ML13303B523: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 201: | Line 201: | ||
O~Dresden Unit 3 Cyce 23 COLR Dresden Unit 3 Revision 9 Page 57 of 64 6. Control Rod Btock SOlnts The Rod Block Monitor Upscale Instrumentation Selpoints are determined from the relationships shown below: To* 414 od ONoHsh to4=0r 16pesab n -T6un0Md0 1elPOWS (Pak M-" 17)UPSCAL TRIP FUNCTION ALLOWA iLt VALUE TWO Rech cl a~tion Loo D -5 W 5 Operation Sin- I Loop 0r65 Wd + 51%The s£eoint may be lower/higher and will still comply with the :WE analysis because RWE is analy-ed unblocked (Reference 20).Wd -percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mibhr.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 58 of 64 7. Stability Pr -tlon Setpoints The OPRM P8DA Trip Settings are provided In Table 7-1.Tabl 7-1 01W PODA Trip Sett*W (RFeWIce 3)POATrip ANfitSepW Co .ft)1.16 16 The PBOA Is the orgy OPRM setting credited In the safety analysis as documented In the licensing basis for the OPRM sydem.The OPRM PBOA trip settings are based, in part, on the cycle specific OWMCPR and the power dependent MCPR ftins. Any change to the OLMCPA value a"dor the power dependent MCPR Ilmts should be evaluated for potential impact on the OPRM P8DA trip settings.The OPRM PODA trip setngs are applicable wtn the OPRM system Is declared operable, and the associated Technical Specifications are Implemented. | O~Dresden Unit 3 Cyce 23 COLR Dresden Unit 3 Revision 9 Page 57 of 64 6. Control Rod Btock SOlnts The Rod Block Monitor Upscale Instrumentation Selpoints are determined from the relationships shown below: To* 414 od ONoHsh to4=0r 16pesab n -T6un0Md0 1elPOWS (Pak M-" 17)UPSCAL TRIP FUNCTION ALLOWA iLt VALUE TWO Rech cl a~tion Loo D -5 W 5 Operation Sin- I Loop 0r65 Wd + 51%The s£eoint may be lower/higher and will still comply with the :WE analysis because RWE is analy-ed unblocked (Reference 20).Wd -percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mibhr.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 58 of 64 7. Stability Pr -tlon Setpoints The OPRM P8DA Trip Settings are provided In Table 7-1.Tabl 7-1 01W PODA Trip Sett*W (RFeWIce 3)POATrip ANfitSepW Co .ft)1.16 16 The PBOA Is the orgy OPRM setting credited In the safety analysis as documented In the licensing basis for the OPRM sydem.The OPRM PBOA trip settings are based, in part, on the cycle specific OWMCPR and the power dependent MCPR ftins. Any change to the OLMCPA value a"dor the power dependent MCPR Ilmts should be evaluated for potential impact on the OPRM P8DA trip settings.The OPRM PODA trip setngs are applicable wtn the OPRM system Is declared operable, and the associated Technical Specifications are Implemented. | ||
Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 59 of 64 8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below: Table 8-1 Mode of Operaion (Reqerenc 3)Eoosoj- Themal Umnit Sets ease Base (DLO or SLO)PLUOOS PLUOOS (DLO or SLO)TOVOOS TBVOOS (DLO or SLO)), See Table 8-2 for Eowresriction TCV Slow Ciosur TCV Slow Closure (DLO or SLO)TCV Stuck Closed (DLO or SLO)TCV Stuck Cloed' > Not appkcle to combination of one TCV and one TSV Stuck Closed In separate IWnw> See Table 8-3 for ow restrictions TCV Stuck Closed PLO or SLO)TSV Stuck Closed* ) Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power restrictios PCOOS PLUOo (LO or SLO)PCOOS and PLUOOS PLUOOS 2T or SLO)PCOOS and TCV Slow Closure TCV Slow Closure (.LO or SLO)PWUOOS (LO or SLO)PCOOS and TCV Stuck CtoWs > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines)P See Table 8-3 for power restrictions PLUOOS (LO or SLO)PLUOOS and TCV Stuck ClosWd 4t applicable to combination of one TCV and one TSV Stuck Closed In separate lines>See Table 8-3 for pow esrictinlcks PLUOOS (LO or SLO)PCOOS and TSV Stuck Closed* > Not applicable to combination of one TCV and one TSV Stuck Closed in separate lines> See Table 8-3 for power restrictions PLUOOS (0LO or SLO)PLUOOS and TSV Stuck r d > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power regsctions | Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 59 of 64 8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below: Table 8-1 Mode of Operaion (Reqerenc 3)Eoosoj- Themal Umnit Sets ease Base (DLO or SLO)PLUOOS PLUOOS (DLO or SLO)TOVOOS TBVOOS (DLO or SLO)), See Table 8-2 for Eowresriction TCV Slow Ciosur TCV Slow Closure (DLO or SLO)TCV Stuck Closed (DLO or SLO)TCV Stuck Cloed' > Not appkcle to combination of one TCV and one TSV Stuck Closed In separate IWnw> See Table 8-3 for ow restrictions TCV Stuck Closed PLO or SLO)TSV Stuck Closed* ) Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power restrictios PCOOS PLUOo (LO or SLO)PCOOS and PLUOOS PLUOOS 2T or SLO)PCOOS and TCV Slow Closure TCV Slow Closure (.LO or SLO)PWUOOS (LO or SLO)PCOOS and TCV Stuck CtoWs > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines)P See Table 8-3 for power restrictions PLUOOS (LO or SLO)PLUOOS and TCV Stuck ClosWd 4t applicable to combination of one TCV and one TSV Stuck Closed In separate lines>See Table 8-3 for pow esrictinlcks PLUOOS (LO or SLO)PCOOS and TSV Stuck Closed* > Not applicable to combination of one TCV and one TSV Stuck Closed in separate lines> See Table 8-3 for power restrictions PLUOOS (0LO or SLO)PLUOOS and TSV Stuck r d > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power regsctions | ||
* Also applicable to one TCV and one TSV stuck closed in Ith same line.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 60 of 64 Common Notes -AnolIable to bowh Base Case and all EOOS Combnationsgfor OLO/SLOM: 6. All modes are allowed for operation at MELLLA, IlF (up to 108% rated core flow), and coastdown subject to the power restrictions In Table 8M2. Either EOC must be reached or coastdown must begin prior to exceeding 15911 MWd/MTU. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limits are satistlod per Methodology | * Also applicable to one TCV and one TSV stuck closed in Ith same line.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 60 of 64 Common Notes -AnolIable to bowh Base Case and all EOOS Combnationsgfor OLO/SLOM: 6. All modes are allowed for operation at MELLLA, IlF (up to 108% rated core flow), and coastdown subject to the power restrictions In Table 8M2. Either EOC must be reached or coastdown must begin prior to exceeding 15911 MWd/MTU. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limits are satistlod per Methodology | ||
: 7. Each OOS Option may be combined with each of the following conditions provided the requirments of References 18 and 19 are met: " A maximum of IS TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maximum of 16 TIP channels OOS in locatns outside of the common TIP channel location of 32-33).* Up to 50% LPAMs 008" An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH + 25%)7. Nominal FWT results are valid for application within a +10°F1-30F temperature band around the nominal FWT curve (Reference | : 7. Each OOS Option may be combined with each of the following conditions provided the requirments of References 18 and 19 are met: " A maximum of IS TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maximum of 16 TIP channels OOS in locatns outside of the common TIP channel location of 32-33).* Up to 50% LPAMs 008" An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH + 25%)7. Nominal FWT results are valid for application within a +10°F1-30F temperature band around the nominal FWT curve (Reference | ||
: 20) and within the operating steam dome presure region (Reference 20). The FWTR results are valid for the minimum FWT curve (Reference 20). For operation outside of NFWT, a FWTR of between 30F and 120F is supported for Base Case and all EOOS DLO/SLO con0itios for cycle operation through EOC subject to the restriction in Reference 21 for feedwater temperature reductions of greater than 100 0 F. The restriction requies 1aW for a FWT reduction greater than OOF, operation needs to be restricted to les Man the 100% load line.8. Alt analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meetin the assumed opening profile in Reference | : 20) and within the operating steam dome presure region (Reference 20). The FWTR results are valid for the minimum FWT curve (Reference 20). For operation outside of NFWT, a FWTR of between 30F and 120F is supported for Base Case and all EOOS DLO/SLO con0itios for cycle operation through EOC subject to the restriction in Reference 21 for feedwater temperature reductions of greater than 100 0 F. The restriction requies 1aW for a FWT reduction greater than OOF, operation needs to be restricted to les Man the 100% load line.8. Alt analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meetin the assumed opening profile in Reference | ||
: 22. The analyses also support Turbne Bypass flow of 29.8% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs Is met. If the opening profile Is WOT met, or If the TBV system cannot pass an equlvalent of 29.8% of vessel raled steam flow, utilize the TBVOOS condition. | : 22. The analyses also support Turbne Bypass flow of 29.8% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs Is met. If the opening profile Is WOT met, or If the TBV system cannot pass an equlvalent of 29.8% of vessel raled steam flow, utilize the TBVOOS condition. | ||
: 9. For il came analyzed Including TSVOOS, equivalent of 2 of Me first 3.6 TBVI must be capable of opening via the pressure control system while TuMne Bypass Valves #5-9 am allowed to be OOS.For all came except TBVOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated In Note 3 above) arequired to trip open on TCV fast closure or on TSV closure. The TBVOOS condition assumes that alM of the TBVs do not trip open on TCV fast closure or on TSV closure.10. A single MSIV may be taken 009 (shut) under any of fie specified OOS optione as long s core thermal power is maintained g 76% of 2957 MWth (Reference 3).Teb**4 Comr 1tweml Power blIl tot.T4VOOG (RPeamk 3)core Ther~ PCOwerrw f RM f (%Of ftd Cyd *PWM (MWdiMTU) | : 9. For il came analyzed Including TSVOOS, equivalent of 2 of Me first 3.6 TBVI must be capable of opening via the pressure control system while TuMne Bypass Valves #5-9 am allowed to be OOS.For all came except TBVOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated In Note 3 above) arequired to trip open on TCV fast closure or on TSV closure. The TBVOOS condition assumes that alM of the TBVs do not trip open on TCV fast closure or on TSV closure.10. A single MSIV may be taken 009 (shut) under any of fie specified OOS optione as long s core thermal power is maintained g 76% of 2957 MWth (Reference 3).Teb**4 Comr 1tweml Power blIl tot.T4VOOG (RPeamk 3)core Ther~ PCOwerrw f RM f (%Of ftd Cyd *PWM (MWdiMTU) | ||
Valv AvMl*W 4100 Entire Cycle 9019 S 100 < 14000 80o9_<97 > 14000 8019 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 61 of 64 Table 0-3 Core Thennal Power Resction for One TCV/TSV Sluc CIW"d ean on the Minimum Avallbi Totdl flactor Vaa Sotm Flow Capcity (R*fesnc 3)e., Twhemml Pmowr Nmber of TWO Nsbotlen (% of Rated m qire to Provo*Plow -ON P-"araon 175 1.9<80 3.4<85 5.2_90 6.8 Applicable to one TCV Sbxc Closed, one TSV stuck dosed, or one TCV and one TSV sbok closed in fIe $mae ine.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 62 of 64 9. Methodo ojy The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, speclilfally those described in the following documents 13. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement | Valv AvMl*W 4100 Entire Cycle 9019 S 100 < 14000 80o9_<97 > 14000 8019 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 61 of 64 Table 0-3 Core Thennal Power Resction for One TCV/TSV Sluc CIW"d ean on the Minimum Avallbi Totdl flactor Vaa Sotm Flow Capcity (R*fesnc 3)e., Twhemml Pmowr Nmber of TWO Nsbotlen (% of Rated m qire to Provo*Plow -ON P-"araon 175 1.9<80 3.4<85 5.2_90 6.8 Applicable to one TCV Sbxc Closed, one TSV stuck dosed, or one TCV and one TSV sbok closed in fIe $mae ine.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 62 of 64 9. Methodo ojy The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, speclilfally those described in the following documents 13. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement | ||
: 1) and La Saflt County Unit 2 benchmarklng (Supplement 2), December 1991, March 1992, and May 1992, respectively. | : 1) and La Saflt County Unit 2 benchmarklng (Supplement 2), December 1991, March 1992, and May 1992, respectively. | ||
: 14. NEDE-24011-P-A-15 (Revision 15), "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.15. NEDO-32485., "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload AppllcatlonsV August 1998.16. Westinghouse Topical Report CENPD-300-P-A, "RereW ce Safety Report for oiling Water Reactor Reload Fuel," July 1996.17. Westinghouse Report WCAP-16081-P-A, "100x0 SVEA Fuel Critical Power Experiments and CPR Correlation: | : 14. NEDE-24011-P-A-15 (Revision 15), "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.15. NEDO-32485., "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload AppllcatlonsV August 1998.16. Westinghouse Topical Report CENPD-300-P-A, "RereW ce Safety Report for oiling Water Reactor Reload Fuel," July 1996.17. Westinghouse Report WCAP-16081-P-A, "100x0 SVEA Fuel Critical Power Experiments and CPR Correlation: |
Revision as of 13:57, 28 April 2019
ML13303B523 | |
Person / Time | |
---|---|
Site: | Dresden |
Issue date: | 10/22/2013 |
From: | Exelon Generation Co |
To: | Office of Nuclear Reactor Regulation |
References | |
SVPLTR: #13-0042 | |
Download: ML13303B523 (64) | |
Text
COLR Dresden Unit 3 Revision 9 Page 1 of 64*al Opemnatlg mift ReOut For Drdan Unft3SCyd*e23"Wol I resden Unit 3 Cyce 23 COLR Dresden Unit 3 Revision 9 Page 2 of 64 TAWe of Ooiftnts 1. Terms and Definitions
.........................
5 2. General Information
.......................................................................................................
6 3. Average Planar Linear Heat Generation Rate ......................................................
7 4. Operating Limit Minimum Critical Power Ratio .....................................................
47 4.1. Manual Flow Control MCPR Limits ... ...............................................................
47 4.1.1. Power-Dependent MCPR ........................
..... 47 4.1.2. Flow-Dependent MCPR ..............................................................................
47 4.2. Scrarn Time ........................................................................................................
48 4.3. Recirculation Pump ASO Settings ......................................................................
48 5. Linear Heat Generation Rate ......... ..................
...................................
55 6. Control Rod Block Setpolnts
.................
.............................................................
657 7. Stability Protection Setpoints
...................
...........................
0.0..............6............5
- 8. Modes of Operation
................................................................................................
59 9. Methodology
..............................................................................................................
62 10. References
...............................................................................................................
63 Dresden Unit 3 Cycle 23 (OLR Dresden Unit 3 Revision 9 Page 3 of 64 Lit of Tables Table 3-1 MAPLHGR OLO or SLO multiplier
................................................................................................
7 Table 3-2 MAPLHGR for bundle/lattice:
OOp2-3.93-16GZ8.00-2G6.00 Opt2-4.03-13GS.00 Opl2.4.02-18SZ6.00-14MZ8.50 Opt2-4.03-16GZ8.00-14GZ6.50 Opt2-4.07-14GS.50W2GZS.50 Opt2-4.04-18GZ7.50-14GZ5.50 Opt2-4.05-16GZ7.50-14GZ5.50 Opt2.4.10-14G5.50-2GZ5.50 Lattices 061 and 089 ........................................................................................................................
7 Table 3-3 MAPLHGR for bundle/lattice:
Opt2-3.93-16GZS.00-2G6.00 Lattice 102 ......................................
8 Table 3-4 MAPLHGR for bundle/lattce:
Opt2-3.93-16OZ8.00-2G6.00 Lattice 103 ................................
9 Table 3-5 MAPLHGR for bundle/lattice:
Opt2-3.93-16GZ8.00-2G6.00 Lattices 104 and 106 ................
9 Table 3-6 MAPLHGR for bundlattle:
Op2-3.93-1SGZO.00-2G(.00 Lattices 106, 107, and 108 ...........
10 Table 3-7 MAPi.HGA for bundleallatce:
Opt2-4.03-13G8.00 Lattice 109 .............................................
10 Table 3-8 MAPLHGR for bundle/lattice:
OpL2.4.03-13G8.00 Lattices 110 and I I ...................................
11 Table 3-9 MAPLHGA for bundle/latice:
Opt2-4.03-13G6.00 Lattices 112 and 113 ...................................
11 Table 3-10 MAPL4GR for bundleattice:
Opt2-4.02-18GZS.00-14GZ6.50 Lattice 114 ........................
12 Table 3-11 MAPLHGR for bundle/latfice:
Opt2-4.02-18GZ8.00-14GZ5.50 Lattice ............
115...........
13 Table 3-12 MAPLHGR for bundle/attice:
Opt2-4.02-18 Z8.00,14GZ6.S0 Latkte 118 .......................
14 Table 3-13 MAPLHGR for bundle/lattice:
Opt2-4.02-18SG[.00-14GZ5.50 Lattice 117 .......................
15 Table 3-14 MAPLUGR for bundle/lattice:
Op12-4.02-18GZ8.00-14GZM.50 Lattice 118 ........................
16 Table 3-15 MAPU4GR for bundle/lattice:
Opt2-4.02-18GZS.00-14GZ5.50 Lattice 119 .......................
17 Table 3-16 MAPUGR for bundle/lattice:
Op12-4.03-I6GZS.00-14GZ5.50 Lattice 120 .....................
18 Table 3-17 MAPLHGR for bundle/lattice:
Op12-4.03-16OZ8.00-14Za.,50 Lattice 121 ........................
19 Table 3-18 MAPLHGR for bundle/lattice:
Opt2-4.03-16GZ8.00-14GZ5.S0 Lattice 122 .......................
20 Table 3-19 MAPLHGR for bundle/lattice:
Op12-4.03-16GZ8.00-14MZS.60 Lattice 123 .......................
21 Table 3-20 MAPLHGR for bundle/lattlie:
Op12-4.03-16GZS.00-14GZ5.60 Lattice 124 .......................
22 Table 3-21 MAPLHGR for bundle/lattice:
Opt2-4.07-14G5.50.2GZS.S0 Latlice 12 ............................
23 Table 3-22 MAPLHGR for bundle/lattice:
Opt2-4.07-14G5.50-2GZ5.50 Lattice 126 ............................
24 Table 3-23 MAPLHGR for bundle/lattice:
Op12-4.07-14GS.50-2GZ5.60 Lattice 127 ............................
25 Table 3-24 MAPLHGR for bundlellattice:
Op12,4.07-14GS.50-2GZS.50 Lattice 128 ............................
26 Table 3-25 MAPLHGR for bundle/lattice:
Op12-4.07-14G5.50,2GZS.50 Lattice 129 ............................
27 Table 3-26 MAPLHGR for bundle/lattic:
Opt2-4.07-14G5.60.2QZ5.50 Lattice 130 ............................
28 Table 3-27 MAPLHGR for bundle/lttice:
Opt2-4.04-18GZT.50-14GZ5.B OLatice 131 .............................
29 Table 3-28 MAPLHGR for bundle/lamte:
Op12-4.04-180'.50-%14GZ5.50 Lattice 132 .......................
30 Table 3-29 MAPLHGR for bundle/lattkie:
Op12-4.04-18GZ.,0-14GZ5.S0 Lattice 133 .......................
31 Table 3-30 MAPLHGR for bundle/lattie:
Opt2,4.04-I 8GZ1.50-14GZS.50 Lattice 134 ........................
32 Table 3-31 MAPLHGR for bundle/latlice:
Opt2-4.04-18GZ?.50-14GZS.60 Lattice 135 .......................
33 Table 3-32 MAPLHGR for bundlelattwce:
Op12-4.04-18GZ7.50-149Z6.50 Lattice 136 .......................
34 Table 3-33 MAPLHGR for bundltelattice:
Opt2-4.05-16GZ7.50-14GZ6.60 Lattice 137 .......................
35 Table 3-34 MAPLHGR for bundle/lattice: )pt2-4.05-16GZV.50-14GZ6.0 Lattice 138 .......................
36 Table 3-35 MAP.HGR for bundle/lattce:
Opt2-4.05-16GZ7.60-14GZS.50 Lattice 139 .......................
37 Table 3-36 MAPLHOR for bundle/lattice:
Opt2-4.05-16WZT.50-14=Z4.50 Lattice 140 .......................
38 Table 3-37 MAPLHGR for bundle/lattice:
Opt2-4.05-16GZ7.50-140ZM.50 Lattice 141 ........................
39 Table 3-38 MAPLHGR for bundle/lattice:
Opt2-4.05-16GVZ.50-14GZS50 Lattice 142 .......................
40 Table 3-39 MAPLHGR for bundle/lattice:
Op12-4.10-14G(5.50-2GZ5.50 Lattice 143 41 Table 3-40 MAPLHGR for bundle/attike:
OOp2-4.10-14G5.50-2GZ5.50 Lattice 144 ............................
42 Table 3-41 MAPLHGR for bundle/lattice:
Opt2-4.10-14G5.60-20Z5.0 Lattice 145 ................
43 Table 3-42 MAPLHGR for bundle/lattice:
Op12-4.10-14G5.50-2GZ6.50 Lattice 146 ............................
44 Table 3-43 MAPLHGR for bundle/lattice:
Opi2-4.10-14G5.50-2GZ5.50 Lattice 147 .............................
45 Table 3.44 MAPLHGR for bundle/lattice:
Opt2-4.10-14G5.50-20ZS.50 Lattice 148 ............................
46 Table 4-1 Scram Times ...............................................................................................................................
48 Table 4-2 MCPR TSSS Based Operating Limits -NFWT ..................................................................
49 Table 4-3 MCPR TSSS Based Operating Limits -RFWT .....................................................................
49 Table 4-4 MCPR ISS Based Operating Limits -NFWT .......................................................................
50 Table 4-S MCPR ISS Based Operatlngimits-RFWT ........................................................................
60 Table 4-6 MCPR NSS Based Operating Limits -NFWT .....................................................................
61 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 4 of 64 Table 4-7 MCPR NSS Based Operating Limits -RFWT .....................................................................
51 Table 4-8 MCPR(P) -NFWT ......................................................................................................................
52 Table 4-9 MCPR(P) -RFWT ......................................................................................................................
53 Table 4-10 MCPR(F) ...................................................................................................................................
54 Table 5-1 LHGR Limit for bundle/lattlce:
Opt2-3.93.16GZn.00-2G.O00/AJI Lattices Opt2-4.03-13G8.001Al Lattices Opt2-4.02-18GZ8.00-14GZ5.50/A1 Lattices Opt2-4.03-16GZ8.00-14GZ5.60/AI!
Lattices Opt2-4.07-14G65.50-2GZ5.50/AIl Lattices Opt2-4.04-I.GZ7.60-14GZS.50/Latties 81 and 89 Opt2-4.05-16GZ7.50-14GZS.50/Lattices 81 and 89 Opt2-4.10-14G5.50-2GZ5.50iLattices 81 and 89 .....................................................................................
55 Table 5-2 LHGR Limit for bwmdle/lattice:
Opt2-4.04-18GZT.50-14GZS.50/Lattlces 131,132,133,134, 135, and 136 Opt2.4.05-16GZ7.50-14GZM.50/Lattices 137,138, 139, 140, 141, and 142 Op12-4.10.14G5.50-2GZS.50/Lattlces 143, 144, 145,148, 147, and 148 ...............................
65 Table 5-3 LHGRFAC(P)
Mulipliers
.............................................................................................................
5 Table 5-4 LHGRFAC(F)
Mlti s ........................................................................................................
56 Table 6-1 Rod Block Monitor Upscale Instrumentation Selpoints
.........................................................
7 Table 7-1OPRM PODA Trip Settings .........................................................................................................
68 Table 8-1 Modes of Operation
..........................................................................................................
59 Table 8.2 Core Thermal Power Restricton for TBVOOS ....................................................................
60 Table 8-3 Core Thermal Pow Restriction for One TCV/TSV Stuck Closed Based on fhe Minimum Available Total Reactor Vessel Steam Flow Capacity .............................................................
61 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 5 of 64 1. Terms and Defintions APLHGR ASD CPR DLO EFPH EOC EOOS FWTR FWHOOS ICF ISS LHGR LHGRFAC(F)
LHGRFAC(P)
LPRM MAPLHGR MCPR MCPR(F)MCPR(P)MELLLA MSIV MWd1MTU NFWT NRC NSS OLMCPR 00S OPRM PBDA PLUOOS PCOOS RFWT RWE SER SLMCPR SLO T"VOOS TBV TCV TiP TMOL TSSS TSV Average planar linear heat generation rate Adjustable Speed Drive Critical Power Ratio Dual loop operation Effective full power hour End of cycle Equipment out of service Final feedwater temperature reduction Feedwater heater out of service Increased core flow Intermediate scram speed Linear heat generation rate Flow dependent LHGR multiplier Power dependent LHGR multiplier Local power range monitor Maximum average planar linear heat generation rate Minimum critical power ratio Flow dependent MCPR Power dependent MCPR Maximum extended load line limit analysis Main steam Isolation valve Megawatt days per metric ton Uranium Nominal feedwater temperature Nuclear Regulatory Commission Nominal scram speed Operating limit minimum critical power ratio Out of service Oscillation power range monitor Period based deWtion algorithm Power load unbalance out of service Pressure controller out of service Reduced feedwater temperature Rod withdrawal error Safety evaution report Safety limit minimum critical power ratio Sine loop operation Turbine bypass valves out of service Turbine bypass valve Turbine control valve Traversing Incore probe Thermal mechanical operating limit Technical Specification scram speed Turbine stop valve Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 6 of 64 2. Ownel" Informato Power and flow dependent limits are lIsted for various power and flow leves Linear interpolation Is to be used to find Intermediate values.Rated core flow Is 98 Mb/hr. Operation up to 108% rated flow (ICF) Is fully evaluated and available for this cycle. Licensed rated thermal power Is 2957 MWth. For allowed operating regions, see applicable power/flow map.The licensing analysis supports full power operation to 15911 MWWdIMU and coastown to a power level of 70%, given all bumup limits are satsfied. (Reference 3)Coastdown is defined as any cycle exposure beyond the full power, rated core flow, and all rods out oondition with the plant power gradually reducing as availble core reactivity dminimhe.The OLMCPR multiplier and MCPR(F) values are independent of scram speed.LHGRFAC(P) and LHCRFAC(F) values are independent of scram speed and feedwtear temperature.
AN thermal limits are analyzed to NSS, IMS, and TSSS. Only MCPR operating limits vary with scram speed.For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow thermal limit values, mspoctdvM*, shall be used.Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 Page 7 of 64 3. Average Planar Linear Had G6esMton Rate For natural uranium lattices, OLO and SLO MAPLUGR values are provided In Table 3-2, For all other lattices, lattce-specifIc MAPLHGR values for DLO ame provided In Tables 3-3 through 3-44. During single loop operation, these limits are multiplied by Vie SLO mulpi listed In Table 3-1.T*w s1 iAPUIOR DLO R O SOll milpler (Rsfenos.5, Sand 11)iFuel TWO jjN l-s I TAWe 3-4 MAPMGR fair h 0iidNeftl r Op2-4i2-1GZWi4GZL0 OplZ4i8IOU431GZUO 0p*124-160zMW140al5@
0p124.OS4S027.5014025SO Opt124.11I AWALI cSol Old asS (bsMna4.5, 8, and 10)20111001" MAMMION Co 7.50 72000D 7.50 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 8 of 64 TaI 54 SAPUJGR for -umdIwc Op*s3.WISGZLO40.(Refemnces 10 and 11)Exposur. WU 0 9.59 7500 9.44 1760O 9.44 24000 8,0 58000 9.69 70000 8.32 Dresden Unit 3 Cyde 23 COLR Dresden Unit 3 Revision 9 TobW 34 AMA OR for bundlRattos.
Opt24*A-1SiZl.0)206.00 Lat~m 103 (Refetrnco 10 and 11)106: 0,-B1,-1140UO.,MLO0-Avwspe .. ..Exposum MAPUHGR thMd/MTU) (kW/t)0 9.75 7500 9.4%17500 _9." 24000 9.71 58000 .71 7000 8.34 Table " MAPLKGR fow -0M1lo06: OpMA2P-1E1ZS.002 LaOlIMs lind O105 (Rskereno to 11)104: 00SE440.-.14QS.0%-2 105: 00411441102S.-u I.0 9.84 7500 9.52 17500 9.52 24000 9.84 58000 9.84 70000 8.47 Page 9 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unft 3 Revislon 9 TO*l 346 MAPUEGR for buaidlefltimm:
0pt241-*3ZSMOO-206.00 Lattice 106, 107, anW 1001 (Pauwencus 10 and 11)1..: 0 p t 1 SI, GU50 7M Page 10 of 64 EMWWGR 0 10.01 7600 9.71 17500 9.71 24000 10.14 58000 10.14 70000 8.77 TWbOe 3-? MAPIHGA for hundSMsc.:
Laces 106 10and 1)Avg"rse Plow~0 10.16 1oo 00 9.69 580 9.69 70000 8.31 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 TaOW 36 MAPU4GR for bundMMIIcIt OptO24S-1308*0 Lamnos 11aond 111 (R~rgrlces 10 and 1)110.: OP0,W.A2.itN*o EXPOSUre MAKUGR0 (MWdIMTU) (kWl)0 10.27 10000 9.80 58000 9.80 7000 8.42 TaOWe 39 IAPLHGR for badWaftc.:
Opt24.,.0GLOO Ldgs 112 and 113 (RAk6ef8e:
0and 11)112: Opt24ME4.51-13GLO0 113: OM-T4.41,13GSAO Averag Pmir ......(lMWd01r)
OIWt) ...0 10.63 10000 10.04 58000 10.04 70000 8.67 Page 11 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 12 of 64 TiM. 3-10tOLHOt for bundistllles:
OptI4UGle w4Gl so Loft 114 (Rulrenafs 7 and 8)0. 8.67 110000 9.11 112000 9.15 1500 9.32 117000 9.0 22000 9.71 5m0 9.18 1_000 9.62 520000g7 9.67"" 9 r8 l Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 TOMl 3-11 MAPLHGR for bundisAmIs:
0p24.4,o.lSoZa.*14o0s8N tNISMe1116 (Rgleunaee 7 an. 8).....Aveem g. Pl ... .... ..TU) ..... (kW/fl ........0 ... .....8.71 6000 ..... ...9.03 ........7600 ... ... ..9.!.2 10000 ..... ..9.17 ,..2. ..00.. ..9.4 ...16000 .. .. 40 .17000 ... ..9.49 _ _ _200O0 9.6?22000 9.82...6000. .... ...9.75 ...360.. .4 00 .. .. .. .... .70 ... .._ ...... 974 .... 6S0000.. .. 9.70 V20 9.oe Page 13 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 14 of 64 TWbOa 3-12 MAPL WO for bund0a dr OPMA0211OZISA0.14OZWlS Latum 116 (RuPierene 7 and 8)111: 0p1 .52-!GL00..
Average Planar W ....R 0 +8.658 2500 8.88 9.01 7600 9.12 1o00 ..9.18.12000 9.23 15000 9.41 17000 9.51 20000 9.69 22000 96 24000 9.84.. .... ao o .9.74 ..009.70..... wo ...-. ..... .9l.7 9.68- .'.03 Dresden Unit 3 Cycle 23 COIR Dresden Unit 3 Revision 9 TAM 2-13 MWUOQHv for hm td11 0P12441U.101M.W"M42.6 (Radrnunce 7 04d8)LO O M 144 A .S G @Page 15 of 64 axpm wo Uim nut 0 am.8 2500 8.99 5000 9.14 7500 9.28 10000 9.30 12oo00 9.38 15000 9.56 17000 9.69 20000 10.00 22000, 10.03 24000 10.02 30000 9,.94 36000. 9.8 4,2000 9.09 S000 ....9.84 60000 19.0....72000 .....10.19.. ...Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Table "-.14 MAPU.R for .-Id": op402,1ma00.140Q.Z Ltle116 (RfereP s 7 nd 8)118: Opt2-T4A.4-IGS.00 Amwwp pw-low Exposure MAPLHSR__ 0 8.85 2_ _ _ _ _9.03 5m_ _ 9.16 9.23... .10000 .... .... ...9.25 t__ _ _ _ _9.31 9.60 AAOM,-, -10.0P...... 22000 ... ... 10.01 24000 10.00 ,30000 9.92 42000 ,8....6 0000 .......9 l_, , .72000 .... .... 0 1 .. ..Page 16 of 64 Oresentr Unit 3 Cycie 23 GQLR Dresden Unit 3 Revision 9 TaWe 3-15 NAPU4SR fcw bwasWiatce:
0P*24.0.~z$ImGS~4wZ.50 Lw'",li (Relewinos 7 Wd 8)Page 17 of 64 LAW Expom -AL" 0 MON ...... .... 9. ...2500 9.74 7500 __ 9.74 ....10000 9.67 12000 9.70 16000 10.00 17000 10.14 200.0 10.16 22000 10.15 24000 10.13 30000 10.03 36000 9.97 42000 _ 9.95 O0~00 99..60000 9.90 72000 1026 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Table 3-16 MAPLHGR for bUNdio OP-.4.03-1oM.f14O3 LattIei 120 (References 7 and 8)1=20: M.44.1O ..0 8.98 2600911 6000 9.21 7600 9.25, 10000 15000 9.38 17000 .. ....... "_ _. .. ...220000. 9.56 24000 9.7 30000 38000 42000 .0000 .9.70 loop ' N 72000 .. ....Page 18 of 64 Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 Page 19 of 64 TaMes 3.17 Il U tot, bundMMl c 0444-OULM1GZ5M0 ULo"l 121 (RslssMNM 7 and 8)IL ft A 2i IJ-tw*Ma Exposm U..2 u 0 9.01 2500 9.15 5000 9.26 7500 9.31 10000 9.31 120 ... 9.34 15000 9 .46 17W00 9.53 20000 9.66 220D0 9.80 24000 _ _ _9.79 3600 9.74 4_ 42 W0 ... .... 9.74 ,.-....60000.......... ... ,, , Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9A U forim SM Ake:
Latilm 122 (RuuWcM, 7 and 8)Avetg Pwe expsuirt *UG 0 8.99 2500 9.13 5000 9.25 7500 9.32 10000 9.32 12000 9.35 15000 9.47 17000 9.54 20000 9.67 22000 9.81 24000 9.88 30000 9.78 3__ _ _ 9.73 42000 9.73 50000 9.71 60000 9.68 72000 9.94 Page 20 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 21 of 64 TWOl 3!-1 VALO O -.0ISO)l OO-14MZ5.50 WUCfi 123 (Rglsunaes 7 and B)AveragePlior Exposure MAPtiOR 0 9.14 2500 9.29 6000 9.40 7500 9.48 10000 9.47 12000 9.62 15i00 9.63 17000 9.72 20000 9.96 24000 10.04 42000 9._ 8 60000 9.84 72000 10.19 Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 TO* 3.20 VAPLHGIR fw bsmlisAMb.
OIt2-4.0W-16GltW14GS.10 Ldtfoe 124 (Rmffeonog 7 and 8)0 9.18 2500 9.33 5000 9.43 750O 9.45 10000 9.42 120O0 9.46 1S0M 9.57 17000 9.69 20000 9.99 220OO 10.03 24000 10.03 30000 9.97 3a000 9.91 42000 9.65 50000 9.79 60000 9.81 72000 10.20 Page 22 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 23 of 64 TWO *M WMAIMHR for ude/at Qp624*7-1GI50O2OZ.60 Laiti 125 (Re"Faerss 71 mn 8)CM~ONfaAIGm Expoure MAPLNGR 0 8.92 2500 9.08 6000 9.22 7500 9.30 10000 9.33 12000 9.36 16000 9.53 17000 9.68 20000 9.84 22000 9.89 24000 9.87 30000 9.77 36000 9.71 42000 9.71 60000 9.78 80000 9.74 72000 9.94 Dresden UnIt 3 Cycle 23 COIR Dresden Unit 3 Revislon 9 T&W 3-92 MAPUIOR for WinMlw 0P424.07-140540Zso Wile 126N= I -126: O~SE4i7WfhUB4G Page 24 of 64-S U-H 0 8.96 2500 9.12 5000 9.28 7600 9.36 10000 9.4 12O00 9.44 15000 9.63 17000 9.79 20000 9.96 22000 9.98 24000 9.96 30000 9.86 36000 9.,0 42000 9.79 50000 9.,4 60000 9.78 72000 9.99 Dresden Unit 3 Cy" 23 COLR Dresden Unit 3 Revision 9 Page 25 of 64 TW. 323 WAf NW for bundMMlte.
I s.127 (Ruswnos amm 8 A goos PIlan fxpoour MAPMGOR fMW4IMTW E (WM/)0 8.95 2500 9.11 5000 9.2?7500 9.37 10000 9.40 12000 9.45 1OO0 9.64 17000 9.81 20000 9.97 22000 9.90 24000 9.96 30000 9.86 3600O 9.79 42000 9.79 60000 9.81 60000 9.76 72000 9.99 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 26 of 64 TWOMe Wor badl lamtdw Op2-4.07-1 011.o20.W LatIft 1312 (: femfs m.i 8)130:
.....o...... .... _ _ _ _ _2500 9.27 6000 9.43 7500 9.54 10o00 9.55 M200 9.63 15000 9.93 17000 10.13 20000 10.20 22000 10.19 24000 10.16 30000 10.06 36m0 9.99 4200O 9.90 50ooo 9.96 60000 9.93 72m00 10.25 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 27 of 64 Table 3-4 MAPU4QR for bundkmtuce:
Opaim4P1403054MZ.5O (ROsrencss 7 and 8)Exposur MAAPLMGR 0 9.14 2500 9.30 5000 9.45 7500 9.49 10000 9.51 12000 9.57 15i00 9.93 17000 10.14 20000 10.19 22000 10.17 24000 10.15 30000 10.05 36000 9.98 42000 9.96 60000 9.92 60000 9.91 72000 10.26 Dresden Unit 3 Cycfe 23 COLA Dresden Unit 3 Revision 9 TAbe 3-21 MAPLHOR for 11 fielAMPlP Op.Wmc-1m6O4Gs Lattice 130 (Rfuaric..
7 anW 8)-ft Ok 0- 0 141~.5 Page 28 of 64 AV""ur MAPUMG 0 9.50 2500 9.62 500 9.72 7500 9.70 10000 9.65 12000 9.66 15m00 9.94 17000 10.12 20000 10.20 22000 10.19 24000 10.17 30000 10.06 3w00 10.00 42000 9.96 5=00 9.92 60000 9.91 72000 10.26 Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 Page 29 of 64 TWO 3-27 Mf.APUG fr bun-Opl.44M-1SG7.0-t140ZMAO Lot"" 131 (ulwmenwu 4 and 5)1311: 002,4A41-.11117.Ii0 Aven *g -xow tAPLHGR (MwdI'rU) fjw t 0 9.14 2500 9.48 6000 9.48 7500 9.32 10000 9.47 12000 9.47 15000 9.65 17000 9.63 20000 9.85 22000 9.90 24000 9.85 30000 9.80 36000 9.74 42000 9.73 60000 9.78 60000 9.82 72000 9.98 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 30 of 64 TWO S.- MAPLHGR for bu: 0P124.04491Z7Ut4 OaSO LMa 132 (PakIsMn 4 &Md 5)0 9.29 2500 9.57 6000 9.65 7600 9.37 10000 9.53 12000 9.54 15000 9.64 17000 9.74 20000 9.97 22000 10.00 24000 9.94 30000 9.68 36000 9.85 42000 9.81 50000 9.84 72000 10.02 Dreedtn Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 31 of 64 TeblO 3-2 MAPtN oR or ididae.:
Laftice 133 (eflermmse 4 OMd 5)... .. ~.. M..Utt.awl N .ExpM. AAMMGR!M 1 -NMm 0 9.27 2600 9.57 5000 9.51 7500 9.39 10000 9.54 12000 9.68 15000 9.67 17000 9.76 20000 9.97 2W000 9.99 24000 9.94 30000 9.87 36000 9.84 42000 9.60 50000 9.82 6a000 9.83 72000 10.03 Dresden Unit 3 Cycle 23 COLR Dresen Unit 3 Revision 9 Page 32 of 64 Tabl 3-SMAPU R ft bunMl4 te o0p124.ol~tuaz7r4.4izsM LaWHiO 134 (RsfWenon 4 and 5)134. j O-MAt W11.17.5 .0 9.40 2600 9.71 5000 9.66 7500 9.52 10000 9.68 12000 9.69 15000 9.81 17000 9.92 20000 10.15 22M0 10.15 24000 10.10 30000 "10.05 30000 9.90 42000 9.97 72000 19.90 600009.97 t 17 , 7 12 ODrden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Table 3-31 MAPLUGR for bundldulO:.
OpSH*44-18GVZ.O-14GZ5.50 L.ow 135 (AReSne 4 MidS)It OPW.T420.1167.M.
Expowet MAPtm 0 9.43 2500 9.70 5000 9.69 7500 9.45 10000 9.64 12000 9.65 15000 9.75 17000 9.93 20000 10.26 22000 10.14 240OO 10.09 3OOO 10.05 42000 9.97 60000 9.88 60000 9.94 72000 10.27 Page 33 of 64 Dresden Unit 3 Cycle 23 COLA Dresden Unft 3 Reftson 9Pge3of4 Page 34 of 64 Table342MAPU4GR lI S mlIAMIMc 0PMAO4.044S0Z7.W14G15.0 Low" i:*(RuhuM=es4 sd 5)0 10.17 2600 10.40 5000 10.30 10000 10.00 12000 10.0 _15000 1021 17000 10.25 200O0 10.25 22000 10.25 24000 10.21 30000 10.16 36000 10.10 42000 10.03 50000 0.93 60000 0.99 72000 10.27 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 36 of 64 Table 3433 MAPLHGR for bundlefttlc.:
OPo2s40-1N7.5o,4O4Z5.6o LtInM 137 (RafewncoS 4 Wnd 6)I- L o w 137: Og2B.51607.50 Exposure MAPLMGR (MWdMru) (kWm)0 9.45 25M0 9.73 5000 9.67 7500 9.50 10000 9.61 12000 9.63 15000 9.61 17000 9.66 20000 9.83 22000 9.91 24000 9.87 30000 9.83 36000 9.78 42000 9.77 50000 9.81 60000 9.82 72000 9.98 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 36 of 64 Ti 341M APLHGR for --elatui e Opl4.1-6Gz7.W0-14Ga.o0 Lattice 136 (Refemnos 4 and 6)b~aoeus M~u.HN..... W T. .. (kWRQ ..0 9.60 2500 9.85 5000 9.73 7500 9.57 10000 9.67 12000 9.68 15000 9.70 17000 9.76 20000 9.96 22000 10.01 24000 9.97 30000 9.92 36000 9689 42000 9.84 50000 9.63 60000 9.04 72000O 10.02 Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 Opt244W*WAWS4GE (Rgf~almc 4 and 8)120: OmM4J.U7.S Page 37 of 64 0 9.59 2500 9.6 5000 9.77 7500 9.60 10000 9.70 12000 9.73 15000 9.73 17O00 9.77 20000 9.95 22000 10.01 24000 9.97 30000 9.91 360=0 9.88 42000 m, 50000 9.80 60000) 9.62 72000 10.03 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Thble 346 MAPUIGR for buntledieace:
OM4.05.oZF.sol.14Mz.o L"obe 1*8 (Rmfoncs 4 and 5)~upoaws APUGR 0 9.75 2500 10.02 5000 9,90 7800 9.75 10000 9.84 120O0 9.65 15000 9.68 17000 9.9 20000 10.18 22000 10.19 24000 10.14 30000 10.09 36000 10.05 4Z00 10.00 5M00O 9.90 60000 9.06 72000 10.24 Page 38 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 39 of 64 TAble for huno*AUoe Op*4.O'IWZ7JoI4~ZSUo Lo" 141 (Raferona.
4 and 5)141:
Avergp Pmmr Iimom. MAPU4Of 0 9.77 2500 10.01 5000 9.91 7500 9.70 1000 9.12000 9.80 110MO 9.84 17000 9.93 20000 1025 22000 10.16 24000 10.14 30000 10.10 36000 10.04 42000 9.96 50000 9.869.92 72000 1027 Orsden Unit 3 Cycle 23 GOIR Dresden Unit 3 Revson 9 Page 40 of 64 T *ie 2.3- MAPUIGR for bl mdllhttlw OpIt24.05.160(Z'0,,14M0A.60 LW, o 142 (RefOWnass 4 and 5)EzpesurU (MwUOGR 0 10.17 2500 10.40 5000 10.30 7500 10.00 10000 10.05 12000 10.08 15000 10.21 17000 10.25 20000 10.25 22000 10.25 24000 10.21 30000 10.15 36000 10.11 42000 10.04 50000 9.93 60000 9.99 72000 10.2?Dresden Ur* 3 Cyde 23 COLR Dresden Unft 3 Revision 9 Ta* 349- MAPLHGR for ---ilaNtlc.: OP12.4~.14GS.602GZ5.50 IiiU* 14$(Ruteranos 4and 5)143: oqg".4.ll-11u 0 9.21 2500 9.54 6000 9.51 7600 9.39 10000 9.40 12000 9A7 15000 9.63 17000 9.74 20000 9.93 22000 9.93 24000 9.90 30000 9.84 36000 9.60 42000 9.75 50000 9.79 60000 9.84 72000 9.96 Page 41 of 64 Dresden UMdt 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 42 of 64 Taftl 3.40 MAPLHGR for bundMelm: Opt24.10-1405ANIW" LAMW 144 (RefemnCa 4 and 5)MAftMWf 0 9.28 2,50 9.63 m0 9.63 79.57 10000 9.50 12000 9.57 15000 9.75 17000 9.09 20000 10.04 22000 10.06 24000 10.02 30000 9.94 36000 9.90 42000 9.93 o0000 9.65 60000 9.85 72000 10.00 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 TM 3-41 MWAWLGR for PalembtUc.e:
L&NO 146 (RAMMSnc 4 and 5)Ids:m 09.25 2600 9.63 5000 9.69 7600 9.59 10000 9.52 12000 9.69 16000O 9.76 17000 9.92 20000 10.13 22000 10.08 24000 10.01 30000 9.97 3mO 9.91 42W_ _ _9.93 50000 9.63 6000 9.84 72000 10.01 Page 43 of 64 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 44 of 64 TWOe -.42 MAPL got bundfo M osM@p124.15.I4OM.bGAO La~lka 146 (RuwncMss 4end 5)Expow" #APLMGR 0 9.41 250O 9.80 7500 9.72 10000 9.66 12000 9.76 15000 10.04 17000 10.19 20000 10.34 22000 10.24 24000 10.19 30000 10.13 36000 10.08 42000 10.00 50000 9.95 0O000 9.98 72000 10.21 Dresden Unt 3 Oyle 23 COLA Dresden Unit 3 Revision 9 Page 45 of 64 TAW 341 MAPLHGR for MmdleM lo": Opt2,4.1405.50-2GM.5 L*3a. 147 (Rofernmes 4 and 5)a 47:()qT4.E7-1OG6.5 EXPsMM MAP M S.W. .M..____0 9.45 2560 9.82 5000 9.83 7500 9.61 10000 9.61 12000 9.71 15000 9.98 17000 10.17 20000 10.23 22000 10.22 24000 10.17 30000 10.12 36000 10.07 42000 10.02 50000 9.91 60000 9.96 72000 10.26 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 46 0164 ToWs 3-44MAP. for wuulfinUcm:
Op12-4.10-1 4e5.0-G15.U0 Lattko 14S (ReWmomf 4 ad 5)S14: WpI2,T4".A-4G.0.
AvwWp Planer twoma. UAPUMG (MWdNTU) (kW/It) ....0 9.83 2600 10.16 5000 10.23 7500 9.9 10000 9.78 12000 9.81 15000 10.00 17000 10.14 20000 10.23 22000 10.24 24000 10.20 30000 10.15 36000 10.09 42000 10.02 50000 9.9o 60000 9.95 72000 10.26 DOwlden Unlt3 CYCle 23 COLR Dresden Unit 3 Revision 9 Page 47 of 64 4. Operating Limit Minimum Cric Power Ratio The Operating Umit Minimum Critical Power Ratios (OLMCPRs) for D3C23 were established to protect the Safety Umit Minimum Critical Power Ratio (SLMCPR) for the abnormal operational occurrences.
The SLMCPR values for DLO and SLO were determined to be 1.12 and 1.14, respectively (Reference 12).In determining the SLMCPR values for D3C23, Westinghouse applied the methodologies from CENPD-300-P-A, consistent with the manner specified in ULmitations I through 6 and 8 of the NRC SER approving CENPD-300-P-A (References 12 and 13). The application of these methodologies was previously approved by the NRC In license amendment 213 to Renewed Facility Operating Ucense DPR-25 (Reference 14).4.1. Manual Flow Control MCPR Limits The OLMCPR Is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.4.1.1. PWW -0qmedm MCPR For Operation at less than or equal to 38.5% core thermal power, the power dependent OLMCPR is shown in Tables 4-8 and 4.9. For operation at greater than 38.6% core thermal power, the power dependent OLMCPA is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 4-2 through 4-7 by the applicable OLMCPR multiplier given in Tables 4-8 and 4-9.4.1.2. FIow.DOsp1ndsn MOPa Table 4-10 gives the MCPR(F) limit as a function of the flow based on the applicable plant condition.
The MCPR(F) limit determined from this table is the flow dependent OLMCPR.Dresden Unit 3 Cycle 23 COLI Dresden Unit 3 Revision 9 Page 48 of 64 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds. The scram time values associated with these speeds are shown In Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specificaions (Reference 15). Reference 3 documents that the TSSS control rod Insertion times that were actually used In the transient analysis are conservative with redsp to the scram t1mes specified In the Technl Spocifications.
To utilize the MCPR limits for Nominal Scram Speed, the average control rod Insetlion time at each control rod Irtions~ fraction must be equal to or lees than the NSS time shown on Table 4-1 below.To utilize the MCPR limits for Intemmediate Scram Speed, the average control rod Insertion fte at each cor"l rod Insertion f*ction must be equal to or less fim the ISS time shown an Ta 4-1 below.To utlize the MCPR olmit for Technical S aion Scram Speed, the average control rod insrtion time at each control rod nserton fractlon must be equal to or less than the TSSS, time shown on Table 441 below.The average control rod kneion time Is defined as the average control rod Insetlion time of #A operable control rods based on the sum of the most recent scram time date divided by the number of operable drve. The time for lixoerble drives My inserted (notch 00) can be conservatively Included for calculation of core average scram speed. (Reference 3)Table 4-1 sa Tiume (Rsfemncm S sn 15)buSSinr I" (s"Can"s US(woen) 1S1 DmOnl 5 0.324 0.3O0 0.48 20 0.700 0.720 0.99 50 1.S10 1.580 1.96 90 2.6s35 2.740 3.44 43. Nftclriasfo PuWO AM(~S~Cycle 23 wu analyzod with a mai um orl ow unout of 110% (Rederence 16t; therefore the rocirculation pump ASD must be set to maintn core flow les than 110% (107.6 MRb/hr) for all runout events. Tms value is consisttet with ft analyses In Reference 3.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Pap 49 of 64 Till 4.MMCMI S 5aud Op"r"n Ulitl -NFWT M l fud TRWt (....ersooo 3)S 14M :o10 BASE 1.70 1.74.BASE SLO 1.74 1.78 PLUOOS 1.73 1.77 PLUXOOS SLO 1.77 1.81 T1VOOS 1.81 1.83 TBVOOS .SO 1.85 1.87 TCV SLOW CLOSURE 1.79 1.83 TCV SLOW CLOSURE SLO 1.83 1.67 TCVSTUCK CLOSED 1.70 1.74 TcvsUC KCLosEDo ... 1.74- 1.78 T"be 4- MCP "NtS 90Wd Opslkt UmiWS -WRW AN Ful Tyi (Rsfmmen 3)____ -m am -..mm BASE 1.70 1.74* iSE SLO 1.74 1.78__ __ __ __ __ __ __ 1.73 1.77 PLUOOS SLO 1.77 1,8"SBVOCOS 1.82 1.84 TCV SLOW CLOSURE 90O 1.83 1.87 TCV $LOWCLOSUEDS.
.3 18 TCV STUCK CLOSED 1.70 1.74 TCV STUCK CLOSED SLO. I W 1.74 1.78 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 50 of 64 Tabl 4.4 MCPR ISS BaSed Olr" Limts -NFWT All Fuel Typf (Rfmmnce 3)S14000 > 1400 loOs CoWtNnMWMTU NWdNATI BASE 1.45 1.50 BASE SLO 1.48 1.53 PLUOOS 1.52 1.56 PLUOOS SLO 1.55 1.59 TBvooS 1.57 1.62 TBVOOS SLO 1.60 1.65 TCV SLOW CLOSURE 1.54 1.56 TCV SLOW CLOSURE SLO 1.57 1.61 TCV STUCK CLOSED 1.45 1.50 TCV STUCK CLOSED SLO 1.48 1.d Ti "4MM 18 Dms 4 O i Um.t- AM (PrWmve 3)51i4gw >14000 EOOSsM Iur... ...M BASE 1.51 1.51 di. L P ~ ý o ... 1. i ~ w : SBASOE LOU 1.45 1.54 PLUOOS 1.52 1.56 PLUMS SLO 1i.5 1.5 9 TB3vO0S 1.62 1.86 TeiVOSSLO 1.65 1.89 TCV SLOW CLOSURE 1.54 1.58'TC'VSLOWOCLOSURE SLo- -1.67 1.61 TCV STUCK CLOSED -1.51 1.61-TCV$STUCK CLOSED SLO 1.64 A1.54 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 51 of 64 TObW 4" MCPR NO$ Doed Opemr- aIng -WFWT AI~uITypmI (ARosronce 3)S14000 14m0 1008 obnton MdMI MWdN&TU BASE U.45 1.47 BASE 810 1.48 1.60 PLUOOS 1.50 1.53 PLUOOS SLO 1.53 1.. 6 Tevoos 1.55 1.59"-ON TBVOOS SLO 1.58 1.62 TCV SLOW CLOSURE 1.62 1.56 TCV SLOW CLOSURE SLO 1.65 1.59 TCV STUCK CLOSED 1.45 1.47 TCV STUCK CLOSED SL0 1.48- 1.0 T"bb 4-? "NPR WIS Based O tn Umb -AMUT (Rhkson" 3)s14m )b 14 BASE 1.50 1.51-- -i-BASE SLO 1.53 1.54 PLUO .S 1.50 1.53 PLUOOS SLO 1.53 1.58 TBVOOS 1.60 1.62 TavoosSLO 1683 1.65 Tcv SLOW CLOSURE 1.52 1.56 1TCIV SLOCW CLOSURE 810 1.55 1.59 TCV STUCK CLOSED 1.50 1.51 tCV STUCK CLOSED SLO. -1.53 1..54.., Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 T"e. 4 UcPP --WwT All Fue Types (Rubrenco 3)Page 52 of 64 Core ;= Am e r M% Of La"d EOOS COMMlst Core Flow (% of Maed) 0 25 MAU 249SI8-0 100 1100 Base 1.33 1.20 1.13 1.06 1.00>____&20_2.7_2.4__1
'10 OaseSLO .60 3.11 2.50 2.17 1.33 1.20 1.131.06 1.00 P o60 326 2.76 2.50 PI.UOOS 6030 .5 21 1.57 1.46 1.29 1.06 1.00> 60 3.20 2.71 2.4511 PLUOOS SLO Soo 3.11 2.50 2.17 1.57 1.6 1.29 1.06 1.00>_O_ 3.26_ 2.78 2.50 1 TBVOOS _S60 4.44 &16 2.47 1.33 1.20 1.13 1.06 1.00>_ 4.34 3.39 _2.6 1 TBVOOSSLo SOO 4.52 3.22 2.52.....> .... 4.42 3.46 2.94 13 .2 .a1.s1o TCV Slow Closure < 3.05 2.46 2.13 1.57 1.46 1.29 1.06 1.00>80 S.20 2.71 2.17 TCV Slow Closure SLO S -3.. 2.50 1,57 1.46 1.29 1.06 1.00> 60 3.26 2.76 2.50 TCV S2 2Closed. 2. 1.33 1.20 1.13 1.06 1.00> 80 3.20 2.76 2I.4.ITCV Stik Ck wd SLO !5... Mil ... .2.1 1.33 1+.1 '20 1.1 31a .08 1.00>W 2 .2.7 1 .50 ... .. .. ..Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 TAW 449 MCPR(P) -RFWT A FueTypes (Refeence 3)Page 53 of 64 C=re Themnl Powr (% of rated)EOOS Combnan Corwe low (% Ot rtd) 0 2 MS >38.5 50 1o 8_ 1 Ope__ _ _ LIt MCPR U.bCm Base !5.. -- ..46 2.13 1.38 1.23 1.16 1.06 1.00> 60 3.20 2.71 2.45 Base SLO 3 260 2.17 1.23 1.16 106 1.00> 60 3.26 2.76 2,50 -PLUOOS <60 3.05 245 2.13 1.67 1.46 1.29 1.06 1.00> 60 3.20 2.71 2.45 PLUOOSSLO 860 311 2.50 2.17 1.57 1.46 1.29 1.06 1.00> 6 0 3.26 2.76 2.50 TBVOOS .60 4.74 3.34 2.58 1.38 1.23 1.16 1.06 1.00>60 4.34 3.40 2.96 TBVOOSSLO
-6 442 347 3. 1.38 1.23 1.16 1.06 1.00 TCVSlowClosure Soo a_5 2.45 2.13-- 1.57 1.46 1.29 1.06 1.00> 60 a.20 2.71.. 2.45 -. .- -.<60 3.11 2.50 2.17 TCV Slow Closure SLO !S" 3ll 2.70 2507 1.57 1.46 1.29 1.06 1.00>60 3.26 2.76 2.10 TCV StuclCloed 16 30 2716 2.45 1.38 1.23 1.16 1.06 1.00>60 3,20 2.71 2.465_S60 3.11 2.50 2.17 T C V S t uc k C lo s e d S L O ...... ...---.... ... .1 1 .2 3 1 .1 6 1 .0 6 1 .0 0> 60 3.26 2.78 2.60 1 1 Dresden Unit 3 Cycle 23 COLA Dresden Unit 3 Revision 9 Page 54 of 64 Tinb 4-0 MCMAF)All Fuel Tooe (Refernces Flow J LO SLO (%Of 98MSAW) MCPR(F) PACPR(F)100 1.38 1411 18 13 ' 1.41_ 0 .-. 3 ...14 -..Drmeden Unit 3 Cyce 23 COLR Dresden Unit 3 Revision 9 Page 65 of 64 5. Unear Heat Generation Rate The thermal mechanical operating limit (TMOL) at rated conditions Is established In terms of the maximum LHGR given in Table 5-1 and Table 5-2 as a function of rod nodal (pelt) exposure.
The Table 5-1 limits apply to Optima2 bundle design. for the Cycle 21 and Cycle 22 reloads and natural Uranium lattices In Cycle 23 bundle designs. The Table 5-2 limits apply to enriched lattices In Optima2 bundle designs for the Cycle 23 reload (Reference 23).The lnear heat generation rate (LHGR) limit Is the product of the exposure dependent LUGR limit from Table 5-1 or Table 5-2 as appropriate and the minimum of: the power dependent LHGR Factor, LHGRFAC(P) and the flow dependent LHGR Factor, I.HGRFAC(F).
The LHGRFAC(P)
Is determined from Table 53. The LHGRFAC(F)
Is determined from Table 5-4.T1001 5-1 LM Lknit far beMidlettles:
Op"24*-IGMUO.2OUWM Lakft Opt2-&W.8MMO4MA La~ke eoo-1 .eWANl Laeft" OO 401--4.0-14GZ5tamm LoMles OOMA4,0MSVI-t110WM 1 " Op624,O4.1a1c 7O-14GZWLI@SM St an00ta Op 14.0lZl,5O-14255.Mke St1 snd 0p12-4.10,1410U5-20U.SM/attkuo S11 enS N (RfMVW 3.4, 8, 7, 9, 10, "d23)0.00 13.11 14.00 13.11 72.00 6.48Ul A Limit w Giibls~.m 11- .43, 141, 1A 43 147, S 14 0.00 13.11 111.43 14.00 13.11 11.43 23.00 12.07 10.52 57.00 &.1 8.18e 72.00 8.48 6.48 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revilon 9 Table 54 U4FHWAC(P)
NuMplier A MFuel rY (RePeWnc 3)Page 56 of 64 co Therml POwer (% of nSd)EOOS CombibIo --- ..0 25 S W S :p31 50 o0 80 100 Base 0.50 0.63 0.70 0.74 0.80 0.83 0.90 1.00 Base SLO 0.50 0.63 0.70 0.74 0.80 0.83 0.90 1.00 PLUOOS 0.60 0.63 0.70 0.70 0.74 0.82 0.90 1.00 PLUOOS $LO 0.50 0.63 0.70 0.70 0.74 0.82 0.90 1.00"-voos 0.39 0.45 0.52 0.71 0.76 0.-0 0.82 1.00 TBVOOS SLO 0.32 0.45 0.52 0.71 0.78 0.80 0.82 1.00 TCV Sow Closure 0.50 0.63 0.70 0.70 0.74 0.82 0.90 1.00 TCV Slow Closure SLO 0.50 0.63 0.70 0.70 0.74 0.82 0.90 1.00-- .-.---- -.. ... .... .-... .--.. ....-.TCV Stuck Closed 0.60 0.63 0.70 0.74 0.80 0.83 0.90 1.00 TCV Stuck Closed SLO 0.50 0.63 0.70 0.74 0.80 0.83 0.90 1.00 Tab"54 LHBNFA$'OMulpWars All FWu Toms (RePMnO 3)F0re ( % o f $ $ M v ) I Bag Case and aN ECOS Conditions 0.27 0.43 0.60 0.80 1.00 1.00 1.00 BaseCans__________________I'-,-
O~Dresden Unit 3 Cyce 23 COLR Dresden Unit 3 Revision 9 Page 57 of 64 6. Control Rod Btock SOlnts The Rod Block Monitor Upscale Instrumentation Selpoints are determined from the relationships shown below: To* 414 od ONoHsh to4=0r 16pesab n -T6un0Md0 1elPOWS (Pak M-" 17)UPSCAL TRIP FUNCTION ALLOWA iLt VALUE TWO Rech cl a~tion Loo D -5 W 5 Operation Sin- I Loop 0r65 Wd + 51%The s£eoint may be lower/higher and will still comply with the :WE analysis because RWE is analy-ed unblocked (Reference 20).Wd -percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mibhr.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 58 of 64 7. Stability Pr -tlon Setpoints The OPRM P8DA Trip Settings are provided In Table 7-1.Tabl 7-1 01W PODA Trip Sett*W (RFeWIce 3)POATrip ANfitSepW Co .ft)1.16 16 The PBOA Is the orgy OPRM setting credited In the safety analysis as documented In the licensing basis for the OPRM sydem.The OPRM PBOA trip settings are based, in part, on the cycle specific OWMCPR and the power dependent MCPR ftins. Any change to the OLMCPA value a"dor the power dependent MCPR Ilmts should be evaluated for potential impact on the OPRM P8DA trip settings.The OPRM PODA trip setngs are applicable wtn the OPRM system Is declared operable, and the associated Technical Specifications are Implemented.
Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 59 of 64 8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below: Table 8-1 Mode of Operaion (Reqerenc 3)Eoosoj- Themal Umnit Sets ease Base (DLO or SLO)PLUOOS PLUOOS (DLO or SLO)TOVOOS TBVOOS (DLO or SLO)), See Table 8-2 for Eowresriction TCV Slow Ciosur TCV Slow Closure (DLO or SLO)TCV Stuck Closed (DLO or SLO)TCV Stuck Cloed' > Not appkcle to combination of one TCV and one TSV Stuck Closed In separate IWnw> See Table 8-3 for ow restrictions TCV Stuck Closed PLO or SLO)TSV Stuck Closed* ) Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power restrictios PCOOS PLUOo (LO or SLO)PCOOS and PLUOOS PLUOOS 2T or SLO)PCOOS and TCV Slow Closure TCV Slow Closure (.LO or SLO)PWUOOS (LO or SLO)PCOOS and TCV Stuck CtoWs > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines)P See Table 8-3 for power restrictions PLUOOS (LO or SLO)PLUOOS and TCV Stuck ClosWd 4t applicable to combination of one TCV and one TSV Stuck Closed In separate lines>See Table 8-3 for pow esrictinlcks PLUOOS (LO or SLO)PCOOS and TSV Stuck Closed* > Not applicable to combination of one TCV and one TSV Stuck Closed in separate lines> See Table 8-3 for power restrictions PLUOOS (0LO or SLO)PLUOOS and TSV Stuck r d > Not applicable to combination of one TCV and one TSV Stuck Closed In separate lines> See Table 8-3 for power regsctions
- Also applicable to one TCV and one TSV stuck closed in Ith same line.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 60 of 64 Common Notes -AnolIable to bowh Base Case and all EOOS Combnationsgfor OLO/SLOM: 6. All modes are allowed for operation at MELLLA, IlF (up to 108% rated core flow), and coastdown subject to the power restrictions In Table 8M2. Either EOC must be reached or coastdown must begin prior to exceeding 15911 MWd/MTU. The licensing analysis remains valid down to a coastdown power level of 70% given all bumup limits are satistlod per Methodology
- 7. Each OOS Option may be combined with each of the following conditions provided the requirments of References 18 and 19 are met: " A maximum of IS TIP channels OOS (Up to 2 common TIP channels may be OOS, in combination with a maximum of 16 TIP channels OOS in locatns outside of the common TIP channel location of 32-33).* Up to 50% LPAMs 008" An LPRM calibration frequency of up to 2500 EFPH (2000 EFPH + 25%)7. Nominal FWT results are valid for application within a +10°F1-30F temperature band around the nominal FWT curve (Reference
- 20) and within the operating steam dome presure region (Reference 20). The FWTR results are valid for the minimum FWT curve (Reference 20). For operation outside of NFWT, a FWTR of between 30F and 120F is supported for Base Case and all EOOS DLO/SLO con0itios for cycle operation through EOC subject to the restriction in Reference 21 for feedwater temperature reductions of greater than 100 0 F. The restriction requies 1aW for a FWT reduction greater than OOF, operation needs to be restricted to les Man the 100% load line.8. Alt analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 TBVs meetin the assumed opening profile in Reference
- 22. The analyses also support Turbne Bypass flow of 29.8% of vessel rated steam flow, equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs Is met. If the opening profile Is WOT met, or If the TBV system cannot pass an equlvalent of 29.8% of vessel raled steam flow, utilize the TBVOOS condition.
- 9. For il came analyzed Including TSVOOS, equivalent of 2 of Me first 3.6 TBVI must be capable of opening via the pressure control system while TuMne Bypass Valves #5-9 am allowed to be OOS.For all came except TBVOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated In Note 3 above) arequired to trip open on TCV fast closure or on TSV closure. The TBVOOS condition assumes that alM of the TBVs do not trip open on TCV fast closure or on TSV closure.10. A single MSIV may be taken 009 (shut) under any of fie specified OOS optione as long s core thermal power is maintained g 76% of 2957 MWth (Reference 3).Teb**4 Comr 1tweml Power blIl tot.T4VOOG (RPeamk 3)core Ther~ PCOwerrw f RM f (%Of ftd Cyd *PWM (MWdiMTU)
Valv AvMl*W 4100 Entire Cycle 9019 S 100 < 14000 80o9_<97 > 14000 8019 Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 61 of 64 Table 0-3 Core Thennal Power Resction for One TCV/TSV Sluc CIW"d ean on the Minimum Avallbi Totdl flactor Vaa Sotm Flow Capcity (R*fesnc 3)e., Twhemml Pmowr Nmber of TWO Nsbotlen (% of Rated m qire to Provo*Plow -ON P-"araon 175 1.9<80 3.4<85 5.2_90 6.8 Applicable to one TCV Sbxc Closed, one TSV stuck dosed, or one TCV and one TSV sbok closed in fIe $mae ine.Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 62 of 64 9. Methodo ojy The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, speclilfally those described in the following documents 13. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement
- 1) and La Saflt County Unit 2 benchmarklng (Supplement 2), December 1991, March 1992, and May 1992, respectively.
- 14. NEDE-24011-P-A-15 (Revision 15), "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.15. NEDO-32485., "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload AppllcatlonsV August 1998.16. Westinghouse Topical Report CENPD-300-P-A, "RereW ce Safety Report for oiling Water Reactor Reload Fuel," July 1996.17. Westinghouse Report WCAP-16081-P-A, "100x0 SVEA Fuel Critical Power Experiments and CPR Correlation:
SVEA-96 Optlma2," March 2005.18. Westinghouse Report WCAP-1 56W-P-A, 'Wesfinghouse BWR ECCS Evaluation Model: Supplement 2 to Code Descrip , Oualficatiort and Applcotionf" April 2003.19. Wesinghoue Report WCAP-16078-P-A, estinghouse BWR ECCS Evaluation Model: Supplement 3 to Code Description, Qualification and Appicto to SVEA-98 Optima2 Fuel," November 2004.20. Westinghouse Topical Report WCAP-15136-P-A, "Fuel Rod Design Methods for oiling Waer Reactors -Supplement 1," April 2006.21. we oe Topical Report WCAP-1S92-P-A, "Fuel Assembly Mechanical Design Methodology for oingWatler Reactors Supplesment I to CENP-287-P-A, M#Arch2006.
- 22. Westinghose Topical Report CENM4 *-A. -"The Advanced PHEIX anrd POLCA Codes for Nuclear Design of Sko Water Reactore, Deonber 2000.23. Wesgouse Report WCAP-16oS1-P-A, Addenduim 1-A, Revision 0, "SVEA-g6 Optlm&2 CPR Correlation (04): High and Low Row Application," March 2009.24. Westinghouse Report WCAP-160S1.P-A, Addecund 2A. Revisi 0, "SVEA-96 Optlma CPR Correlatlon (04): ModifIed R4factors for Part-Length Rode," February 2009.Dresden Unit 3 Cycle 93 COLR Dresden Unit 3 Revision 9 Page 63 of 64 10. Referrncs 1. Exelon Generation Company, LLC, Docket No. 50-249, Dresden Nuclear Power Station, Unit 3, Faclity Operating License, License No. DPR-25.2. NRC Letter from D. M. Crutchfleld to All Power Reactor Licensees and Applicants, Generic Letter 88-16; 'Removal of Cycle-Specific Parameter Limits from Technical SpecfIcations," October 3, INS.3. Westinghouse Report NF.BEX.12-108, "Dresden Nuclear Power Station Unit 3 Cycle 23 Reload Licensin Reapor, October 2012, Attachment to Wes*qgou Letter NF-BEX-12-138, Rev. 0, gTransmittal of NF-EX-12-108 Revision 0, 'Dresden Nuclear Power Station Unit 3 Cycle 23 Reload Licensn Report', October 2, 2012. (Available In EDMS)4. Weesthouse Letter NF-BEX-12-66 "Bundle Design Report for Dresden 3 Cycle 23', April 11, 2012. (Avallable in MM)5. Westinghouse Report NF-BEX-12-100-NP Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 23 MAPLHGR Report', September 2012, Attachment to Letter NF-BEX 132, Rev. 0, "Dresden Nuclear Power Station Unit 3 Cycle 23 MAPLH.R Report Transmittal,'
September 20,2012. (Available in EDMS)6. Exelon TOOl ES1000014 Rev. 2, Dresden Unit 3 Cycle 22 Reload Licensing Report (RLR)Revision2," August 30,2011. (Attachment 8to FCP 382312)7. Westinghouse Letter NF-SEX-10.57 "Transmittal of Bundle Design Report for Dresden 3 Cycle 22," April 23,2010. (Attachment 3 to FCP 377653)8. Westinghouse Report NF-BEX.1080NP Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 22 MAPLHGR Reporr, August 2010, Attachment to Westinghouse Letter NF4EX-10-1 10 Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 22 MAPLHGR Report Transmittal," September 2, 2010. (Attachment 14 to FCP 377653)9. Exelon TOOl, ES0600030, Revision 1, 'Dresden Unit 3 Cycle 21 Reload Licensing Report (RLR)," December 15, 2009. (Attachment 38 to FCP 373142)10. Westinghouse Letter NFWBEX-08-61 Revision 1, "Final Report for Dresden Unit 3 Cycle 21 Bundle Designs Revision 1," October 30,2008. (Attachment 29 to FCP 388721)11. Westinghouse Letter NF-EX.08-94-NP, Revision 0, TDresden Unit 3 Cycle 21 MAPLHGR Report," September 4,2008. (Attachment 20 to FCP 368721)12. Westinghouse Letter NF-BEX-12-82, 'Transmittal of Safety Limit MCPR for Dresden Unit 3 Cycle 23," June 1, 2012. (Available In EDMS)13. Exelon Letter RS.05-078, "Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005.(Available in EDMS)14. NRC Letter, 'Dresden Nuclear Power Station, Unit 3 -Issuance of Amendment RE: Minimum Critical Power Ratio Safety Limit (TAC No. MD2700)," John Koncharik (NRC) to Christopher M.Crane, November 7,2006. (Available in EDMS)15. Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times." Dresden Unit 3 Cycle 23 COLR Dresden Unit 3 Revision 9 Page 64 of 64 16. Exelon TOOl ES1200005, Revision 0, "Dresden Unit 3 Cycle 23 Licensing Generic Inputs Report," March 15, 2012. (Available in EDMS)17. Exelon Design Analysis GE DRF C51-00217-01, "Instrument Seipoint Calculation Nuclear Instrumentation Rod Block Monitor Dresden 2 & 3," July 30,2012.18. Westinghouse Document STO 09-0311, Revision 1, "Westinghouse CMS -Operation guidelines for Dresden and Quad Cities plants," July 20, 2009. (Attachment 34 to FCP 368557)19. Westinghouse Document BTD 09-0723, Revision 0, 'Westinghouse CMS -Core Monitoring Strategy for Dresden 3 Cycle 21," July 3,2009. (Attachment 35 to FCP 368557)20. Westinlhouse Report NF-BEX-12-107, "Dresden Nuclear Power Station Unit 3 Cycle 23 Reload Engineing Report", September 2012, Attachment to Westinghouse Letter NF-BEX.12-134, Rev.0, Tranmlmtal of NF-SEX-12-107 Revision 0, 'Dresden Nuclear Power Station Unit 3 Cycle 23 Reload Engineering Report'," September 24,2012. (Available in EDMS)21. Exelon Letter, NF:MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Caros de ia Hoz to Doug Wise and Alex Misak, August 27,2002. (Available in EDMS)22. Exelon TOOl Ops Ltr 12-12, Revision 0, VOPL-W Parameters for Dresden Unit 3 Cycle 23 Transient Analysis," March 1, 2012. (Available in EDMS)23. Westinghouse Lette NF-SEX-12-153 "Dresden Unit 3 Cycle 23 Reload Licensing Report ClarifIca
", 10/16/12. (Available in EDMS)Dresden Unit 3 Cycle 23