 55
. GHLGaGPHYGE,*E (Green At;ae)
Aettrustrum so. 110 110 45 45 14 14 68 Armistrodestrus sp. 42 42 81 81 14 14 33 Otrucleams so. 264 39 401 35 264 .114 384 Chlamvoomrinas so. Clostertoosis so. 177 177 93 93 468 468 185 Closteeivm so. 9 9 10 Coelastrum so. 42 9 16 16 14 14 32 Commanum so. 5 Cruct9enta sp. 34 34 9 9 14 14 24 Crucintoima sp. Oteryosomartum sp. 85 85 72 72 55 55 111 Dimorenacoccus sp. 9 9 9 9 9 Eudoctr,a so. 3 Lagerheimts so. 3 Micractinium so. 110 110 155 155 14 14 gg Ma.neotta sp. 4408 654 5146 565 4163 419 4140 Oceyttis sp. . 17 17 27 27 14 14 47
. Pandcrira so. 17 17 30 30 47 Peoinstrum sp. 1955 253 2135 349 435 105 1982 Ptatyeartna so.
Rht rocloniurr so. 17 17 2 Scenedesmus sp. 101 34 109 47 224 134 113 Seterostrum so. 3 Sp % ea sp. g Staurastrum so. 17 17 62 62 39 39 74 Ut otnet a so. Volvon so. 34 34 33 CFftYSCPHYCEAE . Olnebeven so. 9 9 A O!NOPHYCEAE (Otnortagettates) Cerattum hirundinetta 9 9 16 16 11 Glenoctntum so. O
, Poetatnium so.
EUGLENOP>#CEAE Euglena so. 23 Trachetomonas so. 4 MYXOPHvCEAE [(Blue-green at2ae) Ambaena sp. 84 51 124 124 44 16 96 Achantroraemon so. 3851 1778 8461 5259 1616 185 5444 Cheoccoccus so. 17 17 16 16 22 Meetsmoceots so. O Mterocystis so. 345 278 264 264 307 Sotruttna sp.
- Uniderttfled Dacterta (JetdeattFted P>vtootarktee TOT 4.L l s tAno 3ri 234s1 7m 11757 est i 19227 S.0.
- Standard Deviation . Data preserjted as rurnber/tttee.
w A,.
.+. ,
79 TABLE 'A-5 c
~ ' ANALYSIS OF FHYTCPLANKTON FOPULATIONS AT -LOCUST POINT - NOVEMSER 7, 1974 Station 1 Station J l St.ition ? 6 St.'tton e Mean 5.O. .vecan 3.t . t Mr.in 7. 0. e r.*ean S.O.
DACILLMttCPHYCEALI + (Otatoms) Astertonatta so. 70 70 127 68 154 3 97 10 Centric anatom 35 35 40 40 69 89 90 90
- Cyclotetta so.
Cymmtooteura so. 20 20 10 to 18 18 Fra3ttseta sp. 1715 935 2346 506 1910 174 3000 33
- Gyrostoma so. 20 20 67 47 Melostra sp. 2746 38 4295 1129 2137 84 a083 1314 Naviculoid 191 191 49 49 40 40 137 7 Stephanodiscus sp. 42S3 28S 4747 676 4139 994 8099 1130 Sueiretta sp. 22 22 4 Synedes sp.
- 74 5 10 to 49 49 57 14 Tabettarta so. 91 13 98 20 to 10 83 47 i Unidenttried Olatom GHL.OACPHYGtEAE (Creen Algae)
Actinastrum so. 18 18 40 40 30 30 72 72 Ar*tstrodesmus sp. 18 18 10 10 to 10 , 8tnuclearta so. 1017 198 837 246 809 236 851 293 Chtartvdomonas so.
- Closteeteosts sp. 124S 1012 462 266 715 602 752 535 Clostertum so. 35 35 30 30 4 Coetastmm sp. 10 to 62 26 Cosmartum so. 44 44 Cruct9enta so.
Crucintmnia so. Dictyonemertum so. 139 139 139 130 t!D 69 179 179 Otmoephococcus sp. 18 18 to 10 Eudorim sp. Lagerestmta so. Miecarttntum sp. 35 35 84 84 40 40 54 54 Mwjeocta sp. 21192 4815 16913 5094 14511 5107 20863 6909 Ooeystis so. 18 18 Panctoetna sp. 130 130 Pedtastrum so. 1228 370 1293 4 1346 127 2087 94 Platvdartma so.
,. Rhtroctentum so.
Scenadasmus so. 187 48 235 78 96 17 176 3 Seterustrum sp. Sotrvxtyra sp.
' Staurasemm sp. 87 87 148 109 213 62 115 28 4 Ulotmetx sp. 36 36 Volvez sp. 22 22 CmVSCPHYCEAE Dinobeyon so.
DINOPWCEAE (Dinoflagettates) Cerattum htrundtnetta 32 32 Glenoctntum so. Pertetntum so. EUGLENOPHYCEAE Euotena . so. 10 3 10 10 18 18
- Trachelomoms so.
.t - MYXOPWCtEAE
- (Blue-green algae) i 2 Anabaena so. 52 52 40 40 10 to 18 19 Apruntromenon so. 1141 . 233 1332 45 1007 '252 2605 002 Checococcus so. 52 52 10 to 18 18 Meet smot. '
- so.
Mteroevstts so.' 204 30 147 9 145 32 '129 86 Sotruttru so' .
- z. Unidenttried Dacteria 20 20 Untdaattried Pw vtoolarmter"
, TOTAL ' 8*d 8537 3 Wid w? 2741*i am e '4 7 am S.0. = Standard Oes tatton . - Data preser(ed as rumner/ttter . l
. n -
~ 80 TABLE A-5 CONT. ANALYSIS OF FHYTOFtANKTON FOPULATIONS AT LOCUST POINT - NOVEMBER 7, 1974 Statten it ( 9tatton 13 Mitten 12 4 f t.ation 13 wan s.o. i wan ~ s.n. w ,n - s.o. wan . s.o. DACILLARICr>NCEAE * (Otatoms) Astertonells sp. 177 89 75 16 107 0 115 75 Centetc clatom 89 89 90 90 80 80 21 21 Cyclotetta so. Cymatooteura sp. 22 22 31 10 Fra7ttarta sp. 3572 852 1800 90 2084 62 1478 187 ; Gyrostoma so. 22 22 Metestra sp. 8306 409 2304 459 2871 512 1954 195 Navicutold 44 44 295 295 134 134 137 137 Steohanodiscus so. 6807 489 3021 635 4116 282 2737 275 Surtrella sp. 54 54 Synecra sp. 81 52 14 14 74 74 Tabettarta sp. 154 21 104 14 14 14 51 30 Unidenttried Otatem GHLGROPHYC Gr. (Green Algae) Actimstrum sp. 22 22 30 30 54 54 53 53 Ar*tstrodesims sp. 67 67 59 59 14 14 Struclearta sp. 977 571 260 94 559 111 478 155 Chtsnviomoms sp. Closterieosts sp. 988 871 786 336 1070 432 1C01 517 Clostertum so. 53 59 27 27 21 21 Caetastrum so. 15 15 40 13 31 to Cosmartum so. 15 15 - Cructgenta sp. Crucintgtata sp. Otetyospr.sertum so. 155 155 207 207 121 121 158 158 Otmortmoexcus sp. 30 30 14 14 11 11 Eudortm sp. Lagerretrnta sp. Mteractinium so. 67 67 30 30 27 27 42 42 Mougeotta so. 22422 12301 23185 654 18075 3131 15417 4S58 Oceystts sp. Pandor im sp. 89 68 54 54 20 20
. _Pedtastrum so. 2035 485 1398 42 1210 152 1157 100 Platydoetna so.
Rhtzoetentum sp. Scenedesmus sp. 96 37 179 2 226 65 94 54 setenastrum sp. Spicowra sp. Staurastrum sp. 90 90 193 103 241 81 83 2 Utothrix sp. Volvox so. 27 27 CFRYSOPHYCEAE Dinobryon sp. OlNOPHYCEAE (Otnoflagellates) Cerattum htrundtnetta Glerodentum sp. Peeldsntum sp. EUGLENOPHYCEAti Euglena sp. 120 61 54 54 11 11 Teachelomonas so. MYXOPHYCEAE (Stue-green algae) Anabaervi sp. 67 67 30 30 40 4C# 21 21 Apeuntromenon sp. 2191 641 1154 704 1216 152 1125 76 Chroococcus sp. 44 44 89 89 27 *7 11 11 Merismecedta so. Mteroevstts so. 207 148 148 148 94 41 85 85 Spiruttru so. Unidertified Bac* ria 45 45 tlntder.ttfled P* . cot smt e r ud71 TOTAL .tna e 9 Q i 74 '.3 nr75 Q O61.1 72 s02 t 3nM 2*A09 S.D. = Scr. erd Deviation - Cata presented as rumber/ttter .
81 TABLE A-5 CONT. ANALYSIS OF PHYTOPLANKTON i:OPULATIONS AT LOOUST POINT - NOVEMSER 7, 1974 Station sa i statte ta i 4tation 10 f Mean
- per {
WA r. .an s.r). u an w.f).6 AA an s.o. 5ts. surrot e: GACILLARIOPHYCEAC (Otatoms) Astertonetta so. 111 48 127 16 105 Centenc diatom 80 80 55 95 63 Cyclotella so. O Cymatooleuca so. 9 Fragtlarta so. 2879 600 2005 33 886 2160 Gyrnstama so. 10 Melostra so. 2881 547 2797 435 3004 3338 Navicutold 100 160 130 133 120 Stephanodtscus so. 6090 1631 5253 653 3304 4780 Surtretta so. 7 synecca sp. 8 8 59 59 39 Tadettarta no. 88 40 36 36 Se y Unidenttried Diatom CHLOROPHYCEAE (Green Aigae) Actinastrum so. 24 24 36 35 34 Arktstrodestrus sp. 12 12 17 Biruclearia so. 475 116 660 190 182 628 Chlamydomoms so. Clostertoosts so. 1043 695 992 491 95 832 Clostertum sp. 40 40 36 35 23 Coetastrum so. 16 16 28 28 32 21 Cosmartum sp. 63 11 Cruerynia sp. Crucint7tnta so. Otetvoschaeetum so. 152 152 47 47 124 Olmorphococcus sp. 8 Eudortru sp* O 1 Lagerheimia se Micenettntum .p . 12 12 33 Mmneetta so. 16641 4548 20249 4593 6072 1 7778 Ocey*.tts so. 47 47
. Pandorim so. 48 48 SS 56 32 og Pechstrum so. 1604 181 1352 182 158 1351 Platydortna 30. .
Rhtroctonium so. o Secr*dostrus so. 159 0 210 68 127 162 Setenastrum so. Sotro yea so. o
-staurastru_m so. 64 64 1GO 23 129 Utotnetx sp.
3 Volvn= sp. 4 C W SCPHYCEAE Dinobryon sp. DINCPHYCEAE (Dinorlagellates) Cerattum hirundenetta 3 Glemdtatum so. O Periointum so. EUGLEN0pHYCEAE Euclena so. 68 44 26
. Trachetomonas so, r3 MYXOPHYCEAE (Blue-green algae)
Anabaena sp. 35 39 29 Armntromenon so. 1216 172 1552 392 1322 Chroecocy so. 23 l Meet sr* oadia sp. O Mterocystis so. 104 72 99 43 124 Sotruttru sp. Unidenttfted Bacteria 6 , n Untdeettrted knytectanwter l TOTAL iLivJa 4GrJ $30260 eio39 9 taqn mn l l
- S.O. = Standard Dettation Data presacted as rumber/ttter. l f
r-82 APPENDIX B ZOOPLANKTON POPULATIONS AT LOCUST POINT JULY - NOVEMBER, 1974 O l l
83-TABLE B-1 ANALYSIS OF ' ZOOFLANKTON POPULATIONS
, AT LOCUST POINT - JULY 17, 1974 Statten 1 station a i station a station a 7
Mean I S.D. Mean S.D. I Mean l S.D. Mean i S.D. ROTIFERA Asplanchna giroidt
& priodonta 7.9 4.2 3.2 0.C 2.4 0.2 0.9 0.2 Brachionus argularis 75.7 20.3 33.1 9.1 11.8 2.5 8 .4 0.0 g calyciflorus 2.6 0.C B. havanaensis 0.9 0.9 0.5 O.C O.3 0.3 B. (Platvias) patulus & urceolaris 'Chromogaster ovalls Conochiloides so. 28.6 4.E 17 E 0.0 3.5 1.C O.7 0.0 Filinia terminalis 30.9 6.C 8.6 1.7 5.9 3.9 1.3 0.2 Kellicottia lcnciscina Keratella coenlearts 37.0 1.8 16.6 0.5 13.5 0.7 7.8 0.4 g quadrata Notholca scuamuta Polyarthra sp. 892.2 13.4 469.1 9.5 509.1 60.4 349.7 2.3 Synchaeta sp.
Testudinella sp. Trichocerca cylindrica O.9 0.0 1.2 0.2 0.3 0.3 T 'multiccinis 0.3 0.3 Unidentified Rotifer Lecane lunaris COPEPODA . . Calanoid copepods Diaotomus sp. 3.7 0.9 2.2 0.0 3.5 3.5 9.4 O.5 Immatures 2.E' O.O O.5 0.5 1.5 1.5 2.3 0.2 Cyclopold copepods Cycleos sp. 37.9 4.7 50.1 2.6 94.8 63.1 43.0 1.0 Mesocycloos sp. O.3 0.3 Immatures 48.0 3.7 25.5 0.4 28.9 12.5 16.7 0.5 Naupilus 321.2 3.7 241.6 2.7 166.4 25.2 143.1 1.2 CLADOCERA Bosm!na sp. ~ 59.1 6.5 64.4 3.5 31.8 12.1 39.8 2.8 Chydorus sp. Daphnia galeata O.2 0.2
& putex 0.9 0.9 0.7 0.2 0.3 0.3 0.2 0.2 g retrocurva 172.6 22.2 213.6 12.9 96.4 19.6 183.3 1.2 Diaohanosoma sp. O.3 0.3 Holooodium sp. 1.4 0.4 0.3 0.3 . Leptodora kindtil 0.5 0.5 0.3 0.3 0.2 0.2 I
CertocaoMna sp. 4
. PROTOZOA
- Actneta - sp.
Amphiteptus sp. . Difflugia sp. 21.7 62.8 4.2 2.3 12.9 12.9 140.8 0.4 Orphryodendron sp. Stauroch va. sp. TOTAL- 1746.3 50.9 1211.2 18.8 984.0 32.8 917.6 3.3 S.D. = Standard Deviation , Data presented 'as number / liter. *
=-
z ; .. . 84 TABLE B-1 CONT. ANALYSIS OF ZOOPLANKTON POPULATIONS AT LOCUST POINT - JULY 17, 1974 station 9 station 10 station 12 Station 13 T* Mean I s.D. Mean Is.D. Mean s.D. Mean: s.D. ROTIFERA Asolanchr13 giroidi
& pr lodonta 1.3 0.2 2.7 0.0 1.7 0.3 3.4 0.0 Brachionus angular is 9.4 0.2 45.0 10.1 12.8 5.4 35.9 10.3 B. calyciflorus B. havanaensis 0.3 0.3 h (Platytas) patulus '
B. urceolaris Chromegaster ovalls - Conochiloides sp. O.4 0.0 2.7 0.0 2.7 0.2 19.2 0.0 Filinta terminalis 0.2 0.2 2.0 0.7 3.4 2.3 3.0 0.0 Kellicottia lencisoina Keratella cochlearts - 2.8 0.0 45.1 6.1 16.7 0.6 18.2 0.0 K. Quadrata Notholca scuamula Polyarthra sp. 321.4 1.4 1104.1 11.4 555.9 101.8 4G2,5 4.9 Synchaeta sp. Testudinella sp. Trichocerca cylindrica O.7 0.7 0.4 0.4 0.8 0.8 T. multierints Unidentified Rotifer
, Lecano lunaris COPEPODA ' Calanoid cepepods F
Diantomus sp. 5.3 0.3 8.8 2.1 4.0 2.0 3.0 0.0 Immatures 5.5 0.9 5.4 2.7 1.5 0.5 1.5 0.5 Cyclopold copepods Cycloos sp. 51.4 3.5 50.4 3.4 48.4 17.5 50.5 0.3 Mesecycloos sp.
' Ime atures 23.1 0.6 57.8 2.7 27.6 8.8 26.1 0.5 Nauptlus 140.8 1.1 CLADOCERA
- Bosmina sp. 51.4 1.8 114.3 6.8 34.4 14.3 62.0 0.5 Chye'orus sp.
Daphnia Gales t 0.7 0.0 2.0 0.7 0.4 0.4 D. - pulex - 0.2 0.2 0.3 0.3 D. r e ocurva 144.9 2.0 233.2 15.5 89.7 25.7 207.4 24.9 _Diachanosoma sp. 0.2 0.2 Holooedium sp. O.7 0.7 Leotodora kIr lil O.7 0.7 0.3 0.3 0.3 0.3 Cerlodachnia t,p. PROTOZOA Acineta sp.
- Amohitectus sp.
Difflucia sp. 233.6 4.1 61.8 6.7 40.2 0.6 66.5 3.5 Orphryedendron sp.
- Staurophr va sp. * -TOTAL 992.3 8.3 2202.2 21.1 1027.6 130.1 1243.3 12.0 S.D. = Standard Deviation '
Data presented as number / liter . l.
._ . = _ __ _ _ _ _ _
85
. TABLE B-1 CONT.
ANALYSIS OF ZOOPLANKTON POPULATIONS AT LOCUST POINT - JULY 17, 1974 Station 14 Station la l Station 19 i Mean a per l Mean Mean l S.D. ' Station Samoled S.D. Mean S.D. ROTIFERA - Asplanchna giroidt
& priodon*.a 0.6 0.E 2.5 0.0 1.6 0.2 2.6 Brachionus ancula-is 6.4 1.0 12.3 1.9 29.1 0.6 25.4 B. calycinorus 0.3 B. havanaensis O.2 B. (Platyias) catulus '
B. ucceolaris Chromogaster ovalis Conochiloides sp. 1.4 0.2 3.6 0.9 7.3 Filinia terminalis 0.2 0.2 4.4 2.8 5.4 Kellicottia torciscina Keratella cochlearts 7.6 0.6 14.2 0.0 5.7 0.4 16.8
$ cuadrata 12.2 0.6 1.1 Notholca scuamula Polyarthra sp. 408.9 2.3 522.1 28.2 16.0 0.2 512.8 Synchaeta sp.
Testudinella sp. Trichocerca cylindrica 0.3 0.3 0.4 L multiccinis 1.3 0.2 0.2 Unidentified Rotifer Lecane lunaris 0.2 0.2 0.0 COPEPODA Calanoid copepods Diactomus sp. 10.6 0.9 1.1 4.1 1.4 0.0 5.1 Immatures 2.1 0.1 1.9 1.4 1.5 0.3 2.4 Cyclopold copepods Cyclops sp. 59.6 0.9 31.5 0.9 87.9 1.3 55.0 Mesocycloos so. 0.0 Immatures 16.5 0.6 18.3 0.8 18.7 0.7 27.9 Naupitus 177.3 2.8 177.0 12.4 46.7 0.6 128.6 CLADCCERA Bosmina sp. 45.0 3.7 31.8 9.9 6.5 0.2 49.1 Chydorus sp. ' Daphnia galcata O.2 0.2 0.9 0.2 0.4 D. culex _ O.9 0.2 0.3
& retrocurva 90.4 7.0 105.6 7.1 8.1 0.4 137.'8 Diachanosoms sp. '
O.O _Holopedium sp. O.3 0.3 0.2 Leptodora t<indtil O.3 0.3 0.2 Certocaonnia sp.
- PROTOZOA ,
Acineta sp. Amphilcotus sp.
- Difnupla sp. 96.7 46.1 25.2 3.9 3.7 0.5 C9.6 Orchryoderdeen sp. . Staurochrya so. -
- TOTAL 923.2 51.6 954.9 46.2 246.7 1.8 1131.8
- S.D. = Standard Deviation .
Data presented as rumur/ titer.
- v- ' ~ " * * ' * '"
. 8 S --
TABLE 8-2 ANALYSIS OF ZOOPLANKTON POPULATIONS , AT LOCUST ~ POINT -- AUGJST 22, 1974 y station 1 l- station a station s i station e Mean i s.o. l u.ean s.O. Mean I s.o. I Mean i s.o. ROTIFERA
- Asplanchna otroid! - - g pr todor ta 40.4 1.4 62.1 6.1 78.0 10.9 92.0 6.7 .
Brachionus ancularis 14.8 0.0 50.9 6.5 29.0 8.8 58.5 12.1 S. calyetflorus 1.4 1.4 B. havanaensts - 2.5 0.3 3.7 1.5 2.2 0.5
. B. (Platyles) catulus .g- urceolar-is
- Chrom caster ovalls .
Conochiloides sp. O.3 0.3 ! Filin!a terminalis 1.1 0.2 0.6 0.1 1.0 0.3 , Kellico'tta lon=tso'na Keratella cochtcaris 14.1 0.7 12.4 5.2 9.1 2.0 8.0 0.6 g cuadrata 6.7 0.0 0.4 0.0 0.6 0.6 1.5 0.2
- Notholca ceuamula Polyar-thra sp. 59.2 155.2 132.2 1.4 18.6 32.4 100.8 38.6
! Synchanta sp.
~
- Testudin211a sp.
Trichocerca cylindrica 4 T. multier ints 10.1 0.7 13.2 5.6 20.1 5.9 9.4 0.0 I Eldentified Rotifer- 3.8 1.1 6.9 2.0 2.3 -O.2 Lecane lunar is COPEPODA Calanoid copepods Diaotomus sp. 1.3 0.0 0.9 0.0 0.3 0.3 0.4 0.4 Imma ur es 2.0 0.7 0.4 0.0 0.3 0.3 0.4 0.4 Cyclopold copepods Cycloos sp. 31.6 2.0 15.0 2.5 9.7 0.1 26.7 1.2 Mesocycloos sp. . 1.3 0.0 0.8 0.8 0.2 0.2 1mmatures 6.1 0.7 6.3 0.0 10.8 3.4 11.7 0.3 Nauplius 27.0 2.1 50.4 1.1 63.9 2.6 52.9 5.9 CLADOCERA Bosmina sp. . 7.4 0.7 17.7 0.2 12.6 0.0 37.0 5.4
+ Chydorus sp.
Daphnia galeata g putex-g retrocurva 2.5 0.3 2.0 1.3 4.2- 1.8 Diaphanosoma so. O.2 0.2 Holopedium sp. O.2 0.2 Leptodor a kindtti Ceriedachnia sp. O.4 0.4 PROTOZOA '
' Actneta sp. -
Amphlicetus sp. Diffluota sp. 14.8 1.4 19.T 1.1 9.7 2.3 14.8 0.7 Orchryodendr en sp. Staurochryn sp. - TOTAL- 235.9 4.8 416.7 42.3 383.2 7.2 424.2 67.8 Sto. = Standard Daviation , Data presented as Lrvamber/ liter . ' o l _j
@7 TABLE 8-2 CO NT .
ANALYSIS OF ZOOPLANKTON POPULATIONS AT LOCUST ~ POINT - AUGUST 22, 1974 Tm station g I station 10 i S:c: ton 12 i statten 13 Mean t s.o. I Mean i s.o. Mean i s.o. t Mean I s.D. ROTIFERA Asolanchna giroidi
& pt-todonta 92.3 9.3 36.6 1.7 100.2 3.9 58.7 1.5 Brachionus angularis 60.8 7.0 13.6 1.3 39.0 3.8 51.8 8.4 B. calvciflorus & havanaensis 1.6 0.3 1.1 1.1 2.7 0.3 B. (Platvias) catulus
- B. urceolar is Chromogaster ovalis Conochiloides so. 3.0 3.0 Filinta terminalis 0.5 0.2 1.1 0.3 1.9 0.0 Kellicottia loncisoina Keratella cocntearts 10.7 2.8 13.6 1.3 12.6 0.6 *1 2.4 4.3
& cuadrata 1.4 0.0 6.5 0.3 0.3 0.3 Notholca scuamula Polyarthr a sp. 115.5 25.6 57.4 4.4 101.0 2.3 177.5 3.4 synchaeta sp.
Testudinella sp. Trichocer ca cylindr ica L multicr inis 7.1 1.2 G.O O.9 19.2 0.6 12.8 4.7 Unidentified Rotifer 1.6 0.5 1.3 1.3 2.6 0.3 2.9 0.0 Lecane lunaris COPEPODA
, Calanoid cepepods Diactomus sp.- O.2 0.2 1.3 0.0 1.0 0.0 Immatur es O.4 0.4 1.9 0.6 0.3 0.3 Cyclopold copepods Cyclops co. 23.4 1.4 27.1 2.5 10.9 1.5 13.1 3.1 Mesocycleos sp. O.3 0.3 1.0 0.5 Immatur es 12.2 0.3 5.2 1.5 8.2 1.2 6.5 0.3 1
i Naupilus 54.5 7.9 28.4 3.8 67.4 4.1 48.2 1.0 CLADOCERA Bosmina sp. 37.3 3.5 9.8 2.4 16.3 0.8 16.8 0.6 Chydorus sp. O.3 0.3 Daphnia caleata I
& cx.ilex !
g retrocurva 3.4 0.9 0.6 0.6 1.1 0.3 2.7 ' O.3 Diaphanosoma sp. , Holooedium so. Leotodor a kindtil Coriodachnia sp. PROTOZOA ' AcIneta sp. Amohltectus sp. Difflucia sp. 5.8 5.8 12.8 2.0 7.1 0.8 21.0 3.0 Cr ohr vodendron sp. Staur cohr ya sp. TOTAL 431.0 55.1 224.8 10.4 387.5 11.9 431.3 23.2 S . D . as Standar d Deviation a Data pr esented as number / liter . 1 I i
8B TABLE B-2 CC'NT ANALYSIS OF. ZOOPLANK'. ON FOPULATIONS
. AT . LOCUST POINT - AUGUST 22, 1974 T Station 14 i Station 18 Station 19 Mean a per Mean S.O. , Mean S.O. ,veanlS.D. Sta. Samolec ROTIFERA Asplanchna giroid! & pricconta 49.1 0.5 _19.3 0.3 1.8 0.3 57.3 Brachionus angularis 48.8 0.3 54.9 0.0 88.1 2.0 4S.4 B. calyctflorus 0.1 B. havanaensis 0.8 0.8 1.3 B. (Platylas) catulus * & urceolaris Chromogarter ovalls Conochiloides sp. O.3 Filinia terminalis 0.8 0.4 0.8 0.3 0.7 Kellicotia lonoisoina Keratella cochlearis 11.6 0.2 5.6 0.3 17.0 0.8 11.6 L Quadrata O.6 0.2 1.1 0.0 2.7 0.7 2.0 Notholca scuamula Polyarthra sp. 154.9 0.9 107.2 1.6 10.3 0.0 103.5 Synchseta sp.
l Testudin**la sp. Trichsecrea cylindrica L multicrints 16.9 0.6 11.6 0.0 11.8 Unidentified Rctifer 2.5 0.2 3.2 0.0 2.3 0.8 2.7 Lecane lunaris COPEPODA Calanoid copepods Olaotomus sp. 1.2 0.0 1.1 0.6 3.0 0.0 1.0 Immatures 0.8 0.0 1.1 0.6 0.3 0.3 0.7 Cyclopold copepods Cycloon sp. 12.5 0.0 9.8 0.3 22.7 3.5 18.4 Mesocycloos sp. 0.6 0.2 0.6 0.6 0.4 4 Immatures 5.2 0.1 13.5 0.3 17.0 2.2 9.3 Nauplius 48.3 0.2 59.2 1.1 28.0 0.0 48.1 CLADOCERA Bosmina sp. 17.1 0.0 12.4 1.3 3.0 0.0 17.0 Chydonas . sp . 0.0 Daohnia calcata 0.5 0.0 0.0 D. putex - Q retrocurva - 2.3 0.0 4.0 0.8 7.4 1.0 2.8 Otachanosoma sp. e 0.3 0.3 0.0 Holooedium sp. 0.8 0.3 0.1 Leptodora kindtil O.2 0.2 0.3 0.3 0.3 0.3 0.1 Ceriodachnia sp. - 0.0
~ PROTOZOA Acineta sp.
Amphitectus sp. Difflugia sp. 25.0 0.5 13.7 2.1 151.6 3.0 23.9 Orchryodendron sp.
~ StauroDhrv3 sp. -
TOTAL 398.0 1.9 319.8 7.2 356.6 5.2 3S4.5 S.O. = Standard Deviation ,
- Data presented as number /Ilter.
s
~ ..Aw.
89 TABLE B-3 ANALYSIS OF ZOOPLANKTON FOPULATIONS AT LOOUST ; POIN~ - SEPTEMBER 10,.1974 Station i l 5tatinn 3 Staeton e, state n q 7 Me.2n 1. . O . 6 ur 3 n m.O. l M aan 15.0. M an 5.0. TOTIFERA Aggenchru etiroiret
': A. peh donta 87.1 . 27.C 19.8 2.2 13.8 1.1 4.5 0.4 + - Gachinru:a arvnetarts 3.4 2.1 1.7 ~0.7 1.5 0.4 3.1 0.:
- u. catyeittorus 2.7 1.4 1.0 1.0 0.9 0.3 1.6 1.E
- E havamensis 2.0 0.7 0.5 0.5 0.3 0.0 0.2 0.2 ~.
B (Platysas) patulus 0.3 0.3 0.6 0.2 g ureeotsets Chromo 3 aster ovalls
- Conochttoides sp. 0.9 0.9 0.2 0.2 Euchtanis sp. 0.4 0.4 Fttints terminatts 0.7 0.7 0.6 0.0 0.4 0.4 Henarthea mira 0.7 0.7 0.3 0.3 0.2 0.:
Kettlcottia toraisoitu Keratella cochlearts 38.5 9.7 7.7 4.4 12.2 2.0 10.9 2.7 K. cuadrata 1.0 0.5 0.2 0.2 Lecane (Monostyla) butta b (Monostvta) tumets 0.7 0.7 NotNica s%amuta Pleosoma sp. Polyarthra sp. 411.2 122.2 193.3 27.3 230.1 2.3 102.4 5.4 Pomenotyx sulcata SyneNwee sp.
. Testudinetta so.
Trterocerca cyttndelca 0.7 0.7 0.5 0.0 1.2 0.0 T. muttterint s - 17.5 9.4 1.7 0.3 5.2 0.1 3.9 0.:: 5tdenttries Hotifee A 67.1 20.1 31.0 9.1 21.9 4.2 23.6 9. Untdentt*ted Rottrer 8 22.0 22.6 12.6 12.5 3.0 3.0 1.4 1.4 t (' COPEPOOA Catanoid copepods - Otantnmus sp. 0.7 0.7 0.5 0.0 0.4 0.4 Eurytemnes sp. Immatures 2.0 2.0 1.2 0.7 .1.5 0.9 1.0 0.2 Cyclocold copepods Cyclens sp. 4.0 3.7 1.7 1.7 0.9 0.3 1.5 1.5 MesocyeIws so. 0.3 0.3
*Tropacycloos peastnus Immatures 16.8 4.7 7.2 0.0 4.9 1.4 5.5 0.E Naupttus 1S1.0 42.7 68.1 10.7 63.1 16.0 41.3 2.0 Ct_ADOCERA Rosmina so. 33.5 14.7 20.0 6.2 22.9 4.2 17.0 3.
Certodachnf a so. 0.3 0.3 Chycorus sp. 2.7 1.4 4.5 'O.7 2.9 1.2 6.4 1.1 Onphnia calcata D. patex E reteneurva ~0.7 0.7 2.2 1.2 2.6 0.2 1.6 0.4 Diaonanosome so'. 2.0 2.0 1.0 1.0 0.6 0.0 0.4 0.C
' Hotopc<1ium sp. 1.7 1.7 1.2 1.2 Lectodora letretti 0.7 0.7 0.3 0.3 PROTOZOA Actneta sp. - Amphttectus so. - Ottflugta sp. 104.7 20.0 111.7 22.0 102.1 29.4 132.1 37.4 Orphryo+.ndron so.
Stavrocheva so. Voette. tta sp. Zootmmmum so. 0.7 0.7 0.3 0.0 0.6 0. E. - TOTAL 1018.3 209.1 487.7 131.3 .44.3 '52.0 3st.1 53.7
,. S.D. = Standard Deviatton -
A Data presented as riameer/titor. e
.mm ---
6 *
.ee w .
90 TABLE S-3 CONT. ANALYSIS OF ZOOFLANKTON POPULATIONS AT LOCUST POINT - SEPTEMBER 10, 1974
%tation 9 I '- tat i on to l Sta ten 12 i Fration 13 uran 5 . n . . .:.. n 3.0. v.,an s o. t mn s.o.
ROTIFCRA Asolanew gtroutt A. orto<tonta '2.1 0.9 85.7 10.3 24.7 9.3 24.0 3.9 54cnt.vvs annulaets - S7 0.9 2.3 0.8 1.9 0.0 2.1 0.5 L calyciflorun 0.7 0.7 3.7 0.7 1.3 1.3 0.6 0.6 g havaruensas 1.4 0.0 0.8 0.8 1.3 0.0 1.9 1.9
' O. (Platyuss) patulus O.G Q.6 0.8 0.8
- 8. ucceolarts Ehromo;sster ovalls 19.9 19.9 3.2 3.2 2.7 2.7 Corechitoides so. O.2 0.2 Euchtants so. 0.3 0.3 0.6 0.5 Filinta terminalis 0.3 0.3 He riceva mira O.2 0.2 0.3 0.3 0.3 0.3 Kctitcottia lon7:soina Karatetta cochlearts 11.5 0.7 73.1 18.4 23.5 7.4 17.1 8.7 K. cuse-ata 1.5 1.5 1.3 1.3 Lecane (Monostyla) butta i y (Monnstvta) tunarts Nothotca scuir%ta Pleosoms so.
Polyarthea sp. 88.8 13.2 330.0 55.1 355.3 102.7 205.7 19.8 Pomonotyx sulcata 4.8 4.8 4.2 4.2 sync %aet.e so. Testudies.tta so. Trterecerca cyttndrica 0.6 0.6 0.0 1.5 1.1 1.1 T rmttterints g 2.0 1.3 35.9 4.4 6.5 0.7 3.2 0.6 Unicentified Rottfer A 23.6 8.5 78.8 23.5 45.6 12.2 29.5 4.7 Unidenttfted Rotifee G 6.7 s.7 8.1 e.1 9.4 a.a COPEPOOA { Calatuid cocepods
- pt etomus so. 0.8 0.4 1.5 i.5 1.e 1.s 1.9 i.4 .?
Eurytemora so. 1.3 0.0 1.0 1.0 1.1 0.0 imma:ure s Cyclopold copepods Cyetcos so. 1.6 0.9 6.7 5.2 Mesecyetocs sp. 5.5 4.2 4.0 1.9 O.3 0.3
- Trocceyetoos orastrus Immatures 6.8 1.1 7.4 4.4 10.3 1.3 9.8 3.5 Naupttus 127.0 58.3 3.6 29.5 70.S 17.3 82.8 11.5
. CLADOCERA E3osmirw so. 11.4 3.1 10.4 4.5 11.9 8.0 29.0 7.4 Certodaohnia so. 1.5 1.5 Chydorus sp. 8.0 2.2 4.4 0.0 4.5 1.9 6.9 0.0 Daenata caleata 0.3 0.3 Da suten & retrocurva 1.2 0.2 4.2 0.3 4.8 1.6 Dtaoninosoms sp. 0.7 0.3 1.5 0.0 1.3 1.3 0.3 0.3 Hotooemum so. 1.3 1.3 0.8 0.8 0.3 0.3 Leotorfors kiretti O.4 0.4 0.6 0.6 PROTOZOA Actrwta sp.
Amonitectus sp. Otrrtugta so. 98.7 6.3 158.7 33.1 105.8 18.8 93.3 22.5 Oronryodendrers so.
- Stauroone ys sp.
Vortteella sp. Zootnimnium sp. 0.7 0.7 0.3 0.3 0.0 0.8 TOTAL. 3.t3.7 30.5 Ge2.3 Pos.o. e34.4 v7n.O $52.0 i e,5.0 S.O. = Stancaro Deviatton Data presented as rurroer/ttter. 1
91 TABLE B-3 CO NT . ANALYSIS OF ZOOPLANKTON POPULATIONS
- AT LOCUST POINT - SEPTEMSER 10, 1974 Station S .t s tar.cn in i sutten m Mean a Fe i I"'- vean 5 .t ), vean -.0, i rs.an is.o. : Sta. Sar-sto:l PUT!FliRA Amof anchm ticoldt A. pr ta k>nt. 32.8 1.3 20.6 4.5 3.1 1.3 29.8 EracNncm amulacts 5.5 1.5 2.1 1.4 3.4 0.2 3.1 & calyentnrus 3.3 3.3 1.1 1.1 0.4 0.4 1.5 $ havanaernsin 1.2 0.4 1.1 0.4 0.4 0.4 1.0 g (Platysas) catulus 0.4 0.4 0.2 e B. ucceolaats Chromo,astee ovalls 2.3 Connemitatoes so. 0.4 0.4 0.2 EucNants so. 0.2 0.2 0.1 .
Fttints teemtnalis 0.4 0.4 0.5 0.6 ' O.3 Hexactnea mica 0.2 0.2 2.7 2.7 0.4 Kalltcetti.1 lomiscina l 5 Keratella cocnlearts 10.7 4.5 21.0 4.2 11.2 0.8 21.6 l
$ cuadrata 0.4 0.4 0.9 0.5 0.5 Lccane (Monostvla) bulla b (Mnnostyla) tunacts f 01 Nothotes scuamuta Pleoema sp.
Polysethes so. 145.3 0.5 115.7 38.1 55,8 5.4 215.0-Pomemntyx sulcata 3.0 3.0 1.1 Synek. eta so. Testuoiretta so. Teterr>cerca cyltnrfetea 1.1 1.1 0.7 1 T multicetnt a s 3.1 0.6 9.3 3.3 0.9 0.5 8.2 Unicentified Rottfee A 37.5 19.9 A.6 1.7 36.9 7.0 39.1 Un(dentified Rutifer* O 6.2 0.2 15.5 15.5 4.2 4.2 7.9 { CCnCl"CDA Catanoid copepods i Otartornus so. 0.0 0.6 0.4 0.4 1.1 0.7 0.9 g Eurytemera sr.
;
immatures 1.7 0.5 2.1 0.8 1.3 0.9 1.3 .
' Cyclepoid copepods -
Cycteos sp. 2.1 1.7 6.3 0.3 1.1 0.0 3.2 Mesoevetoos so. 0.2 0.2 0.1 7 repocycloos prasinus Immatures 5.5 0.2 7.3 2.9 7.2 0.7 8.1 Naupitus 25.3 13.9 61.4 3.7 40.7 0.7 78.8 CtADOCERA Dosmina sp. 19.1 2.7 23.7 2.2 10.1 0.7 19.0 CertodsoMia so. O.2 Cnyeorus sp. 0.2 1.7 3.0 3.0 2.9 1.1 4.8 Daonnia osteara 0.2 0.2 0.0 g patew , D; cetrocueva 3.5 0.6 2.0 2.0 1.8 1.0 2.2 Diapmeosom.e sp. 1.2 1.2 0.8 0.8 5.6 5.6 1.4 holocert:vm so. 0.7 0.7 7.5 7.5 1.2 Leptocyto kendtli 0.2 0.2 0.4 0.4 0.2 PROTOZOA
, Actneta so.
Amonitaccus no. Ottflu,6 s so. 79.3 6.3 98.2 4.3 8.8 3.4 99.3 Ocomeyedendron so.
. Staurcoreva sp.
Voetteella so. Zoouumntum so. 0.4 0.4 0.4 0.4 0.4 0.4 0.4
~ + ' TOTAL 402.7 58.5 549.5 4.8 213.1 26.0 SHl. 3 S.O. = Standard Deviation Data presented as rumeee/ttter..
r O m ---s
--,T-.* ,
- _m. e 92.
TABLE B .
- ANALYSIS OF ZOOPLANKTON ' POPULATIONS m,- AT LOCUST POINT - OCTOBER 9, 1974 l
e , Station I station 3 6 it .tton a Station a ucan s.o.t uran .o. ri an s.a. u .an 6s.o. ROTIFt,RA Agolanchen alteotett .
. A. peh<tonta 1.5 1.5 3.6 0.9 3.8 1.S 2.3 0.t ticaentotuu annut.irts 2.2 2.2 0.9 0.0 1. 7- 0.5 1.8 0.5 g calycinorus 11.1 5.7 7.8 1.8 9.4 0.3 9.7 2.E Rg hav armansis - 0.3 0.0 , D. (Ptstysas; patutus
- 1. E ucceotacts 0.4 0.4 Chromo 3astce ovalis -
Conochitoides sp. 4.S 3.0 4.7 ' 4.7 8.0 1.1 8.8 4.5
- Eucntants so.
Filanta terminatts - 0.2 0.2 0.7 0.7 +
- Howartmes mien - 0.2 0.2 - Kettteottia tonetsottu -
Keratetta cocnteseis 16.3 3.0 10.7 3.1 10.8 6.5 7.7 1.2 g quadrats 0.8 0.8 1.4 0.5 0.7 0.7 1.1 0.2 t.ecane (Monostyla) butta b (Monostyla) tunacts NotN3tca scuarnula Pteosoma sp. 2.2 2.2 0.5 0.5 Polyarthra so. 76.8 . 3.1 19.5 3.0 44.6 14.4 41.2 1.4 PomohotyW SulCata Synchwte so. 0.7 0.7 __Testudinetta so.
- Tetchocerca cylindetea 0.2 0.2 q T muttterint s a 0.8 0.8 Uniderttrie Rottfer A 2.2 2.2 ; ., Uniderstried Rottfee B >
I e COPEPOOA Catanoid copepods
- Olaptomus so. 3.7 0.8 0.5 0.5 0.7 0.7 0.9 0.9
- . Eurytercora sp.
Immatures 4.5 4.5 6.0 3.3 2.6 1.2 S.O 0.8 Cyct:spold copepods i Cyclor>3 sp. 3.7 0.8 0.9 0.9 0.7 0.0 1.2 0.3 MesocycInom so. 0.3 0.3 ~ Trooncvelops peastros Immatures - S.2 2.2 3.6 2.7 12.5 0.3 S.6 S.1 Naupttus - 113.7 0.1 $3.5 2.9 $7.7 5.4 64.1 8.7 CLADOCERA < Bosmina sp. 70.8 7.5 56.7 0.3 62.4 28.0 54.4 4.4 , Ceriodachnia so. 0.8 0.8 Chydorus sp. 11.1 0.8 9.9 2.3 20.5 0.8 13.4 0.9 Dachnia cat =ata - , ,02 putem ~
& retrocurva ; 0.3 0.3
. Otaorunosoma so. 0.3 0.3 0.2 0.2 ] Holopedium so. - 0.'8 0.8 Leptodora kindtlt
~ PROTOZOA. - Actneta so.
Armenelaotus so. , Ottflucta sp. 57.6 '4.5 32.9 13.2 48.4 12.5 39.1 10.9 ;. 3
- Orpnew*nrfenn so.
Staurcoery3 sp. Vortteetta so. - ' O.8 0.8 0.2 0.2 0.3 0.3 1
. Zoottvirentum so. 3.7 3.7 0.7 0.7 1.1 1.1
, TOTAL 334.0 9.0 211.5 30.3 2as.t 7M 2ssa Ma S.O. = Standard Ocviatton
-Data peesented as ciurnber/ liter.
J. c
)
1
. i e 7-j _ ,- , . . --
v w y ,
- 9 w -+ e -
~'*-**~*~** * - " * * * " * "
93 TABLE B-4 CONT. ANALYSIS OF ZOOPLANKTON POPU' ATIONS m ~ AT LOCUST POINT - OCTOBER 9, 1974 !, t Stati n9 i F tation to 1 9 t.iti .m 12 6 Stseton 13 A u,an .o. i v,an y .o. : vran c.o. .w an s.o. ROTIFCRA AglancM) nt enirf t g pete. santa 2.2 1.1 1.6 1.6 2.3 1.3 2.1 0.5 I tenentnnu a annut. orts 1.5 0.0 4.2 0.5 1.2 0.8 2.4 1.4 y calycitlorus 13.4 5.7 7.4 1.9 4.2 0.2 11.5 4.9
,0. havarnensis o.g o.9
- 8. (Ptatytas) patulus B. urceotarts Chrormpster ovalls Corv>chitoictes sp. 4.7 2.5 7.9 3.2 8.3 8.3 6.0 5.3 Euchlants so. O.2 0.2 Filinta termirutis 0.2 0.2 0.5 0.0 1.1 1.1 Hexactiv a mira 0.3 0.3 0.3 0.3 Kotticottia lon7tsovru Keratetta cocnt.* arts 9.1 1.7 13.1 5.3 8.6 0.5 9.5 3.0
$ quadrata 0.9 0.2 0.5 0.5 2.5 2.0 Lecan<! (Morostyla) butta b (Monostvt i) tunaris Notholca squarnuta Pteosoma sp. . O.4 0.4 Polyartva sp. 34.0 2.3 44.7 9.7 23.5 0.7 45.7 8.5 Pomoholy= sulcata
- Syncrueta sp.
Testudinatta so. Trterocarca cylindelea O.2 0.2 0.9 0.9 1.2 1.2 T g multicrant s Unidenttried Rotifer
- A O.2 0.2 0.3 0.3 Unidentifiad Rottfee 8 k
COPCPOOA Catanoto copepods Diaotomus sp. 1.0 0.6 1.2 0.3 0.8 0.8 Eurvtemera sp. Immatures 6.6 0.0 3.3 1.5 7.1 4.4 5.7 2.6 Cyclopold cepepods Cyetoo s 50. 1.1 0.0 1.6 1.6 1.8 0.4 1.0 0.6
.Mesocycloos sp. O.3 0.3 Tronocycloos crastrus Immatures 7.9 0.8 1.9 1.9 7.8 6.9 7.7 7.7 Naupttus ** . 4 4.8 72.5 0.5 46.5 3.2 61.9 12.5 CLADOCERA fiosmina sp. 42.8 10.0 77.2 5.7 55.7 1.9 62.0 2.4
- Certattehnia sp.
Ctyforvs so. 14.6 0.6 16.7 2.0 10.5 2.4 13.9 3.7 Onomati; gatenta g notem . g retencurva 0.2 0.2 0.3 0.3 0.3 0.3 Otac+unosorra sp. 1.0 1.0 0.6 0.6 Holocadium sp. Lep*odora k!rwitil PROTOZOA Actr+ta sp.
~
Amonit=oeus sp. Otfttuata so. 34.4 4.5 83.8 43.4 26.8 8.4 44.1 17.1 Oromevodendron sp. Stauenomeva sp. Vortteett i so. O.4 0.4 1.9 1.9 0.7 0.7 0.8 0.8 2oothamnium so. O.4 0.4 0.9 0.9 0.3 0.3 0.8 0.8 TOTAL ??8.3 33.6 375.3 9.6 204.9 31.5 202.0 74.3 S.D. = Standard Deviation
\ Data presented as tumber/llter.
j 4 y
)s I ._, _ m- 7r -. , , ,
94 TABLE 8-4 CONT. ANALYSIS OF ' ZOOPLANKTON POPULATIONS m AT LOCUST POINT - OCTOSER 9, 1974 a station 14 4 5tation 155 6 weatten 19 lMean e per Tm Mean s .o. ! u -an 5.0. . vean 3.0. Mts. 9 mmot ed ROTifrCR A Ae.ntane*vw niente1t A 5.7 1.9 5.5 0.8 3.8 1.2 3.1
@.nenimm priorsorita annularis 2.1 0.0 3.2 3.2 1.6 0.2 2.2
- 15. calycinorus 9.7 4.6 6.2 0.8 14.6 0.2 9.5 li" havamensis 0.1 E
[ u(Pterytas) rceotaris patutus 0.0 Cncomogastee ovatts Conochitoides so. 8.4 7.6 S.1 5.1 0.4 0.4 5.8 Euchtanis so. 0.0 Fillnia termtruits O.4 0.4 0.2 0.2 0.3 Hexarthra mira 0.4 0.4 0.1 Kellicettia termsoina Keratetta cochlesis 13.1 3.8 12.5 8.6 24.5 7.4 12.4 L ouadrata 0.4 0.4 0.4 0.4 2.3 1.2 1.0 Lecane (Monoseyta) t>ulla 0.4 0.4 0.0 L (Morestyta) tunaris Nothotca swamuta Pteosoma sp. . O.4 0.4 0.3 Polyaett ea sp. 31.8 4.8 35.3 6.6 10.5 0.6 37.1 Pompnoivx suteata Synemeta so. O.1 Testudinetta so. Trtetweerea evlindefea O.2 0.2 0.2 L muttlertat9 0.1 Unidentified eitottfer* A O.4 0.4 0.3 Unidentified Rottrer n i CortiPOOA Calanoid copepods Otactnmus so. 0.9 0.5 1.2 0.4 1.0 Eurytomora sp. Immatures 2.8 0.7 2.8 1.2 4.2 CWlopold copepods Cyclops sp. 1.7 0.9 0.4 0.4 0.2 0.2 1.4
. Mesocycleos so.
O.1 Trnmeyetoes prastrus Immatures 6.4 5.1 12.8 3.5 0.6 0.6 6.5 Naupttu s 63.1 9.5 63.7 14.7 3.0 0.0 $9.3 CLADOCERA Rosmtna sp. 60.3 4.2 50.1 5.8 5.0 1.5 54.3 Certodaohnia sp. Chydorus sp. 10.4 0.7 12.1 5.1 7.9 2.1 12.8 gonnia gateata g gutex g retrocurva 0.1 Otaonanoserm so. O.4 0.4 0.2 0.2 0.2 Holowum so. Leptocines kinctit PROTOZOA a Acineta so. Amontlectus 80. Otrnuota sp. 27.0 3.4 55.1 26.4 15.4 2.1 42.2 Orpnevedancfren sp. Stauroot eva so. vorticetta sp. O.4 0.4 1.1 1.1 0.6 Zoottummtum so. O.2 0.2 0.8 0.8 0.4 0.4 0.8 TOTAL 944.9 d1.3 ??O.1 71.1 02.3 11.4 2*S 9
, S.D. = Standard Deviatton Data presented as rumber/ liter. .9 F .^
. 95 .
, TABLE B-5 ANA' YSIS OF ZOOFLANKTON POPULATIONS . , AT LOCUST POINT - NOVEMBER 7, 1974 Station 1 9t3 tion 3 i Station 6 1 $ratt3a 8 venn s.o. uran .o. i u an ,s.o. ' u..an s.o. ROTIFCRA Anotanchna cienarti A. retunnta 0.5 0.5 3.2 0.7 3.4 0.5 1.5 0.2
@achinnus annularis 1.0 1.0 3.0 3.0 E & catyeittoms 22.2 7.4 26.8 1.2 22.3 0.8 35.9 4.6
- 8. havanaensis .
[ (P!arytas) catulus B. ucccolaris Chrmmoosster evalts 2.0 2.0 Conochiloides so. 5.9 2.0 2.2 1.7 2.7 0.8 3.0 2.5 Euchtants so. 0.3 0.3 Filinta terminalis HeEJPtMPa fMtPa Kellteottia terv31sotna 0.3 0.3 Keratetta coentaarts - 93.2 29.2 S2.2 20.9 92.1 23.4 103.1 17.2 Kg o m drata 10.3 1.6 10.4 5.0 12.4 0.5 4.0 0.4 Lecano (Monostyla) bulla h (Monostyls) tunarts Notholea scuamula Pteosoma sp. Polyartnes sp. 36.6 1.9 30.5 2.0 23.2 1.6 29.4 3.7 Pomonolvx sulcata Syncruete so. 0.5 0.5 Testudinalla so. Tricroceeca ey1Lndetca L muttterents Unidenttf ted Rotifer A 38.3 0.9 28.5 4.4 49.0 19.9 14.5 0.3
- Unidentttted Actifer O
( COPEPOOA Calanoid copepods Otsetomus so. 1.0 1.0 0.3 0.3 0.3 0.3 0.8 0.3 Eurytemoen sp. Immanares 1.3 1.3 0.3 0.3 0.7 0.2 Cyclopold copepods Cycleos sp. 0.5 0.5 0.3 0.3 1.0 0.5 1.8 0.9 Mennevelops so. 0.3 0.3 Tronocycloos peastrus 0.3 0.3 0.5 0.5 Immatures 5.5 1.0 3.0 2.0 3.4 1.4 6.8 1.3 Nauptius 8.2 1.3 15.3 3.5 17.3 1.8 13.5 3.1 Ct_ADOCERA Bosmine so. 7.7 1.8 8.6 1.7 4.6 1.3 6.4 0.4 Ceriodsonnia sp. Chydorus so. 14.0 6.1 8.6 1.2 4.6 0.8 19.8 6.7 Dacnnia Saleata Q pulen g retrocurva Otaohanosome sp. Holooedium so. Lectodor a kirv:ttl PROTOZOA Actneta sp. AmoNiectus sp. Otrrtuqta so. 23.6 13.7 19.2 4.4 8.7 0.1 13.6 4.8 Oconevodendeen so.
- Stavroorv=ya so. - Vortic.?tia so. 0.9 0.9 0.5 0.5 0.5 0.5 0.3 0.3 s - Zootharnetum so. 0.5 0.5 0.3 0.3 1.1 1.1 TOTAt. 265.7 65.9 253.3 27.9 2.t s .1 45.8 256.2 35.3 S.D. = Standard Deviation .
Data presented as rumber/Itter. , o
. . . , , . . , . _ ,_ + . _ ,y,__.,.,, ., , ,
_;; 1. - - 95 TABLE , B-5 CONT. . . ANALYSIS OF. ZOOPLANKTON POPULATIONS
% .- AT LOCUST POINT - NOVEMSER 7,- 1974 T^x^ wtatien a t crat:en to i 1-raeten t s i m eien 13 uran s . o . . r. .. n w.o. u .in v.o. u=an is.o.
ROTIFERA - 4 , A*.planetwu qienhil
- g rientirennta _
2.5 0.8 1.7 1.7 1.7 1.0 2.4 0.8 i trace acwws .m .t.tets . 0.8 0.8 g eatyciflon s 37.9 6.2 33.4 9.5 24.8 3.4 24.6 1.7 g havaruensis g (Platylas) patutus g urecolaris Chromogaster ovatis Conochiloides sp. 2.4 1.3 0.8 0.8 1.4 0.7 1.8 0.3 Cuchtant s so. Filanta termtrutts t.O O.5 0.3 0.3 Hexartrv'a mnea Kollicottta lonPs:Hn3 0.6 0.6 Kerat. ita cochlearts 138.8 39.2 70.5 ' , 4.7 83.9 29.5 81.0 9.7 K. quadrata 8.5 2.7 14.9 5.3 3.1 0.4 11.S 1.1 , Lecane (Monostyla) bulla { g (Monnstvis) tunsets Nothoten scuarresta Pleosoma sp. Polyartnre sp. 44.5 1.4 35.8 11.8 35.6 4.4 31.5 4.1 Pomorelvu Sulcata Synchaeta us. Tes*udinalis sp. , Tetehocerca cyttadeica L rnuttterints Unicentifica Rottfer A - 29.0 10.5 43.6 9.5 17.1 5.0 42.4 24.1 4 Unidentiff =d Rotifee 8 ( COPEPODA-Calanoid copepods Dlactomus sp. [ 0.6 0.6 1.4 1.4 0.3 0.3 . Eurytemora sp. O.4 0.4 .
. Immatures 3.2 2.1 0.8 0.8 0.7 0.0 0.3 0.3 Cyclopold copepods Cycloos sp. 2.2 1.1 1.2 1.2 3.4 2.1 0.8 0.8 Mesocyclops so. . Trococycloos prastrus O.4 0.4 Immatures 8.7 4.3 4.1 ,1.8 4.4 1.7 2.4 1.4 Naupllus ~ 15.3 5.7 10.4 5.9 15.8 1.4 13.8 4.1 Ct.ADOCERA Dosmina sp. 19.2 5.2 3.7 0.8 6.1 0.7 4.6 2.5 .
Certodschnta so. Chyderus sp. 35.4 1S.9 17.0 14.4 1.7 2.2 6.7 0.1 Daphnta c_ ateata g putew g retrocurva-Otachaeosoma sp. Hotopocium so, t.eptocors kinetett ' PROTOZOA-Actneta so. Arnomaleotus sp.
* - Otfflu?ta so. 21.4 4.4 23.4 .7.5 te.1 5.4 11.4 3.0 Orphryod+ndron so.
Stauron w a sp.
^ Vorttec tta so. O.4 0.4 -0.8 0.8 0.4 0.4 0.8 0.8 l Zoothananium so. 1.5 1.5
_TOTAt. 372.4 41.1b85.4 3 3 . 85 234.2 32.0 237.0 29.4
, S.D. = Standard Deviation Data presented as rsemeer/ttter.
o
. ese ..4 e. 'e i.m .m ,m a - - --k - * - ~ - * - -
97 TABLE S-5 CO NT . ANALYSIS OF ZOOPLANKTON POPULATIONS AT LOCUST POINT - NOVEMSER 7, 1974 i Station 14 i C tation t il i Stitton 14 j p.wan a per* NA ' u an s.D. .-an 3.o. Me ta W . o. kea . e et.e ROT [FCRA Asolanchrw qtroidt A. petm1ont a 1.6 0.8 2.0 0.8 3.5 2.2 Maentorus amularis 6.0 1.1 g calyctnorus 27.9 4.4 31.2 3.1 14.8 27.4 B. havanaenos ( (Platytas) ortulus B. ucceolaris Eromoqaster ovalls 0.0 Corwehttotees sp. 1.8 0.6 3.5 0.7 1.s 2.5 Euchtanis sp. 0.0 Fittnia termtrutts 0.1 Hcuarthra mira Kelticottta lon7tsoitu 0.1 Karatetta cocrtaarts G3.1 10.2 58.1 3.3 86.2 90.2 K. q;adrata 9.8 0.6 S.1 3.3 10.8 9.3 Ucane (Monostyla) butta b (Monostvia) tunarts Nottelca scuamula Pleosorna sp. Potverthra sp. 36.9 G.0 36.1 5.5 22.3 33.1 Pompnoivx sulcata Synchaeta sp. 0.4 0.1 Testudineita so. Tetervcerea cyttndesca T. rruttterints Untdenttrted Rottfer A 20.4 0.4 17.1 5.9 2.8 27.5 Unidentified Actifer* O ( COPEPOOA Catanotd cocepods Dtantorrus so. 0.6 0.6 1.7 1.1 0.6
- 0.0
, Eurvamora so.
immatures 0.8 0.6 3.0 2.3 1.0 Cyclopold copepods Cyetoos sp. 0.8 0.4 3.0 1.2 1.2 1.5
' Mesocycloos sp. 0.2 0.2 0.0 Trerneyetoos prastrus 0.2 0.2 0.1 Immatures 2.2 1.0 0.5 5.7 8.8 5.3 Nauplius G.8 0.6 17.4 3.3 27.5 15.0 Ct.ADOCCRA Bosmina sp. 10.5 4.5 9.1 2.1 1.2 7.4 Ceriodaphnis sp.
Chycorus sp. 11.8 9.4 11.5 2.7 22.7 15.1 Dachnta galeata g putes g retrocurva Diannanosoms sp. Holooedium so. Le:<ocorn winetti PROTOZOA Actneta so. Amphaeoeus sp. DLfnuota sp. 17.0 2.3 16.6 1.8 1.2 15.8
- Orphryodendron so.
Stauronhrya sp. v ortteetta 30. 0.2 0.2 0.3 0.3 0.5 Zoottumntum sp. 1.2 1.2 0.4 x TOTAL 244.8 a3.7 F)9.0 18.1 211.9 S*s 6 S.O. = Standaro Devtation Oata presented as rumocr/ttter. One sample was costroyed o e
.~ = . ~ . , , ,
7 95) i s I s i APPENDIX C BENTHOS POPULATIONS AT LOCUST POINT JULY - NOVEMBER, 1974 h a N O h t i
~~ ~~'
99 TABLE - C-1 CONT. - ANALYSIS On- BENTHOS POPULATIONS - m
, AT LOCUST POINT - JUL'Y 17, 1974 Tm L sta:ien 1 ) statten 2 i S:ation 3 I statien 4 Mean i s.o. I Mean i s.o. MeanIs.o. Mean is.o.
COELENTERATA Hydra sp. (budd!ng polyp)
' tydra sp. '(single polyp)
NEMATODEA
- ANNELIDA Hirudinea Helobdalla elencata g staOnalis Oligochaeta (unidenttfled) 261.0 105.2 63.7 55.1 Immatures (hair setae) 6.4 11.0 S.4 11.0 6.4 11.C Immatures (no. hair setae) 31.6 29.2 31.8 22.1 3475.2 1051.5 1542.6 655.5 Branchyura sowert,y! 101.9 83.1 25.5 29.2 Limnodritus cervix 31.8 55.1 4
h clacaredaanus 12.7 11.0 50.9 58.4 h claoaredaanus-cer vix L. hoffmeistort h maumeensis b udekemianus Potamothrix moldaviensis
& vejdovskyt Stylaria sp.
ARTHROPODA Cladocera Leptodora kindtti 82.8 73.3
. 30.2 50.5 12.7 22.0 63.7 77.2 g
Amphipoda Gammar us fascia *us 6.4 11.C 12.7 11.C Hyatella azteca Occopoda Orconectes sp.
. Chironomidae Chironomus (chirenomus) sp. 108.2 127.2 25.5 29.2 Chironomus pupa Coelotanypus sp.
Cryptochironcmuc sp. 44,6 22,1 Polypedilum sp. 12.7 22.0 i Procladius sp. 25.5 11.0 12.7 22.0 Procladius pupa Pseudechtronomus sp. ! Tanypodinae pupa 1 i Tanytarsus sp. 337.4 173.3 25.5 22.C Tanytarsus pupa
, . Ephemeroptera Caents sp. {
6.4 11.0 . l Trichoptera Hydropsychidae { MOLLUSCA Gastropoda Bullmus sp. Pelecypeda Amblema pitcata SpNterium sp. 6.4 11.0 12.7 11.C Station Total 127.3 79.5 76.c 33.1 3184.7 2585.6 1910.0 607.0 S.D. = Standard Deviation. . Data presen.ad as number /m'. e . .. . -
100 - TABLE C-1 CONT. 4 ANALYSIS OF EENTHOS POPULATIONS AT LOCUST POINT - JULY 17, 1974 7% statton 5 i station e i statten 7 I station s I Mean ! s.o. l Mean ' s.o. t teaan ! s.o. I t. san i s.o. COELENTERATA
' Hydra sp. (budding polyp)
Hydra sp. (single polyp) NEMATODEA ANNELIDA ~ Hirudinea Helobdella elongata g stagnalis Oligochaeta (unidentified) 6.4 11.c Immatures (hair setas) 44.6 77.2 Immatures (no hair setae) 114.6 166.5 108.3 29.2 101.9 96.1 108.2 187.5 Branchyura sowerbvi 6.4 11.C Limnodritus cervix b clacaredearus 12.7 22.'O h c'acaredear.us-cervix h hoffmeistert h maumeensis y udekemianus Potamothrix moldaviensis 12.7 22.0
& veJdovskyi Stylaria sp.
ARTHROPOOA Cladocera Leptodora kindtti 11.C e.4 11.o 25.5 127.3 127.2 171.9 2G7.8 Amphipoda Gammarus fasciatus 12.7 22.0 38.2 38.2 l@alella azteca 12.7 22.0 Decopoda Orconectes sp. Chironomidae Chironomus (chironemus) sp. 6.4 11.0 6.4 11.0 38.2 60.2 Chironomus pupa Coelotanypus sp. Cryptochironemus sp. Polypedilum sp. Procladius sp. 19.1 19.1 Procladius pupa 6.4 11.0 Pseudochirroomus sp.
- Tanypodinae pupa .
Tanytarsus sp. 6.4 11.0 6.4 11.0 38.2 38.2 Tanytarsus pupa Ephemeroptera Caenis sp. . Trichoptera Hydropsychidae MOLLUSCA Gastropoda Bultmus sp. Pelecypoca Amblema pitcata Schnerium sp. 25.5 11.0
' Station Total 127.3 159.0 204*. c 39.E 2S7.4 262.6 458.4 681.5 S.D. = Standard Deviatten.
Data presented as number /m'.
~ . =n
101 TAGLE C-1 CONT. ANALYSIS OF BENTHOS PCFULATIONS
. AT LOCUST POINT - JULY 17, 1974 TN I station 9 Station to l - Station 11 1 Statien 12 ManniS.O. Mean 5.0. MeaniS.O. Maan iS.O.
COELENTERATA Hydra sp. (budding polyp) Hydra sp. (single polyp) NEMATODEA .- ANNELIDA Hirvdinea Helobdella elongata H. stagnalis Ol5ochaeta (unidantified) 25.5 29.2 ' ' Immatures (hair setae) 19.1 33.1 Immatures (no hair setae) 742.6 460.1 6.4 11.0 305.6 418.9 407.5 350.3
- Branchvur a sowerbyl
' Limnodritus cervix h claparedeanus 38.2 66.1 y clacareceanus-cervix 25.5 44.1 6.4 11.0 ~
L. hoffmaisteri h maumeensis 6.4 11.0 L. udekemianus Potamothr tx moldaviensis 12.7 11.0
- B vejdovskyi
_Stylarin sp. . ARTHROPODA Cladocera Leptodora kindtil 617.6 177.5 44.6 33.0 25.5 44.1 Amphipoda - Gammarus fasciatus 70.0 Hyalella azteca 29.2 114.6 95.5 Decopoda Or-conectes sp. - Chir onomidae - Chir onomus (chironomus) sp. 6.4 11.0 19.1 33.1 Chironomus pupa Coelotanvous sp. Cryptochironomus sp.
' Polypedilum sp.
Procladius sp. 25.5 11.C . Procladius pupa Pseudochironomus sp. -
. Tanypodinae pupa '
- Tanvtarsus sp. 6.4 11.0
- 12.7 22.1 '12.7 22.1 Tanytarsus pupa Ephemeroptera Caents sp ' *
. Trichoptera 12.7 22.1 , Hydt opsychidae MOLLUSCA ~ Gastropoda Bullmus 'sp. . Pelecypoda : . ,
Amblema plicata Sphaerium sp. _ Station Total 1769.9 354.9 50.9 44.1 471.1 539.0 458.0 496.T S.D. as Standard Deviation. ' Data presented as number /md . mo-w "d'~ ~ S'" "
102
, TABLE C-1 CONT.
c. ANALYSIS O' i- ' BENTHOS POPULATIONS AT LOCUST POINT - JULY 17, 1971 74g Station 13 Station 14 Station 15 i Statten 15 ' Mean S.D. Mean i S.D. Mean i S.O. Mean i S.O. COELENTERATA Hydra sp. (budding polyp) Hydt a sp. (atngle pcho) NEMATCOEA
- ANNELIDA .
titrudinea Helobdella elongata H. stagnalis OlEochaeta (unidentifled) 12.7 22.1 31.8 55.1 Immatures (1 air setae) 6.4' 11.C Immatures (no hatr setae)' 789.5 278.0 2355.7 1218.4 872.2 1081.4 700.3 359.0 Branchvues sewerbyl 12.7 11.0 12.7 22.0 Limnodrilus cervix 12.7 11.0 57.3 83.3 25.8 43.8 h cleoaredear9us 95.5 57.3 44.6 77.2 h 21aomredaarius-cervix
- 6.4 11.0
,1. hoffmeistart -
- 1. maumaensis L. udekemtarus Potamothrix moldsv(ensis 6.4 11.0 12.7 11.0 0.4 11.0 229.2 76.4
& veldovskyt Stylaria sp.
ARTHROPOOA Cladocora '
. Leptedera kindtti 146.4 29.2 152.8 50.5 241.9 61.4 191.0 19.1 Amphipoda Gamriurus fasciatus
_Hyaletta azteca Decopoda Orconsetes so. Chironomidas Chir-onomus (chir onomus) sp. 25.5 ~ 22.0 12.7 22.1 Chironomus pupa 159.1 77.1 Coelotany us sp. _Cryptochiror.omus sp. 6.4 11.0 Polypedilum sp.
- Procladius sp.- 12.7 11.0 12.7 22.1
,Procladius pupa Pseudochtr onomus sp.
6.37 11.0 Tanypod: nae pupa Tanytarcus sp. 31.8 22.0 28S.5 166.5 216.5 242.4 Tanytarsus pupa - Ephemeropter a Caents sp. . Trichoptera ISdropsychidae MOLLUSCA-
- Gastropoda Bullmus sp.
Pelecypoda -
- Amblema plicata l Sphaertum so. '
J Station Total - 6.37 11.0 986.8 267.e 3017.t 1522 d 14s4.3 1569.71202.4 495.0 , S.D. = Standard Deviation. . Data presented as number /m'. . 4
, % e %g'he 9 6 +4N-' -m- " # '"'# '
103. TABLE C-1 CONT. ANALYSIS OF BENTHOS POPULATIONS
.- AT LOCUST POINT - JULY 17, 1974 TM c Statten 17 i Station is l Station 19 l Staticn 20 Mean S.D. l Mean i S.D. L teeaniS.O. Mean S.D. ~COELENTc7ATA Hydra sp. (tudding polyp) . Hydra - so. (singts polyp)
NEMATCOEA ANNELIDA Hirudinem Helo5della elengata
, & stage.alis Oligochanta (unidenttried)
Immatures (Pate setae) Immatures (ro hate setae) 63.6 61.4 1216.0 800.9 6.3 . 1.0 Branchyura sewerovt Limnodettus cav.x Q ctacarades.ms y clacareceams-cervix . b hoffmets eri b maumesnsis b udekemtatus Potamethr'.x meldaviensts 44.5 61.4 140.0 39.7 *
-L veJdovskvt
_Stytarta so. . ARTHROPOOA Cladocora _Leptodora 4tndtil 401.1
. 95.5 38.2 206.0 133.7 114.6 Amphipoca Gammarus fasclas;s Hyalella a: eca Dacopoda . O
_ rconectes so. Chironomidas ' Chironomus (chtronomus) sp. 133.7 199.4 12.7 22.0 Chironomus pu;:a Coelotany us so. Cryptochironor us sp. Polypacitum so. Procladius sp. ,
,Procladius pu;::a.
Pseudochiron:mus sp.
- Tanypodinae pu;. - '
Ta'nytarsus sp. 12.7 22.0 Tanytarsus pupa ,,
. Ephemeroptern Caenis sp. .
Trichoptera , _Hydropsychidas
' MOLLUSCA - Gastropoda l .
I Bulimus so.1 Pelecypoda -
- Amblema - olica.a -
Sphaerium so. Station To at 337.'4 299.7 1769.0 903.2 152.R 133.7 S.D. = Stancarc Deviation. Data presented as number /m d. [g; ' [b.* h
?
n '_,n. . _.._..;_.._ ._
104 TABLE C-2
., ANALYSIS .Off BENTHOS POPULATIONS AT LOCUST POINT - AUGUST 14, 1974 TM Station 1 S:atten 2 Sta: ion 3 i Sta: ton 4 Mean 'S.O. tAean i S . O . t/.e an S.D. IIAean iS.C.
COELEN~ERATA Hydra sp. (t:uddtrg polyp) 12.6 11.C 10.8 18.2 Hydt-a sp. -(single polyp) 10.8 18.5 NEMATCOEA ~ 4 ANNELIDA . Hirudinsa Helebdella eloncata g sta:natts 6.3 11.C 011gechaets (unider*.ified) 3, Immatures (hair setae) 6.3 11.C j Immatures (no hair setas) 445.7 605.E O.0 0.C 2323.9 634.8 2202.9 1462.2 Branc%r u soweacy! 10.8 18.6 12.8 11.C Limnocritus cer Ax 10.0 18.6 31.G 39.8 44.5 22.C h clacaredeatus 44.E 77.1 31.9 55.1 95.5 7 6. .: I b clacaredsarus-cervix 19.1 33.0 b . hoffmeister-t b maumeensis 10.8 18.6 b uda'<emtarus Potamo:ht ix meldaviensis 38.2 66.1 25.4 44.1 57.3 33.0 3 vejdovs'<vt , Stylar ia sp. i ARTHROPCDA-Cladocor a Lectodsra l<indtil 80.1 61.4 70.0 ~. .1 Amphipoda
. Gamn arus fascia'us 6.3 11.0 6.3 11.C Hyatetta arteca Dacomoda Cr conectas sp.
Chir onomidae CH.tronomus (chtr onomus) cp. 25.4 11.0 6.3 11.0 178.2 159.0 Chironomus pupa Coelotanycus sp. 44.5 44.1 0.3 ,11.0 , Crycto:hlronemus sp. 6.3 11.0 6.3 11.0 Poly =editum so. Procladius sp. 159.1 48.0 121.0 127.1
!. Procladius pupa
+ Pseudochtr enemus sp. Tanypodinas pupa Tanytarsus sp. 6.3 11.0 ' 38.2 19.1 12.8 11.0 Tanytarsus pupa .
. Ephemeroptera Caenis sp. .
Trichoptern Hydt opsychidae MOLLUSCA
' Gastrepoda :
- Bulimus sp.
Pelecypeda - , Amblema p!!cata ~ 6.3 11'.O Sohaerium sp. ' Station Total 592.1 794.2 1015 72.3 2775.9 574.7 2782.2 1819.7
-S.O. ' =. Stancard Daviation. - Data pr csen:ed as number /md .
s s h . a .. & s.,5 .- .a . S - ., u,_ ,. .
105 TABLE C-2 CONT. ANALYSIS OF BENTHOS POPULATIONS AT LOCUST POINT - AUGUST 14, 1974 Tm station 5 statto , e i ste ten 7 i Station a Mean 1S.D. t/can l S . O . I tAe sn i S . D . , t.'e an I s '. O . COELENTcRATA Hydt a sp. (budd!ng polyp) Hydr a sp. (strale polyp) NEMATODEA ANNELIDA Hlvv?lnea Helobdella elercsts
& stapnatts 6.3 11.C Oligochaeta (unider*.tfled)
Immatur es (Patr setas) 12.8 22.C Immatur es (no Patr setae) 6.3 11.0 6073.6 5575.C 222.8 105.1 127.3 105.1 Branchyura sewertyi 51.0 22.C 6.3 11.0 Limnodritus ceN.x 203.6 185.C 57.3 57.3 6.3 11.C b clacer edsarus 62.8 86.1 y claoar ada.a:vs-car vlx h hoffmets ert h maumaensis
- 1. Ude'<emiarus Potamothrix t Oldavtansts 12.7 11.0 6.3 11.C P. vejdovsWt 6.3 11.C Stylar-ta sp.
ARTHROPOOA Cladocora Leptodora kir c:lt 31.8 55.1 38.2 50.C 171.9 234.7 31.8 55.1 p Amphipoda Gammarus faselatus 6.3 11.C 12.8 22.0 31.9 29.1 Waletta artcca Decopcda Orconectos so. Chir onomidae Chtr onomus (ce !r onomus) sp. 63.7 11.0 624.0 496.E Chironomus pt ;::a 57.3 51.0 178.2 276.3 Coelotanyous so. 108.2 105.1 17.1 21.4 44.6 61.4 Cryptochir oro.-mus sp. , Polypeditum so. 19.1 33.0 Pr ocladtus sp. 267.4 258.3 ,31.9 11.0 82.8 61.4
,Pr ocladius pu:a Pseudochtrone.~us sp.
Tanypodinas pupa ' Tanvtar sus sp. 63.7 94.2 146.4 221.0 Tanytar sus pupa Ephemeropter a Caents sp. . Tr ichopter a Hydt opsychidae MOLLUSCA Gastr opoda Bullmus sp.
- Pelecypoda Amblema olicita 25.4 29.1 Sphaertum sp. 44.0 77.1 Station Total 127.3 133.1 7659.1 6318.1 S24.0 39.8 534.9 532.4 S.O. = Standard Dev.ation. Daun presented as number /md. - * * * ~~ ,,,y,m%9
103 TABLE C-2 CONT. ANALYSIS OF BENTHOS POPULATIONS AT LOCUST POINT - AUGUST 14, 1974 7% Station 9 Statten to l Station 11 l Statica 1? Mean S.C. Mean i 5.0. I t.tean i S.D. t/.ean iS.D. COELENTERATA Hydra sp. (buddirg polyp) Hydra sp. (stngle polyp) NEMATODEA ANNELIDA Hirudinea Helebdalla elongata .
& stagnatts Oligochaeta (unidentifted)
Immatures (Patr setas) Immatur es (no Fair satae) 961.3 635.9 57.3 33.0 2234.7 1556.0 31.9 22.0 Branehyura sewe-tyt 6.3 11.0 Limnodettus carv.x 6.3 11.0 140.0 105.1 h claoncedas.us 44.6 29.1 6.3 11.C 38.2 38.2 h clacaredsarus-cervix 6.3 11.0 h hoffmets ar-t h maumeensts 6,3 11.o
- k. udekemtarus Potamothetx r oldaviensis 31.9 11.0 12.8 11.0 12.8 22.0
$ vejdovskyt Stylar ta sp.
ARTHROPOOA Cladocera Leptodora kir dtil 44.6 61.4 38.2 50.E
, Amphipoda Gammarus fa etatus 31.9 55.1 6.3 11.0 Hyalstia at.aca Decopeda Orconectes s;;.
Chironomidae Chironomus (chironomus) sp. 152.9 137.8 51.0 55.1 579.4 365.7 31.9 22.0 Chironomus puca Coelotanvous so. 31.9 29,1 6.3 11.0 Cryptochtr onor:.us sp. Polypocitum sp. Procladius so. 63.7 44.1 25.4 29.1 89.1 61.4
,Procladius pupa '
Pseudochir onomus sp. Tanypodinas pupa Tanytar sus so. 31.9 39.8 Tanytar sus puma Ephemeroptera Caents sp. . Trichoptera
- Hydropsychidas ' - MOLLUSCA Gastropoda Bullmus sp.
Pelecypoca Amblema plicata Sohaer tum sp. Station Total - 1343.3 658.8 184.9 89.6 3151.6 2088.2 101.9 67.0 S.O. = Stancard Deviation. Data presented as numt:cr/m'.
.m,. a A -
107
. TABLE C-2 CONT.
ANALYSIS OF .SENTHOS POPULATIONS AT LOCUST POINT - AUGUST 14, 1974 Tm ' station n i statten u ! statten 15 I station m tAcanIs.O.ItAcan s.O. Mean i s.o. I tv ean s.o. COELENTERATA
- Hydr a sp. (budding polyp)
Hydra sp. (single polyp) NEMATODEA ANNELIDA Hirudinea Helobdella elongata 6 stacnalis 6.3 11.0 6.3 11.C Oligochaeta (unicantifled) Immatures (hate sotae) . Immatures (no 1 air setas) 31.9 55.1 3256.1 1744.e: 916.9 398.9 611.2 83.2 Branchvur'a sowerbvi 6.3 11.C 31.9 29.1 Limnodritus cervix 101.0 130.C 76.4 57.3 19.1 19.1 b clacarecearus b clacarecearus-cervix b horfmeistset L. maumeensis y udekemiarus
. Potamothrix moldaviensis 12.8 22.C 12.8 11.0 165.6 79.0 L vc)dovskyt Stylaria sp.
ARTHROPOOA Cladocera Leotodora kindtil 31.0 39.8 140.0 67.C 44.6 44.1 25.4 22.C Amphipoda Gammarus fasciatus 6.3 11.0 6.3 11.C Hyatolla azteca 1 Decopoda Orconectes sp. I Chironomidae Chironomus (chtronomus) sp. 12.8 11.0 127.3 138.1 140.0 58.3 242.0 252.1 Chironemus pupa Coelotanyous sp. 57.3 33.0 G3.7 48.0 6.3 11.0 Cryptochironcmus sp. 25.4 44.1 38.2 19.1
. Polypedilum sp.
Procladius sp. 6.3 11.0 127.3 22.0 95.6 68.9
,Procladius pupa 6.3 11.0 Pseudochironemus sp.
Tanypod!nas pupa
--Tanytarsus sp. 19.1 33.0 6.3 11.0 . Tanytarsus pupa Ephemeroptera Caents sp. .
- Trichoptera Hydropsychidae MOLLUSCA Gastropoda Butimus sp.
Pelecypoda Amblema pitcata Sphaertum sp. Station Total 89.1 105.1 3890.0 2075.3 1339.0 289.2 1127.0 303.2 S.D. = Standard Deviation. Data presen cd as number /m'. . _q, .w, _
..m, u -. ~ ~ * = - *'
.108 .TA8LE C-2 CONT.
ANALYSIS OF BENTHOS POPULATIONS s.. AT LOCUST POINT - AUGUST 14, 1974 TM i statmn 17 station is i station 19 i station 20 Mean s.o. Mun i s.o. 6 Mean s.o ,aan is.o. COELENTERATA Hvdra sp. (budding polyp) Hydra sp. ~ (single polyp) NEMATODEA ANNELIDA Hirudinea . 3 Helobdella elencata
& stagnalis Oligochaeta (unidentified)
Immatures (hair setas) Immatures (no hair setas) 19.1 33.C 770.3 177.4 51.0 39.8 Branchyura newerbyl Limnodril. diervix 6.3 11.0 25.4 29.1 12.8 22.0 h clacaredeanus 19.1 19.1 51.0 88.2 h claparedeanus-cervix h hoffmeisteri h mavmeensis b udekemianus Potamothrix moldaviensis 31.9 29.1 165.6 155.E - B vajdovskvi Stvlaria sp. ARTHROPOOA Cladocera Leptodora kindtil 6.3 11.C
, Amphipoda ,
Gammarus fasciatus Hyalella azteca Oecopo:ia Orco ectes sp. Chironor.rse Chironomus (chironomus) sp: 25.4 29.1 1152.3 463.4 133.8 101.0 Chironomus pupa Coelotanypus sp. Cryotechironomus sp. 19.1 19.1 38.2 19.1 Polypodilum sp. Procladius sp. 6.3 11.C 12.8 11.0
,Procladius pupa -
Pseudochironomus sp. Tarrjpodinae pupa Tanytarsus sp. Tanytarcus pupa
,Ephemeroptera ~
Caeri! , sp. . . Trichoptera - Hydropsychidae MOLLUSCA ) Gastropoda l Bulimus sp. ' Pelecypoda . Amblema plicata - ' ~,.. Sphaerium sp. Station Total 101.9 83.1 2183'.8 747.0 261.0 110.2 l S.O. = Standard Deviation. Data presented as numoer/m'. I i . _- . . , _ . . . ~ , . _ , _ - .J
109 TABLE. C-3 ANALYSIS OF BENTHOS POPULATIONS AT LOCUST POINT - SEPTEMBER 6, 1974
- Tm St^ti I St# ' " ' ' I S I^ t * #' ' I S'**iO' #
Mean S'. D . I Me an i S . D . I t/.e a n i S . D . I t/.e a n COELENTERATA . Hydra sp. (budding polyp) Hydra sp. (single polyp) NEMATODEA ANNELIDA Hirudinsa Helobdella elencata
, H. stacnalis Oligochaeta (unidentified)
Immatures (hair setae) Immatures (no hair setae) 31.9 23.1 101.9 57.C 534.9 220.2 1135.1 378.2 Branchyura sowertvl 44.3 49.0 Limnodrilus cervix 31.9 39.5 h clacaredeanus 6.3 11.0 6.3 11.C h clcoaredeanus-ce vix i 19.1 19.1
- 1. hoffmeistert b maumeensis 6.3 11.0 6.3 11.C L. udekemianus Potamothr ix moldaviensis -
12.8 11.C
& ve}dovskyt Sylaria sp.
ARTHROPOCA Cladocera Leptodora kindtil 114.7 58.9 292.G 241.9 127.3 171.5 Amphipoda Gammitrus fasetatus 6.3 11.0 Hyalella autoca Decopeda Orconectes sp. Chironomidas Chironomus (chironomus) sp. 31.9 33.8 19.1 19.1 38.2 SS.1 l i
. Chironomus pupa Coaletanyous sp.
Cryotochironomus sp. 5.3 11.0 S.3 '11.0 Polycedilum sp. ' t Procladius sp.
- 6.3 11.0 19.1 19.1 Procladius pupa ~
Pseudochironomus sp. 12.7 22.0
.Tanypodinae pupa Tanytarsus sp. 12.8 22.0 12.7 22.0 343.9 155.3 2SI.O 187.4 i Tanytarsus pupa .
j
. Ephemacoptera Caen!s sp. 6.3 11.C . ] ' Trichoptera j Hydr opsychidae . MOLLUSCA Gastropoda '
Bulimus sp. ~
' Pelecypoda .
Amblema . plicata Sohaer fum spT Station Total 82.8 Ja.C 273.s 112.0 117].a 393.4 1739.1 150s.8 S.D. =- Standard Deviation. Data presented as number /m d.
~ - .s
- www yg-We ,phm*%,e'm --#&*m "'
#O M A. E' FW '
m*-"
110 TABLE C-3 CONT. ANALYSIS OF BENTHOS POPULATIONS AT LOCUST POINT - SEPTEMBER 6, 1974 Tm station 5 station a i station 7 I statien c - Mean s.o. u.ean s.o. Meanis.o. tusan is.c. COELENTERATA Hydra sp. (budding polyp) FWdra sp. (single polyp) 6.3 11.0 NEMATODEA 31.9 ANNELIDA
- 29. 1 25.4 22.C Hirudines Helobdella clortgata 44.6 48.
& stagnalis Oligochaeta (unidentified)
Immatures (hair setae) Immatures (no hair satae) 51.0 44.1 146.4 155.i 490.2 4SS.4 573.0 193.5 Branchvur a soweroyt 63.7 58.3 31.9 11.C Limnodrilus cervix 6.3 L. claparedeacus 11.0 6.3 11.C C claparedearus-cervix 31.9 39.E 6.3 11.0 12.8 11.0 L. hoffmets:ori _C maumeansis 6.3 11.C h udekemianus Potamothr ix moldaviensis
& vejdovskyt Stylaria sp.
ARTHROPODA Cladocera Leptodor a kindtil 38.2 19.1 25.4 29.1 6.3 11.C y hmphipoda Gammarus fasciatus 12.8 Hyalella aztec.a 11.0 82.8 29.1 44.5 48.0 Decopoda Orconectes sp. Chironomidae Chironomus (chironemus) sp. 12.8 11.0 197.3 193.2 101.9 88.2 Chironomus pupa 57.3 33.0 Coelotanynus sp. 12.8 22.3 G.3 11.0 Cryptochirono- us sp.
.Polypedlium sp.
- Procladius sp.
3.3 11.0 6.3 11.0 12.8 11.'C Procladius pupa Pscedochirenemus sp. Tanypodinae pupa Tanytarsus sp. 6.3 11.0 33.2 19.1 19.1 19.1 528.4 423.0 Tanytarsus pupa
. Ephemeroptera
_Caenis sp. Trichoptera Hydropsychidae MOLLUSCA Gastropoda Bulimus sp. Pelecypoda _Amblema plicata Schaerium sp. Station Total 31.0 22.0 114.7 39.7 477.6' 381.6 834.0 539.0 l394.3 445.0 S.D. = Standard Deviation. Data presented as number /m'.
~- ._
-111 TABLE C-3 CONT.
i- ANALYSIS OF BENTHOS POPULATIONS AT LOCUST POINT - SEPTEMSER 6, 1974 7g Station g i Station 10 l Station 11 i Station !? I Mean S.D. Mean i S.D. I M2an S.O. .V.can i5.0.
, COELENTERATA Hydra sp. (budding polyp) S.3 11.0 Hydra sp. '(single polyp) 6.3 11.C NEMATODEA Al4NELIDA Hirudinea Helobdella etc.v ata h stagnalis Oligochaeta (unidentified)
Immatures (hair setae) Immatures (no hair setae) 694.C 31S.3 44.5 11.C 269.2 127.1 453.4 325.E Br anchyur a sowerbyl 6.3 11.0 Limnodritus cervix 6.3 11.C b clacaredearus 12.E 11.C 6.3 11.0 h claparedeanus-cervix 6.3 11.0 6.3 11.C
- 1. hoffmeister i L. maumeensis L. udekemianus Potamothrix moldaviensis S.3 11.C 44.6 29.1 5.3 11.C P. vejdovskvi Stylar ta sp. 6.3 11.0
' ARTHROPODA Cladocera Leptodora kindtil 1324.2 3G3.5 25.4 11.C 19.1 19.1 31.9 29.1 ,. Amphipoda Gammarus fasciatus j Hyatella azteca 25.4 29.1 Decopoda Orconectos sp.
Chironomidae Chironomus (chironomus) sp. 143.C 55.1 25.4 29.1 44.6 Chironomus pupa 22.0 Coelotanypus sp.- Cryptochfeonomus sp. Polyoeditum sp.
- 6.3 '11.0 Procladius sp. 51.1 29.1 S.3 11.C
. Procladius pupa ,Pseudochir onomus sp.
Tanypodinae pupa Tanytar sus sp. 1910.0 607.3 19.1 33.0 57.3 57.3 Tanytar sus pupa Ephemer optera Caenis . sp. , Trichoptera Hydropsychidae MOLLUSCA i- Gastropoda - . Bullmus - sp. Pelecypoda Amblema plicata .
- Sphaer-tum sp.
L Station Total 4563.9 1500.3 L 127.3 55.1 439.3 173.0 643.0 .t09.4 S.D. ;= Standard Deviation. Data presented as number-/md .
,p . r.__m.+3 -- m m e ' "'* ^ ~ ^ ""i^
112 TABLE C-3 CONT. ANALYSIS OF BENTHOS POPULATIONS AT LOCtJST POINT - SEPTEMSER e,1974
.g., Tstation is i station ta i statte is i sta:icn t e=.
Mean i s.o. u.ea n i s . o . I ue en i s o . . .v.ean s.o. C O r1.ENTERATA Hydra sp. (budding polyp) Hydra sp. '(single polyp) 6.3 11.0 N EMATO D:'.A ANNELIDA Hirudinea . Helobdella elongata Q stagnalis Oligochaeta (unidentirted) Immatures (hair setae) Immatures (no hair set'ae) 942.2 535.2 4004.7 912.C 222.9 124.2 1407.0 303.4 Branchyura sowerbyl 6.3 11.0 19.1 33.C Limnodritus cervix 12.8 22.0 127.3 105.1 L. clacaredeanus 6.3 11.0 19.1 19.1 E clacaredearus-cervix 12.8 22.0 6.3 11.C
- 1. hoffmeisteri
- 1. maumeensis Qudakemianus Potamothrix moldaviensis 6.3 11.0 63.7 11.C L ve)dovskvi-Stylaeta sp.
ARTHROPODA Cladocera Leptodora kindtil 522.0 258.0 471.1 293.7 477.3 2B1.3 6.3 11.C
, Amphipoda Gammarus fasciatus 6.3 11.0 12.8 Hya ella cateca 22.0 Occopoda Orconectes sp.
Chironomidae Chironomus (chironomus) sp. 2S9.2 238.9 172.0 144.2 38.2 38.2 Chironomus pupa
- Ccelotanycus sp. 6.3 11.0 Cryptochironomus sp.
12.8 11.C 12.8 11.0 6.3 11.0 Polypedilum sp.
- Procladius sp. 6.3 11.0 6.3 11.0 19.1 19.1 Procladius pupa
, Pseudochironomus sp. Tanypodinae pupa . Tanytarsus sp. 19.1 33.0 146.4 105.1 114.7 33.0 51.0 44.1 Tanytarsus pupa Ephemeroptera Caents sp. .
.Trichoptera Hydropsychidae MOLLUSCA Gastropoda Bulimus sp.
Pelecypoda Amblema plicata Sphascium sp. Station Total , 6.3 11.C 1827.2 474.5 5004.2 a 1 '3 . 2 emo.4 319.0 ta20.c 159.3 S.D. = Standard Deviation. Data presented as number /m". ,
. m.,> <-+p- s o.
113 TAGLE C-3 CONT, ANALYSIS 'OF SENTHOS FOPULATIONS AT LOCUST FOINT - SEPTEMBER 6, 1974
.g., I station 17 7 station is I sta:ien to I ste:icn 2a Mean s.o. Mean I s.o. l .v.ean i s.o. tv.e an i s. o .
COELENTERATA . Hydra sp. (budding polyp) Hydra sp. (single polyp) NEs%ATCOEA ANNELIDA Hirudinea Helobdella cloncata g stapnalis Oligochaeta (unidentified) Immatures (hair setae) Immatures (no hair setae) 121.C 39.9 6570.4 1032.C 57.3 50.5 Branchyura sowerbvt. 51.0 11.C Limnodritus cervix 145.4 67.C 63.7 61.4 h claearedeanus 121.0 72.3 h clacaredsarus-cervix 184.7 29.1 L. hoffmeistert
- 1. maumeensis
- 1. udekomianus Pctamethrix moldaviensis 38.2 33.C 31.0 55.1 P. vejdovs:<yt Stylaria sp.
ARTHROPODA Cladocera Leptodora kinctil 25.4 29.1 19.1 33.0
, Amphipoda Gammarus fasciat .
Hyalella azteca Decopoda Orconectes sp. Chironomidae Chironomus (chironemus) sp. 25.4 11.0 51.0 11.C 25.4 29.1 Chironomus pupa Coelotanvous sp. Cryptochironomus sp. 6.3 11.C Polypedilum sp. { Procladius sp. 6.3 11.C 6.3 11.0
,Procladius pupa Pseudochironomus sp.
Tanypodinas pupa Tanytarsus sp. 11.C l 6.3 294.8 124.2 1 Tanytarsus pupa Ephemeroptera Caenis sp. . Trichoptera Hydropsychidae , MOLLUSCA Gastropoda Bulimus sp. Pelecypoda . Amblema plicata . Sphaerium sp. Station Total 210.1 19.1 7175.2 048.5 535.7 67.0 1 l S.D. = Standard Deviation. Data presented as number /m d.
114 TAGLE C-4 ANALYSIS Oi BENTHOS POPULATIONS AT LOCUST POINT - OCTOBER 10, 1974 Tm L station i station ? I station 3 I station 4 Mean Is.o. Mean 's.o.i Maan 's.o. ' u.ean s.o. COELENTERATA Hydg sp. (budding polyp) Hydra sp. (singla polyp) 6.4 11.0 12.7 NEMATOGEA 22.0 ANNELIDA 38.2 33.0 19.1 19.1 Hirudinea - Helobdella elenanta H. staanalis 6.4 11.0
~ OtEochaeta (unidantifled) '
Immatur es (hair setas) Immatures (no Patr- setaa) 95.6 57.3 210.1 252.7 180S.2 487.9 2543.7 704.3 Branchvurn s:wero it Limnodettus cervi < ~ 19.1 19.1 6.4 11.0 h clarar edeacus 25.4 22.0 h claparedeams-cervix b hoffmets eri h maumeensts b udekemiarus Potamothetx r- of.daviensis Nats sp. 12.8 11.0 Stylarla sp. 6.4 11.0 ARTHROPODA Cladecera Leptodorn kind-il Amphipoda 44.6 39.8 51.0 39.8 Gammarus fasetatus 19.1 19.1 19.1 0.0 F+/alella a::ce.2 6.4 11.0 Deccpoda Orconectes sp. 1 Chironomidae Chironomus (chirenomus) sp. 12.7 22.0 Chironomus puca 82.8 143.3 280.1 242.S Coelotanvous so. _Cryptochironer us sp. 31.9 29.1 Polypedilum sp. 19.1 33.0 Procladius sp. 76.4 50.6 25.4 11.0 Procladius pupa Pseudoentronor us sp.
. . Tanypodinae pupa ,
Tanytarsus sp. 467.8 58.3 280.1 485.2 764.0 202.1 550.2 435.7 Tanytarsus pupa Ephemereptera Caents sp.
. Trichoptera S.4 11.0 Hydropsychidas MOLLUSCA. -* Gastropoda Bulimus sp.
Pelecypoda _Amblema plicata Schaerium so. 6.4 11.0 Station Total 579.3 112.0 528.4 767.9 2903.2 50s.4 3737.2 985.3
- S.D. = . Standard Deviation. Data presented as number /md .
a e 4+s. w ,&+ ,-
-~mM * '
115 TABLE C-4 CONT. ANALYSIS OF BENTHOS POPULATIONS AT LOCUST FOINT - OCTOBER 10, 1974 I
~Tm station 5 I station s i station 7 statten s Mean i s.o. t Mean !s.o.t Mean is.o.
COELE"NTERATA Maan is.o. _Hydt a sp. (budding polyp) _Hydta sp. (stngle polyp) 6.3 11.0 NE.VATCDEA 6.3 11.0 ANNELIDA Hirudinea . Helobdella etermata H. s'arrsalts 6.3 11.0 OlWochaata (unidentirted) Immatur es (hair' setae) - Immatures (no hair setae) 1725.3 358.5 1095.0 699.2 312.0 312.0 1107.9 646.9 Branchvura sower-t:vi 127.3 198.6' 31.9 39.8 44.S 11.0 Limnodr tlus cer vtx 12.8 11.0 h claoaredeanus 12.8 22.0 19.1 33.0 S.3 11.0 h claear eceanus-cer vix y ho.'fmeister i
- 1. maumeensis L. ude*<amlanus i
Potamett rix moldaviensis 31.9 39.8 Nais sp. . Stylar ta sp. 6.3 11.0 ARTI-RCPCDA
.Cladocera
_Lc;:todora kindtil 6.3 11.0 12.8 11.0 Amphipoda Gammerus fasciatus 6.3 11.0 44 , <- _Hyaleils azteca 61.4 133.8 83.2 Deccpoda i Cr conectos sp. Chironomidae Chirommus (chir onomus) sp. 38.2 65.1 70.0 87.0 12.8 Chironomus pupa 22.0 82.8 72.3 Coelotanypus sp. _Cryptochironomus sp. 44.6 11.0 38.2 50.6 Polv:xdllum sp. 12.8
'22.0 6.3 11.0 6.3 11.0 Precladius sp. .
12.7 11.0 6.3 11.0 Pt octactus pupa Pseudochtronomus sp. . Tanypodinas pupa I Tareftar sus ' sp. 25.4 44.1 31.9 55.1 38.2 50.6 44.6 39.8 Tanytarsus pupa Ephemecoptera ~ C2enin sp. Trichcpterr. Rfdropsychidas MOLLUSCA Gastropoda Bullmus sp. Pelecypod s . Amblem. olicata .
' Schaer tur.. sp. 6.3 11.0 S'.ation Total 1933.7 323.3 1413.4 '7e2.1 471.1 249.2 1445.2 552.7 S.D. = Standard Deviatten. Data presented as number /m".
1 l l _s. Feie ' rr = = ce-r e+-N y- aey- -- T- r e*s y i
115 TABLE C-4 CONT. ANALYSIS OF BENTHOS FOPULATIONS . AT LOCUST POINT - OCTOBER 10, 1974 7g Station 9 I Station to l Statten 11 i Statten 12 Mean 1S.D. Maan i S.D. 4 Mean i S.O. : .Vean i5.0. COELENTERATA Hydra sp. (budding polyp) 63.7 110.2 12.8 22.0 Hydra sp. '(single polyp) 121.0 112.0 47.8 40.6 NEMATODEA ANNELIDA Hirudinea . Helobdella elongsta b stagnalis 31.9 55.1 12.8 22.0 6.3 11.0 Oligochaeta (unidentified) Immatures (tuir setas) 6.3 11.0 Imm .tures (no hair satae) 885.0 488.7 127.3 138.1 76.4 33.0 222.9 238.9 Branchyura sowarbyl 6.3 11.0 Limnedrilus carvix 6.3 11.0 h clacaredearus 6.3 11.0 6.3 11.0
-L. clac tredcarus-cervix 6.3 11.0 Q hoffmeisteri h maumeensis L. udekemianus Potamothrix moldaviensis -
M Sp. . Stylarte sp. 101.9 127.1 12.8 22.0 ARTHROPODA Cladocera Leptodora t<indtil 89.1 48.0 6.3 11.0 Amphipoda Gammarus fasciat.ss 25.4 44.1 12.8 22.0 133.8 Hjatetta azteca 216.2 Decopoda Orcenactes sp. Chironomidae Chironomus (chironomus) sp. 44.6 61.4 6.3 11.0 76.4 19.1 Chironomus pupa Coelotanyous so. Cryptochironemus sp. 6.3 -11.0 6.3 11.0 $ Polypodilum sp.
- Procladius sp. 6.3 11.0 Procladius pupa Pseudochironomus sp.
Tanypodinae pupa ' Tanytarsus sp. 267.4 353.8 19.1 19.1 Tanytarsus pupa 6.3 11.0 19.1 33.0 Ephemeroptera Caenis sp. . Trichoptera Hydropsychidae MOLLUSCA Gastropoda Bullmus sp. - Pelecypoda - Amblema plicata 6.3 11.0 Sohaerium sp. 6.3 11.0 Station Total 1642.7 905.7 184.7 140.8 101.9 29.1 360.2 543.3
. S.D. = Stancard Deviacion. Data presented as number /md .
117-TABLE C-4 CO NT .
- ANALYSIS -OF B$NTHOS POPULATIONS , . m AT LOCUST' POINT - OOTOBER 10, 1974 7g Station 13 l Station 11 i Stat'en 15 Station 13 Mean S.D. l M-san i S.O. I Mean n S.D. Mean i S.O.
COELENTERATA Hycra sp. (budding polyp)
'l' Hydra sp. (single polyp) 12.8 11.0 NEMATODEA ANNELIDA .
Hirudicea Helobdella elongata H. stagnalis OllDoch>=. eta (unidentifled) _ Immatures (hair setaa) _ 25.4 44.1 44.6 11.0 c.3 11.0 Immatures (no hair. setae) 191.0 152.9 2341.1 353.8 1604.4 1191.6 611.2 334.0 Branchvura sewerbyl 12.8 22.0 Limnodrilus cervix 12.8 22.0 12.8 22.0 L. clacaredeanus b cleoaredeanus-cervix 76.4 68.9 6.3 11.0 6.3 11.0 L. hoffmeisteri - L. _maumeensis L. udekemianus Potamothrix moldaviensis Nats sp. 114.6 33.0 Stylaria sp. 6.3 11.0 ARTHROPODA Cladocera Lectodora kindtli 31.9 39.8 6.3 11.0
, Amphipoda Gammarus fascisms 6.3 11.0 12.8 11.0 1-htalolla aztecs DCcopcna Orconectes sp.
Chironomidae Chironomus (chironomus) sp. 38.2 SS.1 70.0 61.4 31.9 55.1 Chironomus pupa Coelotanvous so. 25.1 29.1 6.3 11.0 Cryptochirocomus sp. 6.3 11.0 63.7 29.1 19.1 10.1 Polyoadilum so. S.3- '11.0 Procladius sp. 89.1 48.0 12.8 22.0 .S.3 ' '11.0 Procladius pupa
,. Pseudochironomus sp.
Tanypodinae pupa Tanytarsus sp. 38.2 3C 420.2 191.0 51.0 39.8 Tanytarsus pupa Ephemeroptera
- Caenis sp.
Trichoptera
~ Hydropsychidae MOLLUSCA Gastropoda Bullmus sp.
Pelecypoda .
- Amblema plicata SpNierium sp.
Station Total 337.4 IS2.4 3444.3' 1104.6 1700.0 1241.0 802.2 3S4.4 ! S.D. =' Standard Deviatten. Data presented as number /m d. !
. -;
. L. __ , ,a_ . L a a .-~ - . -n - - ~ ~ ' ~ ~ ~
s 118 TABLE C-4 CONT. ANALYSIS OF BENTHOS FOPULATIONS *
, , . ,_ AT LOCUST POINT - OCTOBER 10, 1974 s
TM I St#tI " '7 St#tl " '" I St#ti# ' ' 5t#t*cn ~' Mean S.O. Mean i S.O. { Mean S.O. .V.ean 5.0. COELENTERATA.
" Hydra sp. (budding polyp)
Hydra sp. '(single polyp) , NEMATODEA* 6.3 '11.0 ANNELIDA . Hirudinea " Helobdella elorgata H. stacnatts Oligochaeta (unidentified) Immatures (hair setae)
~ Immatures (no hair setae) 292.9 121.3 751.2 245.6 19.1 19.1 Branchyura sowerbvt 19.1 33.0 Limn deflus cervix b clacaredeanus 6.3 11.0 L. clacarodeanus-cervix 6.3 11.0
[ hoffmeistert
- 3. maumeensis 1
- 1. udekemicnus Potamothrix moldaviensis 19.1 33.0 44.6 39.8
. Nats sp.
Stylaria sp. ARTHROPCDA Cladocora Leptodera kindtil - 12.8 11.0
, Amphipoda Gammarus fasciatus ' ~ .F&alulle azteca ' Occopoda Orconectos sp.
- Chironomidae Chironomes (chironomus) sp.
Chironomus pupa Coelotanyous sp.
' Cryptochironomus so. 12.8 22.0 12.8 11.0 Polypectlum sp.
Procladius sp. Procladius pupa t
"Pseudochironomus sp. .
Tanypodtnae pupa Tanytarsus sp. 6.3 11.0 Tanytarsus pupa ' Ephemeroptera Caents sp. . Trichoptera Hydropsychidae MOLLUSCA-Gastropoda Bullmus sp. Pelecypoca l 1 Amblema plicata
! Sphaertum sp. .
Station Total 331.0 154.3 840.4 '252.7 28.2 50.6 _ S.D. = Stsndard Daviatten. - Data presented as number /m'.
, , .&, a 4 w-n , * ~ ~ ' ' ' "
119 TABLE C-5 ANALYSIS OF BENTHOS POPULATIONS
. AT LOCUST POINT - NOVEMBER 7, 1974
{ TM Station 1 Statten 2 1 Station 3 l Statten - Mean S.O. Maan l S.O. t/.ean ! S.O. . tv.a a n i S . D . COELENTERATA
- Hydra sp. (budding polyp) 44.6 51.4 t Hydra sp. (single polyp) 6.4 11.0 57.3 33.2 NEMATODEA ANNELIDA .
Hirudinea Halobdctla elongata 11: stagnalis . 6.4 11.0 Oltgochaeta (unidentified) Immatures (hair setae)
-Immatures (no hair setae) 127.3 122.8 108.2 86.1 2935.0 2006.0 1489.8 949.1 Branchvura sowerbyl 76.4 19.1 70.0 29.2 Limnedrilus cervix 70.0 105.2 L. clacareceanus 19.1 19.1 19.1 33.1
{ clacaredeanus-cervix 25.5 44.1
- 1. hof.'meisteri
- 1. maumeensis Nats so.
Potamothrix moldaviensis
& vejdovskyt Stylaria sp.
ARTHROPCOA . Cladocera Lectodora kindtti Amphipoda Gammarus fasciatus 31.8 55.1 53.7 79.5 6.4 11.0 6.4 Hyalella azteca 11.0 Decop;da Orconectes sp. Chironomidae Chironomus (chironomus) sp. 25.5 11.0 25.5 22.1 Crtcotocus sp. 19.1 19.1 ; Coelotanyous sp. ~ Cryotochironomus sp. . 12.7 22.1 19.1 0.0 12.7 '11.0 Polycedilum sp. Procladius sp. 6.4 11.0 38.2 33.1 Procladius pupa
..: Pseudochtronomus sp.
Tanypodinas pupa Tanytarsus sp. 6.4 11.0 25.5 29.2 19.1 0.0 Tanytarsus pupa Ephemeroptera Caents sp. -6.4 11.0 S.4 11.0 . 6.4 11.0 - Trichoptera Hydropsychidaa ' MOLLUSCA
- Gastropoda .
Bultmus sp. Pelecypoda
^ Amblema piteata Sphaertum sp.
19.1 19.1
' Station Total 210.1 199.4 210.1' 136.5 3247.0 3184.8 1744.5 1032.3 S.D. =; Standard Deviation. Data _ presented as numcer/md .
yrw -- -e 9 , y g s--w is L (
120 TABLE C-5 ' CONT .
~ ANALYSIS' OF BENTHOS POPULATIONS , AT LOCUST POINT - NOVEMSER 7, 1974 e,
n 7g , statten s I station s 1 Station 7 l Station s Mean s.o. : M2an i s.o. Maanis.o. M e at- Is.o.
. ' COELENTERATA ^
Hydra sp. - (budding polyp) Hydra sp. (single polyp) 25.5 44.1
'NEMATODEA ANNELIDA ,
Hinadinea Helobdella eloncata
$ stagnatts Oltgochaeta (unidenttried)
Immatures (hair setas) Immatures (no hatr* setae) 6.4 11.0 286.5 257.0 1S5.5 72.3 359.3 154.7 Branchyurn sewerbvl 44.6 48.1 12.7 22.1 19.1 19.1 Limnodetius cervtx 6.4 11.C
- 1. clacareceanus b clacarad2 anus-cervix '
- h. hof.*mststert *
- 1. maumeensis Nais sp.
4 Potamotnrix moldaviensis
- _P. vejdovskyt Stylaria sp.
ARTHROPOOA Clado; era. Leptodora kinctit g Amphipoda
~ Gammaruc fasciatus 76.4 57.3 38.2 19.1 173.3 90.3 H/aleita azteca Decopoda Orconectes sp.
Chironomidas . Chironony.as (chironomus) sp. 38.2 33.1 89.1 138.2 Crtcotopus sp.
- Coelotany:Us sp.
Crypto:htronomus sp. 19.1 19.1 50.9 29.2 25.5 29.2 Polypeditum sp. Procladius sp. 6.4 11.0 6.4 11. ) Procladius pupa - Pseudochtrenomus sp. Tanypocinae pupa Tanytarsus sp. 6.4 11.0 12.7 22.1 5.4 11.0 57.3 99.3 Tanytarsus pupa
- Ephemeroptera Caents sp. 6.4 11.0 .
Trichoptera Hydropsychidae MOLLUSCA Gastropoda . Bultmus 'sp. Pelecypoca .
' Amblema plicata Sphaerium sp. 31.8 39.8 Station Total 35'.8 'op.1 547.3 357.5 254.7 149.a 751.3 ?a7.4 - S.D.= = Standard Deviation. : Data presented as numcer/m'. -- - ~
g .. _ . - . -- _. _ , < -- -
L 121 TABLE C-5 CON T.
.. ANALYSIS OF BENTHOS POPULATIONS j A AT LOOUST POINT - NOVEMSER 7, 1974 - bi TM L Statt n s l Station to i Statt n 11 i Stati n 12 uean i s.o. I Mean i S.D. .v.aan i s . D . uenn l S.D.
COELENTERATA Hydra sp. (budding polyp) 6.4 ~ 11.0 31.8 55.1 Hydra sp. *(single polyp) 63.7 110.3 NEMATODEA ANNELIDA . H!rudinea Helobdella elencata . H. stannalis CIEochaeta (unidentirtec) Immatures (hair setae) Immatures (no hair setae) 1999.1 1262.7 31.8 11.0 454.8 723.9 739.5 1172.8 Branchvura sowerby! 25.5 44.1 Limnodellus cervix y clacaredearus b clacaredearus-cervix 31.8 11.0 31.8 55.1 h hoffmeistert h maumeencts 12.7 11.0 Nais sp. Potamothr tx moldavlensis
& vejdovs'.<vt stylaria sp.
ARTHROPCDA Cladocera Leotodora ktndtil 6.4 11.0 /
., Amph!poda Gammarus fasciatus 12.7 22.1 12.7 11.0 203.7 210.4 Fh'alolla a:tsca Decop7Ja Orconectos sp.
Chirenomidae Chironcerus (chironemus) sp. 6.4 11.0 25.5 29.'2 31.8 11.0 Cetcotocus sp. , Coelotanyous sp. Cryptochironomus sp. 25.5 44.1 6.4 11.0 S.4 '11.0 Polypedilum sp.
- Procladius sp. 12.7 11.0 6.4 11.0 S.4 11.0
,Procladius pupa Pseudochtronomus sp. .
Tanypodinae pupa Tanytarsus sp. 12.7 11.0 Tanytarsus pupa
. Ephemeroptera -
Caenic sp. . 6.4 11.0 Trichoptera Hydropsychidae MOLLUSCA Gastropoda Bullmus sp. Pelecypoda _Amblema ottcata Sphacrium sp. 6.4 11.0
- Statton Total 1094.6 1224.8 38.2 10.1 585.7 853.2 1158.7 1573.2 S.D. = Standard Deviation. Data presented as numcer/m".
c ;- 122 TABLE C-5 CONT. w ANALYSIS OF SENTHOS POPULATIONS -
- i AT LOCUST POINT - NOVEM3ER 7, 1974 b .
TM Statt n 13 Station 14 i Station 15 l Statien 13 Mean S.0. M aan i S . D . ! .V.e an S.D. t.'.2 2n i 3. 0. COELENTERATA Hydra sp. (budding polyp) 12.7 22.1 -12.7 22.1 6.4 11.C Hydra sp. - (single polyp) 6.4 11.0 31.8 30.8 NEMATCDEA ANNELIDA *
. Hirudinea Helobdella elorygata H. sta;;nalts
Ottgochaeta (unidentifted)
- Immatures (hair setae) 25.5 22.1 Immatur es (no hair setae) 1311.5 1033.2 2400.2 964.9 515.7 252.6 235.5 159.0 Branehvura soworbyl 31.8 29.2 Limnodetius cervix 63.7 110.3 31.8 29.2 12.7 22.1 b clacar edaar.us 25.5 44.1 57.3 19.1 h clacaredear us-cervix 31.8 55.1 50.9 22.1 h hoffmeis:ert h maumrensis Nats sp. 89.1 67.1 Potamothr Ix moldaviensis -
L vejdovs'<yt _S_tylaria cp. ARTHROPODA Cladocera Lectodora 1<indtli Amphipoda Gammarus fasetatus 6.4 11.0 44.8 61.4 3.4 11.0 gialcita a::teca Decopoda Orconectes sp. Chironomidae Chironomus (chironomus) sp. 19.1 0.0 95.5 68.9 31.8 39.8 Cricotocus sp. Costotanycus 30. 25.5 29.2 Cryotochtronemus sp. 19.1 33.1 44.6 22.1 a.4 11.0 Polypedilum sp. Procladius sp. 6.4 11.0 483.9 408.0
,Procladius pupa Pseudochironomus sp.
Tanypodinae pupa '
; Tanytar sus sp. 6.4 11.0 999.6 529.8 19.1 19.1 --Tanytarsus pupa .
Ephemeropter a - Caents sp. 6.4 11.0
- Trichopter a
. Hydropsychidae MOLLUSCA Gastropods Buttmus sp. , Pelecypoda Amblema plicata Sphacrium sp. 6.4 11.0
_ Station Total 1499.8 1319.3 4291.1' 1799.5 744.9 380.3 254.7 177.5 S.D.' .= Standard Deviation. . Data presented as n';mber-/m'.
<+1 n m sw mw--*M'e _
123 TABLE C-5 CONT.
, ANALYSIS OF BENTHOS POPULATIONS
., AT LOCUST FOINT - NOVEMBER 7, 1974 TM S*^tI " '7 I St^tt " '8 S ^tI#' '9 ' St*t( " ?O Mean i S.D. M2an S.D. iv.c an S.D. : t/ un i S. O . COELENTERATA Hydra sp. (budding polyp) Hydra sp. (single polyp) 12.7 11.0 NEMATODEA ANNELIDA Hirudinea Helobdella elor.gata
& stannalis Oligochaeta (unidentified)
Immatures (hatr setaa) Immatures (no hair setae) 70.0 58.4 933.9 559.5 Branchyura sowerbyl Limnodrilus cervix h cla_iaredear.us h claoareccanus-cervix 44.6 29.2 h hoffmeistert h maumeensts Nats sp. Potamothetx moldavlensis P. vejdovskyt Stylaria sp. ARTHROPODA - g-Cladocera Leptedera kindtil
, Amphipoda Gammarus fasciatus
- f+/a;3'.la artcca Deccpoda Orcenectos sp.
Ch[ronomidae Chironomus (chironomus) sp. 6.4 11.0 31.8 29.2 Cr Icetopus sp. Coelotarycus sp. Cryptochironomus sp. 70.0 44.1 Polyceditam sp. Procladius sp. 6.4 11.O Procladius pupa Pneudochironomus sp. Tanypodinae pupa , Tanytarsus sp. 6.4 11.0 Tanytarsus pupa Ephemeroptera Caents sp. . Tricheptera Hydropsychidae 6.4 11.0 , MOLLUSCA Gastropoda Oulimus sp. Pelecypoda . Amblema plicata Schaer ium sp.
' Station Total sp,e 67.1 1107,9 sto,3 oo oo S.D. = Standard Deviatten. Data pr esen:ed as numoer/m d .
er J
.U_
O J O 5 fr
.i a..
r e 9
Sndalbual B l 0 - T E S T 01/xnc/ caw 6, Snc.
. 1810 PRONTAG!!' ROAD NORTH BROOK lLLINCIS 60062 foxsCoLooy AncACoocsia ENVf mONM ENTAL SCIENCCS TELEPHQNC 273*.1030 CNEMISTmv PLANT SCIENCES MEDICAL SCtCNCES REPORT TO TOLEDO EDISON COMPANY TOLEDO', OHIO ,
PREOPERATIONAL ENVIRONMENTAL RADIOLOGICAL MONITORING FOR THE DAVIS-BESSE NUCLEAR POWER PLANT OAK HARBOR, OHIO SEMI-ANNUAL REPORT July-Decernber 1974 IBT NO. 64305590 PREPARED AND SUBMITTED BY INDUSTRIAL BIO-TEST LABORATORIES, INC. Report approved by: */ 3 B.lG. J(nnsbn. Ph. D. ManagerV Environmental Sciences N 14 February 1975 l
@ '*WW'Mhe- m%
9dudaal S I O - T E S T Lak+~ fow PREFACE The staff of the Nuclear Sciences Section of the Environmental Sciences
- Division of Industrial BIO-TEST Laboratories, Inc. was responsible for the acquisition of the data presented in this report.
The report was prepared by L. G. Huebner, Section Head, with the assistance of the staff of the Nuc1 car Sciences Section. 4 9 6 I 11
l f,4ahl B I O - T E 5 T 1h A l
^
TABLE OF CONTENTS Page y Preface . . . . ....................... 11 List of Figures . ....................... v List of Tables . ....................... viii I. IntTCduction . . ....................... 1 II. Summary . . . ....................... 2 III. Methodology . . ....................... 3 A. The Atmospheri . Environment . . . . . . . . . . . . . . . 3
- 1. Airborne Particulates and Iodine . . . . . . . . . . . 3
- 2. Ambient Gamma Radiation. . . . . . . . . . . . . . . 4
- 3. Precipitation . .................... 4 B. The Terrestrial Environment . . . . . . . . . . . . . . . 4
- 1. We11 Water. ..................... 4
- 2. Milk, . ....................... 5 ,
3 Fruits and Vegetables . . . . . . . . . . . . . . . . . 5 4 Domestic Meat . . . . . . . . . . . . . . . . . . . . 5
- 5. Wildlife . ...................... 5
- 6. Waterfowl . ..................... 6
- 7. Grass and Animal Feed . . . . . . . . . . . . . . . . 6
- 8. Soil . . ....................... 6 C. The Aquatic Environment . . . . . . . . . . . . . . . . . 7
, 1. Treated Surface Water . . . . . . . . . . . . . . . . 7 2 Untreated Surface Water . . . . . . . . . . . . . . . 7
- 3. Fish . ....................... 7 4 Clams . ........................ 7 -
5 Bottom Sec'iments . . . . . . .. .. . . . . . . . . 8 IV. Results and Discussion .................... 9 A. The Atmospheric Environment . . . . . . . . . . . . . . . 9
- 1. Airborne Particulates and Iodine . . . . . . . . . . . . 9 iii e- w P -
fidual B l O - T E S T lakahua. Sm.
.m TABLE OF CONTENTS (coctinued)
Page , 2. Ambient Gamma Radiation . . . . . . . . . . . . . . 10
- 3. Precipitation . . . . . . . . . . . . . . . . . . . . 11 B. The Terrestrial Environment . . . . . . . . . . . . . . . 11
- 1. Well Water . . . . . . . . . . . . . . . . . . . . . 11
. 2 Ydlk . . . . . . . . . . . . . . . . . . . . . . . . 12
- 3. Fruits and Vegetables . . . . . . . . . . . . . . . . 13
- 4. Domestic Meat . . . . . . . . . . . . . . . . . . . 13
- 5. Wildlife. . . . . . . . . . . . . . . . . . . . . . . 14
- 6. Waterfowl . . . . . . . . . . . . . . . . . . . . . 14
- 7. Grass and Animal Feed . . . . . . . . . . . . . . . 14
- 8. Soil . . . . . . . . . . . . . . . . . . . . . . . . 15 C. The Aquatic Environment. . . . . . . . . . . . . . . . . 15 1 Treated Surface Water . . . . . . . . . . . . . . . . 15
- 2. Untreated Surface Water . . . . . . . . . . . . . . . 16
- 3. Fish . . . . . . . . . . . . . . . . . . . . . . . . 17
- 4. Clams . . . . . . . . . . . . . . . . . . . . . . . 17
- 5. Bottom Sediments . . . . . . . . . . . . . . . . . . 18 V. References Cited . . . . . . . . . . . . . . . . . . . . . . 110 Appendix A. Reported Nuclear Detonations in 1974 . . . . . . . . . . . A-1 B. Maximum Permissible Concentration of Radioactivity in Air and Water . . . . . . . . . . . . . . . . . . . . . . B-1 w
IV
-~ -
- n. , , - - .
, .-w - - -l w
fndahl B I O - T E 5 7 .la4wa4>ud. fe. LIST OF FIGURES No. Caption Page 1 Sampling location on the site periphery, Davis-Besse Nuclear Power Plant . . . . . . . . . . . . . . . . . . . . . 31 2 Sampling location (excepting those on the site periphery), - Davis-Besse Nuclear Power Plant . . . . . . . . . . . 32 3 Air particulate samples, analyses for gross alpha and gross bota, collected near inlet canal (T-1, site boundary, 0. 6 miles NE of plant) . . . . . . . . . . . . . . . . . . 34 4 Air particulate samples, analyses for gross alpha and gross beta, collected at the site boundary, (T-2, 0. 9 miles E of plant) . . . . . . ..~. .............. 36
. 5 Air particulate samples, analyses for gross alpha and gross beta, collected near the Toussaint River and the storm drain (T-3, site boundary,1.4 miles SE of plant) . . . . 38 6 Air particulate samples, analyses for gross alpha and gross beta, collected at Locust Point and Toussaint River (T-4, site boundary, O. 8 miles S of plant). . . . . . . . . . . 40 7 Air particulate sampics, analyses for gross alpha and gross beta, collected at Sand Beach (T-7, 0. 9 miles NNW of plant) . . . . . . . ... . . . . . . . . . . . . . . 42 8 Air particulate samples, analyses for gross alpha and gross beta, collected at the Earl Moore Farm (T-8, 3. 2 miles WSW of plant) . . . . . . . . . . . . . . . . . . . . 44 9' Air particulate samples, analyses for gross alpha and gross i
beta, collected at Oak Harbor (T-9, 6. 8 miles SW of plant) 46 10 Air particulate samples, analyses for gross alpha and gross beta, collected at the Erie Industrial Park (T-10, 6. 5 miles SE of plant). . . . . . . . . . . . . . . . . . . 48 11 Air particulate samples, analyses for gross alpha and gross beta, collected at Port Clinton (T-11, 9. 5 miles SE of plant) . . . . . . .. . . . . . . . . . . . . . . . . 50 v i
+
$dudaal B l 0 T E S T .1.kwbua, fa n
LIST OF FIGURES (continued) No. Capdon Page 4 12 Air particulate samples, analyses for gross alpha and gross beta, collected at Toledo (T-12, 23. 5 miles WNW of plant) . . . . . . . . . . . . . . .. . . . . . . . . 52 13 Air particulate amples, analyses for gross alpha and gross beta, collected at Put-In-Bay Lighthouse (T-23, 14. 3 miles ENE of plant). . . . . . . . . . . . . . . . . . . . . 54 14 Air particulate samples, analyses for gross alpha and gross beta, collected at McGee Marsh (T-27, 5. 3 miles WNW of plant) . . . . . . . . . . . . . . . . . . . . . . . . 56 15 Gamma-ray spectrum of air particulate filters (Ge(Li)), collected 1 July-30 September 1974, composite from all air monitoring locations . . . . . .. . . . . . . . . . 61 16 Milk samples, analyses for 90 Sr, collected from Earl Moore Farm (T-8, 3. 2 miles WSW of plant) . . . . . . . . . . 70 17 Milk samples, analyses for 90 Sr, collected from a Toledo Dairy (T-12, 23. 5 miles WNW of plant) . . . . . . . . 71 18 Milk camples, analyses for 90 Sr, collected from Daup Farm (T-20, 5.4 miles SSE of plant) . . . .. . . . . . . . . 72 19 Milk samples, analyses for 90Sr, collected from Haynes Farm (T-21, 3. 6 miles SE of plant) . . . .. . . . . . . . . 73 20 Milk samples, analyses for 90 Sr, collected from Toft's Dairy
, in Sandusky (T-24, 24. 9 miles SE of plant) . . . . . . . 74 21 Gamma-ray spectrum of milk, (NaI), collected 2 December 1974 from Earl Moore Farm (T-8, 3. 2 miles WSW of plant) . . . . . . . . . . . . . . . . . . . . . . . . 75 ,
22 Gamma-ray spectrum of squash, (Ge(Lib. couected 23 July 1974 from Earl Moore Farm (T4, 2. nutes WSW of plant) . . . . . . . . . . , , . . . . . . . . . 80 23 Gamma-ray spectrum of grape juice, (NaI), ceLb eted 4 December 1974 from Put-In-Bay winery (T.li .14. 6 miles ENE of plant) . . . . . . . . . . . . . . . . . . 81 vi
. fh B I O - T E S T Jaksixa. f,e LIST OF FIGURES (continued)
No. Caption Page p 24 Gamma-ray spectrum of corn feed, (Ge(Li)), collected 16 December 1974 from Earl Moore Farm (T-8, 3. 2 miles WSW of plant). . . . . . . . . . . . . . . . . . 86 25 Gamma-ray spectrum of grass, (Ge(Lt)), collected 26 August 1974 from Haynes Farm (T-21, 3. 6 miles SSW of plant). . 87 26 Gamma-ray spectrum of soil, (Ge(Li)), collected 11 December 1974 from Earl Moore Farm (T-8, 2. 5 miles WSW of plant) . . . . . . . . . . . . . . . . . . . . . . . . 89 27 Treated surface water samples, gross beta activity, collected from Erie Industrial Park (T-10, 6. 5 miles SE of plant) . 91 28 Treated surface water samples, Leoss beta activity, collected from Port Clinton (T-11, 9. 5 miles SE of plant) . . . . . 93 29 Treated surface water samples, gross beta activity, collected from Toledo Water Treatment Plant (T-12, 23. ; miles WNW of plant) . . . . . . . . . . . . . . . . . . . 95 30 Treated surface water samples, gross beta activity, collected from Unit 1 Treated . Water Supply .(T-28, onsite) . . . . . 97 31 Gamma-ray spectrum of the composite untreated surface water, (NaI), October-December 1974, collected at . Toledo Water Treatment Plant (T-12, 23. 5 miles WNW of plant) . . . . . . . . . . . . . . . . . . . . . . 102 ! l 32 , Gamma-ray spectrum of carp flesh, (NaI), collected 23 August j 1974 from inlet' canal (T-1, site boundary, NE of plant) . 107 l I l l i v
- e
foubalual E i 0 - T S 5 i .bl+w fa
'j LIST OF TABLES No., Caption Py 1 Radioactivity in environmental samples, third quarter 1974 . 19 2 Radios.ctivity in environmental samples, fourth. quarter 1974 . 23 3 Sampling locations, Davis-Besse Nuclear Power Plant . . . . 27 4 Type and frequency of collection . . . . . . . . . . . . . . 29 5 Sample
- codes used in Table 4. . . . . .. . . . . . . . . .. 30 6 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected near inlet canal (T-1, site boundary, 0.6 miles NE of plant) . . . . . . . . . . . . . . . . . 33 7 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at the site boundary (T-2, 0. 9 miles E of plant) . . . . . . . . . . . . . . . . . . . . . . 35 8 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected near the Toussaint River and the storm drain (T-3, site boundary,1. 4 miles SE of plant). . 37 9 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Locust Point and Toussaint River (T-4, site boundary, 0,8 miles S of plant) . . . . . . . . 39 10 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Sand Beach (T-7, 0. 9 miles NNW
, of plant) . . . . . . . . . . . . . . . . . . . . . . . 41 11 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at the Earl Moore Farm (T-8, 3. 2 miles WSW of plant) . . . . . . . . . . . . . . . . . . 43 vili _ : T
pwn> g l 0 1 E S T .!sie "" 9e LIST OF TABLES (continued) No. Caption Page 12 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (cNtrcoal), collected at Oak Harbor (T-9, 6. 8 miles SW c plant) .- . . . . . . . . . . ............ 45 13 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at the Erie Industrial Park (T-10,
- 6. 5 miles SE of plant) . . . . . ............ 47 14 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Port Clinton (T-11, 9.5 miles SE of plant) . . . . . . . . . ............ 49 15 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Toledo (T-12, 23,5 miles WNW of plant) . . . . . . . . . . . .... . . . . . . . . 51 16 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulatss) and iodine-131 (charcoal), collected at Put-in-Bay Lighthouse (T-23,
- 14. 3 miles ENE of plant) . . . ............ 53 17 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at McGee Marsh (T-27, 5. 3 miles WNW of plant) . . . . . . . .. ............ 55 18 Airborne particulates, monthly average, minima and manma i
for gross alpha and gross beta, July-December 1974 . . 57 1 19 Airborne particulates, analyses for 89Sr, 90Sr, and gamma-emitting isotopes, quarterly
- composites from all air -
monitoring locations for July-September and October-December 1974. . . . . . . . .... . . . . . . . . 60 l l 20 Area monitors-TLD (mrem), monthly, July-December 1974. . 62 21 Area monitors-TLD (mrem), quarterly, July-December 1974 64 l l ix
$ .,7
fndud:ial B i O T E 5 T .h!mabaa. Ja
,. LIST OF TABLES (continued)
No. Caption P y 22 Precipitation samples, analyses for gross beta and tritium, July-December 1974 . . . . . . . . . . . . . . . . 65 Well water samples, analyses for gross alpha, gross beta, 23 and tritium, July-December 1974 . . . . . .. . . . . 66 24 Well water samples, analyses for 90 Sr and gamma-emitting isotopes, July-December 1974 . . . . . . . . . ... 67 25 Milk samples, analyses for gross beta, 89Sr, 90Sr, and gamma-emitting isotopes, July-December 1974. . . . . 68 26 Milk samples, analyses for calcium, stable potassium, and ratios of pCi90Sr/g Ca and pCi l37 Cs/g K, July-December 1974 . . . . . . . . . . . . . . . . . . . . . . . . 76 27 Fruit and vegetable samples, analyses for gross alpha, gross beta, 90Sr, and gamma-emitting isotopes, July-December 1974 . . . . . . . . . . . . . . . . . . . . .. . 78 28 Beef sample, analyses for gross beta and gamma-emitting isotopes, collected from Peter Farm (T-22, 2. 6 miles SW of plant) . . . . . . . . . . . . . . . . . . . .. 82 29 Wildlife samples, analyses for gross beta, 90Sr, and gamma-emitting isotopes, collected from the vicinity of the site . 83
.30 Waterfowl samples, analyses for grosc beta, 90Sr, and gamma-emitting isotopes, collected from the vicinity of the site, July-December 1974 . . . . . . . . . . . . 84 31 Grass and animal feed samples, analyses for gross alpha, gross beta, 90S r, and gamma-emitting tsotopes, July-December 1974 . . . . . . . . . . . . . . . . ... . 85 32 Soil samples collected 16 September 1974, analyses for gross beta, 90Sr, and gamma-emitting isotopes . . . . . . . 88 33 Treated surface water samples, analyses for gross alpha, gross beta, and tritium, collected from the Erie Industrial Park (T-10, 6. 5 miles SE of plant) . . . . . . . . . , 90 l
X We eees G W
9&M1 8 i O - T E S T la!matoms. 9.c LIST OF TABLES (continued) No. Caption Page 34 Treated surface water camples, analyses for gross alpha, gross beta, and tritium, collected from Port Clinton
- (T-ll, 9. 5 miles SE of plant) . . . . . . . . . . . . . 92 35 Treated surface water samples, analyses for gross alpha, gross beta, and tritium, collected from Toledo Water Treatment Plant (T-12, 23. 5 miles WNW of plant). . . . 94 36 Treated surface water samples, analyses for gross alpha, gross beta, and tritium, collected from Unit 1 Treated Water Supply (T-28, onsite). . . . . . . . . . . . . . 96 37 Treated surface water samples, quarterly composites of weekly grab samples for July-September and October-December 1974, analyses for 90Sr and gamma-emitting isotopes . . . . . . . . . . . . . . . . . . . . . . 98 38 Untreated surface water samples, monthly composites of weekly grab samples, July-December 1974, analyses for gross alpha. gross beta, and tritium . . . . . . . . 99 39 Untreated surface water samples, quarterly composites of weekly grab samples for July 90 September and October -
December 1974, analyses for Sr and gamma-emitting isotopes . . . . . . . . . . . . . . . . . . . . . . 101 40 Fish samples, analyses for gross beta, 90Sr, and gamma-emitting isotopes, collected from Lake Eric in the vicinity of site (T-1, site boundary, NE of plant) . . . . 103 41 Fish samples, analyses for gross beta, 90Sr, and gamma-emitting isotopes, collected from the Toussaint River near the storm drain outfall (T-3, site boundary, SE
- of plant) . . . . . . . . . . . . . . . . . . . . . . 105 j 42 Clam samples collected from Lake Erie in the vicinity of
!' site, (T-1, site boundary, NE of plant), analyses for l gross beta and gamma-emitting isotopes, July-December i 1.974 . . . . . . . . . . . . . . . . . . . . . . . . 108 43 ' Bottom sediment samples, analyses for gross alpha, gross l beta, 90Sr, and gamma-emitting isotopes . . . . . . . 109 xi I - ...1
fha: l B l 0 - T E 51* - Labuahua. !*s:- I. Introduction Because of the many potential pathways of radiation exposure to man from both natural and man-made sources, it is necessary to document levels of radioactivity and the variability of these levels which exist in an area prior to the anticipated release of any additional radioactive nuclides. To meet this objective, an extensive preoperational environmental radiological monitoring program was initiated by Industrial BIO-TEST Laboratories, Inc. (BIO-TEST) in July 1972 for the Toledo Edison Company in the vicinity of the Davis-Besse Nuclear Power Plant site. This program included collection (both onsite and offsite) and radiometric analyses of airborne particulates, airborne iodine, ambient gamma radiation, surface water, ground water, precipitation, soil, bottom sediments, fish, clams, food cropa, vegetation, milk, meat, and wildlife. l BIO-TEST completed the first-two years of preoperational monitoring in June 1974. Results of radiometric analyses of samples collected from July ) 1 through December 1974 are reported herein. This report, together with the l l previous reports (Industrial BIO-TEST Laboratories, Inc.1973a, 1973b, i 1973c,1973d and 1974a) will help to establish environmental baseline radio-logical values for the period prior to operation of the Davis-Besse Nuclear Power Plant. I j 1
. ___ 7 -
..-=
fndadual \ O T E S T .!M 9m n II. Summary Results of sample analyses during the period July-December 1974 are presented by quarter in Tables 1 and 2. Monitoring data collected during the period July-December 1974 were similar to data obtained during the same period of 1973 with the exception of the following: Gross beta activity in airborne particulates continued to decline after reaching its peak in April and June. By December the gross beta activity wa s approxi-mately at the same level as in December 1973. Gamea isotopic analyses of quarterly air particulate composite indicated higher concentrations of gamma-emitting radionuclides during the third quarter and about the same level during the fourth quarter of 1974 as compared to the same period of 1973. During the month of June 1974 the monthly, quarterly and annual therm-luminescent dosimeters at Location T-1 were exposed to an unknown source of radiation. The excess exposure amounted to approximately 48 mrems. The higher exposure rate at this location persisted throughout the months of July and August, although at a lower level, and was not measured thereafter. 1 l 2 1 I
9 L'ul B i o - T E S T .fM 9e. III. Methodology The sampling locations for the Preoperational Environmental Radiological Monitoring Program at the Davis-Besse Nuclear Power Plant are shown in Figures 1 and 2 and are described in Table 3. The type of samples collected at each location and the frequency of collections are presented in Table 4. The sample codes used in this study are presented in Table 5. A. ' The Atmospheric Environment
- 1. Airborne Particulates and Iodine Airborne particulate samples were c ,11ected at a volumetric rate of approximately one cubic foot per minute on 47 mm membrane filters of 0. 8 micron porosit'f. Vacuum air pumps were used. The filters were collected weekly from twelve locations (T-1, T-2, T-3, T-4, T-7, T-8, T-9, T-10, T-11, T-12, T-23 and T-27), placed in individual glas sine protective envelopes, and dispatched by mail to BIO-TEST for radiometric analyses. The filters were counted approximately five days after collection to allow for decay of short-ilved naturally-occurring radionuclides. In order to minimize counting variables, all samples were counted on the same instrument. The quarterly l composites of all air particulate samples were gamma scanned and analyzed l l
l for strontium-90. Each air samplerwas equipped with a charcoaltrap inline after the filter holder. The charcoal trap at cach locationwas changed at the same time as the particulate filters.and dispatched to BIO-TEST for analysis. The samples were analyzed for iodine-131 immediately after arrival at the laboratory. 3 l
~ ~ ' -
9mbataal B i O - T E S T lakdoua. fe. .m
- 2. Ambient Ganuna Radiation Integrated gamma ray background was measured with thermolumi-nescent dosimeters (TLD). Monthly and quarterly TLD's were placed on 1 July 1974 at eighteen locations (the twelve air sampling locations and locations T-5, T-6, T-14, T-15, T-24, and T-26). Monthly TLD's were exchanged on 5 August, 4 September, 30 September, 4 November, 9 December 1974 and 6 January 1975. Quarterly TLD's were removed on 30 September 1974 and 6 January 1975.
Each shipment of TLD's included controls which were stored in a shield at the Plant and returned with the field TLD's after their removal. In-transit exposures were measured by the control TLD's and subtracted from the field TLD measurements to obtain their net exposure.
- 3. Precipitation Monthly precipitation samples were collected from two locations, onsite (T-1) and Put-In-Bay (T-23). No samples were collected in July due to the lack of measurable precipitation for that month. The samples were analy-zed for gross beta activitt and tritium.
B. The Terrestrial Environment
- 1. Well Water One-gallon water samples were collected quarterly from wells at four locations (T-7, T-17. T-18, and T-27). The gross alpha and gross beta activities were determined on the suspended solids and dissolved solids of each sample. The tritium content was determined by direct counting of samples l l
4
94 A:l B l 0 - T E 5 T 2dmahua. k using liquid scintillation techniques. Strontium-90 activity was determined by milking yttrium-90. The samples were also gamma scanned for identification and quantification of gamma-emitting isotopes.
- 2. Milk One-gallon milk samples were collected monthly from three herds that graze within five miles of the Plant site (T-8, T-20, and T-21) and from milk processing plants in Toledo (T-12) and Sandusky (T-24). Ten milliliters of 37% formaldehyde solution were added to each gallon of milk as a preservative before shipment. The samples were analyzed for gross beta, iodine-131, barium-140, cesium-137, potassium-40, strontium-89 and -90, and for stable calcium and potassiurn.
- 3. Fruits and Vegetables Sixteen samples comprising, twelve varieties of fruits and vegetables were co11ceted from four locations (T-8, T-19, T-20, and T-25) during the third quarter of 1974. In addition one gallon of grape juice was collected on 10 Decem-
. ber 1974 from Location T-16 (Put-In-Bay). The samples were scanned for gamma-ray activity and analyzed for gross alpha, gross beta, and strontium-90. l
- 4. Domestic Meat A sample of beef was collected on 16 September 1974 from Peter Farm (T-22). The flesh was separated from the bone and analyzed for gross beta and gamma-emitting isotopes.
- 5. Wildlife l Two representative species of fauna (muskrat and racoon) were l
l l 5 ['
9 La.i.> B i O - T E 5 T 2dne i~"' 9a T collected from the vicinity of the site on 31 October 1974. The muscle was separated from the bone, gamma-scanned,and analyzed for gross beta activity; the bone was analyzed for strontium-90.
- 6. Waterfowl Six ducks, three Blue Wing Teals and three Mallards were col-1ected from the vicinity of the site on 9 August 1974. Three ducks of each species were combined, the muscle separated from the bone, gamma-scanned and analyzed for gross beta; the bone was analyzed for strontium-90.
- 7. Grass and Animal Feed ._,__,
Grass samples were collected on 26 August 1974 from two locations (T-8 and T-21). In addition four samples of hay, silage and corn feed were collected on 16 December 1974 from the same locations, and one sample of Smartweed was collected on 22 August 1974 from the vicinity of the site. The samples were analyzed for gross alpha, gross beta, and strentium-90 activities and were gamma-scanned.
- 8. Soil Soil samples from three dairy farms (T-8, T-19, and T-20) and one onsite location (T-1) were-collected on 9 September 1974. The samples were taken from the top two inches of soil where vegetation was not growing.
The samples were scanned for gamma-ray activity and were analyzed for gross beta activity and strontium-90. 6 s l 6
indadual B l 0 - T E S T lakste.ta. 9a m C. The Acuatic Environment
- 1. Treated Surface Water Weekly gras samples of treated water were co11seted from three filtration plants (T-10, T-11, and T-12) and analyzed for gross alpha and gross beta activities in total residne and for tritium. Quarterly composites were gamma scanned and analyzed for strontium-90.
- 2. Untreated Surface Water Weekly grab samplos of untreated water were collected from Lake Erie at four filtration plants (T-10, T-11, T-12, and T-28) and at three onsite locations (T-1, T-2, and T-3). The samples were composited monthly and analyzed for gross alpha and gross beta activities in suspended and dissolved solids, and for tritium. Quarterly composites were gamma scanned and analyzed for strontium-90.
- 3. Fish Five species of fish comprising thirteen samples were collected from Lake Erie in the vicinity of the site by a commercial fisherman and from the Toussaint River near the storm drain outfall (T-3). The muscle was ;
separated from the bone, gamma-scanned and analyzed for gross beta activity; I the bone was analyzed for strontium-90.
- 4. Clams i
Clams were collected on 9 July and on 19 September 1974 from l Lake Erie in the vicinity of the site. The flesh was gamma-scanned and analyzed for gross beta activity. 7
h4ab.ial B i 0 - T E 5 T .!alme.bua. 9nc. m 5 Bottom Sediments Bottom sediments were collected on 10 October 1974 from Lake Erie in the vicinity 'f the site (T-1) and in the vicinity of the intake and dis-charge areas (T-29 an i T-30). The samples were collected approximately 50 feet offshore with the use of an Ekman dredge. The samples were gamma- ' scanned and analy=ed for gross alpha, gross beta, and strontium-90 aEtivities. 4 4 8
~
MW B i O - T E 5 T /dout ua. k G IV. Results and Discussion t The discussion of the results of data collected during the semi-annual reporting period, July through December 1974, has been divided into three broad categories: the air, the terrestrial, and the aquatic environments. Any 3 references made to data collected during previous years for the Davis-Besse Nuclear Power Plant refers to data collected by Industrial BIO-TEST Labora-tories, Inc. , unless stated otherwise in the text. A. The Atmospheric Environment
- 1. Airborne Particulates and Iodine The results of the gross alpha and gross beta analyses for air particulates are given in Tables 6 through 17 and graphically presented in Figures 3 through 14. Monthly averages, minima and maxima for each location are given in Table 18. Gross alpha activity showed no definite trend throughout the period and was similar to the activity reported for the same period of 1973.
There was an increase in gross beta activity at all locations during the first half of 1974, which reached a maximum in April and May and continued to decline throughout the remainder of the year. The results of gamma and strontium-89 and -90 analyses are given in Table 19. All isotopes that were detected during the period July-December 1974 had higher activities than those reported for the same period of 1973. There was a considerable decrease in activities during the fourth quarter 1974 as compared to the second and third quarters of 1974. Beryllium-7, which is produced continuously in the upper atmosphere by 9
Sh B I O - T E 5 T .blevaistw. k cosmic-ray interaction (Arnold and Al-Salih 1955), was the predominant radionuclide measured during botn quarters. An increase in beryllium-7 activity shows that there was considerably more atmospheric mixing during the spring and summer, causing more bery111um-7 and radioactive debris in the upper atmosphere to reach the lower atmosphere (Russel and Bruce 1969). The increased radioactivity in gross beta and gamma-emittir, isotopes is attributed to the deposition of radioactive debris injected into the upper atmos-phere by Chinese thermonuclear tests conducted in June 1973 (U. S. E. P. A. 1973-1974). Weekly levels of airborne iodine-131 were below the minimum level of detection (0. 03 pCi/m3) at all locations. A germanium-lithium gamma-ray spectrum of composited air particulate samples is shown in Figure 15.
- 2. Ambient Gamma Radiation Ambient gamma radiation levels as measured by thermolimine-scent dosimeters are given in Tables 20 and 21. During the month of June the TLD's at Location T-1 were exposed to approximately 47 mrems of radiation above background level. The higher exposure rate at this location persisted throughout the months of July and August although at lower levels. The extra exposure received was approximately 6 mrem for the two months. After the I month of August, the exposure at T-1 returned to background level. No expla-nation is available for the elevated readings at T-1 during June, July, and August and the following discussion does not consider these results.
Monthly and quarterly TLD measurements averaged approximately the same for this reporting period as compared to those of the same p eriod in l 10
f4 + / BIO-TEST 1 h fac. m ( 1973 (26.4 mrem for July-December 1974 as compared to 28. 4 for July-s. December 1973), but were slightly higher than during the first half of 1974 (21. 2 mrem). Readings averaged lower at Locations T-1, T-2, and T-3, which is probably due to the low radionuclide content in the sandy soil which . surrounds these locations, as evidenced by radiometric analyses of soil sample s.
- 3. Precipitation The results of precipitation analyses are given in Table 22.
Tritium activity remained essentially unchanged for the first half of 1974. Gross beta activity in deposition was higher than during the same period in 1973 and was highest for the month of November. B. The Terrestrial Environment
- 1. Well Water The results of well water analyses are given in Tables 23 and 21.
Gross alpha and gross beta activities had the following ranges (pCi/1): Alpha Beta Min. Max. Min. Max. Suspended solids <0.07 <0.11 <0.13 0.21 Dissolved solids < 0. 50 7.01 2.36 4.82 Total residue, < 0. 5 8 7.01 2.36 4.82 Gross alpha, gross beta, and tritium activities correlated closely to last year's re sults. Cesium-137 activity was less than 1. 5 pC1/1 in all samples and no other gamma-emitting isotopes were detected above background level in any of the samples. One sample, collected on 8 July 1974 from T-18 had gross 11
Smladual B I O - T E 5 T hkstaus, kc. O alpha activity of 7 pC1/1. As required by the technical specifications, this sample was analyzed for Ra-226. The analysis showed that Ra-226 activity was less than 0. 5 pCi/1. Strentium-90 activity was less than 0. 6 pC1/1 and was similar to the results obtained for the same period of 1973 and the first half of 1974.
- 2. Milk Results of milk analyses are given in Tables 25 and 26. Iodine- 131, barium-lanthanum-140, and strontium-89 were below the minimum detectable levels in all samples. Cesium-137 activity was similar at all locations while . .
strontium-90 activity was higher at Locations T-12 and T-24. Ce sium- 137 activity ranged from <3. 5 to 6. 91 pCi/1 and strontium-90 activity ranged from O. 85 to 5. 24 pCi/1. Strontium-90 values are plotted in Figures 16-20. Potassium-40 activity ranged from 1165 to 1357 pCi/1 and gross beta activity ranged from 1009 to 1267 pC1/1. The radioactivity levels in milk were 1 very similar to those found during the first half of 1974. A sodium iodide i spectrum of milk is shown in Figure 21. 1 Because of similarities between strontium and calcium, and ! l between cesium and potassium, the body tends to deposit cesium-137 in the 1 soft tissue and muscle, and strontium-89 and -90 in the bones. Cons equently, the ratios of strontium-90 activity to the weight of calcium in milk and j l cesium-137 to the weight of potassium in milk were determined in order to estimate the potential accumulation of these radionuclides. There were no l l trends noted in the ratio of cesium-137 to potassium either seasonally or by 12 I
fadadual B l 0 - T E 5 T .!aloubua fac. <-C location. The strontium-90 to calcium ratio for samples collected from Toledo and Sandusky were slightly higher than those collected from the Earl Moore (T-8), Daup (T-20), and Haynes (T-21) farms.
- 3. Fruits and Vegetables -
Results of analyses of vegetable samples are given in Table 27. Gross alpha and iodine-131 activities were below the limits of detection in all samples. Gross beta activity (wet weight) ranged from 0. 9 pC1/g in apples to
- 4. 7 pC1/g in Swiss chard and winter lettuce. Strontium-90 activity was low in all samples averaging 0. 006 pCi/g wet weight. Cesium-137 activity was below the limit of detection in most samples. Gamma scan analyses of the samples indicated that the predominant radionuclide was naturally-occurring potassium-40.
All other radionuclides were below the limits of detection. A typical gamma-ray spectrum of squash is shown in Figure 22. Radioactivity found in grape juice was also very low. Strontium-90 and Iodine-131 were below limits of detection. Gross alpha, gross beta, cesium-137 and potassium-40 were
- 0. 02 pCi/1, 0. 27 pCi/1, 0. 001 pCi/1, and 0. 22 pCi/1, respectively. A gamma-ray spectrum of grape juice is shown in Figure 23.
- 4. Domestic Meat Results of beef sample analyses are given in Table 28. Cesium-137 and potassium-40 were the only gamma-emitting isotopes detected, measuring
- 0. 015 pCi/g and 3. 08 pCL/g wet weight, respectively. The level of radienctivity was slightly higher than those found for beef collected in April.
13
kbatual B i O - T E S T .!asesstwa. fa . e
- 5. Wildlife Results of analyses of muskrat and racoon are given in Table 29.
Gross beta, strontium-90 and potassium-40 activities were similar in both species. Cesium-137 activity in racoon was slightly higher than in muskrat,
. O. 013 pC1/g in racoon as compared to 0. 001 pCi/g wet weight in muskrat.
Strontium-90 activity in be bone was 0. 6 pCi/g dry weight in both species, i The radionuclide concentrations found in the muskrat and racoon were similar j I to those for racoon and rabbits collected in the fall of 1973. !
' l
- 6. Waterfowl The levels of radionuclide concentrations, gross beta, strontium-90, )
1 cesium-137, and potassium-40, found in Blue Wing Teal and Mallard ducks were similar to those found in the wildlife samples. The results of the analyses are given in Table 30.
- 7. Grass and Animal Feed Results of the analyses on animal feed samples are given in Table 31. Gross alpha activity was below limits of detection in all samples but one silage sample (0. 22 pCi/g wet weight). Gross beta activity ranged from
- 2. O pCi/g wet weight in corn feed to 16. 3 pC1/g wet weight in hay. Strontium-90 and cesium-137 activities ranged from less than 0. 004 pC1/g and less than O. 008 pCi/g wet weight in corn feed to 0.17 pC1/g and O. 08 pCL/g wet weight in hay, respectively. Potassium-40 activity ranged from 2.1 pCi/g in-corn l
feed toL 12,6 pCL/g wet weight in silage, respectively. Radioactivity found in l smartweed was similar to that in other animal feed samples. In general, the 1 14
9dadual B 10 - T E 5 T .hkuloua. Ja 3 concentration of radionuclides found were highest in hay and silage and lowest in corn feed and were similar to those found in animal feed collected in the fall of 1973. Naturally-occurring potassium-40 was the predominant radionuclide in all samples, being highest in hay and silage. Gamma spectroscopic analyses showed trace amounts of fallout products present in all samples except in corn feed. Typical gamma-ray spectra of corn feed and grass are shown in Figures 24 and 25, respectively.
- 8. S_ oil Soil collected from onsite Location T-1 was beach sand and had the lowest radioisotopic concentrations as compared to Locations T-8, T-19, and T-20. Samples co11ceted from the other three locations (T-8, T-19, and T-20) had similar concentrations of radionuclides. The cesium-137 activity in the sample collected from T-8 was slightly higher than that found in the other samples. Gross beta activity ranged from 11. 03 pCL/g to 31.16 pCi/g, strontium-90 from less than 0.12 pCi/g to less than 0.19 pCi/g, cesium-137 from less than 0,03 pCi/g to 0. 96 pCi/g and potassium-40 from 15. O pCi/g to
- 26. 9 pC1/g (dry weight). The activities in soil samples were similar to those reported for the same period of 1973. The results of soil analyses are given in Table 32 and a typical germanium-lithium spectrum of soil is shown in Figure 26.
C. The Aouatic Environment
- 1. Treated Surface Water l The results' of analyses of treated surface water samples are i
15 t - - t v w t
fndudual B l 0 - T E S T 2almabua. 9.e l t given in Tables 33 through 37 and graphically presented inFigures 27 through !
- 30. Alpha activity of treated surface water samples ranged from <0.13 to
- 0. 73 pCi/1; beta activity ranged from 0. 82 to 2. 96 pCi/1. Gross beta activity
~
at the Toledo Water Treatment Plant (T-12) was slightly lower than at .- Locations T-10, T-11, and T-28 (1. 65 pC1/1 average at T-12 versus
- 2. 33 pC1/1 average for all other locations). Tritium activities were relatively unifo'rm for all samples, and ranged from <0. 29 to 0. 72 pC1/ml. Strontium-90 activity in quarterly composites ranged from 0. 31 pCi/1 at T-12 to 0. 74 pCi/1 at T - 10. No gamma-emitting isotopes were detected above background level.
k'here were no appreciable seasonal variations noted.
- 2. Untreated Surface Water .
Untreated surface waters were analyzed for gross alpha and gross beta content in suspended solids, dissolved solids, and total residue. Ranges of activities were as follows (pCi/1): Alpha Beta Min. Max. Min. Max. Suspended solids <0.06 1.01 <0.10 3.34 Dissolved solids <0.23 1.55 1.70 4.59
' Total residue <0.40 2.02 2.14 6.73 Tritium activity in these samples was similar to that in treated water samples.
Strontium-90 activity in quarterly composites ranged from O. 35 pCi/1 to
- 0. 90 pC1/1 and was slightly lower at Location T-12. No gamma-emitting radio-nuclides were detected above the background level. No seasonal trends were 16
_,Mp,-
9ndatual B l 0 - T E S T la!malu.a. 9xc. f noted in radionuclide activities. The results of the untreated surface water analyses are given in Tables 38 and 39. A typical gamma-ray spectrum of the composite untreated surface water is shown in Figure 31. 3 Fish - Five species of fish were obtained from Lake Erie in the vicinity of the site and four species were obtained from the Toussaint River. Gross beta and potassium-40 activities in muscle were similar in all samples, averaging the same 2. 7 pCi/g wet weight for gross beta and potassium-40. Cesium-137 activity in muscle ranged from 0. 002 pC1/g in carp to. 0. 049 pCi/g in sheepshead. Strontium-90 activity in bones ranged from 0. 22 pCi/g to 1. 06 pCi/g dry weight. Carp, walleye, bu11 heads, perch and catfish were collected and analyzed during this same period in 1973, and these results correlated closely to those reported in this report. Tables 40 and 41 contain the results of fish sample analyses and Figure 32 is a gamma-ray spectrum of carp flesh.
- 4. Clams The clam sample collected in September was higher in radionuclide i
concentrations than the one collected in July. Gross beta, cesium-137, and potassium-40 in the July sample were 0. 51 pC1/g, O. 001 pCi/g, and O.14 pCi/g wet weight, respectively, while in the September sample, 'the activities were 1.22 pC1/g, 0. 009 pC1/g, and 0. 25 pCi/g wet weight. Gamma spectral analyses showed that all other gamma-emitting isotopes were less than the minimum detectable levels. The results of the analyses of clam are given in Table 42, i i 17 l
.9ndudual B l 0 - T E S T la4*sabsu k
[ 5. Bottom Sediments Gross alpha activity in bottom sediment samples collected at Location T-1 was less than 3. 3 pC1/g while gross alpha activity at T-29 and T-30 was 12,4 pCi/g and 11. 3 pCi/g dry weight, respectively. The gross beta activity was also lower at Location T-1 when compared to Locations T-29 and T-30 (13. 6 pCi/g compared to 21. 5 pC1/g dry weight). Strontium-90 was below the limits of detection at all locations, but cesium-137 was considerably higher at Location T-30 (0.24 pCi/g versus 0. 05 pCi/g and less than O. 04 pCi/g at Locations T-1 and T-29, respectively. Potassium-40 ranged i from 16.2 pCi/g at T-1 to 21. 0 pCi/g at T-29. The results of sample analyses were similar to those reported for the first half of 1974. The differences in measured radioactivity in samples collected at Location T-1 as compared to those in samples collected at Location T-29 and T-30 can be attributed to differences in sample composition. The sample collected at the shore (T-1) was sand, while those collected offshore (T-29 and T-30) were a combination of sand and silt. The silt consists of smaller size particles and it is known that the measured radioactivity per unit mass of
. sediment may increase with decreasing particle size. The results of sediment analyses are given in Table 43, 18
Maddal B i O - T E S T lakabau. k
- d o l.o ., - o. .o,
- m. . -.. .
;
v
.g.vvvvvvvvsvsv -,4 m.,.,,,.,
22,*.
---m o
Q
- 4 a .
- u ~> 2v= -Es i. a~ 1.g.
2 2- .a. a~ .
= n. o. e.
g L ae .
<- E'+ f. - ^.
s . O. c. e.n,oe .n,nw ' o .,......... mom . . -; . , g 2 +oe a .o .o. ,*,n.---- m a. a. =. =.
. . o* . : e
- t =. ~
- 7 ". * * 'd.
- 1 .
o y------------ 1
- a. 4-n..e '* 5. .9 .' u g N d i .Iyd.e.
- d. d. ,d.
Q= *
- d. d .* n-n '. ". ",
z va ;.; u. m. e. n e a. ,. m. e. . m. -., o
, . m. . n. e. e. o. . . , .m.y.~....
s -a m , n. n. n. m. e. ..e-m.e.e. ..m.e.
. ... m m. . ,
- c. o e s o - o 4 - ~ ,.
;; - ,l - ,, , , , ,
o e 4
%, .: t;- .3:: a:4 4----~~~--------
4 d J d 4 4 4 4.5 4.4 4 4 , g e. m
$s gggg ~a c o =c .
e. w =o--
. u ,. n o . ,v**
g u. o oa k !
.o.e -
4 g *T.
- e. .
[ s. n o e 4 .e .a = ., o a . 4 : g~*" 3- j
-e-amemece-op-como S qqq,,qq qnmq ~
o , _sl
'I C* ..:A. J. .:4 4 J .; .: .:. 44
- 3 g o 64 .: 4. : .14
-s..,.... . . n. o. o. o. o. o. s. n. o n. e. o. o fg- a 3 .c .,. =-Q. . < .,.
- = c. o. e. e m
,. , n.. -ne- a,a.m.n. . ,.e . o. .m r .* e- + .
n- as e- .- o - a
-e n ee. n. n. ee. n. 4 m
6 si m,g n '. o,, V
.k. . o ,a . m- o > e. .n. . . . . 3. .. . .oooooooaoooo g n efgg .C
- s .Ei
. o.
m Z c -
- c. -
O c 4 . to e b bn, A b. c - c. c a. 2 2
$ h y D 3 3* W*
g y3 W w%u, E w Z$ w:2 . O W u D W Z A 3 d#b3 " E 3, ""3 w "F. W 3W$ w % y3 #d7. 3f. E MnW-8 % Mn3%
.u. . 4 IWnn - 7.: 7....C - .. .. k m . --:
2 2 .- ..= : t-h 'C ..: ZWnn.ZD"td"33.*t. w E. 1 1 -
,. c E -
3 y a segg:=m,. EE .. t. a.. o g : g =: +C ..~..e
=-- e -
- e. e. ,. s. a. .a. e.a s .a . .. a..er..a. .e. .a. c. m. a n. ,u.a.. ,. -
- m. e. ..m. . -o<
. .a .- .n=
C c e. 0 n. e. .a..enmm .a - n m # . m e .n. y . .m.2 .m. D oo-oooon4 . ... . . oo-oom a .... .... . . .
....... . nwee .e . . . . .,... : o- = .o... . . n. n. .,e.ee.e . o ..m o. -. n. ..a.. .C.e . e.a m. e. .n. a. . c. . c. . . e.e m.. c.. m. e. n. .. n. n. eu.c. . .. ~.
h HHHHHHHHHHHHHHHHHH HHHHHHHHHHHH H H r. H e t. H i-
- - - - , - - ~ -, E -- . - -
- aunaaaaaaa ::::::: a n n a a n u aca: aan:
> ------~~~--------- ------------ .---- ----
e
.h6 U
N A O n t
.~0 4 I q a. .
M : .t a 2
. e 3 . - .3 ww .
m s..a%H .i
> J 3 2 ;
c 2* < . O . ... s
."c .>
e; . d 0 l
=
g .=. 2* .a. A. .' a .. 5, b ~
'g I. "G4 3&.*u jf-o l . E* x. : ?- .u 6 a, 6 W t.4 3.a s .I.0 M gQy c
19 4
9,asaNd B l 0 - T E S T h.%abua. 9ac. o
. . i. ~ . . ,, ,. .. ...o. . , 4. . . . .,.. ,
z
. 9 o
o
, ...a. . o e.
v
.: oeen m *e. n 'S v cvv n ., , e e. .a e.a..~ .e. a. .e.,.
- 7. ,
~~---
o- :; ..,. .. . . . .
.c C o .,. o. o. o. o. o. 'J. o. a.
e w .4 , o r
.; . ooooooooo
- e. o e. e. .' o y vvvvvvvvv
, a . . ., .. 4 b ooooo 4
r u E .' -a..** .
, m .w*
- t gggg 1 G . y
.'F S. M. . .4=@M
- o. e. Q J. P.,,.'9 .
D.
.. ,.. ;;;;
vvvv j a* a e o, o, o ,o, m oo .o, o.. .o.
.. o,, .o o,, o o. y3 9 ,,n,MM e ., M y o ,o. o. o. =. o. o. o. o. a.
f3 15 .~*
- -o f* *e o e O ' F* P* f* f* ',be og o. o. o. o o. o og o. . A e .r. P. o., .. .e. m oMA . ". .m. ft. * * . . ;r, e t= .d. .,MmM gr, 9 4 vvvvv . o. o. o. o. M. o. o. o. )
M T oooooooao
.e e4 et M g & a e.e e. e. ao o =4 r.
o **M'.a 4 e. p. p 3 *
; ,; ,; ; ; 2 .i c; '. a. ,4 f.;- a ,a. .a . *.*.*.*.*.*. a. faoa 4 as en ,e o C- ,. *. t - . - . * - - - - U ,,,,o.
6 ,,.
- c. . ,a .c y vvvvvv W vy y y ; o . e. e. r* 4
> a- e, y n .,. enm
- a. a. m s #,
- o. o..* .,. n.
u ,.* .. e. .e.3.
- o , .e .,. o. .*
m.= q o o.e m. . . e4. o. .
. L- q. r. o ,a e. v o. s . ,, . ,.ooooooooo. .:: -o o -
vvvvvvvvv 3, ~ . = . * . . =. n .., ~ ~ ~ ~ en f e
~ m v e. e e' ~
m .e.--~an n <n . ., t n,o, %.,'*
. $. ~~,-ve o a . . .. o o*o * *a *o . J. J. ,d. a. d. i ;..
dd 4 d 4 vvvvv 2 ...., n ,. d. d., d. d. ~* ~4 e .o.u. a-d. 4. ;.,
., o e a m o o < u o. o. ~. c. m.aooooo.. . e. c. e.
- a. -a. e. in. 4 ^ ,s-
~
2
- m. e. o. o.
oo oo ., ,. o. . ..
, a. a. a. n. s st- ~ ~ ~ - o u~~mn ~m a, jo s.m .n - .n .e r ~. o. ' g ,g4444 a.-maanoa,, e, s .
3 4 g .'.lv v v v v . ;
. m . [a ,* . o ~
e. i ' a,, e.
~ o, 2s a. o. ., a n o, 22.\ .o o., - e- c ., e . e . .s. m. . ,e . r3. ~.= ,.a. m.
a . , ~ ,a s
. e. . m. o. n a. . = '..n - , e. m. ., - oa -~
- s o c. o s c o o o
'a vvvvvvvvv 0
g o. o. y 2 3. . J' c eoe,
- a- .?. .
_. . ~ u .~ , o. = J. 4--.o.. u O E s a c
> > = a m y Wm3 u.
y JnD
. w. --
w 3 z3 gW z > 3
~unu man ,. >a3 m w
m - w w .a .3 a c EW. . $. 'y 1 EWw$** .E g$$
/. Z 'E- D'"$$j $: 3333$$$$
e3==.c.
~
3.,. g.iE c -e,.'.,c, 6 .' =ces ac2..
~....a., . .. . .a ; ~- .a. e. ,,. .a. : ... e. o.- ~.~. ~..,,. .,,. .., .4 a o oo o w n ~. enne .~..,.o. .~ .~ ..,. ~ .co. .
H e e b e r. ebewee
.... HHHH . . .~ .
He
. ~. . . . ~ .~.o.~.e esepe ebebeeb' . . ....e..~.~ . = = = a.,.a n . . = .: : n. n .a = = a ,n. = - .a c a n .n a . . .a ====nn== 'O O
3 C c u c a V O *
. s U . .
- a D
. w. . .
e-e , =o >&. -- a
. ww so ,
s= o c .u .
- m .D .a.. ' . * --ys34 -
1 -
- a. . 1 =
g [-
=
3*
.,. e .
o s S xo
.2 1. .. o. .. 15 . .d .3. . .% .'g Os .o. .o. . .; = g ,u,, 2. .o. .s u .- ,
M g,, p )g g jt (t 4. 'J M'4
.> .e a a A A e d . V el a e .a 20
..9mbd.kl B l 0 - T E S T .%.abwi. 9,w. .
x -
.... .i o.
o.- o,
. e o
- o. o.oo. . . o..
2 m. a. n. . n. % t - --- 2 O -
- oe R ,1
-? 6 m N - . a o :.. A pg d P.
4 m oM
- m.
- g. o. m o. m @. - O
. . . o %
g "e . o. o. o. o. o.Q. "e v w e o m,
- o. . . o*
h o o
* *
- m *
- 4 s oyev oy o.j s. o n s.P o. m. . o.
. )" Q Q % .mm M
- o. O.* W. 7 Z
- G
- e. o e4 e a 6 m. go
-m o. n N- st 4 4 m -nn, ,u .5mm s o -. o o s 1 to Q- 3. m. *= ; . u
- etu a t
-Ie vo**4o . %c U- m =
- 6 o-ooo- a n 1 e o wM m o. o. o
-6 ,
g D, o. o. o. Q. o. o. o o 4.
- a. ,s N. o. o. .
a i w m. o- .o o.
-m M
e o ".
;
a ,
.so.me-o-a o. o. o. o. o. o. a. o. < ov p.. .c. o. : - , . .
A o. e , 7
- v . om s e o
. ,( Yv o. og ' * > V * 'g . >G o. vm -
Q . q
. v > o " "o..N mo o. o.
- o. o.
e 4
- ,6 o o. 4 Q. oog ,b j , - .,s o. n.
- u oooooo 2 -
, , y o ,- , 1 nu U -. e~
s -
- c. v2 a s
- . . 2, _o e.. ; ~
n -u n U o o. a. o. . Q o m ,2 "t m o. v. emamme e n. o mnme = . 2 y ne a
- n. ns a _-l, g po ,
ao
- a. e. ....
J a. 1- e ,s o2 vale n o i o.oooooo
- o. o. o. o. o.7.1o. ,
- e == . u oooo. o n - * =
u.
- -vvvvvvv a - aI.o aoo. .- avvvv - - -
x *
, ~ .t clo. oo o. .3 ~ z.. 2 s. 7.
6 .
- a d,mna >>> .' ~ s C
- c
$ Y "
- m. . . . 3 Clp m4 Y j . . 4. m. e. n. N. 1 o. e. q, ; a -, 1 a
ao
- n* os *4 - =
s o. o. wo o. o. og o. a a o, g e'Ae e y o a a e ,a 4 s
- o. . <om e ,
- a. o.
3 c. . es. c. o.
- o
- u n.
- o. 0 u--oc
- O p
= >4oono 6 o . . u ,u 4. e.
m - --- u u n n- u-men u s un
. n . U a z ,
4, 4
. o o e q e nn c m.o a.a m a . n 2 . - -t
- e. . n. o. . o. . 4 e n. n. n. . .
o o ao . . n o o m o o. n. 1 e
~ .
vv<.v o ooev o 6 u e 6 u v vv e. u o. a e S A V . O C u pyyuu M 3 3 3D y W wwa ma W a m n a um
- g. g w" u.,.Wu $
g>gauan.
- a gn g .a .. ..
n- ,.
.. s s :
EtEiEE * -
-E -E T EE TEE * = = > E - c , , m. m. ".
a E
- c. E. E: p, t o,
; g; .e u. n. n. . a. n. m. n. m. e. n. m. a. e >. >.>.
- een ..
a e . e.- . om . . a .. =. :,
. . .oa . -- . .co .co .- 3 w an an -a-n -nm . e a, n. a. m. u ne ne n. . . e a e e e e e e e e - -
HHHHHHH H H HH bh HHHH . HHH > >>
=== _ _g.g s-g = c- _g c- _g ==gg === = ==
T e s. c *
- ^1 a ' V.
c- . o : g. O- -
~ . o. . .. a n = H e 7 =4. e, , . E c y;
- 3 ., n 4 11
- o m . , .
s .-,s b.e a. n
- o
- c. >.c s .t 4
.> - .. -a 5 * ~w .
'
- d o ao :
=6 %$ E 2 $2 E~o .s . i.. '.=s..E. 3. . s. -4 i. o -so.o =~ a.s o -. o% .3. 2 ."s s .n M h. v . = . aew =w s.so .e3 .cs a< s b d a* 4<44AAAUA m 04 Mw4o4 34 nu 4H R uc 3422 21 .w.m
Table 1. Continued. Fa e llet v Davie. fs...e NPP Docke t tJ .: 50-346 It<portine Pe riodr Tiiird cuarter 1974 Ser.eple and ce;isction F r= <.ue w y /1 r p.* 8.oc a t mn Ave.rseo Qua rte rly Itc sts.8 Ts.t. 10-3pC&/be wet (fle.bl 10*3..C a #k ; dry 8% el O/G mee teena C.-117 K-40 Sr 80 C. ri. (I) T-8, 0.6 mi NE 1. U s u. t 0,00?a0.002 2. Sa0. I G. 3 6ad. 05 Wr.aie Lass (!) T-l . 0. f. n.i N E 2. 9a0.1 0.0 ia0.004 2. 8 *0. ; 0.2:a0.2e Cat tn et. (Il T-l. 0. 6 ml NE 2.540.t 0. 0.:l a0. 00 3 2. 7a0. t 0. 49 a9. 09 hl ate lea ns (!) T.3, 3.4 mi SE 3. c a 0.1 0.04740.005 3. 5 s o.1. 0.4540.04 C .I f..L (!) T-3,1. 4 n.i SE 2.bao.1 C.024so.004 3. 0 a0. t 0.44 0.06 C.tf e.h (18 T-3,1.4 rna SE 3.140.1 0.01 0.005 3.830.8 0.25 0.34 Carp (I) 7 3.1. 4 ml SE 2.640.8 2. 5 a0.1 - 1.06 0.04 %' 0.01040.038 14* g C1/k- wet - grov e d. ta C4-137 E.4 0 *- Clems (B) T.I. 0.6 ml ;;E 0. 51a0. 02 3.001 3.004 0.14 a0. 0 5 TA/G. (fi) T.1. 0.6 mi NE I. 22 e0. 09 0.009:0.004 0.2540.05
* &'seque.s.sys v/-V.*eekly, bl.mntr.ly. Q-Gw.rterly. SA.Sema-annu.Ily. TA- Three taanes a year. A. Annu.41. 7 Types G.Gr.b. C.Cantinuous. P-Proportier.al. gy C o. C .rr.po.4te, J.Ir.teg r. ting.
I" *s.casser.a 1.Iulicatsr. S ls.claro.r.d: :aet.nce ord direction are given f rom et.alen. 5 Ites ise given a re the n. ear. = 2 .tand.rd deviatser.s for weekly and monthly an.lysee. A mults of quart.trly. eemi-annwal and ennual analyses are repersed O wetl. the c an.s. tang e r rer et al.a 's 5f. si J.Jens.1.wsl.
- N H N-m
 4
k h r - s I e
3 g Q , ' (3 -Q,qEM4e k - . 6 t 0O00 7 4 I I o t I. 0 1 S6 0 5 l l 1 2
- 4 a 8 ) 33333333333 -
l 6034 1 I
- % < < s<<<<<<<< tu 2 I 44 234 402 3 i r 0 e
t r g s) s D' a d O Le l e h t T 'y I us i e 8 r o l a aLd.h s h t as m 2 1 ai ue n r 7 0 5 9 0 F c. ,- a - A( nm , B 7 h 0 4 1 7 N 4 i o r e I e _ n ] i tr a i 1 4 I. 1 l,5555 l o > c 2 0 4 6 6 4. 02. 4 . .2. .2l 4 2 I 0 a 5 9 0 .43 95 n6640 o l l l 8 c c t 5454591 2454l a a a4 a a a a a a a a e I - a e C<<<4 e c s r5
- e. C O t 0000
- l. 7 9 0 9 5 7. Z. 0 3 8 n s F 0 .
jg /l a d. . s a 4 a st l67579797s987 s605 4 C. g 542 D' e r 4 i o8. r g g221 2 Ls e 9 3 9, T. . 5 5 6 9 0 0 7. a 5 2 2 517 9.
. . e..
8 J y e - la48 4 s 1 taa 22l 4 = a a 222222n a 4 a a a a a l 22l I 4 lr/ 2 1 7 3, em 752745757499.S.5.S.4 4 8 ? t 8 3 3 n t r e 4982431 4 93l353o5 I2 11 81 1 4
- o. I 0 21 r:
a r 1 I1 1 1 l 5 I 1 1
- a 2 2.5 2 1 o u - t o 8 0 r , o (m .
C e S. 0 C 0. 9 4 o4 o r4 905 a a
,c t
e g . S 7 4. < 5 00 0 r , a u p, q sri a h D'. c e h 606422400246 lo 1 1 1 11 24 81 8 14 8 0 4I n _ h9357 p1 01 2 I T
- e. i.I 080773005583 59862 i u03o00a0o000
. . . 0 90 I e t
r 222 23 22223 2223 2 2_2 e s *a : 4 a a s : 6 4 - a s 000.c
= a u 6 a l.
yt ga 4
. 3 g.4 455
- s a = a e 4 s. l. D. 2 2. %. 8. c. 403 a a 5
a s n051 27G5 1 4 29 L.21 e I a 22121. 2221 S re C. i P 0 4 tm.3 6 i. 3 ia. 424 o m0000 f i l t. r e 7383153I 1 1 111I311I811 25 02l 255 I562 g400000000000. O o o s. s Mb e E. l M p t h m c. a n s l t a n y y e lp lp p p m e u u n W E W l e Ws Ws . o WW E NW ENEW N WW EN W E W N p E Nre Eie l r r E WS 'i ESS 1lW E E ESWE N m o E SWta ESWt a i h F.SSE wWNSWLESWC NNWS immiin e i NESSNWS NSWS a ii W S S i l w mma398nmam c v b 4L i .n.rs i i.r a n t immmt l t ie i mmI w l mmI n n mmmme mmt me 55.86.445 e t i e ai 6 mmmmmmm m m l a n m 5.5I 5. i s e o 5 3 5535 3.3 f 5.55.i I3 n t 654.s.928.6 i
- 6. %. 4 8 2 6. 's 2. b. 65.2361 9 3235
. 4 o 3 n 21 5.
t 9 n a c, 00l O0O036 005 n036 6I 2U 0I 2U
. . , . , . , . . te i a. . . . . . . . . .O82. 453.467 , .0I.237, . . , . ..,,
0I 1-I828 2 i s oI 26 I l23456789 I 3 1 3 1 -3222 234 7891 I 1 22 y - - - - - - - - - - - - - - - - I. - - - - - - - - - - o p l
- I. 1 2 t TTTTTTT77TTTTTTTTT TTT77TTTTTTT m TTTT TT7T M
i 1))I) (((t)ll1 (i l )))bIl
*( )
GC( (l(((((((
))
BDbnhuBb l s) e) ) ) 1 1tgg(1(DI(((((
))
(( ))I i ) ))))D3bD) (
; ))
C o )) DDD1) ((( (
) ) : )
Ubl) ((( tg t c a c i o e N d a n r e R . o i t
. . a t
c* sr,
- n. le e i e.
r w
. . p t rd e t
v loy l on c 2 s cT d ia / ba r f a e D d / a.A i s r l ny r a te us s g a c.s t l. eat b n ees a.
/
l l a n a e t' lpr r'Q s bacu e. c i T t e me e t eDl . nL/ ri t t rC r a/ dM t a e G C o
'a a r liah r' / -F S "I ET1 4 TpcW T :( 'e-O Vo It
I . Table 2 Continued. Facility: Dawe-Desse NPP ' Docket No. : 50-146 h oortine Pe rladr Tourth enarter 1874 Sample es.4 ca.llestion Fretusa.cy/T re' !_ccatienb Ave re. Qua rtggle et , ,,,lt se 10
- 9. Cs /ml e rne. ulnh a traes bets 11- 3 Us.t ra.ted eur(ace water (!) T - 1, 0. 6 mi N E G. sd 3.41a2.17 3604290 W/G - 24/Co (1) T-2, 0. 9 mt E I. 03 a0. Il 4.08:4.52 440e380
(!) T-3. 8. 4 mi SE I 0240.03 4.02al.01 352al50 (d) T-lo. 6. 5 ani SE 0.25s0.04 _2.90ao.92 320:43 (D) T-II, 9. 5 er.6 SE 1.35 0.9 4.63:2.s6 330 23J (D) T-12, 23. 5 mi WNW I . lsla0. 52 2.97al.34 3ha230 Sr-So Cad 3J . O/C. (Il T-l 0. 6 mi NE 0. vo so. 3 3 < l. 5 (I) T-2 O. 9 n.1 E 0.68 3.25 < l. 5 $. g (t) T-3. I. 4 mi SC 0.s4 0.38 <l.5- % (114 T-lo. 6. 5 mi SE 0. m3 eo. 3 5 < l. 5 (B)T-II. 9. 5 mi SE 0.75a0.34 <l.5 D3 (il) T-12, 2 3. 5 ma WNW <0.37 < l. 5 """ O 10* \ Ci /n.I e gr<.s s alpl3 graan Ivta _. Sr-90 Cs.137 H-3 =4 N Well wate r (2) T-7. 0. 9 ml NNW M 0.4120.22 2. 4a ac. 22 0.56 J.36.** <l. 5 50 Gal % gyg O/G (I) 7-17. 0. 7 ma SW 2. 71 a0. 70 4. 82 a0. 47 < 0. 44 < l. 5 (B) 7-8 8,1. 3 mL S 280stiJ g
- 2. 95 a2. 2 4 2.49al.92 <0.32 < !. 5 <200 (B) 7-2 7, 5. 3 mL WNW <2. 39 3.00al.10 < 0. 3 3 cl.5 <200 10
- 9 . C1/ cil lo"Eu ct /c/ '
yo> s i.et a 38- 1 giose beta Praicipitettos (Il T-1, 0. 6 ent NE 57.Je42.0 350a120 M/C 2205 2464 (II) 7-23.14. 3 mi ENE 4 3. 'J e 62. 0 300 220 2241 5208 . 10*D Cl/ml Milk (!) T-8. 3.2 mi WSW n..syAta ML 3r-$9 Jr
*>0 11a-140 C*-117 l *. "
IIe.6a7e 43.2 < 0. 5 1. 4 t a6. 2 3 < 3. 7 4. 0 8 a 1. 2 s 8 3 84al2ei M/G (B) T-12, 23 5 mi WNW 1848 250 < 3. 2 <0. 5 4.61ao.75 < 3. 7 4.45a3.26 1264ak2 (D) T-20, 5. 4 ma SSE < 0. 5 I.22:0.42 litsa36 < 3. 2 < 3. 7 4.55a3.00 829Islie (B) T-21, 3. 6 ml SSW 1067st6 < 3. 2 < 0. 5 1. 30ao. 62 < 3. 7 < 3. 5 124ta9s (D) T-2 4, 24. 9 nii SE 8067 208 43.2 < 0. 5 2.40:4.68 C 3.1 4.89al.92 12 bial 28 V 10*9..Ci/b e wet cross beta Cs-117 K-40 Me at (B) T-22. 2.6 si.i SW SA/G Not scheduled this quartar J'3..Ci/b e dry e ra.. alpha _ ermee ticta jg Nr-90 Cs-137 E-40 . Vegetables (1) T-8, 3.2 me WSW SA/G (12) T-19, 3. 7 mL S Not sst.edel.d this quarter
. (1) T-25. I. 3 ml S t .
] ,- 6 3 . D"Oeq M
- t '
3 3 2 4 4
- - 2 6 ; ) 0 * . 4 7
9 1 r e 7 7 3 t 3 3 2949 r a 1 8 3 0 0 4 0000 0 4 5. 00l B0 t s
)
s e v - s a
- e o o 0 4 e a r. r e C C 4 N 3032 M a a h 2290 2. d. S. b
( 33 b t 687 8 r 2 1 T u o _ 121 y 0 3 B. r 9 00 d - : 4 y 3 r 9 d - r r c F 21
- k 06 b d
o c 0 0_R 7 32 3 4
/
i 00 C 4cS_
/
i r 0 0. 4 7
- 0. 4 0 c.
8t r e e a 3 r r 1 r 3 r e t v
- e i .J r L.
1
- t e e 00J0 a s e 1 000 a 3i 3 a
e P i c r S r t r m 0 s r t r 0o/0 r
- a 504 4 *
- t r
a / S a 0 0 a e J u 1 4 C a u a u $
- l. 0. < u C 042 1 1 u
n te q q q q q i i e y 00 0 0 C. tr y k
/
e 9 r s is 9 s y e o l A i r' l p t t i ht
- ht h 0 hi d ht e C.
0 c t 0.0 0 1 1 t te b 0 d 5 1 t r 3 d d 30 . . 7 d :0644 d I e / f. e 3 222 0 e e
- 9 l i 3
3 l - l le u 0. 2 s00 8 le t.*-
/
82 4 l 0 3 u l C r du 4 a u - r0 u O e 1 8 I d e. l l 0 0 3 p $ h e h d e 05 0& 4 020 i. y r c m J
- e.
- C.n<<00< M22 I K d
e h r lc 5 0 c c G00 r ts
- i l c
a e 8 s a h e 0 h s r a a1 s / 1 s h. e t t o a t o t e c t o s.- 0 o l v e w 7 13 i 7 b N b 0 t N N 9977 C N 85 y02 l 3 f r 3 i A e i1 0l f t s s b 3 r . t 4 0000 0 d2t s .- 0. C. t s 7 ) e s s 4 a4 4
- 0 9- a s a 00 .-
o o 2 s i776 646 w C w C r - o . 3 r 2 r c r0 r 2350 S 2 339 r c 21 1 U1 21 / b t l/ C a a 1 a C.i a54 i 3 v a h a t 3
- h. 0 e . - t 00
- p ; 7 a 4,.
- h. 3 b 94 0 c.
la l& 3s r lr 1 3 o0 l t e . 2
- t. 469 021 c w t
- 3. el 45 s s 4 8 s 4 e.
6 s s 0 e s e s 3 43 o10 .. 4 n e s Jd08 r 3 e r C o < <<4 c s. < 2I n,2 2 n 0
- r t r c 0 n1 g
I r o N t e h c o
'D E
N WW WWWW E W S E S SS SS SS WE S WiL SS i. r SWL WW B. bS i E%SS N t' i 4 E.NE t E eN ee n t t e r n6 sm i i l 6rr mm me m u. l t
- b. m i6 m n.
i e e a
.. 73 3 mm 6 nms 66 mm 74 59 ff oo f
a tu 2. 3 3l 3 1 8 0
- 2. 3 3
J. 33 2.3 3 6 2.3 5 6. 3 0 yy y
,c . . 03 0 tii t it t ,95 01 2 6
1 4 8i
.l 08221, , .4 l 81 2 90 8 23 ,90 inni i n - - - - - - - - - - - - - - icc i i c . T7T 7 T T7 TTTT TT7T TTT VV V ) ) )
l ) d I (D) ( 1 ( n (
)
1 ( 1) (( 3 )) 1((l(1 t uD) )))u l lI (((( s 1
)1
((( 1
)) )
I ((
)
1
)
1 ( e u n P i t P n N o e s a C s e 6 t s B ce ae e
- t . . s l l n -
ov e 2 M c *n e d m e D d n
/ e i a cv 'ed
- d l ne e d e l
- r. u J e e S w b y ea J s e e t s o a lr l
l p a= 2 t e S . .- e f e e G m. cG f i r i r T ic i/ ; sG e gags a g g dl Gha e a me tmw/r r ay .G S/ t / t l / t C a r rA r/ a r oli / MA oA a/ FSF FS CA A S r '..A/ CSI I.l SA i SS LT iAW WS WA NIJ 1 s
Table 2: Continued. Facilf t tr Da wle-Tlesee NPP Docket flo. r 50-3 4 Itecortlar Perled; Foweth eunter te74
. Sample and collection F r ec u- mer / Type
- Locationb As c rare Ous rteelv fle s=1ts*
. Tiah 10*3 CL /hg w t (fle*h) 10*I.Cifbr a r t (1,:rel C./G gros. W J s-I17 K-40 sr n:s Carp (!) T-l 0. 6 mi NC 2. S ad. t 0.0tsau.003 E3 a d.1 0. e4 0. IT Ca.;.ple (1) 7-1, 0. 6 mi N E 2. 6 a 0.1 0.08840.004 .t. n ao. 3 0. 4 4ad. l S 1: llr..ad (Il T-8. 0.6 mi NE 2. 6 a0. t 0.00's*0.003 2. 3a0.1 0.52 0.10 C rp (1) 7-3. I. 4 ml 5E 2. 6
- 0.1 0.0u2 0.004 2.360.8 0.22:0.13 Sh. psbead (!) T-3. l.4 mi 5E 2,4 so. I O.04%so.014 2. 4a0. t 0.22a0.I3 Ws.ite base (1) T 3. 1, 4 rni S C 2. 7 a b. I 0.043a0.012 2. 4a0.1 0.64a0.13 C1.ms 9 0'3.a Ci /> 2 wet t
Q/C (b) T-I 0.6 m 16E c r... . t.et a C..e37 K-40
- ( .
Not scheduled this cs.arter a D3
- Treautacy W-Wechly, M-Afor.thly. Q-Quarterly. SA-Semi-ar.nually. TA-Thrwu times a year. A.Ans.vally. Ty;e n G-Crab. C-Cor.tinuoue. P-Proportional.
Co-Corrposite. I-Integrating. O N b L.,c.s t os.: 3. Indicator. Il-lackgts.und; oliotar.ca anJ direction are given fros.a atatlosa.
' itea61:s g6ven are the er.ean a 2 star.dard dav;stions for v sekly an! rs.es.thly r.naly.... Ite.ulte of guarterly, semi-ansual and ar.aual analysee are repassed 4
wita the counting e rror at the 957. conf 6 der.ca le.el. ' M SA H h I
.fA.
m i li f
9ndadual B t 0 - T E S 1 la!mahw. fre. m Table 3. Samplihg locations, Davis-Desse Nuclear Power Plant. i Type of r na r. Lneneten , _ Location T-1 I Site boundary, 0. 6 miles NE of plant, near intake canal. - T-2 I Site boundary, 0.9 miles E of plant. T-3 I Site boundary,1.4 miles SE of plant, near Toussaint River and storm drain. T-4 I Site boundary, O. 8 miles S of plant, near Locust Point and Toussaint River. T-5 I Main entrance to site, O. 25 miles W of plant. T-6 I Site boundary,' O. 6 miles NW of plant. T-7 . I Sand Beach, O. 9 miles NNW of plant. T-8 I Earl Moore Farm, 3. 2 miles WSW of plant. T-9 B Oak Harbor, 6. 8 miles SW of plant. T-10 B Erie Industrial Park, 6. 5 miles SE of plant. T-11 B Port Clinton, 9. 5 miles SE of plant. T-12 B Toledo, 23. 5 miles WNW of plant. T-14 B Township school, 3. 8 miles WSW of plant. T-15 B Lacarne, 6. 6 miles SSE of plant. T-16 B Put-In-Bay winery,15. 3 miles ENE of plant. T-17 I Irv Fick's well onsite, 0.7 miles SW of plant. T-18 B liess Sunoco Garage, 1. 3 miles S of plant, Route 2. 27
9,uladual B l 0 - T E ? T lal mat.v.;es. kc. Table 3. Continued. Type of Code Location" Location T- 19 B Miller Farm, 3. 7 miles S. of plant. T-20 B Daup Farm, 5.4 miles SSE of plant. T-21 B Haynes Farm, 3.6 miles SSW of plant. T -22 B ' Peter Farm, 2. 6 miles SW of plant. T-23 B Put-In-Bay Lighthouse, 14. 3 miles ENE of plant. T-24 B Sandusky, 24. 9 miles SE of plant. T-25 I Wintc r Farm,.1.3 miles S of plant. T-26 , B Fostoria, 35. I miles SW of plant. T-27 B Magee Marsh, 5.3 miles WNW of plant. T-28 1 Unit 1 treated water supply, onsite. T-29 i Lake Erie, Intake area, 1. 5 miles NE of plant. T-30 I Lake Erie, discharge area, 0.9 miles ENE of pir.nt.
- I = Indicator locations; B = background locations.
28
. _ . . _ -....-.-l
Maid B i O . T E ; T hkabua. k. D k 2 5 m u 4 c d0dc00000000 co oc 00 3" A 1 1 1 A A 1 1 A .1.1 1 J1~ 11 A .1 j bbbbbbbbbbbb bb5 bb bb E c-
.-1 2 m
2 5 T A A E o is. wM .- 5 a
<. 42 $
c O O OO m m mm 'S E . . ~
$ W W 4 $
_> > > ~
. O 4 u
- d n m O N a
. 4 d d r5 b 3 m mm =
Q Q l u u . o a o t N D 55 5 t g b
- kk 5 g o - - e QQQQQ00CQQQQQQ QQ QQ -
1 1 1 J 1 ! J 1 4 4 .1 4 .1 4 14 .,1
- bbbbbbbbbbbbbb bb t.S u
~
c i . 5 -6
% % Ym b 23 c
6c 2 2 22 2 5vo
. O o . = . "0 7
0 - 2 QQQQCQCQCQQQQQ QQ QQ .c
.uo u
4 4 1 .-1 4 1 . l 1 1 . l .-1 1.lJ 11 J -1 o . bbbbbbbbbbbbbb bb bb [3 cs u e-O bbb g 5' O D D m N3 c .
. . . . e 8 > opo coo 5 =
l ~ 335 DDD 55 u i mmm mmm . y
- v . . . . . . k
> e ww M .-e .-e .-4 N .-e d 0 .g 4 .-4 ,,
e
<<<< . < < g ==
0 N 04 04 04 04 04 04 04 04 04 04 S $ R <<<< <<<<<< < < ;; , H . eo i e g O w# l
- o o =
c U e NM T in 4 P= CO C% C a-* N 1 tn 4 P= CO C% Oe NM V LO 4 P* CO O o ,U O g 4 - ==* *- - - =as e-NN NN NNNN NNM * *
- 4 o SU b- .1 m .c l
29
'1M9V.
fadaahial B l 0 - T E E, i la&nabzia. fac. Tablo 5 Sample codes.used in Ta8 :c 4 Code Desc rint ion AP , Airborne Particulate AI Airborne Iodinc TLD (M) Thermoluminescent Dosimeter - Monthly TLD (Q) Thermoluminescent Dosimeter - Quarterl'f TLD (A) ', Thermoluminescent Dosimeter - Annual SWU Surface water - Untreated - SWT Surface water - Treated (tap) WW Well water (Ground Water)
- P Precipitation BS Bottom Sediments SO Soil M Milk ME Domestic meat WL , Wildlife F Fish CL Clams VE -
Fruits and vegetables WI Wine SMW 'imartweed AF Animal Feed (silage, grain, grass) WF Waterfowl 30
7
.. s s . .- Industriol Bio-TEST Laborofories, Inc.
i
.' ENVIRONMENTAL SCIENCES OlVISION ~~,..
NORTHDROOK, ILLINOIS 60062
., @ x - . . _ . _ . .. :- @ sampiino soco:E;n tz) _
N. f -. .
.oaao, nr oo .- --- site boundory D ..s'f.A. @\ . C0oLING of -Q , TowtR y * . DISC //ARGE
( '
's, 9,. 0 ..
1
$ surAd , ,-,c'e 's 7.. i. A K E DUFF.WASHA ROAO '
s - -- - p g I
;
0.5 mi E R / E u
' @ D AVIS - B ESSE ,
- 4' ,
~ nonnow ms tJUCLEAR POWER PLANT 1.Orni ' \1 00 .
f l i !
' .: L5 ml
[] LJ Nav>RRe .
]
OARRY MARSH * ;..
. f.
7,W:' N
@ h !
L. 3- I'-il
..;~, .
p,- u S
' .Q . . ' ' . . _ _.,.;'" .,, \ ~. .
TouSSA/Nr P/VER t '* * (;. . . . . . p %p ..
- Figure 1. Sampling locations on the site periphery of the Davis-13csse Nuclear Power Plant.
I
18 3
. y .Q-Qtis ?
nO M V 4
' O m x .4 ,% h 0' $
WD . . ,
~
g
$c$0 a =
kGj 2 y
.. g Mn- 4
- 8. c4 -
< L c<
D
,z / '
oho@ a
, c2 W e o e '- O* to *C a- '-e * / :g :t O '.'~'~. .
v a a 8 es= o= f:2 E
. \< SW }
se3 > 8 - .. '
- n .
a
.' O c.\ . o ' , *~ '- k g
9
,9 /
o E [n et e ' 2
~ ^ ~. .c.
(w#r
;b g
ec
~
2 0 8 'p.;o ts I f ne y c.
'- 3 '5c .- 'A t
he
-@[t[
O T,, b .c Q O s'.
~
- il /
n = G g o U N ,s'c .* ,..'
.o
- N J %
E g N O T O A o O
=<
s a m .. ~ so
- nO
- s nY 3*
u l M / k N'T% n S O j N
)' '2' ..r k..r is
[ a l
- u. l
. I ,," .5 so i:
0 l
- iii';
A g I N5.~ i.i.
. .. m .
y
.. -', y'\ -
M Np a c w
-f.
g
.Li 5;; .. 3 b'. * -
c2
.. {@ a j s- . s 'E ?
w o k, l I 32 i
9,ulatual B l O - T E 5 T laksalmas. ?se. 4
- Table 6. Air particulate s .an'.ex ana -harcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal),
collected near inlet canal (T-1, site boundary, 0. 6 miles NE of plant), Davis-Besse NPP. Data from this table are plotted in Figure 3. Date Volume oCi/m3a ~ On Off (m3) Gross aloha Gross beta 1311 7-01-74 7-08-74 262.6 0.0027m0.0012 0.275*0.007 <0.03 7-08-74 7-15-74 280.5 0.0031 0.0008 0.247 0.004 <0.03 7-15-74 7-22-74 199.3 0.0037 0.0011 0.172*0.004 <0.03 7-22-74 7-29-74 112.6 0.0054*0.0018 0.3~0 0.008
. <0.03 7-29-74 8-05-74 237.3 0.0023*0.0012 0.144*0.005 sd.03 8-05-74 8-12-74 284.3 0.0017 0.0007 0.179 0.006 <0.03 8-12-74 8-19-74 b 8-19-74 8-26-74b 8-26-74 9-03-74b 9-03-74 9-09-74 226.4 0.0008*0.0006 0.052 0.004 <0.03 9-09-74 9-16-74 275.0 0.0009*0.0004 0.042 0.002 <0.03 9-16-74 9-23-74 192.3 0.00L6 0.0006 0.072 0.003 <0.03 9-23-74 9-30-74 164.0 0.0016 0.0006 0.084 0.004 <0.03 Mean *20"' O.0025 0.0029 0.161 0.203 9-30-74 10-07-74 273.4 0.0009 0.0004 0.039 0.002 <0.03 10-07-74 .10-14-74 267.6 0.0013 0.0004 0.037*0.002 <0.03 10-14-74 10-21-74 186.9 0.0016*0.0006 0.055 0.003 <0.63 10-21-74 10-28-74 46.0 0.0034*0.0019 0.101*0.008 <0.03 10-28-74 11-04-74 157.3 0.0024 0.0010 0.120 0.006 <0.03 11-04-74 11-11-74 154.9 0.0027 0.0011 0.093 0.006 <0.03 11-11-74 11-18-74 181.9 0.0021*0.0009 0.075 0.005 <0.03 11-18-74 11-25-74 280.3 0.0007*0.0005 0.052 0.003 <0.03 11-25-74 c 12-09-74 376.4 0.0012 0.0005 0.073*0.003 '<0.03 12-09-74 12-16-74 201.7 0.0019 0.0006 0.072*0.003 <0.03 12-16-74 12-23-74 83.7 0.0013 0.0009 0.041*0.004 <0.03 12-23 74 12-30-74 84.0 0.0015 0.0010 0.055:0.005 <0.03 Me an*2 S" 0.0018*0.0016 0.068*0.052 The error giv_en is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background - sample, b No sample due to loss.of power and malfunction of pump. c Two-week sample due to inclement weather on 12-02-74. 33
r 1.00_. 1.00 e f'
.? \ L. m nl \
d A v u 0.10_ -
- s A .0.10 $
1 h[g
-~ /
mD u'
',v r, ~/ ~ \ e'l 6a , ;
n ,., y OCp D ,
)_
g n - O f
/ C O . s v y n -s f i .v M.v.
f
.v t
L b 11 v
, D g g
- b O'O Ig ,U U' O. \
q b -O m y bp 'l ! 'J - m un
\ f Y
w v beta 0.01- _0.01
~
9 . f
~ /\ TN Y , '1' ~ ~9 / \ rs ,s " '
v- u,
b / \ 3 Acnj n H , ,. It/ Nc -
NL4 ?'06 Y
.. - \n ! .k ! 'hRr' ? e, I i'G r ' ' ~ s!'b-R $ $ ',, s (
R \ if fb f I _ s'
', I bg 'Q Q' si d f a pha -
s
' C 0.001- ,,, , , , , , , , ,,, ,,,, , ,,, ,,, ,, , ,' g,, 7, ,, , ,, , , , -0.001 JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.
O---O 1973 o e 1974 Figure 3. Air particulate sarnples, analyses for gross alpha and gross beta, collected near the inlet. canal (T-1, site boundary, 0. 6 miles NE of plant), Davis-liesse NPP. The data are from Tabic 6
fmbal:ial B l O - T E S T latasabsta. 9m:. Table 7. Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at the site boundary (T-2, 0.9 miles E of plant), Davis-Besse NPP. Data from this table are plotted in Figure 4. Date Volume oCi/m 6" On Off (m3) Gross aloha Gross beta u1I 7-01-74 7-08-74 243.0 0.0025 0.0012 0.260 0.007 <0.03 7-08-74 7-15-74 217.0 0.0037 0.0010 0.258 0.005 <0.03 7-15-74 7-22-74 277.8 0.0039 0.0009 0.165*0.004 <0.03 7-22-74 7-29-74 251.9 0.0044 0.0010 0.252*0.005 <0.03 7-29-74 8-05-74 265.3 0.0040 0.0014 0.123 0.005 <0.03 8-05-74 8-12-74 256.4 0.0022 0.0008 0.174 0.006 <0.03 8-12-74 8-19-74 263.0 0.0016 0.0005 0.128=0.004 <0.03 8-19-74 8-26-74 198.9 0.0031 0.0008 0.163 0.005 <0.03 8-26-74 9-03-74 308.0 0.0017 0.0004 0.110 0.002 <0.03 9-03-74 9-09-74 184.1 0.0021 0.0009 0.138 0.006 <0.03 9-09-74 9-16-74 237.4 0.0016*0.0005 0.097*0.003 <0.03 9-16-74 9-23-74 267.9 0.0013*0.0005 0.077 0.003 <0.03 9-23-74 9-30-74 260.2 0.0018*0.0005 0.072=0.003 <0.03 Mean' 26" 0.0026*0.0022 0.155 0.132 9-30-74 10-07-74 268.2 0.0017 0.0005 0.067:0.003 <0.03 10-07-74 10-14-74 185.0 0.0031*0.0008 0.086*0.004 <0.03 10-14-74 10-21-74 262.3 0.0022 0.0006 0.053 0.002 <0.03 10-21-74 10-28-74 246.8 0.0022*0.0006 0.090 0.003 <0.03 10-28-74 11-04-74 256.9 0.0020*0.0008 0.098*0.004 <0.03 11-04-74 11-11-74 261.6 0.0015 0.0006 0.086 0.004 <0.03 11-11-74 11-18-74 257.5 0.0021 0.0007 0.067 0.004 <0.03 11-18-74 11-25-74 264.7 0.0013*0.0006 0.095 0.004 <0.03 b 11-25-74 12-09-74 570.5 0.0016 0.0004 0.053 0.002 <0.03 12-09-74 12-16-74 242.0 0.0026 0.0006 0.072i0.003 <0.03 12-16-74 12-23-74 123.2 0.0013 0.0007 0.045*0.003 <0.03 12-23-74 12-30-74 120.5 ;0.0006
- 0.044 0.003 <0.03 Mean *2 a' O.0020 0.0010 0.071 0.040
^ The error given is the probable counting error at the 95To confidence level.
Less than (<) values are based on 3 sigma counting error for background sample . b Two-week sample due to inclement weather on 12-02-71. _ _ _ 35
p
.}
1.00 1.00 _ J % Ps_ [
/ A/ AA ps s 0.10-. d / 'd / d -
0.10 A- . T U "x [pfggM E P_
. :>q xy ua -
L v . m %'~pt ,
~
g~ er \ !, r Ok g .-
=
O _ \l a ? .=O ? .
\l O -4 A A g A rn m -e beta 0.01.
_0 . 01. ( 9 - G V n g.
~
YN Q - J% n\ cc'
' n-Q ~
A/\ fM
~ \ F* T e Y 6 i T s P
a f (
~
V b b-+-N_ j _, ', g63 d .
.g_ ~ _
N alpha ) -f s' g - 0.001_. ,,, , , , , , , , ,,, , ,,, ,,, ,,, ,,,, ,,, ,,,, ,,, , , ,g -0.001 JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. i SEP. OCT. NOV. DEC. O---O 1973 0---@ 1974 Figure 4 Air particulate samples, analyses for gross alpha and gross beta, collected at the site boundary (T-2, 0. 9 miles E of plant), Davis-llesec NPP. The data are frorn Table 7. II _ _
e 9mbataal B l 0 - T E S T lakabus. 9a
~ Table 8. Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 , (charcoal), collected near the Toussaint River and the storm drain (T-3, site boundary,1.4 miles SE of plant), Davis-Besse NPP. Data from this table are plotted in Figure 5.
Date Volume oCi/m3a On Off (m3) Gross aloha Gross beta 1311 7-01-74 7-08-74 224.8 0.0028 0.0013 0.294*0.008 <0.03 7-08-74 7-15-74 276.4 0.0035 0.0009 0.254*0.005 <0.03 7-15-74 7-22-74 192.9 0.0042 0.0012 0.166 0.004 <0.03
- 7-22-74 7-29-74 232.1 0.0035 0.0010 0.252 0.005 <0.03 7-29-74 8-05-74 302.3 0.0021*0.0010 0.108 0.004 <0.03 8-05-74 8-12-74 256.6 0.0025 0.0008 0.177*0.006 <0.03 8-12-74 8-19-74 214.1 0.0017*0.0006 0.114 0.004 <0.03 8-19-74 8-26-74b 8-26-74 9-03-74 9-03-74 9-09-74 222.7 0.0014 0.0007 0.062 0.004 <0.03 9-09-74 9-16-74 266.8 0.0014 0.0005 0.101*0.003 <0.03 9-16-74 9-23-74 282.8 0.0011 0.0004 0.061 0.002 <0.03 9-23-74 9-30-74 237._6 0.0019 0.0006 0.087 0.003 <0.03 i
Mean *2 r 0.0024 0.0020 0.152c0.164 9-30-74 10-07-74 306.8 0.0015*0.0004 0.059 0.002 <0.03 10-07-74 10-14-74 224.2 0.0031 0.0007 0.085 0.003 <0.03 10-14-74 10-21-74 262.3 0.0017 0.0005 0.053=0.002 <0.03 10-21-74 10-28-74 265.3 0.0025 0.0006 0.078 0.003 <0.03 10-28-74 11-04-74 253.9 0.0020 0.0008 0.094*0.004 <0.03 11-04-74 11-11-74 276.4 0.0023 0.0007 0.087 0.004 <0.03 11-11-74 11-18-74 268.7 0.0014 0.0006 0.066 0.004 <0.03 11-8-74 11-25-74 285.3 6.0008 0.0005 0.054 0.003 <0.03 11-25-74 12-09-74C 542.5 0.0011 G.0004 0.044 0.002 <0.03 12-09-74 12-16-74 270.5 0.0008 0.0004 0.039*0.002 <0.03 12-16-74 12-23-74 285.3 0.0002*0.0002 0.004 0.001 <0.03 12-23'-74 12-30-74 277.4 0.n003 0.0003 0.026 0.002 <0.03 Mean 2 C" 0.0015 0.0016 0.057*0.054 a The error given is the probable counting error at the 95% confidence leve1I Less than (<) values are based on 3 sigma counting error for backg sund
sample. b No sample due to loss of power and malfunction of pump. c Two-week sample due to inclement weather on 12-02-74. 37
o 1.00 -
._1, og + -
i m ci f a v .T 0.10- .
, .0.10 I pc -~ , j \_g y_p 5 g A -V bq'tf- '" U- *
- qh. ' '
w c : , g_ /'s N / _ag - l\/ % bW
~
h_ 0
$? _h o
__\f ~ Cf e
% l O \ %, % m m
9 , oo beta f 0.01. l _0 , o } i_ _ _ _ 1_t_ _ _ l_:_ ._ i bw / ! \ z-
- T L. _/a\ ;.N l
rs p
~~ \
Hj*_\ Y bs$ f4 a alpha N,. .
' s-bl 1
s ie 1 'a fw ~\ m t 0.001- ,,, , ,,, ,,, ,,, ,,,, ,,, ,,, ,,,, ,,, ,,,, ,,g$ , .g -0.001 JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC. O---O I ??3 0--@ 1974 Figure S. Air particulate sampics, analyse s for gross alpha and gross beta, collected near the Tousshint Itiver and the storm d2.>in (T-3, site boundary, 1.4 miles SE of piant), Davis-llesse NPP. The data are t rom Table 8,
~
A4 dual B I O - T E 5 T %a6w. Ac. [' Table 9. Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal),
~ collected at Locust Point and Toussaint Rive . (T-4, site i
boundary, 0.8 miles S of plant), Davis-Besse NPP. Data from this table are plotted in Figure 6. Date Volume oCi/mda On 3 Off (m ) Gross aloha Gross beta 1311 7-01-74 7-08-74 258.3 0.0032*0.0013 0.276 0.007 <0.03 7-08-74 7-15-74 265.1 0.0029*0.0008 0.253*0.005 <0.03 7-15-74 7-22-74 192.2 0.0046*0.0012 0.174*0.005 <0.03 7-22-74 7-29-74 278.2 0.0039*0.0009 0.221*0.004 <0.03 7-29-74 8-05-74 277.0 0.0027 0.0011 0.137*0.005 <0.03 8 05.74 8-12-74 265.1 0.0022 0.0008 0.205 0.006 <0.03 8-12.-74 8-19-74 263.7 0.0016*0.0005 0.134*0.004 <0.03 8-19 '4 8-26-74 186.5 0.0032 0.0011 0.203 0.007 <0.03 8-26-74 9-03-74 318.2 0.0019*0.0004 0.123 0.003 <0.03 9-03-74 9-09-74 160.9 0.0028*0.0011 0.145 0.007 <0.03 9-09-74 9-16-74 269.8 0.0018*0.0005 0.106 0.003 <0.03 9-16-74 9-23-74 253.1 0.0019*0.0006 0.100*0.003 <0.03 9-23-74 9-30-74 264.1 0.0019*0.0005 0.091:0.003 <0.03 Mean *2 c" 0.0027 0.0018 0.167 0.120 9-30-74 - 10-07-74 278.2 0.0016*0.0005 0.074 0.003 <0.03 1D-07-74 10-14-74 206.3 0.0027 0.0007 0.070 0.003 <0.03 10-14-74 10-21-74 262.3 0.0021 0.0005 0.055 0.002 <0.03 10-21-74 10-28-74 100.3 0.002320.0010 0.01) 0.005 <0.03 10-28-74 11-04-74 132.5 0.0037*0.0015 0. *0.007 <0.03 11-04-74 11-11-74 219.9 0.0033 0.0010 0.t17*0.005 <0.03 11-11-74 11-18-74 273.9 0.0022 0.0008 0.094 0.004 c0.03 11-18-74 11-25-74 276.5 0.0016 0.0007 0.071 0.004 <0.03 11-25-74 12-09-74 b 4 13.0 0.001.%0.0005 0.046 0.002 <0.03 12-09-74 12-16-74 223.1 0.0026*0.0007 0.091:0,003 <0.03 12-16-74 12-23-74 130.3 0.0023*0.0008 0.088 0.004 <0.03 12-23-74 12-30-74 98.9 <0.00vo 0.045*0.004 <0.03 Mean *2 0~ 0.0024 0.0014 0.079*0.046 a The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma c.ounting error for background
~
sample. b Two-week sample due to inclement weather on 12-02-74. l 39
/
)
1.00 _1.00
- p - -
P 3 s > - g r
~ '
r .
\
F.3 9 _a a _
} W ,
0*10 a f% " A 0.10 ps
^
w j AU T c. NO E42 .- {'
~ - -
y 6Kw I h 1
~ - 1 o p-o g \
u- o W'oLy o- v u m n p . g
/\ ,_ o ,, ty~ Q/ ',l \1 6 _g D_ d 'O s J p g n_,, n f 'g
- c4 ,,I U "
D I f ,3 f .. O v
\t [ 3i{
RI o -e -
" z \ A m 8 -
N x / )!
'O _
sn M I \/ -<
\
0.01_ bpela -0.01 ,
~
n _.o ..
.. S s O _
7
~ ~ M \ %
u H i ( ,v _/ % T rfM l\ U Ta ' \ / y, s < '. _ ,
~
l .() \ ' ' ' O p- Q x_2 / \ __ 9_ l V
'. k ." \! ' s" '. 'rA d yk, / Y,M l' Mh.hN ' 'O O - \ /\
D
- 41 41 x jp,< )%d h y
~ ~ ~*~' - -Rl \l \l M Q\
alpha j 0.001- ,,,, , ,, , ,,
) ,,, ,,,, ,,, , ,, ,, , , , ,, ,,,, , ,, , ,c -0.001 JAN. FEB. L1 Alt. APR. hiAY JUN. JUL. AUG. SEP. OCT. NOV. D E C'.
O---O 1973 e o 1974 Figure 6. Air particulate samples, analyses for groso alpha and gross beta, collected at Locust Point and Toussaint lliver (T-4, site boundary, 0. 8 miles S of plant), Davis-Besse NPP. The data are from Table 9
I fadadual B l 0 - T E S T .!d>tahuas la Table 10 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131, (charcoal) collected at Sand Beach (T-7, 0. 9 miles NNW of a plant). Davis -Besse NPP. Data from this table are plotted in Figure 7. Date Volume oCi/mJa On Off (m3) Gross alpha Gross beta 131I 7-01-74 7-08-74 270.9 0.0031*0.0012 0.282 0.007 <0.03 7-08-74 7-15-74 278.7 0.0040i0.0009 0.253 0,005 <0.03 7-15-74 7-22-74 276.0 0.0050*0.0011 0.221 0.004 <0.03 7-22-74 7-29-74 283.2 0.0041*0.0009 0.245*0.004 <0.03 7-29-74 8 74 274.5 0.0020*0.0010 0. 125*0.005 <0.03 8-05-74 8-12-74 256.6 0.0016*0.0007 0.189*0.006 <0.03 8-12-74 8-19-74 261.5 0.0020 0.0005 0.133 0.004 <0.03 8-19-74 8-26-74 159.8 0.0050 0.0015 0.234 0.009 <0.03 8-26-74 9-03-74 277.5 0.0015*0.0004 0.120*0.003 <0.03 9-03-74 9-09-74 147.7 0.0029 0.0012 0.177*0.008 <0.03 9-09-74 9 74 270.9 0.0025*0.0006 0.103 0.003 <0.03 9-16 -74 9-23-74 262.5 0.0017*0.0005 0.104 0.003 <0.03 9-23-74 9-30-74 264.2 L0019 0.0005 0.087 0.003 <0.;3 f Mean
- 2 (7 0.0029*0.0016 0. 175*0. 134 9-30-74 10-07-74 298.8 0.0019*0.0005 0.066 0.002 <0.03 10-07-74 10-14-74 175.1 0.0026 0.0011 0,089*0.005 <0.03 10-14-74 10-21-74 279.1 0.0020 0.0005 0.056*0.002 <0.03 10-21-74 10-28-74 232.4 0.0032A0.0010 0.099*0.003 <0.03 10-28-74 11-04-74 220.0 0.0025*0.0009 0.136*0.006 <0.03 11-04-74 11-11-74 232,9 0.00'3020.0010 0.103 0.005 <0.03 11-11-74 11-18-74 267.8 0.0021 0.0008 0.065*0.004 <0.03 11-18-74 11-25-74 274.7 0.0015*0.0007 0.087 0.004 <0.03 74 b 12-09-74 430.9 0.0017 0,0005 0.068 0.003 <0.03 09-74 12-16-74 218.4 0.0020*0.0006 0.094 0.003 <0.03 74 12-23-74 66.8 0.0012oo.0010 0.072 0.006 <0. 03 12-23-74 12-30-74 234.8 0.0025 0.0006 0,148 0.004 <0. 03 Mean
- 2 & 0.0022*0.0012 0,090 0,056 s
^ The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for the background sample, b Two week sample due to inclement weather on 12-02-74. , 41
9dudual B i 0 - T E 5 T .!analaua. fa-
- o
- o. o
~ o . . m/10d . ,
o , , , o.. ,, ,E , , , o,, i ,a . ,_i o i a o Y A
- y -Q
,9 _
f % l O g b SP /a (f c y .g n dC O . kb.c- Qg' , f' - o ,v v'
~2 -
Z cj
-~ --
og U N( ~ .
- C 5
1"( ,,
+
g6o
-$"3 N
9 o tR s b y O ,e 2 b h i? 2e P O m 8 . sn X ,0 y A _
% ma h c - - ~T , y # hy -
o-
' 'o $ <l - , gg os b -
og a
\
s - D - g.-; g O
.;
O _
~ <0 11 a z y Y, )
A m C C ' - P o , 6 .v = a D m o 8 *e
~.c 3 AsM C- ,o O. .
_ o - _ g
. . m, o
5.
,a O ~
W %
~
U M m an oQ ti b Q, 1 - t-o m r ~
~ % 1 Q ,v ,t y ) f a o kb - > 9 ~1 sn 55 Y CL CK _ - "6 it a
a y O # g - D g
. nEz s% \s M !
m az
=
s% $} d
/
S
< U N 0- kTC . y jg ~lO N c_O.ha . $ v=
X ,:r e .2 e or n T t _. u .O -
.C> . 9
O' s (r. s C%g-- - . A M
~;
r, 3 6 % A n d N cc
. N Q9 - .s , 'f - k / .-
b ~ E 7-~, % 0 4 g 2 . w - r~ o $ 0 l 0 I I $ <$ $ i! l 4 4 i o l 4 *=e ee
- o o gm/TOd ,
- o o .
o 42
fdadual 3 i O - T E S T .Muabsua. fa. Table 11 Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at the Earl Moore Farm (T-8, 3. 2 miles WSW of plant), Davis-Besse NPP. Data from this table are plotted in Figure 8. Date Volume oCi/mJa On 3 Off (m ) Gross alpha Gross beta 1 JAI 7-01-74 7-08-74 198.7 0,0040*0.0016 0.397*0.010 <0.03 7-08-74 7-15-74 224.6 0.0047*0.0011 0.323*0.006 <0.03 7-15-74 7-22-74 246.9 0.0045 0.0011 0.175*0.004 <0.03 7-22-74 7-29-74 282.8 0.0033*0.0009 0.228*0.004 <0.03 7-29-74 8-05-74 264.2 0.0032 0.0013 0.131 0.005 <0.03 8-05-74 8-12-74 252.8 0.0021*0.0008 0.203*0.006 <0.03 8-12-74 8-19-74 277.6 0.0019*0.0005 0. 135*0.004 <0.03 8-19-74 8-26-74 188.2 0.0035*0.0012 0.192 0.007 <0.03 8-26-74 9-03-74 285.2 0.0018*0.0004 0.126 0.003 <0.03 9-03-74 9-09-74 211.8 0.0016*0.0008 0.127*0.006 <0.03 9-09-74 16 -74 201,0 0.0024*0.0007 0.117 0.004 <0.03 9-16 -74 9-23-74 264.8 0.0021 0.0006 0.087*0.003 <0.03 9-23-74 9-30-74 247.8 0.0019*0.0005 0.084*0.003 <0.03 4 Mean
- 2 o' O.0028*0.0022 0,178 0.182 9-30-74 10-07-74 275.1 0.0016 0.0005 0.065*0.003 <0.03 10-07-74 10-14-74 241.2 0.0012*0.0007 0.078*0.004 <0.03 10-14 -74 10-21-74 230.2 0.0019 0.0006 0.052 0.002 <0.03 10-21-74 10-28-74 243.9 0.0031 0.0010 0.094*0.004 <0.03 10-28-74 11-04-74 249.8 0.0034 0.0010 0.205 0.006 <0.03 11-04-74 11-11-74 234.1 0.0034 0.0010 0.107 0.005 <0.03 11-11-74 11-18-74 264.6 0.0016*0.0007 0.067*0.004 <0.03 11-18-74 11-25-74 269.4 0.0016*0.0007 0.076 0.004 <0.03 11-25-74 12-09-74 b 591.3 0.0005 0,6003 0.100*0.003 <0.03 12-09-74 12-16-74 260.4 0.0008*0.0004 0.033*0.002 <0.03 12-16 -74 12-23-74 275.5 0.0002do.0002 0.022 0.002 <0.03 12-23-74 .12-30-74 277.9 0.0006 0.0003 0.053*0.002 <0.03 Mean .
- 2 0- 0.0017*0.0022 0.079*0.094 a The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background sample, b Two-week sample due to inclement weather on 12-02-74. 43 n
- JA>^!d B i 0 - T E S T 2_snahua, fa O- O O
. ~.
O g m/!od O O ee ' t te e e sJ t e e it e e e i t_ i e s W e
~ ' 1 ~ - ,._ e .a wg W eil C oo \ ,0 , .- ) .c .= u ki hn [
v [_ >* 2eu
- ~ ' a ~
O c-
-c n O. &
4
. '.o pf o 'm 2 22 u
- C .
v_ . o o c, b V ' 'c.u - 0 J J r y e-l' U *p . ,a { 6 cr IP' k Jr D [Y 3 [ 4 y
*Z oo A
Cf a J b" a o ko K 3 O mi
- m k ~e (j 8 [ .g i _, ., -a n
e .4 ~ c yo .
/ m e g
a m2 n-A "C o% o
'O c: \w 'O '
a
.g %F- W.E u-I " ~
Z o dC c i c. w p'
- 9 6 m m s:
om M . .! 4 O
~~ mg ~? y.
c(7 (vo c - > 9 s .s
,s d - $ i "'E h d vkl'(% ., 'b is y%mb c
- 6. . -
s o- 6% s
. 5*
sm e,
~
d2 O' n~ 4 ot 9 O- W - ci 3p 2
.o ,< oc -c a> 3 * ~~
OT --C 25-l
' ~
gk~ O lC2 -
- 2. S .E c cc s
- o=
a 3 p M .- y 39. .
' . % <; 4 ?
A. d ~~O f 9 gM' - d v 8
'O a Z u 4 2 3 - b @
m 'O rr 1 To E O I l8 c ' O sieie i 6 1 a6saie 1 e a i 4
~
g m/Tod . 8 O O
- O 44
9dudaal B i O - T E 5 T h!w.ah ia. 9m.
. Table 12. Air particulate samples and charcoal filters, analysis for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Oak Harbor (T-9, 6. 8 miles SW of plant), Davis-Besse NPP, Data from this table are plotted in Figure 9.
Date . Volume oCi/m a" 3 On Off (m ) Gross alpha Gross beta 131I 7-01-74 7-08-74 232,4 0.0045*0.0016 0.354*0.008 <0. 03 7-08-74 7 74 283.7 0.0031*0.0008 0.189 0.004 <0.03 7-15-74 7-22-74 175.0 0.0052*0.0014 0.194 0.005 <0.03 7-22-74 7-29-74 257.0 0.0032 0.0009 0.200 0.004 <0.03 7-29-74 8-05-74 200.5 0.0031*0.0015 0.159*0.006 <0.03 8-05-74 8-12-74 261.0 0.0024*0.0008 0.187 0.006- <0.03 8-12-74 8-19-74 278.2 0.0020 0.0005 0.131 0.006 <0.03 8-19-74 8-26-74 171.5 0.0024*0.0010 0. 176*0.007 <0.03 8-26-74 9-03-74 3 16. 3 0.0016 0.0004 0.121 0.003 <0. 03 9-03-74 9-09-74 148, 1 0.0028A0.0012 0.172 0.008 <0.03 9-09-74 9-16 -74 260.6 0.0017*0.0005 0.108 0.003 <0.03 9- 16 -74 9-23-74 262.7 0. 0016 c. 0005 0.087 0.003 <0.03 9-23-74 9-30-74 283.0 0.0019 0.0005 0.086*0.003 <0.03 i Mean
- 2 o' O.0027*0.0022 0.166*0.138 9-30-74 10-07-74 276.5 0.0019*0.0005 0,063*0.002 <0. 03 10-07-74 10-14-74 171.9 0.0024 0,0011 0. 097c0. 005 <0.03 10-14-74 10-21-74 249.2 0.0013 0.0005 0.055*0.002 <0.03 10-21-74 10-28-74 237.2 0.0030 0.0009 0.225 0.007 <0.03 10-28-74 11-04-74 304.2 0.0016*0.0006 0.087*0.004 <0.03 11-04-74 11-11-74 230.7 0.0035*0.0010 0.103 0.005 <0.03 11-11-74 11-18-74 262.5 0.0016 0.0007 0.082 0.004 <0.03 11-18-74 11-25-74 284.3 0.0012 0.0006 0.067*0.004 <0.03 11-25-74 12-09-74 b 457,6 0.0019*0.0006 0.060 0.003 <0.03 12-c -74 12-16-74 224.2 0.0028*0.0007 0.087*0.003 <0.03 12-16 -74 12-23 -74 104.5 0.0012 0.0008 0.05210.004 <0.03 12-23-74 12-30-74 124.5 0.0021 0.0008 0.161 0.005 <0.03 Mean *2a 0.0020 0.0014 0.095*0.102
^ The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background ! sample, l b Two-week sample due to inclement weather on 12-02-74. 45
./-% - - - . ,
fn4atual B i 0 - T E S T 2.skabues fau:. o o - o
. ~. m/Tod .
o
,i ,
- o. . . . . .g .. .
ei /.ii , ; e C- '
'J l \
3 d g 3 3t ' c s K >A W Q .x o
~ /t 3 4 \ 32 .d l 60c 0~P .
m' 3 # O .e E g x
$[ ~
J D __. LYM WR n
._o M j p R -
2ou c I- - y, 8 'e, a ,, ' K - o
' C ~ o ~~
s 'o 'o 19 ".@ l$ 0 x b I, _
= .$ o -
f % A cs - m "H o - . oC M o -
. m o ds e u ,. 'c C (b -
ag
.* 71 N s C
2 Zo A . .- - O - n
,e 0:: ,'
y> t ".. '~ m W. g . < e
.="
- - o 2 . c.. e :::
d, *
~
d
- 9' .o '~ A 4
fK N S os
'" C' ~
ON
$-o l
_O
~
D o 8%
"'8 o" g
C' w ~~ "c.
% ' u " f.. ,
e- .;' 'o
';,p *:i , ai, =
o . , _ % ~ i QO C% $1 d )3 A1 ja
% <( (L'o). - > 9 . ? <? -
s em ) W b ik ( G Cf
,o o, O
Q' 20
~
g, zg =g n m co N-::o s " O
+ 7t-l n .,O cc % ci. s ~ %~4, . J - -e s- .~ _
g c i O-- Jo .
'. O '
cm -- -
+ ~7 3t ;H 9 P ICA Ys . : 2. o as 3s ~ .
g u h 0 n y D['~ O
- P A' . . Cf _
c: y ci a-o h - i e
=
N 6l ~ if o's a ', ii o
~
tai 6i o e i ti,i ei i ,, i gm/Tod . 8 , - o o . o 46
9dadual B l 0 - T E 5 T hkahua. != Table 13. Air particulate samples and charcoal filters, analysis for gross alpha and gross beta (particulates) and iodine-131 (charcoal ), collected at the Erie Industrial Park (T-10,
- 6. 5 miles SE of plant), Davis-Besse NPP. Data from this table are plotted in Figu2ce 10.
Date Volume pCi/m aa On Off (m3) Gross alpha Gross beta 13 1I
.7-01-74 7-08-74 260.0 0.0016*0.0010 0.270 0.007 <0.03 7-08-74 7-15-74 282.9 0.0024 0.0007 0.231*0.004 <0.03 7-15 -74 7-22-74 285.4 0.0040 0.0009 0.202 0.004 <0.03 7-22-74 7-29-74 283.7 0,0039*0.0009 0,162*0.004 <0.03 7-29-74 8-05-74 261.5 0.0020 0.0010 0.132 0.005 <0.03 8-05-74 8-12-74 264.9 0.0025*0.0008 0.182*0.006 <0.03 8-12-74 8-19-74 269.7 0.0018*0.0005 0.119*0.003 <0.03 8-19-74 8-26-74 171.5 0.0031 0.0012 0.209*0.008 <0. 03 8-26-74 9-03-74 317.9 0,0018 0,0005 0.123 0.003 <0.03 9-03-74 9-09-74 170.7 0.0016*0.0009 0.155 0.007 <0.03 9-09-74 9-16 -74 271.1 0.0016 0.0005 0.097 0.003 <0.03 9-16 -74 9-23-74 262.7 0.0016 0.0005 0.083 0.003 <0.03 9-23-74 9-30-74 277.9 0.0021 0.0005 0.083 0.003 <0.03 f
Mean
- 26 i 0,0023*0.0018 0,158 0.118 9-30-74 10-07-74 272.3 0.0016*0.0005 0.064 0.003 <0.03 10-07-74 10-14-74 264.7 0.0020 0.0008 0.077 0.004 <0.03 10-14-74 10-21-74 265.9 0.0015*0.0005 0.059*0.002 <0.03 10-21-74 10-28-74 245.7 0.0030 0.0009 0.088 0.004 <0.03 10-28-74 11-04-74 270.6 0.0028i0.0009 0.095 0.004 <0.03 11-04-74 11-11-74 245.9 0.0027*0.0009 0.094 0.004 <0.03 11-11-74 11-18-74 260. 8 0.0025 0.0008 0.081 0.004 <0.03 11-18-74 11-25-74 266.7 0.0015 0.0007 0,074 0.004 <0.03 11-25-74 12-09-74 b 457.6 0,0013 0.0005 0.081 0.003 <0.03 12-09-74 12-16 -74 257.4 0.0021 0.0006 0.082 0.003 <0.03 12-16 -74 12-23-74 104.8 0.0019 0.0009 0.072 0.004 <0.03 12-23-74 11-30-74 105.5 0.0014*0.0008 0.062 0.004 <0.03 Mean
- 2o- 0.0015 0.0010 0.077*0.024
^ The error given is the probable counting errcr at the 95% confidence levle.
Less than (<) values are based on 3 sigma counting. error for background sample. Two-week sample due to inclement weather on 12-02o.74. l 47 u_ __. 2 __ _ .
. _ . __ _ _1
Adadzial B 10. T E S T lakabua. %
~
O O - O o
. ~. g m/39d . ,
M O
,l t .. . . O. . 1 ,e i . , ei,, ,,e i , O. ;
b [ Y (I G _ Q "2 % C ..h 4 '; o CI U _ lE$ Cs D, [
. --.O y"- ., _o a .r.O (r y )b -
S
'E U
s
'O O
U i l - O .i n' J O C l vL
~
a ,C 4 . W 0 m (X *. 47 O(C ) *
- Uf e' [O 9
s <x _
) )(> - ~
0 2 } ,$: 2 9 C 7 a h ~o5*;,; A - c "'- d $$ o y d - o D
" n 2e c'.,
e' o' d C _. hd - w _ -], _ __ 'O S N.,G' a M e[a i lC Ofs
$c S 3 * ~ 3' K O~~ g O *%
gc n
> Ynm C er , $ i 3 o
7 k - . -
^ b f._A .d s . . a C. d kh y (
o a =- I ,dI ~
< 3d l O~ $ u- 4 ~ o, ;- .e s ~ ~9 u-9 < u-1 . -O'- --O 2 0 .3 m,2 Rt- _,
63 a -s_ et %3 N, e -
- q w .
- a
- c. a .a-a k V N- y r .u 3 4
.e 'g r 44h e O O
($ - 4 o
& , p@ - .
t( bc:, A 9 d E g -
< s a ! '
inna W e
~ 'C i i ses Y
ii e i a i
~ ~ ?*
O o ,,,,
~ o 'O E m/TOd ~ O O .
O 48
fonduM 8 i 0 - T E S T ladosa!*aas. 9a
, Table 14. Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Port Clinton (T-11, 9. 5 miles SE of plant), Davis-Besse NPP. Data from this table are plotted in Figure 11.
Date Volume pCi/mJa On Off (m3) Gross alpha Gross beta 1*lI 7-01-74 7-08-74 256.0 0.0024ad.0012 0.303*0.007 <0.03 7-08-74 7-15-74 274.9 0.0048*0.0010 0.252 0.005 <0.03 7-15-74 7-12-74 198.8 0.0048do.0012 0.200*0.005 <0.03 7-22-74 7-29-74 218.8 0.0039*0.0011 0.268 0.005 <0.03 7-29-74 8-05-74 257.1 0.0027 0.0012 0.139*0.005 <0.03 8-05-74 S-12-74 230.7 0.0031 0.0010 0.217*0.007 <0.03 8-12-74 8-19=74 253.7 0.0017*0.0005 0.133*0.004 <0.03 8-19-74 8-26-74 221.0 0.0031*0.0010 0.191 0.007 <0.03 8-26-74 9-03-74 301.4 0.0014*0.0004- 0.124 0.003 <0.03 9-03-74 9-09-74 168.9 0.0024*0.0011 0. 152 0.007 <0.03 9-09-74 9 ,16 -74 274.1 0.0015*0.0005 0.105 0.004 <0. 03 9-16 -74 9-23-74 257.8 0.0011*0.0006 0.090 0.004 <0.03 9-23-74 9-30-74 244,4 0.0023 0.0006 0.083 0.004 <0.03 i Mean
- 2 0 0.0027 0.0024 0. 174*0. 142 9-30-74 10-07-74 278.2 0.0021*0.0005 0.069 0.003 <0.03 10-07-74 10-14-74 251.4 0.0020*0.0008 0.073 0,004 <0.03 10 '14-74 10-21-74 263.0 0.0015*0.0005 0.069*0.003 <0.03 10-21-74 10-28-74 220.4 0.0029*0.0010 0.097 0.005 <0.03 10-28-74 10-04-74 270.4 0.0024 0.0008 0.101 0.004 <0.03 11-04-74 11-11-74 239.5 0.0027 0.0009 0.090 0.004 <0.03 11-11-74 11-18-74 263.1 0.0021*0.0008 0.069 0.004 <0.03 11-18-74 11-25-74 260.4 0.0015 0.0007 0.074*0.004 <0.03 11-25-74 12-09-74b' 462.9 0.0020*0.0005 0.071*0.003 <0.03 12-09-74 12-16-74 246.8 0.0019 0.0005 0.094*0.003 <0. 03 12-16-74 12-23-74 98.0 0.0014 0.0008 0.044 0.004 <0.03 I
12-23-74 12-30-74 220.8 0.0021*0.0006 0.127*0.004 <0.03 Mean
- 2 o- 0.0021*0.0010 _0.082 0.042 i a The error given is the probable counting error at the 95% confidence level. l Less than (<) values are based on 3 sigma counting error for background b***Pl*
Two-week sample due to inclement weather on 12-02-74 l 4 49 l l
- Adudu'al B I O - T E S T AW k o
o - g o
. ~. tu/Tod .
iso ' " o,, , , , ,g , , , o,, , , , , ,,, , o, ,e W42 ;3 M - 0
=
o W a'- C- ' O c oa a13 e Lb nT o '
%Ec u o /u -
o _C [A O, 5 b^ - Z U c.
,:'o. s.co - o 5 =4 G4F ~~ ,O .
1 C<', ,
~-.=.C(
O o .t=:
. - w,_. __. .
b c
' p O
O, mn' eT s s _-o
.s x - O J u=
l l -- -- y 3
-~ ~
l% g / - W en cc y z. m _. > Ce. z D 3C 0 f d(2 - oy
. -c a ?
j 1"'
-. y -
o - g .d A j] Is '
,~.c, " :r' "O,, -h -
n .- N- (a 3 w% ~ 0 j oo sR c-
- 5. -
C s ~n n . m et . A N .a o q_- .=.
^
C - S~ y O5 f O
${'s- 33 -
z* , e CI O ,b - D m $ b s. d
- 2. n-
- c-es w1 ~
g~ ~ 7x (3I < hO
\
l' L 2 d g I gzm a #
- r. -
3 'E T \ _' l h c. ~
,4 s O A , .
- E*
N 3 (I, (, - f S CL 30 cy -%, ' 4 S u -- , .. . .I! _- d =
.s$ / UH W J gi C~ ~ ~ . Cc Ng Y ,0 y. h
_,J. . =y c .c :
? <
3' O, p ' ~ M <G q' - 3' b 'o '
% , -O ~
Y] .O' ) p' .
~
kh M * [7C cf - f e y (T 3
< g W f 4 D -
g on o i 8 ' 6 gai i i i o
..iiii, , , , \ --, . o E tu/Tod - o g o, o
50 l
~
~- - - . . .
fordadual S i O - T E 5 T .lak.!er few. J ( Table 15. Air particulate samples and charcoal filters, analyses for groas alpha and gross beta (particulates) and iodine-131 (charcoal), collected at Toledo (T-12, 23. 5 miles WNW of plant), Davis-Besse NPP. The data from this table are plotted in Figure 12. Date Volume DCi/mda On Off (m3) Gross alpha Gross beta 01I 7-01-74 7-08-74 217.4 0.0025*0.0013 0.308*0.008 <0.03 7-08-74 7-15-74 247.8 0.0039*0.0010 0.227*0.005 <0.03 7-15-74 7-22-74 164. 8 0.0057*0.0015 O.229 0.006 <0.03 7-22-74 7-29-74 285.4 0.0048 0.0010 0,195*0.004 <0.03 7-29-74 8-05-74 249.8 0.0019*0.0011 0,132 0.005 <0.03 8-05-74 8-12-74 174.9 0.0033*0.0012 0.225*0.008 <0.03
. 8-12-74 8-19-74 226.8 0.0020*0.0006 0.138 0.004 <0.03 8-19-74 8-26-74 192.4 0.0023 0.0010 0,179 0.007 <0.03 8-26-74 9-03-74 288.6 0.0015*0.0005 0.118 0.003 <0.03 9-03-74 9-09-74 193.9 0.0030 0.0011 0.129*0.006 <0.03 9-09-74 9-16 -74 242.1 0.0023*0.0009 0.113 0.005 <0.03 9-16-74 9-23-74 254.8 0.0023 0.0008 0.087 0.004 <0.03 9-23-74 9-30-74 54.7 0.0020 0.0008 0.088*0.004 <0.03 I
Mean 20- 0,0029*0.0024 0. 167*0. 134 9-30-74 10-07-74 264.7 0.0042 0.0005 0.060*0.002 <0.03 10-07-74 10-14 -74 238.8 0.0025 0.0009 0.077 0.004 <0.03 10-14 -74 10-21-74 256.5 0.0020 0.0005 0.053 0.002 <0.03 10-21-74 10-28-74 249.8 0.0031 0.0009 0.092 0.004 <0.03 10-28-74 11-04-74 254.0 0.0033 0.0010 0.111 0.005 <0.03 11-04-74 11-11-74 237.8 0.0025 0.0009 0.094 0.005 <0.03 11-11-74 11-18-74 259.2 0.0018 0.0007 0.071 0.004 <0.03 11=18-74 11-25-74 259.2 0.0021 0.0008 0. 116*0.005 <0.03 11-25-74 12-03-74 257.8 0.0011 0.0003 0.056 0.002 <0.03 12-03-74 12-09-74 190.6 0.0031 0.0011 0.094*0.005 <0.03 12-09-74 12-16-74 228.3 0.0025 0.0006 0.095 0.003 <0.03 12-16-74 12-23-74 165.0 0.0026*0.0008 0. 123*0.004 <0.03 12-23-74 12-30-74 256,9 0.0021 0.0006 0. 134 0.004 <0.03 l l Mean
- 2 o- O.00'24 0.0012 0.090*0.052 a The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background sample.
-i 51
fndaA !d B I O - T E S T 2dm:4da, fe o
- o o ~
C, . gM/IOd . . o oei/,ii e , o e , , ,, ....,,e : , , _ i h' - k3 '
.y ) [)O s
[
~
d w Sa 4C T C - Q ~$ lDM - n - 3 D3 h e e' i ,V
"~ ~ .
O G - na n
# ( (__s, I .13./ ] h-d _
gg
=~QQ W --- ~
Q3 Q> 0-, s, y.
;J (q ~~
H U o s , , g , u
]% <r ;d *J. -
32
-a l).,g k' O -.)- ,,
g g m 'c a o
/
yc' 'O ' (,( W
----s - m 0b to =
w' -= Cf ~ g
; 'e C. g -
0 D - $ [-ZL'1 N \ < 1 e
\> 3 >3 J O '2 m J' & \ %2 .
a $ 9 ' , e .-l m ::; e
.- M a E )
co .g 20 ) .8 o -
'n' . '; y&
V O \ @bX *- O m m - h e $?
> n- - .a w\ /
O
? [ >< 9 5 KA 1 . ,e f a w .>d b nu4z a% o -
5 cfif, c: if S am 4 m o n d 4.Y'I
~ < 3Y GT ) b. p
5 0 G .
. --c P 3-o a 2: 0 (Q
O~~ . ttC[1T
~ 's ,
e s-,
$ N, YN & s d
y .O
?U' u k < ,F, s5 N /c / 0 . .' /d _
m L s cf'b d. 6 - - 2 o u y / ja
/
D - M A o M 10 m ;-- i o iIl i 84 ii8 ij t ii i1 6.. o(8 l' i 6 m w o o g y/gC.f n o o
- o o .
o 52 m_.
fndudual B 10 - T E S T 2almahua. k. p
- Table 16. Air particulate samples and charcoal filters, analyses for gross alpha and gross beca (particulates) and iodine-131 (charcoal), collected at Put-in-Bay Lighthouse (T-23, 14. 3 miles ENE of plant), Davis-Besse NPP. Data from this table are plotted in Figure 13.
Date Volume pCi/maa On Off (m )3 Gross alpha Gross beta 131t 7-01-74 7-08-74 231.9 0.0035*0.0014 0.288 0.008 <0.03 7-08-74 7-15-74 210.9 0.0047 0.0012 0.267*0.005 <0.03 7-15-74 7-22-74 180.4 0.0052*0.0013 0.215 0.005 <0.03 7-22-74 7-29-74 232.2 0.0050 0.0011 0.228 0.005 <0.03 7-29-74 8-05-74 259.4 0.0020 0.0011 0.136 0.005 <0.03 8-05-74 8-12-74 200.3 0.0031 0.0011 0.177 0.007 <0.03 8-12-74 8-19-74 255.8 0.0012 0.0006 0.116 0.005 <0.03 8-19-74 8-26-74 212.0 0.0022A0.0009 0.158*0.006 <0.03 8-26-74. 9-03-74 3 13.4 0.0012 0.0004 0.113 0.003 <0.03 9-03-74 9-09-74 225.2 0.0021 0.0008 0.112eo.005 <0.03 9-09-74 9-16 -74 260.8 0.0017 0.0007 0.090 0.004 <0.03 9-16 -74 9-23-74 273.8 0.0012 0.0006 0.083e0.004 <0. 03 9-23-74 10-01-74 3 15. 9 0.0013*0.0006 0.075 0.004 <0.03 Mean 20" 0.0026 0.0030 0,158 0.142 10-01-74 10-09-74 323.2 0,0020 0.0006 0.074 0.002 <0.03 19-09-74 10-16 -74 234.1 0.0018 0.0008 0,073*0.004 <0.03 10-16 -74 10-22-74 274.1 0.0016 0.0005 0.060 0.002 <0.03 10-22-74 10-30-74 273.2 0.0027 0.0008 0.105*0.004 <0.03 10-30-74 11-06-74 253.5 0.0021*0.0008 0.080 0.004 <0.03 11-06-74 11-12-74 202.7 0.0033 0.0011 0.106 0.005 <0.03 11-12-74 11-20-74 321.3 0.0018 0.0006 0.066 0.004 <0.03 11-20-74 11-27-74 279.5 0.0012*0.0006 0.052 0 003 <0.03 11-27-74 12-04-74 271.6 0.0012 0.0006 0.059 0.003 <0.03 12-04-74 12-10-74 202.5 0.0032 0.0011 0.094 0.005 <0.03 12-10-74 12-17-74 234.5 0.0029 0.0007 0.087 0.003 <0.03 12-17-74 12-23-74 R28.2 0.0025i0.0006 0.099 0.0'03 <0.03 12-23-74 12-31-74 312.2 0.0023 0.0005 0.126 0.003 <0.03 Mean *2 a ~ (0.0022*0.0014 , O.083 0.044 a The error givenis the probable counting error at the 95% confidence level. Less th'an (<) values are based on 3 sigma counting error for background sample. 1 53
fodudval B l 0 - T E S T 2 doms. 9au:.- o o
- o
~
gW/Tod o,,, o o e ii*e . . iti e ie , n1 : v *
,, w ,i %9~ 4 ~
O 4, ( 6 a N p e 3 2,_ _
,yy , p; 3'.1 G 6 . % ~
(X h. -3 7 c 'O.. O _4 5 k.
~ , :0 . 6 :) =
x
~Mg n%w'O q . --6 ~ . 0 u $,
Q c3. - - - e 91
- , f -
O gA lf )M ' N
,0 . ~
j.b;
. - crN &s T .
4 a m *
, 0 , .O. -
W c
- h d ) ~ * / w ' y = n nm>
a f
~n #' . v t
O d'
~
O O d %
$ C ~ ~
5
- A X.
A '(.L . _ pa i O ag V 10 - JU . a r1 CI p g ha
, Ih O~
_'O . d
\e'O I <W. _
a
. , a2 l/ :~s O' .E A w
M9 2
$ :* m G or A -
o m a u-u
/
b s O- - M N o 4 l U's l l i Cs 'l Oo o
~'
x
~' '3 'p m l.(s - s i s em N v 'O ,4 O.
_ de c i 4
/ p eg' W , of a o-v v~ . rga W ~
a 9,f $ N %
~ 'C "
O ~ f A h'5*5 O, ..P W 2 $ e~ a U- 31 om d
-ao U hk o c *-a E - tl % - "b .4 - - ~ ..A *:u C, ,o s
n- \g _ h,
.s e h '
- 9) ~
i d s Q $ Q % " ~*
.c ct a )h..<x -n
[
/ LP W e /y a \ ,-
c N Z u a - N 0 Cs
~ < "e 1 1
1 I ../
'O o / 'O ~ %
[, osiiaai i 4 i e i i 6 4 16 i6 i6 i a a o ~ i
~ l g m/Tod . .-* o o . 1 o l l
54
W fndudaal B i O - T E S T lasmiaua. fac.
'" Table 17. Air particulate samples and charcoal filters, analyses for gross alpha and gross beta (particulates) and iodine-131 (charcoal), collected at McGee Marsh (T-27, 5. 3 miles WNW of plant), Davis-Besse NPP. Data from this table are plotted in Figure 14.
Date Volume pCi/m k On Off (m3) Gros s alpha Gross beta 13 1I 7-01-74 7-03-74 263.4 0.0036*0.0013 0.290 0.007 <0.03 7-08-74 7 74 286.1 0.0030*0.0008 0.238 0.004 <0.02 7-15-74 7-22-74 198.4 0.0038 0.0011 0. 154 0.004 <0.03 7-22-74 7-29-74 224.4 0.0039*0.0010 0.316 0.006 <0.03 7-29-74 8-05-74 260.1 0.0020*0.0010 0. 136 0.005 <0.03 8-05-74 8-12-74 269.4 0.0022 0.0008 0. 172 0.006 <0.03 3-12-74 S-19-74 277.4 0.0014 0.0004 0.128 0.003 <0.03 8-19-74 8-26-74 207.9 0.0021 0,0007 0.177 0.007 <0.03 8-26 -74 9-03-74 310,4 0,0016 0.0004 0.126*0.003 <0.03 9-03-74 9-09-74 220.1 0.0019 0.0008 0.119*0.005 <0.03 9-09-74 9-16 -74 269.2 0.0019 0.0007 0. 106 *0.005 <0.03 9-16-74 9-23-74 271.2 0.0021a0.0008 0.091 0.004 <0.03 9-23-74 9-30-74 275.1 0.0026+0.0006 0.082 0.003 <0.03 Mean
- 2 6 0,0025 0.0016 0.164*0.148 9-30-74 10-07-74 273.6 0.0019 0.0005 0.063 0.002 <0.03 10-07-74 10-14 -74 192.8 0.0033*0.0011 0.080 0.005 <0.03 10-14-74 10-21-74 261.0 0.0016 0.0005 0,052 0.002 <0.03 10-21-74 10-28-74 125.0 0.0024 0.0012 0.112 0.007 <0.03 10-28-74 11-04-74 264.3 0.0014 0.0007 0.223 0.007 <0.03 11-04-74 11-11-74 247.6 0.0031*0.0009 0.096 0.005 <0.03 11-11-74 11-18-74 267.0 0.0014*0.0006 0.066 0.004 <0.03 11-18-74 11-25-74 273.6 0.0017 0.0007 0.070 0.004 <0.03 11-25-74 12-09-74 b 570.9 0.0010 0.0003 0.025 O.002 <0.03 12-09-74 12-16-74 N.S.c _ _ _
12-16-74 12-23-74 122.9 <0.0005 0.009 0.002 <0.03 12-23-74 12-30-74 123.2 0.0009 0.0006 0.060 0.004 <0.03 Mean 2(J 0.0019*0.0016 0.078 0. 112 a The error given is the probable counting error at the 95% confidence 1cvel. Less than (<) values are based on 3 sigma countirg error for background sample.
.b Two-week sample due to inclement weather on 12-02-74 C
No sample due to power failure. 55
; Adanial B 10 - T E S T lah4v.ia, Ac.
- m O O O O ~ o
. . g m/t. od ,
O O O g suI : , o e t* r .( , i tt iie t t t I t , W%m l n '- % V
- y h 4 V dO 3 b W C'$
p y o a -,
/ /- 4 -
W' T C Q. -
~. .t o / 'Os, ' )
g g - O 5w k O ['O d M 30* w o.r -' s -4 m e-v" 30 g - s C-
- M -
P O o
.c li i }
s 0 s N . g , e
.3 o e 'C E ~
d E =o
= :*
o g(' o 6 a
,- oo ) _ ;;; = ,-
C - - JY m 8X o-pt.. . 2g ( '
.g s,.
o"
, , ~$ o /o' ,y-1 g - D '=.' _c = , -o N \ M -$ ) . O O., O qm ff ' y.q ~
m i o,.73,_ 'ro -
$, O 8E s -c $
drn ' ,o .=a
.~
cc .- .
'a~ -
c
-Q V .a N c
2 c Y' jn - ~
- a. - 4 , 5.
? D -Q . 50o 0 -
- e. Q. C-. , a-- i .:
C e N d b 3 - > 9 a--- o
/ d ~ $ I -
e 0
% n .o - ' 0 E.=E 7 >
i
= ;
ko >~ O Y kY o .' - .
% - = .
N g 4 g o o "Y- C
.N S /q' *i O . y $
C' , x .
$ G=
CC .C f 9' __ - ] _ a Oh l ,v %- ca Qc l .
. o,-
a b f Q * ** 41 N Nd
,]h o '
k'o '
':D ~
N {) 6 O' - H b
..o -
s aC - z 8 7 - A7 ' m E lCN l -O ,-O ;"- O
, i l ,
O iniiii i a i siniei i i i
- C g m/IOd , g
- O O .
O 56
s w-fndudaal B l 0 - T 5 S T .fak.abaa. 9a g-
$g b O O v - N b T O M W.2 4 v4&NMombOOW-TvbmTM ombmbb TbbCM omo-Nbb TT-2M O a y M NNNN MMNM M NM - -- NN N-NNN- - C-- ^ # g 00000000000 0 0 00000000000 000 o E h %
m 0 6 C
- a 3 NmcV-mONomm4 &Mmtm--mMN42 NN-4 3 644 MNbm4CO-m NNOM NMM-M M- N Tb4 -
d .e ---- N---N-N~ - ---M -M ---m - OOO d u = , , , , , , , , , , , , , , , , , , , , , , , , , , , g j ;4 OCOeOOeOOOOO COCOOeOOOOOO COe d a m
- O U
- k M MvN-O-464 COO N bM ComM- C@bM M OC O g g mmy mmem-mymm eymppgeggeym epp k k NNNNNNNNN NNN m ~~ ~m - -m - m - - Co oO M C . . . . . . . . . . . . . . . . . . . . . . . . . . .
p > OOOOOCOOOOOO OOOOOOOOCOCC OOO O 4 d e G [g h g TTm4CNNCdbN@ mVM vmvmvvmmM M omNOm--M M -. N N vNM mMMMM F. M N 4-0
- N-d . C00 0 00000000 0 000000000 00 000 *d C0000C0 00000 000 000C00000 000 6 - n 0
m M e
- OCOOOOCOOOOO OCOOOOOOOCOO OOO C C M d %
d Q e E a s3 beco-M -4?mmO bebe4&OmbmNT WM -
.J
- N NN N MMM m N NM M ------NM - - - - C -~
C 0 00 0 0000 0 000 0 000 0 00 000 00 0 0 0 Z ~6 C CO O OC OOOOO O C0000 000 0 0 00 COO Q 7 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
" A ; OCOOOCOOOO O O OCOOOOCOC CO O OOO o' %
ma 0 h Z C p C ri b4*b""OOON44 M MM M "? TM vvT M Ob"TbbO TbT"O N NNNN NNNNN N-Nb* 0
> 4 0 b* 4 d C 00 0C 0 0 0 0 00 0 0 00 0 00 0 0 0 C0 0 0 0 0 0 00 000000 000 0 C00 0 00000 0 0 00 0 d M U . . . . . . . . . . . . . . . . . . . . . . . . . . .
yU > OCOOCOCOOCOO OCOOOOOOOCOO OOO "C 4 cC *' O$ hdQ M 0 M . uC C CT 4
- e ,h wwnrv,Mw,M,w NeMr,,,w, Mrv Tmv M, Ob- "d a . ,G u Z *o e U k A d s %Q n
O O O-NMN Om NMb C U -NM46D7--m NN m NM 46DO---NN - NM C C g I e I e I I t e I e I t e a e : I e s I I e I I a o Qe U o bbbbbbbbbbbb bbbbbbbbbbbb bbb Mumb d y 45 u O M O
$C "
c Y 0 5 "g d A a = a b h 4 M 57 I i
9eLMd B l 0 ^- T E 5 T h!ade.ia, fa
, E I
tti 6 6 N to N C% Me - C CC T Cs v tt) CO 6 N in N O CD tw me b v 6 N tw tt) tt) N-N O CN 6 t* CN C% N CO CS C% C- N C% CO NM
*y - - --- - -- - OCoooNOOC-- -oO--
M d oeoeooooe ooooooooeooo ooooo E E '
%e O
- c. E d
h -WheMMWmN es co e m m m m t- m NM MmeNmomM CM NNT-m
** e Minin m tntntnin e m e e tn e m e- o 0 oOCCCOoCO oOCCCO OCCC CC CeoCC C . . . . . . . . . . . . . . .'. . . . . . . . . . .
OCCCCoOCC CCCCoCCCCOCC oCOCC m m 2 O k c Q C0 C m c0 00 in CO - t* tri Ln
--O-C-O CO T Cs N CD N O N N - CC 6 tn tw it)~ b CO Ch C tn tu e t- t- > - > > > > t' CO CO > C% C%
k - - --.=--C- OCCCOC-C O CCC O ooCo C . . . . . . . . . . . . . . . . . . . . . . . . . .
> CCCCoooCC CCoOCCCoOCCC OCCCC A
9 m C% vm-*C-e v - - t* N - C C C% - t- M t= - M t- O d NNNNN N M NN M MM NMMM M NM NM N N NM M _ CCC C 3oOCC C CCO C COOC CC C C C C C O M ]G O COCO CCCO CO CC OO OCCCCC CC CO O E o CCCCCCoco CCCCCoCCCOCo Cocco 3 4 0 c.
~ A =
d 3 c0 tn e so e - m N e es t- tn e Cs N M m in C e e t- M cc e in
--------- C = ------- N-- C - C .-a - .C COC COO CCC CC CoCOCCC CCC O C C C C .c.6a = C 0000000C C C CoeC C CCCOe CO CO C n *y . . . . . . . . .
CCCCCOO OC CC CCCCCOO coo COCO C n 4 m O k U - - in cs N t* N in o cc M N N T C N - - tt) OM C f* e t- M O to N N N .*.= - N - N - NNNN NN NNN N N N --N N M C C CCCCCCC CC CCOCCCC C CC C CCC C 4 O OCoO CCCO CC COCooooCCC OC CC C 0 . . . . . . . . . . . . . . . . . . . . . . . . . .
> cCCCCCCCC CCCCCCCCCCCC oCOCC d
m b U
#v3 E &a om m m m entata m m m ,awvn,,w,,ww w,v,w ;
ZwO l 1 o O C"NMM C-NMN U w e- e cs - --~~ -~M e t- m e% ---NN - N M e t-i e e a e e i e s e a e e e e e e s i e e e a s O bbbbbbbbb bbbbbbbbbbbb bbbbb 11 o O A O
. u u e o g # e. A k .O o O 9 0 - c ,5* A E A 'O O U g -= c, -s >
p A o U O \ m O Z- l 58 l T
+~-:
9,Judaal B l C - T E S T .!dmahua. 9a tn M in - 4 4 M M N Y *~ CC O - N N 4 4 C c. F O C C% C.*ON N W v C% NMN4
*} N .-* C em .-e -N O C O O .vn C..C--e 4 23. . . . . O " OOO OCOO OCOOOOOOCCCO N
c e
- o. 6 O N t C% e 44 .e y v to CO N N N Y 4 CN O t$ 6 4 4 CO 4 644 YY OV4 N in 4 Y to tn O "U
. OOOOCOO OOCCOCCCCOOO *Q ~~C
- OOOCOOC OOOOCOCCCCCC m
m 2 O
- 8. C C CI T in 4 ? CC 4 T C v CO CO 4 N O V v C M C 4 . = OJ CC CO Cs tw .-* 4 to N 4 Cs in Cs N CO O CN N 84 - CCO OO- O O CCCCO C C .a CO
*J . . . . . . . . . . . . . . . . . . . > COCCCCC CCOOOCCCCCOO E @ 4 .=* 4 in CO CO - C - N O g v to CO N M M-c MMNNM M M .=e N s-* N NONNNM M*
G' OCC O O OO OO OO O OOOCCCC y y CCCCO CC CO CO CCOO O OO O h $ C000000 0000000C0000 4 U S %
% 4 4 in in CO CO v N4 N CO NNN Y V -* N to e - -.--e .-- 4 .= O CO O .= --.-*O .= O OO CO O O O O CO OOCC C C C C CL h. -CO CCO OO CO OO CCCCOOOO ** C . . . . . . . . . . . . . . . . . . .
d OCCO OCO COOCCCCCCCCC O v e a v v m O
- 3. O tooyN 4 .* Cs in C CO Cs M T in Q CL N N NN NN- in
- CO .a 4 ON.* C.%== ON- -NN C d CO COO OC OO O OOOO OO O OO b COOO O O O OO OCCOOOOCOC *J . . . . . . . . . . . . . . . . . . . > CooCCoC OoCOCoccoOOc m
84..S o c. G E4 wwwwwww vs,wwwwwwmmm om Ew0 y, - h c-NMb CO C - - - NN .- N m -e e- CO o - - - N N C-NMb > - e i i e i i i e i i i e i e i i i i i 3 c 0 Pbbbbbb bbbbbbbbbbbb
*:: .O .c o
a V
- s. u d
m g C A' A C C C E E
** -O C U A w > U d .4 O C H Z -Q 59 w .-a
fndudual B l 0 - T E 5 T .!.a>wbua. k. Table 19. Airborne particulates, analyses for 893 ,,90Sr and gamma-emitting isotopes. Davis-Besse NFP. Quarterly composites from all air monitoring locations, July-December 1974. Davis -Bes se NPP. pCi/m3 Isotope July-September Octobe r -Novembe r 90Sr 0.0014 0.0001 0.0004 0.0001 144Ce 'O.047 0,001 0.008*0.001 14 1 Ce 0.0d3 0.001 0.001*0.001 7 Be 0,150 0.006- 0.077*0.002 103Ru 0.0022-0.001 0.002 0.001 106 Ru 0.024 '0.001 0.004 0.001 137Cs 0.005 0.001 0.001*0.001 95Zr 0,009*0.001 0.005 0.001 95Nb 0.018 0.001 0,010*0.001
" The error given is the probable counting error at the 95% confidence level.
Values are corrected for radioactive decay to the mid-point of collection. e 60 ~
19 Count rate, counts /900 min. me e. N N m o u o m C m C o o o o o o o J o o o o O o O OO 4 4 4 4
,..,s.. 4 4 4 i.
9_. 1., ?.(*. 0:
=
F- .?
/.
l .\ g I 186 226 Ra i 145 144 Ce \ 134 141Ce
- I
. N E 238 212Pb ,,,
m c-1 L oo j 295 214 4
"* *** o O ! ' Pb - O p 353
- o g n a O ad E 478 7Be fO $
53-p% m f'103 eo 8_ 497
- . [_ Ru -
511
$nM 208T1 y\ 512 106Ru
'Oj p 583
, u. a 5- ~
6"bp I .. 662 137Cs m5 - e y g_ 1 f ._ l - 724 756 b 95 ' 765 95Nb
~
>*dm 9.* O$ "
- oo Y~
n .c n k
* .c .
fP- W' as ,
*1 c.
! >=. em J. J W 'O O oo . ( C p g c o k, c.y P r> n. es
*v n O =* C O e .tra ,
- P d c+ u C"
C OO m
'T m.
s= N N o
~
O mo - oo O 4 eq *1 03 A. W O O 4 00 1461 40g
- -n 1 o mo -
g (O A n oo*
- e. n oo EO O
o,o .) O P O
# ^o l3 3
- O I -
"y s y t1 .
n .- m o- = oo e. m OW Q ve U 7. Co so 7,. 3 O@ MO o co 'U g * = :- e ** e-D D [
- _k 3, ,M &, ** w a a' .;r.
- Q W 8 E W 4 e-
; , . , i e t ? .
o m
- O m *
- N N D.
. O o o o u o m W o o 8 8 8- 8 8 O
r== w/ *rmM7 15 51 - O I E 7W"*7"I
m Tabic 20 Area monitors - T LD (mram), July-December 1974, Davis-Besse NPP. July August September July-September location 35 days 30 days 26 days 91 days T-1 7.3*0.9" 5.811,5 2. 5 1. I 15.6i2.1 T-2 3. 6 *l.1 3. 2 1.1 2.910.9 9.7il.8 T-3 3. 5 *l. 2 3.111.0 3.4*l.4 10.0*2.1 T -4 4. 8*l.1 4. 0 11. 1 4. l *1. 0 12.911.8 T-5 6. 5 *l. 2 5. 0*l.1 4. 9*l. 6 16.4*2.3 T-6 5. 5 *l. 2 4.511.2 4. 7*l. 8 14.7*2.5 T-7 4.3 1. 5 3. 5 *1. 0 3. 5 *l. 0 11.3*l.8 4.711.1 5.311.0 15,911.5 T-8 5.9i0.9 { T-9 4.011.2 3. 3 1. 3 3.210.7 10. Sil. 9 T- 10 5.Sil.2 4. 4 *0. 9 4.7il.1 14,6*l 9 3 3.711.4 3.811.3 12.412.1 O T-11 4. 9a0. 9 T- 12 5.3il.3 5.I10.8 5.8*1.3 16,212.O L 17.1*1.7 m
$ T - 14 6.310.7 5.3*1.1 5.Sil.I T- 15 6. 7*l. 6 4.911.0 4.710.9 16.312. 1 [
T-23 5.210.9 3. 6 *l. 0 4.5 1. 3 13.311.9 T-24 6.121.0 5. Oil.3 5.011. 2 16.1*2.O T-26 6. 4*l. 2 5.1 1. 2 5. 5il. 5 17.0d2.3 T-27 5.011.6 4. lil. 0 4.510.7 13.612.0 Mean 12 a 5.3*2 Ob 4. 3*l. 5 b 4. 4 il . 9 14.015.Ob t f 1
x Table 20 Continued. Total for Total for quarter October November Decembe r October-Dec ember adjusted to location 35 days 35 days 28 dat s 98 days 91 days T-1 3.211.0 3. Oil.9 1. 710, 7 7.912.3 7.312.1 T-2 3.3*1.1 3.6 11.6 2. lil. 3 9. 0*2. 3 8. 4 *2.1 T -3 3. 3 *l. 2 3. l*l. 3 2.711.2 9.112.1 8.412.0 T -4 4. 4 *J .1 2. 9*l. 8 12,413.0 11.512,8 (
- 5. I 2. I T-5 5. 6il. 2 5.412.0 5.712.2 16. 7 *3. 2 15.5*3. 0 13.4d2.7 4 T -6 4.91.4 4. 9*l. 6 4. 6 *2. O. 14, 4 *2. 9 T-7 4. 6 *l. 3 4.3 2.0 5.6*2.0 4.711.6 5.011.5 13.612.9 16.312.7 12.612.7 15.112.5 h
T-8 5.711.0 , T-9 3.620.9 3.9 1.7 3. 3 1. I 10. 8d2. 2 10.012. 0 - 4.8i2.0 3. 5 *2. I 13.2 *3. 2 12.Zi3.O O T - 10 4.9il.3 e T-11 4.4 11.4 4.7il.7 3.011.6 12.1i2.7 11.212,5 h
" 4. 3 *l. 8 4,2*l. 7 13.912.7 12.912.5 m T - 12 5.4 11. 2 T - 14 5. S il . 4 6.6i2.3 4. 911,4 17.013.0 15,812.8 T - 15 5. 5 *l. 3 5. 6 i2. 5 5. lil. 8 16, 2 3. 3 15.013,1 T-23 4.4il.1 4.8*2.0 4. 3*l. 4 13.522.7 12,512.5 T-24 5,811.3 5.4 1. 4 5.412.5 16.6 *3. I 15.4 12. 9 T -26 5.81.2 6.212.2 4. 2*l. 7 16. 2 13. 0 15.0*2.8 T-27 5. 210. 9 5. 0 1. 9 3.O11.8 13.Zi2.8 12.312.6 h Mean i 2(r 4.811.8 4. Bi2. 0 3.913.2 13.515.6 12.515.2 a Mean
- two standard deviations for readings of five chips.
b T-1 is not included in the mean of the July, August and total for the third quarter measurements. 4 e e
. 9adudual B i 0 - T c 5 T h4>uzbua 9aa Table 21 Area monitors-T LD (mrem), quarterly, July-December 1974, Davis-Besse NPP.
3rd quarter 4th quarter 4th quarter 1 July-30 Sept,. 30 Sept. -6 Jan. Adjusted to Location (91 days) 98 days 91 days T-1 16.2*3.3" 8.8 1.6 8. 2 1. 5 T -2 9.6 2;.1 9. 8*1. 6 9.1 *1. 5 T-3 9.5*2.2 9. 4 *1. 7 8. 7*1. 6 T -4 14, 4 *2. 9 13.5*2. 1 12. Sal.9 T-5 15.7 2.9 15.3 2.2 14.2*2.0 , T -6 14.2 3.0 14. 8 2. 2 13. 7 *2. O T -7 10.7*2.4 12.3 1.9 11.4*1.7 T-8 15,7*3.2 15.6 *2. 3 14, 5 2. 1 T -9 10,7*2.3 10.4 2.7 9. 7 *2. 5 T- 10 15.0 2.9 14.5 2.4 13.5 2.2 T-11 12.2*2.7 12,6 2.4 11.7 2.2 T - 12 14.0 3.5 14.4 *2. 7 13.4 2.5 T- 14 17.1 3.5 17.1 2.4 15.9 2.2 T- 15 16. 0 *3. 4 15.0ol.8 13.9 1.7 T -23 12.6 *2.8 11.6 2.0 10.8 1. 9 T-24 16. 1 3. 9 16.7 2.8 15.5*2.6 T-26 17.2 3.1 15.9*2.3 14. 8 2. 1 T-27 14.4 2.3 13.4 *2. 0 12.4 1. 9 hican 2 (7 13.8 5.Ob 13,4 5.O _12,4 o4. 7
" Mean
- two standard deviations for readings of five chips.
b T-1 is not included in the third quarter mean. 1 I i 1 64 l l
f,usatual B i 0 - T E S T .las:ch:m. f,ra.
- Table 22. Monthly precipitation samples, analyses for gross beta and tritium, July-December 1974, Davis-Besse NPP. ,
Date Gross betaa Tritium location Collected pCi/1 pCi/m' pCi/ml T-1 July N. S. - - (Site boundary August 82.4 4.0 1002i49 <0. 2
- 0. 6 mi. NE of September 23.1 1. 5 567*38 0.25 0.23 plant, near inlet canal) Mean *2 o- 52.8*84.0 785*616 0.25*0.23 October 46.6 2.5 800*43 <0.2 November 81.5*0.9 3101 35 0.35*0.22 December 43.4 0.6 2713 40 <0. 2 Mean *26 57,2 42.0 2205*2464 0.35 0.22 l
T-23 July N. S.b _ _ (Put-In-Bay) August 53.3*1.7 2106*70 0.50 0.24 14,3 mi. INS September 24.9*2.2 316 28 <0.2 of plant)
- Mean *2d 39.1 40.0 1211*2532 0,50io.24 Oc tober 13.2*1.0 446*33 <0. 2 November 76.0*0.7 5228*45 0,30*0.22 December 42.5*1.0 1050*25 < 0. 2 Mean *2 & 4 3. 9 d6 2. 0 2241*5208 0.30 0.22
- The error given is the probable counting error at the 95?o confidence level.
Less than (<) val.ues are based on 3 sigma counting error for background b ** No* sample El** due to weather condition. i 1 e 1 65 l
- ~ . . .. ..
i Tabic 23. Well water samples, analyses for gross alpha, gross beta, and tritium, July-December 1974, Davis-Besse NPP. Gross alpha (pCL/1)a Gross beta (pCi/t)a Tritium Date . Suspended Dissolved Total Suspended Dis solved Total collected solids solid s reallue solld e solid s re sidue pCl/mi Location
.T 7 7-08-74 <0.08 <0. 50 <0. 58 < 0.14 2.3610.33 2.36*0.33 <0. 3 10-14 74 <0.09 0.4310.22 0.4310.22 <0.17 2.4810.22 2.4210.22 0.5010.18 (Sand Beach. . 0. 9 mi NNW of station) ~
T-17. 7-08-74 <0.07 2.0911.27 2.0911.27 0.2110.11 2.3710.57 2.5810.58 0.5210.24 l b 0.28A0.18 (Irv Fick's well, 10-14-74 <0.09 2.7t*0.70 2.7110.70 <0.17 4.82AO.47 4.8210.47 O. 7 ml. SW of j. station) CD 7-08-74 <0.08 7.Oli3.40b 7.0113.40 <0.13 3.0342.30 3.03t2.30 <0. 3 - T-IB (Iless Sunoco Garage 10-11-74 <0.10 2.9512.24 2.95t2.24 <0.17 2.8911.92 2.8911.92 <0. 2 O e
- l. 3 ml. S of station, d
& State Itoute 2) n1 <0.3 M T-27 7-08-74 <0. 08 <l.95 -2.03 <0.13 3.8411.41 3.84a1.41 '"4 10 14-74 <0. I I <2.28 <c.39 <0.17 3.0011.10 3.0011.10 . 0. 2 (McGee Marsh. 3
- 5. 3 mi. WNW of station) i The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background sample. ,
I' Analyses for Ita-226 showed that it was less than 0. 5 pCl/1. C
. 9adudval B i 0 - T E S T .Edmalwa. k.
[ Table 24 Well water samples, analyses for 90Sr and gamma-emitting isotopes July-December 1974, Davis-Bes se NPP. Date pCi/la Location collected 90Sr 13 7C s T-7 7-08-74 <0.46 < 1. 5 (Sand Beach, 10-14-74 0.56*0.36 <1.5
- 0. 9 mi. NNW of plant)
T-17 7-08-74 <0.56 <l.5 (Irv Fick's well, 10-14-74 <0.44 <l.5
- 0. 7 .ni SW of plant)
T-18 7-08-74 <0.27 <l. 5 (Hess Sunoco Garage 10-14-74 <0.32 <l. 5
- 1. 3 mi. S of plant, State Route 2)'
T-27 7-08-74 <0.27 <1.5 (McGee Marsh, 10-14-74 <0.33 <1.5 5.3 mi. WNW of plant) a The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background sample. b No gamma-emitting isotopes were detected above background level. < 67
Tabla .~ Milk samples, annlysos for groza b:ta, 89S r 90Sr, and gamma-emitting isattpaa July-Dacsm* 7 1974, Davis-Ee sse NPP. - Date ' pCi/la Loca tion collected Gross beta 89Sr 90S r 131I 14013a 137Cs 40K
~
T-8 7-01-74 1092*18 <0. 5 1.3710.41 <3.2 <3.7 4.17*2.17 2175131 (Earl hioore 8-05-74 1227119 <0. 5 1.2610.40 <3.2 <3.7 <3.5 1339*32 Farm, 3. 2 ml. 9-03-74 1101125 < 0. 5 1.21*0.29 <3.2 -3.7- 5.65tl.42 1323121 WSW of plant) Mean*2a 1140*150 1.2810.16 4.9112.08 1312166 10-01-74 1179132 <0. 5 1.4910.23 <3.2 <3.7 3.5011.68 1252121 & 11-04-74 1123126 <0. 5 1.4910.41 <3.2 73. 7 3.8012.51 1336137 } l1-27-74 1196123 <0. 5 1.2410.29 <3. 2 <3.7' 4.72*3.04 1353131 A k. Mean*2 a 1166176 1.4120.28 4.0111.28 13141108 g T-12 6-28-74 1145i18 <0. 5 ' 2.8710.49 <3.2 <3.7 3.78i2.24 1312132 os (Toledo Dalry, 7-31-74 1023130 <0. 5 3.2810.51 <3.2 <3.7 3.4912.08 1242130 -4
- 23. 5 mi. ' WNW 8-30-74 1145132 <0. 5 5.2410.62 .2 <3.7 6.9111.99 1247 30 $
--8 of plant)
Mean*2 a 11041140 3.8012.52 4.7313.78 1267*78 g 9-27-74 1114*44 <0. 5 4.94t0.60 <3.2 <3.7 3.81i2.00 1271130 i 10-31-74 1042125 <0. 5 4.7310.58 <3.2 <3.7 6.3013.03 1342144 11-27-74 1267124 <0. 5 4.2110.32 <3.2 <3.7 3.2312.90 1270143 o Mean*2 a 11411230 4.6310.75 4.4513.26 1294182 T-20 7-01-74 1081113 <0. 5 2.6110.34 <3.2 <3.7 7.4411.60 1320123 (Daup Farm, 8-05-74 1087*14 <0. 5 1.8310.33 <3.2 <3.7 5.23*l.50 1210122
- 5. 4 ml. SSE 9-03-74 1110144 <0.5 2.4710.47 <3.2 <3.7 < 3. 5 1300130 of plant)
Mean*2 1093130 2.3110.85 6.3413.12 12771118
~
10-01-74 1137126 <0. 5 1.1510.38 <3.2 <3.7 < 3. 5 1239129 11-04-74 1118118 <0. 5 1,0610.44 <3.2 <3.7 <3.5 1340114 11-27-74 1100122 <0. 5 1.4610.27 <3.2 <3.7 4.8513.00 1285144 Mean12 g .I118136 1.2210.42 4.8513.00 12911110
Table 25 Continued. Date pCi/la 131g 40 g Location collected Gross beta 89Sr 90Sr 140Ba - 137Cs T-21 7-1-74 1051*18 <0.5 1.0810.41 <3.2 <3.7 '<3. 5 1238132 (Haynes Farm, 8-5-74 1102 20 <0. 5 1.8420.50 <3.2 <3.7 <3. 5 1165*30
- 3. 6 rni. SE 9-3-74 1144145 <0.5 1.5310.42 <3.2 <3.7 <3.5 1174129 +
of plant) Mean *2 g 1099192 1.4810.76 1192i80 10-1-74 1074*25 <0. 5 0.85*0.29 <3.2 <3.7 <3.5 1185*29 _ 11-4-74 1062*25 <0. 5 1.6410.51 <3. 2 <3.7 <3.5 1277144 11-27-74 1124122 <0. 5 1.4010.32 <3.2 <3.7 <3.5 126li43 $ O Mean *2a 1087166 1.3010.82 1241198 $ m T-24 7-1-74 1049118 <0. 5 3.7410.60 <3.2 <3.7 5.68*2.16 1199130 m (Toft's Dairy in 8-5-74 1030156 <0. 5 2.5010.48 <3.2 <3.7 6.28i2.17 1255*31 Sandusky, 24. 9 9-3-74 1112 44 <0. 5 2_.2210.72 <3.2 <3.7 5.3912.01 1288 30 mi. SE of plant) Mean *2 1064*86 2.82il.60 5.78*0.90 1247i90 10-1-74 1051*25 <0. 5 2.5810.44 <3.2 <3.7 4.74*l.96 1230t29 11-4-74 1009124 <0. 5 2.6210.57 <3.2 <3.7 5.91*3.00 1279144 11-27-74 1206*23 <0. 5 2.0010.41 <3.2 <3.7 4.0l*3.01 1357144 Mcan *2g 10871208 2.4010.68 4.89il.92 1287i128 a The error given is the probably counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background sample. b Mean
- 2 were not calculated because most values were below the minimum sensitivity level.
ll1 jl i l li 1l1 b 4 s. tE a O a $en pfw, 0 . 0 0 1 0 0 ms ]
- 1 0 0 1 1
g C W 9 g E S
. g D W .-. M s e . l - g i 3 V D g O m ~ g N 2 ~
e 3 g ,
. 8 m'
g T - M g C T (
' g O m
r
- a . a P F v V g E
S e f r .
, o5 o2 ' e 4 Me l I 7 l b # 9 G
U 9 r a 1 E aT
- g A - O m t . mo or L rf C- \'
f U C l e I J d r
' t ea ca , N f N
l et l t a I U 37 o< 3 _ i J 9 1 ce rT
,l i
e S 9 Y O0-T y,. f A 9r P t M Of - oN e e s s
- / i e
s s e o u R yD P f
- l ' ~ f A a -
ns ai
. v ,a f
R c f A l sD e N f M p ), n r f B a s n t a O f E k l p
- f F l i
Mfo - f T 'O f N 6 I A 1 f J e r 0 0: - - - _ -
- _ u -
0 l g -
. . i -
0 0 0 .N h ~ 1 0 F - 1 - 1 - h
A4 dual B I O - T E 5 T ha6an, k. o o o .. d o - d I/Tod 4 d e-e ise, , , , o,,,,, , , , o , i , , , , , , , 0 0 - w z s -
- Q 3 s
O
\ C > O o ,
b - o e i z w,
. N s .
h N s 0 -
- O Z u
i i . % N a
,,b - t/) C * \,
4 ON
/ T r
9 0 0 9 oE a-ji
, \ e L
4 O 4 C i O
\ . O k d '
4 S=* i j 2 - D m 0 -: u U f / U n
*/ . 13 2 ~
D Mt'= =4C
%ll, - M uo b.w 6 - 'fo Q - h ' d , \ $ s u=
02 I - A h
\ O I' \ m O
m
\ , . m c( o- _
d-m s.3
~ $ e 3 ; a .-> ',n . ~
d d. f ~
$ .2 ^
2 9: 4 . J G a s= -Q V . g g -
- a f / ~ g .~.~
ri 4 o
} . ~
N
< ~
_ m o
- 4
' 8 i U o' ' 8 8 8 o'I I 0 8 8 I o' 8 3 4 4 e i i 6 ,4 =.0 f d I/Tod J g C e
71
b - m~O' meaIPn [w, sC 0 0 0 1 0 0 3OA 1 0 0 1 1
- ~ - - - -
C O , E
,A , D f o
E y V S S (- S , O s N e
- l i
i
. , n 4
- y. ,
T C 5 x , O , 0 2 x s . T P ( E S m
, r a . - F5 2 y~
4
, 7 p
_ & G 9 u e U 1 ab l N , A Da 0 nT i omo L n
\ i U
J O f df r r s t ee c r N e a
-M .
U 3 ot l l a r.
, J 7 9
c d
- 1 r,e Si t
Y O09 T _ , A r'.
~ , M Of ol P .
sN e y . R syse P l a e s A
&w '
R nB a -
,i se va s
A l D . M pD s ni ,
'N . . a) 1 B s O i E t 1 - k n /
e F l i l a Mp
/ i g O i N 8 i
A 1 J e r 0
-_--- 0 0
_- _ - - - u g i CGa 0 0 1 F 0 1 _ 1 _ yN -
9,,dua.ial B t 0 - T E S T la!w.atutes. 9nc. g g T/ lod . $' d o -
, , , , , , , , , , . se e> ' ' ' '
O o - W w Q l . Q t, ta
.C ' ~
6 $ o : Z = N
- l
\ d g* "
o -
\. I / - O N t
h 8 4 % l,? W C
/ . C n 4 . ~ D l
e W U. N p e d OO ~
>3 D -
da ( s-. d Q s H c
\ ~
OC
\
A d "4 3 s D
.- h m-4 s
1, oa ya
\
- Od Z Od
}( -
p m m o-E
~ 'd 4 u *u' A~
I O h0 '< l u . r - 2 6 at az l - *
$0 % 'll & ~
Q e m O
$ na I
j CQ i e c : d m' mg Y ' k $2 S =
\ - . d^
g a
@ ~
i f h. ,.h:
;
I 4 6 I. 24 6If z o
- M e 4
o lg g g l g g olkhl
, h h h $
o g g - 1/Tod J o r* o e 73
R{ o s O,ymm4
. w, 0 0 0 1 0 0 ~D O% 1 0 0 1 1 s 4) -_--. - := - - =- _. _ - - - _ -
l e
- i C
t
. m n, w t E 9 ~
I D . 4 _ 2
, R V ,
a k 9 O 4 2 y t N T ( t y 7 k e t T s u t C d O n s, i a S e n v , P i , 5 I E y
- 1 S r 2 i e al f
Db a
- 4 7 sT o
f o- G 9 't f i U on f 1 f A O Tor f m e k f L o r a r I f U J C f d a t
- tea . cd Cg f
N l ee f U 37 l h J oT c
- ~ t 9
1 r P. _
~_ I Y
O- 0SP
- 9 N f
O
; I A M - r e O fos s n
e s3 _ a' y f e1 - R s ysi _ P I a v l t A na _
.- aD _ " t R
s) Q t I A 1 A l e pn t mla T: 1 a p B s f E k o f F l _ N' f iE MS I a\ ms I f N A 0 2 J _ I e r 0 0_- - - 0 __ _ _ - _ - u 1 g 0 0 1 0
- _ ~D %O 1 0
. i F _
1 _ y i
. _ . . n _ -
8 1000 l 3 l 1000
< . y 800 -
800 t p
.- At .S .
- F j 600 -
- 364 I3I g -. 600 jI E , . .. . . N o . D .n - .s. " - O . - 487 14013a 140 La * -4 '6 ,.#.. --t
- 3 :- 40 m
., . - 511 1461 K 400 -
400 ,,, se. e . v *-. s . . .
%..* o. s U I37 i [ ' ;.- - 662 Cs . '., ~~...', =,
200 - s 200
...',~,'.*j,
- Sample plus background
. y, *^. -
v,,.. ' . . . ;. .
. : .~ . .. . s . .': o. '*" .' . .r. . ,- Isackground - o .l s,.,,, . - ' ~~ * ~ :. a. ... . K. . , , "'*'!h'?hWR%f" : g.rq.,.y;.; p .. ',s, .'ft.Ti g*f,_, . ,,. . .p ,-
- I e 8 I O 100 200 300 400 Channel numbe r 0 500 1000 1500 2000 E
- ncrgy, ko V Fi gure 21. Gamma-ray spect rum of mil k, 0-7540 kev. Detector: 10 x 10 cm Nat /T1), (No. 1) . ;
Sampl e: 3. 5 e of mil k, ecliected ? Dcccmber 1974 f rom Ea rl Moore Farm IT-8,
- 7. 5 mil es WSW of plant ). Count s- 200 min. on 11 December 1974, Davis -Besse HPP, .
t I
4 .
' ~.
90 Table 26. Milk samples, analyses for calcium, stable potassium, and ratios of pCi Sr/8Ca and
.pCi I37 Cs /gK, July-December 1974, Davis-Besse NPS.
Date Calcium Potas sium I;> cation Collected g /1 g /1 pCi 90Sr/g Ca pCi l37 Cs /g K T -8 7-01-74 1. 12 1.49 1.22 2.80 (Earl Moore Farm 8-05-74 1.01 1.57 1.25 <2.23 .i 3. 2 mi. WSW of 9-03-74 1.10 1.55 1.10 3.65 plant) 10-01-74 1.05 1.47 1.42 2.38 ( 11-04-74 1. 15 1.56 1.30 2.44 12-02-74 1.03 1.59 1.20 2.96 T - 12 6-28-74 1. I 2 1.54 2.56 2.45
.(4 -
(Toledo Dairy, 7-31-74 1. I 1 1.45 2.95 2.41 E 23.5 mi. WNW of 8-30-74 1. 14 1.46 4.60 4.73 O plant) 9-30-74 1.28 1.49 3.86 2.56 4 10-31-74 1.20 1.57 3.94 4.01 m
'11-27-74 1.05 1.49 4.01 2. 17 [
T -?.0 7-01-74 1. 13 1.55 2.34 4.80 k (Daup Farm, 5.4 8-05-74 1.06 1.42 1.73 3.68 mi. SSE of plant) 9-03-74 1.10 1.52 2.25 <2.30 10-01-74 0.95 1.45 1.21 <.2. 41 k 11-04-74 1.06 1.59 1.00 <2.20 As 12-02-74 1.10 1.50 1.33 3.23 b e
- 1
'i 'l
).
Table 26 Continued. Date Calcium Potas sium IAcation Collected g /1 g /1 pCi90Sr /g Ca pCi l37 Cs /g K T-21 7-01-74 1.23 1.45 0.88 <2.41
) (IIaynes Farm, 8-05-74 1.07 1.36 1.72 <2.57 3,6 mi. - SE of plant) .9-03-74 1. 04 1.37 1.47 <2.55 10-01-74 1.10 1.39 0.85- <2.52 11-04-74 1.00 1.50 1.64 .<2.33 , 12-02-74 1.07 1.48 1.31 <2.36 T 7-01-74 0.99 1.40 3.78 4.06 (Toft's Dairy in 8-05-74 1.01 1.47 2.48 4.27 ,
Sandusky, 24. 9 mi. 9-03-74 1.01 1.51 2.20 3.57 - SE of plant) 10-01-74 1.02 1.44 2.53 3.29 O 11-04-74 1.09 1.50 2.40 3.94 -e d 12-02-74 1. 10 1.59 1.82 2.52 m Total Mean
- 2 a Mean
- 2 were not calculated because most values were below the minimum sensitivity level.
- ,k .
! 1
_) Table 27. Fruit and vegetable samples, analyses for gross alpha, gross beta, NSr, and gamma-emitting isotopes, July-December 1974, Davis-Besse NPP. Desa Sarr.ple t.c6/ra Le n t ie.n colle c ta d t%er Wet, ht fr) Crema altta Grasa hva Sr 90 3 138 Co.137 IN40 T.4 7 23 74 A pg.le s Wet 1966.0 <0. G1 0.940.1 <0.001 <0.02 <0. 01 1. 3a 0. 2 (Earl N3aore D ry 224.0 <0.66 7. 543.2 40.009 <J. 2 2 <3.10 a. 5al. 7 3 ' Fa rra. 3. 2 mi. A sh 5.43 <2.42 3 0). 7a 7. 6 <0.37 <S. 08 <3.93 351.5a69.1' WSW of 3.lar.s ) ,j Pole Lear.s Wst ' 742.0 <0. 02 2.240.1 0.00643.001 <0.02 <0.008 2. e s 0. 2 Dry 89.0 < 0. 17 lb.4a0.5 0.05ta0.01 <3.13 <0. 07 ' 22.041.5 A.h 6.05 <2.47 270.3a7.3 0.756a0.15 < l . 91 <3. 99 324.2a22.2 l Tora. toe s Wat - 4064.0 <0. 01 2. 0a 0.1 0.003a0.001 <0. 01 <0.005 2. 7a 3. 2 Dry 240.0 <0.25 33.440.8 0.05340.020 <0.19 <0.09 47, ;al. 5 A sh 24.41 <2.47 326.6aS.1 0.52140.180 <l. 87 <0. 59 4 03. l a 24. 0 Squash Wet 3755.0 <0. 01 I.740.1 0.00la0.301 <0. 31 <0.044 2.140.1 h E Dry 174. G <0. 34 35. 6 al . 2 0.017a3.036 <0.17 <u 09 45.5=2.3 N A s.h 16.06 <3.24 342.74I1.3 0.16Ea0.I50 <l.64 <0.82 4 33. 4 a !!. 2 9 16 74 Squash Wet 7263.0 <0. 01 4.50.1 0.00140.C01 <0. 01 <0.002 1. e s 3. 4 Dry 266.0 <0.18 37.640.6 0.036ad.020 <0.04 50.05 40. f al. 9 03 A sh 31.17 <l. 67 344.9s5.9 0. 2? ' sc.15 <3. 39 -<0.46 375.4a17.4 - . Apply W 5636.0 <0.01 0. 7a0. I U.00 bag.001 <0. 01 <3.0.34 0. 7a3.1 O J ' 00 Dry 634.0 <0. 0 3 6.lso.1 0.C05a0.004 <0. 0 3 <0. 0 3 a. 2 aC. 6 Ash II .12 <!.69 346.4a5.9 0.275aC.21 <l.93 <l. 7 5 355.5 45.6 d in Pea ches Wet 463b.0 <0. 01 1. 3a0.1 0.001a0.00 <0. 01 0.00ead.002 1. 3at.1 t/l Dry 368.C <0.15 16. 2 a o. 6 0.017a0.01 <0.03 0.070a0.03 16. 3 a0. 9 ( A sh 17.91 <3.04 332.2all.6 0.35ya0.31 <0. 56 1.5240.62 338.7 84.5 f T.14 12 10 74 Grepe Wet 3500.0 0.02a0.0l' O.27*0.01 <0.001 <2.07 0.001 0.22 (N in.lsey juice wie.ery. 15.3 ml. E.';E of pl.r.ti & E T.19 7 23 74 Cettage Wet 1984.0 <0.04 3.4ao.1 0.011a0.003 <0.08 <0.005 4. Ga 0.1 .** (:.nlle r Ferrn. D ry 160.0 <0.45 35. M al . 5 0.327 0.030 <0.30 <0. co 42.541.4 3.7 u.l. E of A ah 27.5 <2.96 234.Oa9.6 2.I40a0.220 <0.6J (O. 37 275, aa 9. 2 h D pl.r.tl - Swise chard wet I s76. 0 <0.06 4. 740.2 0.00Hac.003 <0.02 <0.009 5. aa3. 3 Dry 136.0 <0.79 64.3a2.5 0.11540.040 <0.24 <0.13 53. 4 a 3. 7 Ash 32.0 <3.37 273.Salo.7 0.4h9ao.170 <l.03 <0.53 341.7a15.7 T.20 9 16 74 Beets Wet 2518.0 <0.02 3. S ao.1 0.00740.003 <0. 01 (0.007 4. $a0. 2 IDaup I' arm, Dry 224.0 <0.24 43.221.5 0.076au.040 <0.14 <3.0S 54.1 2.2
. . 5. 4 mi. SSE A.h 30.0 <l.77 322.5a80.9 0.5h4a0.283 <l.05 <0. 60 4C4.tals.7 o." ;. l. r.: )
Pears Wet 4404.0 0.0240.01 8.640.1 0.002:0,001 <0. 01 <0.004 1. l aJ.1 Dry 597.0 0.1340.10 6.540. 3 0.01440.005 <0.03 <0.03 8. 3 a 0. 5 A6h 45.92 4.66a3.92 388.9all.3 0.5440.20 <l. 0d < l .13 310.9 33.0 Plums Wst 3592.O <0. 02 3.8a0.3 0.00l40.G01 <0. 01 0.003:0.304 1. 7a J. 8 Dry $20.0 < 0. 12 12. Laq. 5 0.010 0.007 <0. 03 0.05a3.03 II. 7ac. 9 A .h 24.48 < 3. C 1 269.6a10.6 0.212 0.140 <0.60 1. t ha0. 65 245.4=15.2 l i f I .
. _ . . m =
f4 dual B I O o T E 5 7 .la/ owl w, f,e.
- . a. . o . . ..
- 4. ,<. ,'.
~.
d .:. e., ..... .. d . .:
...e. ., :: 4. .: s. ; .
aa& em .: d .;. .: .e.
. .; . .. ,a J., .,.: a e ~ .. . no omn omm e o. o. m. . n. o. e. m .u.
o o. o. oma ome .s
. o o. o. a c o. a, o. o. o. o. o. .
y Seoc ooo m o o o. ooo .3 vvv oo. vvv 444 ddd 3 n. O m. e e es S
-= .e N N mM me me g e g .s ~
a .* f* dda d44 o a# ae9 5&&vWV4dd aom g ( vvv V */ W vvv 8 v e E. s- ?. 2 c& o -oos ,e. - a 4 n. .. o o - o. o -. o o m ..
- oo- oo- co- co- l b
d d. d. e .e d a.
=p .
- d. d. a. d. d. d. d. d. ,5, m .= a e o e ,9= *ose.me.= -
oaN. 9 o == e ooe aoe oaJ e ,,{ . ddd ddd ddd ddd gw I
*E e. . .=.,. . . r. o. .,. 2. . I a g
- o. . e.
noe --
- o. o. e o. o. e.
oo4 o. me.
.. y -e c
s .;; ,.;,.a d .d. 6 a d. J.. d 4, ,4 .e st . n n n e f.
*. .e O
t. x
. Oh e se g e. ~O o w ,m o me .8r-J m e en e,n eM. N ep Pm oma 2 E. . dda vvv d vvv d .' vvv ddA ddd vvv e3 v 8 s a2 C J M 'd .!
n oo e oom o o $3 00, o04 w2 d J..a. ads 4Ad das omm e; me mon ame e 8 f* P= o ee em Gh
- 2" s , e ,
A a** k . ma .>A. D .o <. D. mo. e.< p c. <
*. h. A.
Sc< w
. =. =a *O 8
e e M. a e 1 e g ~ w g ".
. 2 sc ~
- a. s - go
, ? .e i EL 3 =. a. ~
t e
- . a 2y ,l3 o.
4 5 U A. .H o
- m.e a.
.3 e
A. C .-* W e-9 "v
- g. .
O O%
. e. .w.e est g U ON ' -e 9 e N. . d & F* ' St .O . 8 $,
N .? w. c u ,, n. o :* r., w : -
, .D .8 . .. e5 4 ; er Q. . # 'e 'J a1. =0 pa N e4 0 m %
a -m*
.t Hr. 3 a e r
i 79 :
..%. . . . . 1~_ s ;- ,. ._. _ _
d 1
)
1000 , 1000 800 - - 800 600 _. - 600 M
'i ..a ,L 400 -
Z - 400 %
- 3. C3 g . ,,,,,
8 200 .. - 200 O cn C ; Sample plus .-4 O ' m
$ , a background
- s ..
Les O .- -^ ' ' ' ' ' *"I" _-- ^^ " - - '" - -- -- - 0 3* r - U - g - U a N 400 -
. ,0. g - 400 ada a:n.g N - N "N N en M M M g ,a ; 2 200 * . N ca - 200 h Background .-a . .
_, . e 0 -
"f W W h d, --- * ' -- ____.g._.--_. ..g-__.-- , . _ _
_.__y._ _0 0 1000 2000 3000 4000 5000 6000 7000 Clianimel numlier 0 250 500 750 1000 1250 1500 1750 Energy, he V
- Figu: e 22. Gamma-ray spectrum of squash, 30-2048 kev. Detector: Ge(Li), 86. 8 cm3 closed
, end coaxial. Sample: 63. 064 of dry squasli, collected 23 July 1974 from Earl Moore i Farm (T-8, 2. 5 iniles WSW of plant ). Counts: 1000 min. on 8 November 1974,
- Davis-11csse NPl',
- i 2500 2500 g i I '
s 4 b!
~ '
2000
~ ' 2000 t . + .r. .
t <
-p
- 1500 t 1500 . '
., U* ' '.@.
- O 3 .
-8 E $?. - m o . " ." ' '
o m
- - 1000 (
1000 - ,,,
... F 0 ., - 511 ; . q.,,
3 n.
.. .e 40 li
(.
~ ~
e d' See 500 ;
, :x .v . *e . *i' g Sainple plus backgrourul **f. ,
Dackground Y!6h*g.:. ffj,g.,c.p,d.'#.a;,4.,~m.y*v."
~~. Y.Y~?s%s*P L /.%%%.q q . ,.pm.&,s.%mpyw,,_
I l 0 i 8 t 0 100 100 300 400 Channel number
o 500 1000 1500 2000 Energy,ko V ,' Figure 23- Gamma-ray spectrum of grape juice, 0-2560 kev. Detector: 10 cm x 10 cm-NaI(TI), (N o. 1). Sampic: 3.51 of milk, collected 4 December 1974 from Put-In-Bay winery .! - (T-16,14. 6 miles ENE of plant ). Counts: 400 min. on 10 December 1974, Davis-i 13c sse NPP.
Josdudaal B l 0 - T E S T .!akwLvues. Joe ^- Table 28 Beef sample, analyses for gross beta and gamma-emitting isotopes, collected from Peter Farm (T-22, 2.6 mi. SW of plant ), Davis-Bess e NPP. Date oCi/ga collected Weight (g) Gross beta 137Cs 40K Wet 2936.0 2.30*0.04 0.015 0.003 3.08*0.09
~9-16-74 Ash 27.74 243.07*4.17 1.61 *0.29 326.4 n9.30 The error given is the probable counting error at the 957o confidence level.
Gamma spectral analyses showed that all other gamma-emitting isotopes were less than the minimum detectable levels. e e 82
~. ) - Table 29. Wildlife samples, analyses for gross beta, 90Sr, and gamma-emitting isotopes, collected from the vicinity of the site.
Date pCi/g*
~
Sa mple Collected Weight (rl Gros s 1,cra ?OSr 3JICs 40K Alusk rat 10-31-74 Muscle Wet 182.0 2.3440.05 NA 0.001 2. 8 1 Ash 2.00 213.424.9 NA 0, 130 260.8
*- Bone Dry 20.70 NA 0.6220.13 NA NA Ash 13.94 t4A 0.9220.39 NA NA Ita coon 10-31 78 Muscle Wet 430.0 2.0140.04 NA 0.013 2. 2 +s 3.61 ?39.415.3 Ash NA 1.520 258.3 k
Done Dry 41.41 NA 0.61*0.13 NA NA 08 Ash 21.77 NA 1.1640.25 NA NA
~
O
^ The error given is the probable counting error at the 957. considence level. I.ess than (<) values are based on *
- b 3 sigma counting error for background sample, d NA=Not analyzed. Analysis not requirmt, m 00 in W
H k '
$ w )
i
. Table 30. Waterfowl samples, analyses for gross beta, 90Sr and gamma-emitting isotopes, collected from the vicinity of the site, July-December 1974, Davis-Besse NPP.
Date pCi/na Sample collected Weight (g) Gross beta 90Sr 137Cs 40K Blue Winged 8-9-74 Muscle Wet 268.0 2. 6i0. l' NA 0.05i0.01 2.61 0.1 Teal Ducks Ash 2.83 243.117.2 NA 5.2010.55 247.1*10.3 (3) Bone Dry 13.63 NA 0.9310.13 NA NA Ash 6.67 NA 1.9010.27 NA NA ,( Mallard Ducks 8-9-74 Muscle Wet i 790.0 3.010,1 NA 0. 0Zi0. 01 2. 7i 0. I (3) Ash 9.46 , 253.3*7.3 NA { 1.8810.42 223.lil1.0 ce Bone Dry 63.75 NA 0.5710.09 NA NA ' Ash 28.89 NA 1.9010.27 NA NA . k a The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background sample. [ b NA = Not analyzed. Analysis not required. ,
kbataal B l O . T E S T .hkabs* kc. 3, . i ... o n, n - g *
- .e' e u E . m. . .~ ,. ~.~..e . . . .. , . . , . e.. .
o. c's-N u s, O. . .
....o ... . o .e . O.,... .. o o.3 .~ ., . 4 -a . .. .,
- o. m.-. .
.e
- m J J. e . J. .. e.i d. J., ei el d r
* .J. .J. o e'- .; d i- e: O 4 .* d...
J e .2a g e. o.
, - - - e. a ;3 4 f, 3 k el . -42 o'A - .e =
e.
. . . 3,4 -
t r.
- o. o. m. o- o. o. n. o. a. r. ~ , se o. o. ,. a w
. o .a n., ooo *o W
v
= o. O. . O. o. o. c. o. r. . n. o. n. o o. n.. a. o. e.
m .s. a
< *a u ooO oon aco e- m e- oGo ms U syv
- o. . . v vv O. .4 o. o. e. vvv -*.o..a o s. -ea p oo- ea- oo~ goo ga s ..
% e , "o e
O A A. N M * *e.4 .*. e e-OoO e- * *5
.h 3-M 0 0. .* M W. .=.*f*
Q O. a == t.n Q ed *. Q. Q. M. es. e g dh W1 b O. O. .=. OoO g
- O*4 O O.
. f th Oo-O. Q. M.
4oo O C. 44
. O. o. =.
o4 O. O4 OW O. O 4 C
- 0 0. *. 4. Q r T #
- 4. Cs O S* @4 8
J. T he - 'O 4'P. .* .e.1* A wt OOO * .e a. C* eQ .-O 9 .* * *
- m C 9
- o. o. o
- o. o. o. vvv o. D. 0.N Oon aoe
. . Q.4 Q .e. .an j-* e g e , . o ao o. oo O i e a y :3 s=
ae e
~
O (Q e, k i s MM** 7 C
. >2 $4 *> .e. r=. *.
- e. m ,e. f*. F* e. Po **
- w. h O d e. o.m .e. em . . . =0. . O M. f* O.. N. .O. .
** -.a 0 0 .= 0O+
O. eo gJ C4 O..= .o 4 g g
- es
- o. O . Og 3. F* e. O. o. en
- C -
p* .=. w. P. -a. e=. m s -e. ce. C= . 0. . m. r=. . . as. 4 A. es. o. *1 C-y P e4 9 v O P4 D
.Q , ,,
w T eA e4 =.=. s .m=N M J et*. 'A. C .* SA. a. .eo .ae O e 4A .=O .W o g 9$8 N e4 .= N N .= N M.* ,e "2 g b c & d' d,. .=c e- .A . M .i # g b ** 8 T P. .A tA a.3 ** M *P o N ed
.e. O.=h M r.e3MM. d.m m > *e.
Q C. *e. m. - N. 4 O. O. Ja. .e., s. . .e O,. -4 Ch. Q. e. M. J
. .a .
a a n. vvv O v-o. ~v con vvv oom vvv oo. n .s .e aan e .g,, e-m "l
.. vvv ~. oom v. o. vvv v a 5 .!a, v .O .< U -
m .e.c. au 5t; ce W n ~ m c
. . .A ~
wajo
- o. O. v. ' O. O. o. e d O. o. m. c o. m,. O. O. N. o O. c. o. o. o w, ,, .e.
m 8 o= a ,- e
~e-- -~. .+ esO. # o .e,- .a o -. .e m3 e ,o - so m =~ . o~ .-a.
se e
,,p e .a o.cn a u .% 2 a -- - - .a .a. - o~
e. 4 .v. .~. ,ga o C ~
*=
vb 2 d '$ 3
. ? -=6 we *-w e. . we.
- w. e. v .w. e. . we . . m.. e. s, 'i,. 3 dw 3n: D c <.
i
# 3a< 3c< D a <. 3o< 3< = . 'M'd m &y g,-
e e . w u e ue
=e g .Oa e- t= r= r= .e=
r= r. r=
- c. u e
=,u g O ~,
a3o s j j j j jy .s. c 4 ,5 Y .m. . v
~.
e N as
~.
a
~.
ce as a 3 _s g - - - - eeg W ee ~ =.
.C .e 9 .a @a e a -$ .2 m e ww= -e y a. . .a 4 se e.
e
. a=#
9
.e .e. = ,a4 9 I *# w #8 4 =
4
- a. b
.e 6 e ***
O'8 Q a 3r Q w u a Q
- a e
n w E g =w
* = *1 p=. - , 3. *N* OT m o 1 - 5> ' i* ". -
v
- 9 4 w J M
4 e e
.$ *4 )
0 X .m : ; s 2
.~~.*
b q r 3 a h. - ee.. b .: 4.E. .. 7. u
. ..,.a.1 e - c 1. o.
0
- t3
'.*,.*l .d (4 3 "k": f
- O m o. -**
. w a 85 I I
1
,--c -- ~~, \
h__.
i
s o
o u : +1
> og _
1 2 4 2 4 6 8 0 . 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 0 0 00 , . F I . i f k g 2' f u )a T ,% r b e $ * . E 3 Ue
.W,s '
2 4 D. N
/ , Uf .Y: .
20 1 I
,pi 2,"de y%. "
5 0 , meg 0 0 g4 o na o r dm e c m m . 'N= A n _9
"=
En Fa x-oa e u a ir 2 d r a a 50 0 0 - m ly . 00 I. I . - s I TS p e
,;*i N-[ a Y
i- W'ii E. " at c :'
,8 m ur n.
3."3 - p . 7 l m _ e 3 ^ 5 o 7 0 5 0 I_ _ Y f : 00 m1?c i e_ l 8 o - eg s rn of - Wf e S d e 1 4 W r ,d 0 0 0 0 I y 00 o 3 f c o 0-pr 7 l n 0 a . nf e8 4 t - e 1 5
) ,d K c 20 5 0 I ~ . 00 c .V Cl o oI D u ce n c e t t t
s ec 1 6
~4. voM dt o 5 0 r 00 l I : 00 ,
1
.f 0
0 G , 0 De e ' c meL i im) n b 1 7 e 8 70 bS or ,/ 00 50 l D a a a , n 1
. c c k m 8 g k g p 89 EC r r e l
7 c nh o o up T 4 e a u .. a n f mg 3y e r n n n d . n d l u s ur , l a oc hne u y r mlso v m b , - . - - - . e 1 Ee r 4 o 2 4 6 8 1 9ad 0 0 0 0 0 0 0 0 0 0 0 7 r 0 0
,5 1 Ss 4*nM s 9
0
48 Count rate, counts /400 min. w o a o u o a e e o ce o 5 o o o o o o o o o o oo p.. i i i - g ..,. .& . 4 4 4 m (4. 3 M"* .T-- - 134 134 Ce c 3 p 186 226Ra .. . N N g_ -- - 238 212 Pb '
. oo '
5 214 Pb , c h ,o Qu ~d 3 pa i
- e. N b .
tr. n 3 8 ' $p w f. 478 7Be ' C" wM .
-n i $5-oo '
511 Y L - te ep y 208T1 g ." < . 583 e - W C M 'O 2oD o 609 214 BL . 662 I37Cs w m 3a es o m* t.n m n
- w f m3$S- < .O .s oo .. 765 95 Nb -
O O m4m
.c -a oo " ca *ty p
EO im tt
. c. ' ;t nw oo- - < o oo O 0: h O
- on .r., o am ao
~ .to. ,m y ~
AC . o c- vi o - - oXg oo 3 *n a a
- e, c' *-n a O &N{ 4g a > .q .
_e
...-.- - 1461 K v
aO vi a oo-oo O Ugf ^C - m n c, U o Bo= c -a O3 nA n % .& n m g ? e. m e c v. o - n = = - w5n
.r 3 oo ;
as os
- w50 2 3*
M9 n
- r. cs L g1 oO
-m sc e m a. g = e
- c. Ce M < s.
v c a g e e i t t i t 1; m o u u o w
- e a V--
D o o o o o o o o o o o o o o,
*C *1*WT 1 S B 1 O l 8 P '. P "F "6
) ./
Table 32. Soil samples collected 16 September 1974, analyses for gross beta, 90S r, and gamma-emitting isotopes, Davis-Besse NPP. pCi/g dry weight ^ I ocation Gross beta 90Sr 137Cs 40g T-1 (Site boundary, 0.6 mi. NE of plant) 11.0311.78 <o,17 <0.03 15.010.8 T-8 (Ea rl Moore Farm, 3.2 miles WSW 31.16*2.73 <0.12 0.96*0.07 26.9*l.25 p of plant) P T-19 (Mille r Farm, 3.7 miles S of plant) 30.59*2.72 <0.12 0.49*0.05 26.811.16 08 O T-20 * . m (Daup Farm, 5.4 miles SSE 25.03*1.76 <o,19 0.52*0.05 23.910.7 [
- of plant) La
-4 a The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background samples.
i
- 68 -
Count rate counts /200 min. w _ w w a m o o o o o o o O o o o O o o O O oo . i e ...- 4 i. . 4 . M.
- c>. . ,:., - - . . . . . ,5- .,., T**=5 ..
186 226 Ra
~ .=m. .
- u.oo.o, ,lp,
. 238 212Pb ~~/IZ t
- a ._ 1 300 212Pb hk$h : p M-
*.- 308 228Ac 353 214Pb
- x.3 %9
. ,Tw. - 3 #pT.
EB .N ** P g ~;C = cnE88- .- 511 *b.;- . . - 3 0 '< oo 20871 , ,
".*: $ c: -
583 / z o *c "O M 609 214B1 rs a . i$ *E ( wm k 662 137Cs 4! i .
< *c3wow % 727 212BL '3 0" ooo *-i O . ~ -k _ 768 95Nb ~ *** h.
f .
=c n ao v ;g~!. .y n - .-
Y 911
& y* w h.-
228 Ac Y -. o , % 066
,~ e oo k N oo- 1 -
Onc-o**
>9 c cc 4 ~
U#O 1120 214 BL m no .-..
* * { 'g '.
Nc OU-m ~g-o wa ** , . - g en a N.
.F S E o -l O 5 o .n. ,.-
c3 L
*" cO 0 b 1461 40 g ,m c _m 6 ,a e g ~- .r. O O ao- L -
n Ow-C
- co C" % *w O o. CD
" 0 n e
c-m9~~
'u w ag- - ~
9n-n oo e ,f, r
,,. s Zen o e . = :-
8
=.
a} 0 oCc. a w
, =
C Eao n a e71 n= u-
==_ ?E TE a <?r . , . , , , , v - ,. O _ ~ O - ~ m . .
O O O o o O O O O O O o o O
*/ 'NdW 15 5! 1 - 018 MF"7"/
e- pm -- -ese g
kl.alaal B i O - T E S T M>sabua. Sa Table 33. Treated surface water samples, analyses for gross alpha, gross beta, and tritiu:n, collected from the Erie Industrial Park (T-10, 6. 5 miles SE of plant ), Davis-Besse NPP. Gross beta data from this table are plotted in Figure 27. Date pCL /1' pCi/ml^ CoIIected Gross alpha Gross beta Tritium ,.
't-01-74 <0.27 2.45*0.20 0.34 *0. 11 7-08-74 0.30*0.16 2.45*0.20 0.42 0.12 7 74 <0.32 2.52*0.31 0.33*0.24 7-22-74 0.30*0.18 2. 14 *0. 2 1 0.31*0.17 7-29-74 <0.30 2,42*0.31 <0.31 8-05-74 <0.31 2.60*0.32 <0.31 8-12-74 <0.28 2.54*0.31 0.36 *0.22 8-19-74 0,55*0.34 2.20*0.29 <0.27 8-26 -74 0.39*0.34 2.51*0.31 0.39*0.22 9-03-74 0.41 0.31 2.23*0.32 <0.23 9-11-74 0.50 0,39 2.96*0.38 0.36 0.18 9-16 -74 0.34*0.32 2.33 0.35 0.33 0.18 9-23-74 <0.46 2.33 0.34 0.31 0.17 9-30-74 <0.38 2. 14 *0. 44 0. 34 *0. 16 Mean
- 20- 0.40*0.19 2.41*0.43 0. 35*0.07 10-07-74 L,37*0.25 2.22 0.23 0.51 0.20 10-14-74 0.49 0.28 2.80 0.25 0. 45*0. 14 10-21-74 0.26*0.25 2.31 0.26 0.44*0.20 10-28-74 <0.30 2.18*0.36 0.53*0.20 11-04-74 <0.41 2.43 0.37 0.28*0.22 11-11-74 <0.38 1.62*0.34 0.20 0.19 11-18-74 <0.45 2.11*0.34 0.38*0.14 11-25-74 <0.49 2.07*0.48 0.45*0.21 .
12-02-74 N. S. ! 12-09-74 <0.19 2.46*0.22 0.37 0.19 l 12-16-74 <0.26 1.8010.30 0.40*0.19 l 12-22-74 <0.19 2. 07*0. 14 0.45*0.19 l 12-30-74 0.33 0.27 1.84 0.23 0.45 0.19 Mean
- 2 6- 0.36*0.19 2. 16 *0. 64 0.42 0.17 a The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background sample.
.b Less than (<) values are not included in the mean.
l 90
bbgnk c p~ f N m 4~ ,m $ 0 0 0 1 0 0 ~D 1 O 0 1 1
- .~ . = _ > . . _ __ _ - - k s ; . r C a P
g E l
, D a i . ~
r3 y,O . ts 3
,V u e g/ ,
O d l nb a k\y , N I eT i
. , r m T
E or C mf o e
, O r r f a . det a Q
P t a P E cd e S l e l oh cT A A , 4 ,
, 7 y2 G 91 t 1 U i P
n , A i v N o o t ce r a s o L a se (4
~
o , U c t eB o, G , J b - s s
)
g ,
. so va i , N U 37 rD g
g 0
, J 9 1
s) o O' , l e pn t O- a n , Y ml A - ap [O
, M O- s f q r o O . t eE aS R w s P ee 3U ,
A l O0 ci
. fam R r q u5 A s 6
0 , M d e 0 , o , t a1 p B e - r d E T (T F
% '3 C
g
- 7 2
o_ N e r
$g ,
A J u g A o. i F 0 0_~ 0 1 D 0 0 1 0 0 1 1
- .t ,
,i !
Jndadual B l 0 - T E S T la!mahua. k
~~'
Table 34. Treated surface water samples, analyses for gross alpha, gross beta and tritium, collected from Port Clinton (T-11,
- 9. 5 miles SE of nlant), Davis-Besse NPP. Gross beta data from this ole are plotted in Figure 28.
Date oCi /1' pCi /ml" Collected Gross alpha Gross beta Tritium 7-01-74 0,52*0.33 2.70*0.26 0.35 0. 16 7-08-74 0.41*0.22 2.74*0.19 0. 33 *0. 16 7-15-74 <0.33b 2. 14 *0. 32 <0.31 7-22-74 <0.33 2.54 0.36 <0.31 7-29-74 <0.32' 2.24 0.35 0.50 0.24 8-05-74> <0.56 2.40 0.50 0.35 0.24 8-12-74 <0.30 2.34*0.24 0.42i0.19 8-19-74 <0.28 2.09 0.33 0.40 0.22 8-26-74 0,34*0.22 2.35*0.24 0.35*0.20 9-03-74 <0.31 2.77*0.35 0.34 *0. 19 9-11-74 <0.34 2.47*0.35 0.32 0.18 9-16 -74 <0.31 2.21 0.34 0.36 0.18 9-23-74 0.73*0.55 2.85*0,52 0.26 0. 16 9-30-74 <0.43 2.61 0.50 0.37 0. 16 Mean
- 2 F 0.50io.34 2.46*0.50 0,36 0.11 10-07-74 <0.28 2.58*0.27 0.48 0,20 10-14-74 0.47*0.31 2.74*0.28 0,47*0.20 10-21-74 <0.27 2.60 0.19 0.36*0.14 10-28-74 <0.35 1.97 0,34 0.62 0.20 11-04-74 <0.37 1.89*0.23 <0.20 11-11-74 <0.43 2.68*0.42 0.30 0.19 11-18-74 <0.57 2.31 0.44 O.36 0.19 11-25-74 <0.66 2.69 0.32 0.50*0.15 12-02-74 N. S.
12-09-74 <0.23 2.44 0.23 0 . 4 9
- 0 . 19 12-16 -74 <0.33 2.89 0,28 0.35 0.19 12-22-74 <0.33 2.35?0.27 0.43 0.19 12-30-74 0.45*0.21 2.80*0.19 0.41 0.14 Mean
- 2 O~ 0.46*0.03 2.50 0.63 0.43 0,18
^ The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background b s ample.' Less than (<) values are not included in the mean. 92
.-..n.. ....s.,
m o fi m4 'D ,p 0 0 0 1 0 0 0 1 b1 1 0 1 . o gg L , t C I E t D . 4 g i f V O n3 o t e i nl b g
\p M f N
l CaT
< t r
I
. o m o A
f T Prf e e C m e f p i O o r r a f N ny gf t t P E d a te a cd t i t S ee A l l h oT
, c % I t
4 7 , O G 9 yP o i U 1 t i P A vN g4 i Oi t c es O g g g I 1 f L J U Otae Be a s U0 b s n7 . si s v O u f N oa O - f U 37 g rD f J 9 , o_ 1
,)
_ s n_ n s, 4 t I Y O1 na ct l A - mlp M t M Osf - a t o - O,F. l r eE l t ta S M R wse h D I t P A el i c am hor t t R A f r5 u s1 M 9y-C t 1
' . d e , . t l d 1 B
E al e -
& r I
F T (T O 1 6' f 8
. 2 %n D f
N e f I A r u J 3Q e i F g 0 0____ - 0 1 0 0 0 1 D% 1 0 1
;
-+
foulatual B l 0 - T E S T .!akat.vaa k. Table 35. Treated surface water samples, analyses for gross alpha, gross beta and tritium, collected from Toledo water treatmem plant (T-12, 23. 5 miles WNW of plant 1. Davis -Besse NPP. Gross beta data from this table are plotted in Figure 29 Date pCi/mla Collected Gross aloha Gross bata T ritium 1 7-01-74 0.16*0.11 1.84*0.13 0.35*0.16 7-08-74 0.32*0.17 1.63*0.16 0.29*0.17 7-15-74 0.42*0.28 2.07*0.24 0.37*0.24 7-22-74 0.30*0.26 2.11*0.24 0.29 0.24 7-29-74 0.42*0.28 2.03 0.24 0.36*0.24 8-05-74 <0.24 2.12 0.17 0.32 0.20 8-12-74 <0.24 1.93 0.32 0.32*0.22 8-19-74 0.44*0.35 2.03*0.32 <0.27 8-26-74 <0.19 0.82 0.24 <0.27 03-74 <0.21 2.06 0.32 <0.27 9-09-74 <0.20 1.67 0.22 0.32*0.1.8 9-16-74 <0.18 1.48<0.21 0.41*0.18 9-23-74 0.21*0.19 1.61 0.21 0.42 0.18 9-30-74 0.21 0.18 1.56*0.1o 0.38*0.13 Mean *2U 0.31*0.21 1.85*0.45 0.33*0.09 10-07-74 <0.28 1.71*0.20 0.36 0.14 10-14-74 <0.19 1.00*0.24 0.36 0.20 10-21-74 <0.22 1.14 0.25 0.38*0.21 10-28-74 <0.22 1.38 0.26 <0.20 11-04-74 <0.24 1.87 0.29 0.38*0.16 11-11-74 0.21*0.15 1.39*0.16 0.40 0.19 11-18-74 <0.13 1.64*0.17 0.50*0.19 11-25-74 <0.13 1.25 0.15 0.50*0.19 12-03-74 <0.14 1.28 0.11 0.52 0.13 12-09-74 <0.26 1.67*0.27 0.29 0.22 12-16-74 <0.26 1. 52 *0.26 0.33 0.24 12-23-74 <0.28 1.49*0.26 <0.30 12-30-74 <0.28 1.51*0.24 <0.30 Mean *2a 1.45 0.49 0.40*0.16
" The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on 3 sigma counting error for background b sample. Less than (<) values are not included in the mean.
94
fdatel B 10 - T E S T 1&6aa, Ac. o o o - d d T/Tod ; g o - m
'I ! I I I ? I II 9 9 I I 1 9 e fl g 3 9 l l p l l -- pG' . y C' 'o *
/ O u w c:
%%~
da -
- gy ,
. n -> b o -O ,o p
I + z g , D. . d,o C Ao . H z
- g c D -
0 - o _ O
- Oa
.. U 3- , a g$ o U :
M yo 'gm V) =0 nC dj % o
) - & >
OO " *
- c o- 'C c O'b -
< O ' A
- v. u a i Y' .
' w Q -
A n c RGL - o m O a-E-
, Z al~ ' ~O z
fb u m DM MM 40
- f'3 ~ ==
4 s - > 9 Ed l n e . 6mo a N s
- .D 9,
e a, s C - n
~ o c C _ < u no nm o A l - 2;e ; %s ',
d =em 4 3'2 W,03% 1 E ?5h ( 63 :g%a~ C
*q)O -
M ' u l- ~s 1
,o - k , l e 1 - n 1 z
O d l o" ' 8 8 8 i 8
- i e i i g6eiii a i ftii f d I/10d J d 95
. _ _ _ _ f.
$ndadd 310 - T E S T %wtaua. Sna. ,- Table 36 Treated surftce water samples, analyses for gross alpha, gross beta, and tritium, collected from Unit 1 treated water supply (T-28, onsite) Davis-Besse NPP. Gross beta data from this table are plotted in Figure 30. .Date oCi/10 pCi/ml Collected " Gross alpha Gross beta Tritium 9-03-74 <0.32C 2.64 *0.34 0.28*0.18 9-11-74 <0.30 2.23*0.33 0.30 0.18 9 74 <0.30 2.11*0.32 0.32 0.18 9-23-74 <0.43 1.99*0.44 0.36do.18 9-30-74 <0.67 2.05 0.42 0.28 0.16 .Mean *2f 2.20*0.52 0.31 0.06 10-07-74 <0.32 2.45*0.36 0.57 0.20 10-14-74 <0.33 2.52*0.37 0.51*0.20 10-21-74 <0.33 2.28*0.36 0.72*0.20 10-28-74 <0.32 2.32*0.30 0.49*0.19 11-04-74 <0.34 2,41*0.39 0,24*0.22 11-11-74 <0.35 2.07*0.39 0.35A0.19 11-18-74 <0.52 2.34*0.43 0,37*0.21 11-25-74 <0.64 2.57*0.55 0.37 0.21 l 12-02-74 N. S.
12-09-74> 0.46 0.27 1.93 0.23 0. 4 5 do.19 l 12-16 -74 < 0.' 2 5 2.25*0.29 0.33 0.19 12-22-74 <0.19 1.38 0.21 0.38 0.19 12-30-74 <0.25 2.41*0.25 0.31 0.22 l Mean
- 2 f 2.24*0.65 0.42 0.26 b
a Sample collections started 3 September 1974. The error given is the probable counting error at the 95% confidence level. I Less than (<) values are based on 3 sigma counting error for background l sample. l
," Less than (<) values are not inc1hded in the mean. 1 )
i 96
1 bbAg,~ m O Hmme -
)* s g_(i l 0 o 0 I 0
0 0 1
@ oa 1 0 1
s) ~ f _ C d _ 9 E t e 1 D a . e r . t 63 6, a V I t O e t l 4_ N n ba 9 i 4_ UT 9 . n in T o o 9 i C Q A 9 f O f r r d e e r f g f f P E t l l ca ea t S oa cd
*% f ,e yh T
I . t 9 G i v U i . A c P 9 t 9 aP a N t _ 9 L e e b s 9 U s t J s e s3 o-r 1 t gi s N ,v t U s )a J I e1 l p , t n )e Y i ai t A t s s M r n t 6 e o t , a8 f R w2-I P eT c( t A a f y rl up s p R t u t A de s t M t r a et e t D r a i E Tw i F ce' 0 t 3 N e t r t A u g t J i F 0 0
. 0 I 0 . . p)OA . .
0 1 0 0 1 1 p - i ,
;!
1
fn4atual B l 0 - T E 5 T 2dmabw. k
~
Table 37. Treated surface water samples, quarterly composites of weekly grab samples, for ;'uly-September and October-December 1974, analyses for 90Sr and gamma-emitting isotopes, Davis-Besse NPP. Dates oCi/la Location composited 90Sr 137Csb T-10 (Erie Industrial Park tap Jul.-Sept. O.48*0.35 <1.5 water, 6. 5 mi. SE of plant) Oct. -Dec. 0.74 *0. 22 < 1. 5 T-11 (Port Clinton tap wa'ter Jul.-Sept. <0.46 <1.5
- 9. 5 mi. SE of plant) Oct. -De c. O.49i0.21 < 1. 5 T- 12 (Toledo tap water, Jul.-Sept. 0.31*0.26 <l.5 23.5 mi. WNW of plant) Oct. -De c. <0.45 < 1. 5 T-28 (Unit 1 Treated water supply, Jul.-Sept. 0.53 0.33 < 1. 5 onsite) Oct. -De c. O.55*0.20 < 1. 5 a The error given is the probable counting error at the 95?o confidence level.
Less than (<) v 1ues are based on 3 sigma counting error for background samole.
~
b No gamma-emitting isotopes were detected above background level. 98
.. _. -. . m ._ . s 9n.Lahi.sl 310 - T c $ T .M>whact inc.
f e
~ ,m 4ee e m ete see m M
one, mee d , Ma m eMe o, *Me n oce m E, m n. n.
- a. m. a. n. m u. m. M. =. m. m u n. a. e. o. a. =. =. n. n. a m. a. a. m . n. u. m m.
- . n. m. a n. .
- o. n. e.- o.. c. o. ne o. n. o. n. e. o. n.m e.. o m E a. o. n o.
. o. o. r o. M. o. c. o. 4 o. o. o. o. o. o. e.. o. a. n. o. a. =. 2 , ,o , n om ., e e m. ,. nM u,M n .> anm a e n u n, + e, e a ~m , a n,
, eM , n,M,
, p y
O ao
.v o,. oooo . . . M. v.,. . .
oo o oooo ooo M. M. . . . . . M. o ooo
- M. M M.
o ooo
. .M . M.
o ooo M. M. M . M o ooo
- e. .. .
o o
- e. M. ~.
o o,o M.
. 4 z
- O
.mAa nM - m e#e m ua o, ,,en m m, .a u eMo w M 4 .a e v e e, 's M .e . o eM4 4 , w +,c
- M. M. M e. e. v. e =. ~.~.m . m. e. a. M. ~. o. M. M. m n. M n. e. . M. M. a M. , e. e. d.
4 a m. s . . . . . . . . . . A c .- x o. o o. m. o. n. e.. n. o. o. o. n. o. o. o. m. .o. o. o..
- n. o. o. o.. e. o. o. s.. n. o. o. o. o. e. o. s. a. n.
4A I e w.*
~~-> = ae mese v=e m, ,~
m e ,e .* men pec o w..
#4c a 'w m, =,M u n o enc occ .u. a M en e,ge o o o. o.m na woe e
4 WM o ono M w
*e AddA Ad4 4 AAd d did 4 ddi 4 d44 4 A d d,4 d A A:A 4di d Edd 4 # w W>
M" d 4 eQ km N g g., ooo M M,M wmM m e,m eh, com mnM N e m, om , peo w . g g W M. M. M. M. . M. u. n. M. . e. M. M. ,. , N. e. nW h w j O-m by
= mo ooo e
n ,4 4 oo 4 ,. o 4 e ooo
,4 ~n 4 e M.
coo g 4 4 ooo 4 d **
- m. M. n.
ow o. o4 M. M. ooo4 g
. M. n.
- o. o. o g
. M. M. M.
ooo
**4 ooo 4 4 * . M m m m o nee oen ,m M , e .,4 woe um ~
A@ a ie a4M nen enn eaa cem nom noe e = eMe orM 4" k
=
G AAA JAd JAd add iA4 Add AA4 AAA AAA AAd MN e 2 o m%A M 5 o,* nm g g * . *4e one une ~-. 4% ~~e Me4 eaa m
@Q 13 m. m. m. m. m. H. o. m. .m N. n. N. m. m. m. n. N. N. . m. m. m a. n. m e. n. m. m. N.
U ooo ooo
- ooo ooo ooo ooo ooo com ooo 4o.,4o noe Um 4 4 4 64 aM o e4 ,4 e 4 4 4 nom g 4 4 som g 4 4 m M n ew en ,e eg g oMe eme e M ,w ee
% j e 4. ,. M.
M N. N. m. M. G. M. m. e. m. e. N. e. N. M. e. M. ,. M. e. ,. N. e. P. N. o. m. ,. O h oom oom oom amo ooo mmo com ooo oom mMo eY U b
.u-M =
- O ou g s m e,JM m a ,eo , M kl.m e
, o M, 4 4 e n, e, 8 a M. M N. eeee N. N. N. e M. , m. e. M. P. M. .c O. ae M.J M. e o. . o.
e
-Q. .nc ,2 n . . N M. . . N M. , . m o -2 v. o. e. e 4. *. e. s e. o4 4o e. m. c. o. m o. . o4 c. e. < c* o4M=m. o. 44
- e. o 4 o. o. c. 4 o. c e. =. woeo o.4 m. eo.e G o c e,N ooo o web S oN=" 4=NM m N o o d ed mea d meCe O .% H.= V***... VV
*com* " . m*.
- V* **** V V ** *
- a . =. ***". V Q u 6 ome moNm ==.. a .
la m.. V N. o N. e V ". *. N. omm m
.
- m.
M b
~m % p m M M
C d 4 0 * ~ eo mee M4e e o o V ., g M M n,
- d &
M M M. eee N. m. M. ooo oem e. M. e. e .M so M. 4M, M M. e 4 M.** a >9 N. 4a4 o ooo 4. N. ,. Mao M
*- m Om m
om e M. O. N. ooo 4 4 e m. e. d. 4 4 4 d o* e. M. M. qo 4 4 m. go d.
*g . e O yyy G,g eoe ooo ene omo com ooo oy M,N o4o u A. . g y M. ,. ...
yy y q , n.
. . y c. y y yg yy y . e. y e. y @M m. O ao ooo oom o o ao o M@ .
- 8 o 3
)u - a UM 9 4e, 4 M o, so, om> mne one oMn Me emN cce U m
- v8 ,. a
- o. o. n. m. m. . o. w. n. M. M. n. . m. m. M. u. n. m. a. n. m. a. n m. e. n. u. n. e.
ooo ooo ooo ooo ooo ooo ooo com ooo g gmo ~4 ,4 o4
- 4 d 4 4 4 4 4 g e oe o. o*
u b *
- Mm e ,4 =~ e~e - .4 -4 m 4e 4 g g a
~ .4 ,4 ee
- 4
~-M 3m s o. m. o. M. N. 4 m. m. e. e. o. ,. M. a. ,. o. ,e . M.e N. N. o. , N. V @ . M. o. ' W. M. M.
g g M com ooo . coo om o ooo moo com oo ooo omo en . 3o nu 5
-1b I b '
th Is ~. ~ 1' e atw ~ 1' 1' ,d - te, b : :b o 4wa .
. E ~* JE:~a ~ 1' eIs .. 'E ~.' j-aa. eE n = == . 1' s: n ; E n.
- maa
*ee<n k "
E. c.
- u 35 ao hii.=!
ss 2*:' S!"i 3, s<.'.
'253. w i '2 3 :..= 5 g,j2 w a i =i '2.. 5v n i. 2 w e=
- co w %<ne o=Q2 sai.2 3 s
%<n wi of ozoa %
- w o ozo2 1, 2<a n i. s= o=os ,4 ozo e! 3. s
-pw 4
- e. , _: - .
- m. wa m .a m
o'... - =-
,a - m -e * *. g , E m c< ** :. tu tjl 3 . .a . e -t e;s .a.
O g 11- 1. n$ 1..o a=-; 3A.= 4
; - 2 jua .a-j ju;' sa. au a m. 2 v.s b
a a w 7:;; s a7:. 2u' a.4-E mag 3
. a.a m n m .. = ~ , ;dS;E i os HSEs edE HEEb 9 bhSd i . 99
kb. dual B l 0 - T E S T la! mal >aea. 9m. M
'.,t.
g
~~. . ,O. .. .e j
g 'L" O. O. a.t O. O. O. O..8.'t .
. .e+. at a. o .-
N.t et m 6 Q M. *e .e. as.. M.
. . C.
h G OOOO OOG.iM. O + h e. 44
.2 dO*
- 9 6 f*
.~- e8 n-- - 1 *
- A.e.. d. d...: ,. d d. C. ,.: .
.o.
p.: e :, . .
,, e. O. e a.
M M m .8t
. .r..e. .n. a8s.
M *e M m h 9 9 le
.4 O d a, en we m ,e- 5 -
g , to 1 y T N* #8. m. T. m. M.
** j d3 O. O as O. O. O. O g
[ .J *a . - me = = a e g Q MNN
. r. ~. O.
NMM g u. C 5 9 s' 9 N .e art wh e J w ** gs ,. * * " * *
- O .O "". %
9 8 q O. O. O. as.
- O..
te O N . e
-J a e -, OM e 9
W3 -
***O.
O O a. O. vOe. " S m.
.V*
4 4 O4@ 're
, . .Aa . ,
4#
- a. ~. r.l9. .==.4 . ,
3; O. 3. O. O. w. e. O. a Nak o 4 -{O. e
- e. O Gk VVO aa.
m . J. G P. . m. OO- O - a, G ** 2 e s= v C U e
$, eeO - om 9 "J . ;. N. es. set .O a
- -21 o .
O. O. O.. O. a. o. a w
**.2, tre a
- Ws O O 4
-.. O.
- c. o. m e. v v tt.
w M OOO. O em O W b C S e e. g m O. e e O ,e c a.e 4 e
. Q M.-
4.=
.d ae. .
4. e
' O G. O f.'t G. O =
3ec . . O
=
s n. . . c w OOO. O O. g 1
'o .
b o - - , .b a 3, . 2 2m.,d A. a C. 4 . E.. *2 E. .: .
- g i 3
-~
C o
.s ;;
2 s; t, i,, - 2;;' 2
. < w .4 o., :n4 .:.i O -.
d
. 9 g
m s Q f" *v ** .*.a 4 e. O 0- k e=s 2 5en- e.
- ,Q 0
- 7 e
- N * .4 %
b . " " 75
- t* w..n.3-s7.
i 100 w
. . a ._._ n .
SA W BIO-TEST.lal, h .fe h Table 39 Untreated surface water samples, quarterly composites of weekly grab samples, for July-September and October-December 1974, analyses for 90Sr and gamma-emitting isotopes, Davis-Besse NPP. Date s oCi/la Location composited 90Sr 137C sb T-1 (Site boundary, 0.6 mi. NE of Jul.-Sept. 0.35*0.33
<1.5 plant near inlet canal) Oct. -De c. O.90*0.33 < l. 5 T-2 (Site boundary, 0. 9 mi. E of .Jul.-Sept. 0.64*0.24 <1.5 plant) Oct. -Dec. 0.68*0.25 < 1. 5 T-3 (Toussaint River, site boundary, Jul.-Sept. 0.54 0.32 <l.5 1.4 mi. SE of plant) Oct. -Dec. O.84 0,31 < l. 5 T-10 -(Erie Industrial Park intake, Jul.-Sept. O.54*0.18 <l.5
- 6. 5 mi. SE of P lant) Oct. -De c. O.83*0.35 < l. 5 T-11 (Port Clinton water intake, Jul.-Sept. O.58 0.25 <1.5 11.5 mi. SE of plant) Oct. -Dec. O.75 0.34 < 1. 5 T-12 (Toledo water intake, Jul.-Sept. 0.49 0.34 <1.5 23.5 mi. WNW of plant) Oct. -De c. <0.37 < 1. 5 a
The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 sigma counting error for background sample, b No gamma-emitting isotopes we re detected above background level. 101-
- ; - -- __ _ . _ _ _ _ .
,._s ' 5000 8
I 8 5000 i
- 4000 400s ..
Y g 4 f 8 $ 0 I .*.- - 3000 $* 1 3000 _ ,.*
-l It U3 "[*',. ~
o .
~
-} . (**, O . E! . E
~ s. .. .u $ s M o , ... , _ 2000 4 0 vs 2000 'y. ' 511 I ~~ .s L $' '{l, . :,,T ' , Y 1000 "- - 1461 4n g - 1000 f' g,,,,
Sample plus backgrounil ,
' %.*' ,s' , . ' ' ' 'YY.'ge,,.,,, .. . .
Dackground **.'"3'<g.j , p\'t-
**! e%W 'om.v'.ar,a,a, 4w.s/M@'J'MCir. .s?-rt.
0 s i i 400 Cliannel number 100 200 300 0 1000 1500 2000 Energy,ke V 0 500 10 cm x 10 cm Figure 31. Gamma-ray spectrum of untreated surface water, 0-2560 kev. Detector: NaI(TI), (No. 1). Sample: 3. 51 of untreated surface water, composite of weekly grab samples, collected from 1 October 1974 through 31 Dc ember 1974 from Toledo water intake (T-12,
- 23. 5 miles WNW of plant ). Counta: 1000 mtn. o . 9 January 1975, Davis-Besse NPP.
Table 40 . Fish samples, analyses for gross beta, 90Sr and gamma-emitting isotopes, collected from Lake Erie in the vicinity of site (T-1, site boundary, NE of plant ), Davis-Besse NPP. Date Sample pCi/ga Type of fish collected type Weight (g) Gross beta 90Sr 137Cs 40g - Carp 5-23-74 Mus cle Wet 1588.0 3.010.1 NA b 0.007*0.002 2.910.1 Ash I8.53 256.917.4 NA 0.63 *0.25 248.017.9 Bone D ry 70.30 NA 0.35i0.05 NA NA Y Ash 29.64 NA 0.82*0.11 NA NA f t White Bass 8-23-74 Mus cle Wet 1174.0 2.9*0.I NA 0.02510.004 2.810.1 *
;
Ash 12.70 267.li7.7 NA 2.34 10.38 257.0*9.8 g
! O Bone D ry - 33.00 NA 0.2210.06 NA NA * .
5 Ash 13.07 NA 0.56*0.15 NA NA [
- sn Catfish 8-23-74 Mus cle Wet 510.0 2.510.1 NA 0.021i0.003 2.710.1
- Ash 5. 31 240.8i4.2 NA 2.02 *0.27 263.316.8 -
I Done Dry 20.91 NA 0.4910.09 NA NA f , Ash 8.03 NA 1.2910.23 NA NA j-i Carp 11-24-74 Muscle Wet 957.0 2. Sio.1 NA 0.01Si0.003 2.310.I f Ash 10.06 239.2i5.1 NA 1.00 *0.32 223.2*9,I Bone Dry 55.54 NA 0.6410.I1 NA NA Ash 24.47 NA 1.4410.25 NA NA e e
~.
-)
t Table 40 Continued. Date Sample pCL/ga Type of fish collected type Weight (g) Gross beta 90Sr 137Cs 40g Crappie 11-24-74 Muscle Wet 958.0 2.810.I NA 0.01110.004 2.910.1 Ash 13.20 201.2*3.3 NA 0.74 *0.37 210.418.9 I I Done D ry 15.82 NA 0.6410.15 NA NA
+
Ash 8.84 NA 1.1510.28 NA NA , I ({ Bullhead 11-26-74 Muscle Wet 676.0 2.610.1 NA 0.00910.003 2.310.I h'
- lt Ash 8.14 215.2*4.9 NA 0.85 *0.33 217.1110.4 t, to Bone D ry 26.70 NA 0.52i0.10 NA NA -
Ash 11.50 NA 1.2010.22 NA- NA .
-1 5
A m a 'a The error given is the probable counting error at the 95% confidence level. Less than (<) values -4 are based on 3 sigma counting error for background sample. Gamma spectral analyses showed N that all other gamma-emitting isotopes were less than the minimum detectable levels. - b NA = Not analyzed. Analysis not required. R J I. ii
s 9 Table 41. Fish samples, analyses for gross beta, 90Sr and gamma-emitting isotopes, collected from the Toussaint River nea r storm drain outfall (T-3, site boundary, SE of plant .), Davls-Besse NPP. Date Sample pCi /a" Weight (g) Gross beta 90Sr 137Cs 40K
. Type of fish collected ty pe b ! White Bass 8-24-74 Muscle Wet 1343.0 3.010.1 NA 0.047i0.005 3.5* 0.1 I! Ash 15.92 256.5 *7.4 NA 4.01 10.40 293.l*10.2
.i Bone Dry 36.64 NA 0.4510.08 NA NA
. Ash 16.36 NA 1.0110.18 NA NA ({
Catfish 8-24-74 Muscle Wet 1036.0 2.8*0.I NA 0.02410.004 3.0* 0.1 Ash 10.62 268.4 17.7 NA 2.42 10.42 290.5111.3 5 O
- s. Bone Dry 40.49 NA 0.4910.06 NA NA
- 8 Ash 14.36 NA 1.3710.16 NA NA m us Ca rp 8-24-74 Muscle Wet 1413.0 3.610.1 NA 0.01010.003 2.51 0.1 NA 239
- 8.8 N Ash 14.62 250.1 *:,. 2 0.97 10.29 Bone Dry 73.05 NA 1.0610.08 NA NA Ash 34.-13 NA 2.6610.18 NA NA f Catfish 9-9-74 Muscle Wet 1380.0 3.1*0.1 NA 0.03 10.005 3.li 0.1 Ash 14.13 303.9 18.08 NA 2.98 10.47 298.8 10.7 Bone Dry 63.3 NA 0.2910.04 NA NA Ash 23.6 NA 0.7610.I1 NA NA a The error given is the probable counting error at the 95% confidence level. Less than (<) values are based on 3 aigma counting error for background sample. Gamma spectral analyses showed that all other gamma-emitting isotopes were less than the minimum detectable levels.
b NA = Not analyzed. Analysis not required.
. 1 Table 41. Continued.
Date Sample nce /c2 3JICs -3 0l "
*rype of Fish Collec t ed T ype Weluht (e) Gros s l>cta 'K$ r 11-26-74 htuscle Wet 962.0 2.710.1 NA 0.045so.012 2.4so.1 y . White bass 3.893 204.2sd.3
!i Ash II.07 234.015.1 UA Dry 19.24 1A 0.6440.13 NA NA .j Done Ash 11.24 FIA 1.10so.23 NA 14A g 11-26-74 hiuscle Wet 861.0 2.410.1 NA 0.08920.014 2.440.1 ' Sheephead k Ash 9.39 218.914.9 NA 4.495 222.529.0 Bone Dry 23.89 NA 0.22s0.13 NA NA C3 Ash 13.69 NA 0.39so.22 NA NA - 1078.0 HA 0.00210.001 2.340.1 - O . Carp Il-26-74 L ascle Wet 2.620.I
- A sh II.66 242.825.1 NA 0. 162 210.728.8 -e w
O m
, Done Dry 30.99 NA 0.2240.13 NA NA ,
o NA Ash 16.52 NA 0.4140.24 NA g a The error given is time probable counting error at the 957. confinience level. less than (<) values are based on 3 sigma counting error for background sample. Camma spectral analyses showe<l that all other Camma-emitting isotopes were less than the minimum detectable levels, b NA =Not analysed. Aralysis not required. P q .
E
.. g 10000 I I 8 3 10000 6
8 8000 - - goof 'I;
. 'b i[.
f6000 ,* - 6000 ,
~
59
~
o
~
o . .
~
C O o * *
- i 4 9 --8 8 40 na
- 1461 K 4000- M .-4000 . . ,
s . h *
':.s.v ~ . . , *s o .
l., .
'. - sii : -
g.
^ ' *'.*$*~~.
s' .., l q 2000 *.'. s .,
- 000 g
' ' r,*s, 7., . .
s
's 'ss r.!s* .'. s, , .
Sample plus 1,ackground
.-. .: '.
- b'v%....
V: ~~_ ~~~'~.\.+*4.'.,'~~*,%.,r.:,,,
- s. :
_ '.3 Dackground ~'# *e's ,* ee,< z ** *
~' r*r ~:. .. ,. )Q ,r:. ~' ~ .s :_ ~-
0 l$0 20 3do 40b Channel number 0 500 1000 1500 2000 Energy. ko V Figure 32. Gamma-ray spectrum of carp flesh, 0-2560 kev. Detector: 10 cm x 10 cm NaI(TI), (No.1). Sample: 18. 528 g ash of flesh, collected 23 August 1974 from inlet canal (T-1, site boundary, NE of plant ). Counts: 1000 min. on 31 October 1974, Davis-Besse NPP.
fdAV E l O T E S T h! >~.ie. 9m:. 4
- f ^s f- Table 42. Clam samples from Lake Erie collected in the vicinity of site, (T-1, site boundary, NE of plant -), analyses for gross beta and gamma-emitting isotopes.
oCile" Date collected Weight (g) Gross beta 137Cs 40K 7-9-74 Vret 3117.0 0.51 0.02 0.001* .001 0.14*0.01 Ash 43.38 36.88 1.38 0.05 *0.04 10.31*0,58 9-19-74 Wet 822.0 1.22 0.09 0.009*0.004 0.25 0.05 i Ash 24.02 41.83*3.11 0.31 *0.13 8.60=1.71
- The error given is the probable counting error at the 95% confidence level.
Less than (<) values are based on sigma counting error for background sample . Gamma spectral analyses showed that all other gamma-emitting isotopes were less than the minimum detectable levels. i i 108
[;[ 90 Table 43. Bottom sediment samples, analyses for gross alpha, gross beta, Sr, and gamma-emitting isotopes, Davis-Besse NPP. Date pCi/g dry weight Iecation Collected Gross alpha Gross beta 90Sr AS(Cs 40g. T-1
; (Site boundary, 0.6 ! mi, NE of plant) 10-16-74 <3.3 13.612.9 <0.26 0.0510.03 16,210.8 T-29 (Lake Erie, intake area .
- 1. 5 mi. NE of plant) 10-10-74 12.4 *l. 9 23.4*l.O <0.24 <0.04 21.010.1 i k
T-30 , (I2ke Erie, discharge - area, 0. 9 mi. ENE of O plant) 10-10-74 11.315.4 19. A*3. 2 <0.24 0.2410.04 17.8*l.0 M E m a The error given is the probable counting error at the 95% confidduce level. Less than (<) values are [ based on 3 sigma counting error for background sample. Gamma-spectral analyses showed that all other gamma-emitting isotopes were less than the minimum detectable limits. i
.. . = - . .
f,,4atwal B I O - T E 5 T .Meokuu f,ve. O V. References Cited Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 produced by Cosmic Rays. Science 121: 451-453. Industrial BIO-TEST Laboratories, Inc. 1973a. Preoperational Environ-merital Radiological Monitoring for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. July through December 1972. IBT - Project No. W1997. Northbrook, Illinois.
. 1973b. Preoperational Environmental Radiological Monitoring for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. First Quarterly Report, January through March 1973. IBT Project No. 6430 1997 Northbrook, Illinois. . 1973c. Preoperational Environmental Radiological Monitoring for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. Second . Quarterly Report, April through June 1973. IBT Project No. 6430 1997 Northbrook, Illinois. . 1973d. Preoperational Environmental Radiological Monitoring for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. Third Quarterly Report, July through September 1973. IBT Project No. 6430 1997. Northbrook, Illinois. . 1974a. Preoperational Environmental Radiological Monitoring ,
for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. Fourth Quarterly Report, October through December 1973. IBT Project No. 6430 1997. Northbrook, Illinois.
. 1974b. Preoperational Environmental Radiological Monitoring for the Davis-Besse Nuclear Power Station, Oak Harbor, Ohio. Semi-Annual Report, January-June 1974. IBT Project No. 6430 1997 . Northbrook, Illinois.
National' Center for Radiological Health. 1968. Section 1. Milk and Food. Radiological Health Data and Reports, Vol. 9, Number 12. 730-746. Russell, R. S. and R. S. Bruce. 1969. Environmental contamination with fallout from nuclear weapons. A review. Proc. Environmental Contamination by Radioactive Materials. Inte: national Atomic Energy Agency. Vienna. 3 p.
.U. S. Environmental Protection Agency. 1973. Radiation Data and Reports.
Vol. 14, Number 7. p. 46 2.
. 1974. Radiation Data and Reports. Vol.15, Number 7 p. 476.
110
9nhalsszl B l 0 - T E 5 i lalosalna. Sa
+
APPENDLX A Reported Nuclear Detonations in 1974 l l 0 l i l l 1
.-;
Aduehial B i 0 - T n S T la/usahn s. k. rm . Reported Nuclear Detonations in 1974a Date Coun try Location Elevation Yield 1-30-74
- USSR Semipalatinsk Und e t*g round 20-200 kilotons 2-27-74 USA- Nevada Underground 20-200 kilotons 5.-15-74 USSR Semipalatinsk Underground 20-200 kilotons 5-17-74 India. Rajas char Underground <20 kilotons 5-30-74. USSR Semipalatinsk Underground 20-200 kilotons 6-17-74 China Lop Nor Atomopheric 200-1000 kilotons 6-74 _ U. Kingdom Nevada, USA Unde rground Unknown 7-10-74 USA- Nevada Und e rg round 20-200 kilotons 8-14-74 USA Nevada Unde rg round <20 kilotons 8-14-74 USSR Tazovsky Underground 20-200 kilotons Peninsula 8-29-74 USSR Novaya Zemlya Underground 1-3 met:atons 8-30-74 USA Nevada Und e rg r ound 20-200 kilotons 9-26-74 USA N evada Underground 20-200 kilotons 10-74 Data not available yet, 11-74 Data not available yet.
12-74 Data not available yet. a . U.S. Environmental Protection Agency, Radiation Data and Reports.1974. Vol. 15, Number 1-9. 4 4 A-2
fausdu;al B l 0 - T E 5 i .lalotakes. Saa APPENDIX B Maximum Permissible Concentrations S of Radioactivity in Air and Water w,- ~_-
fn4sdaal B l 0 - T E S T lak.abat, 9.w. O Maximum Permissible Concentration of Radioactivity in Air and Watera Air Water Gross alpha 3 pCi/m 3 Strontium-89 3,000 pC1/1 Gross beta 100 pC1/m 3 Strontium-90 300 pCi/l
, Iodine - 131 0.14 pC1/m 3 Ce sium- 137 20,000 pCi/1 Bar fum- 140 20,000 pCL/1 Iodine - 131 -
300 pCi/1 Potas sium-40" 3,000 pCi/l Gross Alpha 30 pCi/l Gross Beta 100 pCi/l d Gross Beta 1,000 pCi/l
" Taken from Code of Federal Regulations Title 10, Part 20, Table II and appropriate fcotnotes.
b From 10CFR 20 but adjusted by a factor of 700 to reduce the dose resulting from the air-gras s-cow-milk-child pathway. C A natural radionuclide, 30 FR 15801, in footnotes 10 CFR Part 20, d Table II. Federal drinking water 1962, U.S. Public Health Service. ! l l l I
'p..
B-2
Me - *-C e m... %, s. l-- U) W Z Z W F-D i I u -
+
4
', Y ' k.
PRE-OPERATIONAL TERRESTRIAL ECOLOGY MONITORING
'FOR THE DAVIS-BESSE NUCLEAR P0ifER STATION, UNIT I SEMI-ANNUAL REPORT, DECE!!BER 1974 Prepared for Toledo Edison Company Toledo', Ohio .;'.
bY
-Environmental Scudies Center BowlingGreenStateUniversjty Bowling Green, Ohio 43403 January 1975 i
Y a:
.o k -. ~
~
(l
~
[ p
/ \_./ Bowling Green State University Environmental Studies Center Bowling Green Ohio 43403 %V' SEMI-ANNUAL REPORT DAVIS-BESSE TERRESTRIAL MONITORING CONTRACT DECEMBER 1974 A. Designation and Mapping of Plant Comnunities Ernest S. Hamilton and David Preston Department of Biological Sciences Introduction Measurement of plant communities provides a basis for monitoring opera-tions impact on biological systems. Selected communities on the site have been intensively examined to provide detailed baseline data so that natural influences can be distinguished from man-related activites.
In the period of June-December 1974 the scope of areas being investigated hr.s been significantly changed. The addition of the Cooling Touer b'oods as a study area was necessary, as -those sites on the eastern shoreline desig-nated as Low Beach I and II, Jeweluced I and II, Beach Hackberry I, and Dog-wood-Sumac-Grape were climinated from the fall sampic because of the severe lake effect on thes.e communities. Significant amounts of soil, parent ma-terial, and vegetation were eroded from the Beach Hackberry I community. Sub-stantia1 deposition of ' sand and gravel occurred at the other study sites during storms and periods of high lake icvel. The Cottenwood community, however, re-mained sufficiently intact to sample and provides an indication of the role of lake action in shoreline succession. These other community areas will be re-examined as soon as water levels permit. M.I -_a
A-2 s Fall sampling was performed in those communities designated as Inland
. Hackberry'I and II, Hackberry-Kentucky Coffee Tree, Hackberry-Box Elder and in the woods adjacent to the cooling tower (Cooling Tower Woods). All methods of collection and data treatment were identical to those previously described (Section A Semi-Annual Report, June 1974). The inclusion of the Cooling Tower Woods added 144 (10' x 10 m) nested quadrats to the sampling effort. Nomen-clature follows Fernald (1950).
Results .
. The COOLING TONER WOODS is characterized by Acer negundo and celtis occidentalis; together they represent better than 43% of the total importance value (I.V.) of the tree layer (Table A-1) . The only other trees of signi-ficance in this layer arc crataegus sp., cleditsia triacanthos, and ulmus rubza, their combined importance values representing approximat aly 44% of the total. The sapling layer is composed primarily of Acer nogundo (Impor-tance Value 36), Celtis occidentalis (I.V. 4) being relatively unimportant.
The vincy spccies, vitis riparia and Parthenocissus quinquefolia, constitute approximately 25% of the total importance value in this layer. The only shrub species component of any importance is Ribes americanun (Tablo A-2) . trborescent reproduction is dominated by Acer vegundo and Celtis occidentalis, respectively; viney reproduction by Parthenocissus quinquefolia and vitis riparia; and shrub reproduction by Ribes americanum and Rhus Toxicodendron l(Table A-3) . Of the 20 species in the fall herbaceous layer only ceum cana-dense (I.V. 35), Grass sp. (I.V. 27), and viola sp. (I.V.15) appear to be of any. consequence (Table A-4 and Fig. 1) . The BOX-ELDER HACKBERRY N00DS' also is dominated by Acer negundo. and
- j. i. Celtis occidentalis (Importance Values of 40 and' 36, respectively; Table A-1) .
Unlike =the Cooling Tower Woods, however, there are no significant secondary t _ _ .__
A'- 3 7~ arborescent species in the canopy. - Acer Negundo and the shrub-like Prunus
.t virginiana share essentially equal importance in the sapling and shrub layer (Table A-2). The shrub. species" cornus Drummondi and the transgressives Gymnocladus dioica and Celtis occidentalis are, howcVer, of secondary impor-tance and approximately equal in_their values. Arborescent reproduction is charactcri:cd by celtis occidentalis, but here Acer uegundo is of very little-importance. Shrub reproduction is dominated by Prunus virginiana and Cornus Drummondi; vincy reproduction, by Parthenocissus quinquefolia (Table ' A-3) .
The fall herbaceous data indicate that ceum canadense and a grass species again control this layer. Now, in contrast to late spring, Cerastium vul-gatum ranks third and Hydrophyllum virginianum fourth. Of the remaining nine herbaceous species, only Polygonatum sp. appears to be of any consequence
. (Tabic A-4 and Fig.) .
The KENTUCKY- C0FFEE-TREE IIACKBERRY t!OODS is characterized by Cyanocladus dioica (I.V. 47) and celtis occidentalis (I.V. 34) . The remaining six ar-borescent species are less significant in canopy control (Table A-1). The only transgressive arborescent species in the sapling layer is Gymnocladus dioica ,' Prunus virginiana and Lonicora sp. represent the most important shrubs' (Table A-2) . Arborescent reproduction, however, is limited to Celtis occidentalis (Table A-3) . o Rhus. toxicodendron is the most important reproducing shrub species during the spring but declines in relative importance in the fall, its position
~ being- assumed by staphylea trifolla, a species not recorded in the spring sample. Parthenocissus quinquefolia reaches its highest importance in this community, although it exhibits a slight importance value drop in the fall
_, (Table A-3 and. Fig. 3) . mm. _
A-4 The spring herbaceous layer is composed of 16 species, with Impatiens ( capensis, Galium Aparine, and Pilea pumila exhibiting significant importance values. Only six of the species recorded in the spring are present in the fall aspect of this layer. pilea pumila now appears most important, with . Cerastium vulgatum and Hydrophyllum virginianum being of secondary importance (Table A-4).
- INLAND IIACKBERRY II if00DS is dominated by Celtis occidentalis (I.V. 48) .
The only other canopy species of any consequence is Fraxinus pennsylvanica, although its importance value is only one-fourth that of hackberry (Table A-1) . The only understory component is Cornus Drummondi (I.V. 30); the only signi-ficant arborescent species in the sapling layer is u.ltis occidentalls (Table A-2). Cornus Drummondi clearly dominates the shrub layer (I.V. 61) . Although Celtis occidentalis is absent in the spring reproduction data, it is the only arborescent species present in the fall data for this layer and becomes relatively important (Table A-3) . Twenty herbaceous species were recorded in the fall data. Of these only Galium Aparine and saponaria officianalis appear to be of any significance, although their importance values are relatively low. The number of species in the fall sample is reduced to thirteen, but viola sp. , saponaria officiacalis,
-and a grass species are clearly dominant (Table A-4 and Fig. 4).
Celtis occidentalis clearly dominates the INLAND HACKBERRY I If00DS and reaches its highest -importance value (58) here. Fraxinus pennsylvanica and Clediesia triacanthos are a distant second each with importan:o values of 10
-(Table A-1). None of these species, however, is evident in the sapling layer.
Rather, this layer is dominated by prunus virginiana, with Vitis riparia and Cornus Drummondi being of secondary importance (Table A-2) . Although Celtis occidentalis is present in the seedling layer, its importance in the
.,-_ m
Cornus Drummondi clearly dominates the shrub layer (I.V. 60.61). Al though
.c Celtis occidenta'is is absent in the spring reproduction data, it is the onl'y .
arborescent species present in the fall data for this layer and becomes rela-tively important'(Table A-3). Twenty herbaceous species were recorded in the fall data. Of these only Galium /p'arine and Saponaria officianalis appear to be of any significance, al-though their importance values are relatively low. The number of species in the fall sam "is reduced to thirteen, but Viola so., Saoonaria officianalis, ej e . c.us % and Gras s2 re clearly dominant (Table A-4and Fig. 4).
- Celtis occidentalis clearly dominates the IllLNID HACKBERRY I UOODS and reaches its highest importance value (58.05) here. Fraxinus pennsylvanica and Gleditsia triacanthos are a distant second with important- values of /
9.49 and 9.45, respectively (Table A-1).flone of these speciep;4oue pd cLhc.eDM evident in the sapling layer. Rather, this layer is cont'rol-Ind by
. Prunus virginiana, with Vitis riparia and Cornus Jleummondi being of secondary /
importance (Table A-2). Although Celtis occidentalis is present in the seed-ling layer, its importance in the fall community is only one-fourth that of
'the spring community. Prunus virginiana appears to dominate this layer in 'both the spring and fall, although Staphylea trifolia and Vitis riparia are nearly as important. Parthenocissus quinquefolia assumes its, greatest im-portance in the see,'ing layer in the spring, while Ribes americanuais only evident in the fall (Table A-3). Impatiens canensis and Galium Aparine'are i
the most important of the 20 h,erbaceous species present in the spring sample. In contrast, Saponaria officianalis and Solidago elongata are by far the im-portant' species.of the 11 present in the fall (Table A-4). Discussion and Conclusions a waUn The viriation of a community in an estatilished successional pattern can be utilized as an indicator of ecological stress. Up to this point efforts p-4
A-5 fall community is only one-fourth that of the spring community. Prunus vir-g'd niana appears to dominate this layer in both the spring and fall, although Staphylea trifolia and Vitis riparia are nearly as important. Parthenocissus quinquef'olia assumes its greatest importance in the seedling layer in the spring, while Ribes americanum is only evident in the fall (Table A-3) . Im-
/ patiens capensis and callum Aparine are the most important of the 20 herba-ccous species present-in the spring sample. In contrast, saponaria officiana-lis and solidago elongata are by far the important species of the 11 present in the fall (Table A-4) .
Discussion and Conclusions The variation of a community from an established successional pattern can be utilized as an indicator of ecological stress. Up to this point ef-1 forts at the four inland sites and the Cooling Tower Woods have centered a-round the measurement and analysis of community types and the subsequent designation of a successional baseline. Extensive observation of community types from Darby Marsh to Little Cedar Point also has been utili:cd in our preliminary interpretation of this successional pattern. This progression in terms of these study sites, from the earlier to more advanced is as follows:
- 1) . Box-cider - Hackberry 2). Kentucky Coffee Tree
- 3) . ' llackberry II 4). Hackberry I 9
The Cooling Tower Woods, although placed first in the sequence of woods indicated in the tables, is not considered representativo of the pioneer com-munity type. .We recognize that this woods is composed of at least two commu-nitics that appear to be directly correlated with two basic soil types (Fulton and Toledo). ' Completion of detailed soil mapp,ing will allow us to draw g 9 - ~ - - ?
A-6
-,s definite soil boundaries. Quadrat data can then be analyzed for each com-munity, and they can logically be placed in a successional progression.
It should be noted that the Box-elder - Hackberry community is not the starting point, nor is Hackberry I the end point of this progression. Rather, these represent the ; earlier' stages in the successional continuum. The posi-tion of cach woods on the continuum is a function of the habitats required by the dominant arborescent components of the particular community. This progression is based on moisture tolerances of individual species. For in-stance, Acer Negundo and Fraxinus pennsylvanica compete well in poorly drained moist soils. celtis occidentalis can also compete in such areas, as is evi-donced in Bass Island research (Hamilton 4 Forsyth,1974). Thus,-through a preliminary correlation of the community type species with soil characteris-tics and a knowledge of moisture requirements this tentative progression has been set up. Addition of moisture will manifest itself first in the seedling and herbaceous layer with increased importance values for moisture tolerant species, such as Acer Negundo and, to a lesser extent, Fraxinus ponnsylvanica. This
'is not to designate Celtis occidentalis as moisture intolerant but simply as less tolerant than Acer Negundo. Other factors, such as canopy density and soil pH, also will affect the pattern. celtis occidentalis, for example, is characterized by its growth on more alkaline sites (Forsyth 6 Hamilton,1974). -Cymnocladus dioica, however, characteristically grous in areas of high sun-light penetration (Otis, 1956).
For those communities' where a' baseline has been established, limited predictions can be made concerning their relation to an increased moisture j stress. The Box-cider - Hackberry community, the most hydric of the four l woods, will undoubtedly change the least. In the more advanced Hackberry I and II communities, however, a more hydric situation will bring about increased
A-7
,4 importance values for uctter species, such as Acer Hegundo and Fraxinus pen ~
J nsylvanica , in the seedling layers. Changes such as these will be exhibited quickly, but the bearing of these changes on canopy composition is harder to determine. Species with wide ranges of moisture tolerance will not be clini-nated from the ' canopy quickly. Thus, a change in canopy dominance will not be evidenced for many years. The cessation of reproduction for a presently dominant species, however, provides an indication that successional patterns are not proceeding in the predicted pattern. The Box-elder - Hackberry community is considered to represent the suc-cessionally most primitive of the four inland study areas, as evidenced by the importance of Acer negundo in both the canopy and sapling layers. coltis occidentalis, however, dominates the reproductive layer. Although the dry fall of 1974 undoubtedly- provented the normal germination of Acer negundo, it is shade intolerant and ultimately vill decreasef in 'importance, giving way to Celtis occidentalis if predicted patterns are folloued. The Kentucky Coffee Tree community exhibits similar trends. cymnocladus
. dioics, like Accr.Negundo, is shade intolerant. At present, the canopy is relatively open, and the frequency of cymnocladus dioica in the tree and sapling layers is high. It, however, was not sampled in the reproductive layer of this or any other community, whereas celtis occidentalis is pre-sent in all communities. Although not reficcted in the data, there were many dead cymnocladus dioica saplings in the study area, indicating that its importance wi11' markedly decline in the future.
1he communities designated as Hachberry I y II are considered the more ,
-advanced-in the continuum. Hackberry II occupies an earlier point on the ; progression because it exhibits a louer importance value for celtis occidentalis in the canopy layer. Both communities exhibit Fraxinus pennsylvanica as a
( _----+-e vm
A-8 e- secondary canopy species, although it has a higher importance value in the 11ackberry community. Fraxinus pennsylvanica is found in moist habitats,
. commonly in association with Acer tregundo (llamilton G Forsyth,1972). Neither community exhibits this species in the seedling layer, but it is contained . in the sapling layer of the ilackberry II community. Increased moisture in these areas' could be . reflected in future increased importance values- for Fraxinus pennsylvanica and possibly the invasion of Acer Negundo in the re-productive layer. .
Quantitative dats on the couposition of the spring and fall herbaceous layers are being co11ceted, and preliminary compositional patterns are indi-cated in the results. h' hen these layers are again sampled (spring and fall of 1975), we should be able to more precisely depict these layers in terms of species present in relation to present environmental conditions. Many of these species will respond to changes in. moisture conditions, either directly or indirectly through increased light resulting from canopy chmiges. Stress on study sites resulting from the influences of the lake can be separated from other effects, particularly through the monitoring of the com-munity designated as Cottonwood (Table A-5) . This community is sufficiently protected by a high storm beach so that it remains relatively intact but still is influenced by storm action. Abrupt changes in the composition of this community indicate that an additional variable is introduced. As is visible from the ' seedling and herb data from spring and late summer of 1974, Rhus e typhina has decreased in importance value probably due to storm action.
~
Its removal makes possibic the transgression of shade intolerant seedlings and
. herbs, such as nelflotus alba and Populus deltoides which were, evident in the late summer but were not found in the spring sample. Since Rhus typhina is al fast growing species, it is likely to reestablish itself again soon; but if severe lake action continues, it will again be removed.
t - - : -
A-9 This type of community reaction to severe stress is far more easily diagnosed than community reaction to a slow moisture increase. Thus, it should be possible to separate the two variables. Continued monitoring of the herbaceous and seedling layers of the inland woods will provide the nec- . essary data for depicting the normal seasonal fluctuation of species compo-nents present in these layers. Any abnormal changes that might occur might then be related to changes in soil and atmospheric noisture brought about by station operation. c Literature cited Fernald, l.l. L. 1950 Gray's Manual of Botany, Eighth Ed. American Book Co., N.Y. 16320. Forsyth, Jane L. and Ernest S. Hamilton 1974 Possibic origin of unexpectedly high alkalinities in quartz sands of high dunes at Warren Dunes State Park, !!ichigan The Ohio ' Journal of Science 74(3):182-184. Hamilton, Ernest S. and Jane L. Forsyth 1972 Forest communities of South Bass Island Ohio The Ohio Journal of Science 72(4):184-210. Otis, Charles H. 1931 Michigan Trees University Michigan Press, Ann Arbor 362 pp.
Table A-1. Importance Values, Trees (10 x 10 meter quadrats), 1974. Kentucky Cooling Box-Elder- Coffee-Tree- Inland. Inland Tower Hackberry Hackberry. Hackberry II Hackberry I Woods Wcods Woods Woods Woods Celtis occidentalis 20.35 35.91 33.65 48.06 58.05 Fraxinus pennsylvanica 0.31 2.54 3.99 12.19 9.49 Gymnocladus dioica 3.22 6.79 46.80 0.78 Prunus virginiana 0.22 8.72 2.97 9.55 Rhus typhina 0.36 0.63 2.17 Cornus Drummondi 2.95 4.60 29.90 7.55 Acer Negundo' 23.06 39.86 Gleditsia triacanthos 14.42 4.87 6.53 9.45 Prunus serotina 0.73 5.53 Ulmus rubra 12.92 0.78
; Crataegus sp. 16.96 0.95 2.73 1 Juglans'nigra 0.94 Morus alba 1.41 Robina Pseudo-Acacia 1.37 Acer rubrum 0.35 Populus deltoides 0.40 ,
Parthenocissus quinquefolia 0.94 Vitis riparia 0.79
.Staphylea trifolia 3.17 1 .
'S )~
Table A-2. Importance Values, Saplings and Shrubs (4 x 4 meter quadrats),1974. Kentucky Cooling Box-Elder- Coffee-Tree- Inland Inland Tower Hackberry Hackberry Hackberry II Hackberry I
. Woods Woods Woods Woods Woods Celtis occidentalis 3.82 8.24' 4.95 Fraxinus pennsylvanica 0.56 3.20 1.33 Gymnocladus dioica 0.31 9.27 Po Si 1.69 Prunus virginiana 0.20 26.96 25.27 1.21 46.42 l
Rhus typhina- 0.30 1.00 , Cornus Drummondi 2.96 10.05 60.61 13.22 Acer Negundo 35.62 27.20 Gleditsia triacanthos 2.63 1.21 4.62 Ulmus rubra 0.56 Crataegus sp. 1.22 Juglans nigra 0.56 Morus alba 0.20
- Parthenocissus quinquefolia 11.36 6.20 10.55 6.40 5.71 Vitis riparia 14.18 4.32 7.85 18.22 Staphylea trifolia 13.33 11.78 Rosa multiflora 0.20 Solanum Dulcamara 0.51 Rhus Toxicodendron 1.67 Ribes americanum 22.37 3.54 7.77 5.68
; Rubus occidentalis 0.77 22.50 9.06 Lonicera sp.
i. Table A-3. Importance Values, Seedlings (4 x 2 meter quadrats),1974. Kentucky Cooling . Box-Elder- Coffee-Tree- Inland Inland Tower Hackberry Hackberry Hackberry II Hackberry I Woods Noods Woods Woods Woods Fall Fall Sprino Fall Spring Fall Spring Fall Csitis occidentalis 9.72- -22.27 9.95 7.23 14.93 16.52 4.31 Prunus virginiana 0.25 17.10 8.71 11.75 2.43 2.31 23.92 23.44' Cornus Drummondi 3.69 14.78 22.67 25.55 - 15.10-Acer Negundo 11.34 5.19 Gleditsia triacanthos , 0.76 Ulmus rubra 1.25 Crataegus sp. 4.34 Parthenocissus quinquefolia- 16.81 21.62 45.90 40.93 41.22 11.92 31.13 15.91 Vitis riparia 9.64 6.31 19.74 11.43 16.52 16.97 Staphylea trifolia 20.16 11.46 18.24 Solanum Oulcamara 4.05 2.93 6.03
. Rhus Toxicodendron 21.38 1.37 29.34 10.01 2.54 6.84 Ribes americanum 15.90 8.43 6.09 17.02 Rubus occidentalis 0.87 9.87 6.86 8.39 Lonicera sp. 4.55 1.61
s
/
s Table A-4. Importance Values, Herbaceous Layer,1974. - Kentucky-Coffee-Tree-Tower Hackberry Hackberry Hackberry Hackberry Woods. Woods Community Community II ~ Community I Fall Fall Spring Fall Spring Fall Spring' Fall Geum canadense 34.57 27.05 7.88 1.89 5.50 1.15 5.60 Grass sp. 1 27.07 21 95 8.21 10.71 22.18 3.32 7.56 Urtica dioica 3.36 0.71 3.77 10.68 1.22 2.01 Hydrophyllum virginianum 0.39 10.89 4.30 2.04 5.02 7.94 Polygonatum sp. 6.62 6.75 Lactuca sp. 0.31 1.69 0.95 1.11 Viola sp. 14.81 0.67 2.26 10.06 28.54 0.71
.Strophostyles helvola 0.84 3.84 0.79 3.74 Smilacina racemose 0.40 5.07 2.04 7.86 7.53 Solidago elongata 0.25 1.82 21.03 Chemopodium album 0.90 1.03 0.69 1.91, 6.18 Echi'nocystis lobata 0.33 1.67 Taraxacum officinale 0.75 Convolvulus sepium 0.27 1.38 0.43 1.99 Arctium minus 2.77 Apocynum sp. 0.68 Solanum nigrum 0.33 Bidens sp. 0.99 Acalypha virginica 2.35
^ Oxalis europaea 2.03 Cerastium vulgatum 16.42 10.70 7.15 11.10 Scrophularia marilandica 3.80 4.95 7.56 8.66 0.79 4.19 4.50 Euphatorium rugosum 1.41 2.04 5.73
. 7 )- .
(TableA-4.(continued): Box-Elder- Kentucky-Coffee-Tree-
-Tower Hackberry ~ Hackberry. Hackberry Hackberry lloods Woods Community Community'II Community I-Fall Fall Spring Fall Spring- Fall Spring : Fall.
Teucrium canadense 0.71- 4.60 4'.50 Ltonurus Cardiaca 7.08: '3.05 O.65- 0.79 6.98"
- Allium tricoccum 0. 8'/ 1.31 Solanum Dulcamara 9.77 2.05.
Impatiens capensis 26.53 8.20 17.51 Pilea pumila- 15.75 27.50 Saponaria officianalis 12.59 24.26 3.25 23.08-Galium Aparine 16.29 14.84 14.32 Saxifrage.sp. 7.15 3.57 7.59 Arisaema triphyllum 2.62 Dicentra Cuculiaria 1.61 0.63' Grass sp. 2 3.25 4.53 1.86 Lami'um amplexicaule 0.87 3.76 5.56 Plantago sp. 1.54 1.72 Acalypha virginica 8.92 0.76 Arabis laevigata 1.52 Viola Rafinesquii 4.91 0.68 Trillium sp.
?-
( e. Table A-5. Importance values, Cottonwood Community. Tree Layer Sapling Layer Seedling Layer Fall Surmer Fall -Sumner Fall Spring Summer 1973 1974 1973 1974 1973 1974: 1974 Cornus Drummondi 24.61 24.91 48.60~ 49.14 38.60 33.33 20.83 Salix alba 21.61 26.29 Populus deltoides 20.96 21.61 41.66 Platunus occidentalis 11.80 11.56 Rhus typhina 11.25 5.42 19.60 6.83 Prunus virginiana 5.98 8.86 31.80 23.93 6.73 Ulmus Rubra 3.79 1.35 Vitis.riparia 9.40
-Parthenocissus quinquefolia 10.68 33.43 66.66 37.50 Ribes americanum 11.20 Cel, tis occidentalis 8.98
,:
- I
;
i
+'
o.
<* c
o nee,m >L. .
- BuOs+=Dno - < r l
u3 8 ,_D&a. c7 aD( OC V' hVDb on t ( <a aU OOO.aUa t HOxDs(- c=oOan* e r e
.oo eo o
co e p s s a n c wo e 1 m i d u o a . . t i n p p a d a s s n c o a e n eo s a g c u m s l y i l u a o l t r a e r i o V G G B P U e c mo n a t r o p o I m wo mo
.o o
w ~ .eN* w r+
;
2' Importance Value -
'e o - m u .e. tn es u co e o <o .
o o o o o o o o o o
.N - Co ._.
O :3 Geum idense 70 03 aw-(D 3 ' m' ' Grass sp. 1 .?2' , i z .::: m %*
- liydrophyllum virginianum E,I 8 a
M, m-ti k O Polygonatum sp. E' O 'O a" (n 5 a
- 3 Lactuca sp. O.
u a 7 CD 9 CT A O (D m (A
"O '
LD Oa. O m I
.a. =
4 1 g.
Importance .Value e
- c o 8 $ 8 $ $ $ o $ $ 8 2 ?
x-Impatiens capensis R4 WO
?,Aa y, Galium Aparine QR u .m h
ks Pilea pumila E E' G 43
% s Saxifraga sp. 9 Qu 82.
Smilacina racemosa aS
, 2& *t 9r B*
8i Pilea pumila %Q
. S Cerast a vulgatum j 2. ?. - m liydrophyllum virginianum , $z.
i Solanum Dulcamera j impatiens capensis
' . n Importance Value g - c $ $ 8 8 M M M 8 M E _
2
.A c-Galium Aparine g .g E8 g Saponaria officianalis QE ag
- 3.
- n 8 1 82
, Viola sp.- gg
- E. 3 Acalypha virginica 4-s
_o
~
Scrophularia marilandica g G*
-e iii Viola sp. d g
O l M d Saponaria officianalis .g ' G 8
% ;
Grass sp. 1 m . Cerastium vulgatum
- __
Geum canadense i -
n Importance Value $ a 8 8~ 8 8 8 a 8 8 5 3
?
Impatiens capensis ET R-E
? ?.
m Galium apartne u Q' nos
- 3. n 3 0<
- Hydrophyllum virginianum B$
G 88* 2 - Saxifraga sp. *O F'" Smilacina racemosa p 2 u l
?r Saponaria officianalis 8 8
5
? Solidago elongata m 2 E e
2 m
% Cerastium vulgatum 2
Leonurus cardiaca Chenopodium album 1
c c wg Importance Value _, u1 - ro w a in en w cn e o
<D = o o o o o o o o o o o n n -
e C 10 x 10 . 2 4x4 l:p Cooling Tower Woods a is x 2 Fall , a m --i w - OM 7-9 (D N T.3 h De CD O 10 x 10 -- o o. - = , g g -g g 4x4 Qi.
;-s-;
Box-Elder ifackberry Woods o-Q o* g
& s * , iD h x 2 Fall , .] 1a S. gny w n o a, G, a m k "
O c rt c s<km 10 x 10 . ..
.. oaa== -
s
'O C O -
h x 2 Spring -Q.. 'j.'q
. .- Kentucky Coffee Itackberry Woods Qgg8= " "J."2.
ni < k* h x 2 Fall ,;lI E g g 8- lT am a a a" <aG'kJ E u 10 x 10 - oam"o
'o o u
Q. (D 4x4 $5Ii--- Inland Hackberry II Woods a ;7 8. s fD x.
~ m - e h x 2 Fall "gga$
2 m n , o,, P,+,OOn naa 'l 10 x 10 - as a'< a = h x 2 Spring
- .a... . . . .
,* :.. ,-lz.=.. ,.;
Inland Hackberry I Woods **"e
<D:c e m h x 2 Fall -- % - <D m' m-M < ^
O CL ^ 0 1 (D - C Os O e Os C7 *1 N Q. (D
. m- a fD
F Figure A-7. Importance values in the major vegetation layers (quadrat sizes) for acer uegundo in all comunities (1974.). At present, A. negundo is found in those areas designated as the Cooling Tower Woods and Box-Elder-Hackberry. In-creased moisture will be exhibited as an increase in values for acer Negundo in the seedling layers or in its appearance in other communities. O z sO D b O U
- fU b
50" 3 -E 4 L e en v 5 G
'O O
k O v m 40 m e
= < "> 30 :
c u i T, :' , C , n.1
~
ll Y4 8. e ib li?04
.:. w, ' - 20 ;j). ' 4 j;: Xp;
- 3: ,
i lll sd : q!!' 'd yn :p'w:: 10 liig XC s !:!.
..!.il>X6;"b 4 .!!!.$.(f.$.4 !!!?y '4 f, !!!$5j,
- i;;;% iiipsek 0 i55 $N5 3 N'N o e o a
Guadrat _. . ~ .m size x x x x x x o
,,--w
f
= E. Importance Value iO 2 "" o m 8 G B 2! 'e 10 x 10 -
q Cooling Tower Woods 4x4 ; 2 i In 10 x 10 .. M7"E Box-Elder Hackberry Woods anwu 4x4 Q.. { Qu - -- - S
- 3. 2g _* gQ em-m 10 x 10 Kentucky-Coffee Hackberry Woods [8 8 mSQ$
, un a, -
10 x 10 ' EEE
- z Sl" 4x4 pg Inland Hackberry II Woods et ,,
- :s r 10 x 10 ,, ,
Inland Hackberry I Woods gjl
- u. s o,
' & O ag, a2s ??$ ~
eE
- n=
Q, O - O, M a m-u 8 't, E5 5 - e
I Bowling Green State University Environmental Studies Center
- e Bowling Creen, Ohio 43403 SE!!I-ANNUAL REPORT DAVIS-BESSE TERRESTRIAL 110NITORING CONTRACT DECE!!BER 1974 B. Soil Environments Arthur G. Limbird Department of Geography Introduction The soil environment is' the basic factor linking the atmospheric en-vironmentannd plant communities. Changes in atnospheric conditions can re-sult in changes in soil temperature, moisture, and chenistry balances and, in turn, can result in frequency changes of terrestrial conmunity members.
The program objective is to maintain a monitoring program of soil parameters to determine changes during the period of cooling tower operations. It is important to establish a base line of pre-operational data to demonstrate normal environmental fluctuations or changes, so that changes attributabic to the cooling tower operations can be designated.
. Ifonitoring Locations and ifethods Three basic parameters are being monitored (See Section B, Semi-Annual Report, June, 1974). Soil temperature is being monitored on a continual basis at the beach and cooling tower woods weather shelter sites. In addition, weekly _ temperature data are being recorded in other plant communities, two on the beach and one in the cooling tower woods. Soil moisture is being moni-tored on a weekly basis at- all of these sites. Soil chemistry is being monitored --er
B-2 on a quarterly basis using samples taken' from each of the five sites. Soil
-samples are being taken from the 10, 20, and 50 cm depths to correspond with instrumentation depths.
TWo area types are being monitored. One area is the cooling tower woods with soils more typical of the agricultural lands near the Davis-Besse site. The other area is the beach where soils are in the initial stages of develop-ment and more susceptibic to change. Subtle changes in atmospheric noisture or temperature should elicit a greater response in the beach area than in the cooling tower woods. Thus, the beach soils will act as good indicators of both natural evolution and seasonal cycles and any changes which may be at-tributed to cooling tower operation. Differences and similarities of the two basic areas are discussed in this report. Soil Temperature Soil temperature tends to follow the pattern of fluctuation and seasonal change that is familicr for air temperature. Since the soil acts as an in-sulator and tends to buffer the effects of atmosph ric heating and cooling, the daily, weckly, and monthly variations in soil temperatures are of a much smaller magnitude than air temperature variations (Table B-1), and ranges of weekly soil temperatures tend to decrease with depth (Figures B-1 and B-2) . In analyzing the temperature data at the beads and cooling tower woods
. sites, . weekly high temperatures, low temperatures, average te=peratures, and temperature ranges (weekly maximum minus weekly ninimum) are used. These temperature values allow for an overall understanding of temperature fluctua-tions and ranges in temperature without 'the burden of following day to day variations. Since day to day changes in soils are relatively insignificant, the weekly figures serve to summarize the daily record. The use of weekly figures is more sensitive _ to subtic changes in temperature than nonthly data r**
- B-3
'and thus can be more effective in establishing base line data and determining any subsequent changes during cooling tower operations. Yet, the weekly data can be summarized to indicate seasonal or yearly trends in temperature. For example, change in the yearly or seasonal average temperature at the 10 cm depth may be most important in producing change in plant communities.
Soil temperatures in the sumac community of the beach area are complete for the weeks from May 11, 1974 through November 20, 1974 and are used in discussing soil temperatures. The average soil temperature at 10 cm fluctuated somewhat from week to week in response to air temperature changes, but gen-erally warmed from May until the end of August when cooler air temperstures triggered temperatures at the 10 cm depth to decrease. By the ehd of the data period, the average temperature at 10 cm was 32.3* F (Tabic B-1). The range in tenperature at the 10 cm depth at the beach site was great for the initial week of the data period but then became more consistent at about 5 F* beginning in early June. Fluctuations in the average range were correlated with greater ranges in air temperatures for +.he corresponding weeks (See Figure B-1). The average soil temperatures at the 20 cm depth also fluctuated in re-apense to air temperature change: but warmed later than at the 10 cm depth. Near the end of August cooler air temperatures helped to in'<iate a reduction in average soil temperatures, which reached the low 30s by the end of the data period- (See Table B-1) . The weekly range in soil temperatures at the 20 cm depth was less than that at the 10 cm depth, averaging 2.75 F* begin-ning in early June. Fluctuations in the temperature range were correlated with the weeks having large ranges in air temperatures (See Figure B-1).
. The _ average soil temperatures at the 50 cm depth did not fluctuate nearly - as much as those nearer the surface nor warm as much as nearer the surface (only one week with average over 60* F) . Howqver, the warming and cooling 9 .___i
I B-4
~ ^
which occurred from week to week was in direct response to changes in average i air. temperatures. 'The weekly average temperatures at 50 cm warmed from May through August. Late in August temperatures began to cool and reached the mid'30s' late in the data period. From the middle of September to the end of the data period the average temperatures at the 50 cm depth were higher than at the 10 and 20 cm depth, since-temperatures at greater depths are slower to
- change _in response to air temperature changes (See Table B-1). Except for the initial' week, the weekly range of soil temperatures at the 50 cm depth was relatively stable, near 1.75 F*, indicating a significantly reduced re- . sponse _to fluctuations in atmospheric temperatures (See Figure B-1) .
l The soils of-the cooling tower woods are fine textured, compact soils, which should respond Mss to air temperature changes than the coarse textured, porous soils of the beach sites. As expected, temperatures fluctuated less
~in response to variations in air temperature, resulting in relatively small ranges in temperatures on a weekly basis. Ilowever, the differences between the two sites were not as great as expected. At both sites, the greatest range in temperature occurred at the 10 cm depth; the smallest, at the 50 cm depth. ' Soil temperatures at the instrument shelter in the cooling tower woods are complete for the weeks from May 11, 1974 through November 20, 1974. The
- average soil temperature at 10 cm in the cooling tower woods fluctuated some-
-what in response to air' temperature changes but warmed slowly from May to the end of'~ June. 'Near the end of August soil temperatures decreased because of cooler air temperatures and reached the 30s by November (See Table B-1) . The average range of temperatures at the 10 cm depth in the tower woods was about ~
4.5 F*. - Fluctuations in temperature range at 10 cm were correlated with the greatest fluctuations of air temperature ranges .(See Figure B-2) .
.~ ... . a .a -.
r 1 B-5 In comparing the 10 cm depth in the tower woods with the 10 cm depth in the beach area, it is apparent that weekl,v average temperatures vary in both locations in response to air temperature changes. The soil in the tower woods warmed somewhat more slowly in the spring due to greater moisture content at this time;- but once the moisture content was reduced, the finer-textured soils of the tower woods responded well to warmer air temperatures. (See dis-cussion of moisture below.) The range in soil temperatures each week in the tower woods is somewhat less than the range of soi1 temperatures each week at the beach site. The difference-is not Ltatistically significant and can prob-ably be a*.tributed to the smaller range in air temperatures from week to week at the tower woods (See Figures B-1 and B-2). The highest weekly average temperature at the 10 cm depth occurred the same week at both sites. The average soil temperatures at the 20 cm' depth in the cooli'g toner F woods also fluctuated in response to air temperature changes, warming to a high weekly average temperature during the week of July 13. Fluctuations in temperature continued until mid-September when the soil temperature responden to cooler air temperatures and cooled to 33.9* F by the end of the data period (See Table B-1) . The weekly range in soil temperatures at the 20 cm depth in the tower woods was considerably less than the range at the 10 cm depth, averaging about 2 F*, with the largest range generally corresponding to the largest weekly range in air temperatures (Figure B-2). In comparing the 20 cm depths in the tower woods and beach area, it is apparent that the soils in the tower woods warmed more slowly because of greater moisture content, had a somewhat smaller range in temperature in re-sponse to a smaller range. in air temperature, and yet managed to warm up as much as the more porous beach soils once moisture content was reduced in the summer. (See discussion of moisture below.) m .
;_--_,_
B-6 He average soil temperatures at the 50 cm depth in the tower woods did not fluctuate nearly as much as those at the 10 and 20 cm depths. However,
- ' warming and cooling trends at the 50 cm depth still follow as a response to changes' in air temperatures from week to week. ne weekly average temperatures at 50 cm in the tower woods warmed slowly from May to late June. In mid-September the soil temperatures began to cool in response to cooler air tem-peratures. Since' the soil at the 50 cm depth never reached the temperatures
-recorded at the 13 and 20 cm depths, the soil at this greater depth renained generally cooler than the upper soil horizons until the month of November.
Temperatures change much less at this greater depth in response to air temperature changes (See Table B-1) . The average weekly range of soil tem-peratures at the 50 cm depth was' about 1 F*. Except for the week of June 29, the range in temperatures fluctuated much less from week to week than at the 10 and 20 cm depths (See Figure B-2). The very small range in temperatures each week further substantiates the reduced response to changes in atmo-spheric temperatures with depth in the soil. In comparing the 50 cm depth in the tower woods with the 50 cm depth in the beach area, it is apparent that the soils in the tower woods do not warm up as much at this depth as the more porous beach-sand soils. The high-est weekly average soil temperature in the tower woods was three degrees cooler than the highest weekly average temperature in-the beach area (See Table- B-1) . The weekly range in soil temperatures is not nearly as great in the tower woods as in the beach area. The difference is not statistically significant but is a trend which should be watched in the future. If soil temperatures do not warm enough for_ certain life processes in some plants, these plants will no. longer thrive 'in the particular plant community or en-vironment .(See discussion of plant communities, Part A).
; .ne my -- a
- y. ym
B-7 In summarizing the importance of monitoring soil temperatures, one must keep in mind the relationship of soil temperature to soil moisture, to air temperature, and to plant growth. Soil temperatures are greatly suppressed both in terms of weekly or monthly average values and range by an increase in soil moisture. Much more heat energy must be utilized to warm a wet soil than a dry soil. By comparing week to week, season to season, and year to year, trends in soil temperatures become evident. Air temperatures directly affect soil temperatures. Ifhile soils do not warm as rapidly nor cool as rapidly as the air, soil temperature changes are a response to air temperature changes. If the range of air temperatures is greatly increased, then the range of soil temperatures will increase also. If air temperatures are reduced by increased cloud cover or water vapor in the atmosphere (a possible result of cooling tower operations), then . coil temperatures would be reduced as well. The reduction of soil temperatures, either as a result of increased moisture or reduced air temperatures, would in turn affect plant life. The surface soil is most susceptible to changes (See Table B-1 and Figures B-1 and B-2) and can in turn elicit changes in plant types in plant communities. The shallow rooted ground cover plants would probably be the first to be changed. However, the response in plant communities is not restricted to the natural community. The lower soil ten-peratures could have the effect of shortening the growing season for crops, an important factor for agriculture. Measurement of soil temperatures can b;1p to demonstrate natural as well as man-made changes occurring in the environ-ment. Even so, the latter are likely to be the lesser of the two. Soil Moisture __ Soil moisture in the study sites tends to follow two basic patterns which are rr "eated in other locations where soil moisture has been studied. First,
- - - - - - - - ,_ w -r um
B-8
- the late fall, winter, and early spring appear to be recharge periods where soil moisture increases until the soil reacaes its storage capacity. During the late spring, summer, and early fall more moisture may is used for evapora-tion and transpiration than falls as precipitation. The moisture stored in the soil as a surplus is then used for evaporation and transpiration, thus decreasing soil moisture available for plant use.
Second, related to the first pattern, there is frequent opportunity for some of the depleted water to be replaced by precipitation. Rainfall during the late spring, summer, or fall can recharge the ground water supply and make a greater amount of moisture availabli to plants. Even so there is a decided seasonal cycle of soil moisture availability. Water availability relates to the amount of water in the soil that can be utilized by plants. Compact, clay rich soils, like in the touer uoods, hold much water tightly bonded to the clay particles and thus unavailable for plant use. Sandy soils, like at the beach site, cannot make much water available to plants, because little is stored in such soils. Organic matter can, change these relationships by storing water which is readily available to plants. Thus additions of organic matter to either sands or clays can im-prove the moisture availability.
. Soil moisture was recorded each week at the five locations beginning with the week of June 1,1974 to November 20, 1974. At the beginning of the data period, the available moisture recorded at each depth in the sunac com-munity of the beach area was' 100 percent. The percentage of availabic mois-ture_ began to decrease at the 10 cm depth first. This corresponds with the time when actual evaporation was considerably greater than weekly precipita-tion (See Table B-2) and soil temperatures at the 10 cm depth increased mark-edly (See Table B-1). When weekly evaporation was considerably greater than
B-9 weekly precipitation, the soil moisture was drawn upon for surface evaporation and transpiration. Dry conditions in July further depleted available mois-ture at the other depths as well (See Table B-2) . An increase of precipitation in early August helped to recharge the avail-able moisture supply and raised the available moisture read.1g at the 10 cm depth; the lower hori: ens were not affected until the moisture moved down-ward through the sandy soil. The same trend is repeated later in the data period when greater amounts of precipitation in late October and early November conbined with little or no evaporation and cooler temperatures to recharge moisture at each depth. (See Table B-2.) Several important relationships have been revealed by the monitoring of soil moisture at the ber.dt site. In the spring, the soil is at field capacity with availabic moisture at 100 percent. Once actual evaporation is signifi-cantly greater than the precipitation, soil moisture is depleted fron the surface downward. This depletion corresponds with higher soil temperatures. Weekly rainfall during the summer and early fall partially restores moisture availability levels; but later in the fall, when actual evaporation is nil, moisture recharge becomes even more evident. The consistently high available moisture readings for the 20 cm depth can best be attributed to its relatively high organic natter content, which is storing more moisture than-underlying layers deficient in organic matter, and the 10 cm depth which is subjected to greater evaporation stress. In the cooling tower woods at the beginning of the data period the avail-able moisture recorded at each depth was at or near 100 percent; but by the week of June' 22 evaporation was considerably greater than precipitation, and the availabic moisture at the 10 cm depth began to decrease. As soil tempera-tures and actual evaporation increased greatly in the next weeks, soil nois-ture became depleted at the 20 and 50 cm depths. ' Even periods of high rainfall
B - 10
- did not recharge the depleted moisture, but late in October a decrease in the '
evaporation combined with greater precipitation begin to restore the depleted soil moisture from the surface downward (See Table B-2). Sevaral important relationships have been revealed by the monitoring of soil moisture in the cooling tower woods. As at the beach site, in the spring the soil is. at field capacity with available moisture at 100 percent. Once actual evaporation is considerably greater than the precipitation, then soil moisture is depleted from the surface downward; time of depletion corresponds with higher soil temperatures. Later in the fall, when the actual evapora-tion is nil, moisture recharge begins. Ilowever, unlike the beach site, rain-fall during the summer does not initiate any available moisture recharge. Three factors may be responsible for this: one, fine textured, compact soil allows for less infiltration than with the coarser textured soil of the beach site; two, weekly rainfall at the tower woods is consistently less chan at the beach site, apparently making less moisture available for recharge; and three, evaporation at the tower woods is consistently higher than at the beach site until late October, apparently more effectively removing moisture from the soil to a greater depth than at the beach site. Moisture fluctuations are closely related to actual evaporation, precipi-tation, and soil and air temperatures. If cooling tower operations result in ~ a significant increase in atmospheric moisture and/or precipitation, then actual evaporation would be less effective in drawing on soil moisture reserves. In-creases in soil moisture would then reduce soil temperatures and delay plant life processes, such as germination, growth, and reproduction. Plant community composition could change as a result. Perhaps even more important, a prolonged increase in soil' moisture could delay or hinder farm operations.
- - . ._...~_.ed
sm&E & - B - 11 Increased soil moisture could have an impact on the soil chemistry of the area. The effect of added moisture could dissolve more bases and remove them from the soil complex. The bases would be replaced by hydrogen, and the soil pH would be reduced. The percent base saturation would be reduced, thus decreasing the amount of nutrients available for plant growth. Added soil moisture could have a widespread impact on both the natural and cultural environments of the area. Soil Chemical Analysis . Soil samples were taken at each of the three beach quadrat locations and at both of the cooling tower woods quadrat locations at 10, 20, and 50 cm depths to correspond to the depths of instrumentation. At each depth a series of samples were taken from random points within the quadrat and mixed beforo being bagged and labeled. Each sample was kept separate, air dried, re-bagged, and sent to the U.S.D. A. Soil Testing Laboratory at Ohio State University for chemical analysis. Samples were taken in August (summer) and in November (fall) to correspond with the data period presented in this report. The analyses determined cation exchange capacity, percent base saturation, percent organic matter, and pH (See Table B-3) . Some variations in analysis values for summer and fall can be attributed to the sampling procedure, and some vari tions can be attributed to the chemical analysis in the laboratory. However, other variations pointed out below indicate possible seasonal fluctuations in values or extreme variability within die plant communities sampled. In the cooling tower woods, both the Fulton and the Toledo soils seem to be relatively stable. Cation exenange capacity, base saturation, organic mat-ter content, and pH values are closely interrelated measures of soil stability and internal character. In both of these soils the 10 cm depth corresponds with an At horizon, which is characterized by additions of organic matter, l l 1 l l 1 _ _ _ o
B - 12
^
breakdown and incorporation of organic matter, and the associated release of bases (calcium, magnesium, and potassium) into the soil complex. Both soils contain moderately high amounts of clay and humus, resulting in moderately high cation exchange capacity. Only a small amount of leaching or removal of bases is apparent because of the high percent base saturation in both soils. The Toledo soil does show evidence of some 1 caching of mineral bases because of the somewhat lower pH and percent base saturation values compared to the Fulton soil (See Table B-3) . However, a pH range from 6.5 to 7.5 usually can be considered neutral in soils, and the pH value can be expected to fluctuate within this range for soils which are nearly base saturated, as in this case. The 20 cm depth in both soils corresponds with an A2 horizon, which is generally characterized by a somewhat lower organic matter content than at the 10 cm depth, a slightly lower cation exchange capacity, and a slightly lower percent base saturation and pli due to leaching of solubic bases. How-ever, this characterization does not hold true for the Toledo soil site. It appears that leaching has occurred downward from the surface and that the higher clay content at the 20 cm depth, compared to the 10 cm depth, has served to store bases from further removal. Thus, the percent base saturation is higher at the 20 cm depth ~ than at the 10 cm depth (See Table B-3). The 50 cm depth in both soils corresponds with a B2 horizon, which is generally characterized by an accumulation of clay and a decrease in organic matter content. The relatively large increase in efay content helps to main-
' tain a high cation exchange capacity at this depth. Leaching has been re-sponsible.for adding bases to this hori:en, thus keeping the percent base saturation high and the pH valua near neutral (See Table B-3) .
The seasonal variation in values from summer to fall appear to be rela-tively unimportant, although some change in values can probably be attributed
- to the season. There is an apparent trend for, organic matter to increase, f
=
B - 13
-' especially at the'20 and_50 cm depth, in the fall season. This can in part be the result of biological activity in the soil which deconposes and incor-porates organic matter into the soil during the summer and early fall. Cor-responding to this is a slight increase in cation exchange capacity and per-cent base saturation, especially at. the 20 cm depth. The pH value also appears to increase in the fall season. This may be a response to the release of bases in the breakdown of organic natter, but nay just as well be a response to normal seasonal fluctuations or to soil moisture content at the time of sampling ('Ihompson and Troeh, Soils and Soil Fertility, McGraw-Hill,1973,
- p. 174).
The developing soils of the beach area are much more unstable than the soils of the tower woods and vary considerably, even within the same plant community quadrat. The pH values of all three sites indicate a group of soils which have undergone little or no leaching of mineral bases. The very high percent base saturation figures substantiate the lack of leaching. Cation exchange capacity is lower than in the tower woods, with the excep-tion of the fall value for the hackberry box cider I community. The organic matter content of the beach sites is lower compared to the tower woods sites (See Table B-3) . Cation exchange capacity and percent organic matter decrease with depth at all -three beadi sites, as in the tower woods. The more obvious decrease in these values in the beach soils can best be attributed to the short time the soils have been developing relative to the tower woods soils. Much less organic matter has been thoroughly broken down and incorporated into the soit complex in the beach area than in the tower woods. The cation exchange capacity _ and organic matter content values generally support this lack of in-corporation (See Table B-3) . , Edk . . ~~
...m- _ =&m y
. . . . ~.
B - 14
, However, there is extreme discrepancy in the percent organic matter and i
cation exchange capacity values from summer to fall for. the 10 and 20 cm depths of the hackberry-box elder I community. The values for fall disagree with all of the general variations in soil properties betueen the beadi area and the tower woods. Very high organic matter content and cation exchange capa-city in this community are not in character with the other beach soils sampled. The variation is too great to be accounted for by seasonal fluctuation. Three factors may be responsible for such a difference. One, the fall sample may have included parts of partially decayed tree roots or tree branches, giving a very high organic matter reading. Two, the chemical analysis process may have been faulty. Three, there actually may be a wide range in organic matter content and cation exchange capacity in these developing beach soils. Evidence points to variable organic matter as the greatest contributor to the difference from one soil analysis to the other. The soi' samples were taken and prepared by the principal investigator. The samples were analyzed in the same laboratory, a laboratory set up solely for chemical analysis of soils. Additional sampling of surface soils in the beach area shows a wide range in organic matter content (See Additional Findings below), even within the same plant communities.
;
Additional Findings i In the process of monitoring soils and vegetation, three adjunct studies have been undertaken and are in the final stages of completion. Each one of these studies will be discussed in more detail in subsequent reports. First, to assist the assessment of the impact of the cooling tower opera-tion on the tower woods, a complete inventory was made of the trees in the woods (See Part A) . At- the present time soil sampling in detail is underway to determine the exact soil boundaries with respect to tree locations. The soil mapping will help to monitor plant communities and follou natural or
~
man-induced changes in these communities. a ___
B - 15
- Second, to better assess the variation of surface soils in the beach area, a more intense study of organic matter levels is underway in the sumac, hackberry-box elder I, hackberry-box elder II, and grape-Virginia creeper communities. The study should help to establish which communities are stable and which might be expected to undergo rapid or large natural changes. Thus, any effects of the cooling tower operation can be better documented.
Third, the soils of'the entire beach area have been sampled and described by diggiag soil profiles. A general soil map with descriptive text will be the immediate end product. Ilowever, in the event of natural changes or in the event of any cooling tower operation effects, the results can be assessed by referring to the map and pro' file descriptions. 4 O 4 \ o L -- . __
w - Table B-1. Summary of weekly average soil'and air temperatures (*F), Beach and Cooling Tower Woods sites, week of May 11 to week of Nov. 14,1974. Beach Tower Woods em depth cm depth Week of: 10 20 50 Air Air 10 20 50 May 11 57.0 54.7 56.1 63.0 60.7 51.7 49.4 46.9 May 18 60.7 59.4 -56.1 62.4 60.7 56.0 54.9 51.3
~
May 25 53.9 51.1 50.3 61.6 59.9 52.3 49.6 49.1 June 1 59.4 56.1 53.3 70.9 69.3 57.7 55.0 47.9 June 8 57.0 54.7 54.3 67.9 66.3 56.1 54.4 50.0 June 15 54.6 52.7 52.3 65.3 65.1 54.0 52.0 48.6 June 22 54.7 53.1 52.3 66.9 62.6 55.6 54.1 50.4 , June 29 62.1 59.1 56.4 76.0 74.4 60.9 58.6 55.9 July 6 62.0 60.5 58.1 74.7 72.3 63.9 61.1 55.3 July 13 64.4 62.0 59.1 77.0 75.6 65.1 62.1 56.4 July 20 61.7 60.1 58.1 69.0 69.1 61.1 59.4 54.7 July 27 63.0 61.6 59.0 71 .0 71.9 63.6 61.1 56.1 Aug 3 60.7 59.6 57.7 68.9 68.3 57.3 56.1 54.9 Aug 10 62.6 61.1 58.3 71.6 72.0 63.1 60.7 56.3 Aug 17 62.7 62.1 59.0 72.1 73.4 63.6 61.6 56.3 Aug 24 62.9 62.3 60.9 70.0 70.6 61.7 61.3 57.9 Aug 31 56.3 56.1 56.4 60.9 61.6 56.0 55.6 54.4 Sept 7 57.6 56.6 55.4 67.4 68.6 58.6 56.4 53.4 Sept 12* 56.6 56.3 55.9 61.6 61.3 55.9 55.4 53.3 Sept 19 51.7 50.6 52.4 55.4 56.3 50.6 50.0 49.6 Sept 25 49.6 48.9 50.9 53.7 52.7 48.4 48.6 48.3 Oct 3 45.0 44.0 45.7 52.0 52.3 45.3 44.6 45.0 Oct 10 46.7 46.1 47.7 53.1 54.9 46.6 46.1 45.3
.0ct=17 41.7 41.0 45.4 43.3 44.3 40.3 41.6 43.1 Oct 24 45.0 43.3 44.3 53.7 56.3 44.9 42.9 41.7 Oct-31 48.1 47.7 48.7 53.J 54 .0 47.1 46.3 45.3 Nov 7 38.7- 39.3 43.1 42.4 44.3 38.7 39.9 41.7 Nov 14 32.3 33.1 37.6 38., 40.0 33.3 33.9 37.6 *This shortened week in September is the result of a change in the day l for exchanging recording charts in instruments, i
l-
.c
i Table'8-2. Weekly soil moisture variations, precipitation, and actual evaporation, June 1-Nov. 20,1974.- Beach Site Tower Woods - actual Sumac Comunity actual Fulton' soil
. evapora tion precipitation (cm depth) evaporation precipitation (cm depth)
Week of: -(in/wk)- (in/wk)- 10 50 100 L20 (in/wk) (in/wk): 10 20 June'1 .l.56 1.07 100* 100 100. 100 1.94 0.71 97* 97 100
'8 1.39 1.30 100 100 100 100 2.89 0.72 100 100 100 .
15 0.84 1.50 100 100 100 100 1.97 1.00 100 100 '100- ) 22 '0.81- 0.10 100 100 100 100 1.09 0.0 75 100 100
-29 1.97 0.27 90 100 100 100- 3.82 0.13 53 100 100 July 6 1.17 U.o ub 95 9b 96 2.08 0.0 63 68 tuu 13 1.77 0.05 97- 95 90 100 4.11 0.0 62 65 100 20 1.03. 0.12 0 88 67 92 1.59 0.0 0 20 90 27 1.38 0.14 0 83 50 48 2.81 0.08 0 0 43 Aug 3 0.83 U.14 u 85 46 25 1.51 0.20 0 0 25 '10 0.84 1.03 40 85 45 25 1.26 0.79 0- 0 15 17 ' 04 0.01 25 90 70 20 2.07 3.0 0 0 5 24 ;0.93 0.16 22 100 82 15 2.11 0.02 0 0 0 31 0.69 0.60 -0 100 70 5 1.51 0.26 0 0 0 Sep 7 0.67 U . u'> Z 100 b4 7 2.13 0.05 0 0 0 12 '0.75 0.19 0 95 25 0 2.36 0.10 0 0- 0 19 0.83 0.06 0 90 10 0 1.86 0.02 0 0 0 26 0.54 0.93 0 71 0 0 1.39 0.59 0 0 0 Oct 3 0.97 0.12 ub. 97 Jz 19 1.97 0.02 0 0 0 10 0.49 0.19 74 98 37 24 1.21 0.07 0 0 0 17 0.31 0.10 61 87 34 28 0.71 0.07 0 0 0 24 0.0 0.17 50 78 29 31 0.0 0.05 0 0 0.
31 0.0 1.02 45 76 29 34 0.0 0.01 0 0 0 ENov 7 0.0 0.58. 65 92 J/ 37 0.38 0.0 92 0 0 14 0.0 0.22 83 87 67 67 0.0 0 18 88 27 0
* %of available moisture.
a e
Table B-3. Soil Chemical Analysis, Summer and Fall,1974 - Beach sites and Tower Woods sites. Cation Exchange % Base % Organic pH Capacity
- Saturation Matter Value Summer Fall Summer Fall Summer Fall Summer Fall 0
g j 10.cm 2.i 31 99.0 99.0 8.6 8.2 7.1 7.1 Site 20 cm il 27 94.4 98.7 2.4 5.9- 6.6 '7.3 Tower Shelter 50 cm 24 23 99.4 99.4 1.8 2.8 6.8 7.3
-Toledo Soil 10 cm 32 35 87.5 88.7 8.8 9.2 6.6 Site 6.4 20 cm 29 30 95.3 95.6 4.2 4.7 6.6 6.9 -
50 cm 27 31 99.3 98.3 1.9 2.3 7.0 6.9 B c ommunity 0 cm 12 16 99.9 98.7 3.5 4.2 7.0 S 7.2 Beach Shelter 20 cm 9 11 98.6 99.5 1.8 0.7 7.1 7.3 50 cm 7 7 99.5 99.4 0.8 0.1 7.5 7.3 Hackberry- 10 cm 20 53 98.5 99.0 6.3 32.0 Box Elder I 7.2 7.0 20 cm 17 34 98.6 99.5 6.1 11.0 7.1 6.8 50 cm 17 19 99.3 98.4 1.1 0.9 8.0 7.2 Hackberry- 10 cm 16 19 99.4 99.6 5.4 2.8 7.1 7.3 Box Elder II 20 cm 14 9 99.3 99.4 2.8 0.7 7.1 7.3 50 cm 11 8 99.2 99.2 1.0 0.2 7.9 7.5
- Cation Exchange Capacity figure is in milliequivalents per 100 grams of soil.
s
I\l ; 1l
,ZO<, Y ~
a.
; 'f k .' . .. i 0f 5 o 4 ,s s
iOor. r nV dk ne - [* i ae 'k . i W s - i 0o 2t A, l. noon N*
,1 s . .
r
- 01 s . .
1 t a! y
- .L a?
sf R m . eo I A c N , g .>cQ. wW l:- m 0 . nk 0 c . ae 1 i Re k C5 s 0 W e e r , 4 i e W ur c i ti aA r en4 pi7
.v ., 2 >-
0 c a i >c09 a u m 9 - ed1 T- na , '\ '
- e es1 4
s s " __ i 4cMMm th it r S pe
- (' . i i
hD m e eb ,
# :. ,. i c -
a .v emo BcN s: i e g s' - - i 4cDG m 1 n .s -
- e - a . .
B R g **.- . E R e r ii
\g\ . . . ..g\' u -
U u II i
}*\,
G t a lI titItt t - - - - - - K#N ~ I - ~ - - F rO - . 0 eF" p 8 4 0 6 1 2 1 8 4 m 2 2 2 e T Wa
FIGURE B-2. Tower Woods Site--Temperature Ranges at 10, 20, and 50 cm. Depths and in Air, Week of May 11 to Week of November 14, 1974 Temperature Range o F 28-24. 20-
- h 16 AIR 12-8- ~
g 3 10 cm. {%g V',g\ \ 4-
/ \'/
s.,s s"/\ -%,'#s s
\e# _ / *
- 20 cm.
\
b",,
. .. . . . . . . * *.***A.,,..,. ,a *% / g .,,
p=. ..a=..=**%,
' ,,* = . g * . ... * \* 50 cm. N.*'**.*.-
O e a a e a e a e a *""* ' **"'* . *s- s./i a e e a e i e i a i a i a M L L > > r.ta o 0 n W c cW c c
*C N 2 - 'A U QQ C4 O O 94 . e n
- W * .
H CD @ W W N W N P w Week l ! s i l I i 1 1 1
a .;.a . . ~ =-~
~ - - - . . a. :.: - .- .
- Bowling Green State University Envi onmental Studies Center Bowling Creen, Ohio 43403 Wy" SEMI-ANNUAL REPORT DAVIS-BESSE TERRESTRIAL MONITORING CONTRACT DECEMBER 1974 C. Terrestrial Fauna Stephen H. Vessey, Paul A. Mazur, James Schnunk, and Craig DeCrane Department of Biological Sciences Introduction Vertebrates constitute the apex of the food pyramid and ultimately will be affected by changes in habitat and in their sources of food. Our main objective is to identify those ~2rrestrial vertebrate populations at the site that can be monitored precisely enough to detect changes in numbers in a statistically reliabic way. Comparisons of data with those from appropriate reference areas will assist in determining whether significant shifts have occurred in these populations and in evaluating the effects of environmental forces. In this way the possible impact of cooling tower operations on these animals can be studied.
Procedures followed those described in the previous (Section C, Semi-
, Annual Report, June 1974) report. Locations of trap lines and grids also ,
duplicated earlier efforts. Amphibians and Reptiles Thirty man-hours in October and November were expended searching for herptiles while checking traps in the small mammal grid and walkh g along the shore and edges of the marsh. Small numbers of leopard frogs, bull frogs, water snakes, and painted turtles were observed (Table C-1) .
.u . .
C-2 The study area is not prine habitat for terrestrial herptiles, and the fall is not the best time of jear for finding these aninals. Systematic observations will provide a neasure of species diversity and data that will be useful in developing an ecological evaluation of the site. Attempts to obtain population estimates of herptiles would require the work of additional personnel during the spring and summer, but the relatively small numbers seen so far suggest that such an effort would not be desirable. Summer Birds In addition to the three circuits of the study area completed during late June and early July (see previous report), thrc'e core circuits were made in August (Table C-2). Although numbers of individuals and species were similar to the early summer circuits, several additional species of waterfowl and shore birds were present in August. Birds also were counted on 9 and 20 August on the mud flats south of the study area (Tables C-3 and C-4) . Most of these birds were pre-nigratory flocks of herons, sandpipers and plovers, blackbirds, and gulls. The early Summer bird censuses had been conducted by two observers working independently on different days. The close agreement in numbers of species and individuals across days indicated that this procedure was reliabic in documenting the site bird fauna. Observations made in the course of the cooling tower cortality study during the fall migratory period are summarized in Table C-5. At least once each week the cooling tower woods was visited by one of two observers, but many of the sightings were incidental to other surveys. These observations provide an indication of birds' in the area but are not meant to be a quanti-fication-of total birds on the site. Winter bird counts will be presented in the next semi-annual report. i
,~-- a n..- - - - -
- _ .; .
C-3 Observations of waterfowl on Navarre Marsh made by U. s. Fish and Wild-life Service officials are summari:ed in Table C-6. Small Mammals ' Live-trapping was conducted on five weekends during the fall in the grid established last spring. Twenty-eight captures of IS different white-footed mice (Peromyscus leucopus) were made over 480 trap-nights. The Lincoln-Peterson estimate was 23 mice : 10 (one standard error) for the entire grid (0.64 hectares) (Tabic C-7) . This estimate indicates that differences of about 100 percent would be reliably detected. The estimate of 36 mico per hectare is a moderately high population when compared with estimates reported in the literature. Published estimates for this species range from 7 to 111 per hectare. A control population of white-footed mico that is being intensively live-trapped in Carter Woods near Bowling Green State University (30 miles southwest of the Davis-Besse site) peaked at 64 per hectare in late July and was 31 por hectare in October, when most of the trapping was done at Davis-Besse. The extremely low numbers of mice caught on the grid last spring prob-ably reflect real decline from late summer peaks the previous year. White-footed ' mouse populations typically cycle annually with lows in the spring, since mortality is high and reproduction is absent in the winter. Age, weight, reproductive condition, and movements were summari:ed using the Tally computor' program (Table C-8) . These data summaries and statistics will allow comparisons to be made with data from the site and control areas to be co11ceted in future years for assessing the continuing responses of the populations to the environment.
C-4
,. Large Mammal Trapping Ten different raccoons, opossums, and skunks were captured in live traps in 60 trap-nights (Table C-9). Several marked animals were caught but re-captures were not enough to estimate numbers by the Lincoln-Peterson method.
Increased trapping effort and accumulation of marked individuals in the popu-lation should make estimates possible. Trapping effort will be increased by using 10 additional live traps. Muskrats (ondatra =1bethicus) . Increased vegetation growth, due to marsh drainage in the spring, made counting of muskrat houses difficult in the fall. No houses were present in the study area marsh (between the dike road and the wooded peninsula), where 54 had been counted during the spring of 1974. A combination of three fac-tors accounted for the decline in population: mortality, emigration, and movement into bank burrows. Only two muskrats were seen by us, one on 25 October and one on 2 November. Other Observations of Mammals Four full-grown deer were observed by us in the study area on 10 November. Security guards were given forms to record observations of mammals. Their
'information is recorded in Table C-10. Security guards were cooperative and knowledgeabic about local mammals, and we plan to continue using the forms and to develep ways of quantify' ing the hours they spend observing to permit year-g3-year comparisons in sightings. These observations will be added to our own records to provide information on species diversity. Population changes in the order of five to ten-fold should be detectabic, Darby Marsh i i Ihe beach ridge communi1y was sampled for large and small mammals. .Three white-footed mies were marked and released in 110 trap-nights on i
I
, . .g . - . - - ~ - - --- - ..--: C-5 19 and 20 October. Signs of raccoon, opossum, and skunk were found. The beach ridge is extremely narrow and subject to periodic inundation. The mammal populations will be affected by lake levels and weather more than those at Davis-Besse, where' the trapping grid is inland from the beach. For this reason we plan no extensive trapping at Darby Marsh but will live-trap small mammals for several days each fall to further assess the potential of the site. leanwhile the prime reference area for monitoring changes in white-footed mouse populations will be Carter t!oods, near Bowling Green State Uni-versity. Conclusions The current program should be able to document two-fold changes in single-species populations of common winter and summer resident bird species in the study area. Similar precision should hold for fluctuations in white-footed mouse populations. In the next year we hope to obtain similarly reliable data for opossums and raccoons. Monitoring of other terrestrial vertebrates is such that five to ten-fold changes should be detected as well as counts of species diversity. Assuming that statistically significan't changes in terrestrial vertebrate populations do occur, the question still remains as to whether or not these changes are due to operations at the site. It will be necessary to make de-tailed comparisons with any changes in climate, soils, or vegetation before causality can be hypothesized. Vertebrate populations should be among the last components of the eco-system to show effects of site operations, such as increased moisture from the cooling tower. Increased precipitation or relative himidity, fol. awed by increased soil moisture, will predictably modify the vegetation. Only then are' changes in small mammal populations likely.
-; ,,_ ~
C-6
~. : Evaluations of vertebrate populations necessarily will also involve com- . parisons of density estimates and trends with populations in designated ref-erence areas away from the direct influence of site operations and perhaps with populations under study in other areas. Only in this way can the causal relationships of on-site operational factors be evaluated.
1 e d O f
'" '^ **
x-A
. s Table C-1. Reptiles and amphibians observed during the Fall,1974. All were captured, identified, and released. Numbers in parentheses indicate numbers of individuals.
Leopard Frog (4) (Rana pipiens) 3 November Bullfrog (G) (Rana cacesbeiana) 3 November
. Water Snake (2) (.vatrix sipedon) 5, 6 October Painted Turtle (chrysemys picea) 12 October Milk Snake (Lampropeleis dollata)* 17 September *0bserved by worker within cooling tower; said to be frequent occurrence.
l l l
- I l
l 1
Table C-2. August bird counts on study area circuit. Observer: Thomas W. Scott. No. of individuals counted 8 August 9 August 20 August y Species 1000-1400 1400-1840 0730-1045 Great Blue Heron 6 1 1 Green Heron 2 2 1 Common Egret 4 3 8 Black-crowned Night Heron 75 75 100
. Mallard 15 3 10 Black Duck l 1 Gadwall 1 Green-winged Teal 3 Blue-winged Teal 6 1 2 Wood Duck 1 5 2 Red-tailed Hawk 1 . . Greater Yellowlegs I Lesse Yellowlegs 1 Herring Gu11 2 Sharp-shinned Huk l Ring-billcd Gull 2 Common Tern 4 . 2 Mourning Dove 4 2 7 Yellow-billed Cuckoo 5 4 5
, Black-billed Cuckoo 1 Screech Owl 1 Great Horned Owl. 2 l Ruby-throated Hunaingbird 3 1 1 Belted Kingfisher 1 Coninon Flicker 1 Downy Woodpecker 6 2 6 Eastern Kingbird 1 1 4 Great Crested Flycatcher 1 1 Eastern Wood Pewee 2 3 Tree Swallow 12 7 3 Purple Martin 1 2 Blue Jay 1 House Wren 10 8 15 Gray Catbird 4 4 6 Brown Thrasher 1 1 American Robin 8 8 10 Cedar Waxwing 2 Starling F* F F Red-eyed Vireo 1 Prothonotary Varbler 2 Yellow Warbler abundant abundant 25 l Yellowthroat 2 1 Red-winged Blackbird F F F Rusty Blackbird " Northern Oriole 4
' ~ '
Connon Grackle f F r' Cardinal 3 3 6 Indige Bunting 6 4 6 American Goldfinch 6 4 8 , Song Sparrow 4 4 6 1
, TOTALS: species 39 31 36 individuals 209** 149** 256*** , *F denotes mixed flocks. These birds were seen in abundant nuf"bers in mixed flocks of Red-winged Blackbird Rusty Blackbird, Common Grackle, and Starling. ** Excluding yellow warbler and mixed flocks of Red-winged Blackbird Starling, and Comon Grackle. *** Excluding mixed flocks of Red-winged Blackbird. Rusty Blackbird, Connon
- ~ Grackle, and Starling. l t
J s ~_ - ,-m -
Table C-3. Estimated bird populations on August 9, 1974 (1000-1400 hours) on ' Mud Flats Circuit. Observer: Thomas W. Scott. Species No. of individuals Great Blue Heron (one flock) 250 Great Egred (one flock) 130 Gadwall } 10 Blue-winged Teal J (one flock) 50 Bald Eagle 1 Semipalmated Plover 16 Killdeer 12 Yellowlegs (Greater and Lesser) 134 Pectoral Sandpiper (three flocks)*** 70 "peaps"* . l 403 rnwitcher j 35 Satit Sandpiper ./ 10 Gull: fHerring and Ring-billed) (2 flocks) 200 Tree swallow (two ficcks) 60 Blackbirds ** (two flocks) 70 Totals: 16 species 1451 te,dividuals
*" peeps" refer to a group of difficult to distinguish small sandpipers and includes these species: semipainated, least, Baird's, white-rumped, Western. ** Blackbirds includes Red-winged Blackbirds, Starlings, and Grackles. *** Composition of shorebird flocks:
No. of Individuals Species Flock #1 Flock #2 Flock #3' Semipalmated Plover 15 I Killdeer 10 1 1 Yellowlegs (Greater and Lesser) 80 50 4 Pectoral Sandpiper 45 25
" peeps"* 305 48 50 Dowitcher 35 Stilt Sandpiper 10 - ~500 125 55 Totals: 8 species 680 individuals 9 % O e , - - +,.
Table C-4. Estimated bird populations on August 20, 1974 (1045-1610 hours) on Mud Flats Circuit. Observer: Thomas W. Scott. , Species No. of individuals Great Blue Heron (one flock of 375) 385 Green Heron 1 Great Egret (one flock of 160) 170 Black-crowned Night Heron'(one flock of 6) 14 Canada Goose (3 flocks) 34
- Mallard (flocks of 5 and 6) 19 Blue-winged Teal 6 Wood Duck 13 Sora Rail 3 Common Gallinule 2 Semipalmated Plover 15 Killdeer 24 Black-bellied Plover 1 Yellowlegs (Greater and Lesser) (two flocks)** 40 Pectoral Sandpiper 85 " peeps"* 270 -
Dowitcher 27 Gull (Herring and Ring-billed) (one flock) 150
. Comon Tern 2 Mourning Dave 2 1
Eastern Kingbird 1 Purple Martin (one flock) 125 Re ed Blackbird Mixed flocks of 209 20, 75, 75, 15 Comon Grackle j American Goldfinch 2 Song Sparrow 5 Totals: 32 species 1610 individuals
*" peeps" refer to a group of difficult to distinguish small sandpipers and includes these species: semipalmated, least, white-rumped, Baird's and Western. ** Composition of shorebird flocks:
No. of individuals Species Flock #1 Flock #2 Semipalmated Plover 10 5 Killdeer. 10 12
' Black-bellied Plover 1 Yellowlegs (Greater & Lesser) 25 10 Pectoral Sandpiper 75 10 " peeps"* 230 40 Dowitcher 25 2 Y 80 Totals: 8 species 455 individuals S
0 0
Table C-5. Estimates of species abundance made in conjunction with cooling tower studies, Fall 1974. Sept Sept Sept Sept Sept 29- Oct Oct Oct Oct 27-1-7 8-14 15-21 22-28 Oct 5 6-12 13-19 20-26 Nov 1 Double-crested Cormorant A Canada goose E F F F F F F F F Mallard C A B D C E B Black duck
- C B D Blue-winced Tas1 C Green-winged Teal B Wood Duck C Unknown ducks B' American Kestrel A A A A A A A Great Earet B A A Great Blue Heron D C A B A A A A Green Heron .
A Black-crowned Night Heron A American Bittern A Killdeer C C B B A A A Pectoral Sandpiper B
" Peeps" B Herring Gull C F C D B C E E E Ring-billed Gull C E B C B C F F F 1mmon Tern A faspian Tern A Rock Dove A B A B A C A Mourning Dove A A Great Horned 9.41 A A Common Flicker A A Downy Woodpecker A . A Eastern Woodpecker A Horned Lark A A Blue Jay A Red-breasted .':uthatch A Brown Creeper A Winter Wren A Carolina Wren A Gray Catbird A A American Robin B A A Wood Thrush A A Unidentified Thrushes A A Golden-crowned Kinglet B D C Ruby-crowned Kinglet -
D D Unidentified Kinglets D F Shrike A Starling F D E F A D A E F Yellow-throated Vireo A Black & White Warbler A A A Nashville I!arbler A Yellow Warbler A Magnolia Harbler A B Black-throated Green Warbler C Black-Throated Blue Warbler A Blackburnian Warbler A A (continued) l L . _ - -
nosa.+ - - ---,- - ,- r. Table C-5 (continued) Sept Sept Sept Sept Sept 29- Oct Oct Oct Oct 27-1-7 8-14 15-21 22-28 Oct 5 6-12 13-19 20-26 fiov 1 Bay-breasted Warbler A B Blackpol Harbler A Pine Warbler A A Connecticut '.!arbler A Wilson's Waroler A Canada Warbler A , Unidentified Warblers A B House Sparrow D E C A A D B B Red-winned Blackbird F E E D F F F F Rusty Blackbird C Comon Grackle F C A Flocks - Blackbir/.: . Starlings, Grackles F F F F F F F F F Scarlet Tanager A Cardinal C A A American Goldfinch B Song Sparrow A A B A Bat A Code: A = 1-5 sightings per week B = 6-10 C = 11-25 D = 26-50 E = 51-100 F = >100 l 1 i l l 6 D G O
a Table C-6. { Waterfowl observations at Navarre Marsh made by U.S. Fish & Wildlife Service personnel. Data represent average population for month; peak population observed. is given in parentheses.
-SP ecies July Aug Sept Oct 'Nov Dec 1974 1974 1974 -1974 1974 1974 American coot 20(20) 20(20) 20(20) 30(30) 30(30)
Canada goose 15(15) 25(25) 15(15) 10(30) 100(100) 50(100) Giant Canada goose 40(85) 500(500) 250(500) Mallard duck 20(20) 100(100) 150(200) 250(600) 250(400) 1250(3750) Black duck 10(10) 400(1250) Gadwall (5) Pintail (50) Green-winged Teal 15(25) 5(25) 10(25) B-W/Cinn. Teal 15(15) 15(15) 75(150) 60(150) Am. llidgeon 20(40) (50) Northern Shoveler (25) Wood Duck 10(10) 10(10) 30(30) 40(90) 30(50) Totals 80(80) 170(170) 305(440) 435(1030) 950(1155) 1950(5730)
)
1
,).
Table C-7. Captures and population estimates of Peromyscus leu opus in the study area grid, Fall 1974. Recaptures from Date Caught Released Total recapture the day before Unmarked 29 Sept. 0 0 - - 0 5 Oct. 2 2 0 0 2 6 Oct. I 1 0 0 1 12 Oct. 3 3 0 0 3 13 Oct. 7 6 2 1 5 Totals 13 12 2 11 26 Oct. 5 5 3 3 2 27 Oct. 3 3 3 3 0 3 Nov. 7 7 5 3 2 Totals 15 15 11 4 Lincoln-Peterson Index for population estimation comparing first five days with last three days: M = 10 n=7 m=3 N = 23 10 (1 S.E.) in 0.64 hectares, or 36 mice / hectare.
1,
.1 f
Table C-8. Summary of data derived from captures of Peromyscus teucopus, Fall 1974. Adults Subadults Juveniles Totals Males Females Males Females Males Females Males Females-Number of animals 4 4 5 2 0. 0 9 6 Testes position
. scrotal 2 1 0 abdominal 2 4 0 Nipple size small 1 2 0 medium 1 0 G large 2 0 0 no. obviously_ pregnant 2 0 0 No. of movements 3 5 0 -2 0 0 .'tean length of movement 14.7 10.5 0.0 25.3 0.0 0.0 Range: 11aximum 20.0 22.4 0.0 28.3 0.0 0.0 , Minimum 10.0 0.0 0.0 22.4 0.0 0.0 Standard deviations 5.0 7.9 0.0 4.2 0.0 0.0 f'
e I t 9
\
Table C-9. Results of large mammal live-trapping, Spring and Fall 1974. Location numbers refer to field map plots. Species Date Location Weight (lbs)' Sex ID# Opossum 28 Sept. 19 3.0 M 107 Opossum 29 Sept. 16 3.0 F 108 Raccoon 5 Oct. 21 8.5 M 106 Opossum 5 Oct. 21 2.5 M 110 Opossum 5 Oct. 17 3.0 F 109 Opossum 12 Oct. 20 3.0 M 111 Raccoon 12 Oct. 19 5.5 F 112 Opossum 13 Oct. 21 3.0 M 111* Raccoon 13 Oct. 18 6.0 F 113 Opossum 26 Oct. 5 4.0 F 1-Alum. Skunk 26 Oct. 14 5.0 - (not marked) Raccoon 3 Nov. 21 10.5 M 106
- Tag lost & ear notched.
1 S 6 i i D
(# ) Table C-10. Results of observatiens by security guards of large mammals, Fall 1974. Species Number Date Location Time Chipmunk 1 4 Oct. N. Dike Rd. 1850 Muskrat 1 4 Oct. N. Dike Rd. 1905 Muskrat}}