ML16314C691: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 15: | Line 15: | ||
=Text= | =Text= | ||
{{#Wiki_filter: | {{#Wiki_filter:EKCLOSORESTATEMENZ OFTHEPROBLEM1IntheunlikelyeventofaPHRprimarycoolantsystempiperuptureintheimmediate vicinityofthereactorvessel,transient loadsoriginating fromthreeprincipal causeswillbeexertedonthereactorvesselsupportsystem.Theseare:1.Blowdownjetforcesatthelocationoftherupture(reaction forces),2.3.Transient differential pressures intheannularregion"betweenthevesselandtheshield,andTransient differential pressures acrossthecorebarrelwithinthereactorvessel.Theblowdownietforcesareadegvately understood anddesiqnprocedures areavailable toaccountforthem.Bothofthe"differential pressure" forces,however,arethree-dimensional ardtimedependent andrequiresophisticated analytical procedures totranslate themintoloaosactingonthe'eactor vesselsupport'system. | ||
Alloftheloadsareresistedbytheinertiaandbythe.'support membersandrestraints of'thercomponents oftheprimarycoolant:. | |||
.~ATTACt< | systemincluding thereactorpressurevesselsupports. | ||
P.U.S. | Thetransient differential presureactiniexternally onthereactorvesselisaresultoftheflowof,theblowdowneffluentinthe"reactorcavity.Themaqnitude andthetimedependence oftheresultina forcesdependsonthenatureandthesizeof~thepiperupture,theclearance betweenthevesselandtheshieldandthesizeandlocationcftheventopeningsleadingfromthecavitytothecontainment asawhole.Forsometimerefinedanalytical methodshavebeenavailable forcalculatinq thesetransient differential pressures (multi-node analyses). | ||
~.provideaventflowpath,andthemethodsand' | Theresultsofsuchanalysesindicatethattheconseauent loadsonthevesselsupportsystemcalculated bylesssophisticated methodsmaynctbeasconservative asoriginally intendedforearlierdesigns.Attachment 1tothisenclosure providesforyourinformation alistofinformation requestsforwhichresponses couldbeneededforaproperassessment oftheimpactofthecavitydifferential pressureonthedesignadeauacyofthevesselsupportsystemfora.powerplant. | ||
Thecontrolling loadsfordesianpurposes, however,appearintypicalcasestobethoseassociated withtheinternaldifferential pressures acrossthecorebarrel.Theinternally generated loadsareduetoamomentary differential pressurewhichiscalculated toexistacrossthecorebarrelwhenthepressureinthereactorannularregionbetweenthecorebarrelandvesselwallinthevicinityoftherupturedpipeisassumedtorapidlydecreasetothesaturation pressureoftheprimarycoolantduetotheoutflowofwater.Althou'ah thedepressurization wavetravelsrapidlyaroundthecorebarrel,thereisafiniteperiodoftimeduringwhichthepressureintheannularregionoppositethebreaklocationisassumedtoremainat,ornear,theoriginalreactoroperating pressure. | |||
Thus,transient asymmetrical forcesareexertedonthecorebarrelandthevesselwallwhichultimately resultintransient loadonthesupportsystems.Thesearetheloadswhichwereunderestimated | |||
.bythelicenseeoriginally reporting thisproblemandwhichmaybeunderestimated inothercases.Theyaretherefore ofgenericconcerntothestaff.Attachment 2tothisenclosure providesforyourinformation alistofinformation requestsforwhichresponses wouldbeneededforaproperassessment oftheimpactthatthevesselinternaldifferential | |||
: pressure, inconjunction withtheotherconcurrent loads,couldhaveonthedesignadeauacyofthesupportsystem.Inthatthereareconsiderable differences inthereactorsupportsystemdesignsforvaiiousfacilities and'probably inthedesignmarginsprovidedbythedesioners ofolder.facilities, theunderestimation ofthese'differ-entialpressure" loadsmayormaynotresultinadetermination thattheadeouacyofthevesselsupportsystemforaspecificfacilityisguestion-able.Sincelocalfailuresinthevesselsupports(suchasplasticdeformation) donotnecessarily leadtothefailureofthesupportsasanintegralsystem,theremaybesomelimitedreactor.vesselmotionprovidedthatnofurther,sionificant conseguences would,ensueandtheemergency corecooling;systems (ECCS)wouldbe.abletoperformtheirdesignfunctions, r | |||
.~ATTACt<l1ENT 1CONTAINMFNT SYSTEMSBRANCHREUESTFORADDITIONAL INFORMATION Intheunlikelyeventof.apiperupture.insidemajorcomponent subcompartments, theinitialblowdowntransient wouldleadtonon-uniform pressureloadingsonboththestructures andenclosedcomponents. | |||
Toassuretheintegrity ofthesedesignfeatures, werequestthatyouperformacompartment multi-node spressureresponseanalysistoprovidethefollowing information: | |||
(a)Theresultsofanalysesofthedifferential pressures resulting tfromhotlegandcoldleg(pumpsuctionanddischarge),reactor coolantsystempiperuptureswithinthereactorcavityandpipepenetrations. | |||
(b)Describethenodalization, sensitivity studyperformed todetermine | |||
'heminimumnumberofvolumenodesrequiredto,.conservatively predictthemaximumpressurewithinthe.reactorcavity.The'odalization sensitivity studyshouldincludeconsideration ofspatialpressurevariation; e.g.,'ressure variations circumferentially, axially,and | |||
.radially, withinthereactorcavity.(c)Provideaschematic drawingshowingthenodalization ofthereactorcavity.Provideatabulation ofthenodalnetfreevolumes.and,interconnecting flowpathareas.(d)Providesufficiently detailedplanandsectiondrawingsforseveralviewsshowingthearrangement of,thereactorcavitystructure, reactorvessel,piping,andothermajorobstructions,,and ventareas,topermitverification ofthereactorcavitynodalization andventlocations. | |||
(e)Provideandjustifythebreaktypeandareausedineachanalysis. (f)Provideandjustifyvaluesofventlosscoefficients and/o'rfrictionfactorsusedtocalculate flowbetweennodalvolI>mes. | |||
llhenalosscoefficient consistsofmorethanonecomponent, identifyeachcomponent, itsvalueandtheflowareaatwhichthelosscoefficient applies.(g)Discussthemannerinwhichmovableobstructions toventflow(suchasinsulation, ducting,plugs,andseals)w'ere'treated. | |||
Provideanalytical justification fortheremovalofsuchitemstoobtainventarea.Providejustification'tha't ventareaswi1notbepartially orcompletely pluggedbydisplaced objects.(h)Provideatableofblowdownmassflowrateandenergyreleaserateas''afunctionoftimeforthereactorcavitydesignbasisaccident. | |||
(i)Graphically showthepressure(psia)'nd differential pressure(psi)responses asfunctions oftimeforeachnode.Discussthebasis'orestablishing thedifferential pressures. | |||
(j)Providethepeakcalculated differential pressureandtimeofpeakpressureforeachnode,andthedesigndifferential pressure(s) forthe5react'orcavity.Discusswhetherthedesigndifferential "pressure isuniformly appliedtothereactorcavityorwhetheritisspatially varied.(Standard ReviewPlan6.2.1.2,Subcompartment Analysisattached, providesadditional guidanceinestablishing acceptable designvalues,fordetermining theacceptability ofthecalculated results.) | |||
P.U.S.NUCLEARREGULATORY COMMISSION ST%,INDE,IR9 REVIEWPLANOFFICEOFNUCLEARREACTORREGULATION | |||
: February, 1975SECTION6.2.1.2SUBCOHPARTHENT ANALYSISREVIEWRESPONSIBILITIES Primary-Containment SystemsBranch(CSB)Secondary | |||
-Hechanical Engineering Branch(HEB)CorePerformance Branch(CPB)Auxiliary andPowerConversion SystemsBranch(APCSB)I.AREASOFREVIEWTheCSBreviewstheinformation presented bytheapplicant inthesafetyanalysisreportconcerning thedetermination ofthedesigndifferential pressurevaluesforcontainment sub-compartments. | |||
Asubcompartment isdefinedasanyfullyorpartially enclosedvolumewithintheprimarycontainment thathouseshighenergypipingandwouldlimittheflowoffluidtothemaincontainment volumeintheeventofapostulated piperupturewithinthisvolume.Ashort-term pressurepulsewouldexistinsideacontainment subcompartment following apiperupturewithinthisvolume.Thispressuretransient producesapressuredifferential acrossthewallsofthesubcompartment whichreachesamaximumvaluegenerally withinthefirstsecondafterblowdownbegins.Themagnitude ofthepeakvalueisafunctionofseveralparameters, whichincludeblowdownmassandenergyreleaserates,subcompartment volume,ventarea,andventflowbehavior. | |||
Atransient differential pressureresponseanalysisshouldbeprovidedforeachsubcompartment orgroupofsubcompartments thatmeetstheabovedefinition. | |||
TheCSBreviewincludesthemannerinwhichthemassandenergyreleaserateintothebreakcompartment weredetermined, nodalization ofsubcompartments, subcompartment ventflowbehavior, andsubcompartment designpressuremargins.Thisincludesacoordinated revieweffortwiththeCPB.TheCPBisresponsible fortheadequacyof'theblowdownmodel.TheCSBreviewofthemassandenergyreleaseratesincludesthebasisfortheselection ofthepipebreaksizeandlocationwithineachsubcompartment containing ahighenergylineandtheanalytical procedure forpredicting theshort-term massandenergyreleaserates.TheCSBreviewofthesubcompar tmentmodelincludesthebasisforthenodalization withineachsubcompartment, theinitialthermodynamic conditions withineachsubcompartment, thenatureofeachv'entflowpathconsidered, andtheextentofentrainment assumedintheventflowmixture.Thereviewmayalsoincludeananalysisofthedynamiccharacteristics ofcomponents, suchasdoors,blowoutpanels,orsandplugs,thatmustopenorberemovedtoUSNRCSTANDARDREVIEWPLANStandenlreviewplansaroproparedforthecurdsneooftheOfficeofNuclearReactorReps4tlonstaffresponsible forthoreviewofapplications toconstmctondoperatenuclearpowerp4nts.Thesedocuments eremadeavailable tothopublloespertofthoCommission's poucytoInformthonuclearIndustryandtheSenorslpubdeofregulatory procedures endpollclos. | |||
Standardreviewp4nseronotsubstltutse forredu4tory SuldssorthoCommlmlon's repu4tlons endCOmpllanco withthemisnetrortulrod. | |||
ThostandardreviewplansectionssrokeyedtoRevfa4n2ofthoStandardFormatsndContentofSafetyAnalysisReportsforNuclearPowerPlants.NotstlsectionsofthoStandardFormathavesconospondlnp reviewplan.Published standardreviewplanswillborev4edperlodlcally, asappropriate. | |||
toaccommodate commentsondtorellectnewinformation sndoaperlonco. | |||
copiesofmsndardrovfowplansmaybaobtainedbyrecusaltothoU.S.NuclearResu4tory Commlmlon. | |||
Wathlnston, O.C.20MS.Attention: | |||
OfficeofNudasrReactorRadulation. | |||
Commentssndeucsostlons forImprovement willboconsidered ondshouldalsobosenttothoOfficeofNuclearReactorRadutatlon. | |||
~.provideaventflowpath,andthemethodsand'results ofcomponents testsperformed todemonstrate thevalidityoftheseanalyses. | |||
Theanalytical procedure todetermine thelosscoefficients foreachventflowpathandtopredicttheventmassflowrates,including flowcorrelations usedtocomputesonicandsubsonicflowconditions withinavent,isre-viewed.Thedesignpressurechosenforeachsubcompartment isalsoreviewed'n requestfromtheAPCSB,theCSBevaluates orperformspressureresponseanalysesforsubcompartments outsidecontainment. | |||
TheHEBisresponsible forreviewiitheacceptability ofthebreaklocations chosenandofthedesigncriteriaandprovision. | |||
methodsemployedtojustifylimitedpipemotionforbreakspostulated tooccurwithin.'ubcompartments (SeeStandardReviewPlan3.6.2).II.ACCEPTANCE CRITERIA1.Thesubcompartment analysisshouldincorporate thefollowing assumptions: | |||
a.Breaklocations andtypesshouldbe,chosenaccording toRegulatory Guide1.46forsubcompartments insidecontainment andtoBranchTechnical PositionMEB3-1(attached toStandardReviewPlan3'.2)forsubcompartments outsidecontainment. | |||
Anacceptable alternate procedure istopostulate acircumferential double-ended ruptureofeachhighpressuresystempipeinthesubcompartment. | |||
b.'fseveralbreakspostulated onthebasisofa,above,thebreakselectedasthereference caseforsubcompartment analysisshouldyieldthehighestmassandenergyreleaserates,consistent withthecriteriaforestablishing thebreaklocationandarea.c.Theinitialplantoperating conditions, suchaspressure, temperature, waterinventory, andpowerlevel,shouldbeselectedtoyieldthemaximumblowdownconditions~ | |||
.Theselectedoperating conditions wi11beacceptable ifitcanbeshownthatachangeofeachparameter wouldresultinalesssevereblowdownprofile.2.Theanalytical approachusedtocomputethemassandenergyreleaseprofilewillbeacceptedifboththecomputerprogramandvolumenodingofthepipingsystemaresimilartothoseofanapprovedemergency corecoolingsystem(ECCS)analysis. | |||
Thecomputerprogramsthatarecurrently acceptable includeSATAN-VI(Ref.24),CRAFT(Ref.23),CEFLASk-4(Ref.25),andRELAP3(Ref.21),whenaflowmultiplier of1.0isusedwiththeapplicable chokedflowcorrelation. | |||
Analternate | |||
: approach, whichisalsoacceptable, istoassumeaconstantblowdownprofileusingtheinitialconditions withanacceptable chokedflowcorrelation. | |||
WhenRELAP-4isacceptedbythestaffasanoperational ECCSblowdowncode,itwillbeacceptable | |||
'forsubcompart-mentanalyses'. | |||
Theinitialatmospheric conditions withinasubcompartment shouldbeselectedtomax-imizetheresultant differential pressure. | |||
Anacceptable modelwouldbetoassumeairatthemaximumallowable temperature, minimumabsolutepressure, andzeropercentrel-ativehumidity. | |||
Iftheassumedinitialatmospheric conditions differfromthese,theselectedvaluesshouldbejustified. | |||
6.2.1.2-2 Anothermodelthatisalsoacceptable, forarestricted classofsubcompartments, in-volvessimplifying theairmodeloutlinedabove.Forthismodel,theinitialatmos-pherewithinthesubcompartment is.modeledasahomogeneous water-steam mixturewithanaveragedensityequivalent tothedryairmodel.Thisapproachshouldbelimitedtosubcompartments thathavechokedflowwithinthevents.However,theadequacyofthissimplified modelforsubcompartments havingprimarily subsonicflowthroughtheventshasnotbeenestablished. | |||
'4..Subcompar tmentnodalization schemesshouldbechosensuchthatthereisnosubstantial pressuregradientwithinanode,i.e,thenodalization schemeshouldbeverifiedbyasensitivity studythatincludesincreasing thenumberofnodesuntilthepeakcal-culatedpressures convergetosmallresultant changes.5.Ifventflowpathsareusedwhicharenotimmediately available atthetimeofpiperupture,thefollowing criteriaapply:c~Theventareaandresistance asafunctionoftimeafterthebreakshouldbebasedonadynamicanalysisofthesubcompartment pressureresponsetopiperuptures. | |||
Thevalidityoftheanalysisshouldbesupported byexperimental dataoratestingprogramshouldbeproposedattheconstruction permitstagethatwillsupportthisanalysis. | |||
Theeffectsofmissilesthatmaybegenerated duringthetransient shouldbeconsidered inthesafetyanalysis'. | |||
Theventflowbehaviorthroughallflowpathswithinthenodalized compartment modelshouldbebasedonahomogeneous mixtureinthermalequilibrium, withtheassumption of100Kwaterentrainment. | |||
Inaddition, theselectedventcriticalflowcorrelation shouldbeconservative withrespecttoavailable experimental data:Currently accept-ableventcriticalflowcorrelations arethe"frictionless Hoody"withamultiplier of0.6forwater-steam | |||
: mixtures, andthethermalhomogeneous equilibrium modelforair-steam-water | |||
: mixtures, 7.Attheconstruction permitstage,afactorof1.4shouldbeappliedtothepeakdifferential pressurecalculated inamannerfoundacceptable totheCSBforthesubcompartment. | |||
Thecalculated pressuremultiplied by1.4shouldbeconsidered thedesignpressure. | |||
Attheoperating licensestage,thepeakcalculated differential pressureshouldnotexceedthedesignpressure. | |||
Itisexpectedthatthepeakcalcu-lateddifferential pressurewillnotbesubstantially different fromthatoftheconstruction permitstage.However,improvements intheanalytical modelsorchangesintheas-builtsubcompartment mayaffecttheavailable margin.III.REVIEWPROCEOURES Theprocedures described belowarefollowedforthesubcompartment analysisreview.Thereviewerselectsandemphasizes materialfromtheseprocedures asmaybeappropriate for6~2.1.2-3 aparticular case.Portionsofthereviewmaybecarriedoutopagenericbasisorbyadoptingtheresultsofpreviousreviewsofplantswithessentially thesamesubcompartment andhighpressurepipingdesign.TheCSBreviewstheinitialconditions selectedfordetermining themassandenergyreleaseratetothesubcompartments | |||
~Thesevaluesarecomparedtothespectrumofallowable opera-tingconditions fortheplant.TheCBSwillascertain theadequacyoftheassumedconditions basedonthisreview.TheCSBconfirmswiththeHEBthevalidityoftheapplicant's analysisofsubcompartments containing highenergylinesandpostulatel pipebreaklocations, usingelevation andplandrawingsofthecontainment showingtheroutingoflinescontaining highenergyfluids.TheCSBdetermines thatanappropriate reference caseforsubcompartment analysishasbeenidentified. | |||
Intheeventapipebreakotherthanadouble-ended piperuptureispostulated bytheapplicant, theHEBwillevaluatetheapplicant's justification forassumingalimiteddisplacement pipebreak.TheCSBmayperformconfirmatory analysesoftheblowdownmassandenergyprofileswithi'nasubcompartment. | |||
TheanalysisisdoneusingtheRELAP3computerprogram(SeeReference 21foradescription ofthiscode).Thepurposeoftheanalysisistoconfirmthepredic-tionsofthemassandenergyreleaseratesappearing inthesafetyanalysisreport,andtoconfirmthatanappropriate breaklocationhasbeenconsidered inthisanalysis. | |||
TheuseofRELAP3willcontinueuntiltheRELAP4computercodehasbeenapprovedbythestaffasanacceptable blowdowncode.Atthattime,theCSBwillreplaceRELAP3withRELAP4forallsubsequent analyses. | |||
/TheCSBdetermines theadequacyoftheinformation inthesafetyanalysisreportregarding subcompartment volumes,ventareas,andventresistances. | |||
Ifasubcompartment mustrelyondoors,blowoutpanels,orequivalent devicestoincreaseventareas,theCSBreviewstheanalysesandtestingprogramsthatsubstantiate theiruse.TheCSBreviewsthenodalization ofeachsubcompartment todetermine theadequacyofthecalculational model.Asnecessary, CSBperformsiterative nodalization studiesforsub-compartments toconfirmthatsufficient nodeshavebeenincludedinthemodel.TheCSBcomparestheinitialsubcompartment airpressure, temperature, andhumiditycondi-tionstothecriteriaoFII,above,toassurethatconservative conditions wereselected. | |||
TheCSBreviewsthebases,correlations, andcomputer'odes usedtopredictsubsonicandsonicventflowbehaviorandthecapability ofthecodetomodelcompressible andun-compressible flow.Thebasesshouldincludecomparisons ofthecorrelations tobothexperimental dataandrecognized alternate correlations thathavebeenacceptedbythestaff.6.2.1.2-4 4,0Usingthenodalization ofeachsubcompartment asspecified inthesafetyanalysisreport,theCSBperformsanalysesusingoneofseveralavailable computerprogramstodetermine theadequacyofthecalculated peakdifferential pressure. | |||
Thecomputerprogramusedwilldependuponthesubcompartment underreviewaswellastheflowregime.Atthe'present time,thetwoprogramsusedbytheCSBareRELAP3(Ref.21)andCONTEHPT-LT (Refs.*7, 8,and9).Amulti-volume computercodeiscurrently underdevelopment. | |||
Attheconstruction permitstage,theCSBwillascertain thatthesubcompartment designpressures includeappropriate marginsabovethecalculated values,asgiveninII,above.IV.EVALUATION FINDINGSTheconclusions reachedoncompletion ofthereviewofthissectionarepresented inStandardReviewPlan6.2.1~V.REFERENCES Thereferences forthisplanarethoselistedinStandardReviewPlan6.2.1,togetherwiththefollowing: | |||
la.Regulatory Guide1.46,"Protection AgainstPipeWhipInsideContainment." | |||
2a.StandardReviewPlan3,6.2,"Determination ofBreakLocations andDynamicEffectsAssociated withthePostulated RuptureofPiping,"andattachedBranchTechnical PositionNEB3-1,"Postulated BreakandLeakageLocations inFluidSystemPipingOutsideContainment." | |||
46.2.1.2-5 0l ATTACHiiEHT 2MECHANICAL ENGINEERING BRANCHREVESTFORADDITIONAL INFOlMTION Recentanalyseshaveshown'that reactorpressurevesselsupportsmaybeVIsubjected topreviously underestimated lateralloadsundertheconditions thatwouldexistifaninstantaneous doubleendedbreakispostulated inIthereactorvesselcoldlegpipeatthevessel.nozzle.Itistherefore necessary toreassessthecapability ofthereactorcoolantsystemsupportstolimitthecalculated motionofthereactorvesselduringapostulated coldlegbreakwithinboundsnecessary toassureahigh-probability thatthereactorcouldbebrought.safelytoacoldshutdowncondition.' | |||
XThe,following information isrequired'for purposesofmakingthenecessary v<reassessment ofthereactorvesselsupports: | |||
nI1.Provideengineering drawingsofthereactorsupportsystemsufficient toshowthegeometryofall.principle elementsandmaterials 6feon-1struction. | |||
2;Specify.thedetaildesignloadsusedintheoriginaldesignanalysesofthereactorsupportsgivingmagnitude, direction ofapplication andthebasisforeachload.Alsoprovidethecalculated maximumstressineachprinciple elementofthesupportsystemandthecorresponding allowable stresses. | |||
3.Providetheinformation requested in2abovefortheRYsupportscon-sideringapostulated breakatthecoldlegnozzle.Includeasummaryoftheanalytical methodsemployedandspecifically statetheeffectsof,Ishorttermpressuredifferentials acrossthecorebarrelincombination. | |||
withallexternalloadingsca1culated toresultfromtherequiredpostulate. | |||
Thisanalysisshouldconsider: | |||
(a)limiteddisplacement breakareaswhereapplicable (b)consideration offluidstructure interaction (c)useofactualtimedependent forcingfunction(d)reactorsupportstiffness. | |||
4.Iftheresultsoftheanalysesrequiredby3.aboveindicates loadsleadingtoinelastic actioninthereactorsupportsordisplacements exceeding previousdesignlimitsprovideanevaluation ofthefollowing: | |||
(a)Yieldbehavior(effectsofpossiblestrainenergybuildup)ofthematerialusedinthereactorsupportdesignandtheeffectontheloadstransmitted tothereactorcoolantsystemandthebackupstructures towhichthereactorcoolantsystemsupportsareattached. | |||
(b)Theadequacyofthereactorcoolantsystempiping,controlroddrives,steamgenerator andpumpsupports, structures surrounding thereactoi"coolantsystem,reactorinternals andECCSpipingtoassurethatthereactorcanbesafelybroughttocoldshutdown.}} |
Revision as of 01:52, 30 June 2018
ML16314C691 | |
Person / Time | |
---|---|
Site: | Diablo Canyon |
Issue date: | 11/09/2016 |
From: | Pacific Gas & Electric Co |
To: | Office of Nuclear Reactor Regulation |
References | |
Download: ML16314C691 (12) | |
Text
EKCLOSORESTATEMENZ OFTHEPROBLEM1IntheunlikelyeventofaPHRprimarycoolantsystempiperuptureintheimmediate vicinityofthereactorvessel,transient loadsoriginating fromthreeprincipal causeswillbeexertedonthereactorvesselsupportsystem.Theseare:1.Blowdownjetforcesatthelocationoftherupture(reaction forces),2.3.Transient differential pressures intheannularregion"betweenthevesselandtheshield,andTransient differential pressures acrossthecorebarrelwithinthereactorvessel.Theblowdownietforcesareadegvately understood anddesiqnprocedures areavailable toaccountforthem.Bothofthe"differential pressure" forces,however,arethree-dimensional ardtimedependent andrequiresophisticated analytical procedures totranslate themintoloaosactingonthe'eactor vesselsupport'system.
Alloftheloadsareresistedbytheinertiaandbythe.'support membersandrestraints of'thercomponents oftheprimarycoolant:.
systemincluding thereactorpressurevesselsupports.
Thetransient differential presureactiniexternally onthereactorvesselisaresultoftheflowof,theblowdowneffluentinthe"reactorcavity.Themaqnitude andthetimedependence oftheresultina forcesdependsonthenatureandthesizeof~thepiperupture,theclearance betweenthevesselandtheshieldandthesizeandlocationcftheventopeningsleadingfromthecavitytothecontainment asawhole.Forsometimerefinedanalytical methodshavebeenavailable forcalculatinq thesetransient differential pressures (multi-node analyses).
Theresultsofsuchanalysesindicatethattheconseauent loadsonthevesselsupportsystemcalculated bylesssophisticated methodsmaynctbeasconservative asoriginally intendedforearlierdesigns.Attachment 1tothisenclosure providesforyourinformation alistofinformation requestsforwhichresponses couldbeneededforaproperassessment oftheimpactofthecavitydifferential pressureonthedesignadeauacyofthevesselsupportsystemfora.powerplant.
Thecontrolling loadsfordesianpurposes, however,appearintypicalcasestobethoseassociated withtheinternaldifferential pressures acrossthecorebarrel.Theinternally generated loadsareduetoamomentary differential pressurewhichiscalculated toexistacrossthecorebarrelwhenthepressureinthereactorannularregionbetweenthecorebarrelandvesselwallinthevicinityoftherupturedpipeisassumedtorapidlydecreasetothesaturation pressureoftheprimarycoolantduetotheoutflowofwater.Althou'ah thedepressurization wavetravelsrapidlyaroundthecorebarrel,thereisafiniteperiodoftimeduringwhichthepressureintheannularregionoppositethebreaklocationisassumedtoremainat,ornear,theoriginalreactoroperating pressure.
Thus,transient asymmetrical forcesareexertedonthecorebarrelandthevesselwallwhichultimately resultintransient loadonthesupportsystems.Thesearetheloadswhichwereunderestimated
.bythelicenseeoriginally reporting thisproblemandwhichmaybeunderestimated inothercases.Theyaretherefore ofgenericconcerntothestaff.Attachment 2tothisenclosure providesforyourinformation alistofinformation requestsforwhichresponses wouldbeneededforaproperassessment oftheimpactthatthevesselinternaldifferential
- pressure, inconjunction withtheotherconcurrent loads,couldhaveonthedesignadeauacyofthesupportsystem.Inthatthereareconsiderable differences inthereactorsupportsystemdesignsforvaiiousfacilities and'probably inthedesignmarginsprovidedbythedesioners ofolder.facilities, theunderestimation ofthese'differ-entialpressure" loadsmayormaynotresultinadetermination thattheadeouacyofthevesselsupportsystemforaspecificfacilityisguestion-able.Sincelocalfailuresinthevesselsupports(suchasplasticdeformation) donotnecessarily leadtothefailureofthesupportsasanintegralsystem,theremaybesomelimitedreactor.vesselmotionprovidedthatnofurther,sionificant conseguences would,ensueandtheemergency corecooling;systems (ECCS)wouldbe.abletoperformtheirdesignfunctions, r
.~ATTACt<l1ENT 1CONTAINMFNT SYSTEMSBRANCHREUESTFORADDITIONAL INFORMATION Intheunlikelyeventof.apiperupture.insidemajorcomponent subcompartments, theinitialblowdowntransient wouldleadtonon-uniform pressureloadingsonboththestructures andenclosedcomponents.
Toassuretheintegrity ofthesedesignfeatures, werequestthatyouperformacompartment multi-node spressureresponseanalysistoprovidethefollowing information:
(a)Theresultsofanalysesofthedifferential pressures resulting tfromhotlegandcoldleg(pumpsuctionanddischarge),reactor coolantsystempiperuptureswithinthereactorcavityandpipepenetrations.
(b)Describethenodalization, sensitivity studyperformed todetermine
'heminimumnumberofvolumenodesrequiredto,.conservatively predictthemaximumpressurewithinthe.reactorcavity.The'odalization sensitivity studyshouldincludeconsideration ofspatialpressurevariation; e.g.,'ressure variations circumferentially, axially,and
.radially, withinthereactorcavity.(c)Provideaschematic drawingshowingthenodalization ofthereactorcavity.Provideatabulation ofthenodalnetfreevolumes.and,interconnecting flowpathareas.(d)Providesufficiently detailedplanandsectiondrawingsforseveralviewsshowingthearrangement of,thereactorcavitystructure, reactorvessel,piping,andothermajorobstructions,,and ventareas,topermitverification ofthereactorcavitynodalization andventlocations.
(e)Provideandjustifythebreaktypeandareausedineachanalysis. (f)Provideandjustifyvaluesofventlosscoefficients and/o'rfrictionfactorsusedtocalculate flowbetweennodalvolI>mes.
llhenalosscoefficient consistsofmorethanonecomponent, identifyeachcomponent, itsvalueandtheflowareaatwhichthelosscoefficient applies.(g)Discussthemannerinwhichmovableobstructions toventflow(suchasinsulation, ducting,plugs,andseals)w'ere'treated.
Provideanalytical justification fortheremovalofsuchitemstoobtainventarea.Providejustification'tha't ventareaswi1notbepartially orcompletely pluggedbydisplaced objects.(h)Provideatableofblowdownmassflowrateandenergyreleaserateasafunctionoftimeforthereactorcavitydesignbasisaccident.
(i)Graphically showthepressure(psia)'nd differential pressure(psi)responses asfunctions oftimeforeachnode.Discussthebasis'orestablishing thedifferential pressures.
(j)Providethepeakcalculated differential pressureandtimeofpeakpressureforeachnode,andthedesigndifferential pressure(s) forthe5react'orcavity.Discusswhetherthedesigndifferential "pressure isuniformly appliedtothereactorcavityorwhetheritisspatially varied.(Standard ReviewPlan6.2.1.2,Subcompartment Analysisattached, providesadditional guidanceinestablishing acceptable designvalues,fordetermining theacceptability ofthecalculated results.)
P.U.S.NUCLEARREGULATORY COMMISSION ST%,INDE,IR9 REVIEWPLANOFFICEOFNUCLEARREACTORREGULATION
- February, 1975SECTION6.2.1.2SUBCOHPARTHENT ANALYSISREVIEWRESPONSIBILITIES Primary-Containment SystemsBranch(CSB)Secondary
-Hechanical Engineering Branch(HEB)CorePerformance Branch(CPB)Auxiliary andPowerConversion SystemsBranch(APCSB)I.AREASOFREVIEWTheCSBreviewstheinformation presented bytheapplicant inthesafetyanalysisreportconcerning thedetermination ofthedesigndifferential pressurevaluesforcontainment sub-compartments.
Asubcompartment isdefinedasanyfullyorpartially enclosedvolumewithintheprimarycontainment thathouseshighenergypipingandwouldlimittheflowoffluidtothemaincontainment volumeintheeventofapostulated piperupturewithinthisvolume.Ashort-term pressurepulsewouldexistinsideacontainment subcompartment following apiperupturewithinthisvolume.Thispressuretransient producesapressuredifferential acrossthewallsofthesubcompartment whichreachesamaximumvaluegenerally withinthefirstsecondafterblowdownbegins.Themagnitude ofthepeakvalueisafunctionofseveralparameters, whichincludeblowdownmassandenergyreleaserates,subcompartment volume,ventarea,andventflowbehavior.
Atransient differential pressureresponseanalysisshouldbeprovidedforeachsubcompartment orgroupofsubcompartments thatmeetstheabovedefinition.
TheCSBreviewincludesthemannerinwhichthemassandenergyreleaserateintothebreakcompartment weredetermined, nodalization ofsubcompartments, subcompartment ventflowbehavior, andsubcompartment designpressuremargins.Thisincludesacoordinated revieweffortwiththeCPB.TheCPBisresponsible fortheadequacyof'theblowdownmodel.TheCSBreviewofthemassandenergyreleaseratesincludesthebasisfortheselection ofthepipebreaksizeandlocationwithineachsubcompartment containing ahighenergylineandtheanalytical procedure forpredicting theshort-term massandenergyreleaserates.TheCSBreviewofthesubcompar tmentmodelincludesthebasisforthenodalization withineachsubcompartment, theinitialthermodynamic conditions withineachsubcompartment, thenatureofeachv'entflowpathconsidered, andtheextentofentrainment assumedintheventflowmixture.Thereviewmayalsoincludeananalysisofthedynamiccharacteristics ofcomponents, suchasdoors,blowoutpanels,orsandplugs,thatmustopenorberemovedtoUSNRCSTANDARDREVIEWPLANStandenlreviewplansaroproparedforthecurdsneooftheOfficeofNuclearReactorReps4tlonstaffresponsible forthoreviewofapplications toconstmctondoperatenuclearpowerp4nts.Thesedocuments eremadeavailable tothopublloespertofthoCommission's poucytoInformthonuclearIndustryandtheSenorslpubdeofregulatory procedures endpollclos.
Standardreviewp4nseronotsubstltutse forredu4tory SuldssorthoCommlmlon's repu4tlons endCOmpllanco withthemisnetrortulrod.
ThostandardreviewplansectionssrokeyedtoRevfa4n2ofthoStandardFormatsndContentofSafetyAnalysisReportsforNuclearPowerPlants.NotstlsectionsofthoStandardFormathavesconospondlnp reviewplan.Published standardreviewplanswillborev4edperlodlcally, asappropriate.
toaccommodate commentsondtorellectnewinformation sndoaperlonco.
copiesofmsndardrovfowplansmaybaobtainedbyrecusaltothoU.S.NuclearResu4tory Commlmlon.
Wathlnston, O.C.20MS.Attention:
OfficeofNudasrReactorRadulation.
Commentssndeucsostlons forImprovement willboconsidered ondshouldalsobosenttothoOfficeofNuclearReactorRadutatlon.
~.provideaventflowpath,andthemethodsand'results ofcomponents testsperformed todemonstrate thevalidityoftheseanalyses.
Theanalytical procedure todetermine thelosscoefficients foreachventflowpathandtopredicttheventmassflowrates,including flowcorrelations usedtocomputesonicandsubsonicflowconditions withinavent,isre-viewed.Thedesignpressurechosenforeachsubcompartment isalsoreviewed'n requestfromtheAPCSB,theCSBevaluates orperformspressureresponseanalysesforsubcompartments outsidecontainment.
TheHEBisresponsible forreviewiitheacceptability ofthebreaklocations chosenandofthedesigncriteriaandprovision.
methodsemployedtojustifylimitedpipemotionforbreakspostulated tooccurwithin.'ubcompartments (SeeStandardReviewPlan3.6.2).II.ACCEPTANCE CRITERIA1.Thesubcompartment analysisshouldincorporate thefollowing assumptions:
a.Breaklocations andtypesshouldbe,chosenaccording toRegulatory Guide1.46forsubcompartments insidecontainment andtoBranchTechnical PositionMEB3-1(attached toStandardReviewPlan3'.2)forsubcompartments outsidecontainment.
Anacceptable alternate procedure istopostulate acircumferential double-ended ruptureofeachhighpressuresystempipeinthesubcompartment.
b.'fseveralbreakspostulated onthebasisofa,above,thebreakselectedasthereference caseforsubcompartment analysisshouldyieldthehighestmassandenergyreleaserates,consistent withthecriteriaforestablishing thebreaklocationandarea.c.Theinitialplantoperating conditions, suchaspressure, temperature, waterinventory, andpowerlevel,shouldbeselectedtoyieldthemaximumblowdownconditions~
.Theselectedoperating conditions wi11beacceptable ifitcanbeshownthatachangeofeachparameter wouldresultinalesssevereblowdownprofile.2.Theanalytical approachusedtocomputethemassandenergyreleaseprofilewillbeacceptedifboththecomputerprogramandvolumenodingofthepipingsystemaresimilartothoseofanapprovedemergency corecoolingsystem(ECCS)analysis.
Thecomputerprogramsthatarecurrently acceptable includeSATAN-VI(Ref.24),CRAFT(Ref.23),CEFLASk-4(Ref.25),andRELAP3(Ref.21),whenaflowmultiplier of1.0isusedwiththeapplicable chokedflowcorrelation.
Analternate
- approach, whichisalsoacceptable, istoassumeaconstantblowdownprofileusingtheinitialconditions withanacceptable chokedflowcorrelation.
WhenRELAP-4isacceptedbythestaffasanoperational ECCSblowdowncode,itwillbeacceptable
'forsubcompart-mentanalyses'.
Theinitialatmospheric conditions withinasubcompartment shouldbeselectedtomax-imizetheresultant differential pressure.
Anacceptable modelwouldbetoassumeairatthemaximumallowable temperature, minimumabsolutepressure, andzeropercentrel-ativehumidity.
Iftheassumedinitialatmospheric conditions differfromthese,theselectedvaluesshouldbejustified.
6.2.1.2-2 Anothermodelthatisalsoacceptable, forarestricted classofsubcompartments, in-volvessimplifying theairmodeloutlinedabove.Forthismodel,theinitialatmos-pherewithinthesubcompartment is.modeledasahomogeneous water-steam mixturewithanaveragedensityequivalent tothedryairmodel.Thisapproachshouldbelimitedtosubcompartments thathavechokedflowwithinthevents.However,theadequacyofthissimplified modelforsubcompartments havingprimarily subsonicflowthroughtheventshasnotbeenestablished.
'4..Subcompar tmentnodalization schemesshouldbechosensuchthatthereisnosubstantial pressuregradientwithinanode,i.e,thenodalization schemeshouldbeverifiedbyasensitivity studythatincludesincreasing thenumberofnodesuntilthepeakcal-culatedpressures convergetosmallresultant changes.5.Ifventflowpathsareusedwhicharenotimmediately available atthetimeofpiperupture,thefollowing criteriaapply:c~Theventareaandresistance asafunctionoftimeafterthebreakshouldbebasedonadynamicanalysisofthesubcompartment pressureresponsetopiperuptures.
Thevalidityoftheanalysisshouldbesupported byexperimental dataoratestingprogramshouldbeproposedattheconstruction permitstagethatwillsupportthisanalysis.
Theeffectsofmissilesthatmaybegenerated duringthetransient shouldbeconsidered inthesafetyanalysis'.
Theventflowbehaviorthroughallflowpathswithinthenodalized compartment modelshouldbebasedonahomogeneous mixtureinthermalequilibrium, withtheassumption of100Kwaterentrainment.
Inaddition, theselectedventcriticalflowcorrelation shouldbeconservative withrespecttoavailable experimental data:Currently accept-ableventcriticalflowcorrelations arethe"frictionless Hoody"withamultiplier of0.6forwater-steam
- mixtures, andthethermalhomogeneous equilibrium modelforair-steam-water
- mixtures, 7.Attheconstruction permitstage,afactorof1.4shouldbeappliedtothepeakdifferential pressurecalculated inamannerfoundacceptable totheCSBforthesubcompartment.
Thecalculated pressuremultiplied by1.4shouldbeconsidered thedesignpressure.
Attheoperating licensestage,thepeakcalculated differential pressureshouldnotexceedthedesignpressure.
Itisexpectedthatthepeakcalcu-lateddifferential pressurewillnotbesubstantially different fromthatoftheconstruction permitstage.However,improvements intheanalytical modelsorchangesintheas-builtsubcompartment mayaffecttheavailable margin.III.REVIEWPROCEOURES Theprocedures described belowarefollowedforthesubcompartment analysisreview.Thereviewerselectsandemphasizes materialfromtheseprocedures asmaybeappropriate for6~2.1.2-3 aparticular case.Portionsofthereviewmaybecarriedoutopagenericbasisorbyadoptingtheresultsofpreviousreviewsofplantswithessentially thesamesubcompartment andhighpressurepipingdesign.TheCSBreviewstheinitialconditions selectedfordetermining themassandenergyreleaseratetothesubcompartments
~Thesevaluesarecomparedtothespectrumofallowable opera-tingconditions fortheplant.TheCBSwillascertain theadequacyoftheassumedconditions basedonthisreview.TheCSBconfirmswiththeHEBthevalidityoftheapplicant's analysisofsubcompartments containing highenergylinesandpostulatel pipebreaklocations, usingelevation andplandrawingsofthecontainment showingtheroutingoflinescontaining highenergyfluids.TheCSBdetermines thatanappropriate reference caseforsubcompartment analysishasbeenidentified.
Intheeventapipebreakotherthanadouble-ended piperuptureispostulated bytheapplicant, theHEBwillevaluatetheapplicant's justification forassumingalimiteddisplacement pipebreak.TheCSBmayperformconfirmatory analysesoftheblowdownmassandenergyprofileswithi'nasubcompartment.
TheanalysisisdoneusingtheRELAP3computerprogram(SeeReference 21foradescription ofthiscode).Thepurposeoftheanalysisistoconfirmthepredic-tionsofthemassandenergyreleaseratesappearing inthesafetyanalysisreport,andtoconfirmthatanappropriate breaklocationhasbeenconsidered inthisanalysis.
TheuseofRELAP3willcontinueuntiltheRELAP4computercodehasbeenapprovedbythestaffasanacceptable blowdowncode.Atthattime,theCSBwillreplaceRELAP3withRELAP4forallsubsequent analyses.
/TheCSBdetermines theadequacyoftheinformation inthesafetyanalysisreportregarding subcompartment volumes,ventareas,andventresistances.
Ifasubcompartment mustrelyondoors,blowoutpanels,orequivalent devicestoincreaseventareas,theCSBreviewstheanalysesandtestingprogramsthatsubstantiate theiruse.TheCSBreviewsthenodalization ofeachsubcompartment todetermine theadequacyofthecalculational model.Asnecessary, CSBperformsiterative nodalization studiesforsub-compartments toconfirmthatsufficient nodeshavebeenincludedinthemodel.TheCSBcomparestheinitialsubcompartment airpressure, temperature, andhumiditycondi-tionstothecriteriaoFII,above,toassurethatconservative conditions wereselected.
TheCSBreviewsthebases,correlations, andcomputer'odes usedtopredictsubsonicandsonicventflowbehaviorandthecapability ofthecodetomodelcompressible andun-compressible flow.Thebasesshouldincludecomparisons ofthecorrelations tobothexperimental dataandrecognized alternate correlations thathavebeenacceptedbythestaff.6.2.1.2-4 4,0Usingthenodalization ofeachsubcompartment asspecified inthesafetyanalysisreport,theCSBperformsanalysesusingoneofseveralavailable computerprogramstodetermine theadequacyofthecalculated peakdifferential pressure.
Thecomputerprogramusedwilldependuponthesubcompartment underreviewaswellastheflowregime.Atthe'present time,thetwoprogramsusedbytheCSBareRELAP3(Ref.21)andCONTEHPT-LT (Refs.*7, 8,and9).Amulti-volume computercodeiscurrently underdevelopment.
Attheconstruction permitstage,theCSBwillascertain thatthesubcompartment designpressures includeappropriate marginsabovethecalculated values,asgiveninII,above.IV.EVALUATION FINDINGSTheconclusions reachedoncompletion ofthereviewofthissectionarepresented inStandardReviewPlan6.2.1~V.REFERENCES Thereferences forthisplanarethoselistedinStandardReviewPlan6.2.1,togetherwiththefollowing:
la.Regulatory Guide1.46,"Protection AgainstPipeWhipInsideContainment."
2a.StandardReviewPlan3,6.2,"Determination ofBreakLocations andDynamicEffectsAssociated withthePostulated RuptureofPiping,"andattachedBranchTechnical PositionNEB3-1,"Postulated BreakandLeakageLocations inFluidSystemPipingOutsideContainment."
46.2.1.2-5 0l ATTACHiiEHT 2MECHANICAL ENGINEERING BRANCHREVESTFORADDITIONAL INFOlMTION Recentanalyseshaveshown'that reactorpressurevesselsupportsmaybeVIsubjected topreviously underestimated lateralloadsundertheconditions thatwouldexistifaninstantaneous doubleendedbreakispostulated inIthereactorvesselcoldlegpipeatthevessel.nozzle.Itistherefore necessary toreassessthecapability ofthereactorcoolantsystemsupportstolimitthecalculated motionofthereactorvesselduringapostulated coldlegbreakwithinboundsnecessary toassureahigh-probability thatthereactorcouldbebrought.safelytoacoldshutdowncondition.'
XThe,following information isrequired'for purposesofmakingthenecessary v<reassessment ofthereactorvesselsupports:
nI1.Provideengineering drawingsofthereactorsupportsystemsufficient toshowthegeometryofall.principle elementsandmaterials 6feon-1struction.
2;Specify.thedetaildesignloadsusedintheoriginaldesignanalysesofthereactorsupportsgivingmagnitude, direction ofapplication andthebasisforeachload.Alsoprovidethecalculated maximumstressineachprinciple elementofthesupportsystemandthecorresponding allowable stresses.
3.Providetheinformation requested in2abovefortheRYsupportscon-sideringapostulated breakatthecoldlegnozzle.Includeasummaryoftheanalytical methodsemployedandspecifically statetheeffectsof,Ishorttermpressuredifferentials acrossthecorebarrelincombination.
withallexternalloadingsca1culated toresultfromtherequiredpostulate.
Thisanalysisshouldconsider:
(a)limiteddisplacement breakareaswhereapplicable (b)consideration offluidstructure interaction (c)useofactualtimedependent forcingfunction(d)reactorsupportstiffness.
4.Iftheresultsoftheanalysesrequiredby3.aboveindicates loadsleadingtoinelastic actioninthereactorsupportsordisplacements exceeding previousdesignlimitsprovideanevaluation ofthefollowing:
(a)Yieldbehavior(effectsofpossiblestrainenergybuildup)ofthematerialusedinthereactorsupportdesignandtheeffectontheloadstransmitted tothereactorcoolantsystemandthebackupstructures towhichthereactorcoolantsystemsupportsareattached.
(b)Theadequacyofthereactorcoolantsystempiping,controlroddrives,steamgenerator andpumpsupports, structures surrounding thereactoi"coolantsystem,reactorinternals andECCSpipingtoassurethatthereactorcanbesafelybroughttocoldshutdown.