ML20211G092: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:-                                                                                                     ,
{{#Wiki_filter:-
s' INSERT THIS PAGE IN FRONT OF VOLUME 2 i'        ,
s' INSERT THIS PAGE IN FRONT OF VOLUME 2
                                      ; Vakune 2:l SECTIONS 1A,2.0&3Af                   ,
; Vakune 2:l SECTIONS 1A,2.0&3Af i'
Remove                                           Replace 1.0 ITS pg 1.1-2 Rev 6                           1.0 ITS pg 1.1-2 Rev 14                       l 1.0 CTS M/U (1-1) pg 1 of 14 Rev 6               1.0 CTS M/U (1-1) pg i of 14 Rev 14 l
Remove Replace 1.0 ITS pg 1.1-2 Rev 6 1.0 ITS pg 1.1-2 Rev 14 1.0 CTS M/U (1-1) pg 1 of 14 Rev 6 1.0 CTS M/U (1-1) pg i of 14 Rev 14 l
l l
i l
l I
l i
l l
l l
l cP900310157 990825 PDR     ADOCK 05000341 p                       PM Rev 14         08/26/99
l cP900310157 990825 PDR ADOCK 05000341 PM p
Rev 14 08/26/99


s' l
s' l
Definitions   {
Definitions
1.1
{
1.1 1.1 Definitions (continued)
{
CHANNEL CHECK A CHANNEL CHECK shall be the qualitative assessment, by ob:;arvation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument f
channels measuring the same parameter.
{
CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection G
of a simulated or actual signal into the channel l
as close to the sensor as practicable to verify I
h OPERABILITY of all devices in the channel required
{
{
1.1 Definitions (continued)
1 u
CHANNEL CHECK            A CHANNEL CHECK shall be the qualitative                I assessment, by ob:;arvation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument            f channels measuring the same parameter.                {
for channel 0PERABILITY. A CHANNEL FUNCTIONAL TEST may be performed by means of any series of gl sequential, overlapping, or total channel steps.
CHANNEL FUNCTIONAL TEST  A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated or actual signal into the channel      l G                              as close to the sensor as practicable to verify      I OPERABILITY of all devices in the channel required    {
CORE ALTERATION CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:
h u                              for channel 0PERABILITY. A CHANNEL FUNCTIONAL 1
a.
TEST may be performed by means of any series of gl                             sequential, overlapping, or total channel steps.
Movement (including replacement) of source range monitors, local power range monitors,
CORE ALTERATION CORE ALTERATION shall be the movement of any fuel,   ,
~~ m.7 intermediate range monitors, traversing incore probes, or special movable detectors; and b.
sources, or reactivity control components,           !
Control rod movement, provided there are no fuel assemblies in the associated core cell.
within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:
: a. Movement (including replacement) of source       '
range monitors, local power range monitors,
~~ m.7     _.                              intermediate range monitors, traversing incore probes, or special movable detectors; and
: b. Control rod movement, provided there are no fuel assemblies in the associated core cell.
Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
(continued) l FERMI - UNIT 2                       1.1 2             Revision 14. 08/26/99 I
(continued) l FERMI - UNIT 2 1.1 2 Revision 14. 08/26/99 1
1


.                                                                                                                                                                    i
i
                                                                                                              &LC'\$sLb & I.D                                       1 l.1                                Art.e.      O*                   ,p g e d on nI            I 4# DEFINITIONS
&LC'\\$sLb & I.D O*
                                                        "                                                                        ihese                            !
nI
4he--fel4ewmg-terms-are-demed-so-that untfer . in\e. p.etet;en                                                       vi
,p g e d on l.1 Art.e.
                              -spes4.f4 cath:: ::y be-nh4eved, Thedefinedtermdappearincapitalizedtypeand M. l' b: applicable throughout these Technical Specifications.*gF]ise.3                                                                   l
4# DEFINITIONS 4he--fel4ewmg-terms-are-demed-so-that untfer. in\\e. p.etet;en vi ihese Thedefinedtermdappearincapitalizedtypeand
                                                                                                    .tLa             Se5dhh59 ACT10N
-spes4.f4 cath:: ::y be-nh4eved, M. l' b: applicable throughout these Technical Specifications.*gF]ise.3
                              -l+ ACTIO shall be that part of a Specification wMeh preser                                       emFes remed measures-requ4 red under       %-QQ    designated fonditions P -Qgec;hed Completwhe5) i  6y,[BAGE PLARAR EXPOSURE                                          pplicable       a specift lana eight ~~                       [.7 '
.tLa Se5dhh59 shall be that part of a Specification wMeh preser Fes remed ACT10N
1.2 TgAVERAGEfLANAR EXPOSURf shall b                                                              in And is equal to the sunfof the eed_ sure                     of a     he   fuel r                                           i height   d ided by     th     umber f fuel rods)                     l H specif)ted bundle at'the spg                                                                                                        ,
-l+ ACTIO em measures-requ4 red under designated fonditions P -Qgec;hed Completwhe5)
Lin the fuel bundlef AVERAGE PLANAR LINEAR HEAT GENERATION RATE%
%-QQ 1.2 TgAVERAGEfLANAR EXPOSURf shall b pplicable a specift lana eight ~~ [.7 '
[                                        I t-t The A"E" ACE ."LANAR-t4 HEAR-HEAT-GENERAT-10N-RATEUAPLHGRj) shall be applicabl to a specific planar height and is equal to the sum of the LINEAR ;;;AT                                                   l all ti tvius ia h               GENERATt0M-RATES for all the fuel rods in the specified bundle at the                                                     I
i 6y,[BAGE PLARAR EXPOSURE And is equal to the sunfof the e sure of a he fuel r in H specif)ted bundle at'the spg ed_ height d ided by th umber f fuel rods)
          'W^8Mid" A                       specified height divided by the number of fuel ads ,1,n the fuel bundle.
Lin the fuel bundlef
                  ^             CHANNEL CALIBRATION-
[
                  #^d           -1,4~ A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter wh4             the channel monitors. The CHANNEL CAllBRATION n '-fa:I di.., G. ..n.wi,e d ;1er: ::d/. -
AVERAGE PLANAR LINEAR HEAT GENERATION RATE%
1 shall encompas s' th: rtir-
The A"E" ACE."LANAR-t4 HEAR-HEAT-GENERAT-10N-RATEUAPLHGRj) shall be applicab t-t to a specific planar height and is equal to the sum of the LINEAR ;;;AT all t tvius ia h GENERATt0M-RATES for all the fuel rods in the specified bundle at the i
                                                                  ~' "". i .n;1.d[the   CHANNEL FUNCTIONAL TEST The CHANNEL d                   ""'I  "
'W^8Mid" A specified height divided by the number of fuel ads,1,n the fuel bundle.
                                            *C *ALIBRATION may' be performed byVany series of sequential, overlapping or                                     8 (TMO5                                                                               ch;;ni i; ;;litr: ed. / Calibra m n I
^
                        '        h total channel steos c :5 th:t & : t'r:of-' instrument channels with resistance                                           I OM ,'''               . thermocouple sensors sh*44-censist of v:ri-f4eetion of eper:bility ;f the                                           I     ;
CHANNEL CALIBRATION-
sensing-e-lement-and-aditr          ut. -s w m arv,Iof the r.emaining                   ad1ust)                 !    )
#^d
devices in the channel. [sim m        conias e of a a mna ee tvtMaNe
-1,4~ A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter wh4 the channel monitors. The CHANNEL CAllBRATION rtir-n '-fa:I di.., G...n.wi,e d ;1er: ::d/. -
* CHANNEL CHECK                                          ' Y</deTr$NW
shall encompas s' th:
                                                                                              ~
""'I
~' "". i.n;1.d[the CHANNEL FUNCTIONAL TEST The CHANNEL d
* *ALIBRATION may' be performed byVany series of sequential, overlapping or (TMO5 8
C ch;;ni i; ;;litr: ed. / Calibra m n I h total channel steos c :5 th:t & : t'r:of-' instrument channels with resistance I
OM,'''
. thermocouple sensors sh*44-censist of v:ri-f4eetion of eper:bility ;f the I
w m arv,Iof the r.emaining ad1ust)
)
sensing-e-lement-and-aditr ut.
devices in the channel. [sim
-s conias e of a a mna ee tvtMaNe m
' Y</deTr$NW CHANNEL CHECK
~
of channel behavior
of channel behavior
                                  -1.5- A CHANNEL CHECK shall be the qualitative                       assessmen This determinat            n shall include, where             '        i during operation.tj su;erv: tic M status-with ther possible, comparison of the channel indication aindications and/or                                       O stat measuring the same parameter.                                         6 3J ih5er        w ud ia Q' CHANNEL FUNCTIONAt TEST                                                     ;$
-1.5-A CHANNEL CHECK shall be the qualitative assessmen n shall include, where i
                                    -1. 6           ANNEL FUNC110NAL TEST shall be& "*d"#'
during operation.tj su;erv: tic This determinat M status-with ther possible, comparison of the channel indication aindications and/or stat O
3J ih5er ud ia Q' 6
measuring the same parameter.
w CHANNEL FUNCTIONAt TEST
-1. 6 ANNEL FUNC110NAL TEST shall be&
"*d"#'
J
J
                  &\t deeius -a.A.3 a n&j;-;h: nds C ethinjection of a simulate signal into the channel m & ckneel                     as close to the sensor as practicable to verify OPERABILITYjn& ding               '
&\\t deeius A.3 n&j;-;h: nds C e injection of a simulate signal into the channel th m & ckneel
reguindGr chad                            Nlu       d/^MN""* * "4 *40:? f il "; L isa.
-a.
pef 48tOTY b,----Eis4able-channels.---the-4nject4on-of-a4imulated-signti                                             /IWo/ M t
a as close to the sensor as practicable to verify OPERABILITYjn& ding reguindGr Nlu d/^MN""* * "4 *40:? f il "; L isa.
to-ver4f v-OpERABRITY 4nc4uding-alarm-and/or-trip functions, The CHANNEL FUNCTIONAL TEST may be performed byxany series of sequential, overlapping or total channel steps. " ;L N "nl : 8 "^ ^' i s t *
chad b,----Eis4able-channels.---the-4nject4on-of-a4imulated-signti /IWo/ M pef 48tOTY t
to-ver4f v-OpERABRITY 4nc4uding-alarm-and/or-trip functions, The CHANNEL FUNCTIONAL TEST may be performed byxany series of sequential,
: 8 "^ ^' i s t *
* tM.
* tM.
G272S 0(
overlapping or total channel steps. " ;L N "nl G272S 0(
1-1                                    endment No. 41 FERMI - UNIT 2-b*O PAGE           1       0F     14                                   RdG l' em e ' e
endment No. 41 FERMI - UNIT 2-1-1 b*O PAGE 1
0F 14 RdG l' em e ' e


s' INSERT THIS PAGE IN FRONT OF VOLUME 4
s' INSERT THIS PAGE IN FRONT OF VOLUME 4 IVolusse di! SECTIONS 3.3.1.123.3.4.I t _
            /->
3:,' l
1 IVolusse di! SECTIONS 3.3.1.123.3.4.I t _       3: ,' l Remove                                       Replace 3.3.1.1 NUREG M/U pg 3.3-7 Rev 6               3.3.1.1 NUREG M/U pg 3.3-7 Rev 14 3.3.2.1 NUREG M/U pg 3.3-20 Rev 6             3.3.2.1 NUREG M/U pg 3.3-20 Rev 14 3.3.3.1 DOCS pg 2 Rev 12                       3.3.3.1 DOCS pg 2 Rev 14 3.3.4.1 DOCS pg 2 Rev 12                       3.3.4.1 DOCS pg 2 Rev 14 l
/ - >
l l                                                                                            \
1 Remove Replace 3.3.1.1 NUREG M/U pg 3.3-7 Rev 6 3.3.1.1 NUREG M/U pg 3.3-7 Rev 14 3.3.2.1 NUREG M/U pg 3.3-20 Rev 6 3.3.2.1 NUREG M/U pg 3.3-20 Rev 14 3.3.3.1 DOCS pg 2 Rev 12 3.3.3.1 DOCS pg 2 Rev 14 3.3.4.1 DOCS pg 2 Rev 12 3.3.4.1 DOCS pg 2 Rev 14 l
l l
l l
i l
\\
l i
l l
l l
Rev 14         08/26/99 l
Rev 14 08/26/99 l
 
.s 6ptg49 '*
RPS Instrumentation
,b 3.3.1.1 Y
q\\
owl febte 3.3.1.1 1 (pose 1 of 3)
FvMcT10M CTS
{
asector Protection system instrueentetlen 43 CItoss /IEFW i Fou@ed I 3 14 AceLicA.LE co mir: oms v
Ml2Es On aEEllaED REFEaENCED g
CTita CIIAalNELs Fatpl 2 '2 '!,/
SPEctFIED Pts TalP REGulaED sLRVE!LLAllCE ALLO W8LE FLacTION CONDIflONs SYSTEM ACTIcel D.1 afeUIntstENTs s..;;/.9 &
OM-l 1.
Intermediate aanse
'I
~
C BR 3.3.1.1.1 I'3*I.! b 8
Itentters sa 3.3.1.1.4 divisters of.
sa 3.3.1.1.6 futt scale


    .s
==Ie sa 3.3.1.1.7 l'I'! I I e.
                                ,b 6ptg49 '*                                                                        RPS Instrumentation 3.3.1.1 Y        q\                                      febte 3.3.1.1 1 (pose 1 of 3) owl FvMcT10M              ***    CTS asector Protection system instrueentetlen              43
Neutron fluu.Nish sa 3.3.1.1.S 11 sa 3.3.1.1.15 igg /,g 5(83 sa 3.3.1.1.1 s
{                                                                                                                                          Fou@ed CItoss /IEFW i AceLicA.LE          .
sa 3.3.1.1.5 Il divistens of sa 3.3.1.1 futL scale o
co mir: oms      v                    -
sa 3.3.1.1.15 b.
I 3 14 Ml2Es On    aEEllaED REFEaENCED Fatpl g
Insp 2
CTita      CIIAalNELs 2 '2 '! ,/
C se 3.3.1.1.6 NA 3* 3.l -i) lb 3
SPEctFIED    Pts TalP      REGulaED    sLRVE!LLAllCE        ALLO W8LE FLacTION                    CONDIflONs      SYSTEM    ACTIcel D.1    afeUIntstENTs        & ___
sa 3.3.1.1.15 5(83 2
: 1. Intermediate aanse                      'I
sa 3.3.1.1.5 NA 8
                                                                                      ~
sa 3.3.. 15 2.
C        BR 3.3.1.1.1      s OM-l
-,ese Peuer aanse a,,y
                                                                                                                                    ..;;/.9 &
! ! !+p5 P'# '''
Itentters                                                                    sa 3.3.1.1.4 divisters of . I'3*I.! b8 sa 3.3.1.1.6      futt scale
@Q Aver-.
: e. Neutron fluu.Nish            ==Ie                                         sa 3.3.1.1.7                         l'I'! I I sa 3.3.1.1.S 11 sa 3.3.1.1.15         igg /,g 5(83                                 sa 3.3.1.1.1       s sa 3.3.1.1.5 Il divistens of sa 3.3.1.1         futL scale             o sa 3.3.1.1.15
2 8'
: b. Insp                               2                         C       se 3.3.1.1.6       NA 3                 sa 3.3.1.1.15                       3* 3.l -i) lb 5(83               2               sa 3.3.1.1.5       NA 8
* yg"=
sa   3.3. . 15                           -
3q p
: 2. Aver
- 3.3.i.i.7 A
                                  - ,ese-. Peuer aanse a,,y
s sa 3.3.1.1.
                                                                                                                    ! ! !+p5 P'# '''
Sa 3.3.1.1.
* yg"=                                   2 3q p
sa 3.3.1.1.
8'
                                                                                                              - 3.3.i.i.7
                                                                                                                                                    @Q A        s                                                             sa   3.3.1.1.
Sa   3.3.1.1.
sa   3.3.1.1.           m
(.3 (vl 4 W) H.43 */.
(.3 (vl 4 W) H.43 */.
: b. {Munr44Mstrastated                     1                         f     J ; 3.5. . . " . 7 s Thermen Peuer.M                                                         sa 3.3.1.1.2       + W it RTP and     2, .
m
I                                                                                                     sa 3.3.1.1.3       s(115.5g1 NP$ lek                                           sa 3.3.1.1.8       afp(b) 2 T
: b. {Munr44Mstrastated 1
* T ~.T L ." ~ ^                                           ._l;- f -                                       ' h ~ ' ' '^ '                 ****[
f J ;
3.5... ". 7 s Thermen Peuer.M sa 3.3.1.1.2
+ W it RTP and 2,.
I sa 3.3.1.1.3 s(115.5g1 NP$ lek sa 3.3.1.1.8 afp(b) 2 T
* T ~.T L." ~ ^
._l;- f -
' h ~ ' ' '^ '
****[
e >+1+rfD (continued)
e >+1+rfD (continued)
(e) With .ny control red withdrenet from o core cell contelning one or more fuel esseenties.
(e) With.ny control red withdrenet from o core cell contelning one or more fuel esseenties.
O ^ ~^ 2:**'edian reset for einste leap operetten per Leo 3.4.1, ''aecirculotten Leops                               A (bs '-, .'",,e.!! ".             -
A O ^ ~^ 2:**'edian reset for einste leap operetten per Leo 3.4.1, ''aecirculotten Leops (bs '-.'",,e.!! ".
                                                                              =                                                                    F r"rt")
F r"rt")
on
=
                                      ,etio,..
w ist d W = o /..
                                              /   4W=.s%                             w ist d W = o /. .                                              Ng             .
,etio,..
                      @                        u               -                                          -
/
(t) Each MRM cka*\ frondt's InPuh h bo# kip QM f (F..uotcK,)
4W=.s% on Ng u
3.3-7                                 Rev 1, 04/07/95 BWR/4 STS
(t) Each MRM cka*\\ frondt's InPuh h bo# kip QM f (F..uotcK,)
                                                                                                                                              @EV' k ff hv G l l
BWR/4 STS 3.3-7 Rev 1, 04/07/95
1 I
@EV' k ff hv G l
l


l Control Rod Block Instrumentation 3.3.2.1 Table 3.3.2.1 1 (page 1 of 1)                                             f$
l Control Rod Block Instrumentation 3.3.2.1 Table 3.3.2.1 1 (page 1 of 1) f$
Controt Rod Stock Instrumentation
Controt Rod Stock Instrumentation
[( T8Ls s 2.3. I,-1J 7 3. G-2.]
[( T8Ls s 2.3. I,-1J 7 3. G-2.]
AP,L: Caste noots on tr. 34 -l ))
tr. 34 -l ))
OfNER SPECIFIED         REGUIRED SURVEILLANCE           ALLOWABLE nalCTioM                     CcWIT!aus           CNANNEL: RfaUIREE NT:               VALUE
AP,L: Caste noots on OfNER SPECIFIED REGUIRED SURVEILLANCE ALLOWABLE nalCTioM CcWIT!aus CNANNEL:
: 1. tod Block Monitor                                                                               g
RfaUIREE NT:
                          - r-            ~ ~"                          ">              a      "
VALUE 1.
j;j;jpgggj(%,4                               .  ,
tod Block Monitor g
3.l. Lt.3)
j;j;jpgggj(%,4
Intermosti to Pouer                         (b               p2     M 3.3.2.1/1       s (199.7/1 3
- r-
                              '~          ""                                                      "
~ ~"
OP.I                                                                                   li'.1:t ti!'''"' '
a 3.l. Lt.3)
: c. ich P.uer       -      Le             (c),(d)             (23   st     3.2.1.1     5 11 .9/1251 k                                                                               .3.2.1.4     di siens of 3.3.2.1.7       f L acetej
Intermosti to Pouer (b
[ Insp                                           ,
p2 M 3.3.2.1/1 s (199.7/1 3 OP.I li'.1:t ti!'''"' '
g      SR 3.3.2.1         MA                         k.
'~
l&
ich P.uer Le (c),(d)
                                                                                                              ~
(23 st 3.2.1.1 5 11.9/1251 c.
io1$PtLih t d in klo' 4
k
                & '-"                                                g4                   &        "
.3.2.1.4 di siens of 3.3.2.1.7 f L acetej k.
                                                                                                      !ii:;g   .
[ Insp SR 3.3.2.1 MA g
ut l
io1$PtLih t d in klo' l&
scot TBts, l bg 1.t.
~
g       cy .... ii sei.,                       e         t.>.t.,
g4
!ii:;g ut 4
: TBts, l
scot l bg 1.t.
g cy.... ii sei.,
3y,.;.;.;
c2.y n7 e
t.>.t.,
a
;.g.;.;.g A W.,t
.ini.a.,
ie,#
ie,#
a      3y,.;.;.;              c2.y n7
gig g
      #            . .      W.,t  .ini.a.,
,,,, y, g W
g                  gig         ;.g.;.;.g A                ,, ,, y , g
MiliiOJ
__ ._.                                                                  W                      MiliiOJ                             +"'                 l
+"'
: 3. e.
l (TBts 16 7) gm s itch-shut 4
gm           s itch-shut 4       a 3.3.2.1         ""
a 3.3.2.1 3.
(TBts 16 7) 30                                                                     (5. I A . 3 . * >                 L
e.
(.)     TNennu Pawa x Lind e e ss)mTP F -               '"3 m, ,,, L              . . .,                                                                [(T8L5.3.(,-1,*)l$
30 (5. I A. 3. * >
r u v.3.cr-i ,O k   (c)       muat we>f
L
                                                        ,i.ux,TPg.1.7.].
[(T8L5.3.(,-1,*)l$
I and e 90% RTP and         a 1.7c THERMAL PtWER 90% PTP and teEPR 4 1 .
x Lind e e ss)mTP F -
Ge) . NRMAL POWER t [13 and e 905 RTP apdMCPR e 1.h
'"3
                    )    With TNERNAL P.WER s g0p tTP.                                                         , l , Y. l , [/Pp/.'mfr.'f/
(.)
          ,      (p     ...ct.,     e ..ii.n in ts. . nut         ition.
TNennu Pawa
,i.ux,TPg.1.7.].
r u v.3.cr-i,O m,,,, L k
(c) muat we>f I and e 90% RTP and a 1.7c THERMAL PtWER 90% PTP and teEPR 4 1.
Ge). NRMAL POWER t [13 and e 905 RTP apdMCPR e 1.h With TNERNAL P.WER s g0p tTP.
, l, Y. l, [/Pp/.'mfr.'f/
)
(p
...ct.,
e..ii.n in ts.. nut ition.
(n t 3 3 6 -> /A 7 )
(n t 3 3 6 -> /A 7 )
BWR/4 STS                                                   3.3-20                               Rev 1, 04/07/95 R e v M ll Revlo           I       .
BWR/4 STS 3.3-20 Rev 1, 04/07/95 R e v M ll Revlo I
i l
i l
l l
l l


e DISCUSSION OF CHANGES ITS: SECTION 3.3.3.1 . PAM INSTRUMENTATION A.5   CTS Table 4.3.7.5 1 footnote # states that the provisions of Specification 4.0.4 are not applicable. This is not required in ITS 3.3.3.1 because any potential confusion concerning when the surveillance is. required is eliminated by specifying the precise requirements for performance of the Surveillance such that an explicit 7
e DISCUSSION OF CHANGES ITS: SECTION 3.3.3.1. PAM INSTRUMENTATION A.5 CTS Table 4.3.7.5 1 footnote # states that the provisions of Specification 4.0.4 are not applicable. This is not required in ITS 3.3.3.1 because any potential confusion concerning when the surveillance is. required is eliminated by specifying the precise 7
exception to 4.0.4 is not necessary. The ITS SR 3.3.3.1.2 Note 2             h modifies the Frequency such that it is "Not required to be performed until 72 hours for one channel and 7 days for the second channel after >
requirements for performance of the Surveillance such that an explicit exception to 4.0.4 is not necessary. The ITS SR 3.3.3.1.2 Note 2 h
Q I
modifies the Frequency such that it is "Not required to be performed Q
15% RTP." This is an administrative change with no impact on safety.
until 72 hours for one channel and 7 days for the second channel after >
TECHNICAL CHA N C     MORE RESTRICTIVE None TECHNICAL CHANGES - LESS RESTRICTIVE
I 15% RTP." This is an administrative change with no impact on safety.
            " Generic" LR.1         CTS Table 3.3.7.5-1. Action 81, requires that with the Operable channels less than the minimum required, initiate the preplanned "3
TECHNICAL CHA N C MORE RESTRICTIVE None TECHNICAL CHANGES - LESS RESTRICTIVE
alternate method of monitoring the appropriate parameter (s) within
" Generic" LR.1 CTS Table 3.3.7.5-1. Action 81, requires that with the Operable channels less than the minimum required, initiate the preplanned alternate method of monitoring the appropriate parameter (s) within "3
      -'                72 hours and restore the inoperable channel within 7 days. ITS 3.3.3.1, Action C, requires the channel restored within 7 days, but does not require the preplanned alternate method of monitoring to be initiated within 72 hours. This is acceptable because the requirement to initiate an alternate monitoring plan does not       -
72 hours and restore the inoperable channel within 7 days. ITS 3.3.3.1, Action C, requires the channel restored within 7 days, but does not require the preplanned alternate method of monitoring to be initiated within 72 hours. This is acceptable because the requirement to initiate an alternate monitoring plan does not impact the requirement to restore the channel within 7 days.
impact the requirement to restore the channel within 7 days.
k Furthermore, the probability of an accident during the allowed s
Furthermore, the probability of an accident during the allowed ks repair time is minimal. Regulatory control of changes to this requirement (e.g., Technical Specification amendment or 10 CFR
repair time is minimal. Regulatory control of changes to this requirement (e.g., Technical Specification amendment or 10 CFR 50.59) is not necessary to provide adequate protection of the I
!                        50.59) is not necessary to provide adequate protection of the I
public health and safety since the requirement for post accident instrument channel Operability and actions for inoperable instrumentation, continues to be required by the Technical l
public health and safety since the requirement for post accident instrument channel Operability and actions for inoperable instrumentation, continues to be required by the Technical l                       Specifications.
Specifications.
1 1
1 1
l FERMI - UNIT 2                         2                 REVISION 14, 08/26/99l a
l FERMI - UNIT 2 2
REVISION 14, 08/26/99l a


DISCUSSION OF CHANGES ITS: SECTION 3.3.4.1 - AWS-RPT INSTRUMENTATION
DISCUSSION OF CHANGES ITS: SECTION 3.3.4.1 - AWS-RPT INSTRUMENTATION A.4 For CTS Specification 3.3.4 (and ITS 3.3.4.1). the AWS RPT system instrumentation is interpreted to include the actuated device (s).
    -      A.4     For CTS Specification 3.3.4 (and ITS 3.3.4.1). the AWS RPT system instrumentation is interpreted to include the actuated device (s).
Each instrumentation channel (reactor water level and reactor pressure) ultimately provides signals that can result 1.n all four breakers tripping. Therefore, any inoperable breaker is s
Each instrumentation channel (reactor water level and reactor pressure) ultimately provides signals that can result 1.n all four breakers tripping. Therefore, any inoperable breaker is                   s necessarily associated with both trip systems being inoperable.             I For the case of an inoperable AWS-RPT breaker CTS 3.3.4 Action e does not allow inoperable channels to be placed in trip, but required both trip systems be restored or the plant to shutdown.
necessarily associated with both trip systems being inoperable.
Due to the reformatting to ITS, where multiple Condition entry applies, and the ITS presentation of Action A for any number of inoperable channels, the ITS option for tripping channels must be taken exception to in order to conform to CTS requirements. Since
I For the case of an inoperable AWS-RPT breaker CTS 3.3.4 Action e does not allow inoperable channels to be placed in trip, but required both trip systems be restored or the plant to shutdown.
                                                                                              \    l ITS Action A can apply to one or many inoperable channels, the Note to Required Action A.2 is provided to direct a restoration               1 requirement (and preclude a channel tripping allowance) in the event of an inoperable trip breaker. This explicit limitation is only a clarification of the requirements that would be imposed by         C compliance with CTS 3.3.4 requirements. The changes to the time           3 allowed to restore the inoperable breaker / channels are addressed Therefore, this change only reflects a presentation
Due to the reformatting to ITS, where multiple Condition entry applies, and the ITS presentation of Action A for any number of inoperable channels, the ITS option for tripping channels must be
. _ .y               by DOC L.1.                                                ~ ~~
\\
      )             clEffication necessitated by the ITS format.
taken exception to in order to conform to CTS requirements. Since l
                                                                        ~
ITS Action A can apply to one or many inoperable channels, the Note to Required Action A.2 is provided to direct a restoration requirement (and preclude a channel tripping allowance) in the event of an inoperable trip breaker. This explicit limitation is only a clarification of the requirements that would be imposed by C
A.5       CTS 4.3.4.2 requires an LSFT "and simulated automatic operation" of all channels. The simulated automatic operation is interpreted in the CTS to be included in the LSFT, since the CTS LSFT                     l definition " includes the actuated device." ITS SR 3.3.4.1.4             n O
compliance with CTS 3.3.4 requirements. The changes to the time 3
requires an LSFT but explicitly states " including breaker                   ]
allowed to restore the inoperable breaker / channels are addressed by DOC L.1.
actuation." Since the ITS LSFT definition is revised to exclude           g the actuated device (refer to Section 1.0), explicitly adding
Therefore, this change only reflects a presentation
                      " breaker actuation" captures the CTS requirement. This g
. _.y) clEffication necessitated by the ITS format.
clarification is an administrative presentation preference only.
~
A.6       CTS Table 3.3.41, Note (*), allows required surveillance testing "without placing the trip system of the tripped condition provided the other channel in the same trip function is OPERABLE." ITS SR Note 2 provides the same allowance stated as " entry into the associated Conditions and Required Actions may be delayed provided the associated Function maintains trip capability." This represents consistency in presentation with other Specifications, and as such, is considered an administrative change.
~ ~~
J FERMI UNIT 2                         2                   REVISION 14     08/26/99l
A.5 CTS 4.3.4.2 requires an LSFT "and simulated automatic operation" of all channels. The simulated automatic operation is interpreted in the CTS to be included in the LSFT, since the CTS LSFT definition " includes the actuated device." ITS SR 3.3.4.1.4 n
O requires an LSFT but explicitly states " including breaker
]
actuation." Since the ITS LSFT definition is revised to exclude g
the actuated device (refer to Section 1.0), explicitly adding g
" breaker actuation" captures the CTS requirement. This clarification is an administrative presentation preference only.
A.6 CTS Table 3.3.41, Note (*), allows required surveillance testing "without placing the trip system of the tripped condition provided the other channel in the same trip function is OPERABLE." ITS SR Note 2 provides the same allowance stated as " entry into the associated Conditions and Required Actions may be delayed provided the associated Function maintains trip capability." This represents consistency in presentation with other Specifications, and as such, is considered an administrative change.
J FERMI UNIT 2 2
REVISION 14 08/26/99l


f I
f INSERT THIS PAGE IN FRONT OF VOLUME 5
INSERT THIS PAGE IN FRONT OF VOLUME 5
/ s *4 L Volume 5:l SECTIONS 3.3.5.D3.3.8.23
              / s *4
~
                                            ~
~
L Volume 5:l SECTIONS 3.3.5.D3.3.8.23
* Remove Replace 3.3.5.1 ITS pg 3.3-41 Rev 12 3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12 3.3.5.1 ITS pg 3.3-43 Rev 14 i
                                                                                        ~
3.3.5.1 ITS pg 3.3-44 Rev 12 3.3.5.1 ITS pg 3.3-44 Rev 14 j
* Remove                                           Replace                   ;
B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14 B 3.3.5.1 ITS pg B 3.3.5.1 17 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 12 3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 14 3.3.5.1 DOCS pg 3 Rev 12 3.3.5.1 DOCS pg 3 Rev 14 3.3.5.1 DOCS pg 4 Rev 12 3.3.5.1 DOCS pg 4 Rev 14 3.3.5.1 NUREG WU pg 3.3-42 Rev 12 3.3.5.1 NUREG M/U pg 3.3-42 Rev 14 l
3.3.5.1 ITS pg 3.3-41 Rev 12                     3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12                     3.3.5.1 ITS pg 3.3-43 Rev 14                     i
3.3.5.1 NUREG M/U pg 3.3-44 Rev 12 3.3.5.1 NUREG M/U pg 3.3-44 Rev 14 3.3.5.1 NUREG M/U pg 3.3-45 Rev 12 3.3.5.1 NUREG M/U pg 3.3-45 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 12 B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 12 B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 14 3.3.6.2 DOCS pg 6 Rev 12 3.3.6.2 DOCS pg 6 Rev 14 3.3.6.2 DOCS pg 7 Rev 12 3.3.6.2 DOCS pg 7 Rev 14 3.3.6.2 DOCS pg 8 Rev 14 3.3.6.3 ITS pg 3.3-65 Rev 13 3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6 3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6 3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 3.3.6.3 DOCS pg 1 Rev 12 3.3.6.3 DOCS pg i Rev 14 3.3.6.3 NUREG M/U pg 3.3-67 Rev 13 3.3.6.3 NUREG M/U pg 3.3-67 Rev 14 3.3.6.3 NUREG M/U pg 3.3-67 (Insert) Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3 201 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-20i Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 14 B 3.3 6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 14 1
(
B 3.3.6.3 NUREG M/U pg B 3.3 203 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-203 Rev 14 j
3.3.5.1 ITS pg 3.3-44 Rev 12                     3.3.5.1 ITS pg 3.3-44 Rev 14 j
1 Rev 14 08/26/99
B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 12             B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14             l B 3.3.5.1 ITS pg B 3.3.5.1 17 Rev 12             B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 12       3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 14 3.3.5.1 DOCS pg 3 Rev 12                         3.3.5.1 DOCS pg 3 Rev 14 3.3.5.1 DOCS pg 4 Rev 12                         3.3.5.1 DOCS pg 4 Rev 14 l
3.3.5.1 NUREG WU pg 3.3-42 Rev 12                 3.3.5.1 NUREG M/U pg 3.3-42 Rev 14               l 3.3.5.1 NUREG M/U pg 3.3-44 Rev 12               3.3.5.1 NUREG M/U pg 3.3-44 Rev 14 3.3.5.1 NUREG M/U pg 3.3-45 Rev 12               3.3.5.1 NUREG M/U pg 3.3-45 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 12           B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 12           B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 14 3.3.6.2 DOCS pg 6 Rev 12                         3.3.6.2 DOCS pg 6 Rev 14 3.3.6.2 DOCS pg 7 Rev 12                         3.3.6.2 DOCS pg 7 Rev 14 3.3.6.2 DOCS pg 8 Rev 14 3.3.6.3 ITS pg 3.3-65 Rev 13                     3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6                       3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6                       3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6               B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6               B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 3.3.6.3 DOCS pg 1 Rev 12                         3.3.6.3 DOCS pg i Rev 14 3.3.6.3 NUREG M/U pg 3.3-67 Rev 13               3.3.6.3 NUREG M/U pg 3.3-67 Rev 14
    -                                                3.3.6.3 NUREG M/U pg 3.3-67 (Insert) Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3 201 Rev 6           B 3.3.6.3 NUREG M/U pg B 3.3-20i Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 6           B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 14 B 3.3 6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 6   B 3.3.6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 14 ,
1 B 3.3.6.3 NUREG M/U pg B 3.3 203 Rev 6           B 3.3.6.3 NUREG M/U pg B 3.3-203 Rev 14         j 1
Rev 14           08/26/99 l


ECCS Instrumentation 3.3.5.1 Table 3.3.5.1-1 (page 1 of 6)
ECCS Instrumentation 3.3.5.1 Table 3.3.5.1-1 (page 1 of 6)
Emergency Core Cooling System Instrumentation
Emergency Core Cooling System Instrumentation
                                                                          ..  .            . . . . _ - -          . - - . - ~ _ _ _ . _ _ - _ _ _
. - -. - ~ _ _ _. _ _ - _ _ _
MODES       REQUIRED     REFERENCED OROTER       CHANNELS       FRON SPECIFIED       PER       REQUIRED               SLRVEILLANCE                           ALLOWABLE FUNCTION             CONDITIONS     FUNCTION     ACTION A.1             REQUIREENTS                               VALUE
MODES REQUIRED REFERENCED OROTER CHANNELS FRON SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENTS VALUE 1.
: 1. Core Spray System
Core Spray System a.
: a. Reactor Vessel Water       1.2.3.       4(b)           B               SR 3.3.5.1.1                     e 24.8 inches Level - Low Low Low.                                                       SR 3.3.5.1.2 Level 1                 4(a),$(a)                                         SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
Reactor Vessel Water 1.2.3.
: b. Drywell                     1.2.3         4(b)           B                 SR 3.3.5.1.1                     s 1.88 psig Pressure - High                                                             SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Q             c. Reactor Steam Dome Pressure - Low 1.2.3           4           C                 SR 3.3.5.1.1 SR 3.3.5.1.2 SR 3.3.5.1.3 a 441 psig A                (In #ction Permissive)
4(b)
L12                                                                                           SR 3.3.5.1.4
B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.
        %                                                                                              SR 3.3.5.1.5
SR 3.3.5.1.2 Level 1 4(a),$(a)
      %                                              4(a),$(a)         4           B                 SR 3.3.5.1.1 SR 3.3.5.1.2
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.
                                                                                                                                        = 441 psig SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
Drywell 1.2.3 4(b)
--  Aw       _.
B SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Q
                      . d." ~ Manual Initiation         1.2.3.         2(c)           C                 SR- 3.3.5.1.6                   NA
: c. Reactor Steam Dome 1.2.3 4
{                                         4(a)5(a)
C SR 3.3.5.1.1 a 441 psig Pressure - Low SR 3.3.5.1.2 A
: 2. Low Pressure Coolant In #ction (LPCI) System
(In #ction Permissive)
: a. Reactor Vessel Water       1.2.3           4             B                 SR 3.3.5.1.1                     e 24.8 inches Level - Low Low Low.                                                       SR 3.3.5.1.2 Level 1                 4(a),$(a)                                           SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued)
SR 3.3.5.1.3 L12 SR 3.3.5.1.4 SR 3.3.5.1.5 4(a),$(a) 4 B
SR 3.3.5.1.1
= 441 psig SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Aw
. d." ~ Manual Initiation 1.2.3.
2(c)
C SR-3.3.5.1.6 NA
{
4(a)5(a) 2.
Low Pressure Coolant In #ction (LPCI) System a.
Reactor Vessel Water 1.2.3 4
B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.
SR 3.3.5.1.2 Level 1 4(a),$(a)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued)
(a) When associated sLbsystem(s) of LCO 3.5.2 are required to be OPERABLE.
(a) When associated sLbsystem(s) of LCO 3.5.2 are required to be OPERABLE.
p       (b) Also required to initiate the associated emergency diesel generator (EDG).                                                               f e4
p (b) Also required to initiate the associated emergency diesel generator (EDG).
          --    (c) Individual component controls.
f e4 (c) Individual component controls.
J J FERMI - UNIT 2                                       3.3 41                               Revision 14                               08/26/99
J J FERMI - UNIT 2 3.3 41 Revision 14 08/26/99


E           .
E ECCS Instrumentation 3.3.5.1
ECCS Instrumentation       >
)
3.3.5.1
Table 3.3.5.1 1 (page 3 of 6)
    )
.,j Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS MODES OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SlRVEILLANCE ALLOWABLE RMCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENTS VALUE
    .,j Table 3.3.5.1 1 (page 3 of 6)
\\A 2.
Emergency Core Cooling System Instrumentation APPLICABLE                 CONDITIONS MODES OR       REQUIRED   REFERENCED OTER         CHANNELS       FROM SPECIFIED         PER       REQUIRED     SlRVEILLANCE     ALLOWABLE RMCTION             CONDITIONS     FUNCTION   ACTION A.1   REQUIREENTS       VALUE
LPCI System (continued) i h.
            \A       2. LPCI System (continued) i
Manual Initiation 1.2.3.
: h. Manual Initiation           1.2.3.         2(C)         C       SR 3.3.5.1.6 NA 4(a)5(a)
2(C)
: 3. High Pressure Coolant Injection (WCI) System
C SR 3.3.5.1.6 NA 4(a)5(a) 3.
              ^         a. Reactor Vessel Water         1.             4           B       SR 3.3.5.1.1 a 103.8 Level - Low Low.                                                   SR 3.3.5.1.2 inches Level 2                 2(d). 3(d, ,
High Pressure Coolant Injection (WCI) System
SR 3.3.5.1.3 l                                                                              SR 3.3.5.1.4 SR 3.3.5.1.5
^
: b. Drywell                       1.             4           B       SR 3.3.5.1.1 s 1.88 psig Pressure - High                                                   SR 3.3.5.1.2 l                                   2(d). 3(d)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
a.
: c. Reactor Vessel Water           1.             2           C       SR 3.3.5.1.1 s 219 inches
Reactor Vessel Water 1.
            &                Level-High. Level 8                                               SR 3.3.5.1.2 Ol                                       2(d),3(d)                                 SR 3.3.5.1.3 g                                                                                        SR 3.3.5.1.4 SR 3.3.5.1.5
4 B
        )
SR 3.3.5.1.1 a 103.8 Level - Low Low.
: d. Condrisate Storage             1.             2           D       SR 3.3.5.1.1 = 0 inches Tank Level-Low                                                     SR 3.3.5.1.2 (l                                         2(d), 3(d)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
SR 3.3.5.1.2 inches l
: e. Suppression Pool Water       1.             2           D       SR 3.3.5.1.1 s 5.0 inches Level - High                                                       SR 3.3.5.1.2 Nl                                       2(d),3(d)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) m N
Level 2 2(d). 3(d, SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.
(a) When the associated subsystem (s) are required to be OPERABLE.
Drywell 1.
g M (c) Individual couponent controls.
4 B
            ] l (d) With reactor steam done pressure > 150 psig.
SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l
2(d). 3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c.
Reactor Vessel Water 1.
2 C
SR 3.3.5.1.1 s 219 inches Level-High. Level 8 SR 3.3.5.1.2 Ol 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 g
SR 3.3.5.1.5
)
: d. Condrisate Storage 1.
2 D
SR 3.3.5.1.1
= 0 inches Tank Level-Low SR 3.3.5.1.2 (l
2(d), 3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 e.
Suppression Pool Water 1.
2 D
SR 3.3.5.1.1 s 5.0 inches Level - High SR 3.3.5.1.2 Nl 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) m N
g (a) When the associated subsystem (s) are required to be OPERABLE.
M (c) Individual couponent controls.
] l (d) With reactor steam done pressure > 150 psig.
1
1
    ,./
,./
_ l FERMI - UNIT 2                                     3.3 43                     Revision 14     08/26/99
_ l FERMI - UNIT 2 3.3 43 Revision 14 08/26/99


ECCS Instrumentation 3.3.5.1   j i
ECCS Instrumentation 3.3.5.1 j
Table 3.3.5.1-1 (page 4 of 6)                                       I Emergency Core Cooling System Instrutentation                             l APPLICABli               CONDITIONS MODES OR     REQUIRED   REFERENCED OTER       CHANNELS       FROM SPECIFIED       PER       REQUIRED       SLRVEILLANCE     ALLOWABLE FUNCTION           CONDITIONS     FUNCTION   ACTION A.1       REQUIREMENTS       VALUE y
i Table 3.3.5.1-1 (page 4 of 6)
g
I Emergency Core Cooling System Instrutentation APPLICABli CONDITIONS MODES OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREMENTS VALUE y
: 3. IPCI System (continued)
3.
: f. Manual Initiation           1           1(C)           C         SR 3.3.5.1.6   NA 2(d),3(d)
IPCI System (continued) g f.
: 4. Automatic Depressurization System (ADS) Trip System A
Manual Initiation 1
            'l         a. Reactor Vessel Water Level - Low Low Low.
1(C)
: 1.            2           E         SR 3.3.5.1.1 SR 3.3.5.1.2 e 24.8 inches l           Level 1                 2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l     b. Drywell                     1.             2           E         SR 3.3.5.1.1   s 1.88 psig Pressure - High                                                   SR 3.3.5.1.2 l                                   2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 j       c. Automatic                   1.             1           F         SR 3.1.5.1.2   s 117 seconds Depressurization                                                 SR 3.3.5.1.4
C SR 3.3.5.1.6 NA 2(d),3(d) 4.
Automatic Depressurization System (ADS) Trip System A
'l a.
Reactor Vessel Water 1.
2 E
SR 3.3.5.1.1 e 24.8 Level - Low Low Low.
SR 3.3.5.1.2 inches l
Level 1 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l
b.
Drywell 1.
2 E
SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l
2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 j
c.
Automatic 1.
1 F
SR 3.1.5.1.2 s 117 seconds Depressurization SR 3.3.5.1.4 l
System Initiation 2(d),3(d)
SR 3.3.5.1.5
''N
~
~
    ''N l          System Initiation      2(d),3(d)                                SR 3.3.5.1.5 Timer-                                                                   -      --
Timer-d d.
d           d. Reactor Vessel Water Level- Low. Level 3 1.
Reactor Vessel Water 1.
2(d),3(d) 1           E         SR 3.3.5.1.1 SR 3.3.5.1.2 e 171.9 inches ll             (Confirmatory)                                                   SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l       e. Core Spray P mp             1,       1 per pump       F         SR 3.3.5.1.1   a 125 psig Discharge                                                         SR 3.3.5.1.2
1 E
            \l I             Pressure - High         2(d), 3(d)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G                                                                                                   (continued) d (c) Individual cog onent controls.                                                                             )
SR 3.3.5.1.1 e 171.9 Level-Low. Level 3 SR 3.3.5.1.2 inches ll (Confirmatory) 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l
e.
Core Spray P mp 1,
1 per pump F
SR 3.3.5.1.1 a 125 psig Discharge SR 3.3.5.1.2
\\l I
Pressure - High 2(d), 3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G
(continued) d (c) Individual cog onent controls.
)
I G l (d) With reactor steam dame pressure > 150 psig.
I G l (d) With reactor steam dame pressure > 150 psig.
E                                                                                                               ,
E
          %                                                                                                                \
\\
l I
l l
I e
I e
J l
J l FERMI - UNIT 2 3.3 44 Revision 14 08/26/99
l FERMI - UNIT 2                                   3.3 44                       Revision 14       08/26/99


I ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LC0. and APPLICABILITY (continued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of           i the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
I ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LC0. and APPLICABILITY (continued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of i
the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.
The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.
The Allowable Value is low enough to prevent overpressuring the equi > ment in the low pressure ECCS. but high enough to ensure tlat the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.
The Allowable Value is low enough to prevent overpressuring the equi > ment in the low pressure ECCS. but high enough to ensure tlat the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.
Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
1.d. 2.h. Manual Initiation
1.d. 2.h.
          \n
Manual Initiation
~__ ~.s~"" t
\\n The Manual Ini.tiatio.n c.hannel provides manual-initiation-
>    . -      .-                The Manual Ini.tiatio.n c.hannel provides manual-initiation-   ~~ ~.,<
~~ ~,<
is one manual initiation channel for each of the CS and LPCI subsystems (i.e., two for CS and two for LPCI).
~__ ~.s~"" t is one manual initiation channel for each of the CS and LPCI subsystems (i.e., two for CS and two for LPCI).
The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the NRC in the c                      plant licensing basis.
The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the NRC in the plant licensing basis.
r4                                                                                           4
c r4 4
            -                    There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y..                       when the associated ECCS is required to be OPERABLE. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y..
l 1
when the associated ECCS is required to be OPERABLE. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
l l FERMI - UNIT 2                   B 3.3.5.1-10             Revision 14   08/26/99       j
1 l
l FERMI - UNIT 2 B 3.3.5.1-10 Revision 14 08/26/99 j


ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LCO, and APPLICABILITY (continued)
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LCO, and APPLICABILITY (continued)
Two channels of Suppression Pool Water Level-High function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can 3reclude HPCI swap to suppression pool source. Refer to
Two channels of Suppression Pool Water Level-High function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can 3reclude HPCI swap to suppression pool source. Refer to
                                    ;C0 3.5.1 for HPCI Applicability Bases.
;C0 3.5.1 for HPCI Applicability Bases.
y                   3.f.     Manual Initiation
y 3.f.
Manual Initiation
(
(
* The Manual Initiation channel provides manual initiation k                     capability by means of individual component controls. There is one manual initiation channel for the HPCI System.
The Manual Initiation channel provides manual initiation
N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7'
*k capability by means of individual component controls. There N
is one manual initiation channel for the HPCI System.
N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7
the HPCI function as required by the NRC in the plant licensing basis.
the HPCI function as required by the NRC in the plant licensing basis.
There is no Allowable Value for this Function since the C                     channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation
There is no Allowable Value for this Function since the C
            ~
channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation Function is required to be OPERABLE only when the HPCI
Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LC0 3.5.1 for HPCI Applicability Bases.
~
-.n.~,+   n Automatic Deoressurization System 4.a. 5.a. Reactor Vessel Water Level-Low Low Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore. ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low.
System is required to be OPERABLE. Refer to LC0 3.5.1 for HPCI Applicability Bases.
Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 1. The core cooling function of the ECCS.
-.n.~,+
n Automatic Deoressurization System 4.a. 5.a.
Reactor Vessel Water Level-Low Low Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore. ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low.
Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 1.
The core cooling function of the ECCS.
along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
Reactor Vessel Water Level-Low Low Low. Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of     I l FERMI - UNIT 2                   B 3.3.5.1 -17           Revision 14   08/26/99 i
Reactor Vessel Water Level-Low Low Low. Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of I
l FERMI - UNIT 2 B 3.3.5.1 -17 Revision 14 08/26/99 i


q             SPsc m:0ATioM 3,3 5'''
q SPsc m:0ATioM 3,3 5'''
                                                  /           3 -I
/
3 -I
_~~
_~~
3 +             we,e                 * * *? e e e c e p                   -- -                                      -
3
oo.ce.o q               Dea m G               o mo,
+
* dd g-                   u         - -        -e ,
we,e
g                                                                                smooVU l
* * *? e e e ce p
accoM               ocoo o aoM aMMM                            o o .a.a n m MMMM                         MM           MMMMMM MMMMM
q Dea m G o mo,
                                      ;          a         a            aa                 a i         i         i             ii                 i w'iMsn MMM,      .
* dd g-oo.ce.o,
M MMM,          M MM MM MMMMMM 3--                                                                           aacase
u
                !                      aae a               Jac= a ac e4
-e g
                ?
smooVU l
                        =mE
accoM ocoo o ao aM o o.a.a n m MMMMM MMMM M
                        %%u,           .:.:.:i.:           .:.:.:i .: .:: .:.:                        .:.:.: : :.:
MM MM MMMMMM a
5 s       B i     -    e    -
a aa a
tsr-w               5,            sr                                                    -
i i
WW-E b       g   =5 o
i ii i
1 WA    r-ww A
w'iMsn M
                                                            %      N N % TN prv s r M                                my ed c4   .
M MM MM MMMMMM 3--
1 E
: MMM, MMM, aae a Jac= a ac e4 aacase
w su 1_
=mE
5
?
                                =
%%u,
e, 9 t%s V
.:.:.:i.:
m            x                    ev J   1 x                                     e                             3.  -J
.:.:.:i.:.::.:.:
                                                      -                              o '
5 B
a                                                                                                    g
s e
          , a >                                    [
i 5,
                                                      -      - .      ~a            s.
sr tsr-w E =5 WA
                                                                                      -                ~
% N N % TN WW-b g
a,M                         -
M my 1
                                                      -            2        : et                     -          z
r-ww A prv s r V
: t.     ;- g
c4 E 1_
:            5 e e:                      :        :
5 9 %s ed o
g                     :
=
5      23e                                     3 Et" a        .!-          E                    5.m' w
m 1
E m      -        -
w su e,
                                                                              -      =2'=        =          '..
ev t -
E u                      : .'
: 3. -J J
e c
1 x
E e-o w  a w ea
x e
:                :a 2>.a:
o a
                  -                      -t            .            u-t te                        . - 3:u W                      t, ar        = to : t : :er                            = t,            m g                      seem          cg tre            :_e ao;    ets          e          ss us z=mg                  ams zum                          j zz ;,
[
j E' je      s                                                  E ' 8."S e "e      .3    -
s.
g
, a
~
~a a,M 2
: et z
t.
;- g 5
e e:
g 23e 3 Et" 5
E
E
                                                                !e's..:.z.g=
=2' 5.m' E
EE'EO-P3e"s-21:ss                 "ec-=s 2:,': 5               z                                        213ez=
a w
::::::.ts:: s ::=*23e                         .::
=
5       :::::
=
stG 5 w s  g   :tG;&aM2:2&T                               Y     Et G
m c
a        u- u e      -        u- u r u a zz2-                 w.u
e-
                                                                                                    % 3%:e3%
: 2.a:
::u-
E E
                                  >      373;7 5 373E283 ue#
u e
wix== a waxmwexsats:                                   c x tux:
o w a w ea a
g                                                                   B EkoaE2 M      '
u-t te
                              -  =k Ebu            2 u" Ehu E E GE 2                               =!
. - 3:u
h         C   w M2       !   $ as; e E as; e e ce ;                                           $ esJece
-t
                    %p       S
= t, us m
                    $0        E    -                      4 c; Al@MD ff                   gg)3/                   $Mlll DM FERMI     UNIT 2                                     3/4 3-24
W t, ar
    )                                                                                                                 enrtar Ph4R RAI G3 5' PAGE         A             0F         08                         G )
=
( 8Revcv 14 I 1
to : t : :er e
w
ss g
seem c tre :_e ets ams zum ao; j zz ;,
z=mg g
j E
E ' 8."S e
!e's EE'EO-P3e"s- :ss 2 "ec-=s E' je s z..:.z.g=
"e
.3 1 213ez=
2:,': 5
::::::.ts::
s ::=*23e 5 ::::: g :tG;&aM2:2&T Y Et G stG 5 w s r u a zz2-w.u ::u-a u-u e u-u 373;7 5 373E283 ue#
% 3%:e3%
wix== a waxmwexsats:
c x tux:
' g =kEbu 2 u Ehu E E GE 2 B EkoaE2 M
=!
h C
M2
! $ as; e E as; e e ce ;
$ esJece w
%p S
$Mlll DM c; Al@MD
$0 E
4 ff gg)3/
FERMI UNIT 2 3/4 3-24
)
enrtar Ph4R RAI G 5' PAGE A 0F 08
(
Rev G )
3 1
8 cv 14 I w


DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION A.9       CTS 4.3.3.3 requires ECCS Response Time testing however, the               ]
DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION A.9 CTS 4.3.3.3 requires ECCS Response Time testing however, the
details of the testing acceptance criteria are located in the Technical Requirements Manual (TRM): outside of Technical Specifications. Since the ECCS response time acceptance criteria includes testing only the ECCS system response (and utilizing               l assumed values for the ECCS instrumentation response), the                 1 required Surveillance is more appropriately required in the ECCS Specification, ITS 3.5.1. This change is a presentation preference only with no technical change or change in intent.
]
details of the testing acceptance criteria are located in the Technical Requirements Manual (TRM): outside of Technical Specifications. Since the ECCS response time acceptance criteria includes testing only the ECCS system response (and utilizing assumed values for the ECCS instrumentation response), the 1
required Surveillance is more appropriately required in the ECCS Specification, ITS 3.5.1.
This change is a presentation preference only with no technical change or change in intent.
Refer to Section 3.5 for further discussion of any changes from the CTS presentation.
Refer to Section 3.5 for further discussion of any changes from the CTS presentation.
A.10       CTS Table 3.3.31 Actions 30.a 31. and 33, as they apply to inoperable ADS actuation channels, result in options to declare associated ADS Trip System inoperable. (Note: refer to DOC L.1         7 for discussion of CTS change from declaring ECCS inoperable to         D declaring ADS trip system inoperable for CTS Action 30.a.). The       #
A.10 CTS Table 3.3.31 Actions 30.a 31. and 33, as they apply to inoperable ADS actuation channels, result in options to declare 7
CTS actions would then transfer to Action c of CTS 3.3.3, and provide additional time for restoration. ITS 3.3.5.1 Actions E       l and G combine these restoration times for clarity. Any technical m                   changes are addressed in other discussions of change. The revised prEie'ntation preference is an administrative change with no impact on safety. { Note also that CTS Action 30.b (converted to ITS         7 Required Action E.1) does not transfer to CTS Action c for             -
associated ADS Trip System inoperable.
additional time; it declares the ADS valves inoperable and             3 transfers Actions to LCO 3.5.1. The ITS 1 hour Completion Time of       g Required Action E.1 matches the CTS Action 30.b time, and the ITS     g RequiredActionG.1matchesthetransferofActionstoLC03.5.1.}
(Note: refer to DOC L.1 D
A.11       CTS 4.3.3.2 requires an 18 month LSFT of all ECCS Instrumentation channels (which would include ADS Manual Inhibit function). CTS Table 4.3.3.1-1. Item 4.1, also required an 18 month Channel Functional Test of the ADS manual Inhibit function. ITS Table 3.3.5.11 only requires the LSFT (SR 3.3.5.1.5) for this           a function. The Channel Functional Test for this function is             e adequately encompassed by the LSFT performance. Eliminating a           g reference to performing a Channel Functional Test is therefore an       oc administrative change that eliminates a duplicative test.
for discussion of CTS change from declaring ECCS inoperable to declaring ADS trip system inoperable for CTS Action 30.a.).
        /
The CTS actions would then transfer to Action c of CTS 3.3.3, and provide additional time for restoration.
FERMI - UNIT 2                         3                 REVISION 14   08/26/99l
ITS 3.3.5.1 Actions E l
and G combine these restoration times for clarity. Any technical m
changes are addressed in other discussions of change. The revised prEie'ntation preference is an administrative change with no impact on safety. { Note also that CTS Action 30.b (converted to ITS 7
Required Action E.1) does not transfer to CTS Action c for additional time; it declares the ADS valves inoperable and 3
transfers Actions to LCO 3.5.1.
The ITS 1 hour Completion Time of g
Required Action E.1 matches the CTS Action 30.b time, and the ITS g
RequiredActionG.1matchesthetransferofActionstoLC03.5.1.}
A.11 CTS 4.3.3.2 requires an 18 month LSFT of all ECCS Instrumentation channels (which would include ADS Manual Inhibit function). CTS Table 4.3.3.1-1. Item 4.1, also required an 18 month Channel Functional Test of the ADS manual Inhibit function.
ITS Table 3.3.5.11 only requires the LSFT (SR 3.3.5.1.5) for this a
function. The Channel Functional Test for this function is e
adequately encompassed by the LSFT performance. Eliminating a g
reference to performing a Channel Functional Test is therefore an oc administrative change that eliminates a duplicative test.
/
FERMI - UNIT 2 3
REVISION 14 08/26/99l


1 l
1
                                                                                                      )
)
DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION                           j I
DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION j
TECHNICAL CHANGES - MORE RESTRICTIVE M.1       CTS Table 3.3.31 Actions 30.a and 32 allow the trip system associated with inoperable channels to be tripped to comply with the required action, and thereby allowing continued operation.
TECHNICAL CHANGES - MORE RESTRICTIVE M.1 CTS Table 3.3.31 Actions 30.a and 32 allow the trip system associated with inoperable channels to be tripped to comply with the required action, and thereby allowing continued operation.
ITS 3.3.5.1 Required Action C.2 does not allow this option: but rather requires that inoperable channels be restored to Operable status. If inoperable channels are not restored ITS 3.3.5.1 Action G would be entered, requiring the associated ECCS features     lk to be declared inoperable. The Functions associated with these required actions are functions that perform a dual role (where tripping the trip system would: 1) not be clear what direction to trip to, and 2) result in the affected system continuing to be in an inoperable state) or functions that would inappropriately start the affected system. Therefore, tripping the associated trip system is replaced with the more appropriate " restore channel to OPERABLE status" otherwise declare associated ECCS features inoperable.
ITS 3.3.5.1 Required Action C.2 does not allow this option: but rather requires that inoperable channels be restored to Operable status.
M.2       CTS Table 3.3.31 Actions 31, 33, and 34 allow 24 hours to restore
If inoperable channels are not restored ITS 3.3.5.1 Action G would be entered, requiring the associated ECCS features lk to be declared inoperable. The Functions associated with these required actions are functions that perform a dual role (where tripping the trip system would: 1) not be clear what direction to trip to, and 2) result in the affected system continuing to be in an inoperable state) or functions that would inappropriately start the affected system. Therefore, tripping the associated trip system is replaced with the more appropriate " restore channel to OPERABLE status" otherwise declare associated ECCS features inoperable.
_s _ _,                inoperable channels, regardless of whether the associated HPCI or
M.2 CTS Table 3.3.31 Actions 31, 33, and 34 allow 24 hours to restore inoperable channels, regardless of whether the associated HPCI or
                                                              ~                                  ~~ ~
_s _ _,
ADS function is inoperable in both hivisions (resulting in a~ loss ~
ADS function is inoperable in both hivisions (resulting in a~ loss ~
of that ECCS function). For certain specified inoperabilities           n that result in a loss of initiation function. ITS 3.3.5.1 Required     d Actions D.1 and F.1 (and associated Notes) provide a more restrictive time of "I hour from discovery of loss of [HPCI/ ADS]
~~ ~
lg v
~
initiation capability" to restore or declare the associated ECCS function inoperable. This provides a more appropriate action that will not adversely impact safety.
of that ECCS function). For certain specified inoperabilities n
M.3       CTS Table 3.3.31 Note (a), allows required surveillance testing which causes channels to be inoperable without taking Actions for inoperable channels "provided at least one OPERABLE channel in the same trip system is monitoring that parameter." ITS SR Note 2 provides the same intended allowance by stating " entry into the       g associated Conditions and Required Actions may be delayed for         -
that result in a loss of initiation function. ITS 3.3.5.1 Required d
Functions other than 3.c and 3.f provided the associated Function   l@
Actions D.1 and F.1 (and associated Notes) provide a more lg restrictive time of "I hour from discovery of loss of [HPCI/ ADS]
or redundant Function maintains ECCS initiation capability." In       3 the case of some trip Functions literal compliance with the CTS allowance may not ensure trip capability remains (i.e., a single channel that is monitoring the parameter will not produce an initiation signal: the logic is 2 out of 2). This represents a j                 more restrictive change, which has no significant impact on safety.
v initiation capability" to restore or declare the associated ECCS function inoperable. This provides a more appropriate action that will not adversely impact safety.
FERMI - UNIT 2                           4                 REVISION 14 08/26/99l
M.3 CTS Table 3.3.31 Note (a), allows required surveillance testing which causes channels to be inoperable without taking Actions for inoperable channels "provided at least one OPERABLE channel in the same trip system is monitoring that parameter." ITS SR Note 2 provides the same intended allowance by stating " entry into the g
associated Conditions and Required Actions may be delayed for Functions other than 3.c and 3.f provided the associated Function l@
or redundant Function maintains ECCS initiation capability." In 3
the case of some trip Functions literal compliance with the CTS allowance may not ensure trip capability remains (i.e., a single channel that is monitoring the parameter will not produce an initiation signal: the logic is 2 out of 2). This represents a j
more restrictive change, which has no significant impact on safety.
FERMI - UNIT 2 4
REVISION 14 08/26/99l


ECCS Instrumentation 3.3.5.1 o,\                                                                                                                       CTT g
ECCS Instrumentation 3.3.5.1 o,\\
                              \                                       table 3.3.5.1 1 (page 1 of 6) seersency Core Casting systee Instruonntation gp.3J,3-/
CTT g
41.u-l
\\
                                                              .,,ac a                                   ni.:
table 3.3.5.1 1 (page 1 of 6) gp.3J,3-/
unsEs                 mesulas     mErtaancxD                                         pug ok ofmat               Cann e ts         enon s ECirleD                 PER       RHUIRED         SURVEILLANCE       ALLOW 4BLE PLAICTION             Co W ! floes             PUNCTION   ACTicu A.1       ARGUIReBENis           WALUE
seersency Core Casting systee Instruonntation
: 1. Core Spray Byeten
.,,ac a ni.:
: e. Reacter vessel Water           1,2,3,                 g4[I             e         at 3.3.5.1.1 et 3.3.5.1.2 t
41.u-l unsEs mesulas mErtaancxD pug ok ofmat Cann e ts enon s ECirleD PER RHUIRED SURVEILLANCE ALLOW 4BLE PLAICTION Co W ! floes PUNCTION ACTicu A.1 ARGUIReBENis WALUE 1.
Lovel-Low Lear Lent, Level 1                   4(*), 5(*)
Core Spray Byeten e.
inshee            !'A (/
Reacter vessel Water 1,2,3, g4[I e
at 3.3.5.1.1 t
!'A (/
Lovel-Low Lear Lent, et 3.3.5.1.2 inshee Level 1 4(*), 5(*)
yet 3.3.5.1 et 3.3.5.1
yet 3.3.5.1 et 3.3.5.1
                                                                                                                    =
=
                                                                                                                        ~ .,.
~.,.
: b. Drywell Preneure - utsh 1,2,3                 gI               s         et 3.3.5.1.1 at 3.3.5.1.2 s          pels        ,
b.
Wet 3 J.S.1 st 3.3.5.1
Drywell 1,2,3 gI s
                                                                                                                        !..!..!,1_
et 3.3.5.1.1 s
g                     .
pels Preneure - utsh at 3.3.5.1.2 Wet 3 J.S.1 st 3.3.5.1
: c. seester steen Does             1,2,3                   ,[g             C         st 3 J.5.1.1     e       .
!..!..!,1_
11     l .(,     A Preneure - Lens                                                                 et 3.3.5.1.2   f                                 7 (Injection Peruleelve)                                                       )fst 3.3.5.1.     W                                 gJ st 3.3.5.1                                         g sa 3.3.5.1                                       g
g c.
                                                                                                                                            $Ji                       g/
seester steen Does 1,2,3
4(*I,5(*)                   g             s         et 3.3.5.1.1     t         esta 4 !:!iik (W<"9 ( j' gN,
,[g C
                                                                                                                    "!:!ilis!2
st 3 J.5.1.1 e
                                                                                                                  <---0
11 l.(,
                                . Core aprey                   1,                       A               E         se 'I. 4.1 't ' 3                     D e            Dioeherpe FI       ou 4(*3,5(*3
A Preneure - Lens et 3.3.5.1.2 f
                                                                                          ";r-                       SR 3.3.5. .       and                       d
7 gJ (Injection Peruleelve)
                                            )                                                                       at 3.3.5.1.1I 1.1.5.1.4 13 sput,    \        t
)fst 3.3.5.1.
                          /                                                                                                                           /        cg ,
W st 3.3.5.1 g
w                                                                                                                       -
sa 3.3.5.1 g
                                .        ! Initletion           1,2,3,                                   C         st 3.3.5.1.6     mA                   ,h S                                     4(a), 5 te)       _ _ _ _
$Ji g/
N          1
4 !:!iik (W<"9 ( j' gN, 4(*I,5(*)
* Y        \
g s
: 2. Lear Preseurs coolant Injection (LPCI) systee                                             f.%
et 3.3.5.1.1 t
                                                                                                                                                    /Q\
esta
                                                                                                                                                    \ /
"!:!ilis!2
: e. Reacter veneet Water           1,2,3,                                 e         et 3.3.5.1.1     .t Lovet - Law Low Low,                                                             et 3.3.5.1.2     inshee Levet 1                    4(e), $ te)                                        WER 3.3.5.1.
<---0 D
et 3.3.5.1
Core aprey 1,
A E
se
'I.
4.1
't ' 3 Dioeherpe FI ou
";r-SR 3.3.5..
and d
e
)
4(*3,5(*3 at 3.3.5.1.1I 13 sput, \\
t
/
1.1.5.1.4
/
cg,
w
,h
! Initletion 1,2,3, C
st 3.3.5.1.6 mA t
N 1
S 4(a), 5 e)
Y
\\
/Q\\
2.
Lear Preseurs coolant Injection (LPCI) systee f.%
\\ /
e.
Reacter veneet Water 1,2,3, e
et 3.3.5.1.1
.t Lovet - Law Low Low, et 3.3.5.1.2 inshee
[
[
(2,4 st 3.3.5.1
Levet 1 4(e), $ e)
                                                                                                                    -et-o.a.a.a.a (eentinued)
WER 3.3.5.1.
(ofgo s.         2.                                                                                                               l (e) When .neensted emystence) re r.Ruir.d to me_a ERasa.
t (2,4 et 3.3.5.1 st 3.3.5.1
(b) Aloe re                                                                   r't     N- "M n _ _ W p..sm
-et-o.a.a.a.a (eentinued)
: e. eves.Ruired       to initiate._the
(ofgo s.
                                      .e.ees 4 ann.meente,1"         , . associated 3.3-42                                   Rev 1, 04/07/95 g3 h        !
2.
BWR/4 STS                                        -
(e) When.neensted emystence) re r.Ruir.d to me_a ERasa.
((,)       n / N iolA M . C O M N           '
Aloe re r't N- "M n _ _ W p..sm
DOli 1
: e. eves.Ruired to initiate the associated (b)
k kE\/ l       lb Rev n- 11,
.e.ees 4 ann.meente,1"._,..,.. ;.. _.
                                                                                                                                              #cv 6             1         1
h BWR/4 STS 3.3-42 Rev 1, 04/07/95 g3
((,)
n / N iolA M. C O M N DOli k
1 kE\\/ l lb Rev n-11,
#cv 6 1
1


    ,                                                                                                                                          l 1
l 1
ECCS Instrumentation                             )
ECCS Instrumentation 3.3.5.1
3.3.5.1
*x CTS Table 3.3.5.1 1 (pose 3 of 6) n' Energency Core Cooling systee Instr w entation 96W 3.3.3 -).
              *x                                     Table 3.3.5.1 1 (pose 3 of 6)
CTS n'   -
Energency Core Cooling systee Instr w entation 96W 3.3.3 -) .
133-2.
133-2.
                                                                                                                                %Ll-l             l Mets ca 97NEa REEllMD ruammet e REPenENCED FROM QUoil              {
%Ll-l l
sPECIF!sD         PER     asaulasD         suaVEILLANCE         ALLOW 4BLE ComITIgus                                                                                          {
QUoil Mets ca REEllMD REPenENCED 97NEa ruammet e FROM
FUNCTION                             MalCTION   ACTION A.1       ateU!aDENTs             WALUE
{
: 2. LPCI system (eentirmand)
sPECIF!sD PER asaulasD suaVEILLANCE ALLOW 4BLE
Law Pressure                 1,2,                               '  - 3.3.;.i.i '           n,a E                                                                j Caetent inject     Pump                   -t+pur-                                                                     k' s
{
i or i
FUNCTION ComITIgus MalCTION ACTION A.1 ateU!aDENTs WALUE
Fie.-         4(a), 5(=       -,.ew-
: 2. LPCI system (eentirmand) k' j
                                                                                                ._..i. @c.,
Law Pressure 1,2, E
_se.3.5.1.2 t
- 3.3.;.i.i '
n,a Caetent inject Pump
-t+pur-
.3.5.1.2 @
c.,
t i or Fie.-
4(a), 5(=
-,.ew-
..i.
_se _.
s i
7 i
7 i
: h. menuet Inittetl e             1,2,3,                       C         sa 3.3.5.1.6       NA                           h     l s
: h. menuet Inittetl e 1,2,3, C
                                              ...,    ,<e,         ,                                                        &>          1    I
sa 3.3.5.1.6 NA h
        /                                                                                                                           ll
1
: 3. mish Pressure testant                                                                                                               .
,<e, s
Injection (IIPCI) systee
/
: o. Beester veeeet Water             1,                         8         sa 3.3.5.1.1       m                           (      l Levet - Law Low, 2(8, 3IO sa 3.3.5.1.2       inches               .3,4/        l Lowel 2                                                           7Jsa 3.3.5.1.3                                             l sa 3.3.5.1                                             l sa J.3.5.t                                             i
ll 3.
                                                                                          ; 2.2.0." -                                             1 I
mish Pressure testant Injection (IIPCI) systee
: b. Drywett Pressure - Nish 1,           g             B         sa 3.3.5.1.1 sa 3.3.5.1.2 s          pois        ,h          j 1
(
2(8,3(O                               yssa 3.3.5.1.                                               '
o.
sa 3.3.5.1 I                                                                                       sa 3J.5.1
Beester veeeet Water 1,
                                                                                                                'J. I
8 sa 3.3.5.1.1 m
: c. Reacter Wessel Weter Levet -Nigh, Levet 8 1,            g            C          sa 3.3.5.1.1 em 3J.5.1.2 s.
.3,4/
inuhes
l Levet - Law Low, sa 3.3.5.1.2 inches Lowel 2 2(8, 3IO 7 sa 3.3.5.1.3 l
                                                                                                                                /T 3,gh    r     I i
J sa 3.3.5.1 l
2(8), 3(83                             .f tsa 3.3.5.1.                                             j sa 3.3.5.1                                             l sa 3.3.5.1
sa J.3.5.t i
: d. Condensate storese Tena Level-Low 1,
2.2.0." -
2(0, 3(d) g          y 0
,h b.
sa 3.3.5.1.114 3.3.5.1.2 2 40 (inches 3.3.5.1.4 kh c) sa 3.3.5.1
Drywett 1,
                                                                                                                                / .4)
g B
: e. suppression Poot Weter         1,           g             D         sa 3.3.5.1.1       s Lovet - mtsh                                                         sa 3.3.5.1.2       inches             N3 2(0, 3(d)                               ptsa 3.3.5.1.
sa 3.3.5.1.1 s
pois j
Pressure - Nish sa 3.3.5.1.2 2(8,3(O yssa 3.3.5.1.
sa 3.3.5.1 I
sa 3J.5.1
'J. I
/,gh C
sa 3.3.5.1.1 s.
: c. Reacter Wessel Weter 1,
g 3
i Levet -Nigh, Levet 8 em 3J.5.1.2 inuhes T
r I
2(8), 3(83
.f sa 3.3.5.1.
j t
sa 3.3.5.1 sa 3.3.5.1 hk c) 0 sa 3.3.5.1.114 2 40 (inches d.
Condensate storese 1,
g Tena Level-Low y
3.3.5.1.2 2(0, 3(d) 3.3.5.1.4 sa 3.3.5.1
/.4) e.
suppression Poot Weter 1,
g D
sa 3.3.5.1.1 s
3 Lovet - mtsh sa 3.3.5.1.2 inches N
2(0, 3(d) ptsa 3.3.5.1.
sa 3.3.5.1 sa 3.3.5.1 (cont trmand)
sa 3.3.5.1 sa 3.3.5.1 (cont trmand)
                                                .,e,.                Nm .                                                  e
-t ee.,et
        . , m
..,.t
              -t         ee.,et
.,e,.
                      ,.e.te, et
.r.dt. Nm.
                                      ..,.t                .r.dt.
e 3
3 e ,,e.e.,e o g 5o m ie._                 ,l                                               ,,
., m
        & lnS[v1& CutffMutl Cmh@O,                                               (                                               f BWR/4 STS                                             3.3-44                                   Rev 1, 04/07/95                         l 0GY lY U                                                                                                                  Rev I2-             u Rev a
,.e.te, et e,,e.e.,e o g 5o m ie._
,l
& lnS[v1& CutffMutl Cmh@O,
(
f l
BWR/4 STS 3.3-44 Rev 1, 04/07/95 0GY lY Rev I2-U u
Rev a


                                                                                                                                          )
)
ECCS In$trumentation 3.3.5.1 9.\                                       Tebte 3J.S.1 1 (pese 4 of 6) crs          l Emersency Care Coating systes instrumentation                               U (Mf I J,13./   j C,                                                                                                                          M.4-1     l APPLICABLE                 CC 33fl0Ns uOnes ca OTWa aseUInes CMuutLs a:FratuCro Patut pgg g sPsCIFIED           PER     aseulaED     suaWEILLANCE       atanuant PlaICTION             CONDITIOus       PUNCTION ACTION A.1     afeUlaEnENTF           VALUE
ECCS In$trumentation 3.3.5.1 9.\\
: 3. NPCI system (continued)                                                                                                         p high Pressure                   1,                         E       sa     3.5.13   e                       ''k i
crs Tebte 3J.S.1 1 (pese 4 of 6)
tien P g                                                       sa   3. .   .2 and Di         Flow -Leu         3, 3W                             , sa 3.3.5. .       s (A spa                 i[
C, Emersency Care Coating systes instrumentation U (Mf I J,13./
(sypees) sa 3.3.5.1 A marsat inittetten               1,           {1L           C       sa 3.3.5.1.6     mA                       'g 2 Id) ,3 III h                                                         3~       d 4                                                                                                         _          >&
j M.4-1 APPLICABLE CC 33fl0Ns uOnes ca aseUInes a:FratuCro pgg g OTWa CMuutLs Patut sPsCIFIED PER aseulaED suaWEILLANCE atanuant PlaICTION CONDITIOus PUNCTION ACTION A.1 afeUlaEnENTF VALUE 3.
: 4. Automatic Depressurlastion systen (ads) Trip system A l:::;-r-1";~
NPCI system (continued) p
Lmt1                     2IO , 3(d)
''k high Pressure 1,
Fk
E sa 3.5.13 e
(#              "
i tien P g sa
                                                                                        >:sa i:!:!:1:1 3.3.5.1.
: 3..
L.                  NU sa 3.3.5.1 sa 3.3.5.1             g,g g
.2 and Di Flow -Leu 3, 3W
: b. Dryuntt
, sa 3.3.5..
                      "---"''"                3ce, 3m 1
s (A spa i[
C((            sa 3.3.5.1.1 Jsai:!:!:l:'
(sypees) sa 3.3.5.1 A marsat inittetten 1,
s          pais (Q,()
{1L C
3.3.5.1 sa 3.3.5.1.
sa 3.3.5.1.6 mA
'g
,3 h
3~
d Id)
III 2
4 4.
Automatic Depressurlastion systen (ads) Trip system A
(#
i:!:!:1:1 L.
NU l:::;-r-1";~
Fk Lmt1 2IO, 3(d)
>:sa 3.3.5.1.
sa 3.3.5.1 sa 3.3.5.1 g,g C((
(Q,()
b.
Dryuntt 1
g sa 3.3.5.1.1 s
pais J i:!:!:l:'
3ce, 3m sa 3.3.5.1 sa 3.3.5.1.
Q
Q
    'j}         g y g ;se,1, es,ree.orinti.n 1,
}
41 (
41 (
* r w 3.3.5.i situ.r.i.1)= 3 3 5.1 s b,a,V aaa*
r w 3.3.5.i s b,a,V (4 0) g y g ;se,1, 1
s (4 0) system Initletten         2,,,,   3 ,
s
        .              Yleer g.g g, q
'j es,ree.orinti.n situ.r.i.1)= 3 3 5.1 aaa*
: d. asseter veenet Water             1, (1k         y         sa 3.3.5.1.1     t det inchee             ,ff Lent -Lou, Lent 3                                                   sa 3.3.5.1.L W,3W (Cenfirentery)           I y           *3 j
system Initletten 2,,,, 3,
sa 3.3.5.1 p       g7y
Yleer g.g g, q
: e. Core sprey Pw                    1,
,ff d.
                                                                  ' @*P Cf            sa 3.3.5.1.1     t_       _nsis     (q.g E"s'eJ':'.is.             2(a ,34
asseter veenet Water 1,
                                                                            -            f(((((({:
(1k y
                                                                                            =
sa 3.3.5.1.1 t det inchee Lent -Lou, Lent 3 sa 3.3.5.1.L W W
Me)                     9 3.3.5.i.g-                         Q
*3 (Cenfirentery)
                                                            \_ xt                                                  (anunuse 4, Wit!, ,es.ter sta - ,re-,e e e,f s.           i
I
                                                                                ,                        c&                   qg (c) IndMduA. Wh"'"                                               l                                                 h BWR/4 STS                                             3.3-45                               Rev 1, 04/07/95
,3 y
          ,                                                                                                    @ed l'h N G                                                                                                         Ra) 0- L REVh
j Cf sa 3.3.5.1 p
g7y sa 3.3.5.1.1 t_
_nsis (q.g e.
Core sprey Pw 1,
E"s'eJ':'.is.
2(a,34
' @*P f(((((({:
Me) 9
\\_
3.3.5.i.g-Q
=
(anunuse xt 4, Wit!,,es.ter sta -,re-,e e e,f s.
c&
i qg (c) IndMduA Wh"'"
l h
BWR/4 STS 3.3-45 Rev 1, 04/07/95
@ed l'h N G
Ra) 0- L REVh


ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE           1     7.h. Manual Initiation                                       I SAFETY ANALYSES, LCO, and             The Manual Initiationairtrcimnw. channel 'ntr c- einnals APPLICABILITY       4=+c th: .;;r:; & t: Ecce 'acie +a- provi h5 anual initiation           i (continued)       capability and sea eadnad a+ +a +ka m u + =- 4M ret::t he 4attr - 9 *+4a= There is one pu o ..m.,          for each of the b9 rMk*bndMdu i              CSanJdP4 subsystems (i.e..twoforCSandtwoforLPCI).
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE 1
cqoua4 ccwho k                 LmamaA tMalimShanMA The Manuai Ininauon tuncuan is no           sumed in any accident or transient analyses in th         AR. However, the .
7.h.
Function is retained for overall red       ancy and diversity of the low pressure ECCS function as required by the NRC in the               h) plant licensin,jL, basi w:ndan{ bon iS
Manual Initiation I
                                                          '                                                        w There is no Al ow e a ue o h s -unction since the channels are     chanically actuated based solely on the                   T position of ...;. ;rM;tt:::. Each channel of the Manual Initiation Function dr- ^ -? n ";=^ - ) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
SAFETY ANALYSES, LCO, and The Manual Initiationairtrcimnw. channel 'ntr c-einnals APPLICABILITY 4=+c th:.;;r:; & t: Ecce 'acie
vw
+a-provi h5 anual initiation i
: 2.     Reactor Steam Dome Pressure-low (Recirculation Discharce Valve Permissive)
(continued) capability and sea eadnad a+ +a +ka m u + =- 4M ret::t he for each of the 4attr - 9 *+4a=
Low rea       steam done pressure signals are used s                     ;
There is one pu b9 rMk*bndMdu CSanJdP4 subsystems (i.e..twoforCSandtwoforLPCI).
permissives     r recirculation discharge valve       osure. This ensures that t     LPCI subsystems inject in       he proper RPV location assumed       the safety analysis.       he Reactor Steam
o
                                                                                                                ' ~ " " "
..m.,
: 7.                                   l   Dome Pressure 5 Low     one of the Func     ns assumed ~to be' 1 OPERABLE and capable o       losing the alve during the p,gg([7       I              transients analyzed in Re rence
i cqoua4 ccwho k LmamaA tMalimShanMA The Manuai Ininauon tuncuan is no sumed in any accident or transient analyses in th AR. However, the.
                                > ,/ function of the ECCS, along and 3. The core cooling the scram action of the                    ;
Function is retained for overall red ancy and diversity of the low pressure ECCS function as required by the NRC in the h plant licensin,jL, basi w:ndan{ bon iS
RPS, ensures that the fuel a ladding temperature remains J Bs'5 5tf-                !
)
below the limits of 10 C 50.46. The Reactor Steam Dome Pressure-Low Functio     s directly     used in the analysis of the recirculatio ine break (Ref.
w There is no Al ow e a ue o h s -unction since the channels are chanically actuated based solely on the T
The Reactor 5     m Dome Pressure-Low signal       re initiated DQ               i       from four p     sure transmitters that sense the eactor done la J                     pressure The   lowable Value is chosen to ensure that the valve se prior to connencement of LPCI injection flow into h ore, as assumed in the safety analysis.
position of...;. ;rM;tt:::. Each channel of the Manual Initiation Function dr- ^ -? n ";=^ - ) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
vw 2.
Reactor Steam Dome Pressure-low (Recirculation Discharce Valve Permissive)
Low rea steam done pressure signals are used s permissives r recirculation discharge valve osure. This ensures that t LPCI subsystems inject in he proper RPV location assumed the safety analysis.
he Reactor Steam 7.
l Dome Pressure 5 Low one of the Func ns assumed ~to be'
' ~ " " "
1 OPERABLE and capable o losing the alve during the p,gg([7
>,/ function of the ECCS, along the scram action of the I
transients analyzed in Re rence and 3.
The core cooling Bs'5 5tf-RPS, ensures that the fuel a
ladding temperature remains below the limits of 10 C 50.46. The Reactor Steam Dome J
Pressure-Low Functio s directly used in the analysis of the recirculatio ine break (Ref.
The Reactor 5 m Dome Pressure-Low signal re initiated DQ i
from four p sure transmitters that sense the eactor done la J pressure The lowable Value is chosen to ensure that the valve se prior to connencement of LPCI injection flow into h ore, as assumed in the safety analysis.
(continued)
(continued)
B 3.3-112                       Rev I, 04/07/95 BWR/4 STS l
BWR/4 STS B 3.3-112 Rev I, 04/07/95 l
0E\f I A {
0E\\f I A {
                                                                                                        /$5V /2 -
/$5V /2 -


ECCS Instrumentation B 3.3.5.1
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE
                  , BASES APPLICABLE         ,  .f. Hioh Pressure Coolant Iniection Pume Discharae SAFETY ANALYSES. Flow-tow (Byou's) (continued)
.f.
LCO, and         j APPLICABILITY       The High P essure Coolant Injecti           Pump Discharge Flow- w           I Allowab is suf Value is high enough t ensure that pump flo rate cient to protect the p p, yet low enough to nsure h
Hioh Pressure Coolant Iniection Pume Discharae SAFETY ANALYSES. Flow-tow (Byou's) (continued)
I%
LCO, and j
that he closure of the mini m flow valve is init ted to                 .k
I APPLICABILITY The High P essure Coolant Injecti Pump Discharge Flow-w h Allowab Value is high enough t ensure that pump flo rate I%
                                    ' all         full flow into the c e.                                      .
is suf cient to protect the p p, yet low enough to nsure
e channal is required o be OPERABLE when t         HPCI is             j equired to be OPERABL . Refer to LCO 3.5.1 for HPCI 3.
.k that he closure of the mini m flow valve is init ted to
anual Initiation                                                 I y g nj         The Manual initiation push bu           n channel intred.ce M anals           '
' all full flow into the c e.
                                      .inta t h PPCI h;ic te provid anual initiation capability on.a-M              =d u =:=e=u                     ....mm ;==m                                 f (orWpo8Hi           inst.   ....i.iiun. There is one-   . L.;;en for the HPCI System.
e channal is required o be OPERABLE when t HPCI is j
(ntkm I.S                                                         gj & fiedcluhtnd)
equired to be OPERABL. Refer to LCO 3.5.1 for HPCI M
The Manual Initiation Function is n             sumed in any accident or transient analyses in it             R. However, the 4
3.
Function is retained for overall rec           ancy and diversity of the HPCI function as required by_the_.NRC in the plant licensing basis.
anual Initiation I
There is no Allowable Valve for thTs Function since the                     J channel is mechanically "ctuated based solely Jn the
y g nj The Manual initiation push bu n channel intred.ce M anals on.a-M
~ . . - , , .
.inta t h PPCI h;ic te provid anual initiation capability f
position of tin ;=h b;_ =. M W c.il-Ae Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.
=d u =:=e=u
Automatic Deoressuriration System 4.a. 5.a.       Reactor Vessel Water level-tow Low low. Level 1 Low RPV water level indicates that the capability'to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, ADS receives                 i one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low, Level I is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed (continued)
....mm ;==m (orWpo8Hi inst.
BWR/4 STS                                   B 3.3-119                     Rev I, 04/07/95
....i.iiun.
                '~
There is one-
8 6\/ N     [
. L.;;en for the HPCI (ntkm I.S System.
gj & fiedcluhtnd)
The Manual Initiation Function is n sumed in any 4
accident or transient analyses in it R.
However, the Function is retained for overall rec ancy and diversity of the HPCI function as required by_the_.NRC in the plant licensing basis.
There is no Allowable Valve for thTs Function since the J
channel is mechanically "ctuated based solely Jn the position of tin ;=h b;_ =. M W c.il-Ae Manual
~.. -,,.
Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.
Automatic Deoressuriration System 4.a. 5.a.
Reactor Vessel Water level-tow Low low. Level 1 Low RPV water level indicates that the capability'to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, ADS receives i
one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low, Level I is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed (continued)
BWR/4 STS B 3.3-119 Rev I, 04/07/95 8 6\\/ N
[
'~
SEV lb
SEV lb


1   o DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION TECHNICAL CHANGES - LESS RESTRICTIVE
1 o
      ''Speci fic" L.1           CTS Table 3.3.2-1 and Table 4.3.2.1 1. Function 6.a. requires that the reactor vessel water level Function be Operable (in addition
DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION TECHNICAL CHANGES - LESS RESTRICTIVE
                  ' to other specified conditions) when handling irradiated fuel in the secondary containment and during Core Alterations. ITS Table 3.3.6.2-1 Function 1 eliminates the handling fuel and Core Alterr, tion Applicabilities for the reactor vessel water level Function (but retains the other Applicabilities consistent with             {
''Speci fic" L.1 CTS Table 3.3.2-1 and Table 4.3.2.1 1. Function 6.a. requires that the reactor vessel water level Function be Operable (in addition
the CTS). The reactor vessel low level Function only actuates in           I the event of a vessel draindown event (i.e., an event initiated as a result of an operation with a potential for draining the reactor         i vessel). Reactor vessel water level Function is not assumed to actuate to provide secondary isolation for any event that is postulated to occur during core alterations or fuel handling (which is performed with the reactor cavity flooded). Therefore, this is a less restrictive change with no impact on safety.
' to other specified conditions) when handling irradiated fuel in the secondary containment and during Core Alterations.
L.2           Inoperable secondary containment isolation instrumentation affects two aspects of Secondary Containment Integrity - the secondary containment isolation valves (SCIVs) and the standby gas treatment (SGT) system. CTS 3.3.2 Actions b.1 and c for inoperable secondary containment isolation instrumentation direct entry into CTS Table 3.3.2-1 Actions 24 and 27. In the case of CTS 3.3.2 Action b.1 there is an allowance for a 6 hour delay (changed to 12 or 24 hours in the ITS. see DOC LC.1) before taking Action 24 or
ITS Table 3.3.6.2-1 Function 1 eliminates the handling fuel and Core Alterr, tion Applicabilities for the reactor vessel water level Function (but retains the other Applicabilities consistent with
: 27. CTS Table 3.3.2-1. Action 24 for inoperable secondary                   j containment isolation instrumentation, requires Secondary             4   '
{
Containment Integrity be established with the SGT system operating     I within one hour. Action 27 is similar, except that it provides an 8 hour allowar.ce to restore manual initiation capability (refer to DOC A.6 for a discussion of this allowance). Actions 24 and 27 are applicable at times when the Secondary Containment Integrity is already required by CTS 3.6.5.1. Therefore, it is not necessary to explicitly repeat the requirement to establish Secondary Containment Integrity.
the CTS). The reactor vessel low level Function only actuates in the event of a vessel draindown event (i.e., an event initiated as a result of an operation with a potential for draining the reactor i
i FERMI     UNIT 2                         6                   REVISION 14 08/26/99l w
vessel). Reactor vessel water level Function is not assumed to actuate to provide secondary isolation for any event that is postulated to occur during core alterations or fuel handling (which is performed with the reactor cavity flooded). Therefore, this is a less restrictive change with no impact on safety.
L.2 Inoperable secondary containment isolation instrumentation affects two aspects of Secondary Containment Integrity - the secondary containment isolation valves (SCIVs) and the standby gas treatment (SGT) system. CTS 3.3.2 Actions b.1 and c for inoperable secondary containment isolation instrumentation direct entry into CTS Table 3.3.2-1 Actions 24 and 27.
In the case of CTS 3.3.2 Action b.1 there is an allowance for a 6 hour delay (changed to 12 or 24 hours in the ITS. see DOC LC.1) before taking Action 24 or
: 27. CTS Table 3.3.2-1. Action 24 for inoperable secondary j
containment isolation instrumentation, requires Secondary 4
Containment Integrity be established with the SGT system operating I
within one hour. Action 27 is similar, except that it provides an 8 hour allowar.ce to restore manual initiation capability (refer to DOC A.6 for a discussion of this allowance). Actions 24 and 27 are applicable at times when the Secondary Containment Integrity is already required by CTS 3.6.5.1.
Therefore, it is not necessary to explicitly repeat the requirement to establish Secondary Containment Integrity.
i FERMI UNIT 2 6
REVISION 14 08/26/99l w


DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMEN'T ISOLATION INSTRUMENTATION L.2 (continued)
DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMEN'T ISOLATION INSTRUMENTATION L.2 (continued)
If one secondary containment isolation instrumentation trip system is affected by the inoperable instrumentation (i.e., CTS 3.3.2 Action b.1), Secondary Containment Integrity would not be lost because the otbr trip system would still be available to close its SCIVs. In this case, the restoration of the SCIV portion of           ,
If one secondary containment isolation instrumentation trip system is affected by the inoperable instrumentation (i.e., CTS 3.3.2 Action b.1), Secondary Containment Integrity would not be lost because the otbr trip system would still be available to close its SCIVs. In this case, the restoration of the SCIV portion of Secondary Containment Integrity would require no action for compliance with CTS 3.3.2 or ITS 3.3.6.2, and therefore no change is introduced. (Note however, the Actions for inoperable SCIVs would apply.) This aspect is discussed within this less restrictive change DOC for completeness.
Secondary Containment Integrity would require no action for compliance with CTS 3.3.2 or ITS 3.3.6.2, and therefore no change is introduced. (Note however, the Actions for inoperable SCIVs would apply.) This aspect is discussed within this less restrictive change DOC for completeness.
If both trip systems were affected by the inoperable instronentation (i.e., CTS 3.3.2, Action c) Secondary Containment Integrity would be lost because both divisions of SCIVs would be affected. In this case, the CTS Table 3.3.2-1 actions would require establishing Secondary Containment Integrity within one hour, which for SCIVs is equivalent to ITS Required Action C.1.1 (e.g., Secondary Containment Integrity was affected by the 3
If both trip systems were affected by the inoperable instronentation (i.e., CTS 3.3.2, Action c) Secondary Containment Integrity would be lost because both divisions of SCIVs would be affected. In this case, the CTS Table 3.3.2-1 actions would require establishing Secondary Containment Integrity within one hour, which for SCIVs is equivalent to ITS Required Action C.1.1 (e.g., Secondary Containment Integrity was affected by the
inoperable instrumentation resulting in a loss of isolation J
,  3                inoperable instrumentation resulting in a loss of isolation J               capability -- isolating the penetrations will restore it).               y i
capability -- isolating the penetrations will restore it).
ITS Required Action C.1.2 provides an alternative to isolating the       k secondary containment. If isolation capability is maintained         k     j (i.e., at least one trip system has the minimum required channels             l operable), declaring the affected SCIVs inoperable would place you             j in ITS 3.6.4.2, Required Action A.1, which allows 8 hours to                   j isolate the penetration. This is equivalent to the CTS since                   l Secondary Containment Integrity would not be lost. If isolation capability is lost (i.e., both trip systems affected), ITS                     :
y i
3.3.6.2. Required Action B allows I hour to restore isolation capability. If this is not achieved, Required Action C.1.2 would allow declaring the affected SCIVs inoperable within 1 hour. ITS 3.6.4.2, Required Action B.1 would then allow 4 hours to isolate               i the affected penetrations for a total of 6 hours from the time the instrumentation was declared inoperable until the penetrations are isolated, restoring Secondary Containment Integrity. This less restrictive change (6 hours versus 1 hour) is acceptable because of the relatively brief time involved, the minimal probability of an event during this time, and any remaining manual capabilities that remain to effect the isolation.
ITS Required Action C.1.2 provides an alternative to isolating the k
  .)
secondary containment.
FERMI   UNIT 2                         7                   REVISION 14   08/26/99l
If isolation capability is maintained k
j (i.e., at least one trip system has the minimum required channels l
operable), declaring the affected SCIVs inoperable would place you j
in ITS 3.6.4.2, Required Action A.1, which allows 8 hours to j
isolate the penetration. This is equivalent to the CTS since Secondary Containment Integrity would not be lost.
If isolation capability is lost (i.e., both trip systems affected), ITS 3.3.6.2. Required Action B allows I hour to restore isolation capability.
If this is not achieved, Required Action C.1.2 would allow declaring the affected SCIVs inoperable within 1 hour.
ITS 3.6.4.2, Required Action B.1 would then allow 4 hours to isolate i
the affected penetrations for a total of 6 hours from the time the instrumentation was declared inoperable until the penetrations are isolated, restoring Secondary Containment Integrity. This less restrictive change (6 hours versus 1 hour) is acceptable because of the relatively brief time involved, the minimal probability of an event during this time, and any remaining manual capabilities that remain to effect the isolation.
.)
FERMI UNIT 2 7
REVISION 14 08/26/99l


DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION L.2 (continued)
DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION L.2 (continued)
As for the CTS requirement to establish SGT operating. CTS Table 3.3.2-1 Actions 24 and 27 require starting the affected SGT subsystem (s) within one hour. ITS Required Action C.2.1 provides this same requirement. However, instead of starting the affected SGT subsystem (s), Required Action C.2.2 provides a less restrictive option to allow declaring the affected SGT                         '
As for the CTS requirement to establish SGT operating. CTS Table 3.3.2-1 Actions 24 and 27 require starting the affected SGT subsystem (s) within one hour.
subsystem (s) inoperable. The action to initiate the associated SGT subsystem is the compensatory action for losing the automatic initiation instrumentation for that subsystem. Taking that action             i allows for unlimited continued operation. Declaring the affected SGT subsystem (s) inoperable avoids placing the SGT subsystem (s) in operation but limits the time you are allowed to operate (7 days for one subsystem, immediate shutdown for two subsystems) under this provision. These actions are the same as the actions in CTS 3.6.5.3 for the SGT system. Under the CTS, if you take the             g actions in CTS 3.6.5.3 for inoperable SGT subsystem (s). Secondary     tc Containment Integrity would be maintained. Therefore, under the CTS there would not be any additional action required to '' restore" Secondary Containment Integrity. Since there are accepted safe actions in the CTS for loss of a SGT subsystem function which still allow for the secondary containment to be considered
ITS Required Action C.2.1 provides this same requirement. However, instead of starting the affected SGT subsystem (s), Required Action C.2.2 provides a less restrictive option to allow declaring the affected SGT subsystem (s) inoperable. The action to initiate the associated SGT subsystem is the compensatory action for losing the automatic initiation instrumentation for that subsystem. Taking that action i
                                                                                          -~
allows for unlimited continued operation. Declaring the affected SGT subsystem (s) inoperable avoids placing the SGT subsystem (s) in operation but limits the time you are allowed to operate (7 days for one subsystem, immediate shutdown for two subsystems) under this provision. These actions are the same as the actions in CTS 3.6.5.3 for the SGT system. Under the CTS, if you take the g
' TCi~             Operable. allowing these;same actions will continue to ensure-             ''
actions in CTS 3.6.5.3 for inoperable SGT subsystem (s). Secondary tc Containment Integrity would be maintained. Therefore, under the CTS there would not be any additional action required to '' restore" Secondary Containment Integrity. Since there are accepted safe actions in the CTS for loss of a SGT subsystem function which still allow for the secondary containment to be considered
continued safe operation when the impact on the secondary containment function is solely due to instrumentation that effects the automatic start of SGT system. Therefore, this less restrictive change (not starting the affected SGT subsystem (s))             !
' TCi~
Operable. allowing these;same actions will continue to ensure-
-~
continued safe operation when the impact on the secondary containment function is solely due to instrumentation that effects the automatic start of SGT system. Therefore, this less restrictive change (not starting the affected SGT subsystem (s))
will have a negligible impact on safety.
will have a negligible impact on safety.
RELOCATED SPECIFICATIONS i
RELOCATED SPECIFICATIONS i
None TECHNICAL SPECIFICATION BASES The CTS Bases for this Specification have been replaced by Bases that reflect the format and applicable content of ITS 3.3.6.2 consistent with the BWR STS, NUREG 1433 Rev. 1.
None TECHNICAL SPECIFICATION BASES The CTS Bases for this Specification have been replaced by Bases that reflect the format and applicable content of ITS 3.3.6.2 consistent with the BWR STS, NUREG 1433 Rev. 1.
FERMI -' UNIT 2                         8                   REVISION 14 08/26/99l
FERMI -' UNIT 2 8
REVISION 14 08/26/99l


LLS Instrumentation 3.3.6.3
LLS Instrumentation 3.3.6.3
  )           3.3 INSTRUMENTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3       The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.
)
APPLICABILITY:   MODES 1. 2. and 3.
3.3 INSTRUMENTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.
ACTIONS C0WITION                     REQUIRED ACTION           COMPLETION TIME A. One LLS valve             A.1     Restore channel (s) to   14 days inoperable due to                 OPERABLE status, ineperable channel (s).
APPLICABILITY:
MODES 1. 2. and 3.
ACTIONS C0WITION REQUIRED ACTION COMPLETION TIME A.
One LLS valve A.1 Restore channel (s) to 14 days inoperable due to OPERABLE status, ineperable channel (s).
(continued)
(continued)
-_~~   . . . .
-_~~
  ^
.)
  .)
^
l ' FERMI - UNIT 2                         3.3 65               Revision 14   08/26/99
l ' FERMI - UNIT 2 3.3 65 Revision 14 08/26/99


i LLS Instrumentation 3.3.6.3
i LLS Instrumentation 3.3.6.3
  ]             ACTIONS (continued)
]
COMPLETION TIME CONDITION                       REQUIRED ACTION h
ACTIONS (continued)
M       B.   --    ---
CONDITION REQUIRED ACTION COMPLETION TIME h
NOTE--------- B.1         Restore one tailpipe   24 hours
M B.
* Separate Condition                       pressure switch for entry is allowed for                     11 OPERABLE SRVs to each SRV.                                 OPERABLE STATUS.
NOTE---------
            %                                    MQ One or more safety /
B.1 Restore one tailpipe 24 hours Separate Condition pressure switch for entry is allowed for 11 OPERABLE SRVs to each SRV.
          ,        relief valves (SRVs)         B.2         Restore one tailpipe   24 hours with one or more                         pressure switch in Function 3 channel (s)                   each Division for an inoperable.                               OPERABLE SRV in the lowest setpoint group, to OPERABLE
OPERABLE STATUS.
          >                                                  status.
MQ One or more safety /
relief valves (SRVs)
B.2 Restore one tailpipe 24 hours with one or more pressure switch in Function 3 channel (s) each Division for an inoperable.
OPERABLE SRV in the lowest setpoint group, to OPERABLE status.
MQ
MQ
                                                  ............ NOTE -- - --- -
............ NOTE -- - --- -
LC0 3.0.4 is not applicable.
LC0 3.0.4 is not applicable.
B.3         Restore both tailpipe   Prior to pressure switches for   entering H0DE 2
B.3 Restore both tailpipe Prior to pressure switches for entering H0DE 2
        ^                                                     11 OPERABLE SRVs.       or 3 from H0DE 4
^
          #                                                  including 4 of 5
11 OPERABLE SRVs.
          @                                                  OPERABLE SRVs with Y                                                     the lowest relief v                                                     setpoints, to OPERABLE status.
or 3 from H0DE 4 including 4 of 5 OPERABLE SRVs with Y
C. Required Action and         C.1         Be in H00E 3.           12 hours associated Completion Time of Condition A         MQ or B not met.
the lowest relief v
C.2         Be in H0DE 4.           36 hours E
setpoints, to OPERABLE status.
C.
Required Action and C.1 Be in H00E 3.
12 hours associated Completion Time of Condition A MQ or B not met.
C.2 Be in H0DE 4.
36 hours E
Two LLS valves inoperable due to inoperable channels.
Two LLS valves inoperable due to inoperable channels.
  )
)
l FERMI     UNIT 2                           3.3 66               Revision 14   08/26/99 I
l FERMI UNIT 2 3.3 66 Revision 14 08/26/99 C
C


9 LLS Instrumentation 3.3.6.3 SURVEILLANCE REQUIREMEfffS
9 LLS Instrumentation 3.3.6.3 SURVEILLANCE REQUIREMEfffS
              .....................................N0TE-------                           --------      --------........
.....................................N0TE-------
Refer to Table 3.?.6.3-1 to determine which SRs apply for each Function.
Refer to Table 3.?.6.3-1 to determine which SRs apply for each Function.
SURVEILLANCE                                             FREQUENCY SR 3.3.6.3.1               Perform CHANNEL FUNCTIONAL TEST.                               31 days 3     SR 3.3.6.3.2                                                                             31 days
SURVEILLANCE FREQUENCY SR 3.3.6.3.1 Perform CHANNEL FUNCTIONAL TEST.
          >                              Perform CHANNEL FUNCTIONAL TEST for gl                               portion of the channel outside primary C                                   containment.
31 days 3
SR 3.3.6.3.3             Perform CHANNEL CALIBRATION.                                   18 months N,         SR   3.3.6.3._4_ Perform LOGIC SYSTEM FUNCTIONAL TEST.                                 18 months s
SR 3.3.6.3.2 Perform CHANNEL FUNCTIONAL TEST for 31 days gl portion of the channel outside primary C
[ l FERMI         UNIT 2                                     3.3 67                     Revision 14         08/26/99
containment.
SR 3.3.6.3.3 Perform CHANNEL CALIBRATION.
18 months N,
SR 3.3.6.3._4_ Perform LOGIC SYSTEM FUNCTIONAL TEST.
18 months s
[ l FERMI UNIT 2 3.3 67 Revision 14 08/26/99


LLS Instrumentation 3.3.6.3 Table 3.3.6.3 1 (page 1 of 1)
LLS Instrumentation 3.3.6.3 Table 3.3.6.3 1 (page 1 of 1)
Low Low Set Instrunentation REQUIRED CHANNELS PER         SLRVEILLANCE           ALLOWABLE FUNCTION                     FUNCTION           REQUIREMENTS             VALUE
Low Low Set Instrunentation REQUIRED CHANNELS PER SLRVEILLANCE ALLOWABLE FUNCTION FUNCTION REQUIREMENTS VALUE 1.
: 1. Reactor Steam Dame Pressure-High       1 per LLS valve       SR 3.3.6.3.1     s 1113 psig SR 3.3.6.3.3 SR 3.3.6.3.4
Reactor Steam Dame Pressure-High 1 per LLS valve SR 3.3.6.3.1 s 1113 psig SR 3.3.6.3.3 SR 3.3.6.3.4 2.
: 2. Low Low Set Pressure Setpoints       2 per LLS valve       SR 3.3.6.3.1     Low:
Low Low Set Pressure Setpoints 2 per LLS valve SR 3.3.6.3.1 Low:
SR 3.3.6.3.3       Open s 1037 psig SR 3.3.6.3.4       Close (a)
SR 3.3.6.3.3 Open s 1037 psig SR 3.3.6.3.4 Close (a)
High:
High:
9                                                                                             Open s 1067 psig o                                                                                           Close (a) bl   3. Tailpipe Pressure Switch                 2 per SRV           SR 3.3.6.3.2     = 25 psig and (g                                                                          SR 3.3.6.3.3 SR 3.3.6.3.4 s 35 psig (a) = 100 psi below actual opening setpoint
9 Open s 1067 psig o
.,r - ,w x - % - ,                                                                                                         -
Close (a) bl 3.
                                                                                                                              -,m., -
Tailpipe Pressure Switch 2 per SRV SR 3.3.6.3.2
s - m .t.                                                           ..                                                    w.
= 25 psig and SR 3.3.6.3.3 s 35 psig (g
l J
SR 3.3.6.3.4 (a) = 100 psi below actual opening setpoint
A l FERMI             UNIT 2                               3.3-68                     Revision 14, 08/26/99
.,r -,w x - % -,
-,m., -
s - m.t.
w.
J A l FERMI UNIT 2 3.3-68 Revision 14, 08/26/99


9 LLS Instrumentation B 3.3.6.3
9 LLS Instrumentation B 3.3.6.3
    ]       BASES APPLICABILITY The LLS instrumentation is recuired to be OPERABLE in KODES 1, 2, and 3 since consicerable energy is in the nuclear system and the SRVs may be needed to provide pressure relief. If the SRVs are needed.-then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5. the reactor pressure is low enough that the overpressure limit cannot be a)proached by assumed operational transients or accidents.
]
BASES APPLICABILITY The LLS instrumentation is recuired to be OPERABLE in KODES 1, 2, and 3 since consicerable energy is in the nuclear system and the SRVs may be needed to provide pressure relief. If the SRVs are needed.-then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5. the reactor pressure is low enough that the overpressure limit cannot be a)proached by assumed operational transients or accidents.
T1us, LLS instrumentation and associated pressure relief is not required.
T1us, LLS instrumentation and associated pressure relief is not required.
ACTIONS       AJ The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)ility of the other LLS SRV to perform its LLS function. A LLS valve.is OPERABLE if the associated logic has one Function'l channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore, 14
ACTIONS AJ The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)ility of the other LLS SRV to perform its LLS function. A LLS valve.is OPERABLE if the associated logic has one Function'l channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore, 14
. _../.A_                   days is provided to restore the inoperable channel (s) to OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered a)propriate because of the redundancy in the design (two L.5 valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel
. _../.A_
        -                    failures, which renders the remaining LLS SRV inoperable, p                   occurring together with an event requiring the LLS function during the 14 day Completion Time.
days is provided to restore the inoperable channel (s) to OPERABLE status (Required Action A.1).
l                 B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi>e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and
If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered a)propriate because of the redundancy in the design (two L.5 valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel failures, which renders the remaining LLS SRV inoperable,
                            -instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch
-p occurring together with an event requiring the LLS function during the 14 day Completion Time.
    )
l B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi>e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and
UNIT 2                   B 3.3.6.3-4           Revision 14, 08/26/99 l FERMI
-instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch
)
l FERMI UNIT 2 B 3.3.6.3-4 Revision 14, 08/26/99


  .                                                                                                      1 LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued) instrument channels inoperable. Therefore. it is acceptable for plant operation to continue provided that within 24               f (M,$                           hours, per Required Action B.1 and B.2. verification and/or i
1 LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued) instrument channels inoperable. Therefore. it is acceptable f
I w                        restoration is made to ensure at least: a) one tailpipe               {
for plant operation to continue provided that within 24 (M,$
l N                    pressure switch in each Division OPERABLE on' one OPERABLE l                               SRV in the lowest SRV setpoint group: and b) at least 11 i                             OPERABLE SRVs have at least one OPERABLE tailpipe pressure switch. Therefore, it is acceptable for plant operation to-lm  4                         continue even with only one tailpipe pressure switch                 l i
i hours, per Required Action B.1 and B.2. verification and/or I
I    D                         OPERABLE on each SRV. However, this is only acceptable provided each LLS valve is OPERABLE. (Refer to Required jD                            Action A.1 and C.1 Bases).
restoration is made to ensure at least:
I Required Action B.3 requires restoration of both tailpipe l                             pressure switches on = 11 OPERABLE SRVs. including 4 SRVs ss                        out of the 5 lowest relief setpoint OPERABLE SRVs. to I
a) one tailpipe
OPERABLE status, prior to entering MODE 2 or 3 from MODE 4.
{
          %                          This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p                         Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LCO 3.0.4 is not applicable. thus allowing entry into MODE 1 or 2 from MODE 2 or 3 with i
l pressure switch in each Division OPERABLE on' one OPERABLE w
l N
SRV in the lowest SRV setpoint group: and b) at least 11 i
OPERABLE SRVs have at least one OPERABLE tailpipe pressure lm switch. Therefore, it is acceptable for plant operation to-4 continue even with only one tailpipe pressure switch I
D OPERABLE on each SRV. However, this is only acceptable i
jD provided each LLS valve is OPERABLE.
(Refer to Required Action A.1 and C.1 Bases).
I Required Action B.3 requires restoration of both tailpipe l
pressure switches on = 11 OPERABLE SRVs. including 4 SRVs s
out of the 5 lowest relief setpoint OPERABLE SRVs. to I
s OPERABLE status, prior to entering MODE 2 or 3 from MODE 4.
This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p
Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LCO 3.0.4 is not applicable. thus allowing entry into MODE 1 or 2 from MODE 2 or 3 with i
inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4.
inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4.
A Note has been provided in the Condition to modify the
A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to LLS Function 3 channels. Section 1.3. Completion Times.
              !                        Required Actions and Completion Times conventions related to e                          LLS Function 3 channels. Section 1.3. Completion Times.
e specifies that once a Condition has been entered. subsequent O
O                          specifies that once a Condition has been entered. subsequent divisions, subsystems, components, or variables expressed in
divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within g
            >                          the Condition discovered to be inoperable or not within g                           limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory f                         measures for separate inoperable Condition entry for each SRV with inoperable tailpipe pressure switches.
limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory f
B 3.3.6.3 - 5           Revision 14   08/26/99 l FERMI UNIT 2 E
measures for separate inoperable Condition entry for each SRV with inoperable tailpipe pressure switches.
B 3.3.6.3 - 5 Revision 14 08/26/99 l FERMI UNIT 2 E


DISCUSSION OF CHANGES ITS: SECTION 3.3.6.3 - LLS INSTRUMENTATION ADMINISTRATIVE A.1       In the conversion of the Fermi 2 current Technical Specifications (CTS) to the proposed plant specific Improved Technical Specifications (ITS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433, Rev. 1.
DISCUSSION OF CHANGES ITS: SECTION 3.3.6.3 - LLS INSTRUMENTATION ADMINISTRATIVE A.1 In the conversion of the Fermi 2 current Technical Specifications (CTS) to the proposed plant specific Improved Technical Specifications (ITS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433, Rev. 1.
A.2         ITS 3.3.6.3 SR Note is included as a clarification of the ITS presentation of SRs: specifying that ITS Table 3.3.6.31 be referred to determine which SRs apply for each Function. As such, its inclusion is an administrative presentation preference.
A.2 ITS 3.3.6.3 SR Note is included as a clarification of the ITS presentation of SRs: specifying that ITS Table 3.3.6.31 be referred to determine which SRs apply for each Function. As such, its inclusion is an administrative presentation preference.
TECHNICAL CHANGES - MORE RESTRICTIVE M.1         CTS 3.4.2.2 requires Operability. Surveillances, and Action
TECHNICAL CHANGES - MORE RESTRICTIVE M.1 CTS 3.4.2.2 requires Operability. Surveillances, and Action limitations for the LLS reactor pressure actuation I
~
~
      .                  limitations for the LLS reactor pressure actuation I
iriitrumentation. The '' arming" instrumentation for the LLS Function (reactor pressure and SRV tail pipe pressure) is not addressed in the CTS requirements for the LLS Function. ITS Table 3.3.6.3 includes Function 1 and 3 for these '' arming" Functions. These additional requirements include Operability, Surveillance, and Action requirements.
iriitrumentation. The '' arming" instrumentation for the LLS Function (reactor pressure and SRV tail pipe pressure) is not addressed in the CTS requirements for the LLS Function. ITS Table 3.3.6.3 includes Function 1 and 3 for these '' arming" Functions. These additional requirements include Operability, Surveillance, and Action requirements. In the case of the SRV tail-pipe arming Function, the ITS 3.3.6.3 Action B is provided, and is based on maintaining a high degree of reliability for the         I supporting function, while minimizing the potential for any unnecessary forced shutdown. Since opening any one of 15 SRVs       l will suffice to arm both LLS valves, the actions allow for continued operation with multiple inoperable tail pipe pressure       7s channels. The Actions include requirements to ensure that within 24 hours: a) a minimum of one tail pipe pressure channel in each     Dg division associated with 1 of the 5 lowest set Operable SRVs (to     D assure arming in the event just the lowest set SRVs lift):
In the case of the SRV tail-pipe arming Function, the ITS 3.3.6.3 Action B is provided, and is based on maintaining a high degree of reliability for the I
at least 11 Operable SRVs have at least 1 Operable tail pipeand b) Y switch. Additionally, Required Action B.3 is provided to ensure a significant number (at least 11 of 15) have both tail-pipe-pressure switches Operable, including 4 of the 5 lowest set SRVs, N M m
supporting function, while minimizing the potential for any unnecessary forced shutdown. Since opening any one of 15 SRVs l
on any reactor startup from Mode 4.                                   d
will suffice to arm both LLS valves, the actions allow for continued operation with multiple inoperable tail pipe pressure 7s channels. The Actions include requirements to ensure that within
                                                                                              ?,
'Dg 24 hours: a) a minimum of one tail pipe pressure channel in each division associated with 1 of the 5 lowest set Operable SRVs (to D
J                                                                                       &
and b) Y assure arming in the event just the lowest set SRVs lift):
FERMI   UNIT 2                         1                 REVISION 14, 08/26/99l
at least 11 Operable SRVs have at least 1 Operable tail pipe switch. Additionally, Required Action B.3 is provided to ensure a M significant number (at least 11 of 15) have both tail-pipe-N pressure switches Operable, including 4 of the 5 lowest set SRVs, md on any reactor startup from Mode 4.
?,
J FERMI UNIT 2 1
REVISION 14, 08/26/99l


LLS Instrumentation 3.3.6.3 3.3 INSTRUMENTATION
LLS Instrumentation 3.3.6.3 3.3 INSTRUMENTATION 3.3.6.3 Low Low Set (LLS) Instrumentation
            . 3.3.6.3 Low Low Set (LLS) Instrumentation
}
                                                                                                                                  }
LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.
LC0 3.3.6.3           The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.
ff APPLICABILITY:
ff APPLICABILITY:
MODES 1. 2. and 3.
MODES 1. 2. and 3.
I                    (
Q lNSE7LT SS 6.S~ l I
QL ACTIONS-                                        /
(
lNSE7LT SS 6.S~ l       ;                        .k COMPLETION TIME Y                 CONDITION fREQUIREDACTION I4 days A. One LLS valve                     A.1       Restore channel (s) to     34:M5Urr       hCW h inoperable due to                           OPERABLE status, inoperable channel (s).
L.k ACTIONS-
/
fREQUIREDACTION COMPLETION TIME Y
CONDITION I4 days hCW h A.
One LLS valve A.1 Restore channel (s) to 34:M5Urr inoperable due to OPERABLE status, inoperable channel (s).
(4c M.1)
(4c M.1)
I                               /                      T--.   --. NOTE--           & // operasts.5%
I h '_
hM0'_.
T--.
B. One or more saf                 i relief valves (                              LCO 3.0.4 is not               inc64dmq 4 4.f.
--. NOTE--
with on Functio                          ,
& // operasts.5%
applicable.                     g p,gg gg g, g;4
B.
_m.          ,.
One or more saf
channel noperable.               &
/
                                                                      - - ~ -                            & lowest rslied-
i with on Functio M0.
  -. n,  .            ,
LCO 3.0.4 is not inc64dmq 4 4.f.
6.3                                   Prior to       Q6@d6' yntg                                   Restore      pipe pressure switches o         entering MODE 2       -
relief valves (
OPERABLE status.           or 3 from MODE 4 DolM.lh
applicable.
                                              ----          C          Res re one ta' pipe       [14 days
g p,gg gg g, g;4 channel noperable.
                    % ........ NOTE Separate Condition                           pr(ssure swit to entry is allowed for          I 0 ERABLE sta us.
& lowest rslied-
each S
_m.
: g. . . . . {     . . . . . . .j 0   or mor S/RVs 4th                                                                         h o Func on 3 hannel inopera e.
- - ~ -
l (continued)           l BWR/4 STS                                         3.3 67                           Rev 1. 04/07/95 Rev W m Rey a \\
6.3 Restore pipe Prior to Q6@d6' n,
RCJ (o \
yntg pressure switches o entering MODE 2 OPERABLE status.
or 3 from MODE 4 DolM.lh C
Res re one ta' pipe
[14 days
%........ NOTE Separate Condition pr(ssure swit to 0 ERABLE sta us.
entry is allowed for I
: g..... {
.......j each S h
0 or mor S/RVs 4th o Func on 3 hannel inopera e.
l (continued)
BWR/4 STS 3.3 67 Rev 1. 04/07/95 Rev W m Rey a \\\\
RCJ (o \\


LLS Instrumentation 3.3.6.3 l
LLS Instrumentation 3.3.6.3 Insert 3.3.6.3-1 B.1 Restore one tailpipe pressure 24 hours switch for 11 OPERABLE SRVs to OPERABLE STATUS.
Insert   3.3.6.3-1 B.1 Restore one tailpipe pressure         24 hours switch for 11 OPERABLE SRVs to OPERABLE STATUS.
24 hours B.2 Restore one tailpipe pressure switch in each Division for an OPERABLE SRV in the lowest setpoint group, to OPERABLE status.
24 hours B.2 Restore one tailpipe pressure switch in each Division for an                   ,
.naru FERMI - UNIT 2 Page 3.3-67 (Insert)
OPERABLE SRV in the lowest setpoint group, to OPERABLE status.
REVISION 14, 08/26/99
.naru l
FERMI - UNIT 2     Page 3.3-67 (Insert)   REVISION 14,   08/26/99


LLS Instrumentation B 3.3.6.3 BASES APPLICABILITY       approached by assumed operational transients or accidents.
LLS Instrumentation B 3.3.6.3 BASES APPLICABILITY approached by assumed operational transients or accidents.
  %/
%/
(continued)       Thus, LLS instrumentation and associated pressure relief is not required.
(continued)
ACTIONS                       '
Thus, LLS instrumentation and associated pressure relief is not required.
Note: Certain LCO Completion Ti                     ed on Y approved top                 rts. In                       censee to use
ACTIONS Note: Certain LCO Completion Ti ed on
                                                                                                                      )
)
                              / \ the times, the li                           theCompletionTimesas[           '
Y approved top rts. In
require           s aff Safety Evalua un b r*                       the AI                                                                               ,
/ \\ the times, the li theCompletionTimesas[
The failure of any reactor steam dome pressure instrument channel to provide the arming, S/RV opening and closing pressure setpoints for an individual LLS valve does not affect the ability of the other LLS S/RVWto perform ps           LLS function. A LLS valve is OPERABLE ff the associated logic, ';.;.. 'n't ".), has one Function I channel, two Function z cnannels, ane'three Function 3 channels OPERABLE.
censee to use require s aff Safety Evalua un b r*
the AI The failure of any reactor steam dome pressure instrument channel to provide the arming, S/RV opening and closing pressure setpoints for an individual LLS valve does not affect the ability of the other LLS S/RVWto perform ps LLS function. A LLS valve is OPERABLE ff the associated logic, ';.;.. 'n't ".), has one Function I channel, two Function z cnannels, ane'three Function 3 channels OPERABLE.
m_Therefore.# !.__.; is provided to restore the inoperable Q4 dais.) channel (s) to OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status
m_Therefore.# !.__.; is provided to restore the inoperable Q4 dais.) channel (s) to OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status
            ?.3                     within the allowable out of service time, Condition FTsust C be entered and its Required Action taken. The Required O,                                 Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation.
?.3 within the allowable out of service time, Condition FTsust C be entered and its Required Action taken. The Required O,
s
Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation.
    '  )                            _Thef !.__. Completion Time is considered appropriate                   be 47           Decause of the redundancy in the design (fevFLL5 valves are provided and any one LLS valve can perform the LLS function) and the very low channel failures, probability   of multiple LLS instrumentation whichrendertheremainingLLSS/RVg.
)
inoperable, occurring together with an event requiring the du kh3 I""CN ""i     {ng the { :... y ompletion Timegg
_Thef !.__. Completion Time is considered appropriate be s
                                    ; g ;;;, u n -       _ m - -'-     --- -" -"- - ---              -~
47 Decause of the redundancy in the design (fevFLL5 valves are provided and any one LLS valve can perform the LLS function) and the very low channel failures, probability of multiple LLS instrumentation whichrendertheremainingLLSS/RVg.
inoperable, occurring together with an event requiring the kh3 I""CN ""i {ng the { :... y ompletion Timegg du
; g ;;;, u n -
_ m - -'-
-~
d%
d%
u ,u, ud63                                                                     -
u,u, ud63 9E
                                  'Althoug       e LLS circuitry is designed so that operation of               9E a single tailpipe pressure switch will result in arming both LLS logics '- ''- ---- ' ^ ' ""' '- ' each tailpipe D           pressure switch provides : d k;;^ input to           r.'" - - LLS (continued)
'Althoug e LLS circuitry is designed so that operation of a single tailpipe pressure switch will result in arming both LLS logics '- ''- ---- ' ^ ' ""' '- ' each tailpipe D
BWR/4 STS                               8 3.3-201                           Rev.1,04/07/95 s
pressure switch provides : d k;;^ input to r.'" - - LLS (continued)
AW 14 }}
BWR/4 STS 8 3.3-201 Rev.1,04/07/95 AW 14 }}
Rw 6 a
s Rw 6 a


  .                                                                                                                          l LLS Instrumentation B 3.3.6.3 BASES ACTIONS Q*%QQ0 } }
LLS Instrumentation B 3.3.6.3 BASES Q*%QQ0 } }
L 1 Icontinued)                                                         _
ACTIONS L 1 Icontinued) l h
l h rec e d., Log}cfA). Si e each LLS logic normally es at 1 e'st five S R pressure-switch inputs (and also re ives the' ther S             ignals @64 the gg           ' tame d Hion by inste ntatio emains ruing           ), t er logic in the LS logic an i
e d., Log}cfA).
e of rforming it               ety. .
Si e each LLS logic normally rec es at 1 e'st five S R pressure-switch inputs (and also re ives the' ther S ignals @64 the er logic in the gg
p,3.by-3A       funhion       ih'y S/RV           e nradfure switch         trumaa+                           j lhannel- a=ae 4aaa l                                                la. Therefore, it is acceptable for                               ;
' tame d Hion by ruing
o      "    plant operation to continue with only one tailpipe pressure                                   O l i
), t LS logic an inste ntatio emains e of rforming it ety..
3            switch OPERABLE on each               However, this is only acceptable provided each LS valve is OPERABLE. - (Refer to                                   1 '
j p,3.by-3A funhion ih'y S/RV e nradfure switch trumaa+
Required Action A.         d
lhannel-a=ae 4aaa la.
__                                            Bases).                                                   %q ltJS EE T             _Re_ quired Action _ BJt equires restoration o g g.3 (,.3-3 b                                                                           11 pipe                          l i
Therefore, it is acceptable for l
pressure switches &to OPEIMBLE-status prior to entering                                   i     f MODE 2 or 3 from MODE 4Jts) ensure that-aR switches ar                     -
l plant operation to continue with only one tailpipe pressure O
i switch OPERABLE on each However, this is only 1
o3 acceptable provided each LS valve is OPERABLE. - (Refer to Required Action A.
d Bases).
%q ltJS EE T
_Re_ quired Action _ BJt equires restoration o 11 pipe l
g g.3 (,.3-3 b pressure switches &to OPEIMBLE-status prior to entering f
i i
MODE 2 or 3 from MODE 4Jts) ensure that-aR switches ar
{
PE1ABLE at the beginning of a reactor startup because the switches are not accessible during p(this i n
lant s
operation). The Required Actions do net allow placing the
[ ' This w,il channel in trip since this action could result intLL tt valve actuation. As noted, LCO 3.0.4 is not applicab E
thus allowing entry into MODE T8from MODE 2 Arith inoperable 4
{
channels. inis ailowance is needed since th nnels o i
y3 have to be repaired prior to entering MODE 2
?., **? ?.eE $8,_0.,$_ n'0_....*.".".5' L...i".~~.'.T '
.v L
(
...n A fai of two press witch channels rIciatedwith t
on RV ta ipj e e result in the 4 of the LLS nction (i.e.
1ple actuation f the S/RV would go undetected he LL 14gic).
ever, the /RVs are organtz n groups and,'Wu g an event, oups of 5/RVs init y open (:etpoint re t same ett ngs for a total,
,)
1 S/RVs in three cups). Ther, pre, it would b unlikely that a s e S/RV woul e rh d to'a he LLS logic.
refore, it is ceptable t
'14 days to
{
{
PE1ABLE at the beginning of a reactor startup                                            n because the switches are not accessible duringlant            p(this i                        I s
restore on ressure switc of the associated RV to OPERAB status (Requir) Action C.1).
[ ' This w,il      operation). The Required Actions do net allow placing the channel in trip since this action could result intLL                            tt            !
ofwever, th s
valve actuation. As noted, LCO 3.0.4 is not applicab                                            l E    thus allowing entry into MODE T8from MODE 2 Arith inoperable 4 channels. inis ailowance is needed since th                    nnels o                          {
allo le out of servite time is on1 cceptable provid each LLS is CPERABLE (Refer to Reg ed Action A.1 and D.1 Bases). If one inoperable tallpipe pressure switch cannot I
y3        have to be repaired prior to entering MODE 2 i
l
                              ?., **? ?.eE  .    $8,_0. ,$_ n'0_ . ...*.".".5' L...i".~~.'
                                                                                .          .v
                                                                                                              .T '
L
._          ...n          (                                                            -
A fai      of two press            witch channels rIciatedwith                      t on      RV ta ipj e e        result in the 4        of the LLS nction (i.e.          1ple actuation        f the S/RV would go undetected          he LL 14gic).          ever, the /RVs are organtz    n groups and,'Wu          g an  event , oups of 5/RVs init    y open (:etpoint          re t same ett ngs for a total,
                ,)                1 S/RVs in three        cups). Ther , pre, it would b unlikely that a s e rh d to'a e S/RV woul                                        he LLS logic.          refore, it is      ceptable t            '14 days to {
restore on ressure switc of the associated RV                     to I
OPERAB     status (Requir) Action C.1). ofwever, ths                                      ;        !
allo le out of servite time is on1 cceptable                 provid each LLS is CPERABLE (Refer to Reg                                                               !
ed Action A.1 and D.1                               !
Bases). If one inoperable tallpipe pressure switch cannot I
(continued)
(continued)
BWR/4 STS                               B 3.3-202                         Rev1,04/07/95
BWR/4 STS B 3.3-202 Rev1,04/07/95
{% EU d 0 Re6
{% EU d 0 Re6


l LLS Instrumentation B 3.3.6.3 q
l LLS Instrumentation B 3.3.6.3 q
Insert B 3.3.6.3 3a                     l
Insert B 3.3.6.3 3a l
                                . . . logi cs . Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with           {
... logi cs. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with
several SRV tailpipe pressure switch instrument channels inoperable. Therefore, it is acceptable for plant operation to continue provided that within 24 hours, per Required k
{
g Action B.1 and B.2, verification and/or restoration is made s 5          i to ensure at least: a) one tailpipe pressure switch in each '
several SRV tailpipe pressure switch instrument channels inoperable. Therefore, it is acceptable for plant operation k
division OPERABLE on one OPERABLE SRV in the lowest SRV               q setpoint group; and at least 11 SRVs have at least one               o OPERABLE tailpipe pressure switch.
to continue provided that within 24 hours, per Required g
5 i
Action B.1 and B.2, verification and/or restoration is made s
to ensure at least: a) one tailpipe pressure switch in each division OPERABLE on one OPERABLE SRV in the lowest SRV q
setpoint group; and at least 11 SRVs have at least one o
OPERABLE tailpipe pressure switch.
J
J
&)""*W~         -                                  =: : .
&)""*W~
Insert B 3.3.6.3 3b
=: :.
                                                                                      ~~
-T
                                                                                              -T n
~~
O on 2'11 SRVs, including 4 SRVs out of the 5 lowest relief setpoint OPERABLE SRVs, D
Insert B 3.3.6.3 3b n
_,/                                                                                         1 FERMI UNIT 2           Page B 3.3 202 (Insert)           REVISION 14, 08/26/99l
O on 2'11 SRVs, including 4 SRVs out of the 5 lowest relief D
setpoint OPERABLE SRVs,
_,/
1 FERMI UNIT 2 Page B 3.3 202 (Insert)
REVISION 14, 08/26/99l


i LLS Instrumentation B 3.3.6.3 4
i LLS Instrumentation B 3.3.6.3 4*
BASES i
BASES tth 8.1,8.7_,and 6O )
tth
~
                                                                                                      ,3 ACTIONS    8.1,8.7_,and       6O )
,3 i
                                    -(md mued
ACTIONS
                                                                                                ~
-(md mued
( beservic restor     to OPERABLE st     s within the allowable out of me, Conditio         st be entered and its Required Acti                                                                         f aken. The Rpq red Actions do DDt' allow placing the c      els in trip lve actuation /s.ince this action egpfd result-in a LLS- j I
( be restor to OPERABLE st s within the allowable out of servic me, Conditio st be entered and its Required f
A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to                   -
Acti aken. The Rpq red Actions do DDt' allow placing the lve actuation /s.ince this action egpfd result-in a LLS-j els in trip c
LLS Function 3 channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent' divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within                   '
I A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to LLS Function 3 channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent' divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions h
limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional                           h failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory asures for separate inoperable Condition entry for each with inoperable tailpipe pressure swi}ches.                   ,l B
of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory asures for separate inoperable Condition entry for each with inoperable tailpipe pressure swi}ches.
If any Required Actio and associated Completion Time of Conditions A,X, or are not met, or two op-eare LLS valves 3             are inoperable due to inoperable channels, the LLS valves P, <3 m         may be incapable of performing their__ intended function.
,l B
              ,                Therefore,JhT-ass ciatea LLs va           must be   sarea       -
If any Required Actio and associated Completion Time of Conditions A,X, or are not met, or two op-eare LLS valves 3
gg7          rinoper>bre i         tely. A         alve is       LE if th (Tated     c (e.g.       ic A) ha       Functio         el, I
are inoperable due to inoperable channels, the LLS valves P, <3 m may be incapable of performing their__ intended function.
              $3 3 Q    6.3-$}
Therefore,JhT-ass ciatea LLs va must be sarea
a t[s  Fun    n 2 chan   s, and the       unction 3       als       J LOPERABtE. ,
$3 3 6.3-$}
                            ~
rinoper>bre i gg7 tely. A alve is LE if th a
SURVEILLANCE       Reviewer's Note: scrimin-Frequencies _are-brsytron approved REQUIREMENTS       topical reports. I         er-for a 1TcenYur-te na'the ciesv-t     censee must justify the.Frequeh %
(Tated c (e.g.
by the staff SER for the topical report                 _
ic A) ha Functio el, I t[sFun n 2 chan s, and the unction 3 als J
As noted at the beginning of the SRs, the SRs for each LLS instrumentation function are 1ccated in the SRs column of Table 3.3.6.3-1.
Q LOPERABtE.,
~
SURVEILLANCE Reviewer's Note: scrimin-Frequencies _are-brsytron approved REQUIREMENTS topical reports. I er-for a 1TcenYur-te na'the ciesv-t censee must justify the.Frequeh %
by the staff SER for the topical report As noted at the beginning of the SRs, the SRs for each LLS instrumentation function are 1ccated in the SRs column of Table 3.3.6.3-1.
(continued)
(continued)
BWR/4 STS.                             B 3.3-203                       Rev 1, 04/07/95 Rat N ll ReV(o
BWR/4 STS.
B 3.3-203 Rev 1, 04/07/95 Rat N ll ReV(o


INSERT THIS PAGE IN FRONT OF VOLUME 10
INSERT THIS PAGE IN FRONT OF VOLUME 10 etVolumme: 10 SECTIONS 3.9,3.10,4,8 & 5.01,
          ,                    etVolumme: 10 SECTIONS 3.9,3.10,4,8 & 5.01,               +
+
Remove                                       Replace 5.7 CTS M/U (6-23) pg 2 of 2                 5.7 CTS M/U (6-23) pg 2 of 2 Rev 14 5.7 DOCS pg i Rev 0                           5.7 DOCS pg i Rev 14 5.7 NUREG M/U pg 5.0-24 Rev 0                 5.7 NUREG M/U pg 5.0-24 Rev 14 1
Remove Replace 5.7 CTS M/U (6-23) pg 2 of 2 5.7 CTS M/U (6-23) pg 2 of 2 Rev 14 5.7 DOCS pg i Rev 0 5.7 DOCS pg i Rev 14 5.7 NUREG M/U pg 5.0-24 Rev 0 5.7 NUREG M/U pg 5.0-24 Rev 14 1
1 Rev 14           08/26/99
1 Rev 14 08/26/99


      ?*         ..                                      .
?*
High Radiation Area 45 7A           )
High Radiation Area 45 7A
                  .                  [5.7 HighRadiationArea]
)
s                                                                                                                         ~
[5.7 HighRadiationArea]
5.7.2 (continued) areas and the maximum allowable stay times for individuals in those areas. In lieu of the stay time specification of the RWP, direct or remote (such as closed circuit TV cameras) continuous                   d.1 surveillance may be made by personnel qualified in radiation
s
                              ~'
~
                                    /%                  protection procedures to provide positive exposure control over j                        the activities being performed within the area.
5.7.2 (continued) areas and the maximum allowable stay times for individuals in those areas. In lieu of the stay time specification of the RWP, direct or remote (such as closed circuit TV cameras) continuous d.1 surveillance may be made by personnel qualified in radiation
V' 5.7.3         -- T;r i.Jivia.1-iiive i.eimon areas wun rauintion-4evei. .T                       /
/
jpM00-eres/hry-access-ible4 ,         ...../.3, that are located within r   - large areas such as reactor containment, where no encibsure exists i                  for purposes of locking, er-that-eannet-be-<ontinuouc1;; ;nrf:f, ItJ5E/L7 and where no enclosure can be reasonably constructed around the P-                                 individual area, that individual area shall bet--                  and 5'7-1 conspicuously         posted, and a flashing light shall activated be'f=M as a warning device.                                       - -
protection procedures to provide positive exposure control over
                                    -                                                                  TD f b
~'
* s     -
the activities being performed within the area.
e sn                                     , _ ,
j V'
l i
5.7.3
5.0-24                   - "r? I, 00/e7pis-
-- T;r i.Jivia.1-iiive i.eimon areas wun rauintion-4evei..T
                                            """/ G -
/
l
jpM00-eres/hry-access-ible4,
...../.3, that are located within r
- large areas such as reactor containment, where no encibsure exists for purposes of locking, er-that-eannet-be-<ontinuouc1;; ;nrf:f, i
ItJ5E/L7 and where no enclosure can be reasonably constructed around the P-5'7-1 conspicuously posted, and a flashing light shall be'f=M individual area, that individual area shall bet--
and activated as a warning device.
TD f b
* s e sn i
"""/ G -
5.0-24
- "r? I, 00/e7pis-


SPECIFtcA770N 5 7 ADMINISTRATIVF CONTR0tS HIGH RADfATION AREA (Continued) g* g, ( , m . A radiation monitoring device which continuously indicates the radiation dose rate in the area.
SPECIFtcA770N 5 7 ADMINISTRATIVF CONTR0tS HIGH RADfATION AREA (Continued) g* g, (, m.
6,7 (. b.       A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made knowledgeable of them.
A radiation monitoring device which continuously indicates the radiation dose rate in the area.
: 07. l .c.       A radiation protection qualtfled individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP.
6,7 (. b.
g#,pfn43.2_ In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could                   I receive in I hour a dose equivalent greater than 1000 mress but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear Shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay .
A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made knowledgeable of them.
time for individuals in that area / Tor individual areas accessible to individuals with radiation levels such that a major portion of the T'7 *.5   individual's body could receive in I hour a dose in excess of 1000 mress* but
: 07. l.c.
~ . -        _            less than 500 rads at one meter from sources of radioactivity that are located-             __
A radiation protection qualtfled individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP.
-     -'                  within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the               ,
g#,pfn43.2_ In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could receive in I hour a dose equivalent greater than 1000 mress but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear Shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay.
individual areas, then that area shall be roped off2cons                                      j
time for individuals in that area / Tor individual areas accessible to individuals with radiation levels such that a major portion of the T'7 *.5 individual's body could receive in I hour a dose in excess of 1000 mress* but less than 500 rads at one meter from sources of radioactivity that are located-
_ a flashing licht shall be__ activated as a warning device             /picuously In lieu          posted, and of the stay time specification of the RWP, continuous survel u ance, direct or remote (such 6 7.2 as use of closed circuit TV cameras) may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities within the area.
~. -
                        - 5.13 leu w             g,/
within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the
_ a flashing licht shall be__ activated as a warning device /picuously posted, and j
individual areas, then that area shall be roped off cons 2
In lieu of the stay time specification of the RWP, continuous survel u ance, direct or remote (such 6 7.2 as use of closed circuit TV cameras) may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities within the area.
- 5.13 leu w g,/
G7 3 yneasurement made at 30 centimeters from source of radioactivity.
G7 3 yneasurement made at 30 centimeters from source of radioactivity.
f"       alternas     utte may M
M f"
designated for thif position. All rendirementi)-         l of ese Tec         al Specific ons apply in the teettina with the mMarnattva_)               !
alternas utte may designated for thif position. All rendirementi)-
1t     e an an v with the se ifted title / Alternative titles shall be                         i specified in 'the Updated Final Safety Analysis Report.
of ese Tec al Specific ons apply in the teettina with the mMarnattva_)
            "                                                                      Amendment No. JJ JJ, JJ FERMI - UNIT 2                            6 23 113
1t e an an v with the se ifted title / Alternative titles shall be specified in 'the Updated Final Safety Analysis Report.
                                                                          ,Q     of PAGE 02                     $V N
FERMI - UNIT 2 6 23 Amendment No. JJ JJ, JJ 113 PAGE
,Q of 02
$V N


DISCUSSION OF CHANGES ITS: SECTION 5.7 - HIGH RADIATION AREA ADMINISTRATIVE A.1       In the conversion of the Fermi 2 current Technical Specifications (CTS) to the pre osed plant specific Improved Technical Specifications (.TS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433. Rev. 1.
DISCUSSION OF CHANGES ITS: SECTION 5.7 - HIGH RADIATION AREA ADMINISTRATIVE A.1 In the conversion of the Fermi 2 current Technical Specifications (CTS) to the pre osed plant specific Improved Technical Specifications (.TS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433. Rev. 1.
A.2       CTS 6.12.1 has been modified to better clarify the wording and provide correct section reference to 10 CFR 20.1601 (i.e. "c")
A.2 CTS 6.12.1 has been modified to better clarify the wording and provide correct section reference to 10 CFR 20.1601 (i.e.
"c")
for regulatory guidance on High Radiation Areas. Since the requirements are not changed. this is an administrative change with no impact on safety.
for regulatory guidance on High Radiation Areas. Since the requirements are not changed. this is an administrative change with no impact on safety.
A.3         CTS 6.12.1.c footnote has been modified in a Note to ITS 5.0 which clarifies the wording and intent of this CTS footnote. Since this is a clarification of intent which is consistent with current Technical Specifications. this change is administrative and will not impact safety.
A.3 CTS 6.12.1.c footnote has been modified in a Note to ITS 5.0 which clarifies the wording and intent of this CTS footnote. Since this is a clarification of intent which is consistent with current Technical Specifications. this change is administrative and will not impact safety.
~' ' ''     ~
~' ' ''
A.4         Not used.                                                           l TECHNICAL CHANGES     MORE RESTRICTIVE None l
~
FERMI - UNIT 2                         1                 REVISION 14 08/26/99l
A.4 Not used.
l TECHNICAL CHANGES MORE RESTRICTIVE None FERMI - UNIT 2 1
REVISION 14 08/26/99l


l                               INSERT THIS PAGE IN FRONT OF VOLUME 11 l                         ::p '
l INSERT THIS PAGE IN FRONT OF VOLUME 11 l
: Velmane lli CTS MARKUP COMPILATIONi ,
::p
l                               Remove                                       Replace 1 1 (1.0 CTS M/U) pg I of 14 Rev 6             1-1 (1.0 CTS M/U) pg i of 14 Rev 14 3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 12     3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 14 6-23 (5.7 CTS M/U) pg 2 of 2 Rev 0             6-23 (5.7 CTS M/U) pg 2 of 2 Rev 14 l
: Velmane lli CTS MARKUP COMPILATIONi,
l Remove Replace 1 1 (1.0 CTS M/U) pg I of 14 Rev 6 1-1 (1.0 CTS M/U) pg i of 14 Rev 14 3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 12 3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 14 6-23 (5.7 CTS M/U) pg 2 of 2 Rev 0 6-23 (5.7 CTS M/U) pg 2 of 2 Rev 14 l
i l
i l
l l
l Rev 14 08/26/99 l
Rev 14         08/26/99 l
l
l


Sgtc\4ea % I.o 4te OA.I                       ,+       s m %                             f*I
Sgtc\\4ea % I.o OA.I f*I
            -                     M
,+ s m %
                                  --; .7 DEFINIT 10NS                   =                               -w W                                                 \
M 4te
taepect1tt h Nf tt m -
-w
th f ..o__,
--;.7 DEFINIT 10NS
                                      .m.,e,,le       ..g h.ir ,wc-
=
_      m. A feetW-M 41 e,i rw;oThe defined terstw(sppear in capitali2co ;.c
W
                                                                          ..u...'
\\taepect1tt h Nf tt m -
e :1_l' i. applicable throughout these Technical Specifications."'QsQ5 (MPfdede h65p ACT10N hall be that part of a Spec ication                         prescribes remed4a3
.m.,e,,le..g h.ir,wc-A feetW-M 41 e,i rw;oThe defined terstw(sppear in capitali2co ;.c th f
                                    +- ACTI
..o__,
:::: r;; :;'-ed               der design _ated e se -lo %
m.
nditions h QLiMin rPre; fred Comp!
..u...'
r                 -
e :1_l' i. applicable throughout these Technical Specifications."'QsQ5 (MPfdede h65p ACT10N +- ACTI hall be that part of a Spec ication prescribes remed4a3 e se -lo %
[.7
QLiMin rPre; fred Comp!
                                    ,                                            P
:::: r;; :;'-ed der design _ated nditions h r
                                    ! AVERAGE PLARAR EXPOSURE                                           pplicable        a specifi lana            ight 1.2            AVERAGE kANAREXPOURfshall                                                    in d is e         to the s of the e sure of a idedhe                    fuel by th     umber f fuel rods)
1.2 AVERAGE kANAREXPOURfshall pplicable a specifi lana ight [.7 P
L          specif        bundle          he s          d_heicht                                              ~
! AVERAGE PLARAR EXPOSURE d is e to the s of the e sure of a he fuel in specif bundle he s d_heicht ided by th umber f fuel rods) k in t e fuel bund 1 ( pecif L
k in t e fuel bund 1 ( pecif AVIRAGE             PLANAR LfNEAR HEAT GENERAT'ON RATE b N The MCT_^I: .Lfi'" L:.'C'a "E* M ENERATiON-RATE APLHGR shall be applicable hk
~
                  - - _ --          --          to a specific planar height and is equal to the sum of the tfMEAR-MEAf all devius ta                   GENEMTIZ 37ES for all the fuel rods in the specified bundle at the specified height divided by the number of fuel 9 s,in _the fuel bundle.
AVIRAGE PLANAR LfNEAR HEAT GENERAT'ON RATE b N The MCT_^I:.Lfi'" L:.'C'a "E* M ENERATiON-RATE APLHGR shall be applicable hk to a specific planar height and is equal to the sum of the tfMEAR-MEAf all devius ta GENEMTIZ 37ES for all the fuel rods in the specified bundle at the
                'b^*Wilf                                                        NE                                 -
'b^*Wilf specified height divided by the number of fuel 9 s,in _the fuel bundle.
CHANNEL CAlfBRATION.
NE CHANNEL CAlfBRATION.
                      "d               -1,4- A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel C                            output such that it responds with he necessary range and accuracy to known values of the_ parameter                   the channel monitors. The CHANNEL CALIBRATION snail encompass
"d
* ti:                  ""-- ' f : ? .d ! .., .- .....m , j ;;;.; M '
-1,4-A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with he necessary range and accuracy to known values of the_ parameter the channel monitors. The CHANNEL CALIBRATION C
The CHANNEL tijn f_..:ti:::.f:: ::t' :ir.;'.d[theCHANNELFUNCTIONAL u..!                                                     _apping or pMOg g                   CALIBRATION may be performed byFany series of sequential,
""-- ' f : ?.d !..,.-
.....m, j ;;;.; M '
tijn f_..:ti:::.f:: ::t' :ir.;'.d[theCHANNELFUNCTIONAL The CHANNEL snail encompass
* ti: u..!
pMOg g CALIBRATION may be performed byFany series of sequential,
_apping or
::tir; i... :1 i; ;;t '.i. ___1/Cauprauen j
::tir; i... :1 i; ;;t '.i. ___1/Cauprauen j
                              '' ,''' @ total             channel             stees   ib!'c:er.eiet
'',''' @ total channel stees c :5 th:t th:f iistrument channels with thermocouple sensors ib!' :er.eiet ef in'f t: tier, ef gn;b'1't; ef-the l
:5 th:tef th:fin'f t:iistrument         channels             with
- - = =e*, of_ n* e-aiainn adiuttabi l
                                          "      thermocouple             sensors                                   tier, ef gn;b'1't;     ef-the           l of_ n* e-aiainn adiuttabi
sens ing-element-end-edjus.-..
                                                                                                - - = =e*,
devicesinthechannel,f" casiose of arz inpta e g&Wxe
sens ing-element-end-edjus.-..                                                                               l devicesinthechannel,f"                         =
=
casiose of arz inpta e g&Wxe CHANNEL CHECK may//TS,$
may//TS,$ M #
M#                 *
CHANNEL CHECK of channel behavior
                                        -h5- A CHANNEL CHECK shall be the qualitat1~ve assessmen of channel behavior This determinat        shall include, where during operation.4 et;c;;ti::                 .
-h5-A CHANNEL CHECK shall be the qualitat1~ve assessmen shall include, where This determinat during operation.4 et;c;;ti::
possible, comparison of the channel indication a M. status -witkother indications andfor status derived from independ nt in trument chalinels                               o measuring the same parameter.                                             E6s CHANNEL FUNCTIONAL TEST                                                     7,
M. status -witkother possible, comparison of the channel indication a indications andfor status derived from independ nt in trument chalinels E6s o
                                          -h 6
measuring the same parameter.
* ANNEL FUNCTIONAL TEST shallybel L "!"# #
CHANNEL FUNCTIONAL TEST ANNEL FUNCTIONAL TEST shallybel L "!"# #
A.
7,
94 ottsteeius intkcckennel s.3               ^-'1r; :h::: h 5theinjectionofasimulate signal into the channel as close to the sensor as practicable to verify 0PERABILIT('t&d't;;           '
-h 6
regvind for                       ...            . . ! " a 4"ar " aa ' *ad d'---! fdl.. . L lr .e chaand o n 48 mTY b ---8-itteb!e         channels---the-4adest4on-ef-a44mulated e47=1 tuer4fv OPERABIL!TY--Sncludb; :1:rs-and/or-trip.functrions,                             ,, l   liidVtMr 3
* 94 ottsteeius A.
The CHANNEL FUNCTIONAL TEST may be performed byaany series                               of sequential, overlappingor total channel steps vndr%=+-%e'..'' :
intkcckennel s.3^-'1r; :h::: h 5theinjectionofasimulate signal into the channel as close to the sensor as practicable to verify 0PERABILIT('t&d't;;
                                                                                                                                      ---' H t- t-d.              g ea 72S of 11                                  ndment No. 41 FERMI     UNIT 2-I_
regvind for
b*I PAGE                   0F         14                         h4 l-
.. ! " a 4"ar " aa ' *ad d'---! fdl... L lr.
                                                                                                                                              -O Mw         mm
e chaand b ---8-itteb!e channels---the-4adest4on-ef-a44mulated e47=1 liidVtM o n 48 mTY tuer4fv OPERABIL!TY--Sncludb; :1:rs-and/or-trip.functrions,
,, l 3
The CHANNEL FUNCTIONAL TEST may be performed byaany series of sequential, g
---' H t-t-d.
overlappingor total channel steps vndr%=+-%e'..'' :
ea 72S of ndment No. 41 FERMI UNIT 2-11 b*I PAGE I_
0F 14 h4 l-
-O Mw mm


spec micATioe> 3 3.Ol l                 -r                 %
spec micATioe> 3 3.Ol l
                                                      .-              .S -lMy                     -
-r
r-           .
.S -lMy r-1 T
1 T                     s                               eno e we o o-s.)                       g -*            % --
s eno e we o -
erd & ; g 4 0 g-v                              ooceo, o                 omom%    u                                                         -        --
s.)
g                                                                                 go sp o oOO l
omom%
RRRRA           RRRR R RR RA                                   RRKKMA a       a     a                 ai               k 5       $      $                  $$                $
erd & ; g 4 0 g-
t~           amm a           amm               a     am     na             mmmmmm 5           $$            asha             d4N a da da                                   a4444a
: ooceo, o
:::i : :: .:.:                                 .: :.: .::
g o
Ex 55            :::i:
u v
w 1         , ,_
g go sp o oOO l
                              =        ,
RRRRA RRRR R RR RA RRKKMA a
oo      :                                          :  <
a a
W n.
ai k
                                                                                                                        ~ ~g=
5 t~
q MN% iM'h                                   N66*,%                                 ~~
amm a amm a am na mmmmmm 5
h,        g g                                                                n m,        -    o          1 n= A) p rv>                               .u-a         ww rh                       !,
asha d4N a da da a4444a E
Y4 M
55
g W=.
:::i:
I Eu x
:::i : ::.:.:
e <v     z O
x w
C              .g 4  '
1 h,
4                        .
g g q MN%
E                               5
iM'h N66*,%
                %: E                                         E        ,,,, , ,                g;                 ,
W ~ ~g=
n.
oo
=
~~
n ww 1
n= A) p rv>
.u-o a
m, M rh I
Y4 O
4 4
g
. W=Eu e
<v C
.g x
z E
E 5
E g;
so
so
                      . 0; -                      _
- - p7 ) q ~ ~ L j. 0; -
g                -- ...
z _
- - e.p7 ) q ~ ~ L ,<g j   -
g_ e g g
m        ,,_    z _ g_ e g                           _
m e.
,<g
?
l
#C E kS 2
5
5
                          ~                       ?        l        #C E kS                                    2 3 5%"
~
g                      3                                          .et          -
.et 3 5%"
w                        .E"      o          ,    "! 5 ~R =%
" 5 ~R."
                                                                                              ."           5
5.
                                                                                                            ~
'E '
                                                                                                                  . 'E '  '
g 3
w 8
.E o
m       -
w
g : ' * ' 's 3 t                 2 t : E tt                           02 E u "ab 5%"                            l g                        u R-     E u 5 u 5 Rt-                                  7:1
~
=%
w m
8 g : ' * '
's 3 t 2 t : E tt 02 5%"
5 Rt-E "ab 5 u R-E u u
g u
tg
*%:2 03%03 : C8 7:1
* M i.%
* M i.%
tg                      *%:2    03%03 : C8                                      W
W GEC2" GEt; 2 GEL GHL LEB E
                          =                      GEt;     2 GEL GHL LEB                                   E GEC2" E                        g. O     G         3.E         3-              t      -
=
: g. 5%                            i a e 3' E i 3.E 3?E32$                            -                                        I amhEE~ L: E             8             S  ET'5":8       E          8k8 x    35: 5
3?E32$
::ST:E5"tEt3                                   :~.' :
g.
W .C.222"e g        m      8 v
5%
22:2;;28252 w a.m     = m m ; ; 2 g g
I 3-t i
j wa  it.g;8;"m
E O
                                                                                                                                >c 8: : ._ =             :: 3 a = =.e- s ::sen-                                                       ,
G 3.E amhEE~ 3.E g.
w      < E b kbk !m b k..b!Ek
a e 3' E i ET'5":8 E
                                                                              . - - --    !5.,
8k8 S
E!       h a   -omm-xbhb!!
L: E 8
                                              ] mo- -l
:~.' :
                                                              <--                                             a (n       '--
g it.g;8;"
u      kbb                 k         *b     b Nh                     k b b'b b N w s
35: 5
                              $g       !E. .:                 4
::ST:E5"tEt3 xW.C.222"e 8 22:2;;28252 m
                                                                        $$bl Wlb                              k d@dM f2 FERMI - UNIT 2 3}3g}w 3/4 3 24 1
j wa
    #                                                                                                                            (ennar Pnft gkt-33 5 PAGE               il           0F           08                   (   Rev IL /       1 sev 14 I       l
>c w a.m
= m m ; ; 2 g m
v g
8: :._ = :: 3 a = =.e-s ::sen-
< E b kbk ! b k..b!Ek !5.
E!
h bhb!!
a -omm-x w
m -l
] mo-a (n
kbb k
*b b Nh k b b'b b N u
w s
$$bl Wlb k d@dM
$g
!E..:
4 f2 3}3g}w FERMI - UNIT 2 3/4 3 24 1
(ennar Pnft gkt-3 5 PAGE il 0F 08
(
Rev IL /
3 sev 14 I


SPECIF(CA7BN 5 7 ADMINISTRATIVE CONTROLS HIGHRADfATIONAREA(Contir.ued) a
SPECIF(CA7BN 5 7 ADMINISTRATIVE CONTROLS HIGHRADfATIONAREA(Contir.ued)
                    #*6;      $      A r u ~. ^ ica <enstort .g devu dich er l ~ .h ' A M             -
A r u ~ ^ ica <enstort.g devu dich er l ~.h ' A M a
radiation case rate in the area.
#*6; radiation case rate in the area.
6 7.(. b.         A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made howledgeable of them.
6 7.(. b.
f,7. l .c.     A radiation protection qualified individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP.
A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made howledgeable of them.
p#1-frrE2 In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could receive in I hour a dose equivalent greater than 1000 areas but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay .
f,7. l.c.
time for individuals in thau area.fTo~r individual areas accessible to I'7'3 individuals individual'swithbodyradiation  levels in could receive  such that I hour  a ma,jor a dose       portion in excess   of of thearens* but 1000 less than 500 rads at one meter from sources of radioactivity that are located within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the individual areas, then that area shall be roped-off, consolcuously posted, and
A radiation protection qualified individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP.
p#1-frrE2 In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could receive in I hour a dose equivalent greater than 1000 areas but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay.
time for individuals in thau area.fTo~r individual areas accessible to I'7'3 individuals with radiation levels such that a ma,jor portion of the individual's body could receive in I hour a dose in excess of 1000 arens* but less than 500 rads at one meter from sources of radioactivity that are located within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the individual areas, then that area shall be roped-off, consolcuously posted, and
_a flashino licht shall be activated as a warning device / In lieu of the stay slee specification of the RWP, continuous surveillance, direct or remote (such 5,7.2. as use of closed circuit TV cameras) may be made by personnel qua11ried in radiation protection procedures to provide positive exposure control over the activities within the area.
_a flashino licht shall be activated as a warning device / In lieu of the stay slee specification of the RWP, continuous surveillance, direct or remote (such 5,7.2. as use of closed circuit TV cameras) may be made by personnel qua11ried in radiation protection procedures to provide positive exposure control over the activities within the area.
0.13 DEuw           ~ g,[
0.13 DEuw
G7 3 _=neasurement made at 30 centimeters from source of radioactivttv.                   .      4.
~ g,[
f=       alternau     utie may       cesignated for thty position. All rJeiremen of     se Tech     a1 Specift     ons apply ta *ke #aettian with the anernative it     a as ma~      with the en ified tit 1*IAlternative titles shall be s)ecified 1'n 'the Updated Final Safety Analysis Report.
G7 3 _=neasurement made at 30 centimeters from source of radioactivttv.
        .''              FERMI - LRl!T 2                           6-23           Amendment No. JJ, M , #
4.
113
f=
                                                                        ,Q PAGE            _
alternau utie may cesignated for thty position. All rJeiremen of se Tech a1 Specift ons apply ta *ke #aettian with the anernative it a as ma with the en ified tit 1*IAlternative titles shall be s)ecified 1'n 'the Updated Final Safety Analysis Report.
0F       02                     /WN
~
FERMI - LRl!T 2 6-23 Amendment No. JJ, M, #
113 PAGE
,Q 0F 02
/WN


INSERT TIIIS PAGE IN FRONT OF VOLUME 12
INSERT TIIIS PAGE IN FRONT OF VOLUME 12
                      ) Volume 12: IMPROVED TECHNICAL SPECIFICATIONS" Remove                                       Replace 1.0 ITS pg 1.12 Rev 6                       1.0 ITS pg 1.1-2 Rev 14 3.3.5.1 ITS pg 3.3-41 Rev 12                 3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12                 3.3.5.1 ITS pg 3.3-43 Rev 14 3.3.5.1 ITS pg 3.3-44 Rev 12                 3.3.5.1 ITS pg 3.3-44 Rev 14 3.3.t : ITS pg 3.3 65 Rev 13                 3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6                   3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6                   3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 I
) Volume 12: IMPROVED TECHNICAL SPECIFICATIONS" Remove Replace 1.0 ITS pg 1.12 Rev 6 1.0 ITS pg 1.1-2 Rev 14 3.3.5.1 ITS pg 3.3-41 Rev 12 3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12 3.3.5.1 ITS pg 3.3-43 Rev 14 3.3.5.1 ITS pg 3.3-44 Rev 12 3.3.5.1 ITS pg 3.3-44 Rev 14 3.3.t : ITS pg 3.3 65 Rev 13 3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6 3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6 3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 l
l Rev 14         08/26/99
Rev 14 08/26/99


4 Definitions 1.1 1.1 Definitions (continued)
4 Definitions 1.1 1.1 Definitions (continued)
CHANNEL CHECK             A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include. where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter.
CHANNEL CHECK A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include. where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter.
CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection G                             of a simulated or actual signal into the channel as close to the sensor as practicable to verify h                             OPERABILITY of all devices in the channel required Y                             for channel 0PERABILITY. A CHANNEL FUNCTIONAL TEST may be performed by means of any series of gl                             sequential, overlapping, or total channel steps.
CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection G
CORE ALTERATION           CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:
of a simulated or actual signal into the channel as close to the sensor as practicable to verify h
: a. Movement (including replacement) of source range monitors, local power range monitors,
OPERABILITY of all devices in the channel required Y
'~'                   ~
for channel 0PERABILITY. A CHANNEL FUNCTIONAL TEST may be performed by means of any series of gl sequential, overlapping, or total channel steps.
intermediate range monitors, traversing incore probes, or special movable detectors: and
CORE ALTERATION CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:
: b. Control rod movement, provided there are no fuel assemblies in the associated core cell.
a.
Movement (including replacement) of source range monitors, local power range monitors, intermediate range monitors, traversing incore
'~'
~
probes, or special movable detectors: and b.
Control rod movement, provided there are no fuel assemblies in the associated core cell.
Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
(continued) l FERMI   UNIT 2                       1.1 2             Revision 14   08/26/99
(continued) l FERMI UNIT 2 1.1 2 Revision 14 08/26/99


ECCS Instrumentation 3.3.5.1
ECCS Instrumentation 3.3.5.1
                                                                  .abl. .,. - .1 1 space i s . t,i
.abl..,. -.1 1 space i s. t,i
              )                                         Emergency Core Cooling System Instrumentation APPLICABLE                     CONDITIONS NODES         REQUIRED     REFERENCED OROTER           CHANNELS         FRON SPECIFIED           PER       REQUIRED StRVEILLANCE   ALLOWABLE COWITIONS         RMCTION     ACTION A.1 REQUIREENTS       VALUE RmCTION
)
: 1. Core Spray System
Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS NODES REQUIRED REFERENCED OROTER CHANNELS FRON SPECIFIED PER REQUIRED StRVEILLANCE ALLOWABLE RmCTION COWITIONS RMCTION ACTION A.1 REQUIREENTS VALUE 1.
: a. Reactor Vessel Water         1.2.3           4(b)             B   SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.                                               SR 3.3.5.1.2 Level 1                   4(a). 5(a)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
Core Spray System a.
: b. Drywell                     1.2.3           4(b)             B   SR 3.3.5.1.1 s 1.88 psig Pressure - High                                                     SR 3.3.5.1.2 SR 3,3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Q          c. Reactor Steam Dome Pressure - Low (Injection Perwissive) 1.2.3             4             C   SR 3.3.5.1.1 TR 3.3.5.1.2 SR 3.3.5.1.3
Reactor Vessel Water 1.2.3 4(b)
                                                                                                                    = 441 psig A                                                                                  SR 3.3.5.1.4 LD QC SR 3.3.5.1.5 4(a),5(a)           4               B   SR 3.3.5.1.1 = 441 psig SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.
SR 3.3.5.1.2 Level 1 4(a). 5(a)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.
Drywell 1.2.3 4(b)
B SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 SR 3,3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c.
Reactor Steam Dome 1.2.3 4
C SR 3.3.5.1.1
= 441 psig Q
Pressure - Low TR 3.3.5.1.2 A
(Injection Perwissive)
SR 3.3.5.1.3 LD SR 3.3.5.1.4 SR 3.3.5.1.5 QC 4(a),5(a) 4 B
SR 3.3.5.1.1
= 441 psig SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
'"1p d.. Manual Initiation 1.2.3 2(CL C
SR 3.3.5.1.6 NA
" - ' ~ * ' "
" - ' ~ * ' "
              '"1p          d.. Manual Initiation            1.2.3            2(CL ,
k 4(a),$(s) 2.
C  SR 3.3.5.1.6  NA k                                         4(a),$(s)
Low Pressure Coolant Injection (LPCI) System a.
: 2. Low Pressure Coolant Injection (LPCI) System
Reactor Vessel Water 1.2.3.
: a. Reactor Vessel Water         1.2.3.             4             B   SR 3.3.5.1.1 e 24.8 inches Level- Low Low Low.                                                 SR 3.3.5.1.2 Level 1                   4(a). 5(a)                               SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued)
4 B
SR 3.3.5.1.1 e 24.8 inches Level-Low Low Low.
SR 3.3.5.1.2 Level 1 4(a). 5(a)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued)
(a) When associated subsystem (s) of LC0 3.5.2 are required to be OPERABLE.
(a) When associated subsystem (s) of LC0 3.5.2 are required to be OPERABLE.
p     (b) Also required to initiate the associated emergency diesel generator (EDG).
p (b) Also required to initiate the associated emergency diesel generator (EDG).
e4
e4 (c) Individual component cows.
                  --    (c) Individual component cows.
L l FERMI - UNIT 2 3.3 41 Revision 14 08/26/99
L l FERMI - UNIT 2                                           3.3 41                 Revision 14       08/26/99


1 i
i ECCS Instrumentation 3.3.5.1 Ta',is J.J.o. M (page 3 of o)
ECCS Instrumentation     '
Emergency Core Cooling System Instrianentation APPLICABLI CONDITIONS MODES OR REQUIRED REFERENCED OTMR CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDIIIONS FUNCTION ACTION A.1 REQUIREMENTS VALUE
3.3.5.1 Ta',is J.J.o. M (page 3 of o)
\\n 2.
Emergency Core Cooling System Instrianentation APPLICABLI                 CONDITIONS MODES OR       REQUIRED   REFERENCED OTMR         CHANNELS     FROM SPECIFIED         PER     REQUIRED       SLRVEILLANCE   ALLOWABLE FUNCTION             CONDIIIONS       FUNCTION   ACTION A.1     REQUIREMENTS       VALUE
LPCI System (continued) s h.
        \n     2. LPCI System (continued) s
Manual Initiation 1.2.3 2(C)
: h. Manual Initiation           1.2.3           2(C)         C         SR 3.3.5.1.6 NA 1'
C SR 3.3.5.1.6 NA 1
4(a). 5(a)
4(a). 5(a) 3.
: 3. High Pressure Coolant In,)ection (tPCI) System
High Pressure Coolant In,)ection (tPCI) System
        ^         a. Reactor Vessel Water         1.             4           B         SR 3.3.5.1.1 a 103.8         i Level - Low Low.                                                   SR 3.3.5.1.2 inches         l l            Level 2                 2(d), 3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5
^
: b. Drywell                       1,             4           B         SR 3.3.5.1.1 s 1.88 psig Pressure - High                                                     SR 3.3.5.1.2                 l l                                    2(d)3(d)                                   SR 3.3.5.1.3                 l SR 3.3.5.1.4 SR 3.3.5.1.5
a.
: c. Reactor Vessel Water         1,             2           C         SR 3.3.5.1.1 s 219 inches
Reactor Vessel Water 1.
      &                Level - High. Level 8                                               SR 3.3.5.1.2 Ol                                         2(d). 3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4
4 B
    )                                                                                       SR 3.3.5.1.5 Q           d. Condensate Storage Tank Level - Low
SR 3.3.5.1.1 a 103.8 i
: 1.             2           D         SR 3.3.5.1.1 SR 3.3.5.1.2
Level - Low Low.
                                                                                                          = 0 inctes     1 (l                                         2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4                   l SR 3.3.5.1.5
SR 3.3.5.1.2 inches l
: e. Suppression Pool Water       1,             2           D         SR 3.3.5.1.1 s 5.0 inches Level - High                                                       SR 3.3.5.1.2 Nl                                       2(d), 3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) n b.
Level 2 2(d), 3(d)
g     (a) When the associated subsystem (s) are required to be OPERABLE.
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.
Drywell 1,
4 B
SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l
2(d)3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c.
Reactor Vessel Water 1,
2 C
SR 3.3.5.1.1 s 219 inches Level - High. Level 8 SR 3.3.5.1.2 Ol 2(d). 3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4
)
SR 3.3.5.1.5 Q
d.
Condensate Storage 1.
2 D
SR 3.3.5.1.1
= 0 inctes 1
(l 2(d),3(d)
SR 3.3.5.1.3 Tank Level - Low SR 3.3.5.1.2 SR 3.3.5.1.4 SR 3.3.5.1.5 e.
Suppression Pool Water 1,
2 D
SR 3.3.5.1.1 s 5.0 inches Level - High SR 3.3.5.1.2 Nl 2(d), 3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) n b.
g (a) When the associated subsystem (s) are required to be OPERABLE.
M (c) Individual conponent controls, g l (d) With reactor steam dame pressure > 150 psig.
M (c) Individual conponent controls, g l (d) With reactor steam dame pressure > 150 psig.
s l FERMI       UNIT 2                                   3.3 43                     Revision 14, 08/26/99
s l FERMI UNIT 2 3.3 43 Revision 14, 08/26/99


ECCS Instrumentation 3.3.5.1 Table 3.J.ti.41 (p.,ge 4 of 6)
ECCS Instrumentation 3.3.5.1
  ..)                                              Emergency Core Cooling System Instrtamentation APPLICABLE                   ColOITIONS MOKS OR       REQUIRED     REFERENCED OTER       CHANNELS         FROM SPECIFIED         PER       REQUIRED     SLRVEILLANCE   ALLOWABLE FUNCTION             CONDITIONS     FUNCTION     ACTION A.1     REQUIREENT5       VALUE y g
..)
: 3. }PCI System (continued) k             f. Manual Initiation           1, 2(d),3(d) 1(C)           C       SR 3.3.5.1.6 NA
Table 3.J.ti.41 (p.,ge 4 of 6)
: 4. Autunatic Depressurization System (ADS) Trip System A
Emergency Core Cooling System Instrtamentation APPLICABLE ColOITIONS MOKS OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENT5 VALUE y
          'l           a. Reactre Vessel Water Level- Low Low Low.
3.
: 1.              2             E       SR 3.3.5.1.1 SR 3.3.5.1.2
}PCI System (continued) g k
                                                                                                              = 24.8 inches l             Level 1                 2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l         b. Drywell                     1.             2             E       SR 3.3.5.1.1 s 1.88 psig Pressure - High                                                     SR 3.3.5.1.2 l                                     2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l         c. Automatic                     1.             1             F       SR 3.3.5.1.2 s 117 seconds Depressurization                                                   SR 3.3.5.1.4
f.
  '"N         l             System initiation       2(d).3Id)                                 SR 3.3.5.1.5
Manual Initiation 1,
    }d!l liner
1(C)
: d. Reactor Vessel Water           1.             1             E       SR 3.3.5.1.1 a 171.9 Level- Low. Level 3                                                 SR 3.3.5.1.2 inches (Confirmatory)           2(d),3(d)                                 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l         e. Core Spray Ptsip             1,       1 per ptmp         F       SR 3.3.5.1.1 a 125 psig il               Discharge Pressure - High         2(d),3(d)
C SR 3.3.5.1.6 NA 2(d),3(d) 4.
SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G                                                                                                       (continued)
Autunatic Depressurization System (ADS) Trip System A
'l a.
Reactre Vessel Water 1.
2 E
SR 3.3.5.1.1
= 24.8 Level-Low Low Low.
SR 3.3.5.1.2 inches l
Level 1 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l
b.
Drywell 1.
2 E
SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l
2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l
c.
Automatic 1.
1 F
SR 3.3.5.1.2 s 117 seconds Depressurization SR 3.3.5.1.4
'"N l
System initiation 2(d).3Id)
SR 3.3.5.1.5
}d liner d.
Reactor Vessel Water 1.
1 E
SR 3.3.5.1.1 a 171.9 Level-Low. Level 3 SR 3.3.5.1.2 inches
!l (Confirmatory) 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l
e.
Core Spray Ptsip 1,
1 per ptmp F
SR 3.3.5.1.1 a 125 psig Discharge SR 3.3.5.1.2 il Pressure - High 2(d),3(d)
SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G
(continued)
(c) Individual component controls.
(c) Individual component controls.
Q l (d) With reactor steam dame pressure > 150 psig.
Q l (d) With reactor steam dame pressure > 150 psig.
l s
l s
s l FERMI         UNIT 2                                 3.3 44                       Revision 14, 08/26/99 j
s l FERMI UNIT 2 3.3 44 Revision 14, 08/26/99 j
x
x


e 4
e 4
LLS Instrumentation 3.3.6.3
LLS Instrumentation 3.3.6.3
  )     3.3 INSTRlMEhTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3       The LLS valve instrumentation for each Function in Table 3.3.6.31 shall be OPERABLE.
)
APPLICABILITY:   MODES 1. 2. and 3.
3.3 INSTRlMEhTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.31 shall be OPERABLE.
ACTIONS CONDITION                     REQUIRED ACTION           COMPLETION TIME A. One LLS valve           A.1       Restore channel (s) to   14 days inoperable due to                 OPERABLE status, inoperable channel (s).
APPLICABILITY:
MODES 1. 2. and 3.
ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A.
One LLS valve A.1 Restore channel (s) to 14 days inoperable due to OPERABLE status, inoperable channel (s).
(continued)
(continued)
.~                     ...
.~
l I
i l FERMI UNIT 2 3.3 65 Revision 14 08/26/99 1
l i
l FERMI   UNIT 2                         3.3 65               Revision 14   08/26/99 1


t LLS Instrumentation
t LLS Instrumentation
                                                                                                ~
~
3.3.6.3
3.3.6.3
    )       ACliONS (continued)
)
COM)ITION                     REQUIRED ACTION                   COMPLETION TIME 7
ACliONS (continued)
3      B.   - - -- NOTE------    -
COM)ITION REQUIRED ACTION COMPLETION TIME 3
B.1           Restore one tailpipe             24 hours
7 B.
* Separate Condition                     pressure switch for entry is allowed for                   11 OPERABLE SRVs to each SRV.                               OPERABLE STATUS.
- - -- NOTE------
            %                                E One or more safety /
B.1 Restore one tailpipe 24 hours Separate Condition pressure switch for entry is allowed for 11 OPERABLE SRVs to each SRV.
                  . relief valves (SRVs)     B.2           Restore one tailpipe             24 hours
OPERABLE STATUS.
{         with one or more Function 3 channel (s) inoperable.
E One or more safety /
pressure switch in each Division for an OPERABLE SRV in the lowest setpoint group, to OPERABLE
. relief valves (SRVs)
          >                                                status.
B.2 Restore one tailpipe 24 hours
{
with one or more pressure switch in Function 3 channel (s) each Division for an inoperable.
OPERABLE SRV in the lowest setpoint group, to OPERABLE status.
E
E
                                            ............N0TE             --- --------
............N0TE LCO 3.0.4 is not applicable.
LCO 3.0.4 is not applicable.
~b B.3
~b                   -
. Restore both tailpipe Prior to
B.3         . Restore both tailpipe pressure switches for Prior to entering MODE 2
'I pressure switches for entering MODE 2
                                                                                                                'I
^
        ^                                                  11 OPERABLE SRVs,               or 3 from MODE 4
11 OPERABLE SRVs, or 3 from MODE 4
        'd including 4 of 5 OPERABLE SRVs with the lowest relief v                                                   setpoints,to OPERABLE status.
'd including 4 of 5 OPERABLE SRVs with the lowest relief v
C. Required Action and       C.1           Be in MODE 3.                   12 hours associated Completion Time of Condition A       E or B not met.
setpoints,to OPERABLE status.
C.2           Be in MODE 4.                   36 hours
C.
                  -IE Two LLS valves inoperable due to inoperable channels.
Required Action and C.1 Be in MODE 3.
    )
12 hours associated Completion Time of Condition A E
l FERMI - UNIT 2                             3.3 66                         Revision 14, 08/26/99
or B not met.
C.2 Be in MODE 4.
36 hours
-IE Two LLS valves inoperable due to inoperable channels.
)
l FERMI - UNIT 2 3.3 66 Revision 14, 08/26/99


J l
J l
LLS Instrumentation 3.3.6.3 1
LLS Instrumentation 3.3.6.3 1
      )       SURVEILLANCE REQUIREMENTS
)
              .....................................N0TE.....................................
SURVEILLANCE REQUIREMENTS
.....................................N0TE.....................................
Refer to Table 3.3.6.31 to determine which SRs apply for each Function.
Refer to Table 3.3.6.31 to determine which SRs apply for each Function.
I SURVEILLANCE                                     FREQUENCY SR 3.3.6.3.1               Perform CHANNEL FUNCTIONAL TEST.                         31 days i
SURVEILLANCE FREQUENCY SR 3.3.6.3.1 Perform CHANNEL FUNCTIONAL TEST.
3                                                                                         31 dayt
31 days i
        >      SR 3.3.6.3.2               Perform CHANNEL FUNCTIONAL TEST for gl                               portion of the channel outside primary C                                 containment.
3 SR 3.3.6.3.2 Perform CHANNEL FUNCTIONAL TEST for 31 dayt gl portion of the channel outside primary C
SR 3.3.6.3.3               Perform CHANNEL CALIBRATION.                             18 months
containment.
  "~y.         SR 3.3.6.3.4               Perform LOGIC SYSTEH FUNCTIONAL TEST.                   18 months I
SR 3.3.6.3.3 Perform CHANNEL CALIBRATION.
18 months
"~y.
SR 3.3.6.3.4 Perform LOGIC SYSTEH FUNCTIONAL TEST.
18 months I
i l
i l
l I
I w*
w*
l FERMI UNIT 2 3.3 67 Revision 14 08/26/99
l FERMI       UNIT 2                                     3.3 67                 Revision 14   08/26/99


O LLS Instrumentation 3.3.6.3 M ie 3.3.6.J 1 (page 1 of 1)
O LLS Instrumentation 3.3.6.3
    )                                              Low Low Set Instrumentation REQUIRED CHMBELS PER           SL5tVEILLANCE             ALLOWBLE FLECTION                     FLsETION           REQUIREENTS             . VALUE
)
: 1. Reactor Steam Dame Pressure-High     1 per LLS valve       SR 3.3.6.3.1         s 1113 psig SR 3.3,6.3.3 SR 3.3.6.3.4
M ie 3.3.6.J 1 (page 1 of 1)
: 2. Low Low Set Pressure Setpoints       2 per LLS valve       SR 3.3.6.3.1         Low:
Low Low Set Instrumentation REQUIRED CHMBELS PER SL5tVEILLANCE ALLOWBLE FLECTION FLsETION REQUIREENTS VALUE 1.
SR 3.3.6.3.3           Open s 1037 psig SR 3.3.6.3.4           Close (a)
Reactor Steam Dame Pressure-High 1 per LLS valve SR 3.3.6.3.1 s 1113 psig SR 3.3,6.3.3 SR 3.3.6.3.4 2.
Low Low Set Pressure Setpoints 2 per LLS valve SR 3.3.6.3.1 Low:
SR 3.3.6.3.3 Open s 1037 psig SR 3.3.6.3.4 Close (a)
Hi :
Hi :
q                                                                                                     s 1067 psig Q                                                                                               ose (a) h     3. Tailpipe Pressure Switch                 2 per SRV         SR 3.3.6.3.2 SR 3.3.6.3.3 a 25 psig and s 35 psig (gl                                                                    SR 3.3.6.3.4 (a) = 100 psi below ectual opening setpoint.
q s 1067 psig Q
l_ FERMI       UNIT 2                                 3.3 68                     Revision 14, 08/26/99
ose (a) h 3.
Tailpipe Pressure Switch 2 per SRV SR 3.3.6.3.2 a 25 psig and (gl SR 3.3.6.3.3 s 35 psig SR 3.3.6.3.4 (a) = 100 psi below ectual opening setpoint.
l_ FERMI UNIT 2 3.3 68 Revision 14, 08/26/99


O i
O i
INSERT tills PAGE IN FRONT OF VOLUME 13 i
INSERT tills PAGE IN FRONT OF VOLUME 13 i
( Volume l3:1 IMPROVED TECHNICAL SPECIFICATIONS BASES '.
( Volume l3:1 IMPROVED TECHNICAL SPECIFICATIONS BASES '.
i Remove                                         Replace             ,
i Remove Replace B 3.3.5.1 ITS pg B 3.3.5.1 10 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14 i
B 3.3.5.1 ITS pg B 3.3.5.1 10 Rev 12           B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 12           B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6             B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14       i B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6             B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 I
B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 I
I l
I l
l l
l l
l l
l l
l l
Rev 14 08/26/99
l Rev 14           08/26/99


E     o e
E o
ECCS Instrumentation B 3.3.5.1 BASES APPLIC/6LE SAFEfY ANAL (SES. LCO. 6.d igELipyltu - (antinued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
e ECCS Instrumentation B 3.3.5.1 BASES APPLIC/6LE SAFEfY ANAL (SES. LCO. 6.d igELipyltu - (antinued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome                 l pressure.                                                           -
The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.
The Allowable Value is low enough to prevent overpressuring the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.
The Allowable Value is low enough to prevent overpressuring the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.
Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
1.d. 2.h.         Manual Initiation b
1.d. 2.h.
        .,    3 --
Manual Initiation b
The Manual Initiation channel provides manual initiation                 ~~
3 The Manual Initiation channel provides manual initiation
E                       capability by means of individual component controls. There-R                       is one manual initiation channel for each of the CS and LPCI subsystems (i.e.. two for CS and two for LPCI).
~~
The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the IRC in the c                        plant licensing basis.
E capability by means of individual component controls. There-R is one manual initiation channel for each of the CS and LPCI subsystems (i.e.. two for CS and two for LPCI).
4
The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the IRC in the plant licensing basis.
              -                      There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y                         when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
c4 There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y
1 FERMI   UNIT 2                         B 3.3.5.1-10           Revision 14         08/26/99 i
when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
1 FERMI UNIT 2 B 3.3.5.1-10 Revision 14 08/26/99 i
L
L


        -                                                                                                  l s
l s
ECCS Instrumentation B 3.3.5.1 BASES
ECCS Instrumentation B 3.3.5.1 BASES
                        /WI : CME UFE' . IAALGES. %0, .m /NLIC/Slt TTY ;cor4ime..       ..
/WI : CME UFE'. IAALGES. %0,.m /NLIC/Slt TTY ;cor4ime....
Two channels of Suppression Pool Water Level-High Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can
Two channels of Suppression Pool Water Level-High Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can
                                          )reclude HPCI swap to suppression pool source. Refer to
)reclude HPCI swap to suppression pool source. Refer to
_C0 3.5.1 for HPCI Applicability Bases.
_C0 3.5.1 for HPCI Applicability Bases.
g                     3.f. Manual Initiation t                                                                                   .
g 3.f.
l The Manual Initiation channel provides manual initiation capability by means of individual component controls. There N                       is one manual initiation channel for the HPCI System.
Manual Initiation t
N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7'
The Manual Initiation channel provides manual initiation capability by means of individual component controls. There N
the HPCI function as required by the NRC in the plant licensing basis.
is one manual initiation channel for the HPCI System.
I There is no Allowable Value for this Function since the V                       channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.
N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7
_ . ~ .
the HPCI function as required by the NRC in the plant I
Automatic Deoressurization System 4.a. 5.a. Reactor Vessel Water Level-Low Lw Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far. fuel damage could result. Therefore, ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low.
licensing basis.
Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed       ,
There is no Allowable Value for this Function since the V
in Reference 1. The core cooling function of the ECCS.           !
channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.
along with the scram action of the RPS. ensures that the         i' fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
_. ~.
Reactor Vessel Water Level-Low Low Low. Level 1 signals are     ;
Automatic Deoressurization System 4.a. 5.a.
initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due tb the actual         ;
Reactor Vessel Water Level-Low Lw Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far. fuel damage could result. Therefore, ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low.
water level (variable leg) in the vessel. Four channels of l FERMI   UNIT 2                     B 3.3.5.1- 17           Revision 14   08/26/99
Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 1.
The core cooling function of the ECCS.
along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
Reactor Vessel Water Level-Low Low Low. Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due tb the actual water level (variable leg) in the vessel. Four channels of l FERMI UNIT 2 B 3.3.5.1-17 Revision 14 08/26/99


l LLS Instrumentation B 3.3.6.3   j wGch
l LLS Instrumentation B 3.3.6.3 j
    . l}
. l}
APPLICABILITY   'The LLS instrumentation is recuired to be OPERABLE in MODES 1, 2, and 3 since consicerable energy is in the nuclear system ~and the SRVs may be needed to provide pressure relief. If the SRVs are needed, then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5, the reactor     .
wGch APPLICABILITY
pressure is low enough that the overpressure limit cannot be a>proached by assumed operational transients or accidents.
'The LLS instrumentation is recuired to be OPERABLE in MODES 1, 2, and 3 since consicerable energy is in the nuclear system ~and the SRVs may be needed to provide pressure relief. If the SRVs are needed, then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5, the reactor pressure is low enough that the overpressure limit cannot be a>proached by assumed operational transients or accidents.
Tius, LLS instrumentation and associated pressure relief is not required.
Tius, LLS instrumentation and associated pressure relief is not required.
ACTIONS         Al The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)111ty of the other LLS SRV to perform its LLS function. A LLS valve is OPERABLE if the associated logic has one Function 1 channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore,14
ACTIONS Al The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)111ty of the other LLS SRV to perform its LLS function. A LLS valve is OPERABLE if the associated logic has one Function 1 channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore,14
  '3                             days is provided to restore the inoperable channel (s) to
'3 days is provided to restore the inoperable channel (s) to
    )                           OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered appropriate because of the redundancy in the design (two LLS valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel
)
          -                    failures, which renders the remaining LLS SRV inoperable, g                     occurring together with an event requiring the LLS function during the 14 day Completion Time.
OPERABLE status (Required Action A.1).
l                   B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi)e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch
If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered appropriate because of the redundancy in the design (two LLS valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel failures, which renders the remaining LLS SRV inoperable,
    )
-g occurring together with an event requiring the LLS function during the 14 day Completion Time.
l FERMI   UNIT- 2                 B 3.3.6.3-4             Revision 14, 08/26/99 L                                                                                                 A
l B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi)e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch
)
l FERMI UNIT-2 B 3.3.6.3-4 Revision 14, 08/26/99 L
A


C     ,
C i
i s,
s, LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued) instrument channels inoperable. Therefore, it is acceptable f{M hours, per Required Action B.1 and B.2. verification and/or for plant operation to continue provided that within 24 I
LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued)
restoration is made to ensure at least: a) one tailpipe g
              %                      instrument channels inoperable. Therefore, it is acceptable for plant operation to continue provided that within 24 f{M$
pressure switch in each Division OPERABLE on' one OPERABLE l
I hours, per Required Action B.1 and B.2. verification and/or restoration is made to ensure at least: a) one tailpipe g
N SRV in the lowest SRV setpoint group: and b) at least 11 i
l        N                    pressure switch in each Division OPERABLE on' one OPERABLE SRV in the lowest SRV setpoint group: and b) at least 11 i                           OPERABLE SRVs have at least one OPERABLE tailpipe pressure switch. Therefore, it is acceptable for plant operation to-lm  4                       continue even with only one tailpipe pressure switch l   21                       OPERABLE on each SRV. However, this is only acceptable provided each LLS valve is OPERABLE. (Refer to Required lD                            Action A.1 and C.1 Bases).
OPERABLE SRVs have at least one OPERABLE tailpipe pressure lm switch. Therefore, it is acceptable for plant operation to-4 continue even with only one tailpipe pressure switch l
21 OPERABLE on each SRV. However, this is only acceptable lD provided each LLS valve is OPERABLE.
(Refer to Required Action A.1 and C.1 Bases).
I Required Action B.3 requires restoration of both tailpipe I
I Required Action B.3 requires restoration of both tailpipe I
g                      pressure switches on = 11 OPERABLE SRVs. including 4 SRVs i    s                    out of the 5 lowest relief setpoint OPERABLE SRVs. to OPERABLE status, prior to entering MODE 2 or 3 from MODE 4.
pressure switches on = 11 OPERABLE SRVs. including 4 SRVs g
            %                          This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p                       Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LC0 3.0.4 is not applicable thus l
out of the 5 lowest relief setpoint OPERABLE SRVs. to i
s OPERABLE status, prior to entering MODE 2 or 3 from MODE 4.
This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p
Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LC0 3.0.4 is not applicable thus l
allowing entry into MODE 1 or 2 from MODE 2 or 3 with inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4.
allowing entry into MODE 1 or 2 from MODE 2 or 3 with inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4.
A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to e                         LLS Function 3 channels. Section 1.3. Completion Times.
A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to e
O                         specifies that once a Condition has been entered. subsequent
LLS Function 3 channels. Section 1.3. Completion Times.
                >                        divisions, subsystems, components, or variables expressed in g                           the Condition, discovered to be inoperable or not within g
O specifies that once a Condition has been entered. subsequent divisions, subsystems, components, or variables expressed in
limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Recuired Actions of the Condition continue to apply for each adcitional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory measures for separate inoperable Condition entry for each 4                        SRV with inoperable tailpipe pressure switches.
>g the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Recuired Actions g
B 3.3.6.3-5           Revision 14   08/26/99 I FERMI - UNIT 2 L_}}
of the Condition continue to apply for each adcitional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory 4
measures for separate inoperable Condition entry for each SRV with inoperable tailpipe pressure switches.
I FERMI - UNIT 2 B 3.3.6.3-5 Revision 14 08/26/99 L_}}

Latest revision as of 23:24, 5 December 2024

Rev 14 Proposed ITS Pages,Providing Update for Remaining Open Issues Associated with NRC Review of ITS Submittal
ML20211G092
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 08/25/1999
From:
DETROIT EDISON CO.
To:
Shared Package
ML20211G084 List:
References
NUDOCS 9908310157
Download: ML20211G092 (60)


Text

-

s' INSERT THIS PAGE IN FRONT OF VOLUME 2

Vakune 2
l SECTIONS 1A,2.0&3Af i'

Remove Replace 1.0 ITS pg 1.1-2 Rev 6 1.0 ITS pg 1.1-2 Rev 14 1.0 CTS M/U (1-1) pg 1 of 14 Rev 6 1.0 CTS M/U (1-1) pg i of 14 Rev 14 l

i l

l l

l cP900310157 990825 PDR ADOCK 05000341 PM p

Rev 14 08/26/99

s' l

Definitions

{

1.1 1.1 Definitions (continued)

{

CHANNEL CHECK A CHANNEL CHECK shall be the qualitative assessment, by ob:;arvation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument f

channels measuring the same parameter.

{

CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection G

of a simulated or actual signal into the channel l

as close to the sensor as practicable to verify I

h OPERABILITY of all devices in the channel required

{

1 u

for channel 0PERABILITY. A CHANNEL FUNCTIONAL TEST may be performed by means of any series of gl sequential, overlapping, or total channel steps.

CORE ALTERATION CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:

a.

Movement (including replacement) of source range monitors, local power range monitors,

~~ m.7 intermediate range monitors, traversing incore probes, or special movable detectors; and b.

Control rod movement, provided there are no fuel assemblies in the associated core cell.

Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.

(continued) l FERMI - UNIT 2 1.1 2 Revision 14. 08/26/99 1

i

&LC'\\$sLb & I.D O*

nI

,p g e d on l.1 Art.e.

4# DEFINITIONS 4he--fel4ewmg-terms-are-demed-so-that untfer. in\\e. p.etet;en vi ihese Thedefinedtermdappearincapitalizedtypeand

-spes4.f4 cath:: ::y be-nh4eved, M. l' b: applicable throughout these Technical Specifications.*gF]ise.3

.tLa Se5dhh59 shall be that part of a Specification wMeh preser Fes remed ACT10N

-l+ ACTIO em measures-requ4 red under designated fonditions P -Qgec;hed Completwhe5)

%-QQ 1.2 TgAVERAGEfLANAR EXPOSURf shall b pplicable a specift lana eight ~~ [.7 '

i 6y,[BAGE PLARAR EXPOSURE And is equal to the sunfof the e sure of a he fuel r in H specif)ted bundle at'the spg ed_ height d ided by th umber f fuel rods)

Lin the fuel bundlef

[

AVERAGE PLANAR LINEAR HEAT GENERATION RATE%

The A"E" ACE."LANAR-t4 HEAR-HEAT-GENERAT-10N-RATEUAPLHGRj) shall be applicab t-t to a specific planar height and is equal to the sum of the LINEAR ;;;AT all t tvius ia h GENERATt0M-RATES for all the fuel rods in the specified bundle at the i

'W^8Mid" A specified height divided by the number of fuel ads,1,n the fuel bundle.

^

CHANNEL CALIBRATION-

  1. ^d

-1,4~ A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter wh4 the channel monitors. The CHANNEL CAllBRATION rtir-n '-fa:I di.., G...n.wi,e d ;1er: ::d/. -

shall encompas s' th:

""'I

~' "". i.n;1.d[the CHANNEL FUNCTIONAL TEST The CHANNEL d

  • *ALIBRATION may' be performed byVany series of sequential, overlapping or (TMO5 8

C ch;;ni i; ;;litr: ed. / Calibra m n I h total channel steos c :5 th:t & : t'r:of-' instrument channels with resistance I

OM,

. thermocouple sensors sh*44-censist of v:ri-f4eetion of eper:bility ;f the I

w m arv,Iof the r.emaining ad1ust)

)

sensing-e-lement-and-aditr ut.

devices in the channel. [sim

-s conias e of a a mna ee tvtMaNe m

' Y</deTr$NW CHANNEL CHECK

~

of channel behavior

-1.5-A CHANNEL CHECK shall be the qualitative assessmen n shall include, where i

during operation.tj su;erv: tic This determinat M status-with ther possible, comparison of the channel indication aindications and/or stat O

3J ih5er ud ia Q' 6

measuring the same parameter.

w CHANNEL FUNCTIONAt TEST

-1. 6 ANNEL FUNC110NAL TEST shall be&

"*d"#'

J

&\\t deeius A.3 n&j;-;h: nds C e injection of a simulate signal into the channel th m & ckneel

-a.

a as close to the sensor as practicable to verify OPERABILITYjn& ding reguindGr Nlu d/^MN""* * "4 *40:? f il "; L isa.

chad b,----Eis4able-channels.---the-4nject4on-of-a4imulated-signti /IWo/ M pef 48tOTY t

to-ver4f v-OpERABRITY 4nc4uding-alarm-and/or-trip functions, The CHANNEL FUNCTIONAL TEST may be performed byxany series of sequential,

8 "^ ^' i s t *
  • tM.

overlapping or total channel steps. " ;L N "nl G272S 0(

endment No. 41 FERMI - UNIT 2-1-1 b*O PAGE 1

0F 14 RdG l' em e ' e

s' INSERT THIS PAGE IN FRONT OF VOLUME 4 IVolusse di! SECTIONS 3.3.1.123.3.4.I t _

3:,' l

/ - >

1 Remove Replace 3.3.1.1 NUREG M/U pg 3.3-7 Rev 6 3.3.1.1 NUREG M/U pg 3.3-7 Rev 14 3.3.2.1 NUREG M/U pg 3.3-20 Rev 6 3.3.2.1 NUREG M/U pg 3.3-20 Rev 14 3.3.3.1 DOCS pg 2 Rev 12 3.3.3.1 DOCS pg 2 Rev 14 3.3.4.1 DOCS pg 2 Rev 12 3.3.4.1 DOCS pg 2 Rev 14 l

l l

\\

l i

l l

Rev 14 08/26/99 l

.s 6ptg49 '*

RPS Instrumentation

,b 3.3.1.1 Y

q\\

owl febte 3.3.1.1 1 (pose 1 of 3)

FvMcT10M CTS

{

asector Protection system instrueentetlen 43 CItoss /IEFW i Fou@ed I 3 14 AceLicA.LE co mir: oms v

Ml2Es On aEEllaED REFEaENCED g

CTita CIIAalNELs Fatpl 2 '2 '!,/

SPEctFIED Pts TalP REGulaED sLRVE!LLAllCE ALLO W8LE FLacTION CONDIflONs SYSTEM ACTIcel D.1 afeUIntstENTs s..;;/.9 &

OM-l 1.

Intermediate aanse

'I

~

C BR 3.3.1.1.1 I'3*I.! b 8

Itentters sa 3.3.1.1.4 divisters of.

sa 3.3.1.1.6 futt scale

==Ie sa 3.3.1.1.7 l'I'! I I e.

Neutron fluu.Nish sa 3.3.1.1.S 11 sa 3.3.1.1.15 igg /,g 5(83 sa 3.3.1.1.1 s

sa 3.3.1.1.5 Il divistens of sa 3.3.1.1 futL scale o

sa 3.3.1.1.15 b.

Insp 2

C se 3.3.1.1.6 NA 3* 3.l -i) lb 3

sa 3.3.1.1.15 5(83 2

sa 3.3.1.1.5 NA 8

sa 3.3.. 15 2.

-,ese Peuer aanse a,,y

! ! !+p5 P'#

@Q Aver-.

2 8'

  • yg"=

3q p

- 3.3.i.i.7 A

s sa 3.3.1.1.

Sa 3.3.1.1.

sa 3.3.1.1.

(.3 (vl 4 W) H.43 */.

m

b. {Munr44Mstrastated 1

f J ;

3.5... ". 7 s Thermen Peuer.M sa 3.3.1.1.2

+ W it RTP and 2,.

I sa 3.3.1.1.3 s(115.5g1 NP$ lek sa 3.3.1.1.8 afp(b) 2 T

  • T ~.T L." ~ ^

._l;- f -

' h ~ ' ' '^ '

        • [

e >+1+rfD (continued)

(e) With.ny control red withdrenet from o core cell contelning one or more fuel esseenties.

A O ^ ~^ 2:**'edian reset for einste leap operetten per Leo 3.4.1, aecirculotten Leops (bs '-.'",,e.!! ".

F r"rt")

=

w ist d W = o /..

,etio,..

/

4W=.s% on Ng u

(t) Each MRM cka*\\ frondt's InPuh h bo# kip QM f (F..uotcK,)

BWR/4 STS 3.3-7 Rev 1, 04/07/95

@EV' k ff hv G l

l Control Rod Block Instrumentation 3.3.2.1 Table 3.3.2.1 1 (page 1 of 1) f$

Controt Rod Stock Instrumentation

[( T8Ls s 2.3. I,-1J 7 3. G-2.]

tr. 34 -l ))

AP,L: Caste noots on OfNER SPECIFIED REGUIRED SURVEILLANCE ALLOWABLE nalCTioM CcWIT!aus CNANNEL:

RfaUIREE NT:

VALUE 1.

tod Block Monitor g

j;j;jpgggj(%,4

- r-

~ ~"

a 3.l. Lt.3)

Intermosti to Pouer (b

p2 M 3.3.2.1/1 s (199.7/1 3 OP.I li'.1:t ti!"' '

'~

ich P.uer Le (c),(d)

(23 st 3.2.1.1 5 11.9/1251 c.

k

.3.2.1.4 di siens of 3.3.2.1.7 f L acetej k.

[ Insp SR 3.3.2.1 MA g

io1$PtLih t d in klo' l&

~

g4

!ii:;g ut 4

TBts, l

scot l bg 1.t.

g cy.... ii sei.,

3y,.;.;.;

c2.y n7 e

t.>.t.,

a

.g.;.;.g A W.,t

.ini.a.,

ie,#

gig g

,,,, y, g W

MiliiOJ

+"'

l (TBts 16 7) gm s itch-shut 4

a 3.3.2.1 3.

e.

30 (5. I A. 3. * >

L

[(T8L5.3.(,-1,*)l$

x Lind e e ss)mTP F -

'"3

(.)

TNennu Pawa

,i.ux,TPg.1.7.].

r u v.3.cr-i,O m,,,, L k

(c) muat we>f I and e 90% RTP and a 1.7c THERMAL PtWER 90% PTP and teEPR 4 1.

Ge). NRMAL POWER t [13 and e 905 RTP apdMCPR e 1.h With TNERNAL P.WER s g0p tTP.

, l, Y. l, [/Pp/.'mfr.'f/

)

(p

...ct.,

e..ii.n in ts.. nut ition.

(n t 3 3 6 -> /A 7 )

BWR/4 STS 3.3-20 Rev 1, 04/07/95 R e v M ll Revlo I

i l

l l

e DISCUSSION OF CHANGES ITS: SECTION 3.3.3.1. PAM INSTRUMENTATION A.5 CTS Table 4.3.7.5 1 footnote # states that the provisions of Specification 4.0.4 are not applicable. This is not required in ITS 3.3.3.1 because any potential confusion concerning when the surveillance is. required is eliminated by specifying the precise 7

requirements for performance of the Surveillance such that an explicit exception to 4.0.4 is not necessary. The ITS SR 3.3.3.1.2 Note 2 h

modifies the Frequency such that it is "Not required to be performed Q

until 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> for one channel and 7 days for the second channel after >

I 15% RTP." This is an administrative change with no impact on safety.

TECHNICAL CHA N C MORE RESTRICTIVE None TECHNICAL CHANGES - LESS RESTRICTIVE

" Generic" LR.1 CTS Table 3.3.7.5-1. Action 81, requires that with the Operable channels less than the minimum required, initiate the preplanned alternate method of monitoring the appropriate parameter (s) within "3

72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> and restore the inoperable channel within 7 days. ITS 3.3.3.1, Action C, requires the channel restored within 7 days, but does not require the preplanned alternate method of monitoring to be initiated within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />. This is acceptable because the requirement to initiate an alternate monitoring plan does not impact the requirement to restore the channel within 7 days.

k Furthermore, the probability of an accident during the allowed s

repair time is minimal. Regulatory control of changes to this requirement (e.g., Technical Specification amendment or 10 CFR 50.59) is not necessary to provide adequate protection of the I

public health and safety since the requirement for post accident instrument channel Operability and actions for inoperable instrumentation, continues to be required by the Technical l

Specifications.

1 1

l FERMI - UNIT 2 2

REVISION 14, 08/26/99l a

DISCUSSION OF CHANGES ITS: SECTION 3.3.4.1 - AWS-RPT INSTRUMENTATION A.4 For CTS Specification 3.3.4 (and ITS 3.3.4.1). the AWS RPT system instrumentation is interpreted to include the actuated device (s).

Each instrumentation channel (reactor water level and reactor pressure) ultimately provides signals that can result 1.n all four breakers tripping. Therefore, any inoperable breaker is s

necessarily associated with both trip systems being inoperable.

I For the case of an inoperable AWS-RPT breaker CTS 3.3.4 Action e does not allow inoperable channels to be placed in trip, but required both trip systems be restored or the plant to shutdown.

Due to the reformatting to ITS, where multiple Condition entry applies, and the ITS presentation of Action A for any number of inoperable channels, the ITS option for tripping channels must be

\\

taken exception to in order to conform to CTS requirements. Since l

ITS Action A can apply to one or many inoperable channels, the Note to Required Action A.2 is provided to direct a restoration requirement (and preclude a channel tripping allowance) in the event of an inoperable trip breaker. This explicit limitation is only a clarification of the requirements that would be imposed by C

compliance with CTS 3.3.4 requirements. The changes to the time 3

allowed to restore the inoperable breaker / channels are addressed by DOC L.1.

Therefore, this change only reflects a presentation

. _.y) clEffication necessitated by the ITS format.

~

~ ~~

A.5 CTS 4.3.4.2 requires an LSFT "and simulated automatic operation" of all channels. The simulated automatic operation is interpreted in the CTS to be included in the LSFT, since the CTS LSFT definition " includes the actuated device." ITS SR 3.3.4.1.4 n

O requires an LSFT but explicitly states " including breaker

]

actuation." Since the ITS LSFT definition is revised to exclude g

the actuated device (refer to Section 1.0), explicitly adding g

" breaker actuation" captures the CTS requirement. This clarification is an administrative presentation preference only.

A.6 CTS Table 3.3.41, Note (*), allows required surveillance testing "without placing the trip system of the tripped condition provided the other channel in the same trip function is OPERABLE." ITS SR Note 2 provides the same allowance stated as " entry into the associated Conditions and Required Actions may be delayed provided the associated Function maintains trip capability." This represents consistency in presentation with other Specifications, and as such, is considered an administrative change.

J FERMI UNIT 2 2

REVISION 14 08/26/99l

f INSERT THIS PAGE IN FRONT OF VOLUME 5

/ s *4 L Volume 5:l SECTIONS 3.3.5.D3.3.8.23

~

~

  • Remove Replace 3.3.5.1 ITS pg 3.3-41 Rev 12 3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12 3.3.5.1 ITS pg 3.3-43 Rev 14 i

3.3.5.1 ITS pg 3.3-44 Rev 12 3.3.5.1 ITS pg 3.3-44 Rev 14 j

B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14 B 3.3.5.1 ITS pg B 3.3.5.1 17 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 12 3.3.5.1 CTS hW (3/4 3-24) pg 2 of 8 Rev 14 3.3.5.1 DOCS pg 3 Rev 12 3.3.5.1 DOCS pg 3 Rev 14 3.3.5.1 DOCS pg 4 Rev 12 3.3.5.1 DOCS pg 4 Rev 14 3.3.5.1 NUREG WU pg 3.3-42 Rev 12 3.3.5.1 NUREG M/U pg 3.3-42 Rev 14 l

3.3.5.1 NUREG M/U pg 3.3-44 Rev 12 3.3.5.1 NUREG M/U pg 3.3-44 Rev 14 3.3.5.1 NUREG M/U pg 3.3-45 Rev 12 3.3.5.1 NUREG M/U pg 3.3-45 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 12 B 3.3.5.1 NUREG M/U pg B 3.3-112 Rev 14 B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 12 B 3.3.5.1 NUREG M/U pg B 3.3-119 Rev 14 3.3.6.2 DOCS pg 6 Rev 12 3.3.6.2 DOCS pg 6 Rev 14 3.3.6.2 DOCS pg 7 Rev 12 3.3.6.2 DOCS pg 7 Rev 14 3.3.6.2 DOCS pg 8 Rev 14 3.3.6.3 ITS pg 3.3-65 Rev 13 3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6 3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6 3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 3.3.6.3 DOCS pg 1 Rev 12 3.3.6.3 DOCS pg i Rev 14 3.3.6.3 NUREG M/U pg 3.3-67 Rev 13 3.3.6.3 NUREG M/U pg 3.3-67 Rev 14 3.3.6.3 NUREG M/U pg 3.3-67 (Insert) Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3 201 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-20i Rev 14 B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-202 Rev 14 B 3.3 6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-202 (Insert) Rev 14 1

B 3.3.6.3 NUREG M/U pg B 3.3 203 Rev 6 B 3.3.6.3 NUREG M/U pg B 3.3-203 Rev 14 j

1 Rev 14 08/26/99

ECCS Instrumentation 3.3.5.1 Table 3.3.5.1-1 (page 1 of 6)

Emergency Core Cooling System Instrumentation

. - -. - ~ _ _ _. _ _ - _ _ _

MODES REQUIRED REFERENCED OROTER CHANNELS FRON SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENTS VALUE 1.

Core Spray System a.

Reactor Vessel Water 1.2.3.

4(b)

B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.

SR 3.3.5.1.2 Level 1 4(a),$(a)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.

Drywell 1.2.3 4(b)

B SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Q

c. Reactor Steam Dome 1.2.3 4

C SR 3.3.5.1.1 a 441 psig Pressure - Low SR 3.3.5.1.2 A

(In #ction Permissive)

SR 3.3.5.1.3 L12 SR 3.3.5.1.4 SR 3.3.5.1.5 4(a),$(a) 4 B

SR 3.3.5.1.1

= 441 psig SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 Aw

. d." ~ Manual Initiation 1.2.3.

2(c)

C SR-3.3.5.1.6 NA

{

4(a)5(a) 2.

Low Pressure Coolant In #ction (LPCI) System a.

Reactor Vessel Water 1.2.3 4

B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low.

SR 3.3.5.1.2 Level 1 4(a),$(a)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued)

(a) When associated sLbsystem(s) of LCO 3.5.2 are required to be OPERABLE.

p (b) Also required to initiate the associated emergency diesel generator (EDG).

f e4 (c) Individual component controls.

J J FERMI - UNIT 2 3.3 41 Revision 14 08/26/99

E ECCS Instrumentation 3.3.5.1

)

Table 3.3.5.1 1 (page 3 of 6)

.,j Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS MODES OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SlRVEILLANCE ALLOWABLE RMCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENTS VALUE

\\A 2.

LPCI System (continued) i h.

Manual Initiation 1.2.3.

2(C)

C SR 3.3.5.1.6 NA 4(a)5(a) 3.

High Pressure Coolant Injection (WCI) System

^

a.

Reactor Vessel Water 1.

4 B

SR 3.3.5.1.1 a 103.8 Level - Low Low.

SR 3.3.5.1.2 inches l

Level 2 2(d). 3(d, SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b.

Drywell 1.

4 B

SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l

2(d). 3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c.

Reactor Vessel Water 1.

2 C

SR 3.3.5.1.1 s 219 inches Level-High. Level 8 SR 3.3.5.1.2 Ol 2(d),3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 g

SR 3.3.5.1.5

)

d. Condrisate Storage 1.

2 D

SR 3.3.5.1.1

= 0 inches Tank Level-Low SR 3.3.5.1.2 (l

2(d), 3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 e.

Suppression Pool Water 1.

2 D

SR 3.3.5.1.1 s 5.0 inches Level - High SR 3.3.5.1.2 Nl 2(d),3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) m N

g (a) When the associated subsystem (s) are required to be OPERABLE.

M (c) Individual couponent controls.

] l (d) With reactor steam done pressure > 150 psig.

1

,./

_ l FERMI - UNIT 2 3.3 43 Revision 14 08/26/99

ECCS Instrumentation 3.3.5.1 j

i Table 3.3.5.1-1 (page 4 of 6)

I Emergency Core Cooling System Instrutentation APPLICABli CONDITIONS MODES OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREMENTS VALUE y

3.

IPCI System (continued) g f.

Manual Initiation 1

1(C)

C SR 3.3.5.1.6 NA 2(d),3(d) 4.

Automatic Depressurization System (ADS) Trip System A

'l a.

Reactor Vessel Water 1.

2 E

SR 3.3.5.1.1 e 24.8 Level - Low Low Low.

SR 3.3.5.1.2 inches l

Level 1 2(d),3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l

b.

Drywell 1.

2 E

SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l

2(d),3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 j

c.

Automatic 1.

1 F

SR 3.1.5.1.2 s 117 seconds Depressurization SR 3.3.5.1.4 l

System Initiation 2(d),3(d)

SR 3.3.5.1.5

N

~

Timer-d d.

Reactor Vessel Water 1.

1 E

SR 3.3.5.1.1 e 171.9 Level-Low. Level 3 SR 3.3.5.1.2 inches ll (Confirmatory) 2(d),3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l

e.

Core Spray P mp 1,

1 per pump F

SR 3.3.5.1.1 a 125 psig Discharge SR 3.3.5.1.2

\\l I

Pressure - High 2(d), 3(d)

SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G

(continued) d (c) Individual cog onent controls.

)

I G l (d) With reactor steam dame pressure > 150 psig.

E

\\

I e

J l FERMI - UNIT 2 3.3 44 Revision 14 08/26/99

I ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LC0. and APPLICABILITY (continued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of i

the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.

The Allowable Value is low enough to prevent overpressuring the equi > ment in the low pressure ECCS. but high enough to ensure tlat the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.

Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.

1.d. 2.h.

Manual Initiation

\\n The Manual Ini.tiatio.n c.hannel provides manual-initiation-

~~ ~,<

~__ ~.s~"" t is one manual initiation channel for each of the CS and LPCI subsystems (i.e., two for CS and two for LPCI).

The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the NRC in the plant licensing basis.

c r4 4

There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y..

when the associated ECCS is required to be OPERABLE. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.

1 l

l FERMI - UNIT 2 B 3.3.5.1-10 Revision 14 08/26/99 j

ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES. LCO, and APPLICABILITY (continued)

Two channels of Suppression Pool Water Level-High function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can 3reclude HPCI swap to suppression pool source. Refer to

C0 3.5.1 for HPCI Applicability Bases.

y 3.f.

Manual Initiation

(

The Manual Initiation channel provides manual initiation

  • k capability by means of individual component controls. There N

is one manual initiation channel for the HPCI System.

N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7

the HPCI function as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the C

channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation Function is required to be OPERABLE only when the HPCI

~

System is required to be OPERABLE. Refer to LC0 3.5.1 for HPCI Applicability Bases.

-.n.~,+

n Automatic Deoressurization System 4.a. 5.a.

Reactor Vessel Water Level-Low Low Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore. ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low.

Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 1.

The core cooling function of the ECCS.

along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level-Low Low Low. Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of I

l FERMI - UNIT 2 B 3.3.5.1 -17 Revision 14 08/26/99 i

q SPsc m:0ATioM 3,3 5

/

3 -I

_~~

3

+

we,e

  • * *? e e e ce p

q Dea m G o mo,

  • dd g-oo.ce.o,

u

-e g

smooVU l

accoM ocoo o ao aM o o.a.a n m MMMMM MMMM M

MM MM MMMMMM a

a aa a

i i

i ii i

w'iMsn M

M MM MM MMMMMM 3--

MMM, MMM, aae a Jac= a ac e4 aacase

=mE

?

%%u,

.:.:.:i.:

.:.:.:i.:.::.:.:

5 B

s e

i 5,

sr tsr-w E =5 WA

% N N % TN WW-b g

M my 1

r-ww A prv s r V

c4 E 1_

5 9 %s ed o

=

m 1

w su e,

ev t -

3. -J J

1 x

x e

o a

[

s.

g

, a

~

~a a,M 2

et z

t.

- g 5

e e:

g 23e 3 Et" 5

E

=2' 5.m' E

a w

=

=

m c

e-

2.a:

E E

u e

o w a w ea a

u-t te

. - 3:u

-t

= t, us m

W t, ar

=

to : t : :er e

ss g

seem c tre :_e ets ams zum ao; j zz ;,

z=mg g

j E

E ' 8."S e

!e's EE'EO-P3e"s- :ss 2 "ec-=s E' je s z..:.z.g=

"e

.3 1 213ez=

2:,': 5

.ts::

s ::=*23e 5 ::::: g :tG;&aM2:2&T Y Et G stG 5 w s r u a zz2-w.u ::u-a u-u e u-u 373;7 5 373E283 ue#

% 3%:e3%

wix== a waxmwexsats:

c x tux:

' g =kEbu 2 u Ehu E E GE 2 B EkoaE2 M

=!

h C

M2

! $ as; e E as; e e ce ;

$ esJece w

%p S

$Mlll DM c; Al@MD

$0 E

4 ff gg)3/

FERMI UNIT 2 3/4 3-24

)

enrtar Ph4R RAI G 5' PAGE A 0F 08

(

Rev G )

3 1

8 cv 14 I w

DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION A.9 CTS 4.3.3.3 requires ECCS Response Time testing however, the

]

details of the testing acceptance criteria are located in the Technical Requirements Manual (TRM): outside of Technical Specifications. Since the ECCS response time acceptance criteria includes testing only the ECCS system response (and utilizing assumed values for the ECCS instrumentation response), the 1

required Surveillance is more appropriately required in the ECCS Specification, ITS 3.5.1.

This change is a presentation preference only with no technical change or change in intent.

Refer to Section 3.5 for further discussion of any changes from the CTS presentation.

A.10 CTS Table 3.3.31 Actions 30.a 31. and 33, as they apply to inoperable ADS actuation channels, result in options to declare 7

associated ADS Trip System inoperable.

(Note: refer to DOC L.1 D

for discussion of CTS change from declaring ECCS inoperable to declaring ADS trip system inoperable for CTS Action 30.a.).

The CTS actions would then transfer to Action c of CTS 3.3.3, and provide additional time for restoration.

ITS 3.3.5.1 Actions E l

and G combine these restoration times for clarity. Any technical m

changes are addressed in other discussions of change. The revised prEie'ntation preference is an administrative change with no impact on safety. { Note also that CTS Action 30.b (converted to ITS 7

Required Action E.1) does not transfer to CTS Action c for additional time; it declares the ADS valves inoperable and 3

transfers Actions to LCO 3.5.1.

The ITS 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time of g

Required Action E.1 matches the CTS Action 30.b time, and the ITS g

RequiredActionG.1matchesthetransferofActionstoLC03.5.1.}

A.11 CTS 4.3.3.2 requires an 18 month LSFT of all ECCS Instrumentation channels (which would include ADS Manual Inhibit function). CTS Table 4.3.3.1-1. Item 4.1, also required an 18 month Channel Functional Test of the ADS manual Inhibit function.

ITS Table 3.3.5.11 only requires the LSFT (SR 3.3.5.1.5) for this a

function. The Channel Functional Test for this function is e

adequately encompassed by the LSFT performance. Eliminating a g

reference to performing a Channel Functional Test is therefore an oc administrative change that eliminates a duplicative test.

/

FERMI - UNIT 2 3

REVISION 14 08/26/99l

1

)

DISCUSSION OF CHANGES ITS: SECTION 3.3.5.1 - ECCS INSTRUMENTATION j

TECHNICAL CHANGES - MORE RESTRICTIVE M.1 CTS Table 3.3.31 Actions 30.a and 32 allow the trip system associated with inoperable channels to be tripped to comply with the required action, and thereby allowing continued operation.

ITS 3.3.5.1 Required Action C.2 does not allow this option: but rather requires that inoperable channels be restored to Operable status.

If inoperable channels are not restored ITS 3.3.5.1 Action G would be entered, requiring the associated ECCS features lk to be declared inoperable. The Functions associated with these required actions are functions that perform a dual role (where tripping the trip system would: 1) not be clear what direction to trip to, and 2) result in the affected system continuing to be in an inoperable state) or functions that would inappropriately start the affected system. Therefore, tripping the associated trip system is replaced with the more appropriate " restore channel to OPERABLE status" otherwise declare associated ECCS features inoperable.

M.2 CTS Table 3.3.31 Actions 31, 33, and 34 allow 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to restore inoperable channels, regardless of whether the associated HPCI or

_s _ _,

ADS function is inoperable in both hivisions (resulting in a~ loss ~

~~ ~

~

of that ECCS function). For certain specified inoperabilities n

that result in a loss of initiation function. ITS 3.3.5.1 Required d

Actions D.1 and F.1 (and associated Notes) provide a more lg restrictive time of "I hour from discovery of loss of [HPCI/ ADS]

v initiation capability" to restore or declare the associated ECCS function inoperable. This provides a more appropriate action that will not adversely impact safety.

M.3 CTS Table 3.3.31 Note (a), allows required surveillance testing which causes channels to be inoperable without taking Actions for inoperable channels "provided at least one OPERABLE channel in the same trip system is monitoring that parameter." ITS SR Note 2 provides the same intended allowance by stating " entry into the g

associated Conditions and Required Actions may be delayed for Functions other than 3.c and 3.f provided the associated Function l@

or redundant Function maintains ECCS initiation capability." In 3

the case of some trip Functions literal compliance with the CTS allowance may not ensure trip capability remains (i.e., a single channel that is monitoring the parameter will not produce an initiation signal: the logic is 2 out of 2). This represents a j

more restrictive change, which has no significant impact on safety.

FERMI - UNIT 2 4

REVISION 14 08/26/99l

ECCS Instrumentation 3.3.5.1 o,\\

CTT g

\\

table 3.3.5.1 1 (page 1 of 6) gp.3J,3-/

seersency Core Casting systee Instruonntation

.,,ac a ni.:

41.u-l unsEs mesulas mErtaancxD pug ok ofmat Cann e ts enon s ECirleD PER RHUIRED SURVEILLANCE ALLOW 4BLE PLAICTION Co W ! floes PUNCTION ACTicu A.1 ARGUIReBENis WALUE 1.

Core Spray Byeten e.

Reacter vessel Water 1,2,3, g4[I e

at 3.3.5.1.1 t

!'A (/

Lovel-Low Lear Lent, et 3.3.5.1.2 inshee Level 1 4(*), 5(*)

yet 3.3.5.1 et 3.3.5.1

=

~.,.

b.

Drywell 1,2,3 gI s

et 3.3.5.1.1 s

pels Preneure - utsh at 3.3.5.1.2 Wet 3 J.S.1 st 3.3.5.1

!..!..!,1_

g c.

seester steen Does 1,2,3

,[g C

st 3 J.5.1.1 e

11 l.(,

A Preneure - Lens et 3.3.5.1.2 f

7 gJ (Injection Peruleelve)

)fst 3.3.5.1.

W st 3.3.5.1 g

sa 3.3.5.1 g

$Ji g/

4 !:!iik (W<"9 ( j' gN, 4(*I,5(*)

g s

et 3.3.5.1.1 t

esta

"!:!ilis!2

<---0 D

Core aprey 1,

A E

se

'I.

4.1

't ' 3 Dioeherpe FI ou

";r-SR 3.3.5..

and d

e

)

4(*3,5(*3 at 3.3.5.1.1I 13 sput, \\

t

/

1.1.5.1.4

/

cg,

w

,h

! Initletion 1,2,3, C

st 3.3.5.1.6 mA t

N 1

S 4(a), 5 e)

Y

\\

/Q\\

2.

Lear Preseurs coolant Injection (LPCI) systee f.%

\\ /

e.

Reacter veneet Water 1,2,3, e

et 3.3.5.1.1

.t Lovet - Law Low Low, et 3.3.5.1.2 inshee

[

Levet 1 4(e), $ e)

WER 3.3.5.1.

t (2,4 et 3.3.5.1 st 3.3.5.1

-et-o.a.a.a.a (eentinued)

(ofgo s.

2.

(e) When.neensted emystence) re r.Ruir.d to me_a ERasa.

Aloe re r't N- "M n _ _ W p..sm

e. eves.Ruired to initiate the associated (b)

.e.ees 4 ann.meente,1"._,..,.. ;.. _.

h BWR/4 STS 3.3-42 Rev 1, 04/07/95 g3

((,)

n / N iolA M. C O M N DOli k

1 kE\\/ l lb Rev n-11,

  1. cv 6 1

1

l 1

ECCS Instrumentation 3.3.5.1

  • x CTS Table 3.3.5.1 1 (pose 3 of 6) n' Energency Core Cooling systee Instr w entation 96W 3.3.3 -).

133-2.

%Ll-l l

QUoil Mets ca REEllMD REPenENCED 97NEa ruammet e FROM

{

sPECIF!sD PER asaulasD suaVEILLANCE ALLOW 4BLE

{

FUNCTION ComITIgus MalCTION ACTION A.1 ateU!aDENTs WALUE

2. LPCI system (eentirmand) k' j

Law Pressure 1,2, E

- 3.3.;.i.i '

n,a Caetent inject Pump

-t+pur-

.3.5.1.2 @

c.,

t i or Fie.-

4(a), 5(=

-,.ew-

..i.

_se _.

s i

7 i

h. menuet Inittetl e 1,2,3, C

sa 3.3.5.1.6 NA h

1

,<e, s

/

ll 3.

mish Pressure testant Injection (IIPCI) systee

(

o.

Beester veeeet Water 1,

8 sa 3.3.5.1.1 m

.3,4/

l Levet - Law Low, sa 3.3.5.1.2 inches Lowel 2 2(8, 3IO 7 sa 3.3.5.1.3 l

J sa 3.3.5.1 l

sa J.3.5.t i

2.2.0." -

,h b.

Drywett 1,

g B

sa 3.3.5.1.1 s

pois j

Pressure - Nish sa 3.3.5.1.2 2(8,3(O yssa 3.3.5.1.

sa 3.3.5.1 I

sa 3J.5.1

'J. I

/,gh C

sa 3.3.5.1.1 s.

c. Reacter Wessel Weter 1,

g 3

i Levet -Nigh, Levet 8 em 3J.5.1.2 inuhes T

r I

2(8), 3(83

.f sa 3.3.5.1.

j t

sa 3.3.5.1 sa 3.3.5.1 hk c) 0 sa 3.3.5.1.114 2 40 (inches d.

Condensate storese 1,

g Tena Level-Low y

3.3.5.1.2 2(0, 3(d) 3.3.5.1.4 sa 3.3.5.1

/.4) e.

suppression Poot Weter 1,

g D

sa 3.3.5.1.1 s

3 Lovet - mtsh sa 3.3.5.1.2 inches N

2(0, 3(d) ptsa 3.3.5.1.

sa 3.3.5.1 sa 3.3.5.1 (cont trmand)

-t ee.,et

..,.t

.,e,.

.r.dt. Nm.

e 3

., m

,.e.te, et e,,e.e.,e o g 5o m ie._

,l

& lnS[v1& CutffMutl Cmh@O,

(

f l

BWR/4 STS 3.3-44 Rev 1, 04/07/95 0GY lY Rev I2-U u

Rev a

)

ECCS In$trumentation 3.3.5.1 9.\\

crs Tebte 3J.S.1 1 (pese 4 of 6)

C, Emersency Care Coating systes instrumentation U (Mf I J,13./

j M.4-1 APPLICABLE CC 33fl0Ns uOnes ca aseUInes a:FratuCro pgg g OTWa CMuutLs Patut sPsCIFIED PER aseulaED suaWEILLANCE atanuant PlaICTION CONDITIOus PUNCTION ACTION A.1 afeUlaEnENTF VALUE 3.

NPCI system (continued) p

k high Pressure 1,

E sa 3.5.13 e

i tien P g sa

3..

.2 and Di Flow -Leu 3, 3W

, sa 3.3.5..

s (A spa i[

(sypees) sa 3.3.5.1 A marsat inittetten 1,

{1L C

sa 3.3.5.1.6 mA

'g

,3 h

3~

d Id)

III 2

4 4.

Automatic Depressurlastion systen (ads) Trip system A

(#

i:!:!:1:1 L.

NU l:::;-r-1";~

Fk Lmt1 2IO, 3(d)

>:sa 3.3.5.1.

sa 3.3.5.1 sa 3.3.5.1 g,g C((

(Q,()

b.

Dryuntt 1

g sa 3.3.5.1.1 s

pais J i:!:!:l:'

3ce, 3m sa 3.3.5.1 sa 3.3.5.1.

Q

}

41 (

r w 3.3.5.i s b,a,V (4 0) g y g ;se,1, 1

s

'j es,ree.orinti.n situ.r.i.1)= 3 3 5.1 aaa*

system Initletten 2,,,, 3,

Yleer g.g g, q

,ff d.

asseter veenet Water 1,

(1k y

sa 3.3.5.1.1 t det inchee Lent -Lou, Lent 3 sa 3.3.5.1.L W W

  • 3 (Cenfirentery)

I

,3 y

j Cf sa 3.3.5.1 p

g7y sa 3.3.5.1.1 t_

_nsis (q.g e.

Core sprey Pw 1,

E"s'eJ':'.is.

2(a,34

' @*P f(((((({:

Me) 9

\\_

3.3.5.i.g-Q

=

(anunuse xt 4, Wit!,,es.ter sta -,re-,e e e,f s.

c&

i qg (c) IndMduA Wh"'"

l h

BWR/4 STS 3.3-45 Rev 1, 04/07/95

@ed l'h N G

Ra) 0- L REVh

ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE 1

7.h.

Manual Initiation I

SAFETY ANALYSES, LCO, and The Manual Initiationairtrcimnw. channel 'ntr c-einnals APPLICABILITY 4=+c th:.;;r:; & t: Ecce 'acie

+a-provi h5 anual initiation i

(continued) capability and sea eadnad a+ +a +ka m u + =- 4M ret::t he for each of the 4attr - 9 *+4a=

There is one pu b9 rMk*bndMdu CSanJdP4 subsystems (i.e..twoforCSandtwoforLPCI).

o

..m.,

i cqoua4 ccwho k LmamaA tMalimShanMA The Manuai Ininauon tuncuan is no sumed in any accident or transient analyses in th AR. However, the.

Function is retained for overall red ancy and diversity of the low pressure ECCS function as required by the NRC in the h plant licensin,jL, basi w:ndan{ bon iS

)

w There is no Al ow e a ue o h s -unction since the channels are chanically actuated based solely on the T

position of...;. ;rM;tt:::. Each channel of the Manual Initiation Function dr- ^ -? n ";=^ - ) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LC0 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.

vw 2.

Reactor Steam Dome Pressure-low (Recirculation Discharce Valve Permissive)

Low rea steam done pressure signals are used s permissives r recirculation discharge valve osure. This ensures that t LPCI subsystems inject in he proper RPV location assumed the safety analysis.

he Reactor Steam 7.

l Dome Pressure 5 Low one of the Func ns assumed ~to be'

' ~ " " "

1 OPERABLE and capable o losing the alve during the p,gg([7

>,/ function of the ECCS, along the scram action of the I

transients analyzed in Re rence and 3.

The core cooling Bs'5 5tf-RPS, ensures that the fuel a

ladding temperature remains below the limits of 10 C 50.46. The Reactor Steam Dome J

Pressure-Low Functio s directly used in the analysis of the recirculatio ine break (Ref.

The Reactor 5 m Dome Pressure-Low signal re initiated DQ i

from four p sure transmitters that sense the eactor done la J pressure The lowable Value is chosen to ensure that the valve se prior to connencement of LPCI injection flow into h ore, as assumed in the safety analysis.

(continued)

BWR/4 STS B 3.3-112 Rev I, 04/07/95 l

0E\\f I A {

/$5V /2 -

ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE

.f.

Hioh Pressure Coolant Iniection Pume Discharae SAFETY ANALYSES. Flow-tow (Byou's) (continued)

LCO, and j

I APPLICABILITY The High P essure Coolant Injecti Pump Discharge Flow-w h Allowab Value is high enough t ensure that pump flo rate I%

is suf cient to protect the p p, yet low enough to nsure

.k that he closure of the mini m flow valve is init ted to

' all full flow into the c e.

e channal is required o be OPERABLE when t HPCI is j

equired to be OPERABL. Refer to LCO 3.5.1 for HPCI M

3.

anual Initiation I

y g nj The Manual initiation push bu n channel intred.ce M anals on.a-M

.inta t h PPCI h;ic te provid anual initiation capability f

=d u =:=e=u

....mm ;==m (orWpo8Hi inst.

....i.iiun.

There is one-

. L.;;en for the HPCI (ntkm I.S System.

gj & fiedcluhtnd)

The Manual Initiation Function is n sumed in any 4

accident or transient analyses in it R.

However, the Function is retained for overall rec ancy and diversity of the HPCI function as required by_the_.NRC in the plant licensing basis.

There is no Allowable Valve for thTs Function since the J

channel is mechanically "ctuated based solely Jn the position of tin ;=h b;_ =. M W c.il-Ae Manual

~.. -,,.

Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

Automatic Deoressuriration System 4.a. 5.a.

Reactor Vessel Water level-tow Low low. Level 1 Low RPV water level indicates that the capability'to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, ADS receives i

one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low, Level I is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed (continued)

BWR/4 STS B 3.3-119 Rev I, 04/07/95 8 6\\/ N

[

'~

SEV lb

1 o

DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION TECHNICAL CHANGES - LESS RESTRICTIVE

Speci fic" L.1 CTS Table 3.3.2-1 and Table 4.3.2.1 1. Function 6.a. requires that the reactor vessel water level Function be Operable (in addition

' to other specified conditions) when handling irradiated fuel in the secondary containment and during Core Alterations.

ITS Table 3.3.6.2-1 Function 1 eliminates the handling fuel and Core Alterr, tion Applicabilities for the reactor vessel water level Function (but retains the other Applicabilities consistent with

{

the CTS). The reactor vessel low level Function only actuates in the event of a vessel draindown event (i.e., an event initiated as a result of an operation with a potential for draining the reactor i

vessel). Reactor vessel water level Function is not assumed to actuate to provide secondary isolation for any event that is postulated to occur during core alterations or fuel handling (which is performed with the reactor cavity flooded). Therefore, this is a less restrictive change with no impact on safety.

L.2 Inoperable secondary containment isolation instrumentation affects two aspects of Secondary Containment Integrity - the secondary containment isolation valves (SCIVs) and the standby gas treatment (SGT) system. CTS 3.3.2 Actions b.1 and c for inoperable secondary containment isolation instrumentation direct entry into CTS Table 3.3.2-1 Actions 24 and 27.

In the case of CTS 3.3.2 Action b.1 there is an allowance for a 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> delay (changed to 12 or 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> in the ITS. see DOC LC.1) before taking Action 24 or

27. CTS Table 3.3.2-1. Action 24 for inoperable secondary j

containment isolation instrumentation, requires Secondary 4

Containment Integrity be established with the SGT system operating I

within one hour. Action 27 is similar, except that it provides an 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> allowar.ce to restore manual initiation capability (refer to DOC A.6 for a discussion of this allowance). Actions 24 and 27 are applicable at times when the Secondary Containment Integrity is already required by CTS 3.6.5.1.

Therefore, it is not necessary to explicitly repeat the requirement to establish Secondary Containment Integrity.

i FERMI UNIT 2 6

REVISION 14 08/26/99l w

DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMEN'T ISOLATION INSTRUMENTATION L.2 (continued)

If one secondary containment isolation instrumentation trip system is affected by the inoperable instrumentation (i.e., CTS 3.3.2 Action b.1), Secondary Containment Integrity would not be lost because the otbr trip system would still be available to close its SCIVs. In this case, the restoration of the SCIV portion of Secondary Containment Integrity would require no action for compliance with CTS 3.3.2 or ITS 3.3.6.2, and therefore no change is introduced. (Note however, the Actions for inoperable SCIVs would apply.) This aspect is discussed within this less restrictive change DOC for completeness.

If both trip systems were affected by the inoperable instronentation (i.e., CTS 3.3.2, Action c) Secondary Containment Integrity would be lost because both divisions of SCIVs would be affected. In this case, the CTS Table 3.3.2-1 actions would require establishing Secondary Containment Integrity within one hour, which for SCIVs is equivalent to ITS Required Action C.1.1 (e.g., Secondary Containment Integrity was affected by the 3

inoperable instrumentation resulting in a loss of isolation J

capability -- isolating the penetrations will restore it).

y i

ITS Required Action C.1.2 provides an alternative to isolating the k

secondary containment.

If isolation capability is maintained k

j (i.e., at least one trip system has the minimum required channels l

operable), declaring the affected SCIVs inoperable would place you j

in ITS 3.6.4.2, Required Action A.1, which allows 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> to j

isolate the penetration. This is equivalent to the CTS since Secondary Containment Integrity would not be lost.

If isolation capability is lost (i.e., both trip systems affected), ITS 3.3.6.2. Required Action B allows I hour to restore isolation capability.

If this is not achieved, Required Action C.1.2 would allow declaring the affected SCIVs inoperable within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

ITS 3.6.4.2, Required Action B.1 would then allow 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> to isolate i

the affected penetrations for a total of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> from the time the instrumentation was declared inoperable until the penetrations are isolated, restoring Secondary Containment Integrity. This less restrictive change (6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> versus 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) is acceptable because of the relatively brief time involved, the minimal probability of an event during this time, and any remaining manual capabilities that remain to effect the isolation.

.)

FERMI UNIT 2 7

REVISION 14 08/26/99l

DISCUSSION OF CHANGES ITS: SECTION 3.3.6.2 - SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION L.2 (continued)

As for the CTS requirement to establish SGT operating. CTS Table 3.3.2-1 Actions 24 and 27 require starting the affected SGT subsystem (s) within one hour.

ITS Required Action C.2.1 provides this same requirement. However, instead of starting the affected SGT subsystem (s), Required Action C.2.2 provides a less restrictive option to allow declaring the affected SGT subsystem (s) inoperable. The action to initiate the associated SGT subsystem is the compensatory action for losing the automatic initiation instrumentation for that subsystem. Taking that action i

allows for unlimited continued operation. Declaring the affected SGT subsystem (s) inoperable avoids placing the SGT subsystem (s) in operation but limits the time you are allowed to operate (7 days for one subsystem, immediate shutdown for two subsystems) under this provision. These actions are the same as the actions in CTS 3.6.5.3 for the SGT system. Under the CTS, if you take the g

actions in CTS 3.6.5.3 for inoperable SGT subsystem (s). Secondary tc Containment Integrity would be maintained. Therefore, under the CTS there would not be any additional action required to restore" Secondary Containment Integrity. Since there are accepted safe actions in the CTS for loss of a SGT subsystem function which still allow for the secondary containment to be considered

' TCi~

Operable. allowing these;same actions will continue to ensure-

-~

continued safe operation when the impact on the secondary containment function is solely due to instrumentation that effects the automatic start of SGT system. Therefore, this less restrictive change (not starting the affected SGT subsystem (s))

will have a negligible impact on safety.

RELOCATED SPECIFICATIONS i

None TECHNICAL SPECIFICATION BASES The CTS Bases for this Specification have been replaced by Bases that reflect the format and applicable content of ITS 3.3.6.2 consistent with the BWR STS, NUREG 1433 Rev. 1.

FERMI -' UNIT 2 8

REVISION 14 08/26/99l

LLS Instrumentation 3.3.6.3

)

3.3 INSTRUMENTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.

APPLICABILITY:

MODES 1. 2. and 3.

ACTIONS C0WITION REQUIRED ACTION COMPLETION TIME A.

One LLS valve A.1 Restore channel (s) to 14 days inoperable due to OPERABLE status, ineperable channel (s).

(continued)

-_~~

.)

^

l ' FERMI - UNIT 2 3.3 65 Revision 14 08/26/99

i LLS Instrumentation 3.3.6.3

]

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME h

M B.

NOTE---------

B.1 Restore one tailpipe 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Separate Condition pressure switch for entry is allowed for 11 OPERABLE SRVs to each SRV.

OPERABLE STATUS.

MQ One or more safety /

relief valves (SRVs)

B.2 Restore one tailpipe 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> with one or more pressure switch in Function 3 channel (s) each Division for an inoperable.

OPERABLE SRV in the lowest setpoint group, to OPERABLE status.

MQ

............ NOTE -- - --- -

LC0 3.0.4 is not applicable.

B.3 Restore both tailpipe Prior to pressure switches for entering H0DE 2

^

11 OPERABLE SRVs.

or 3 from H0DE 4 including 4 of 5 OPERABLE SRVs with Y

the lowest relief v

setpoints, to OPERABLE status.

C.

Required Action and C.1 Be in H00E 3.

12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> associated Completion Time of Condition A MQ or B not met.

C.2 Be in H0DE 4.

36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> E

Two LLS valves inoperable due to inoperable channels.

)

l FERMI UNIT 2 3.3 66 Revision 14 08/26/99 C

9 LLS Instrumentation 3.3.6.3 SURVEILLANCE REQUIREMEfffS

.....................................N0TE-------

Refer to Table 3.?.6.3-1 to determine which SRs apply for each Function.

SURVEILLANCE FREQUENCY SR 3.3.6.3.1 Perform CHANNEL FUNCTIONAL TEST.

31 days 3

SR 3.3.6.3.2 Perform CHANNEL FUNCTIONAL TEST for 31 days gl portion of the channel outside primary C

containment.

SR 3.3.6.3.3 Perform CHANNEL CALIBRATION.

18 months N,

SR 3.3.6.3._4_ Perform LOGIC SYSTEM FUNCTIONAL TEST.

18 months s

[ l FERMI UNIT 2 3.3 67 Revision 14 08/26/99

LLS Instrumentation 3.3.6.3 Table 3.3.6.3 1 (page 1 of 1)

Low Low Set Instrunentation REQUIRED CHANNELS PER SLRVEILLANCE ALLOWABLE FUNCTION FUNCTION REQUIREMENTS VALUE 1.

Reactor Steam Dame Pressure-High 1 per LLS valve SR 3.3.6.3.1 s 1113 psig SR 3.3.6.3.3 SR 3.3.6.3.4 2.

Low Low Set Pressure Setpoints 2 per LLS valve SR 3.3.6.3.1 Low:

SR 3.3.6.3.3 Open s 1037 psig SR 3.3.6.3.4 Close (a)

High:

9 Open s 1067 psig o

Close (a) bl 3.

Tailpipe Pressure Switch 2 per SRV SR 3.3.6.3.2

= 25 psig and SR 3.3.6.3.3 s 35 psig (g

SR 3.3.6.3.4 (a) = 100 psi below actual opening setpoint

.,r -,w x - % -,

-,m., -

s - m.t.

w.

J A l FERMI UNIT 2 3.3-68 Revision 14, 08/26/99

9 LLS Instrumentation B 3.3.6.3

]

BASES APPLICABILITY The LLS instrumentation is recuired to be OPERABLE in KODES 1, 2, and 3 since consicerable energy is in the nuclear system and the SRVs may be needed to provide pressure relief. If the SRVs are needed.-then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5. the reactor pressure is low enough that the overpressure limit cannot be a)proached by assumed operational transients or accidents.

T1us, LLS instrumentation and associated pressure relief is not required.

ACTIONS AJ The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)ility of the other LLS SRV to perform its LLS function. A LLS valve.is OPERABLE if the associated logic has one Function'l channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore, 14

. _../.A_

days is provided to restore the inoperable channel (s) to OPERABLE status (Required Action A.1).

If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered a)propriate because of the redundancy in the design (two L.5 valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel failures, which renders the remaining LLS SRV inoperable,

-p occurring together with an event requiring the LLS function during the 14 day Completion Time.

l B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi>e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and

-instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch

)

l FERMI UNIT 2 B 3.3.6.3-4 Revision 14, 08/26/99

1 LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued) instrument channels inoperable. Therefore. it is acceptable f

for plant operation to continue provided that within 24 (M,$

i hours, per Required Action B.1 and B.2. verification and/or I

restoration is made to ensure at least:

a) one tailpipe

{

l pressure switch in each Division OPERABLE on' one OPERABLE w

l N

SRV in the lowest SRV setpoint group: and b) at least 11 i

OPERABLE SRVs have at least one OPERABLE tailpipe pressure lm switch. Therefore, it is acceptable for plant operation to-4 continue even with only one tailpipe pressure switch I

D OPERABLE on each SRV. However, this is only acceptable i

jD provided each LLS valve is OPERABLE.

(Refer to Required Action A.1 and C.1 Bases).

I Required Action B.3 requires restoration of both tailpipe l

pressure switches on = 11 OPERABLE SRVs. including 4 SRVs s

out of the 5 lowest relief setpoint OPERABLE SRVs. to I

s OPERABLE status, prior to entering MODE 2 or 3 from MODE 4.

This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p

Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LCO 3.0.4 is not applicable. thus allowing entry into MODE 1 or 2 from MODE 2 or 3 with i

inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4.

A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to LLS Function 3 channels. Section 1.3. Completion Times.

e specifies that once a Condition has been entered. subsequent O

divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within g

limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory f

measures for separate inoperable Condition entry for each SRV with inoperable tailpipe pressure switches.

B 3.3.6.3 - 5 Revision 14 08/26/99 l FERMI UNIT 2 E

DISCUSSION OF CHANGES ITS: SECTION 3.3.6.3 - LLS INSTRUMENTATION ADMINISTRATIVE A.1 In the conversion of the Fermi 2 current Technical Specifications (CTS) to the proposed plant specific Improved Technical Specifications (ITS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433, Rev. 1.

A.2 ITS 3.3.6.3 SR Note is included as a clarification of the ITS presentation of SRs: specifying that ITS Table 3.3.6.31 be referred to determine which SRs apply for each Function. As such, its inclusion is an administrative presentation preference.

TECHNICAL CHANGES - MORE RESTRICTIVE M.1 CTS 3.4.2.2 requires Operability. Surveillances, and Action limitations for the LLS reactor pressure actuation I

~

iriitrumentation. The arming" instrumentation for the LLS Function (reactor pressure and SRV tail pipe pressure) is not addressed in the CTS requirements for the LLS Function. ITS Table 3.3.6.3 includes Function 1 and 3 for these arming" Functions. These additional requirements include Operability, Surveillance, and Action requirements.

In the case of the SRV tail-pipe arming Function, the ITS 3.3.6.3 Action B is provided, and is based on maintaining a high degree of reliability for the I

supporting function, while minimizing the potential for any unnecessary forced shutdown. Since opening any one of 15 SRVs l

will suffice to arm both LLS valves, the actions allow for continued operation with multiple inoperable tail pipe pressure 7s channels. The Actions include requirements to ensure that within

'Dg 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />s: a) a minimum of one tail pipe pressure channel in each division associated with 1 of the 5 lowest set Operable SRVs (to D

and b) Y assure arming in the event just the lowest set SRVs lift):

at least 11 Operable SRVs have at least 1 Operable tail pipe switch. Additionally, Required Action B.3 is provided to ensure a M significant number (at least 11 of 15) have both tail-pipe-N pressure switches Operable, including 4 of the 5 lowest set SRVs, md on any reactor startup from Mode 4.

?,

J FERMI UNIT 2 1

REVISION 14, 08/26/99l

LLS Instrumentation 3.3.6.3 3.3 INSTRUMENTATION 3.3.6.3 Low Low Set (LLS) Instrumentation

}

LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.

ff APPLICABILITY:

MODES 1. 2. and 3.

Q lNSE7LT SS 6.S~ l I

(

L.k ACTIONS-

/

fREQUIREDACTION COMPLETION TIME Y

CONDITION I4 days hCW h A.

One LLS valve A.1 Restore channel (s) to 34:M5Urr inoperable due to OPERABLE status, inoperable channel (s).

(4c M.1)

I h '_

T--.

--. NOTE--

& // operasts.5%

B.

One or more saf

/

i with on Functio M0.

LCO 3.0.4 is not inc64dmq 4 4.f.

relief valves (

applicable.

g p,gg gg g, g;4 channel noperable.

& lowest rslied-

_m.

- - ~ -

6.3 Restore pipe Prior to Q6@d6' n,

yntg pressure switches o entering MODE 2 OPERABLE status.

or 3 from MODE 4 DolM.lh C

Res re one ta' pipe

[14 days

%........ NOTE Separate Condition pr(ssure swit to 0 ERABLE sta us.

entry is allowed for I

g..... {

.......j each S h

0 or mor S/RVs 4th o Func on 3 hannel inopera e.

l (continued)

BWR/4 STS 3.3 67 Rev 1. 04/07/95 Rev W m Rey a \\\\

RCJ (o \\

LLS Instrumentation 3.3.6.3 Insert 3.3.6.3-1 B.1 Restore one tailpipe pressure 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> switch for 11 OPERABLE SRVs to OPERABLE STATUS.

24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> B.2 Restore one tailpipe pressure switch in each Division for an OPERABLE SRV in the lowest setpoint group, to OPERABLE status.

.naru FERMI - UNIT 2 Page 3.3-67 (Insert)

REVISION 14, 08/26/99

LLS Instrumentation B 3.3.6.3 BASES APPLICABILITY approached by assumed operational transients or accidents.

%/

(continued)

Thus, LLS instrumentation and associated pressure relief is not required.

ACTIONS Note: Certain LCO Completion Ti ed on

)

Y approved top rts. In

/ \\ the times, the li theCompletionTimesas[

censee to use require s aff Safety Evalua un b r*

the AI The failure of any reactor steam dome pressure instrument channel to provide the arming, S/RV opening and closing pressure setpoints for an individual LLS valve does not affect the ability of the other LLS S/RVWto perform ps LLS function. A LLS valve is OPERABLE ff the associated logic, ';.;.. 'n't ".), has one Function I channel, two Function z cnannels, ane'three Function 3 channels OPERABLE.

m_Therefore.# !.__.; is provided to restore the inoperable Q4 dais.) channel (s) to OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status

?.3 within the allowable out of service time, Condition FTsust C be entered and its Required Action taken. The Required O,

Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation.

)

_Thef !.__. Completion Time is considered appropriate be s

47 Decause of the redundancy in the design (fevFLL5 valves are provided and any one LLS valve can perform the LLS function) and the very low channel failures, probability of multiple LLS instrumentation whichrendertheremainingLLSS/RVg.

inoperable, occurring together with an event requiring the kh3 I""CN ""i {ng the { :... y ompletion Timegg du

g ;;;, u n -

_ m - -'-

-~

d%

u,u, ud63 9E

'Althoug e LLS circuitry is designed so that operation of a single tailpipe pressure switch will result in arming both LLS logics '- - ---- ' ^ ' ""' '- ' each tailpipe D

pressure switch provides : d k;;^ input to r.'" - - LLS (continued)

BWR/4 STS 8 3.3-201 Rev.1,04/07/95 AW 14 s Rw 6 a

LLS Instrumentation B 3.3.6.3 BASES Q*%QQ0 } } ACTIONS L 1 Icontinued) l h e d., Log}cfA). Si e each LLS logic normally rec es at 1 e'st five S R pressure-switch inputs (and also re ives the' ther S ignals @64 the er logic in the gg ' tame d Hion by ruing ), t LS logic an inste ntatio emains e of rforming it ety.. j p,3.by-3A funhion ih'y S/RV e nradfure switch trumaa+ lhannel-a=ae 4aaa la. Therefore, it is acceptable for l l plant operation to continue with only one tailpipe pressure O i switch OPERABLE on each However, this is only 1 o3 acceptable provided each LS valve is OPERABLE. - (Refer to Required Action A. d Bases). %q ltJS EE T _Re_ quired Action _ BJt equires restoration o 11 pipe l g g.3 (,.3-3 b pressure switches &to OPEIMBLE-status prior to entering f i i MODE 2 or 3 from MODE 4Jts) ensure that-aR switches ar { PE1ABLE at the beginning of a reactor startup because the switches are not accessible during p(this i n lant s operation). The Required Actions do net allow placing the [ ' This w,il channel in trip since this action could result intLL tt valve actuation. As noted, LCO 3.0.4 is not applicab E thus allowing entry into MODE T8from MODE 2 Arith inoperable 4 { channels. inis ailowance is needed since th nnels o i y3 have to be repaired prior to entering MODE 2 ?., **? ?.eE $8,_0.,$_ n'0_....*.".".5' L...i".~~.'.T ' .v L ( ...n A fai of two press witch channels rIciatedwith t on RV ta ipj e e result in the 4 of the LLS nction (i.e. 1ple actuation f the S/RV would go undetected he LL 14gic). ever, the /RVs are organtz n groups and,'Wu g an event, oups of 5/RVs init y open (:etpoint re t same ett ngs for a total, ,) 1 S/RVs in three cups). Ther, pre, it would b unlikely that a s e S/RV woul e rh d to'a he LLS logic. refore, it is ceptable t '14 days to { restore on ressure switc of the associated RV to OPERAB status (Requir) Action C.1). ofwever, th s allo le out of servite time is on1 cceptable provid each LLS is CPERABLE (Refer to Reg ed Action A.1 and D.1 Bases). If one inoperable tallpipe pressure switch cannot I (continued) BWR/4 STS B 3.3-202 Rev1,04/07/95 {% EU d 0 Re6

l LLS Instrumentation B 3.3.6.3 q Insert B 3.3.6.3 3a l ... logi cs. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with { several SRV tailpipe pressure switch instrument channels inoperable. Therefore, it is acceptable for plant operation k to continue provided that within 24 hours, per Required g 5 i Action B.1 and B.2, verification and/or restoration is made s to ensure at least: a) one tailpipe pressure switch in each division OPERABLE on one OPERABLE SRV in the lowest SRV q setpoint group; and at least 11 SRVs have at least one o OPERABLE tailpipe pressure switch. J &)""*W~ =: :. -T ~~ Insert B 3.3.6.3 3b n O on 2'11 SRVs, including 4 SRVs out of the 5 lowest relief D setpoint OPERABLE SRVs, _,/ 1 FERMI UNIT 2 Page B 3.3 202 (Insert) REVISION 14, 08/26/99l

i LLS Instrumentation B 3.3.6.3 4* BASES tth 8.1,8.7_,and 6O ) ~ ,3 i ACTIONS -(md mued ( be restor to OPERABLE st s within the allowable out of servic me, Conditio st be entered and its Required f Acti aken. The Rpq red Actions do DDt' allow placing the lve actuation /s.ince this action egpfd result-in a LLS-j els in trip c I A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to LLS Function 3 channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent' divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions h of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory asures for separate inoperable Condition entry for each with inoperable tailpipe pressure swi}ches. ,l B If any Required Actio and associated Completion Time of Conditions A,X, or are not met, or two op-eare LLS valves 3 are inoperable due to inoperable channels, the LLS valves P, <3 m may be incapable of performing their__ intended function. Therefore,JhT-ass ciatea LLs va must be sarea $3 3 6.3-$} rinoper>bre i gg7 tely. A alve is LE if th a (Tated c (e.g. ic A) ha Functio el, I t[sFun n 2 chan s, and the unction 3 als J Q LOPERABtE., ~ SURVEILLANCE Reviewer's Note: scrimin-Frequencies _are-brsytron approved REQUIREMENTS topical reports. I er-for a 1TcenYur-te na'the ciesv-t censee must justify the.Frequeh % by the staff SER for the topical report As noted at the beginning of the SRs, the SRs for each LLS instrumentation function are 1ccated in the SRs column of Table 3.3.6.3-1. (continued) BWR/4 STS. B 3.3-203 Rev 1, 04/07/95 Rat N ll ReV(o

INSERT THIS PAGE IN FRONT OF VOLUME 10 etVolumme: 10 SECTIONS 3.9,3.10,4,8 & 5.01, + Remove Replace 5.7 CTS M/U (6-23) pg 2 of 2 5.7 CTS M/U (6-23) pg 2 of 2 Rev 14 5.7 DOCS pg i Rev 0 5.7 DOCS pg i Rev 14 5.7 NUREG M/U pg 5.0-24 Rev 0 5.7 NUREG M/U pg 5.0-24 Rev 14 1 1 Rev 14 08/26/99

?* High Radiation Area 45 7A ) [5.7 HighRadiationArea] s ~ 5.7.2 (continued) areas and the maximum allowable stay times for individuals in those areas. In lieu of the stay time specification of the RWP, direct or remote (such as closed circuit TV cameras) continuous d.1 surveillance may be made by personnel qualified in radiation / protection procedures to provide positive exposure control over ~' the activities being performed within the area. j V' 5.7.3 -- T;r i.Jivia.1-iiive i.eimon areas wun rauintion-4evei..T / jpM00-eres/hry-access-ible4, ...../.3, that are located within r - large areas such as reactor containment, where no encibsure exists for purposes of locking, er-that-eannet-be-<ontinuouc1;; ;nrf:f, i ItJ5E/L7 and where no enclosure can be reasonably constructed around the P-5'7-1 conspicuously posted, and a flashing light shall be'f=M individual area, that individual area shall bet-- and activated as a warning device. TD f b

  • s e sn i

"""/ G - 5.0-24 - "r? I, 00/e7pis-

SPECIFtcA770N 5 7 ADMINISTRATIVF CONTR0tS HIGH RADfATION AREA (Continued) g* g, (, m. A radiation monitoring device which continuously indicates the radiation dose rate in the area. 6,7 (. b. A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made knowledgeable of them.

07. l.c.

A radiation protection qualtfled individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP. g#,pfn43.2_ In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could receive in I hour a dose equivalent greater than 1000 mress but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear Shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay. time for individuals in that area / Tor individual areas accessible to individuals with radiation levels such that a major portion of the T'7 *.5 individual's body could receive in I hour a dose in excess of 1000 mress* but less than 500 rads at one meter from sources of radioactivity that are located- ~. - within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the _ a flashing licht shall be__ activated as a warning device /picuously posted, and j individual areas, then that area shall be roped off cons 2 In lieu of the stay time specification of the RWP, continuous survel u ance, direct or remote (such 6 7.2 as use of closed circuit TV cameras) may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities within the area. - 5.13 leu w g,/ G7 3 yneasurement made at 30 centimeters from source of radioactivity. M f" alternas utte may designated for thif position. All rendirementi)- of ese Tec al Specific ons apply in the teettina with the mMarnattva_) 1t e an an v with the se ifted title / Alternative titles shall be specified in 'the Updated Final Safety Analysis Report. FERMI - UNIT 2 6 23 Amendment No. JJ JJ, JJ 113 PAGE ,Q of 02 $V N

DISCUSSION OF CHANGES ITS: SECTION 5.7 - HIGH RADIATION AREA ADMINISTRATIVE A.1 In the conversion of the Fermi 2 current Technical Specifications (CTS) to the pre osed plant specific Improved Technical Specifications (.TS), certain wording preferences or conventions are adopted which do not result in technical changes (either actual or interpretational). Editorial changes, reformatting, and revised numbering are adopted to make the ITS consistent with the Boiling Water Reactor (BWR) Standard Technical Specifications NUREG 1433. Rev. 1. A.2 CTS 6.12.1 has been modified to better clarify the wording and provide correct section reference to 10 CFR 20.1601 (i.e. "c") for regulatory guidance on High Radiation Areas. Since the requirements are not changed. this is an administrative change with no impact on safety. A.3 CTS 6.12.1.c footnote has been modified in a Note to ITS 5.0 which clarifies the wording and intent of this CTS footnote. Since this is a clarification of intent which is consistent with current Technical Specifications. this change is administrative and will not impact safety. ~' ' ~ A.4 Not used. l TECHNICAL CHANGES MORE RESTRICTIVE None FERMI - UNIT 2 1 REVISION 14 08/26/99l

l INSERT THIS PAGE IN FRONT OF VOLUME 11 l

p
Velmane lli CTS MARKUP COMPILATIONi,

l Remove Replace 1 1 (1.0 CTS M/U) pg I of 14 Rev 6 1-1 (1.0 CTS M/U) pg i of 14 Rev 14 3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 12 3/4 3-24 (3.3.5.1 CTS M/U)pg 2 of 8 Rev 14 6-23 (5.7 CTS M/U) pg 2 of 2 Rev 0 6-23 (5.7 CTS M/U) pg 2 of 2 Rev 14 l i l l Rev 14 08/26/99 l l

Sgtc\\4ea % I.o OA.I f*I ,+ s m % M 4te -w --;.7 DEFINIT 10NS = W \\taepect1tt h Nf tt m - .m.,e,,le..g h.ir,wc-A feetW-M 41 e,i rw;oThe defined terstw(sppear in capitali2co ;.c th f ..o__, m. ..u...' e :1_l' i. applicable throughout these Technical Specifications."'QsQ5 (MPfdede h65p ACT10N +- ACTI hall be that part of a Spec ication prescribes remed4a3 e se -lo % QLiMin rPre; fred Comp!

r;; :;'-ed der design _ated nditions h r

1.2 AVERAGE kANAREXPOURfshall pplicable a specifi lana ight [.7 P ! AVERAGE PLARAR EXPOSURE d is e to the s of the e sure of a he fuel in specif bundle he s d_heicht ided by th umber f fuel rods) k in t e fuel bund 1 ( pecif L ~ AVIRAGE PLANAR LfNEAR HEAT GENERAT'ON RATE b N The MCT_^I:.Lfi'" L:.'C'a "E* M ENERATiON-RATE APLHGR shall be applicable hk to a specific planar height and is equal to the sum of the tfMEAR-MEAf all devius ta GENEMTIZ 37ES for all the fuel rods in the specified bundle at the 'b^*Wilf specified height divided by the number of fuel 9 s,in _the fuel bundle. NE CHANNEL CAlfBRATION. "d -1,4-A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with he necessary range and accuracy to known values of the_ parameter the channel monitors. The CHANNEL CALIBRATION C ""-- ' f : ?.d !..,.- .....m, j ;;;.; M ' tijn f_..:ti:::.f:: ::t' :ir.;'.d[theCHANNELFUNCTIONAL The CHANNEL snail encompass

  • ti: u..!

pMOg g CALIBRATION may be performed byFany series of sequential, _apping or

tir; i... :1 i; ;;t '.i. ___1/Cauprauen j

,' @ total channel stees c :5 th:t th:f iistrument channels with thermocouple sensors ib!' :er.eiet ef in'f t: tier, ef gn;b'1't; ef-the l - - = =e*, of_ n* e-aiainn adiuttabi l sens ing-element-end-edjus.-.. devicesinthechannel,f" casiose of arz inpta e g&Wxe = may//TS,$ M # CHANNEL CHECK of channel behavior -h5-A CHANNEL CHECK shall be the qualitat1~ve assessmen shall include, where This determinat during operation.4 et;c;;ti:: M. status -witkother possible, comparison of the channel indication a indications andfor status derived from independ nt in trument chalinels E6s o measuring the same parameter. CHANNEL FUNCTIONAL TEST ANNEL FUNCTIONAL TEST shallybel L "!"# # 7, -h 6

  • 94 ottsteeius A.

intkcckennel s.3^-'1r; :h::: h 5theinjectionofasimulate signal into the channel as close to the sensor as practicable to verify 0PERABILIT('t&d't;; regvind for .. ! " a 4"ar " aa ' *ad d'---! fdl... L lr. e chaand b ---8-itteb!e channels---the-4adest4on-ef-a44mulated e47=1 liidVtM o n 48 mTY tuer4fv OPERABIL!TY--Sncludb; :1:rs-and/or-trip.functrions, ,, l 3 The CHANNEL FUNCTIONAL TEST may be performed byaany series of sequential, g ---' H t-t-d. overlappingor total channel steps vndr%=+-%e'.. : ea 72S of ndment No. 41 FERMI UNIT 2-11 b*I PAGE I_ 0F 14 h4 l- -O Mw mm

spec micATioe> 3 3.Ol l -r .S -lMy r-1 T s eno e we o - s.) omom% erd & ; g 4 0 g-

ooceo, o

g o u v g go sp o oOO l RRRRA RRRR R RR RA RRKKMA a a a ai k 5 t~ amm a amm a am na mmmmmm 5 asha d4N a da da a4444a E 55

i:
i : ::.:.:

x w 1 h, g g q MN% iM'h N66*,% W ~ ~g= n. oo = ~~ n ww 1 n= A) p rv> .u-o a m, M rh I Y4 O 4 4 g . W=Eu e <v C .g x z E E 5 E g; so - - p7 ) q ~ ~ L j. 0; - z _ g_ e g g m e. ,<g ? l

  1. C E kS 2

5 ~ .et 3 5%" " 5 ~R." 5. 'E ' g 3 .E o w ~ =% w m 8 g : ' * ' 's 3 t 2 t : E tt 02 5%" 5 Rt-E "ab 5 u R-E u u g u tg

  • %:2 03%03 : C8 7:1
  • M i.%

W GEC2" GEt; 2 GEL GHL LEB E = 3?E32$ g. 5% I 3-t i E O G 3.E amhEE~ 3.E g. a e 3' E i ET'5":8 E 8k8 S L: E 8

~.' :

g it.g;8;" 35: 5

ST:E5"tEt3 xW.C.222"e 8 22:2;;28252 m

j wa >c w a.m = m m ; ; 2 g m v g 8: :._ = :: 3 a = =.e-s ::sen- < E b kbk ! b k..b!Ek !5. E! h bhb!! a -omm-x w m -l ] mo-a (n kbb k

  • b b Nh k b b'b b N u

w s $$bl Wlb k d@dM $g !E..: 4 f2 3}3g}w FERMI - UNIT 2 3/4 3 24 1 (ennar Pnft gkt-3 5 PAGE il 0F 08 ( Rev IL / 3 sev 14 I

SPECIF(CA7BN 5 7 ADMINISTRATIVE CONTROLS HIGHRADfATIONAREA(Contir.ued) A r u ~ ^ ica <enstort.g devu dich er l ~.h ' A M a

    • 6; radiation case rate in the area.

6 7.(. b. A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made howledgeable of them. f,7. l.c. A radiation protection qualified individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Radiation Protection Supervisor ** in the RWP. p#1-frrE2 In addition to the requirements of Specification 6.12.1, areas accessible to individuals with radiation levels such that an individual could receive in I hour a dose equivalent greater than 1000 areas but less than 500 rads at one meter from sources of radioactivity shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of the Nuclear shift Supervisor on duty and/or the radiation protection supervision. Doors shall remain locked except during periods of access by individuals under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay. time for individuals in thau area.fTo~r individual areas accessible to I'7'3 individuals with radiation levels such that a ma,jor portion of the individual's body could receive in I hour a dose in excess of 1000 arens* but less than 500 rads at one meter from sources of radioactivity that are located within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be. reasonably constructed around the individual areas, then that area shall be roped-off, consolcuously posted, and _a flashino licht shall be activated as a warning device / In lieu of the stay slee specification of the RWP, continuous surveillance, direct or remote (such 5,7.2. as use of closed circuit TV cameras) may be made by personnel qua11ried in radiation protection procedures to provide positive exposure control over the activities within the area. 0.13 DEuw ~ g,[ G7 3 _=neasurement made at 30 centimeters from source of radioactivttv. 4. f= alternau utie may cesignated for thty position. All rJeiremen of se Tech a1 Specift ons apply ta *ke #aettian with the anernative it a as ma with the en ified tit 1*IAlternative titles shall be s)ecified 1'n 'the Updated Final Safety Analysis Report. ~ FERMI - LRl!T 2 6-23 Amendment No. JJ, M, # 113 PAGE ,Q 0F 02 /WN

INSERT TIIIS PAGE IN FRONT OF VOLUME 12 ) Volume 12: IMPROVED TECHNICAL SPECIFICATIONS" Remove Replace 1.0 ITS pg 1.12 Rev 6 1.0 ITS pg 1.1-2 Rev 14 3.3.5.1 ITS pg 3.3-41 Rev 12 3.3.5.1 ITS pg 3.3-41 Rev 14 3.3.5.1 ITS pg 3.3-43 Rev 12 3.3.5.1 ITS pg 3.3-43 Rev 14 3.3.5.1 ITS pg 3.3-44 Rev 12 3.3.5.1 ITS pg 3.3-44 Rev 14 3.3.t : ITS pg 3.3 65 Rev 13 3.3.6.3 ITS pg 3.3-65 Rev 14 3.3.6.3 ITS pg 3.3-66 Rev 6 3.3.6.3 ITS pg 3.3-66 Rev 14 3.3.6.3 ITS pg 3.3-67 Rev 6 3.3.6.3 ITS pg 3.3-67 Rev 14 3.3.6.3 ITS pg 3.3-68 Rev 14 l Rev 14 08/26/99

4 Definitions 1.1 1.1 Definitions (continued) CHANNEL CHECK A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include. where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter. CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection G of a simulated or actual signal into the channel as close to the sensor as practicable to verify h OPERABILITY of all devices in the channel required Y for channel 0PERABILITY. A CHANNEL FUNCTIONAL TEST may be performed by means of any series of gl sequential, overlapping, or total channel steps. CORE ALTERATION CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS: a. Movement (including replacement) of source range monitors, local power range monitors, intermediate range monitors, traversing incore '~' ~ probes, or special movable detectors: and b. Control rod movement, provided there are no fuel assemblies in the associated core cell. Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position. (continued) l FERMI UNIT 2 1.1 2 Revision 14 08/26/99

ECCS Instrumentation 3.3.5.1 .abl..,. -.1 1 space i s. t,i ) Emergency Core Cooling System Instrumentation APPLICABLE CONDITIONS NODES REQUIRED REFERENCED OROTER CHANNELS FRON SPECIFIED PER REQUIRED StRVEILLANCE ALLOWABLE RmCTION COWITIONS RMCTION ACTION A.1 REQUIREENTS VALUE 1. Core Spray System a. Reactor Vessel Water 1.2.3 4(b) B SR 3.3.5.1.1 e 24.8 inches Level - Low Low Low. SR 3.3.5.1.2 Level 1 4(a). 5(a) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b. Drywell 1.2.3 4(b) B SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 SR 3,3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c. Reactor Steam Dome 1.2.3 4 C SR 3.3.5.1.1 = 441 psig Q Pressure - Low TR 3.3.5.1.2 A (Injection Perwissive) SR 3.3.5.1.3 LD SR 3.3.5.1.4 SR 3.3.5.1.5 QC 4(a),5(a) 4 B SR 3.3.5.1.1 = 441 psig SR 3.3.5.1.2 SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 '"1p d.. Manual Initiation 1.2.3 2(CL C SR 3.3.5.1.6 NA " - ' ~ * ' " k 4(a),$(s) 2. Low Pressure Coolant Injection (LPCI) System a. Reactor Vessel Water 1.2.3. 4 B SR 3.3.5.1.1 e 24.8 inches Level-Low Low Low. SR 3.3.5.1.2 Level 1 4(a). 5(a) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) (a) When associated subsystem (s) of LC0 3.5.2 are required to be OPERABLE. p (b) Also required to initiate the associated emergency diesel generator (EDG). e4 (c) Individual component cows. L l FERMI - UNIT 2 3.3 41 Revision 14 08/26/99

i ECCS Instrumentation 3.3.5.1 Ta',is J.J.o. M (page 3 of o) Emergency Core Cooling System Instrianentation APPLICABLI CONDITIONS MODES OR REQUIRED REFERENCED OTMR CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDIIIONS FUNCTION ACTION A.1 REQUIREMENTS VALUE \\n 2. LPCI System (continued) s h. Manual Initiation 1.2.3 2(C) C SR 3.3.5.1.6 NA 1 4(a). 5(a) 3. High Pressure Coolant In,)ection (tPCI) System ^ a. Reactor Vessel Water 1. 4 B SR 3.3.5.1.1 a 103.8 i Level - Low Low. SR 3.3.5.1.2 inches l Level 2 2(d), 3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 b. Drywell 1, 4 B SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l 2(d)3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 c. Reactor Vessel Water 1, 2 C SR 3.3.5.1.1 s 219 inches Level - High. Level 8 SR 3.3.5.1.2 Ol 2(d). 3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 ) SR 3.3.5.1.5 Q d. Condensate Storage 1. 2 D SR 3.3.5.1.1 = 0 inctes 1 (l 2(d),3(d) SR 3.3.5.1.3 Tank Level - Low SR 3.3.5.1.2 SR 3.3.5.1.4 SR 3.3.5.1.5 e. Suppression Pool Water 1, 2 D SR 3.3.5.1.1 s 5.0 inches Level - High SR 3.3.5.1.2 Nl 2(d), 3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 (continued) n b. g (a) When the associated subsystem (s) are required to be OPERABLE. M (c) Individual conponent controls, g l (d) With reactor steam dame pressure > 150 psig. s l FERMI UNIT 2 3.3 43 Revision 14, 08/26/99

ECCS Instrumentation 3.3.5.1 ..) Table 3.J.ti.41 (p.,ge 4 of 6) Emergency Core Cooling System Instrtamentation APPLICABLE ColOITIONS MOKS OR REQUIRED REFERENCED OTER CHANNELS FROM SPECIFIED PER REQUIRED SLRVEILLANCE ALLOWABLE FUNCTION CONDITIONS FUNCTION ACTION A.1 REQUIREENT5 VALUE y 3. }PCI System (continued) g k f. Manual Initiation 1, 1(C) C SR 3.3.5.1.6 NA 2(d),3(d) 4. Autunatic Depressurization System (ADS) Trip System A 'l a. Reactre Vessel Water 1. 2 E SR 3.3.5.1.1 = 24.8 Level-Low Low Low. SR 3.3.5.1.2 inches l Level 1 2(d),3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l b. Drywell 1. 2 E SR 3.3.5.1.1 s 1.88 psig Pressure - High SR 3.3.5.1.2 l 2(d),3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l c. Automatic 1. 1 F SR 3.3.5.1.2 s 117 seconds Depressurization SR 3.3.5.1.4 '"N l System initiation 2(d).3Id) SR 3.3.5.1.5 }d liner d. Reactor Vessel Water 1. 1 E SR 3.3.5.1.1 a 171.9 Level-Low. Level 3 SR 3.3.5.1.2 inches !l (Confirmatory) 2(d),3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 l e. Core Spray Ptsip 1, 1 per ptmp F SR 3.3.5.1.1 a 125 psig Discharge SR 3.3.5.1.2 il Pressure - High 2(d),3(d) SR 3.3.5.1.3 SR 3.3.5.1.4 SR 3.3.5.1.5 G (continued) (c) Individual component controls. Q l (d) With reactor steam dame pressure > 150 psig. l s s l FERMI UNIT 2 3.3 44 Revision 14, 08/26/99 j x

e 4 LLS Instrumentation 3.3.6.3 ) 3.3 INSTRlMEhTATION 3.3.6.3 Low Low Set (LLS) Instrumentation LC0 3.3.6.3 The LLS valve instrumentation for each Function in Table 3.3.6.31 shall be OPERABLE. APPLICABILITY: MODES 1. 2. and 3. ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. One LLS valve A.1 Restore channel (s) to 14 days inoperable due to OPERABLE status, inoperable channel (s). (continued) .~ i l FERMI UNIT 2 3.3 65 Revision 14 08/26/99 1

t LLS Instrumentation ~ 3.3.6.3 ) ACliONS (continued) COM)ITION REQUIRED ACTION COMPLETION TIME 3 7 B. - - -- NOTE------ B.1 Restore one tailpipe 24 hours Separate Condition pressure switch for entry is allowed for 11 OPERABLE SRVs to each SRV. OPERABLE STATUS. E One or more safety / . relief valves (SRVs) B.2 Restore one tailpipe 24 hours { with one or more pressure switch in Function 3 channel (s) each Division for an inoperable. OPERABLE SRV in the lowest setpoint group, to OPERABLE status. E ............N0TE LCO 3.0.4 is not applicable. ~b B.3 . Restore both tailpipe Prior to 'I pressure switches for entering MODE 2 ^ 11 OPERABLE SRVs, or 3 from MODE 4 'd including 4 of 5 OPERABLE SRVs with the lowest relief v setpoints,to OPERABLE status. C. Required Action and C.1 Be in MODE 3. 12 hours associated Completion Time of Condition A E or B not met. C.2 Be in MODE 4. 36 hours -IE Two LLS valves inoperable due to inoperable channels. ) l FERMI - UNIT 2 3.3 66 Revision 14, 08/26/99

J l LLS Instrumentation 3.3.6.3 1 ) SURVEILLANCE REQUIREMENTS .....................................N0TE..................................... Refer to Table 3.3.6.31 to determine which SRs apply for each Function. SURVEILLANCE FREQUENCY SR 3.3.6.3.1 Perform CHANNEL FUNCTIONAL TEST. 31 days i 3 SR 3.3.6.3.2 Perform CHANNEL FUNCTIONAL TEST for 31 dayt gl portion of the channel outside primary C containment. SR 3.3.6.3.3 Perform CHANNEL CALIBRATION. 18 months "~y. SR 3.3.6.3.4 Perform LOGIC SYSTEH FUNCTIONAL TEST. 18 months I i l I w* l FERMI UNIT 2 3.3 67 Revision 14 08/26/99

O LLS Instrumentation 3.3.6.3 ) M ie 3.3.6.J 1 (page 1 of 1) Low Low Set Instrumentation REQUIRED CHMBELS PER SL5tVEILLANCE ALLOWBLE FLECTION FLsETION REQUIREENTS VALUE 1. Reactor Steam Dame Pressure-High 1 per LLS valve SR 3.3.6.3.1 s 1113 psig SR 3.3,6.3.3 SR 3.3.6.3.4 2. Low Low Set Pressure Setpoints 2 per LLS valve SR 3.3.6.3.1 Low: SR 3.3.6.3.3 Open s 1037 psig SR 3.3.6.3.4 Close (a) Hi : q s 1067 psig Q ose (a) h 3. Tailpipe Pressure Switch 2 per SRV SR 3.3.6.3.2 a 25 psig and (gl SR 3.3.6.3.3 s 35 psig SR 3.3.6.3.4 (a) = 100 psi below ectual opening setpoint. l_ FERMI UNIT 2 3.3 68 Revision 14, 08/26/99

O i INSERT tills PAGE IN FRONT OF VOLUME 13 i ( Volume l3:1 IMPROVED TECHNICAL SPECIFICATIONS BASES '. i Remove Replace B 3.3.5.1 ITS pg B 3.3.5.1 10 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-10 Rev 14 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 12 B 3.3.5.1 ITS pg B 3.3.5.1-17 Rev 14 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-4 Rev 14 i B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 6 B 3.3.6.3 ITS pg B 3.3.6.3-5 Rev 14 I I l l l l l Rev 14 08/26/99

E o e ECCS Instrumentation B 3.3.5.1 BASES APPLIC/6LE SAFEfY ANAL (SES. LCO. 6.d igELipyltu - (antinued) analysis of the recirculation line break (Ref.1). The core cooling function of the ECCS, along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. The Reactor Steam Dome Pressure-Low signals are initiated from four pressure transmitters that sense the reactor dome pressure. The Allowable Value is low enough to prevent overpressuring the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46. Four channels of Reactor Steam Dome Pressure-Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems. 1.d. 2.h. Manual Initiation b 3 The Manual Initiation channel provides manual initiation ~~ E capability by means of individual component controls. There-R is one manual initiation channel for each of the CS and LPCI subsystems (i.e.. two for CS and two for LPCI). The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the low pressure ECCS function as required by the IRC in the plant licensing basis. c4 There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the individual components. Each channel of the Manual Initiation Function is only required to be OPERABLE Y when the associated ECCS is required to be OPERABLE. Refer to LC0 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems. 1 FERMI UNIT 2 B 3.3.5.1-10 Revision 14 08/26/99 i L

l s ECCS Instrumentation B 3.3.5.1 BASES /WI : CME UFE'. IAALGES. %0,.m /NLIC/Slt TTY ;cor4ime.... Two channels of Suppression Pool Water Level-High Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can )reclude HPCI swap to suppression pool source. Refer to _C0 3.5.1 for HPCI Applicability Bases. g 3.f. Manual Initiation t The Manual Initiation channel provides manual initiation capability by means of individual component controls. There N is one manual initiation channel for the HPCI System. N The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of 7 the HPCI function as required by the NRC in the plant I licensing basis. There is no Allowable Value for this Function since the V channel is mechanically actuated based solely on the position of individual controls. The Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases. _. ~. Automatic Deoressurization System 4.a. 5.a. Reactor Vessel Water Level-Low Lw Low. Level 1 Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far. fuel damage could result. Therefore, ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level-Low Low Low. Level 1 is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 1. The core cooling function of the ECCS. along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. Reactor Vessel Water Level-Low Low Low. Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due tb the actual water level (variable leg) in the vessel. Four channels of l FERMI UNIT 2 B 3.3.5.1-17 Revision 14 08/26/99

l LLS Instrumentation B 3.3.6.3 j . l} wGch APPLICABILITY 'The LLS instrumentation is recuired to be OPERABLE in MODES 1, 2, and 3 since consicerable energy is in the nuclear system ~and the SRVs may be needed to provide pressure relief. If the SRVs are needed, then the LLS function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5, the reactor pressure is low enough that the overpressure limit cannot be a>proached by assumed operational transients or accidents. Tius, LLS instrumentation and associated pressure relief is not required. ACTIONS Al The failure of any reactor steam done pressure instrument channel to provide the arming, SRV opening and closing pressure set)oints for an individual LLS valve does not affect the a)111ty of the other LLS SRV to perform its LLS function. A LLS valve is OPERABLE if the associated logic has one Function 1 channel, two Function 2 channels, and at least three Function 3 channels OPERABLE. Therefore,14 '3 days is provided to restore the inoperable channel (s) to ) OPERABLE status (Required Action A.1). If the inoperable channel (s) cannot be restored to OPERABLE status within the allowable out of service time, Condition C must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action could result in an instrumented LLS valve actuation. The 14 day Completion Time is considered appropriate because of the redundancy in the design (two LLS valves are provided and any one LLS valve can perform the LLS function) and the very low probability of multiple LLS instrumentation channel failures, which renders the remaining LLS SRV inoperable, -g occurring together with an event requiring the LLS function during the 14 day Completion Time. l B.1. B.2. and B.3 Although the LLS circuitry is designed so that operation of a single tailpi)e pressure switch will result in arming both LLS logics: eac1 tailpipe pressure switch provides an input to both LLS logics. Since any overpressure event will normally open at least five SRVs and actuate their associated pressure switch inputs, the LLS logic and instrumentation remains capable of performing its safety function even with several SRV tailpipe pressure switch ) l FERMI UNIT-2 B 3.3.6.3-4 Revision 14, 08/26/99 L A

C i s, LLS Instrumentation B 3.3.6.3 BASES ACTIONS (continued) instrument channels inoperable. Therefore, it is acceptable f{M hours, per Required Action B.1 and B.2. verification and/or for plant operation to continue provided that within 24 I restoration is made to ensure at least: a) one tailpipe g pressure switch in each Division OPERABLE on' one OPERABLE l N SRV in the lowest SRV setpoint group: and b) at least 11 i OPERABLE SRVs have at least one OPERABLE tailpipe pressure lm switch. Therefore, it is acceptable for plant operation to-4 continue even with only one tailpipe pressure switch l 21 OPERABLE on each SRV. However, this is only acceptable lD provided each LLS valve is OPERABLE. (Refer to Required Action A.1 and C.1 Bases). I Required Action B.3 requires restoration of both tailpipe I pressure switches on = 11 OPERABLE SRVs. including 4 SRVs g out of the 5 lowest relief setpoint OPERABLE SRVs. to i s OPERABLE status, prior to entering MODE 2 or 3 from MODE 4. This will ensure that sufficient switches are OPERABLE at the beginning of a reactor startup (this is because the switches are not accessible during plant operation). The p Required Actions do not allow placing the channel in trip since this action could result in an inadvertent LLS valve actuation. As noted. LC0 3.0.4 is not applicable thus l allowing entry into MODE 1 or 2 from MODE 2 or 3 with inoperable channels. This allowance is needed since the channels only have to be repaired prior to entering MODE 2 or MODE 3 from MODE 4. A Note has been provided in the Condition to modify the Required Actions and Completion Times conventions related to e LLS Function 3 channels. Section 1.3. Completion Times. O specifies that once a Condition has been entered. subsequent divisions, subsystems, components, or variables expressed in >g the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Recuired Actions g of the Condition continue to apply for each adcitional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LLS Function 3 channels provide appropriate compensatory 4 measures for separate inoperable Condition entry for each SRV with inoperable tailpipe pressure switches. I FERMI - UNIT 2 B 3.3.6.3-5 Revision 14 08/26/99 L_}}